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Abstract 

Low-Density Parity-Check (LDPC) codes are a class of easily decodable error-correcting codes. 

Published parallel LDPC decoders demonstrate high throughput and low energy-per-bit but 

require a lot of silicon area. Decoders based on digit-online arithmetic (processing several bits 

per fundamental operation) process messages in a digit-serial fashion, reducing the area 

requirements, and can process multiple frames in frame-interlaced fashion. Implementations on 

Field-Programmable Gate Array (FPGA) are usually power- and area-hungry, but provide 

flexibility compared with application-specific integrated circuit implementations. With the 

penetration of mobile devices in the electronics industry the power considerations have become 

increasingly important. The power consumption of a digit-online decoder depends on various 

factors, like input log-likelihood ratio (LLR) bit precision, signal-to-noise ratio (SNR) and 

maximum number of iterations. 

The design is implemented on an Altera Stratix IV GX EP4SGX230 FPGA, which comes on an 

Altera DE4 Development and Education Board. In this work, both parallel and digit-online block 

LDPC decoder implementations on FPGAs for WiMAX 576-bit, rate-3/4 codes are studied, and 

power measurements from the DE4 board are reported. Various components of the system 

include a random-data generator, WiMAX Encoder, shift-out register, additive white Gaussian 

noise (AWGN) generator, channel LLR buffer, WiMAX Decoder and bit-error rate (BER) 

Calculator. The random-data generator outputs pseudo-random bit patterns through an 

implemented linear-feedback shift register (LFSR).  

Digit-online decoders with input LLR precisions ranging from 6 to 13 bits and parallel 

decoders with input LLR precisions ranging from 3 to 6 bits are synthesized in a Stratix IV 

FPGA. The digit-online decoders can be clocked at higher frequency for higher LLR precisions. 

A digit-online decoder can be used to decode two frames simultaneously in frame-interlaced 

mode. For the 6-bit implementation of digit-online decoder in single-frame mode, the minimum 

throughput achieved is 740 Mb/s at low SNRs.  For the case of 11-bit LLR digit-online decoder 

in frame-interlaced mode, the minimum throughput achieved is 1363 Mb/s. Detailed analysis 

such as effect of SNR and LLR precision on decoder power is presented. Also, the effect of 



 

iv 

 

changing LLR precision on max clock frequency and logic utilization on the parallel and the 

digit-online decoders is studied. Alongside, power per iteration for a 6-bit LLR input digit-online 

decoder is also reported. 
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Chapter 1 

Introduction 

 

Forward error correction is a common technique used to control errors when transmitting data 

over noisy and unreliable channels. By adding controlled redundancy to a stream of data, 

enough information can be provided to a receiver so that it can detect or correct the occurrence 

of most errors. Low-Density Parity-Check Block Codes (LDPC-BC) are a class of forward 

error-correcting codes proposed by R.G. Gallager in 1962 [1]. These codes can communicate 

data at very low bit error rates (BER), asymptotically reaching a capacity limit given by 

Shannon’s capacity Theorem [2]: 

 

         (   
 

 
)                                                             

 

In the case of an Additive White Gaussian Noise (AWGN) channel, for a specific bandwidth 

B and signal-to-noise ratio (S/N), the maximum possible information capacity (C) is given by 

Equation (1.1). In practical applications, effective utilization of available capacity is required 

since signal bandwidth and transmission power are usually limited. LDPC decoding typically 

relies on Iterative Decoding Algorithms implemented on Very-Large-Scale integrated (VLSI) 

chips. Parallel implementations of such decoders can run at very high throughputs. The area of 

parallel LDPC decoders increases rapidly with an increase in message precision, with 

interconnect wiring  possibly occupying more area than actual logic units [3], [4]. In a 

successful attempt to reduce wiring congestion with increased message precision, digit-online 

decoders based on digit-serial arithmetic were proposed in [5]. Previously proposed bit-serial 

decoders [4], [6], which although proving effective at reducing wiring congestion, suffered 

from a disadvantage of not being able to perform consistent and continuous serial processing 

(some nodes work on a most-significant-bit-first basis, and others least-significant-bit-first). In 

contrast, digit-online decoders employ techniques of digit-online arithmetic [7], [8] and are 

capable of processing all the data in a consistent most-significant-digit (MSD)-first order at all 
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computational nodes. This allows for increased pipelining and reductions in clock cycle 

requirements, and therefore, higher throughputs can possibly be achieved. 

In this thesis the work in [5] is extended, by studying and comparing bit-parallel and digit-

online decoder implementations of WiMAX 576-bit, rate-3/4 codes that were able to fit on an 

Altera Stratix IV field-programmable gate array (FPGA). Using a power measurement setup 

from [9], [18], various aspects of both decoders are characterized and power numbers are 

reported. In Chapter 2 discusses LDPC Decoding and various popular LDPC decoder 

implementation techniques, and provides a thorough literature review of FPGA-based LDPC 

decoders. Digit-online arithmetic and digit-online decoding algorithms are discussed in 

Chapter 3. Chapter 4 explains the FPGA implementations of the decoder systems and discusses 

DE4 power measurement setup along with a discussion of power dissipation factors in FPGA. 

In Chapter 5 reports and discusses the simulation and synthesis results for bit-parallel and 

digit-online decoders for a WiMAX 576-bit, rate-3/4 LDPC code. BER curves and power 

results for the FPGA implementation are also reported. Chapter 6 concludes the thesis along 

with a discussion of future work. 
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Chapter 2 

Background 

 

2.1 LDPC Codes 

Low-density parity-check (LDPC) codes are a class of linear error correcting codes defined by 

a sparse parity-check matrix H of dimensions M x N, such that all valid code words of size N 

(represented by vector x) satisfy the relation HxT = 0 [1]. For binary regular LDPC codes the 

number of 1’s in H is fixed for each row and column, while for binary irregular LDPC codes 

the number of 1’s is variable. The code rate of a block code is given by 1 – M/N. Lower code 

rates provide better error performance; however, with lower code rates the information content 

in a code word decreases and thus information throughput is reduced. There exists a trade-off 

where the designer chooses between the desired information throughput and code-rate. An 

example of a regular (3, 6) LDPC code H-matrix is shown in Figure 2.1. For a (3, 6) regular 

LDPC code, the number of 1’s in a row of H-matrix is equal to 6 and number of 1’s in each 

column is equal to 3. The distribution of 1’s in H-matrix is random, and is required to keep the 

matrix sparse to guarantee a good-performance LDPC code. Tanner graphs [10] are bi-partite 

graphs that are popularly used to represent LDPC codes. Figure 2.2 shows the Tanner graph 

1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1
0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0
1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1
1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0

H  =

 

Figure 2.1: An H-matrix example of a (3, 6) regular LDPC code with N = 16 and M = 8, the 

code. 
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= = = = = = = = = = = = = = = =

+ + + + + + + +Check Nodes

Variable Nodes

 

Figure 2.2: An example of a Tanner graph.  Message passing occurs between the connected 

Variable and Check Nodes until all constraints are met or an early termination occurs after 

maximum allowed number of iterations 

 

for the H-matrix represented in Figure 2.1. A Tanner graph consists of two sets of nodes: 

Variable nodes and Check nodes. The number of rows in the H-matrix corresponds to the 

number of check nodes in the Tanner graph while the number of H-matrix columns is equal to 

the number of variable nodes. Every element hij = 1 in the H matrix corresponds to an edge 

between a variable node i and check node j. Since this is an example of a regular code, all 

variable nodes have equal number of edges and thus a degree dv = 3 and all check nodes have a 

degree dc = 6. To satisfy the constraint for a variable node, as represented by an equal sign, all 

the incoming symbols over the edges should carry equal values. For check nodes the 

constraints are satisfied if the XOR function calculated from all the input symbols results in a 

zero. The distribution of edges in the Tanner graph represents the LDPC decoder structure. 

Actual LDPC decoder designs are based on the Tanner graph design, with messages moving 

across the graph edges and nodes evaluating and iteratively trying to satisfy the constraints in 

the code.  

 

2.2 LDPC Decoding 

Given the size of the received block of data, if maximum-likelihood decoding is used to 

simultaneously satisfy all constraints, the algorithm required for finding the optimal solution 

will be NP-hard [11]. Therefore, for the purpose of decoding LDPC codes, iterative decoding 
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algorithms are suitable. Variable nodes are initialized with probabilistic information 

representing channel outputs, and messages are exchanged between the variable and check 

nodes until all the constraints are met. For the purpose of achieving higher throughput, the 

number of iterations is usually limited. The channel information entering the decoder is 

represented as log-likelihood ratios (LLRs), which is a relative probability specified on a 

logarithmic scale, and quantized to a desired bit precision. Mathematically, LLR can be 

expressed as: 

 

 (     )     
  

  

                                                                 

 

where p0 is the probability that the transmitted bit could be a 0 and likewise p1 is the 

probability that the transmitted bit can be a 1. As a general rule, higher bit precision LLR 

inputs are better for decoding since they provide more accurate channel information and help 

the decoder to converge faster. Increasing the bit precisions above 6 bits offers marginal 

improvement in the error performance [12]; however, increasing LLR precision increases the 

decoder input buffer and decoder size requirements significantly. For the case of serial 

decoders, increasing LLR bit precision is not much of an issue for decoder size; however, the 

throughput is negatively affected, as higher number of clock cycles are required to decode a 

code word. In highly pipelined architectures like the digit-online decoder, increasing LLR 

precision allows for deeper pipelining, which allows it to be clocked at higher frequencies. 

Thus, the throughput of digit-online decoders remains relatively unaffected despite increase in 

LLR precisions [15]. The type of quantization scheme also affects the error performance of the 

decoder; in [12] it is shown that using a non-uniform quantization scheme results in better 

performance than a uniform quantization scheme. In [13], [14], it is shown that using an 

optimized quantization scheme for 4 bits of precision achieves BER performance similar to the 

design using uniform quantization using 6 bits per message.  
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2.2.1 Sum-Product Decoding 

As discussed previously, the data flow structure of LDPC decoders is based on bipartite graphs 

known as Tanner graphs; decoding uses iterative message-passing algorithms. One such 

algorithm is the sum-product (SP) algorithm, also referred to as belief-propagation (BP). The 

SP algorithm factors the complicated global function into a number of simpler local functions 

depending on a subset of the variables. The messages in each iteration of the SP algorithm are 

updated according to the SP update rule given in [16]. Variable node v outputs a message sent 

on edge e to check node c, which is the sum of the local function with all the messages 

received at v on all the edges other than e; this constitutes a half iteration. For the next half of 

the iteration, check node c outputs the product of the local function with all the messages 

received at c other than the ones received at e. The variable and the check node operations can 

be represented in form of following Equations (2.2), (2.3) and (2.4). The channel LLRs that are 

provided to the decoder variable nodes in the beginning of decoding are denoted as Lc. 

                                                          ∑    

  

   
   

                                                                

                                                ∑    

  

   

                                                            

                                                    

(

 ∏     (
  

 
)

  

     
    )

                                             

 

dv and dc denote the variable node and check node degrees respectively. Check node also 

monitors if the constraints for the code are satisfied, and can indicate the variable nodes to 

terminate the decoding early and perform a hard-decision of the results.  
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2.2.2 Min-Sum Decoding 

SP algorithm provides near-optimal decoding performance for LDPC codes [17], [19], but is 

inefficient to implement in silicon. The SP variable node implementation largely requires only 

summation operations, which is not very costly to implement; however, SP check node 

operations are relatively expensive to implement in hardware. For long low-rate codes, SP 

check nodes consume lot of silicon area and hence not considered a very area efficient choice. 

The min-sum (MS) algorithm provides a simpler implementation of check nodes. The check 

node update equation is modified to Equation (2.5) in MS algorithm:  

 

              

(

 ∏         

  

     
    )

                                                 

where   

          { 
                          
                            

                                          

 

The variable node update equation remains the same as Equation (2.2) and (2.3). Although MS 

provides easier implementation than SP, it comes at a slight performance loss. The MS decoder 

implementation typically requires a few tenths of a dB more transmitted power at same BER 

performance than the SP decoder implementation. It was found, as explained in [20], [21] 

using the density-evolution of the MS algorithm that the output LLRs from the check nodes 

tend to have a higher magnitude than LLRs output by SP check nodes. It was suggested that it 

is possible to regain most of the coding loss by introducing minor modifications in the 

algorithm to somehow reduce the magnitude of MS check node output LLRs to match those of 

SP check nodes. Most popular modifications in use include the use of correction factors, and 

are referred to as: 1) Offset correction, and 2) Normalization techniques. The offset correction  
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        |       |     

(

 ∏         

  

     
    )

                                         

 

    
         

 
 

(

 ∏         

  

     
    )

                                                      

 

involves subtraction of an offset value (β) from all the incoming LLRs in the check nodes. The 

normalization technique involves dividing the LLRs in check node by a factor α (α > 1), such 

that the resulting LLRs are smaller. The check node update equations for the offset correction 

(offset-MS) and the normalization (normalized-MS) are shown in Equation (2.7) and (2.8), 

respectively. Both techniques provide very similar performance benefits [21]. However, [20] 

notes that the results of the offset-MS can be readily extended for the discretized density-

evolution cases, and suggests that the offset-MS is a good choice for practical implementation 

since it can be extended easily to quantized values.  

  

2.3 LDPC Decoder Implementations and Comparisons 

2.3.1 Parallel LDPC Decoding 

Most straightforward implementations of parallel LDPC decoders instantiate a Tanner graph 

directly in hardware. The internal structure of the variable nodes and the check nodes depends 

on the decoding algorithm. Parallel LDPC decoder nodes process multi-bit LLR messages in 

parallel, so each edge in the Tanner graph corresponds to multiple interconnect wires. 

One of the early parallel LDPC decoders was implemented in 160 nm technology [21], [22], 

decoding at a throughput of 1 Gb/s with 64 iterations per frame and clocked at a frequency of 
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64 MHz. Using parallel LDPC decoder implementations, high throughput and low power 

consumption per decoded frame can be achieved.  

However, a parallel LDPC decoder architecture results in low logic-densities and high 

routing congestion. Most of the chip area is utilized for routing the connections between the 

variable and check nodes. While designing parallel LDPC decoders for long code sizes and 

high-precision input LLR messages, it becomes really hard to connect the nodes in the 

decoder. The number of parallel wires for each Tanner graph edge increases with increasing 

LLR precision. In the case of implementation of a parallel LDPC decoder on an FPGA where 

the routing resources are already limited, providing connections in the decoder places a lot of 

stress on the routing resources. A shared extrinsic memory is used between the variable node 

update units (VNUs) and the check node update units (VNUs) to achieve low routing 

congestion but highly parallel computations in [23]. Onizawa et al. report a variant of the 

parallel LDPC decoder in a new decoding algorithm referred to as a flooding-type update 

algorithm [24]. The longer wires between the nodes are divided appropriately in several sub-

wires by insertion of flip flops; thus reducing the length of longer wires and enabling the 

decoder to be clocked at a higher frequency. 

Apart from parallel decoder implementations, many "partially" parallel LDPC decoder 

implementations are presented in the literature. Zhang et al. implemented a partially parallel 

structured LDPC code decoder employing time-multiplexed routers to reduce parallelism and 

groups the highly connected check nodes and variable nodes in the decoder as local units [25], 

[26]. Zhong et al. present a partially parallel structured LDPC code decoder architecture with 

shared memory blocks for storing the iterative decoding messages and the channel messages 

[27], [28]. A clustering algorithm for partitioning a Tanner graph in clusters, such that the 

inter-cluster communications are minimized was proposed by Al-Rawi et al. [29]. To reduce 

the wiring congestion in the LDPC code decoders a message broadcasting technique is 

demonstrated in [30] which reduces the amount of information needed to be conveyed from the 

check nodes to the variable nodes. A half-broadcasting technique reduces average node-to-

node wirelength by about 26%. Other techniques based on bit-flipping (BF), referred to as 

weighted-bit-flipping (WBF), modified-WBF (MWBF) and improved-MWBF have been 
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presented in [31], [32], [33] and [34] respectively. BF algorithm works in an iterative fashion 

and flips one or more bits per iteration until all the parity checksum are satisfied [34]. BF 

algorithm works well with LDPC codes, with performance losses of 1 dB or less in some cases 

as compared with sum-product algorithm [30].  

 

2.3.2 Serial LDPC Decoder Implementation 

A bit-serial implementation of an LDPC decoder is able to reduce interconnect and routing 

complexity to a large extent and allows for longer code lengths. The multi-wire connections 

between nodes are replaced by single wires transmitting bits serially, resulting in significant 

reduction in the interleaver wiring. This implementation however, comes at a price of reduced 

throughput and higher switching activity in the decoder interconnects. With increase in LLR 

message precision, more number of clock cycles will be required for decoding each code word, 

as the number of bits to be transmitted serially across the decoder nodes increases. 

Implementing satisfactory throughput in serial LDPC decoders is challenging. In [23], [35] 

and [36] a bit-serial message passing scheme is presented. The check node update units 

(CNUs) process the data bit-serially in MSB-first sign-magnitude format, while the variable 

node update units (VNUs) process the data serially in LSB-first 2’s complement format. 

Therefore, the messages need to be stored and format conversions are required at the output of 

VNUs and CNUs. To maximize the utilization of decoder hardware two successive frames are 

simultaneously decoded in the block-interlaced mode; thus, doubling the throughput. The bit-

serial LDPC decoder implementation presented by Darabiha et al. [4] employs variable nodes 

with parallel adders. The messages arriving from the check nodes are buffered and converted 

to parallel inputs and addition operations are performed in a single clock cycle. Processing two 

frames at once allows for double the throughput; however, the design of parallel adders is 

much complex than serial adders.  

Digit-online decoding of LDPC block codes was proposed by Marshall et al.[5] ,[15], which 

involves deeply pipelined digit-serial processing in the decoder. Instead of using conventional 

sign-magnitude format, messages in digit-online decoder are expressed in the form of signed-



 

11 

 

binary digit format. The variable nodes and the check nodes process signed-binary format LLR 

messages in a most-significant-digit (MSD)-first fashion without requiring any changes in 

message format or order of digits at the node inputs.  

 

2.3.3 Stochastic LDPC Decoding 

Stochastic decoding is another method of reducing the interconnect complexity involved in 

LDPC decoders. Stochastic techniques were introduced in 1960s [37], and have been 

successfully used in implementation of neural networks [38] and are increasingly becoming 

popular in LDPC decoder implementations. Stochastic LDPC decoders are similar to bit-serial 

LDPC decoders in sense that extrinsic messages are communicated over single wires, thus 

interleaver wiring requirements are lower. The variable node and the check nodes operation 

can be implemented with simple architectures. For example, multiplication operation can be 

done as easy as ANDing two inputs together and a J-K flip flop can implement a division 

operation. 

Therefore, stochastic LDPC decoders allow for low-complexity computational nodes and 

reduced routing congestion.  Stochastic LDPC decoding uses a unique way of representing 

probabilistic messages as Bernoulli sequences indicating values in between 0.0 and 1.0 [39], 

[40], [41]. At the transmission side LLRs are turned into stochastic streams based on their 

probabilities, therefore, the encoding scheme is not unique and different sequences are possible 

for same probability values. For a message size of S bits, if r bits are 1 then the probability P 

represented by this message is given by:  

P = (r/S)                                                              (1.9) 

 

The frequency of 1s in the probabilistic message is equal to the probability P. Stochastic 

decoders, however do not get as large of a coding gain as sum-product decoders. Also, they are 

sensitive to the level of switching activity in the decoder and result in reduced decoding 

performance with reduction in switching activity. The lack of switching activity (latching) 
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worsens at high SNRs in which received LLR probabilities reach either 0 or 1. There are 

different techniques proposed in the literature like NDS (noise-dependent scaling), 

regenerative EMs (edge memories) and IMs (internal memories), which help to provide high 

switching activity in stochastic nodes [40], [41]. A parallel stochastic decoder capable of a 

maximum throughput of 61.3 Gb/s and very low error floor is presented in [42]. 

 

2.3.4 Analog LDPC Decoders 

Apart from digital LDPC decoders, an analog circuit for decoding LDPC codes was reported 

by Hemati et al. in 2006 [43]. The analog LDPC decoder employs iterative analog min-sum 

(MS) algorithm to decode a (32, 8) LDPC code. The node circuits in the analog decoder are 

based on current-mirrors and fabricated in 180-nm CMOS technology. The data throughput for 

the analog LDPC decoder is 6 Mb/s and power consumption is about 5 mW. However, 

designing analog LDPC decoders requires high process control to design accurate current 

mirror circuits. Analog LDPC decoders suffer from physical non-idealities such as component 

mismatch, thermal noise effects and short-channel effects; therefore, they have been only 

considered for small LDPC codes [44].  

 

2.4 LDPC Decoder Implementation on FPGA 

FPGAs provide reduced opportunities for parallelism but increased flexibility when compared 

with ASIC implementations of LDPC decoders. The routing requirements of the Tanner graph 

edges pose a lot of strain on the programmable interconnect fabric of an FPGA, especially for 

significantly longer routings. Since FPGAs are more suitable for datapath-intensive designs 

and have interconnects optimized for local routing [45], the implementation of less parallel and 

constrained LDPC decoders is more suitable for FPGAs. A parallel LDPC decoder synthesized 

on FPGA is reported by Zarubica et al. in [46] which is able to reach 12 Gb/s throughput. The 

biggest decoder in [46] to fit on the FPGA has a frame length of 1200 bits with 3-bit input 

channel LLR precision.  
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FPGAs also provide the benefit of already available extra hardware like block memories and 

DSP blocks. In [47] Zarubica et al. make use of the distributed memories available on the 

FPGA for storing the messages needed in the decoding iterations and suggests that use of 

memories can enable implementation of decoders for large code sizes. An implementation of 

9984-bit block LDPC code decoder is reported in [47]. A partially parallel LDPC decoder 

architecture is synthesized on a Xilinx Virtex-5 FPGA for a rate-1/2 code of size 648 bits by 

Kim et al. [48]. A summary of the decoder along with reported power data for the decoder is 

shown in Table 2.1. 

A bit-serial LDPC decoder presented in [4] is implemented on an Altera Stratix EP1S80 

FPGA and occupies about 84% of logic resources. The maximum clock frequency of the 

decoder is 61 MHz and it can reach a throughput of 650 Mb/s with early termination. The use 

of FPGAs in implementation of stochastic decoders has been demonstrated by Tehrani et al. in 

[41] and [49], achieving throughputs upto 706 Mb/s and 1.66 Gb/s respectively.  

Gunnam et al. present a multi-rate decoding architecture for irregular LDPC codes for 

WiMAX (IEEE 802.16) standard, resulting in significant savings in memory and routing 

requirements of the decoder [50]. Table 2.1 shows a summary of the decoders synthesized on 

the FPGA in [50]. A modified 2-bit min-sum LDPC decoding algorithm is proposed by 

Chandrasetty et al. resulting in a reduced implementation complexity of the decoder [51]. With 

a slight drop in the BER performance, the decoder can be implemented in about 18% less 

FPGA resources. An improvement on this implementation is presented in [52] by keeping 

different length intrinsic (LLR messages entering the decoder from channel) and extrinsic 

(LLR messages exchanged between the variable and the check nodes) messages. Reducing 

extrinsic message length reduces the interconnect complexity and also simplifies the check 

node operation. The LDPC decoder in [52] decodes rate-1/2 code words of size 1152 bits.  

Two optimization techniques, vectorization and folding are presented by Chen et al. in [53] 

for effective utilization of block RAM resources available on the FPGA. Both these techniques 

build on the fact that the block RAMs available in FPGAs are of configurable aspect ratios and 

are dual-ported with very fast access times. Vectorization attempts to pack multiple messages  
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References 
Darabiha et al., 

[4] 

Zarubica et al., 

[46] 

Gunnam et al. 

[50]  

Tehrani et al. 

[36] 

Kim et al.  

[48] 

Sulek et al. 

[54] 

Year 2006 2007 2007 2008 2010 2013 

FPGA 
Altera Stratix 

EP1S80 

Xilinx V4 

XC4VLX200 

Xilinx V2 

XC2V8000 

Xilinx V4 

XC4VLX200 

Xilinx V5 

XC5VLX155T 

Xilinx V6 

XC6VLX240T 

LDPC 

Code Type 

RS –based 

LDPC 

Parallel PEG 

based (6, 3) 

OMS  

Algorithm 

Parallel  

Stochastic 

Partially  

parallel 

GF(q) LDPC 

Decoding 

Code Size (480, 355) (1200, 600) 
576 b 

(multi rates) 
(1056, 528) (648, 324) (480, 240) 

Throughput 650 Mb/s 12 Gb/s 41-70 Mb/s 1.66 Gb/s 110 Mb/s 6 Mb/s 

LLR 

Message 
3 bit 3 bit 5 bit 6 bit (input) - 8 bit 

Max. 

Iterations 
15 10 - 

700 (DCmax) 

(1DC/clk) 
8 10 

Reported 

BER 
10

-5
 at 5dB* - - 

10
-8

 at 

4.25 dB 
- 

7 x 10
-6

 at 

2 dB* 

fMax 61 MHz 100 MHz 110 MHz 222 MHz 100 MHz 180 MHz 

Logic 

Utilization 

84 % 

(66,588 LEs) 
45% -  - 7 % 

Slices 

(Xilinx) 
- 40,613 1,640 46,097 7,081  

LUTs - 69,038 2,982 68,112 19,761 10,916 

Block RAM - - 38 - 24 26 

Decoder 

Power 
- - - -   

E/b - - - -  - 

Table 2.1: Summary of some of the discussed FPGA based decoders 

 

into the same word by utilizing configurable width of block RAM, while folding attempts to 

take advantage of configurable depth of block RAMs by allowing messages from different 

submatrices of the code to share the same physical block RAM.  Li et al. present an FPGA 

implementation of 2.4 Gb/s, rate-1/2, (3, 6) convolutional encoder and decoder and discuss a 

detailed decoder power analysis for various aspects of the FPGA implementation [9]. In recent 

years, non-binary or higher-order Galois-field (GF) LDPC decoders implemented on FPGAs 

have been reported in literature. In case of Galois-field GF(q = 2p) codes the decoding 

complexity grows exponentially [54] with 2pd
c (dc is the maximal nonzero entities in parity 

check matrix row). Non-binary decoders benefit from the extra available FPGA resources like 

configuration logic blocks, block RAMs and multipliers. [55] also presents non-binary 

decoders for different order implementations. Table 2.2 shows the important aspects of the 

works mentioned in this section which report the power data for the FPGA implementations.  
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References Chen’11 [53] 
Chandrasetty’11 

[52] 
Li’13 [9] This work 

Year 2011 2012 2013 2014 

FPGA 
Xilinx V4 

XC4VLX200 

Xilinx V5 

XC5VLX110T 

Altera 

StratixIV 

EP4SGX230 

Altera StratixIV 

EP4SGX230 

LDPC 

Code Type 

Quasi-Cyclic 

Irregular 

(3, 6) Regular 

MMS 

PN- LDPC-

CC 

(3, 6) 

Digit-online LDPC decoding 

Code Size (3969, 3213) (1152, 576) Ts = 192    (576, 432) 

Max.Throughput 1.474 Gb/s 11.7 Gb/s 2.4 Gb/s 740 Mb/s 1363 Mb/s 

LLR Message 6 –bit 4 – bit (input) 4 –bit 6-bit 11-bit(interlaced) 

Max. 

Iterations 
15 10 9 10 10 

Reported BER - 3x10
-6

 at 3.9 dB 
10

-8
 at 4.25 

dB 

1.2x 10
-10

 at 4 

dB 
- 

fMax 195.7 MHz 138 MHz 75 MHz 90 MHz 140 MHz 

Logic 

Utilization 
- - 83 % 91% 90% 

Slices (Xilinx) 62,362 10,823 - -  

LUTs 98,003 39,024 - -  

Block RAM 330 - - -  

Decoder 

Power 
7632 mW 1130 mW 4105 mW 

1248 mW (at 

450 Mb/s) 

1029 mW (at 450 

Mb/s) 

E/b 5.18 nJ - 1.71 nJ 2.77 nJ(avg.) 2.29 nJ (avg.) 

Table 2.2: Summary of FPGA based decoders with reported power data 

 

2.5 Altera Stratix IV FPGAs  

An FPGA is a semiconductor device consisting of programmable logic components, 

programmable interconnects and I/Os. Present-generation FPGAs also contain additional 

features such as configurable embedded SRAMs, DSP blocks and high-speed transceivers. 

FPGAs can be programmed to replicate the functionality of basic gates as well as complex 

logic functions.  

An Altera Stratix IV FPGA core is fabricated in 40nm technology and is made up of multiple 

LABs (Logic Array Blocks). Each LAB consists of 10 ALMs (Adaptive Logic Modules) along 

with interconnect and control circuitry. An ALM is the basic building block of Stratix IV 

FPGA and provides features for efficient logic usage. An ALM consists of a variety of 

resources consisting of one 8-input ALUT (Adaptive Look Up Table), two dedicated full 
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adders and two dedicated registers as shown in Figure 2.3. One ALM can implement variety of 

functions including all 2,3,4,5,6-input functions and certain 7-input functions [56].  

Figure 2.4 shows two examples from normal-mode of the ALMs, implementing 3-input, 5-

input and 6-input functions. This mode is suited for implementing general logic applications or 

combinatorial functions. 

For implementation of addition circuits, comparators and counters, ALMs can be used in 

arithmetic-mode; shown in Figure 2.5. The adders can form large carry chains, the 4-input 

LUTs provide for pre-adder logic. ALM in arithmetic mode supports use of adder’s carry 

output along with combinational logic outputs simultaneously. The carry chains in adders can 

run to very long lengths, from one ALM to next ALM and in between LABs.  

Quartus® II can allocate carry chains up to the length of a vertical column in FPGA fabric. 

Similarly, registers in ALMs can be cascaded together to form long register chains to 

implement large shift registers. Figure 2.6 shows example of data chains in a Stratix IV LAB. 

 

 

8 – input 

ALUT

adder_0

adder_1

shared_arith_in

shared_arith_out

dataf0
datae0
dataa
datab

datac
datad

datae1
dataf1

carry_in

carry_out

M
U

X
M

U
X

M
U

X
M

U
X

reg0

reg1

D Q

D Q

lab_clkreg_chain_in

reg_chain_out  

Figure 2.3 : High level diagram of a Stratix IV ALM 
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5 – input LUT

3 – input LUT

dataf0
datae0
dataa
datab

datac

datad
datae1
dataf1

combout0

combout1

6 – input LUT

dataf0
datae0
dataa
datab
datac
datad

combout

0

6 – input LUT

combout

0

datae1
dataf1

 

Figure 2.4: Normal mode allows (a) two distinct functions a 5-input and a 3-input; (b) Two 6-

input functions with shared inputs to be implemented in a single Stratix IV ALM 

.  

 

 

4 – input 

LUT

4 – input 

LUT

4 – input 

LUT

4 – input 

LUT

reg0

D Q

reg1

D Q

clk

clk

datae1

dataf1

datae0

dataf0
datac
datab
dataa

datad

carry_in

carry_out  

Figure 2.5 : Stratix IV ALM in Arithmetic mode 
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Figure 2.6: Carry, Arithmetic and Register chains in Stratix IV 
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Chapter 3 

Digit-Online Decoder 

 

In this Chapter, a brief overview of the architecture of a digit-online LDPC decoder and its 

operation is discussed. This Chapter mainly builds on the works from [5], [15], [57]. 

 

3.1 Digit-Online Arithmetic  

An online algorithm processes inputs piece-by-piece without needing a complete set of inputs 

to begin the calculations. For the processing to be digit-online [58], [59], [60] the operation 

should be able to produce i – Δ most-significant digits of a result knowing only i digits out of 

the s digits of precision of input (s>i), with Δ being the initial delay to produce first output. 

Thus, such a processing can achieve a very high level of pipelining, with a new set of outputs 

being produced every clock cycle. 

The digit-online decoder in [57] employs the MS algorithm with offset correction. The 

variable nodes in a digit-online decoder perform an addition operation and the check nodes 

implement selection networks to select the minimum of the inputs. An offset correction 

operation is performed in the check nodes. The operations in a digit-online decoder are 

performed in a serial manner, with the most-significant digits (MSDs) processed first. It is not 

possible to perform MSD-first addition using the conventional notations without receiving all 

of the bits of the inputs being added, because carry values need to be propagated from the LSB. 

Thus a processing algorithm using conventional notations is not very advantageous from the 

point-of-view of serial processing. A pipelined digit-online process requires taking in new set 

of inputs and generating a new set of outputs every clock cycle.  

To achieve highly pipelined continuous processing at the decoding nodes, the work in [5], 

[15], [57] uses redundant notation to represent numbers and represents them in form of 

generalized digits rather than bits. A class of number representations known as signed-digit 
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representation scheme is shown in [57], which allows for most-significant digit (MSD) to 

least-significant digit (LSD) addition of numbers.  

Unlike conventional number representations where an integer radix r (r >1) each digit can 

only assume out of 0, 1,…., r-1 values, signed-digit representation allows for representations 

using negative integers as well. For a conventional number representation digits take values 

from set {0, 1} while for signed-binary the values from set { ̅, 0, 1} are allowed.  ̅ represents -

1, and borrows 1 from the digit before it. Thus, the representations of numbers are no longer 

unique. For example, 11 ̅ = 4 + 2 + (-1) and 101 = 4 + 0 + 1 represent same number in 

decimal format. Since the channel LLRs are provided to the decoder in conventional binary 

notation, they need to be converted in signed-binary digit format in the decoder.  

Conversion of conventional sign-magnitude binary representation into signed-binary 

representation is shown in [57]. For conversion of positive numbers, the MSD of the resultant 

signed-binary number is set to zero and the remaining digits are left as is; however, now this 

number is stored with a greater number of bits. For the negative number conversion, the MSD 

is set to zero, and the remaining digits are stored as negative copies of the corresponding 

binary bits. The digit-online decoder in [5], [15], [57] converts channel LLRs into signed-

binary representation from sign-magnitude representation in the first decoding iteration. The 

conversion from signed-binary representation to conventional binary representation becomes 

increasingly expensive to implement with increasing LLR precisions. After the decoding 

iterations are complete, a thresholding operation is performed to produce hard outputs. 

Performing this thresholding operation only requires the knowledge about the sign of final 

LLRs output from the variable nodes, which is relatively inexpensive and easy to implement.  

When decoding LDPC codes with the MS algorithm using offset correction, the operations 

that need to be performed in the decoder are: addition, subtraction, compare-select and sign 

detection. All of these operations are explained in detail in [5], [15], [57] to work with 

redundant (signed-binary) notation with most-significant-digit (MSD)-first digit-online 

processing.  
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3.2 LDPC Encoder 

The VHDL files for the block LDPC encoder are generated using a C++ routine. The WiMAX 

standard supports frame sizes ranging from 576 bits to 2304 bits and supported code rates are 

1/2, 2/3, 3/4, 5/6 with a minimum throughput requirement of 100 Mb/s. For this work, a 576-

bit, rate-3/4 WiMAX Encoder is generated. The base matrix (.hbm) and half a- list (.alist) files 

provide information about the encoder structure to the C++ routine, while the size of the code 

word is decided through the expansion factor (Z) passed on to the routine. The encoder takes in 

a 432-bit input, generates and appends 144 check bits to generate a 576-bit frame as shown in 

Figure 3.1. The check bits of the frame are calculated as per the code constraint equations. 

 

3.3 Digit-Online Decoder 

In an iterative LDPC decoder, each decoding iteration consists of messages flowing from the 

variable nodes to the check nodes and back. Thus, the total pipeline length (p) for one 

decoding iteration is equal to the sum of the variable node pipeline stages (Δv) and the check 

node pipeline stages (Δc) (Figure 3.2). Each pipeline stage stores and processes one digit, thus 

length of the input message should be less than Δv + Δc digits (total pipeline stages in one 

iteration), since guard digits need to be added into the message to prevent overflow in the 

variable nodes. The number of guard digits depends on the maximum variable node degree 

(dv,max) and the way values are being added in variable node [57]; however, an optimum 

number is given by ⌈            ⌉.   

To distinguish the MSD of an LLR from other digits, each processing node in the decoder 

receives a globally synchronized control input (Figure 3.3). The vector version of this control  

INFORMATION BITS CHECK BITS

432 bits 144 bits  

Figure 3.1 : A 576-b encoder frame output from the LDPC Encoder 
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Channel 

LLRs

Channel 

LLRs
Channel LLRs

Channel LLRs

Channel 

LLRs

Serial Input

Factor Graph connections 

determine messages exchange 

between Check node and 

Variable node Network

Final iteration 

or Early 

termination

 

Figure 3.2 : Digit-online decoder system diagram. Channel LLRs are sent serially to the 

variable nodes. The messages are passed between variable node array and check node array. 

Each iteration involves message going to check nodes and back to variable nodes for a total 

pipeline length of Δv + Δc. 

 

ready

decoder 

outputN
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offset

start

clock

Rvn newframe
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LLRs 
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bit-out
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NETWORK

CHECK 

NODES 

NETWORK

Rcn offset

satisfied

CONTROLLER

DIGIT-ONLINE DECODER  

Figure 3.3 : Various components of a digit-online decoder. Main signals are shown as well. 
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signal is called R, with ri being equal to 1 if the current ith input digit to a node is an MSD. 

This signal is required to reset the state machines in check nodes and break carry chains in 

adders in variable nodes for the new LLR messages [57]. 

R is expanded to the length of the pipeline, with multiple 1s in the R vector for decoding 

more than one frames simultaneously. The distance between 1s depends on the precision of 

LLRs. The processing nodes work on a continuous stream of data and need to know only 

where the LLR message starts and ends; thus, variable length LLR messages can be processed 

easily.  

 

3.3.1 Variable Node Structure 

Variable nodes perform the addition operation on LLR messages as shown in equation below:  

 

                ∑  

  

   
   

                                                        

The addition trees in the variable nodes have been optimized for minimum Δv and minimum 

required guard digits [57]. Optimization for small number of required guard digits also reduces 

overhead associated with their generation. An example structure of a degree-4 variable node is 

represented in Figure 3.4.  

Figure 3.5 shows the variable node structure indicating the variable node outputs for various 

stages of decoding.  In the first decoding iteration of a new frame, since the channel values are 

provided to the variable nodes in conventional sign-magnitude format, they are converted to 

signed-binary format and are output to the check nodes. A separate circuit is used for the 

conversion of sign-magnitude to signed-binary values. New channel values are loaded into the 

local channel memory in the variable nodes for use in future iterations.  The local channel 

memory in the variable nodes is implemented as a circular shift register with output of the shift 

register connecting to the input when the new_frame signal is ‘low’. The local channel 
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L2 L0 L1 L3 Lch L1 L2 L0 L2Lch

λ3 λ2 λ0 λ1

+ ++

+ +

+ +

++

 

Figure 3.4 : An example degree-4 variable node. The LLRs, Lch (channel LLRs) and L0, L1, L2, 

L3 are added digit-serially in the adders represented by boxes with ‘+’ sign 

memory has a length equal to the pipeline length of (Δc + Δv) stages. Since new values in the 

local memory are only loaded in the first decoding iteration of a new frame, the local channel 

memory provides channel values in a digit-serial manner to the addition circuitry for the 

remaining decoding iterations of the frame. In the final iteration, new old channel values are 

shifted out to perform the final addition operation and the new frame channel values are loaded 

in the local channel memory. The final addition operation consists of adding Δv + 1 values (all 

incoming edge messages and local channel values). After final addition since the next step is 

hard-decision output, only the sign of the final output LLR (λfinal) is of significance. So even if 

an overflow occurs in final addition, the sign of the result needs to be preserved while the 

magnitude can be incorrect [57]. 

 

3.3.2 Check Node Structure 

The check nodes perform the minimum input selection operation through the use of selection 

networks. To compensate for the performance loss as compared with SP algorithm, an offset 

correction is performed in check nodes. If decoder constraints are met before the final iteration, 

check nodes output a ‘satisfied’ signal to indicate early termination of decoding to the 

controller. The architecture of a check node is shown in Figure 3.6. The sign of the incoming  
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Figure 3.5: Variable node structure. In the first iteration new channel LLRs are received 

serially and converted to signed-binary format and sent to check nodes. New channel values are 

also loaded in the shift register for use in later iterations. The process for final output is 

illustrated on the right hand side. 

 

LLRs in the check nodes is determined and sent to the XOR network tree to check if the code 

constraints are meeting already and early termination can be performed.  

The magnitude of the incoming LLRs undergoes offset correction. The offset value is stored 

in conventional binary format and is subtracted from the LLR magnitudes using digit-online 

subtraction circuits [57]. The resultant magnitudes if negative, are replaced with all zeroes 

otherwise kept as is. Offset correction applied on the inputs of the selection networks requires 

more subtraction circuits than offset correction applied at selection network outputs; however,  
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Figure 3.6: Digit-online check node structure. The sign of the incoming serial LLR is sent to an 

XOR network to identify if check node constraints are satisfied. Magnitude of LLR is sent for 

offset correction, preceding a selection network to calculate the minimum values. Appropriate 

magnitude is selected and then combined with sign to be sent to variable node edge. 
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[57] notes that performing offset correction at selection network outputs lead to incorrect 

results for digit-online processing. The selection network in the check nodes selects a 

minimum and a second-minimum magnitude. [61] provides an excellent online tool with 

various implementation options for generating selection networks up to 32 inputs. The 

WiMAX 576-bit, rate-3/4 LDPC decoder discussed in this thesis requires selection networks of  

14 and 15 inputs; these selection network have been generated using “best” algorithm option in 

the online tool, giving the minimum number of comparisons required for implementation [57].  

When processing MSD-first serially in redundant notation, the selection of minimum values 

is complicated. The numbers that appear smaller in the beginning may not be so when received 

completely. While comparing numbers the difference between the numbers is tracked as long 

as it is big enough and it is safe to make a decision on which number is smaller [57]. For the 

case of compared numbers being equal, a number is selected as the smaller one arbitrarily. 

Each comparator comparing two numbers A and B, issues a signal AIsSmaller, which is ‘1’ if 

the number A is smaller of the two. This signal may change its value as the comparison 

progresses digit-by-digit, however this should occur only certain times to ensure correct 

results. The signal AIsSmaller from the individual comparators in the selection tree is used to 

track the minimum input magnitudes. 

The minimum values at the outputs of the check nodes are checked for overflow, and if 

required they are saturated before sending to the variable nodes. The minimum number is 

output at all the check node edges except for the edge where this number came from, on which 

the second-minimum value is sent instead. The sign of the outputs is decided according to what 

other edges suggest the output sign should be. Thus, the sign of each output LLR is found by 

XORing the input sign for that edge to the output of the XOR network.  

 

3.3.3 Controller 

The controller is responsible for synchronizing the data flow between the variable and the 

check nodes. For irregular codes, the nodes are of varying degrees and there is a need to ensure 

that the pipeline path-length for all the node types is same and equal to Δv + Δc. If required, 
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extra registers can be added in the nodes during synthesis to gain desired loop latency. The 

control signal R, as discussed before is generated by controller to keep track of the MSDs of 

the messages during serial processing. Controller issues Rvn signal for the variable nodes and 

Rcn signal for the check nodes. When the variable nodes are receiving the MSD of a message, 

Rvn signal is asserted ‘1’; while Rcn is ‘1’ when the check nodes are receiving the MSD. Rvn 

and Rcn signals can be seen in the timing diagrams of the digit-online decoder as shown in 

Figure 3.7 and Figure 3.8.  

Channel LLRs and offset values are loaded from the channel LLR buffer into the decoder in 

bit-parallel manner. Controller sends channel LLR values to the variable nodes and the offset 

value to the check nodes in bit-serial fashion in the beginning of decoding. new_frame signal 

acts as a selection input for the MUX in the variable node structure shown in Figure 3.5, in the 

first decoding iteration, new_frame signal is kept ‘1’. While new_frame is 1, the MUX in the 

variable node loads the new channel values to the local channel memory. After first iteration, 

new_frame signal is pulled to 0. This converts the local channel memory in a circular shift 

register, providing channel LLR values for future iterations.  

The controller also monitors the number of decoding iterations performed. The maximum 

number of iterations allowed (imax) per code word is fixed at the time of design. After 

performing imax iterations, the decoder signals the variable nodes to finish decoding current 

code word and perform a hard-decision (thresholding operation). Hard-decision output bits 

from individual variable nodes are appended together and output as a decoded code word. It is 

possible that the check node constraints are satisfied before the imax iterations are reached 

(early termination criterion). Controller detects early termination from the satisfied signal 

generated at the check nodes. Each check node ‘n’ generates its satisfied signal CNsatisfied(n). 

The controller performs an AND operation on CNsatisfied from all the check nodes and if 

result is a ‘1’ then it signals the next iteration to be final iteration.  

 



 

29 

 

3.3.4 Single Frame Decoding 

Figure 3.7 shows timing diagrams of the various signals in the decoder when beginning 

decoding and loading a new frame. Figure 3.8 shows the timing diagram when finishing the 

decoding of current frame and starting with a new frame respectively in single-frame mode of 

decoding. The decoder is initialized by pulling reset ‘low’. An offset value must be applied 

before initializing the decoder, since it is latched in with reset going ‘low’. In an actual design, 

the offset is supplied in the HDL code, and its value is available to the decoder pre-

initialization. After being initialized, the decoder asserts a ready = ‘1’ signal indicating it is 

ready to take in channel LLR values. The channel LLRs are made available to the decoder and 

the decoder is signaled to start decoding by asserting start signal ‘high’. The Start signal is  
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Figure 3.7 : Beginning of decoding a frame in single-frame mode. The decoder goes into Idle 

state when reset signal goes 0, and asserts ‘ready’ signal as 1. On receiving a 1 on ‘start’ pin, the 

decoder loads in the channel LLRs, pulls in ‘ready’ signal low and goes into DECODING state 

beginning with Iteration 0 for decoding the frame. In this example Δv = 4 and Δc = 2, therefore 

the length of the pipeline is equal to Δv + Δc = 6.   
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pulled ‘low’ after one clock cycle; the decoder pulls ready signal ‘low’ as well. To keep the 

iterations going on continuously, the decoder asserts ready signal little before the last iteration 

finishes as shown in Figure 3.8. Thus, before the final iteration is over, the channel LLR buffer 

is able to respond with new frame LLRs. Next iteration is first iteration of the new frame, the 

old frame values are sent into the variable node pipeline for hard-decision decoding. The delay 

for the final decoded code word is represented in Figure 3.8. This delay is dependent on the 

pipeline depth in the decoder and is given by tdelay,bitout (=Δv,sat + Δv + Δc) clock cycles. Thus 

after tdelay,bitout clock cycles, the resulting hard-decoded frame is output and the decoder is 

asserts valid signal ‘high’ for one clock cycle. The iteration count keeps incrementing from 0 

to n-1 in a continuous circular fashion and decoder outputs a decoded frame every n iterations. 
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Figure 3.8: Finishing decoding previous frame, hard-decision output and loading next frame for 

single-frame decoding. The decoder hard-decision output of previous frame at beginning of 

iteration 1 of new frame. Iteration 0 is used up in hard-decision calculation of previous frame.  
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3.3.5 Frame-Interlaced Decoding 

Frame-interlaced decoding enables the digit-online decoder to decode 2 frames simultaneously. 

However, the LLR precision of the frames being decoded is halved. The frame-interlaced 

mode does not require major changes in the decoder structure. Thus, for a slight change in 

implementation area, it is possible to achieve nearly twice the throughput [5], [15], [57]. Figure 

3.9 illustrates the timing diagrams for various signals when beginning decoding and loading 

new frames. Figure 3.10 shows timing diagram when finishing decoding of previous frames 

and loading in new frames in frame-interlaced mode.  

Pulling reset signal ‘low’ initializes the decoder. Upon initialization, the decoder asserts a 

ready signal ‘high’ when it is ready to start decoding. The channel LLR buffer responds by 

providing channel LLRs and asserting start bit ‘high’. The input channel LLRs consist of LLRs  
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Figure 3.9 : The beginning of frame-interlaced decoding. Each iteration from single frame 

decoding is split in two iterations. Iteration number {1,0}, represents iteration 1 for frame 1 and 

iteration 0 for frame 2. There is a frame counter implemented as well to keep track of the frame 

number. The pipeline length for each frame is halved.  
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for both frame 1 and frame 2 LLRs in an interlaced manner. The total pipeline length of the 

decoder is distributed between the two frames. The new_frame signal stays ‘1’ for the duration 

of iteration {0,0} and {1,0}. The channel LLRs are loaded in variable nodes in this duration. 

The processing nodes in the digit-online decoders do not require information about which 

frame they are processing; they only need to know when MSDs for a frame appear. Thus, 

structurally frame-interlaced decoding is very similar to single-frame decoding. However the 

control signal differ, as shown in Figure 3.9 and Figure 3.10, Rvn and Rcn signals are asserted 

twice in each frame iteration.  

When finishing decoding, a ready signal is asserted ‘high’ before the iteration counter resets 

to {0,0} to signal channel LLR buffer to send in new channel LLRs. The decoded frames are 

output after a delay similar to as explained in Single-frame decoding, the decoder output 

changes at each valid signal as shown in Figure 3.10. 
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Figure 3.10: Finishing decoding current frames and loading new frames in frame-interlaced 

decoding. The frames are output after a delay required for hard-decision decoding. Δv and Δc 

may not be equal and frames may not be in same decoding iteration.  

 



 

33 

 

The channel LLR values that are introduced to the decoder in conventional sign-magnitude 

format. The AWGN channel module generates channel LLRs and stores them in the channel 

LLR buffer module, until the decoder is ready to receive new LLRs. LLRs are converted in 

signed-binary format in the variable nodes only when the decoding begins, doing so reduces 

memory and fan-in requirements, since signed-binary format requires more number of bits to 

represent a number.  

The hard-decision output of the frame being decoded is performed if either of the two events 

occur: 1) maximum number of iterations have taken place, or 2) all the check node equations 

are satisfied (early termination). The maximum number of iterations (imax) is estimated 

according to the throughput requirements and rate of code convergence. Minimum throughput 

of an LDPC decoder is inversely proportional to imax.   
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Chapter 4 

Test Unit and Power Measurement Setup 

 

4.1 Introduction 

FPGA designs are considered more power and area hungry than their ASIC counterparts. 

However, FPGAs offer many advantages over ASICs such as fast prototyping abilities, 

allowing users to change and quickly verify idea in hardware rather than waiting for 

fabrication of a custom ASIC chip. This saves time and cost per FPGA chip if the quantity of 

product to be deployed is small. The reconfigurability associated with FPGAs increases 

product lifetime, and any incremental modifications occurring in future designs can be 

programmed into the FPGAs, as long as they fit in current FPGA, without the need to redesign 

the whole board.  

 

4.1.1 FPGA Implementation 

The design is implemented on an Altera Stratix IV GX EP4SGX230 FPGA, which comes on 

Altera DE4 development and education board. Most of the design is written in VHSIC (Very 

High Speed Integrated-Circuit) Hardware Description Language (VHDL), with the exception 

of AWGN Channel Module which is written in Verilog HDL. Figure 4.1 shows various 

functional blocks in the system.     

A random data generator outputs pseudo-random bit patterns through a linear-feedback shift 

register (LFSR). The bit patterns from the random data generator are fed to WiMAX encoder 

as information bits (432 bits). Encoder generates check bits according to the code constraints, 

appends them to the information bits and outputs the resulting bit pattern as an encoded frame 

(576 bits).  A shift-out register works in a parallel-in serial-out shift register manner. The shift-

out register buffers the encoded frame of 576 bits and shifts out x bits per clock cycle. For       

x =32 bits means that 576 bits of the frame are shifted out completely in 576/32 = 18 clock 
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cycles. The number of shift-out register output bits control the flow of channel LLRs to the 

decoder. Thus, for a 50 MHz clock source, shift-out register with x= 32 bits allows for        

2.77 million frames sent to the decoder in one second. 

The shift-out register output bits are added with pseudo-random noise samples and scaled as 

per the assigned signal-to-noise ratio (SNR) in AWGN channel module and quantized to 

desired precision LLRs. The AWGN generator works on principal of Box-Muller transform, 

and generates LLRs for each input bit. Channel LLR buffer, stores the output LLRs from the 

AWGN module for each encoded bit, until all the LLRs for encoded frame are received. When 

all LLRs for a frame are received in channel LLR buffer, it waits for ready signal from the 

WiMAX decoder. On receiving ‘1’ on ready signal, the channel LLR buffer provides the 

decoder with channel LLR values and signals the decoder to start decoding by asserting ‘1’ on 

start signal. The start signal stays ‘1’ for one clock cycle and goes back to ‘0’. 

The final part of the system is a bit-error-rate (BER) calculation module. The BER module 

buffers the encoded and the decoded frames when the valid signal from appears from both the 

modules. Keeping track of the frame numbers is tricky; thus, to ensure proper operation three 

most recent frames from the encoder are buffered and compared with decoded frame. An XOR 

operation between the buffered encoder and decoder frames is performed, any bit errors  
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Figure 4.1: A block diagram of the FPGA implementation, showing all the component modules. 

The arrows indicated the flow of data, numbers on the arrows mention the bus-width 
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between the two frames results in 1s at that specific bit positions. Counting the number of 1s 

occurring in the output of XOR operation gives us the bit errors per frame. To calculate the 

BER, a variable keeps track of the number of frames processed until a set number of errors is 

reached. The decoder area forms the majority of the design’s area on FPGA; an average 

decoder takes about 85-90% of the design area.   

The initial approach in this work was to study WiMAX 1056-bit, rate-1/2 codes on FPGA, 

since a larger code provides better coding gain. Therefore, a bit-parallel LDPC decoder for 

code word size 1056 bits and rate-1/2 was synthesized on the FPGA. The size of a bit-parallel 

LDPC decoder increases with input LLR message precision. The biggest 1056-bit, rate-1/2 bit-

parallel LDPC decoder that could fit in the FPGA had LLR message precision of 4 bits. The 

digit-online LDPC decoder for code word size 1056 bits, rate-1/2 was unable to fit on the 

FPGA for any LLR precision.  A digit-online check node tends to occupy a lot more logic 

resources as compared with a digit-online variable node (see Appendix A). Going for a higher 

rate code like rate-3/4 reduces the check nodes in decoder by half in number, also a smaller 

code with size 576 bits was chosen. The biggest 576-bit, rate-3/4 bit-parallel LDPC decoder 

that can fit on the FPGA has LLR precision of 6 bits. For the 576-bit, rate-3/4 Digit-Online 

LDPC Decoder, up to an input LLR precision of 13 bits was successfully synthesized on the 

FPGA. Higher input precision cases might be able to fit as well, but they were not tested. Thus 

choosing a smaller size code with size 576 bits provides more test cases over a larger range of 

LLR precisions.  

 

4.2 FPGA Core Power Measurement 

For the measurement of FPGA core power, the setup from [18] is used. A diagram showing the 

FPGA board power measurement setup is shown in Figure 4.2. The power characterization 

technique reported in [18] relates the power dissipated in the FPGA core to the actual 

measured power consumed by the Altera DE4 board. The power measurement setup consists 

of 0.01-Ω resistors connected to the power supply lines to DE4 board. There are two power 

supply lines onto the DE4 power supply: one being the 12V and, the other 3.3 V supply. The 
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power to the FPGA core is supplied through 12V supply, which is converted to 0.9V for FPGA 

core using three LTM4601 regulators on the Altera DE4 board [62]. Therefore, the power 

supplied to the board is calculated by measuring the current through the 12V supply lines. 

The voltage drop across the 0.01-Ω resister connected in series with the supply lines is 

measured and current through the resistors is calculated by dividing the measured voltage with 

0.01-Ω.  

The current across the two 12 V supply lines are added to find out the total input current to 

the FPGA board.  

The input power to the board is found by using Equation (4.1), reproduced from [18] : 

                      PFPGA_Board = (IR1 + IR2) * Vvcc12                                             (4.1) 

The FPGA board power when minimum logic is programmed on the FPGA core can be 

calculated as PBoardMin from (4.1). The design is synthesized on the FPGA chip and the input 

power to the FPGA board is measured as PBoardwDesign.  

As mentioned before, the LTM4601 regulators down-convert the input voltage to the board 

to 0.9V for FPGA chip. Assuming that 100% of input power is converted to the FPGA core 

DE4 

BOARD12V DC Supply 

IR1 + IR2

+    VR1    -

+    VR2    -

 

Figure 4.2 : Power measurement setup for measuring power inDE4 board as demonstrated in 

[18] 
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power through voltage converters, the incremental FPGA core power for design can be 

calculated by subtracting PBoardMin from PBoardwDesign. However, in [18] it was noted that 

LTM4601 does not work at 100% efficiency; rather the conversion efficiency follows a curve, 

modeled by Equation (4.2), reproduced from [18]:  

 

PFPGAcoreAct= -2.039*(PFPGAwDesign)+ 16.93*(PFPGAwDesign)
0.5– 32.8                  (4.2) 

 

where P FPGAcoreAct is the actual power consumed by the FPGA core. Therefore, using Equation 

(4.2) the measured board power can be mapped to actual FPGA core power. 

 

4.3 FPGA Power Dissipation Discussion 

The ease of programmability and flexibility offered by FPGAs make them less power-efficient 

than custom ASICs for implementing a given logic circuit. The FPGA configuration circuitry 

and configuration memory consume more silicon area, which results in longer wire lengths and 

higher interconnect capacitances. Further additions to capacitive load are caused by 

programmable routing switches in the FPGA interconnect structures. The power consumed in 

FPGA core consists of dynamic and static power.  

In CMOS circuits the dynamic power is proportional to average capacitance, switching 

activity and voltage supply according to the relation:  

 

       
 

 
 ∑     

                                                                 

 

Thus dynamic power is due to the logic transitions in the signals in the capacitive circuit. 

Interconnect in an FPGA’s programmable routing fabric contributes a considerable portion of 
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the dynamic power. Dynamic power can also be reduced by reducing the switching activity in 

the non-critical areas of the circuit.  

The static power in logic circuits is the due to the leakage caused in the powered-on circuit 

even when no switching activity occurs. Leakage power is proportional to transistor count and 

is dependent on transistor width. A reduction in transistor width causes an almost linear 

reduction in leakage and dynamic power [63]. FPGA leakage power is dissipated in both the 

used (active mode leakage) and unused parts (sleep mode leakage) of the chip.  

In the older process technologies, dynamic power used to be major source of power 

dissipation in a digital circuit. However, going to sub-50-nm ranges of fabrication, the static or 

leakage power proves to be an important portion of the power consumption of a chip.  
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Chapter 5 

Results and Discussion 

 

Bit-parallel and digit-online decoders have been synthesized in the FPGA for decoding LDPC 

code words of size 576 bits and rate-3/4. The maximum iterations have been kept at 10 for 

both the decoder types. In this chapter, the bit-parallel LDPC decoder implementation is 

discussed first and later digit-online LDPC decoder implementation is discussed.  

 

5.1 WiMAX 576-bit, Rate-3/4 Bit-Parallel LDPC Decoder  

The bit-parallel decoder is a straightforward implementation of a Tanner graph in hardware. 

The decoding algorithm used is the min-sum algorithm with offset correction. The variable 

nodes perform the summation operation on the incoming messages; the check nodes after 

offset correction, select two minimum values out of the corrected LLR messages. The LLR 

messages are transmitted in parallel over multiple wires across the decoder nodes. The bit-

parallel decoder is written in VHDL and its operation is briefly described below: 

In the beginning of a new frame, channel values are loaded in all the variable nodes. In the 

first iteration, the variable nodes simply output the new channel values to the check nodes. The 

check nodes perform offset correction, select the minimum values and send back to variable 

nodes where the incoming LLR messages are added with channel LLR values. It is made sure 

that the variable (LLRsum) used to save the result of the addition are big enough, even if all 

the LLRs being added have magnitudes equal to maximum magnitude. The variable node 

output on each edge is calculated by subtracting the incoming LLR on that edge from 

LLRsum. If the magnitude of resulting LLR is beyond the allowed range, a positive maximum 

LLR or a negative maximum LLR is output depending on the sign of resulting LLR. The check 

nodes perform the operation of selecting the minimum of all incoming LLRs on the edges. 

Signs of all the incoming LLRs are checked to see if the check node constraints are satisfied 

and early termination criterion applies. If the check node constraints are satisfied, the variable 
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nodes are signaled to finish decoding and output the decoded code word after a thresholding 

operation. Offset correction is performed in the check node by subtracting the offset values 

from the minimum LLR magnitudes selected by the selection network. If the offset value is 

greater than the magnitude of minimum LLRs then all 0s are output, otherwise the message 

resulting after offset subtraction is output. The sign of the output LLR is decided based on the 

sign of the other LLRs. The interleaver specifies the connection between different nodes in the 

decoder. The interleaver files are generated from C++ routines by parsing the Base matrix 

(.hbm) and A-list (.alist) files for 576 bit, rate-3/4 WiMAX code.  

The controller for the bit-parallel decoder is very similar to the controller described for digit-

online decoder but much simpler. When beginning a new frame, the controller loads new 

channel LLRs into the variable nodes and supplies the offset values to all check nodes. The 

controller monitors number of iterations and finishes the decoding if the maximum number of 

iterations is reached or an early termination occurs. When finishing decoding, the decoder 

appends the hard decoded bits from all the variable nodes and outputs the decoded frame. 

 

5.1.1 ModelSim® Simulation 

Before implementation of the decoder on the FPGA, a test bench was written to ensure correct 

operation in VHDL for use in the ModelSim® software. Few of the issues faced while trying to 

simulate bit-parallel decoder in ModelSim® were: 

5.1.1.1 Simulation of Altera Megafunctions in ModelSim®:  

The AWGN module uses Altera megafunction LPM_MULT, which cannot be directly 

simulated in ModelSim®, since ModelSim® does not have definitions for it. There is a 

requirement for the inclusion of 220model and altera_mf library files from Altera Quartus® II 

in the ModelSim® project to fix this.  
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5.1.1.2 Mixed-language compilation:  

The project uses both VHDL and Verilog HDL. Compiling mixed languages in Quartus® II is 

not an issue. However, the version of ModelSim® in windows did not seem to support it. 

ModelSim® SE version in Linux supports fast mixed language compile and simulation. A 

screenshot from the ModelSim® simulation of the bit-parallel decoder for an input LLR 

precision of 5 bits and 10 iterations is shown in Figure 5.2.  

 

5.1.2 FPGA Synthesis 

After ensuring that the control signals are working fine and decoder decodes code words 

correctly, the design was moved to Altera Quartus® II software. Parallel LDPC decoders have 

long interconnection wires and since every edge in Tanner graph is actually a multi-bit parallel 

connection in hardware, this implementation is not very FPGA friendly.  

Area requirements in implemented bit-parallel LDPC code decoders increase very rapidly 

with increase in input LLR message precision as shown in Figure 5.1(a). The FPGA logic 

utilization   

 

Figure 5.1: For a bit-parallel offset-MS LDPC decoder implementation for a code size of 576 

bits, rate-3/4; (a) represents change in FPGA logic utilization versus LLR precision, and (b) 

represents fmax values for changing LLR precision 
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Figure 5.2: ModelSim® simulation for 576 bit, rate-3/4 WiMAX bit-parallel decoder for input 

LLR precision of 5 bits and maximum iteration number = 10 
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Figure 5.3: Variation in minimum throughput for variations in input LLR decoder 

implementations 

 

is about 62% for an input LLR precision of 3 bits and increases almost linearly with increasing 

LLR precision up to 99% logic utilization at 6-bit input LLR precision. Bit-parallel decoders 

with LLR message precision more than 6 bits were unable to fit in the FPGA.  

TimeQuest timing analyzer tool in Quartus® II was used to perform timing analysis as well 

as to ensure the setup and hold requirements in the circuit were met. The maximum clock 

frequency (fmax) for the design is determined in both the fast- and the slow-corners using 

TimeQuest timing analyzer. Figure 5.1(b) shows the variation of maximum clock frequency 

(fmax) for the bit-parallel decoder with different LLR input precisions. The reported fmax for the 

designs is the lowest value of fmax from all the analyzed timing corners. The fmax for the bit-

parallel decoder demonstrates a slightly decreasing pattern with increasing input LLR 

precision. For the smallest decoder with 3-bit input LLR messages fmax is about 30 MHz, while 

for the bit-parallel decoder with input LLR precision 6 bits wide it is about 24 MHz.  

Minimum coded throughput versus input LLR precision for a bit-parallel decoder is shown 

in Figure 5.3. Maximum iterations allowed for decoding a code word are 10; thus, the bit-

parallel decoder takes 11 clock cycles for decoding a code word. Therefore, throughput of the 
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bit-parallel decoder is only affected by fmax, therefore, coded throughput versus LLR precision 

for a bit-parallel decoder forms a curve similar to that of fmax versus LLR precision.  

The SignalTap II logic analyzer was used to verify signals and debug FPGA hardware. Once 

the design was successfully synthesized on FPGA, the power analysis using the power 

measurement setup discussed previously was performed.  

5.1.2.1 Use of Gating Signal 

In the design implemented on FPGA since the decoder is provided with frames at a controlled 

rate. It was found on synthesis that the decoder kept consuming power at low SNRs even after 

performing a hard decision output. The reason for this was that until a new frame was loaded 

in the decoder, the nodes were trying converge the messages to satisfy the constraints, so other 

words, the decoding was still going on in the background. A quick fix solution for this was use 

of a latch-based clock-gating signal. The clock input to the check nodes is ANDed with the 

output of the latch to form a new clock signal. The clock-gating latch is transparent while the 

decoder performs decoding iterations before hard decision output; after the hard decision, the 

controller signals the latch to block the clock signal until a new frame is loaded. This signal 

can be seen in the ModelSim® screenshot in Figure 5.5. The gating signal turns ‘on’ before the 

decoder goes into the ‘decoding’ state and stays on until the decoding is done for 10 iterations. 

As Gating signal goes low, the nodes do not consume any dynamic power.  

5.1.2.2 BER Performance 

The bit error rate versus SNR for a bit-parallel LDPC decoder with input LLR precision of 3 

bits is shown in Figure 5.4. The value of offset used is 001 and maximum of 10 iterations per 

frame are performed. 

 

5.2 WiMAX 576-bit, Rate-3/4 Digit-Online LDPC Decoder  

Like the bit-parallel decoder, the digit-online decoder was first tested in ModelSim® for correct 

functioning. Afterwards, the decoder was implemented in FPGA and power stats were studied.  
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Figure 5.4: BER curve for bit-parallel decoder. The input LLR precision is 3 bits. Offset value is 

001 and maximum 10 decoding iterations per frame 

 

5.2.1 ModelSim® Simulation  

The ModelSim® simulation screenshot for a 6-bit LLR precision digit-online decoder is shown 

in Figure 5.5. The control signals in the digit-online decoder are very similar to those of the 

bit-parallel decoder with a few new signals. The length of an iteration depends on the pipeline 

length in the decoder and increases with increase in LLR precision. It can be seen in Table 5.1 

that each iteration in a 6-bit LLR digit-online decoder is 7 clock cycles long. 6-bit conventional 

sign-magnitude LLRs are converted into 5 digits in signed-binary format. Each digit occupies 

one pipeline stage in the digit-online decoder, the pipeline length as shown in Table 5.1 is 

more than LLR length in digits, the difference is filled with guard digits to prevent overflow in 

the decoder nodes.  

5.2.2 FPGA synthesis 

The area requirements in a digit-online decoder change very slowly with changes in LLR 

precision in contrast with the bit-parallel decoder. A digit-online decoder with 6 bit input LLR 
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Figure 5.5 : ModelSim® simulation showing main signals in digit-online decoder. Input LLR 

precision is 6 bits and maximum iterations = 4. The decoder simulation was slightly modified 

for better illustration 
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precision uses about 91% of FPGA’s logic resources. Increasing the input LLR precision of the 

digit-online decoder, the decoder size remains fairly constant as shown in the Figure 5.6. 

However, it was found that the lower LLR precision decoder implementations tend to use more 

ALUTs (Adaptive Lookup Tables) and fewer DLRs (Dedicated Logic Registers) as compared 

to high LLR precision decoders implementations (see Appendix A). As input LLR precision 

increases in digit-online decoder the number of pipeline stages increase as well. Higher 

pipelining also allows for higher clock frequencies, thus compensates for the more number of 

clock cycles required for decoding a frame with increasing LLR precisions.  

The FPGA logic utilization in case of the digit-online decoders for different LLR message 

sizes is shown in Figure 5.6.  As can be seen, the area occupied by the digit-online decoder 

does not vary much unlike bit-parallel decoder. The logic utilization on average changes by 5-

6% when the synthesis optimization settings are changed from ‘Balanced’ to ‘Area’ or 

‘Speed’. Selecting the fitter effort out of ‘Standard fit’, ‘Fast fit’ or ‘Auto Fit’ has impact not 

only on the logic utilization, but also on the design compilation time.  

Performing a ‘Standard Fit’ is most time consuming, with average compilation time of about 

4-5 hours. A ‘Fast Fit’ or ‘Auto Fit’ reduces the average compilation time to about 60-90 

minutes. The difference in area utilization between the ‘Standard fit’ and ‘Fast Fit’ on average 

is about 6-7%. The variations in the logic utilizations for various decoder configurations can be 

attributed to inherent randomness in the CAD algorithms of Quartus® II. 

The maximum clock frequency (fmax) for the design is determined in both the fast- and the 

slow-corners using TimeQuest timing analyzer just like the bit-parallel decoder 

implementation. Figure 5.7 (a) shows the variation of maximum clock frequency (fmax) for 

decoder implementation with different LLR input precisions. The reported fmax for the designs 

is the lowest value of fmax in all the analyzed corners. The fmax for the digit-online decoder 

increases with increasing input LLR precision implementations, going from 90 MHz for 6-bit 

input LLR decoder indicating that fmax for FPGA based digit-online decoders starts saturating 

near 145 MHz. It might be possible to clock the design at higher clock rates by use of 

appropriate synthesis settings. 
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Input LLR Precision (bits) Input LLR Precision (digits) Δv Δc Pipeline Length 

6 4 4 3 7 

8 7 5 4 9 

9 8 6 4 10 

11 10 7 5 12 

13 12 7 7 14 

11 (frame interlaced) 4 (each frame) 7 5 12 

13 (frame interlaced) 5 (each frame) 7 7 14 

 

Table 5.1: Table shows the digit-online decoder pipeline length for a different input LLR 

precisions in bits. The LLR values are converted from sign-magnitude format to signed-binary 

format in the decoder and stored in form of digits. Δv and Δc is the length of the variable node 

pipeline and check node pipeline repectively. 

 

 

 

Figure 5.6 : Graph showing variation in FPGA logic utilization for variation input LLR 

precision configurations of the digit-online decoder. 
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Figure 5.7: Plot showing variation of (a) fmax and, (b) minimum throughput vs LLR Precision 

for digit-online decoder. 

 

Minimum coded throughput versus input LLR precision for the digit-online decoder is 

shown in Figure 5.7(b). A code word is decoded in a maximum of 10 iterations. The number of 

clock cycles per iteration depends on the LLR precision as discussed before. Therefore, 

minimum coded throughput can be calculated from fmax and number of clock cycles required 

for decoding a code word for a digit-online decoder implementation and multiplying by code 

word size (576 bits). 

The SignalTap II logic analyzer was used to verify signals and debug FPGA hardware. Once 

the design was successfully synthesized on FPGA, the power analysis using the power 

measurement setup discussed previously was performed.  

5.2.3 BER Performance 

A BER curve for the digit-online decoder was calculated using the BER calculation module 

synthesized in the FPGA. The BER calculation module counts a minimum of 250 errors at 

each SNR value. The input code word to the digit-online decoder is of size 576 bits and rate-

3/4, input LLR precision is 6 bits and the decoder performs a maximum of 10 decoding 

iterations.  
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5.2.3.1 BER curve 

An offset value of 000011 was found to provide the best BER performance. The observed bit 

error rate (BER) performance versus SNR for the 6-bit digit-online decoder synthesized on the 

FPGA is shown in Figure 5.8. 

5.2.3.2 Effect of Offset 

The BER of the digit-online decoder for different offset values was calculated as shown in 

Figure 5.9. As can be seen, the choice of the offset affects the BER performance a lot, 

especially if a large value of the offset is chosen. It was found that an offset value of 000011 

gives the best error performance for a 6-bit LLR digit-online decoder configuration. BER 

performance for an offset value of 000000 basically corresponds to MS decoding without 

offset correction. It can be seen from Figure 5.9, for an offset value of 000000 the BER is     

5.6 x 10-9 while with an appropriate choice of offset value the BER can go as low as            

8.77 x 10-10 for same SNR value of 3.75 dB. 

 

 

Figure 5.8: BER vs SNR curve for a digit-online decoder. The input LLR precision is 6 bits. 

Offset value is 000011. 
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Figure 5.9: Effect of offset on BER vs SNR curve for a synthesized 6-bit input LLR digit-online 

decoder for a code word size of 576bits, rate -3/4. The decoder performs maximum of 10 

iterations. 

 

5.3 Power Characterization Experiment 

For the power characterization experiment, a constant throughput (coded) value of 450 Mb/s is 

chosen for all the LDPC decoder implementations to get an idea of how expensive a particular 

implementation choice is in terms of power consumption to achieve a specific throughput. For 

the bit-parallel decoder, the code words are introduced at a controlled rate from the shift-out 

register in Figure 4.1. The shift-out register shifts-out 18 of encoded frame bits per clock cycle; 

thus, an encoded frame is shifted out completely every 32 clock cycles, and a new encoded 

frame is loaded in the shift-out register. For an input clock frequency of 25 MHz this 

corresponds to 781, 250 frames/second, for a frame size of 576 bits corresponds to 450 Mb/s 

coded throughput. The bit-parallel decoder decodes a code word in 11 clock cycles and asserts 

a ready signal (Chapter 4); however, a new code word is not introduced until the next 21 clock 

cycles and for that duration the decoder nodes are clock-gated to halt any unnecessary 

switching activity in decoder.  
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The implementation of the 450 Mb/s throughput is slightly different in case of digit-online 

decoder. Since, the digit-online decoder requires more clock cycles for decoding a code word 

in comparison with the bit-parallel decoder; it is fed with new code word LLRs as soon as it is 

ready to accept new code words. Since the number of clock cycles required for decoding a 

code word in a digit-online decoder increases with increase in LLR message precision because 

of increased pipeline stages; higher LLR precision digit-online decoder configurations are 

clocked at increasingly higher frequencies as shown in Table 5.2 to keep a throughput of 450 

Mb/s. One of the reasons for choosing a coded throughput value of 450 Mb/s for power 

characterization is because it is easily achievable by all the decoder configurations. The bit-

parallel decoder implementation requires the number of bits out from the shift-out register to 

be a divisor of 576 bits for a simple implementation. The chosen number of bits out for 450 

Mb/s is 18; the nearest choices are 16 or 24, which correspond to a throughput of 400 Mb/s or 

675 Mb/s respectively. The latter throughput cannot be achieved by 13-bit LLR configuration 

in digit-online decoder, while the former is smaller than the current selection; it is better to go 

with as high as throughput possible for better power characterization.  

 

Digit-online decoder LLR precision Clock frequency (MHz) 

6-bit  55 

8-bit 70 

9-bit 78 (*80) 

11-bit 94 (*95) 

13-bit 110  

11-bit (frame-interlaced mode) 47 (*45) 

13-bit (frame-interlaced mode) 55 

Table 5.2: Table showing operating clock frequencies for a throughput of 450 Mb/s for the power 

characterization experiment. The mode of operation is single-frame mode, unless mentioned. All 

decoder configurations perform 10 decoding iterations. 
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5.3.1 FPGA Core Power Consumption 

The power input to the DE4 board is measured and mapped to the FPGA core power using 

Equation (4.2). Figure 5.10 shows a plot of the FPGA core power plot versus change in SNR 

values of the input LLRs for the bit-parallel and digit-online LDPC decoder implemented on 

FPGA. The LDPC decoder power tends to decrease with increase in SNR of input LLR 

messages because of reduced switching activity at the decoder input and in the decoding 

iterations. 

From Figure 5.10, it can be observed that the FPGA core power increases with increase in 

the LLR message precision. For the bit-parallel LDPC decoder implementation, this is because 

the decoder size increases with increase in input message precision; thus the dynamic as well 

as static power increases. For a digit-online decoder, area of decoder implementation does not 

vary much with different input message precisions, therefore, the static power remains 

relatively constant. But for this experiment, higher precision digit-online decoder 

configurations are clocked at higher frequencies to make up for longer iterations, thus resulting 

in increasing FPGA core power due to increased switching activity with increasing input LLR 

precision. A few of the cases from Figure 5.10 stand out and require further explanation.   

 

Figure 5.10: FPGA core power (mapped)(W) vs SNR plot of different LLR precisions for (a) 

bit-parallel decoder and, (b) digit-online decoder. 
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5.3.1.1 5-bit and 6-bit LLR Input Bit-Parallel Decoder 

The 6-bit LLR decoder configuration in Figure 5.10(a) consumes about twice as much power 

as compared with 5-bit LLR decoder configuration. While the logic utilization between these 

two configurations does not change that much at about 86% for 5-bit configuration and 99% 

for 6-bit configuration, the 6-bit LLR decoder configuration has very high interconnect usage 

(61% average) as compared with 38% average for 5-bit configuration. High logic utilization 

and interconnect usage not only adds additional dynamic power but also adds considerable 

static power dissipation to the FPGA core power. A plot showing the average interconnect 

usage in the decoder configurations for different LLR message precisions is shown in Figure 

5.11. Two cases in digit-online decoders require further discussion. 

5.3.1.2 Single Frame Mode 11-bit and 13-bit LLR Digit-Online Decoder Configuration 

It can be seen in Figure 5.10(b), there is a larger gap in core power dissipations in between the 

11-bit and 13-bit configurations of the digit-online decoder. The logic utilization in the case of 

13-bit LLR digit-online decoder is increased by 4%. Also from Figure 5.11, it can be seen that  

 

 

Figure 5.11: Average interconnect usage variation with changing input LLR precision for (a) 

bit-parallel decoders and, (b) digit-online decoders synthesized on the FPGA. 
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the interconnect usage in case of a 13-bit LLR digit-online decoder configuration the average 

interconnect usage is about 34% as compared with 27% in the case of 11-bit LLR digit-online 

decoder. In the case of a serial message passing decoder like digit-online decoder, the power 

dissipated in the interconnect forms an important part of the decoder power consumption. 

Thus, increase in logic utilization and interconnect usage results in increased power 

consumption in case of 13-bit LLR input digit-online decoder. 

 

5.3.1.3 Single-Frame Mode 6-bit, 8-bit LLR and Frame-Interlaced Mode 13-bit LLR Digit-

Online Decoder Configuration 

The input clock frequency for 6-bit LLR and 13-bit (interlaced) LLR digit-online decoder 

configurations is 55 MHz. Thus, it was expected for these two configurations to have nearly 

equal power consumptions. Instead, the power consumption of 13-bit (interlaced) LLR digit-

online decoder configuration is nearly equal to 8-bit LLR digit-online decoder.  

The 13-bit (interlaced mode) LLR digit-online decoder configuration utilizes only about 2% 

more FPGA logic than 6-bit decoder configuration but ends up consuming about 10% more 

routing resources and results in higher power consumption. The 8-bit LLR digit-online decoder 

configuration takes up 6% less logic and 4% less routing resources on FPGA; thus, even 

though it is clocked at higher frequency, it results in nearly equal power consumption with 13-

bit (interlaced) LLR digit-online decoder configuration. Another factor for increased core 

power in the case of 13-bit (interlaced) LLR configuration compared with 6-bit configuration 

is increased static power in the synthesized LBAs in Stratic IV FPGA. Quartus® II software 

evaluates slacks in the different parts of the circuit and assigns individual LBAs in either high-

performance or low-power modes [64]. In the chip planner tool in Quartus® II software the 

high-performance logic blocks are shown as yellow and low-power blocks are shown in blue 

color. Figure 5.12 shows a screenshot from the Chip Planner tool in Quartus® II for both 

configurations. The transistors in the blue tiles have reduced back-bias voltage and hence are 

difficult to turn-on, the yellow tiles on the other hand are easier to turn-on. Thus, yellow tiles 

in the FPGA core have higher leakage currents and more static power dissipation.  
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5.3.2 Energy-Per-Coded-Bit (E/b) 

Energy per coded bit (E/b) provides an important metric to compare energy expense 

requirements for an LDPC decoder. E/b can be calculated as:  

Energy per coded bit (E/b)  
         

                
                                (5.1) 

Energy per bit values are calculated from the FPGA core power values reported in Figure 5.10, 

for a coded throughput value of 450 Mb/s and are shown in Figure 5.13. Average energy-per-

coded-bit values for the bit-parallel and digit-online decoder are discussed in chapter 6.  

5.3.3 Energy Per Iteration  

For the purpose of finding out the power expenses per iteration in the digit-online decoder, two 

6-bit LLR decoder configurations with maximum 4 and 6 iterations were synthesized in the 

FPGA.  

 

Figure 5.12: FPGA synthesis of Digit-Online decoder design showing low-power (blue) and 

high-performance (yellow) tiles for (a) 6-bit LLR configuration and, (b) 13-bit LLR 

configuration. Low-power tiles in Stratix IV FPGA have reduced back-bias transistor voltage, 

which reduces sub-threshold leakage power. 
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Figure 5.13:  Energy-per-coded-bit values for different (a) bit-parallel and, (b) digit-online 

decoder configurations plotted vs SNR(dB). 

 

The power dissipated in the FPGA core consists of both dynamic and static components. The 

FPGA resource utilizations in 4 and 6 maximum iteration cases are almost equal; thus, the 

static power dissipation in both decoders can be considered to be almost equal as well. The 

dynamic power consumed in the digit-online decoder can be broken down into two main 

components: 1) power consumed in loading new frame LLRs, 2) power consumed in 

performing decoding iterations. The power consumed in each decoding iteration will likely be 

different, since LLRs tend to converge as decoding progresses and switching activity reduces. 

However, since the LLRs are processed in redundant representation, for calculations here, the 

power consumption in iterations is assumed to be equally distributed. 

For the digit-online decoder with maximum 4 iterations, let’s assume ‘x’ is the power 

consumed due to loading of new frames and ‘y’ is the power consumed in the decoding 

iterations performed in 1 second. Therefore, the contribution of the x and y to the power,    

Pcore, 4 iterations (C1) consumed in the digit-online decoder can be written in form of Equation 

(5.2) as: 

1*x + y = C1                                                          (5.2) 
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where C1 is the mapped FPGA core power for 6-bit LLR digit-online decoder with maximum 

4 iterations. 

The digit-online decoder with maximum 6 iterations will process less number of frames in 

same time as compared with the digit-online decoder with maximum 4 iterations. Thus, the 

power consumed in loading a new frame x, is multiplied by a factor of 0.67. Since the 

iterations in the digit-online decoder simply keep incrementing in circular fashion, the number 

of iterations taking place in both the decoders is still the same. Thus, power component due to 

y remains unchanged. Therefore, the consumed FPGA core power, Pcore, 6 iterations (C2), can be 

given by the expression: 

0.67*x + y = C2                                                     (5.3) 

Equations (5.2) and (5.3) can be solved for x and y to find out the power consumed in loading 

a new frame in the decoder and power consumed in performing decoding iterations in one 

second.  

To verify the results, the values of x and y are used to estimate power consumption for 6-bit 

digit-online decoder with a maximum 10 iterations using the expression:   

 

Estimated FPGA core power, Pcore, 10 iterations  = 0.4*x + y                        (5.4) 

 

Calculations are performed at power data from different SNRs and shown in 

Table 5.3. For a digit-online decoder with input LLR precision 6 bits, each decoding iteration 

is 7 clock cycles long. Therefore, the number of iterations per second for an input clock 

frequency of 55 MHz can be calculated as 7.86 x 106. The average value of y can be used to 

estimate the average energy used per iteration, which comes out to be 0.17 μJ.  
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SNR C1-C2 

x = Power 

(frame-loading)(W) 

= (C1-C2) *3 

 

y = Power 

(iterations)(W) 

 

Estimated 

power for 10 

iterations 

(W) 

Measured 

power for 

10 iterations 

(W) 

Difference 

in Est. and 

Meas. Pow. 

2.5 0.042737 0.128211074 1.253455 1.30474 1.395665 0.090925 

3 0.065233 0.195699101 1.227595 1.305875 1.414139 0.108264 

3.5 0.046186 0.138556773 1.289295 1.344718 1.353299 0.008581 

4.0 0.040775 0.122326417 1.332588 1.381518 1.334112 -0.04741 

4.5 0.031903 0.095708588 1.345735 1.384018 1.295069 -0.08895 

5 0.040413 0.121238052 1.347027 1.395522 1.309815 -0.08571 

6 0.022518 0.067555062 1.387359 1.414381 1.319575 -0.09481 

7 0.040051 0.120154344 1.361341 1.409402 1.319575 -0.08983 

8 0.00445 0.013350292 1.450478 1.455818 1.324435 -0.13138 

Average : 

0.037 

 

 

 

 

0.111422189 

 

1.332764 

 

1.377332 1.340631 -0.0367 

 

Table 5.3 : Table shows calculation steps for estimating power consumption for a 6-bit LLR 

digit-online decoder with 10 decoding iterations and the difference between the actual measured 

and estimated values. The average power consumed in loading a frame and performing 

decoding iterations is shown in bold.  
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Chapter 6 

Summary and Future Work 

 

6.1 Thesis Summary  

In this thesis, FPGA implementations of bit-parallel and digit-online LDPC decoders have 

been presented. The chosen code size and code rate is among the ones supported by WiMAX 

(IEEE 802.16) standard. The reported results include FPGA synthesis specific results like the 

effect of changing input log likelihood ratio (LLR) precision on the decoder size, the maximum 

clock frequency and decoder power consumption. The effects on decoder power consumption 

with changing signal-to-noise ratio of the input LLRs for different configurations of both the 

decoder types have been studied and reported. 

Bit-error-rate (BER) for a 6-bit precision LLR input digit-online decoder synthesized on the 

FPGA is reported as 1.2 x 10-10 at 4.0 dB. The effect of offset value on the BER performance 

of the 6-bit LLR input digit-online decoder is analyzed and BER for different offset values is 

reported. For the digit-online decoder configurations synthesized on the FPGA, 11-bit LLR 

precision decoder configuration gives the highest throughput of 1363 Mb/s in frame-interlaced 

mode. 

A power characterization experiment to compare the power consumed in the bit-parallel and 

digit-online decoders decoding at a throughput of 450 Mb/s is reported. The energy-per-coded-

bit values for all the decoder configurations are presented. Table 6.1 reports the average values 

of the energy-per-coded-bit for different decoder configurations. The lowest E/b values for the 

digit-online decoder are shown. Energy-per-iteration is reported for a 6-bit LLR digit-online 

decoder. The power consumed in the FPGA core is due to loading of new frames and the 

decoder performing the decoding iterations, each of which are reported separately. 

A breakdown of the entity resource utilization for the bit-parallel decoder and the digit-

online decoder is presented in appendix A. The entities in the bit-parallel decoder tend to 
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Decoder type Bit-parallel Digit-online (single frame) 
Digit-online (frame-

interlaced) 

LLR 
Precision(bits) 

3 4 5 6 6 8 9 11 13 11 13 

Average E/b (nJ) 0.58 0.72 1.09 2.23 2.77 3.15 3.39 3.79 4.54 2.29 3.25 

Table 6.1 : A table showing average E/b values for different decoder implementations, the 

observed minimum E/b values for digit-online decoder are shown in bold. 

 

increase almost linearly in logic resource utilization with increase in message precisions. This 

is to be expected, since with increase in the message precision the size of the adders and 

comparators in the decoder nodes also increases. The entities in the digit-online decoder do not 

show a specific pattern to the increase in message precision, with the exception of controller. 

The size of controller increases linearly with increase in the LLR message precision, because 

of the size of the new frame LLRs being stored in the controller.  

The size of the individual nodes in the digit-online decoder fluctuates around the average 

values listed in Table 6.2. Since the digit-online decoder processes messages in a digit-serial 

format, increase of message precision in the decoder causes slight increase in registers used 

each node because of increased pipelining. The size of the adders and the selection networks in 

the decoder nodes, however, mainly depends on the degree of the node. It might be informative 

to look at the size of the individual check nodes and variable nodes and predict the size of the 

decoder for a specific code size. 

  

Decoder Entity Avg. ALUTs Avg. DLRs Avg. ALMs 

Check Node (degree 14) 730 293.6 470.1 

Check Node (degree 15) 783.4 312.8 501.2 

Variable Node (degree 2) 13.2 16.8 15.2 

Variable Node (degree 3) 25.6 21.2 19.8 

Variable Node (degree 4) 39.8 38.8 39.6 

Table 6.2: Table showing average values of various entities in the 576 bit, rate-3/4 digit-online decoder 
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6.2 Future Work 

The 8-bit LLR and 13-bit LLR configurations of digit-online decoder show higher interconnect 

usage as compared to their neighbors and thus have higher power consumption. No special 

attempts have been made to reduce logic utilization and interconnect routing resources in case 

of digit-online decoders. Using appropriate constraints in the Quartus® II, it might be possible 

to further optimize logic utilization and interconnect usage in these decoder configurations.  

The LLRs in the digit-online decoder are loaded in parallel and are stored in ALM resources, 

this not only causes high usage of routing resources at the input of decoder but also cause a 

huge switching activity when a new frame is loaded. Instead, it might be possible to distribute 

the loading of LLRs over a few clock cycles and employ block memory available on the FPGA 

to store the LLR messages. However, as seen in Section 5.3.3, the power consumed in the 

loading of a new frame is very less as compared with power consumed in performing decoding 

iterations. It might be interesting to implement digit-online decoder configurations for higher 

code sizes and code rates on a bigger FPGA.  
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Appendix A 

FPGA Resource Utilization Analysis 

 

Bit-parallel and digit-online LDPC decoders discussed in this thesis decode LDPC code words of 

size 576 bit and rate-3/4. Both the implemented decoders consists of controller, check nodes 

(degrees 14 and 15) and variable nodes (degrees 2, 3 and 4). It is informative to look how FPGA 

resource utilization in each entity varies with increase in LLR message precisions input to the 

decoders. Resource utilization plots showing ALUTs (Adaptive Look Up Tables), DLRs 

(Dedicated Logic Registers) and ALMs (Arithmetic Logic Modules) usage are shown. 

A.1 Bit-Parallel Decoder  

 

Figure A.1:  Resource utilization plots for (a) bit-parallel decoder, (b) controller, (c) degree-14 

check node (avg.), (d) degree-15 check node (avg.) are shown vs LLR precision. 



 

71 

 

 

Figure A.2: Average resource utilization plots for bit-parallel decoder (a) degree-2 variable 

node, (b) degree-3 variable nodes and (c) degree-4 variable node are shown vs LLR precision. 
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A.2 Digit-Online Decoder 

 

Figure A.3: Resource utilization plots for (a) digit-online decoder, (b) controller, (c) degree-14 

check node (avg.), (d) degree-15 check node (avg.) are shown vs LLR precision. 
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Figure A.4 : Average resource utilization plots for digit-online decoder (a) degree-2 variable 

node, (b) degree-3 variable nodes and (c) degree-4 variable node are shown vs LLR precision. 

 

 

 

 

 

 

 


