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Abstract

Software Product Lines (SPLs) allow variants of a software system to be generated based on the
configuration selected by the user. In this thesis, we focus on C based software systems with build-time
variability using a build system and C preprocessor. Such systems usually consist of a configuration space,
a code space, and a build space. The configuration space describes the features that the user can select and
any configuration constraints between them. The features and the constraints between them are commonly
documented in a variability model. The code and build spaces contain the actual implementation of the
system where the former contains the C code files with conditional compilation directives (e.g., #ifdefs),
and the latter contains the build scripts with conditionally compiled files. We study the relationship between
the three spaces as follows: (1) we detect variability anomalies which arise due to inconsistencies among the
three spaces, and (2) we use anomaly detection techniques to automatically extract configuration constraints
from the implementation.

For (1), we complement previous research which mainly focused on the relationship between the
configuration space and code space. We additionally analyze the build space to ensure that the constraints in
all three spaces are consistent. We detect inconsistencies, which we call variability anomalies, in particular
dead and undead artifacts. Dead artifacts are conditional artifacts which are not included in any valid
configuration while undead artifacts are those which are always included. We look for such anomalies at
both the code block and source file levels using the Linux kernel as a case study. Our work shows that
almost half the configurable features are only used to control source file compilation in Linux’s build
system, KBUILD. We analyze KBUILD to extract file presence conditions which determine under which
feature combinations is each file compiled. We show that by considering the build system, we can detect an
additional 20% variability anomalies on the code block level when compared to only using the configuration
and code spaces. Our work also shows that file level anomalies occur less frequently than block level ones.
We analyze the evolution of the detected anomalies and identify some of their causes and fixes.

For (2), we develop novel analyses to automatically extract configuration constraints from implementa-
tion and compare them to those in existing variability models. We rely on two means of detecting variability
anomalies: (a) conditional build-time errors and (b) detecting under which conditions a feature has an
effect on the compiled code (to avoid duplicate variants). We apply this to four real-world systems: uClibc,
BusyBox, eCos, and the Linux kernel. We show that our extraction is 93% and 77% accurate respectively
for the two means we use and that we can recover 19 % of the existing variability-model constraints using
our approach. We qualitatively investigate the non-recovered constraints and find that many of them stem
from domain knowledge. For systems with existing variability models, understanding where each constraint
comes from can aid in traceability between the code and the model which can help in debugging conflicts.
More importantly, in systems which do not have a formal variability model, automatically extracting
constraints from code provides the basis for reverse engineering a variability model.

Overall, we provide tools and techniques to help maintain and create software product lines. Our work
helps to ensure the consistency of variability constraints scattered across SPLs and provides tools to help
reverse engineer variability models.
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Chapter 1

Introduction

Henry Ford once said “Any customer can have a car painted any color that he wants so long as it is
black” [45]. That quote is representative of an era where customization was difficult and expensive. A
simple choice such as the color of the car you buy may not have been feasible since that might change
the fixed process used to build the car. As the production process evolved, the concept of product lines
in factories was adopted where each part of the product line is responsible for a certain component, and
components are then packaged together as they progress through the product line. Software systems went
through the same evolution process. Typically, a company would build a single software system for a
specific purpose and all its users would expect the same functionality from it with no room for changes or
customization. As users started requesting different variations of the product, software engineers created
new development techniques to facilitate building similar software products. These include concepts such
as software reuse [64], software components [75], information hiding [93] etc. Similarly, Software Product
Lines (SPLs) [26] have been introduced to provide a systematic way of configuring different, and yet
similar, products without having to develop new systems from scratch every time. A software product line
builds different variants of the same software from reusable components according to the functionalities
selected by the user.

Central to software product lines is the idea of features. A feature is some behavior or functionality that
is modeled and implemented in a software system [5, 10, 23, 28, 53]. An SPL usually offers several features
with interdependencies between them. For example, in an operating system, you cannot have multi-threaded
I/O locking without having threading support enabled in your system. These kinds of specifications describe
what is referred to as the problem space [27, 28, 30]. The problem space describes the features that will be
offered to the user and any constraints or dependencies between them. The information from the problem
space is usually documented in a variability model. Automated and interactive configurators use such
models to support users in navigating through valid configurations [14, 33, 126, 127]. Valid configurations
are combinations of features that respect the constraints documented in the variability model. The features
described in the variability model are then implemented in the solution space [27, 28, 30] which contains
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the actual code files and build scripts providing the functionalities intended for these features. Thus, features
are described in the problem space and mapped to implementation artifacts in the solution space.

SPLs promise many advantages such as reduced costs of building tailor-made software, improved
quality, and reduced time to market which encouraged many companies such as Boeing, Bosch, and
General Motors to adopt them for developing their products [4]. There are two sides to SPL development:
maintaining existing SPLs and creating new SPLs. Despite the benefits of software product lines, main-
taining existing software product lines or creating new ones is not trivial. Each side comes with its set of
challenges.

Maintaining a software product line from which thousands of variants can be generated is not an easy
task. Apart from typical challenges of developing large software systems, there are problems unique to
SPLs due to their configurable nature. First, as opposed to traditional software where there is only one
system to analyze, debug, and test, an SPL has many variants that need to be analyzed. In an SPL with only
ten optional features, we already have 210 variants to analyze which makes finding any incorrect behavior
more costly and more difficult. Second, the information related to the configurability or variability of the
system is scattered. As can be seen from the above description, the features provided by the system and their
interdependencies are described in a variability model and then implemented in code and build artifacts.
This scattering of information leads to redundancies and conflicts between the feature dependencies which
may lead to incorrect behavior of the system.

When creating new software product lines, developers can start from scratch, or may re-use existing
code (i.e., migrate towards an SPL). In both cases, an SPL should have some form of documented
variability model which describes the features provided by the system and their interdependencies. We
focus on the migration case where existing systems may have variability in their source code (e.g.,
through C preprocessor directives), but no documented variability model. Instead, they rely on informal
textual descriptions of feature dependencies (e.g., the FreeBSD kernel [103]). As the number of features
and their dependencies increases, configuration becomes more challenging [50, 103]. Introducing an
explicit variability model is often the way out to control complexity and have one central—human- and
machine-readable—place for documentation [80]. Thus, identifying configuration constraints to create
variability models is an important step in the creation or migration of SPLs. However, manual extraction of
configuration constraints from implementation is a daunting task which calls for automation. In order to
automate the creation of variability models, we need to understand the sources of configuration constraints
and how we can identify and extract these constraints.

1.1 Motivating Example

Consider a mobile phone company, AwesomePhone, which produces several models of its phones targeted
to different markets. For each model, considerations such as the hardware it will run on, software
dependencies, and the target price it will be sold for will govern the features the company decides to
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Figure 1.1: AwesomePhone variability model shown in feature modeling notation

Figure 1.2: AwesomePhone configurator. (a) default view, (b) selecting Low_Cost_ Model results in
Basic_Camera being unselectable, (c) selecting Basic_Camera results in DSLR_Camera being visible for
selection.

include in the phone. For example, one low-cost model of the phone which targets basic users will only
contain call and texting capabilities, but no camera. Cathy, one of AwesomePhone’s developers, designs
and implements a software product line to achieve this.

Cathy discusses the different requirements and functionalities of the phone with her team and then
defines the supported features and creates the variability model shown in Figure 1.1. The variability
model, created using FeatureIDE [68], is shown in feature modeling notation [53] where the relationships
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1 #ifdef Basic_Camera
2 //basic camera support code
3 #ifdef DSLR_Camera
4 //DSLR camera support code
5 #endif
6 #else
7 //no camera support
8 #endif

Figure 1.3: C code implementing AwesomePhone’s camera support

1 #ifdef Basic_Camera
2 //camera support code
3 #else
4 //no camera support
5 #ifdef DSLR_Camera
6 //DSLR camera support code
7 #endif
8 #endif

Figure 1.4: Bug in the C code implementing AwesomePhone’s camera support. DSLR camera support
code is dead.

between the different identified features are shown. For example, AwesomePhone must have calling
capabilities (mandatory features), but it is optional for it to have text messaging or a camera (optional
features). The variability model also shows that DSLR_Camera depends on Basic_Camera as shown from
the tree hierarchy. Cross-tree constraints can be expressed as additional propositional formulas (also part
of the variability model) shown at the bottom of Figure 1.1. For example, the additional propositional
formulas shown state that the low cost model must have calling and text capabilities but no camera.

Cathy then designs a configurator shown in Figure 1.2a which reads the variability model and displays
it to the users of the software product line such that they can select the features they want. Note that since
the variability model indicates that cameras are not supported on the low cost model, once the user selects
Low_Cost_Model, the Basic_Camera option becomes grayed out (i.e., unselectable) as shown in Fig-
ure 1.2b. Similarly, since DSLR_Camera depends on Basic_Camera, the user must select Basic_Camera
in order for DSLR_Camera to appear in the menu and become selectable as shown in Figure 1.2c.

Through conditional compilation (e.g., #ifdefs), Cathy then uses the features defined in the variability
model as macros in the code to implement the corresponding functionality. We show the code relating to
the camera functionality in Figure 1.3. The code shows that to get basic camera support, the user must
select the Basic_Camera option (Line 1). Additionally, to get the DSLR camera support, the user must
select both the Basic_Camera option as well as the DSLR_Camera option (Line 1 and Line 3).
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1.1.1 Variability Anomalies

Let us assume that Bob, who is an AwesomePhone developer, now uses the configurator to configure a phone
that supports a DSLR camera. Bob uses the configurator and selects both Basic_Camera and DSLR_Camera.
Based on this, he expects that when he compiles the software, he would have the software support needed
for the DSLR camera to work. To his surprise, he finds that his configured phone does not contain the
DSLR camera support code. Bob then complains to Cathy who tries to figure out what went wrong.

Upon inspection of the system’s implementation, Cathy realizes that she had incorrectly changed the
place of the #ifdef check for the DSLR camera support from that shown in Figure 1.3 to that shown
in Figure 1.4. Thus, the #ifdef DSLR_Camera check on Line 5 in Figure 1.4 is incorrectly placed in the
#else branch of the #ifdef Basic_Camera check. Since the variability model would never allow Bob
to select DSLR_Camera without Basic_Camera because of the stated dependencies, the DSLR support
code on Line 6 of Figure 1.4 is dead. This means that although based on the configuration Bob selected,
he expects to get the DSLR camera support, he does not get that functionality because the use of the
configuration features in the code is not consistent with those presented in the variability model. We call
such situations variability anomalies since they can reflect real errors (such as this case) or code smells [46,
121]. Cathy then fixes this anomaly by moving back to the correct implementation shown in Figure 1.3.

1.1.2 Identifying Configuration Constraints

Now suppose that AwesomePhone had never taken the time to identify and document the dependencies
between its features. Instead, the company relies on the existing code as well as developers’ knowledge of
the supported configuration features and their dependencies. While this can work with a small number of
features, it does not scale well. As the number of features increases, managing and keeping track of the
features and their dependencies becomes difficult. Thus, having a documented variability model (such as
that in Figure 1.1) is helpful for telling Cathy the feature dependencies such that she can properly maintain
the project and debug problems similar to those Bob faced.

If the company now decides to create such a variability model to better manage its software product line,
Cathy might be overwhelmed with the task of going through code implemented and modified over several
years to manually identify these dependencies. Cathy would, therefore, appreciate having some form of
automated support. In this case, an automatic tool can analyze the code in Figure 1.3 and realize that unless
Basic_Camera is enabled, DSLR_Camera has no effect on the compiled code. From that information, the
tool can deduce that DSLR_Camera depends on Basic_Camera. On the other hand, upon examining the
code in the rest of the system (not shown in examples), Cathy finds that the feature Low_Cost_Model
is not used in the implementation. This means that an automatic tool would not be able to identify that
Basic_Camera depends on not having Low_Cost_Model since this is not a technical dependency reflected
in the code. This illustrates that some constraints in the variability model may not be discoverable from
analyzing the code. In that case, Cathy may still need to manually look at other sources of information
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such as marketing requirements. Thus, there are different sources of configuration constraints: some may
be discoverable from the implementation and some may only be reflected in other documentation.

1.2 Thesis Research Themes

Our examples involving AwesomePhone have introduced key concepts involving software product lines,
features, feature dependencies (or configuration constraints), sources of configuration constraints, variability
models, and variability anomalies. We now give an overview of the entire thesis which discusses how
variability anomalies can be detected and used to help in both the maintenance and creation of software
product lines.

With respect to the maintenance of software product lines, we detect variability anomalies that manifest
themselves in terms of dead and undead artifacts. A dead artifact is a conditionally-compiled artifact that is
never included in any variant of the program irrespective of the user’s selection, while an undead artifact is
a conditionally-compiled artifact that is always included in every variant. Checking that an SPL does not
contain any dead artifacts ensures that when a user selects a specific feature, they get the corresponding
functionality from the implementation. In some cases, dead code may be useless code that is left behind.
Such dead code can unnecessarily complicate the implementation, and developers may end up wasting
time on unnecessary maintenance. Checking that an SPL does not contain undead code ensures that the
corresponding functionality offered is actually conditional on the user’s feature selection. It also ensures
that the implementation is not complicated by redundant checks.

To aid in the creation of software product lines, we support the reverse-engineering of variability
models from implementation. We do so by analyzing the implementation and automatically detecting
configuration constraints which prevent the manifestation of variability anomalies. We study the extent to
which we can automatically recover existing variability-model constraints using our analysis and classify
what additional sources are needed to identify the remaining constraints.

For both maintenance and creation of software product lines, we focus on build-time binding which
means that the necessary parts of the code are selected at build-time. Other types of binding (e.g., load-time)
are described elsewhere [4, 116]. Specifically, we focus on C based systems with build-time variability
using the build system and C preprocessor.

1.2.1 Detecting and Analyzing Variability Anomalies

To detect dead and undead code, feature dependencies from different parts of the system (e.g., the variability
model, code, and build files) are extracted and cross-checked for consistency. Previous work on consistency
checking by other researchers has focused mainly on the code and the variability model without considering
the build files [118, 122]. However, developers invest considerable time in maintaining build systems which
suggests that they play an important role in the system’s implementation [65, 99]. The build system (which
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usually consists of Makefiles and/or build scripts) is the ultimate controller of what ends up in the final
software product. The configuration features presented to users are usually also used in the build system
to control which files get compiled. We, therefore, analyze the variability constraints enforced in build
systems and study their effect on the detected variability anomalies.

We use the Linux kernel as a case study since it is the largest open source software product line with
build-time binding available. We develop a Makefile constraint extractor, MAKEX, which determines under
which feature selection will a file get compiled. We use our extractor to quantify the variability in the
Linux kernel’s build system, KBUILD. We show that almost half (46%) of the configuration features in the
Linux kernel are used only in the build system, which indicates that it has important role in the variability
implementation of the system.

We extend previous work by Tartler et al. [118] which detected dead and undead code blocks by
analyzing the constraints in the code and the variability model. We add the constraints we extract from the
build files to the analysis and show that we can detect an additional 20% variability anomalies. We also
work on the file level to detect dead and undead files due to conflict of constraints, as well as due to internal
problems in KBUILD. We find that anomalies occur rarely on the file level when compared to the code
block level. For both levels, we also study the evolution of such anomalies over time. To the best of our
knowledge, our work is the first to highlight the importance of the build system constraints in variability
analysis and to identify possible causes and fixes of variability anomalies. Detecting such anomalies is
important for maintenance activities and ensuring that variability remains correctly implemented as the
system evolves.

1.2.2 Extracting and Classifying Configuration Constraints

To help in automatically creating variability models, we investigate different sources of configuration
constraints and to what extent we can automatically and accurately extract such constraints from existing
implementations using static analysis techniques. We develop two rules which describe desirable properties
in configurable software. The two rules rely on detecting build-time errors (preprocessor, parser, type, and
linker errors) as well as feature combinations that have no effect on the code. The latter can be viewed
as a variation of dead code detection which has a more global nature. Specifically, the two rules are: (1)
all valid configurations should build correctly, and (2) they should all yield different products. For both
rules, we propose novel scalable extraction strategies based on the structural use of #ifdef directives, on
parser and type errors, and on linker checks. We design an infrastructure that accurately represents C code
based on previous research on variability-aware parsing and type checking [60, 61, 70] where we statically
analyze build-time variability effectively without examining an exponential number of configurations. We
demonstrate scalability by extracting constraints from four large open-source systems (uClibc, BusyBox,
eCos, and the Linux kernel) and evaluate accuracy by comparing the constraints to existing developer-
created models. Our results show that our extraction is 93% and 77% accurate respectively for the two rules
we use, and can scale to the size of the Linux kernel in which we extract over 250,000 unique constraints.
We also show that we can recover 19 % of the existing variability-model constraints using our approach.
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In order to determine what additional analyses are needed to recover the remaining constraints, we
manually investigate the constraints we could not recover using our static analysis techniques. To classify the
sources of configuration constraints, we qualitatively inspect a sample of the variability-model constraints
our analysis could not recover. We find five cases where the source of the constraint is beyond our
analysis. For example, we find that 28% of these constraints stem from domain knowledge. This includes
knowing which features are related and should thus appear in the same configurator menu or knowing
which functionalities only work on certain hardware. To the best of our knowledge, our work is the first to
quantify the recoverability of variability-model constraints from code using an automated approach and to
qualitatively analyze non-recovered ones.

1.3 Contributions

To summarize, we claim the following contributions. These contributions have been published in various
conferences and journals (see references in the following list of contributions).

• Demonstrating the role of build systems in variability implementation by quantifying it and comparing
it to other parts of the Linux kernel [86].

• Detecting block-level and file-level variability anomalies in Linux by considering constraints in its
build system, KBUILD [84–86].

• Identifying causes and fixes of variability anomalies [83, 84].

• Developing new analyses to automatically and accurately extract configuration constraints from
existing implementation [82].

• Determining the extent to which variability model constraints can be automatically recovered from
implementation and classifying the cases in which they cannot [82].

Overall, our work provides tools and techniques to help maintain software product lines by ensuring
the consistency of variability constraints scattered across the system. Additionally, we provide automated
techniques for extracting configuration constraints from implementation that can be used to reverse engineer
variability models. Our work highlights where automatic extraction mechanisms would fall short such that
developers and project managers can have realistic expectations.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 provides background about the concepts used in
this thesis and discusses related work. Chapter 3 describes the configuration information in the build system

8



and how we extract configuration constraints from it. We then show how we detect variability anomalies.
In Chapter 4, we discuss block-level anomalies as well as their evolution in Chapter 5. In Chapter 6, we
present file-level anomalies. In Chapter 7, we describe the methodology we use to automatically extract
variability constraints from implementation and how we compare them to those in the existing variability
models. Chapter 8 summarizes the conclusions we draw from the work presented in this thesis.
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Chapter 2

Background and Related Work

The use of software product lines has become increasingly common in both industry and research due to
their anticipated benefits. There has been a lot of work done to provide support for maintaining software
product lines as well as providing support to migrate legacy code towards a software product line. In this
chapter, we present the work most related to the topics discussed in this dissertation. To relate previous
research to that presented in this thesis, we first discuss some background and terminology. We then use
this terminology to present related work.

Chapter Organization. In Section 2.1, we present the background behind the three variability spaces
discussed in this thesis: configuration space, code space, and build space by using the Linux kernel as an
example. We also describe the Linux kernel’s development process. We then use these three variability
spaces to categorize the relevant related work. In Sections 2.2–2.4, we present previous research which
analyzes each of the three spaces. In Section 2.5, we then discuss the work that has been done to analyze
the relationship between these variability spaces in terms of co-evolution (Section 2.5.1) and consistency
problems (Section 2.5.2). In Section 2.6, we present some of the existing work on software product line
creation and migration. We conclude this chapter by summarizing the state of the art and how it relates to
the work in this dissertation.

2.1 Background and Terminology

When developing highly configurable software or software product lines, a set of customizable function-
alities that can be provided to the user is identified. Requirement engineers, domain experts, and often
developers have this information in their mind. For example, a convertible car cannot have a sunroof.
These kinds of specifications describe what is referred to as the problem space [27, 28, 30]. The problem
space essentially describes the different features that will be offered to the user and any constraints or
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(a) Problem and Solution
Spaces

(b) Three Variability Spaces

Figure 2.1: Features in the problem space are mapped into implementation files in the solution space (a).
The solution space can be further divided into the code space and the build space (b)

dependencies between them. These features are then implemented in the solution space [27, 28, 30] which
contains the actual code files and scripts which provide the functionalities intended for these features. Thus,
features cross both spaces: they are described in the problem space and mapped to implementation artifacts
in the solution space as shown in Figure 2.1a.

In this thesis, we focus on C-based systems with build-time variability. Such systems have different
types of artifacts that support variability. For example, configuration files contain information captured
by the problem space while source code and build files contain the low level implementation of the
functionalities in the solution space. Thus, we use additional terminology to further identify the different
parts of a software system related to its variability implementation. As shown in Figure 2.1b, we use the
term configuration space to describe the features and their dependencies documented in configuration files.
We then divide the solution space into two spaces, code space and build space, to differentiate where the
information lies in the system. There may of course be other types of artifacts such as XML documents or
grammar files etc. as noted by previous work [11, 120]. However, although not applicable in the context of
the C-based systems we focus on, we would consider such files as part of the code space. For example,
the main source code artifacts of a website might be its HTML files. On the other hand, the build space is
different since it would consist of any scripts which aggregate or compile the relevant code artifacts.

In this section, we first give an overview of how variants of C-based systems with build-time variability
are usually generated. We do so by using the Linux kernel as an example since it is the main subject of study
for most of this thesis. Operating systems have to serve different hardware platforms as well as different
applications ranging from those on high-end servers to those on embedded devices. The Linux kernel is an
example of such an open-source operating system which is considered to be a software product line [106].
Since Linux is the biggest open-source configurable software supporting build-time variability with over
10,000 configurable features [118], we also believe it is a good example of the level of configurability
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Figure 2.2: The build process of the Linux kernel which is considered to be a software product line

that may be practiced in industry. The concepts discussed here generally apply to build-time configurable
systems as will be shown in the other subject systems we study later in this thesis (e.g., BusyBox and eCos).

We show the Linux kernel’s build process in Figure 2.2 and use it to explain the details of the three
variability spaces in the next three subsections. We also describe its development process as background to
the evolutionary studies we perform later in this thesis.

2.1.1 The Linux Kernel Build Process

The Linux build process relies on three kinds of artifacts in the Linux kernel source tree: the source code
files, the KCONFIG files, and the Makefiles. These three artifacts are shown on the left in Figure 2.2.

The first step in building the Linux kernel is configuring it. This is done using tools that read the
configuration options from the KCONFIG files (details to follow) and display them to the user in a menu
format. These tools include menuconfig, xconfig, and qconfig which provide different formats of a
configurator [32, 53, 110]. Configurators are interactive tools that help users achieve a desired configuration
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Figure 2.3: Linux kernel configurator

by offering intelligent choice propagation and conflict resolution facilities [14, 33, 126, 127]. We show a
snapshot of the Linux kernel’s configurator in Figure 2.3.

After the user configures the kernel through the configurator, two files are produced: the .config file
used internally by the Linux kernel’s build system KBUILD and the autoconf.h file used by the GCC

compiler. These files contain the user’s selection of features. Although they contain the same information,
they have different formats since they are used in different places. Entries in the .config file used by
KBUILD have the format shown in Listing 2.1. This format defines environment variables that will be used
in the KBUILD Makefiles to control which files get compiled. A feature that is selected will be defined as
an environment variable with the value ‘y’. Note that it is a convention to attached the prefix CONFIG_ to
a configuration option when used in the implementation to differentiate it from other macros. For example,
in Line 1 of Listing 2.1, the entry shows that feature PCI is selected in this configuration.
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1 CONFIG_PCI=y
2 CONFIG_PCI_MMCONFIG=y

Listing 2.1: Examples of .config entries

On the other hand, the same information will be present in the autoconf.h file, but with the format
shown in Listing 2.2. This is essentially a header file that defines preprocessor directives that control
selective compilation by the GCC compiler. Here, selected features have the value ‘1’. For example, Line 1
in Listing 2.2 also shows that feature PCI is selected in this configuration by defining its corresponding
macro to 1.

1 #define CONFIG_PCI 1
2 #define CONFIG_PCI_MMCONFIG 1

Listing 2.2: Examples of autoconf.h entries

Based on the features defined in the .config file, the Makefiles instruct GCC to compile and link
certain files into the final kernel variant shown at the bottom of Figure 2.2. The Makefiles also force the
header file autconf.h to be included in all source code compilation. Accordingly, when the C preprocessor
reads these source files, the features defined in the header file autoconf.h determine which parts of the
code get passed to the compiler based on the preprocessor directives (#ifdefs).

Figure 2.2 shows how the three artifacts as well as the processes and tools fit into three spaces that
ultimately control variability of the kernel. These are the configuration space (consisting of KCONFIG files),
the code space (consisting of source code files), and the build space (consisting of KBUILD Makefiles).
The following three subsections provide more details about these three spaces.

2.1.2 Configuration Space

We use the term configuration space to describe the set of features supported by the system and the
constraints between them. Ideally, the information in the configuration space (or problem space) would be
documented in some form of variability model that describes features and constraints in a central place. In
Linux, the configuration space consists of KCONFIG [132] files which document the various configuration
options provided and their interdependencies.

Each configuration feature has a config entry in a KCONFIG file. Additionally, there are menu items
used to group related features together for better display. Listing 1 shows examples of KCONFIG entries.
The first entry is a menu which displays the different bus options. Note that this is the highlighted item on
the left hand side of the configurator in Figure 2.3. The next entry is a feature called PCI of type bool. This
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Listing 1 KCONFIG example
menu "Bus options (PCI etc.)"

config PCI
bool "PCI support"
default y

config PCI_MMCONFIG
bool "Support mmconfig PCI config space access"
depends on PCI

config XEN_PCIDEV_FRONTEND
tristate "Xen PCI Frontend"
depends on PCI
select PCI_XEN
help

The PCI device frontend driver allows the kernel to import arbitrary
PCI devices from a PCI backend to support PCI driver domains.

endmenu

means that the feature can be either selected or not selected at any given time. In this case, it is selected by
default since it has a default y value. Note that the text between quotes after the feature type (bool here)
shows the prompt being displayed to the user. This can be seen as the first entry highlighted on the right
hand side of the configurator in Figure 2.3.

The next entry in Listing 1 defines feature PCI_MMCONFIG. Here, this feature depends on PCI. This
means that it cannot be selected unless PCI is also selected. Note that when displayed in the configurator,
feature PCI_MMCONFIG whose prompt is “Support mmconfig PCI config space access” is displayed as a
child of the “PCI support” feature (i.e., feature PCI) showing that features in KCONFIG have a hierarchy.

The third entry in Listing 1 shows another feature, XEN_PCIDEV_FRONTEND, of type tristate which
means that the feature can be compiled as a loadable module. In this case, the feature can be selected and
would have value y in the generated .config file or can be selected to be built as a loadable module and
will have value m in the generated .config file. This entry also depends on PCI. Additionally, it has a
reverse dependency on PCI_XEN (feature not shown) as seen from the select clause. This means that
when the user selects XEN_PCIDEV_FRONTEND, the configurator would automatically select PCI_XEN. Such
dependencies are cross-tree in the sense that there is no parent-child relationship here, but the feature
selected may appear elsewhere in the model. For more details about different relationships in KCONFIG,
we refer the reader to the work done by She et al. [104].
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The dependencies enforced in KCONFIG (i.e., the configuration constraints) can stem from technical
restrictions present in the solution space such as dependencies between two code artifacts. Additionally,
they can stem from outside the solution space such as external hardware restrictions. Constraints can
also be non-technical, stemming from either domain knowledge outside of the software implementation,
such as marketing restrictions, or from configurator-related restrictions, such as to organize features in the
configurator or to offer advanced choice propagation.

For example, in the Linux kernel, a technical constraint which is reflected in the code is that “multi-
threaded I/O locking” depends on “threading support” due to low-level code dependencies. A technical
constraint which cannot be detected from the code is that “64GB memory support” excludes “386” and
“486” CPUs, which stems from the domain knowledge that these processors cannot handle more than 4GB
of physical memory. A non-technical, configurator-related, constraint is that feature “PCI support” appears
under the menu feature “Bus Options” in the configurator hierarchy.

In this section, we have discussed the information contained in the configuration space: configuration
features and their dependencies. In the next two sections, we discuss the information contained in the two
other spaces: code space and build space.

2.1.3 Code Space

As previously mentioned, the solution space contains the implementation files (e.g., code, scripts, Makefiles
etc.) that implement the features defined in the configuration space. We use the term code space to describe
the set of source code files (e.g., C or C++) files that implement the functionality of these features. In order
to have certain functionalities present only when their respective features are chosen, corresponding blocks
in the source code are conditionally compiled. In Linux (as well as in the other subjects studied in this
thesis), this is done through C Preprocessor (CPP) directives such as #ifdef, #ifndef, #elif, and #else.
Listing 2 shows an example of a conditionally compiled code block.

Listing 2 Variability in the Source Code

#ifdef CONFIG_PCI
//Block 1
#else
//Block 2
#endif

In this example, Block 1 will be compiled only if feature PCI is selected (i.e., it is defined in the
generated autoconf.h header file). Note that we can tell that this is a configuration option from the
CONFIG_ prefix. On the other hand, Block 2 will only be compiled if feature PCI is not selected (i.e., it is
not defined in the generated autoconf.h header file). We use the term presence condition to refer to the
Boolean expression under which an artifact (a code block in this case) is compiled. Thus, the presence
condition of Block 1 in this example is PCI.
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2.1.4 Build Space

The build space consists of all the build files and scripts (e.g., Makefiles) that are responsible for compiling
and linking the source code. For example, Linux’s build system, KBUILD, is composed of a collection
of KBUILD files (which are essentially Makefiles) as well as some build scripts. The Makefiles contain
entries that control the compilation of whole source files, thus controlling what ends up in the final product
variant. While some source files are always compiled, others are conditionally compiled according to
some feature selection. Thus, similar to code blocks, files also have presence conditions. For example, the
presence condition of a file foo.c may be feature FOO which means that foo.c is not compiled unless FOO
is selected.

KBUILD uses a specialized syntax to express these file presence conditions. We will not go into the
details of this syntax here as we dedicate Chapter 3 to describe KBUILD’s syntax in details and how we
identify the file presence conditions.

2.1.5 The Linux Development Process

So far, we have described the three types of artifacts contributing to variability in the Linux kernel. In this
subsection, we describe the development process followed to modify these artifacts since it relates to the
evolution studies we describe in related work below and which we also perform in this thesis.

Changes to the Linux kernel artifacts described above happen through a strict review process. A
proposed change may add new functionality as well as modify, correct, or remove existing functionality.
The change is first proposed on focused mailing lists that are read by experts in the Linux subsystem that
the change addresses. Proposed changes are required to include a summary of the problem, a detailed
description, as well as the suggested code change in the so called unified diff format1. The content,
description and format of the suggested change are then reviewed by developers who are familiar with
the code to ensure that the presented change is formally correct, understandable, and complete. Proposed
changes get approved by subsystem maintainers by including the proposed change as a GIT commit into
the focused subsystem repositories that only they control.

Each GIT commit contains information such as the author and date of the commit, a detailed description
of the commit, as well as the patch applied. The patch contains the textual change to the modified files.
These modified files can be documentation files, KCONFIG files, source code files, or a Makefile. The
commit patch can be displayed in unified diff format where lines removed are prefixed with a ’-’, while
lines added are prefixed with a ’+’. For example, the following snippet shows an example of a KCONFIG

patch renaming a feature in KCONFIG.

1A standard format for interchanging code changes that is understood by the UNIX patch(1) tool
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1 −config SPI_BFIN
2 +config SPI_BFIN5XX
3 tristate "SPI controller driver ... "

The patch shows that the line containing the old feature name has been removed (-config SPI_BFIN),
while the line containing the new feature name has been added (+config SPI_BFIN5XX). This can be
interpreted that this KCONFIG feature is being renamed. Since each commit implements some change and
has an associated patch transcribing this change, we use the three terms interchangeably throughout the
thesis for simplicity.

At the beginning of each new Linux release cycle, referred to as the merge window, subsystem
maintainers ask Linus Torvalds, who maintains the Linux master GIT repository, to integrate the batched
changes from their subsystem into his master repository. From this master repository, official Linux releases
are made for use by Linux distributors and end-users. This organizational structure ensures that all code and
the corresponding descriptions of the changes in the master repository have been reviewed by at least two
experts. The case studies in this thesis can therefore reliably identify focused, well-documented changes in
a large-scale, professionally driven open-source project.

In the remainder of this chapter, we use the concepts we have described in this section (Section 2.1) to
present related work where we describe previous work done to analyze each of the three variability spaces
as well as their inter-relationships.

2.2 Analyzing the Configuration Space

Hubaux et al. [50] conducted a survey of configuration challenges in the Linux kernel and eCos. One of their
findings indicates that developers often face situations where conflict resolution is needed, and that current
tools still lack proper guidance. The dependencies in a variability model are typically expressed uniformly
as a single large Boolean function expressed in propositional logic to describe all valid configurations
and help reasoning about them [19, 102, 118, 128]. Such semantics include looking at this configuration
information in terms of feature models. Feature models are a method of variability modeling to represent
the commonalities and variabilities within a software system [53], and have been closely linked to the field
of software product lines [79]. Feature models have a tree-like structure where child-parent relationships
(hierarchy constraints), as well as inter-feature constraints (cross-tree constraints) can be identified [18,
53]. An example of a feature model for a part of the Linux kernel is shown in Figure 2.4. In this example,
we can see the tree-like structure showing the hierarchy of features. Feature relationships include direct
dependencies, exclusions, as well as alternative groups.

The constraints shown in Figure 2.4 are examples of what we call configuration constraints. For
example, we can see that cpu_hotplug→ powersave based on the cross-tree edge shown in the model.
There has been much research to extract such constraints from the configuration space [16, 102, 118]. Such
extractors can interpret the semantics of different variability modeling languages to extract both hierarchy
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Figure 2.4: Example of a feature model for part of the Linux kernel’s power management subsystem [103]

and cross-tree constraints as well as represent all constraints in a single Boolean formula. For example,
She et al. [104] and Sincero et al. [107] present Linux’s use of KCONFIG [132] as a large-scale example of
a variability model used in practice. She et al. [104] show how feature modeling constructs are used in
practice in the Linux kernel. Similarly, Berger et al. [19] look at more uses of feature modeling concepts by
comparing the variability models of the Linux kernel which uses the KCONFIG language and eCos which
uses the CDL language [125].

While we only focus on Boolean features (i.e., those that can only be selected or deselected), non-
Boolean features and dependencies do exist in practice. For example, Passos et al. [95] study the non-
boolean constraints present in eCos. Their findings show that non-boolean constraints are heavily used in
eCos. However, encoding non-boolean features and their dependencies in logical formulas is a difficult
problem which we do not attempt to address in this thesis.

2.3 Analyzing the Code Space

Despite the disadvantages of using the C preprocessor to implement variability at the source code level [112],
it remains a popular tool not only in the Linux kernel but in many other open-source [42, 69] and industrial
software systems [51]. To that extent, there has been much research into understanding the variability
introduced by the preprocessor directives and finding ways to accurately parse the code. While parsing C
code is a well-solved problem, parsing unpreprocessed C code (i.e., while it still has the #idefs in place) is
challenging. Such a task becomes necessary when you want to reason about the behavior of the source
code in all possible variants of the program. However, generating all possible variants to analyze them is
not practical. There has been several research efforts to address this.

Padioleau [91] developed a parser for C/C++ code which can take the C preprocessor (cpp) constructs
directly into account without preprocessing. That way, an AST can be created with a representation of the
cpp constructs. The author’s main goal is to allow easier evolving and refactoring of such code. However,
the technique depends on several heuristics noted from the cpp usage in the code and does not capture
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all uses (unsound). In a similar effort, Sincero et al. [109] analyze the source code to derive presence
conditions for each line of code. In this case, the presence condition is simply the #ifdef condition
the code is enclosed within, including nested conditions. However, the authors do not expand macros or
consider the interaction between #define and #if directives. They rely on the explicit macro uses in the
code without expanding the necessary macros and propagating variability. While this is an approximation
which may work on a local scale to understand under which conditions a piece of code is compiled, it is also
unsound. The work done by Baxter and Mehlich [12] also attempts to parse unpreprocessed C code. While
they correctly propagate macro definitions through #define, for example, they assume some limitations to
how the preprocessor directives can be used. This includes assuming that preprocessor directives such as
#if and #ifdef can only wrap entire statements or functions. In practice, preprocessor directives can have
different levels of granularity that may not align with statements or functions [55].

To overcome these shortcomings, Kästner et al. [60] have recently developed a variability-aware code
analysis infrastructure, TYPECHEF2 which consists of three variability-aware components. The first is
the partial preprocessor [59] which includes all necessary header files and expands all macros (unlike
most preceding work) while keeping conditional compilation directives such as #ifdefs in the code.
Each recognized token has a presence condition which shows under which condition it has been read.
The conditional token stream generated by the partial preprocessor is then passed to a variability aware
parser which tries to optimize the parsing process through splitting and combining different token streams
according to their presence conditions. This allows the whole conditional-token stream to be parsed in a
single pass and a conditional single abstract syntax tree (AST) to be produced. Each node in the conditional
AST is guarded by a Boolean expression which shows under which configuration can this node be reached.
The conditional AST can then be used for different static analyses. While TypeChef has mainly been used
to analyze build-time behavior such as parse and type errors, other work such as that by Bodden et al. [22]
looks at feature-aware data flow analysis for software product lines. They design an infrastructure with
similar concepts (but different underlying data structures) to support feature-aware inter-procedural analysis
for Java programs.

2.4 Analyzing the Build Space

There have been studies showing that the build system is an integral part of any software system [49, 65].
Developers do interact often with the build system and may spend considerable amounts of time doing
a simple task if the build system is very complex [88]. The build system becomes even more important
from a variability perspective since it is the final controller of what actually gets built in a software system.
However, with the exception of the work by Berger et al. [17] to extract file presence conditions and that
of Trujillo et al. [124] to refactor build files into the related modules, the build space has typically been
analyzed without the role of variability in mind. For example, Adams et al. [1] developed a tool, MAKAO,
for visualizing and manipulating build systems, and have applied it to KBUILD. They mainly focused on

2https://github.com/ckaestne/TypeChef
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the targets that appear in Makefiles and their dependencies, but did not study the configuration features
that appear in Makefiles and how they contribute to the Linux kernel’s configurability. Along the same
lines, Tamrawi et al. [117] create a symbolic build dependency graph by analyzing a build system using
symbolic execution. Symbolic execution can handle the dynamic nature of build systems (e.g., variables
depending on the operating environment) while tools like MAKAO analyze the build system for a specific
environment to produce a concrete dependency graph. There has been more recent work to analyze the
variability in the build space [34, 35] which we discuss in Chapter 3.

2.5 Relation Among Variability Spaces

As seen in the build process of the Linux kernel described in Section 2.1.1, the information from all three
spaces interacts to generate the final variant. Based on that, there has been much research studying the
relationships between these three variability spaces on different subject systems. This was either studied
from a co-evolution perspective to understand if changes may span multiple spaces or from a conflict
perspective to see if the constraints in these spaces are consistent. We discuss previous work related to
both of these aspects in the next two subsections. We would like to note that previous work by Batory et
al. [11] has pointed out that software product lines (or more broadly feature-oriented systems) have several
representations such as code, documentation, grammar files etc. and that all such representations must
be kept consistent. Based on that, they developed an generic algebraic model, AHEAD, that helps with
the composition of any representation into the final product. In our work, we focus on the three spaces we
describe because all artifacts related to producing the final product can be found in these spaces. We do not
deal with non-implementation related artifacts such as documentation and describe the following related
work from that perspective.

2.5.1 Co-evolution

Traditionally, the source code has been the main subject of evolution studies (e.g., [47]). However, as
researchers realized the importance of other artifacts [99], more studies about the evolution of artifacts such
as the configuration files [123] as well as co-evolution studies of several artifacts emerged. Lotufo et al. [72]
study how the variability model of the Linux kernel (i.e., the KCONFIG files) evolves over time. The various
versions of KCONFIG are compared in terms of their complexity. The authors find that the KCONFIG feature
model grows linearly in size (in terms of LOC) with the Linux source code which indicates their close
relation and suggests that the Linux kernel development is feature driven.

Similarly, Adams et al. [2] study the evolution of the Linux build system (KBUILD). Their work focuses
on how Linux Makefiles evolve over time in comparison to other artifacts in the system. They show that
the build system does indeed grow in complexity over time, and that it exhibits similar evolution patterns
to source code. Additionally, they show that it is constantly maintained to reflect design decisions in the

22



kernel. However, as they point out, their study focuses on using one preset configuration of the kernel
which means that it is not variability-aware and does not examine the interplay between the configuration
files and the build files.

There have also been co-evolution studies on systems other than the Linux kernel including those which
may not necessarily be categorized as SPLs. For example, McIntosh et al. [76, 77] study the evolution of
Java build systems such as ANT and Maven. They also find similar growth patterns to those found in the
Linux kernel, as well as similar correlation with source code changes. Additionally, they find that although
build systems account for a small percentage of the files in a project, they have a comparable churn rate to
source code [78] which suggests that they are also likely to have defects. The authors indicate that it is
necessary to understand the impact of a change in the source code on the supporting build system. However,
these studies only correlate the rate of evolution of source and build files, but do not examine the details of
how they actually cooperate together to provide the final product.

To consider the relation between all three variability spaces, Passos et al. [94] recently study the
co-evolution of the variability model with the other artifacts. They document the patterns they observe in
the evolution of the Linux kernel (e.g., adding a modular feature) and how related artifacts such as the
code and build file get affected. Their findings show that changes in the variability model often need to
be accompanied with changes in the code and build files indicating that they are closely related. Since
all the above evolution studies show the close relationship between the different artifacts, we believe it is
important to study this from a variability perspective and ensure that all three artifacts are consistent to
decrease the chance of anomalies.

2.5.2 Consistency Among Variability Spaces

Configurable software allows the user to build a product with a selected set of features. In turn, when
users select a specific feature, they expect certain functionality to accompany it. Figure 2.5 shows the three
spaces responsible for implementing variability: the configuration space, the code space, and the build
space. In order for variability to be correctly implemented, each space must contain the information needed
to achieve the intended variability and all of the three spaces must be kept consistent. Any inconsistencies
would lead to what we call, variability anomalies.

Variability anomalies could be in the form of conditionally dead or undead code as shown in the
introduction. They can also be in the form of build-time errors such that the selected variant does not build
correctly (e.g., has a type error). Alternatively, a selected configuration may build correctly but may not
behave correctly at run-time. We use the term anomalies as a general umbrella for all these problems. This
is because in some cases dead code, for example, may represent code which the developers do not care
about rather than a missing functionality. In other cases, dead code may be a result of an error. Similarly, if
a valid configuration does not build correctly, this is an error that needs to be fixed. Thus, the term anomaly
indicates something which is different than the expected behavior and can represent both types of problems.
We now discuss the previous work related to both categories.
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Figure 2.5: Consistency among the three spaces

We use the consistency relationships illustrated in Figure 2.5 to categorize the related work that has
been done to ensure consistency of the variability spaces. We present the three spaces and discuss the
consistency checks that relate to them. Note that the related work discussed here is mainly that which takes
the variability or configurability into account.

Configuration Space Consistency. There has been a lot of work in making sure that the information
in the configuration space is consistent (i.e., configuration self-consistency). Checking the consistency
of feature models, as a representation of the configuration space, has been tackled by several researchers.
Translating feature models into propositional logic [74, 101, 115] to help with reasoning about them has
become a common practice. For example, Batory [9] translates feature models to propositional logic to
facilitate debugging them such as finding contradictions. There has also been work done on debugging
individual configurations. That is, provide support for users to identify why there is a conflict in their
selected configuration and what they can do to resolve it. For example, White et al. [126] use Constraint
Satisfaction Problems (CSPs) to debug individual configurations. Alternatively, Xiong et al. [127] propose
the idea of range fixes which provides the user with a set of fixes which can resolve the conflicts in their
configuration. Their technique can handle non-boolean constraints which is a limitation of other related
techniques (e.g., [87]).

Code Space Consistency. Many of the related work for analyzing the code space discussed in Section 2.3
has been used as a foundation for detecting build-time errors in variable software (e.g., [22, 60, 109]). In that
sense, it ensures code self-consistency. However, it is often the case that information from the variability
model about the allowed valid configurations is used to limit the combination of features analyzed. In that
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sense, the code-configuration consistency has by far received the most attention. This is usually done by
checking if the valid configurations enforced by the variability model contain any build-time errors such as
parsing or type errors. To do so, the variability model is again expressed as propositional logic.

Thaker et al. [121] and Czarnecki et al. [29] were among the first to show that propositional logic and
SAT solvers can be successfully used for such consistency checks. Thaker et al. [121] have introduced the
term safe composition to indicate that all modules of an SPL can be safely combined for valid configurations
allowed by the variability model. Ensuring type safety was the main underlying premise of safe composition
where different constraints are expressed using propositional formulas and a SAT solver is used to detect
any composition problems. While Thaker et al. mainly focused on code artifacts (although their discussion
includes other artifacts as well), Czarnecki et al. [29] check for consistency with template based models
(i.e., related to UML representations). They also check for consistency of the feature model with respect to
the rest of the system, but their work focuses on feature-based model templates where they ensure that no
ill-formed template can be produced.

Detecting conditional type errors has actually been a popular way to find inconsistencies [6, 8, 63]
where conditional symbol tables based on #ifdef usage are used to detect type errors. Also related is the
optional feature problem discussed by Kästner et al. [56] as a mismatch between the intended variability
in the configuration space and that implemented in the code space. The optional feature problem is when
two features are presented as optional features in the configuration space, but their implementations are
not independent. This means that the implementation of one feature actually affects the implementation
of the other even if not selected. Tartler et al. [118] look at consistency from a different perspective by
comparing the constraints in both the configuration space and the code space in the Linux kernel to detect
any inconsistencies which might lead to dead or undead code. The research efforts discussed here are those
most related to this thesis. For more details on other strategies to analyze software product lines or detect
other inconsistencies, we refer the reader to the survey by Thüm et al. [122].

Build Space Consistency. We are not aware of any work that specifically looks at the relation between
the variability in the build system and that in the code space or in the configuration space. While Berger et
al. [17] analyze the build system, they do not check for consistency. Although with a different intent, an
exception is the work done by Kästner et al. [60] and more recent work by Liebig et al. [70]. In both works,
the authors use the file presence conditions from the build system to limit the combination of features they
need to analyze for parsing and type checking. However, they do not analyze the direct relationship (and
thus any inconsistencies) between the three variability spaces.

2.6 Supporting the Creation of SPLs

Given the benefits of software product lines, there has been much research about how to aid the migration
of legacy systems to software product lines. It is common for several similar products to be developed

25



for several years before a company attempts to create a software product line [44]. This is commonly
done through cloning mechanisms where the original system is cloned several times and changed to
support different requirements. While some researchers looked into providing ways to manage existing
clones [100], others have advocated refactoring the system into a software product line by analyzing the
commonalities and differences between these existing products [36, 37]. Researchers have looked at the
best way to re-architect the system [13, 20, 41, 105, 114] including identifying the parts of the code related
to a specific feature (i.e., feature location) [40, 58]. Identifying variation points between existing products is
also important to identify the configurable features in the first place [131]. Other researchers have developed
re-engineering approaches by analyzing non-code artifacts such as product listing comparisons [31, 48].

Creating a variability model is an important aspect of software product lines and one of the hardest
to do manually, especially for large systems. For example, in an experience report by Danfoss Drives on
their migration to a software product line [51], they mention creating a feature model as one of their main
challenges. The authors indicate that the company followed a bottom-up approach where they merged
the code of different existing products and looked at the source code for variation points (e.g., #ifdef
directives) to identify features and possible relationships. However, the process does not seem to be
automated or is probably semi-automated, at best. In an effort to help in automatically creating feature
models, She et al. [103] and Anderson et al. [3] develop algorithms to reverse engineer feature models
from a set of constraints. The algorithm requires a set of constraints as an input and can then determine
the feature hierarchy and other relationships between features such as groups etc. In practice, these input
constraints would be extracted from the code or provided by domain experts, for example. She et al. [103]
test their algorithm on the Linux kernel, eCos, and FreeBSD. However, they approximate the constraints
they extract from the code using an inexact parser for the code. Zhang and Becker [129] also propose a
technique to extract configuration constraints from code. However, they rely on local approximations of the
#ifdef usages and do not analyze the global usage of features across the system.

Although our focus is build-time variability in this thesis, it is worth mentioning that there has been work
done on analyzing load-time variability. For example, Rabkin and Katz [96] identify where configuration
options are used in the code through points-to analysis and call graphs. While they identify the valid
values for these options, they focus on Java programs and do not identify any dependencies between the
options. Along the same lines, Zhang and Ernst [130] also look at load-time options but with the purpose
of identifying incorrectly configured software.

2.7 Summary

At the time we started this work, research efforts on the consistency of configurable software has mainly
focused on the configuration and code spaces, but less focus has been given to the build space. In this
thesis, we argue that including the build space in variability analysis is important. We study the variability
in the build space and show its role in detecting inconsistencies depicted in terms of dead and undead code.
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We also study the evolution of variability anomalies to understand why they occur and how they can be
fixed.

While we have discussed some previous work that analyzes variability in the code to extract config-
uration constraints, the methods used were usually either imprecise approximations or local to specific
code. To the best of our knowledge, there has been no work that accurately extracts global configuration
constraints from the full implementation of a system (including the build space). Additionally, most work
that extracts configuration constraints focuses on consistency problems for error reporting and does not
study the sources of these constraints. Understanding what knowledge configuration constraints reflect
is important to aid in the creation and migration of variability models for software product lines. In this
thesis, we propose a new technique to accurately extract configuration constraints from implementation and
provide a classification of the different sources of configuration constraints in existing variability models.
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Chapter 3

Variability in Build Systems

As discussed in Chapter 2, most of the literature on the consistency of configurable software has focused on
the configuration and code spaces. One of the contributions of this thesis is analyzing the build space and
studying its effect on the consistency of the system being analyzed. We use the Linux kernel as a case study
since it is the biggest open source configurable software supporting build-time variability available, where
we analyze its build system, KBUILD.

KBUILD consists of several Makefiles which are responsible for compiling the source code files. In
some cases, these files are conditionally compiled which means they only get compiled if the user selects a
certain feature. Thus, a file has a presence condition which is the combination of features that need to be
selected in order for it to compile. We call these file presence conditions the build space constraints. In this
chapter, we want to analyze KBUILD to extract these constraints as shown in Figure 3.1. We do so through
our tool MAKEX. We will use the extracted build space constraints later in this thesis to detect conflicts at
both the code block and code file levels. In this chapter, we also use MAKEX to quantify the variability in
KBUILD. We do so by proposing metrics such as measuring the number of configuration features used in
KBUILD and the complexity of the extracted constraints.

Figure 3.1: Analyzing KBUILD using MAKEX to extract the build space constraints
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Chapter Organization. Section 3.1 provides a high-level recap of how the Linux kernel’s build system
(KBUILD) works. Section 3.2 then describes how KBUILD conditionally compiles files. Section 3.3
discusses how we extract configuration constraints from KBUILD using our Makefile constraint extractor,
MAKEX. Section 3.4 presents the metrics we define to analyze and quantify the variability in KBUILD.
In Section 3.5, we report the results of applying these metrics to several releases of the Linux kernel, and
in Section 3.6, we discuss our insights into understanding variability in KBUILD. We then present some
related work in Section 3.7 and provide a summary of the chapter in Section 3.8.

Related Publications. The work described in this chapter has been published in the following papers:

Sarah Nadi and Ric Holt. “Make it or break it: Mining anomalies in Linux Kbuild”. In: Proceedings
of the Working Conference on Reverse Engineering (WCRE). 2011, pp. 315–324

Sarah Nadi and Ric Holt. “Mining Kbuild to detect variability anomalies in Linux”. In: Proceedings
of the European Conference on Software Maintenance and Reengineering (CSMR). Los Alamitos,
CA: IEEE Computer Society, 2012, pp. 107–116

Sarah Nadi and Ric Holt. “The Linux kernel: A case study of build system variability”. In: Journal
of Software: Evolution and Process (2013). Early online view. http://dx.doi.org/10.1002/
smr.1595

3.1 Recap of Linux’s Build System (KBUILD)

As shown in the Linux kernel build process in Figure 2.2, KBUILD uses Makefiles in the Linux source
code tree which are responsible for compiling and linking the source code into the particular kernel variant.
The Linux kernel source code is stored in many directories where each directory has a collection of source
files responsible for a certain functionality or a certain subsystem. There is usually a Makefile in each
of those directories, and each Makefile is mainly responsible for compiling the files in its directory [66].
The Makefile at the root of the Linux source tree (the top Makefile) is responsible for setting up all the
environment variables that are needed during the build process, e.g., the CPU architecture being built,
compiler options etc. The top Makefile reads the .config file which comes from the Linux kernel
configuration process (see Figure 2.2) and which specifies all the features that have been selected by the
user. All Makefiles in the system have access to the features defined in the .config file. The build process
starts with the top Makefile and then recursively descends into the Makefiles of the subdirectories as
directed by the current Makefile.
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1 obj−y += fb_notify.o
2 obj−$CONFIG_FB_FFB) += sbuslib.o
3 obj−y += omap2/
4 obj−$(CONFIG_VT) += console/
5 fb−y := fbmem.o fbmon.o
6 obj−$(CONFIG_FB) += fb.o
7 obj−$(CONFIG_FB_CG6) += sbuslib.o

(a) drivers/video/Makefile

1 obj−$(CONFIG_OMAMP2_VRAM) += vram.o

(b) drivers/video/omap2/Makefile

1 ifeq ($(CONFIG_FB_TILEBLITTING),y)
2 obj−$(CONFIG_FRAMEBUFFER_CONSOLE)+= tileblit.o
3 endif

(c) drivers/video/console/Makefile

Figure 3.2: Examples of Makefiles in KBUILD. The Makefiles illustrate the different types of entries
controlling source file compilation in KBUILD.

3.2 Source File Compilation in KBUILD

There are different ways a file can get compiled in KBUILD. In this section, we illustrate the different
entries in KBUILD that control the compilation of source code files and contribute to the variability of
the Linux kernel. There are certain conventions followed in KBUILD that are enforced through implicit
rules [98] defined in the Makefiles. For each directory, there is an obj-y variable which contains a list of
files that are to be compiled and linked. The various entries in the Makefile append more files to this list.
All the files in this list (i.e., the value of the obj-y variable) are then compiled and built into a built-in.o
object for that directory. At the end of the build process, all the built-in.o objects in the directories are
linked into the final product (i.e., the specific kernel variant).

Figure 3.2 shows an example with three Makefiles. The Makefile in Figure 3.2a is in the directory
drivers/video, and the other two Makefiles (Figure 3.2b and Figure 3.2c) are in two separate sub-
directories nested under it: omap2 and console respectively. We will use these Makefiles to illustrate
the different KBUILD entries. We divide the entries in KBUILD contributing to the configurability of the
kernel into six categories: (1) non-conditional files, (2) conditional files, (3) non-conditional directories,
(4) conditional directories, (5) composite objects, and (6) executable files. We discuss each of these entry
types in the subsections below using the three Makefiles shown in Figure 3.2.

3.2.1 Non-Conditional Files

In Line 1 of Figure 3.2a, fb_notify.o is added to the list of files that will be compiled into the built-in.o
for that directory. KBUILD’s implicit rules state that each .o file should be compiled from a corresponding
.c file. In this case, fb_notify.c will be compiled into fb_notify.o. Since there are no configura-
tion features on Line 1 controlling the compilation of fb_notify.c, we know that the compilation of
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fb_notify.c does not depend on any configuration feature, and will, therefore, always be included in any
kernel variant.

3.2.2 Conditional Files

The format obj-$(CONFIG_FEATURE) is used to allow the compilation of certain files only if their respec-
tive features are chosen. An example can be seen on Line 2 of Figure 3.2a. Recall from Section 2.1.1 that
the features the user selects during the configuration process are stored in the .config file. For example,
if the user selects the feature USB, an entry CONFIG_USB = y will be included in the .config file. All
Makefiles in the Linux kernel have access to the values in this .config file. Thus, if CONFIG_FEATURE
is set to be y, the entry obj-$(CONFIG_FEATURE) evaluates to obj-y and the file(s) it controls will thus
be built into the kernel as part of the built-in.o file. If it is set to be m, it will be part of a different list
obj-m, and it will be compiled as a loadable module. If this feature is not selected, then it will not be
defined in the .config file, and thus the variable name will be obj- which is ignored.

Going back to the example on Line 2 of Figure 3.2a, sbuslib.c will be included in the list of files to
be compiled if the feature FB_FFB is selected. Files can also be conditionally added through an ifeq or
ifneq statements as shown in Line 1 of Figure 3.2c. This notation indicates the feature, and the value it
should or should not be equal to (i.e., y, m or empty) for the statements inside the condition to be visited.
In this case, Line 2 will be visited only if FB_TILEBLITTING = y.

3.2.3 Non-Conditional Directories

Directories can also be added to the obj-y list. For example, Line 3 of Figure 3.2a adds the directory
omap2 to the obj-y list. This means that a sub-Makefile is being invoked. This tells make to visit the
omap2 directory, but does not tell it what to do there. The Makefile in the omap2 directory (shown
in Figure 3.2b) is the one that will specify which files from that directory will be compiled. Since there is
no configuration feature in the entry on Line 3, directory drivers/video/omap2 will always be visited
every time drivers/video is visited.

3.2.4 Conditional Directories

Similar to files, directories can also be conditionally compiled. Line 4 of Figure 3.2a shows such an example
where directory console will be visited only if feature VT is selected. Again, the Makefile found in that
directory is the one responsible for specifying which files there will be compiled.
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3.2.5 Composite Objects

Sometimes, a combination of several source files implement one feature which makes it more convenient to
group them into one list. This whole list can then be compiled if the corresponding feature is chosen. These
are called composite objects. Line 5 and Line 6 in Figure 3.2a show an example of a composite object and
its usage. If CONFIG_FB is y or m, the compiler will go ahead and build the fb.o object on Line 6. In this
particular example, there is no fb.c file in the directory. Therefore, KBUILD checks if a composite object
using variables fb-y or fb-objs is defined instead. This notation is enforced through KBUILD’s implicit
rules, and these composite objects also serve as lists of files and directories. In this example, fbmem.c and
fbmon.c will be compiled into the fb.o object (Line 5) and will then be included in the obj-y or obj-m
list according to the value of CONFIG_FB (Line 6).

3.2.6 Executable Files

Special cases include executable files that make creates on the host machine for use during compilation [81].
These are part of the hostprogs-y variable. In these cases, a fileName.c is indicated as part of the
executable files if it appears in an entry such as hostprogs-y += fileName or conditional ones such
as hostprogs-$(CONFIG_FEATURE) += fileName. There are other special cases, and other lists in
KBUILD (such as head-y, lib-y, etc.). However, we only describe the major parts of KBUILD related to
variability here. For more information, we refer the reader to the KBUILD Documentation [81].

3.3 Extracting Build Space Constraints

In order to analyze the variabiliy in KBUILD, we need to extract the presence condition of each source file.
A presence condition of a source file determines under which combination of feature(s) this file is compiled.
In other words, it is a Boolean expression (involving feature variables) which must be satisfied for the file
to compile. In this section, we present our tool, MAKEX, which extracts these presence conditions.

3.3.1 Makefile Constraint Extractor: MAKEX

We implement a prototype constraint extractor MAKEX1 which recursively reads all the Makefiles in the
source code directories and generates the corresponding constraints (i.e., file presence conditions). Listing 3
shows an example of such constraints extracted from the Makefiles in Figure 3.2. The notation “<->”
indicates that a file will be compiled if and only if the corresponding feature(s) are selected. We now
explain how these constraints can be extracted. Since some source files are only compiled on certain CPU
architectures, we extract a different set of build space constraints for each architecture supported in Linux.

1MAKEX is available online at http://swag.uwaterloo.ca/~snadi/KbuildVariability.html
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Listing 3 Example of file presence conditions extracted from the Makefiles in the drivers directory shown
in Figure 3.2. These constraints determine the configuration features that each code file depends on.

1 video/fb_notify.c
2 video/console/tilebit.c <−> CONFIG_VT & CONFIG_FB_TILEBLITTING & CONFIG_FRAMEBUFFER_CONSOLE
3 video/omap2/vram.c <−> CONFIG_OMAP2_VRAM
4 video/sbuslib.c <−> CONFIG_FB_FFB | CONFIG_FB_CG6
5 video/fbmem.c <−> CONFIG_FB
6 video/fbmon.c <−> CONFIG_FB

MAKEX is implemented in Java and uses text based pattern matching to extract the constraints from the
Makefiles. MAKEX searches for the obj-y occurrences and the files added to them. For example, Line 1
of Figure 3.2a indicates that fb_notify.c is compiled unconditionally. Therefore, MAKEX generates the
entry in Line 1 in Listing 3 which means that this file has no constraints.2

Line 2 of Listing 3 indicates that titleblit.c is compiled only if features VT, FB_TILEBLITTING, and
FRAMEBUFFER_CONSOLE are all selected. This is because any file in the console directory is compiled only
if feature VT is selected (Line 4 in Figure 3.2a) while file tileblit.c itself is compiled only if features
FRAMEBUFFER_CONSOLE and FB_TILEBLITTING are both selected (Line 1 and Line 2 of Figure 3.2c)
which means that we have to combine all conditions when extracting the file presence condition. On
the other hand, directory omap2 is unconditionally added in Line 3 of Figure 3.2a which means that
we only have to check for the file conditions inside drivers/video/omap2/Makefile which is shown
in Figure 3.2b. The corresponding constraint is shown on Line 3 of Listing 3 where vram.c depends only
on CONFIG_OMAP2_VRAM according to Line 1 of Figure 3.2b.

Similar to conjunctions resulting from the conditionally nested directories, disjunctions can happen
when the same file is added to the obj-y list under two different conditions. For example, in Line 2
and Line 7 of the Makefile in Figure 3.2a, file sbuslib.c is compiled if either features FB_FFB or FB_CG6
are selected which leads to the disjunction in Line 4 of Listing 3.

Finally, Line 5 and Line 6 of Listing 3 are the result of analyzing the composite object shown in Line 5
and Line 6 of Figure 3.2a. Since the composite object involves two files and depends on feature FB, then
each file will in turn depend on FB.

This section showed what the file presence conditions (i.e., the build space constraints) extracted from
the build system by MAKEX look like, and the information these constraints are based on. We next evaluate
the coverage rate of MAKEX and its performance.

3.3.2 Evaluation of MAKEX

Evaluation Strategy. To evaluate if MAKEX extracts all the necessary file presence conditions from
KBUILD, we use three coverage metrics: (1) Makefile coverage which is the percentage of Makefiles

2Note that when writing out the constraints, we use the .c extension of the file name.
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MAKEX analyzes, (2) Source file coverage which is the percentage of .c files MAKEX finds presence
conditions for, and (3) Feature coverage which is the percentage of KCONFIG features used in KBUILD

which also appear in the presence conditions extracted by MAKEX. These metrics are based on the
assumption that all Makefiles and source code files are both read and compiled. Since this does not
necessarily happen in practice as some source files or directories may be just left behind without being
used, the values of these metrics show the lower bound of our coverage. Besides measuring coverage, we
also measure the performance of MAKEX.

Coverage Results. We find that MAKEX achieves a 75% Makefile coverage rate which means that it
analyzes 75% of the Makefiles present in the kernel. For source files, MAKEX has a 85% source file
coverage rate which means that it is able to find presence conditions for 85% of the source files present in
Linux. Finally, in terms of the configuration features used in KBUILD, MAKEX has a feature coverage rate
of 93%. This means that MAKEX is able to see the effect of 93% of the KCONFIG features appearing in the
Makefiles.

Performance Results. MAKEX is implemented in Java and runs in a single thread starting from the
Makefile in the root of the kernel’s source code directory and recursively reads nested Makefiles as needed.
Analyzing all architectures in a single release of the Linux kernel runs in approximately 51s.

Discussion and Limitations. The Linux kernel Makefiles are difficult to analyze statically [1] since
they use specialized and complicated syntax to represent special cases and are not consistently structured.
Analyzing KBUILD statically while considering the variability implementation in it is even more difficult.
The previous section has illustrated the most common entries and patterns responsible for source file
compilation in KBUILD. There are other more specialized patterns scattered throughout the Makefiles in
KBUILD. For each pattern we recognize, we need to add a new pattern matching function in MAKEX’s
implementation. However, there are some aspects that are difficult to handle using pattern detection. For
example, we do not handle definitions or redefinitions of general Makefile variables using #define for
example and do not execute external scripts which may be called from the Makefiles. From what we have
seen, by through manual understanding, the frequency of such cases in the parts of the Makefiles that deal
with KCONFIG features are low. However, the limitations of not handling all KBUILD’s notation explains
why we do not achieve 100% coverage rates. Makefiles we miss may be a result of them being added
through a syntax we do not support. Source files we miss may be a result of not analyzing some of the
Makefiles or because the source file is added to the list of compiled files using a syntax we do not support.
Additionally, some source files get indirectly included rather than explicitly compiled in the Makefile
(discussed more in Chapter 6). Although we do not get 100% coverage rate, we have manually verified
several of the extracted file presence conditions to make sure they are correct which gives us confidence in
the correctness of the extracted constraints.
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The fact that MAKEX’s implementation is very simple allowing it to analyze a system as large as the
Linux kernel in under a minute suggests that it can scale well. However, as discussed, its limitations lie in
not being a complete Makefile parser and the fact that it is only able to detect certain KBUILD patterns.
However, our purpose is to explore and clarify the role of the build system in the variability implementation
in Linux, and not to provide a comprehensive tool which makes MAKEX a suitable for our purposes
especially since it provides reasonable coverage rates.

3.4 KBUILD Variability Metrics

In this section, we investigate the extent of the role played by KBUILD in the variability implementation in
Linux. To do so, we need to measure the variability in KBUILD and compare it to the rest of the system,
where applicable. In this section, we explain some of the metrics we develop to quantify the variability in
KBUILD.

To the best of our knowledge, there are no standard metrics to measure variability and its complexity.
Some metrics were introduced by Liebig et al. [69] to measure CPP variability in code. We adapt some of
these metrics (NOF, SD, TD, and GRAN) for measuring variability in KBUILD and also introduce some of
our own (POF, POCCF, POCCD) as follows.

3.4.1 Number of Features (NOF) and Percentage of Features (POF)

The variability in Linux arises from its configuration features. The set of features (K) are defined in the
KCONFIG files and control the final compiled kernel in one of two ways: in the code space (C) through cpp
directives or in the build space (B) to control source file compilation. Some features may be used in neither
or in both spaces. Figure 3.3 shows how four categories of feature uses arise from this setup as follows.

1. Code Space Only: This is the set of KCONFIG features that only appear in the code space.

2. Build Space Only: This is the set of KCONFIG features that only appear in the build space.

3. Code & Build Spaces: This is the set of KCONFIG features that appear in both the code space and
the build space.

4. Configuration Space Only: This is the set of features that are not used in either the code nor the build
spaces, but are used internally within KCONFIG to support dependency constraints between other
features

We use the metrics Number of Features (NOF) and Percentage of Features (POF) to measure number
and percentage of features in each of these four categories as follows:
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Figure 3.3: Four categories of usage of the features defined in the configuration space (i.e., KCONFIG files)

1. NOFK−C−B (or POFK−C−B): number (percentage) of features that are defined in KCONFIG and only
used there.

2. NOFC−B (or POFC−B): number (percentage) of KCONFIG features only used in code space.

3. NOFC∩B (or POFC∩B): number (percentage) of KCONFIG features used in both code and build
spaces.

4. NOFB−C (or POFB−C): number (percentage) of KCONFIG features only used in build space.

3.4.2 Percentage of Conditionally Compiled Files (POCCF) and Percentage of Condition-
ally Compiled Directories (POCCD)

The POCCF and POCCD metrics measure the percentage of files and directories, respectively, in KBUILD

that are conditionally compiled based on some feature selection. Such a metric illustrates the level of
variability present in the build system in terms of what fraction of files are conditionally compiled versus
being compiled by default in every variant.

3.4.3 Scattering Degree (SD) and Tangling Degree (TD)

We use the scattering degree (SD) and the tangling degree (TD) to quantify feature usage in KBUILD. The
scattering degree of a feature is its number of occurrences in different file presence conditions in KBUILD.
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For example, if feature FOO controls the compilation of two different files, foo.c and foo2.c, then it
appears in two different file presence conditions and its scattering degree is two. Conversely, the tangling
degree is the number of different features that occur in a file presence condition. For example, given a file
presence condition FOO & BAR & FOOBAR, then the tangling degree of this presence condition is three since
it has three distinct features controlling the file. When examining a kernel release, we record a single SD or
TD which calculates the average for that release.

3.4.4 Granularity (GRAN)

KCONFIG features used in KBUILD control the compilation of specific source code files as well as whole
directories. We consider two levels of granularity of control. At a high level of granularity, a feature
controls a directory which generally contains several source files implementing some related functionality,
e.g., sound or USB support. We define GRANdir as the percentage of features used in KBUILD that control
directories. For example in Figure 3.2a, feature VT on Line 4 is controlling a directory so it will count
towards GRANdir. At a low level of granularity, a feature controls only the compilation of source code files
that generally implement a specific part of this functionality. We use GRAN f ile to measure the percentage
of features used in KBUILD that control only source code files. For example, feature FB_CG6 on Line 7
of Figure 3.2a only controls the file sbuslib.c so it counts towards GRAN f ile. Note that high-level
granularity features still appear in the presence conditions of source code files. This is because source code
files in a directory will not be compiled unless their containing directory is compiled (see Section 3.3).

3.5 Quantifying KBUILD Variability in Linux

We apply the metrics above to 10 recent versions of the Linux kernel (v2.6.37 – v3.6) spanning a period of
around one year and nine months. Examining several releases ensures that conclusions we draw are not
just specific to one release. It also provides an evolutionary view of KBUILD variability. We divide our
results into four questions as follows.

• Q1: How many KCONFIG features does each space use?

• Q2: How many files and directories are conditionally compiled in KBUILD?

• Q3: What granularity do features mostly control in KBUILD?

• Q4: How complex are the build-space constraints?

We present the results of these four questions below. All numbers reported (unless otherwise specified)
are the average of the metric being measured over all releases examined
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Figure 3.4: Feature usage across Linux releases. NOF is number of features used in: configuration
space only (K−C−B), code space only (C−B), build and code spaces (B∩C), and build space only
(B−C).

3.5.1 Q1: How Many KCONFIG Features Does Each Space Use?

We use NOF and POF to measure the variability in each space in terms of the number and percentage of
features used. Figure 3.4 presents our findings in terms of how KCONFIG features are used according to
the four categories illustrated by Figure 3.3 above. Note that the total column height shown in Figure 3.4
represents the total number of features defined in KCONFIG, NOFK . The figure shows that this number is
growing in each release.

We now look at the different categories of feature usage shown in Figure 3.4 to understand which part
of the system uses most of these features. We find that the percentage of features used in the build space,
POFB

3, is 63% versus 35% used in the code space (POFC
4) which suggests that more configuration control

takes place in KBUILD. Over the 10 releases examined, POFB−C is 48% while POFC−B is 17%. This means
that a higher percentage of features are only used in KBUILD to control whole source file compilation rather
than being used in the code to control code block compilation. Additionally, if we look at the percentages
shown in each category over the releases, we can see that POFB−C is growing while POFC−B and POFC∩B

represent about the same percentage in all examined releases.
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	Finding 1: The majority of KCONFIG features are used in the build space. 46% of KCONFIG features

are used only in the build space, and this percentage is growing over time.

3POFB is obtained by adding POFB−C and POFC∩B in Figure 3.4
4POFC is obtained by adding POFC−B and POFC∩B in Figure 3.4
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3.5.2 Q2: How Many Files and Directories are Conditionally Compiled in KBUILD?

Our analysis shows that throughout these 10 kernel releases, the percentage of conditionally compiled
files (POCCF) is 92%. This means that 92% of the source code files’ compilation depends on one or
more KCONFIG features. Similarly, the percentage of conditionally compiled directories (POCCD) is 84%.
These numbers indicate that most of the source files within Linux are controlled by the user’s selection of
configuration features and are not compiled by default.

�� ��Finding 2: 92% of source files and 84% of source directories are conditionally compiled.

3.5.3 Q3: What Granularity do Features Mostly Control in KBUILD?

For all 10 kernel releases, we find a GRAN f ile of 88% which means that 88% of the features used in
KBUILD control the compilation of source files only (i.e., low granularity), while GRANdir is the remaining
12% controlling both files and directories (i.e., high granularity). We use v3.3 in Figure 3.5 to show the
number of directories and source files controlled by each configuration feature we find. Each dot on the
graph corresponds to a particular configuration feature that appears in KBUILD as found by MAKEX (total
of 7,543 features), and shows the number of directories and files it controls. The distribution of feature
usage is skewed towards the bottom left which indicates that most of the variability in KBUILD is at a low
level of granularity. We find that on average, a feature controls 0.2 directories and 3 source files, and that
around 78% of these features control exactly one source file.

To illustrate how this control works, consider the SCSI feature (circled on the graph). Its corresponding
flag CONFIG_SCSI controls 30 directories and 303 files that support the SCSI driver. Directories controlled
are an example of high-level granularity. Now we will consider the specific bus types within the SCSI
driver. These are at a lower level of granularity and represent more specific functionalities governed by
additional features besides SCSI. For example, file in2000.c in SCSI’s directory implements an ISA SCSI
host adapter which is only compiled if both SCSI and SCSI_IN2000 flags are turned on. SCSI_IN2000 is
an example of a low granularity feature.

Figure 3.5 also shows a few outliers in the right half of the graph. Two main outliers shown on the top
right are features STAGING and SND. STAGING controls the drivers/staging directory which contains
code that is still under development and has not been finalized for full integration into the kernel yet. The
fact that feature STAGING is an outlier comes at no surprise since there are 62 directories directly under the
/drivers/staging/ directory apart from the sub directories under each of those. The staging directory
itself would not be visited unless the STAGING feature is selected. The need for the STAGING feature to be
selected would then be propagated to all subdirectories and files underneath it which results in STAGING
controlling 84 directories and 531 files. The same applies to SND which controls the SOUND directory which
has 21 main directories.
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Figure 3.5: Granularity of control of features in KBUILD v3.3. Each point represents a KCONFIG feature
used in the Makefiles.
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	Finding 3: 88% of the features used in KBUILD have low level granularity control while 78% control

exactly one source file.

3.5.4 Q4: How Complex are the Build-space Constraints?

We next examine particular aspects of the presence conditions of the source files in Linux to determine
how many features usually control the compilation of a source file. We find that although more than half
of the KCONFIG features are used in KBUILD, the presence conditions of files are not complex. We find
that the tangling degree (TD) of features in the presence conditions is 2. This means that conditionally
compiled files have an average of only two configuration features in their presence conditions. These two
features are usually the feature controlling the directory (e.g., SCSI in the previous example), and then
the feature controlling the specific lower level functionality (e.g., SCSI_IN2000 in the previous example).
If we only consider the features that directly control a file (i.e., apart from the feature(s) that control the
file’s directory), we find that 76% of source files have only one feature in their presence condition. We
also found that the scattering degree (SD) of a feature used in KBUILD is 2 which means that on average, a
feature appears in two different presence conditions.

�

�

�

�
Finding 4: Presence conditions of files in KBUILD are not complex. The build space constraints
have a tangling degree of 2 features, and features used in KBUILD also have a scattering degree of
2. Additionally, 76% of source files have only one feature in their presence condition (apart from the
directory control feature).
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3.6 Insights: Variability in KBUILD

The number of features used by the build space shown in Figure 3.4 suggests that almost half of the
configuration features defined are used to only control variability in the build system. This shows that when
analyzing configurable software, whether to detect inconsistencies or model its configurability, we should
not ignore the build system. With the exception of the work by Berger et al. [17], previous work has usually
focused on studying the configuration or code space in isolation or studying them together while ignoring
the build space [19, 69, 72, 118]. Our quantification of variability here shows that the build system plays an
important role in implementing variability and should always be included in such analyses. Additionally,
Finding 1 implies that variability in the build space is growing in terms of its usage of KCONFIG features
with respect to the rest of the system. We explain this phenomenon as follows. Each time a new source file
is added to the Linux kernel source code, an entry must be created in KBUILD so that the file compiles.
The majority of new kernel code are device driver implementations, and drivers are usually conditionally
compiled since they differ from one platform or machine to another. This means that each time a new driver
is added, a feature is added for it in KCONFIG so that the user can select it, and this feature will control the
compilation of the implementation source file in KBUILD.

Given Finding 2 above that 88% of source code files are conditionally compiled, we can safely say,
that in most cases, whenever a new file is added, a new configuration feature will be used to control it
in KBUILD. However, the same does not apply for #ifdef variability. A new file may be added with an
entry in KBUILD, but this file may not contain any #ifdef blocks. Thus, most files will have a conditional
compilation entry in KBUILD, but not necessarily conditionally compiled blocks.

If we look at Findings 3 and 4 together, we can deduce that there is commonly a one to one mapping
between a feature and the source file it controls. This means that most of the time, a file depends on a single
feature, and this feature only controls this file. This is an interesting characteristic of the Linux kernel since
it suggests that the user’s selection usually directly controls the compilation of whole source files.

Finally, our experience with extracting variability from KBUILD, as well as experiences of more recent
work [34], suggests that analyzing build systems to extract file presence conditions is difficult and that
more research in that direction is needed to obtain more sound and precise results.

3.7 Related Work

It is our understanding that Berger et al. [17] were the first to discuss variability in the Linux kernel’s build
system. They showed that the extraction of presence conditions of source code files from Makefiles is
feasible where they extracted them for the x86 architecture in Linux and for all of FreeBSD. Our analysis
of KBUILD in this thesis is based on all Linux CPU architectures over a longitudinal study, and not solely
on the x86 architecture. We also provide a quantification of the variability in KBUILD and show its role in
the overall variability of the kernel.
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Dietrich et al. [35] have also found that KBUILD v3.1 alone uses almost 50% of the KCONFIG features
in Linux. While parts of our work was, unknowingly, done in parallel with theirs, our work is different in
that we perform an evolutionary study with several releases of KBUILD. We also adapt previous metrics
used to measure CPP variability to customize them for KBUILD. Such metrics allow for standardization of
future quantitative analysis of variability. In our work, we also analyze the complexity of constraints and
granularity of control within KBUILD. This provides a better overall picture of the variability in KBUILD

and how it contributes to the configurability of the whole Linux kernel.

To the best of our knowledge, our work was the first to show the importance of analyzing variability in
KBUILD. After that, Dietrich et al. [34] developed their own build system constraint extractor, GOLEM.
Their variability extraction approach is based on running an actual kernel build using different configurations
and probing it to see which files get built. The advantage of their approach versus a static parsing approach
such as ours and that of Berger et al. [17] is that they avoid explicitly analyzing the complicated syntax and
special cases that occur in KBUILD. Currently, GOLEM takes about 90 minutes to extract the constraints
of a single CPU architecture in Linux versus about 51 seconds for all architectures by MAKEX. Arguably,
performance is not everything but such a high running time may affect the practicality of the approach. It is
also not clear yet if such a probing based approach would catch all the complex constraints in KBUILD.
For example, it would not be able to correctly identify constraints containing negations (i.e., that a feature
should not be present) since they rely on incremental addition of features to the feature set and then
probing the build system on what files will be built. It is also difficult to correctly identify disjunctions
in some cases depending on the order the features get probed by. Thus, it seems that both static and
probing/dynamic based approaches have their limitations. It may be the case that other techniques such
as symbolic execution [117] may be able to overcome such limitations. However, our goal here is not
to determine the most accurate parsing for Makefiles, but rather to clarify the role of build systems in
variability support so that it is recognized in future variability research.

3.8 Summary

This chapter explored the role of build systems in variability implementation by using the Linux kernel’s
build system, KBUILD, as a case study. We extracted the presence conditions of source files from KBUILD

(build-space constraints) using our developed extractor, MAKEX, and used this information to provide a
quantitative analysis of KBUILD variability. We showed that KBUILD plays a key role in Linux’s variability
implementation: 63% of configuration features in Linux are used by KBUILD and 92% of source files are
conditionally compiled in KBUILD. We have also found that 76% of source files have only one feature in
their presence condition, and that 78% of features control exactly one file. This suggests that in most cases,
there is a one to one mapping between a user-selected configuration feature and the source file it controls.

In the next chapter, we study if the build-space constraints extracted here (i.e., the file presence
conditions) are consistent with the constraints in the rest of the system. We do so by detecting variability
anomalies in the form of dead and undead code blocks.
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Chapter 4

Block Level Variability Anomalies

Chapter 3 showed that 63 % of the configuration features in Linux are used in the build space. This
suggests that the build system plays a major role in the configuration process. Recall that variability in
the Linux kernel is scattered across three distinct artifacts: source code files (code space), KCONFIG files
(configuration space), and KBUILD Makefiles (build space). Keeping the information in the three spaces
consistent is challenging, and conflicts between constraints may occur. Such conflicts may cause anomalies
which may lead to decreased reliability and increased maintenance effort.

In the introduction of this dissertation, we briefly introduced how dead code can affect the configurability
of the system. We look at dead and undead artifacts (i.e., those which always appear in every variant)
in our work both at the code block and code file level. In this chapter, we focus on the code block level,
and describe these anomalies in detail as well as how we detect them in the Linux kernel. We use the
example in Figure 4.1 throughout this chapter to illustrate block level anomalies. A KCONFIG file is
shown in Figure 4.1a. The related Makefile is shown in Figure 4.1b. The related source files are shown
in Figure 4.1c, Figure 4.1d, and Figure 4.1e. Similar to the example shown in the introduction chapter, this
example describes a cell phone that has several types of camera options.

Chapter Organization. We start by explaining how we detect anomalies at the code-block level in Sec-
tion 4.1. Section 4.2 then presents the results of applying these detection techniques on the Linux kernel
over several releases, and Section 4.3 discusses possible threats to the validity of our work. We provide a
summary of the work discussed in this chapter in Section 4.4.
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CA: IEEE Computer Society, 2012, pp. 107–116

Sarah Nadi and Ric Holt. “The Linux kernel: A case study of build system variability”. In: Journal
of Software: Evolution and Process (2013). Early online view. http://dx.doi.org/10.1002/
smr.1595

1 config CAMERA
2 bool "Phone has a camera"
3
4 config DSLR_CAMERA
5 bool "Camera has a DSLR option"
6 depends on CAMERA

(a) Kconfig

1 obj−y += options.o
2 obj−$(CONFIG_DSLR_CAMERA) += dslr_camera.o
3 obj−$(CONFIG_FLASH) += flash.o

(b) Makefile

1 #ifdef CONFIG_CAMERA
2 ...
3 #if ! defined(CONFIG_CAMERA)
4 //Block B1 is dead
5 #endif
6 ...
7 #if defined(CONFIG_CAMERA)
8 //Block B2 is undead
9 #endif

10 #endif
11 ...
12 #if defined(CONFIG_DSLR_CAMERA)
13 && !defined(CONFIG_CAMERA)
14 //Block B3 is dead
15 #endif
16 ...
17 #ifdef CONFIG_FLASH
18 //Block B4 is dead
19 #endif

(c) options.c

1 #if ! defined(CONFIG_DSLR_CAMERA)
2 //Block B5 is dead
3 #endif
4 ...
5 #if defined(CONFIG_DSLR_CAMERA)
6 //Block B6 is undead
7 #endif
8
9 #if ! defined(CONFIG_CAMERA)

10 //Block B7 is dead
11 #endif

(d) dslr_camera.c

1 #ifdef DSLR_CAMERA
2 //Block B8 is dead
3 #endif

(e) flash.c

Figure 4.1: Examples of block level variability anomalies.
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4.1 Detecting Block Level Anomalies

Previous work by Tartler et al. [118] discovered anomalies in the Linux kernel by studying the constraints
in the source-code files (code space) and KCONFIG files (configuration space) using their UNDERTAKER

tool1. Their work focuses on finding anomalies at the level of the code blocks using a SAT (satisfiability)
solver. However, they do not include the information in the Makefiles (build space) as part of their
analysis. Chapter 3 has shown the importance of the build space and its role in implementing variability in
the Linux kernel. Thus, we should also consider build-space constraints when detecting these anomalies.
To accomplish this, we extend the UNDERTAKER tool to consider the constraints in the build space during
the detection of anomalies. We focus on two types of anomalies: dead and undead code blocks. A dead
code block is a conditional block that is never present in any variant of the system while an undead code
block is one that is always present in every variant of the system. In our work, we look at a certain type of
undead code where a code block is undead if it is always present in every variant whenever its parent code
block is also present. This will be described in more detail later.

The UNDERTAKER tool already extracts the presence condition of each code block from the code space,
as well as the presence condition of each feature from the configuration space. Recall that a presence
condition is a set of constraints (encoded as a Boolean expression) that must be satisfied in order for an
artifact to be selected or compiled. For example, the presence condition of Block B4 in Figure 4.1c is
CONFIG_FLASH. We use our tool, MAKEX (described in Chapter 3) to extract the build-space constraints and
add it to the analysis. These extracted constraints are then used in propositional formulas that detect dead and
undead code blocks. A SAT solver is used to solve these formulas to detect anomalies. Figure 4.2 illustrates
this process. We now explain the propositional formulas we use by first presenting how UNDERTAKER

originally worked and then how we modify it.

4.1.1 Original UNDERTAKER Formula

The UNDERTAKER tool extracts preprocessor-based variability in the Linux source code in order to deter-
mine the presence condition of each code block [109], and encodes it as propositional logic. Additionally,
it identifies the feature dependencies in the KCONFIG files and also represents them as propositional
logic [108, 119]. To find anomalies, it combines the constraints from the code space (denoted by C) and
those from the configuration space (denoted by K) for each code block.

Tartler et al. [118] use Formula 4.1 to define a code block, BlockN (BN), as dead if there is never a
case where it can be selected. In terms of propositional logic, this means that we can never satisfy the
combination of constraints imposed by the code and configuration space and have BlockN present at the
same time [118] as shown in Formula 4.1.

DeadBN = ¬sat(BlockN ∧C∧K) (4.1)
1http://vamos.informatik.uni-erlangen.de/trac/undertaker
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Figure 4.2: Block level anomaly detection process

Similarly, Formula 4.2 defines an undead code block, BlockN (BN), as one that is always present
whenever its parent block is present [118]. If this is the case, then this code block’s presence is not really
variable since it always gets compiled if its parent block is compiled. This is shown in Formula 4.2 where a
block is undead if it can never be deselected in the presence of its parent while satisfying the combination
of constraints in the code and configuration space.

UndeadBN = ¬sat(¬BlockN ∧ parent(BlockN)∧C∧K) (4.2)

We would like to point out that generally, dead and undead code can occur in any software system.
However, in our context, we focus on parts of the code that should be conditionally compiled according to
some feature selection, but end up never or always being a part of every variant. Thus, the anomaly arises
from the conditional compilation being different from what is specified in the code by the developer.

To illustrate the use of the equations above, we refer to the example in Figure 4.1 and look at file
options.c shown in Figure 4.1c. Based on Equation 4.1 above, Tartler et al.’s analysis would detect
block B1 on Line 4 as dead because the code constraints themselves have a conflict since the parent block
depends on feature CAMERA being enabled, while block B1 depends on feature CAMERA being disabled.
This would cause Equation 4.1 to be satisfiable which means that block B1 is dead. On the other hand,
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based on Equation 4.2, block B2 on Line 8 is undead since it will always be compiled if its parent block is
compiled since they both depend on the same feature CAMERA. This means that Equation 4.2 is satisfied
since we can never find a solution where the parent is selected but the child (i.e., block B2) is not. Since
the conflict in both examples happens in the code constraints only, we call this category of anomalies
code anomalies.

Code anomalies might be easier to catch since the information is all in one place (i.e., the code
file). Things become harder when information from another space is introduced. Looking again at file
options.c shown in Figure 4.1c, we find that block B3 is also dead. However, this time it is not because of
a direct conflict in the code. Instead, the conflict happens between the presence condition of the code block
and that of feature DSLR_CAMERA in the KCONFIG file in Figure 4.1a. The configuration space specifies
that DSLR_CAMERA depends on CAMERA (Line 6 of Figure 4.1a) while the presence condition of block B3
requires that DSLR_CAMERA is selected and CAMERA is not. Since this can never happen (i.e., it is prevented
by the configuration space), this code block will always be dead. Since the conflict in Equation 4.1 will
arise from both the constraints in the code space and those in the configuration space, we call this category
of anomalies code-configuration anomalies. The same can be applied for undead code, but we do not show
an example of it to avoid redundancy.

Finally, there are special types of conflicts in code-configuration anomalies that may arise from
missing feature definitions. That is, a feature appears in the boolean formula, but has no definition in
KCONFIG and can therefore never be selected resulting in it always being false in the formula. Line 18
in Figure 4.1c shows such an example. Here, block B4 depends on FLASH. We would normally then look
for the dependencies of feature FLASH in KCONFIG. However, in this example, there is no definition of
FLASH in the KCONFIG file in Figure 4.1a meaning that FLASH is always false (unselected). Therefore, a
conflict happens because we need FLASH to be selected, but since it is not defined in KCONFIG, it is always
deselected. We call this category of anomalies code-configuration missing anomalies.

4.1.2 Modified Formula with Build Space

The analysis at the code-block level in UNDERTAKER does not consider the constraints enforced in the
Makefiles (the build-space constraints). In the examples we discussed above, this would not make a differ-
ence since file options.c is unconditionally compiled as shown in Line 1 of the Makefile in Figure 4.1b.
However, if the file is conditionally compiled, which we know happens in 92% of the cases as shown
in Section 3.5, then the situation might be different as we show below.

In our analysis, we add the build constraints, and modify Formulas 4.1 and 4.2 to those shown in
Formulas 4.3 and 4.4. We denote the build-space constraints as B. By adding the build-space constraints,
we use Formula 4.3 to define a code block as dead if it can never be present while satisfying the code and
configuration constraints along with the build constraints.

DeadBN = ¬sat(BlockN ∧C∧B∧K) (4.3)
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Listing 4 Boolean formula corresponding to Equation 4.3 to detect that block B7 in Figure 4.1 is dead.

1 B7 &&
2 B7 <−> !CONFIG_CAMERA &&
3 CONFIG_DSLR_CAMERA &&
4 CONFIG_DSLR_CAMERA −> CONFIG_CAMERA

Similarly, we define a block, BlockN (BN), as undead in Formula 4.4 if we can never find a case where
BlockN is not present, but its parent is present while still satisfying the constraints in all three spaces.

UndeadBN = ¬sat(¬BlockN ∧ parent(BlockN)∧C∧B∧K) (4.4)

We refer back to the example in Figure 4.1 and look at file dslr_camera.c shown in Figure 4.1d while
considering the new formulas we introduced here. In the original UNDERTAKER analysis, no anomalies
would be detected for blocks B5 and B6 on Line 2 and Line 6 respectively. However, if we consider the
presence condition of the dslr_camera.c shown in Figure 4.1b, we find that the whole file is compiled if
feature DSLR_CAMERA is selected. Thus, blocks B5 and B6 are dead and undead respectively since there is
no point in checking DSLR_CAMERA again. In this case, since the conflicts in Equation 4.3 and Equation 4.4
arise from looking at the block presence condition as well as the file’s presence condition, we call this
category of anomalies code-build anomalies.

Given the above example, we can imagine that things would even become more complicated, and
harder to detect manually, when the conflict arises from all the three spaces. Block B7 on Line 10 in the
same file shows such an example. Block B7 depends on feature CAMERA not being selected. However, given
the build-space constraints, we know that file dslr_camera.c is only compiled if feature DSLR_CAMERA
is selected (Line 2 in Figure 4.1b). Additionally, given the configuration space constraints, we also know
that feature DSLR_CAMERA can only be selected if CAMERA is selected. This means that there is a conflict
in block B7’s presence conditions since if the file is compiled, we know that CAMERA is also selected
which means that the presence condition of B7 can never be satisfied resulting in B7 being dead. We
show an example of what the Boolean formula for detecting this anomaly would look like in Listing 4.
Note here how the file presence condition (CONFIG_DSLR_CAMERA) is enforced in the formula on Line 3.
Since this anomaly arises from conflicts between all three spaces, we call this category of anomalies
code-build-configuration anomalies. The same can be applied for undead code, but we do not show an
example of it to avoid redundancy.

Similar to the code-configuration missing category, missing features can cause a conflict in the code-
build-configuration category. Block B8 on Line 2 of Figure 4.1e shows such an example. In this case, block
B8 depends on DSLR_CAMERA from the code, but it also depends on FLASH from the Makefile in Figure 4.1b.
As we have seen before, feature FLASH has no definition in KCONFIG, and is therefore always deselected.
Thus, block B8 is dead because its dependencies cannot be satisfied according to Equation 4.3. We call this
category of anomalies code-build-configuration missing.
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Category Description

L
og

ic
al

code Conflicting code constraints.

code-configuration Code space constraints are in conflict with configuration space constraints.

code-build Code space constraints are in conflict with build-space constraints.

code-build-configuration The combination of constraints in the three spaces are conflicting.

R
ef

er
en

tia
l code-configuration missing Code space constraints are in conflict with configuration space constraints

because certain features used in the code are not defined in the Kconfig files
and are, therefore, always false.

code-build-configuration missing The combination of constraints in the three spaces are conflicting because
certain features used in the build constraints are not defined in the KCONFIG

files, and are therefore always false.

Table 4.1: Categories of code block variability anomalies.

In general, the term referential anomalies describes all anomalies caused by missing feature definitions
while the term logical anomalies describes the anomalies caused by direct Boolean conflicts in the
formulas [118]. To recap, Table 4.1 summarizes the three categories of anomalies we discussed in this
subsection (code-build, code-build-configuration, and code-build-configuration missing) as well as the three
discussed in Section 4.1.1 (code, code-configuration, and code-configuration missing). We refer back to
these categories when presenting the results of detecting anomalies in the Linux kernel in the next section.

4.2 Results: Block Level Anomalies in the Linux Kernel

We now want to determine if adding the build-space constraints when detecting code block anomalies
makes a difference. In other words, we explore whether using Equation 4.3 instead of Equation 4.1
and Equation 4.4 instead of Equation 4.2 makes a difference in the detected anomalies. To do so, we apply
our analysis to 10 recent releases of the Linux kernel, v2.6.37 – v3.6. Analyzing multiple releases ensures
that the results are not specific to one release. We analyze all the source code on all architectures of each
release with the exception of the staging directory to avoid skewing our results. The staging directory
contains code that is still under development and will thus likely contain more anomalies than that in the
revised code in the other directories.
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Figure 4.3: Total code-block anomalies detected with and without the build space (B)

We begin by running the original UNDERTAKER tool version 1.32 (i.e., using C∧K, but not B, as shown
in Equations 4.1 and 4.2) over the ten releases examined. Then, we run our modified version of the tool
(i.e., using C∧K∧B as shown in Formulas 4.3 and 4.4) over the same 10 releases. We then compare the
anomalies detected in each case and collect statistics about them. We provide these statistics below as well
as some illustrative examples of the anomalies we detect. Note that we analyze all architectures in the
kernel and report a block as dead or undead if it is problematic on all architectures.

Figure 4.3 shows the total number of code blocks having anomalies detected with and without consider-
ing the build space (B). We can see that with all three spaces, C∧B∧K, we detect more anomalies than
with just C∧K. This suggests that the constraints in the build space are related to those in the other spaces
(i.e., share configuration features and dependencies) and that conflicts often exist.

We are interested in examining the additional anomalies that are detected when the build-space
constraints are added (i.e., the categories in Table 4.1 which involve the build space). The anomaly category
can be identified since we incrementally add the constraints to the equation to determine when the conflict
takes place. This can also be done through an UNSAT core although it may be difficult to identify the
source of the problematic clause. Figure 4.4 focuses on these additional anomalies identified and shows
the percentage of additional code block anomalies (both dead and undead) detected in each of the three
categories involving build constraints (code-build, code-build-configuration, and code-build-configuration
missing). The figure shows that when we enhance the block level analysis with build constraints, we
detect an average of 20% additional anomalies when compared to just using the code and configuration
constraints.

Throughout the 10 releases shown in Figure 4.4, we can see that the anomalies caused by conflicts
between all three spaces (code-build-configuration) constitute most of the additional anomalies detected.
Since detecting this category of anomalies requires solving a complex satisfiability formula, it suggests

2In our CSMR’12 paper describing this [85], we used UNDERTAKER 1.1, while in the extended journal version in JSEP [86],
we used version 1.3. When using version 1.3, we do not use the GOLEM tool that was developed after our initial work.
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Figure 4.4: Percentage of additional anomalies caused by adding the build-space constraints to the analysis.
The code-build-configuration represents the highest percentage of additional anomalies detected, while the
code-build represents the smallest percentage of anomalies detected.

that these anomalies are hard to find manually by the developer and that having automated tools to detect
them is important. In order to understand the nature of these additional anomalies, we provide illustrating
examples from each category.

4.2.1 Analysis of Code-Build Anomalies

Code-build anomalies are a result of a direct conflict between the code constraints and the constraints in
the Makefiles. Over the 10 releases examined, we find only 11 distinct code-build anomalies. We find
that in some cases, these dead blocks are intentional by the developers so that they mark invalid feature
configurations in the code. For example, two dead blocks contain code like #error invalid SiByte
UART configuration and #error unknown platform. This means that the developers are aware that
the feature combinations enabling these blocks should never happen and mark them with the #error to
force the preprocessor to stop. The remaining dead and undead code-build block anomalies involve actual
code.

We investigate two of these anomalies which occur in file arch/sparc/kernel/jump_label.c.
According to the build constraints, this file is compiled only if SPARC64 is selected. Within the file, there
is a code block that does one thing if SPARC64 is selected and another if it is not. However, since the
file will not be compiled without this feature in the first place, then the block depending on it is always
selected (i.e., undead), while the other block is never selected (i.e., dead). We submitted a patch3 to

3http://patchwork.ozlabs.org/patch/164254/
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1 config PCCARD
2 bool "PCCard support"
3 depends on HOTPLUG
4
5 config PCMCIA
6 bool "16−bit PCMCIA support"
7 depends on PCCARD

(a) drivers/pcmcia/Kconfig

1 obj−$(CONFIG_PCMCIA) += ds.o

(b) drivers/pcmcia/Makefile

1 #ifdef CONFIG_HOTPLUG
2 //B1
3 ...
4 static int pcmcia_bus_uevent(...){...}
5 ...
6 #else
7 ...
8 //B2
9 static int pcmcia_bus_uevent(...){...}

10 #endif

(c) drivers/pcmcia/ds.c

1 B2 &&
2 ( B1 <−> CONFIG_HOTPLUG ) &&
3 ( B2 <−> ( !(B1) ) ) &&
4 ( (CONFIG_PCMCIA) ) &&
5 ( CONFIG_PCMCIA −> CONFIG_PCCARD) &&
6 ( CONFIG_PCCARD −> CONFIG_HOTPLUG)

(d) Anomaly formula

Figure 4.5: Example of a code-build-configurationdead block anomaly found in the Linux kernel.

the Linux kernel developers to remove this unnecessary check, but one of the developers replied that
the check is there so that 32-bit support is easy to add in the future if someone wants to do that. This
response indicates that developers might intentionally leave dead/undead code behind for future anticipated
maintenance. On the other hand, we submitted another patch4 for a different dead code-build block in file
arch/m68k/sun3/prom/init.c. One of the Linux developers accepted the patch stating that this dead
code has been copied from elsewhere but it is actually not relevant to the functionality here and shall be
removed 5.

4.2.2 Analysis of Code-Build-Configuration Anomalies

Anomalies in the code-build-configuration category are caused by a conflict involving all three spaces.
This category differs from the previous one in that it is not caused by conflicts of direct dependencies in the
code and build spaces, but conflicts caused by indirect dependencies that are exhibited in the configuration
constraints.

Figure 4.5 provides an example of a code-build-configuration anomaly found in Linux6 As shown in
the Makefile in Figure 4.5b, the code file ds.c depends on PCMCIA. Code block B1 depends on HOTPLUG

4https://lkml.org/lkml/2012/6/20/453
5Change was pushed upstream on August 2012: http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.

git/commit/?id=587a9e1f95794c05419d3bdb4c409a3274849f93
6Snippets have been slightly modified for simplicity and better illustration.
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Figure 4.6: Commit showing the removal of unused code to reduce the maintenance burden. This
commit removes the file drivers/usb/gadget/lh7a40x_udc.c which had 11 dead code-build-
configuration anomalies

while code block B2 depends on !HOTPLUG as shown in the code (Figure 4.5c). In the KCONFIG file
in Figure 4.5a, we see that PCMCIA depends on PCCARD which in turn depends on HOTPLUG. This means that
given the file is compiled, block B2 can never be selected since HOTPLUG will always be enabled for the file
to compile. This is shown in the boolean formula illustrated in Figure 4.5d which is based on Equation 4.3.

When examining the anomalies, we notice that some of this dead code is just unused code. We give
an example for such a case. The file drivers/usb/gadget/lh7a40x_udc.c has 11 dead code-build-
configuration anomalies reported in v2.6.37 because of some conflict in the constraints among the three
spaces. The commit in Figure 4.6 removes this file two releases later. The interesting part here is the
developer’s comments when removing the file suggesting that dead code left behind in the code are indeed
a maintenance burden. This suggests that even if not necessarily exhibiting errors, automatically detecting
these code anomalies is useful. This is especially true in cases where manual inspection of the code will
not easily identify a code block as dead.

4.2.3 Analysis of Code-Build-Configuration Missing Anomalies

Missing features in this context are those that appear directly or indirectly from the presence condition
of a code block or file, but have no definition in KCONFIG [118]. We can see in Figure 4.4 that only
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a few of the additional detected anomalies fall in this category. We provide one example here. In the
file drivers/spi/spi-stmp.c, our analysis reports four dead blocks because of missing features (i.e.,
in the code-build-configuration missing category). The reasoning behind the anomalies can be explained
as follows. The build constraints indicate that SPI_STMP3XXX needs to be defined for the source file to
compile. However, SPI_STMP3XXX depends on another feature ARCH_STMP3XXX which has no KCONFIG

definition. Thus, all the conditional code blocks in the file are reported as code-build-configuration missing
since the file itself will never be compiled due to the missing feature definition.

We note that when adding the build space to the analysis, there are only a few additional anomalies
caused by missing feature definitions (an average of around 1.5 %, see Figure 4.4). However, the block
level anomalies that are caused by missing feature definitions in general account for an average of 48% of
the detected block level anomalies. This suggests that developers use the correct defined features to guard
the compilation of source files in the build system, but this is not always the case for the features used
inside the code.

4.3 Threats to Validity

We now discuss the possible threats to the validity of the work presented in this chapter.

Internal Validity. Since we are extending the UNDERTAKER tool, any shortcomings in the original
analysis will be reflected in our analysis. The UNDERTAKER tool is an ongoing work, and its authors
are constantly updating it. Therefore, running the analysis with a different version could possibly yield a
different number of anomalies but should not change the conclusions drawn.

Any problems with our extraction of the build-space constraints will also affect the results. There are
certain parts of the Makefiles that are hard to parse using textual pattern detection as discussed in Chapter 3.
In our work so far, there are some of these aspects which we ignore such as #define used with the Makefiles
to define additional variables that are later used. We also do not execute external scripts called from within
the Makefiles. Additionally, since we only analyze 75% of the Makefiles (See Section 3.3.2), we may miss
clauses (disjunctions or conjunctions) in the extracted constraints resulting from the unanalyzed files.

Some of the anomalies we discover may not necessarily reflect errors. We choose to use the term
anomaly precisely for this reason which is similar to the idea of bad code smells [46]. A dead artifact may
exist due to bad maintenance, and an undead artifact may be used as a form of double checking that certain
conditions actually hold. In both cases, we believe that developers should still be aware of such anomalies
since they are potential sources of errors and undesired behavior. However, in order to address the fact that
developers may intentionally leave dead or undead artifacts behind, a whitelist approach can be adopted to
allow developers to remove certain files from consideration.

56



External Validity. We only examine one software system, the Linux kernel. However, the Linux kernel
is the largest configurable open source software system available, supporting build-time variability. Our
results, which conclude that considering the build constraints can lead to additional detected anomalies, do
not necessarily apply to other systems. Linux’s build system, KBUILD, is complex and unique in terms
of the customized notation it uses. However, there are many other configurable systems that use a similar
structure for their build systems (e.g., BusyBox and BuildRoot). Although we do not attempt to generalize
our results beyond Linux, we believe that our work provides interesting findings which can be used to guide
the study of variability in other build systems.

4.4 Summary

In this chapter, we have shown how adding the build-space constraints, extracted as file presence conditions,
can affect the detection of variability anomalies. We have focused here on block-level anomalies where we
detect dead and undead code blocks. Our results show that additional code block anomalies can be detected
when the build-space constraints are considered suggesting that the constraints in the three spaces may not
always be consistent.
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Chapter 5

Evolution of Block Level Variability
Anomalies

In Chapter 4, we showed that block-level anomalies exist due to conflicts between the constraints in the
three spaces. Tools that detect these anomalies, such as UNDERTAKER, are therefore useful to improve
maintenance. However, in order to avoid these anomalies from happening in the first place, we need to
analyze how they get introduced and how they get fixed. In this chapter, we study the origin of block-level
variability anomalies in the Linux kernel and how they get fixed.

To study the evolution of block-level anomalies, we focus on referential anomalies (those with missing
feature definitions as discussed in Chapter 4) as they represent almost half of the detected variability
anomalies (see Section 4.2.3) and their evolution can also be automatically analyzed. As a reminder of
what a referential anomaly is, consider the following code:

1 #ifdef CONFIG_USB_SUPPORT
2 // Block B1
3 #endif

Let us look at the code block B1 between the #ifdef and the #endif CPP statements. This block is
guarded by the feature CONFIG_USB_SUPPORT, so it will not be compiled unless this feature is selected
resulting in the following clause.

B1↔ CONFIG_USB_SUPPORT

Now, assume there is no definition for feature CONFIG_USB_SUPPORT in the KCONFIG files. This
means that this feature can never be selected. A clause indicating that this feature is always undefined is
then added to the Boolean formula as follows.
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(B1↔ CONFIG_USB_SUPPORT)

∧ (¬ CONFIG_USB_SUPPORT)

Since this formula is not satisfiable, UNDERTAKER detects an anomaly here indicating that block B1 is
dead. Based on the result of the SAT checker, UNDERTAKER generates an anomaly report which contains
the boolean formula above where the last line contains the missing feature(s) as shown. This is an example
where the missing feature is the one the code block directly depends on. It could also be the case that
one of the features the block indirectly depends on is missing (see example in Section 4.2.3). For brevity,
we use the terms anomaly or variability anomaly throughout the rest of the chapter to refer to referential
anomalies. The rest of this chapter focuses on finding how such anomalies get introduced and fixed.

To determine which patterns to look for when identifying causes and fixes of variability anomalies, we
first start with an exploratory case study [39]. In this exploratory case study, we analyze an existing set of
106 patches that fix variability anomalies. This set of patches has been submitted to Linux developers by
Tartler et al. [118]. The patches received considerable feedback, with over 50% of them being accepted.
As a result of studying the responses of developers to these patches, we are able to recognize some
patterns causing these anomalies which allows us to develop four research questions which we answer in a
confirmatory case study. We analyze several releases of the Linux kernel to determine if the patterns we
find generalize to all the anomalies detected in the kernel.

Chapter Organization. We first describe the exploratory case study in Section 5.1. We then describe
the procedure followed in the confirmatory case study in Section 5.2 and present its results in Section 5.3.
In Section 5.4, we discuss the interpretations of our findings and their implications. We present the threats
to the validity of our work in Section 5.5 and conclude with a summary of the work presented in this chapter
in Section 5.6.

Related Publications. The work presented in this chapter has also been published in the following paper.

Sarah Nadi, Christian Dietrich, Reinhard Tartler, Richard C. Holt, and Daniel Lohmann. “Linux
variability anomalies: What causes them and how do they get fixed?” In: Proceedings of the Working
Conference on Mining Software Repositories (MSR). MSR ’13. San Francisco, CA, USA: IEEE
Press, 2013, pp. 111–120
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5.1 Exploratory Case Study

The aim of the exploratory case study is to determine patterns for how anomalies get introduced and fixed.
Identifying such patterns allows us to automate the process of searching for the causes and fixes of any
detected anomalies. To do so, we need a set of detected anomalies for which we have developer feedback
commenting on how they got introduced or how they plan to fix them. Previous work by Tartler et al. [118]
has used UNDERTAKER version 1.1 to detect variability anomalies in the Linux kernel v2.6.35 and earlier.
As part of that work, they randomly chose 337 referential variability anomalies from those they detected
and manually created patches to the Linux kernel to fix these anomalies (see Section 2.1.5 for a description
of a patch). This resulted in 106 patches submitted to the Linux mailing lists to solve these 337 anomalies
(some patches fixed more than one anomaly). The submitted patches were then reviewed by developers and
a response was provided on the mailing list about whether each patch was accepted or not. Thus, this data
set fits well with the objectives of our study.

In their work, Tartler et al. [118] did not perform an in depth analysis of the developers’ responses
they received or the causes behind these anomalies. To determine what causes variability anomalies and
how developers fix them, we make use of this unanalyzed data they collected. This exploratory dataset we
use consists of the proposed patches as well as the email conversations with developers that followed in
response to these patches.

5.1.1 Description of Exploratory Dataset

To explore the dataset, we first determine the proposed fix of each submitted patch. We manually identify
the change each patch proposes and classify them into five categories shown in Table 5.1. We now discuss
these five categories. The first line in Table 5.1 shows that the majority of the proposed patches (90%)
remove dead code caused by the missing features. Patches that remove dead code are important since they
remove bad code smells [46] and tend to make the code easier to read and more maintainable. The second
type of fix shows that 6 of the proposed patches (6%) rename the missing feature used in the CPP condition
in the code to one that is defined in KCONFIG. Two of the proposed patches (2%) remove dead code as well
as dead features from KCONFIG. The dead features depend on an undefined feature and could therefore
never be selected. For two other patches (2%), the proposed fix removes #ifdef checks either because
they are redundant checks (i.e., same condition is checked twice) or because the guarding feature is not
defined, but the code inside the block is needed. Finally, one patch (1%) removes a dead block that depends
on a missing feature while also removing this missing feature from dependency clauses in KCONFIG.

The status of a submitted patch describes the developers’ response to the proposed patch. We manually
study the response of developers to each submitted patch to determine its status as shown in Table 5.2. We
find that the proposed patches are either accepted, acknowledged, receive no reply, or rejected. We now
discuss each of these cases. The first entry in Table 5.2 shows that roughly half of the 106 patches (51%)
were accepted by developers as is. The second entry shows that for 27 of the proposed patches, developers
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Table 5.1: Categorization of proposed fixes of 106 submitted patches in the exploratory dataset
Type of Proposed Fix Description Count (%)

Remove Dead Code Completely delete the dead
#ifdef guarded code block

95 (90%)

Rename Feature Used in Code Remove the undefined feature
used in the #ifdef and use a dif-
ferent, defined feature

6 (6%)

Remove Dead Code & Dead KCONFIG Features Remove dead code (see above) as
well as features from KCONFIG

which depend on the undefined
feature

2 (2%)

Remove Redundant Checks Remove #ifdef checks which
are redundant with respect to the
parent #ifdef check(s)

2 (2%)

Remove Dead Code & Edit KCONFIG Dependencies Remove dead code (see above) as
well as remove the missing fea-
ture from dependency clauses in
KCONFIG

1 (1%)

Σ Total 106 (100%)

acknowledge that the code being fixed was indeed dead or undead, but the proposed patch was not applied
for one of three reasons: 1) a fix is already being prepared for this problem, either in terms of a scheduled
merge or a patch under progress (12 patches), 2) developers want a different fix than the one originally
provided in the patch (11 patches), and 3) developers would like to keep the code block as it is because it is
used in out of tree development or for reference purposes (4 patches). The third entry in Table 5.2 shows
that there were 21 patches (20%) that received no reply, while the last entry shows that only a few patches
(4%) were rejected. We classify a patch as rejected if developers do not acknowledge that a problem exists
(i.e., that the code is actually dead or undead). This happens in rare cases where although the missing
configuration feature(s) causing the anomaly are not defined in KCONFIG, developers set their values by
hand to be able to use the corresponding code.

5.1.2 Observations about Exploratory Dataset

From our manual analysis of the set of 106 patches and the responses of the developers to each patch, we
make two main observations.
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Table 5.2: Categorization of the status of 106 submitted patches in the exploratory data set
Status Description Count (%)

Accepted Proposed patch accepted and applied as is 54 (51%)

Acknowledged Acknowledgement of dead/undead code,
but patch not applied as is because one of
the following:

27 (25%)

Under progress A fix is already being prepared for this problem,
either in terms of a scheduled merge or a patch
under progress (12)

Different fix suggested Developers want a different fix than the one origi-
nally provided in the patch (11)

Keep code Developers would like to keep the code block as it
is because it is used in out of tree development or
for reference purposes (4)

No Reply Developers did not respond to submitted
patch

21 (20%)

Rejected Developers do not acknowledge that a
problem exists

4 (4%)

Σ Total 106 (100%)

Observation 1: Feature Names. There are 6 proposed patches that change the name of the feature being
used in the CPP code. Out of these patches, four were accepted. Recall that for some of the proposed
changes, developers either suggested a different patch to fix the code or indicated that they already have
a fix being prepared. If we look at these cases, we find that there are 9 patches that proposed removing
the dead code caused by the missing feature(s), but where developers suggested leaving the code in, and
guarding it with a different feature that is defined in KCONFIG. Both cases (accepted patches changing the
feature name and suggesting a different feature to use) indicate that the dead CPP code block is not useless,
but has been mistakenly guarded by an undefined feature causing it to be dead. In four of these cases,
we could tell from the developer’s comments and the name of the suggested feature that the undefined
features being replaced were caused by a misspelling or typo such as using CONFIG_CPU_S3C24XX instead
of CONFIG_CPU_S3C244X where the X is mistakenly typed instead of the 4. We use the terms misspelling
and typo interchangeably throughout this chapter.

Observation 2: Incomplete Patches. In the comments of one of the patches for which developers
suggested using a different feature in the CPP condition, their response indicates that the missing feature got
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renamed in KCONFIG, but developers forgot to rename it in the code. The developers’ responses to three
other accepted patches removing dead code also suggest that the missing features were retired in previous
patches, but the code was not updated to reflect that. These observations lead us to suspect that incomplete
patches may be a common cause for variability anomalies. We use the term incomplete to indicate that the
change was not completely propagated throughout the system.

To confirm this, we look at two types of the proposed patches: those where the problem was acknowl-
edged, but a different patch was suggested and those in which the original patch was renaming the feature
being used. These result in 15 patches. We do an in-depth analysis of these 15 patches where we manually
study the history of the corresponding anomalies to understand how they got introduced. We find that 8
patches fix anomalies that have existed since the related code block was introduced (i.e., code was dead
since inception). On the other hand, 7 of the patches fix anomalies caused by incompletely propagated
changes. That is, developers change or remove a feature definition from KCONFIG, but do not correctly
propagate the change to the rest of the code.

We provide an example for such a case. One of these anomalies is a code block which is dead because
feature CONFIG_MTD_NAND_AT91_BUSWIDTH_16 is not defined in KCONFIG. After some investigation, we
find that there is a previous patch that renames this feature to CONFIG_MTD_NAND_ATMEL_BUSWIDTH_16
in KCONFIG but does not rename it in the CPP condition, resulting in the code block being dead because it
uses an undefined feature. Although we cannot conclude that incomplete patches are a major source of
variability anomalies from this small data sample of 15 patches, the data does provide indication for that.
This gives us motivation to further examine this in the whole Linux kernel which we do in Section 5.2.

5.1.3 Research Questions

Based on the patterns we observe in the dataset described above, we develop four research questions about
how Linux variability anomalies are introduced and fixed.

Our first research question, RQ1, is based on Observation 1 which leads us to conjecture that mis-
spellings may cause missing features that in turn cause referential anomalies.

RQ1: Are misspellings a common cause of variability anomalies?

Our second research question is based on Observation 2 that several anomalies are caused by previous
incomplete patches. Specifically, a patch renames or removes a feature in KCONFIG without renaming/re-
moving all its uses in the rest of the kernel. We call these incomplete KCONFIG patches.

RQ2: Are incomplete KCONFIG patches a common cause of variability anomalies?

Our observations from the exploratory dataset are mainly concerned with what causes the anomalies.
However, it is also important to know how they eventually get fixed. To explore this, we need to analyze
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Figure 5.1: Protocol for confirmatory case study to identify potential causes and fixes for referential
variability anomalies. KPn: KCONFIG patches, CPn: CPP patches, An: Anomalies, en: Boolean expressions,
Fn: KCONFIG features.

how long anomalies last in the Linux kernel, and how they get fixed. We therefore raise the following
additional questions.

RQ3: How are variability anomalies fixed?

RQ4: How long do variability anomalies remain unfixed in Linux?

We answer these four research questions in a confirmatory case study in which we examine if the
observations from the exploratory case study hold on a larger scale. We present the procedure we follow in
the next section.

5.2 Confirmatory Case Study

The goal of our confirmatory case study is to answer the four research questions from Section 5.1.3. In
this section, we explain the protocol we use to answer these research questions. We describe the steps we
perform to find typos as well as how we match anomalies to existing patches to identify potential causes
and fixes as illustrated in Figure 5.1. We analyze the variability anomalies in 10 recent releases of the Linux
kernel (v2.6.37–v3.6) which spans a period of almost 1 year and nine months.

Our analysis is mainly implemented through several Python scripts which we run on a machine with
two quad-core Intel Xeon 2.67GHz CPUs and 16GB RAM.
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5.2.1 Step 1: Extract and Parse Patches

Step 1 identifies and analyzes the patches stored in the GIT repository that are relevant to our analysis.
Since most referential anomalies are caused by inconsistencies between the code and configuration spaces
(Section 4.2.3), we focus on two types of patches here. CPP patches are those that change the CPP guards
of conditional blocks. We also define Kconfig patches as those that change feature definitions in KCONFIG

files. Note that a patch can affect both Kconfig and CPP code at the same time in which case the patch can
be classified as both.

Box A in Figure 5.1 shows a representation of our extracted patches where KCONFIG patches are
denoted by KPn and CPP patches by CPn. For each patch, we identify the features added or removed found
through the + and – notation described in Section 2.1.5. For example, the notation KP1{+F7,−F4} in Box
A means that KP1 removes Feature F4 and adds Feature F7. Similarly, KP2 removes F17 and KP3 adds F4
while CP1 adds F7 and removes F4 from some CPP conditions.

It is straightforward to parse KCONFIG patches. This is done by locating feature declarations that are
inserted or deleted and transcribing them into plus and minus notation (see Box A). It is more complicated
to parse CPP patches. This is done by searching for CPP guarded code blocks (blocks surrounded by
#ifdef, #ifndef, etc.) and identifying each feature Fi used in the CPP condition (the CPP guard). If patch
CPk deletes the line containing the condition, then Fi is also considered to be deleted, so we produce output
such as CPk :−Fi. Conversely, if CPk adds the condition, we produce output such as CPk : +Fi. For CPP

patches, we also record the source file in which the CPP condition was added or removed.

If a patch removes one feature Fi and then adds another Fj in the next step, we assume that Fj renames
Fi. For example, patch KP1 in Box A renames F4 to F7.

The extraction and parsing of patches in Step 1 is performed only once on release v3.71 to extract the
whole history of the ten Linux releases examined (v2.6.37–v3.6). We extract the KCONFIG patches and
CPP patches separately. It takes approximately 39 minutes to extract KCONFIG patches from GIT, and 44
minutes to extract the CPP patches. The results are saved to be queried in Steps 2 and 5.

5.2.2 Step 2: Identify Misspelled Features

Step 2 determines if typos (misspelled features) are a common cause of variability anomalies (RQ1). It does
this by locating CPP patches that rename the feature used in the CPP condition. Based on these renames,
we develop heuristics to automatically compare the names of the old and new features to determine if the
change is apparently correcting a typo.

We consider that the renaming is correcting a misspelling if the first name of the pair is within one or
two edit distances from the second name (i.e., a difference of one or two characters) or if the first name
is a permutation of the words separated by underscores in the second name (e.g., CONFIG_USB_SUPPORT

1v3.7 is used to ensure that any fixes that happen to anomalies found in v3.6 are also caught.

66



vs CONFIG_SUPPORT_USB). This automatic classification provides us with a set of CPP patches that could
potentially be correcting misspelled features. For example, consider patch CP1 in Box A. If feature F4 is
classified as an apparent typo of feature F7, then we classify CP1 as correcting a misspelling as shown in
Box B.

We then manually verify each of these identified patches by looking at the developer’s commit messages
to judge if the change was actually correcting a spelling mistake or not. This manual verification is necessary
to avoid false positives because there are features in Linux which have similar names (e.g., X86_32 and
X86_64), but are implementing different functionalities, and so a replacement of one feature with another
one may be an intentional logic change and not a typo. We choose to design our analysis this way and
not to match missing features in the anomalies to possible misspellings in all defined KCONFIG features,
because there would be no way to verify if the identified features are indeed typos or not.

Since this step, Step 2, only depends on the extracted CPP patches, we perform it only once after
extracting Linux’s history. This takes 1 hr 38 minutes to run. The performance bottleneck here is the
algorithms used to detect similar words.

The following steps (3, 4 and 5) are then performed for each kernel release examined to answer RQ2
and RQ3 dealing with patches causing and fixing anomalies.

5.2.3 Step 3: Detect Referential Anomalies Using UNDERTAKER

In Step 3, we use UNDERTAKER version 1.3 to detect referential variability anomalies in the ten releases of
the Linux kernel we examine. These referential anomalies are shown in Box C in Figure 5.1 where each
anomaly Ak has a boolean expression ek which is the boolean formula that was not satisfied. Detecting
anomalies on the whole Linux kernel using UNDERTAKER takes approximately 45 min for each kernel
release using 4 parallel threads.

5.2.4 Step 4: Extract Missing Features

In Step 4, we analyze the boolean formula ek for each referential anomaly extracted to automatically
identify the missing feature causing the anomaly. This allows us to have a list with each anomaly and its
corresponding missing features as shown in Box D. As mentioned before, missing features are negated at
the end of the formula. In the example given at the beginning of this chapter, we identify USB_SUPPORT as
the missing feature. Box D in Figure 5.1 shows the information extracted in this step which takes about 3
seconds for each release.
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5.2.5 Step 5: Match Anomalies to Patches

Step 5 correlates anomalies with their potential causes and fixes; see Box E in Figure 5.1. The GIT

repository for the Linux kernel contains thousands of commits. We, therefore, need to develop heuristics to
automatically identify potential commits that may be the cause or fix for an anomaly. We now describe
these heuristics.

Our heuristics identify two causes of anomalies: renaming and removal of KCONFIG features without
reflecting these changes in the code. The first two lines of Box E in Figure 5.1 illustrate these two cases. In
Box D, Anomaly A1 is due to the missing feature F4. Patch KP1 renames feature F4 to F7 in KCONFIG, thus
removing the definition of F4 from KCONFIG, and causing anomaly A1. Similarly, anomaly A3 in Box D is
due to the undefined feature F17. Patch KP2 removes F17 from KCONFIG making F17 a missing feature and
causing anomaly A3. In more general terms, there are two kinds of causes of an anomaly Ak that are due to
missing feature Fj:

1. Patch KPi removes feature Fj from KCONFIG.

2. Patch KPi renames feature Fj in KCONFIG.

In both cases, patch KPi must occur before anomaly Ak. If more than one matched patch occurs before
the anomaly, we choose the patch closest to the date of the occurrence of Ak.

We also identify four ways that patches can fix anomalies. One of these is illustrated by the third line
of Box E in Figure 5.1 which specifies that patch CP1 renames feature F4 to F7 in the CPP condition thus
fixing anomaly A1. A1 is caused by the undefined feature F4. CP1 fixes this by using feature F7 instead
of F4 in the CPP condition. Recall that the incomplete patch KP1 renames F4 to F7 in KCONFIG without
reflecting the change in the code. Thus, CP1 completes this rename in the code by using F7 instead of F4
which fixes anomaly A1.

Specifically, given anomaly Ak caused by missing feature Fj, we identify four cases where a patch can
fix this anomaly as follows (the discussed example is the fourth kind):

1. Patch KPi adds Fj to KCONFIG.

2. Patch KPi renames another feature in KCONFIG to Fj.

3. Patch CPi removes the CPP condition containing Fj.

4. Patch CPi renames Fj in the CPP condition.

All types of fixes essentially aim to ensure that the features used in the CPP conditions have a corre-
sponding definition in KCONFIG. In each of the four kinds of fixes, the matched patch must occur after the
anomaly Ak. If more than one such fixing patch occurs after the anomaly, we choose the patch closest to
the date of the anomaly. Matching anomalies to KCONFIG patches takes approximately 13 seconds for
each release, and matching anomalies to CPP patches takes approximately 47 seconds for each release.
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5.3 Results of Confirmatory Case Study

We follow the procedure explained in the previous section (see Figure 5.1) to analyze the variability
anomalies in releases v2.6.37 to v3.6. We apply Step 1 on release 3.7 to extract all the Linux history until
the latest release examined. We extract 10,263 KCONFIG patches and 25,410 CPP patches from the GIT

repository. We report the results of our analysis in this section. We structure our results to answer the four
research questions and then provide interpretation of our findings.

5.3.1 RQ1: Are Misspellings a Common Cause of Variability Anomalies?

Out of the 25,410 extracted CPP patches, only 1,412 patches rename features in CPP conditions (i.e., the
patch changes the feature being used in the condition). From these patches, we use our spelling checker
heuristics (Section 5.2, Step 2) to automatically find 203 patches (14%) where the replacement feature
seems to be correcting a misspelling of the original feature. We manually verify all 203 patches by checking
developers’ commit messages to judge if this patch is indeed correcting a misspelling. We are able to
confirm that 54 out of the 203 patches (27%) are indeed correcting misspellings (the high number of
false positives is due to similar features like X86_32 and X86_64 as explained in Step 2 of Section 5.2).
This means that only 4% (54 out of 1,412) of CPP patches renaming features are dealing with misspelled
features.�



�
	Finding 1: Misspellings are not a common cause of variability anomalies. Only 4% of CPP patches

changing the feature used in the CPP condition are correcting misspellings.

5.3.2 RQ2: Are Incomplete KCONFIG Patches a Common Cause of Variability Anoma-
lies?

Table 5.3 summarizes the results for the matched anomalies in each release studied. In each release, the
table shows the number of anomalies matched to causing and fixing patches. The second column of the
table shows the number of referential anomalies detected by UNDERTAKER in each release. The third
column shows the number of anomalies which we are able to automatically match to a causing KCONFIG

patch in the GIT history. That is, a patch that occurs before the date of this release removes or renames
the missing feature in KCONFIG without reflecting this change in the anomalous file. Since a referential
anomaly can be due to more than one missing feature, the same anomaly may be matched to several historic
patches based on the different missing features. However, we only count the unique number of anomalies
for which we could find a causing patch. We note that an anomaly may span multiple releases of the Linux
kernel. Since we count the number of matches in each release, and not throughout all release, we avoid
multiple countings of the same anomaly.

69



Table 5.3: Number of referential anomalies in each release that are caused by incomplete KCONFIG patches
as well as those fixed by KCONFIG and CPP patches. Percentages are shown in parenthesis.

Release
Referential Anomalies caused Anomalies fixed by

Anomalies by incomplete KCONFIG Patches CPP Patches
KCONFIG patches

2.6.37 706 56 (8%) 22 (3%) 383 (54%)
2.6.38 688 62 (9%) 21 (3%) 354 (51%)
2.6.39 658 61 (9%) 28 (4%) 317 (48%)
3.0 618 67 (11%) 12 (2%) 193 (31%)
3.1 528 96 (18%) 12 (2%) 129 (24%)
3.2 478 74 (15%) 12 (3%) 99 (21%)
3.3 490 73 (15%) 42 (9%) 84 (17%)
3.4 485 86 (18%) 4 (1%) 39 (8%)
3.5 425 87 (20%) 5 (1%) 21 (5%)
3.6 420 83 (20%) 0 (0%) 3 (1%)

Mean 75 (14%) 16 (3%) 162 (26%)
Median 74 (15%) 12 (3%) 114 (23%)

Column 3 of Table 5.3 shows that a mean of 14% of the referential anomalies in each release are
caused by incomplete KCONFIG patches with two releases having values as high as 20%. We could not
automatically match the rest of the anomalies to a causing KCONFIG patch. A quick manual analysis
of these unmatched anomalies suggests that many of these code blocks have been anomalous since their
inception in the code which suggests that the code block has always been dead (or undead). Although we
cannot conclude that incomplete KCONFIG patches are the only cause of referential anomalies, our results
suggest that they are a common cause.�
�

�
�

Finding 2: Incomplete KCONFIG patches often cause referential anomalies. An average of 14% of
referential anomalies are caused by changes to KCONFIG that are not completely propagated to the
source code.

5.3.3 RQ3: How are Variability Anomalies Fixed?

We now study patches that fix referential anomalies in order to answer RQ3. A referential anomaly is
caused by a feature that appears in the boolean formula of the code block, but has no definition in KCONFIG.
Therefore, such an anomaly would be fixed by either (1) adding the feature’s definition in the KCONFIG

files (either by adding a new feature or renaming another feature), or (2) removing that feature from the
code block (either by deleting the whole code block or using another defined feature instead).

With respect to the first possibility, the fourth column in Table 5.3 shows the number of anomalies in
each release that are fixed by KCONFIG patches. We can see that a very small percentage of referential
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anomalies (average of 3%) get fixed by future KCONFIG patches. This suggests that although changes to
KCONFIG introduce these anomalies, not many of them also get fixed by changes to KCONFIG.

We now look at the second possibility of future CPP patches fixing referential anomalies. The last
column in Table 5.3 shows the number of anomalies in each release that are fixed by CPP patches. As
shown, an average of 26% of the anomalies are fixed by CPP patches. In some releases (2.6.37-2.6.39),
these percentages are as high as 48%-54%. When we analyze those fixes, we find that the majority of them
remove the dead code block itself or the CPP condition from around undead code blocks. This indicates
that these code blocks should have been originally removed in previous patches (i.e., the incomplete ones)
since this is indeed how they got fixed later on. On the other hand, only a few CPP fixes rename the features
used in the code to be consistent with those in KCONFIG.

The last two columns in Table 5.3 show that the percentage of anomalies matched to potential fixes
is decreasing over time. This is because with more recent releases, there is not much history beyond
that release to be able to identify potential fixes. This suggests that such anomalies may stay a while in
the kernel before getting fixed. The only exception is the number of KCONFIG patches fixing anomalies
(Column 3) in release 3.3. The reason for the higher number of matches is due to a patch that renamed
CONFIG_SPI_BFIN to CONFIG_SPI_BFIN5XX in KCONFIG. This simultaneously fixed 31 anomalies that
were due to the missing feature CONFIG_SPI_BFIN5XX in different files under the blackfin architecture
in Linux.

�� ��Finding 3: Referential anomalies are commonly (26% of the time) fixed by CPP patches.

5.3.4 RQ4: How Long do Variability Anomalies Remain in Linux?

We have identified that referential anomalies are commonly fixed through CPP patches. We now look at
how long it usually takes for developers to fix these anomalies. Since the location of a code block may
change over time (thus changing the location of the anomaly), we need a method to track the anomaly’s
location as it changes. We use Herodotos [92] to accomplish that. Herodotos tracks bugs over different
versions of a software system by considering the lines added and removed in patches such that it can find
the location of a particular code block in a different version of the system. Using Herodotos, we track the
referential anomalies detected to determine when they are no longer detected in the system. We identify the
version that introduces an anomaly and the version that fixes it.

We find that on average, referential anomalies remain in Linux for 6 releases (approx. 10 months).
Since some anomalies are still not fixed in the last release examined, we consider the minimum lifetime for
those anomalies (i.e., 1 release). The standard deviation of the lifetime of an anomaly is 3.�� ��Finding 4: Referential anomalies remain unfixed in Linux for an average of 6 releases.
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5.4 Discussion

5.4.1 Interpretation of Our Findings

Finding 4 suggests that on average referential anomalies remain unfixed in Linux for an average of 6
releases. A standard deviation of 3 releases for the anomaly lifetime suggests that there are anomalies
that are easier to find and fix than others or that developers care more about. Fixed anomalies provide us
insight to how Linux developers address such problems. We attribute the low number of corrections that fix
misspellings (4%) found in Finding 1 to the strict Linux review process each change has to undergo before
its integration. Anomalies not caused by misspellings are harder to catch by developers during their review
process since other places such as KCONFIG files may also need to be checked, which explains the higher
percentage of anomalies (14%) caused by incomplete KCONFIG changes found in Finding 2.

There are two explanations for Finding 3 which suggests that Linux developers tend to fix referential
anomalies on the variability implementation (the source code) and rather seldom on the variability decla-
ration side (KCONFIG). First, changes to the variability declaration occur less often than code additions
because they are less often necessary. This is also seen in the smaller number of KCONFIG patches (10,263)
in Linux’s repository (i.e., those changing feature definitions in KCONFIG) when compared to the number
CPP patches changing the features used in CPP conditions (25,410). Second, changes to KCONFIG have
(potentially) wide cross-cutting effects on the Linux code base. Previous work by Eaddy et al. [38] has
shown that a high amount of cross-cutting concerns in a software system increases the number of defects.
Keeping in mind that Linux is a very large collaborative project, a developer that edits a KCONFIG feature
definition potentially changes the behavior of some code that he does not know about, which introduces the
anomaly. It, therefore, makes sense that changes to CPP code are later necessary to fix this anomaly, and
make it consistent with the KCONFIG change. This makes the understanding of KCONFIG changes, and the
required manual code review, much harder than the more focused changes in C source files.

These findings along with the observation that many of these anomalies have existed since the code
was created provide an indication that tools to aid programmers in understanding the mapping from feature
declaration to variability implementation are necessary. Running such tools when making changes in Linux
can help make sure that variability information is kept consistent. However, further investigation into what
difficulties developers have in maintaining this consistency are also needed. This can include surveys or
interviews of developers to better identify the problems they face with maintaining variability in order to
further improve the tools researchers provide them.

5.4.2 Beyond Referential Anomalies and Linux

When studying the evolution of block-level anomalies in this chapter, we focused on referential variability
anomalies since they are very common and finding their causes and fixes can be automated. The generated
boolean formulas are usually very long and complicated which makes them infeasible to study manually.
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The challenge with studying logical anomalies not caused by missing features (see Chapter 4) is that when
a boolean formula fails, it is not easy to automatically identify the conflict which caused the failure. Even
when such a conflict is identified, it is often difficult to identify the right fix needed to remove the conflict.
Let us take the following simple formula for a dead block as an example.

(B1↔ CONFIG_X)∧ (CONFIG_X→ CONFIG_Y∧CONFIG_Z)

∧(CONFIG_Z→¬CONFIG_Y∧CONFIG_W)

B1 is dead because the formula is not satisfiable since CONFIG_Y cannot be defined and undefined
at the same time. Several changes can be made in order to fix this anomaly. In CONFIG_X’s KCONFIG

definition, the dependency on CONFIG_Z can be removed which will allow the formula to be satisfiable.
Alternatively, the dependencies in the KCONFIG definition of CONFIG_Z can be changed by either removing
the negation of CONFIG_Y or removing the dependency on CONFIG_Y altogether. Such solutions are difficult
and expensive to capture automatically which is why analyzing logical anomalies may require additional
manual effort.

A possible solution for this is to follow a technique similar to that proposed by Śliwerski et al. [111]
where you can identify the release that fixed the problem (i.e., a release where the anomaly no longer
appears in), and then analyze the changes that occurred between these releases. The challenge here is since
we are dealing with multiple artifacts, a change that introduces or fixes the anomaly may not necessarily be
in the code but may be in a related KCONFIG or Makefile. Heuristics can be applied to limit the search
space a bit and existing techniques to debug conflicts [126, 127] can be a starting point. However, more
investigation in this direction is needed.

Although our study is limited to Linux, we believe our techniques and results can be applied to other
systems. Inconsistencies arise from scattered information, and changes that are not properly propagated
to related parts of the system. Many systems use CPP to control variability, and also use KCONFIG as a
variability modeling notation (e.g., BusyBox, uClibc). Since these systems are similarly structured to Linux,
it seems likely that the same observations may apply. Other systems which implement variability differently
(e.g., eCos) may also have inconsistencies caused by incomplete changes since variability information is
still divided among more than one place.

5.5 Threats to Validity

5.5.1 Internal Validity

Mining GIT. Our work relies on mining the GIT repository in Linux. We only analyze the master
repository maintained by Linux Torvalds. This ensures that the commits we analyze have been thoroughly
reviewed and that we avoid many of the perils of GIT branching discussed by Bird et al. [21].
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Matching Accuracy. Our results rely on the automatic matching scheme we have developed. Since we
focus on investigating our raised research questions, and not on providing any tools to be directly used by
Linux developers, we develop conservative heuristics to avoid false positives in our matching of anomalies
to patches. This explains the large number of unmatched anomalies. However, we manually verify many of
the detected matchings to confirm they are correct. Since removed and added features in each patch can be
accurately identified from the + and – diff notation, we believe our matching are reasonably accurate.

Misspellings. We conclude that misspellings are not a common cause of variability anomalies. This is
based on the fixes we analyzed. However, due to the conservative way we designed our analysis, we would
miss any anomalies caused by misspellings but which have not yet been fixed. Thus, our result is the lower
bound for the percentage of anomalies caused by misspellings.

5.5.2 Construct Validity

The dataset we use to develop our research questions has been created by Tartler et al. [118] in their
previous work. Since this work is a collaboration with them, we avoid researcher expectancies or over
familiarity with the data by having the author of this thesis, who was not involved in the original work,
study this dataset to develop the research questions.

Since our study focuses on referential anomalies, the fact that the exploratory dataset we examine
only contains referential anomalies does not bias our results. We study all 106 patches solving referential
anomalies in the exploratory dataset, and thus avoid the need to do any data sampling. The 337 anomalies for
which the patches have been created have been randomly sampled from all detected referential anomalies,
and thus, the dataset does not suffer from any sampling bias.

5.5.3 External Validity

This work provides a case study of a single software system, the Linux kernel. We do not generalize
our results to other software systems. However, Linux is one of the largest and commonly studied open
source software systems that supports software variability, and has also been previously studied in terms
of variability anomalies. We believe that this case study provides a methodology which can be followed
to study causes and fixes of variability anomalies in other systems implementing variability through CPP

directives and feature selection such as those discussed by Liebig et al. [69] and Spinellis [113] (e.g.,
Apache, FreeBSD).
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5.6 Summary

In this chapter, we investigated the causes and fixes of referential anomalies (i.e., those caused by undefined
KCONFIG features) in the Linux kernel. We found that variability anomalies typically stay in Linux for an
average of 6 releases before they get fixed which suggests that detecting these anomalies is not trivial and
that fixing them as soon as they are introduced is important. Our findings showed that referential anomalies
are often (14% of the time) introduced by incomplete patches which change KCONFIG files without fully
reflecting these changes in the corresponding source code. This indicates that automated anomaly detection,
such as that provided by UNDERTAKER, should be incorporated into the change process to detect these
inconsistencies as soon as the patches are applied. We also found that 26% of the time, these anomalies get
fixed by CPP patches that remove the defective code block or rename the undefined feature being used in it.
This indicates that KCONFIG changes often have wide cross-cutting effects on the code that are not detected
till later and must be fixed through code changes. The patterns for anomaly causes and fixes we found can
help developers avoid such problems in the future. They also allow consistency-checking tool designers to
automatically identify causes of their detected anomalies and possibly provide suggestions to fix them.
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Chapter 6

File Level Variability Anomalies

In Chapter 4, we analyzed the effect of build-space constraints on anomalies at the block level. We showed
that considering the build space results in additional anomalies being detected. We also studied the evolution
of certain types of block-level anomalies in Chapter 5. However, we observe that, generally, the number
of block-level anomalies detected is quite large (Figure 4.3), that it may be hard to analyze complicated
boolean formulas to understand the cause of the conflict (Section 5.4.2), and may be difficult to analyze
their evolution. In an attempt to provide more manageable results to a developer, we now look at a higher
granularity level of anomalies and focus on the file level in this chapter. Since Makefiles deal with code
files rather than code blocks, it makes sense to also consider anomalies at the file level when dealing with
the build-space constraints. We again use the Linux kernel as our case study, and find ways to ensure the
following.

1. Source files are correctly used within KBUILD

2. Constraints in KBUILD are consistent with the rest of the system such that all files can be compiled
without conflicts

For the first, we develop rules for detecting files that are not compiled because they are either not used
in KBUILD or used incorrectly in KBUILD. In that sense, we are not doing any SAT-based reasoning on
the file presence conditions in any way which means we do not detect constraint conflicts. Therefore, we
call anomalies detected in this way non-conflict anomalies. For the second, we change the propositional
formulas discussed in Chapter 4 to work at the file level, and detect conflicts that may lead to file-level
anomalies. We call anomalies detected from the second case conflict anomalies.

The idea for both techniques is that we want to make sure that all files in the kernel get compiled on at
least one variant. Files may not be compiled either because they are not used correctly in the Makefiles or
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because their constraints can never be satisfied. We discuss such cases in this chapter, and show how we
can detect them.

For continuity, we again use a working example of a configurable cellphone system to illustrate the
different types of anomalies. Figure 6.1 shows the example we use with a focus on file-level anoma-
lies where Figure 6.1a shows a list of files in a directory, Figure 6.1b shows the related KCONFIG file,
and Figure 6.1c shows the related Makefile.

Chapter Organization. We organize this chapter as follows. We first start by describing how we detect
non-conflict anomalies in Section 6.1. Section 6.2 then presents how we adapt the propositional formulas
discussed in Chapter 4 to work at the file level to detect conflict anomalies. In Section 6.3, we show
the results we get when we apply our detection techniques on the Linux kernel. To further examine
file-level anomalies, we discuss their evolution in Section 6.4. We then present a discussion of our results
in Section 6.5 and how they compare to the block level. We provide a summary of the chapter in Section 6.6.

Related Publications. The work described in this chapter is partially described in the following publica-
tions.

Sarah Nadi and Ric Holt. “Make it or break it: Mining anomalies in Linux Kbuild”. In: Proceedings
of the Working Conference on Reverse Engineering (WCRE). 2011, pp. 315–324

Sarah Nadi and Ric Holt. “Mining Kbuild to detect variability anomalies in Linux”. In: Proceedings
of the European Conference on Software Maintenance and Reengineering (CSMR). Los Alamitos,
CA: IEEE Computer Society, 2012, pp. 107–116

Sarah Nadi and Ric Holt. “The Linux kernel: A case study of build system variability”. In: Journal
of Software: Evolution and Process (2013). Early online view. http://dx.doi.org/10.1002/
smr.1595
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touch_supp.c music_supp.c handsfree.c speaker_supp.c unlock.c mp3.c
(a) Files in Directory

1 config CODE_UNLOCK
2 bool "Phone will be ulocked by a code"
3
4 config FINGERPRINT_UNLOCK
5 bool "Phone will be unlocked by fingerprint detection"
6 depends on !CODE_UNLOCK
7
8 config MP3
9 depends on MUSIC

(b) Kconfig

1 obj−$(CONFIG_MUSIC) += music_supp.o
2 handsfree−y += handsfree.o speaker_supp.o
3 obj−$(CONFIG_MP3) += mp3.c
4 ifeq ($(CONFIG_CODE_UNLOCK),y)
5 obj−$(CONFIG_FINGERPRINT_UNLOCK) += unlock.o
6 endif

(c) Makefile

Figure 6.1: Example of several types of file-level variability anomalies.

6.1 File-level Non-conflict Anomalies

To begin our analysis at the file level, we first choose a simple, inexpensive technique to detect non-conflict
anomalies. Non-conflict anomalies are those we can detect without reasoning about any constraints. In
general, anomalies at the file level are in the form of files that can never be compiled in any variant (i.e.,
dead files) or conditional files that are always compiled in every variant (i.e., undead files). Based on how
conditional compilation works in KBUILD, we develop three simple rules that detect dead files. These rules
ensure that source files are correctly used in KBUILD (i.e., the Makefiles).

We start with the example in Figure 6.1 to show the types of anomalies we catch, and then formalize the
rules we use. Let us look at the source files in Figure 6.1a. Ideally, each file should be compiled through a
corresponding entry in the Makefile. However, in the example, we can see that file touch_supp.c does not
appear anywhere in the Makefile shown in Figure 6.1c. In this case, the whole file is dead and will never be
compiled. We call this a File Not Used anomaly. If we look at the next file in the directory, music_supp.c,
we find that it is used on Line 1 of the Makefile in Figure 6.1c. However, the entry is conditioned on feature
MUSIC which does not appear in the KCONFIG file in Figure 6.1b. Thus, the feature can never be selected
and the file will never be compiled. We call this, a Feature Not Defined anomaly. If we look at the next two
files, handsfree.c and speaker_supp.c, we find that they both appear on Line 2 of the Makefile as
part of the composite object handsfree (see Chapter 3 for a description of composite objects). This means
that both files will be compiled in the handsfree.o object. However, we can see that this object is not
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Anomaly Description

File Not Used A .c file exists in the directory but is not used in the Makefile of that directory.

Feature Not Defined A .c file is referenced in the Makefile, and its presence is conditioned on a
Kconfig feature being defined. However, this feature is not defined in any of
the Kconfig files.

Variable Not Used A .c file is referenced in the Makefile as part of a composite variable definition,
but this variable is never used.

Table 6.1: Types of non-conflict file-level anomalies

included in the obj-y list anywhere in the Makefile which means that the source files included in it do not
actually get compiled into the final Linux variant. We call this a Variable Not Used anomaly.

We now formalize the three rules we use to detect the three types of anomalies described above. The
violation of these rules results in the three types anomalies described above, and summarized in Table 6.1.

1. Rule 1: In each directory, every fileName.c file should have a corresponding fileName.o entry in
the Makefile of that directory.

2. Rule 2: If fileName.o is dependent (directly or indirectly through a composite object) on some
configuration feature, then there should be a corresponding entry defined for this feature in one of
the KCONFIG files.

3. Rule 3: If fileName.o is part of a composite object definition, then we must make sure that this
composite object gets used somewhere in that same Makefile.

We believe that the Variable Not Used and Feature Not Defined anomalies indicate errors. For both
these types of anomalies, it seems clear that the developer intended for this file to be included in the build
process, but due to some error has not setup things correctly and forgot to use the composite variable in the
first case or forgot to define the KCONFIG feature in the second case. However, the File Not Referenced
anomaly may not necessarily indicate an error. Instead, it can be caused by a developer intentionally not
using a file because this file is no longer needed but is kept in the directory for reference purposes.
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6.2 File-level Conflict Anomalies

The rules described above in Section 6.1 do not take into consideration the dependencies in KCONFIG and
do not reason about constraints in any way. In this section, we discuss file-level conflict anomalies which
result because of a conflict between the build-space constraints (in the form of file presence conditions)
and the configuration space constraints (in the form of feature dependencies). Note that we do not discuss
the code space constraints here since we are working at the file level and not at the block level anymore.

Recall that in Chapter 4, we presented the original UNDERTAKER Boolean logic formulas which detect
dead (Formula 4.1) and undead (Formula 4.2) code blocks by finding conflicts between the configuration
space and the code space. In that chapter, we modified these formulas to include the build space. In this
chapter, to work on the file level, we again modify these formulas, but in this case we replace the block
with the code file and then add the build constraints. This is shown in Formulas 6.1 and 6.2.

In Formula 6.1, we define a file as dead if it can never be present (i.e., will never get compiled) while
satisfying the combination of constraints in the build space B and the configuration space K.

DeadFN = ¬sat(FileN ∧B∧K) (6.1)

Similarly, Formula 6.2 defines a file as undead if we cannot find a case where it does not get compiled
while satisfying the build space and configuration space constraints.

UndeadFN = ¬sat(¬FileN ∧B∧K) (6.2)

To illustrate how these formulas work, we refer back to the example in Figure 6.1. On Line 5 of the
Makefile shown in Figure 6.1c, we can see that file unlock.c is compiled if both features CODE_UNLOCK
and FINGERPRINT_UNLOCK are selected. However, we can see that the phone specifications in the KCONFIG

file in Figure 6.1b state that having FINGERPRINT_UNLOCK depends on not having CODE_UNLOCK (for added
security reasons for example). Thus, the constraints needed for the file to compile can never be satisfied
and unlock.c is dead. We call this category of anomalies build-configuration anomalies.

Since there are only two spaces involved in these formulas, anomalies can arise either because of direct
conflicts between the two spaces as the previous example shows or because of conflicts due to missing
feature definitions. These are build-configuration missing anomalies, which we now provide an example
for. Line 3 of Figure 6.1c shows that file mp3.c will be compiled if feature MP3 is selected. However, we
can see that MP3 depends on feature MUSIC in the KCONFIG file in Figure 6.1b, while there is no feature
definition for MUSIC there. This means that mp3.c is dead according to Equation 6.1 since feature MUSIC
will always be false, and thus the equation cannot be satisfied.
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6.3 Detecting File-level Anomalies in the Linux Kernel

In this section, we discuss the results of applying both techniques for finding file-level anomalies in the
Linux kernel. First, we use the three rules described in Section 6.1 to detect anomalies in the entire Linux
source tree across 10 recent releases, v2.6.37-v3.6. We then use the formulas described in Section 6.2
to detect dead and undead files due to conflicting constraints. We apply these formulas to the same ten
releases. Note that we ignore the staging directory to avoid skewing the results (similar to the block-level
anomalies).

6.3.1 Results: Non-conflict Technique

When using the three rules described in Section 6.1, the anomaly detection process on each release takes
an average of 1.95 minutes on a Core i7 2.67 GHz with 8GB RAM. However, our technique can also be
applied on a per directory basis. That is, a developer can detect anomalies only in the directory they are
responsible for. In that case, the analysis will just run in a few seconds and the developer does not have
to wait for the full analysis of the whole source tree. This will be convenient for developers to use before
committing their work.

Figure 6.2 shows the number of non-conflict file-level anomalies detected in each release. We omit
the Variable Not Used anomaly from the figure for better visualization since there are only three detected
instances of this type of anomaly throughout all the releases studied (discussed later). The figure shows
that the File Not Used anomaly occurs more frequently than the Feature Not Defined anomaly. We now
discuss the three categories below.

File Not Used. We can see that File Not Used anomalies occur in each of the examined releases in Fig-
ure 6.2. On average, there are 48 File Not Used anomalies in each of the releases we examined, i.e., 48
.c files not mentioned in any of the Makefiles. The majority of these files are in the arch and drivers
directories which is consistent with related work on the Linux kernel which finds that the drivers directory
contains most of the code, as well as many inconsistencies, errors, and clones [47, 52, 71, 118].

Detecting the right number of files that have not been used in the Makefiles was challenging at first.
Taking v2.6.39 as an example, we originally discovered over 266 File Not Used anomalies in this category.
We later realized that Linux does not follow the recommended practice of not #include-ing .c files.
Therefore, before reporting a file as not used, we have to first check if it is included in any other .c file
which does not have an anomaly. If it is, then we do not report this file as having an anomaly since it will
be indirectly included in the final built variant through the #include directive. Based on that, we report 49
File Not Used anomalies instead of 266 in v2.6.39, for example.

While examining the files reported as not used, we observe that several files seem to be left behind
for reference purposes or for ongoing maintenance. For example, some of the files reported as not used
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Figure 6.2: Number of non-conflict file-level anomalies detected in each Linux kernel release examined.

include old_checksum.c, dummy.c, and test.c. Their names indicate that they are probably there for
test purposes or as a copy of some previously existing code.

Variable Not Used. We find that the Variable Not Used anomaly is rare. Over the ten releases examined,
we only find three distinct occurrences of this case. We discuss one of these occurrences here. In the
Makefile in directory arch/cris/arch-v32/mach-fs/, file vcs_hook.c is found in the following line:

bj-$(CONFIG_ETRAX_VCS_SIM) += vcs_hook.o

According to our rules, this means that there should be a variable called bj used somewhere in the
Makefile (as bj.o). However, no such occurrence was found, and so it was reported as a Variable Not Used
anomaly. However, on closer inspection, this looks like a typo where the line was intended to be as follows,
but the o was forgotten:

obj-$(CONFIG_ETRAX_VCS_SIM) += vcs_hook.o

Detecting this category of anomalies can help catch such spelling mistakes. This anomaly remained in
the kernel from 2007 to 2011 when we reported it1 where it got pushed upstream in v3.0. It is surprising
that this has remained undetected since 2007 (according to the developer we communicated with). This

1https://lkml.org/lkml/2011/5/17/239
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indicates that these types of anomalies may be hard to detect manually especially when they do not break
the system. However, they may cause some functionality to be missing. In this particular case, the code in
the file vcs_hook.c was only used for development purposes, and is not actually used in the “real world”.

For one of the other Variable Not Used anomalies, we find another typo where Obj- was used instead
of obj-. This anomaly was fixed right away2 just lasting for one release which suggests that it was an error
that got fixed right away. The other Variable Not Used anomaly we found does not seem to be a typo and
got introduced in v3.5 remaining there even in the last release we examined (v3.6).

Feature Not Defined. On average, we find 8 Feature Not Defined anomalies in each release examined,
i.e., 8 features that are used in the Makefiles, but are not defined in any of the KCONFIG files. This means
that for each release, there are an average of 8 cases where some code is expected to compile when a certain
feature is selected but this code is actually never compiled because the feature is not defined

It is also interesting that one of these undefined features, CPU_S3C2400, appears in default and
depends on clauses in a KCONFIG file. When there is no definition for a feature in KCONFIG, then this
feature can never be selected. Additionally, any other feature depending on it in any way will not be visible
to the user for selection in the configuration process, and will thus, in turn, never be itself selected as well.
This means that some of the intended variability for this feature as well as all features depending on it can
never actually be used. It is worth noting that the dependencies on this feature as well as the Makefile
entry and the corresponding file got removed in release v3.13. According to the developer’s comments, the
functionality for CPU_S3C2400 was never completed.

6.3.2 Results: Detecting Conflict Anomalies

Using the formulas described in Section 6.2, we are able to detect several dead files because of con-
straint conflicts in the Linux kernel, but no undead files. The dead files we detect are all in the build-
configuration missing category which means they are caused by missing KCONFIG definitions.

Table 6.2 shows the number of dead files detected in each release examined. On average, there
are 56 dead files in each of the releases examined. Over the ten releases examined, there are 88
unique dead files. We discuss one example here. Listing 54 shows the propositional formula for file
drivers/spi/spi-stmp.c, which is dead because of the missing feature ARCH_STMP3XXX. Recall that
the last line lists the feature(s) that are missing (one feature in this case). Since this feature is not defined
and can thus never be selected, the missing feature is defaulted to false in the boolean formula to see if
the formula can still be satisfied when this feature is not selected. This also allows the developer to know
the missing features from the anomaly reports. Note that this same missing feature caused four dead code

2http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=d5ef642355bdd9b383ff5c18cbc6102a06eecbaf
3http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=632b7cf6c056a355fe920c5165c4d7772393b817
4formula has been simplified for better illustration.
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Release build-configuration missing

2.6.37 54
2.6.38 60
2.6.39 59
3.0 62
3.1 57
3.2 51
3.3 49
3.4 52
3.5 56
3.6 59

Table 6.2: Dead files found due to a conflict between the build and configuration constraints caused by a
missing feature definition.

blocks on the block level anomaly analysis. It is also worth noting that this anomaly was detected in all the
kernel releases we examined which suggests that some of these anomalies are not easily detected.

6.4 Evolution of File-level Anomalies

After determining that file-level anomalies exist in Linux, our next step is to determine whether such
anomalies persistently appear in the system and whether they get resolved or not. Finding the evolution of
anomalies gives an indication of the seriousness of the detected anomalies. If developers invest time in
fixing the detected anomalies between releases, then this suggests that these anomalies are important. It
also illustrates whether the same anomaly is occurring in all releases (i.e., it is just ignored or left behind)
or if new anomalies also get introduced. Fortunately, tracking the evolution of file-level anomalies is easier
than tracking those on the block level. We, therefore, do not need elaborate techniques as those described
in Chapter 5 for the block level. We can simply track whether an anomaly for the same file path exists in
each release. Again, we investigate the evolution of non-conflict and conflict based anomalies separately
and describe the results of each analysis.

6.4.1 Evolution of Non-conflict Anomalies

Figure 6.3 shows the number of anomalies fixed in each examined release as opposed to those introduced.
The evolution plot starts at release 2.6.38 to be able to correctly identify introduced and fixed anomalies in
each release by comparing them to the previous release. Additionally, Figure 6.3 breaks down the number
of introduced and fixed anomalies by type. The figure shows that only a couple of non-conflict file-level
anomalies get introduced and fixed in each release. In order to understand how developers address the
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Listing 5 Example of a build-configuration missing dead anomaly in file drivers/spi/spi-stmp.c. The last
line shows the the missing features causing the conflict.
drivers/spi/spi-stmp.c
&&
drivers/spi/spi-stmp.c <-> CONFIG_SPI && CONFIG_SPI_STMP3XXX
&&
CONFIG_SPI_STMP3XXX -> CONFIG_SPI && CONFIG_ARCH_STMP3XXX && CONFIG_SPI_MASTER
&&
! CONFIG_ARCH_STMP3XXX

anomalies we discover and how serious they are considered, we manually study each of the fixed anomalies.
We now present our findings for the File Not Used and Feature Not Defined anomalies.

File Not Used anomaly. We find that while File Not Used anomalies represent on average 83% of the
total non-conflict anomalies in each release, only an average of 5% of the File Not Used anomalies in one
release are fixed in the next release. This suggests that although there are many anomalies of this type,
most of these anomalies are not particularly urgent since only 5% of them actually get addressed in the
next release. Nonetheless, we cannot conclude that the File Not Used anomaly is totally insignificant. In
the releases we examined, there is a total of 65 distinct File Not Used anomalies. By the last release we
examined (v3.6), 15 of these anomalies were actually addressed (i.e., approximately 23%). This shows that
although this type of anomaly does not get immediately fixed, many of them eventually get addressed.

We find that in fourteen out of the fifteen File Not Used anomalies that got fixed, the fix was simply
removing the file from the source tree. This suggests that most of the File Not Used anomalies are indeed
caused by lax maintenance where code that is no longer needed is still left in the source tree. However,
developers still invest time in cleanup up the code. In the remaining case, an entry was actually added for
the unused source file in the Makefile suggesting that this is useful code. Note that since we are ignoring
the staging directory, we are analyzing stable code which has passed testing and inspection. The staging
directory, on the other hand, would contain many more anomalies that need more serious fixes since it is
still code that has not been fully tested.

Feature Not Defined anomaly. We find that Feature Not Defined anomalies represent on average 15%
of the total anomalies in each release. On average, 9% of the Feature Not Defined anomalies in one release
are addressed in the next release. This suggests that although there are fewer anomalies of type Feature
Not Defined, a higher percentage of them actually get fixed immediately (i.e., within one release) when
compared to the File Not Used anomalies. Over the course of the ten releases we studied, we have observed
seven fixes for Feature Not Defined anomalies. Out of these, 3 (43%) simply removed the source file from
the directory, 2 (29%) added a definition for the corresponding missing feature in KCONFIG, and 2 (29%)
changed the feature this file depends on in KBUILD. In the two latter cases, the change suggests that the file
should indeed be compiled and that the missing feature definition was an error.
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Figure 6.3: Breakdown of non-conflict fixed and introduced anomalies by type over Linux releases. For
each release, the left column shows fixed anomalies and the right column shows introduced anomalies.

Our results support our suspicions that the File Not Used anomaly may not necessarily indicate an error
while the Feature Not Defined anomaly is more likely to be causing a problem. This is because in the
second type of anomaly, developers have created an entry for the compilation of the file in the Makefile
showing their intention of compiling it while for the first type of anomaly, we do not know if this file is
doing anything important or not.

6.4.2 Evolution of Conflict Variability Anomalies

Figure 6.4 shows the evolution of dead files caused by conflicts due to missing features. The figure shows
the number of distinct anomalies fixed (dark bars on left) and introduced (light bars on right) in each release.
Again, we can see that in each release, some anomalies get fixed while others get introduced. In total, we
could observe the fixes for 26 build-configuration missing anomalies. Out of these, 10 (39%) fixes involved
keeping the file and adding a definition for the missing feature or removing the undefined feature from
the dependencies in KCONFIG. This indicates that these were real errors and that the dead file should get
compiled.

Figure 6.5 shows an example of a commit which fixes a build-configuration missing anomaly in release
v3.1. In this particular case, file drivers/rtc/rtc-stmp3xx.c depended on feature RTC_DRV_STMP
(not shown in the commit). However, in KCONFIG, RTC_DRV_STMP depended on the undefined feature
ARCH_STMP3XXX (highlighted in Figure 6.5) which means that the dependency of RTC_DRV_STMP can never
be satisfied causing the file to never be built. The patch shown in Figure 6.5 fixes this by changing the
dependency of RTC_DRV_STMP in KCONFIG from the undefined feature ARCH_STMP3XXX to the defined

87



Figure 6.4: Evolution of dead code files caused by constraint conflicts due to missing features.

feature ARCH_MXS (highlighted). Note that this same anomaly would be reflected on the code-block level,
but instead of just one anomaly reported for the file, an anomaly would be reported for each affected code
block in the file. In this case, there were two such code blocks.

Another similar case is the dead file drivers/crypto/picoxcell_crypto.c caused by an indirect
dependency on the undefined feature ARCH_PICOXCELL. In the file-level analysis, one build-configuration miss-
ing anomaly was reported for it while three dead blocks were reported on the code block level. The anomaly
was fixed in v3.2 by adding a feature definition for the missing feature ARCH_PICOXCELL in KCONFIG.

6.5 Discussion

We have shown that both non-conflict and conflict-finding techniques detect file-level anomalies. There
are both similarities and differences between both techniques in terms of the anomalies they detect. For
example, the non-conflict technique detects files that are dead because they are not used in the Makefiles,
while the conflict technique can only detect dead files that are already used in the Makefiles. On the other
hand, both techniques would detect files that are dead because the feature they directly depend on in the
Makefile does not have a definition. However, the conflict technique can also detect indirect missing
features while the non-conflict technique cannot. For example, if we refer back to the mp3.c file case
in Figure 6.1c, which we discussed before, we will find that the non-conflict technique would not detect a
problem with the file because the feature it directly depends on, i.e., MP3 is defined. On the other hand,
the conflict technique would detect a problem, because it also looks at the dependencies of MP3 and tries
to satisfy Equation 6.1. This difference explains why in the same release, the conflict technique detects
more build-configuration missing anomalies than those detected as Feature Not Defined by the non-conflict
technique.
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Although working at the block level is more detailed, and is a natural extension to previous work [119],
working at a higher level, namely the file level, has provided us several advantages. A first advantage is that
it yields more manageable results which is beneficial to both the developer and to us when analyzing the
results. Developers do not want to be overwhelmed by hundreds of anomalies if they can reach the same
conclusion with less information. For example, in terms of missing anomalies, the same missing feature
ARCH_STMP3XXX in the block-level results is also discovered during our analysis at the file level. At the
file level, only two dead file are caused by this problem while at the block level, 6 code blocks (in the two
different files) are reported as dead because of the same problem. This suggests that working at the file level
may end up solving the same problems, but with less information provided to the developer. We believe
developers may find it easier to deal with the file level since the number of reported anomalies for the same
problem are more manageable. However, there is of course the risk that other anomalies are unique only to
the block level and might be missed at the file level. Thus, it might be beneficial for developers to start
the analysis at the file level, and solve the issues there, which in turn will remove many of the block-level
anomalies, and then they may move onto block-level analysis to solve any remaining issues.

Another advantage is that we are able to track the evolution of anomalies. This is difficult to do when
working at the code block level, as described in Chapter 5, because code blocks are identified by their line
numbers in a code file. Unfortunately, these line numbers may change from one release to the other as more
patches and changes are being applied to the kernel. In many situations, we thought that certain code block
anomalies are fixed in a particular release, but later discover that the anomaly still exists. The anomalous
piece of code had only been moved to somewhere else in the file which changes the block number. Thus,
tracking code-block anomalies by the block number, anomaly description, or line numbers can lead to
inaccurate analysis while this is easier to handle on the file level.

The results of the evolution of the file-level anomalies suggest that while many of the dead files are
unused code that is left behind, there are still some dead files that should get compiled. However, given the
number of file-level anomalies detected and the fact that the dead files are mainly due to missing features,
it seems developers find it easier to maintain the consistency between the build and configuration spaces.
It seems that the challenge is keeping this consistent with the code space which seems to introduce more
anomalies since many indirect conflicts may arise.

Since we manually verified several of the detected file-level anomalies during the evolution analysis, we
believe our results are accurate. That said, the same threats to validity as those at the block level discussed
in Chapter 4 apply here. Additionally, we do not claim that the types of non-conflict file-level anomalies
we detect is a comprehensive list. There may be other incorrect setups in the Makefiles that may lead to
other types of anomalies.

6.6 Summary

In this chapter, we have studied file-level variability anomalies in the Linux kernel. We detected files
that are dead on every variant because they are not used in the Makefiles or because the configuration
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feature controlling their compilation is not defined in the KCONFIG files. Additionally, we detected dead
files which are due to indirectly undefined features which can only be discovered when the build-space
constraints and the configuration-space constraints are combined. This is because the undefined feature(s)
can only be identified when the features appearing in the file presence conditions (i.e., the build-space
constraints) are considered. Our results show that anomalies occur more rarely on the file level than on
the block level. However, since the same file-level anomaly can be manifested as multiple block-level
anomalies, working on the file level can provide more manageable results.

6http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=46b21218
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Figure 6.5: This commit6 replaces the dependency of RTC_DRV_STMP on the undefined feature
ARCH_STMP3XXX by a dependency on a defined feature ARCH_MXS which resolves a build-
configuration missing anomaly in file drivers/rtc/rtcstmp3xx.c
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Chapter 7

Using Anomalies to Extract Configuration
Constraints

Recall that in Section 2.5.2, we defined the term variability anomaly as a general umbrella for all unexpected
behavior related to the configurability of the system. In the previous chapters, we discussed dead and
undead code blocks and files as forms of such variability anomalies. We showed how to detect such
anomalies and how they evolve over time. In this chapter, we look at variability anomalies in the form of
build-time errors and a variation of dead code as sources of configuration constraints.

In previous chapters, when detecting variability anomalies, we used knowledge of the existing con-
straints in the configuration space (i.e., the variability model) to determine the valid configurations. In other
words, we detect only anomalies that occur under valid configurations. Valid configurations are feature
selections that satisfy all the constraints in the configuration space. We do this because we do not care
about anomalies that exist under configurations not allowed by the configuration space in the first place.
Such invalid configurations should not occur by definition. In this chapter, instead of detecting anomalies
that occur in valid configurations using knowledge from the variability model, we use anomaly detection
mechanisms to identify the constraints that should be enforced in the variability model. This is based on
the assumption that the variability model should prevent the configurations under which anomalies would
occur. We assume no knowledge of the variability model and try to reverse engineer the configuration
constraints which should be enforced in it from the implementation.

In order to reverse engineer the variability model from the solution space (i.e., the code space and build
space), we need to identify the sources of configuration constraints it enforces. We suspect that many of
these configuration constraints are enforced in the code which is why we develop static-analysis techniques
(presented in this chapter) to extract them. To determine if this holds in practice, we conduct an empirical
study on four large open-source systems with existing variability models: uClibc, BusyBox, eCos, and the
Linux kernel to compare the constraints we automatically extract to those in the existing models. We are
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Figure 7.1: Overview of proposed approach and empirical study

interested in understanding the different types of configuration constraints defined in the problem space
and how many of these are statically reflected in the solution space. Specifically, our empirical study
has the following three objectives: (1) evaluate the accuracy and scalability of our constraint-extraction
methodology, (2) evaluate the recoverability of existing variability-model constraints using our approach,
and (3) classify existing variability-model constraints. Figure 7.1 shows an overview of the approach we
follow in this chapter as well as our empirical evaluation.

As shown in Figure 7.1, to reach our objectives, we need to extract the configuration constraints from
the solution space and compare them to the existing constraints in the problem space. Recall from Chapter 2
that there has been much research to extract constraints from existing variability models within the
problem space [16, 102, 118]. Such extractors can interpret the semantics of different variability-modeling
languages to extract both hierarchy and cross-tree constraints, as shown in Figure 7.1. Thus, extracting the
configuration constraints from the solution space is the remaining challenge. We address this challenge in
this chapter and show how we extract configuration constraints from the solution space and later compare
them to the problem space.

Chapter Organization. Section 7.1 first discusses the sources of configuration constraints in the solution
space that we use in our extraction. In Section 7.2, we summarize the problem statement we are addressing
in this chapter. Section 7.3 then explains how we use static-analysis techniques, based on the identified
sources, to extract constraints from the solution space. In Section 7.4, we present the results of our empirical
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study and then present the threats to the validity of our work in Section 7.6. Section 7.7 discusses how this
work is different from other related work. We then provide a summary of this chapter in Section 7.8.

Related Publications. The work described in this chapter has been previously published in the following
paper.

Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czarnecki. “Mining configuration
constraints: static analyses and empirical results”. In: Proceedings of the International Conference
Software Engineering (ICSE). Hyderabad, India, 2014, pp. 140–151

7.1 Sources of Solution-space Constraints

As explained in Chapter 2, the solution space consists of build and code files (i.e., the build space and
the code space). Our focus is on C-based systems that realize configurability with a build system and the
C preprocessor. The build system determines the source files and the preprocessor determines the code
fragments to be compiled. The latter is realized using conditional-compilation preprocessor directives such
as #ifdefs.

To compare constraints in the variability model to those in the code, we must find ways to extract global
configuration constraints from the code. Since the majority of configuration features are directly used in
code or build files through conditional compilation as shown in Chapter 3, we expect that many of the
configuration constraints are reflected in the solution space. Note that in the previous chapters, our code
space constraints consisted of localized code-block presence conditions as extracted by Tartler et al. [118]).
However, in this context, we need to look at the system globally rather than at each code block or file
individually. We assume that there is a solution-space constraint (i.e., spanning both code and build spaces)
if any configuration violating this constraint is ill-defined by some rule. There may be several sources of
constraints that fit such a description. In this thesis, we concentrate on two tractable sources of constraints:
(i) those resulting from build-time errors and (ii) those resulting from the effect of features on build files
and on the structure of the code (i.e., #ifdef usage). We now explain the justification behind the two rules.

7.1.1 Build-time Errors

Every valid configuration needs to build correctly. In C projects, various types of errors can occur during
the build process: preprocessor errors, parsing errors, type errors, and linker errors. We assume that if a
specific configuration leads to a build-time error, then there should be a constraint in the variability model
preventing this configuration from being valid. Our goal here is to determine the configuration constraints
that prevent such build errors. Thus, we derive configuration constraints from the following rule:

Rule 1: No Build Errors. Each valid configuration of the system must not cause build-time errors
that would prevent it from being successfully preprocessed, parsed, type checked, and linked.
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1 #ifndef Y
2 void foo() { ... }
3 #endif
4
5 #ifdef X
6 void bar() { foo() ; }
7 #endif

(a) type error

1 #if defined(Z)&&defined(X)
2 ...
3 #ifdef W
4 ...
5 #endif
6 ...
7 #endif

(b) feature effect

Figure 7.2: Examples of constraint sources

A naive, but not scalable, approach to extract these constraints would be to build and analyze every
single configuration in isolation. If every configuration with feature X compiles except when feature Y is
selected, we could infer a constraint X→¬Y. For instance, in Figure 7.2a, the code will not compile in
some configurations due to a type error in Line 6: The function foo() is called under condition X while
it is only defined under condition ¬Y (Line 2). Therefore, the constraint X→¬Y must always hold. The
problem space should enforce this constraint to prevent invalid configurations that break the compilation.
However, already in a medium-sized system such as BusyBox with 881 Boolean features, this results in
more than 2881 configurations to analyze, which is more than the number of atoms in the universe. We
show how this can be avoided in Section 7.3.

7.1.2 Feature Effect

Ideally, variability models should also prevent meaningless configurations, such as redundant feature
selections that do not change the solution space. That is, if feature A is selected in a configuration, then we
expect that A adds or changes some code functionality that was not previously present. However, it may
also be the case that a feature does not change the code functionality unless other features are selected (or
deselected). Such a dependency may be reflected in the variability model such that a configurator may hide
or disable this feature when the other features are not selected to simplify the configuration process.

Determining if two variants of a program are equivalent is difficult (even undecidable). We approximate
this by comparing whether the programs differ in their source code at all. We define the feature effect as
the effect of the feature on the compiled code. That is, when a feature is selected, which parts of the code
get added or removed. If two different configurations yield the same code, this suggests some anomaly in
the model. We extract constraints that prevent such anomalies. We use the following rule as a simplified,
conservative approximation of our second source of constraints:

Rule 2: Lexically Distinct Variants. Each valid configuration of the system should yield a lexically
distinct program.

The use of features within the build system and the preprocessor directives for conditional compilation
provides information about the context under which selecting a feature makes a difference in the final
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product. In the code fragment in Figure 7.2b, selecting W without selecting Z and X will not break the
system. However, only selecting W will not affect the compiled code since the surrounding block will not
be compiled without Z and X also being selected. Thus, W→ Z∧X is a feature-effect constraint that should
likely be in the model, even though violating it will not break the compilation.

It is worth noting that this is similar to detecting dead blocks in the code (see Chapter 4). However, the
difference here is that to detect if a block is dead or not, you only consider the block’s presence condition
as well as that of the file it is part of. On the other hand, to find the effect of a feature, you have to consider
all the code blocks it appears in throughout the whole program as will be explained in Section 7.3.3.

7.2 Problem Statement

In Section 2.1.2, we mentioned that variability-model constraints arise from different sources. These
included technical low-level dependencies discoverable from the code. We discussed two examples of
such sources in Section 7.1.1 and Section 7.1.2 above where the constraints exist for technical reasons
discoverable from the code. Our goal in this chapter is to automatically extract such constraints. However,
it is not clear if other sources of constraints exist beyond implementation artifacts and how prevalent they
are. We, therefore, also strive to identify the sources of any non-recovered constraints.

Improving empirical understanding of constraints in real systems is important, especially since several
studies emphasize configuration and implementation challenges for developers and users due to complex
constraints [15, 19, 50, 72]. Such knowledge not only allows us to understand which parts of a variability
model can be reverse-engineered and consistency-checked from code, and to what extent; but also how
much manual effort, such as interviewing developers or domain experts, would be necessary to achieve
a complete model. For example, a key challenge when reverse-engineering a variability model from
constraints is to disambiguate the hierarchy [103]. Thus, this process could be supplemented by knowing
which sources of constraints relate to hierarchy information in the model.

We focus on the sources of constraints described in both rules above since such constraints can be
extracted using decidable and scalable static-analysis techniques. There are, of course, also other possible
kinds of constraints in the code resulting from errors or other rules (e.g., buffer overflows or null-pointer
dereference). However, many of these require looking at multiple runs of a program (which does not scale
well or depends on imprecise sampling) or produce imprecise or unsound results when extracted statically.

7.3 Extracting Solution-space Constraints

As explained in the introduction of this chapter, one of our goals here is to determine if the configuration
constraints enforced in variability models can be automatically extracted from the solution space. Thus, we
need to develop techniques to extract these constraints from the solution space in order to later compare
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Figure 7.3: Variability-aware approach based on the TypeChef infrastructure to extract configuration
constraints from code

them to the ones existing in the problem space. To do so, we use the two rules described in Section 7.1
to extract code constraints from preprocessor errors, parser errors, type errors, linker errors, and feature
effect. Figure 7.3 shows an overview of the approach we use while Table 7.1 summarizes what is done in
each of these steps, both of which we explain in detail in this section.

As shown in Figure 7.3, before analyzing the code in a specific C file, we first determine under which
conditions the build system includes this file to be able to accurately derive constraints. Recall that we use
the term presence condition (PC) to refer to a propositional expression over features that determines when
a certain code artifact is compiled. For example, a file with presence condition HUSH∨ASH is compiled
and linked if and only if the features HUSH or ASH are selected.

To avoid an intractable brute-force approach of analyzing every possible configuration, we build on the
recent research infrastructure, TypeChef, to analyze the entire configuration space of C code with build-time
variability at once [57, 60, 61]. Our overall strategy for extracting code constraints is based on parsing
C code without evaluating conditional-compilation directives. We extend and instrument TypeChef to
accomplish this.

TypeChef1 is a variability-aware infrastructure developed by Kästner et al. [60]. It aims to analyze C
code containing #ifdef variability such that the code can be correctly parsed to allow for later tasks such
as type checking. The challenge with parsing and analyzing C code containing #ifdef variability is that
different expansions for the code can occur under different feature selections. To correctly parse such code,
and detect any errors, the code must be parsed separately for all possible feature combinations. Of course,
such analysis is infeasible especially for systems with a large number of features. TypeChef solves this
through its variability-aware analysis.

1https://github.com/ckaestne/TypeChef
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Table 7.1: Summary of each analysis step. The definition of each step as well as where it is explained are
described. Running times reported in Table 7.4

Step Definition Described in

File PC Extraction Analyzing the build system to extract
file presence conditions.

Section 7.3, Chapter 3, and
Berger et al. [17]

Ty
pe

C
he

f

Lexing Partially preprocessing and lexing the
file to produce a conditional token
stream

Section 7.3 and detailed descrip-
tion by Kästner et al. [60]

Parsing Parsing the conditional token stream
produced by the partial preprocessor
and creating a conditional Abstract Syn-
tax Tree (AST)

Section 7.3 and detailed descrip-
tion by Kästner et al. [60]

Type checking Traversing the conditional AST to de-
tect conditional type errors

Example of type error in Sec-
tion 7.3.1 and detailed descrip-
tion by Kästner et al. [60]

Symbol Table creation Creating a conditional symbol table for
each parsed file

Example of conditional symbol
table and linker error in Sec-
tion 7.3.2 and detailed descrip-
tion by Kästner et al. [60]

FA
R

C
E

Feature effect - Build Constr. Calculating the feature effect con-
straints by only considering the file pres-
ence conditions

See Section 7.1.2

Feature effect Constr. Calculating the full feature effect con-
straint based on the presence condi-
tions appearing in the conditional token
stream produced by TypeChef

See Section 7.1.2

Preprocessor Constr. Calculating the preprocessor constraints
based on conditional preprocessor er-
rors detected by TypeChef

See Section 7.3.1

Parsing Constr. Calculating the parsing constraints
based on conditional parsing errors de-
tected by TypeChef

See Section 7.3.1

Type Checking Constr. Calculating the type constraints based
on conditional type errors detected by
TypeChef

See Section 7.3.1

Linker Constr. Calculating the linker constraints based
on the linker errors detected by FARCE
using the conditional symbol tables pro-
duced by TypeChef

See Section 7.3.2

TypeChef consists of three variability-aware components [60] shown in Figure 7.3. The first is the
partial preprocessor which includes all necessary header files and expands all macros, but preserves
conditional-compilation directives. This allows each C file to be self-contained and analyzed individually.
The partial preprocessor then produces a conditional token stream where each token is guarded by a
corresponding presence condition (including the file presence condition). This conditional token stream
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is then passed to a variability-aware parser which tries to optimize the parsing process through splitting
and combining different token streams according to their presence conditions. This allows the whole
conditional token stream to be parsed in a single pass, and a single conditional abstract syntax tree (AST) to
be produced. The conditional AST can then be processed by the variability-aware type system to detect type
errors. This variability-aware analysis is conceptually sound and complete with regards to a brute-force
approach of analyzing all configurations separately. However, it is much faster since it does the analysis in
a single step and exploits similarities among implementations of different configurations; see [57, 60, 61]
for more detail.

In previous research with TypeChef, it was typically called with a given variability model such that it
only emits error messages for parser or type problems that can occur in valid configurations—discarding all
implementation problems that are already excluded by the variability model. This is the typical approach to
find consistency errors (See Section 2.5.2) which a user can subsequently fix in the implementation or in
the variability model [29, 121, 122]. Since we need to extract all constraints without knowledge of valid
configurations, we use TypeChef in a different context where we run it without a variability model and
process all reported problems in all configurations.

We extend and instrument TypeChef, and implement a new framework FARCE (FeAtuRe Constraint
Extractor) [43], which analyzes the output of TypeChef and the structure of the codebase with respect
to preprocessor-directive nesting, derives constraints according to our low-level rules, and provides an
infrastructure to compare extracted constraints between a variability model and code. We now explain our
design decisions and methodology using the C code adapted from BusyBox in Figure 7.4 as a running
example. For simplicity, we show the file presence condition as an #ifdef spanning the entire file. However,
all file presence conditions (extracted from the build system analysis) are included in the calculation of all
constraints.

7.3.1 Preprocessor, Parser, and Type Constraints

Preprocessor errors, parser errors, and type errors are detected at different stages of analyzing a file.
However, the post-processing used to extract constraints from them is similar which is why we discuss
them together here. In contrast, linker errors require a global analysis over multiple files, which we discuss
separately in Section 7.3.2.

Preprocessor Errors. A normal C preprocessor stops on #error directives, which are usually inten-
tionally introduced by developers to avoid invalid feature combinations. We extend TypeChef’s partial
preprocessor to log #error directives with their corresponding presence condition and to continue with the
rest of the file instead of stopping on the #error message. The rest of the file is then processed under the
negated error condition (i.e., assuming this condition does not hold). The presence condition of an #error
is extracted from the features used to guard the #error statement. In our example (Figure 7.4), Line 3
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0 #ifdef ASH //represents the file presence condition
1
2 #ifdef NOMMU
3 #error " ... ash will not run on NOMMU machine"
4 #endif
5
6 #ifdef EDITING
7 static line_input_t ∗line_input_state;
8
9 void init () {

10 initEditing ()
11 int maxlength = 1 ∗
12
13 #ifdef MAX_LEN
14 100;
15 #endif //MAX_LEN
16 }
17 #endif //EDITING
18
19 int main() {
20 #ifdef EDITING_VI
21 #ifdef MAX_LEN
22 line_input_state−>flags |= 100
23 #endif
24 #endif
25 }
26 #endif //ASH

Figure 7.4: Example of C code with build-time errors (adapted from ash.c in Busybox)
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shows a #error directive that occurs under the condition ASH∧NOMMU. Thus, the partial preprocessor
can output a list of conditional preprocessor errors as shown in Figure 7.3.

Parser Errors. Similarly, a normal C parser stops on syntax errors such as mismatched parentheses.
The TypeChef variability-aware parser reports an error message together with a corresponding presence
condition, but continues parsing for other configurations. The variability-aware parser will output a list of
conditional parsing errors for each file processed as shown in Figure 7.3. For example, in Figure 7.4, a
parser error occurs on Line 11 because of a missing semicolon if MAX_LEN is not selected. In this case,
our analysis reports a parser error under condition ASH∧EDITING∧¬MAX_LEN.

Type Errors. Where a normal type checker reports type errors in a single configuration, TypeChef’s
variability-aware type checker [57, 61] reports each type error together with a corresponding presence
condition. In Figure 7.4, TypeChef detects a type error in Line 22 if EDITING is not selected since
line_input_state is only defined under condition ASH∧EDITING on Line 7. TypeChef would, thus,
report a type error under condition ASH∧EDITING_VI∧MAX_LEN∧¬EDITING. Again, for each file pro-
cessed, the variability-aware type system will output a list of conditional type errors as shown in Figure 7.3.

Constraints. Following Rule 1 (No Build Errors), we expect that each file should compile without errors.
Every error message with a corresponding condition indicates part of a configuration that does not compile
and should hence be excluded in the variability model. Thus, if an error occurs under condition X, we
assume that the variability model should enforce that X should never occur. More formally, for each
condition φ of an error, we extract a configuration constraint ¬φ which we believe should be enforced in
the variability model. We calculate these constraints using FARCE. During the calculation, we rely on
TypeChef’s simplification of the error presence conditions to simplify the calculated constraints.

Referring back to our example in Figure 7.4, recall that there was a preprocessor error detected on Line 3
under condition ASH∧NOMMU. Thus, FARCE extracts a configuration constraint which ensures that the
variability model does not allow features ASH and NOMMU to be simultaneously selected (¬ASH∨¬NOMMU).
Rewriting this to its equivalent implication, FARCE extracts the following preprocessor constraint from
this error: ASH→¬NOMMU. Following the same logic for the parser and type error examples discussed
above, we extract the following constraints: ASH→¬EDITING∨MAX_LEN from the parser and ASH→
EDITING∨¬EDITING_VI∨¬MAX_LEN from the type system.

7.3.2 Linker Constraints

To detect linker errors in configurable systems, TypeChef builds a conditional symbol table for each file
during type checking (see Figure 7.3). The symbol table describes all non-static functions as exported
symbols and all called but not defined functions as imports. All imports and exports are again guarded
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Table 7.2: Example of two conditional symbol tables

file symbol kind presence condition

Figure 7.4 init export ASH∧EDITING
main export ASH
initEditing import ASH∧EDITING

other file initEditing export INIT

by corresponding presence conditions. We check linkage only within the application and discard all
symbols defined in libraries (with additional analysis though, we could also model library symbols
with corresponding presence conditions). Table 7.2 shows the conditional symbol table (without type
information) corresponding to the code example in Figure 7.4, assuming that symbol initEditing is
defined under presence condition INIT in some other file (not shown). For more detail on conditional
symbol tables, see Aversano et al. [7] and Kästner et al. [61].

In contrast to the file-local preprocessor, parser, and type analyses, linker analysis is global across all
files. Thus, we wait until TypeChef analyzes all source files and then use FARCE to perform the global post
processing. From all conditional symbol tables, FARCE derives linker errors and corresponding constraints.
A linker error arises when a module imports a symbol that is not exported by any other model (def/use)
or when two modules export the same symbol (conflict). The def/use constraints ensure that a symbol
cannot be used unless it is defined (similar to the idea of safe composition [121]). In other words, the
presence condition of an import implies at least one presence condition of a corresponding export. Conflict
constraints ensure mutual exclusion of the presence conditions of exports with the same function name. In
other words, you cannot have multiple definitions for the same symbol.

More formally, we derive configuration constraints for each symbol s as follows:

def/use(s) =
( ∨
( f ,φ)∈imp(s)

φ
)
→
( ∨
( f ,ψ)∈exp(s)

ψ
)

conflict(s) =
∧

( f1,ψ1)∈exp(s);( f2,ψ2)∈exp(s); f1 6= f2

¬(ψ1∧ψ2),

where imp(s) and exp(s) look up all imports and exports of symbol s in all conditional symbol tables and
return a set of tuples ( f ,ψ), each determining the file f in which s is imported/exported and presence
condition ψ .

An overall linker constraint can be derived by conjoining all def/use and conflict constraints for each
symbol in the set of all symbols S:

∧
s∈S def/use(s)∧ conflict(s). Assuming that the two files shown in
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Table 7.2 are the only files in our example, we would extract the constraint ASH∧EDITING→ INIT for
symbol initEditing. In this case, this is a result of a def/use constraint.

7.3.3 Feature Effect

To ensure Rule 2 (Lexically Distinct Variants), we detect the configurations under which a feature has no
effect on the compiled code and create a constraint to disable the feature in those configurations.

The general idea is to detect nesting among #ifdefs: When a feature occurs only nested inside an
#ifdef of another feature, such as EDITING that occurs only nested inside ‘#ifdef ASH’ in the example
in Figure 7.4, the nested feature does not have any effect when the outer feature is not selected. Hence, we
would create a constraint that the nested feature should not be selected without the outer feature, because it
would not have any effect: EDITING→ ASH in this example.

Unfortunately, determining the feature effect is not easy. Extracting constraints directly from nesting
among #ifdef directives produces inaccurate results, because features may occur in multiple locations
inside multiple files, and #if directives allow complex conditions including disjunctions and negations.
Hence, we develop the following novel and principled approach deriving a constraint for each feature’s
effect from presence conditions throughout the system.

First, we collect all unique presence conditions of all code fragments occurring in the entire system
(in all files, including the corresponding file presence condition as usual). Technically, we inspect the
conditional token stream produced by TypeChef’s partial preprocessor and collect all unique presence
conditions as shown in Figure 7.3 (note that this covers all conditional compilation directives, #if, #ifdef,
#else, #elif, etc. including dynamic reconfigurations with #define and #undef).

To compute a feature’s effect, we use the following insights: Given a set of presence conditions P found
for code blocks anywhere in the project and the set of features of interest F , then we say a feature f ∈ F
has no effect in a presence condition φ ∈ P if φ [ f ← True] is equivalent to φ [ f ← False], where X [ f ← y]
means substituting every occurrence of f in X by y. In other words, if enabling or disabling a feature does
not affect the value of the presence condition, then the feature does not have an effect on selecting the
corresponding code fragments. Furthermore, we can identify the exact condition when a feature f has
an effect on a presence condition φ . This is done by identifying all configurations in which the result of
substituting f is different (using xor: φ [ f ← True] ⊕ φ [ f ← False]). This method is also known as unique
existential quantification.

Putting the pieces together, to find the overall effect of a feature on the entire code in a project, we take
the disjunction of all its effects on all presence conditions. We then assume that the feature should only be
selected if it has an effect, resulting in the following constraint:

f →
∨

φ∈P

φ [ f ← True] ⊕ φ [ f ← False]
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This means that we choose to disable a feature by default when it does not have an effect on the build.
Alternatively, we could enable a feature by default and forbid disabling it when disabling it has no effect:
We just need to negate f on the right side of the above formula. However, we assume the more natural
setting where most features are disabled by default and so we look for the effect of enabling a feature.

In our example in Figure 7.4, we can identify six unique presence conditions (excluding tokens for
spaces and line breaks): ASH (Line 0), ASH∧NOMMU (Line 2), ASH∧EDITING (Line 6), ASH∧EDITING∧
MAX_LEN (Line 13), ASH∧EDITING_VI (Line 20), and ASH∧EDITING_VI∧MAX_LEN (Line 21). To
determine the effect of MAX_LEN, we would substitute it with True and False in each of these conditions,
and create the following constraint (assuming that MAX_LEN does not occur anywhere else in the code):

MAX_LEN→
(
(ASH⊕ASH)∨(

(ASH∧NOMMU)⊕ (ASH∧NOMMU)
)
∨(

(ASH∧EDITING)⊕ (ASH∧EDITING)
)
∨(

(ASH∧EDITING∧True)⊕ (ASH∧EDITING∧False)
)
∨(

(ASH∧EDITING_VI)⊕ (ASH∧EDITING_VI))(
(ASH∧EDITING_VI∧True)⊕ (ASH∧EDITING_VI∧False)

))
≡MAX_LEN→ ASH∧ (EDITING∨EDITING_VI),

This confirms that MAX_LEN has an effect if and only if ASH and either EDITING or EDITING_VI are
selected. In all other cases, the constraint enforces that MAX_LEN remains deselected. Additionally, to
determine how many constraints the build system alone provides, we do the same analysis for file presence
conditions instead of presence conditions of code blocks. Note that the feature-effect analysis on the build
system alone is incomplete (since it does not include the code) and provides only a rough approximation.

7.4 Empirical Study Setup

We study four real-world systems with existing variability models. As shown in Figure 7.1, our objectives
are:

• Objective 1 (Accuracy and Scalability): Evaluate the accuracy and scalability of our extraction
approach. This is done by checking if the configuration constraints we extract from implementation
are enforced in existing variability models.

• Objective 2 (Recoverability): Study the recoverability of variability-model constraints using our
approach. Specifically, we are interested in how many of the existing model constraints reflect
implementation specifics that can be automatically extracted.
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• Objective 3 (Constraint Classification): Classify variability-model constraints. In other words, we
want to understand which constraints are technically enforced and which constraints go beyond the
implementation artifacts. This allows us to understand which reverse-engineering approaches to
choose in practice.

For all three objectives, we report the key results here. Refer to our online appendix for full datasets,
extracted formulas, and the raw qualitative results [90].

7.4.1 Subject Systems

We chose four highly-configurable open-source projects from the systems domain. All are large, industrial-
strength projects that realize variability with the build system and the C preprocessor. Our selection reflects
a broad range of variability-model and codebase sizes in the reported range of large commercial systems.

Our subjects comprise the following systems and variability-model sizes. The first three use the
KCONFIG [132] and the last one uses the CDL [125] language and configurator infrastructure in the
problem space. We chose systems with existing variability models to have a basis for comparison.

uClibc is an alternative, resource-optimized C library for embedded systems. We analyze the x86_64
architecture in uClibc v0.9.33.2, which has 1,628 C source files and 367 features described in a KCONFIG

model. BusyBox is an implementation of 310 GNU shell tools (ls, cp, rm, mkdir, etc.) within one binary
executable. We study BusyBox v1.21.0 with 535 C source files and 921 documented features described in
a KCONFIG model. The Linux kernel is a general-purpose operating system kernel. We analyze the x86
architecture of v2.6.33.3, which has 7,691 C files and 6,559 features documented in a KCONFIG model.
eCos is a highly configurable real-time operating system intended for deeply embedded applications. We
study the i386PC architecture of eCos v3.0 which has 579 C source files and 1,254 features described in a
CDL model.

In all four systems, the variability models have been created, maintained, and evolved by the original
developers of the systems over periods of up to 13 years. Using them reduces experimenter bias in our
study. Prior studies of the Linux kernel and BusyBox have also shown that their variability models, while
not perfect, are reasonably well maintained [60, 61, 72, 94, 118]. In particular, eCos and Linux have two of
the largest publicly available variability models today.

7.4.2 Methodology and Tool Infrastructure

We follow the methodology shown in Figure 7.1. We first extract hierarchy and cross-tree constraints from
the variability models of our subject systems (problem space). We rely on previous analysis infrastructures
LVAT [73] and CDLTools [25], which can interpret the semantics of KCONFIG and CDL respectively to
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extract such constraints and additionally produce a single propositional formula representing all enforced
constraints (see [16, 102] for details).

We then run TypeChef on each system, and use our developed infrastructure FARCE to extract solution-
space constraints based on Rule 1 (No Build Errors) and Rule 2 (Lexically Distinct Variants). As a
prerequisite, we extract file presence conditions from build systems using the build system analysis tool
KBuildMiner [62] for systems using KBUILD (BusyBox and Linux). We use KBuildMiner here since it
had already been tested and used before with TypeChef on both versions of BusyBox and Linux which we
use in this work. For the two other systems which do not use KBUILD, we use a semi-manual approach to
extract the file presence conditions.

7.4.3 Evaluation Technique

After problem and solution-space constraints are extracted, we compare them according to our three
objectives. To address Objective 1 (accuracy and scalability), we verify whether extracted solution-space
constraints hold in the propositional formula representing the variability model (problem space) of each
system. We also measure the execution time of the involved analysis steps. For this objective, we assume the
existing variability model as the ground truth since it reflects the system’s configuration knowledge which
developers have specified. To address Objective 2 (recoverability of model constraints), we determine
whether each existing variability-model constraint holds in the solution-space constraint formulas we
extract. We use the term recoverability instead of recall, because we do not have a ground truth in terms
of which constraints can be extracted from the code. Since no previous study has classified the kinds
of constraints in variability models, we cannot expect that 100% of them are enforced in the code and
can be automatically extracted. To address this gap and Objective 3 (classification of variability model
constraints), we show the types of constraints we could automatically recover, and manually investigate
144 randomly sampled non-recovered model constraints to characterize constraints that are not found by
our analysis.

7.5 Empirical Study Results

In this section, we present the results of the three study objectives explained in Section 7.4. Note that
averages and numbers reported across subjects are geometric means (unless otherwise specified) to account
for the differences among the subject systems.

7.5.1 Objective 1: Accuracy and Scalability

We expect that all constraints extracted according to Rule 1 (No Build Errors) hold in the problem-space
variability model as these prevent any failure in building a system. Constraints that do not hold either
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Table 7.3: Constraints extracted with each rule per system and the percentage of those holding in the
variability model (VM)

Code Analysis uClibc BusyBox eCos Linux

# extracted % found in VM # extracted % found in VM # extracted % found in VM # extracted % found in VM

Rule 1 (No Build Errors)
Preprocessor Constr. 158 100 3 100 162 81 12,780 81
Parser Constr. 60 100 23 100 133 91 8,443 100
Type Checking Constr. 958 96 54 100 139 82 256,510 97
Linker Constr. 314 63 38 100 7 100 19,654 90
Total 1,340 90 118 100 441 85 284,914 96

Rule 2 (Lexically Distinct Variants)
Feature effect Constr. 55 75 359 93 263 62 2,961 95
Feature effect - Build Constr. 25 80 62 0 n/a n/a 2,552 97
Total 80 76 421 79 263 62 5,513 96

indicate a false positive due to an inaccuracy of our implementation or an error in the variability model or
implementation. In contrast, Rule 2 (Lexically Distinct Variants) prevents meaningless configurations that
lead to duplicate systems. Thus, we expect a large number of corresponding constraints, but not all, to hold
in the variability model.

Measurement. We measure accuracy as follows. We keep constraints extracted in the individual steps
of our analysis separate. That is, for each build error (Rule 1) and each feature effect (Rule 2), we create
a separate constraint φi. For each extracted constraint φi, we check whether it holds in the formula ψ

representing all the problem-space constraints from the variability model with a SAT solver, by determining
whether ψ ⇒ φi is a tautology (i.e., whether its negation is not satisfiable).

We record the execution time of each analysis step separately to measure the scalability of our approach.
For all analysis steps performed by TypeChef, which can be parallelized, we report the average and the
standard deviation of processing each file. In addition, we report the total processing time for the whole
systems, assuming sequential execution of file analyses. For the derivation of constraints, which can not be
parallelized, we report the total computation time per system.

Results. Table 7.3 shows the number of unique constraints extracted from each subject system in each
analysis step and the percentage of those constraints found in the existing variability model. On average
across all systems, constraints extracted with Rule 1 and Rule 2 are 93 % and 77 % accurate, respectively.

Recall that accuracy here means that the constraints we extract automatically are actually enforced in
the existing variability models. Both results show that we achieve a high accuracy across all four systems.
Rule 1, based on having no build-time errors, is a reliable source of constraints where our tooling produces
few false positives (extracted constraints that do not hold in the model). Interestingly, a 77 % accuracy rate
for Rule 2 (Syntactically Distinct Variants) suggests that variability models in fact prevent meaningless
configurations to a high degree.
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Table 7.4: Duration, in seconds unless otherwise noted, of each analysis step. Average time per file and
standard deviation shown for analysis using TypeChef. Global analysis time shown for post-processing
using FARCE. Description of what is performed in each step is shown in Table 7.1

uClibc BusyBox eCos Linux

File PC Extraction manual 7 N/A 20

Ty
pe

C
he

f Lexing 7 ± 3 9 ± 1 10 ± 6 25 ± 12
Parsing 17 ± 7 20 ± 3 72 ± 1.6 108 ± 1.9
Type checking 4 ± 3 5 ± 1 3 ± 5 41 ± 14
Symbol Table creation 0.1 ± 0.1 0 ± 0.03 3 ± 20 2 ± 2
Sum for all files (Sequential) 13hr 5hr 7hr 376hr

FA
R

C
E

Feature effect - Build Constr. 3 3 N/A 24
Feature effect Constr. 20 8 1200 1.7hr
Preprocessor Constr. 0.7 0.7 8 1hr
Parsing Constr. 16 4 8 39min
Type Checking Constr. 15 6 5 1.3hr
Linker Constr. 120 60 840 5hr

Total FARCE Time 3min 1.4min 34min 10hr

Table 7.4 shows execution times of our tools, which were executed on a server with two AMD Opteron
processors (16 cores each) and 128GB RAM. Significant time is taken to parse files, which often explode
after expanding all macros and #include preprocessor directives. Our results show that our analysis
scales reasonably where a system as large as Linux can be analyzed in parallel within twelve hours on our
hardware (e.g., using 30 parallel threads).

Accuracy Discussion. Our extraction approach is highly accurate given the complexity of our real-world
subjects. While increasing accuracy further is conceptually possible, improving our prototypes into mature
tools would require significant, industrial-scale engineering effort, beyond the scope of a research project.

Regarding false positives, we identify the following reasons. First, the variability model and the
implementation have bugs. In fact, previous work found several errors in BusyBox and reported them to
the developers [61]. In this work, we also found one and reported it in uClibc. Second, all steps involved in
our analysis are nontrivial. For example, we reimplemented large parts of a type system for GNU C and
reverse-engineered details of the KCONFIG and CDL languages, as well as the KBUILD build system. Little
inaccuracies or incorrect abstractions are possible.

After investigating false positives in uClibc linker constraints, we found that many of these occur
due to incorrectly (manually) extracted file presence conditions. In general, intricate details in Makefiles,
such as shell calls, complicate their analysis [117]. Third, our subject systems each implement their own
mechanisms for providing and generating header files at build-time, according to the configuration. We
implemented emulations of these project-specific mechanisms to statically mimic their behavior, but
such emulations are likely incomplete. We are currently investigating using symbolic execution of build
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systems [117] in order to accurately identify which header files need to be included under different
configurations.

Scalability Discussion. Our evaluation shows that our approach scales, in particular to systems sharing
the size and complexity of the Linux kernel. However, we face many scalability issues when combining
complex constraint expressions into one formula, mainly in Linux and eCos. Feature-effect constraints
were particularly problematic due to the unique existential quantification (see Section 7.3.3), which causes
an explosion in the number of disjunctions in many expressions, thus adding complexity to the SAT solver.
To overcome this, we omit expressions including more than ten features when aggregating the feature effect
formula. This resulted in using only 17 % and 51 % of the feature-effect constraints in Linux and eCos,
respectively. The threshold was chosen due to the intuition that larger constraints are too complex and
likely not modeled by developers.

We faced similar problems in deriving other formulas, such as the type formula in Linux, but mainly due
to the huge number of constraints and not their individual complexity. This required several workarounds
and significant memory consumption in the conversion of the formula into conjunctive normal form,
required by our SAT solver. Thus, we conclude that extracting constraints according to our rules scales, but
can require workarounds or filtering expressions to deal with the explosion of constraint formulas. Refer to
our online appendix [90] for more details.

7.5.2 Objective 2: Recoverability

We now investigate how many variability-model constraints can be automatically extracted from the code.

Measurement Strategy. While the extraction approach directly gives us individual constraints to count
and compare, the situation is more challenging when measuring constraints from the variability model.
Variability models in practice use different specification languages. For example, in our subject systems
alone, we already have two languages used: KCONFIG and CDL.

Semantics of a variability model are typically expressed uniformly as a single large Boolean function
expressed as a propositional formula describing the valid configurations. After experimenting with several
slicing techniques for comparing these propositional formulas, we decide to exploit structural characteristics
of variability models that are commonly found. In all analyzed models, we can identify child-parent
relationships (hierarchy constraints), as well as inter-feature constraints (cross-tree constraints). This way,
we count individual constraints as the developer modeled them which is intuitive to interpret and allows us
to investigate the different types of model constraints. Note that we account only for binary constraints
as they are most frequent, whereas accounting for n-ary constraints is an inherently hard combinatorial
problem. Technically, we perform the inverse comparison to that in Section 7.5.1: we compare whether each
individual problem-space constraint ψc holds in the conjunction of all extracted solution-space constraints
φi in each code-analysis category, i.e., whether (

∧
i φi)⇒ ψc is a tautology.
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uClibc BusyBox eCos Linux

# of VM Hierarchy Constraints 54 366 588 4,999

Count (%) Recovered from code

Rule 1 (No Build Errors)
Preprocessor Constr. 0 (0 %) 0 (0 %) 0 (0 %) 1 (0 %)
Parser Constr. 0 (0 %) 0 (0 %) 3 (0 %) 1 (0 %)
Type Checking Constr. 0 (0 %) 1 (0 %) 0 (0 %) 0 (0 %)
Linker Constr. 0 (0 %) 1 (0 %) 1 (0 %) 1 (0 %)

Total (Unique) 0 (0 %) 2 (1 %) 4 (1 %) 3 (0 %)

Rule 2 (Lexically Distinct Variants)
Feature effect Constr. 8 (15 %) 251 (69 %) 60 (10 %) 325 (7 %)
Feature effect - Build Constr. 4 (7 %) 0 (0 %) - 1,337 (27 %)

Total (Unique) 9 (17 %) 251 (69 %) 60 (10 %) 1,661 (33 %)

Total Unique Constraints Recovered 9 (17 %) 253 (69 %) 64 (11 %) 1,664 (33 %)

(a) Hierarchy

uClibc BusyBox eCos Linux

# of VM Cross-tree Constraints 118 265 315 7,759

Count (%) Recovered from code

Rule 1 (No Build Errors)
Preprocessor Constr. 2 (2 %) 1 (0 %) 5 (2 %) 6 (0 %)
Parser Constr. 0 (0 %) 0 (0 %) 9 (2 %) 2 (0 %)
Type Checking Constr. 8 (7 %) 15 (6 %) 1 (0 %) 3 (0 %)
Linker Constr. 12 (10 %) 21 (8 %) 1 (0 %) 19 (0 %)

Total (Unique) 16 (14 %) 37 (14 %) 15 (5 %) 28 (0 %)

Rule 2 (Lexically Distinct Variants)
Feature effect Constr. 6 (5 %) 14 (5 %) 1 (0 %) 58 (1 %)
Feature effect - Build Constr. 3 (3 %) 0 (0 %) - 316 (4 %)

Total (Unique) 7 (6 %) 14 (5 %) 1 (0 %) 374 (5 %)

Total Unique Constraints Recovered 22 (19%) 51 (19 %) 16 (5 %) 402 (5 %)

(b) Crosstree

Figure 7.5: Number (and percentage) of variability-model constraints recovered from each code analysis.
Hierarchy constraints shown in (a) and cross-tree constraints shown in (b).
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(a) uClibc (b) BusyBox (c) eCos (d) Linux

Figure 7.6: Overlap between rules 1 and 2 in recovering variability-model constraints. An overlap means
that the same model constraint can be recovered by both rules

Results. In Figure 7.5, we show how many of the variability models’ hierarchy ( Figure 7.5a) and cross-
tree ( Figure 7.5b) constraints can be recovered automatically from code. Since the same constraint can be
recovered by different analyses, we also show the total number of unique constraints for each rule and for
each system. Across the four systems, we recover 26 % of hierarchy constraints and 10 % of cross-tree
constraints.

To compare the two rules we use to extract solution-space constraints, we show the overlap between the
total number of recovered variability-model constraints (both hierarchy and cross-tree) aggregated across
both rules in the Venn diagrams in Figure 7.6. These illustrate that, in all systems, a higher percentage of
the variability-model constraints reflects feature-effect constraints in the code (Rule 2). Overall, we can
recover 19 % of variability-model constraints using both rules across the four systems where approximately
4 % are found by Rule 1 and 15 % are found by Rule 2.

Recoverability Discussion. We can see a pattern in terms of where variability-model hierarchy and
cross-tree constraints are reflected in the code. As can be seen in Figure 7.5a, the structure of the variability
model (hierarchy constraints) often mirrors the structure of the code. Rule 2 alone can extract an average
25 % of the hierarchy constraints. An interesting case is Linux where already 27 % of the hierarchy
constraints are mirrored in the nested directory structure in the build system (i.e., file presence conditions).
We conjecture that this results from the highly nested code structure, where most individual directories and
files are controlled by a hierarchy of Makefiles (see Chapter 3) almost mimicking the variability model
hierarchy. On the other hand, although harder to recover, cross-tree constraints seem to be scattered across
different places in the code (e.g., linker and type information), and seem more related to preventing build
errors than hierarchy constraints are. Interestingly, Figure 7.6 shows that there is no overlap (with the
exception of one constraint in uClibc) between the two rules we use to recover constraints. This aligns
with the different reasoning behind them: one is based on avoiding build errors while the other ensures
that product variants are different. The fact that our static analysis of the code could recover only 19 % of
the variability-model constraints suggests that many of the remaining constraints require different types of
analysis or stem from sources other than the implementation. We look at this in more detail in our final
objective in the next subsection.

112



7.5.3 Objective 3: Classification of Variability-model Constraints

To investigate which parts of a variability model can be automatically extracted, our aim is to understand
the kinds of constraints that exist in variability models and the analyses and knowledge needed to identify
them.

Measurement Strategy. To automate parts of the investigation, we use the recoverability results from Sec-
tion 7.5.2 to automatically classify a large number of constraints as technical and statically discoverable,
which reduces manual investigation to the remaining ones. To manually investigate the remaining con-
straints, we randomly sample 144 non-recovered constraints (18 hierarchy and 18 cross-tree constraints
from each subject system). We then divide these constraints among three researchers involved in this study
for manual investigation.

Results. From our manual investigation of 144 non-recovered constraints, we classify five cases in which
constraints could not be statically detected from the code with our approach. In Figure 7.1, we summarize
the overall classification of the sources of constraints including those automatically found through our
static analysis. Note that the numbers and percentages discussed below are based on the sample of 144
constraints while the classification in Figure 7.1 is adjusted for the whole population.

Case 1. Additional Analyses Required: We find 30 (21 %) constraints where the relationship might
have been recovered by using more expensive analysis, such as data-flow analysis or testing (11 %), more
advanced build-system analysis (5 %), system-specific analysis such as the use of applets in BusyBox or
the kernel module system in Linux (3 %), or assembly analysis (2 %).

Case 2. More Relaxed Code Constraints: For 27 (19 %) constraints, we recover constraints that
relate two features, but not directly as they appear in the variability model. For example, our analysis
would recover the following constraint in BusyBox, BLKID_TYPE→ VOLUMEID_FAT ∨ BLKID while
the variability model constraint is BLKID_TYPE → BLKID. This suggests that developers may use
configuration features differently in the code than what they enforce in the model.

Case 3. Domain Knowledge: For 40 (28 %) constraints, at least one of the features is not used in
the implementation. We find two cases where this occurs. The first is that the constraint is configurator
related, where a feature is used only internally in the variability model to support its menu structure
and constraint propagation in the configurator. For example, HAS_NETWORK_SUPPORT in uClibc is a
menuconfig [104], which helps to organize networking features in the configurator into a menu format.
This happens in 27 (19 %) constraints. From their domain knowledge, developers usually know which
features are related and that are, thus, grouped together in the same menu. For the remaining constraints,
we find that the unused feature represents some form of platform or hardware knowledge. For example,
the Linux kernel has the following constraint in its variability model: SERIO_CT82C710→ X86_64. The
first feature controls the port connection in that particular chip, but which seems to work only with an
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X86_64 architecture. Such hardware dependencies are not statically detectable in the code and can be found
only through testing the software on the different platforms. We believe that developers use their domain
expertise (usually gained from previous testing experiences) to enforce such dependencies.

Case 4. Limitation in Extraction: In 5 (3 %) constraints, our analyses could not recover the constraint
because it indirectly depends on some non-Boolean comparison which we do not handle or because it
depends on C++ code which we do not analyze.

Case 5. Unknown. We could not determine the rationale behind the remaining 42 (29 %) constraints.
First, this indicates that finding constraints manually is a very difficult and time-consuming process which
enforces the need for automatic extraction techniques such as those we present here. Second, the fact that
we could not manually extract the constraints that were not automatically recovered by our analysis gives
us confidence in our results. It might be that such constraints also require additional analyses which we
could not easily determine or that they rely on external developer knowledge.

Classification Discussion. Our classification shows that 19 % of the variability model constraints can be
statically extracted with our approach (see Section 7.5.2). This seems motivating for automated extraction
tools. We have seen that 15 % of constraints are reflected in the nesting structure and can be easily extracted
using Rule 2, since it depends only on extracting the file presence conditions and lexing the files, which are
cheaper steps in the analysis (see Table 7.4). However, our manual analysis of the remaining constraints
also shows that many of them can be found only through more expensive analysis or through testing.
Additionally, it seems that several constraints in the model are non-technical and are simply responsible for
organizing the structure of the model for configuration purposes. We have also come across constraints that
could stem only from domain knowledge. Both these facts suggest that additional developer and expert
input may always be needed to create a complete model.

Finally, the constraints we find in Case 2 of our manual analysis explain why an analysis may produce
accurate constraints and yet recover no variability-model constraints. For example, the type analysis in
Linux extracts over 0.25 million constraints which are 97% accurate (Table 7.3), and yet only recovers
3 cross-tree constraints in Figure 7.5b. We plan to investigate the feasibility of alternative comparison
techniques to investigate this.

7.6 Threats to Validity

We now discuss possible threats to the validity of the work presented in this chapter.

7.6.1 Internal Validity

Our analysis extracts solution-space constraints by statically finding configurations that produce build-time
errors. Conceptually, our tools are sound and complete with regard to the underlying analyses (i.e., they
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should produce the same results achievable with a brute-force approach of compiling all configurations
separately). Practically however, instead of well-designed academic prototypes, we deal with complex
real-world artifacts written in several different, decades-old languages. Our tools support most language
features, but do not cover all corner cases (e.g., some GNU C extensions, some unusual build-system
patterns), leading to minor inaccuracies, which can have rippling effects on other constraints. We manually
sample extracted constraints to confirm that inaccuracies reflect only a few corner cases that can be solved
with additional engineering effort (which however exceeds the possibilities of a research prototype). We
argue that the achieved accuracy, while not perfect, is sufficient to demonstrate feasibility and support our
quantitative analysis.

In addition to sampling non-recovered constraints, we randomly sample 6 of the variability-model
constraints which were recovered by code analysis in each system, and manually verify that they are indeed
technical constraints in the code. Ideally, complementing our results with qualitative data from interviewing
the creators of the variability models we study may provide additional insight to the usage of variability
constraints.

Our static-analysis techniques currently exploit all possible sources of constraints addressing build-time
errors. We are not aware of other classes of build-time errors checked by the GCC/CLANG infrastructure.
We could also check for warnings/lint errors, but those are often ignored and would lead to many false
positives. Other extensions could include looking for annotations or code comments inside the code, which
may provide variability information. However, even in the best case, this is a semi-automatic process.
Furthermore, dynamic-analysis techniques, test cases or more expensive static techniques, such as data-flow
analysis, may also extract additional information. However, the benefit gained from performing such
expensive analyses still needs investigation.

The percentage of recovered variability-model constraints in Linux and eCos may effectively be higher
than that reported since we limit the number of constraints we use in the comparison due to scalability
issues. Therefore, we can safely use the reported numbers as the worst performance of our tools in these
settings. Additionally, we cannot analyze non-C codebases, which also decreases our ability to recover
technical constraints in systems such as eCos, where 13% of the codebase comprises C++ and assembler
code, which we excluded.

7.6.2 Construct Validity

Different transformations or interpretations of the variability model may lead to different comparison
results than the ones achieved (e.g., additionally looking at ternary relationships in the model). Properly
comparing constraints is a difficult problem, and we believe the comparison methods we chose provide
meaningful results that can also be qualitatively analyzed. Additionally, this strategy allowed us to use the
same interpretation of constraints in all subject systems.
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7.6.3 External Validity

Due to the significant engineering effort for our extraction infrastructure, we limit our study to Boolean
features and to one language: C code with preprocessor-based variability. We apply our analysis to
four different systems that include the largest publicly available systems with explicit variability models.
Although our systems vary in size and cover two different notations of variability models, all systems are
open source, developed in C, and from the systems domain; thus, our results may not generalize beyond
that setting.

7.7 Related Work

Our work on studying the sources of configuration constraints builds on, but significantly extends prior work.
We reuse the existing TypeChef analysis infrastructure for analyzing #ifdef-based variability in C code
with build-time variability [60, 61, 70]. However, we use it for a different purpose and extract constraints
from various intermediate results in a novel way, including an entirely novel approach to extract constraints
from a feature-effect heuristic. While most variability-aware work, including that using TypeChef before,
has used the variability model to limit the number of combinations analyzed, we do not use any knowledge
from the variability model while extracting constraints. Furthermore, we double the number of subject
systems in contrast to prior work. The work is complementary to prior reverse-engineering approach for
feature models [103] which showed how to get from constraints to a feature model suitable for end users
and tools. Here, we focus on deriving the constraints in the first place.

Le et al. [67] attempt to reverse engineer a feature model from implementation and check if it is
consistent with the existing feature model. While our goals are different, the work is closely related.
However, the authors there mainly rely on extracting code-block presence conditions from code to determine
code constraints. It is not clear if they have a complete parsing infrastructure that expands macros and
considers redefinitions or not. Additionally, they require developer involvement to determine the relationship
between the features used in the code while our approach is completely automated. We additionally also
investigate what the sources of the configuration constraints are. While it is not clear if their comparison
strategy is accurate, it is an interesting approach which we could investigate as an alternative comparison
technique.

It might be the case that dynamic analysis such as that by Reisner et al. [97] which uses symbolic
execution to identify interactions and constraints among configuration parameters by symbolically executing
a system’s test cases may extract additional constraints as discussed in Section 7.5.3. However, scalability
of symbolic execution is limited to medium size systems (up to 14K lines of code with up to 30 options in
[97]), whereas our build-time analysis scales to systems as large as the Linux kernel. We also avoid using
techniques such as data-flow analysis [22, 24, 70] due to scalability issues. However, we plan to investigate
if such techniques may be scaled. Previous work on data-flow analysis, symbolic execution, and testing
tailored to variability [22, 70, 89, 97] are interesting starting points.

116



7.8 Summary

In this chapter, we engineered static analyses to extract configuration constraints and performed a large-scale
study of constraints in four real-world systems. Our results raise four main conclusions.

• Automatically extracting accurate configuration constraints from large codebases is feasible to
some degree. Our analyses scale to systems as large as Linux using the right infrastructure and
approximations. We can recover constraints that in almost all (93%) cases assure a correct build
process. In addition, our new feature-effect heuristic is surprisingly effective (77% accurate).

• However, variability models contain much more information than we can extract from code. Our
scalable static analysis can only recover 19 % of the model constraints. Qualitative analysis shows
additional types of constraints resulting from runtime or external dependencies (often already known
by experts) or used for model structuring and configurator support.

• While cross-tree constraints in variability models mainly prevent build-time errors, several parts of
the feature hierarchy (25%) can be found using our feature-effect heuristic. The feature hierarchy
is one of the major benefits of using variability models. It helps users to configure, and developers
to organize features. With our results, reverse engineering a feature hierarchy can be substantially
supported.

• Manually extracting technical constraints is very hard for non-experts of the systems, even when
they are experienced developers. We experienced this first-hand, giving a strong motivation for
automating the task.
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Chapter 8

Conclusions

Software product lines (SPLs) promise many benefits to software developers who need to generate multiple
variants of their product. Software product lines provide variability by allowing the user to select the
features they want to include in each generated product. In this dissertation, we focused on C based systems
with build-time variability using a build system and C preprocessor. Such systems usually consist of a
configuration space which describes the features provided and any dependencies between them (usually
documented in a variability model), a build space which controls which source files get compiled according
to the user’s feature selection, and a code space which contains the implementation of the supported
features. Despite their benefits, there are many challenges to adopting and maintaining software product
lines.

We addressed two of these challenges in this dissertation. The first is related to the consistency
of configuration constraints in a software product line. Any inconsistencies may lead to what we call
variability anomalies which we detect in terms of dead and undead artifacts. The second is related to
identifying the configuration constraints needed to create a variability model. To address this, we identified
two other types of variability anomalies which allowed us to extract configuration constraints from existing
implementation.

We first summarize our contributions and findings in Section 8.1. We then discuss the insights gained
from our work in Section 8.2 and present directions for future work in Section 8.3

8.1 Summary of Thesis Contributions and Findings

We now provide a summary of our contributions and findings. We first discuss the contributions related to
the consistency of configuration constraints.
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Consistency of Configuration Constraints

1. Exploring variability in build systems: We argued that the build system plays an important role in
the variability implementation of software product lines [86]. We have demonstrated this through
a case study on the Linux kernel’s build system, KBUILD, where we showed that 48% of the
configurable features are only used in the build system to control source file compilation.

2. Determining the consistency among variability spaces on the block level: We have shown that
the configuration constraints enforced in the three variability spaces described above often contain
inconsistencies [85, 86]. We extended previous work [118] to include the build space constraints and
conducted an empirical study on the Linux kernel which showed that many #ifdef guarded code
blocks are dead or undead because of these inconsistencies.

3. Determining the consistency among variability spaces on the file level: We have shown that
some conflicts occur at the file level as well causing whole files to be dead [84–86]. Such anomalies
occur due to conflicts between the build space and the configuration space mainly caused by missing
feature definitions. Our results indicate that these occur less frequently than the block-level anomalies
suggesting that developers can manage the file level better but find difficulties keeping all the three
spaces consistent.

4. Studying the evolution of block-level anomalies: We identified possible causes and fixes of block-
level referential variability anomalies (i.e., dead or undead code blocks caused by missing feature
definitions) [83]. Through studying the Linux kernel, we have shown that 14% of such referential
anomalies are caused by incompletely propagated configuration changes. We also showed that 26%
of these anomalies later get fixed on the code side by removing the dead block or guarding it with a
different configuration feature.

5. Studying the evolution of file-level anomalies: We showed that file level anomalies are in the
form of unused or dead files. By studying the Linux kernel, we have shown that such files are
often removed from the source tree indicating that they are no longer useful [84–86]. The fact that
developers invest time in cleaning them up suggests that leaving such code behind is a maintenance
burden. However, we have also found that if the file is dead because of a missing feature definition,
developers often go back and correct this which suggests that the file is doing something useful.

We now summarize our contributions related to the extraction of configuration constraints.

Extraction of Configuration Constraints

6. Designing a methodology to extract configuration constraints: We introduced a new methodol-
ogy to extract configuration constraints from existing implementation based on identifying certain
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types of variability anomalies [82]. We identified two types of variability anomalies which can
be used as sources of configuration constraints: build-time errors and lexically similar product
variants. We modified an existing variability-aware analysis infrastructure, TypeChef [60], to extract
the information we need from C code and built a new infrastructure, FARCE, which extracts the
configuration constraints.

7. Conducting an empirical study on four real-world systems: We tested our methodology on four
systems with existing variability models: uClibc, BusyBox, eCos, and the Linux kernel [82]. We
found that the configuration constraints we extract using the two types of variability anomalies above
are 93 % and 77 % accurate, respectively. However, our static analysis techniques could only recover
19 % of the existing variability-model constraints.

8. Analyzing and classifying sources of configuration constraints: To understand what other sources
of configuration constraints exist, we manually studied a sample of the existing variability model
constraints our analysis could not recover [82]. Our qualitative analysis suggests that 23 % of the
variability model constraints stem from domain knowledge. For example, developers are often
familiar with hardware restrictions or relationships between different functionalities that may not
discoverable from analyzing the code.

8.2 Insights

Based on our contributions and findings summarized above, we make the following remarks about the
insights we have gained from this work.

1. Scattering of variability information: The fact that information contributing to the variability of
the system is scattered in three different places increases the chance of inconsistencies. To address
this, alternative design techniques which avoid such situations are needed. From a more pragmatic
perspective, automated tools which support such situations are needed [54]. We have presented such
tools and techniques in our work which help with the maintenance of scattered information.

2. Granularity of variations points: We observed that variability at the code-block level (e.g., through
#ifdef) is harder to maintain than variability at the file level in the build system. Ideally, each file
could implement a separate functionality and all variability control can be lifted to the build system.
However, it seems that developers still find mechanisms such as using the preprocessor better suited
to the level of granularity they need. New generation mechanisms which combine such flexibility but
avoid problems such as the inconsistencies we observed (e.g., conflicts between #ifdef condition
and the variability model) might be needed.

3. Change support: Our evolution studies which showed that incompletely propagated changes may
cause variability anomalies suggest that integrated consistency-checking mechanisms should be in
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place when applying such changes. When a developer has a patch in place, analyses such as those
we presented here would inform the developer of any problems. However, finding the best way to
integrate such analyses seamlessly such that developers actually use them is still needed.

4. Support for automatically creating variability models: Our work showed that while it is feasible
to automatically extract configuration constraints by statically analyzing existing implementation,
many of these constraints cannot be found this way. While more investigation is needed to identify
additional automated techniques, our work provides a practical measure for expectations from
automated tools. Companies planning to migrate their systems to software product lines should be
aware that expert input will always be needed and that eliciting certain information from sources
such as requirement documents, marketing departments, and hardware engineers might be necessary.

8.3 Future Work

Based on our contributions and insights highlighted above, we identify the following possible directions for
future work.

1. Improving build-system analysis: We have highlighted some of the shortcomings with our build-
system analysis as well as with other related techniques in Chapter 3 and Chapter 7. Thus, more
complete and generic build-system analysis techniques are needed. We are currently exploring if
symbolic execution of build systems might provide better solutions since it can capture information
such as which compiler flags or which header files might be included in the compilation of a particular
file.

2. Identifying best practices: Since many of the anomalies we observed seem to be related to the fact
that information is scattered over three different places, designing software product lines differently
might reduce this burden. For example, eCos does not have separate artifacts for the information in
its configuration space and build space. Instead, it indicates the files that will get compiled along
with any specific compiler options within the feature definition itself. The actual build code then gets
generated from this information for each specific configuration. It would be interesting to see if such
a setup would yield fewer anomalies or if it would affect the quality of the product line in any way.
One way would be to correlate design information with the number of reported problems/bugs by
users or developers in each system’s bug repository. More generally, identifying best practices for
implementing variability in software product lines can help avoid such problems in the future.

3. Exploring additional analyses: Our work on automatically extracting configuration constraints has
used only certain types of static analyses (e.g., type checking). It would be interesting to explore if
other analyses such as data-flow analysis can extract additional configuration constraints.
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4. Supporting other aspects of software product-line migration: In general, our work on helping
the creation of software product lines only touches the problem of extracting the configuration
constraints. Exploring other aspects involved in product line migration such as feature location or
the refactoring of the system are possible future directions.

5. Expanding to other types of variability support: We have focused on C-based systems with
build-time variability in this thesis. We hope to expand our work to other types of variability support
(e.g., load-time options, dynamic binding) as well as other programming languages (e.g., Java).

Overall, our work provides tools and techniques to help maintain software product lines by ensuring
the consistency of variability constraints scattered across the system. We also developed automated
techniques for extracting configuration constraints from implementation which can be used to reverse
engineer variability models. The results of our work can help in the maintenance of existing software
product lines as well as help in migrating legacy code into a software product line. Our work lays the
foundation for additional future research such as identifying the best practices to maintain and create
software product lines.
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