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Abstract

In this thesis, I analyze the weight functions used in moving least squares (MLS) meth-
ods to construct implicit surfaces that interpolate or approximate polygon soup. I found
that one previous method that presented an analytic solution to the integrated moving least
squares method has issues with degeneracies because they changed the weight functions to
decrease too slowly. Inspired by their method, I derived a bound for the choice of weight
function for implicit moving least squares (IMLS) methods to avoid these degeneracies in
two-dimensions and in three-dimensions. Based on this bound, I give a theoretical proof
of the correctness of the moving least squares interpolation and approximation scheme
with weight function used in Shen et al. [34] when used on closed polyhedrons. Further,
previous IMLS implicit surface reconstruction algorithms that fill holes and gaps create
surfaces with obvious bulges due to an intrinsic property of MLS. I propose a generalized
IMLS method using a Gaussian distribution function to re-weight each polygon, making
nearer polygons dominate and reducing the bulges on holes and gaps.
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Chapter 1

Introduction

In this thesis, I analyze the weight function used in implicit moving least squares schemes.
Based on a test I ran on one of these schemes, I found that sometimes the method con-
structed ill-defined implicit functions. The main contribution of my work is to find condi-
tions for when these implicit moving least squares schemes construct valid implicit func-
tions. These schemes were devised as a way to interpolate and approximate non-manifold
polyhedral data, although my analysis focuses on manifold curves and surfaces. I also
looked at extending these methods to reduce the bulges while hilling holes.

1.1 Motivation

Polygonal meshes are one representation used in computer graphics. Numerous applica-
tions to generate and edit polygonal meshes have been developed in recent years. Some of
these methods store polygonal mesh data in a “polygon soup”, which is a group of unor-
ganized triangles, with generally no explicit relationships between the triangles. Polygon
soup uses an unorganized polygon mesh to save memory and read/write time. However,
such meshes may have problems such as holes, gaps, T-junctions, self-intersections, and
non-manifold structure. These defects make polygon soup unsuitable for a large variety of
applications other than rendering, such as shape blending, deformation, constructive solid
geometry operations, collision detection and so on. In contrast, implicit surfaces do not
have these problems, and they have other desirable properties such as accuracy, concise-
ness, affine invariance, arbitrary topology, guaranteed continuity, and they allow efficient
intersection computations. Its mesh-less and function based representation makes implicit
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surface applicable to those polygon soup non-suitable applications. In addition, if we con-
struct an implicit surface from polygonal soup, a clean and simplified polygonal model can
be extracted from the reconstructed implicit surface to solve the above and other problems
with polygon soup such as excessive detail or bad aspect-ratio polygons.

My work was driven by analyzing a method of Shen et al. [34]. Their method is
called implicit moving least squares (IMLS) in this thesis. IMLS is a moving least squares
technique to interpolate or approximate polygon soup, requiring integration over each
polygon. In Shen’s dissertation, he claimed that the method could fill holes and gaps but
had no guarantee that the fill would satisfy any particular criteria. Further, Shen gave no
clear example of holes or gaps that were filled with his method.

While objects are often modeled as polyhedral models, when manufactured, the edges
between polygons need to be rounded (rounds), and the creases filled (fillets), as shown in
Fig. 1.1. If Shen et al.’s method produces reasonable fills of holes, then we should be able
to use their method for filleting and rounding. The idea is to take the polyhedral model,
and shrink all the faces, leaving gaps along all the edges between polygons. We can then
use Shen et al.’s method to interpolate the polygons, which will fill the gaps between the
edges, giving us fillets and rounds. The main question is: do the fillets and rounds created
by Shen et al.’s method have reasonable shape? To check whether his method gets ideal
filleting and rounding results on polygon soup with holes or gaps, I did experiments on
polygons and polyhedra with all the faces shrunk, creating holes and gaps. Fig. 1.2 shows
a 2D example on a shrunken plus.

As seen in Fig. 1.2(c), Shen et al.’s method can fill gaps but they do not achieve an
ideal result; in particular, their rounds “bulge”. This problem is worse for larger holes.
The method presented in my thesis modifies Shen et al.’s method by using an additional
Gaussian weighting of the polygons to reduce the bulge problem. However, it suffers from
sharp corners and edges, as shown in Fig. 1.2(d). On the other hand, when filling small
holes, my method reduces the bulges that Shen et al.’s method has, as seen in Fig. 1.3
which shows 3D interpolation results from Shen et al.’s method in red, my method in green,
and the approximation result from my method in bronze. I tried several other methods
but none of them match the ideal result. Some of these methods have good results on 2D
data, but fail on 3D.

I also noticed that Shen et al.’s method differs from standard moving least squares in
that they square the weight function, but they give no explanation for this squaring. In
addition, they were unable to derive a closed form of their integrals and used numerical
methods to solve them. Park et al. [29] used Shen et al.’s method with a different weight
function. Their weight function allowed them to derive an analytic solution to the polygon

2
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Figure 1.1: Ideal fillets and rounds example in 2D.

integrals.

1.2 Contributions

In analyzing the weight functions of Shen et al. and of Park et al., I determined several
things. First, I discovered that the squaring of the weight function in Shen et al.’s method
is critical to its correctness of interpolating polygon soup, and in this thesis I show why.
Second, for Shen et al.’s approximation scheme, the generalized weight function also needs
to meet some necessary conditions to avoid degeneracies. Third, through the same analysis,
I found that the weight function of Park et al. gives an incorrect result.

To summarize, the major technical contributions of this thesis include:

• I derive a lower-bound of the rate of decrease of the IDW (inverse distance weight)
function. This lower-bound provides a criterion for choosing weight functions for
MLS interpolation and approximation of closed polyhedron. In addition, for an
IMLS function f , I show in which regions of space f is positive and in which regions
f is negative.

• I provide a generalized 2D polar coordinate formulation and 3D spherical coordinate

3
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(d) Result of my method.

Figure 1.2: Shen et al.’s fillets and rounds example in 2D.

formulation for IMLS. The interpolation solution proposed in Park et al. [29] can be
seen as a special case of mine.

• To avoid bulges in Shen et al.’s filleting and rounding, I use a Gaussian distribution
function as another weight function for polygons, which allows for controlling the
sharpness when filling holes and gaps.
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Figure 1.3: Illustration of the reconstruction from polygonal input data. Left: Input
polygon soup model. Middle Left: Interpolation using Implicit Moving Least Squares [34].
Middle Right: Interpolation using proposed Generalized Implicit Moving Least Squares
(GIMLS). Right: Approximation using GIMLS with ε = 0.02 and h = 0.08. Note the
bump on the left wing of the IMLS surface; the GIMLS surface does not have this artifact.

I also discuss using my method to approximate data in a manner similar to that of Shen
et al. and to Park et al.
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Chapter 2

Background

Scattered data approximation deals with the problem of reconstructing an unknown func-
tion from scattered data. Its many applications include terrain modeling, fluid-structure
interaction, the numerical solution of partial differential equations, kernel learning, and
parameter estimation, the most commonly used parameter estimation being the interpola-
tion and approximation with implicit surfaces. My research is based on the interpolation
and approximation with implicit surfaces as well. This chapter provides an introductory
overview of implicit surface and scattered data approximation methods.

2.1 Implicit Surface and Parametric Surface

In computer graphics and geometry modeling, there are two common ways to specify a
surface: implicit and parametric. Parametric representations usually define a surface as a
set of points p(s, t), i.e.,

p(s, t) = (x(s, t), y(s, t), z(s, t)).

Implicit representations typically define a surface as the zero contour of a function F (p) =
0, i.e.,

F (p) = F (x, y, z) = 0,

with the sign of F indicating whether points not on the surface are inside or outside the
surface. Fig. 2.1 shows a simple implicit curve. We say that an implicit function is well
defined if it is continuous, is negative in a bounded region, and is positive outside of a
(possibly larger) bounded region.
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Figure 2.1: Implicit curve example: f(p) = p2
x + p2

y − 1.

Both implicit and parametric surfaces are well developed in computer graphics. Tradi-
tionally, parametric representations have been favored because the parametric representa-
tion is simpler to render and is easy to use for many applications like the control of posi-
tion or tangency or the computation of curvature or bounds. According to Rockwood [32],
“parametric surfaces are generally easier to draw, tessellate, subdivide, and bound, or to
perform any operation on that requires a knowledge of ‘where’ on the surface.”

However, implicit surfaces are receiving increased attention due to their natural repre-
sentation of solid objects and their innate blend properties. Bajaj [1] mentioned that “The
ability to enclose volume and to represent blends of volumes endows implicit surfaces with
inherent advantages in geometric design.” In addition, skeletal implicit modeling tech-
niques [9] make animation, shape change and deformation natural with implicit surface.

There are many other topics within the broad area of implicit surface, and the book by
Bloomenthal and his co-authors [1] is a good reference.

2.2 Implicit Surface Reconstruction

In the past decades, reconstructing implicit surfaces from scattered data has been exten-
sively explored [39]. The main stream of approaches includes signed distance estimation,
Voronoi-based reconstruction, implicit surface fitting, and moving least squares surfaces [5].
However, little work has looked at interpolating polygonal data. My approach addresses
the problem of implicit surface reconstruction from polygon soup, based on moving least
squares.
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Gois et al. [8] presented a method for reconstructing implicit surfaces from polygonal
meshes based on Hermite-Birkhoff interpolation with radial basis functions. They had
three independent sets of constraints: points, normals, and tangents. However, a lack of
good criteria for automatic selection of these constraints made their method unstable. The
requirement of solving large linear systems and susceptibility to noise are also problems
with their method. There are also two hierarchical approximation methods dealing with
polygonal data inspired by the multi-level partition of unity (MPU) idea proposed by
Ohtake et al. [26] for point data sets. Kanai et al. [13] proposed a method to construct a
hierarchy of a quadratic sparse low-degree implicit (SLIM) surfaces from a polygon mesh.
As they build a set of implicit surfaces with different resolutions, their approach has large
memory requirements. The quadratic polynomial implicit surface they used also makes
the approach unstable when the polygonal mesh has a complicated shape. Li et al. [19]
published a robust MPU method for triangle meshes. They used the dual graph of the
triangle mesh to subdivide the triangle set into an Octree and they regarded each triangle
as “a point with an error metric”. This reduces the problem to that of a point cloud
approximation MPU. However, their method applies only to triangle meshes and is hard
to extend to more general polygonal data due to the design of their error metric. Xu
et al. [42] recently published a paper dealing with polygon soup. They calculated signed
distance fields for polygon soup meshes. To determine the sign they used a global analysis
to determine the inside and outside instead of normals. They claimed that they could fill
holes but showed no explicit results.

The most relevant research to this thesis is that of Shen et al. [34] and Park et al. [29].
The Shen et al. method is based on the MPU by Ohtake et al. [26]. IMLS and MPU are
fundamentally alike but the integrated constraints of Shen et al. are different from the col-
lections of point constraints of Ohtake et al.. Shen et al.’s method has problems with larger
holes and gaps, and when used to approximate data, the resulting surface “shrinks” (i.e.,
the resulting surface is smaller than the data would suggest). The approximation scheme
they proposed is inefficient as well. Kolluri et al. [16] revised Shen et al.’s IMLS method by
using a Gaussian function as the weight function instead of Shen et al.’s inversed distance
function. They proved that when applying their method on certain sampling conditions,
the implicit surface generated is a good approximation of the signed distance function of
the original surface. They also proved that their reconstructed surface is geometrically and
topologically correct. In this thesis, I will analyze the weight function in IMLS of Shen
et al. to give theoretical guarantees for their type of weight function. Shen et al. do not
have closed form to their integral moving least squares equations and they use numerical
method to approximate the result. Park et al. [29] claimed that they found an analytic
solution for Shen et al. [34], but I will show that their method is in error, at least for
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interpolating closed polyhedrons.

Another point based idea for filling holes related to my work is that of Öztireli et al. [28],
who produced a new MLS based surface construction method based on a robust statistics
technique to deal with holes and noise in a point data set. They have similar results to
my Gaussian weighted implicit moving least squares method when filling holes. However,
their iterative process to re-weight each implicit result is slow to converge.

9



Chapter 3

Moving Least Squares Basics

The fundamental method used in my research is moving least squares. It builds near-best
approximations to functionals on Rd by using scattered-data information. In this chapter,
standard least squares will be reviewed and compared to moving least squares.

3.1 Standard Least Squares

Standard least squares is an approximate solution for systems of linear equations when
there are more equations than unknowns. “Least squares” means the solution minimizes
the sum of the squares of the errors made in the results of every equation. This makes
least squares applicable to curve fitting problems: the solution minimizes the sum of the
squared residuals (ordinate differences) of the difference between an observed value and
the fitted value.

The simplest form of least squares is to find the best fit straight line y = ax + b for
n points (data pairs) (xi, yi), i ∈ {1, . . . , N}, where xi is an independent variable and yi
is a dependent variable whose value is found by observation. It is unlikely that there is a
perfect fit for two reasons. The first reason is experimental error; the second reason is that
the underlying relationship of given pairs may not be linear. Thus the goal of least squares
is to find a “best fit” to the data. The standard form of least squares fits an arbitrary
degree polynomial to the data. For least squares applied to scattered data approximation,
the problem is defined as follows.

Definition 3.1.1. For a set of points P = {p1, . . . ,pN} ∈ Rd×N , a globally defined
function f(x) that approximates given scalar values fi at points pi in the least-squares

10



sense will be obtained by minimizing the error function

min

{
N∑
i=1

[f(pi)− fi]2 : f ∈ πM(Rd)

}
, (3.1)

where f(pi) is a constraint on pi, and πM(Rd) is the set of polynomials f of degree at most
M .

Let b = [b1, . . . , bM ] ∈ RM be a tuple of basis function and, let c = [c1, . . . , cM ] ∈ RM

be the unknown coefficients of a polynomial f :

f =
M∑
j=1

cjbj. (3.2)

The residual to be minimized with least squares is

R(c) =
N∑
i=1

[
f(pi)−

M∑
j=1

(cjbj(pi))

]2

. (3.3)

The condition for R(c) to be minimum is that

∂R(c)

∂ci
= 0

for i = 1, . . . ,M . For a polynomial of M degree fit, we need to solve a M ×M linear
system. Standard least squares approximates the data globally by balancing between all
of the input data. For all the query points, the resulting approximant is constant.

Unfortunately, for complicated fitting problems, a satisfactory global fit requires a high
degree polynomial. Apart from the difficulty of solving large linear system to specify such
a polynomial, the resulting surface or curve will almost always be folded and mountainous.
An approach with local polynomial reproduction named moving least squares will address
these problems. Fig. 3.1 shows the plot of least squares approximation comparing to the
plot of moving least squares interpolation. Both are with a linear basis function.

3.2 Moving Least Squares

The moving least squares method for smoothing and interpolating scattered data was
proposed by Lancaster and Salkauskas [18] in 1981. The idea of moving least squares

11



−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Least Squares approximation.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) Moving least squares approximation.

Figure 3.1: Least squares and moving least squares comparison. Moving least squares uses
weight function in Eq. 3.13 and ε = 0. Both methods are with a linear basis function.

is to solve for every point x a locally weighted least square problem. This appears to
be expensive at first sight, but it will turn out to be efficient. The approximation is
obtained by solving many small linear systems, instead of solving a single large linear
system as done by least squares. Moreover, in many applications one is only interested in
a few evaluations instead of the whole domain of the input data. For such applications,
the moving least squares approximation is even more attractive. The influence of the data
points is governed by a weight function w: Rd×Rd → R, which becomes smaller the further
away its arguments are from each other. Ideally, w vanishes for arguments x,y ∈ Rd with
their distance d(x,y) greater than a given threshold. Such behavior can be modeled by
using a translation-invariant weight function.

The standard moving least squares is defined as follows [39]:

Definition 3.2.1. For a set of points P = {p1, . . . ,pN} ∈ Rd×N , and a query point x ∈ Rd,
the value sf,X(x) of the moving least squares approximant is given by sf,X(x) = p∗(x) where
p∗(x) is the solution to

min

{
N∑
i=1

[f(xi)− p(pi)]2w(x− pi) : p ∈ πM(Rd)

}
, (3.4)

12



where f(pi) is the constraint on pi, and πM(Rd) is the set of polynomials p of degree at
most M .

According to Wendland [39], the polynomial p can be defined in terms of basis functions
b = [b1, . . . , bM ] ∈ RM and adjusting the coefficients c = [c1, . . . , cM ] ∈ RM as

p =
M∑
j=1

cjbj. (3.5)

This reduces the minimization problem to finding the optimal coefficient vector c. Com-
bining Eq. 3.4 and Eq. 3.5, we need to minimize the following:

R(c) =
N∑
i=1

[
f(pi)−

M∑
j=1

(cjbj(pi))

]2

w(x− pi). (3.6)

Using the notation

B = [bᵀ(p1), . . . , bᵀ(pN)]ᵀ ∈ RN×M

W = diag (w(x− pi) : i ∈ [0, N ])

φ = (f(p1), . . . , f(pN))ᵀ ∈ RN ,

the matrix formulation of Eq. 3.6 is

R(c) =
N∑
i=1

(φi −Bic)2w(x− pi)

= (φ−Bc)ᵀW(φ−Bc)

= (φᵀWφ)− 2cᵀBᵀWφ+ cᵀBᵀWBc.

Here R(c) is a quadratic function in c, and it can be shown that BᵀWB is positive semi-
definite and that the minimization problem has a unique solution [39]. Because there is a
unique solution we can use the necessary condition ∇R(c) = 0 to find this solution, i.e.,

∇R(c) = −2BᵀWφ+ 2BᵀWBc = 0⇔ BᵀWBc = BᵀWφ, (3.7)

the solution of which is cᵀ = (BᵀWB)−1BᵀWφ.

Shen et al. [34] took a non-standard approach to MLS in their IMLS method. They
changed the matrix form tow(x− p1)

. . .

w(x− pN)


bᵀ(p1)

...
bᵀ(pN)

 c =

w(x− p1)
. . .

w(x− pN)


φ1

...
φN

 , (3.8)
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which is
WBc = Wφ. (3.9)

Compared to Eq. 3.7, Shen et al. eliminate Bᵀ directly. To solve Eq. 3.9, they multiplied
Eq. 3.9 by (WB)ᵀ, giving

(WB)ᵀWBc = (WB)ᵀWφ (3.10)

BᵀW2Bc = BᵀW2φ. (3.11)

The difference between the standard derivation and Shen’s derivation is only in the weight
function. Shen et al. gave no explicit reason why squaring the weight is necessary for surface
reconstruction especially as they were free to choose the weight function. Following Shen
et al. [34], constant basis functions are used for reconstruction, i.e., when p(xi) is constant
the implicit function that can be used with these methods is

f(x) =

∑N
i=1w(x− pi)φi∑N
i=1w(x− pi)

. (3.12)

This implicit function is essentially weighting the constraints from the surfaces. Therefore,
the weight function becomes an important factor in this construction. If w(x− pi) is the
distance from the scattered point to the evaluation point, Eq. 3.12 will be the simplest
form of inverse distance weighted reconstruction, called Sheppard’s method [35, 39]. Shen
et al. used the weight

w(r) =
1

r2 + ε2
. (3.13)

Since they squared the weight function, I will use the following weight function

w(r) =
1

(r2 + ε2)2
(3.14)

in the standard MLS formulation. However, in Section 5.2, I will show that if Shen et
al. did not square the weight function, the MLS solution would be degenerate.

When ε = 0, the moving least-squares function will interpolate the sample points (con-
straint values).When ε is non-zero, the moving least-squares function only approximates the
constraint values. By adjusting ε, a variety of approximating behaviors can be achieved.
A larger ε tends to provide a smoother approximation while a smaller ε gives a closer
approximation to the original points.

A generalized inverse distance function is

w(r) =
1

(r2 + ε2)d
. (3.15)
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where d is a positive integer. Greater values of d assign greater influence to values clos-
est to the interpolated point. In Chapter 5, I will use this generalized weight function
to prove that d has to meet some conditions to generate well-defined interpolation and
approximation implicit surfaces.
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Chapter 4

Implicit Moving Least Squares

In this chapter, I review implicit moving least squares and the analytic solution to implicit
moving least squares (IMLS) proposed by Park et al. I also show that their solution has
degeneracy problems.

4.1 Implicit Moving Least Squares

The moving least squares method for implicit surface reconstruction was originally applied
to scattered point data approximation. Shen et al. [34] modified moving least squares to
interpolate and approximate polygon soup. The major differences between Shen et al.’s
implicit moving least square and standard moving least squares are:

• Shen et al.’s IMLS uses a shape function to avoid trivial results,

• Shen et al.’s IMLS integrates the constraints over each polygon to avoid oscillations
in the resulting surface.

4.1.1 True-Normal Shape Function

If the data to interpolate are all 0, then there is a trivial solution of cj = 0 for all j in Eq. 3.5.
To avoid this trivial solution, we need points with positive/negative constraints (i.e., points
not on the surface). Shen et al.’s IMLS used a shape function S(x) to incorporate normal
constraints,

S(x) = φ+ (x− p)ᵀn, (4.1)
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where x is the query point, p is the point on a polygon, n is the normal of the polygon,
and φ is the implicit value on x, which is normally 0. Shen et al. call S(x) a true-normal
shape function to contrast it with Turk and O’Brien’s [38] pseudo-normal constraints which
places zero constraints at points on the surface, positive constraints offset sightly inside
the surface, and negative ones slightly outside. However, Turk and O’Brien’s additional
constraints influence the function’s gradient crudely, while the true-normal shape function
of Shen et al. force the surface to interpolate the normal. A detailed discussion of these two
normal constraints can be found in Chapter 4 of Shen’s dissertation [33] and in a technical
report [14]. Martin et al. [21] used a similar shape function in their point-based moving
least squares method.

4.1.2 Integrated Moving Least Squares

When sampling finite points on a polygon for interpolation, the resulting implicit surface
has bumps and dimples as shown in Fig. 4.1(a). Increasing the sample density will make
the problem less severe, but the problem is still not solved, shown in Fig. 4.1(b). To achieve
good results, what we would like to do is to scatter an infinite number of points continuously
across the surface of each polygon. To meet this requirement, Shen et al. integrates the
constraints over each element (line segment in 2D or polygon in 3D). For a data set of K
elements, let Ωk, k ∈ [1, . . . , K] be the domain for each of K input elements. Eq. 3.12
becomes

f(x) =

∑K
k=1

∫
Ωk
w(x− pΩk)Sk(x)dpΩk∑K

k=1

∫
Ωk
w(x− pΩk)dpΩk

, (4.2)

where pΩk is a point on Ωk, and Sk(x) = φ + (x − pΩk)
ᵀnΩk is defined in Section. 4.1.1.

The comparison of a finitely sampled cube surface and integrated cube surface is shown in
Fig. 4.1.

Shen et al. gave an analytic solution of their IMLS for 2D. In 3D, Eq. 4.2 expands to
a double integral. But Shen et al. only provided inner layer (analytical line-integration)
solutions, with the outer layer (final area integration) being calculated as a numerical
integration of the analytical line-integration solutions for each polygon. Park et al. [29]
proposed an analytic solution for both 2D and 3D of a variation of Shen et al.’s IMLS.
They gave a general representation of a weight function in Eq. 3.14 with ε = 0 such that

wn(x− pk) =

(
1

‖x− pk‖2

)n
. (4.3)

Their closed form solution is limited to n = 1 for 2D interpolation and n = 3/2 for 3D
interpolation of Eq. 4.3, which is applied in Eq. 4.2. However, when I implemented Park
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(a) 100 points on each face (b) 400 points on each face (c) Integrated over each face.

Figure 4.1: Comparison of finite sampled cube and integrated cube surface.

et al.’s scheme, I found that it produces degenerate results as shown in Fig. 4.2. While the
resulting implicit function should only be zero at points on the input polygons, with their
method the implicit values of all points outside of these shapes are zero. Their method has
the same problem in 3D (that the implicit values of all points outside of the input closed
polygonal are zero). In next section, I will discuss the 2D and 3D cases in Park et al.’s
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Figure 4.2: 2D example of implicit surface constructed by Park et al.’s method
Implicit value is zero outside the square (left) and outside the star (right).

solution and show the reason for these degeneracies.
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4.2 Analyzing 2D and 3D Interpolation of Park et

al.’s Method

In this section, I will use Park et al.’s derivation and weight function to show why their
method is degenerate in both 2D and 3D when ε = 0 (i.e., when their method interpolates
the data).

4.2.1 2D Interpolation

In this section, I present Park et al.’s derivation of their method, and in the next section, I
will use their formulation to show that their method does not construct well-defined implicit
functions when interpolating data. In 2D, Park el al. found a closed form for n = 1 in the
weight function in Eq. 4.3. The normal function Sk(x) in Eq. 4.2 equals the distance from
x to the tangent line of line segment Lk in the input polygonal curve. So Sk(x) is constant
within the k-th segment and it can be moved outside the integral. Thus in 2D, for an input
polygonal curve defined by the set of line segments L = {Lk}, k = 1 . . . K, when n = 1 in
the weight function in Eq. 4.3, Eq. 4.2 becomes

f(x) =

∑K
k=1 Sk(x)

∫
Lk

1
‖x−pLk‖

2dpLk∑K
k=1

∫
Lk

1
‖x−pLk‖

2dpLk
=

∑K
k=1 ak∑K
k=1Ak

(4.4)

where

Ak =

∫
Lk

1

‖x− pLk‖2
dpLk (4.5)

ak = Sk(x)Ak. (4.6)

The problem of solving Eq. 4.2 simplifies to finding Ak and ak. To find a closed form, Park
et al. re-expressed Ak on a u, v-space where the u-axis is along the line Lk with positive
direction the same as the clockwise direction of the polygon, and the v-axis is along the
normal direction to Lk. The most anti-clockwise ending point is set as the origin, as shown
in Fig. 4.3, where the green line is the input line segment. Then

Ak =

∫ x2

x1

1

‖x− pLk
‖2
dpLk

(4.7)

=
1

b2

∫ uk

0

1

(u− a)2/b2 + 1
du, (4.8)
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(a) (b)

Figure 4.3: Diagrammatic sketch of the transformed u, v space

where a, b are the coordinates of the query point x in the u, v space, as shown in Fig. 4.3(a).
x1 and x2 are the starting and ending points of line segment Lk, and they are mapped to
0 and uk in u, v space, shown in Fig. 4.3(b). Let θ be the angle from the normal of Lk to
vector (x− pLk) shown in Fig. 4.3(a), then

tan θ = (u− a)/b. (4.9)

Differentiating both sides of Eq. 4.9, we obtain

dθ sec2 θ = du/b. (4.10)

Using Eq. 4.9 and Eq. 4.10 in Eq. 4.8, we have

Ak =
1

b2

∫ α2

−α1

b sec2 θ

tan2 θ + 1
dθ

=
1

b

∫ α2

−α1

dθ =
(α2 + α1)

b
,

where

α1 = arctan(a/b), α2 = arctan(
uk − a
b

). (4.11)

Since (x − pLk)
ᵀnLk is the distance from x to the tangent line of Lk, Sk(x) = bk + φ. φ

is zero as it is the constraint value of points on the surface. So Sk(x) = bk. Let α′ be the
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angle at point x of the triangle constructed using x and the two end points of Lk. From
Fig. 4.3(b),

α′k = α1 + α2, (4.12)

then

Ak = (α1 + α2)/bk = α′k/bk

ak = AkSk(x) = (α′k/bk)bk = α′k.

Thus, the implicit function becomes

f(x) =

∑K
k=1 α

′
k∑K

k=1 α
′
k/bk

,

which matches the result of Park et al..

4.2.2 2D Degeneracies in Park et al.’s Method

Fig. 4.4 shows why Park et al.’s method has zero implicit values for query points on the
exterior of the input square. The corresponding angles α1 and α2 in Eq. 4.11 in the above
2D analytic solution for the square in Fig. 4.2 are marked in Fig. 4.4 for each line segment.
For the evaluation on each line segment, the plus or minus sign of each angle is determined
by the new coordinate of a and b of query point p1 on the new u, v-axis. I marked the sign
of each a and b for each line segment, and also the sign of each α′k. It can be seen that

‖α′1‖ = ‖α′2‖+ ‖α′3‖+ ‖α′4‖

and only α′1 is positive, while α′2, α
′
3, α

′
4 are negative. This results in f(x) = 0 when the

query point is on the exterior of square. This confirms that f(x) = 0 for the square in the
experiment shown in Fig. 4.2.

To generalize the proof of degeneracies to any closed polygons, I project any point on
the polygon L to a unit circle centered at query point x. According to Eq. 4.12,

|α′k| = |α1 + α2|.

Without loss of generality, I define anti-clockwise to be the positive direction of the polygon
and each line Lk is oriented in its positive direction, starting from psk and ending at pek.
I project any point p on the polygon to point P (p) lying on the unit circle centered at
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(a) α′
1 (positive) (b) α′

2 (negative)

(c) α′
3 (negative) (d) α′

4 (negative)

Figure 4.4: 2D case illustration showing that Park et al.’s method is 0 on a point exterior
to the polygon. Green dotted lines are input data and P1 is the query point. Negative
values are colored blue and positive values are colored red. The sum of the four α′s are 0.
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Figure 4.5: Polygon to Unit circle centered at query point x

x. The projection P (Lk) of line segment Lk is an arc starting from P (psk) and ending at
P (pek). Then α′k equals the integral along the circle such that

α′k =

∫
P (Lk)

dp.

Since the projection P (L) of the a closed polygon L is continuous and ending at the starting
point, we can conclude that

K∑
k=1

α′k =

∫
P (L)

dp = 0

and f(x) = 0 for any x on the exterior of the polygon. Fig. 4.5 shows an example for a
star polygon. In Section 5.2.2, I will show that this integral is zero for any closed polygon
only when n = 1 in Eq. 4.3.

4.2.3 3D Interpolation

For 3D interpolation, Park el al. derived a closed form for n = 3/2 in the weight function
in Eq. 4.3. For an input polyhedral surface defined by the set of polygons Ω = {Ωk}, k =
1 . . . N , when n = 3/2 in the weight function Eq. 4.3, Eq. 4.2 becomes

f(x) =

∑K
k=1 Sk(x)

∫
Ωk

1
‖x−pΩk

‖3dpΩk∑K
k=1

∫
Ωk

1
‖x−pΩk

‖3dpΩk

=

∑K
k=1 ak∑K
k=1Ak

(4.13)
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Figure 4.6: Calculation of Solid Angle. The left two illustrations are revised from illustra-
tions in Long [20]

where

Ak =

∫
Lk

1

‖x− pLk‖3
dpLk (4.14)

ak = Sk(x)Ak. (4.15)

Park et al. [29] solved for Ak, ak using solid angles. In Fig. 4.6, the solid angle subtended
by area A at point x is measured by the area ω on the surface of the unit sphere centered
at x. An infinitesimal area dA is from A, dω is the solid angle subtended by dA at a point
x. φ is the angle between the normal to the surface and the line connecting the surface
and point x.

Treating A as an input polygon Ωk, the solid angle dωk subtended by dpΩk is

dωk =
cosφ

r2
dpΩk ⇔ ωk =

∫
Ωk

cosφ

r2
dpΩk (4.16)

where Ωk here stands for the kth input polygon (see Long [20] for detail). As

cosφ = nΩk ·(x− pΩk)/‖x− pΩk‖ (4.17)
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and
r = ‖x− pΩk‖, (4.18)

ωk for the input polygon Ωk is now

ωk =

∫
Ωk

nΩk
·(x− pΩk)

‖x− pΩk‖3
dpΩk .

Since Sk(x) = nΩk
·(x − pΩk), the solutions of the implicit surface are given by ak = ωk

and Ak = ωk/Sk(x) and so

f(x) =

∑K
k=1 ωk∑K

k=1 ωk/Sk(x)
.

4.2.4 3D Degeneracies in Park et al.’s Method

In 3D, we can map the input polygons to a unit sphere centered at the query point x
and prove in a similar way as 2D interpolation that f(x) = 0 for x in the exterior of the
polyhedron. Park et al. re-expressed f as

f(x) =

∑K
k=1 ωk∑K

k=1 ωk/Sk(x)
, (4.19)

where ωk is the solid angle subtended by Ωk in the polyhedron Ω. The area of ωk is cut
out by lines drawn from query point x to every point on the periphery of Ωk. An example
of the solid angles on the unit sphere projected from the polyhedron is in Fig. 4.7. From
Eq. 4.17 and Eq. 4.16, we have

ωk =

∫
Ωk

cosφ

r2
dpΩk and (4.20)

cosφ = nΩk · (x− pΩk)/‖x− pΩk‖. (4.21)

Note that the sign of ωk is the sign of cosφ. Normally for each polygon on the polyhedron,
the vertices are in anti-clockwise order and the polygon’s normal points outward. We
can project any point p on the polyhedron to the point P (p) lying on the unit sphere
centered at x. The projection P (Ωk) of polygon Ωk is a patch on the sphere contains all
the projected points pΩk , and ωk equals the integral over the patch such that

ωk =

∫∫
P (Ωk)

dp. (4.22)
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Figure 4.7: Example of polyhedron projected to unit sphere.

If the projected vertices on P (Ωk) are in anti-clockwise order, ωk > 0; if they are in
clockwise order, ωk < 0; and if the vertices project to a line or a point on the sphere, then
ωk = 0. The projection P (Ω) of a closed polygon Ω is closed in the projection space, hence

K∑
k=1

ωk =

∫∫
P (Ω)

dp = 0 . (4.23)

Therefore, f(x) = 0 for any x on the exterior of the polygon.

From the above analysis, I noticed that carefully selecting a good weight is of central
importance to the implicit moving least squares problem. A bad choice of the weight
function may cause serious degeneracy problems. This observation motivated my work to
take a more theoretical analysis of the weight functions.
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Chapter 5

Analysis of the IMLS Weight
Function

From the previous chapter, we know that a good choice of the weight function is essential
to the correctness of IMLS interpolation results. For IMLS approximation, Shen et al. used
a weight function

w(x− p) =

(
1

‖x− p‖2 + ε2

)2

(5.1)

with ε 6= 0. When I implemented Shen et al.’s approximation weight function as

w(x− p) =
1

‖x− p‖2 + ε2
, (5.2)

I found the result is not a well-defined implicit function; an example is shown in Fig. 5.1.
These degeneracy problems with Park et al. scheme raise the question of when and if the
implicit functions constructed by Shen et al. and Park et al. well defined. In this chapter,
I will derive conditions for these schemes to be well defined.

From my experiments with Park et al.’s scheme, it is clear that the weight function
must meet some conditions for f to be well-defined. In particular, I will further analyze
the weight function

wn(x− p) =

(
1

‖x− p‖2 + ε2

)n
(5.3)

for both IMLS interpolation and approximation, and prove necessary conditions on the
choice weight functions to avoid degeneracy problems in IMLS interpolation and approxi-
mation.
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Figure 5.1: Approximating cube with n = 1 and ε = 0.3.

To start with, I will reformulate the IMLS implicit function by using 2D polar coor-
dinates and 3D spherical coordinates. Inspired by the new forms that are integrated over
polar directions in 2D and spherical directions in 3D on each segments, I cast rays from
the query point to intersect each ray with the polygonal curve/polyhedral surface, and
use these intersections to compute the sign of the integrand in the direction of the ray,
and integrate over all the rays. I will then determine the sign of implicit curve or surface
functions by analyzing the integrands of the new integrations over rays. For my analysis,
I only consider closed polygonal curves and polyhedral surfaces that do not intersect with
themselves and I prove the 2D and 3D cases separately.

5.1 Technical Basics

In this section, I will present two lemmas that will be used in the proofs of both 2D and
3D theorems. The t in the following will be used as the dimension (2D or 3D) when we
use these lemmas in later sections.

Lemma 5.1.1. Let R = {r1, . . . , rN} ∈ RN , and ri < rj for i < j. For N is even, t > 0
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and ε, n ∈ R , define

I =
N∑
i=1

(−1)i+1 rti
(r2
i + ε2)n

(5.4)

When ε = 0:

• If n < t/2, then I < 0;

• If n = t/2, then I = 0;

• If n > t/2, then I > 0.

When ε 6= 0:

• If n ≤ t/2, then I < 0;

• If n > t/2 and rN <
√
tε2/(2n− t), then I < 0;

• If n > t/2 and r1 >
√
tε2/(2n− t), then I > 0.

Proof. Eq. 5.4 can be expanded to the sum of N/2 pairs as

I =

N/2∑
i=1

rt2i−1

(r2
2i−1 + ε2)n

− rt2i
(r2

2i + ε2)n
. (5.5)

When ε = 0,

I =

N/2∑
i=1

1

r2n−t
2i−1

− 1

r2n−t
2i

.

We know r2i−1 < r2i for any i ∈ [1, . . . , N/2], then

• when n < t/2, 1
r2n−t
k2i−1

− 1
r2n−t
k2i

< 0, thus I < 0;

• when n = t/2, 1
r2n−t
k2i−1

− 1
r2n−t
k2i

= 1− 1 = 0, thus I = 0;

• when n > t/2, 1
r2n−t
k2i−1

− 1
r2n−t
k2i

> 0, thus I > 0.
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When ε 6= 0, let

h(r) =
rt

(r2 + ε2)n
(5.6)

and then

h′(r) =
trt−1(r2 + ε2)n − 2nrt+1(r2 + ε2)n−1

(r2 + ε2)2n
. (5.7)

When n ≤ t/2, h′(r) > 0 and h(r) is monotonically increasing for all r ∈ R. Therefore,
every pair in Eq. 5.5 is positive and I > 0.

When n > t/2, if

r >

√
tε2

2n− t
,

h′(r) > 0 and h(r) is monotonically increasing. As r1 is the minimum in R, if r1 >
√

tε2

2n−t
then h(r) is monotonically increasing for all r ∈ R. Therefore, every pair in Eq. 5.5 is
positive and I > 0.

When n > t/2, if

r <

√
tε2

2n− t
,

h′(r) < 0 and h(r) is monotonically decreasing. As rN is the maximum in R, if rN <
√

tε2

2n−t
then h(r) is monotonically decreasing for all r ∈ R. Therefore, every pair in Eq. 5.5 is
negative and I < 0.

Lemma 5.1.2. Let R = {r1, . . . , rN} ∈ RN , and ri < rj for i < j. For N odd, t > 0 and
ε, n ∈ R , define

I =
N∑
i=1

(−1)i
rti

(r2
i + ε2)n

(5.8)

When ε = 0, I < 0. When ε 6= 0:

• if n ≤ t/2, then I < 0;

• if n > t/2 and rN ≤
√
tε2/(2n− t), then I < 0;

• if n > t/2 and r1 ≥
√
tε2/(2n− t), then I < 0.
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Proof. Eq. 5.8 can be transformed equivalent to two different formulations:

I = − rt1
(r2

1 + ε2)n
+ I1 where I1 =

(N−1)/2∑
i=1

rt2i
(r2

2i + ε2)n
−

rt2i+1

(r2
2i+1 + ε2)n

(5.9)

and

I = − rtN
(r2
N + ε2)n

− I2 where I2 =

(N−1)/2∑
i=1

rt2i−1

(r2
2i−1 + ε2)n

− rt2i
(r2

2i + ε2)n
. (5.10)

Eq. 5.10 is equivalent to

I2 =
N−1∑
i=1

(−1)i+1 rti
(r2
i + ε2)n

. (5.11)

For Eq. 5.9, let r′i = ri+1, then we have

I1 =

(N−1)/2∑
i=1

(r′2i−1)t

(r′2i−1
2 + ε2)n

− r′2i
t

(r′2i
2 + ε2)n

=
N−1∑
i=1

(−1)i+1 r′i
t

(r′i
2 + ε2)n

. (5.12)

Note that both I1 and I2 are the summation of N − 1 (even) of elements. When ε = 0, by
Lemma 5.1.1, we have

• when n < t/2, I1 < 0, so I = − rt1
(r2

1+ε2)n
+ I1 < 0;

• when n = t/2, I1 = 0, so I = − rt1
(r2

1+ε2)n
< 0;

• when n > t/2, I2 > 0, so I = − rtN
(r2
N+ε2)n

− I2 < 0.

Therefore, I < 0 when ε = 0.

If ε 6= 0, similarly according to Lemma 5.1.1,

• when n ≤ t/2, I1 < 0, so I = − rt1
(r2

1+ε2)n
+ I1 < 0;

• when n > t/2 and rN ≤
√
tε2/(2n− t), I1 < 0, so I = − rt1

(r2
1+ε2)n

+ I1 < 0;

• when n > t/2 and r1 ≥
√
tε2/(2n− t), I2 > 0, so I = − rtN

(r2
N+ε2)n

− I2 < 0.
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5.2 Necessary Conditions on the Weight Function for

IMLS in 2D

In this section, I will provide a generic implicit moving least squares formulation that is
equivalent to but different from Eq. 4.2 by using 2D polar coordinates. With the polar
coordinate formulation, I will show necessary conditions on the weight function for 2D
IMLS interpolation and approximation to construct well-defined implicit functions.

5.2.1 Polar Coordinate Reformulation of IMLS in 2D

In 2D, with an input polygonal curve L = {Lk}, k = 1, . . . , K and weight function in
Eq. 5.3, the original implicit function in Eq. 4.2 is

f(x) =

∑K
k=1 ak∑K
k=1 Ak

, (5.13)

where

Ak =

∫
Lk

wn(x− pLk)dpLk and ak = AkSk(x). (5.14)

The normal function Sk(x) is Shen et al.’s shape function (Section 4.1.1) with φ = 0:

Sk(x) = (x− pLk)
ᵀnLk . (5.15)

I transform all the points into polar coordinates (r, θ) where the origin is the query
point x, and θ ranges from 0 to 2π. ‖x− pLk‖ for each line of the polygon Lk is given by

‖x− pLk‖ = rk(θ) = bk sec |θ − ϕ|, (5.16)

where bk and ϕ are the distance and polar angle of the intersection point between Lk and
its perpendicular line from x. nk is the unit normal vector to Lk. Fig. 5.2 shows the
transformed polar coordinates.

From Eq. 5.16, we know

drk
dθ

= bk sec |θ − ϕ| tan |θ − ϕ| = rk(θ) tan |θ − ϕ|
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Figure 5.2: 2D polar coordinate notation. Green line is the input line segment and x is
the query point.

and

Sk(x) = (x− pLk)
ᵀnLk = bk.

Therefore, from Eq. 5.14,

ak = Sk(x)

∫
Lk

wn(x− pLk)dpLk (5.17)

= bk

∫
Lk

wn(rk)dpLk . (5.18)
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By using the arc length formula for polar coordinates,

ak = bk

∫
Lk

wn(rk)

√
r2
k +

(
drk
dθ

)2

dθ

= bk

∫
Lk

wn(rk)
√
r2
k + r2

k tan2 |θ − ϕ|dθ

= bk

∫
Lk

wn(rk)
√
r2
k sec2 |θ − ϕ|dθ

= bk

∫
Lk

wn(rk)

√
r2
k(
rk
bk

)2

= sgn(bk)

∫
Lk

r2
kwn(rk)dθ, (5.19)

where sgn(·) is the sign function. I will use Eq. 5.19 in the next section to give necessary
conditions on the weight function.

5.2.2 Proof of the Weight Function for IMLS in 2D

In this section, I will present proofs of the necessary conditions on the weight function in
Eq. 5.3 for 2D IMLS interpolation (with ε = 0 ) and 2D IMLS approximation (with ε 6= 0).

IMLS Interpolation in 2D

Theorem 5.2.1. In 2D, for the implicit moving least squares method interpolating a
manifold polygon defined by the set of line segments L = {Lk}, k = 1, . . . , K, pLk being a
point on line segment Lk, and x being the point of evaluation, let the implicit function be

f(x) =

∑K
k=1 ak∑K
k=1Ak

(5.20)

where Ak =
∫
Lk
wn(x − pLk)dpLk , ak = AkSk(x), with weight function wn(x − pLk) =

1
‖x−pLk‖

2n for an arbitrary n ∈ R, and normal function Sk(x) = (x− pLk)
ᵀnLk . For any x:

• if x is in the interior of L, then f(x) < 0;

• if x is in the exterior of L,
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– if n = 1, f(x) = 0,

– if n > 1, f(x) > 0,

– if n < 1, f(x) < 0.

Proof. Since

Ak =

∫
Lk

wn(x− pLk)dpLk , (5.21)

is always positive, the sign of the implicit function f(x) in Eq. 5.20 is determined by the
numerator

∑K
k=1 ak. Therefore, in the following, I analyze

∑K
k=1 ak to determine the sign

of the implicit function at points in the interior and exterior of L.

From Eq. 5.19, we know

K∑
k=1

ak =
K∑
k=1

sgn(bk)

∫
Lk

r2
kwn(rk)dθ (5.22)

=
K∑
k=1

∫
Lk

sgn(bk)r
2
kwn(rk)dθ (5.23)

Eq. 5.23 integrates over each line segment and sums up all the integrations. A ray cast from
x to intersects L in several places. While rotating the ray 360◦ around x, the intersections
cover all the points on L. This is illustrated in Fig. 5.3.

Therefore, for any θ, r2
kw(rk) can be computed by casting a ray ~r from x in direction θ,

and intersecting ~r with L. Let `i be the ith intersection as we step along the ray from x,
where the value of `i is the index of the line segment intersected. The set of intersections
for a ray in direction θ from x can be represent as

R(θ) = {`i}, i = 1, 2, . . . , N,

where N depends on θ. Therefore, the summation of all ak can be represented by

K∑
k=1

ak =
K∑
k=1

sgn(bk)

∫
Lk

1

r2n−2
k

dθ (5.24)

=

∫ ∑
`∈R(θ)

sgn(b`)
1

r2n−2
`

dθ (5.25)
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Figure 5.3: Ray casting observation.

Since we step along the ray from x, the elements of R(θ) are in ascending order in their
distance from x, i.e., r`i(θ) < r`j(θ) for i < j, as shown in Fig. 5.4.

From Eq. 5.25, the sign of f can be determined as follows:

1. For each θ, the sign of the integrand

I(θ) =
∑
`∈R(θ)

sgn(b`)
1

r2n−2
`

(5.26)

can be computed as a sum of positive and negative values that can be paired based
on N .

2. For each θ, if I(θ) is of one sign, then the integral is of that sign.

3. If the sign of
∑K

k=1 ak is of one sign, then f(x) in Eq. 5.20 is of that sign.

There are a finite number of intersections located exactly on the shared end points of
two line segments. If the two line segments are on the same side of the ray, the intersection
is ignored. When the ray coincides with a line segment, the implicit value contribution of
the line segment is always zero. Discarding these intersections in R(θ) will not influence
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Figure 5.4: Visual illustration of intersections for the ray cast from the point x to the
polygon in direction θ. R(θ) = {`1, `2} where `1 = 1 and `2 = 10. r`1 and r`2 are distances
from x to intersections on 1st and 10th line segments.
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the integral of Eq. 5.25. Hence, from standard ray casting [36], we know that if x is in the
exterior of L, N is even, and if the origin is in the interior of L, N is odd.

From the Jordan curve theorem, we know that space is divided by the polygon into two
components, the bounded interior and the unbounded exterior. Thus every line segment
indexed by R(θ) separates the ray into two components, with the ray always alternating
between the exterior and interior of the polygon.

When x is in the exterior of L, we know that sgn(b`j) = (−1)j+1 where `j ∈ R(θ).
Therefore, we can rewrite the integrand in Eq. 5.26 as

I(θ) =
N∑
j=1

(−1)j+1 1

r2n−2
`j

(5.27)

where `j ∈ R(θ) and N is even. Hence, from Lemma 5.1.1 with t = 2 and ε = 0, we get:

• If n < 1 then I(θ) < 0 for each θ, thus f(x) < 0;

• If n = 1 then I(θ) = 0 for each θ, thus f(x) = 0;

• If n > 1 then I(θ) > 0 for each θ, thus f(x) > 0.

An example is shown in Fig. 5.5.

For the case where x is in the interior of L, sgn(b`j) = (−1)j, we can rewrite Eq. 5.25
as

I(θ) =
N∑
j=1

(−1)j
1

r2n−2
`j

, (5.28)

where `j ∈ R(θ) and N is odd. Hence, from Lemma 5.1.2 with t = 2 and ε = 0, we get
I(θ) < 0 for each θ, thus f(x) < 0. Therefore, f(x) < 0 for any x in the interior of L.

Corollary 5.2.2. To interpolate using IMLS with the normal function in Eq. 4.1 in 2D,
and have the property that the implicit function has positive value outside the polygonal
curve, zero on the polygonal curve and negative value inside the polygonal curve, the weight
function in Eq. 5.3 should have n > 1.

Thus, we see that the squaring of the weight function in Shen et al.’s method was
critical for its correctness.
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(a) n = 1/2 in Eq. 5.3 (b) n = 1 in Eq. 5.3 (c) n = 3/2 in Eq. 5.3

Figure 5.5: Example of different exterior results with three weight functions. x is the query
point, r1 = 1, r2 = 2, r3 = 3, and r4 = 4. Intersections are grouped into blue and orange.
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IMLS Approximation in 2D

In the proof of interpolation, we only need to consider inside and outside cases, since when
x is on the polygonal curve, the weight function for interpolation dominates and f(x) = 0.
However, in approximation, while x is on the polygonal curve, f(x) 6= 0 and more effort is
needed to determine the sign of f(x).

Theorem 5.2.3. In 2D, for the implicit moving least squares method approximating a
manifold polygonal curve defined by the set of line segments L = {Lk}, k = 1, . . . , K, pLk
being a point on line segment Lk, and x being the point of evaluation, let the implicit
function be

f(x) =

∑K
k=1 ak∑K
k=1 Ak

, (5.29)

where Ak =
∫
Lk
w(x − pLk)dpLk , ak = AkSk(x), with weight function w(x − pLk) =(

1
‖x−pLk‖

2+ε2

)n
for an arbitrary n ∈ R, and normal function Sk(x) = (x−pLk)

ᵀnLk . Then

• when n ≤ 1, for any x, f(x) < 0;

• when n > 1, for any x, let rmin(x) and rmax(x) be the minimum and maximum
distance from x to L:

– if rmax(x) <
√
ε2/(n− 1) then f(x) < 0.

– if x is in the exterior of L and rmin(x) >
√
ε2/(n− 1), then f(x) > 0;

– if x is in the interior of L, and rmin(x) ≥
√
ε2/(n− 1), then f(x) < 0;

Proof. From the proof of Theorem 5.2.1, we know the sign of the implicit function f(x) in
Eq. 5.29 is determined by the numerator

∑K
k=1 ak. Therefore, in the following, I analyze∑K

k=1 ak to determine the sign of the implicit function.

Using the same method to cast a ray ~r from x in direction θ, and following the same
notation as in the proof of Theorem 5.2.1, we can reformulate Eq. 5.19 as

K∑
k=1

ak =
K∑
k=1

sgn(bk)

∫
Lk

r2
k

(r2
k + ε2)n

dθ (5.30)

=

∫ ∑
`∈R(θ)

sgn(b`)
r2
`

(r2
` + ε2)n

dθ. (5.31)
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As we step along the ray from x, the set R(θ) is in ascending order in the distance from
x, i.e., r`i(θ) < r`j(θ) for i < j.

From Eq. 5.31, the sign of f can be determined as follows:

1. For each θ, the sign of the integrand

I(θ) =
∑
`∈R(θ)

sgn(b`)
r2
`

(r2
` + ε2)n

(5.32)

can be computed as a sum of positive and negative values that can be paired based
on N .

2. For each θ, if I(θ) is of one sign then the integral is of that sign, thus
∑K

k=1 ak is of
that sign.

3. If the sign of
∑K

k=1 ak is of one sign, then f(x) in Eq. 5.31 is of that sign.

Again discarding non-constructive intersections in R(θ), we get that if x is in the
exterior of L, then N is even, and if x is in the interior of L, then N is odd. Additionally,
the ray is always alternating between the exterior and interior of L.

When x is in the exterior of L, we know that sgn(b`j) = (−1)j+1 where k ∈ R(θ).
Therefore, we can rewrite the integrand in Eq. 5.32 as

I(θ) =
N∑
j=1

(−1)j+1
r2
`j

(r2
`j

+ ε2)n
(5.33)

where `j ∈ R(θ) and N is even. Hence, from Lemma 5.1.1 with ε 6= 0 and t = 2,

• If n ≤ 1 then I(θ) < 0 for each θ, thus f(x) < 0;

• If n > 1 and r`N (θ) <
√
ε2/(n− 1) then I(θ) < 0. Let rmax = max{r`N (θ)} for all θ.

If rmax <
√
ε2/(n− 1) then I(θ) < 0 for each θ, thus f(x) < 0.

• If n > 1 and r`1(θ) >
√
ε2/(n− 1) then I(θ) > 0. Let rmin = min{r`1(θ)} for all θ.

If rmin >
√
ε2/(n− 1) then I(θ) > 0 for each θ, thus f(x) > 0.
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When x is in the interior of L, sgn(b`j) = (−1)j, we can rewrite the integrand in Eq. 5.32
as in

I(θ) =
N∑
j=1

(−1)j
r2
`j

(r2
`j

+ ε2)n
(5.34)

where `j ∈ R(θ) and N is odd. Hence, from Lemma 5.1.2 with ε 6= 0 and t = 2,

• if n ≤ 1 then I(θ) < 0 for each θ, thus f(x) < 0.

• If n > 1 and r`N (θ) ≤
√
ε2/(n− 1) then I(θ) < 0. We know rmax = max{r`N (θ)} for

all θ. If rmax ≤
√
ε2/(n− 1) then I(θ) < 0 for each θ, thus f(x) < 0.

• If n > 1 and r`1(θ) ≥
√
ε2/(n− 1) then I(θ) < 0. We know rmin = min{r`1(θ)} for

all θ. If rmin ≥
√
ε2/(n− 1) then I(θ) < 0 for each θ, thus f(x) < 0.

For x on L, x is on a particular line segment Lk′ . The intersection of the ray ~r with
Lk′ (which is actually x) has no contribution to

∑K
k=1 ak because bk′ = 0 and ak′ = 0.

Therefore, for a ray cast from x on Lk′ , the first intersection on Lk′ is ignored. When the
ray is in the direction of the outside (inside) of L, it is the same case as when x is in the
exterior (interior) of L. Therefore, for x is on L, the sign f(x) is determined only in those
cases when the interior and exterior have the same result, i.e., when n ≤ 1, f(x) < 0; when
n > 1 and rmax <

√
ε2/(n− 1), f(x) < 0.

What Theorem 5.2.3 tells us is that for n > 1, there is an unbounded region outside
of L where f is strictly positive and when certain conditions are met, there is a bounded
region inside L where f is strictly negative as illustrated in Fig. 5.6. This leads to the
following corollary.

Corollary 5.2.4. When using IMLS to approximate data (ε > 0), if n > 1 and if there
exists a point x inside of L such that rmin ≥

√
ε2/(n− 1) or rmax ≤

√
ε2/(n− 1), then

the resulting implicit function f is well defined.

From Theorem 5.2.3, we can show the following.

Corollary 5.2.5. When using IMLS to approximate data (ε > 0), if n > 1 and the input
data is convex, the resulting implicit function f is well defined. In addition the interior of
L is on the interior of f .
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Figure 5.6: Positive and negative zones for IMLS approximation when n > 1 . The solid
circles are the input data. The minimum and maximum distances from the dashed circles
to the solid circles are marked as rmin and rmax and rmin = rmax =

√
ε2/(n− 1).

From Theorem 5.2.3, we know that f is positive in an unbounded region a distance of√
ε2/(n− 1) from L. If the conditions of Corollary 5.2.4 are met, then we know that there

is at least one point x on the interior L where f(p) < 0 and thus f is well defined. If the
conditions of Corollary 5.2.4 are not met, then f might still be well defined. For example,
in Fig. 5.7, the size of the square is 0.58 ∗ 0.58, and I use ε = 0.3 and n = 2 in the weight
function in Eq. 5.3. Thus the threshold distance

√
ε2/(n− 1) in this example is 0.3. For

any point in the interior of the square, rmin ≤ 0.29 and rmax ≥ 0.29 ∗
√

2, the conditions
of Corollary 5.2.4 are not met. But since the conditions of Corollary 5.3.5 are met, then f
is well defined. If the conditions of both corollaries are not met, then f might not be well
defined, although I have not been able to find an example where this is the case.
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Figure 5.7: An example where the conditions in Corollary 5.2.4 are not met but a well-
defined approximation curve is generated. Approximating with ε = 0.3 and n = 2. The
solid curve is the approximation and dashed square is the input data. The size of the
square is 0.58 ∗ 0.58.

5.3 Necessary Conditions on the Weight Function for

IMLS in 3D

In this section, I will provide a generic implicit moving least squares formulation that
is equivalent to but different from Eq. 4.2 by using 3D spherical coordinates. With the
spherical coordinate formulation, I will show necessary conditions on weight function for
3D IMLS interpolation and approximation to avoid degeneracy problems.

5.3.1 Spherical Coordinate Formulation of IMLS in 3D

In 3D, with an input polyhedral surface Ω = {Ωk}, k = 1, . . . , K and the weight function
in Eq. 5.3, the implicit function in Eq. 4.2 is

f(x) =

∑K
k=1 ak∑k
k=1 Ak

, (5.35)

where

Ak =

∫∫
Ωk

wn(x− pΩk)dpΩk and ak = AkSk(x). (5.36)
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let the normal function Sk(x) be Shen et al.’s shape function (Section 4.1.1) with φ = 0:

Sk(x) = (x− pΩk)
ᵀnΩk . (5.37)

Similar to the 2D case, in 3D I transform points into spherical coordinates (r, θ, ϕ)
where the origin is the query point x, θ ranges from 0 to π, and ϕ ranges from 0 to 2π.
Let rk = x − pΩk for Ωk and rk = ‖rk‖ be the distance from the query point x to points
on Ωk, then

Sk(x) = (x− pΩk)
ᵀnΩk = rᵀknΩk = bk (5.38)

is the signed distance from x to Ωk. From the definition of a solid angle, Eq. 4.16, Eq. 4.17
and Eq. 4.18,

dω =
|rᵀknΩk |
r3
k

dpΩk , (5.39)

where nΩk is the unit normal vector to Ωk. Since ω is an area on the unit sphere, we also
have

dω = sin θ dθdϕ. (5.40)

Thus, by substituting Eq. 5.38, Eq. 5.40 and Eq. 5.39 into Eq. 5.36, we get

ak = Sk(x)

∫∫
Ωk

wn(x− pΩk)dpΩk

=

∫∫
Ωk

wn(rk)r
ᵀ
knΩkdpΩk

= sgn(bk)

∫∫
Ωk

wn(rk)r
3
kdω

= sgn(bk)

∫∫
Ωk

wn(rk)r
3
k sin θ dθdϕ (5.41)

where sgn(·) is the sign function. I will use Eq. 5.41 in the next section to give necessary
conditions on the weight function.

5.3.2 Proof of the Weight Function for IMLS in 3D

In this section, I will use a similar approach as in 2D to give a bound for the weight function
in Eq. 5.3 to avoid degeneracies in IMLS interpolation and approximation in 3D.

45



IMLS Interpolation in 3D

Theorem 5.3.1. In 3D, for the implicit moving least squares method interpolating a
manifold polyhedral surface defined by a set of polygons Ω = {Ωk}, k = 1, . . . , N , pΩk

being a point on polygon Ωk, and x being the evaluated point, let the implicit function be

f(x) =

∑K
k=1 ak∑K
k=1 Ak

, (5.42)

where Ak =
∫∫

Ωk
wn(x−pΩk)dpΩk , ak = AkSk(x), with weight function wn(x−p) = 1

‖x−p‖2n

for an arbitrary n ∈ R and shape function Sk(x) = (x− pΩk)
ᵀnΩk . For any x:

• if x is in the interior of Ω, then f(x) < 0;

• if x is in the exterior of Ω,

– if n > 3/2, f(x) > 0,

– if n = 3/2, f(x) = 0,

– if n < 3/2, f(x) < 0.

Proof. Since

Ak =

∫∫
Ωk

wn(x− pΩk)dpΩk (5.43)

is always positive, the sign of the implicit function f(x) in Eq. 5.42 is determined by the
numerator

∑K
k=1 ak. Therefore, in the following, I analyze

∑K
k=1 ak to determine the sign

of the implicit function at points in the interior and exterior of Ω

In Eq. 5.41,

ak = sgn(bk)

∫∫
Ωk

wn(rk)r
3
k sin θ dθdϕ. (5.44)

For any (θ, ϕ), wn(rk)r
3
k can be computed by casting a ray ~r from x in direction (θ, ϕ), and

intersecting ~r with Ω. Let `i be the ith intersection of ~r with Ω as we step along ~r from x,
where the value of `i is the index of the polygon intersected by ~r. The set of intersections
for a ray in direction (θ, ϕ) from x can be represent as

R(θ, ϕ) = {`i}, i = 1, 2, . . . , N,
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where N depends on (θ, ϕ). Therefore, the summation of the ak’s is

K∑
k=1

ak =
K∑
k=1

sgn(bk)

∫∫
1

r2n−3
k

sin θ dθdϕ (5.45)

=

∫∫
sin θ

∑
`∈R(θ,ϕ)

sgn(b`)
1

r2n−3
`

dθdϕ, (5.46)

Since we step along the ray from x, the set of R is in ascending order in their distance to
x, i.e., r`i(θ, ϕ) < r`j(θ, ϕ) for i < j.

From Eq. 5.46, the sign of f can be determined as follows:

1. Since θ ∈ [0, π] and sin θ ≥ 0, thus the sign of the integrand in Eq. 5.46 can be
determined from

I(θ, ϕ) =
∑

`∈R(θ,ϕ)

sgn(b`j)
1

r2n−3
`

. (5.47)

For each (θ, ϕ), I(θ, ϕ) can be computed as a sum of positive and negative values,
which can be paired based on N .

2. For each pair (θ, ϕ), if the integrand is of one sign then the integral is of that sign,
thus

∑K
k=1 ak is of that sign.

3. If the sign of
∑K

k=1 ak is of one sign, then f(x) in Eq. 5.42 is of that sign.

There are a finite number of intersections located exactly on the shared vertices of
several polygons. At any such vertex, if the ray does not transit between interior and
exterior at this vertex, then the intersection is discarded. When the ray is in the plane of
a polygon, the implicit value contribution of the polygon is always zero. Discarding these
intersections in R(θ, ϕ) will not influence the integral of Eq. 5.46. Hence, from standard
ray casting [36], we know that if x is in the exterior of Ω, N is even, and if the origin is in
the interior of Ω, N is odd.

By the Jordan-Brouwer Theorem, we know that space is divided by the surface into
two component, the bounded interior and the unbounded exterior. Thus, every polygon
indexed by R(θ, ϕ) separates the ray into two components, and the ray always alternating
between the exterior and interior of the space.
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When x is in the exterior of Ω, we know that sgn(b`j) = (−1)j+1 where `j ∈ (θ, ϕ).
Therefore, we rewrite I(θ, ϕ) in Eq. 5.47 as

I(θ, ϕ) =
N∑
j=1

(−1)j+1 1

r2n−3
`j

. (5.48)

where `j ∈ R(θ, ϕ) and N is even. Hence, as in Lemma 5.1.1 with t = 3 and ε = 0, we get:

• If n < 3/2 then I(θ, ϕ) < 0 for each combination of (θ, ϕ), thus f(x) < 0;

• If n = 3/2 then I(θ, ϕ) = 0 for each combination of (θ, ϕ), thus f(x) = 0;

• If n > 3/2 then I(θ, ϕ) > 0 for each combination of (θ, ϕ), thus f(x) > 0;

When x is in the interior of Ω, sgn(b`j) = (−1)j, we can rewrite Eq. 5.47 as

I(θ, ϕ) =
N∑
j=1

(−1)j
1

r2n−3
`j

. (5.49)

where `j ∈ R(θ, ϕ) and N is odd. Hence, as in Lemma 5.1.2 with t = 3 and ε = 0, we get
I(θ, ϕ) < 0 for any combination of (θ, ϕ), thus f(x) < 0. Therefore, f(x) < 0 for any x in
the interior of Ω.

Corollary 5.3.2. To interpolate using IMLS with the normal function in Eq. 4.1 in 3D,
and have the property that the implicit function has positive value outside the polyhedral
surface, zero on the polyhedral surface and negative value inside the polyhedral surface,
the weight function in Eq. 5.3 should have n > 3/2.

IMLS Approximation in 3D

In the proof of interpolation, we only need to consider the inside and outside cases, because
when x is on the polyhedral surface, weight function for interpolation dominates and
f(x) = 0. However, in approximation, when x is on the polyhedral surface, f(x) 6= 0 and
more effort is required to determine the sign of f(x).

Theorem 5.3.3. In 3D, for the implicit moving least squares method approximating a
polyhedron Ω = {Ωk}, k = 1, . . . , K, pΩk being a point on polygon Ωk, and x being the
point of evaluation, let the implicit function be

f(x) =

∑K
k=1 ak∑K
k=1 Ak

, (5.50)
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where Ak =
∫

Ωk
w(x − pΩk)dpΩk , ak = AkSk(x), with weight function w(x − pΩk) =(

1
‖x−pΩk

‖2+ε2

)n
for an arbitrary n ∈ R, and normal function Sk(x) = (x−pΩk)

ᵀnΩk . Then

• when n ≤ 3/2, for any x, f(x) < 0;

• when n > 3/2, for any x, let rmin(x) = min(ri) and rmax(x) = max(ri), i ∈ [1, . . . , N ]:

– if rmax(x) <
√

3ε2/(2n− 3), then f(x) < 0 then f(x) < 0;

– if x is in the exterior of Ω and rmin(x) >
√

3ε2/(2n− 3), then f(x) > 0;

– if x is in the interior of Ω, and rmin(x) ≥
√

3ε2/(2n− 3) then f(x) < 0.

Proof. From the proof of Theorem 5.3.1, we know the sign of the implicit function f(x) in
Eq. 5.50 is determined by the numerator

∑K
k=1 ak. Therefore, in the following, I analyze∑K

k=1 ak to determine the sign of the implicit function at points in the interior and exterior
of Ω.

Using the same method to cast a ray ~r from x in direction (θ, ϕ), and following the
same notation in the proof of Theorem 5.3.1, we can reformulate Eq. 5.41 as:

K∑
k=1

ak =
K∑
k=1

sgn(bkj)

∫∫
r3
k

(r2
k + ε2)n

sin θ dθ dϕ (5.51)

=

∫∫
sin θ

∑
`∈R(θ)

sgn(b`j)
r3
`

(r2
` + ε2)n

dθ dϕ (5.52)

where
R(θ, ϕ) = {`i}, i = 1, . . . , N

and N depends on (θ, ϕ). As we step along the ray from x, the set R(θ, ϕ) is in ascending
order in the distance from x, i.e., r`i(θ, ϕ) < r`j(θ, ϕ) for i < j, as shown in Fig. 5.4.

From Eq. 5.52, the sign of f can be determined as follows:

1. Since θ ∈ [0, π] and sin θ ≥ 0, the sign of the integrand in Eq. 5.52 can be determined
from

I(θ, ϕ) =
∑
k∈R(θ)

sgn(bkj)
r3
k

(r2
k + ε2)n

. (5.53)

For each combination (θ, ϕ), I(θ, ϕ) can be computed as a sum of positive and neg-
ative values, which can be paired based on N .
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2. For each combination (θ, ϕ), if the integrand is of one sign then the integral is of that
sign, thus

∑K
k=1 ak is of that sign.

3. If the sign of
∑K

k=1 ak is of one sign, then f(x) in Eq. 5.50 is of that sign.

Discarding non-constructive intersections in R(θ, ϕ), we get that if x is in the exterior
of Ω, then N is even, and if x is in the interior of Ω, then N is odd. Additionally, the ray
is always alternating between the exterior and interior of Ω.

When x is in the exterior, we know that sgn(bkj) = (−1)j+1 where kj ∈ R(θ, ϕ).
Therefore, we can rewrite Eq. 5.53 as

I(θ, ϕ) =
N∑
j=1

(−1)j+1
r3
`j

(r2
`j

+ ε2)n
, (5.54)

where `j ∈ R(θ, ϕ) and N is even. Hence, from Lemma. 5.1.1 with t = 3 and ε 6= 0,

• If n ≤ 3/2 then I(θ, ϕ) < 0 for each θ, thus f(x) < 0;

• If n > 3/2 and r`N (θ, ϕ) <
√

3ε2/(2n− 3) then I(θ, ϕ) < 0. Let rmax = max{r`N (θ, ϕ)}
for all combination (θ, ϕ). If rmax <

√
3ε2/(2n− 3) then I(θ, ϕ) < 0 for each (θ, ϕ),

thus f(x) < 0.

• If n > 3/2 and rk1(θ, ϕ) >
√

3ε2/(2n− 3) then I(θ, ϕ) > 0. Let rmin = min{r`1(θ, ϕ)}
for all combination (θ, ϕ). If rmin >

√
3ε2/(2n− 3) then I(θ, ϕ) > 0 for each (θ, ϕ),

thus f(x) > 0.

When x is in the interior of Ω, sgn(b`j) = (−1)j where `j ∈ R(θ, ϕ).Therefore, we can
rewrite Eq. 5.53 as

I(θ, ϕ) =
N∑
j=1

(−1)j
r3
`j

(r2
`j

+ ε2)n
. (5.55)

where ` ∈ R(θ, ϕ) and N is odd. Hence, from Lemma. 5.1.2 with t = 3 and ε 6= 0,

• If n ≤ 3/2 then I(θ, ϕ) < 0 for each θ, thus f(x) < 0;

• If n > 3/2 and r`N (θ, ϕ) ≤
√

3ε2/(2n− 3) then I(θ, ϕ) < 0. We know rmax =

max{r`N (θ, ϕ)} for all combination (θ, ϕ). If rmax ≤
√

3ε2/(2n− 3) then I(θ, ϕ) < 0
for each (θ, ϕ), thus f(x) < 0.
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• If n > 3/2 and r`1(θ, ϕ) ≥
√

3ε2/(2n− 3) then I(θ, ϕ) < 0. We know rmin =

min{r`1(θ, ϕ)} for all combination (θ, ϕ). If rmin ≥
√

3ε2/(2n− 3) then I(θ, ϕ) > 0
for each (θ, ϕ), thus f(x) < 0.

If x is on the input polyhedron then x is on a particular polygon Ωk′ . The intersection
of ~r with Ωk′ has no contribution to

∑K
k=1 ak because bk′ = 0 and ak′ = 0. Therefore, for

every ray cast from x to Ωk′ , the first intersection on Ωk′ is ignored. When the direction of
the ray is towards the outside (inside) of Ω, it is the same case as when x is in the exterior
(interior) of Ω. Therefore, for x on Ω, the sign of f(x) is determined only in those cases
when the interior and exterior have the same sign, i.e., when n ≤ 3/2, f(x) < 0; when
n > 3/2 and rmax <

√
3ε2/(2n− 3), f(x) < 0.

Like in the 2D case, what Theorem 5.3.3 tells us is that for n > 3/2, there is an
unbounded region outside of Ω where f is strictly positive and when certain conditions
are met, there is a bounded region inside Ω where f is strictly negative. This leads to the
following corollary.

Corollary 5.3.4. When using IMLS to approximate data (ε > 0), if n > 3/2 and if there
exists a point x inside of Ω such that rmin ≥

√
3ε2/(2n− 3) or rmax ≤

√
3ε2/(2n− 3),

then the resulting implicit function f is well defined.

Corollary 5.3.5. When using IMLS to approximate data (ε > 0), if n > 3/2 and the
input data is convex, the resulting implicit function f is well defined. In addition, the
interior of Ω is in the interior of f .

As in 2D, Theorem 5.3.3 tells us when f is well defined. Whether polyhedrons exist
where f is not well defined when n > 3/2 is an open question.
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Chapter 6

Gaussian Weighted IMLS Method
from Polygon Soup

In this section, I derive a generalized implicit moving least squares method to interpolate or
approximate polygon soup. My method uses a Gaussian weighting of polygons to reduce
the bulges seen in the IMLS scheme of Shen et al. [34] (Fig. 1.3). According to the
analysis in Section 5.2, the weight function of Shen et al. is well defined. Their method
create reasonable curves and surfaces for both 2D and 3D cases when interpolating polygon
soup with only a few small holes and gaps. However, for larger holes, the results produced
by IMLS become unsatisfactory as can be seen from the middle column of Fig. 6.1, where
2D curves (middle) generated by IMLS suffer from serious bulge problems. The 2D curves
(right) generated by my method do not have this bulging problem. The bulges appearing on
the IMLS surfaces are a result of the negative contribution coming from opposing polygons
further away that are non-negligible when there are bigger holes. This bulge occurs because
the weight function used in IMLS is not decreasing steep enough as the distance from the
query point x to the sample points p on the polygons increases. Straightforward solutions
to this problem include either making the IMLS weight function n > 2 in Eq. 4.3 or forcing
the weight to be non-zero only within a bounded interval. Unfortunately, both of these
approaches increase the difficulty in solving the integration problem in Eq. 3.12. Using
the original weight function in IMLS, Shen et al. [34] provided a closed form solution for a
one-dimensional integral (i.e., constraints over edges) and an advanced quadrature method
to gain good approximations for the two-dimensional integral. In the following, in an
effort to reduce the bulges, I use Shen et al.’s weight function (Eq. 3.14) while providing
a more generalized formulation to the surface construction problem that not only weights
the points but also considers the distance from the query point to each polygon.
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Figure 6.1: 2D interpolation results from IMLS and GIMLS from input data with gaps.
Left column: Original Shapes in 2D; Middle column: IMLS results; Right column: the
results of my GIMLS method with σ = 0.2. Zero contours are extracted by Matlab.

I define the generalized implicit moving least squares (GIMLS) as

f(x) =

∑K
k=1 GΩk(x)

∫
Ωk
w(x− pΩk)Sk(x)dpΩk∑K

k=1 GΩk(x)
∫

Ωk
w(x− pΩk)dpΩk

, (6.1)

w(x− pΩk) =
1

(‖x− pΩk‖2 + ε2)2
, (6.2)

where GΩk(x) describes the contribution from polygon Ωk to the evaluated point x and
Sk(x) = φ+ (x− pΩk)

ᵀnΩk .

In my generalized formulation, the point-based weight function w is used to ensure that
details on each polygon are captured, and the polygon-based weight function G is used to
emphasize the contribution from each polygon when it is close to the query point. I define
the polygon-based weight to be Gaussian to make it controllable, i.e.,

GΩk(x) =
1

σ
√

2π
e−

D2(Ωk,x)

2σ2 , (6.3)
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where D(Ω,x) is the distance from x to polygon Ω and σ is the variance of the Gaus-
sian distribution that determines how quickly the contribution grows as the query point
approaches the polygon.

6.1 Interpolation

The contribution from farther polygons is decreased when the variance parameter σ be-
comes larger. For interpolation, the σ parameter can be fixed. In my experiments, the
value of σ in [0.02, 0.04] produces satisfactory results. Throughout all of my experiments
in this chapter, I set σ = 0.03. As σ goes to ∞, my method approaches IMLS and holes
are filled with surfaces that bulge. Note that σ is scale dependent. If σ is too small relative
to the size of the hole or gap, there will be numerical issues since the value of f will be
closer to 0 then floating point number can represent. Otherwise, as we decrease σ, the
filled corners or edges get sharper.

It is clear that my method in Eq. 6.1 is a re-weighting of IMLS in Eq. 4.2. The re-
weighting function is controllable to make my method a generalized IMLS method. The
3D examples in Fig. 6.21 show that my method not only captures features of the polygons
but also make each polygon contribute in a more reasonable way.

6.2 Approximation

In this section, I discuss using my GIMLS method to approximate data.

6.2.1 Self-intersection Problem

Neither IMLS nor my approach can handle the self-intersection problem while interpolating
the data. For surface approximation, both IMLS and my method incorporate the weight
function with a small parameter ε in Eq. 4.3 to approximate the polygon soup. While
IMLS removes self-intersections, in my experiments shown in Fig. 6.3(c), using a fixed
Gaussian weight for each polygon for GIMLS does not resolve the self-intersection problem.
However, in the following I will give an example where GIMLS removes self-intersections

1Bloomenthal polygonization is used for visualization in Fig. 6.2, and although we use high polygoniza-
tion resolution, small aliasing defects along sharp features can also be seen. This problem can be solved
by numerous post-processing mesh optimization techniques proposed in the past decade [12, 15, 27].
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Figure 6.2: 3D interpolation reconstruction comparison between IMLS and GIMLS. First
Row: original polygon data with holes or gaps; Second Row: IMLS; Third Row: my
method.

when approximating by using an adaptive Gaussian variance σ. In particular, I define the
polygon-based weight in approximation as

GΩk(x) =
1

(σ + λε)
√

2π
e
−D

2(Ωk,x)

2(σ+λε)2 , (6.4)

where I experimentally found that λ = 8 works well, and I used the same value for σ = 0.03
that I use for interpolation, and I set ε to a small, positive value to approximate the polygon
soup. As ε increases, the Gaussian weight function becomes flatter which gradually reduces
the contribution from closest polygons and prevents them from dominating the implicit
function values. Results for my method are shown in Fig. 6.3(d). The underlying idea of
my GIMLS is that when we interpolate the data, the implicit function has to emphasize
local regions, and when we approximate the data, the implicit function need not to be
as exact as in interpolation and thus the contribution to the query point should be more
diverse to be robust and to eliminate outliers.
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Figure 6.3: Surface reconstruction with self-intersections. (a) Original data (b) IMLS ap-
proximation with ε = 0.8 (c) GIMLS approximation with fixed σ (d) GIMLS approximation
with adaptive σ = 0.2 + 8ε.

6.2.2 Behavior of the Approximation

When ε 6= 0 in the weight function in Eq. 4.3, the IMLS function approximates the con-
straint values. However, setting ε to a non-zero value suffers from two problems. The
first is that as ε grows larger, the approximating surface has the tendency to move away
from the input data. The second problem is that Shen et al. wanted all the data to be
on the interior of the approximating surface. However, Shen’s scheme cannot ensure this.
Shen et al. used an ε first, sampled the average implicit value over the surface of the input
polygons, and then extracted a surface at that iso-value to solve the first problem.

Park et al. [29] showed why Shen et al.’s method cannot include all the object’s orig-
inal vertices. They proved that near concavities, approximation surfaces based on Shen
et al.’s original work fail to include the original model fully. Park et al. also proposed
an alternative heuristic to approximate the data. They first construct the interpolating
implicit surface and then they select a positive value iso-surface for their approximation.
This method guarantees that all the vertices and polygons are inside the surface envelop
of the approximation. However, IMLS with this approximation scheme is unable to heal
self-intersections in the polygon soup and forms a poor approximation to the data as it is
“strictly larger” than the desired surface.

We can use either approach with my method (and indeed, Shen et al.’s heuristic could
be used with Park et al.’s method, and Park et al.’s heuristic could be used with Shen et
al.’s method).

Regardless, Fig. 6.4(b) shows an example of my method approximating data ε = 0.5.
Fig. 6.4(c) is an enlargement of Fig. 6.4(b). It is clear that some line segments and vertices
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are not on the interior of the generated implicit surface. Using the same implicit surface,
we can extract a different iso-surface as

f ′(x) = f(x)− h, (6.5)

where f(x) is from Eq. 4.2 and h is the particular iso-surface. Fig. 6.4(d) is the result with
ε = 0.35, h = 0.15, Fig. 6.4(e)e has ε = 0.35, h = 0.25, and Fig. 6.4(f) has ε = 0.5, h = 0.15.
Some 3D approximation examples are shown in Fig. 6.5.
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Figure 6.4: Results of GIMLS approximation with different parameters. (a): original self-
intersection input; (b): GIMLS approximation with ε = 0.5, h = 0; (c): Enlarged view
of the left part of (b); (d): GIMLS approximation with ε = 0.35, h = 0.15; (e): GIMLS
approximation with ε = 0.35, h = 0.25; (f): GIMLS approximation with ε = 0.5, h = 0.15.
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Figure 6.5: 3D approximating reconstruction. First Row: interpolation results; Second
Row: approximation results with ε = 0.02. Last Row: approximation results with ε = 0.02
and h = 0.08

.

6.2.3 Correctness of GIMLS

In Chapter 5, I showed when the implicit function constructed by IMLS was well-defined.
We can ask a similar question about GIMLS. In essence, adding the Gaussian weight
function to IMLS is similar to increasing n in Eq. 5.3. From the proof in Chapter 5, we
see that GIMLS is well-defined in all cases that IMLS is well-defined. Further some cases
that do not work for IMLS might work for GIMLS. For example, when interpolating with
n = 1 in Eq. 5.3, IMLS gives all zero values in the exterior, but GIMLS gives well-defined
implicit functions.
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6.3 Numerical Integration

To implement my method, I had to compute the same integrals that Shen et al. did. In
implementing Shen et al.’s numerical solution to these integrals, I encountered numeri-
cal issues. In this section, I give an alternative method for numerically evaluating these
integrals that is numerically stable.

Shen [33] presented a closed form solution for one-dimensional integrals over line seg-
ments in Eq. 5.21. Unfortunately, there is no analytic solutions of the integral MLS for
polygon soups in 3D. And while Park et al. claim to have a solution, their solution is
incorrect as shown in Section 4.2.2. In 3D, the implicit function in Eq. 4.2 was simplified
by Shen to

f(x) =
Num0(x) + xᵀ ·Numx(x)

Den(x)
. (6.6)

where

Den(x) =
K∑
k=1

∫
Ωk

w(x− pΩk)dpΩk , (6.7)

Num0(x) =
K∑
k=1

∫
Ωk

w(x− pΩk)φ0dpΩk , (6.8)

Numx(x) =
K∑
k=1

nΩk

∫
Ωk

w(x− pΩk)dpΩk (6.9)

where φ0 and nΩk is derived from normal function defined in Eq. 4.1, for the kth polygon:

Sk(x) = φ+ (x− pΩk)
ᵀnΩk

= (φ− nΩk
ᵀpΩk) + nΩk

ᵀx

= φ0 + nΩk
ᵀx.

The numerical integration problem for this implicit function is to solve

Num1(x) =

∫
Ωk

w(x− pΩk)dpΩk (6.10)

and Num2(x) =

∫
Ωk

w(x− pΩk)φ0dpΩk . (6.11)
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By parameterizing each triangular region with its three vertices, in Chapter 5.4 of Shen’s
dissertation, he derived a closed form solution for the one-dimensional integrals to calcu-
late the inner layer of the above two-dimensional integrals, which is Ii0 and Ii1 in Shen’s
dissertation Eq. 5.70 and Eq. 5.71. However, the outer layers in Ii0 and Ii1 are not solved
with analytic solutions, as shown in Eq. 5.93 in Shen’s dissertation. Because the weight
function is a radial basis function, the integrands have near-singularity problems where
the query point approaches the current evaluated polygon. The shape of an inner layer
integral is shown in Fig. 6.6. Due to the near-singularities property, standard quadrature
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Figure 6.6: Shape of the inner layer solution for the two dimensional integration over 3D
polygons

approximation methods like the trapezoid rule are not applicative; they perform poorly for
the same reason that sampling finite point constraints does: unless the distance between
quadrature points is significantly less than ε the resulting surface will have dimples and
bumps.

Shen proposed a special quadrature scheme in Chapter 5.4.3 in his dissertation by
transforming the integrands with singularities into flat ones using a change of coordinates.
Directly transforming the complicated solution of the inner layer integration is infeasible,
and Shen approximates it by a function that can capture the near-singularities and also has
a closed-form integral. Shen choose to approximate the inner integrals shown in Fig. 6.6
with

ga(u) =
1

c2u2 + c1u+ c0

, (6.12)
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where c0, c1 and c2 are unknown. To solve for c0, c1 and c2, Shen sampled three points u−,
um and u+. The point um is the near-singularity point with the maximum function value
of the integrand. u− and u+ are two points near um with small offsets. However, if u− and
u+ are far from each other, the near-singularity is not caught; if they are too close to each
other, the linear system to determine c0, c1 and c2 in Eq. 6.13 is ill-conditioned:s2

− s− 1
s2
m sm 1
s2

+ s+ 1

c0

c1

c2

 =


1

Ii0(s−)
1

Ii0(sm)
1

Ii0(s+)

 (6.13)

After implementing this method, I found that was unstable. I substituted a simpler
method for Shen’s special quadrature scheme to avoid the above approximation step. It
requires three steps:

1. Find the closest point from the evaluation point to each polygon mesh and make it
the approximation of the singular point.

2. From the singular point to each boundary, sample points on an exponentially de-
creasing interval.

3. Use the unevenly sampled points to do trapezoidal approximation.

This gives similar results as Shen et al.’s method and also avoids the instability of Eq. 6.13.

6.4 Efficient Evaluation with kD-trees

Naive implementation of the implicit function in my method would require computing
the sums and integrals in Eq. 6.1 on every input polygon. For large polygon soup, this
naive implementation is infeasible. Shen et al. [34] revised the hierarchical evaluation
scheme applied in the partition-of-unity method proposed by Ohtake et al. [26] to solve
this problem. The primary cost of evaluating Eq. 6.1 is to calculate the integrals of weight
functions over each polygon. If current polygon is near the query point, the weight function
changes rapidly. However, the weight function changes slowly for far away polygons. Shen
et al. approximated groups of the slowly changing far integrals by first summing them and
then multiplying by their average weight.

Since GIMLS is a generalization of IMLS, the kD-tree hierarchical scheme used in IMLS
is also applicable to my method. By checking distances from the query point to a bounding
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box of the kD-tree nodes, groups of far-away polygons are approximated as a unit. The
integration in Eq. 6.1 of far-away groups is∫

Ωfar

w2(x− pΩfar)dpΩfar ≈
∫

Ωfar

w2(x− pcentre)dp

= w2(x− pcentre)Areafar,

where pcentre is the center of the bounding box far-away group of polygons. In Eq. 6.1, the
result of this integration is also multiplied by a Gaussian weight function.

Another acceleration approach is to remove polygon surfaces that are farther away from
the query point because the Gaussian weight assigned to each polygon is exponentially
decaying when this distance increases. More formally, a polygon Ωk that satisfies

d(x,Ωnearest)

d(x,Ωk)
< ζ (6.14)

is discarded in computing the implicit surface function, where Ωnearest is the nearest polygon
to the query point x, d the distance function and ζ a threshold.

Care must be taken when approximating f , however, since we are interested in x such
that f(x) = 0. Potentially, discarding small terms could drastically change the zero set.
More formally, define f̂(x) as an approximation to f(x). To prove that f̂(x) is geometrically
close to f(x), a fundamental condition is that when f(x) = 0, there must exists x̂, f̂(x) = 0
and ‖x − x̂‖ < ε. However, while necessary, this condition only guarantees the implicit
value closeness of the approximated implicit surface f̂(x), and the topological closeness of
f̂(x) is not ensured. Regardless, neither Shen et al. nor I proved that our approximations
have this property. For my straightforward acceleration scheme, there are several situations
it might fail. The first is when there are a large number of polygons considered as far-
away; their individual contributions could be small but their summation could be large
and should not be neglected; the second is when the gradient of the implicit value on the
evaluated point is small, in which case removing far-away polygons could lead to significant
changes to the zero set.

6.5 GIMLS with a Distance Function

While GIMLS reduces the bulges seen in Shen et al.’s method when filling holes, it does a
poor job of filleting and rounding. In this section, I discuss some ideas I tried to improve the
fillets and rounds, although none gave satisfactory results. As shown in Fig. 6.2, GIMLS
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fills gaps with sharp edges or corners, especially in the example of the cube and the 3D
cross. Shen et al.’s method fills gaps with bulges. However, neither is sufficient to fill the
gaps or holes with rounded edges and corners.

The sharp corner computed by GIMLS is due to the property of the shape function in
Section. 4.1.1. The shape function calculates the distance from query points to the tangent
plane of input data. An unsigned distance function that takes the nearest distance from
query points to the polygons instead of tangent plane should reduce the sharpness. There
are many different ways to add such a unsigned distance function.

Among my experiments, the following method performed better than others on 2-
dimensional cases. This distance function is the minimum distance from x to the segment
Ωk, represented as Dist(x,Ωk). The implicit function is

f(x) =

∑K
k=1GΩk(x)(Sk(x)

∫
Ωk
w(x− pΩk)dpΩk + λDist(x,Ωk))∑K

k=1 GΩk(x)
∫

Ωk
w(x− pΩk)dpΩk

. (6.15)

The 2-dimensional results with two different λ are show in Fig. 6.7, where we see that the
sharp corners are rounded as we desire.
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Figure 6.7: 2D examples for GIMLS combined with distance function. Left two:λ = 1/3;
Right two: λ = 2/3

However, the 3-dimensional results were unsatisfactory. As shown in Fig. 6.8, the sharp
edges and corners are not smoothed. I tried two other ways to embed distance functions,
but their results were even worse. The two other methods I tried were:
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Figure 6.8: 3D examples for GIMLS combined with distance function. Left: Original Data;
middle: λ = 1/3; right: λ = 2/3.

1. Embed the distance function on the final implicit surface:

f(x) =

∑K
k=1GΩk(x)Sk(x)

∫
Ωk
w(x− pΩk)dpΩk∑K

k=1GΩk(x)
∫

Ωk
w(x− pΩk)dpΩk

+ λDist(x,Ωk)

2. Weight the distance function with Gaussian and radial basis functions:

f(x) =

∑K
k=1GΩk(x)

∫
Ωk
w(x− pΩk)dpΩk(Sk(x) + λDist(x,Ωk))∑K

k=1GΩk(x)
∫

Ωk
w(x− pΩk)dpΩk

However, according to my experiments, simply incorporating the above-mentioned distance
function does not result in rounded edges in the re-constructed surfaces. The distance
function exploration is a topic for future work.
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Chapter 7

Conclusion and Future Work

I analyzed the moving least squares method of Shen et al. [34] and discussed why they
squared the original weight function. I also pointed out that the analytic method of Park
et al. [29] is incorrect because of their adjustment to the weight function. In addition, I
presented a rigorous proof of necessary conditions on the weight functions of IMLS both
in 2D and 3D. Based on the understanding of moving least squares and implicit surface
reconstruction, I provided a new generalized method that can interpolate polygon soup
with holes and gaps better than previous interpolation methods based on polygonal data.

I only proved the necessary conditions on the weight functions for IMLS in 2D and 3D.
However, by extending the solid angle into N -dimension, we should be able to generalize
the proof to work in N -dimensions. This is a topic of future research.

My proof for choosing weight functions of IMLS requires the polygonal curve and poly-
hedral surface to be manifold. When polygon soup contains holes and self-intersections,
my proof is not applicable. Another avenue for future research is to extend my proofs to
polygon soup. This will likely be non-trivial since polygon soup is usually not closed, and
thus it is hard to distinguish the inside from the outside.

Shen et al. and I have two methods to accelerate the implicit function evaluating process:
one is approximating far-away segments by their central points and the other is discarding
far-away segments directly. However, neither Shen et al. nor I gave a theoretical proof to
show that the two methods will generate a surface that is geometrically and topologically
close to the original surface. This is another topic that requires further exploration.

While objects are often modeled as polyhedral models, when manufactured, the edges
between polygons need to be rounded, and the creases filled. My GIMLS method decreases
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the bulges in the previous IMLS method but the ideal fillets and rounds algorithm for filling
holes and gaps are still an open problem.

Another possible idea to reduce bulges is to use the geodesic distance instead of Eu-
clidean distance in the weight function. This will make input data geometrically far away
contribute less. However, for polygon soup, the geodesic distance is hard to compute.

When interpolating with IMLS or GIMLS in 3D, if there is a polygon that does not
have neighbors on two consecutive edges, then at the common vertex, the surface is not
curvature continuous. However, we do not know if it is tangent plane continuous. More
investigation needs to determine the continuity. A similar question arises in 2D, where
we would like at least tangent continuity between input line segments and the constructed
hole filling implicit curves; see Fig. 7.1

For n = 1 and ε = 0, Park et al.’s method builds an implicit function that is 0 at
every point in the exterior of the polygon, shown in Fig. 4.2. While this makes the method
unsuitable for data interpolation and approximation, note that this is a function that has
compact support. Potentially, such a function is useful for other applications.

Like most of functional interpolation and approximation methods, the quality of my
method degrades when the sampling rates are too low (i.e., when the holes and gaps
are too big) or the parameters are extreme values. In particular, if the polygons are all
missing in a certain direction (like the bottom or top of an object for which there is no
normal information to use to fill the holes), my method will produce unsatisfactory results.
Further research is need on this problem. For approximation, I found experimentally that
my hybrid method can solve most of the problems with polygon soup, but I have not yet
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derived a rigorous theory to support this.
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