
Power Characterization of a Digit-Online

FPGA Implementation of a Low-Density

Parity-Check Decoder for WiMAX

Applications

by

Manpreet Singh

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

© Manpreet Singh 2014

ii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Low-Density Parity-Check (LDPC) codes are a class of easily decodable error-correcting codes.

Published parallel LDPC decoders demonstrate high throughput and low energy-per-bit but

require a lot of silicon area. Decoders based on digit-online arithmetic (processing several bits

per fundamental operation) process messages in a digit-serial fashion, reducing the area

requirements, and can process multiple frames in frame-interlaced fashion. Implementations on

Field-Programmable Gate Array (FPGA) are usually power- and area-hungry, but provide

flexibility compared with application-specific integrated circuit implementations. With the

penetration of mobile devices in the electronics industry the power considerations have become

increasingly important. The power consumption of a digit-online decoder depends on various

factors, like input log-likelihood ratio (LLR) bit precision, signal-to-noise ratio (SNR) and

maximum number of iterations.

The design is implemented on an Altera Stratix IV GX EP4SGX230 FPGA, which comes on an

Altera DE4 Development and Education Board. In this work, both parallel and digit-online block

LDPC decoder implementations on FPGAs for WiMAX 576-bit, rate-3/4 codes are studied, and

power measurements from the DE4 board are reported. Various components of the system

include a random-data generator, WiMAX Encoder, shift-out register, additive white Gaussian

noise (AWGN) generator, channel LLR buffer, WiMAX Decoder and bit-error rate (BER)

Calculator. The random-data generator outputs pseudo-random bit patterns through an

implemented linear-feedback shift register (LFSR).

Digit-online decoders with input LLR precisions ranging from 6 to 13 bits and parallel

decoders with input LLR precisions ranging from 3 to 6 bits are synthesized in a Stratix IV

FPGA. The digit-online decoders can be clocked at higher frequency for higher LLR precisions.

A digit-online decoder can be used to decode two frames simultaneously in frame-interlaced

mode. For the 6-bit implementation of digit-online decoder in single-frame mode, the minimum

throughput achieved is 740 Mb/s at low SNRs. For the case of 11-bit LLR digit-online decoder

in frame-interlaced mode, the minimum throughput achieved is 1363 Mb/s. Detailed analysis

such as effect of SNR and LLR precision on decoder power is presented. Also, the effect of

iv

changing LLR precision on max clock frequency and logic utilization on the parallel and the

digit-online decoders is studied. Alongside, power per iteration for a 6-bit LLR input digit-online

decoder is also reported.

v

Acknowledgements

First of all, I would like to thank my supervisor Dr. Vincent Gaudet for his guidance, support,

funding, and confidence in me and my work.

I am very thankful to Dr. Philip P. Marshall and Si-Yun Li for providing me with all the

necessary help for making this work possible.

Many thanks to all the research group members including Brendan Crowley, Si-Yun Li,

Bahareh Ebrahimi, Navid Bahrani, Rachna Srivastava, Chris Ceroici, Pierce Chuang for their

valuable advice and feedback from time to time.

A bunch of thanks to Dr. Hiren Patel and Dr. Liang Liang Xie for accepting to act as readers

for my thesis.

I also would like to mention how grateful I am to have worked alongside with some amazing

people like Dr. Edgar Mateos Santillan, Dr. Bill Bishop, Dr. Wayne Loucks, Dr. Rodolfo

Pellizzoni, Dr. Marcio Juliato, Dr. Carlos Moreno, Najma Jose, Bahaedinne Jlassi, Mortaja

AlQassab, Peter Dawoud, Farhad Haghighizadeh, Alborz Rezazadeh Sereshkeh, Roger

Sanderson, during my assignments as a Teaching Assistant at University of Waterloo. Many of

these people I run into during my casual walks through University corridors and we have some

good chats about future, past and sometimes present.

And, I am thankful to University of Waterloo for providing me with the coolest office ever; I

really enjoyed partially jealous looks from anyone who visited my office for the first time. I am

so glad to have had some great office mates at University of Waterloo, mostly they are great

because they were away most (all) of the time, leaving me as the sole owner of the office. Saud

Wasly, thank you very much for the support and guidance in times of need. You are among the

most astute people I know.

I had the good fortune of meeting many people at University of Waterloo; sadly, I won’t be

able put down names of everyone. I would really like to thank you for being a part of my life,

however small it was, for it contributed towards the kind of person I am today. Thanks.

vi

Dedication

Dedicated to all my dear ones whose love and support helped me make it through

vii

Table of Contents

AUTHOR'S DECLARATION ... ii

Abstract ... iii

Acknowledgements .. v

Dedication ... vi

Table of Contents ... vii

List of Figures ... ix

List of Tables ... xi

Chapter 1 Introduction .. 1

Chapter 2 Background .. 3

2.1 LDPC Codes ... 3

2.2 LDPC Decoding ... 4

2.2.1 Sum-Product Decoding ... 6

2.2.2 Min-Sum Decoding ... 7

2.3 LDPC Decoder Implementations and Comparisons ... 8

2.3.1 Parallel LDPC Decoding ... 8

2.3.2 Serial LDPC Decoder Implementation .. 10

2.3.3 Stochastic LDPC Decoding ... 11

2.3.4 Analog LDPC Decoders .. 12

2.4 LDPC Decoder Implementation on FPGA ... 12

2.5 Altera Stratix IV FPGAs .. 15

Chapter 3 Digit-Online Decoder .. 19

3.1 Digit-Online Arithmetic ... 19

3.2 LDPC Encoder ... 21

3.3 Digit-Online Decoder ... 21

3.3.1 Variable Node Structure .. 23

3.3.2 Check Node Structure .. 24

3.3.3 Controller ... 27

3.3.4 Single Frame Decoding ... 29

3.3.5 Frame-Interlaced Decoding ... 31

Chapter 4 Test Unit and Power Measurement Setup .. 34

viii

4.1 Introduction .. 34

4.1.1 FPGA Implementation ... 34

4.2 FPGA Core Power Measurement ... 36

4.3 FPGA Power Dissipation Discussion ... 38

Chapter 5 Results and Discussion .. 40

5.1 WiMAX 576-bit, Rate-3/4 Bit-Parallel LDPC Decoder .. 40

5.1.1 ModelSim
®
 Simulation .. 41

5.1.2 FPGA Synthesis... 42

5.2 WiMAX 576-bit, Rate-3/4 Digit-Online LDPC Decoder .. 45

5.2.1 ModelSim
®
 Simulation .. 46

5.2.2 FPGA synthesis ... 46

5.2.3 BER Performance .. 50

5.3 Power Characterization Experiment ... 52

5.3.1 FPGA Core Power Consumption .. 54

5.3.2 Energy-Per-Coded-Bit (E/b) .. 57

5.3.3 Energy Per Iteration ... 57

Chapter 6 Summary and Future Work .. 61

6.1 Thesis Summary ... 61

6.2 Future Work ... 63

Bibliography ... 64

Appendix A FPGA Resource Utilization Analysis .. 70

A.1 Bit-Parallel Decoder .. 70

A.2 Digit-Online Decoder .. 72

ix

List of Figures

Figure 2.1: An H matrix example of a (3, 6) regular LDPC code with N = 16 and M = 8 (3)

Figure 2.2: An example of a Tanner graph .. (4)

Figure 2.3: High level diagram of a Stratix IV ALM .. (16)

Figure 2.4: Stratix IV ALM in Normal mode .. (17)

Figure 2.5: Stratix IV ALM in Arithmetic mode... (17)

Figure 2.6: Carry, Arithmetic and Register chains in Stratix IV ... (18)

Figure 3.1: A 576-b encoder frame output from the LDPC encoder frame (21)

Figure 3.2: Digit-online decoder system diagram ... (22)

Figure 3.3: Various components of digit-online decoder .. (22)

Figure 3.4: An example degree-4 variable node .. (24)

Figure 3.5: Digit-online decoder - variable node structure.. (25)

Figure 3.6: Digit-online decoder - check node structure ... (26)

Figure 3.7: Beginning of decoding in single-frame mode -timing diagram (29)

Figure 3.8: Finishing decoding previous frame, hard-decision output in single frame mode -timing

diagram .. (30)

Figure 3.9: Beginning of decoding in frame-interlaced mode -timing diagram (31)

Figure 3.10: Finishing decoding previous frame, hard-decision output in frame-interlaced mode -

timing diagram .. (32)

Figure 4.1: Block diagram of the FPGA implementation ... (35)

Figure 4.2: Power measurement setup for measuring power in DE4 board (37)

Figure 5.1: (a) FPGA logic utilization, (b) fmax versus LLR precision bit-parallel decoder (42)

Figure 5.2: ModelSim
®
 simulation for 576 bit, rate-3/4 bit-parallel decoder (43)

Figure 5.3: Minimum throughput vs LLR precision for bit-parallel decoder (44)

Figure 5.4: Bit-parallel decoder BER curve .. (46)

Figure 5.5: ModelSim
®
 simulation for 576 bit, rate-3/4 digit-online decoder (47)

Figure 5.6: FPGA logic utilization versus LLR precision for digit-online decoder (49)

Figure 5.7: (a) fmax, (b) minimum throughput versus LLR precision. ... (50)

Figure 5.8: Digit-online decoder BER curve ... (51)

Figure 5.9: Effect of offset value on BER of digit-online decoder ... (52)

Figure 5.10: FPGA core power vs SNR (a) bit-parallel decoder (b) digit-online decoder (54)

x

Figure 5.11: Average interconnect usage vs LLR precision.. (55)

Figure 5.12: FPGA chip planner screenshot showing low-power and high-performance tiles (57)

Figure 5.13: E/b vs SNR for (a) bit-parallel decoder (b) digit-online decoder (58)

Figure A.1: Entity resource utilization vs LLR precision (bit-parallel decoder) - 1 (70)

Figure A.2: Entity resource utilization vs LLR precision (bit-parallel decoder) - 2 (71)

Figure A.3: Entity resource utilization vs LLR precision (digit-online decoder) - 1 (72)

Figure A.4: Entity resource utilization vs LLR precision (digit-online decoder) - 2 (73)

xi

List of Tables

Table 2.1: Summary of the discussed FPGA based decoders ... (14)

Table 2.2: Summary of FPGA based decoders with reported power data ... (15)

Table 5.1: Digit-online decoder pipeline length for different LLR precision (49)

Table 5.2: Operating clock frequencies for a throughput of 450 Mb/s in digit-online decoder (53)

Table 5.3: Estimation of power consumption for 6-bit LLR digit-online decoder (60)

Table 6.1: Average E/b values for different decoder configurations ... (62)

Table 6.2: Average entity resource utilization for digit-online decoder .. (62)

.

 1

Chapter 1

Introduction

Forward error correction is a common technique used to control errors when transmitting data

over noisy and unreliable channels. By adding controlled redundancy to a stream of data,

enough information can be provided to a receiver so that it can detect or correct the occurrence

of most errors. Low-Density Parity-Check Block Codes (LDPC-BC) are a class of forward

error-correcting codes proposed by R.G. Gallager in 1962 [1]. These codes can communicate

data at very low bit error rates (BER), asymptotically reaching a capacity limit given by

Shannon’s capacity Theorem [2]:

 (

)

In the case of an Additive White Gaussian Noise (AWGN) channel, for a specific bandwidth

B and signal-to-noise ratio (S/N), the maximum possible information capacity (C) is given by

Equation (1.1). In practical applications, effective utilization of available capacity is required

since signal bandwidth and transmission power are usually limited. LDPC decoding typically

relies on Iterative Decoding Algorithms implemented on Very-Large-Scale integrated (VLSI)

chips. Parallel implementations of such decoders can run at very high throughputs. The area of

parallel LDPC decoders increases rapidly with an increase in message precision, with

interconnect wiring possibly occupying more area than actual logic units [3], [4]. In a

successful attempt to reduce wiring congestion with increased message precision, digit-online

decoders based on digit-serial arithmetic were proposed in [5]. Previously proposed bit-serial

decoders [4], [6], which although proving effective at reducing wiring congestion, suffered

from a disadvantage of not being able to perform consistent and continuous serial processing

(some nodes work on a most-significant-bit-first basis, and others least-significant-bit-first). In

contrast, digit-online decoders employ techniques of digit-online arithmetic [7], [8] and are

capable of processing all the data in a consistent most-significant-digit (MSD)-first order at all

2

computational nodes. This allows for increased pipelining and reductions in clock cycle

requirements, and therefore, higher throughputs can possibly be achieved.

In this thesis the work in [5] is extended, by studying and comparing bit-parallel and digit-

online decoder implementations of WiMAX 576-bit, rate-3/4 codes that were able to fit on an

Altera Stratix IV field-programmable gate array (FPGA). Using a power measurement setup

from [9], [18], various aspects of both decoders are characterized and power numbers are

reported. In Chapter 2 discusses LDPC Decoding and various popular LDPC decoder

implementation techniques, and provides a thorough literature review of FPGA-based LDPC

decoders. Digit-online arithmetic and digit-online decoding algorithms are discussed in

Chapter 3. Chapter 4 explains the FPGA implementations of the decoder systems and discusses

DE4 power measurement setup along with a discussion of power dissipation factors in FPGA.

In Chapter 5 reports and discusses the simulation and synthesis results for bit-parallel and

digit-online decoders for a WiMAX 576-bit, rate-3/4 LDPC code. BER curves and power

results for the FPGA implementation are also reported. Chapter 6 concludes the thesis along

with a discussion of future work.

3

Chapter 2

Background

2.1 LDPC Codes

Low-density parity-check (LDPC) codes are a class of linear error correcting codes defined by

a sparse parity-check matrix H of dimensions M x N, such that all valid code words of size N

(represented by vector x) satisfy the relation HxT = 0 [1]. For binary regular LDPC codes the

number of 1’s in H is fixed for each row and column, while for binary irregular LDPC codes

the number of 1’s is variable. The code rate of a block code is given by 1 – M/N. Lower code

rates provide better error performance; however, with lower code rates the information content

in a code word decreases and thus information throughput is reduced. There exists a trade-off

where the designer chooses between the desired information throughput and code-rate. An

example of a regular (3, 6) LDPC code H-matrix is shown in Figure 2.1. For a (3, 6) regular

LDPC code, the number of 1’s in a row of H-matrix is equal to 6 and number of 1’s in each

column is equal to 3. The distribution of 1’s in H-matrix is random, and is required to keep the

matrix sparse to guarantee a good-performance LDPC code. Tanner graphs [10] are bi-partite

graphs that are popularly used to represent LDPC codes. Figure 2.2 shows the Tanner graph

1 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0
0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1
0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0
1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1
0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1
1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0

H =

Figure 2.1: An H-matrix example of a (3, 6) regular LDPC code with N = 16 and M = 8, the

code.

4

= = = = = = = = = = = = = = = =

+ + + + + + + +Check Nodes

Variable Nodes

Figure 2.2: An example of a Tanner graph. Message passing occurs between the connected

Variable and Check Nodes until all constraints are met or an early termination occurs after

maximum allowed number of iterations

for the H-matrix represented in Figure 2.1. A Tanner graph consists of two sets of nodes:

Variable nodes and Check nodes. The number of rows in the H-matrix corresponds to the

number of check nodes in the Tanner graph while the number of H-matrix columns is equal to

the number of variable nodes. Every element hij = 1 in the H matrix corresponds to an edge

between a variable node i and check node j. Since this is an example of a regular code, all

variable nodes have equal number of edges and thus a degree dv = 3 and all check nodes have a

degree dc = 6. To satisfy the constraint for a variable node, as represented by an equal sign, all

the incoming symbols over the edges should carry equal values. For check nodes the

constraints are satisfied if the XOR function calculated from all the input symbols results in a

zero. The distribution of edges in the Tanner graph represents the LDPC decoder structure.

Actual LDPC decoder designs are based on the Tanner graph design, with messages moving

across the graph edges and nodes evaluating and iteratively trying to satisfy the constraints in

the code.

2.2 LDPC Decoding

Given the size of the received block of data, if maximum-likelihood decoding is used to

simultaneously satisfy all constraints, the algorithm required for finding the optimal solution

will be NP-hard [11]. Therefore, for the purpose of decoding LDPC codes, iterative decoding

5

algorithms are suitable. Variable nodes are initialized with probabilistic information

representing channel outputs, and messages are exchanged between the variable and check

nodes until all the constraints are met. For the purpose of achieving higher throughput, the

number of iterations is usually limited. The channel information entering the decoder is

represented as log-likelihood ratios (LLRs), which is a relative probability specified on a

logarithmic scale, and quantized to a desired bit precision. Mathematically, LLR can be

expressed as:

 ()

where p0 is the probability that the transmitted bit could be a 0 and likewise p1 is the

probability that the transmitted bit can be a 1. As a general rule, higher bit precision LLR

inputs are better for decoding since they provide more accurate channel information and help

the decoder to converge faster. Increasing the bit precisions above 6 bits offers marginal

improvement in the error performance [12]; however, increasing LLR precision increases the

decoder input buffer and decoder size requirements significantly. For the case of serial

decoders, increasing LLR bit precision is not much of an issue for decoder size; however, the

throughput is negatively affected, as higher number of clock cycles are required to decode a

code word. In highly pipelined architectures like the digit-online decoder, increasing LLR

precision allows for deeper pipelining, which allows it to be clocked at higher frequencies.

Thus, the throughput of digit-online decoders remains relatively unaffected despite increase in

LLR precisions [15]. The type of quantization scheme also affects the error performance of the

decoder; in [12] it is shown that using a non-uniform quantization scheme results in better

performance than a uniform quantization scheme. In [13], [14], it is shown that using an

optimized quantization scheme for 4 bits of precision achieves BER performance similar to the

design using uniform quantization using 6 bits per message.

6

2.2.1 Sum-Product Decoding

As discussed previously, the data flow structure of LDPC decoders is based on bipartite graphs

known as Tanner graphs; decoding uses iterative message-passing algorithms. One such

algorithm is the sum-product (SP) algorithm, also referred to as belief-propagation (BP). The

SP algorithm factors the complicated global function into a number of simpler local functions

depending on a subset of the variables. The messages in each iteration of the SP algorithm are

updated according to the SP update rule given in [16]. Variable node v outputs a message sent

on edge e to check node c, which is the sum of the local function with all the messages

received at v on all the edges other than e; this constitutes a half iteration. For the next half of

the iteration, check node c outputs the product of the local function with all the messages

received at c other than the ones received at e. The variable and the check node operations can

be represented in form of following Equations (2.2), (2.3) and (2.4). The channel LLRs that are

provided to the decoder variable nodes in the beginning of decoding are denoted as Lc.

 ∑

 ∑

(

 ∏ (

)

)

dv and dc denote the variable node and check node degrees respectively. Check node also

monitors if the constraints for the code are satisfied, and can indicate the variable nodes to

terminate the decoding early and perform a hard-decision of the results.

7

2.2.2 Min-Sum Decoding

SP algorithm provides near-optimal decoding performance for LDPC codes [17], [19], but is

inefficient to implement in silicon. The SP variable node implementation largely requires only

summation operations, which is not very costly to implement; however, SP check node

operations are relatively expensive to implement in hardware. For long low-rate codes, SP

check nodes consume lot of silicon area and hence not considered a very area efficient choice.

The min-sum (MS) algorithm provides a simpler implementation of check nodes. The check

node update equation is modified to Equation (2.5) in MS algorithm:

(

 ∏

)

where

 {

The variable node update equation remains the same as Equation (2.2) and (2.3). Although MS

provides easier implementation than SP, it comes at a slight performance loss. The MS decoder

implementation typically requires a few tenths of a dB more transmitted power at same BER

performance than the SP decoder implementation. It was found, as explained in [20], [21]

using the density-evolution of the MS algorithm that the output LLRs from the check nodes

tend to have a higher magnitude than LLRs output by SP check nodes. It was suggested that it

is possible to regain most of the coding loss by introducing minor modifications in the

algorithm to somehow reduce the magnitude of MS check node output LLRs to match those of

SP check nodes. Most popular modifications in use include the use of correction factors, and

are referred to as: 1) Offset correction, and 2) Normalization techniques. The offset correction

8

 | |

(

 ∏

)

(

 ∏

)

involves subtraction of an offset value (β) from all the incoming LLRs in the check nodes. The

normalization technique involves dividing the LLRs in check node by a factor α (α > 1), such

that the resulting LLRs are smaller. The check node update equations for the offset correction

(offset-MS) and the normalization (normalized-MS) are shown in Equation (2.7) and (2.8),

respectively. Both techniques provide very similar performance benefits [21]. However, [20]

notes that the results of the offset-MS can be readily extended for the discretized density-

evolution cases, and suggests that the offset-MS is a good choice for practical implementation

since it can be extended easily to quantized values.

2.3 LDPC Decoder Implementations and Comparisons

2.3.1 Parallel LDPC Decoding

Most straightforward implementations of parallel LDPC decoders instantiate a Tanner graph

directly in hardware. The internal structure of the variable nodes and the check nodes depends

on the decoding algorithm. Parallel LDPC decoder nodes process multi-bit LLR messages in

parallel, so each edge in the Tanner graph corresponds to multiple interconnect wires.

One of the early parallel LDPC decoders was implemented in 160 nm technology [21], [22],

decoding at a throughput of 1 Gb/s with 64 iterations per frame and clocked at a frequency of

9

64 MHz. Using parallel LDPC decoder implementations, high throughput and low power

consumption per decoded frame can be achieved.

However, a parallel LDPC decoder architecture results in low logic-densities and high

routing congestion. Most of the chip area is utilized for routing the connections between the

variable and check nodes. While designing parallel LDPC decoders for long code sizes and

high-precision input LLR messages, it becomes really hard to connect the nodes in the

decoder. The number of parallel wires for each Tanner graph edge increases with increasing

LLR precision. In the case of implementation of a parallel LDPC decoder on an FPGA where

the routing resources are already limited, providing connections in the decoder places a lot of

stress on the routing resources. A shared extrinsic memory is used between the variable node

update units (VNUs) and the check node update units (VNUs) to achieve low routing

congestion but highly parallel computations in [23]. Onizawa et al. report a variant of the

parallel LDPC decoder in a new decoding algorithm referred to as a flooding-type update

algorithm [24]. The longer wires between the nodes are divided appropriately in several sub-

wires by insertion of flip flops; thus reducing the length of longer wires and enabling the

decoder to be clocked at a higher frequency.

Apart from parallel decoder implementations, many "partially" parallel LDPC decoder

implementations are presented in the literature. Zhang et al. implemented a partially parallel

structured LDPC code decoder employing time-multiplexed routers to reduce parallelism and

groups the highly connected check nodes and variable nodes in the decoder as local units [25],

[26]. Zhong et al. present a partially parallel structured LDPC code decoder architecture with

shared memory blocks for storing the iterative decoding messages and the channel messages

[27], [28]. A clustering algorithm for partitioning a Tanner graph in clusters, such that the

inter-cluster communications are minimized was proposed by Al-Rawi et al. [29]. To reduce

the wiring congestion in the LDPC code decoders a message broadcasting technique is

demonstrated in [30] which reduces the amount of information needed to be conveyed from the

check nodes to the variable nodes. A half-broadcasting technique reduces average node-to-

node wirelength by about 26%. Other techniques based on bit-flipping (BF), referred to as

weighted-bit-flipping (WBF), modified-WBF (MWBF) and improved-MWBF have been

10

presented in [31], [32], [33] and [34] respectively. BF algorithm works in an iterative fashion

and flips one or more bits per iteration until all the parity checksum are satisfied [34]. BF

algorithm works well with LDPC codes, with performance losses of 1 dB or less in some cases

as compared with sum-product algorithm [30].

2.3.2 Serial LDPC Decoder Implementation

A bit-serial implementation of an LDPC decoder is able to reduce interconnect and routing

complexity to a large extent and allows for longer code lengths. The multi-wire connections

between nodes are replaced by single wires transmitting bits serially, resulting in significant

reduction in the interleaver wiring. This implementation however, comes at a price of reduced

throughput and higher switching activity in the decoder interconnects. With increase in LLR

message precision, more number of clock cycles will be required for decoding each code word,

as the number of bits to be transmitted serially across the decoder nodes increases.

Implementing satisfactory throughput in serial LDPC decoders is challenging. In [23], [35]

and [36] a bit-serial message passing scheme is presented. The check node update units

(CNUs) process the data bit-serially in MSB-first sign-magnitude format, while the variable

node update units (VNUs) process the data serially in LSB-first 2’s complement format.

Therefore, the messages need to be stored and format conversions are required at the output of

VNUs and CNUs. To maximize the utilization of decoder hardware two successive frames are

simultaneously decoded in the block-interlaced mode; thus, doubling the throughput. The bit-

serial LDPC decoder implementation presented by Darabiha et al. [4] employs variable nodes

with parallel adders. The messages arriving from the check nodes are buffered and converted

to parallel inputs and addition operations are performed in a single clock cycle. Processing two

frames at once allows for double the throughput; however, the design of parallel adders is

much complex than serial adders.

Digit-online decoding of LDPC block codes was proposed by Marshall et al.[5] ,[15], which

involves deeply pipelined digit-serial processing in the decoder. Instead of using conventional

sign-magnitude format, messages in digit-online decoder are expressed in the form of signed-

11

binary digit format. The variable nodes and the check nodes process signed-binary format LLR

messages in a most-significant-digit (MSD)-first fashion without requiring any changes in

message format or order of digits at the node inputs.

2.3.3 Stochastic LDPC Decoding

Stochastic decoding is another method of reducing the interconnect complexity involved in

LDPC decoders. Stochastic techniques were introduced in 1960s [37], and have been

successfully used in implementation of neural networks [38] and are increasingly becoming

popular in LDPC decoder implementations. Stochastic LDPC decoders are similar to bit-serial

LDPC decoders in sense that extrinsic messages are communicated over single wires, thus

interleaver wiring requirements are lower. The variable node and the check nodes operation

can be implemented with simple architectures. For example, multiplication operation can be

done as easy as ANDing two inputs together and a J-K flip flop can implement a division

operation.

Therefore, stochastic LDPC decoders allow for low-complexity computational nodes and

reduced routing congestion. Stochastic LDPC decoding uses a unique way of representing

probabilistic messages as Bernoulli sequences indicating values in between 0.0 and 1.0 [39],

[40], [41]. At the transmission side LLRs are turned into stochastic streams based on their

probabilities, therefore, the encoding scheme is not unique and different sequences are possible

for same probability values. For a message size of S bits, if r bits are 1 then the probability P

represented by this message is given by:

P = (r/S) (1.9)

The frequency of 1s in the probabilistic message is equal to the probability P. Stochastic

decoders, however do not get as large of a coding gain as sum-product decoders. Also, they are

sensitive to the level of switching activity in the decoder and result in reduced decoding

performance with reduction in switching activity. The lack of switching activity (latching)

12

worsens at high SNRs in which received LLR probabilities reach either 0 or 1. There are

different techniques proposed in the literature like NDS (noise-dependent scaling),

regenerative EMs (edge memories) and IMs (internal memories), which help to provide high

switching activity in stochastic nodes [40], [41]. A parallel stochastic decoder capable of a

maximum throughput of 61.3 Gb/s and very low error floor is presented in [42].

2.3.4 Analog LDPC Decoders

Apart from digital LDPC decoders, an analog circuit for decoding LDPC codes was reported

by Hemati et al. in 2006 [43]. The analog LDPC decoder employs iterative analog min-sum

(MS) algorithm to decode a (32, 8) LDPC code. The node circuits in the analog decoder are

based on current-mirrors and fabricated in 180-nm CMOS technology. The data throughput for

the analog LDPC decoder is 6 Mb/s and power consumption is about 5 mW. However,

designing analog LDPC decoders requires high process control to design accurate current

mirror circuits. Analog LDPC decoders suffer from physical non-idealities such as component

mismatch, thermal noise effects and short-channel effects; therefore, they have been only

considered for small LDPC codes [44].

2.4 LDPC Decoder Implementation on FPGA

FPGAs provide reduced opportunities for parallelism but increased flexibility when compared

with ASIC implementations of LDPC decoders. The routing requirements of the Tanner graph

edges pose a lot of strain on the programmable interconnect fabric of an FPGA, especially for

significantly longer routings. Since FPGAs are more suitable for datapath-intensive designs

and have interconnects optimized for local routing [45], the implementation of less parallel and

constrained LDPC decoders is more suitable for FPGAs. A parallel LDPC decoder synthesized

on FPGA is reported by Zarubica et al. in [46] which is able to reach 12 Gb/s throughput. The

biggest decoder in [46] to fit on the FPGA has a frame length of 1200 bits with 3-bit input

channel LLR precision.

13

FPGAs also provide the benefit of already available extra hardware like block memories and

DSP blocks. In [47] Zarubica et al. make use of the distributed memories available on the

FPGA for storing the messages needed in the decoding iterations and suggests that use of

memories can enable implementation of decoders for large code sizes. An implementation of

9984-bit block LDPC code decoder is reported in [47]. A partially parallel LDPC decoder

architecture is synthesized on a Xilinx Virtex-5 FPGA for a rate-1/2 code of size 648 bits by

Kim et al. [48]. A summary of the decoder along with reported power data for the decoder is

shown in Table 2.1.

A bit-serial LDPC decoder presented in [4] is implemented on an Altera Stratix EP1S80

FPGA and occupies about 84% of logic resources. The maximum clock frequency of the

decoder is 61 MHz and it can reach a throughput of 650 Mb/s with early termination. The use

of FPGAs in implementation of stochastic decoders has been demonstrated by Tehrani et al. in

[41] and [49], achieving throughputs upto 706 Mb/s and 1.66 Gb/s respectively.

Gunnam et al. present a multi-rate decoding architecture for irregular LDPC codes for

WiMAX (IEEE 802.16) standard, resulting in significant savings in memory and routing

requirements of the decoder [50]. Table 2.1 shows a summary of the decoders synthesized on

the FPGA in [50]. A modified 2-bit min-sum LDPC decoding algorithm is proposed by

Chandrasetty et al. resulting in a reduced implementation complexity of the decoder [51]. With

a slight drop in the BER performance, the decoder can be implemented in about 18% less

FPGA resources. An improvement on this implementation is presented in [52] by keeping

different length intrinsic (LLR messages entering the decoder from channel) and extrinsic

(LLR messages exchanged between the variable and the check nodes) messages. Reducing

extrinsic message length reduces the interconnect complexity and also simplifies the check

node operation. The LDPC decoder in [52] decodes rate-1/2 code words of size 1152 bits.

Two optimization techniques, vectorization and folding are presented by Chen et al. in [53]

for effective utilization of block RAM resources available on the FPGA. Both these techniques

build on the fact that the block RAMs available in FPGAs are of configurable aspect ratios and

are dual-ported with very fast access times. Vectorization attempts to pack multiple messages

14

References
Darabiha et al.,

[4]

Zarubica et al.,

[46]

Gunnam et al.

[50]

Tehrani et al.

[36]

Kim et al.

[48]

Sulek et al.

[54]

Year 2006 2007 2007 2008 2010 2013

FPGA
Altera Stratix

EP1S80

Xilinx V4

XC4VLX200

Xilinx V2

XC2V8000

Xilinx V4

XC4VLX200

Xilinx V5

XC5VLX155T

Xilinx V6

XC6VLX240T

LDPC

Code Type

RS –based

LDPC

Parallel PEG

based (6, 3)

OMS

Algorithm

Parallel

Stochastic

Partially

parallel

GF(q) LDPC

Decoding

Code Size (480, 355) (1200, 600)
576 b

(multi rates)
(1056, 528) (648, 324) (480, 240)

Throughput 650 Mb/s 12 Gb/s 41-70 Mb/s 1.66 Gb/s 110 Mb/s 6 Mb/s

LLR

Message
3 bit 3 bit 5 bit 6 bit (input) - 8 bit

Max.

Iterations
15 10 -

700 (DCmax)

(1DC/clk)
8 10

Reported

BER
10

-5
 at 5dB* - -

10
-8

 at

4.25 dB
-

7 x 10
-6

 at

2 dB*

fMax 61 MHz 100 MHz 110 MHz 222 MHz 100 MHz 180 MHz

Logic

Utilization

84 %

(66,588 LEs)
45% - - 7 %

Slices

(Xilinx)
- 40,613 1,640 46,097 7,081

LUTs - 69,038 2,982 68,112 19,761 10,916

Block RAM - - 38 - 24 26

Decoder

Power
- - - -

E/b - - - - -

Table 2.1: Summary of some of the discussed FPGA based decoders

into the same word by utilizing configurable width of block RAM, while folding attempts to

take advantage of configurable depth of block RAMs by allowing messages from different

submatrices of the code to share the same physical block RAM. Li et al. present an FPGA

implementation of 2.4 Gb/s, rate-1/2, (3, 6) convolutional encoder and decoder and discuss a

detailed decoder power analysis for various aspects of the FPGA implementation [9]. In recent

years, non-binary or higher-order Galois-field (GF) LDPC decoders implemented on FPGAs

have been reported in literature. In case of Galois-field GF(q = 2p) codes the decoding

complexity grows exponentially [54] with 2pd
c (dc is the maximal nonzero entities in parity

check matrix row). Non-binary decoders benefit from the extra available FPGA resources like

configuration logic blocks, block RAMs and multipliers. [55] also presents non-binary

decoders for different order implementations. Table 2.2 shows the important aspects of the

works mentioned in this section which report the power data for the FPGA implementations.

15

References Chen’11 [53]
Chandrasetty’11

[52]
Li’13 [9] This work

Year 2011 2012 2013 2014

FPGA
Xilinx V4

XC4VLX200

Xilinx V5

XC5VLX110T

Altera

StratixIV

EP4SGX230

Altera StratixIV

EP4SGX230

LDPC

Code Type

Quasi-Cyclic

Irregular

(3, 6) Regular

MMS

PN- LDPC-

CC

(3, 6)

Digit-online LDPC decoding

Code Size (3969, 3213) (1152, 576) Ts = 192 (576, 432)

Max.Throughput 1.474 Gb/s 11.7 Gb/s 2.4 Gb/s 740 Mb/s 1363 Mb/s

LLR Message 6 –bit 4 – bit (input) 4 –bit 6-bit 11-bit(interlaced)

Max.

Iterations
15 10 9 10 10

Reported BER - 3x10
-6

 at 3.9 dB
10

-8
 at 4.25

dB

1.2x 10
-10

 at 4

dB
-

fMax 195.7 MHz 138 MHz 75 MHz 90 MHz 140 MHz

Logic

Utilization
- - 83 % 91% 90%

Slices (Xilinx) 62,362 10,823 - -

LUTs 98,003 39,024 - -

Block RAM 330 - - -

Decoder

Power
7632 mW 1130 mW 4105 mW

1248 mW (at

450 Mb/s)

1029 mW (at 450

Mb/s)

E/b 5.18 nJ - 1.71 nJ 2.77 nJ(avg.) 2.29 nJ (avg.)

Table 2.2: Summary of FPGA based decoders with reported power data

2.5 Altera Stratix IV FPGAs

An FPGA is a semiconductor device consisting of programmable logic components,

programmable interconnects and I/Os. Present-generation FPGAs also contain additional

features such as configurable embedded SRAMs, DSP blocks and high-speed transceivers.

FPGAs can be programmed to replicate the functionality of basic gates as well as complex

logic functions.

An Altera Stratix IV FPGA core is fabricated in 40nm technology and is made up of multiple

LABs (Logic Array Blocks). Each LAB consists of 10 ALMs (Adaptive Logic Modules) along

with interconnect and control circuitry. An ALM is the basic building block of Stratix IV

FPGA and provides features for efficient logic usage. An ALM consists of a variety of

resources consisting of one 8-input ALUT (Adaptive Look Up Table), two dedicated full

16

adders and two dedicated registers as shown in Figure 2.3. One ALM can implement variety of

functions including all 2,3,4,5,6-input functions and certain 7-input functions [56].

Figure 2.4 shows two examples from normal-mode of the ALMs, implementing 3-input, 5-

input and 6-input functions. This mode is suited for implementing general logic applications or

combinatorial functions.

For implementation of addition circuits, comparators and counters, ALMs can be used in

arithmetic-mode; shown in Figure 2.5. The adders can form large carry chains, the 4-input

LUTs provide for pre-adder logic. ALM in arithmetic mode supports use of adder’s carry

output along with combinational logic outputs simultaneously. The carry chains in adders can

run to very long lengths, from one ALM to next ALM and in between LABs.

Quartus® II can allocate carry chains up to the length of a vertical column in FPGA fabric.

Similarly, registers in ALMs can be cascaded together to form long register chains to

implement large shift registers. Figure 2.6 shows example of data chains in a Stratix IV LAB.

8 – input

ALUT

adder_0

adder_1

shared_arith_in

shared_arith_out

dataf0
datae0
dataa
datab

datac
datad

datae1
dataf1

carry_in

carry_out

M
U

X
M

U
X

M
U

X
M

U
X

reg0

reg1

D Q

D Q

lab_clkreg_chain_in

reg_chain_out

Figure 2.3 : High level diagram of a Stratix IV ALM

17

5 – input LUT

3 – input LUT

dataf0
datae0
dataa
datab

datac

datad
datae1
dataf1

combout0

combout1

6 – input LUT

dataf0
datae0
dataa
datab
datac
datad

combout

0

6 – input LUT

combout

0

datae1
dataf1

Figure 2.4: Normal mode allows (a) two distinct functions a 5-input and a 3-input; (b) Two 6-

input functions with shared inputs to be implemented in a single Stratix IV ALM

.

4 – input

LUT

4 – input

LUT

4 – input

LUT

4 – input

LUT

reg0

D Q

reg1

D Q

clk

clk

datae1

dataf1

datae0

dataf0
datac
datab
dataa

datad

carry_in

carry_out

Figure 2.5 : Stratix IV ALM in Arithmetic mode

18

ALM 1

ALM 2

ALM 9

ALM 10

carry and

arithmetic

chain

register

chain

Figure 2.6: Carry, Arithmetic and Register chains in Stratix IV

\

19

Chapter 3

Digit-Online Decoder

In this Chapter, a brief overview of the architecture of a digit-online LDPC decoder and its

operation is discussed. This Chapter mainly builds on the works from [5], [15], [57].

3.1 Digit-Online Arithmetic

An online algorithm processes inputs piece-by-piece without needing a complete set of inputs

to begin the calculations. For the processing to be digit-online [58], [59], [60] the operation

should be able to produce i – Δ most-significant digits of a result knowing only i digits out of

the s digits of precision of input (s>i), with Δ being the initial delay to produce first output.

Thus, such a processing can achieve a very high level of pipelining, with a new set of outputs

being produced every clock cycle.

The digit-online decoder in [57] employs the MS algorithm with offset correction. The

variable nodes in a digit-online decoder perform an addition operation and the check nodes

implement selection networks to select the minimum of the inputs. An offset correction

operation is performed in the check nodes. The operations in a digit-online decoder are

performed in a serial manner, with the most-significant digits (MSDs) processed first. It is not

possible to perform MSD-first addition using the conventional notations without receiving all

of the bits of the inputs being added, because carry values need to be propagated from the LSB.

Thus a processing algorithm using conventional notations is not very advantageous from the

point-of-view of serial processing. A pipelined digit-online process requires taking in new set

of inputs and generating a new set of outputs every clock cycle.

To achieve highly pipelined continuous processing at the decoding nodes, the work in [5],

[15], [57] uses redundant notation to represent numbers and represents them in form of

generalized digits rather than bits. A class of number representations known as signed-digit

20

representation scheme is shown in [57], which allows for most-significant digit (MSD) to

least-significant digit (LSD) addition of numbers.

Unlike conventional number representations where an integer radix r (r >1) each digit can

only assume out of 0, 1,…., r-1 values, signed-digit representation allows for representations

using negative integers as well. For a conventional number representation digits take values

from set {0, 1} while for signed-binary the values from set { ̅, 0, 1} are allowed. ̅ represents -

1, and borrows 1 from the digit before it. Thus, the representations of numbers are no longer

unique. For example, 11 ̅ = 4 + 2 + (-1) and 101 = 4 + 0 + 1 represent same number in

decimal format. Since the channel LLRs are provided to the decoder in conventional binary

notation, they need to be converted in signed-binary digit format in the decoder.

Conversion of conventional sign-magnitude binary representation into signed-binary

representation is shown in [57]. For conversion of positive numbers, the MSD of the resultant

signed-binary number is set to zero and the remaining digits are left as is; however, now this

number is stored with a greater number of bits. For the negative number conversion, the MSD

is set to zero, and the remaining digits are stored as negative copies of the corresponding

binary bits. The digit-online decoder in [5], [15], [57] converts channel LLRs into signed-

binary representation from sign-magnitude representation in the first decoding iteration. The

conversion from signed-binary representation to conventional binary representation becomes

increasingly expensive to implement with increasing LLR precisions. After the decoding

iterations are complete, a thresholding operation is performed to produce hard outputs.

Performing this thresholding operation only requires the knowledge about the sign of final

LLRs output from the variable nodes, which is relatively inexpensive and easy to implement.

When decoding LDPC codes with the MS algorithm using offset correction, the operations

that need to be performed in the decoder are: addition, subtraction, compare-select and sign

detection. All of these operations are explained in detail in [5], [15], [57] to work with

redundant (signed-binary) notation with most-significant-digit (MSD)-first digit-online

processing.

21

3.2 LDPC Encoder

The VHDL files for the block LDPC encoder are generated using a C++ routine. The WiMAX

standard supports frame sizes ranging from 576 bits to 2304 bits and supported code rates are

1/2, 2/3, 3/4, 5/6 with a minimum throughput requirement of 100 Mb/s. For this work, a 576-

bit, rate-3/4 WiMAX Encoder is generated. The base matrix (.hbm) and half a- list (.alist) files

provide information about the encoder structure to the C++ routine, while the size of the code

word is decided through the expansion factor (Z) passed on to the routine. The encoder takes in

a 432-bit input, generates and appends 144 check bits to generate a 576-bit frame as shown in

Figure 3.1. The check bits of the frame are calculated as per the code constraint equations.

3.3 Digit-Online Decoder

In an iterative LDPC decoder, each decoding iteration consists of messages flowing from the

variable nodes to the check nodes and back. Thus, the total pipeline length (p) for one

decoding iteration is equal to the sum of the variable node pipeline stages (Δv) and the check

node pipeline stages (Δc) (Figure 3.2). Each pipeline stage stores and processes one digit, thus

length of the input message should be less than Δv + Δc digits (total pipeline stages in one

iteration), since guard digits need to be added into the message to prevent overflow in the

variable nodes. The number of guard digits depends on the maximum variable node degree

(dv,max) and the way values are being added in variable node [57]; however, an optimum

number is given by ⌈ ⌉.

To distinguish the MSD of an LLR from other digits, each processing node in the decoder

receives a globally synchronized control input (Figure 3.3). The vector version of this control

INFORMATION BITS CHECK BITS

432 bits 144 bits

Figure 3.1 : A 576-b encoder frame output from the LDPC Encoder

22

Channel

LLRs

Channel

LLRs
Channel LLRs

Channel LLRs

Channel

LLRs

Serial Input

Factor Graph connections

determine messages exchange

between Check node and

Variable node Network

Final iteration

or Early

termination

Figure 3.2 : Digit-online decoder system diagram. Channel LLRs are sent serially to the

variable nodes. The messages are passed between variable node array and check node array.

Each iteration involves message going to check nodes and back to variable nodes for a total

pipeline length of Δv + Δc.

ready

decoder

outputN

valid

reset

channel LLRs

offset

start

clock

Rvn newframe

channel

LLRs

(serial)

decoded

bit-out

VARIBLE

NODES

NETWORK

CHECK

NODES

NETWORK

Rcn offset

satisfied

CONTROLLER

DIGIT-ONLINE DECODER

Figure 3.3 : Various components of a digit-online decoder. Main signals are shown as well.

23

signal is called R, with ri being equal to 1 if the current ith input digit to a node is an MSD.

This signal is required to reset the state machines in check nodes and break carry chains in

adders in variable nodes for the new LLR messages [57].

R is expanded to the length of the pipeline, with multiple 1s in the R vector for decoding

more than one frames simultaneously. The distance between 1s depends on the precision of

LLRs. The processing nodes work on a continuous stream of data and need to know only

where the LLR message starts and ends; thus, variable length LLR messages can be processed

easily.

3.3.1 Variable Node Structure

Variable nodes perform the addition operation on LLR messages as shown in equation below:

 ∑

The addition trees in the variable nodes have been optimized for minimum Δv and minimum

required guard digits [57]. Optimization for small number of required guard digits also reduces

overhead associated with their generation. An example structure of a degree-4 variable node is

represented in Figure 3.4.

Figure 3.5 shows the variable node structure indicating the variable node outputs for various

stages of decoding. In the first decoding iteration of a new frame, since the channel values are

provided to the variable nodes in conventional sign-magnitude format, they are converted to

signed-binary format and are output to the check nodes. A separate circuit is used for the

conversion of sign-magnitude to signed-binary values. New channel values are loaded into the

local channel memory in the variable nodes for use in future iterations. The local channel

memory in the variable nodes is implemented as a circular shift register with output of the shift

register connecting to the input when the new_frame signal is ‘low’. The local channel

24

L2 L0 L1 L3 Lch L1 L2 L0 L2Lch

λ3 λ2 λ0 λ1

+ ++

+ +

+ +

++

Figure 3.4 : An example degree-4 variable node. The LLRs, Lch (channel LLRs) and L0, L1, L2,

L3 are added digit-serially in the adders represented by boxes with ‘+’ sign

memory has a length equal to the pipeline length of (Δc + Δv) stages. Since new values in the

local memory are only loaded in the first decoding iteration of a new frame, the local channel

memory provides channel values in a digit-serial manner to the addition circuitry for the

remaining decoding iterations of the frame. In the final iteration, new old channel values are

shifted out to perform the final addition operation and the new frame channel values are loaded

in the local channel memory. The final addition operation consists of adding Δv + 1 values (all

incoming edge messages and local channel values). After final addition since the next step is

hard-decision output, only the sign of the final output LLR (λfinal) is of significance. So even if

an overflow occurs in final addition, the sign of the result needs to be preserved while the

magnitude can be incorrect [57].

3.3.2 Check Node Structure

The check nodes perform the minimum input selection operation through the use of selection

networks. To compensate for the performance loss as compared with SP algorithm, an offset

correction is performed in check nodes. If decoder constraints are met before the final iteration,

check nodes output a ‘satisfied’ signal to indicate early termination of decoding to the

controller. The architecture of a check node is shown in Figure 3.6. The sign of the incoming

25

Channel LLR

(sign-magnitude)

MUX

Δv + Δc

stage

shift

register

new_frame

sign-

magnitude to

signed-binary

conversion

Channel LLR

(signed-binary)

Addition Tree

(Δv stages)

….

Input LLRs from

Check nodes

LCh L0 L1 Ldv-1

To check nodes

OUTPUT FOR FIRST ITERATION

….

To check nodes

 λ 0 λ 1 λ dv-1

FINAL OUTPUT

Δv stages

delay

OUTPUT FOR REMAINING ITERATIONS

Final

addition

and Hard

Decision

λi

Li

Decoder

Output Bit

10

Figure 3.5: Variable node structure. In the first iteration new channel LLRs are received

serially and converted to signed-binary format and sent to check nodes. New channel values are

also loaded in the shift register for use in later iterations. The process for final output is

illustrated on the right hand side.

LLRs in the check nodes is determined and sent to the XOR network tree to check if the code

constraints are meeting already and early termination can be performed.

The magnitude of the incoming LLRs undergoes offset correction. The offset value is stored

in conventional binary format and is subtracted from the LLR magnitudes using digit-online

subtraction circuits [57]. The resultant magnitudes if negative, are replaced with all zeroes

otherwise kept as is. Offset correction applied on the inputs of the selection networks requires

more subtraction circuits than offset correction applied at selection network outputs; however,

26

Input LLR

(Sign) +

Magnitude

Offset Correction

max(|mag| - offset, 0)

Magnitude

|Mag|

From Variable

Node (λi)

Each LLR

Input

XOR Network

.…..

dc edges

check node

satisfied

(Sign)

Selection Network

and saturation

.…..

corrected

magnitude

minimum

Second

minimum

Selects second minimum as

output for edge belonging to

minimum

Output LLR

(Sign) +

Magnitude

XOR

M
U

X

|Mag|

(Sign)

To

Variable

Node (Li)

Figure 3.6: Digit-online check node structure. The sign of the incoming serial LLR is sent to an

XOR network to identify if check node constraints are satisfied. Magnitude of LLR is sent for

offset correction, preceding a selection network to calculate the minimum values. Appropriate

magnitude is selected and then combined with sign to be sent to variable node edge.

27

[57] notes that performing offset correction at selection network outputs lead to incorrect

results for digit-online processing. The selection network in the check nodes selects a

minimum and a second-minimum magnitude. [61] provides an excellent online tool with

various implementation options for generating selection networks up to 32 inputs. The

WiMAX 576-bit, rate-3/4 LDPC decoder discussed in this thesis requires selection networks of

14 and 15 inputs; these selection network have been generated using “best” algorithm option in

the online tool, giving the minimum number of comparisons required for implementation [57].

When processing MSD-first serially in redundant notation, the selection of minimum values

is complicated. The numbers that appear smaller in the beginning may not be so when received

completely. While comparing numbers the difference between the numbers is tracked as long

as it is big enough and it is safe to make a decision on which number is smaller [57]. For the

case of compared numbers being equal, a number is selected as the smaller one arbitrarily.

Each comparator comparing two numbers A and B, issues a signal AIsSmaller, which is ‘1’ if

the number A is smaller of the two. This signal may change its value as the comparison

progresses digit-by-digit, however this should occur only certain times to ensure correct

results. The signal AIsSmaller from the individual comparators in the selection tree is used to

track the minimum input magnitudes.

The minimum values at the outputs of the check nodes are checked for overflow, and if

required they are saturated before sending to the variable nodes. The minimum number is

output at all the check node edges except for the edge where this number came from, on which

the second-minimum value is sent instead. The sign of the outputs is decided according to what

other edges suggest the output sign should be. Thus, the sign of each output LLR is found by

XORing the input sign for that edge to the output of the XOR network.

3.3.3 Controller

The controller is responsible for synchronizing the data flow between the variable and the

check nodes. For irregular codes, the nodes are of varying degrees and there is a need to ensure

that the pipeline path-length for all the node types is same and equal to Δv + Δc. If required,

28

extra registers can be added in the nodes during synthesis to gain desired loop latency. The

control signal R, as discussed before is generated by controller to keep track of the MSDs of

the messages during serial processing. Controller issues Rvn signal for the variable nodes and

Rcn signal for the check nodes. When the variable nodes are receiving the MSD of a message,

Rvn signal is asserted ‘1’; while Rcn is ‘1’ when the check nodes are receiving the MSD. Rvn

and Rcn signals can be seen in the timing diagrams of the digit-online decoder as shown in

Figure 3.7 and Figure 3.8.

Channel LLRs and offset values are loaded from the channel LLR buffer into the decoder in

bit-parallel manner. Controller sends channel LLR values to the variable nodes and the offset

value to the check nodes in bit-serial fashion in the beginning of decoding. new_frame signal

acts as a selection input for the MUX in the variable node structure shown in Figure 3.5, in the

first decoding iteration, new_frame signal is kept ‘1’. While new_frame is 1, the MUX in the

variable node loads the new channel values to the local channel memory. After first iteration,

new_frame signal is pulled to 0. This converts the local channel memory in a circular shift

register, providing channel LLR values for future iterations.

The controller also monitors the number of decoding iterations performed. The maximum

number of iterations allowed (imax) per code word is fixed at the time of design. After

performing imax iterations, the decoder signals the variable nodes to finish decoding current

code word and perform a hard-decision (thresholding operation). Hard-decision output bits

from individual variable nodes are appended together and output as a decoded code word. It is

possible that the check node constraints are satisfied before the imax iterations are reached

(early termination criterion). Controller detects early termination from the satisfied signal

generated at the check nodes. Each check node ‘n’ generates its satisfied signal CNsatisfied(n).

The controller performs an AND operation on CNsatisfied from all the check nodes and if

result is a ‘1’ then it signals the next iteration to be final iteration.

29

3.3.4 Single Frame Decoding

Figure 3.7 shows timing diagrams of the various signals in the decoder when beginning

decoding and loading a new frame. Figure 3.8 shows the timing diagram when finishing the

decoding of current frame and starting with a new frame respectively in single-frame mode of

decoding. The decoder is initialized by pulling reset ‘low’. An offset value must be applied

before initializing the decoder, since it is latched in with reset going ‘low’. In an actual design,

the offset is supplied in the HDL code, and its value is available to the decoder pre-

initialization. After being initialized, the decoder asserts a ready = ‘1’ signal indicating it is

ready to take in channel LLR values. The channel LLRs are made available to the decoder and

the decoder is signaled to start decoding by asserting start signal ‘high’. The Start signal is

offset

Frame1_LLRs

Idle Decoding

0 1

0 1 2 3 4 5 0 1 2

clk

reset

ready

offset

Channel LLRs

start

valid

decoder_state

new_frame

Iteration_count

digit_count

Rvn

Rcn

C
o
n

tr
o
l

D
ec

o
d

in
g

Δv Δc

Figure 3.7 : Beginning of decoding a frame in single-frame mode. The decoder goes into Idle

state when reset signal goes 0, and asserts ‘ready’ signal as 1. On receiving a 1 on ‘start’ pin, the

decoder loads in the channel LLRs, pulls in ‘ready’ signal low and goes into DECODING state

beginning with Iteration 0 for decoding the frame. In this example Δv = 4 and Δc = 2, therefore

the length of the pipeline is equal to Δv + Δc = 6.

30

pulled ‘low’ after one clock cycle; the decoder pulls ready signal ‘low’ as well. To keep the

iterations going on continuously, the decoder asserts ready signal little before the last iteration

finishes as shown in Figure 3.8. Thus, before the final iteration is over, the channel LLR buffer

is able to respond with new frame LLRs. Next iteration is first iteration of the new frame, the

old frame values are sent into the variable node pipeline for hard-decision decoding. The delay

for the final decoded code word is represented in Figure 3.8. This delay is dependent on the

pipeline depth in the decoder and is given by tdelay,bitout (=Δv,sat + Δv + Δc) clock cycles. Thus

after tdelay,bitout clock cycles, the resulting hard-decoded frame is output and the decoder is

asserts valid signal ‘high’ for one clock cycle. The iteration count keeps incrementing from 0

to n-1 in a continuous circular fashion and decoder outputs a decoded frame every n iterations.

offset

Frame2_LLRs

Decoding

n-1 0 1

2 3 4 5 0 1 2 3 4 5 0 1 2

clk

reset

ready

offset

Channel LLRs

start

valid

decoder_state

new_frame

Iteration_count

digit_count

Rvn

Rcn

C
o

n
tr

o
l

D
ec

o
d

in
g

New LLRs are loaded

Delay for calculating the final bit out

Figure 3.8: Finishing decoding previous frame, hard-decision output and loading next frame for

single-frame decoding. The decoder hard-decision output of previous frame at beginning of

iteration 1 of new frame. Iteration 0 is used up in hard-decision calculation of previous frame.

31

3.3.5 Frame-Interlaced Decoding

Frame-interlaced decoding enables the digit-online decoder to decode 2 frames simultaneously.

However, the LLR precision of the frames being decoded is halved. The frame-interlaced

mode does not require major changes in the decoder structure. Thus, for a slight change in

implementation area, it is possible to achieve nearly twice the throughput [5], [15], [57]. Figure

3.9 illustrates the timing diagrams for various signals when beginning decoding and loading

new frames. Figure 3.10 shows timing diagram when finishing decoding of previous frames

and loading in new frames in frame-interlaced mode.

Pulling reset signal ‘low’ initializes the decoder. Upon initialization, the decoder asserts a

ready signal ‘high’ when it is ready to start decoding. The channel LLR buffer responds by

providing channel LLRs and asserting start bit ‘high’. The input channel LLRs consist of LLRs

offset

Frame1&2_LLRs

Idle Decoding

{0,0} {1,0} {1,1} {2,1}

0 1 2 0 1 2 0 1 2 0 1 2 0

clk

reset

ready

offset

Channel LLRs

start

valid

decoder_state

new_frame

Iteration_count

digit_count

Rvn

Rcn

C
o

n
tr

o
l

D
ec

o
d

in
g

Figure 3.9 : The beginning of frame-interlaced decoding. Each iteration from single frame

decoding is split in two iterations. Iteration number {1,0}, represents iteration 1 for frame 1 and

iteration 0 for frame 2. There is a frame counter implemented as well to keep track of the frame

number. The pipeline length for each frame is halved.

32

for both frame 1 and frame 2 LLRs in an interlaced manner. The total pipeline length of the

decoder is distributed between the two frames. The new_frame signal stays ‘1’ for the duration

of iteration {0,0} and {1,0}. The channel LLRs are loaded in variable nodes in this duration.

The processing nodes in the digit-online decoders do not require information about which

frame they are processing; they only need to know when MSDs for a frame appear. Thus,

structurally frame-interlaced decoding is very similar to single-frame decoding. However the

control signal differ, as shown in Figure 3.9 and Figure 3.10, Rvn and Rcn signals are asserted

twice in each frame iteration.

When finishing decoding, a ready signal is asserted ‘high’ before the iteration counter resets

to {0,0} to signal channel LLR buffer to send in new channel LLRs. The decoded frames are

output after a delay similar to as explained in Single-frame decoding, the decoder output

changes at each valid signal as shown in Figure 3.10.

offset

Frame1&2_LLRs Frame3&4_LLRs

Decoding

{0,0} {n-1,n-1} {0,n-1} {0,0} {1,0} {1,1} {2,1}

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

clk

reset

ready

offset

Channel LLRs

start

valid

decoder_state

new_frame

Iteration_count

digit_count

Rvn

Rcn

C
o
n

tr
o
l

D
ec

o
d

in
g

Figure 3.10: Finishing decoding current frames and loading new frames in frame-interlaced

decoding. The frames are output after a delay required for hard-decision decoding. Δv and Δc

may not be equal and frames may not be in same decoding iteration.

33

The channel LLR values that are introduced to the decoder in conventional sign-magnitude

format. The AWGN channel module generates channel LLRs and stores them in the channel

LLR buffer module, until the decoder is ready to receive new LLRs. LLRs are converted in

signed-binary format in the variable nodes only when the decoding begins, doing so reduces

memory and fan-in requirements, since signed-binary format requires more number of bits to

represent a number.

The hard-decision output of the frame being decoded is performed if either of the two events

occur: 1) maximum number of iterations have taken place, or 2) all the check node equations

are satisfied (early termination). The maximum number of iterations (imax) is estimated

according to the throughput requirements and rate of code convergence. Minimum throughput

of an LDPC decoder is inversely proportional to imax.

34

Chapter 4

Test Unit and Power Measurement Setup

4.1 Introduction

FPGA designs are considered more power and area hungry than their ASIC counterparts.

However, FPGAs offer many advantages over ASICs such as fast prototyping abilities,

allowing users to change and quickly verify idea in hardware rather than waiting for

fabrication of a custom ASIC chip. This saves time and cost per FPGA chip if the quantity of

product to be deployed is small. The reconfigurability associated with FPGAs increases

product lifetime, and any incremental modifications occurring in future designs can be

programmed into the FPGAs, as long as they fit in current FPGA, without the need to redesign

the whole board.

4.1.1 FPGA Implementation

The design is implemented on an Altera Stratix IV GX EP4SGX230 FPGA, which comes on

Altera DE4 development and education board. Most of the design is written in VHSIC (Very

High Speed Integrated-Circuit) Hardware Description Language (VHDL), with the exception

of AWGN Channel Module which is written in Verilog HDL. Figure 4.1 shows various

functional blocks in the system.

A random data generator outputs pseudo-random bit patterns through a linear-feedback shift

register (LFSR). The bit patterns from the random data generator are fed to WiMAX encoder

as information bits (432 bits). Encoder generates check bits according to the code constraints,

appends them to the information bits and outputs the resulting bit pattern as an encoded frame

(576 bits). A shift-out register works in a parallel-in serial-out shift register manner. The shift-

out register buffers the encoded frame of 576 bits and shifts out x bits per clock cycle. For

x =32 bits means that 576 bits of the frame are shifted out completely in 576/32 = 18 clock

35

cycles. The number of shift-out register output bits control the flow of channel LLRs to the

decoder. Thus, for a 50 MHz clock source, shift-out register with x= 32 bits allows for

2.77 million frames sent to the decoder in one second.

The shift-out register output bits are added with pseudo-random noise samples and scaled as

per the assigned signal-to-noise ratio (SNR) in AWGN channel module and quantized to

desired precision LLRs. The AWGN generator works on principal of Box-Muller transform,

and generates LLRs for each input bit. Channel LLR buffer, stores the output LLRs from the

AWGN module for each encoded bit, until all the LLRs for encoded frame are received. When

all LLRs for a frame are received in channel LLR buffer, it waits for ready signal from the

WiMAX decoder. On receiving ‘1’ on ready signal, the channel LLR buffer provides the

decoder with channel LLR values and signals the decoder to start decoding by asserting ‘1’ on

start signal. The start signal stays ‘1’ for one clock cycle and goes back to ‘0’.

The final part of the system is a bit-error-rate (BER) calculation module. The BER module

buffers the encoded and the decoded frames when the valid signal from appears from both the

modules. Keeping track of the frame numbers is tricky; thus, to ensure proper operation three

most recent frames from the encoder are buffered and compared with decoded frame. An XOR

operation between the buffered encoder and decoder frames is performed, any bit errors

Random Data

Generator

WiMAX

Encoder

S
h

ift O
u

t

R
e
g
iste

r

C
h

an
n

e
l

L
L

R
 b

u
ffe

r

WiMAX

Decoder

Bit Error Rate

Calculator

(0..575) (0..31) (0..31)(0..LLR-1)

(0..575)(0..LLR-1)(0..575)(0..431)

A
W

G
N

C
h

an
n

e
l

Figure 4.1: A block diagram of the FPGA implementation, showing all the component modules.

The arrows indicated the flow of data, numbers on the arrows mention the bus-width

36

between the two frames results in 1s at that specific bit positions. Counting the number of 1s

occurring in the output of XOR operation gives us the bit errors per frame. To calculate the

BER, a variable keeps track of the number of frames processed until a set number of errors is

reached. The decoder area forms the majority of the design’s area on FPGA; an average

decoder takes about 85-90% of the design area.

The initial approach in this work was to study WiMAX 1056-bit, rate-1/2 codes on FPGA,

since a larger code provides better coding gain. Therefore, a bit-parallel LDPC decoder for

code word size 1056 bits and rate-1/2 was synthesized on the FPGA. The size of a bit-parallel

LDPC decoder increases with input LLR message precision. The biggest 1056-bit, rate-1/2 bit-

parallel LDPC decoder that could fit in the FPGA had LLR message precision of 4 bits. The

digit-online LDPC decoder for code word size 1056 bits, rate-1/2 was unable to fit on the

FPGA for any LLR precision. A digit-online check node tends to occupy a lot more logic

resources as compared with a digit-online variable node (see Appendix A). Going for a higher

rate code like rate-3/4 reduces the check nodes in decoder by half in number, also a smaller

code with size 576 bits was chosen. The biggest 576-bit, rate-3/4 bit-parallel LDPC decoder

that can fit on the FPGA has LLR precision of 6 bits. For the 576-bit, rate-3/4 Digit-Online

LDPC Decoder, up to an input LLR precision of 13 bits was successfully synthesized on the

FPGA. Higher input precision cases might be able to fit as well, but they were not tested. Thus

choosing a smaller size code with size 576 bits provides more test cases over a larger range of

LLR precisions.

4.2 FPGA Core Power Measurement

For the measurement of FPGA core power, the setup from [18] is used. A diagram showing the

FPGA board power measurement setup is shown in Figure 4.2. The power characterization

technique reported in [18] relates the power dissipated in the FPGA core to the actual

measured power consumed by the Altera DE4 board. The power measurement setup consists

of 0.01-Ω resistors connected to the power supply lines to DE4 board. There are two power

supply lines onto the DE4 power supply: one being the 12V and, the other 3.3 V supply. The

37

power to the FPGA core is supplied through 12V supply, which is converted to 0.9V for FPGA

core using three LTM4601 regulators on the Altera DE4 board [62]. Therefore, the power

supplied to the board is calculated by measuring the current through the 12V supply lines.

The voltage drop across the 0.01-Ω resister connected in series with the supply lines is

measured and current through the resistors is calculated by dividing the measured voltage with

0.01-Ω.

The current across the two 12 V supply lines are added to find out the total input current to

the FPGA board.

The input power to the board is found by using Equation (4.1), reproduced from [18] :

 PFPGA_Board = (IR1 + IR2) * Vvcc12 (4.1)

The FPGA board power when minimum logic is programmed on the FPGA core can be

calculated as PBoardMin from (4.1). The design is synthesized on the FPGA chip and the input

power to the FPGA board is measured as PBoardwDesign.

As mentioned before, the LTM4601 regulators down-convert the input voltage to the board

to 0.9V for FPGA chip. Assuming that 100% of input power is converted to the FPGA core

DE4

BOARD12V DC Supply

IR1 + IR2

+ VR1 -

+ VR2 -

Figure 4.2 : Power measurement setup for measuring power inDE4 board as demonstrated in

[18]

38

power through voltage converters, the incremental FPGA core power for design can be

calculated by subtracting PBoardMin from PBoardwDesign. However, in [18] it was noted that

LTM4601 does not work at 100% efficiency; rather the conversion efficiency follows a curve,

modeled by Equation (4.2), reproduced from [18]:

PFPGAcoreAct= -2.039*(PFPGAwDesign)+ 16.93*(PFPGAwDesign)
0.5– 32.8 (4.2)

where P FPGAcoreAct is the actual power consumed by the FPGA core. Therefore, using Equation

(4.2) the measured board power can be mapped to actual FPGA core power.

4.3 FPGA Power Dissipation Discussion

The ease of programmability and flexibility offered by FPGAs make them less power-efficient

than custom ASICs for implementing a given logic circuit. The FPGA configuration circuitry

and configuration memory consume more silicon area, which results in longer wire lengths and

higher interconnect capacitances. Further additions to capacitive load are caused by

programmable routing switches in the FPGA interconnect structures. The power consumed in

FPGA core consists of dynamic and static power.

In CMOS circuits the dynamic power is proportional to average capacitance, switching

activity and voltage supply according to the relation:

 ∑

Thus dynamic power is due to the logic transitions in the signals in the capacitive circuit.

Interconnect in an FPGA’s programmable routing fabric contributes a considerable portion of

39

the dynamic power. Dynamic power can also be reduced by reducing the switching activity in

the non-critical areas of the circuit.

The static power in logic circuits is the due to the leakage caused in the powered-on circuit

even when no switching activity occurs. Leakage power is proportional to transistor count and

is dependent on transistor width. A reduction in transistor width causes an almost linear

reduction in leakage and dynamic power [63]. FPGA leakage power is dissipated in both the

used (active mode leakage) and unused parts (sleep mode leakage) of the chip.

In the older process technologies, dynamic power used to be major source of power

dissipation in a digital circuit. However, going to sub-50-nm ranges of fabrication, the static or

leakage power proves to be an important portion of the power consumption of a chip.

40

Chapter 5

Results and Discussion

Bit-parallel and digit-online decoders have been synthesized in the FPGA for decoding LDPC

code words of size 576 bits and rate-3/4. The maximum iterations have been kept at 10 for

both the decoder types. In this chapter, the bit-parallel LDPC decoder implementation is

discussed first and later digit-online LDPC decoder implementation is discussed.

5.1 WiMAX 576-bit, Rate-3/4 Bit-Parallel LDPC Decoder

The bit-parallel decoder is a straightforward implementation of a Tanner graph in hardware.

The decoding algorithm used is the min-sum algorithm with offset correction. The variable

nodes perform the summation operation on the incoming messages; the check nodes after

offset correction, select two minimum values out of the corrected LLR messages. The LLR

messages are transmitted in parallel over multiple wires across the decoder nodes. The bit-

parallel decoder is written in VHDL and its operation is briefly described below:

In the beginning of a new frame, channel values are loaded in all the variable nodes. In the

first iteration, the variable nodes simply output the new channel values to the check nodes. The

check nodes perform offset correction, select the minimum values and send back to variable

nodes where the incoming LLR messages are added with channel LLR values. It is made sure

that the variable (LLRsum) used to save the result of the addition are big enough, even if all

the LLRs being added have magnitudes equal to maximum magnitude. The variable node

output on each edge is calculated by subtracting the incoming LLR on that edge from

LLRsum. If the magnitude of resulting LLR is beyond the allowed range, a positive maximum

LLR or a negative maximum LLR is output depending on the sign of resulting LLR. The check

nodes perform the operation of selecting the minimum of all incoming LLRs on the edges.

Signs of all the incoming LLRs are checked to see if the check node constraints are satisfied

and early termination criterion applies. If the check node constraints are satisfied, the variable

41

nodes are signaled to finish decoding and output the decoded code word after a thresholding

operation. Offset correction is performed in the check node by subtracting the offset values

from the minimum LLR magnitudes selected by the selection network. If the offset value is

greater than the magnitude of minimum LLRs then all 0s are output, otherwise the message

resulting after offset subtraction is output. The sign of the output LLR is decided based on the

sign of the other LLRs. The interleaver specifies the connection between different nodes in the

decoder. The interleaver files are generated from C++ routines by parsing the Base matrix

(.hbm) and A-list (.alist) files for 576 bit, rate-3/4 WiMAX code.

The controller for the bit-parallel decoder is very similar to the controller described for digit-

online decoder but much simpler. When beginning a new frame, the controller loads new

channel LLRs into the variable nodes and supplies the offset values to all check nodes. The

controller monitors number of iterations and finishes the decoding if the maximum number of

iterations is reached or an early termination occurs. When finishing decoding, the decoder

appends the hard decoded bits from all the variable nodes and outputs the decoded frame.

5.1.1 ModelSim® Simulation

Before implementation of the decoder on the FPGA, a test bench was written to ensure correct

operation in VHDL for use in the ModelSim® software. Few of the issues faced while trying to

simulate bit-parallel decoder in ModelSim® were:

5.1.1.1 Simulation of Altera Megafunctions in ModelSim®:

The AWGN module uses Altera megafunction LPM_MULT, which cannot be directly

simulated in ModelSim®, since ModelSim® does not have definitions for it. There is a

requirement for the inclusion of 220model and altera_mf library files from Altera Quartus® II

in the ModelSim® project to fix this.

42

5.1.1.2 Mixed-language compilation:

The project uses both VHDL and Verilog HDL. Compiling mixed languages in Quartus® II is

not an issue. However, the version of ModelSim® in windows did not seem to support it.

ModelSim® SE version in Linux supports fast mixed language compile and simulation. A

screenshot from the ModelSim® simulation of the bit-parallel decoder for an input LLR

precision of 5 bits and 10 iterations is shown in Figure 5.2.

5.1.2 FPGA Synthesis

After ensuring that the control signals are working fine and decoder decodes code words

correctly, the design was moved to Altera Quartus® II software. Parallel LDPC decoders have

long interconnection wires and since every edge in Tanner graph is actually a multi-bit parallel

connection in hardware, this implementation is not very FPGA friendly.

Area requirements in implemented bit-parallel LDPC code decoders increase very rapidly

with increase in input LLR message precision as shown in Figure 5.1(a). The FPGA logic

utilization

Figure 5.1: For a bit-parallel offset-MS LDPC decoder implementation for a code size of 576

bits, rate-3/4; (a) represents change in FPGA logic utilization versus LLR precision, and (b)

represents fmax values for changing LLR precision

43

Figure 5.2: ModelSim® simulation for 576 bit, rate-3/4 WiMAX bit-parallel decoder for input

LLR precision of 5 bits and maximum iteration number = 10

44

Figure 5.3: Variation in minimum throughput for variations in input LLR decoder

implementations

is about 62% for an input LLR precision of 3 bits and increases almost linearly with increasing

LLR precision up to 99% logic utilization at 6-bit input LLR precision. Bit-parallel decoders

with LLR message precision more than 6 bits were unable to fit in the FPGA.

TimeQuest timing analyzer tool in Quartus® II was used to perform timing analysis as well

as to ensure the setup and hold requirements in the circuit were met. The maximum clock

frequency (fmax) for the design is determined in both the fast- and the slow-corners using

TimeQuest timing analyzer. Figure 5.1(b) shows the variation of maximum clock frequency

(fmax) for the bit-parallel decoder with different LLR input precisions. The reported fmax for the

designs is the lowest value of fmax from all the analyzed timing corners. The fmax for the bit-

parallel decoder demonstrates a slightly decreasing pattern with increasing input LLR

precision. For the smallest decoder with 3-bit input LLR messages fmax is about 30 MHz, while

for the bit-parallel decoder with input LLR precision 6 bits wide it is about 24 MHz.

Minimum coded throughput versus input LLR precision for a bit-parallel decoder is shown

in Figure 5.3. Maximum iterations allowed for decoding a code word are 10; thus, the bit-

parallel decoder takes 11 clock cycles for decoding a code word. Therefore, throughput of the

45

bit-parallel decoder is only affected by fmax, therefore, coded throughput versus LLR precision

for a bit-parallel decoder forms a curve similar to that of fmax versus LLR precision.

The SignalTap II logic analyzer was used to verify signals and debug FPGA hardware. Once

the design was successfully synthesized on FPGA, the power analysis using the power

measurement setup discussed previously was performed.

5.1.2.1 Use of Gating Signal

In the design implemented on FPGA since the decoder is provided with frames at a controlled

rate. It was found on synthesis that the decoder kept consuming power at low SNRs even after

performing a hard decision output. The reason for this was that until a new frame was loaded

in the decoder, the nodes were trying converge the messages to satisfy the constraints, so other

words, the decoding was still going on in the background. A quick fix solution for this was use

of a latch-based clock-gating signal. The clock input to the check nodes is ANDed with the

output of the latch to form a new clock signal. The clock-gating latch is transparent while the

decoder performs decoding iterations before hard decision output; after the hard decision, the

controller signals the latch to block the clock signal until a new frame is loaded. This signal

can be seen in the ModelSim® screenshot in Figure 5.5. The gating signal turns ‘on’ before the

decoder goes into the ‘decoding’ state and stays on until the decoding is done for 10 iterations.

As Gating signal goes low, the nodes do not consume any dynamic power.

5.1.2.2 BER Performance

The bit error rate versus SNR for a bit-parallel LDPC decoder with input LLR precision of 3

bits is shown in Figure 5.4. The value of offset used is 001 and maximum of 10 iterations per

frame are performed.

5.2 WiMAX 576-bit, Rate-3/4 Digit-Online LDPC Decoder

Like the bit-parallel decoder, the digit-online decoder was first tested in ModelSim® for correct

functioning. Afterwards, the decoder was implemented in FPGA and power stats were studied.

46

Figure 5.4: BER curve for bit-parallel decoder. The input LLR precision is 3 bits. Offset value is

001 and maximum 10 decoding iterations per frame

5.2.1 ModelSim® Simulation

The ModelSim® simulation screenshot for a 6-bit LLR precision digit-online decoder is shown

in Figure 5.5. The control signals in the digit-online decoder are very similar to those of the

bit-parallel decoder with a few new signals. The length of an iteration depends on the pipeline

length in the decoder and increases with increase in LLR precision. It can be seen in Table 5.1

that each iteration in a 6-bit LLR digit-online decoder is 7 clock cycles long. 6-bit conventional

sign-magnitude LLRs are converted into 5 digits in signed-binary format. Each digit occupies

one pipeline stage in the digit-online decoder, the pipeline length as shown in Table 5.1 is

more than LLR length in digits, the difference is filled with guard digits to prevent overflow in

the decoder nodes.

5.2.2 FPGA synthesis

The area requirements in a digit-online decoder change very slowly with changes in LLR

precision in contrast with the bit-parallel decoder. A digit-online decoder with 6 bit input LLR

47

Figure 5.5 : ModelSim® simulation showing main signals in digit-online decoder. Input LLR

precision is 6 bits and maximum iterations = 4. The decoder simulation was slightly modified

for better illustration

48

precision uses about 91% of FPGA’s logic resources. Increasing the input LLR precision of the

digit-online decoder, the decoder size remains fairly constant as shown in the Figure 5.6.

However, it was found that the lower LLR precision decoder implementations tend to use more

ALUTs (Adaptive Lookup Tables) and fewer DLRs (Dedicated Logic Registers) as compared

to high LLR precision decoders implementations (see Appendix A). As input LLR precision

increases in digit-online decoder the number of pipeline stages increase as well. Higher

pipelining also allows for higher clock frequencies, thus compensates for the more number of

clock cycles required for decoding a frame with increasing LLR precisions.

The FPGA logic utilization in case of the digit-online decoders for different LLR message

sizes is shown in Figure 5.6. As can be seen, the area occupied by the digit-online decoder

does not vary much unlike bit-parallel decoder. The logic utilization on average changes by 5-

6% when the synthesis optimization settings are changed from ‘Balanced’ to ‘Area’ or

‘Speed’. Selecting the fitter effort out of ‘Standard fit’, ‘Fast fit’ or ‘Auto Fit’ has impact not

only on the logic utilization, but also on the design compilation time.

Performing a ‘Standard Fit’ is most time consuming, with average compilation time of about

4-5 hours. A ‘Fast Fit’ or ‘Auto Fit’ reduces the average compilation time to about 60-90

minutes. The difference in area utilization between the ‘Standard fit’ and ‘Fast Fit’ on average

is about 6-7%. The variations in the logic utilizations for various decoder configurations can be

attributed to inherent randomness in the CAD algorithms of Quartus® II.

The maximum clock frequency (fmax) for the design is determined in both the fast- and the

slow-corners using TimeQuest timing analyzer just like the bit-parallel decoder

implementation. Figure 5.7 (a) shows the variation of maximum clock frequency (fmax) for

decoder implementation with different LLR input precisions. The reported fmax for the designs

is the lowest value of fmax in all the analyzed corners. The fmax for the digit-online decoder

increases with increasing input LLR precision implementations, going from 90 MHz for 6-bit

input LLR decoder indicating that fmax for FPGA based digit-online decoders starts saturating

near 145 MHz. It might be possible to clock the design at higher clock rates by use of

appropriate synthesis settings.

49

Input LLR Precision (bits) Input LLR Precision (digits) Δv Δc Pipeline Length

6 4 4 3 7

8 7 5 4 9

9 8 6 4 10

11 10 7 5 12

13 12 7 7 14

11 (frame interlaced) 4 (each frame) 7 5 12

13 (frame interlaced) 5 (each frame) 7 7 14

Table 5.1: Table shows the digit-online decoder pipeline length for a different input LLR

precisions in bits. The LLR values are converted from sign-magnitude format to signed-binary

format in the decoder and stored in form of digits. Δv and Δc is the length of the variable node

pipeline and check node pipeline repectively.

Figure 5.6 : Graph showing variation in FPGA logic utilization for variation input LLR

precision configurations of the digit-online decoder.

50

Figure 5.7: Plot showing variation of (a) fmax and, (b) minimum throughput vs LLR Precision

for digit-online decoder.

Minimum coded throughput versus input LLR precision for the digit-online decoder is

shown in Figure 5.7(b). A code word is decoded in a maximum of 10 iterations. The number of

clock cycles per iteration depends on the LLR precision as discussed before. Therefore,

minimum coded throughput can be calculated from fmax and number of clock cycles required

for decoding a code word for a digit-online decoder implementation and multiplying by code

word size (576 bits).

The SignalTap II logic analyzer was used to verify signals and debug FPGA hardware. Once

the design was successfully synthesized on FPGA, the power analysis using the power

measurement setup discussed previously was performed.

5.2.3 BER Performance

A BER curve for the digit-online decoder was calculated using the BER calculation module

synthesized in the FPGA. The BER calculation module counts a minimum of 250 errors at

each SNR value. The input code word to the digit-online decoder is of size 576 bits and rate-

3/4, input LLR precision is 6 bits and the decoder performs a maximum of 10 decoding

iterations.

51

5.2.3.1 BER curve

An offset value of 000011 was found to provide the best BER performance. The observed bit

error rate (BER) performance versus SNR for the 6-bit digit-online decoder synthesized on the

FPGA is shown in Figure 5.8.

5.2.3.2 Effect of Offset

The BER of the digit-online decoder for different offset values was calculated as shown in

Figure 5.9. As can be seen, the choice of the offset affects the BER performance a lot,

especially if a large value of the offset is chosen. It was found that an offset value of 000011

gives the best error performance for a 6-bit LLR digit-online decoder configuration. BER

performance for an offset value of 000000 basically corresponds to MS decoding without

offset correction. It can be seen from Figure 5.9, for an offset value of 000000 the BER is

5.6 x 10-9 while with an appropriate choice of offset value the BER can go as low as

8.77 x 10-10 for same SNR value of 3.75 dB.

Figure 5.8: BER vs SNR curve for a digit-online decoder. The input LLR precision is 6 bits.

Offset value is 000011.

52

Figure 5.9: Effect of offset on BER vs SNR curve for a synthesized 6-bit input LLR digit-online

decoder for a code word size of 576bits, rate -3/4. The decoder performs maximum of 10

iterations.

5.3 Power Characterization Experiment

For the power characterization experiment, a constant throughput (coded) value of 450 Mb/s is

chosen for all the LDPC decoder implementations to get an idea of how expensive a particular

implementation choice is in terms of power consumption to achieve a specific throughput. For

the bit-parallel decoder, the code words are introduced at a controlled rate from the shift-out

register in Figure 4.1. The shift-out register shifts-out 18 of encoded frame bits per clock cycle;

thus, an encoded frame is shifted out completely every 32 clock cycles, and a new encoded

frame is loaded in the shift-out register. For an input clock frequency of 25 MHz this

corresponds to 781, 250 frames/second, for a frame size of 576 bits corresponds to 450 Mb/s

coded throughput. The bit-parallel decoder decodes a code word in 11 clock cycles and asserts

a ready signal (Chapter 4); however, a new code word is not introduced until the next 21 clock

cycles and for that duration the decoder nodes are clock-gated to halt any unnecessary

switching activity in decoder.

53

The implementation of the 450 Mb/s throughput is slightly different in case of digit-online

decoder. Since, the digit-online decoder requires more clock cycles for decoding a code word

in comparison with the bit-parallel decoder; it is fed with new code word LLRs as soon as it is

ready to accept new code words. Since the number of clock cycles required for decoding a

code word in a digit-online decoder increases with increase in LLR message precision because

of increased pipeline stages; higher LLR precision digit-online decoder configurations are

clocked at increasingly higher frequencies as shown in Table 5.2 to keep a throughput of 450

Mb/s. One of the reasons for choosing a coded throughput value of 450 Mb/s for power

characterization is because it is easily achievable by all the decoder configurations. The bit-

parallel decoder implementation requires the number of bits out from the shift-out register to

be a divisor of 576 bits for a simple implementation. The chosen number of bits out for 450

Mb/s is 18; the nearest choices are 16 or 24, which correspond to a throughput of 400 Mb/s or

675 Mb/s respectively. The latter throughput cannot be achieved by 13-bit LLR configuration

in digit-online decoder, while the former is smaller than the current selection; it is better to go

with as high as throughput possible for better power characterization.

Digit-online decoder LLR precision Clock frequency (MHz)

6-bit 55

8-bit 70

9-bit 78 (*80)

11-bit 94 (*95)

13-bit 110

11-bit (frame-interlaced mode) 47 (*45)

13-bit (frame-interlaced mode) 55

Table 5.2: Table showing operating clock frequencies for a throughput of 450 Mb/s for the power

characterization experiment. The mode of operation is single-frame mode, unless mentioned. All

decoder configurations perform 10 decoding iterations.

54

5.3.1 FPGA Core Power Consumption

The power input to the DE4 board is measured and mapped to the FPGA core power using

Equation (4.2). Figure 5.10 shows a plot of the FPGA core power plot versus change in SNR

values of the input LLRs for the bit-parallel and digit-online LDPC decoder implemented on

FPGA. The LDPC decoder power tends to decrease with increase in SNR of input LLR

messages because of reduced switching activity at the decoder input and in the decoding

iterations.

From Figure 5.10, it can be observed that the FPGA core power increases with increase in

the LLR message precision. For the bit-parallel LDPC decoder implementation, this is because

the decoder size increases with increase in input message precision; thus the dynamic as well

as static power increases. For a digit-online decoder, area of decoder implementation does not

vary much with different input message precisions, therefore, the static power remains

relatively constant. But for this experiment, higher precision digit-online decoder

configurations are clocked at higher frequencies to make up for longer iterations, thus resulting

in increasing FPGA core power due to increased switching activity with increasing input LLR

precision. A few of the cases from Figure 5.10 stand out and require further explanation.

Figure 5.10: FPGA core power (mapped)(W) vs SNR plot of different LLR precisions for (a)

bit-parallel decoder and, (b) digit-online decoder.

55

5.3.1.1 5-bit and 6-bit LLR Input Bit-Parallel Decoder

The 6-bit LLR decoder configuration in Figure 5.10(a) consumes about twice as much power

as compared with 5-bit LLR decoder configuration. While the logic utilization between these

two configurations does not change that much at about 86% for 5-bit configuration and 99%

for 6-bit configuration, the 6-bit LLR decoder configuration has very high interconnect usage

(61% average) as compared with 38% average for 5-bit configuration. High logic utilization

and interconnect usage not only adds additional dynamic power but also adds considerable

static power dissipation to the FPGA core power. A plot showing the average interconnect

usage in the decoder configurations for different LLR message precisions is shown in Figure

5.11. Two cases in digit-online decoders require further discussion.

5.3.1.2 Single Frame Mode 11-bit and 13-bit LLR Digit-Online Decoder Configuration

It can be seen in Figure 5.10(b), there is a larger gap in core power dissipations in between the

11-bit and 13-bit configurations of the digit-online decoder. The logic utilization in the case of

13-bit LLR digit-online decoder is increased by 4%. Also from Figure 5.11, it can be seen that

Figure 5.11: Average interconnect usage variation with changing input LLR precision for (a)

bit-parallel decoders and, (b) digit-online decoders synthesized on the FPGA.

56

the interconnect usage in case of a 13-bit LLR digit-online decoder configuration the average

interconnect usage is about 34% as compared with 27% in the case of 11-bit LLR digit-online

decoder. In the case of a serial message passing decoder like digit-online decoder, the power

dissipated in the interconnect forms an important part of the decoder power consumption.

Thus, increase in logic utilization and interconnect usage results in increased power

consumption in case of 13-bit LLR input digit-online decoder.

5.3.1.3 Single-Frame Mode 6-bit, 8-bit LLR and Frame-Interlaced Mode 13-bit LLR Digit-

Online Decoder Configuration

The input clock frequency for 6-bit LLR and 13-bit (interlaced) LLR digit-online decoder

configurations is 55 MHz. Thus, it was expected for these two configurations to have nearly

equal power consumptions. Instead, the power consumption of 13-bit (interlaced) LLR digit-

online decoder configuration is nearly equal to 8-bit LLR digit-online decoder.

The 13-bit (interlaced mode) LLR digit-online decoder configuration utilizes only about 2%

more FPGA logic than 6-bit decoder configuration but ends up consuming about 10% more

routing resources and results in higher power consumption. The 8-bit LLR digit-online decoder

configuration takes up 6% less logic and 4% less routing resources on FPGA; thus, even

though it is clocked at higher frequency, it results in nearly equal power consumption with 13-

bit (interlaced) LLR digit-online decoder configuration. Another factor for increased core

power in the case of 13-bit (interlaced) LLR configuration compared with 6-bit configuration

is increased static power in the synthesized LBAs in Stratic IV FPGA. Quartus® II software

evaluates slacks in the different parts of the circuit and assigns individual LBAs in either high-

performance or low-power modes [64]. In the chip planner tool in Quartus® II software the

high-performance logic blocks are shown as yellow and low-power blocks are shown in blue

color. Figure 5.12 shows a screenshot from the Chip Planner tool in Quartus® II for both

configurations. The transistors in the blue tiles have reduced back-bias voltage and hence are

difficult to turn-on, the yellow tiles on the other hand are easier to turn-on. Thus, yellow tiles

in the FPGA core have higher leakage currents and more static power dissipation.

57

5.3.2 Energy-Per-Coded-Bit (E/b)

Energy per coded bit (E/b) provides an important metric to compare energy expense

requirements for an LDPC decoder. E/b can be calculated as:

Energy per coded bit (E/b)

 (5.1)

Energy per bit values are calculated from the FPGA core power values reported in Figure 5.10,

for a coded throughput value of 450 Mb/s and are shown in Figure 5.13. Average energy-per-

coded-bit values for the bit-parallel and digit-online decoder are discussed in chapter 6.

5.3.3 Energy Per Iteration

For the purpose of finding out the power expenses per iteration in the digit-online decoder, two

6-bit LLR decoder configurations with maximum 4 and 6 iterations were synthesized in the

FPGA.

Figure 5.12: FPGA synthesis of Digit-Online decoder design showing low-power (blue) and

high-performance (yellow) tiles for (a) 6-bit LLR configuration and, (b) 13-bit LLR

configuration. Low-power tiles in Stratix IV FPGA have reduced back-bias transistor voltage,

which reduces sub-threshold leakage power.

58

Figure 5.13: Energy-per-coded-bit values for different (a) bit-parallel and, (b) digit-online

decoder configurations plotted vs SNR(dB).

The power dissipated in the FPGA core consists of both dynamic and static components. The

FPGA resource utilizations in 4 and 6 maximum iteration cases are almost equal; thus, the

static power dissipation in both decoders can be considered to be almost equal as well. The

dynamic power consumed in the digit-online decoder can be broken down into two main

components: 1) power consumed in loading new frame LLRs, 2) power consumed in

performing decoding iterations. The power consumed in each decoding iteration will likely be

different, since LLRs tend to converge as decoding progresses and switching activity reduces.

However, since the LLRs are processed in redundant representation, for calculations here, the

power consumption in iterations is assumed to be equally distributed.

For the digit-online decoder with maximum 4 iterations, let’s assume ‘x’ is the power

consumed due to loading of new frames and ‘y’ is the power consumed in the decoding

iterations performed in 1 second. Therefore, the contribution of the x and y to the power,

Pcore, 4 iterations (C1) consumed in the digit-online decoder can be written in form of Equation

(5.2) as:

1*x + y = C1 (5.2)

59

where C1 is the mapped FPGA core power for 6-bit LLR digit-online decoder with maximum

4 iterations.

The digit-online decoder with maximum 6 iterations will process less number of frames in

same time as compared with the digit-online decoder with maximum 4 iterations. Thus, the

power consumed in loading a new frame x, is multiplied by a factor of 0.67. Since the

iterations in the digit-online decoder simply keep incrementing in circular fashion, the number

of iterations taking place in both the decoders is still the same. Thus, power component due to

y remains unchanged. Therefore, the consumed FPGA core power, Pcore, 6 iterations (C2), can be

given by the expression:

0.67*x + y = C2 (5.3)

Equations (5.2) and (5.3) can be solved for x and y to find out the power consumed in loading

a new frame in the decoder and power consumed in performing decoding iterations in one

second.

To verify the results, the values of x and y are used to estimate power consumption for 6-bit

digit-online decoder with a maximum 10 iterations using the expression:

Estimated FPGA core power, Pcore, 10 iterations = 0.4*x + y (5.4)

Calculations are performed at power data from different SNRs and shown in

Table 5.3. For a digit-online decoder with input LLR precision 6 bits, each decoding iteration

is 7 clock cycles long. Therefore, the number of iterations per second for an input clock

frequency of 55 MHz can be calculated as 7.86 x 106. The average value of y can be used to

estimate the average energy used per iteration, which comes out to be 0.17 μJ.

60

SNR C1-C2

x = Power

(frame-loading)(W)

= (C1-C2) *3

y = Power

(iterations)(W)

Estimated

power for 10

iterations

(W)

Measured

power for

10 iterations

(W)

Difference

in Est. and

Meas. Pow.

2.5 0.042737 0.128211074 1.253455 1.30474 1.395665 0.090925

3 0.065233 0.195699101 1.227595 1.305875 1.414139 0.108264

3.5 0.046186 0.138556773 1.289295 1.344718 1.353299 0.008581

4.0 0.040775 0.122326417 1.332588 1.381518 1.334112 -0.04741

4.5 0.031903 0.095708588 1.345735 1.384018 1.295069 -0.08895

5 0.040413 0.121238052 1.347027 1.395522 1.309815 -0.08571

6 0.022518 0.067555062 1.387359 1.414381 1.319575 -0.09481

7 0.040051 0.120154344 1.361341 1.409402 1.319575 -0.08983

8 0.00445 0.013350292 1.450478 1.455818 1.324435 -0.13138

Average :

0.037

0.111422189

1.332764

1.377332 1.340631 -0.0367

Table 5.3 : Table shows calculation steps for estimating power consumption for a 6-bit LLR

digit-online decoder with 10 decoding iterations and the difference between the actual measured

and estimated values. The average power consumed in loading a frame and performing

decoding iterations is shown in bold.

61

Chapter 6

Summary and Future Work

6.1 Thesis Summary

In this thesis, FPGA implementations of bit-parallel and digit-online LDPC decoders have

been presented. The chosen code size and code rate is among the ones supported by WiMAX

(IEEE 802.16) standard. The reported results include FPGA synthesis specific results like the

effect of changing input log likelihood ratio (LLR) precision on the decoder size, the maximum

clock frequency and decoder power consumption. The effects on decoder power consumption

with changing signal-to-noise ratio of the input LLRs for different configurations of both the

decoder types have been studied and reported.

Bit-error-rate (BER) for a 6-bit precision LLR input digit-online decoder synthesized on the

FPGA is reported as 1.2 x 10-10 at 4.0 dB. The effect of offset value on the BER performance

of the 6-bit LLR input digit-online decoder is analyzed and BER for different offset values is

reported. For the digit-online decoder configurations synthesized on the FPGA, 11-bit LLR

precision decoder configuration gives the highest throughput of 1363 Mb/s in frame-interlaced

mode.

A power characterization experiment to compare the power consumed in the bit-parallel and

digit-online decoders decoding at a throughput of 450 Mb/s is reported. The energy-per-coded-

bit values for all the decoder configurations are presented. Table 6.1 reports the average values

of the energy-per-coded-bit for different decoder configurations. The lowest E/b values for the

digit-online decoder are shown. Energy-per-iteration is reported for a 6-bit LLR digit-online

decoder. The power consumed in the FPGA core is due to loading of new frames and the

decoder performing the decoding iterations, each of which are reported separately.

A breakdown of the entity resource utilization for the bit-parallel decoder and the digit-

online decoder is presented in appendix A. The entities in the bit-parallel decoder tend to

62

Decoder type Bit-parallel Digit-online (single frame)
Digit-online (frame-

interlaced)

LLR
Precision(bits)

3 4 5 6 6 8 9 11 13 11 13

Average E/b (nJ) 0.58 0.72 1.09 2.23 2.77 3.15 3.39 3.79 4.54 2.29 3.25

Table 6.1 : A table showing average E/b values for different decoder implementations, the

observed minimum E/b values for digit-online decoder are shown in bold.

increase almost linearly in logic resource utilization with increase in message precisions. This

is to be expected, since with increase in the message precision the size of the adders and

comparators in the decoder nodes also increases. The entities in the digit-online decoder do not

show a specific pattern to the increase in message precision, with the exception of controller.

The size of controller increases linearly with increase in the LLR message precision, because

of the size of the new frame LLRs being stored in the controller.

The size of the individual nodes in the digit-online decoder fluctuates around the average

values listed in Table 6.2. Since the digit-online decoder processes messages in a digit-serial

format, increase of message precision in the decoder causes slight increase in registers used

each node because of increased pipelining. The size of the adders and the selection networks in

the decoder nodes, however, mainly depends on the degree of the node. It might be informative

to look at the size of the individual check nodes and variable nodes and predict the size of the

decoder for a specific code size.

Decoder Entity Avg. ALUTs Avg. DLRs Avg. ALMs

Check Node (degree 14) 730 293.6 470.1

Check Node (degree 15) 783.4 312.8 501.2

Variable Node (degree 2) 13.2 16.8 15.2

Variable Node (degree 3) 25.6 21.2 19.8

Variable Node (degree 4) 39.8 38.8 39.6

Table 6.2: Table showing average values of various entities in the 576 bit, rate-3/4 digit-online decoder

63

6.2 Future Work

The 8-bit LLR and 13-bit LLR configurations of digit-online decoder show higher interconnect

usage as compared to their neighbors and thus have higher power consumption. No special

attempts have been made to reduce logic utilization and interconnect routing resources in case

of digit-online decoders. Using appropriate constraints in the Quartus® II, it might be possible

to further optimize logic utilization and interconnect usage in these decoder configurations.

The LLRs in the digit-online decoder are loaded in parallel and are stored in ALM resources,

this not only causes high usage of routing resources at the input of decoder but also cause a

huge switching activity when a new frame is loaded. Instead, it might be possible to distribute

the loading of LLRs over a few clock cycles and employ block memory available on the FPGA

to store the LLR messages. However, as seen in Section 5.3.3, the power consumed in the

loading of a new frame is very less as compared with power consumed in performing decoding

iterations. It might be interesting to implement digit-online decoder configurations for higher

code sizes and code rates on a bigger FPGA.

 64

Bibliography

[1] R. Gallager, “Low-density parity-check codes,” in IEEE Trans. Inf. Theory, vol. 8, no. 1, pp. 21-

28, Jan. 1962

[2] C. E. Shannon, “A mathematical theory of communication,” in ACM SIGMOBILE Mobile Comp.

and Commun, Review, vol. 5, no. 1, pp. 3–55, Jan. 2001.

[3] A. J. Blanksby and C. J. Howland, “A 690-mW 1 Gb/s 1024-b, rate-1/2 low-density parity-check

code decoder,” in IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 404-412, Mar. 2002.

[4] A. Daraibha, A. C. Carusone, and F. R. Kschischang, “A bit serial approximate min-sum LDPC

decoder and FPGA implementation,” in Proc.2006 IEEE Int. Symp. Circuits and Systems, pp.149-

152, May 2006.

[5] P. A. Marshall, V. C. Gaudet, and D. G. Elliot, “Deeply pipelined digit-serial LDPC decoding,” in

IEEE Trans. Circuits and Sysems I, Reg. Papers, vol. 59, no. 12, pp. 2934-2944, Dec. 2012.

[6] T. Brandon, R. Hang, G. Block, V. C. Gaudet, B. Cockburn, S. Howard, C. Giasson, K. Boyle, P.

Goud, S. S. Zeinoddin, A. Rapley, S. Bates, D. Elliott, and C. Schlegel, “A scalable LDPC

decoder ASIC architecture with bit-serial message exchange,” in Integration VLSI J., vol. 41, no.

3, pp. 385–39, May 2008.

[7] M. Ercegovac, “Online arithmetic: An overview,” in Proc. SPIE V.495: Real Time Signal

Processing VII, pp. 86–93, Aug 1984.

[8] M. J. Irwin and R. M. Owens, “Digit-pipelined arithmetic as illustrated by the paste-up system: A

tutorial,” in Computer, vol. 20, no. 4, pp. 61–73, Apr 1987.

[9] S.J. Li, T. L. Brandon, D. G. Elliott, and V. C. Gaudet, "Power Characterization of a Gbit/s FPGA

Convolutional LDPC Decoder," in IEEE Workshop on Sig. Proc. Sys. (SiPS), pp. 294-299, Oct.

2012

[10] R. M. Tanner, “A recursive approach to low complexity codes,” in IEEE Trans. on Inf. Theory,

vol. 27, pp. 533-598, Feb, 2001.

[11] X. Huang, “Near perfect decoding of LDPC codes,” in Proc. 2005 Int. Symp. Information Theory

(ISIT 2005), pp. 302–306, Sept 2005.

65

[12] T. Zhang, Z. Wang, and K. K. Parhi, “On finite-precision implementation of low density parity

check codes decoder,” in 2001 Int. Symp. Circuits and Systems(ICAS 2001), vol. 4, pp. 202–205,

May 2001.

[13] J. Sha, Z. Wang, M. Gao, and L. Li, “Multi-Gb/s LDPC code design and implementation,” in

IEEE Trans. Very Large Scale Integr. (VLSI) Syst, vol. 17, no. 2, pp. 262-268, Feb. 2009.

[14] C. Zhang, Z. Wang, J. Sha, L. Li, and J. Li, “Flexible LDPC decoder design for multi gigabit-

per-second applications,” in IEEE Trans. Circuits and Systems I, Reg. papers, vol. 57, pp. 116-

124, Jan. 2010.

[15] P. A. Marshall, V. C. Gaudet, and D. G. Elliot, “Effects of Varying Message Precision in Digit-

Online LDPC Decoders,” in IEEE Workshop on Sig. Proc. Sys. (SiPS), pp. 7-12, Oct. 2012.

[16] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product

algorithm,” in IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.

[17] S. Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the design of low-density

parity-check codes within 0.0045dB of the shannon limit,” in IEEE Commun. Lett., vol. 5, pp. 58-

60, Feb. 2001.

[18] Si-Yun Li, “Power Characterisation of a Gbit/s FPGA Convolutional LDPC Decoder,” M.A.Sc

Thesis, University of Waterloo, 2012.

[19] J. Zhao, F. Zarkeshvari and A. H. Banihashemi, “On implementation of min –sum algorithm and

its modifications for decoding LDPC codes” in IEEE Trans. Commun. vol.53, no. 4, pp. 549-554,

Apr. 2005.

[20] J. Chen and M. P. C. Fossorier, “Density evolution for BP-based decoding algorithms of LDPC

codes and their quantized versions,” in Proc. IEEE GLOBECOM, Taipei, vol.2, pp. 1378-1382,

Nov. 2002.

[21] A. J. Blanksby and C. J. Howland, “A 690-mW 1 Gb/s 1024-b, rate-1/2 low-density parity-check

code decoder,” in IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 404-412, Mar 2002.

[22] C. J. Howland and A. J. Blanksby, “Parallel decoding architectures for low-density parity-check

codes,” in IEEE Proc. ICAS, vol. 4, pp. 742-745, May 2001.

66

[23] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Power reduction techniques for LDPC

decoders,” in IEEE J. Solid-State Circuits, vol. 43, pp. 1835-1845, Aug, 2008.

[24] N. Onizawa, T. Ikeda, T. Hanyu, V. Gaudet, “3.2 Gb/s 1024-b rate-1/2 LDPC decoder chip using

a flooding-type update-schedule algorithm,” in Proc. 50
th
 IEEE Midwest Symp. Circuits Systems,

Brest, France, pp. 217-220, Aug. 2007.

[25] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An efficient 10GBASE-T ethernet

LDPC decoder design with low error floors,” in IEEE J. Solid-State Circuits, vol. 45, no. 4, pp.

843-855, Apr. 2010.

[26] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “A 47Gb/s ldpc decoder with

improved low error performance,” in Symp. VLSI Circuits Dig. Kyoto, pp. 286-287, Jun. 2009.

[27] H. Zhong and T. Zhang, “Block-LDPC: A practical LDPC coding system design approach,” in

IEEE Trans. on Circuits and Systems I, vol. 52, no. 4, pp. 766-775, Apr. 2005.

[28] H. Zhong and T. Zhang, “Design of VLSI implementation-oriented LDPC codes,” in Proc. IEEE

Semiann. Vehicular Technology Conf., vol.1, pp. 670-673, Oct. 2003.

[29] G. Al-Rawi, J. Cioffi, and M. Horowitz, “Optimizing the mapping of low-density parity-check

codes on parallel decoding architectures,” in Proc. IEEE ITCC, Las Vegas, pp. 578-586, Apr.

2001.

[30] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Block-interlaced LDPC decoders with

reduced interconnect complexity,” in IEEE Trans. Circuits Syst. II, vol. 55, no. 1, pp. 74-78, Jan,

2008.

[31] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on finite

geometrics: A rediscovery and new results,” in IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2711-

2736, Nov. 2001.

[32] A. Nouh and A. Banihashemi, “Bootstrap decoding of low-density parity-check codes,” in IEEE

Commun. Lett., vol. 6, pp. 391-393, Sept. 2002.

[33] J. Zhang and M. Fossorier, “A modified weighted bit-flipping decoding of low-density parity-

check codes,” in IEEE Commun. Lett., vol. 8, pp. 165-167, Mar. 2004.

67

[34] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, “An improvement on the modified weighted bit flipping

decoding algorithm for LDPC codes,” in IEEE Commun. Lett., vol. 9, pp. 814-816, Sep. 2005.

[35] T. L. Brandon et. al., “A scalable LDPC decoder ASIC architecture with bit-serial message

exchange,” in Integration VLSI J., vol. 41, no. 3, pp. 385-398, May, 2008.

[36] A. Darabiha, A.C. Carusone, and F. R. Kschischang, “A 3.3-Gbps bit-serial block-interlaced

min-sum LDPC decoder in 0.13-μm CMOS,” in Proc. Custom Integrated Circ. Conf., pp. 459-

462, Sep. 2007.

[37] J. T. Tou, “Advances in information systems science,” Springer, 1969

[38] B. D. Brown and H. C. Card, “Stochastic neural computation. I. Computational elements,” in

IEEE Trans. Comput., vol. 50, pp. 891-905, Sep, 2001.

[39] W. J. Gross, V. Gaudet, and A. Milner, “Stochastic implementation of LDPC decoders,” in Proc.

39
th
 Asilomar. Conf. Signals, Systems, Computers, Pacific Grove, CA, pp. 713-717, Nov. 2005.

[40] S. S. Tehrani, W.J. Gross, and S. Mannor, “Stochastic decoding of LDPC codes,” in IEEE

Commun. Lett., vol. 10, pp. 716-718, Oct. 2006.

[41] S. S. Tehrani, S. Mannor, and W.J. Gross, “Fully parallel stochastic LDPC decoders,” in IEEE

Trans. Signal Process., vol. 56, no. 11, pp. 5692-5703, Nov. 2008.

[42] S. S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. J. Gross, “Majority

based Tracking Forecast Memories for Stochastic LDPC decoding,” in IEEE Trans. Signal

Process., vol. 58, no. 9, pp. 4883–4896, Sept. 2010.

[43] S. Hemati, A. H. Banihashemi, and C. Plett, “A 0.18-μm CMOS Analog min-sum iterative

decoder for a (32, 8) low-density parity-check (LDPC) code,” in IEEE J. Solid-State Cir., vol. 41,

Nov. 2006.

[44] M. Zargham, C. Schlegel, J. P. Chamorro, C. Lahuec, F. Seguin, M. Jezequel and V. Gaudet,

“Scaling of analog LDPC decoders in sub-100 nm CMOS processes,” in Integration VLSI J., vol.

43, no. 4, pp. 365-377, Sept. 2010.

[45] E. Yeo, B. Nikolic, and V. Anantharam, “Iterative decoding architectures,” in IEEE Commun.

Mag., vol. 41, pp. 132-140, Aug. 2003.

68

[46] R. Zarubica, S. G. Wilson, and E. Hall, “Multi-Gbps FPGA-based Low-Density Parity- Check

(LDPC) Decoder Design,” in IEEE Global Telecommun. Conf., Washington, pp. 548-552, Nov.

2007.

[47] R. Zarubica and S. G. Wilson, “A solution for memory collision in semi-parallel FPGA-based

LDPC decoder design,” in IEEE ACSSC’07, Pacific Grove, pp. 982-986, Nov. 2007.

[48] M. H. Kim, T. D. Park, C. S. Kim, and J. W. Jung, “An FPGA design of low power LDPC

decoder for high-speed wireless LAN,” in IEEE Intl. Conf. on Commun. Tech., pp. 1460-1463,

Nov. 2010.

[49] S. S. Tehrani, S. Mannor, and W. J. Gross, “An area-efficient FPGA-based architecture for fully-

parallel stochastic LDPC decoding,” in Proc. IEEE Workshop on Sig. Process. Systems (SiPS),

Shanghai, pp. 255-260, Oct. 2007.

[50] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI architectures for layered

decoding for irregular LDPC codes of WiMAX,” in Proc. IEEE Int. Conf. on Commun., pp. 4542-

4547, Jun 2007.

[51] V. A. Chandrasetty and S. M. Aziz, “FPGA Implementation of High Performance LDPC

Decoder using Modified 2-bit Min-Sum Algorithm,” in Proc. of 2
nd

 Intl. Conf. on Comp. R&D,

Kuala Lumpur, pp. 881-885, May. 2010.

[52] V. A. Chandrasetty and S. M. Aziz, “An area efficient LDPC decoder using a reduced

complexity min-sum algorithm,” in Integration VLSI J., vol. 45, no. 2, pp. 141-148, Mar. 2012.

[53] X. Chen, J. Kang, S. Lin, and V. Akella, “Memory system optimization for FPGA-based

implementation of quasi-cyclic LDPC codes decoders,” in IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 58, no. 1, pp. 98-111, Jan. 2011.

[54] W. Sulek, M. Kucharczyk, and G. Dziwoki, “GF(q) LDPC decoder design for FPGA

implementation,” in IEEE Proc. 10
th
 Annual Consumer Commun. and Networking Conf., Las

Vegas, pp. 445-450, Jan 2013.

[55] C. Spagnol, E. M. Popovici, and W. P. Marnane, “Hardware implementation of GF(2
m
) LDPC

Decoders,” in IEEE Trans. Circuits Syst. I, Reg. papers, pp. 2609-2620, Dec. 2009.

[56] Altera Stratix IV documententation Chapter 2: Logic Array Blocks and Adaptive Logic Modules

69

[57] P. A. Marshall, “Digit-Online LDPC Decoding,” Ph.D. dissertation, University of Alberta, 2013.

[58] M. D. Ercegovac, “On-line arithmetic: An overview,” in Real Time Signal Processing VIII, Proc.

SPIE, vol. 495, pp. 86-93, Aug. 1984.

[59] R. M. Owens, “Techniques to reduce the inherent limitations of fully digit on-line arithmetic,” in

IEEE Trans. Comput., vol. C-32, no. 4, Apr. 1983.

[60] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” in IRE Trans.

Electron. Comput., vol. EC-10, pp. 389-400, Sept. 1961.

[61] www.pages.ripco.net/~jgamble/nw.html

[62] Altera Stratix IV Development and Education Board (DE4) Schematic, Terasic, Version 1.0.

[63] D. Nyugen, A. Davare, M. Orshansky, D. Chinnery, B. Thompson, and K. Keutzer,

“Minimization of dynamic and static power through joint assignment of threshold voltages and

sizing optimization,” in Proc. Int. Symp. Low-Power Electronics Design (ISLPED ’03), pp. 158-

163, Aug. 2003.

[64] www.altera.com/literature/wp/wp-01059-stratix-iv-40nm-power-management.pdf

70

Appendix A

FPGA Resource Utilization Analysis

Bit-parallel and digit-online LDPC decoders discussed in this thesis decode LDPC code words of

size 576 bit and rate-3/4. Both the implemented decoders consists of controller, check nodes

(degrees 14 and 15) and variable nodes (degrees 2, 3 and 4). It is informative to look how FPGA

resource utilization in each entity varies with increase in LLR message precisions input to the

decoders. Resource utilization plots showing ALUTs (Adaptive Look Up Tables), DLRs

(Dedicated Logic Registers) and ALMs (Arithmetic Logic Modules) usage are shown.

A.1 Bit-Parallel Decoder

Figure A.1: Resource utilization plots for (a) bit-parallel decoder, (b) controller, (c) degree-14

check node (avg.), (d) degree-15 check node (avg.) are shown vs LLR precision.

71

Figure A.2: Average resource utilization plots for bit-parallel decoder (a) degree-2 variable

node, (b) degree-3 variable nodes and (c) degree-4 variable node are shown vs LLR precision.

72

A.2 Digit-Online Decoder

Figure A.3: Resource utilization plots for (a) digit-online decoder, (b) controller, (c) degree-14

check node (avg.), (d) degree-15 check node (avg.) are shown vs LLR precision.

73

Figure A.4 : Average resource utilization plots for digit-online decoder (a) degree-2 variable

node, (b) degree-3 variable nodes and (c) degree-4 variable node are shown vs LLR precision.

