
High Performance Elliptic Curve
Cryptographic Co-processor

by

Jonathan Lutz

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2003

c©Jonathan Lutz, 2003

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In FIPS 186-2, NIST recommends several finite fields to be used in the elliptic

curve digital signature algorithm (ECDSA). Of the ten recommended finite fields, five

are binary extension fields with degrees ranging from 163 to 571. The fundamental

building block of the ECDSA, like any ECC based protocol, is elliptic curve scalar

multiplication. This operation is also the most computationally intensive. In many

situations it may be desirable to accelerate the elliptic curve scalar multiplication

with specialized hardware.

In this thesis a high performance elliptic curve processor is developed which is

optimized for the NIST binary fields. The architecture is built from the bottom

up starting with the field arithmetic units. The architecture uses a field multiplier

capable of performing a field multiplication over the extension field with degree 163

in 0.060 µsec. Architectures for squaring and inversion are also presented. The

co-processor uses López and Dahab’s projective coordinate system and is optimized

specifically for Koblitz curves. A prototype of the processor has been implemented

for the binary extension field with degree 163 on a Xilinx XCV2000E FPGA. The

prototype runs at 66 MHz and performs an elliptic curve scalar multiplication in 0.233

msec on a generic curve and 0.075 msec on a Koblitz curve.

iii

Acknowledgements

This thesis is sponsored in part by Motorola, Inc. I am particularly grateful to

Dan Cronin, Jim Dworkin, and Jeff LaVell of Motorola for their continued support

throughout the course of this research effort. Additionally, special thanks is due

Professor Anwarul Hasan for his time, guidance, and encouragement. And to my

colleagues and friends, Amir and Arash, for the many coffee breaks at Tim Hortons.

iv

To my wife and best friend,

Sarah Joy

v

List of Abbreviations

ASIC Application Specific Integrated Circuit

CLB Configurable Lobic Block

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

FPGA Field Programmable Gate Array

GF Galois Field

IOB Input/Output Block

NAF Non-adjacent Form

NIST National Institute of Standards in Technology

τ -NAF τ -adic Non-adjacent Form

SSL Secure Socket Layer

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scope of the Work and Objectives . 2

1.3 Thesis Organization . 3

2 Background 5

2.1 Mathematical Background . 5

2.1.1 Groups . 6

2.1.2 Finite Fields . 8

2.2 Arithmetic over Binary Finite Fields 12

2.2.1 Multiplication . 13

2.2.2 Inversion . 15

2.3 Arithmetic over the Elliptic Curve Group 16

2.4 Implementation Media . 18

2.4.1 Field Programmable Gate Arrays 20

2.4.2 The Rapid-Prototyping Platform 23

3 High Performance Finite Field Arithmetic 26

vii

3.1 Multiplication . 27

3.1.1 Algorithm . 29

3.1.2 Computation of R(x)W (x) mod F (x) 32

3.1.3 The Multiplier Data Path . 37

3.1.4 Choice of Digit Size . 39

3.2 Squaring . 39

3.3 Inversion . 42

3.4 Comparator/Adder . 45

3.5 Concluding Remarks . 46

4 A Co-processor Architecture for ECC Scalar Multiplication 47

4.1 Projective Coordinates . 49

4.2 Scalar Multiplication using Recoded Integers 51

4.2.1 Scalar Multiplication using Binary NAF 52

4.2.2 Scalar Multiplication using τ -NAF 53

4.2.3 Summary and Analysis . 60

4.3 Co-processor Architecture . 61

4.3.1 The Data Path . 62

4.3.2 The Micro-sequencer . 65

4.3.3 Top Level Control . 68

4.3.4 Choice of Field Arithmetic Units 71

4.3.5 Usage Model . 74

4.4 FPGA Prototype . 74

4.5 Results . 75

viii

5 Concluding Remarks 78

5.1 Summary and Contributions . 78

5.2 Future Work . 79

A Micro-code supporting Curve Arithmetic and Field Inversion 80

A.1 Point Addition . 80

A.1.1 Generic Point Addition . 81

A.1.2 Koblitz Curve Point Addition 84

A.1.3 Efficient Koblitz Curve Point Addition 87

A.2 Point Doubling . 89

A.3 Field Inversion . 90

A.3.1 Inversion by Square and Multiply 91

A.3.2 Inversion by Itoh and Tsujii 92

A.4 Coordinate Conversion . 95

A.5 Copy Routines . 95

A.5.1 Copy P to Q . 96

A.5.2 Copy −P to Q . 96

B Tool Related Scripts and Setup Files 97

B.1 Synthesis Scripts . 97

B.1.1 Synthesis Compile Scripts . 98

B.1.2 Synthesis Constraints Script 103

B.2 Place and Route Scripts . 104

B.2.1 Top Level Place and Route Script 104

B.2.2 User Constraints File . 107

ix

List of Tables

2.1 NIST Recommended Finite Fields . 12

3.1 Performance/Cost Trade-off for Multiplication over GF(2163) 40

3.2 Comparison of Various Inversion Methods for GF(2163) 45

3.3 Performance of Finite Field Operations 46

4.1 Comparison of Projective Point Systems 51

4.2 Cost of Scalar Multiplication in terms of Field Operations 61

4.3 Representation of the Scalar k . 69

4.4 Example Representations of the Scalar 69

4.5 Performance of Field and Curve Operations 76

4.6 Performance and Cost Results for Scalar Multiplication 77

4.7 Comparison of Published Results . 77

x

List of Figures

2.1 Functionality of a CLB . 21

2.2 Functionality of an IOB . 22

2.3 CLB Organization . 23

3.1 LFSR Based Multiplier . 28

3.2 The Multiplier Data-Path . 31

3.3 Generating xiW (x) mod F (x) . 34

3.4 Computing R(x)W (x) mod F (x) 35

3.5 Computation of a Single Bit in R(x)W (x) mod F (x) 36

3.6 Modified Multiplier Data-Path . 38

3.7 Data-Path of the Squaring Unit . 41

3.8 Data-Path of the Comparator/Adder 46

4.1 Co-Processor’s Hierarchical Control Path 62

4.2 Co-Processor Data-Path . 63

4.3 Field Element Storage . 64

4.4 32-bit/163-bit Address Map . 64

4.5 Efficient Frobenius Mapping . 65

xi

4.6 Utilization of Finite Field Units for Point Addition 72

4.7 Utilization of Finite Field Units for Point Doubling 73

xii

Chapter 1

Introduction

1.1 Motivation

The use of elliptic curves in cryptographic applications was first proposed indepen-

dently in [17] and [24]. Since then several algorithms have been developed whose

strength relies on the difficulty of the discrete logarithm problem over a group of

elliptic curve points. Prominent examples include the Elliptic Curve Digital Signa-

ture Algorithm (ECDSA) [25], EC El-Gammal and EC Diffie Hellman [14]. In each

case the underlying cryptographic primitive is elliptic curve scalar multiplication.

This operation is by far the most computationally intensive step in each algorithm.

In applications where many clients authenticate to a single server (such as a server

supporting SSL [8, 27] or WTLS [1]), the computation of the scalar multiplication

becomes the bottle neck which limits throughput. In a scenario such as this it may be

desirable to accelerate the elliptic curve scalar multiplication with specialized hard-

ware. In doing so, the scalar multiplications are completed more quickly and the

1

CHAPTER 1. INTRODUCTION 2

computational burden on the server’s main processor is reduced.

Elliptic curve-based cryptosystems are most closely related to algorithms like the

Digital Signature Algorithm (DSA) which are based on the discrete logarithm prob-

lem. In the DSA, the parameters can be chosen to provide efficient implementations

of the algorithm. In the same way, the parameters of ECC based cryptosystems can

be selected to optimize the efficiency of the implementation. Unfortunately, the se-

lection of the ECC parameters is not a trivial process and, if chosen incorrectly, may

lead to an insecure system. In response to this issue NIST recommends ten finite

fields, five of which are binary fields, for use in the ECDSA [25]. For each field a

specific curve, along with a method for generating a pseudo-random curve, are sup-

plied. These curves have been intentionally selected for both cryptographic strength

and efficient implementation.

Such a recommendation has significant implications on design choices made while

implementing elliptic curve cryptographic functions. In standardizing specific fields

for use in elliptic curve cryptography (ECC), NIST allows ECC implementations to

be heavily optimized for curves over a single finite field. As a result, performance of

the algorithm can be maximized and resource utilization, whether it be in code size

for software or logic gates for hardware, can be minimized.

1.2 Scope of the Work and Objectives

Presented in this thesis are hardware architectures for multiplication, squaring and

inversion over binary finite fields. Each of these architectures is optimized for a specific

finite field with the intent that it might be implemented for any of the five NIST

CHAPTER 1. INTRODUCTION 3

recommended binary curves. These finite field arithmetic units are then integrated

together along with control logic to create an elliptic curve cryptographic co-processor

capable of computing the scalar multiple of an elliptic curve point. While the co-

processor supports all curves over a single binary field, it is optimized for the special

Koblitz curves [18].

To demonstrate the feasibility and efficiency of both the finite field arithmetic units

and the elliptic curve cryptographic co-processor, the latter has been implemented in

hardware using a field programmable gate array (FPGA). The design was synthesized,

timed and then demonstrated on a physical board holding an FPGA.

The objectives of the work presented in this thesis are twofold: First to develop

a high performance hardware finite field arithmetic units with low resource require-

ments. Second to integrate the arithmetic units into an efficient hardware elliptic

curve scalar multiplier.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 gives an overview of the basic mathe-

matical concepts used in elliptic curve cryptography. This chapter also provides an

introduction to the hardware/software system used to implement the elliptic curve

scalar multiplier. Chapter 3 presents efficient hardware architectures for finite field

multiplication and squaring. A method for high speed inversion is also discussed. In

Chapter 4 a hardware architecture of an elliptic curve scalar multiplier is presented.

This architecture uses the multiplication, squaring and inversion methods discussed

in Chapter 3. Finally Chapter 5 provides concluding remarks and a summary of the

CHAPTER 1. INTRODUCTION 4

research contributions documented in this thesis.

Chapter 2

Background

The fundamental building block for any elliptic curve-based cryptosystem is elliptic

curve scalar multiplication. It is this operation that will be implemented. Provided

in this chapter is an overview of the mathematics behind elliptic curve scalar multi-

plication as well as an introduction to FPGA technology which will be used in the

implementation. The chapter is organized as follows: An introduction to concepts

in abstract algebra including groups and fields. Next is given an overview of arith-

metic over binary finite fields followed by a discussion of arithmetic over elliptic curve

groups. The chapter concludes with a brief description of the implementation media

used to prototype the elliptic curve scalar multiplier.

2.1 Mathematical Background

Elliptic curve cryptography is built on two underlying algebraic structures. They

are finite groups and finite fields. This first section provides an introduction to these

5

CHAPTER 2. BACKGROUND 6

concepts. The definitions and theorems have been gathered from [9], [23] and [29] and

are given without proof. These texts as well as [4] and [21] provide further discussion

of the mathematics behind elliptic curve cryptography.

2.1.1 Groups

Definition 1. Let G be a set. A binary operation on G is a function that assigns

each ordered pair of elements in G an element in G.

Definition 2. An algebraic group (G, ∗) is defined by a nonempty set G and a

binary operation ∗. (G, ∗) is said to be a group if the following properties hold:

• Closure: For all elements a, b ∈ G, element (a ∗ b) ∈ G.

• Associativity: For all elements a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

• Identity: There exists an element e ∈ G such that for any element a ∈ G

a ∗ e = e ∗ a = a. The element e is referred to as the group identity.

• Inverse: For every element a ∈ G, the inverse b = a−1 is also an element of G.

Then a ∗ b = b ∗ a = e.

Definition 3. If for all elements a, b ∈ G, a ∗ b = b ∗ a, then G is a commutative or

Abelian group.

Theorem 1. There is a single identity in every group G.

Example: The integers form a group under addition. The group (Z, +) possesses

the properties listed in Definition 2 and has the identity e = 0.

CHAPTER 2. BACKGROUND 7

Example: The set of non-zero integers under multiplication does not form a group.

(Z∗, ·) possesses all the properties of a group except one. Elements 1 and −1 are the

only elements whose multiplicative inverse is also in Z
∗. Element 2, for example, has

inverse 1/2 /∈ Z
∗.

Definition 4. The order of G, denoted as |G|, is the number of elements in the set

G.

Definition 5. The order of element g ∈ G, denoted as |g|, is defined to be the

smallest positive integer t such that gt = e.

Definition 6. Element g ∈ G is said to be a generator of G if every element in G

can be expressed by gi for some integer i. Then |g| = |G|.

Example: Consider the group defined by the set G = Z
∗
5 = {1, 2, 3, 4} under mul-

tiplication. Then the order of the group is |G| = 4. Since

20 mod 5 = 1

21 mod 5 = 2

22 mod 5 = 4

23 mod 5 = 3

24 mod 5 = 1

CHAPTER 2. BACKGROUND 8

the order of element 2 is 4. And since

40 mod 5 = 1

41 mod 5 = 4

42 mod 5 = 1

the order of element 4 is 2. Note that element 2 is a generator of the group but 4 is

not.

2.1.2 Finite Fields

A finite field can be considered as a finite set whose elements form a group under two

binary operations; usually multiplication and addition. More specifically,

Definition 7. (F, +, ·) is a field if the following properties hold:

• The elements of F form a group under addition.

• The non-zero elements of F form a group under multiplication.

• The addition and multiplication operations are commutative, i.e. a + b = b + a

and ab = ba for all a, b ∈ F .

• The multiplication operation can be distributed through the addition operation,

i.e. a(b + c) = ab + ac for all a, b, c ∈ F .

Definition 8. A field F with a finite number of elements is a finite field.

Definition 9. The order of a field F is the number of elements in F .

CHAPTER 2. BACKGROUND 9

Definition 10. A generator of the non-zero elements of a finite field F is said to

be a primitive element or generator of F .

Definition 11. The characteristic of a finite field is the smallest positive integer j

such that

1 + 1 + · · · + 1︸ ︷︷ ︸ ≡ 0.

j times

Example: Consider the field GF(7) containing the elements 0, 1, 2, 3, 4, 5 and 6.

The order of the field is 7 and the characteristic is also 7 since

1 + 1 + 1 + 1 + 1 + 1 + 1︸ ︷︷ ︸ ≡ 0 (mod 7).

7 times

Element 3 generates GF(7) as shown below.

30 = 1 (mod 7) 34 ≡ 4 (mod 7)

31 = 3 (mod 7) 35 ≡ 5 (mod 7)

32 = 2 (mod 7) 36 ≡ 1 (mod 7)

33 = 6 (mod 7)

Definition 12. A unique1 finite field exists for every prime-power order. These

fields are denoted GF(pm) where p is prime and m is a positive integer.

In cryptographic applications, two types of fields are commonly used. They are

• Prime Fields: GF(p) where p is large

• Binary Fields: GF(2m) where m is large

1Unique in the sense that all fields of a specific prime-power order are isomorphic.

CHAPTER 2. BACKGROUND 10

The architectures described in the following chapters perform arithmetic over

binary finite fields. Attention will be focused exclusively on this specific case for the

duration of the this thesis.

Element Representation: The binary field GF(2m) contains 2m elements. Pre-

cisely how each element is represented is defined by the basis being used. The two

most common representations are polynomial basis and normal basis. The work dis-

cussed in this thesis uses polynomial basis.

Let GF(2)[x] denote the set of polynomials over GF(2). Then for any irreducible

polynomial

F (x) = xm + fm−1x
m−1 + · · · + f2x

2 + f1x + 1

with fi ∈GF(2), GF(2)[x]/F (x) is a finite field with 2m elements [23]. Since the field

of order 2m is unique up to isomorphism, the elements of the binary field GF(2m) can

be uniquely represented by the set of polynomials over GF(2) of degree less than m.

Furthermore, field addition is performed by adding two such polynomials over GF(2).

Field multiplication is performed by straightforward multiplication of two polynomials

and reducing mod F (x). The irreducible polynomial F (x) is often referred to as the

reduction polynomial or field polynomial.

Example: Consider the field GF(23) with the irreducible polynomial F (x) = x3 +

x + 1. The elements of the field are contained in the set

{0, 1, x, x + 1, x2, x2 + 1, x2 + x, x2 + x + 1}

CHAPTER 2. BACKGROUND 11

The element x + 1 generates GF(23) as shown below.

(x + 1)0 ≡ 1 (mod F (x))

(x + 1)1 ≡ x + 1 (mod F (x))

(x + 1)2 ≡ x2 + 1 (mod F (x))

(x + 1)3 ≡ x2 (mod F (x))

(x + 1)4 ≡ x2 + x + 1 (mod F (x))

(x + 1)5 ≡ x (mod F (x))

(x + 1)6 ≡ x2 + x (mod F (x))

(x + 1)7 ≡ 1 (mod F (x))

The characteristic of the field is two since

1 + 1 ≡ 0 (mod 2).

NIST recommends the fields GF(2163), GF(2233), GF(2283), GF(2409) and GF(2571)

for use in the Elliptic Curve Digital Signature Algorithm (ECDSA). These fields and

corresponding reduction polynomials are listed in Table 2.1. Note that each of the

reduction polynomials listed in the table is either a trinomial or a pentanomial. Also,

note that the second leading non-zero coefficient of the polynomial has a relatively

small degree when compared to the degree of the whole polynomial. Polynomials

were chosen with these properties in order to benefit the resulting implementation of

finite field arithmetic.

CHAPTER 2. BACKGROUND 12

Table 2.1: NIST Recommended Finite Fields

Field Reduction Polynomial

GF(2163) F (x) = x163 + x7 + x6 + x3 + 1

GF(2233) F (x) = x233 + x74 + 1

GF(2283) F (x) = x283 + x12 + x7 + x5 + 1

GF(2409) F (x) = x409 + x87 + 1

GF(2571) F (x) = x571 + x10 + x5 + x2 + 1

2.2 Arithmetic over Binary Finite Fields

The elements of the binary field GF(2m) are interrelated through the operations of

addition and multiplication. Since the additive and multiplicative inverses exist for

all fields, the subtraction and division operations are also defined. Discussed in this

section are basic methods for computing the sum, difference and product of two

elements. Also presented is a method for computing the inverse of an element. The

inverse, along with a multiplication, is used to implement division.

Addition and Subtraction: If we define the field elements a, b ∈GF(2m) to be the

polynomials A(x) = am−1x
m−1 + · · ·+ a1x+ a0 and B(x) = bm−1x

m−1 + · · ·+ b1x+ b0

respectively, then their sum is written

S(x) = A(x) + B(x) =
m−1∑
i=0

(ai + bi)x
i. (2.1)

CHAPTER 2. BACKGROUND 13

Working in a field of characteristic two provides two distinct advantages. First, the

bit additions ai + bi in (2.1) are performed modulo 2 and translate to an exclusive-

OR (XOR) operation. The entire addition is computed by a component-wise XOR

operation and does not require a carry chain. The second advantage is that in GF(2)

the element 1 is its own additive inverse (i.e. 1 + 1 = 0 or 1 = −1). It can be

concluded then that addition and subtraction are equivalent.

2.2.1 Multiplication

The product of field elements a and b is written as

P (x) = A(x) × B(x) mod F (x) =
m−1∑
i=0

m−1∑
j=0

aibjx
i+j mod F (x)

where F (x) is the field reduction polynomial. By expanding B(x) and distributing

A(x) through its terms we get

P (x) = bm−1x
m−1A(x) + · · · + b1xA(x) + b0A(x) mod F (x).

By repeatedly grouping multiples of x and factoring out x we get

P (x) = (· · · (((A(x)bm−1)x + A(x)bm−2)x + · · · + A(x)b1)x

+ A(x)b0) mod F (x).

(2.2)

Starting with the inner most parenthesis and moving out, Algorithm 1 performs the

computation required to compute the right hand side of (2.2). This algorithm can be

used to compute the product of a and b.

CHAPTER 2. BACKGROUND 14

Algorithm 1 Bit-Level Multiplication

Input: A(x), B(x), and F (x)

Output: P (x) = A(x) × B(x) mod F (x)

P (x) ← 0;

for i = m − 1 downto 0 do

P (x) ← xP (x) mod F (x);

if (bi == 1) then

P (x) ← P (x) + A(x);

Many of the faster multiplication algorithms rely on the concept of group-level

multiplication. Let g be an integer less than m and let s = �m/g� (Note that g is

different here from previous usage). If we define the polynomials

Bi(x) =

g−1∑
j=0

big+jx
j 0 ≤ i ≤ s − 2,

(m mod g)−1∑
j=0

big+jx
j i = s − 1,

then the product of a and b is written

P (x) = A(x)
(
x(s−1)gBs−1(x) + · · · + xgB1(x) + B0(x)

)
mod F (x).

In the derivation of equation (2.2) multiples of x were repeatedly grouped then fac-

tored out. This same grouping and factoring procedure will now be implemented for

CHAPTER 2. BACKGROUND 15

multiples of xg arriving at

P (x) = (· · · ((A(x)Bs−1(x))xg + A(x)Bs−2(x))xg + · · ·)xg

+ A(x)B0(x) mod F (x)

which can be computed using Algorithm 2.

Algorithm 2 Group-Level Multiplication

Input: A(x), B(x), and F (x)

Output: P (x) = A(x)B(x) mod F (x)

P (x) ← Bs−1(x)A(x) mod F (x);

for k = s − 2 downto 0 do

P (x) ← xgP (x);

P (x) ← Bk(x)A(x) + P (x) mod F (x);

2.2.2 Inversion

For any element a ∈ GF(2m) the equality a2m−1 ≡ 1 holds. When a 	= 0, dividing

both sides by a results in a2m−2 ≡ a−1. Using this equality the inverse, a−1, can be

computed through successive field squarings and multiplications. In Algorithm 3 the

inverse of an element is computed using this method.

The primary advantage to this inversion method is the fact that it does not require

hardware dedicated specifically to inversion. The field multiplier can be used to

perform all required field operations.

CHAPTER 2. BACKGROUND 16

Algorithm 3 Inversion by Square and Multiply

Input: Field element a

Output: b ≡ a(−1)

b ← a;

for i = 1 to m − 2 do

b ← b2 ∗ a;

b ← b2;

2.3 Arithmetic over the Elliptic Curve Group

The field operations discussed in the previous section are used to perform arithmetic

over an elliptic curve. This thesis is aimed at the elliptic curve defined by the non-

supersingular Weierstrass equation for binary fields. This curve is defined by the

equation

y2 + xy = x3 + αx2 + β (2.3)

where the variables x and y are elements of the field GF(2m) as are the curve pa-

rameters α and β. The points on the curve, defined by the solutions, (x, y), to (2.3)

form an additive group when combined with the “point at infinity”. This extra point

is the group identity and is denoted by the symbol O. By definition, the addition

of two elements in a group results in another element of the group. As a result any

point on the curve, say P , can be added to itself an arbitrary number of times and

the result will also be a point on the curve. So for any integer k and point P adding

P to itself k − 1 times results in the point

kP = P + P + · · · + P︸ ︷︷ ︸ .

k times

CHAPTER 2. BACKGROUND 17

Given the binary expansion k = 2l−1kl−1 +2l−2kl−2 + · · ·+2k1 +k0 the scalar multiple

kP can be computed by

Q = kP = 2l−1kl−1P + 2l−2kl−2P + · · · + 2k1P + k0P.

By factoring out 2, the result is

Q = (2l−2kl−1P + 2l−3kl−2P + · · · + k1P)2 + k0P.

By repeating this operation it is seen that

Q = (· · · ((kl−1P)2 + kl−2P)2 + · · · + k1P)2 + k0P

which can be computed by the well known (left-to-right) double and add method for

scalar multiplication shown in Algorithm 4.

Algorithm 4 Scalar Multiplication by Double and Add Method

Input: Integer k = (kl−1, kl−2, . . . , k1, k0)2, Point P

Output: Point Q = kP

Q ← O;

if (kl−1 == 1) then

Q ← P ;

for i = l − 2 downto 0 do

Q ← DOUBLE(Q);

if (ki == 1) then

Q ← ADD(Q,P);

CHAPTER 2. BACKGROUND 18

Two basic operations required for elliptic curve scalar multiplication are point

ADD and point DOUBLE. The mathematical definitions for these operations are derived

from the curve equation in (2.3). Consider the points P1 and P2 represented by the

coordinate pairs (x1, y1) and (x2, y2) respectively. Then the coordinates, (xa, ya), of

point Pa = P1 + P2 (or ADD(P1, P2)) are computed using the equations

xa =

(
y1 + y2

x1 + x2

)2

+
y1 + y2

x1 + x2

+ x1 + x2 + α

ya =

(
y1 + y2

x1 + x2

)
(x1 + xa) + xa + y1.

Similarly the coordinates (xd, yd) of point Pd = 2P1 (or DOUBLE(P1)) are computed

using the equations

xd = x2
1 +

(
β

x2
1

)

yd = x2
1 +

(
x1 +

y1

x1

)
xd + xd.

So the addition of two points can be computed using two field multiplications,

one field squaring, eight field additions and one field inversion. The double of a point

can be computed using two field multiplications, one field squaring, six field additions

and one field inversion.

2.4 Implementation Media

In the end, the goal of this work is to implement the field and group arithmetic

described above using hardware. This can be done using two different hardware

technologies.

CHAPTER 2. BACKGROUND 19

They are:

• Application Specific Integrated Circuits (ASICs)

• Field Programmable Gate Arrays (FPGAs)

ASICs are typically used when a design is massed produced or when performance

is of the utmost importance. FPGAs, on the other hand, lend themselves nicely to

research work where a design is being prototyped. The following attributes of the

FPGA design flow are particularly advantageous.

1. Relatively small initial setup cost. A single FPGA is inexpensive when com-

pared to the manufacturing cost of an ASIC design.

2. Simplified implementation flow. In most cases, the FPGA vendor (such as

Xilinx or Altera) will provide a fully integrated tool flow. This flow will have

been fully tested for compatibility with the FPGA and as a result fewer tool

related problems can be expected.

3. Fast turn around time. An FPGA can be programmed in less than a minute

and can also be reprogrammed many times. An ASIC on the other hand may

take months to fabricate.

4. Simplified integration. Whether using an ASIC or FPGA design flow, the design

must be integrated into a hardware/software system. It is common for FPGAs

to be sold within such a system, minimizing the integration task required of the

designer.

CHAPTER 2. BACKGROUND 20

It makes sense that most other ECC prototypes have been implemented using FPGA

technology. By following suit, results can be more easily compared to those of previ-

ously reported work. The following section provides an overview of the fundamental

principles on which FPGAs are based. Introduced next is the Rapid-Prototyping

Platform which includes the FPGA and hardware/software system used to prototype

the design discussed in this thesis.

2.4.1 Field Programmable Gate Arrays

An FPGA or field programmable gate array is an integrated circuit consisting of

• Configurable Logic Blocks (CLBs),

• Input/Output Blocks (IOBs) and

• programmable interconnect.

Configurable Logic Blocks: A typical Configurable Logic Block (CLB) is com-

posed of both combinational and sequential logic. The combinational logic can be

configured to create any of a number of possible boolean functions. Flip-Flops are

provided to support sequential logic and can be utilized or bypassed depending on

the configuration. Figure 2.1 shows an example CLB with 8 inputs and 2 outputs.

The blocks F, G and H are programmable functions which can be configured to per-

form any one of a number of different boolean functions. The functions are typically

implemented with either look-up tables (LUTs) or logic gates. The actual number

of possible boolean functions depends on the implementation. The multiplexors are

used to configure the interconnect inside the CLB.

CHAPTER 2. BACKGROUND 21

Figure 2.1: Functionality of a CLB

�

��
�

�

��
�

�

�

�

� ���� 	
��
���� ���������
�

Input/Output Blocks: The Input/Output Blocks (IOBs) are blocks used to con-

nect internal nets to external pins or pads on the FPGA. These blocks control the

direction of the signal and can also register both input and output data. Figure 2.2

shows an example IOB.

Programmable Interconnect: An FPGA is made of many IOBs and CLBs.

These blocks can be configured and connected together to achieve complex func-

tionality. The connections between the blocks are performed by the programmable

interconnect. There are several ways in which the CLBs, IOBs and programmable

interconnect are organized. One such organization is the symmetric array method.

As shown in Figure 2.3, the CLBs are organized in a two dimensional array with

CHAPTER 2. BACKGROUND 22

Figure 2.2: Functionality of an IOB

���

��

��

�

��

�

� ���	
�������� �����������

����� ����	

����� ����	

��

�

IOBs around the perimeter. The programmable interconnect is routed in between

the blocks.

Configuring the FPGA: The configuration of each CLB and IOB as well as the

programmable interconnect is defined when a design is loaded into the FPGA. The

configuration is typically stored in static RAM cells. This allows the configuration to

be preserved through reset of the FPGA while still providing the option of reconfig-

uration.

CHAPTER 2. BACKGROUND 23

Figure 2.3: CLB Organization

��� ��� ���

���

���

���

������

���

���

���

������

���

���

2.4.2 The Rapid-Prototyping Platform

The Rapid-Prototyping Platform (RPP) [6, 7] is a hardware/software system pro-

vided to Canadian universities by Canadian Microelectronics Corporation (CMC).

The major hardware components included in the system are:

• ARM Integrator/AP,

• ARM Integrator/CM7TDMI and

• ARM Integrator/LM-SCV600E+.

The Integrator/CM7TDMI board contains a fully functional ARM7 core. The Integrator/LM-

SCV600E+ board holds a Xilnix XCV2000E FPGA. The chips on these two boards

CHAPTER 2. BACKGROUND 24

are allowed to communicate through the Integrator/AP board. The common bus

between the ARM7 core and the Virtex FPGA is the Arm High Performance Bus

(AHB). In this system the ARM7 is the bus master and the design loaded onto the

FPGA is the slave. In other words, the ARM7 core initiates bus transactions and the

FPGA design responds to them.

The hardware and software design flows of the RPP are thoroughly documented

in [6]. Provided here is a brief overview. Hardware flow, the more complicated of the

two flows, is summarized in the following steps.

1. HDL (Hardware Description Language) coding. This is done in either VHDL

or Verilog HDL.

2. Functional simulation and verification (Cadence Verilog XL).

3. Synthesis (Synopsys FPGA Compiler II).

4. Place/Route (Xilinx Foundation Software).

5. Static Timing Analysis (Xilinx Foundation Software).

6. Generate the bit file (Xilinx Foundation Software).

7. Download the bit file onto the FPGA.

If the design fails to pass static timing analysis, changes may need to be made to the

HDL in which case all the steps must be performed again. The software side is less

complicated.

CHAPTER 2. BACKGROUND 25

1. Write the driver code in C using the ARM Firmware Suite provided with the

RPP software environment. The firmware suite provides read and write com-

mands used to access address locations on the AHB bus.

2. Compile the code for the ARM7 core.

3. Download the core into memory on the ARM7 core.

4. Execute the code.

Chapter 3

High Performance Finite Field

Arithmetic

In order to optimize the curve arithmetic discussed in Section 2.3 the underlying field

operations must be implemented in a fast and efficient way. The required field arith-

metic operations are addition, multiplication, squaring and inversion. Each of these

operations have been implemented in hardware for use in the prototype discussed

in Chapter 4. Generally speaking, field multiplication has the greatest effect on the

performance of the entire elliptic curve scalar multiplication.1 For this reason, focus

will be primarily on the field multiplier when discussing hardware architectures for

field arithmetic.

This chapter is organized as follows. Section 3.1 presents a hardware architecture

designed to perform finite field multiplication. In Section 3.2 the ideas presented for

multiplication are extended to create a hardware architecture optimized for squar-

1Inversion takes much longer than multiplication, but its effect on performance can be greatly
reduced through use of projective coordinates. This is discussed in greater detail in Section 4.1.

26

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 27

ing. Section 3.3 gives a method for inversion due to Itoh and Tsujii. This method

does not require any additional hardware but instead uses the multiplication and

squaring units described in Sections 3.1 and 3.2. Section 3.4 gives a description of

a comparator/adder which both compares and adds finite field elements. Finally,

Section 3.5 summarizes results gleaned from a hardware prototype of each arithmetic

unit/routine.

3.1 Multiplication

Hardware/software architectures for field multiplication can be roughly categorized

into three groups. Bit Serial multipliers are based on Algorithm 1 on page 14 where

each coefficient of operand b is considered in a separate iteration of the for loop. Such

an implementation is resource efficient in that it can be implemented using an m-bit

LFSR defined by the reduction polynomial F (x) along with an m bit accumulator.

The LFSR and accumulator are connected as shown in Figure 3.1. The disadvan-

tage of such an architecture is the number of iterations required of the for loop. In

hardware, the m iterations translate to a minimum of m clock cycles. In contrast,

Bit Parallel multipliers complete a multiplication in a single iteration. All m-bits of

both input operands are considered at the same time and the result is immediately

generated. Unfortunately, such a multiplier cannot be implemented in software and

may result in a costly design when implemented in hardware. The minimum clock

period of such an implementation is also likely to be large. A compromise between

these architectures is the Digit Serial multiplier. This multiplier is based on Algo-

rithm 2 on page 15 and considers multiple coefficients of operand b in each iteration.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 28

Figure 3.1: LFSR Based Multiplier

�� �� �� ��

�� �� �� ��

���� ���� ��

��

A multiplication is completed in �m/g� iterations and requires fewer resources than

the bit parallel method.

In [13] a digit serial multiplier is proposed which is based on look-up tables. This

method was implemented in software for the field GF(2163) and reported in [16].

To the best of our knowledge this performance of 0.540 µ-seconds for a single field

multiplication is the fastest reported result for a software implementation. In this

section the possibilities of using this look-up table-based algorithm in hardware will

be explored.

First to be described in this section is the algorithm used for multiplication. Then

presented is a hardware structure designed to compute R(x)W (x) mod F (x) where

R(x) and W (x) are polynomials with degrees g − 1 and m − 1 respectively and

g << m. A description of the multiplier’s data path follows. In conclusion there will

be a discussion behind the reasons for the choice of digit sizes.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 29

3.1.1 Algorithm

The computations of

P (x) ← xgP (x) mod F (x) and

P (x) ← Bk(x)A(x) + P (x) mod F (x)

from the for loop of Algorithm 2 on page 15 can be broken up into the following

steps.

V1 = xg

m−g−1∑
i=0

pix
i,

V2 = xg

m−1∑
i=m−g

pix
i mod F (x)

V3 = Bk(x)A(x) mod F (x) and

P (x) = V1 + V2 + V3

Note that V1 is a g-bit shift of the lower m − g bits of P (x). V2 is a g-bit shift of

the upper g bits of P (x) followed by a modular reduction. V3 requires a polynomial

multiplication and reduction where the operand polynomials have degree g − 1 and

m − 1. Algorithm 2 can be modified to create Algorithm 5.

In [13] polynomials V2 and V3 are computed with the assistance of look-up tables

mainly for software implementation. The look-up tables used to compute V2 and V3

are referred to as the M -Table and T -Table respectively. The M -Table is addressed by

the bit string (pm−1, pm−2, . . . , pm−g) interpreted as the integer 2g−1pm−1 +2g−2pm−2 +

· · · + pm−g. Similarly the T -Table is addressed by the coefficients of Bk(x), or the

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 30

Algorithm 5 Efficient Group Level Multiplication

Input: A(x), B(x), and F (x)

Output: P (x) = A(x)B(x) mod F (x)

P (x) ← Bs−1(x)A(x) mod F (x);

for k = s − 2 downto 0 do

V1 ← xg
∑m−g−1

i=0 pix
i;

V2 ← xg
∑m−1

i=m−g pix
i mod F (x);

V3 ← Bk(x)A(x) mod F (x);

P (x) ← V1 + V2 + V3;

integer Bk(x = 2). The elements of the M -Table are a function of the reduction

polynomial F (x) and can be precomputed. The elements of the T -Table are a function

of A(x) and hence are dynamic. These values must be computed at the beginning of

every multiplication.

The data path associated with this method is shown in Figure 3.2. The given

multiplier is based on this method but is optimized specifically for hardware imple-

mentation.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 31

Figure 3.2: The Multiplier Data-Path

�

��������� �� ���		��������� �� � ��		

� ����� � �����

����

������� ���� ����

� ���

� � �� � �� �����

�

� � �

�

� �����

�� �

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 32

3.1.2 Computation of R(x)W (x) mod F (x)

Instead of using tables, the polynomials V2 and V3 are computed on the fly. The

computation of V2 and V3 are similar in that they both require a multiplication of

two polynomials followed by a reduction, where the first polynomial has degree g − 1

and the other has degree less than m. This is obvious for V3 and can be shown easily

for V2. Note that

V2 = pm−1x
m+g−1 + · · · + pm−g+1x

m+1 + pm−gx
m mod F (x)

= xm
(
pm−1x

g−1 + · · · + pm−g+1x + pm−g

)
mod F (x).

The field reduction polynomial F (x) = xm + xd + · · · + 1 provides us the equality

xm ≡ xd + · · · + 1. Substituting for xm we see that

V2 =
(
xd + · · · + 1

) (
pm−1x

g−1 + · · · + pm−g+1x + pm−g

)
mod F (x).

Provided d + g < m, V2 results in a polynomial of degree less than m which does

not need to be reduced. Since d is relatively small for all five NIST polynomials, it is

reasonable to assume that d+g < m. For the remainder of this work, this assumption

will be made.

With this said, the following method can be used to compute both V2 and V3.

Consider the polynomial multiplication and reduction R(x)W (x) mod F (x) where

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 33

R(x) =
∑g−1

i=0 rix
i and W (x) is a polynomial with degree less than m. Then

R(x)W (x) mod F (x) =rg−1(x
g−1W (x) mod F (x))

+rg−2(x
g−2W (x) mod F (x))

...

+r1(xW (x) mod F (x))

+r0(W (x) mod F (x))

The value xiW (x) mod F (x) is just a shifted and reduced version of xi−1W (x)

mod F (x). So each value xiW (x) mod F (x) can be generated sequentially start-

ing with x0W (x) as shown in Figure 3.3. When using a reduction polynomial with a

low Hamming weight, such as a trinomial or pentanomial, these terms can be com-

puted quickly at very little cost. Once these values are determined, the final result

is computed using a g-input modulo 2 adder. The inputs to the adder are enabled

by their corresponding coefficient ri. This is shown in Figure 3.4. Note that the

polynomial xiW (x) affects the output of the adder only if the coefficient bit ri is a

one. Otherwise the input associated with xiW (x) is driven with zeros.

Each individual output bit of the g-operand mod 2 adder is computed using g− 1

XOR gates and g AND gates. The AND gates are used to enable each input bit and

the XOR gates compute the mod 2 addition. Figure 3.5 demonstrates how this is

done. The depth of the logic in the figure is linearly related to g.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 34

Figure 3.3: Generating xiW (x) mod F (x)

= Shift and Reduction

�� ��� �
�
� ��� �

���
� ��� �

���
� ���

�
���
� ���

� ���

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 35

F
ig

u
re

3.
4:

C
om

p
u
ti

n
g

R
(x

)W
(x

)
m

o
d

F
(x

)

�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

� �

�
�
�

�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

� �

�
�

�

�
�
�

�
�
�
�

� �

�
�

��
�
�

�
�
�
�

�
�
�

�

�

�
�
�
�

�
�
�
��

��
�
�
�
�
�

��
�

�
��
�
�
��
�
	

�
	
�
�
	
	
�
�

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 36

F
ig

u
re

3.
5:

C
om

p
u
ta

ti
on

of
a

S
in

gl
e

B
it

in
R

(x
)W

(x
)

m
o
d

F
(x

)

�
�

�
�

�
�

�
�
�

��
�
�
��
�

�
�
�

��
�
�
��
�

�
�
�

��
�
�
��
�

�
�
�

��
�
�
��
�

�
�

�
�

�
�

�
�

�
�
�

��
�
�
��
�

�
�
�

��
�
�
��
�

�
�

��
�
�
��
�

�

��
�
�
��
�

��
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
��
��
�
�
��
�

�
�

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 37

This method for multiplication is implemented for computation of both V2 and

V3. In the case of V3, the polynomial W (x) has degree m−1 and will change for every

field multiplication. For V2 the polynomial W (x) has degree d and is fixed. The value

d is the degree of the second leading non-zero coefficient of F (x). For reasonable digit

sizes this computation can be performed in a single clock cycle.

3.1.3 The Multiplier Data Path

The multiplier’s data path connecting the V2 and V3 generators along with the adder

used to compute P (x) = V1 + V2 + V3 is shown in Figure 3.6. A buffer is inserted

at the output of the V3 generator to separate its delay from the delay of the adder

for V1 + V2 + V3. This, in effect, increases the maximum possible value for the digit

size g. If added by itself, this buffer would add a cycle of latency to the multiplier’s

performance time. This extra cycle is compensated for by bypassing the P (x) register

and driving the multiplier’s output with the output of the 3-operand mod2 adder.

It is important to note that the delay of the 3-operand mod2 adder is being merged

with the delay of the bus which connects the multiplier to the rest of the design. In

this case the relatively relaxed bus timing had room to accommodate the delay.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 38

Figure 3.6: Modified Multiplier Data-Path

� ��� �������	

����

�� ��

� ���

��������� �� ���		

�

�����

�

��

��

������	� �

��
 ��
 �

�
 �

��������� �� � ��		

������	� ��

�������� ��� � ����� 	��������� ��� � ����� 	�

�

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 39

3.1.4 Choice of Digit Size

The multiplier will complete a multiplication in �m/g� clock cycles. Since this is a

discrete value, the performance may not change for every value of g. To minimize cost

of the multiplier (which increases with g) the smallest digit size g should be chosen

for a given performance �m/g�. For example, the digit sizes g = 21 and g = 22 for

field size m = 163 result in the same performance, �163
21
� = �163

22
� = 8, but g = 22

requires a larger multiplier.

A prototype of this multiplier for the field GF(2163) and NIST polynomial has

been implemented for each of the digit sizes shown in Table 3.1. For each digit size,

the table lists the corresponding cycle performance and resource cost. A maximum

digit size of g = 41 was chosen for several reasons. First, as the performance cost of

the actual field multiplication decreases, the relative cost of loading and unloading the

multiplier increases. So as the digit size increases, its affect on the total performance

(including time to load and unload the multiplier) decreases. Second, results showed

that g > 41 had difficulty meeting timing at the target operating frequency of 66

MHz. Instead of spending time redesigning the field multiplier, a maximum digit size

of 41 was selected.

3.2 Squaring

While squaring is a specific case of general multiplication and can be performed by the

multiplier, performance can be improved significantly by optimizing the architecture

specifically for the case of squaring. The square of an element a represented by A(x)

involves two mathematical steps. The first is the polynomial multiplication of A(x)

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 40

Table 3.1: Performance/Cost Trade-off for Multiplication over GF(2163)

Digit Performance # LUTs # Flip

Size in clock cycles Flops

g = 1 163 677 670

g = 4 41 854 670

g = 28 6 3,548 670

g = 33 5 4,040 670

g = 41 4 4,728 670

resulting in

A2(x) = am−1x
2m−2 + · · · + a2x

4 + a1x
2 + a0.

The second is the reduction of this polynomial modulo F (x). If the terms with degree

greater than m − 1 are separated and xm+1 is factored out where possible the result

will be A2(x) = Ah(x)xm+1 + Al(x) where

Ah(x) = am−1x
m−3 + · · · + a(m+3

2
)x

2 + a(m+1
2

)

Al(x) = a(m−1
2

)x
m−1 + · · · + a1x

2 + a0,

The polynomial Al(x) has degree less than m and does not need to be reduced. The

product Ah(x)xm+1 may have degree as large as 2m − 2. The reduction polynomial

gives us the equality xm = xd + · · · + 1. Multiplying both sides by x, we get xm+1 =

xd+1 + · · · + x. So

Ah(x)xm+1 = Ah(x)
(
xd+1 + · · · + x

)
.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 41

This multiplication can be performed using a method similar to the one described

in Section 3.1. The same architecture used to compute R(x)W (x) mod F (x) in the

multiplier is used here to compute xm+1Ah(x). The digit size is set to g = d + 2

and the elements of g-operand mod 2 adder are generated from Ah(x). Ah(x) is in

turn generated by expanding A(x) (i.e. inserting zeros between the coefficient bits of

A(x)). Since the digit size is set to d + 2, the multiplication is completed in a single

cycle. This method only works if d + 2 < m which is the case for each of the NIST

polynomials. Figure 3.7 shows the data flow for the squaring operation. Note that

the flow does not include any buffers and so is implemented in pure combinational

logic.

Figure 3.7: Data-Path of the Squaring Unit

���������� ����

�
���

��������� �� ����		

��� ������	
�� �� �
���	
�� 	

�

����		�

�
�

�
���
�����

�

�����

�����

�
 �

The prototype of this squaring unit for field GF(2163) using the NIST reduction

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 42

polynomial runs at 66 MHz and is capable of performing a squaring operation in a

single clock cycle. This implementation requires 330 LUTs and 328 Flip Flops.

3.3 Inversion

The inversion method described in Algorithm 3 on page 16 requires m − 1 squarings

and m − 2 multiplications. In order to accurately estimate the cycle performance of

the inversion, consideration must be given to the performance of the multiplication

and squaring units as well as the time required to load and unload these units. The

architecture of the elliptic curve scalar multiplier will be discussed in detail in Chapter

4. For now, it is sufficient to know that the arithmetic units are loaded using two

independent m bit data buses and unloaded using a single m bit data bus. The

operands are stored in a dual port memory which takes two clock cycles to read from

and one cycle to write to. These combined makes three cycles that are required to

both load and unload any arithmetic unit. Further analysis assumes that these three

cycles remain constant for all m. If Cs and Cm denote the number of clock cycles

required to complete a squaring and multiplication respectively, then an inversion can

be completed in

(Cs + 3)(m − 1) + (Cm + 3)(m − 2)

clock cycles. For the field GF(2163) where Cs = 1 and Cm = 4, this translates to 1775

clock cycles.

Performance can be improved by using Algorithm 6 due to Itoh and Tsujii [15].

This algorithm is derived from the equation a(−1) ≡ a2m−2 ≡
(
22m−1−1

)2

which is

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 43

true for any element a ∈GF(2m). From

a2t−1 ≡

(
a2t/2−1

)2t/2 (
a2t/2−1

)
for t even,

a
(
a2t−1−1

)2

for t odd,

(3.1)

the computation required for the exponentiation 22m−1−1 can be iteratively broken

down. Algorithm 6 requires
log2(m− 1)�+ H(m− 1)− 1 multiplications and m− 1

squarings. Using the notation defined earlier, this translates to

(Cs + 3)(m − 1) + (Cm + 3)(
log2(m − 1)� + H(m − 1) − 1)

clock cycles. For GF(2163) this translates to 711 clock cycles.

Algorithm 6 Optimized Inversion by Square and Multiply [15]

Inputs: Field element a,

Binary representation of m − 1 = (ml−1, . . . ,m2,m0)2

Output: b ≡ a(−1)

b ← aml−1 ;

e ← 1;

for i = l − 2 downto 0 do

b ← b2e
b;

e ← 2e;

if (mi == 1) then

b ← b2a;

e = e + 1;

b ← b2;

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 44

Now, the majority of the time spent for each squaring operation is used to load and

unload the squaring unit (three out of the four cycles). Algorithm 6 requires several

sequences of repetitive squaring (i.e. computations of the form x2t
). These repeated

squarings do not require intermediate values to be stored outside the squaring unit.

By modifying the squaring unit to support the re-square of an element, most of

the memory accesses otherwise required to load and unload the squaring unit are

eliminated. In fact, the squaring unit only needs to be loaded and unloaded once for

each multiplication. Hence the number of clock cycles is reduced to

(Cs(m − 1) + 3(
log2(m − 1)� + H(m − 1) − 1))

+ (Cm + 3)(
log2(m − 1)� + H(m − 1) − 1)

clock cycles. For the field GF(2163) with Cs = 1 and Cm = 4, this results in 252 clock

cycles.

This is a competitive value since a typical hardware implementation of the Ex-

tended Euclidean Algorithm (EEA) is expected to complete an inversion in approxi-

mately 2m clock cycles or 326 cycles for GF(2163). This corresponds to a 60 clock cy-

cle reduction or 20% performance improvement without requiring hardware dedicated

specifically for inversion. Table 3.2 lists the performance numbers of the previously

mentioned inversion methods when implemented over the field GF(2163).

The actual time to complete an inversion using the ECC co-processor architecture

discussed in Chapter 4 is 259 clock cycles. The 7 extra cycles are due to control

related instructions executed in the micro-sequencer.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 45

Table 3.2: Comparison of Various Inversion Methods for GF(2163)

Method # Squarings # Multiplications # Cycles

Square & Multiply m − 1 m − 2 1127

Itoh & Tsujii m − 1
log2(m − 1)� + H(m) − 1 711

Itoh & Tsujii w/ re-square m − 1
log2(m − 1)� + H(m) − 1 252

EEA - - 326

3.4 Comparator/Adder

The primary purpose of the Comparator/Adder is to compute the sum of two field

elements. This is done with an array of m exclusive OR gates. To minimize register

usage as well as time to complete the addition, the sum of the two operands is the

only value stored in a register. In this way, the sum is available immediately after the

operands are loaded into the Comparator/Adder. In other words, it takes zero clock

cycles to complete a finite field addition.

In addition to computing the sum of two finite field elements, the Compara-

tor/Adder also acts as a comparator. The comparison is performed by taking the

logical NOR of all the bits in the sum register. If the result is a one, then the sum is

zero and the two operands are equal. If operand a is set to zero, then operand b can

be tested for zero. The logic depth for the zero detect circuitry (the m-bit NOR gate)

is log2(m) and is registered before being sent out of the module. Figure 3.8 provides

a functional diagram of the Comparator/Adder.

CHAPTER 3. HIGH PERFORMANCE FINITE FIELD ARITHMETIC 46

Figure 3.8: Data-Path of the Comparator/Adder

��

�
��
��
���
�	���

�������
���������

����

�

�

� �

�

�

�

����

�	�

3.5 Concluding Remarks

In this chapter, we have discussed hardware architectures designed to perform finite

field addition, multiplication and squaring. Also discussed was an efficient method for

inversion which uses the squaring and multiplication units. The performance results

associated with these arithmetic units are summarized in Table 3.3.

Table 3.3: Performance of Finite Field Operations

Operation # Cycles # Cycles Including Initial and

(g = 41) Final Data Movement

Multiplication 4 7

Squaring 1 4

Addition 0 3

Inversion 256 259

Chapter 4

A Co-processor Architecture for

ECC Scalar Multiplication

In the recent past, several articles have proposed various hardware architectures/accelerators

for ECC. These elliptic curve cryptographic accelerators can be categorized into three

functional groups. They are

1. Accelerators which use general purpose processors to implement curve oper-

ations but implement the finite field operations using hardware. References

[2] and [32] are examples of this. Both of these implementations support the

composite field GF(2155).

2. Accelerators which perform both the curve and field operations in hardware

but use a small field size such as GF(253). Architectures of this type include

those proposed in [30] and [10]. In [30], a processor for the field GF(2168) is

synthesized, but not implemented. Both works discuss methods to extend their

implementation to a larger field size but do not actually do so.

47

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 48

3. Accelerators which perform both curve and field operations in hardware and use

fields of cryptographic strength such as GF(2163). Processors in this category

include [3, 12, 19, 26, 28].

The work discussed in this chapter falls into category three. The architectures pro-

posed in [26] and [28] were the first reported cryptographic strength elliptic curve

co-processors. Montgomery scalar multiplication with an LSD multiplier was used

in [28]. In [26] a new field multiplier is developed and demonstrated in an elliptic

curve scalar multiplier. In both [19] and [3] parameterized module generation is dis-

cussed. To the best of our knowledge the architecture proposed in [12] offers the

fastest scalar multiplication using FPGA technology at 0.144 milliseconds. This ar-

chitecture uses Montgomery scalar multiplication with López and Dahab’s projective

coordinates. They use a shift and add field multiplier but also compare LSD and

Karatsuba multipliers.

In this chapter a hardware architecture for elliptic curve scalar multiplication is

proposed. The architecture uses projective coordinates and is optimized for scalar

multiplication over the Koblitz curves. The arithmetic routines discussed in Chapter

3 are used to perform the field arithmetic. This architecture has been implemented

and demonstrated on an FPGA.

The chapter is organized as follows. Section 4.1 introduces projective coordinates

and discusses some of the reasons for using a projective system. Section 4.2 presents

two methods for recoding the scalar. They are non-adjacent form (NAF) and τ -adic

non-adjacent form (τ -NAF). Then in Section 4.3 the ideas described in 4.1 and 4.2 are

implemented in a co-processor architecture for scalar multiplication. The data path

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 49

and different levels of control are outlined there. Section 4.4 discusses the prototype

of the scalar multiplier. Finally in Section 4.5 concludes with results gathered from

the prototype.

4.1 Projective Coordinates

Projective coordinates allow the inversion required by each DOUBLE and ADD to be

eliminated at the expense of a few extra field multiplications. The benefit is measured

by the ratio

Time to Complete Inversion

Time to Complete Multiplication
. (4.1)

The inversion algorithm proposed by Itoh and Tsujii [15] will be used and therefore,

the ratio in (4.1) is guaranteed to be larger than
log2(m−1)� and could be larger de-

pending on the efficiency of the squaring operations. Therefore, projective coordinates

will provide us the best performance for NIST curves. Several flavors of projective

coordinates have been proposed over the last few years. The prominent ones are

Standard [22], Jacobian [5, 14] and López & Dahab [20] projective coordinates.

If the affine representation of P be denoted as (x, y) and the projective represen-

tation of P be denoted as (X,Y, Z), then the relation between affine and projective

coordinates for the Standard system is

x = X
Z

and y = Y
Z
.

For Jacobian projective coordinates the relation is

x = X
Z2 and y = Y

Z3 .

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 50

Finally for López & Dahab’s, the relation between affine and projective coordinates

is

x = X
Z

and y = Y
Z2 .

For López & Dahab’s system the projective equation of the elliptic curve in (2.3) then

becomes

Y 2 + XY Z = X3Z + αX2Z2 + βZ4.

It is important to note that when using the left-to-right double and add method

for scalar multiplication all point additions are of the form ADD(P,Q). The base

point P is never modified and as a result will maintain its affine representation (i.e.

P = (x, y, 1)). The constant Z coordinate significantly reduces the cost of point

addition (from 14 field multiplications down to 10). The addition of two distinct

points (X1, Y1, Z1)+(X2, Y2, 1) = (Xa, Ya, Za) using mixed coordinates (one projective

point and one affine point) is then computed by

A = Y2 · Z2
1 + Y1

B = X2 · Z1 + X1

C = Z1 · B
D = B2 · (C + α · Z2

1)

Za = C2

E = A · C
Xa = A2 + D + E

F = Xa + X2 · Za

G = Xa + Y2 · Za

Ya = E · F + Za · G

(4.2)

Similarly, the double of a point (X1, Y1, Z1) + (X1, Y1, Z1) = (Xd, Yd, Zd) is computed

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 51

by

Zd = Z2
1 · X2

1

Xd = X4
1 + β · Z4

1

Yd = β · Z4
1 · Zd + Xd · (α · Zd + Y 2

1 + β · Z4
1)

(4.3)

In Table 4.1, the number of field operations required for the affine, Standard,

Jacobean and López & Dahab coordinate systems are provided. In the table the

symbols M, S, A and I denote field multiplication, squaring, addition and inversion

respectively.

Table 4.1: Comparison of Projective Point Systems

System Point Addition Point Doubling

Affine 2M + 1S + 8A + 1I 3M + 2S + 4A + 1I
Standard 13M + 1S + 7A 7M + 5S + 4A
Jacobian 11M + 4S + 7A 5M + 5S + 4A

López & Dahab 10M + 4S + 8A 5M + 5S + 4A

The projective coordinate system defined by López and Dahab will be used since

it offers the best performance for both point addition and point doubling.

4.2 Scalar Multiplication using Recoded Integers

The binary expansion of an integer k is written as k =
∑l−1

i=0 ki2
i where ki ∈ {0, 1}.

For the case of elliptic curve scalar multiplication the length l is approximately equal

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 52

to m, the degree of the extension field. Assuming an average Hamming weight, a

scalar multiplication will require approximately l/2 point additions and l − 1 point

doubles. Several recoding methods have been proposed which in effect reduce the

number of additions. In this section two methods are discussed; NAF [11, 31] and

τ -adic NAF [18, 31].

4.2.1 Scalar Multiplication using Binary NAF

The symbols in the binary expansion are selected from the set {0, 1}. If this set is

increased to {0, 1,−1} the expansion is referred to as signed binary (SB) represen-

tation. When using this representation, the double and add scalar multiplication

method must be slightly modified to handle the −1 symbol (often denoted 1̄). If the

expansion k′
l−12

l−1+· · ·+k′
12+k′

0 where k′
i ∈ {0, 1, 1̄} is denoted by (k′

l−1, . . . , k
′
1, k

′
0)SB,

then Algorithm 7 computes the scalar multiple of point P . The negative of the point

Algorithm 7 Scalar Multiplication for Signed Binary Representation

Input: Integer k = (k′
l−1, k

′
l−2, . . . , k

′
1, k

′
0)SB, Point P

Output: Point Q = kP

Q ← O;

if (k′
l−1 	= 0) then

Q ← k′
l−1P ;

for i = l − 2 downto 0 do

Q ← DOUBLE(Q);

if (k′
i 	= 0) then

Q ← ADD(Q, k′
iP);

(x, y) is (x, x + y) and can be computed with a single field addition. The signed

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 53

binary representation is redundant in the sense that any given integer has more than

one possible representation. For example, 17 can be represented by (1001)SB as well

as (1011̄)SB.

Interest here is in a particular form of this signed binary representation called

NAF or non-adjacent form. A signed binary integer is said to be in NAF if there are

no adjacent non-zero symbols. The NAF of an integer is unique and it is guaranteed

to be no more than one symbol longer than the corresponding binary expansion. The

primary advantage gained from NAF is its reduced number of non-zero symbols. The

average Hamming weight of a NAF is approximately l/3 [31] compared to that of the

binary expansion which is l/2. As a result, the running time of elliptic curve scalar

multiplication when using binary NAF is reduced to (l + 1)/3 point additions and l

point doubles. This represents a significant reduction in run time.

In [31], Solinas provides a straightforward method for computing the NAF of an

integer. This method is given here in Algorithm 8.

4.2.2 Scalar Multiplication using τ-NAF

Anomalous Binary Curves (ABC’s), first proposed for cryptographic use in [18], pro-

vide an efficient implementation when the scalar is represented as a complex algebraic

number. ABC’s, often referred to as the Koblitz curves, are defined by

y2 + xy = x3 + αx2 + 1 (4.4)

with α = 0 or α = 1. The advantage provided by the Koblitz curves is that the

DOUBLE operation in Algorithm 7 can be replaced with a second operation, namely

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 54

Algorithm 8 Generation of Binary NAF [31]

Input: Positive integer k

Output: k′ = NAF(k)

i ← 0;

while (k > 0) do

if (k ≡ 1 (mod 2)) then

k′
i ← 2 − (k mod 4);

k ← k − k′
i;

else

k′
i ← 0;

k ← k/2;

i ← i + 1;

Frobenius mapping, which is easier to perform.

If point (x, y) is on a Koblitz curve then it can be easily checked that (x2, y2)

is also on the same curve. Moreover, these two points are related by the following

Frobenius mapping

τ(x, y) = (x2, y2)

where τ satisfies the quadratic equation

τ 2 + 2 = µτ. (4.5)

In (4.5), µ = (−1)1−α and α is the curve parameter in (4.4) and is 0 or 1 for the

Koblitz curves.

The integer k can be represented with radix τ using signed representation. In this

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 55

case, the expansion is written

k = κl−1τ
l−1 + · · ·κ1τ + κ0,

where κi ∈ {0, 1, 1̄}. Using this representation, Algorithm 7 can be rewritten, replac-

ing the DOUBLE(Q) operation with τQ or a Frobenius mapping of Q. The modified

algorithm is shown in Algorithm 9. Since τQ is computed by squaring the coordinates

of Q, this suggests a possible speed up over the DOUBLE and ADD method.

Algorithm 9 Scalar Multiplication for τ -adic Integers

Input: Integer k = (κl−1, κl−2, . . . , κ1, κ0)τ , Point P

Output: Point Q = kP

Q ← O;

if (κl−1 	= 0) then

Q ← κl−1P ;

for i = l − 2 downto 0 do

Q ← τQ;

if (κi 	= 0) then

Q ← ADD(Q, κiP);

This complex representation of the integer can be improved further by computing

its non-adjacent form. Solinas proved the existence of such a representation in [31]

by providing an algorithm which computes the τ -adic non-adjacent form or τ -NAF

of an integer. This algorithm is provided here in Algorithm 10. In most cases, the

input to Algorithm 10 will be a binary integer, say k (i.e. r0 = k and r1 = 0). If k

has length l then TNAF(k) will have length 2l, roughly twice the length of NAF(k).

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 56

Algorithm 10 Generation of τ -adic NAF [31]

Input: r0 + r1τ where r0, r1 ∈ Z

Output: u =TNAF(r0 + r1τ)

i ← 0;

while (r0 	= 0 or r1 	= 0) do

if (r0 ≡ 1 (mod 2)) then

ui ← 2 − (r0 − 2r1 mod 4);

r0 ← r0 − ui;

else

ui ← 0;

t ← r0;

r0 ← r1 + µr0/2;

r1 ← −t/2;

i ← i + 1;

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 57

The length of the representation generated by Algorithm 10 can be reduced by

either preprocessing the integer k, as is done in [31], or by post processing the result.

A method for post processing the output of Algorithm 10 is presented here.

Remember that τ(x, y) = (x2, y2). Since z2m
= z for all z ∈GF(2m), it follows

that

τm(x, y) = (x2m

, y2m

) = (x, y).

This relation gives us the general equality

(τm − 1)P ≡ 0

where P is a point on a Koblitz curve. As a result, any integer k expressed with

radix τ can be reduced modulo τm−1 without changing the scalar multiple kP . This

reduction is performed easily with a few polynomial additions. Consider the τ -adic

integer

u = u2m−1τ
2m−1 + · · · + um+1τ

m+1 + umτm + um−1τ
m−1 + · · · + u1τ + u0.

Factoring out τm wherever possible, the result is

u = (u2m−1τ
m−1 + · · · + um+1τ + um)τm

+(um−1τ
m−1 + · · · + u1τ + u0)

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 58

Substituting τm with 1 and combining terms results in

u = ((u2m−1 + um−1)τ
m−1 + · · · + (um+1 + u1)τ + (um + u0).

The output of Algorithm 10 is approximately twice the length of the input but may

be slightly larger. Assuming the length of the input to be approximately m symbols,

the reduction method must be capable of reducing τ -adic integers with length slightly

greater 2m. Algorithm 11 describes this method for reduction.

Algorithm 11 Reduction mod τm

Input: u = ul−1τ
l−1 + · · · + u1τ + u0 with m ≤ l < 3m

Output: v =REDUCE TM(u)

v ← 0;

if (l > 2m) then

v ← (ul−1τ
l−2m−1 + · · · + u2m+1τ + u2m);

if (l > m) then

v ← v + (u2m−1τ
m−1 + · · · + um+1τ + um);

v ← v + (um−1τ
m−1 + · · · + u1τ + u0);

Now the result of Algorithm 11 has length m but is no longer in τ -adic NAF form.

There may be adjacent non-zero symbols and the symbols are not restricted to the

set {0, 1, 1̄}.
The input of Algorithm 10 is of the form r0 + r1τ where r0, r1 ∈ Z. The output is

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 59

the τ -adic representation of the input. For v ∈ Z[τ] we can write

v = vm−1τ
m−1 + · · · + v2τ

2 + v1τ + v0

= vm−1τ
m−1 + · · · + v2τ

2 + TNAF(v1τ + v0)

Now the two least significant symbols of v are in τ -adic NAF. Repeating this procedure

for every bit in v the entire string can be converted to τ -adic NAF. This process is

described in Algorithm 12.

Algorithm 12 Regeneration of τ -adic NAF

Input: v = vm−1τ
m−1 + · · · + v1τ + v0

Output: w =REGEN TNAF(v)

w ← v;

i ← 0;

while (wj 	= 0 for some j ≥ i) do

if (wi == 0) then

i ← i + 1;

else

t0 ← wi;

t1 ← wi+1;

wi ← 0;

wi+1 ← 0;

w ← w+TNAF(t1τ + t0);

i ← i + 1;

The output of Algorithm 12 is in τ -adic NAF and has a length of approximately m

symbols. If the result is larger than m symbols, it is possible to repeat Algorithms 11

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 60

and 12 to further reduce the length. Algorithms 10, 11 and 12 have been implemented

in C and were used to generate test vectors for the prototype discussed later in this

chapter. During testing, it was found that a single pass of these algorithms generates

a τ -adic representation with average length of m and a maximum length of m + 51.

Like radix 2 NAF the τ -adic NAF uses the symbol set {1, 0, 1̄} and has an average

Hamming weight of approximately l/3 for an l-bit integer [31]. So Algorithm 9 has a

running time of l/3 point additions and l − 1 Frobenius mappings.

4.2.3 Summary and Analysis

A point addition using López & Dahab’s projective coordinates requires ten field mul-

tiplications, four field squarings and eight field additions. A point double requires five

field multiplications, five field squarings and four field additions. Using this informa-

tion, the run time for scalar multiplication can be written in terms of field operations.

Typically scalar multiplication is measured in terms of field multiplications, inversions

and squarings, ignoring the cost of addition. In the case of this architecture, field

multiplication and squaring are completed quickly enough that the cost of field addi-

tion becomes significant. The run times using binary, binary NAF and τ -adic NAF

representations are shown in Table 4.2. These values are based on the curve addition

and doubling equations defined in (4.2) and (4.3) assuming arbitrary curve parame-

ters α and β and the average Hamming weights discussed in the previous sections.

For the case of τ -NAF, a Frobenius mapping is assumed to require three squaring

operations. The symbols M, S, A and I correspond to field multiplication, squaring,

addition and inversion respectively. In each case it is assumed that the length of the

1These are empirical rather than analytical results.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 61

integer is approximately equal to m.

Table 4.2: Cost of Scalar Multiplication in terms of Field Operations

Generic m m = 163

Binary (10M + 7S + 8A)m + I 1630M + 1141S + 1304A + I
NAF (25

3 M + 19
3 S + 20

3 A)m + I 1359M + 1033S + 1087A + I
τ -NAF (10

3 M + 13
3 S + 8

3A)m + I 544M + 706S + 435A + I

4.3 Co-processor Architecture

The architecture, which is detailed in this section, consists of several finite field arith-

metic units, field element storage and control logic. All logic related to finite field

arithmetic is optimized for specific field size and reduction polynomial. Internal curve

computations are performed using López & Dahab’s projective coordinate system.

While generic curves are supported, the architecture is optimized specifically for the

special Koblitz curves.

The processor’s architecture consists of the data path and two levels of control.

The lower level of control is composed of a micro-sequencer which holds the routines

required for curve arithmetic such as DOUBLE and ADD. The top level control is im-

plemented using a state machine which parses the scalar and invokes the appropriate

routines in the lower level control. This hierarchical control is shown in Figure 4.1.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 62

Figure 4.1: Co-Processor’s Hierarchical Control Path

���� �������

	
�
 �
��

��������������

��� ����� ��
��
�����

�������� �����
����������

����������
�������
��� �����

�
���� ������� �

����� �
�
������
��
�� ������� �
��

4.3.1 The Data Path

The data path of the co-processor consists of three finite field arithmetic units as well

as space for operand storage. The arithmetic units include a multiplier, adder, and

squaring unit. Each of these are optimized for a specific field and corresponding field

polynomial. In an attempt to minimize time lost to data movement, the adder and

multiplier are equipped with dual input ports which allow both operands to be loaded

at the same time (the squaring unit requires a single operand and cannot benefit from

an extra input bus). Similarly, the field element storage has two output ports used

to supply data to the finite field units. In addition to providing field element storage,

the storage unit provides the connection between the internal m-bit data path and

the 32-bit external world. Figure 4.2 shows how the arithmetic units are connected

to the storage unit.

The internal m-bit busses connecting the storage and arithmetic units are con-

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 63

Figure 4.2: Co-Processor Data-Path

����������
	�
��� 	����

�
��
�����
�

	�
��� 	����
	�
��� 	����
���������

��

��

�

�

�

	���� �����
�

��� ����� �����

������

trolled to perform sequences of field operations. In this way the underlying curve

operations DOUBLE and ADD as well as field inversion are performed.

Field Element Storage: The field element storage unit provides storage for curve

points and parameters as well as temporary values. Parameters required to perform

elliptic curve scalar multiplication include the field elements α and β and coordinates

of the base point P . Storage will also be required for the coordinates of the scalar

multiple Q. The point addition routine developed for this design also requires four

temporary storage locations for intermediate values. Figure 4.3 shows how the storage

space is organized.

The top eight field element storage locations are implemented using 32-bit dual-

port RAMs generated by the Xilinx Coregen tool and the bottom three storage lo-

cations2 are made of register files with 32-bit register widths. The dual 32-bit/m-bit

interface support is achieved by instantiating �m
32
� dual-port storage blocks (either

memories or register files) with 32-bit word widths as shown in Figure 4.4. The fig-

ure assumes m = 163. If the 32-bit storage locations in Figure 4.4 are viewed as a

2These locations are shaded gray in Figures 4.3 and 4.4.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 64

Figure 4.3: Field Element Storage

��

��

�

�

��

��

��

��

��

��

��

� ���� ���

�	
��	��

matrix then the rows of the matrix hold the m-bit field words. Each 32-bit location

is accessible by the 32-bit interface and each m-bit location is accessible by the m-bit

interface. For simplicity sake the field elements are aligned at 32 byte boundaries.

Figure 4.4: 32-bit/163-bit Address Map

������� �

������� �

������� �

������� 	

�������

������� �

������� �

�������

������� �

������� �

������� ��

��� � ���
 ��� 	 ��� � ��� � ��� �

���� ����� ����� ����� 	����
���� �

���� �	

���� ��

���� ��

���� 	

����
�

���� �	

���� �� ���� ��

���� ��

����

���� 	�

���� ��

���� ��

���� �� ���� ��

���� ��

���� �

���� 	�

����
	

���� �� ���� ��

����
�

���� ��

���� ��

���� �� ���� �

���� �

���� ��

���� 		

����
�

����
�

���� �

����
�

����
�

���� 	�

���� �

���� ��

���� �

���� ��

���� 	

���� ��

���� ��

���� ��

����

���� ��

���� ��

���� �

���� �

���� �

���� �

���� �	

���� ��

����

���� ��

���� ��

���� 	

���� ��

���� �

���� �

���� ��

Computation of τQ: In addition to providing storage, the registers in the bottom

three m-bit locations are capable of squaring the resident field element. This is

accomplished by connecting the logic required for squaring directly to the output

of the storage register. The squared result is then muxed in to the input of the

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 65

storage register and is activated with an enable signal. Figure 4.5 provides a diagram

of this connection. This allows the squaring operations required to compute τQ to

be performed in parallel. Furthermore, it eliminates the data movement otherwise

required if the squaring unit were to be loaded and unloaded for each coordinate of

Q. This provides significant performance improvement when using Koblitz curves.

Figure 4.5: Efficient Frobenius Mapping

����� ��������
	
�����
�����

����
����

���� ���

���� �

4.3.2 The Micro-sequencer

The micro-sequencer controls the data movement between the field element storage

and the finite field arithmetic units. In addition to the fundamental load and store

operations, it supports control instructions such as jump and branch. The following

list briefly summarizes the instruction set supported by the micro-sequencer.

• ld: Load operand(s) from storage location into specified field arithmetic unit.

• st: Store result from field arithmetic unit into specified storage location.

• j: Jump to specified address in the micro-sequencer.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 66

• jr: Jump to specified micro-sequencer address and push current address onto

the program counter stack.

• ret: Return to micro-sequencer address. The address is supplied by the program

counter stack.

• bne: Branch if the last field elements loaded into the ALU are NOT equal.

• nop: Increment program counter but do nothing.

• set: Set internal counter to specified value.

• rsq: Resquares the contents of the squaring unit.

• dbnz: Decrement internal counter and branch if the new value of the counter is

zero. This opcode also causes the contents of the squaring unit to be resquared.

A two-pass perl assembler was developed to generate the micro-sequencer bit code.

The assembler accepts multiple input files with linked addresses and merges them

into one file. This file is then used to generate the bit code. The multiple input file

support allows different versions of the ROM code to be efficiently managed. Different

implementations of the same micro-sequencer routine can be stored in different files

allowing them to be easily selected at compile time.

Micro-Sequencer Routines

The micro-sequencer supports the curve arithmetic primitives, field inversion as well

as a few other miscellaneous routines. The list below provides a summary of routines

developed for use in the design.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 67

• POINT ADD (P,Q): Adds the elliptic curve points P and Q where P is represented

in affine coordinates and Q is represented using projective coordinates. The

result is given in projective coordinates.

• POINT SUB (P,Q): Computes the difference Q − P . P is represented using

affine coordinates and Q is represented using projective coordinates. The result

is given in projective coordinates. This routine calls the POINT ADD routine.

• POINT DBL (Q): Doubles the elliptic curve point Q. Both Q and the result are

in projective coordinates.

• INVERT (X): Computes the inverse of the finite field element X.

• CONVERT (Q): Computes the affine coordinates of an elliptic curve point Q given

the point’s projective coordinates. This routine calls the INVERT routine.

• COPY P2Q (P , Q): Copies the x and y coordinates of point P to the x and y

coordinates of point Q. The z coordinate of point Q is set to 1.

• COPY MP2Q (P , Q): Computes the x and y coordinates of point −P and copies

them to the x and y coordinates of point Q. The z coordinate of point Q is set

to 1.

Several versions of the POINT ADD routine have been developed. The most generic

one supports any curve over the field GF(2m). In this version, the values of α and β

are used when computing the sum of two points. This curve also checks if Q 	= P ,

Q 	= −P and Q 	= O. The second version of the point addition routine is optimized

for a Koblitz curve by assuming α and β are equal to the NIST recommended values.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 68

The number of field multiplications required to compute the addition of two points

is reduced from 10 to 9. The third version of the routine is optimized for a Koblitz

curve and also forgoes the checks of point Q. If the base point P has a large prime

order and the integer k is less than this order3, it will never be the case that Q = ±P

or Q = O. This final version of the routine is the fastest of the three routines and is

the one used to achieve the results reported at the end of this chapter. The assembly

code for each of these routines is included in the appendix.

4.3.3 Top Level Control

The routines listed above along with the POINT FRB(Q) operation are invoked by the

top level state machine. The POINT FRB(Q) routine computes the Frobenius map of

the point Q. This operation is not as complex as the other operations and is not

implemented in the micro-sequencer. It is invoked by the top level state machine all

the same.

The state machine parses the scalar k and calls the routines as needed. Since

integers in NAF and τ -NAF require use of the symbol −1 (denoted 1̄), the scalar

requires more than just an m-bit register for storage. In the implementation given

here, each symbol in the scalar is represented using two bits; one for the magnitude

and one for the sign. Table 4.3 provides the corresponding representation. For each

bit ki in the scalar k the magnitude is stored in the register k
(m)
i and the sign is stored

in register k
(s)
i . Table 4.4 provides example representations for integers in binary form,

NAF, and τ -adic NAF using m = 8.

3These are fair assumptions since the security of the ECC implementation relies on these prop-
erties.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 69

Table 4.3: Representation of the Scalar k

Symbol Magnitude Sign

0 0 -

1 1 0

1̄ 1 1

Table 4.4: Example Representations of the Scalar

k k(m) k(s)

(01001100)2 (01001100)2 (00000000)2

(01001̄010)NAF (01001010)2 (00001000)2

(01001̄010)τ−NAF (01001010)2 (00001000)2

The top level state machine is designed to support binary, NAF and τ -adic NAF

representations of the scalar. This effectively requires the state machine to perform

Algorithms 4, 7 and 9. By taking advantage of the similarities between these al-

gorithms, the top level state machine can perform this task with the addition of a

single mode. This is shown in Algorithm 13. The algorithm is written in terms of

the underlying curve and field primitives provided by the micro-sequencer (listed in

Section 4.3.2).

The first step of Algorithm 13 is to search for the first non-zero bit in k(m). Once

found, either P or −P is copied to Q depending on the sign of the non-zero bit. The

while loop then iterates over all the remaining bits in the scalar performing “doubles

and adds” or “Frobenius mappings and adds” depending on the mode. Since the curve

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 70

Algorithm 13 State Machine Algorithm

Inputs: k(m) = (k
(m)
l−1 , k

(m)
l−2 , . . . , k

(m)
1 , k

(m)
0)2,

k(s) = (k
(s)
l−1, k

(s)
l−2, . . . , k

(s)
1 , k

(s)
0)2,

Point P and mode (NAF or τ -NAF)

Output: Point Q = kP

i ← l − 1;

while (k
(m)
i == 0) do

k ← i − 1;

if (k
(s)
i == 1) then

COPY MP2Q(P,Q);

else

COPY P2Q(P,Q);

i ← i − 1;

while (i ≥ 0) do

if (mode == τ -NAF) then

Q ← POINT FRB(Q);

else

Q ← POINT DBL(Q);

if (k
(m)
i == 1) then

if (k
(s)
i == 1) then

Q ← POINT SUB(Q,P);

else

Q ← POINT ADD(Q,P);

i ← i − 1

Q ← CONVERT(Q);

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 71

arithmetic is performed using projective coordinates, the result must be converted to

affine coordinates at the end of computation.

4.3.4 Choice of Field Arithmetic Units

The use of redundant arithmetic units, specifically field multipliers, has been sug-

gested in [3] and should be considered when designing an elliptic curve scalar multi-

plier. It seems the advantage provided remains purely theoretical. This can be seen

by examining the top performing ECC multipliers in [12] and [28], both of which

use a single field multiplier. Reasons for doing the same for this ECC accelerator

are twofold. (1) One of the limiting factors for the performance of the design is

data movement. As shown in Figures 4.6 and 4.7 the bus usage for point addition

and point doubling is very high (83% and 80% respectively). If another multiplier is

added to the design there may not be enough free bus cycles to capitalize on the extra

computational power. For the field GF(2163), the multiplier computes a product in

four clock cycles and requires three cycles to load and unload the unit. If a second

multiplier is added, then two multiplications can be completed in four cycles but six

cycles are required to unload the multiplier. (2) Many of the multiplications in point

addition and point doubling are dependent on each other and must be performed in

sequence. For this reason, the second multiplier may sit idle much of the time. The

combination of these observations seems to argue against the use of multiple field

multiplication units in the design.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 72

F
ig

u
re

4.
6:

U
ti

li
za

ti
on

of
F
in

it
e

F
ie

ld
U

n
it

s
fo

r
P
oi

n
t

A
d
d
it

io
n

�
� �

�

�
�
�

�

�

�

�
�
�

�
�

�
�
�

�

�
�

�
� �

�
�
�
�

�
�

	

�
�

	
�

�

�
�
�

�
�
��
��
��
��

	

�
��
��

�
�
��

�
�
�
��

�
�
��
��
��
��

	

�
��
��

�
�
��

�
�
�
��

�
�
��
��
��
��

	

�
��
��

�
�
��

�
�
�
��

�

�
�
�
�
�
��
��
�

�
�
��
��
�
�
��
��
�
�
��
�
�
��

�
��
�
��
��
��
��
��
��
�

��

��

�

�

��

!

!�

"

�

#�

$

$�

�

��

"

"�

�
��
�
��
��
��
��
��
��
�

�
��
�
��
��
��
��
��
��
�

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 73

F
ig

u
re

4.
7:

U
ti

li
za

ti
on

of
F
in

it
e

F
ie

ld
U

n
it

s
fo

r
P
oi

n
t

D
ou

b
li
n
g

�
�
��
��
��
��

	

�
��
��

�
�
��

�
�
�
��

�
�
��
��
��
��

	

�
��
��

�
�
��

�
�
�
��

�
� �

�
�
�
�

�
�

�
� �

�

� �

�

�
�
�

�
�
�
�

�
�
�
�

�

�
��
�

�

�
��
�

�

�
�

�
�

�
�
�
�
�
��
��
�

�
�
��
��
�
�
��
��
�
�
��
�
�
��

�
��
�
��
��
��
��
��
��
�

��

��

�

!

�

!�

"

"�

�

��

�
��
�
��
��
��
��
��
��
�

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 74

4.3.5 Usage Model

The following steps should be performed when using the module to compute the scalar

multiple of an elliptic curve point.

• Load the base point P .

• Load the magnitude and sign of the scalar.

• Set the mode.

• Start computation.

• Wait for completion.

• Read out the resulting point Q.

During computation the base point P is preserved. If several scalar multiples of

P need to be computed, P only needs to be loaded once. The same is true of the

curve parameters α and β.

4.4 FPGA Prototype

A prototype of the architecture has been implemented for the field GF(2163) using

the NIST recommended field polynomial. The design was coded using Verilog HDL

and synthesized using Synopsys FPGA Compiler II. Xilinx’ Foundation software was

used to place, route and time the netlist. The prototype was designed to run at 66

MHz on a Xilinx’ Virtex 2000E FPGA.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 75

The resulting design was verified on the Rapid Prototyping Platform (RPP) pro-

vided by Canadian Microelectronics Corporation (CMC) [6, 7]. The hardware/software

system includes an ARM Integrator/LM-XCV600E+ (board with a Virtex 2000E

FPGA) and an ARM Integrator/ARM7TDMI (board with an ARM7 core) connected

by the ARM Integrator/AP board. The design was connected to an AHB slave in-

terface which made it directly accessible by the ARM7 core. Stimulated by compiled

C-code, the core read from and wrote to the prototype. The Integrator/AP’s system

clock had a maximum frequency of 50 MHz. In order to run our design at 66 MHz it

was necessary to use the oscillator generated clock provided with the Integrator/LM-

SCV600E+. The data headed to and coming from the design was passed across the

two clock domains.

4.5 Results

Table 4.5 shows the performance in clock cycles of the prototypes field and curve

operations. These values were gathered using a field multiplier digit size of g = 41.

Note that the multiple instantiations of the squaring logic allow for the Frobenius

mapping of a projective point to be completed in a single cycle. This significantly

improves the performance of scalar multiplication when using the Koblitz curves.

The prototype of the scalar multiplier has been implemented using several digit

sizes in the field multiplier. Table 4.6 reports the area consumption and resulting

performance of the architecture given the different digit sizes. Table 4.7 provides a

comparison of published performance results for scalar multiplication. The perfor-

mance of 0.144 ms reported in [12] is the fastest reported scalar multiplication using

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 76

Table 4.5: Performance of Field and Curve Operations

Operation # Cycles

(g = 41)

Point Addition 79

Point Subtraction 87

Point Double 68

Frobenius Mapping 1

FPGA technology. The design presented in this thesis provides almost double (0.075

ms) the performance for the specific case of Koblitz curves.

The co-processor discussed in this thesis requires approximately half the CLBs

used in the co-processor of [12] using the same FPGA. It must be noted that the

co-processor presented in [12] is robust in that it supports all fields up to GF(2256).

In applications where support for a only single field size is required it is overkill to

support elliptic curves over many fields. In scenarios such as this, this new elliptic

curve co-processor offers an improved cost effective solution.

CHAPTER 4. ECC CO-PROCESSOR ARCHITECTURE 77

Table 4.6: Performance and Cost Results for Scalar Multiplication

Multiplier

Digit # LUTs # FFs Binary NAF τ -NAF

Size (ms) (ms) (ms)

g = 4 6,144 1,930 1.107 0.939 0.351

g = 14 7,362 1,930 0.446 0.386 0.135

g = 19 7,872 1,930 0.378 0.329 0.113

g = 28 8,838 1,930 0.309 0.272 0.090

g = 33 9,329 1,930 0.286 0.252 0.083

g = 41 10,017 1,930 0.264 0.233 0.075

Table 4.7: Comparison of Published Results

Implementation Field FPGA Scalar Mult. (ms)

S. Okada et. al. [26] GF(2163) Altera EPF10K250 45

Leong & Leung [19] GF(2155) Xilinx XCV1000 8.3

M. Bednara et. al. [3] GF(2191) Xilinx XCV1000 0.27

Orlando & Paar [28] GF(2167) Xilinx XCV400E 0.210

N. Gura et. al. [12] GF(2163) Xilinx XCV2000E 0.144

Our design (g = 14) GF(2163) Xilinx XCV2000E 0.135

Our design (g = 41) GF(2163) Xilinx XCV2000E 0.075

Chapter 5

Concluding Remarks

5.1 Summary and Contributions

In this thesis, the development of an elliptic curve cryptographic co-processor has been

discussed. The co-processor takes advantage of multiplication and squaring arithmetic

units which are based on the look-up table-based multiplication algorithm proposed

in [13]. Field elements are represented with respect to the polynomial basis. While

the base point and resulting scalar are given in affine coordinates, internal arithmetic

is performed using projective coordinates. This choice of coordinate system allows the

scalar multiple of a point to be computed with a single field inversion alleviating the

need for a highly efficient inversion method. The processor was designed to support

signed, unsigned and τ -NAF integer representation. All curves over a specific field

are supported, but the architecture is optimized specifically for the Koblitz curves.

The feasibility and efficiency of the co-processor architecture has been demon-

strated through a prototype implementation on an FPGA. The prototype has resulted

78

CHAPTER 5. CONCLUDING REMARKS 79

in record performance for elliptic curve scalar multiplication over the field GF(2163).

Contributions achieved in this work are as follows:

• A new high performance, low cost implementation of the field multiplier from

[13].

• A new architecture designed for efficient Frobenius mappings through multiple

instantiations of squaring logic.

• A high performance implementation of Itoh & Tsujii’s inversion method.

• Overall performance for the elliptic curve co-processor is 0.075 micro-seconds

for a single elliptic curve scalar multiplications.

5.2 Future Work

In the future it is intended to extend field support to several field sizes. Ideally,

the architecture would support all NIST recommended fields simultaneously. Logic

would be reused wherever possible. Extra logic would be limited to certain parts

of the squaring and multiplication units which are dependent on the field reduction

polynomial.

Appendix A

Micro-code supporting Curve

Arithmetic and Field Inversion

This appendix includes the assembly code written to support elliptic curve point

addition, point doubling, and field inversion, along with a few other operations. Note

that there are multiple point addition and inversion routines.

A.1 Point Addition

The following three routines perform elliptic curve point addition. The first is the

most generic and supports all curves with arbitrary α and β. The second routine is

optimized for the NIST Koblitz over GF(2163). The third routine is also optimized

for the NIST Koblitz curve, but also forgoes integrity checking of point Q.

80

APPENDIX A 81

A.1.1 Generic Point Addition

//----------------------------

// Generic Point Add Routine

//----------------------------

// Is Q == identity?

ld (ADD, QX, ZRO); PTADD // Is x1 == 0?

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L3); // (Q!=identity)->cont. with add.

ld (ADD, QY, ZRO); // Is y1 == 0?

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L3); // (Q!=identity)->cont. with add.

ld (ADD, PX, ZRO); // x2 + 0

st (ADD, QX); // Read x2 into location for x1

ld (ADD, PY, ZRO); // x2 + 0

st (ADD, QY); // Read y2 into location for y1

st (ONE, QZ); // Set z1 to a one

ret (); // Return

// Start the Point Addition

ld (MLT, PX, QZ); PTADD_L3 // Start B’ = x2*z1

ld (SQR, QZ); // Start A’ = z1^2

st (SQR, T0); // Read A’

st (MLT, T3); // Read B’

ld (MLT, T0, PY); // Start A’’ = y2*A’

ld (ADD, T3, QX); // Start B = B’ + x1

// Is px == qx?

nop (); // dead cycle

APPENDIX A 82

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L1); // If B’ != x1 then branch

// Is py == qy?

st (MLT, T2); // Read A’’

ld (ADD, T2, QY); // Start A’’ + y1 ?= 0

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L2); // If A’’ != y1 then branch

// Case: P == Q

jr (PTDBL); // Jump to Point Double Routine

ret (); // We are done... so return

// Case: P == -Q

st (ZRO, QX); PTADD_L2 // x1 = 0

st (ZRO, QY); // y1 = 0

ret (); // Return

// Case: P != Q and P != -Q

st (ADD, T1); PTADD_L1 // Read B

st (MLT, T2); // Read A’’

ld (MLT, QZ, T1); // Start C = z1*B

ld (ADD, T2, QY); // Start A = A’’ + y1

st (ADD, T2); // Read A

st (MLT, QZ); // Read C

ld (MLT, QZ, T2); // Start E = A*C

ld (SQR, T1); // Start D’ = B^2

st (SQR, T1); // Read D’

st (MLT, T3); // Read E

ld (MLT, A, T0); // Start D’’ = a*A’

APPENDIX A 83

st (MLT, T0); // Read D’’

ld (ADD, QZ, T0); // Start D’’’ = C + D’’

st (ADD, T0); // Read D’’’

ld (MLT, T1, T0); // Start D = D’*D’’’

ld (SQR, QZ); // Start z3 = C^2

st (SQR, QZ); // Read z3

st (MLT, T0); // Read D

ld (MLT, PX, QZ); // Start F’ = x2*z3

ld (SQR, T2); // Start x3’ = A^2

st (SQR, QX); // Read x3’

st (MLT, QY); // Read F’

ld (MLT, PY, QZ); // Start G’ = y2*z3

ld (ADD, QX, T0); // Start x3’’= x3’ + D

st (ADD, QX); // Read x3’’

st (MLT, T1); // Read G’

ld (ADD, QX, T3); // Start x3 = x3’’ + E

st (ADD, QX); // Read x3

ld (ADD, QY, QX); // Start F = F’ + x3

st (ADD, QY); // Read F

ld (MLT, T3, QY); // Start y3’ = E*F

ld (ADD, T1, QX); // Start G = G’ + x3

st (ADD, T1); // Read G

st (MLT, QY); // Read y3’

ld (MLT, T1, QZ); // Start y3’’= z3*G

st (MLT, T1); // Read y3’’

ld (ADD, QY, T1); // Start y3 = y3’ + y3’’

st (ADD, QY); // Read y3

ret (); // Return to base

APPENDIX A 84

A.1.2 Koblitz Curve Point Addition

//---------------------------------

// Koblitz Curve Point Add Routine

//---------------------------------

// Is Q == identity?

ld (ADD, QX, ZRO); PTADD // Is x1 == 0?

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L3); // (Q!=identity)->cont. with add.

ld (ADD, QY, ZRO); // Is y1 == 0?

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L3); // (Q!=identity)->cont. with add.

ld (ADD, PX, ZRO); // x2 + 0

st (ADD, QX); // Read x2 into location for x1

ld (ADD, PY, ZRO); // x2 + 0

st (ADD, QY); // Read y2 into location for y1

st (ONE, QZ); // Set z1 to a one

ret (); // Return

// Start the Point Addition

ld (MLT, PX, QZ); PTADD_L3 // Start B’ = x2*z1

ld (SQR, QZ); // Start A’ = z1^2

st (SQR, T0); // Read A’

st (MLT, T3); // Read B’

ld (MLT, T0, PY); // Start A’’ = y2*A’

ld (ADD, T3, QX); // Start B = B’ + x1

// Is px == qx?

nop (); // dead cycle

APPENDIX A 85

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L1); // If B’ != x1 then branch

// Is py == qy?

st (MLT, T2); // Read A’’

ld (ADD, T2, QY); // Start A’’ + y1 ?= 0

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTADD_L2); // If A’’ != y1 then branch

// Case: P == Q

jr (PTDBL); // Jump to Point Double Routine

ret (); // We are done... so return

// Case: P == -Q

st (ZRO, QX); PTADD_L2 // x1 = 0

st (ZRO, QY); // y1 = 0

ret (); // Return

// Case: P != Q and P != -Q

st (ADD, T1); PTADD_L1 // Read B

st (MLT, T2); // Read A’’

ld (MLT, QZ, T1); // Start C = z1*B

ld (ADD, T2, QY); // Start A = A’’ + y1

st (ADD, T2); // Read A

st (MLT, QZ); // Read C

ld (MLT, QZ, T2); // Start E = A*C

ld (SQR, T1); // Start D’ = B^2

st (SQR, T1); // Read D’

st (MLT, T3); // Read E

ld (ADD, QZ, T0); // Start D’’ = C + (aA’) but a = 1

APPENDIX A 86

st (ADD, T0); // Read D’’

ld (MLT, T1, T0); // Start D = D’*D’’

ld (SQR, QZ); // Start z3 = C^2

st (SQR, QZ); // Read z3

st (MLT, T0); // Read D

ld (MLT, PX, QZ); // Start F’ = x2*z3

ld (SQR, T2); // Start x3’ = A^2

st (SQR, QX); // Read x3’

st (MLT, QY); // Read F’

ld (MLT, PY, QZ); // Start G’ = y2*z3

ld (ADD, QX, T0); // Start x3’’= x3’ + D

st (ADD, QX); // Read x3’’

st (MLT, T1); // Read G’

ld (ADD, QX, T3); // Start x3 = x3’’ + E

st (ADD, QX); // Read x3

ld (ADD, QY, QX); // Start F = F’ + x3

st (ADD, QY); // Read F

ld (MLT, T3, QY); // Start y3’ = E*F

ld (ADD, T1, QX); // Start G = G’ + x3

st (ADD, T1); // Read G

st (MLT, QY); // Read y3’

ld (MLT, T1, QZ); // Start y3’’= z3*G

st (MLT, T1); // Read y3’’

ld (ADD, QY, T1); // Start y3 = y3’ + y3’’

st (ADD, QY); // Read y3

ret (); // Return to base

APPENDIX A 87

A.1.3 Efficient Koblitz Curve Point Addition

//---

// Koblitz Curve Point Add Routine with out checking Q

//---

// Start the Point Addition

ld (MLT, PX, QZ); PTADD // Start B’ = x2*z1

ld (SQR, QZ); // Start A’ = z1^2

st (SQR, T0); // Read A’

st (MLT, T3); // Read B’

ld (MLT, T0, PY); // Start A’’ = y2*A’

ld (ADD, T3, QX); // Start B = B’ + x1

st (ADD, T1); // Read B

st (MLT, T2); // Read A’’

ld (MLT, QZ, T1); // Start C = z1*B

ld (ADD, T2, QY); // Start A = A’’ + y1

st (ADD, T2); // Read A

st (MLT, QZ); // Read C

ld (MLT, QZ, T2); // Start E = A*C

ld (SQR, T1); // Start D’ = B^2

st (SQR, T1); // Read D’

st (MLT, T3); // Read E

ld (ADD, QZ, T0); // Start D’’ = C + (aA’) but a = 1

st (ADD, T0); // Read D’’

ld (MLT, T1, T0); // Start D = D’*D’’

ld (SQR, QZ); // Start z3 = C^2

st (SQR, QZ); // Read z3

st (MLT, T0); // Read D

ld (MLT, PX, QZ); // Start F’ = x2*z3

ld (SQR, T2); // Start x3’ = A^2

st (SQR, QX); // Read x3’

st (MLT, QY); // Read F’

ld (MLT, PY, QZ); // Start G’ = y2*z3

ld (ADD, QX, T0); // Start x3’’= x3’ + D

APPENDIX A 88

st (ADD, QX); // Read x3’’

st (MLT, T1); // Read G’

ld (ADD, QX, T3); // Start x3 = x3’’ + E

st (ADD, QX); // Read x3

ld (ADD, QY, QX); // Start F = F’ + x3

st (ADD, QY); // Read F

ld (MLT, T3, QY); // Start y3’ = E*F

ld (ADD, T1, QX); // Start G = G’ + x3

st (ADD, T1); // Read G

st (MLT, QY); // Read y3’

ld (MLT, T1, QZ); // Start y3’’= z3*G

st (MLT, T1); // Read y3’’

ld (ADD, QY, T1); // Start y3 = y3’ + y3’’

st (ADD, QY); // Read y3

ret (); // Return to base

APPENDIX A 89

A.2 Point Doubling

The following routine computes the double of an elliptic curve point.

//------------------------

// Point Double Routine

//------------------------

// Is Q == identity?

ld (ADD, QX, ZRO); PTDBL // Is x1 == 0?

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTDBL_L1); // (Q!=identity)->cont. with add.

ld (ADD, QY, ZRO); // Is y1 == 0?

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

nop (); // dead cycle

bne (ADD, PTDBL_L1); // (Q!=identity)->cont. with add.

ret (); // Return to base

ld (SQR, QZ); PTDBL_L1 // Start z3’ = z1^2

st (SQR, T0); // Read z3’

ld (SQR, QX); // Start z3’’ = x1^2

st (SQR, QX); // Read z3’’

ld (MLT, QX, T0); // Start z3 = z3’*z3’’

ld (SQR, T0); // Start x3’ = z3’^2

st (SQR, T0); // Read x3’

st (MLT, QZ); // Read z3

ld (MLT, B, T0); // Start x3’’ = b*x3’

st (MLT, T0); // Read x3’’

ld (MLT, T0, QZ); // Start y3’ = x3’’z3

ld (SQR, QX); // Start x3’’’ = z3’’^2

st (SQR, QX); // Read x3’’’

APPENDIX A 90

st (MLT, T1); // Read y3’

ld (ADD, QX, T0); // Start x3 = x3’’’ + x3’’

st (ADD, QX); // Read x3

ld (SQR, QY); // Start y3’’ = y1^2

st (SQR, QY); // Read y3’’

ld (ADD, QY, T0); // Start y3’’’ = y3’’ + x3’’

st (ADD, QY); // Read y3’’’

ld (MLT, A, QZ); // Start y3^(4) = a * z3

st (MLT, T2); // Read y3^(4)

ld (ADD, QY, T2); // Start y3^(5) = y3’’’ + y3^(4)

st (ADD, QY); // Read y3^(5)

ld (MLT, QX, QY); // Start y3^(6) = x3*y3^(5)

st (MLT, QY); // Read y3^(6)

ld (ADD, QY, T1); // Start y3 = y3^(6) + y3’

st (ADD, QY); // Read y3

ret (); // Return to base

A.3 Field Inversion

The following two routines perform inversion over the field GF(2163). This second

routine relies on the fact that the dbnz opcode also re-squares the contents of the

squaring unit.

APPENDIX A 91

A.3.1 Inversion by Square and Multiply

//------------------------

// Field Inversion

//------------------------

set (CTR1, 162); FLDINV // Set the counter

st (ONE, T1);

ld (SQR, T1); FLDINV_L1 // Square T0

st (SQR, T1); //

ld (MLT, T1, T0); // Mult T0

st (MLT, T1); //

dbnz(CTR1, FLDINV_L1); // Repeat 162 times

ld (SQR, T1); // One more squaring

st (SQR, T1);

ret ();

APPENDIX A 92

A.3.2 Inversion by Itoh and Tsujii

//----------------------------------

// Field Inversion by Itoh & Tsujii

//----------------------------------

ld (SQR, T0); FLDINV // -- square

st (SQR, T1); //

ld (MLT, T1, T0); // -- mult

st (MLT, T1); // T1 = a^(2^2 - 1)

ld (SQR, T1); // -- square

nop (); //

nop (); //

rsq (); // -- square

st (SQR, T2); //

ld (MLT, T1, T2); // -- mult

st (MLT, T1); // T1 = a^(2^4 - 1)

ld (SQR, T1); // -- square

st (SQR, T2); //

ld (MLT, T2, T0); // -- mult

st (MLT, T1); // T1 = a^(2^5 - 1)

ld (SQR, T1); // -- square

nop (); //

nop (); //

rsq (); // -- square

rsq (); // -- square

rsq (); // -- square

rsq (); // -- square

st (SQR, T2); //

ld (MLT, T1, T2); // -- mult

st (MLT, T1); // T1 = a^(2^10 - 1)

APPENDIX A 93

ld (SQR, T1); // -- square

nop (); //

set (CTR1, 8); // -- 9 squarings

dbnz(CTR1, FLDINV_L1); FLDINV_L1 //

st (SQR, T2); //

ld (MLT, T1, T2); // -- mult

st (MLT, T1); // T1 = a^(2^20 - 1)

ld (SQR, T1); // -- square

nop (); //

set (CTR1, 18); // -- 19 squarings

dbnz(CTR1, FLDINV_L2); FLDINV_L2 //

st (SQR, T2); //

ld (MLT, T1, T2); // -- mult

st (MLT, T1); // T1 = a^(2^40 - 1)

ld (SQR, T1); // -- square

nop (); //

set (CTR1, 38); // -- 39 squarings

dbnz(CTR1, FLDINV_L3); FLDINV_L3 //

st (SQR, T2); //

ld (MLT, T1, T2); // -- mult

st (MLT, T1); // T1 = a^(2^80 - 1)

ld (SQR, T1); // -- square

st (SQR, T2); //

ld (MLT, T2, T0); // -- mult

st (MLT, T1); // T1 = a^(2^81 - 1)

ld (SQR, T1); // -- square

nop (); //

set (CTR1, 79); // -- 80 squarings

dbnz(CTR1, FLDINV_L4); FLDINV_L4 //

st (SQR, T2); //

ld (MLT, T1, T2); // -- mult

st (MLT, T1); // T1 = a^(2^162 - 1)

APPENDIX A 94

ld (SQR, T1); // -- square

st (SQR, T1); // T1 = (a^162) = (a^-1)

ret ();

APPENDIX A 95

A.4 Coordinate Conversion

The following routine converts a point from its projective representation to its affine

representation.

//------------------------

// Convert to Affine

//------------------------

ld (ADD, QZ, ZRO); CNVAFF // Copy z1 to T0

st (ADD, T0); //

jr (FLDINV); // Compute (1/z1)

ld (MLT, T1, QX); // Start x1*(1/z1)

ld (SQR, T1); // Start (1/z1)^2

st (SQR, T0); // Read (1/z1)^2

st (MLT, QX); // Read x1 = x1*(1/z1)

ld (MLT, T0, QY); // Start y1*(1/z1)^2

st (MLT, QY); // Read y1 = y1*(1/z1)^2

st (ONE, QZ); // Set z1 to 1

ret ();

A.5 Copy Routines

The following two routines are used to initialize the Q register at the beginning of a

scalar multiplication. The first loads Q with P and the second loads Q with −P .

APPENDIX A 96

A.5.1 Copy P to Q

//------------------------

// Copy P to Q

//------------------------

// Is Q == identity?

ld (ADD, PX, ZRO); CPYP2Q // x2 + 0

st (ADD, QX); // Read x2 into location for x1

ld (ADD, PY, ZRO); // x2 + 0

st (ADD, QY); // Read y2 into location for y1

st (ONE, QZ); // Set z1 to a one

ret (); // Return

A.5.2 Copy −P to Q

//------------------------

// Copy -P to Q

//------------------------

// Is Q == identity?

ld (ADD, PX, ZRO); CPYMP2Q // x2 + 0

st (ADD, QX); // Read x2 into location for x1

ld (ADD, PY, PX); // x2 + y2

st (ADD, QY); // Read x2+y2 into location for y1

st (ONE, QZ); // Set z1 to a one

ret (); // Return

Appendix B

Tool Related Scripts and Setup

Files

This appendix includes several tool related scripts and setup files which were used in

the development of the ECC co-processor discussed in this thesis.

B.1 Synthesis Scripts

Listed in this section are two scripts used to synthesize the design. The file synth compile.fst

is the top level script which includes synt constraints.fst. These scripts were written

for Synopsys’ FPGA Compiler II.

97

APPENDIX B 98

B.1.1 Synthesis Compile Scripts

#

pmult_compile.fst

#

This script synthesizes the pmult_top design for the Xilinx

Vertex E FPGA.

#

To run the script:

#

fc2_shell -f pmult_compile.fst

#

#

Define variables

#

set proj pmult_proj

set top AHBAHBTop

set target VIRTEXE

set chip pmult_ahb

set export_dir exports

set report_dir reports

#

Remove any old version of the project,

and create the new project

comment out this section to work on

an existing project

#

exec rm -rf $proj

create_project -dir . $proj

#

Setup project variables

#

proj_export_timing_constraint = "yes"

proj_enable_vpp = "yes"

APPENDIX B 99

#

Setup default variables

#

default_clock_frequency = 66

###

#

Identify the design source files

#

###

set SOURCEDIR /secure2/jlutz/kp_unit/design

set AHBDIR $SOURCEDIR/ahb_if/rtl_v

set PMULTDIR $SOURCEDIR/pmult/rtl_v

set MULTDIR $SOURCEDIR/mult/rtl_v

set ALUDIR $SOURCEDIR/alu/rtl_v

AHB files

add_file -format Verilog $AHBDIR/pmult_glue.v

add_file -format Verilog $AHBDIR/APBRegs.v

add_file -format Verilog $AHBDIR/APBIntcon.v

add_file -format Verilog $AHBDIR/AHB2APB.v

add_file -format Verilog $AHBDIR/AHBAPBSys.v

add_file -format Verilog $AHBDIR/AHBZBTRAM.v

add_file -format Verilog $AHBDIR/AHBDecoder.v

add_file -format Verilog $AHBDIR/AHBMuxS2M.v

add_file -format Verilog $AHBDIR/AHBAHBTop.v

Top pmult files

add_file -format Verilog $PMULTDIR/pmult_defines.v

add_file -format Verilog $PMULTDIR/pmult_biu.v

add_file -format Verilog $PMULTDIR/pmult_logic.v

add_file -format Verilog $PMULTDIR/pmult_ptmlt_ctl.v

add_file -format Verilog $PMULTDIR/pmult_ram.v

add_file -format Verilog $PMULTDIR/pmult_q.v

APPENDIX B 100

add_file -format Verilog $PMULTDIR/pmult_top.v

add_file -format Verilog $PMULTDIR/pmult_useq.v

ALU file(s)

add_file -format Verilog $ALUDIR/alu_top.v

add_file -format Verilog $ALUDIR/square_core.v

Mult files

add_file -format Verilog $MULTDIR/mult_defines.v

add_file -format Verilog $MULTDIR/m_table.v

add_file -format Verilog $MULTDIR/mult_ctrl.v

add_file -format Verilog $MULTDIR/mult_top.v

add_file -format Verilog $MULTDIR/t_table.v

The Memories

add_file -format Verilog $SOURCEDIR/pmult/user_cell/ram_8x32_d.v

add_file -format Verilog $SOURCEDIR/pmult/user_cell/ram_256x32_s_dist.v

add_file -format EDIF $SOURCEDIR/pmult/user_cell/ram_8x32_d.edn

add_file -format EDIF $SOURCEDIR/pmult/user_cell/ram_256x32_s_dist.edn

#

Analyze all the source files and display the progress

#

analyze_file -progress

#

Create a chip targetted for $target with the default part and

speed grade. The chip will be named $chip. $top indicates

the top level design.

#

create_chip -progress -target $target -name $chip $top

APPENDIX B 101

#

Set the current chip to add constraints

#

current_chip $chip

#

Read the constraints file

#

source synth_constraints.fst

###

#

Optimize the current chip

#

###

set opt_chip [format "%s-Optimized" $chip]

optimize_chip -progress -name $opt_chip

###

#

Generate Reports

#

###

Set current chip

current_chip $opt_chip

Create the reports directory

exec rm -rf $report_dir

exec mkdir -p $report_dir

Show any error and warning messages for the chip

list_message > $report_dir/$top.errors_warnings.rpt

APPENDIX B 102

Create a timing report

report_timing > $report_dir/$top.timing.rpt

Create a few other reports

report_chip -force > $report_dir/$top.chip.rpt

report_project -all > $report_dir/$top.project.rpt

###

#

Export Verilog netlist, PPR netlist and constraints

to $export_dir

#

###

create the export directory

exec rm -rf $export_dir

exec mkdir -p $export_dir

Export synopsys db files

export_chip -dir $export_dir -db

export edif netlists

export_chip -progress -dir $export_dir

export verilog netlists

export_chip -progress -dir $export_dir -simulation \

VERILOG -primitive -timing_constraint

#

Save and close the project

#

close_project

quit

APPENDIX B 103

B.1.2 Synthesis Constraints Script

#

synth_constraints.fst

#

This script sets constraints. It is called by the

synth_compile.fst scripts.

#

set PMULT_TOP /$chip/uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top

set APB_TOP /$chip/uAHBAPBSys

#

Specify the clock waveform

#

set_clock -period 30 -rise 0 -fall 15 HCLK_PORT

set_clock -period 15 -rise 0 -fall 8 ECMULT_CLK_PORT

Eliminate the boundaries of the field units. Hopefully this

will allow synopsys to generate the fastest logic.

set_module_primitive optimize "$PMULT_TOP/pmult_logic/mult_top"

set_module_primitive optimize "$PMULT_TOP/pmult_logic/mult_top/t_table"

set_module_primitive optimize "$PMULT_TOP/pmult_logic/alu_top"

set_module_primitive optimize "$PMULT_TOP/pmult_logic/pmult_ram"

set_module_primitive optimize "$PMULT_TOP/pmult_logic"

set_module_primitive optimize "$PMULT_TOP/pmult_useq"

set_module_primitive optimize "$PMULT_TOP"

APPENDIX B 104

B.2 Place and Route Scripts

Listed in this section are several scripts which were used to place and route the design.

The first is the top level script which takes the design as a synthesized netlist and

returns the final bit file. The second scripts is the User Constraints File (UCF) file

which is used to constrain the design.

B.2.1 Top Level Place and Route Script

#! /bin/csh -f

setenv BASE_NAME AHBAHBTop

#

Merge the RAM edn files and the synopsys generated edf

files into one ngd file.

#

ngdbuild -p xcv2000e-6-fg680 \

-aul \

-sd ../../../pmult/user_cell \

-uc $BASE_NAME.ucf \

-dd . \

$BASE_NAME.edf \

$BASE_NAME.ngd

#

Map the design to gates on the Virtex E FPGA

#

map -p xcv2000e-6-fg680 \

$BASE_NAME.ngd \

-o map.ncd \

$BASE_NAME.pcf

#

APPENDIX B 105

Place and Route the Design

#

par -w \

-pl 5 \

-rl 5 \

map.ncd \

$BASE_NAME.ncd \

$BASE_NAME.pcf

#

Run Static timing analysis

#

trce $BASE_NAME.ncd \

$BASE_NAME.pcf \

-e 1000 \

-o $BASE_NAME.twr

trce $BASE_NAME.ncd \

$BASE_NAME.pcf \

-e 100 \

-skew \

-o $BASE_NAME-skew.twr

#

Dump a verilog netlist and SDF file for timed simulation

#

ngdanno -o $BASE_NAME.nga \

-s 6 \

-p $BASE_NAME.pcf \

-report \

$BASE_NAME.ncd \

map.ngm

ngd2ver -aka \

-log $BASE_NAME.ngd2ver \

APPENDIX B 106

-ne \

-tm $BASE_NAME \

-verbose -ul -w \

-sdf_path . \

$BASE_NAME.nga \

$BASE_NAME.v

#

Generate the bit file to be downloaded onto the FPGA

#

bitgen $BASE_NAME.ncd \

$BASE_NAME.bit \

-l -m -w \

-f bitgen.ut

APPENDIX B 107

B.2.2 User Constraints File

###

Clock Information

###

NET "HCLK_PORT" TNM_NET = "HCLK_PORT" ;

TIMESPEC TS_HCLK_PORT = PERIOD "HCLK_PORT" 30 ns HIGH 50% ;

NET "ECMULT_CLK_PORT" TNM_NET = "ECMULT_CLK_PORT" ;

TIMESPEC TS_ECMULT_CLK_PORT = PERIOD "ECMULT_CLK_PORT" 15 ns HIGH 50% ;

##

Group Information

##

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/pmult_q/

qx_reg_reg<*>" TNM = "q_regs" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/pmult_q/

qy_reg_reg<*>" TNM = "q_regs" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/pmult_q/

qz_reg_reg<*>" TNM = "q_regs" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/mult_top/

a_reg<*>" TNM = "ffu_inputs" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/mult_top/

b_reg<*>" TNM = "ffu_inputs" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/alu_top/

a_reg<*>" TNM = "ffu_inputs" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/alu_top/

b_reg<*>" TNM = "ffu_inputs" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/pmult_biu/

ram_read_en_a_reg" TNM = "strg_read_ens" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/pmult_biu/

APPENDIX B 108

ram_read_en_b_reg" TNM = "strg_read_ens" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/pmult_biu/

q_read_en_a_reg" TNM = "strg_read_ens" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/pmult_biu/

q_read_en_b_reg" TNM = "strg_read_ens" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/mult_top/

t_table/t_odata_reg<*>" TNM = "mult_t_odata" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/mult_top/

a_reg<*>" TNM = "mult_a_reg" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/pmult_top/pmult_logic/mult_top/

b_reg<*>" TNM = "mult_b_reg" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/ecm_odata_reg_reg<*>"

TNM = "ecmult_clk_buffer" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/write_data_reg_reg<*>"

TNM = "ahb_clk_buffers" ;

INST "uAHBAPBSys/uAPBRegs/ecm_addr_reg<*>" TNM = "ahb_clk_buffers" ;

INST "uAHBAPBSys/uAPBRegs/pmult_glue/start_write_*" TNM =

"ahb_clk_buffers";

INST "uAHBAPBSys/uAPBRegs/pmult_glue/start_read_*" TNM =

"ahb_clk_buffers";

##

Path Information

##

TIMESPEC TS_strg_rdens_2_ffus = FROM "strg_read_ens"

TO "ffu_inputs" 30 ns ;

TIMESPEC TS_strg_2_ffus = FROM "q_regs" TO "ffu_inputs" 30 ns ;

TIMESPEC TS_ttable_a = FROM "mult_a_reg" TO "mult_t_odata" 15 ns ;

APPENDIX B 109

TIMESPEC TS_ttable_b = FROM "mult_b_reg" TO "mult_t_odata" 15 ns ;

TIMESPEC TS_hclk2ecclk = FROM "ahb_clk_buffers"

TO "ECMULT_CLK_PORT" 60 ns;

TIMESPEC TS_ecclk2hclk = FROM "ecmult_clk_buffer"

TO "PADS" 60 ns;

TIMESPEC TS_P2P = FROM PADS TO PADS 30 ns ;

OFFSET = IN 30 ns BEFORE "HCLK_PORT" ;

OFFSET = OUT 30 ns AFTER "HCLK_PORT" ;

##

Port Information

##

NET HADDR<31> LOC=m2;

NET HADDR<30> LOC=m1;

NET HADDR<29> LOC=l4;

NET HADDR<28> LOC=l3;

NET HADDR<27> LOC=l2;

NET HADDR<26> LOC=l1;

NET HADDR<25> LOC=k4;

NET HADDR<24> LOC=k3;

NET HADDR<23> LOC=k2;

NET HADDR<22> LOC=k1;

NET HADDR<21> LOC=j4;

NET HADDR<20> LOC=j3;

NET HADDR<19> LOC=j2;

NET HADDR<18> LOC=j1;

NET HADDR<17> LOC=h4;

NET HADDR<16> LOC=h3;

NET HADDR<15> LOC=h2;

NET HADDR<14> LOC=h1;

NET HADDR<13> LOC=g4;

NET HADDR<12> LOC=g3;

APPENDIX B 110

NET HADDR<11> LOC=g2;

NET HADDR<10> LOC=g1;

NET HADDR<9> LOC=f4;

NET HADDR<8> LOC=f3;

NET HADDR<7> LOC=f2;

NET HADDR<6> LOC=f1;

NET HADDR<5> LOC=e3;

NET HADDR<4> LOC=e2;

NET HADDR<3> LOC=e1;

NET HADDR<2> LOC=d3;

NET HADDR<1> LOC=d2;

NET HADDR<0> LOC=d1;

NET HDATA<31> LOC=y1;

NET HDATA<30> LOC=w1;

NET HDATA<29> LOC=ab2;

NET HDATA<28> LOC=aa4;

NET HDATA<27> LOC=aa3;

NET HDATA<26> LOC=w4;

NET HDATA<25> LOC=w3;

NET HDATA<24> LOC=w2;

NET HDATA<23> LOC=v5;

NET HDATA<22> LOC=v4;

NET HDATA<21> LOC=v3;

NET HDATA<20> LOC=v2;

NET HDATA<19> LOC=v1;

NET HDATA<18> LOC=u5;

NET HDATA<17> LOC=u4;

NET HDATA<16> LOC=u3;

NET HDATA<15> LOC=u2;

NET HDATA<14> LOC=u1;

NET HDATA<13> LOC=t4;

NET HDATA<12> LOC=t3;

NET HDATA<11> LOC=t2;

NET HDATA<10> LOC=t1;

NET HDATA<9> LOC=r4;

APPENDIX B 111

NET HDATA<8> LOC=r3;

NET HDATA<7> LOC=r2;

NET HDATA<6> LOC=p2;

NET HDATA<5> LOC=p1;

NET HDATA<4> LOC=n4;

NET HDATA<3> LOC=n3;

NET HDATA<2> LOC=n2;

NET HDATA<1> LOC=n1;

NET HDATA<0> LOC=m3;

NET CTRLCLK1<18> LOC=av10;

NET CTRLCLK1<17> LOC=au10;

NET CTRLCLK1<16> LOC=at10;

NET CTRLCLK1<15> LOC=aw9;

NET CTRLCLK1<14> LOC=av9;

NET CTRLCLK1<13> LOC=au9;

NET CTRLCLK1<12> LOC=at9;

NET CTRLCLK1<11> LOC=aw8;

NET CTRLCLK1<10> LOC=av8;

NET CTRLCLK1<9> LOC=au8;

NET CTRLCLK1<8> LOC=at8;

NET CTRLCLK1<7> LOC=aw7;

NET CTRLCLK1<6> LOC=av7;

NET CTRLCLK1<5> LOC=au7;

NET CTRLCLK1<4> LOC=at7;

NET CTRLCLK1<3> LOC=aw6;

NET CTRLCLK1<2> LOC=av6;

NET CTRLCLK1<1> LOC=au6;

NET CTRLCLK1<0> LOC=at6;

NET PWRDNCLK1 LOC=av19;

NET CTRLCLK2<18> LOC=av15;

NET CTRLCLK2<17> LOC=au15;

NET CTRLCLK2<16> LOC=at15;

NET CTRLCLK2<15> LOC=aw14;

NET CTRLCLK2<14> LOC=av14;

APPENDIX B 112

NET CTRLCLK2<13> LOC=au14;

NET CTRLCLK2<12> LOC=at14;

NET CTRLCLK2<11> LOC=aw13;

NET CTRLCLK2<10> LOC=av13;

NET CTRLCLK2<9> LOC=au13;

NET CTRLCLK2<8> LOC=at13;

NET CTRLCLK2<7> LOC=aw12;

NET CTRLCLK2<6> LOC=av12;

NET CTRLCLK2<5> LOC=au12;

NET CTRLCLK2<4> LOC=aw11;

NET CTRLCLK2<3> LOC=av11;

NET CTRLCLK2<2> LOC=au11;

NET CTRLCLK2<1> LOC=at11;

NET CTRLCLK2<0> LOC=aw10;

NET PWRDNCLK2 LOC=at21;

NET SDATA<31> LOC=aw36;

NET SDATA<30> LOC=av36;

NET SDATA<29> LOC=au36;

NET SDATA<28> LOC=aw35;

NET SDATA<27> LOC=av35;

NET SDATA<26> LOC=aw34;

NET SDATA<25> LOC=av34;

NET SDATA<24> LOC=au34;

NET SDATA<23> LOC=at34;

NET SDATA<22> LOC=aw33;

NET SDATA<21> LOC=av33;

NET SDATA<20> LOC=au33;

NET SDATA<19> LOC=at33;

NET SDATA<18> LOC=aw32;

NET SDATA<17> LOC=av32;

NET SDATA<16> LOC=au32;

NET SDATA<15> LOC=at32;

NET SDATA<14> LOC=aw31;

NET SDATA<13> LOC=av31;

NET SDATA<12> LOC=au31;

APPENDIX B 113

NET SDATA<11> LOC=at31;

NET SDATA<10> LOC=aw30;

NET SDATA<9> LOC=av30;

NET SDATA<8> LOC=au30;

NET SDATA<7> LOC=ar4;

NET SDATA<6> LOC=ah1;

NET SDATA<5> LOC=ag2;

NET SDATA<4> LOC=ad3;

NET SDATA<3> LOC=r1;

NET SDATA<2> LOC=p3;

NET SDATA<1> LOC=p4;

NET SDATA<0> LOC=c2;

#NET SADDR<20> LOC=al36; # reserved for expansion

NET SADDR<19> LOC=am39;

NET SADDR<18> LOC=am38;

NET SADDR<17> LOC=am37;

NET SADDR<16> LOC=am36;

NET SADDR<15> LOC=an39;

NET SADDR<14> LOC=an38;

NET SADDR<13> LOC=an37;

NET SADDR<12> LOC=an36;

NET SADDR<11> LOC=ap39;

NET SADDR<10> LOC=ap38;

NET SADDR<9> LOC=ap37;

NET SADDR<8> LOC=ap36;

NET SADDR<7> LOC=ar39;

NET SADDR<6> LOC=ar38;

NET SADDR<5> LOC=ar37;

NET SADDR<4> LOC=ar36;

NET SADDR<3> LOC=at39;

NET SADDR<2> LOC=at38;

NET SMODE LOC=ah37;

NET SnWR LOC=aj38;

NET SnWBYTE<3> LOC=ak39;

APPENDIX B 114

NET SnWBYTE<2> LOC=ak38;

NET SnWBYTE<1> LOC=ak37;

NET SnWBYTE<0> LOC=ak36;

NET SnCE LOC=al39;

NET SCLK LOC=al38;

NET SnOE LOC=aj36;

NET SnCKE LOC=aj39;

NET SADVnLD LOC=aj37;

NET SW<7> LOC=au17;

NET SW<6> LOC=at17;

NET SW<5> LOC=ar17;

NET SW<4> LOC=aw16;

NET SW<3> LOC=av16;

NET SW<2> LOC=au16;

NET SW<1> LOC=at16;

NET SW<0> LOC=aw15;

NET LED<8> LOC=b37;

NET LED<7> LOC=at19;

NET LED<6> LOC=aw18;

NET LED<5> LOC=av18;

NET LED<4> LOC=au18;

NET LED<3> LOC=at18;

NET LED<2> LOC=ar18;

NET LED<1> LOC=aw17;

NET LED<0> LOC=av17;

NET nPBUTT LOC=AU19;

NET FnOE LOC=aw29; # tie high

NET FnWE LOC=at30; # tie high

NET nLMINT LOC=AF38;

NET HDRID<3> LOC=af36;

NET HDRID<2> LOC=ag39;

NET HDRID<1> LOC=ag38;

APPENDIX B 115

NET HDRID<0> LOC=ag37;

NET RTCK LOC=ac37;

NET TDO LOC=ad39;

NET TCK LOC=ac35;

NET TDI LOC=ad38;

NET HCLK_PORT LOC=a20;

NET HRESETn LOC=ag36;

NET HSIZE<1> LOC=ak4;

NET HSIZE<0> LOC=ak3;

NET HTRANS<1> LOC=ak2;

NET HTRANS<0> LOC=ak1;

NET HRESP<1> LOC=an3;

NET HRESP<0> LOC=an2;

NET HREADY LOC=an1;

NET HWRITE LOC=am4;

#not currently used

NET HBUSREQ LOC=a4;

NET HLOCK LOC=a5;

NET ECMULT_CLK_PORT LOC=aw19;

Bibliography

[1] Wireless Application Protocol - Version 1.0, 1998.

[2] G. B. Agnew, R.C. Mullin, and S. A. Vanstone. An implementation of elliptic

curve cryptosystems over F2155 . IEEE Journal on Slected Areas in Communica-

tions, 11:804–813, June 1993.

[3] Marcus Bednara, Michael Daldrup, Joachim von zur Gathen, Jamshid Shokrol-

lahi, and Jurgen Teich. Implementation of elliptic curve cryptographic coproces-

sor over GF(2m) on an FPGA. In International Parallel and Distributed Pro-

cessing Symposium: IPDPS Workshops, April 2002.

[4] Ian Blake, Gadiel Seroussi, and Nigel Smart. Elliptic Curves in Cryptography.

Cambridge University Press, 1999.

[5] D. Chudnovsky and G. Chudnovsky. Sequences of numbers generated by addition

in formal groups and new primality and factoring tests. Advances in Applied

Mathematics, 1987.

[6] Canadian Microelectronics Corporation. CMC Rapic-Prototyping Platform: De-

sign Flow Guide, 2002.

116

BIBLIOGRAPHY 117

[7] Canadian Microelectronics Corporation. CMC Rapic-Prototyping Platform: In-

stallation Guide, 2002.

[8] T. Dierks and C. Allen. The TLS Protocol - Version 1.0 IETF RFC 2246, 1999.

[9] Joseph A. Gallian. Contemporary Abstract Algebra. Houghton Mifflin Company,

1998.

[10] Lijun Gao, Sarvesh Shrivastava, and Gerald E. Sobelman. Elliptic curve scalar

multiplier design using FPGAs. In Cryptographic Hardware and Embedded Sys-

tems (CHES), 1999.

[11] Daniel M. Gordon. A survey of fast exponentiation methods. J. Algorithms,

27(1):129–146, 1998.

[12] Nils Gura, Sheueling Chang Shantz, Hans Eberle, Summit Gupta, Vipul Gupta,

Daniel Finchelstein, Edouard Goupy, and Douglas Stebila. An end-to-end sys-

tems approach to elliptic curve cryptography. In Cryptographic Hardware and

Embedded Systems (CHES), 2002.

[13] M. Anwarul Hasan. Look-up table-based large finite field multiplication in mem-

ory constrained cryptosystems. IEEE Transactions on Computers, 49(7), July

2000.

[14] IEEE. P1363: Editorial Contribution to Standard for Public Key Cryptography,

February 1998.

[15] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in

GF(2m) using normal bases. Information and Computing, 78(3):171–177, 1988.

BIBLIOGRAPHY 118

[16] Brian King. An improved implementation of elliptic curves over GF(2n) when

using projective point arithmetic. In Selected Areas in Cryptography, 2001.

[17] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 1987.

[18] Neal Koblitz. CM curves with good cryptographic properties. In Advances in

Cryptography, Crypto ’91, pages 279–287. Springer-Verilag, 1991.

[19] Philip H. W. Leong and Ivan K. H. Leung. A microcoded elliptic curve processor

using FPGA technology. IEEE Transactions on VLSI Systems, 10(5), October

2002.

[20] Julio Lopez and Ricardo Dahab. Improved algorithms for elliptic curve arith-

metic in GF(2n). In Selected Areas in Cryptography, pages 201–212, 1998.

[21] Robert J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer

Academic Publishers, 1989.

[22] Alfred Menezes. Elliptic curve public key cryptosystems. Kluwer Academic

Publishers, 1993.

[23] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press LLC, 1997.

[24] Victor Miller. Uses of elliptic curves in cryptography. In Advances in Cryptog-

raphy, Crypto ’85, 1985.

[25] NIST. FIPS 186-2 draft, Digital Signature Standard (DSS), 2000.

BIBLIOGRAPHY 119

[26] Souichi Okada, Naoya Torii, Kouichi Itoh, and Masahiko Takenaka. Implemen-

tation of elliptic curve cryptographic coprocessor over GF(2m) on an FPGA. In

Cryptographic Hardware and Embedded Systems (CHES), pages 25–40. Springer-

Verlag, 2000.

[27] OpenSSL. See http://www.openssl.org.

[28] Gerardo Orlando and Christof Paar. A high-performance reconfigurable elliptic

curve processor for GF (2m). In Cryptographic Hardware and Embedded Systems

(CHES), 2000.

[29] Arash Reyhani-Masoleh. Low Complexity and Fault Tolerant Arithmetic in Bi-

nary Extended Finite Fields. PhD thesis, University of Waterloo, 2001.

[30] Martin Christopher Rosner. Elliptic curve cryptosystems on reconfigurable hard-

ware. Master’s thesis, Worcester Polytechnic Institute, 1998.

[31] Jerome A. Solinas. Improved algorithms for arithmetic on anomalous binary

curves. In Advances in Cryptography, Crypto ’97, 1997.

[32] S. Sutikno, R. Effendi, and A. Surya. Design and implemntation of arithmetic

processor F2155 for elliptic curve cryptosystems. In IEEE Asia-Pacific Conference

on Circuits adn Systems, pages 647–650, November 1998.

	Introduction
	Motivation
	Scope of the Work and Objectives
	Thesis Organization

	Background
	Mathematical Background
	Groups
	Finite Fields

	Arithmetic over Binary Finite Fields
	Multiplication
	Inversion

	Arithmetic over the Elliptic Curve Group
	Implementation Media
	Field Programmable Gate Arrays
	The Rapid-Prototyping Platform

	High Performance Finite Field Arithmetic
	Multiplication
	Algorithm
	Computation of R(x)W(x)12mumodF(x)
	The Multiplier Data Path
	Choice of Digit Size

	Squaring
	Inversion
	Comparator/Adder
	Concluding Remarks

	A Co-processor Architecture for ECC Scalar Multiplication
	Projective Coordinates
	Scalar Multiplication using Recoded Integers
	Scalar Multiplication using Binary NAF
	Scalar Multiplication using -NAF
	Summary and Analysis

	Co-processor Architecture
	The Data Path
	The Micro-sequencer
	Top Level Control
	Choice of Field Arithmetic Units
	Usage Model

	FPGA Prototype
	Results

	Concluding Remarks
	Summary and Contributions
	Future Work

	Micro-code supporting Curve Arithmetic and Field Inversion
	Point Addition
	Generic Point Addition
	Koblitz Curve Point Addition
	Efficient Koblitz Curve Point Addition

	Point Doubling
	Field Inversion
	Inversion by Square and Multiply
	Inversion by Itoh and Tsujii

	Coordinate Conversion
	Copy Routines
	Copy P to Q
	Copy -P to Q

	Tool Related Scripts and Setup Files
	Synthesis Scripts
	Synthesis Compile Scripts
	Synthesis Constraints Script

	Place and Route Scripts
	Top Level Place and Route Script
	User Constraints File

