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Abstract

The performance of a classifier is affected by a number of factors including classifier
type, the input features and the desired output. This thesis examines the impact of feature
selection and classification problem division on classification accuracy and complexity.

Proper feature selection can reduce classifier size and improve classifier performance
by minimizing the impact of noisy, redundant and correlated features. Noisy features can
cause false association between the features and the classifier output. Redundant and
correlated features increase classifier complexity without adding additional information.

Output selection or classification problem division describes the division of a large clas-
sification problem into a set of smaller problems. Problem division can improve accuracy
by allocating more resources to more difficult class divisions and enabling the use of more
specific feature sets for each sub-problem.

The first part of this thesis presents two methods for creating feature-selected hierarchi-
cal classifiers. The feature-selected hierarchical classification method jointly optimizes the
features and classification tree-design using genetic algorithms. The multi-modal binary
tree (MBT) method performs the class division and feature selection sequentially and tol-
erates misclassifications in the higher nodes of the tree. This yields a piecewise separation
for classes that cannot be fully separated with a single classifier. Experiments show that
the accuracy of MBT is comparable to other multi-class extensions, but with lower test
time. Furthermore, the accuracy of MBT is significantly higher on multi-modal data sets.

The second part of this thesis focuses on input feature selection measures. A number
of filter-based feature subset evaluation measures are evaluated with the goal of assessing
their performance with respect to specific classifiers. Although there are many feature
selection measures proposed in literature, it is unclear which feature selection measures
are appropriate for use with different classifiers. Sixteen common filter-based measures are
tested on 20 real and 20 artificial data sets, which are designed to probe for specific feature
selection challenges. The strengths and weaknesses of each measure are discussed with
respect to the specific feature selection challenges in the artificial data sets, correlation
with classifier accuracy and their ability to identify known informative features.

The results indicate that the best filter measure is classifier-specific. K-nearest neigh-
bours classifiers work well with subset-based RELIEF, correlation feature selection or con-
ditional mutual information maximization, whereas Fisher’s interclass separability criterion
and conditional mutual information maximization work better for support vector machines.

Based on the results of the feature selection experiments, two new filter-based measures
are proposed based on conditional mutual information maximization, which performs well
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but cannot identify dependent features in a set and does not include a check for corre-
lated features. Both new measures explicitly check for dependent features and the second
measure also includes a term to discount correlated features. Both measures correctly iden-
tify known informative features in the artificial data sets and correlate well with classifier
accuracy.

The final part of this thesis examines the use of feature selection for time-series data
by using feature selection to determine important individual time windows or key frames
in the series. Time-series feature selection is used with the MBT algorithm to create
classification trees for time-series data. The feature selected MBT algorithm is tested on
two human motion recognition tasks: full-body human motion recognition from joint angle
data and hand gesture recognition from electromyography data. Results indicate that the
feature selected MBT is able to achieve high classification accuracy on the time-series data
while maintaining a short test time.
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Acronyms

1-NN 1-nearest neighbour.

ABT Adaptive binary tree.
ACO Ant colony optimization.
ANN Artificial Neural Network.

AR Auto-regressive.
BDT Binary decision tree.

CART Classification and regression tree.

CFS Correlation feature selection.

CMI Conditional mutual information.

CMIM Conditional mutual information maximization.
CPFS Convex principal feature selection.

CV Cross validation.

DAG-SVM Directed acyclic graph support vector machine.
dCMIM Dependency aware conditional mutual information maximization.
dFOU Dependency aware fist order utility.

DOS Dynamic oscillating search.
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DWT Discrete wavelet transform.
EMG Electromyography.

FDA Fisher’s discriminant analysis.
FIS Fuzzy inference system.

FOU First order utility.

GA Genetic algorithm.
GPLVM Gaussian process latent variable model.
GSBS Generalized sequential backwards search.

GSFS Generalized sequential forward search.
HMM Hidden Markov model.

ICA Independent component analysis.

IFFS Improved forward floating search.
JS Jensen-Shannon.

KL Kullback-Leibler.
KNN / K-NN K-Nearest neighbours.

KPCA Kernel principal component analysis.

LASSO Least-absolute selection and shrinkage operator.
LDA Linear discriminant analysis.

LE Laplacian eigenmaps.

LLE Locally linear embedding.

LOOCYV Leave-one-out cross validation.
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LOSO / LOSO-CV Leave-one-subject-out cross validation.
LS Laplacian score.

LTSA Local tangent space alignment.

LVF Las Vegas Filter.

MAYV Mean absolute value.

MBT Multi-modal binary tree.

MCFS Multi-cluster feature selection.

MDS Multi-dimensional scaling.

MI Mutual information.

MLP Multi-layer perceptron.

mRMR minimal-redundancy maximal-relevancy.

MVU Maximum variance unfolding.

OS Oscillating search.
OVO One vs. one.
OVR One vs. rest.

PCA Principal component analysis.
PPCA Probabilistic principal component analysis.
PSO Particle swarm optimization.

PTA Plus-l-minus-r.

RBF Radial basis function network.

RMS Root mean squared.
SA Simulated annealing.
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SBF'S Sequential backwards floating search.

SBS Sequential backwards search.

SDE Semi-definite embedding.

SFFS Sequential forward floating search.

SF'S Sequential forward search.

SNE Stochastic neighbour embedding.

SOM Self-organizing map.

SPCA Sparse principal component analysis / Supervised principal component analysis.
SS-GPLVM Simple sequence Gaussian process latent variable model.
SSI Simple squared integral.

ST-Isomap Spatio-temporal Isomap.

SU Symmetric uncertainty.

SVM Support Vector Machine.

ZC Zero crossings.
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Glossary

K-folds cross validation K-folds cross validation is a method of estimating classifier
accuracy. The data set is divided into K approximately equal sized groups or folds.
K classifiers are trained, each leaving one fold out of the training set and assessing
the trained classifier on the removed points. K-folds cross validation can be used as
a wrapper-based feature subset evaluation measure.

1-nearest neighbour The 1-nearest neighbour is a form of the K-nearest neighbours
classification algorithm that uses only a single neighbour.

Adaptive binary tree (ABT) The adaptive binary tree is a type of hierarchical classi-
fier based on a one vs. one training [27].

Additive multivariate Additive multivariate feature selection measures consider the
benefit of each unselected feature with respect to the selected set. These are dif-
ferent than univariate measure because they consider the value of each feature with
respect to the selected features rather than in isolation. Additive multivariate mea-
sures are different than grouped multivariate measures, which consider the benefit of
a group of features as a whole rather than the additional benefit gained by adding a
new feature.

Ant colony optimization (ACO) Ant colony optimization is a type of stochastic opti-
mization technique that can be used for feature selection.

Artificial neural network (ANN) An artificial neural network is an algorithm used for
classification or regression.

Auto-regressive coefficients (AR coefficients) An autoregressive model of a time-
series signal models the current sample as a weighted sum of past samples in the
time-series. The AR coefficients are the weights used for the past samples.
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Autoencoder An autoencoder is a type of artificial neural network where the output
values are designed to match the input values. Autoencoders can be used for feature
extraction by using the hidden node values as features.

Bhattacharyya divergence Bhattacharyya divergence is a divergence measure used to
assess the difference between probability distributions. Bhattacharyya divergence
can be used as a univariate feature selection measure, where it is used to measure
the difference between the distributions of different classes [11].

Binary classifier A binary classifier is a classifier that is only capable of distinguishing
between two classes of inputs.

Binary decision tree (BDT) The binary decision tree is a type of hierarchical classifier
based on a technique similar to k-means clustering [103].

Classification and regression tree (CART) The classification and regression tree is a
decision tree algorithm that can be used for classification or regression.

Classifier Classifiers are algorithms that determine the label or class of a sample based
on its characteristic features.

Clustering Clustering techniques aim to divide points into groups or clusters based on
their characteristic features. Clustering techniques are unsupervised and hence do
not use class labels to help determine the grouping.

Conditional mutual information Conditional mutual information measures the mu-
tual information between two variables given a third variable. The notation for con-
ditional mutual information is I(A; B|C'), which indicates the mutual information
between A and B given C.

Conditional mutual information maximization (CMIM) Conditional mutual infor-
mation maximization is an additive multivariate feature subset evaluation measure
based on the conditional mutual information between a feature and the class given
the selected features [15].

Consistency Consistency is a grouped multivariate feature subset evaluation measure
that is based on the number of inconsistent points in a set. Two samples are con-
sidered to be inconsistent if they have the same input feature values, but a different
class label [37].
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Convex principal feature selection (CPFS) Convex principal feature selection is an
algorithm for feature selection that treats feature selection as a direct optimization
problem [109].

Correlated features A correlated feature is any feature whose value can be predicted to
some extent from other features.

Correlation feature selection (CFS) Correlation feature selection is a grouped multi-
variate feature subset evaluation measure where the goal is to maximize the mutual
information between the selected features and the class and minimize the mutual
information between the selected features [53].

Dependency aware conditional mutual information (dCMIM) Dependency aware
conditional mutual information is a feature subset evaluation measure proposed in
this thesis. The dCMIM is based on the CMIM feature measure, but includes an
extra step that explicitly looks for dependent features in the set.

Dependency aware first order utility (dFOU) Dependency aware first order utility
is a feature subset evaluation measure proposed in this thesis. The dFOU is based
on the FOU and CFS feature measures, but includes an extra step that explicitly
looks for dependent features in the set.

Dependent features A data set with dependent features includes one or more features
that work together to separate the data set, but cannot separate the data set on their
own.

Directed acyclic graph support vector machine (DAG-SVM) Directed acyclic graph
support vector machine is a multi-class extension for support vector machines that
is based on a one vs. one training. A classifier is trained on each pair of classes and
these pairwise classifiers are used to successively eliminate classes from consideration.
This means that the time required to classify new points is shorter than the one vs.
one multi-class extension on which it is based, because fewer classifiers need to be

queried. DAG-SVM was proposed in [120].

Discrete wavelet transform (DWT) The discrete wavelet transform is the type of
wavelet decomposition used for discrete signals. The discrete wavelet transform di-
vides the signal by passing it through a high and a low pass filters, downsamples each
side and successively applies the high and low pass filters to the low frequencies.
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Dynamic oscillating search (DOS) Dynamic oscillating search is a type of sequential
feature subset selection technique used in feature selection problems. DOS is an
extension of OS and unlike its forwards and backwards counterparts, SFFS and SBF'S,
DOS begins with a set of pre-selected features [111].

Electromyography (EMG) Electromyography uses sensors to detect muscle activation.

Envelope The envelope of a signal gives the general signal shape. It is a low pass filtered
version of the rectified signal.

Feature A feature is the input to a classifier. Features describe some aspect of the data
and can be quite simple (ex. raw data) or extremely complex (ex. values calculated
from raw data).

Feature extraction Feature extraction techniques are used to transform a given set of
input features to create a new set of features that have some desired property.

Feature measure Please see “feature subset evaluation measure”.

Feature Selected Hierarchical Classifier (FSHC) The feature selected hierarchical
classifier is a hierarchical classifier proposed in this thesis that uses a genetic algorithm
to jointly perform feature selection and to design the class separation that defines
the classifier structure.

Feature selection Feature selection is used to select a subset of good features from a
larger set of candidate features. The selected subset forms the set of classifier inputs.

Feature set selection technique The feature set selection technique is a component of
feature selection algorithms. The feature set selection technique guides the feature
subset search based on the information provided by the feature subset evaluation
measure.

Feature subset evaluation measure The feature subset evaluation measure is a com-
ponent of feature selection algorithms. The feature subset evaluation measure is used
to estimate the “goodness” of a particular set of features.

Filter A filter is a type of feature subset evaluation measure, where the feature subset is
evaluated using a calculated value instead of direct testing on the desired classifier.
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First order utility (FOU) First order utility is an additive multivariate feature subset
evaluation measure that combines the conditional mutual information terms used in
CMIM and feature-feature mutual information terms used in mRMR [20].

Fisher’s discriminant analysis (FDA) Fisher’s discriminant analysis is a supervised
linear feature extraction technique. It is closely related to linear discriminant analysis
(LDA) and the terms are sometimes used interchangeably, though FDA most com-
monly refers to the feature extraction technique while LDA most commonly refers to
the classification technique.

Fisher’s interclass separability criterion Fisher’s interclass separability criterion is a
grouped multivariate feature subset evaluation measure that evaluates feature subsets
based on the ratio of within-class to between-class distances [13].

Fuzzy inference system (FIS) A fuzzy inference system is a type of classifier of regres-
sion system based on fuzzy logic.

Gaussian process latent variable model (GPLVM) Gaussian process latent variable
models can be used as an unsupervised, non-linear feature extraction technique [94].

Generalized sequential backwards search (GSBS) Generalized sequential backwards
search is a type of sequential feature subset selection technique used in feature se-
lection problems. It is an extension of SBS. GSBS is less commonly used than its
floating counterpart SFBS, becasue GSBS requires parameter settings [30].

Generalized sequential forwards search (GSFS) Generalized sequential forwards search
is a type of sequential feature subset selection technique used in feature selection
problems. It is an extension of SFS. GSFS is less commonly used than its floating
counterpart SFFS; becasue GSFS requires parameter settings [30].

Genetic algorithm (GA) Genetic algorithms are a type of stochastic optimization tech-
nique that can be used for feature selection.

Graph Laplacian The graph Laplacian is a representation of the similarity graph where
the matrix entries are based on the difference between the similarity graph and the
diagonal graph representing all the weight connections to each point.

Grouped multivariate Grouped multivariate feature selection measures consider the
benefit of a feature subset as a whole. Grouped multivariate measures are different
than additive multivariate measures, which consider the additional benefit gained by
adding a new feature rather than the benefit of the entire group.
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Hidden Markov model (HMM) A hidden Markov model is a method for modeling
time series data. HMMSs can be used for classification by training one model per
class.

Hierarchical classifier A hierarchical classifier is a multi-class extension where the set
of classes is progressively divided into smaller subsets until there is only one class
remaining at each node. See also Tree-based classifier.

Hjorth parameters The Hjorth parameters are EMG-specific features. There are three
Hjorth parameters: activity, mobility and complexity. The parameters measure the
ratio of variances for the signal and its derivatives [0-].

Improved forward floating search (IFFS) Improved forward floating search is a type
of sequential feature subset selection technique used in feature selection problems. It
is an extension of SFFS [116].

Independent component analysis (ICA) Independent component analysis is a method
of blind signal separation that can be used as an unsupervised feature extraction
technique [33].

Isomap Isomap is an unsupervised, non-linear, neighbourhood based feature extraction
technique [149].

Jensen-Shannon divergence (JS) Jensen-Shannon is a divergence measure used to as-
sess the difference between probability distributions. JS can be used as a univariate
feature selection measure, where JS is used to measure the difference between the
distributions of different classes [97].

K-means clustering K-means clustering is a clustering technique that separates points
into K clusters with the smallest grouped distance to the class center.

K-nearest neighbours K-nearest neighbours is a classification algorithm where the class
of a point is determined by a vote of the K closest points in the training set [34].

Kernel principal component analysis (KPCA) Kernel principal component analysis
is an unsupervised, non-linear feature extraction technique based on PCA [111].

Kullback-Leibler divergence (KL) Kullback-Leibler is a divergence measure used to
assess the difference between probability distributions. KL can be used as a univariate
feature selection measure, where KL is used to measure the difference between the
distributions of different classes [90].
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Kurtosis The kurtosis of a signal measures its peakedness.

Laplacian eigenmap (LE) Laplacian eigenmap is an unsupervised, non-linear, neigh-
bourhood based feature extraction technique [13].

Laplacian score (LS) Laplacian score is an unsupervised, neighbourhood based feature
subset evaluation measure [01].

Las Vegas filter (LVF) Las Vegas filter is randomized search technique that can be used
for feature selection.

Least absolute selection and shrinkage operator (LASSO) The least absolute se-
lection and shrinkage operator can be used to perform embedded feature selection.
LASSO adds the minimization of a 1-norm operator to a standard regression or clas-
sification optimization problem. The inclusion of this additional term encourages the
weights for some inputs to become zero. This sparsity in the weights is a form of
embedded feature selection [150].

Leave-one-out cross validation (LOOCYV) Leave-one-out cross validation is a method
of estimating classifier accuracy. N classifiers are trained,where N is the number of
data points. Each classifier leaves one point out from the training set and evaluates
the classifier on the untrained point. LOOCYV is also called N-folds cross validation.
LOOCYV can be used as a wrapper-based feature subset evaluation measure.

Leave-one-subject-out cross validation (LOSO) Leave-one-subject-out cross valida-
tion is a method of estimating classifier accuracy when the data set contains data
from more than one subject. S classifiers are trained,where S is the number of sub-
jects. Each classifier leaves the data from one subject out from the training set and
evaluates the classifier on the data from the untrained subject.

Linear discriminant analysis (LDA) Linear discriminant analysis is a binary, linear
classification technique. It is closely related to Fisher’s discriminant analysis (FDA)
and the terms are sometimes used interchangeably, though FDA most commonly
refers to the feature extraction technique while LDA most commonly refers to the
classification technique.

Local tangent space alignment (LTSA) Local tangent space alignment is an unsu-
pervised, non-linear, neighbourhood-based feature extraction technique [173].

Locally linear embedding (LLE) Locally linear embedding is an unsupervised, non-
linear, neighbourhood based feature extraction technique [135].
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Maximum variance unfolding (MVU) Maximum variance unfolding is an unsuper-
vised, non-linear, neighbourhood based feature extraction method [161].

Mean absolute value (MAV) The mean absolute value is measured over a finite por-
tion of a time-series signal. The absolute value of each sample is taken, then these
values are averaged.

Minimal-redundancy maximal-relevancy (mRMR) Minimal-redundancy maximal-
relevancy is an additive multivariate feature subset evaluation measure based on the
mutual information between the feature and the class and between the feature and
other features in the selected set [122].

Monotonic A monotonic data set is a data set where the classification accuracy will never
decrease when a new feature is added to the selected set.

Motion recognition Motion recognition is a type of classification problem where the
challenge is to recognize the movement being performed from a set of known move-
ments.

Multi-class classifier A multi-class classifier is a classifier that is capable of distinguish-
ing between more than two classes of inputs.

Multi-class extension A multi-class extension is a method for dividing multi-class classi-
fication problems into sets of binary problems, normally for use with binary classifiers.

Multi-cluster feature selection (MCFS) Multi-cluster feature selection is an unsu-
pervised, neighbourhood-graph-based feature subset evaluation measure [23].

Multi-dimensional scaling (MDS) Multi-dimensional scaling is an unsupervised fea-
ture extraction technique [18].

Multi-layer perceptron (MLP) A multi-layer perceptron is a type of artificial neural
network.

Multi-modal Binary Tree (MBT) The multi-modal binary tree is a hierarchical clas-
sifier proposed in this thesis that tolerates misclassification of the training samples by
adding additional classifiers to re-classify initially misclassified points. This creates
a linear piecewise separation of the data.

Multivariate Multivariate indicates that multiple variables are being considered together.
Multivariate feature selection measures consider subsets of features as a group.
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Mutual information (MI) Mutual information is a measure of the dependence between
a pair of variables. Mutual information can be used as a univariate feature set
evaluation measure by measuring the mutual information between the feature and
the class label [102].

Naive Bayes Naive bayes is a type of classifier that is based on Bayesian probability.

Neighbourhood graph The neighbourhood graph is a type of similarity graph where
neighbouring points are connected by some weight, but non-neighbouring points are
unconnected (zero weight).

Non-monotonic A non-monotonic data set is a data set that contains at least one feature
that is not monotonic. In this case, adding a feature to the selected set will decrease
classification accuracy.

One vs. one One vs. one is a multi-class extension that trains a classifier for each pair
of classes. The overall classification of a point is determined by vote.

One vs. rest One vs. rest is a multi-class extension that requires training one classifier
per class. Each classifier classifies between points from a single class and points in
the remaining classes.

Oscillating search (OS) Oscillating search is a type of sequential feature subset selection
technique used in feature selection problems. Unlike its forwards and backwards
counterparts, SFFS and SBFS, OS begins with a set of pre-selected features [115].

Particle swarm optimization (PSQO) Particle swarm optimization is a type of stochas-
tic optimization technique that can be used for feature selection.

Plus-l-minus-r (PTA) Plus-l-minus-r is a type of sequential feature subset selection
technique used in feature selection problems. It is an extension of SFS. PTA is less
commonly used than its floating counterparts SFFS because PTA requires parameter
settings [110].

Principal component analysis (PCA) Principal component analysis is an unsuper-
vised, linear feature extraction technique [75].

Probabilistic principal component analysis (PPCA) Probabilistic principal compo-
nent analysis is an unsupervised, linear feature extraction technique based on PCA

[153]:
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Pure noise feature A pure noise feature is a feature that contains no information about
the class label. See also “Random feature”.

Radial basis function network (RBF) A radial basis function network is a type of
artificial neural network.

Random feature A random feature is a feature that contains no information about the
class label. See also “Pure noise feature”.

Redundant features A redundant feature is a feature that is an exact copy of another
feature in the set.

RELIEF / RELIEF-F RELIEF-F is a univariate feature subset evaluation measure that
assesses the value of a feature or feature subset (subset-RELIEF) based on the dis-
tance to neighbouring points in the same and different classes [79, 82].

Root mean squared (RMS) The root mean squared value is measured over a finite
portion of a time-series signal. Fach of the values is squared, the squared values are
then averaged and the square root of the average of the squared values is taken.

Self-organizing map (SOM) Self-organizing map is a clustering technique that is com-
monly used for data visualization.

Semi-definite embedding (SDE) Semi-definite embedding is a method for performing
maximum variance unfolding (MVU) feature extraction [162].

Sequential backwards floating search (SBFS) Sequential backwards floating search
is a sequential feature subset selection technique used in feature selection problems.
SBFS is based on SBS, but allows features to be re-added at each step [127].

Sequential backwards search (SBS) Sequential backwards search is a sequential fea-
ture subset selection technique used in feature selection problems where features are
removed one at a time from a full set [107].

Sequential forwards floating search (SFFS) Sequential forwards floating search is a
sequential feature subset selection technique used in feature selection problems. SFFS
is based on SF'S, but allows features to be removed at each step [127].

Sequential forwards search (SFS) Sequential forwards search is a sequential feature
subset selection technique used in feature selection problems where features are added
one at at time to the selected set [165].
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Similarity graph A similarity graph is a way of representing data in graph form. Each
input point represents one node in the graph and the weights between each point
describes how similar the points are.

Similarity matrix A similarity matrix is a representation of the similarity graph in ma-
trix form. The matrix entry at ij represents the weight (similarity) between nodes i
and j in the similarity graph..

Simple sequence Gaussian process latent variable model (SS-GPLVM) The SS-
GPLVM is a type of GPLVM that can be used for motion recognition [10].

Simple squared integral (SSI) The simple square integral is measured over a finite
portion of a time-series signal. Each sample is squared and summed to give the SSI.

Simulated annealing (SA) Simulated annealing is a type of stochastic optimization
technique that can be used for feature selection.

Skewness The skewness of a signal measures its asymmetry.

Sparse Principal component analysis (Sparse PCA / SPCA) Sparse principal com-
ponent analysis is an unsupervised, sparse, linear feature extraction technique based

on PCA [177].

Spatio-temporal Isomap (ST-Isomap) ST-Isomap is a version of the Isomap feature
extraction technique that can be used with temporal data [72].

Spectral clustering Spectral clustering is a clustering technique that is based on the
similarity graph [157].

Stochastic neighbour embedding (SNE) Stochastic neighbour embedding is an un-
supervised, non-linear, neighbourhood based feature extraction technique [62].

Supervised Supervised techniques use the class labels as well as the input features as a
part of an algorithm.

Support vector machine (SVM) A support vector machine is a binary classifier that
separates points in different classes using a hyperplane whose location is determined
by the largest margin between the classes.

Symmetric uncertainty (SU) Symmetric uncertainty is a univariate mutual-information-
based feature subset evaluation measure [169)].
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Tabu search Tabu search is a type of stochastic optimization technique that can be used
for feature selection.

Tree-based classifier A tree-based classifier is a multi-class extension where the set of
classes is progressively divided into smaller subsets until there is only one class re-
maining at each node. See also Hierarchical classifier.

UCI machine learning repository The UCI machine learning repository is a collection
of data sets maintained by the University of California, Irvine [3].

Univariate Univariate indicates that only one variable is being considered. Univariate
feature selection measures consider each feature in isolation.

Unsupervised Unsupervised techniques do not use the class labels as a part of the algo-
rithm, and base the algorithm output only on the properties of the input features.

Validation set A validation set is a portion of the data set that is withheld from the
training set when training a classifier or a regression algorithm. This portion of the
data set is then used for testing in order to test the generalization ability of the
algorithm.

Wavelet The wavelet decomposition of a signal is similar to short time Fourier analysis,
but instead of using equally sized windows for each frequency component, wavelets
match the size of the window to the frequency being analyzed. Rather than the
sine wave decomposition used in Fourier analysis, wavelet decomposition performs a
successive convolution of the signal with scaled and shifted versions of a finite length
mother wavelet.

Willson Amplitude The Willson amplitude is measured over a finite portion of a time-
series signal. The Willson amplitude counts the number of times the signal value
change between samples is larger than a pre-determined threshold.

Wrapper A wrapper is a type of feature subset evaluation measure where the performance
of the feature subset is evaluated directly on the classifier.

Zero crossings (ZC) The number of zero crossings is measured over a finite portion of

a time-series signal. The ZC measures the number of time the signal value changes
signs.
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Chapter 1

Introduction

Classification algorithms estimate the class of a sample based on its characteristic features.
Classifiers are used in many different domains for tasks ranging from simple taxonomy to
complex medical classification and computer vision applications.

The performance of a classifier is affected by a number of different factors including
classifier type and parameters, the input features and the desired outputs. This thesis
examines the selection of input features and how the selected features and output groupings
jointly contribute to the overall performance of the classifier.

Feature selection is an important and difficult problem in machine learning. Good
feature selection can improve classifier performance in a number of ways. Selecting a good
subset of features not only decreases the computational load, but can also improve accuracy
[50]. Feature selection lessens the impact of noisy features, which can cause false association
between relatively random features and the classifier output. Feature selection can also help
to identify redundant or correlated features, which increase classifier complexity without
adding much additional information [57]. In some cases, the features may be informative for
differentiating between some classes, but not others. Including these partially informative
features may also degrade performance. Feature sets may also contain dependent features,
which are not useful by themselves but provide significant information when combined with
other features [57].

Feature selection is complicated by the fact that multi-way dependencies and corre-
lations can exist, meaning simply selecting the best individually scored features may not
produce the best set. Hence good feature selection requires not just individual or pairwise
feature evaluation, but evaluations of entire subsets [57]. Additionally, because of feature



dependence, the optimal set of N features may not include the optimal set of N — 1 fea-
tures [127]. This greatly increases the number of evaluations required to properly evaluate
a feature set.

Different classifiers tend to have different tolerances for feature sets with redundant and
correlated features [57]. This also means that the feature set evaluation criterion needs to
be classifier-specific to properly capture the utility of the feature set being investigated.

The most obvious way to tailor a feature set to a specific classifier is to evaluate the
feature set directly on the desired classifier. This type of feature evaluation is called a
“wrapper” method. While wrappers tend to perform well, since they give direct feedback
about the ability of the classifier to use the feature set [31], they are computationally
expensive. They can also select features that are too specific to the training set, causing
generalization problem. This is a particular problem if the number of samples is small

[143].

Filter measures do not evaluate the feature set directly on the classifier, but instead use
a calculated value as an estimate of the feature set performance. Filter measures tend to
be less computationally expensive than wrappers, but do not directly measure the ability
of the selected classifier to use the feature set. The ideal measure of a feature set would be
a filter measure that is known to be a good estimate of accuracy for a particular classifier.
This measure would likely be different for different classifiers.

The decision about which outputs to use can also significantly affect the classification
accuracy. Trying to classify a set with a small number of classes will often be easier than
trying to differentiate between larger numbers of possibilities. It is also often easier to
classify points when the classes are very different from each other than it is to make fine
distinctions between similar categories. Unfortunately, the output classes are most often
set a-priori and cannot be changed.

The standard approach to multi-class classification is to use a single classifier with
many outputs. However, another option is to split the problem into a set of classification
problems that each use only a subset of the classes or samples. Dividing the problem is
always necessary when binary classifiers are used to classify multi-class problems. Splitting
the problem can increase the overall accuracy multi-class classifiers [137]. Problem division
allows the use of a more specific set of features for each set of classes. For some classifiers,
better generalization can be achieved by sparse set of inputs [106]. Splitting a multi-class
problem also affects the input feature selection process since some features may be more
informative about certain class subsets.

The question of how to divide the problem is not trivial and remains an active research
area. There are a number of common methods for dividing a multi-class problem for use



with binary classifiers. These include one vs. rest, where a classifier is trained for each
class to classify it from the others, and one vs. one, where classifiers are trained on each
pair of classes and a voting scheme is used. Unfortunately, it does not appear that any one
method is the best solution in all cases [132, 65]. Tree-based classifiers divide the problem
hierarchically, with each level splitting the classification task into a progressively smaller
set of classes [29, 103]. Trees are intuitively a good choice because they do not require all
the trained classifiers to be queried to perform a classification, reducing classification time.

There are three major components to this thesis, each exploring a different aspect
of feature selection and output division. The first part of this thesis examines the joint
contribution of feature selection and problem division on classification accuracy and com-
putational complexity when using tree-based classifiers. Two different feature-selected
tree-based classifiers are proposed and compared to other common multi-class extensions.
The first proposed method uses genetic algorithms to jointly optimize the tree design and
selected features. The second method performs the class division and feature selection
sequentially. It also allows classes to appear at more than one leaf node. This allows it to
classify multi-modal or non-linearly separable classes using piecewise classification.

The second part of the thesis examines the feature selection measure problem more
closely. There have been a large number of feature evaluation measures proposed in the
literature. For a researcher looking to use feature selection as a tool for solving a specific
problem, the large number of potential solutions and the lack of direct comparison currently
available in the literature can make it difficult to determine which measures are most
suitable for a particular application or classifier. Testing a large number of filter measures
is impractical in many cases, especially when the feature selection method is not the only
parameter to be tuned. The second part of this thesis examines a number of well-known
filter measures and compares their performance based on their ability to select informative
features and correlation with classifier accuracy. Several different promising filter-based
measures are recommended and two new measures are proposed that overcome some of
the shortcomings of the tested methods.

The final part of the thesis examines feature selection for time-series data. Adding
time-delay inputs to a classifier is essentially the same as adding new features, and their
contribution to the overall accuracy and speed needs to be jointly considered when selecting
features. The final part of the thesis examines whether feature selection techniques can
be used to select individual time windows from within a time series as a way to improve
classifier accuracy or reduce classification time. It then applies the selected feature selection
measure and tree-based classifier to two time-series human motion recognition problems.

The feature selected hierarchical classifier is well suited for multi-class time-series clas-



sification problems that have noisy, correlated or irrelevant features. The classifier is par-
ticularly beneficial for multi-modal or non-linearly separable problems where the training
can be performed offline, but the classification of new points must be fast in order to clas-
sify incoming data points in an online manner. Human motion recognition is selected as
an exemplar multi-class time-series class problem. The human motion recognition prob-
lems in this thesis have non-linearly separable classes and have many noisy, correlated and
irrelevant features. Motion recognition was therefore considered to be an interesting and
challenging domain in which to test the proposed algorithm.

This thesis makes the following contributions

e The development of a feature-selected tree-based classifier that can be used to classify
multi-modal and non-linear classes using piecewise separation

e An extensive empirical evaluation of current filter-based feature set evaluation mea-
sures with respect to specific classifiers

e The development of a new filter-based feature selection measure that can account for
dependent features

e The application of feature selection and the MBT algorithm to two different time-
series human motion recognition problems

The remainder of this thesis is organized as follows. Chapter 2 reviews the current
literature on feature selection and multi-class extensions including tree-based hierarchical
classifiers. It also provides background on the techniques employed in this thesis. Chapter
3 presents and evaluates two feature-selected tree-based classification algorithms. Chapter
4 presents an empirical evaluation of common filter-based feature selection techniques and
proposes two new filter-based measures that explicitly look for dependent features. Chapter
5 presents an evaluation of feature selection techniques for time-series data and applies
feature selection and the proposed hierarchical classifier to two time-series human motion
recognition problems. Chapter 6 presents the conclusions and proposes future directions
for this work.



Chapter 2

Previous Work

This chapter overviews the current work on feature extraction and selection and multi-
class extensions for binary classifiers including hierarchical classifiers. It also provides
background on the techniques employed in this thesis, including genetic algorithms, K-
nearest neighbours classification (KNN), support vector machines (SVM) and K-means
clustering.

2.1 Notation

A classification problem has a set of inputs X € R and a set of class labels Y. X is an
F x N matrix, where N is the number of samples and F' is the number of variables or
“features” in each sample. Yis an N dimensional vector of class labels, where the number
of classes is C. Each feature can either be continuous, where it can take any value in its
range, or discrete, where it can take only a certain set of values. Continuous features can
be discretized by placing the continuous samples into a set number of bins Nj,.

Supervised techniques use both the inputs X and the class labels Y. Unsupervised
measures use only the inputs X.

2.2 Feature Selection and Feature extraction

Feature selection and feature extraction are often used as pre-processing steps for pat-
tern recognition to improve accuracy and reduce computational complexity. While feature



extraction techniques are often formulated as optimization problems, feature selection tech-
niques are typically formulated as search problems.

Feature extraction applies a transform to the given set of measurements to create a set
of derived features:
7= f(X) (2.1)

For linear feature extraction techniques, this can be formulated as a matrix transfor-
mation.
Z = BX (2.2)

where B is the () x F' transformation matrix.

Dimensionality reduction is achieved as part of the transformation, by setting @) < F.
Alternately, B can be an F' x F' matrix, and a feature selection technique can be used to
select from the transformed features.

Feature selection aims to find a ()-dimensional subset of features, Sp, (@ < F') that
optimizes classifier performance and optionally minimizes the feature set size.

Feature selection and extraction problems are closely related; feature selection can be
viewed as a restricted form of linear feature extraction (Equation 2.2), where the matrix
B is restricted to be a diagonal binary matrix. However, feature selection is more often
formulated as a search problem, where the goal is to find the best subset of features, based
on some measure of feature set fitness.

Feature selection techniques are sometimes preferred over feature extraction techniques
because they return a set of features that have real-world meaning. This can provide insight
into which parts of the system are important. Additionally, feature selection can reduce the
cost associated with acquiring features. While some pattern recognition tasks use features
that have little associated cost (for example, the individual pixel values in an image), it
is also possible to have features that have an associated computational or monetary cost
(for example, frequency domain features that have a computational cost or medical tests
that have a monetary cost). When features have an associated cost of any type, it can be
beneficial to use feature selection to reduce the number of features that initially have to
be generated. On the other hand, feature extraction can be used to generate features that
are not in the original set, which can be more powerful.

Although feature extraction and feature selection are often presented as being two
different, competing methods for dimensionality reduction, they can also be complimentary.
Feature extraction techniques can be viewed as a feature generation stage that expands
the number of available features, and feature selection can be viewed as the dimensionality



reduction stage that reduces the size of the feature set [11]. Depending on the data set and
the classifier, the original feature set may be better for classification [162]. Hence, including
the original feature set along with the transformed features may improve accuracy, if the
feature selection technique is able to properly account for correlations in the features.

There are a large number of both feature extraction and feature selection techniques.
These techniques are discussed and compared in the following sections.

2.3 Feature extraction techniques

Although feature extraction techniques are not the focus of this thesis, feature extrac-
tion and feature selection can be used together and share many goals. Ideas and tech-
niques from the field of feature extraction have been incorporated into feature selection
algorithms and the fields are closely related. For example, Fisher’s discriminant analysis
feature extraction is closely related to Fisher’s interclass separability criterion in feature
selection. Neighbourhood-graph based feature selection techniques such as Laplacian score
were motivated by similar neighbourhood-graph based feature extraction techniques such
as Laplacian Eigenmaps. For these reasons, a brief survey of interesting feature extraction
techniques is presented in this section.

2.3.1 Properties of feature extraction techniques

Common properties of feature extraction techniques are discussed in this section. Table 2.1
shows the properties of each of the feature extraction techniques discussed in this chapter.

Supervised vs. unsupervised

Feature extraction techniques that use the given class labels or function values to determine
the extraction function f are called supervised. Unsupervised feature extraction techniques
do not use labels or function values, and instead attempt to extract new features based
only on the properties of the input data.

Although supervised feature extraction would be expected to work better for super-
vised pattern recognition tasks, supervised feature extraction techniques do not always
outperform unsupervised feature extraction techniques [108].



technique reference | supervised / | global / | linear / manifold / | probabilistic /

unsupervised | local non-linear | projection | non-probabilistic | parameters
PCA [75, ] | unsupervised | global linear projective | non-probabilistic | -
Probabilistic PCA [153] | unsupervised | global linear manifold probabilistic -
Sparse PCA [177] | unsupervised | global | linear projective | non-probabilistic | A (elastic net tuning)
Sparse PPCA [55] | unsupervised | global linear projective | probabilistic A (penalty terms)
Kernel PCA [139] | unsupervised | global | non-linear | projective | non-probabilistic | K (kernel)
Supervised PCA [10] | supervised global | linear projective | non-probabilistic | -
Supervised PPCA [170] | supervised global linear projective | probabilistic -
FDA [108] | supervised global | linear projective | non-probabilistic | -
Classical MDS [36] | unsupervised | global linear projective | non-probabilistic | -
MDS [36] | unsupervised | global | non-linear | projective | non-probabilistic | D (dissimilarities)
Landmark MDS [36] | unsupervised | global | non-linear | projective | non-probabilistic | £ (# landmarks), D
Isomap [149] | unsupervised | global | non-linear | manifold | non-probabilistic | k or 6 (neighbours)
Landmark Isomap [40] | unsupervised | global | non-linear | manifold | non-probabilistic | k or 6, ¢
Extended Isomap [167] | supervised global non-linear | manifold non-probabilistic | £ or 8
LLE [135] | unsupervised | local non-linear | manifold | non-probabilistic | k or 6
SDE/MVU s ] | unsupervised | global non-linear | projective | non-probabilistic | k or 6
LE [13] | unsupervised | local non-linear | manifold | non-probabilistic | £ or 6, kernel
SNE [62] | unsupervised | local non-linear | projective | probabilistic o (tuning)
LTSA [173] | unsupervised | local non-linear | manifold | non-probabilistic
ICA [69, ] | unsupervised | global non-linear | manifold non-probabilistic | non-Gaussianity
Supervised ICA [92] | supervised global non-linear | manifold non-probabilistic | non-Gaussianity
SOM [100] | unsupervised | global | non-linear | projective | non-probabilistic | # nodes
Spectral clustering s ] | unsupervised | global non-linear | projective | non-probabilistic | k or 6
GP-EM [56] | supervised global non-linear | projective | non-probabilistic | various tuning

Table 2.1: Properties of common feature extraction techniques

Linear vs. non-linear

Linear techniques create new features that are linear combinations of the inputs, as in
Equation 2.2. Non-linear techniques use an arbitrary function of the original feature set,
as in Equation 2.1.

While a non-linear technique can theoretically capture more complex behaviour, non-
linear techniques do not necessarily outperform linear techniques [11, |. Many non-linear
systems make assumptions about the structure of the data; the efficacy of the method will
depend on whether or not these assumptions hold for the particular data set.

Global vs. local

Global techniques apply a single transform over the entire space of the data, whereas
local techniques apply different versions of the transform to different areas of the input
space. Global methods tend to give a more intuitive picture of the overall structure of the
data. Local methods can be less computationally expensive [39] because they allow the
use of simpler, linear techniques to approximate non-linear behaviour. However, they also
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Figure 2.1: Swiss roll data set illustrating the concept behind manifold-based dimension-
ality reduction techniques

require a way to determine the boundaries of the areas that are being covered by each local
approximation function.

Local methods can give better results on a wider variety of manifolds [39], but may
have difficulty on data sets that have high intrinsic dimensionality [155].

Projective vs. manifold

Manifold based methods conjecture that the features are transformed versions of data that
lies on a hidden, lower dimensional, manifold. For example, Fig. 2.1 shows a data set
where the data clearly lies on a 2-D curved manifold but the co-ordinates are given in the
3-D space. For manifold methods dimensionality reduction consists of finding the lower
dimensional embedding and undoing the transformation.

Projective methods make no assumptions about the existence of an underlying manifold,
and instead seek to find a projection of the data that maximizes some quality or objective
function over the data.

Projective and manifold methods can be seen as two sides of a coin. Whereas mani-
fold methods aim to undo a higher dimensional embedding and uncover the “true” latent
variables, projective methods treat the observed variables as the “true” variables and the
extracted features as a simple projection of this data.



Probabilistic vs. non-probabilistic

Probabilistic techniques assume that there is some type of underlying probability distribu-
tion for either the given features, and/or for latent variables in a manifold-based approach.
By assuming a probability distribution, probabilistic techniques attempt to determine the
optimal set of parameters for a given model of the system. This restricts the problem
significantly, but can be problematic if the model is incorrect. Probabilistic estimates can
be used directly with certain Bayesian classification techniques [152].

Non-probabilistic techniques do not assume an underlying probability distribution. For
some methods, this results in a more general model. In other cases, non-probabilistic
techniques simply make different assumptions about what makes a feature informative.

2.3.2 Variance-based feature extraction techniques

Variance-based techniques aim to create a projection that preserves as much of the variance
in the data as possible. One of the most widely used feature extraction techniques is
principal components analysis (PCA), which is a variance-based technique. Many feature
extraction techniques either use PCA as a starting point or have cases where the PCA
solution emerges as a result.

Principal Component Analysis (PCA)

Principal components analysis (PCA) [75] projects the original data onto a set of orthogonal
bases. The first axis of projection is in the direction of maximum variance of the data.
The remaining axes are orthogonal and in the direction of the maximum residual variance.
This is illustrated in Figure 2.2.

The covariance matrix gives the pairwise covariance between each two dimensions in
the data [74]:
CO’U(Xl, X2) = E[(Xl — E(Xl))(XQ — E(XQ))] (23)

where E/ denotes the expected value.

For a zero-mean set of features, the sample covariance matrix is § = +X X7 [111].
The eigenvectors of the covariance matrix indicate the directions of the largest variance,
or principal components [111]:

AU = SU (2.4)
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Figure 2.2: Data set illustrating the PCA procedure. The arrows show the direction of
the principal components of the data, and the new features are created by projecting each
point onto the basis formed by the PCA vectors

where the columns of U give the eigenvectors and A is a diagonal matrix of the eigenvalues.
Dimensionality reduction is achieved by projecting the data onto a lower dimensional basis
consisting of the () eigenvectors of the covariance matrix that correspond to the @) largest
eigenvalues.

In addition to maximizing the variance, PCA also gives the solution that minimizes
the least-squared error between the projected data and the original data [22, |. Hence,
PCA can also be expressed as an optimization problem, where the objective is to find a
set of weights W such that the squared error between the projection and the original data
is minimized

mviVn||X— WX||? (2.5)

Lastly, PCA also gives the solution that maximizes the mutual information between
the input and extracted features if the input distribution is Gaussian [22].

Supervised versions of the PCA algorithm have also been proposed [10].
Probabilistic PCA (PPCA)

Probabilistic PCA (PPCA) [153] assumes that the observed variables are linear combina-
tions of underlying latent variables z with offset u, plus noise o2

x=Wz+pu+ o’ (2.6)
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The PPCA equations can be solved using a closed-form maximum likelihood solution
[153]:

Wi = Ug(Ag — 0®I)2 R (2.7)

where Wy, is the maximum likelihood estimate of the weights, Uy is an F' x () matrix

whose columns are the () principal eigenvectors of the sample covariance matrix S, Aq is

a () X ) diagonal matrix of the eigenvalues, o is the noise in the observed variables, I is
the identity matrix, and R is an arbitrary rotation matrix, which can be just I.

If W is set to Wyyr, o can be found as [153]:

1
02 = > A (2.8)

where ); is the " eigenvector and o32,, represents the variance that is lost when the
observed variables are projected onto the latent variable space.

As the noise in the observed dimension approaches 0 (02 — 0), probabilistic PCA
collapses to the standard PCA format.

Sparse PCA (SPCA)

One of the major drawbacks of PCA and is that the projected variables are a linear
combination of all the input variables. This makes the projected variables difficult to
interpret. Additionally, PCA is sensitive to noisy inputs and can give better results if
these are removed.

Sparse PCA [177] automatically selects features and weighs the inputs by applying an
elastic net penalty (see Section 2.4.2) to the PCA least-squares optimization problem.

The elastic net is a combination of a least-absolute selection and shrinkage operator
(LASSO), which minimizes the £; norm of the weights, and a ridge regression operator,
which minimizes the £5 norm of the weights. Due to the nature of the LASSO operator,
some of the weight values are set to exactly zero, providing the feature selection. The
sparse PCA is a minimization problem of the form [177]:

X = WX + AW + 7| W] (2.9)

Similar sparse versions of other PCA-based algorithms also exist, such as the sparse
probabilistic PCA (SPPCA) [55].
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Kernel PCA (KPCA)

Kernel PCA (KPCA) [I111] is a non-linear generalization of PCA. PCA is performed on
a set of points that is transformed to lie in a higher dimensional space, resulting in a
non-linear transformation in the original space.

In linear PCA, the principal components of are the eigenvalues of the covariance matrix
S = %X XT (see equation 2.4). Because the inputs appear only as a dot product they can
be replaced by a kernel matrix K [111]:

Nla = Ka (2.10)

Kernel PCA is closely related to PCA as well as semi-definite embedding (SDE) (see
Section 2.3.4), which is a form of kernel PCA where the kernel is learned from the data.

Gaussian process latent variable models (GPLVM)

Gaussian process latent variable models (GPLVM) [93, 94] are closely related to PPCA
and KPCA. Like PPCA, GPLVM is a manifold model, and assumes that there is a set of
latent variables Z that can be used to explain the observed variables X. However, whereas
PPCA assumes that the underlying latent variables are combined linearly, GPLVM allows
the observed variables to be an arbitrary Gaussian process. GPLVM can therefore create a
non-linear mapping by applying a kernel to the latent variables. This is similar to KPCA,
except that in KPCA the algorithm searches for linear projections in the kernel space of
the observed variables, whereas in GPLVM the algorithm searches for latent variables that
lie in a kernel space [93].

GPLVM is solved iteratively by optimizing the kernel parameters and the latent vari-
ables [91].

2.3.3 Distance-based feature extraction techniques

Distance-based techniques aim to preserve or optimize some property of the distance be-
tween points.

13



Fisher’s discriminant analysis (FDA)

Fisher’s discriminant analysis (FDA) is a supervised technique for feature extraction. It
finds features that maximize the distance between points from different classes, and mini-
mize the distance between points in the same class.

FDA finds the vector w that maximizes [112]

wl Spw
J=—- 2.11
wlS,w ( )
where Sg is the between class scatter matrix
c
Sp = (se—p)(pe — )" (2.12)
c=1

e is the mean of class ¢ and p is the mean of all the points. The within-class scatter

matrix S, is given as
Nc

Sw = Z (Tic — pe) (Tic — UC)T (2.13)

c=1 i=1
where N, is the number of points in class ¢ and z;. is the i sample in class c.

The solution is given by the generalized eigenproblem
Spw; = AS,W; (2.14)
where w; is the i largest eigenvector. The extracted features Z are [112]:
Z=W'x (2.15)

where W has the @) largest eigenvectors w; as its columns.

Multidimensional scaling (MDS)

Multidimensional scaling (MDS) [18] creates a lower dimensional representation of the
data such that the distance between each pair of points is as close as possible to the
corresponding set of pairwise dissimilarities in the original space. The lower dimensional
representation gives the set of extracted features.
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In classical MDS the set of dissimilarities is the Euclidean distance between pairs of
points. Classical MDS minimizes

N N
mZinZZ(HZi—ZjH—Hxi—ﬂfjH)z (2.16)

i=1 j=1
where Z are the projected points in the lower dimensional space and X are the points in
the higher dimensional space.

Metric MDS uses a more general dissimilarity matrix, and MDS solutions can be found
using an eigendecomposition of the data. Define a matrix B such that [10]:

B=—HDH (2.17)

where D is the N x N matrix of distances or dissimilarities between points and H is a
centering matrix.
The ) dimensional embedding is given as [10]:

Vauf
VAguy

\/ )\ng
where A\ gives the () largest eigenvalues and U gives the () largest eigenvectors of the
decomposition of B.

L= (2.18)

MDS can be kernelized [30], where the dissimilarity between two points in the original
space is replaced by a kernel matrix.

2.3.4 Neighbourhood graph-based feature extraction techniques

A number of techniques for dimensionality reduction are formulated to preserve some
property of the neighbourhood graph. For manifold-based techniques, the assumption is
that the distance between neighbouring points is a good approximation of the distance on
the underlying manifold [161].

Neighbourhood graph-based techniques can also be projective. These techniques aim to
preserve the distances of the neighbours, because neighbouring points are likely informative
and are more likely to be in the same cluster, class or function region, but do not attempt
to recover an underlying manifold.
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Isomap

Isomap [119] approximates the distance between points on the underlying manifold as the
shortest path distance over a neighbourhood graph.

Isomap constructs a neighborhood graph where point ¢ is connected to point j by a
weight equal to their distance if j is one of the K nearest neighbours of i or if their distance
is less than some threshold 7. Matrix D describes the neighbourhood graph, where d;;
is the distance between the points, if they are connected in the graph, and co otherwise.
This matrix is transformed to hold the shortest path distances by replacing each d;; with
min(d,;, ;. + di;)Vk. MDS is then used to find the lower-dimensional coordinates, which
are the extracted features.

Locally linear embedding (LLE)

Locally linear embedding (LLE) [135] finds a set of weights W that can reconstruct each
point ¢ from its neighbours j using least squares The weights are constrained such that
w;; = 0 if j is not a neighbour of 4, and >, w;; = 1.

After finding an appropriate set of weights W for each point, LLE finds an embedding
Z such that [135]:
HlZIIlZ |Zi - Zwl‘ijF (219)
i J

where z; is the low dimensional representation of point 7.

Semidefinite embedding (SDE) / Maximum variance unfolding (M'VU)

Maximum variance unfolding (MVU) is a manifold-based technique that attempts to “un-
fold” the underlying manifold by maximizing the total distance between all the points,
while maintaining the distances between neighbouring points [161].

Semidefinite embedding (SDE) [161] is a method for performing MVU using semidefinite
programming and kernel PCA | where the kernel is learned from the data itself.

Stochastic neighbour embedding (SNE)

Stochastic neighbour embedding (SNE) [62] finds an embedding that matches the proba-
bility of each point selecting each other point as its neighbour in the observed space and
the lower dimensional projection.
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The probability of a point selecting another point as a neighbour is based on their
distance. The lower dimensional representation minimizes the sum of the Kullback-Leibler
divergences in the higher and lower dimensional space. Hinton and Roweis [(2] use a
steepest descent algorithm with random jitter, but note that other optimization methods
can be used.

Laplacian eigenmaps (LE)

Laplacian eigenmaps [13] (LE) form a lower dimensional representation of the data by
solving a generalized eigenvalue problem using the graph Laplacian of the neighbourhood
graph.

The algorithm for Laplacian eigenmaps feature extraction is closely related to spectral
clustering [157], and can be interpreted as a type of soft clustering of the data [13]. As such,
using Laplacian eigenmaps may be appropriate when the data naturally forms clusters.
However, the method is also reasonable on data sets where there is no clustering [13].

Local tangent space alignment (LTSA)

Local tangent space alignment (LTSA) [173] aims to preserve the local tangent space ©;
of each point. The local tangent space of a point is approximated linearly from its nearest
neighbours, and these spaces are aligned to approximate the lower dimensional manifold.
The goal is to find a mapping from the local tangent space coordinates to the global,
low-dimensional coordinates. LTSA finds the linear mapping and the low-dimensional
co-ordinates that satisfy
. 2

IEHLH; |1Z;H; — Li©| (2.20)
where Z; is the low dimensional embedding of the neighbours of point i, H; is a centering
matrix, ©; = [0y ... 0] is the matrix of the PCA transformations of the neighbours of point
17, and L; is a transformation matrix.

2.3.5 Independent Component Analysis (ICA) for feature ex-
traction

Independent component analysis (ICA) [33, 69] begins with the assumption that the ob-

served signals can be modeled as a linear combination of independent, non-Gaussian latent
variables.
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Central limit theorem states that the sum of independent identically distributed vari-
ables tends towards Gaussian. If the latent variables are assumed to be non-Gaussian, then
the observed variables will be more Gaussian than the latent variables. Hence, ICA aims
to find a set of independent latent variables that are maximally non-Gaussian [69].

There are a number of methods for solving ICA. The simplest method involves defining
a measure of non-Gaussianity, such as kurtosis or approximate negentropy, and using an
optimization technique such as gradient descent to find the signals that are maximally
non-Gaussian. Another alternative is to use optimization techniques to find a solution
that minimizes the mutual information between latent variables, or to use a maximum
likelihood estimate. One of the more common algorithms is fastICA [05].

ICA solutions are not unique and the components are not ordered. Therefore a second
feature selection step is required. Wang and Chang [158] some methods for selecting
independent components using ranking based on negentropy or by selecting components
that appear multiple times in different runs of the fastICA algorithm. It is also possible to
use a different criterion for ranking, or to perform a full feature selection on the selected
ICs.

Supervised versions of the ICA algorithm [92] include the class as another dimension
in the problem.
2.3.6 Feature extraction techniques based on clustering

It is possible to adapt clustering techniques for feature extraction. Self-organizing maps
(SOM) and spectral clustering are sometimes used for feature extraction.

Self-organizing maps (SOM) for feature extraction
SOMs are most commonly used for visualization, where the original higher dimensional
data is mapped to a 1- or 2-dimensional plane for visualization [76]. For the purposes of

feature extraction, each sample is mapped to its lower dimensional node, which gives the
reduced feature set [100].

Spectral clustering for feature extraction

Spectral clustering is another clustering technique that can be used for feature extraction
[154]. It is closely related to feature extraction techniques that work with the nearest
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neighbour graph. Spectral clustering lowers the dimensionality of the space by using the
eigenvectors of the graph Laplacian of the similarity matrix [157]. The dimensionality of
the output space can be changed by changing the number of selected eigenvectors.

2.3.7 Autoencoders for feature extraction

Autoencoders are regression neural networks that are trained such that the output of the
system is equal to the input. A hidden layer with fewer nodes than the input creates a
bottleneck where node values are a good approximation of the inputs. Features can be
extracted by feeding inputs to the system and taking the outputs of the hidden nodes [63].

An extension proposed by Rifai et. al [I31] adds a regularization term to the autoen-
coder to encourage robustness to noise and smaller weights in the network.

2.3.8 Feature extraction as a stochastic optimization problem

Guo, Bhattacharya and Kharma [56] present a method for non-linear feature extraction
using genetic programming and an expectation maximization algorithm (GP-EM). The
genetic program creates a tree with input features at the leaf nodes. Each leaf node is
connected to a higher-level node that performs one function on its connected nodes. The
algorithm generates one feature at the top level of the tree that is built from a number of
the base features in the set.

2.3.9 Domain specific feature extraction

One easily overlooked, but extremely helpful method for feature extraction is to use domain-
specific tools to design features specifically for the application. For example, speech recogni-
tion applications often employ signal processing techniques to generate a set of features that
are more informative than the raw audio signal. Some features that are commonly used for
speech recognition include frequencies, zero-crossing points (ZCP) [121], mean frequency
[121, 77], bandwidth [121], cepstral and mel-frequency cepstral components (MFCCs), and
features generated by linear predictive coding [12]. These features are also used for other
audio classification tasks such as music genre classification [110, 17] and audio scene recog-
nition [104, 128, 121].

Image processing applications also use many signal processing-based features, from
relatively simple features such as the 2-D Fourier transform or histogram data, to more
complex features such as features based on edge, corner or contour detection [120].
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This type of domain specific feature can be quite powerful, but the techniques used
to generate the features are not generally applicable to other domains. If a researcher is
uncertain if a certain extracted feature will be helpful, one solution is to generate a large
set of candidate features and then use a feature selection technique to determine which
features are helpful.

2.4 Feature selection techniques

Although feature selection can be considered as a specialized case of linear feature extrac-
tion, feature selection techniques are rarely framed this way. Instead, feature selection is
more often formulated as a search problem, where the goal is to select the set of features
that maximizes some measure of feature set “goodness”.

Traditional feature selection consists of two components. The feature selection mea-
sure is used to measure the fitness of a particular feature set. The feature set selection
technique is the algorithm used to select and improve the feature set being tested, based
on the information provided by the performance measure. The separation between feature
set evaluation and feature set selection is also described by Kohavi and John [31] using
the terms feature evaluation and feature selection search. Molina, Belanche and Nebot
[113] describe feature selection algorithms in terms of their evaluation measure, search
organization and the generation of successors.

Feature selection is a complex problem and there a number of challenges for both
the feature set evaluation measure and the search technique. Classifiers have different
tolerances for noisy and correlated features. Adding random or noisy features may cause
the classification algorithm to generate incorrect associations between these features and
the classes. Redundant or correlated features increase complexity without adding new
information and can be difficult to identify because multi-way redundancies can exist [54].
Individually high scoring features may not be beneficial if similar features are already
included in the set. Additionally, features that are weak individually can become strong
when used in combination. Hence, feature set evaluation measures need to be able to
properly evaluate the contribution of noisy, correlated, redundant and dependent features.

Dependent and correlated features also complicate the search process. Because corre-
lated features carry similar information, the optimal set of N features may not include the
best scoring individual N features. Because dependent features may appear weak when
used alone, the optimal set of N features is not guaranteed to include the optimal set of
N — 1 features. The tendency of some simpler feature set selection techniques to always
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include the selected N — 1 features in the set of N features is called the “nesting problem”
[127]. A good optimization technique for feature selection therefore needs to consider not
just the individual or pairwise scores of the features, but the contributions of entire subsets
of features.

2.4.1 Properties

Like feature extraction, feature selection techniques can be described by a number of prop-
erties that describe either the feature set evaluation measure or the search technique. These
properties closely match the properties that describe the feature extraction techniques (see
Section 2.3.1). Feature selection techniques can also be described by two additional cate-
gories: univariate vs. multivariate and filter vs. wrapper vs. hybrid vs. embedded. Two
of the feature extraction properties do not apply to feature selection techniques: linear
vs. non-linear and projective vs. manifold. The linear vs. non-linear distinction does not
apply because, as described in equation 2.2, feature selection techniques are always linear.
The manifold vs. projective distinction does not apply because even if the samples do lie
on a lower dimensional manifold, feature selection alone would not be able to recover it.

Table 2.2 gives the properties of the feature set evaluation measures discussed in this
chapter.

Supervised vs. Unsupervised

As described in Section 2.3.1, supervised techniques use the class labels or function values
as a way to guide the search. Unsupervised techniques do not use class labels and simply
seek to optimize some property of the inputs. Unlike feature extraction, feature selection
techniques are most commonly supervised, unless they are being used for clustering. The
feature set evaluation measure determines if the technique is supervised or unsupervised.

Global vs. local

In general, feature selection techniques are global, selecting a single set of features for
the entire space. Local feature extraction techniques apply different transformations in
different areas of the input space. This is uncommon in feature selection, but algorithms
applying feature selection to different parts of the classification problem may be thought
of as local. Two examples of this type of local feature selection are presented in this thesis
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wrapper/

filter/ supervised / | global / | probabilistic / univariate /
measure citation | embedded | unsupervised | local non-probabilistic | multivariate
validation set [57] wrapper supervised global non-probabilistic | multivariate
cross-validation [57] wrapper supervised global non-probabilistic | multivariate
LOOCV [57] wrapper supervised global non-probabilistic | multivariate
Fisher’s interclass separability | [413] filter supervised global non-probabilistic | multivariate
RELIEF [79] filter supervised global non-probabilistic | univariate
RELIEF-F [82] filter supervised global non-probabilistic | univariate
RELIEF extensions [51, 7] filter supervised global non-probabilistic | multivariate
probability-based measures [43] filter supervised global probabilistic univariate
Mutual information [43, 20] filter supervised global probabilistic univariate
Symmetric uncertainty [58, ] | filter supervised global probabilistic multivariate
CMIM (48] filter supervised global probabilistic multivariate
mRMR [122] filter supervised global probabilistic multivariate
MFIS [11] filter supervised global probabilistic multivariate
First order utility [20] filter supervised global probabilistic multivariate
FOCUS 1] filter supervised global non-probabilistic | multivariate
Dash’s consistency measure [37] filter supervised global non-probabilistic | multivariate
CFS [58] filter supervised global probabilistic multivariate
Laplacian score [61] filter unsupervised | global non-probabilistic | multivariate
MCFS (23] filter unsupervised | global non-probabilistic | multivariate
Binary feature measures [50] filter supervised global non-probabilistic | univariate
LASSO [150] embedded | unsupervised | global non-probabilistic | multivariate
Elastic net [176] embedded | unsupervised | global non-probabilistic | multivariate

Table 2.2: Feature set evaluation measures and their properties

in Chapter 3. Feature selected boosted classifiers are also an example of a type of local
feature selection [129].

Probabilistic vs. non-probabilistic

Probabilistic feature evaluation measures assume a probability distribution over the feature
or features. All the probability-based and information theoretic measures are probabilistic,
because they require an estimate of the probability distribution of a feature or features,
and joint probability between a feature and the class.

Univariate vs. Multivariate

The feature set evaluation measure can be univariate or multivariate. Univariate feature
evaluation measures evaluate each feature individually, while multivariate feature set eval-
uation measures evaluate sets of features as a group. Univariate feature set evaluation
measures can only be used with ranking, and are generally less powerful than multivariate
measures, as they are unable to detect feature dependence and correlation. However, uni-
variate measures are also often less computationally expensive and require fewer samples
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to measure accurately. A thorough discussion of the benefits and drawbacks of univariate
measures and ranked selection is given in Section 2.4.3.

Wrapper vs. filter vs. embedded vs. hybrid

Feature set evaluation measures are most often described by this property [98]. Wrap-
per techniques evaluate the fitness of a feature set by evaluating the set on the intended
classifier. Filter techniques use a calculated measure that does not require testing on the
classifier. Embedded techniques incorporate both feature set selection and evaluation,
where features are selected during training. Because these use the classifier to evaluate
the feature set, they can also be thought of as wrapper techniques. Hybrid refers to any
combination of these.

2.4.2 Feature subset evaluation measures

The feature set evaluation measure is a measure of the fitness of a feature set for the desired
task.

Wrapper

Wrapper techniques tend to perform better than filter techniques [31], but can select fea-
tures that are too specific to the training set and do not generalize well to the test set
[130, 91, 57]. There are a number of different wrapper methods for estimating the perfor-
mance of the classifier.

Validation Set A portion of the data is set aside as a validation or testing set, and
the classifier is trained on the remaining data. The testing set is then used to estimate
the accuracy of the classifier. This technique is relatively fast compared to the other
wrapper techniques, as it requires training only one instance of the classifier. However,
if the selected validation set is not a good representation of the underlying structure of
the data, the results may be skewed. Additionally, if the classifier is sensitive to different
initializations or randomization during the training, different classifier trainings can result
in different results even on the same validation set. Thus, it is common to average over
a number of different runs, or to use a more complex wrapper measures such as k-folds
validation [133].
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k-folds cross validation k-folds cross validation partitions the data set into k£ roughly
equally sized portions called “folds”. It then trains k versions of the classifier, setting aside
the k" fold for testing and the remaining folds for training. The accuracy is estimated as
the average of the k tests. k-folds cross validation results can also be averaged to give a
better estimate of the classifier accuracy [133].

Leave-one-out cross validation (LOOCYV) Leave-one-out cross validation (LOOCV)
is an extension of the k-folds validation, where the number of folds is equal to the number
of samples in the set. Hence, the classifier is trained N times, each time omitting only one
sample for testing.

Filter

Filter measures are commonly used when the number of features is large relative to the
number of samples, for example, in text processing. In these cases, filter measures are ap-
plied to each individual feature, and a ranking method is used (see Section 2.4.3). However,
it is possible to use filter measures for data sets with fewer features [14].

Because there are so many different filter measures, it can be difficult to determine
which measure is best for use with which data set and classifier, especially because the
performance of filter measures is classifier dependent [96]. An overview of common filter
measures is given below.

Distance-based measures Distance-based measures focus on selecting a set of features
such that points from different classes are separated by a large distance, and points from
the same class are close together.

Fisher’s interclass separability criterion attempts to directly maximize the average
between-class distance, while minimizing the average within-class distance. This is similar
to the goal of FDA /LDA feature extraction (see Section 2.3.3), but instead of creating new
features, the original feature set is used. The average within class distance is found using
the within class scatter matrix, defined as [13]:

C N

Qu=Y_> (Tic — pe) (wic — )" (2.21)

c=1 =1

where @), is the within class scatter matrix, N¢ is the number of points in class ¢, x;. is
the i*" point in class ¢ and fi,. is the mean of the points in class c.
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The between class distance is measured as [13]:

==

Q= 5 (pte — 1) (pre — )" (2.22)

where p is the mean of all the points.

Fisher’s interclass separability criterion is given as [60]:

J=Tr([Qu+ Q) ~'Qs) (2.23)

where J is a value between zero and one. If the distance between all points is zero, the
points are entirely inseparable and the value of J is set to zero.

Another distance-based measure is RELIEF. Unlike Fisher’s interclass separability cri-
terion, which looks at the average inter and intra-class distances, RELIEF looks at the
distance between a point and its nearest neighbours in the same class and a different class.
These are referred to as the nearest hit (same class) and nearest miss (different class).
The original paper [79] examines each feature individually, and weights each feature by the
average squared distance to the nearest miss minus the average squared distance to the
nearest hit. Features with weights over a certain threshold are selected. This is essentially
a ranking or best-individual-feature search technique (see Section 2.4.3); random selection
is added in order to improve the computational efficiency.

A common extension to the RELIEF algorithm is the RELIEF-F algorithm [$2]. In
[79], only two classes are used. In RELIEF-F, multiple classes can be used by defining the
nearest miss to come from any class that is not in the same class as the selected sample
point. RELIEF-F also uses k nearest hits and misses as a way to make the algorithm more
robust to noise [82, 83].

RELIEF can easily be extended to measure the fitness of a subset of features as the
average squared Euclidean distance between the k nearest hits and misses [51], or by
combining the individual differences using any t-norm function [7].

While Fisher’s interclass separability criterion attempts to ensure that all the points
from the same class are close, and all points from different classes are distant, RELIEF
and its extensions attempt to find a set of features such that points are more similar to
nearby points in the same class than any of the points in other classes. Hence RELIEF
will give a higher score than Fisher’s interclass separability criterion on feature sets that
have a multi-modal distribution.

25



Probability-based measures Probability-based measures aim to find features such
that the probability density functions (PDF) between different classes are as far apart
as possible. Estimating an arbitrary probability density function over a set of features is
difficult, and as such these measures are normally simplified by assuming a normal dis-
tribution, and estimating the PDFs for each feature individually with ranked selection.
However, it is possible to use different distributions if warranted. If there are sufficient
samples, researchers may also elect to estimate the PDF over the entire set of features,
using a multivariate density estimate [13].

The best features have the largest difference between the PDFs for the different classes,
as measured by the Kullback-Liebler (KL) divergence between the classes; but other mea-
sures can also be used [13]. The Kullback-Liebler divergence between the probability
distributions of feature = on two classes is [90]:

= " n (M) Plajen (7) (2.24)

where P, is the discrete probability of feature x given class ¢, and Ny is the number of
bins. This measure is asymmetric. The score for a feature is the summed KL divergence
between each pair of classes.

c C
Jrr(z ZZKL x, ¢4, Cj) (2.25)

=1 j=1

The Jensen-Shannon (JS) divergence is another probability measure. Jensen-Shannon
is symmetric and defined even if there are bins with zero probability. It is calculated as

i KL(x,cq, M)+ KL(x,co, M)

2
where M is the average of the two class distributions M = (Pe,) + Plajey))/2-

The Bhattacharyya (BH) divergence is defined as [11]:

BH(z,c1,¢5) = —In (Z \/P alet) (1) Prajen) (i )) (2.27)

JS(x,eq,¢0) = (2.26)
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Information-Theoretic measures Mutual information measures the dependence be-
tween two variables, in this case, the feature and the class. It is also known as the infor-
mation gain, because the measure describes how much more information is known about
one variable, when the other variable is known. It is measured as [102]:

I(Xp;Y ZZp:U y) log ()’ ; (2.28)

zeX yey L)p ( )
where p(x) is the probability of x and p(x,y) is the joint probability of x and y.
The mutual information can also be defined in terms of the entropies as [102]:

I(XpY) =H(Y)—-H(Y|Xy)

— H(X;) + HY) = H(X;,Y) (2.29)

where X is feature f of input X, H(Y) is the entropy of Y, H(Y|X/) is the conditional
entropy of Y given Xy and H(X,Y) is the joint entropy of X; and Y. The entropy values
are calculated as [35]:

Z p(z)log p(z (2.30)

zeX

where p(x) is the probability of z. The joint entropy is calculated as [35]:

= " p(w,y)logp(x, y) (2.31)

zeX yeY

where p(z,y) is the joint probability of x and y. The conditional entropy is calculated as

[35]:
HYI|X) = ZZp z,y) log z,) (2.32)

zeX yeY ({L‘)

It is possible to use information-theoretic measures with continuous valued features
either by discretizing the features, or by using the differential entropy [35]. Mutual infor-
mation alone tends to favour features that have a larger number of nominal values [33].
Symmetric uncertainty compensates for this by dividing by the summed entropies [169].
Symmetric uncertainty is calculated as [58, 169]:

[(Xf;Y)

SU=2x H(X;)+ H(Y)

(2.33)
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Conditional mutual information maximization (CMIM) adds a feature to a set if it
caries information about the class that is not already captured by the features in the

selected set [18]. Thus, a feature should be selected if the conditional mutual information
is high for all the features in the set. The goodness of a feature is measured as [15]:
J = mé@n I(Y; Xm| X)) (2.34)
i€Oom—1

where X,, is the feature under consideration, and S,,_1 is the set of m — 1 features that
are already selected.

Other mutual information based approaches, such as minimal-redundancy-maximal-
relevance (mRMR) [122] and mutual information feature selection (MIFS) [11], use the
pairwise mutual information between features as a way to avoid adding correlated features.
The preferred method for feature selection would be to select a set of features Sg such that
the mutual information between the set of features and the class is maximized. However,
this is difficult to implement because estimating the mutual information between a set of
features and a class requires estimating a multivariate probability density, which is difficult
to compute is practice, and requires a large number of points for accuracy. Instead, the
authors approximate this condition by finding a set of features such that the information
between the feature and the class is maximized (max-dependency), and the information
between the features in the set is minimized (min-redundancy). These are limited to the
first order terms, which make the computation feasible. However, the measure will not
capture any multi-way dependencies.

The mRMR criterion is defined as follows. The most relevant m?” feature to add to the
set of selected features S,,_; is the feature [122]:

m—1

! > (X5 X)) (2.35)

J=1(X,;Y) —

Brown [20] presents a more general information theoretic measure called first order
utility (FOU), and shows that other information theoretic measures can be written as
specific versions of the general measure. Like Peng, Long and Ding [122], Brown starts
with the premise that the best feature set will maximize the mutual information between
the feature set and the class maxg I(S,Y). This joint probability distribution can be
expanded by summing over all the possible subsets of S. Brown then approximates the
mutual information term by taking only the pairwise and conditional pairwise (first order)

sets as [20]:
m—1

J=1(Xn;Y) = D (X Xi) = 1(Xn; XiY)] (2.36)

=1
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This equation can then be parameterized as [20]:

m—1 m—1

J=1(XmY) = B> I(Xm; Xi) +7 > 1(Xm; XiY) (2.37)

i=1 =1

A number of common information-theoretic measures can be modeled as specific ver-
sions of this measure by varying the parameter values. For example, mRMR uses 7 value
of 0 and sets 8 to 1/(m — 1). CMIM [18] can also be re-written in this form, as can a
number of other information-theoretic criteria. However, Brown also shows that different
data sets work well with different parameter values, and there is currently no theoretically
sound way to select the best parameters.

Consistency-based measures A set of features is considered to be inconsistent if there
are two or more examples that have the same values for all features, but have different
class labels. The idea behind consistency-based feature selection measures is to find the
minimum set of features that is consistent. The best known consistency-based feature
selection technique is FOCUS [1]. Starting with single feature sets and working up to
larger sized feature sets, FOCUS looks for inconsistencies, and returns the first set where the
number of inconsistent examples is below a pre-defined bound. The number of inconsistent
examples can also be used as a measure of the feature set fitness [37]. One major drawback
to this technique is that it will only work when the features are discrete. With continuous
features, it is unlikely that any two points will ever match perfectly, regardless of whether
they are in the same class. Hence, continuous features must be discretized.

Correlation-based measures The intuition behind correlation-based measures is that
it is desirable for features to have a high correlation with the class, and a low correlation
with each other. Selecting features that have a high correlation with the class will remove
noisy features, and selecting features that have a low correlation with each other will ensure
that redundant features are not selected [58]. The correlation-based feature set selection
(CFS) measure is defined as [58]:

MT‘Zf

CFS = .
\/M+M(M—1)Tff

(2.38)

where M is the number of selected features in the subset being measured, r. is the
average correlation between the each feature in the subset and the class, and r7; is the
average feature-feature correlation, where correlation is measured using the symmetric
uncertainty.
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Neighbourhood graph estimators Many feature extraction techniques aim to pre-
serve some feature of the neighbourhood graph as a method of preserving the underlying
structure of the data (see Section 2.3.4). This is becoming more common in feature selec-
tion also. For example, the “Laplacian score” selects the set of features that best preserves
the local neighbourhood of a point [(1]. The “Laplacian score” for each feature is [(1]:

_ X LX,

o (2.39)
X; DX;

I
where D is the diagonal degree matrix where d; = 22;1 Sin, S is the similarity matrix,
or matrix of weights between each point, set such that S;; = 0 if points ¢ and j are not
neighbours, and S;; = e~ izl and ¢ is a constant. L is the graph Laplacian L = D — S
and X is calculated as [01]:

1 (2.40)
where 1 is a vector of all 1s.

This is an unsupervised feature set measure, which was at one point fairly unusual in
the literature, but is now becoming more common, particularly for clustering algorithms.
The score is calculated on a per-feature basis, but the measure itself is not completely
univariate, as the graph Laplacian includes information about other features.

Another unsupervised neighbourhood graph-based feature selection method is multi-
cluster feature selection (MCFS) [23]. This technique selects features with the lowest
squared reconstruction of the underlying flat embedding. Starting with the graph Laplacian
of the neighbourhood graph L, a flat embedding of the data points Y is found such that
Y = [y1,...,¥Yk], where K is the expected number of clusters in the data set and the
values yj are the solutions to the eigenvalue problem

Ly = ADy (2.41)

For each eigenvector, the relative importance of each feature can be estimated as [23]:
min [y — X7y + Blayl (2.42)

where ay, is an F* dimensional vector and the term f|ay| is an L, regularization term (or

LASSO term) to produce a sparse vector (please see Section 2.4.2 for details on LASSO
penalty terms).

After solving K problems, there will be K vectors a;. The score for each feature f is
then found as
J(f) = max |lag, f| (2.43)
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Hybrid

One of the most common hybrid measures is the 1-D classifier. In these measures, one
classifier is trained on each feature, and the accuracy results are used to rank the features.

For example, [96] uses a 1-D SVM and ranked selection for a text classification task.
Similarly, Yang et al. [160] train a neural network on the full feature set and then assess
each filter based on how much the accuracy decreases when each filter is removed, while
Verikas and Bacauskiene [150] assess features based on the sensitivity of the neural network

when the feature is removed.

Cantu-Paz [24] presents a hybrid genetic algorithm. A filter measure is used to initialize
the genetic algorithm, where a feature is more likely to be used if the filter measure is high.
Then, the genetic algorithm is run using a wrapper measure to rate the solutions. Using
a filter measure as a method of initialization is a good way to speed feature selection.
In [24], the search algorithm is a genetic algorithm, but this technique would work well
with many stochastic search algorithms (see Section 2.4.3), or with oscillating search or
dynamic oscillating search sequential search algorithms (see Section 2.4.3), which also
require initialization.

Peng, Long and Ding [122] suggest using a wrapper as a post processor after applying
a filter measure. This is similar to [[45] and [144] for oscillating search and dynamic
oscillating search.

It is also possible to use a combination of filter measures. Dhir and Lee [14] present a
feature selection algorithm that combines Fisher’s criterion and mutual information filter
measures. They find that the combined filter measure outperforms the individual filter
measures.

Forman [50] compares a number of different filter measures for text classification and
finds that filter measures can have complimentary errors, and like feature sets themselves,
the best two individual filter measures may not be the best two filter measures to use
together. It appears that, like feature sets themselves, filter measures may suffer from a
nesting problems.

Embedded

Embedded feature selection techniques select features as a part of the training process for
the classifier. The search and the feature evaluation measures are usually incorporated
directly into the training technique.
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One of the more common embedded feature selection methods is the least-absolute
shrinkage and selection operator (LASSO) [150]. LASSO applies a penalty term to the
classifier optimization problem, minimizing the £; norm of the input weights. Due to the
nature of this penalty term, some of the input weights are set to exactly zero, resulting in
a feature selection process. Although the LASSO was originally proposed for least squares
regression problems, the penalty term can be applied to a variety of pattern recognition

techniques. The LASSO penalty has be applied to logistic regression classifiers [1341] and
support vector machines (SVM) [174].
An alternate to the LASSO is the elastic net [176], which includes both £; and L,

penalty terms. This formulation tends to give solutions where highly correlated features
are included or discarded as a group. This may or may not be desirable for a particular
problem, but the elastic net does outperform the LASSO on many real-world problems,
particularly if the number of features is much larger than the number of available examples
in the data set [176]. Like the LASSO, elastic net can be used with a variety of classifiers

[119].

Several embedded feature selection techniques have been proposed for neural networks,
for example node pruning [106]. A node saliency measure is defined as the cost of removing
each input or hidden node from the network. The node with the lowest saliency is then
removed and the process is repeated. Because input nodes can be removed, this is essen-
tially a feature selection technique. This is similar to SVM embedded feature selection
[118], which repeatedly removes the feature that least affects the accuracy.

A genetic algorithm can be used as an embedded feature selection technique for neural
networks by jointly training the neural network weights and optimizing the structure [171].
Because input nodes can be removed as a part of the structure optimization, the technique
also performs feature selection.

2.4.3 Feature set selection techniques
The feature set selection technique is used to select and adjust the set of features to be

included in the set, based on the information provided by the feature set selection measure.
These fall into a number of broad categories, outlined below.

Ranked selection

Ranked feature selection techniques apply a performance measure to each feature and se-
lect the desired number of features based on the highest score or threshold. This method
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assumes that the features are independent and hence the performance of feature combina-
tions is equivalent to the combined performance of the individual features, which is a bad
assumption in many cases [57].

Ranked selection is common when using filter-based feature set evaluation measures, as
many measures are univariate, and can only evaluate the individual features rather than
the subset. Ranked selection is also common in domains where the number of features is
very large, such as text categorization or gene expression data [96, 99, , 0].

If a set has redundant features that are well ranked, ranked selection will include all
the copies of the features. This can reduce classifier accuracy as the different features do
not include any additional information.

Ranked selection will also not include features that are uninformative alone, but in-
formative when combined with other features [1413]. Consider, for example, the standard
XOR problem. Individually, neither feature is informative, but taken together, these two
features create a well separated set of classes. For these data sets, ranked selection will not
be sufficient to find a good feature set.

Simple adjustments to ranked search can improve performance, remove correlated
features or find features that are not informative alone. Yu and Liu [I69] present an
information-theoretic feature-set evaluation measure called symmetric uncertainty for use
with ranked selection. Symmetric uncertainty also gives a measure of the correlation be-
tween the feature and the class. However, the authors recommend also calculating the
symmetric uncertainty between the features, and only including a feature if the symmetric
uncertainty between the feature and the class is over a certain threshold, and is higher than
the symmetric uncertainty between the feature and any other feature in the set. In this
way, the ranked selection method is adjusted to remove highly correlated features. This
method only accounts for pairwise correlation, but is still better than ranked selection
alone.

Another variation on ranked selection is dependency-aware feature selection (DAF)
[143], which ranks each feature based on its performance in various sets of features. The
method uses a series of probe data sets of various numbers of features, selected randomly.
Each probe set is evaluated on the classifier using a wrapper method. Each feature is
then ranked using the results of these probes, where the measure of each feature is the
average accuracy of the probe sets that include the feature, minus the average accuracy
of the probe sets that do not include that feature. This is less computationally expensive
than using a full search technique, but better captures the performance of features that
only perform well when combined with other features. Such a technique can be used when
the number of features makes a full optimization technique computationally infeasible, or
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when there are concerns that the distributions of the training and testing sets differ. It
is, however, important to note that like any ranked technique this technique may include
redundant features.

Basic search

Basic search-based feature selection techniques include techniques such as exhaustive search
and branch-and-bound. These tend to be impractical for most data sets because of the
time required, or because they assume the data is monotonic. This is a particular problem
for branch and bound [175, |. Hence, basic search techniques are not often used.

Sequential search

The most basic sequential techniques are sequential forward search (SFS) [165] and sequen-
tial backwards search (SBS) [107]. For sequential techniques, forward implementations add
features to an empty set, whereas backwards techniques remove features from a complete
set. SFS adds significant features one by one to the selected set until the desired set size is
reached. This is different than ranking, since the significance of each feature is evaluated
with respect to the selected set. Once a feature is added, however, it cannot be removed
and hence these basic techniques suffer from nesting problems. They can also get stuck in
local minima. A number of different sequential search algorithms have been proposed to
overcome these problems.

Generalized sequential forward search (GSFS) and generalized sequential backwards
search (GSBS) [30] are an extension of SF'S/SBS. GSFS/GSBS help solve the problem of
local minima, but still suffer from nesting problems. Plus-l-minus-r (PTA) [110] allows
features to be removed after they are added, with [ features being added at each iteration,
and r features removed. However, there is no theoretically sound way to set the [ and r
values [127, ]. A further extension of the PTA algorithm are floating search methods
[127]. These methods allow the [ and r values to “float” and change their value. In general,
these floating methods, the sequential forward floating search (SFFS) and the sequential
backwards floating search (SBFS) are quite common because they solve the nesting problem
but are still less computationally expensive than exhaustive search.

A number of other algorithms build off the ideas in SFFS/SBFS. Improved forward
floating search (IFFS) [116, ] adds the ability to conditionally replace features in the
selected subset. Oscillating search (OS) [115] starts with a feature set of the desired size,
rather than a null or full feature set. The initial set of features is selected normally by
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SF'S, but can be selected using any algorithm. Features are then conditionally removed and
added to the set in a similar manner to SFFS/SBFS. Dynamic oscillating search (DOS)
[144] starts with a set of the desired size, and conditionally removes and adds features like
oscillating search. However, dynamic oscillating search allows the feature set size to change
if this causes an improvement. Because both OS and DOS begin with a feature set of the
desired size, these techniques can be used also as a post-processing step for other feature
selection techniques, as a way to refine the feature set.

Research on forwards vs. backwards algorithms generally assumes they are fairly com-
parable. If the aim of the algorithm is to generate nested subsets, forward algorithms are,
in general, more computationally efficient because the feature sets contain fewer features.
Some authors postulate that backwards techniques can generate stronger feature subsets
because even at the start of the algorithm the features are considered alongside other fea-
tures that can affect their performance. There are, however, cases where forward selection
is able to select a more robust set than backwards selection [57]. In cases where nested sets
are not selected, for example when using a floating search method, forwards and backwards
algorithms tend to give similar results [127, , 85]. Forward algorithms tend to be used
because they are generally more computationally efficient, although using a combination
of the forward and backwards algorithms can also help [35].

Stochastic

Stochastic search techniques use a randomized initialization or updates. This category
includes algorithms such as simulated annealing, genetic algorithms, ant colony and particle
swarm optimization. These can perform well [35], but are more computationally expensive
than sequential search. They can also get trapped in local minima, and because they have
a random initialization it is possible for different runs to produce different feature sets.

One of the simplest stochastic techniques is the Las Vegas technique [117]. This tech-
nique randomly selects a subset of features, evaluates the subset, and tracks the best
performing set. It is commonly used with a consistency-based filter measure, and is called
the Las Vegas Filter (LVF). Sampling can also be used to reduce the computational re-
quirements [117]. Because this technique selects sets at random, there is no guarantee that
it will find or approach the best subset. Hence, more sophisticated techniques tend to be
used.

Genetic algorithms [76] are a common technique for feature selection. The genome
is used to represent the selected feature subset, with each binary gene representing one
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feature. Genetic algorithms can also be used for feature weighting, by using continuously
valued genes [59].

Simulated annealing and particle swarm optimization have also been tested for feature
selection [51]. Chuang, Tsai and Yang [32] present a particle swarm algorithm for feature
selection that allows some particles to be overwritten with poor “catfish” particles to reduce
premature convergence. They find that their new algorithm outperforms sequential and
genetic algorithms.

Aghdam, Ghasem-Aghaee and Basiri [3] present a method for using ant colony opti-
mization. First, the problem is constructed as a graph, with each node representing one
feature. Ant colony optimization is then used to find the shortest path through the feature
graph that can meet an objective for the data set.

Zhang and Sun [172] suggest Tabu search for feature selection. Tabu starts with one
feature and moves to the best “neighboring point” (one feature added or removed from the
set) provided that the point is not on the “tabu” list. Points are entered on the tabu list
once the algorithm moves to a new point, and the list is used to prevent backtracking.

Feature selection as a direct optimization problem

Although feature selection is normally presented as a search problem, feature selection can
also be formulated as a direct optimization problem, as described in Section 2.2. In convex
principal feature selection (CPFS) [109], the goal is to select a subset of features such that
the squared reconstruction error is minimized. This is very close to PCA, except that the
transformation matrix B is constrained to be a diagonal matrix of zeros and ones. The
method optimizes

mBin||X—BX||2+/\Z: 17| b; || Loo (2.44)
where B is an F' x F' diagonal matrix of zeros and ones used to select the features, and the
term A\, = 17||b;||p00 is an L penalty term used to encourage sparse solutions. The

Lo norm is found by taking the max absolute value of b;. Equation 2.44 is a quadratic
optimization problem with linear constraints and can be solved using a variety of methods.

Hybrids

Hybrid search algorithms use more than one type of search technique to better optimize
the feature set. Two of the most common hybrid techniques are oscillating search [145]
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and dynamic oscillating search [1411], which require an initial set of features as an inputs
and can also be used as post-processing techniques for any feature set selection technique.
Normally, a filter-based measure and a ranked selection process is used to generate the
input, and a wrapper measure is used to perform the oscillating search.

Cantu-Paz [21] suggests an extension to the genetic algorithm technique, where genomes
are initialized based on the output of a filter measure. A feature with a higher filter
measure score is more likely to be selected. This type of hybrid method was able to
produce feature subsets with fewer features than the uninitialized genetic algorithm, with
similar accuracy. This method, where a filter measure is used to initialize an more complex
optimization method could theoretically be applied to a number of the stochastic feature
selection techniques.

Gheyas and Smith [51] present a hybrid technique that uses multiple search algorithms
to generate a feature set, using simulated annealing, genetic algorithm, then greedy hill
climbing. Their algorithm does outperform others when the run time is limited, but given
a sufficient training time, other techniques also perform well. Unfortunately, the stopping
points are set by run time, which is particular to the implementation, which makes this
specific technique difficult to replicate.

Comparison

Ranked selection is generally used when the number of features is high, and it is com-
putationally infeasible to use a more complex feature set selection method. Aghdam et.
al. [3] test ant colony optimization and genetic algorithm against ranking-based selection
and also find that the more complex search strategies outperform simple ranking-based
selection.

Liu et al. [99] compare ranked selection with different feature measures to correlation-
based feature selection (CFS). Their study indicates that CFS, the only subset-based mea-
sure, is superior to the other ranking-based filter measures.

However, other authors suggest that using complex search techniques can lead to the
selection of features that are too specific to the training set and hence do not generalize
well [91, ], and that better results can be obtained using simpler search techniques.

A number of papers have tested the SFFS and SBFS algorithms against various other
sequential search algorithms. The works in [127] [L75] both recommend SFFS and SBEFS
over other sequential search algorithms. Jain and Zongker [71] also test floating search
against ANN node pruning [106] and again recommend floating search. Kudo and Sklansky
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[85] compare floating search techniques against other sequential techniques and against
stochastic search. They recommend either SFFS/SBFES or genetic algorithms.

However, other authors argue that the floating techniques may select features that are
too specific to the training set and simpler techniques may select features that general-
ize better to unseen data. Reunanen [130] compares SFS and SFFS and finds that SFS
outperforms SFFS in a significant number of cases.

Kudo and Sklansky [85] compare genetic algorithms to a number of sequential and
simple search techniques and find that the genetic algorithm performs very well and is
quite fast. They recommend either a genetic algorithm or a floating sequential search
method.

However, ant colony optimization [3] and tabu search [172] are both able to slightly
outperform genetic algorithms. Tabu search has the additional benefit of being less com-
putationally expensive [172].

Gheyas and Smith [51] test a number of optimization techniques including SFS/SBS,
SFFS/SBFS, ant colony optimization, simulated annealing, and particle swarm optimiza-
tion and their own hybrid technique. They recommend their hybrid technique or simulated
annealing, or SF'S if simulated annealing is considered too computationally expensive.

Overall, there does not appear to be one single method that consistently outperforms
the others.

2.5 Hierarchical classifiers and multi-class extensions
for binary classifiers

Classifiers can either be multi-class, meaning they are capable of separating data into
many classes, or binary, meaning they are capable of separating only two classes. Binary
classifiersA can be extended for use in multi-class problems in a number of ways. These
methods can also be applied to multi-class classifiers and can improve accuracy in some
cases [137]. Common multi-class extension methods, including hierarchical methods, are
discussed in this section.

2.5.1 Omne vs. rest

The most basic extension from a binary classifier to a multi-class classifier is one vs. rest.
In this formulation, C' binary classifiers are trained, where C'is the number of classes. Each
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Figure 2.3: One vs. one extension for a three class problem. Points in the light grey areas
are claimed by more than one classifier. Points in the darker grey area are claimed by no
classifier

classifier is trained with one of the classes as the “one”, and the remaining classes grouped
as a single “rest” class and hence all the samples are used to train all the classifiers in this
scheme. If a single classifier claims a sample is in the “one” class, and all of the remaining
classifiers classify the sample as being in the “rest” category, then the point is classified
as being in that class. Classifying a new point requires querying C' classifiers. It is also
possible for a point to be claimed by more than one classifier, or by no classifiers (see Fig.
2.3). In this case, the point is considered to be unclassifiable.

2.5.2 Fuzzy one vs. rest

In the fuzzy extension to the one vs. rest method for SVM, [70] the dividing hyperplane for
each classifier is a fuzzy membership function, where the degree of membership is decided
by the distance from the hyperplane. The authors then show that a simple rule-based
system is equivalent to their fuzzy formulation. If the “one” class for each classifier is
given a class value of 1, and the “rest” class is given a value of -1, then the point is
classified into the class of the classifier returning the maximum value, which is the same as
the method described in [21]. This requires the classifier to return an actual value, rather
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than a simple class indicator.

Similar to the one vs. rest formulation, the fuzzy one vs. rest formulation requires
training C' classifiers, and classifying a new point requires querying all C' classifiers.

2.5.3 Omne vs. one

The one vs. one extension trains a single classifier for each pair of classes. Hence, C(C'—1)/2
classifiers are required, and each is trained using 2/N/C' samples, assuming a balanced class
distribution. To classify a point, each classifier is queried, and casts one vote for its winning
class. A point is classified into the class with the largest number of votes.

2.5.4 DAG-SVM

The DAG-SVM [126], similar to the one vs. one formulation, trains a single classifier for
each pair of classes, which requires C'(C' — 1)/2 classifiers, each trained on 2N/C samples.
However only (C' — 1) queries are required to classify a point. A classifier is selected
randomly and is used to eliminate one class from consideration. This is repeated (C' — 1)
times, and the point is classified into the last remaining class.

2.5.5 Hierarchical classifiers

In a hierarchical classifier, the set of classes is progressively divided into subsets of fewer
classes until there is only one class remaining at each node.

Cheong, Oh and Lee [29] propose a method to create binary trees for SVM using a self-
organizing map (SOM) to create the groupings. A human-drawn line on the SOM separates
the classes into two outputs. The results are comparable to one vs. one, but manually
selected groupings appear to give the best results. Overall, this approach appears to be
promising, but is still somewhat subjective, and leaves a human researcher to determine

how to best divide the SOM.

Madzarov, Gjorgjevikj and Chorbev [103] use a hard clustering method, similar to
k-means. Two clusters are created, starting with the two input classes with the largest
distance between their centers. The unassigned class that is closest to a center is added,
and the center is updated. This is repeated until all the classes are added and the method
is applied recursively.
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(a) SVM (b) decision tree

Figure 2.4: SVM and decision tree divisions of a linearly separable data set. The SVM can
separate the data using a single, diagonal line, whereas the decision tree is restricted to a
piecewise staircase division.

Another tree-based approach is the adaptive binary tree (ABT) [27], which is an exten-
sion of an earlier work on binary tree SVM [20]. The goal of ABT is to design a tree-based
classifier that reduces the number of support vectors in the nodes, regardless of the number
of nodes in the tree. SVMs are trained pairwise on each set of classes. The classifier with
the smallest number of support vectors is selected and the remaining classes are classified
by the selected classifier and assigned to one or both sides. This procedure is then applied
recursively to each side until a single class remains at each node. Trees designed using the
ABT method are different than those in [103] because ABT can have multiple leaf nodes for
the same class. However, although ABT allows classes to be placed at both outputs, it be-
gins with a pairwise separation. This assumes that the original pair of classes can actually
be separated, which is not always the case, particularly for multi-modal distributions.

Tree-based extensions are structurally similar to the classification and regression tree
(CART) or decision tree algorithm [19]. In a decision tree, the data set is partitioned
into two parts at each node using a simple thresholding on a single feature. Like ABT,
classes can be assigned to both sides of a single node and therefore classes can appear at
multiple leaf nodes. Decision trees use only a single feature for each division. Because
the features can be reselected, decision trees can actually be quite powerful, but create
complex, piecewise divisions when dependent features are included. An illustration of this
problem is given in Fig. 2.4.
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2.5.6 Comparison

Hsu and Lin [65] compare the standard one vs. rest and one vs. one formulations as well
as DAG-SVM [126] and formulations that natively extend SVM to handle multiple classes.
They find that the one vs. one and DAG-SVM tend to perform better than one vs. all
and the multi-class SVMs.

However, Rifkin and Klautau [132] present the view that the most important step
is to properly select and tune the underlying binary classifier, and the scheme used for
combination makes little difference. They recommend using a one vs. rest scheme due to
the fact that fewer classifiers need to be trained.

Compared to other multi-class classification methods, binary trees with a single output
node per class require fewer classifiers to be trained, and fewer classifiers to be queried in
order to perform a classification.

A binary tree with a single output node per class requires training (C' — 1) classifiers.
The number of samples required to train each base classifier in the tree is N at the top
of the tree and gets smaller in the lower levels. Assuming a balanced class distribution,
for a fully balanced tree the total number of samples required to train a single classifier at
each level is half the number required for the level immediately above, but there are also
twice as many classifiers in that level. This gives a total of loga(C') N samples, over (C'—1)
classifiers. For a completely unbalanced tree the number of samples decreases by N/C' at
cach level, for a total of (C'— 1) levels, giving a total of N((C'—1) — ((C' —1)/C')) samples,
which can be simplified as less than N(C' — 2) samples over (C' — 1) classifiers.

The major advantage of the tree-based solution is not the training time, but the testing
time. For a fully balanced tree, the number of queries required is logy(C). For a fully
unbalanced tree, the worst-case number of queries approaches (C' — 1) when the largest
class is at the bottom of the tree, which is still fewer than the DAG-SVM. In the best case
for an unbalanced tree, the number of queries approaches one and on average, assuming a
balanced class distribution, a fully unbalanced tree will require (C'—1)/2 queries. The tree
therefore requires the fewest number of queries of any of these methods and this advantage
increases as the number of classes increases.

A comparison is presented in Table 2.3.
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method # classifiers | # queries | # samples
/ classifier
one vs. rest C C N
fuzzy one vs. rest C C N
one vs. one c(%_l) C(Cz—l) %
DAG-SVM cel) c-1 N
binary tree Cc—-1 log, (C) Mggifl(c) (balanced)
(single leaf node per class) % < J\Eéciil?) (unbalanced)

Table 2.3: Comparison of multi-class extension methods
2.6 Algorithms used in this work

2.6.1 Support Vector Machines (SVM)

A support vector machine separates two classes using a dividing hyperplane. The SVM
selects the hyperplane that maximizes the distance between the hyperplane and the nearest
point on either side. This is called the maximum margin hyperplane, and the points closest
to the hyperplane are called the support vectors.

The classifier is trained on a set of N training points X € RF. A set of labels Y
designates each point as being in one of two classes, 1 or —1.

Assuming that the classes are separable, the separating hyperplane is designated as

[21]:
w-x+b=0 (2.45)

The support vectors form hyperplanes at w-x+b=1and w-x+b = —1 and all other
points lie outside the support vectors [21]:

yi(w-x; —b) > 1,Vi (2.46)
The maximum margin can be found by maximizing ||w|[?, subject to y;(w-x;—b) > 1, Vi.

Using a Lagrangian, the problem can be formulated as [21]:

N N

1

L,= §HW||2—Zaiyi(w-xi—I—b)—l—Zai (2.47)
i=1 i=1

where «; are the Lagrangian multipliers. The solution is found by minimizing L, with
respect to w and b, and requiring that derivatives of L, with respect to all a; are zero and
(67 Z 0.
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This can also be formulated as a dual problem, maximizing L, subject to the constraint
that the gradient of L, with respect to w and b are zero. This gives the conditions [21]:

N
W = Z a;Y;X; (2.48)
i=1

and

N
> aiy; =0 (2.49)
=1

Adding these constrains gives the dual formulation [21]:

N TR
Lp= Zai ~3 Z Zaiajyiiji - X (2.50)
=1 =1 j=1
subject to
N
i=1
and

a; > 0,Vi (2.52)

Non-linearly separable classes can be separated by allowing a limited number of training
errors, controlled by a slack variable. This produces a dual problem that is the same as
the original formulation, but with a tighter constraint on the o variables such that

0<a; <CVi (2.53)

where C' is chosen by the user and controls the amount of penalty applied for misclassified
points.

Points can be classified simply by taking the sign of the distance to the normal of the
hyperplane. Therefore the test time for a linear SVM is only dependent on the dimension-
ality:.

Training an SVM requires solving the constrained optimization problem, and the solu-
tion can be found via quadratic programming, or using any of a variety of SVM-specific
training methods such as sequential minimal optimization (SMO) [125, ] or decompo-
sition [73], which break the large optimization problem into a set of smaller problems, or
least squares SVM, which solves a slightly different formulation of the problem [117].
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2.6.2 K-nearest neighbours (KNN)

K-Nearest Neighbours (KNN) is a relatively simple classification technique. For each new
input, the distance between the input vector and each of the training vectors is calculated
and the class of the new input is determined as the majority class of the K closest training
vectors. In the case of a tie, the class is recursively calculated using K — 1 points, until a
class is found [31].

2.6.3 Genetic algorithms

Genetic algorithms (GA) are a guided random search technique that is a form of evolu-
tionary computing.

Genetic algorithms function similarly to biological evolution and the components of the
system are similarly named. A set of possible solutions is called the “population” and each
potential solution to the problem is called an “individual”. The set of an individual’s traits
are called its “genome”. The genome is made of individual “genes”, which are a single,
limited, discrete value that controls some part of the individuals structure or behavior.

[76].

The genetic algorithm proceeds as follows. An initial population of individuals is ran-
domly generated. The fitness of each individual is assessed. High scoring individuals are
paired randomly and a combination of one or more evolutionary operators is then used
to create two new solutions that replace low scoring individuals in the population. The
algorithm then repeats until the stopping condition is reached. The stopping condition can
be a threshold on the solution or the amount of change in the population, or it can be a
limit on the number of generations in the model. This procedure is illustrated in Fig. 2.5.

The evolutionary operators are crossover and mutation. The crossover operator creates
two children by combining the genes of two parents. One point crossover, illustrated in Fig.
2.6a, randomly selects one cut point in the genome and creates new genomes using the first
part of one parent and the second part of the other parent [76]. This can be extended to
K-point crossovers, which select K points and alternate sections from each parent (see Fig.
2.6). The mutation operation makes a random change to one or more genes, as illustrated
in Fig. 2.6d. The amount of mutation allowed in a population is controlled by a parameter
called the mutation rate.
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Figure 2.5: General flow of a genetic algorithm
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Figure 2.6: Common evolutionary operators

2.6.4 K-means clustering

K-means clustering is a centroid based clustering where the objective is to find a partition-
ing of the data such that the sum squared distance between points in a cluster is minimized.
The objective therefore is to find a set of clusters that minimizes

ZKI(}EI > d(z,y) (2.54)

z,yeC;

where K is the desired number of clusters, C; is the set of points in cluster ¢, and d is a
distance metric between points  and y [1]. Euclidean distance is a common choice.

Unfortunately, this is an NP-hard problem, so often heuristic algorithms are used to
estimate a solution. The most commonly used algorithm is the K-means algorithm. The
algorithm is initialized first by assigning k& random center points, where k is the desired
number of clusters. In the first stage of the algorithm, each of the points is assigned to the
cluster of its closest center point. In the second stage, the cluster centers are updated as
the average value of all the points assigned to the cluster. The algorithm then continues
back to the first stage, assigning points to the updated cluster centers. This is repeated
until the centroid values converge.
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2.7 Human motion recognition

Motion recognition is used in a variety of different research areas. Imitation learning for
humanoid robotics is inspired by human and animal studies indicating that movements
can be learned through observations of other actors [I11] [138]. Imitation learning for
humanoid robots builds off this idea and uses exemplar human motions to build motion
models for robots. This type of imitation learning incorporates motion recognition [31], as
motions first need to be recognized before they can be used to build movement models.

Motion recognition is also becoming more common as a component in human computer
interaction. Gesture and motion control interfaces such as the Kinect [112] use motion
recognition as a way to control on-screen events. In this system, body part positions are
recognized from image and depth sensor data and motion recognition is performed using
skeletal data. Other types of gesture recognition interfaces classify motions based on differ-
ent types of input data. For example, muscle-computer interfaces use gesture recognition
from electromyography (EMG) signals for control of games or other user interfaces [110],

[31]-

Many different classifiers have been used to recognize motion data. Losch et. al. [101]
test motion recognition with Bayes and Naive Bayes networks, MLP and radial basis
function (RBF) ANNs, and SVM. They do not find that any one classifier is significantly
better in classifying motion data. Other works have also tested using time-delay ANNs
[138] and randomized decision forests [112].

Hidden Markov Models (HMM) are a particularly common choice for this application
[88, 15, , 2] for a number of reasons. Motion data naturally has a time-based component,
as the demonstrator moves through various poses, and HMM natively handles time-series
data. The model representation of the motions has an intuitive representation, where each
state is a primitive motion or pose, and the state transition matrix describes the flow of the
motion through these various primitives. Lastly, HMMs are generative models and hence
they can also be used to generate a primitive trajectory for a controller [39]. Extended
versions of the HMM algorithm, such as factorial hidden Markov models, have also been
successfully applied to motion recognition [39].

A number of papers have examined and implemented feature selection and dimensional-
ity reduction for human motion recognition. Human studies indicate that partial knowledge
of the body position may be sufficient for motion recognition. Humans are able to discern
motion types even in abstract human-like shapes. Blake and Shiffrar [17] review research
on point-light displays, where the motion of a human is represented as point markers on
the major joints. Humans are able to robustly recognize movements even from these very
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simple displays, in a wide variety of configurations and noise conditions. Hence even for
humans, motion can be represented by quite a small subset of features.

PCA is another common method for dimensionality reduction. Fod, Marari¢ and Jenk-
ins [19] present a method for motion imitation and achieve dimensionality reduction using
PCA. The reduced data set is clustered, with each cluster representing a motion primitive.
Incoming motions are classified as being a part of a cluster and the cluster data can be
used to recreate the motion. PCA is able to reduce the dimensionality from a 400D vector
to a 30D vector that is suitable for movement generation.

Takano and Nakamura [118] use multi-dimensional scaling to create a lower-dimensional
representation of HMMs. The system is tested on-line using motion capture data with seven
distinct motions, and after the multi-dimensional scaling, seven clusters are identified.
They find that the lower dimensional representations can be used for both recognition and
generation of motions.

Bitzer and Vijayakumar [16] present a method for dimensionality reduction using Gaus-
sian process latent variable models (GPLVM). In GPLVM, the mapping from the latent to
the observed values is modeled as a Gaussian process. In their work, Bitzer and Vijayaku-
mar add an additional constraint that the observed sequences be translated versions of a
template action. This maps directly to the dynamic motion primitive (DMP) representa-
tion of motion as having a goal state, a start state and a trajectory. DMPs can be used
to generate unobserved motions of the same type by changing the start and goal states
and regenerating the trajectory. They term this constrained version the simple sequence
prior GPLVM (SS-GPLVM). They test this technique on motion data, where the goal is
to generate a new DMP using the dimensionally reduced inputs. They find that the SS-
GPLVM is able to create a set of lower-dimensional inputs that can be used to generate
reasonable new motions. SS-GPLVM performs better than other tested dimensionality
reduction techniques (PCA and standard GPLVM), and using joint-space data directly.

Jenkins and Matarié¢ [72] present an extension to the Isomap dimensionality reduction
technique (see section 2.3.4), called spatio-temporal-Isomap (ST-Isomap) that can incor-
porate temporal sequences. In ST-Isomap, the distances between nearest neighbour points
are adjusted to account for temporal closeness before the distances are placed in the graph.
The authors test the technique on data from a teleoperated robot performing repetitions of
a grasping movement, and from a human subject performing dancing, punching and waving
motions. They find that ST-Isomap is able to identify the repetition in the grasping data
set and can extract clusters that match to the major primitives within the movements and
provides a significant reduction in the number of features. However, these new features are
not tested for classification.
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Billard et. al. [15] present a system for motion recognition and imitation using a simple
feature selection method. The authors use four specific types of count-based features that
are extracted from the video of the demonstration and define the most important feature
as being the feature that is most common. Probabilities for each demonstration type are
calculated using its related feature. While this technique is able to use a single salient
feature to determine the demonstration class, it is important to note that the features
have been manually pre-selected specifically to match these scenarios. Selecting the most
salient of these features is not the same as selecting a salient feature from a large group of
input features, whose relation to the output class is unknown.

EMG-based gesture recognition has been performed using a number of common classi-
fiers, including linear discriminant analysis (LDA) [123], artificial neural networks (ANN)
[95][78], naive Bayes [28], hidden Markov models [164] and fuzzy inferencing systems [75].

Much of the work on EMG gesture recognition focuses on domain-specific feature ex-
traction techniques, applying standard signal processing techniques to create descriptive
features for EMG signals. A comparison of EMG features in [123] describes multiple time
and frequency based features used by many researchers. Each feature is calculated on
clean and noisy signals and uses single feature classifiers to compare feature strengths.
Using an ad-hoc feature selection technique, they also show that multi-feature classifiers
are beneficial.

Standard feature extraction techniques have also been used as a post processing tech-
nique to reduce the number of extracted input features. For example, Khezri and Jahed
f[78] use PCA and class separation after extracting time and frequency domain features
from the EMG data.

2.8 Summary

While there has been a good deal of research in the areas of dimensionality reduction,
multi-class classification extensions and human motion recognition, there remain a number
of areas that would benefit from further study.

Feature set selection can be performed in a number of ways, and researchers have
achieved good results with a variety of different techniques from floating sequential meth-

ods such as SFFS [127, ] to more complex stochastic optimization methods such as
genetic algorithms [59], simulated annealing [54], particle swarm optimization [54], ant
colony optimization [3] and Tabu search [172]. One concern with using complex feature set

selection techniques is that they may select features that are too specific to the training set
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and do not generalize well [91, ]. This is a particular problem if the number of samples
is small, if the feature set is not the only parameter being optimized or when the testing
and training sets are known to have different distributions.

Feature set evaluation can also be performed in a number of ways. Wrapper methods
have been found to perform well [$1], but may select features that are too specific to
the feature set and do not generalize well [130]. They are also often computationally
expensive and therefore impractical for many applications. Filter-based measures do not
require training a classifier and therefore can be less computationally expensive. Many
different filter-based measures have been proposed but there has been little work examining
how well these perform for different classifiers, and no study directly comparing many of
these metrics. Different classifiers work well with different feature sets [96] and hence the
appropriate filter measure is likely classifier specific.

Multi-class extensions such as one vs. rest and one vs. one are mostly studied for
use with binary classifiers, but can also be beneficial when used with multi-class classifiers
[137]. Binary trees are promising multi-class extensions because they require querying
fewer classifiers to classify each point. There are multiple different algorithms for creating
hierarchical tree-based classifiers [29, , 27]. Both the SOM-based tree [29] and the
adaptive binary tree [27] work well when classes are allowed to appear at more than one
leaf node. There is little work examining the design of tree-based classifiers with feature
selected inputs.

One additional benefit of tree-based classifiers are that the tree structure mimics the
natural clusterings of human motions, as discussed in the work of Kuli¢, Takano and
Nakamura [88], and thus a hierarchical classifier structure may work well for human motion
applications.

Much of research in dimensionality reduction for human motion applications has focused
on feature extraction techniques. While these techniques may provide useful features, there
are several drawbacks to using feature extraction alone. Feature extraction can be compu-
tationally expensive as it requires computation of all features as well as a transformation
into the new space. The new features also do not have a direct physical interpretation.
This makes it difficult to use these new features when building a movement model. Feature
selection or a combination of feature extraction and feature selection may be beneficial for
human motion recognition and modeling.
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Chapter 3

Hierarchical Classifier Design

The performance of a classifier is affected by a number of factors including classifier type,
the input features and the desired output. This chapter presents and evaluates two methods
for selecting both the input features and classifier outputs through the use of classifier trees.

Feature selection can improve performance in a number of ways. Reducing the number
of input features can reduce classifier complexity and improve classification speed. Proper
feature selection reduces the impact of noisy features, which can cause false association
between relatively random features and the classifier output. Feature selection can also
mitigate the impact of redundant or correlated features, which increase classifier complexity
without adding much additional information, adversely affecting performance [57].

Output selection, or classification problem division, describes the process of subdividing
a multi-class classification problem into a set of classification problems that each use only
a subset of the classes or samples and determining the overall classification through the
combined decision of the sub-classifiers. Dividing the problem can improve accuracy [137],
and for some classifiers, better generalization can be achieved by using a sparse set of inputs
[106]. Additionally, in some cases, different classes can be best separated using different
sets of features. Splitting the problem allows the use of a more specific set of features for
each set of classes.

The question of how best to divide the problem is not trivial and remains an active
research area, particularly for support vector machine (SVM) classifiers, which are binary
classifiers and thus require any multi-class problem to be divided. Although there are
direct extensions to the SVM classifier that allow it to handle more than two classes
natively [103, |, it is more common to divide the multi-class problem into a set of
binary problems as these tend to achieve better accuracy [163].
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There are a number of common methods for dividing a multi-class problem, such as one
vs. rest (OVR) or one vs. one (OVO). However, it does not appear that any one method
is the best solution in all cases [132, 65]. Binary trees divide the problem hierarchically,
with each level splitting the classification task into a progressively smaller set of classes
[29, |. Trees are intuitively a good choice because they do not require all the trained
classifiers to be queried when classifying new points and thus the testing time is shorter.

This chapter presents two methods for creating feature selected hierarchical trees of
classifiers. The feature-selected hierarchical classifier (FSHC) method performs the feature
selection and classifier design simultaneously using genetic algorithms. The easiest division
in the class space depends on the features selected, while the best features to use at each
node depend on the class division. Because these two factors are mutually dependent,
the algorithm simultaneously optimizes the base classifier outputs and the features, and
evaluates the tree as a whole. The algorithm can be used with either binary or multi-
class classifiers, where there are more than two outputs [51]. A new feature set evaluation
measure is also presented for use with this algorithm.

The feature-selected multi-modal binary tree (FS-MBT) method aims to overcome some
of the challenges of the feature selected hierarchical classifier. There are two main chal-
lenges with FSHC. FSHC appears to select a class structure and features that are too
specific to the training set and therefore the designed classifier does not always general-
ize well. It also cannot separate non-linearly separable class divisions. FS-MBT uses a
sequential technique for tree design and feature selection where first the class separation
is determined then the features are selected. Additionally, FS-MBT tolerates misclassifi-
cation in the tree, allowing points to be classified in either output regardless of the initial
specified class groupings. This creates a piecewise linear separation of the data from dif-
ferent classes, which means non-linear and multi-modal data sets can be separated using
a set of linear SVMs. Hence, this algorithm creates SVM trees that can separate classes
that have a multi-modal distribution or multiple clusters of samples within the same class.

3.1 Feature-selected hierarchical classifier (FSHC) !

The feature selected hierarchical classifier (FSHC) uses a hierarchical set of classifiers
to progressively separate a large set of classes into smaller subsets of classes. This work
extends the ideas presented by Cheong, Oh and Lee [29] by providing a more robust method

Wersions of the work in this section have been previously published in [51] and [52]
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for designing the tree structure and extending the tree structure to work with multi-class
classifiers. It also performs feature selection for the individual base classifiers in the tree.

The feature selected hierarchical classifier is designed using a genetic algorithm that
simultaneously optimizes the features and tree structure. Genetic algorithms are selected
as a basis for this work due to their proven effectiveness for feature selection [35], and due
to the ease of specifying both the feature selection and the tree structure in the genome.

3.1.1 Feature Selected Hierarchical Classifier Design

The feature selected hierarchical classifier is designed using a genetic algorithm to jointly
specify the tree structure and features at each node. Genetic algorithms (GA) are a guided
random search technique that are a form of evolutionary computing.

Genetic algorithms function similarly to biological evolution and the components of the
system are similarly named. A set of possible solutions is called the “population” and each
potential solution to the problem is called an “individual”. The set of an individual’s traits
are called its “genome”. The genome is made of individual “genes”, which are a single,
limited, discrete value that controls some part of the individuals structure or behavior.

[76].

The genetic algorithm proceeds as follows. An initial population of individuals is ran-
domly generated. The fitness of each individual is assessed. High scoring individuals are
paired randomly and a combination of one or more evolutionary operators is then used
to create two new solutions that replace low scoring individuals in the population. The
evolutionary operators are crossover and mutation. The crossover operator creates two
children by combining the genomes of two parents. The mutation operation makes a ran-
dom change to one or more genes. The algorithm then repeats until the stopping condition
is reached. The stopping condition can be a threshold on the solution or the amount of
change in the population, or a limit on the number of generations in the model.

Genetic algorithms have been used in a variety of optimization problems including
feature selection [35, 2] and have also been used in SVM-based clustering problems [159].

This section describes how the tree-based hierarchical structure is defined and rep-
resented in the genome, how it is built and scored, and the selection and evolutionary
operators used.
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...] Classifier sec.
| level O |...

...]Cp|C1|C2|C3 - - -
~J0[1{0]1]...

Figure 3.1: Dividing a multi-class problem into binary outputs. The left side of the figure
illustrates a base classifier dividing the classes into different outputs and the right side of
the figure shows the portion of the gene that describes this base classifier. Points that are
in classes 0 or 2 are sent to output 0, and points that are in class 1 or 3 are sent to output
1. Another base classifier below each output would further separate the points from the
outputs.

Hierarchical classifiers

A hierarchical classifier uses a set of hierarchically organized base classifiers that separate
the data into progressively smaller groups of classes. Consider each base classifier as a
black box with two outputs. The job of each base classifier is to place points from each
class into its assigned output. Each output can either represent a single class or a set of
classes (see Figs. 3.1 and 3.2). If the base classifier has more than one class assigned to one
output, another base classifier is added below to further separate the classes. Hence the
output of the higher level base classifiers determines if there are lower level base classifiers.
The tree structure is specified in the genome by specifying the outputs for each class at
each level of the tree.

95



AN =

Classifier sec.
.| level O |...
> -|3]1]0]0]...

o

U U U

out 0 out 1 out 2 out 3

Figure 3.2: Dividing a multi-class problem into multiple outputs. The left side of the figure
illustrates a base classifier dividing the classes into different outputs and the right side of
the figure shows the portion of the gene that describes this base classifier. Points that are
in classes 0 or 2 are sent to output 0, and points that are in class 1 or 3 are sent to output
1. Another base classifier below each output would further separate the points from the
outputs.

Genome Representation

The genome consists of two parts. The first part of the genome is used to determine
which features are used in each base classifier. The second portion of the genome is used
to determine the classifier structure by specifying the class outputs at each level of the
classifier.

In a multi-class classifier, the smallest number of base classifiers required is one, where
each of the C' classes in the first classifier maps to a single output. The largest number of
base classifiers required is (C' — 1), which occurs if each base classifier is binary (see Fig.
3.4). The largest number of classifier levels is (C' — 1), which occurs when each classifier
separates a single class. This is illustrated in Fig. 3.4b.

The first portion of the gene gives a true or false (one or zero) value for each feature for
each possible base classifier. The largest number of base classifiers required in a system is
C' — 1. Hence, the first portion of the genome consists of F'(C' — 1) genes, where F is the
number of features.

The second portion of the genome gives the output number of each class in each layer
of the genome. The largest possible number of layers required in a hierarchical classifier is
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feature portion | classifier portion

base classifier0 |... base classifier (C-1) layer 0 layer [C-1)

Figure 3.3: Full genome used for feature selection and classifier construction. The first
portion is used for feature selection and has one gene per feature for each base classifier in
the tree. The second portion describes the tree by giving the output number for each class
in each level of the tree.

C — 1. Hence to specify the output for each class in each layer, the second portion of the
classifier is C'(C' — 1) genes each of which can take a value between zero and C' — 1 for a
multi-class classifier or zero and one for a binary classifier.

The full genome is illustrated in Fig. 3.3. Fig. 3.4 illustrates how different tree
structures can be generated by specifying the outputs for different classes at different
levels of the tree.

Hierarchical Classifier Construction

The hierarchical classifier is built from the second part of the genome, starting from the
root.

Genes for classes that are fully separated in higher layers are maintained, but once a
class is separated, no further base classifiers are constructed for that class and these gene
values do not affect the structure. In Fig. 3.4, these genes are marked as "X’.

Each base classifier knows its immediate parent, its level in the tree, its children clas-
sifiers, the features it is using and the output assignment of each class.

The hierarchical classifier is constructed in stages. First, the tree is examined to de-
termine in which layer each class is separated and a root node is added. The tree is then
constructed by building the base classifiers off the existing structure for each class one at
at time. Pseudocode is given in Fig. 3.5 and Fig. 3.6.

Feature selection for base classifiers

The features used by each base classifier are selected in the first portion of the genome.
There is one section for each base classifier, with F' integers that can be one or zero, where
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Classifier 0

Second portion of gene

level O | level 1 | level 2

...Jeoleileales feolea|eales |eolcer|c2les
J0[0|1|1]0(1/0]1 [X[X|X|X

Classifier 1 Classifier 2

(a) balanced binary tree and gene. In level 0, classes 0 and 1 are sent to one output (output 0) and
classes 2 and 3 are sent to another (output 1). Hence, in level 1, classes 0 and 1 are separated by one
base classifier, added under output 0 of the top level classifier, and classes 2 and 3 are separated by
another base classifier, added under output 1 of the top level classifier. All classes are fully separated
in level 1, so the level 2 portion of the gene does not affect the tree structure.

Classifier 0
@ Classifier 1 ...] Second portion of gene
\ ] level 0 | level 1 | level 2
...JCp|C1|C2|C3 [Cp|C1|C2|C3 |Cp|C1|C2|C3
Classifier 2 L0111 X011 | X|X[0 |1

O

(b) long binary tree and gene. In level 0, class 0 is sent to output 0 and all the other classes are sent to
output 1. Hence class 0 is fully separated in the first layer. The gene continues separating one class
each level by placing a single class in a different output. Genes marked as X are genes for classes that
have been separated in higher layers. These are maintained, but do not affect the tree structure.

Figure 3.4: Genes for two four-class hierarchical classifiers. The right side of the figure
shows the portion of the genome describing the hierarchical classifier structure and the left
side shows the corresponding hierarchical classifier.
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//determine the layer where class c is separated
for ¢ =1 to C {

//classes not yet separated from class c
initialize array stillInGroup to all TRUE
numInGroup = numClasses - 1;

//move layer by layer and check which classes are
//separated from c in each layer
for 1vl = 1 to nlayers {
outc = output of class c in level 1vl
for i =1 to C {
outi = output of class i in level 1vl
//if the outputs for classes i and c are
//different, then they are being separated
//in this layer
if((outi != outc) && stillInGroup[il==TRUE) {
stillInGroup[i] = FALSE;
numInGroup --;

}

if (numInGroup == 0) {
set class c¢ as fully separated in level 1vl

}

Figure 3.5: Pseudocode for calculating FSHC class separation layers

add root (level 0) base classifier
for ¢ = each class {
currClassifier = 0//root node
sepLvl = level where c is fully separated
numShared = # base classifiers in path already built
for 1vl = 0 to (numShared-1) {
outc = output for class c in level 1vl
mark outc in currClassifier
lastClassifier = currClassifier
currClassifier = child classifier for output outc
}
for 1lvl = numShared to sepLvl {
add a new classifier and initialize
set parent of new classifier as lastClassifier
outc = output for class c in level 1vl
set new classifier as child of lastClassifier for outc
mark outc in new classifier
set features of new classifier
lastClassifier = new classifier

Figure 3.6: Pseudocode for adding FSHC base classifiers
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F' is the number of features. If the value is one, the feature is used by the base classifier, if
it is zero, the feature is not used. This structure can also be extended to perform feature
weighting by using non-binary values.

Scoring

The score for each classifier is based on an estimate of the accuracy. Two different methods
are used. The first method estimates the accuracy of the tree as a whole, which requires
trained classifiers and a wrapper-based measure. The entire tree is built, and the accuracy
is estimated by testing directly on the hierarchical classifier.

The second method combines the accuracy estimates of each individual base classifier
to estimate the accuracy of the tree. Because wrapper methods can be computationally
expensive, filter measures can be beneficial if the classifier requires training or the dimen-
sionality of the data set is high [50]. However, filter measures cannot be directly applied
to a tree structure with multiple base classifiers each using different feature sets. Instead,
the second method evaluates the accuracy of each base classifier individually and then
combines the estimates into an estimate for the entire tree. This allows the use of simpler
filter-based measures that can be calculated only on a single base classifier using a single
feature set.

When using the second method for estimating accuracy, the number of correctly clas-
sified points in a class is estimated by multiplying the total number of points in that class
in the training set by the estimated accuracy of each base classifier that is used to classify
that class. These numbers are then used to estimate the overall accuracy, as shown in
equation 3.1.

C
Aall - %ZNC H Aic (31)
c=1

i€B.
where A,y is the estimated accuracy of the entire tree, B, is the set of base classifiers that
have class ¢ as an output, and A;. is the estimated accuracy of base classifier 7 on class c.

The accuracy estimates for the scores are calculated using various measures including a
validation set on the entire tree, cross validation on the individual base classifiers, Fisher’s
interclass separability criterion (see Section 2.4.2), RELIEF (see Section 2.4.2) and a new
metric termed count-based RELIEF, described below. A scaled version of Fisher’s interclass
separability criterion is also tested, where the criterion is divided by the square root of the
number of features.

60



Count-based RELIEF is a newly proposed measure that is related to the RELIEF
measure. Instead of measuring the distance between the nearest hits and misses, count-
based RELIEF counts the number of hits before the nearest miss. While RELIEF attempts
to identify features that maximize the average distance between points from different classes
and minimize the average distance between points in the same class, the count-based
RELIEF attempts to find features that cluster points such that points are close to a large
number of points in their own class, regardless of the absolute distance. The new measure
has the advantage of being bounded and normalized, even for a non-normalized data sets.
This is important since not all base classifiers classify the entire data set, which can result
in base classifiers with non-normalized features.

The new measure is calculated as:

N N,
1 (& (&
Te=——"— E E HZpe, Tic) (3.2)
NC(NC - 1) p=1 i=1 g

and
1, if d(zp, 2) < My, i #p

t(Tpe, Tie) = { 0, otherwise (3.3)

The score also includes penalty terms for the number of layers in the classifier, the
number of features used by the tree and the sum total number of features used by the base
classifiers. The score is given as:

Fy Fy Ny

S = Aall — = — Oébm — Oélm (34)

F
where S is the score, A,y is the estimated accuracy of the tree, F} is the total number
of features used by the tree as a whole, Fj, is the total number of features being input to
the base classifiers, N; is the number of layers being used, (C' — 1) is the number of base
classifiers and the maximum number of layers in the tree, and the terms oy, ap and «; are
the penalty terms.

A distinction is made between the number of features used by the entire tree, and the
total number of features used by the base classifiers. The term F; totals the features used
by the base classifiers and this penalizes against classifiers with a large number of features.
The term F; counts the number of features used by the base classifiers, but if more than
one classifier uses the same feature, it is counted only once. This gives the total number
of features that will need to be calculated to use the classifier. In this work, all features
are weighted equally, but it also possible to adjust this formula to penalize more heavily
against features that are more computationally expensive.
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Figure 3.7: Crossover functions

Genetic algorithm evolutionary operators

Because a small change to the tree portion of the gene can result in a large change to how
the tree is built, a simple one-point crossover function is not the ideal way to breed genes.

The crossover function randomly selects to either change the feature or the gene portion
of the tree in each breeding. If the feature portion is selected, the algorithm performs a one
point crossover in the feature portion, and randomly attaches each new feature portion to
the second portion of each gene. If the classifier portion is selected, the algorithm performs
a one point swap, as illustrated in Fig. 3.7b. Mutations can affect a point in either part
of the genome.

3.1.2 Experiments

Two different sets of experiments are conducted with the FSHC. The first set of experiments
uses a multi-class K-nearest neighbours (KNN) classifier as the base classifier and tests
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Performance measure | flat or tree? | estimated on tree (method 1)
or base classifiers (method 2)
N/A

N/A

entire tree

base classifiers

all features flat
validation set flat
validation set tree
cross-validation tree

Fisher’s tree base classifiers
Fisher’s (scaled) tree base classifiers
RELIEF tree base classifiers

count-based RELIEF | tree base classifiers

Table 3.1: FSHC accuracy estimation measures

Class Feature 0 Feature 1 Feature 2 Feature 3 Feature 4
0 0+ z% 0.05 + =% 1-z2% noise noise
1 0.05 + 2% 0+ z% 1-2% noise noise
2 noise noise 0+ z2% 0+ 2% 0.05 + 2%
3 noise noise 0+ z% 0.05 + 2% 0+ 2%

Table 3.2: Description of FSHC artificial data set 1, where z is the% of noise (0% or 5%)

the ability of the algorithm to design trees with multiple outputs. The second set of
experiments uses a binary SVM and compares the algorithm to other multi-class extensions
for binary classifiers.

Multi-class experiments with KININ

The first set of experiments use FSHC with KNN base classifiers. The algorithm is tested
on two different artificial data sets using a variety of different accuracy estimation measures
for scoring. The FSHC tree structures are compared against a flat classifier, which is single
base classifier that separates all of the classes. Feature selection for the flat classifiers is
also performed using genetic algorithms. A summary of all the tests is given in Table 3.1.

The FSHC artificial data sets are designed to test the ability of the algorithm to select
an appropriate tree or flat classifier. Neither data set is fully separable by a single level
(flat) KNN classifier.

FSHC artificial data set 1 tests the ability of the system to find an appropriate tree
structure. It is a four class data set, with five partially informative features. Feature two
separates classes zero and one from classes two and three. Features zero and one separate
classes zero and one and are noise otherwise. Features three and four separate classes two
and three, and are noise otherwise. A second version of the data set includes 5% uniform,
random noise. The data set is described in Table 3.2.
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Feature 0 Feature 1 | Feature 2 | Feature 3
Class 0 0+ % noise noise noise
Class 1 | 0.25 4+ 2% noise noise noise
Class 2 0.5 £ z% noise noise noise
Class 3 | 0.75 + 2% noise noise noise

Table 3.3: Description of FSHC artificial data set 2 with noise, where x is the amount of
noise (0%, 5% or 20%)

FSHC artificial data set 2 tests the ability of the system to detect that a single level
classifier is sufficient, and also tests how it performs in the presence of noise. It is a four
class problem with four features. The first feature separates the classes fully and the
remaining features are noise. This data set is also tested with 5% and 20% noise on the
informative feature. With 20% noise, the data set is not fully separable even when using
only feature zero. The data set is described in Table 3.3.

The data sets are divided randomly into test and training sets and all results are
reported on the test sets. When validation sets are used for scoring, the validation portion
is 20% of the data set, with 60% of the data set used for training, and 20% used for testing.
In all other cases, 80% is used for training and 20% is used for testing.

The genetic algorithm is coded in C++, and the performance measures are evaluated
in MATLAB by calling the MATLAB engine from the C++ program. The parameters are
set such that the initial population is 500 and 50 individuals are replaced every generation.
The algorithm is allowed to run for 70 generations.

Binary experiments with SVM

The second set of experiments tests FSHC against several well known techniques for multi-
class extension, described in Section 2.5. For the one vs. rest, fuzzy one vs. rest, one
vs. one and DAG-SVM, the extensions are tested using both the full feature set, and
using a genetic algorithm to select features for each individual classifier. The binary tree
method (SVM-BDT) [103], the adaptive binary tree (ABT) [27], and the classification and
regression tree (CART) [19] are also tested, using the entire feature set.

These methods are tested on nine real data sets from the UCI machine learning repos-
itory [8]. They are also tested on FSHC' artificial data set 1, described in Table 3.2, which
is designed so that the different classes are separable by different features.

The real data sets tested are abalone, covertype, ecoli, flag, glass, iris, image segmenta-
tion, statlog (vehicle) [1141] and wine. The original covertype database is very large (581012
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Data Set F C N Description

Abalone 8 30 | 4177 | Predict age of abalone from physical measurements
Covertype 56 | 7 7000 | Predict forest cover type from information about region
Ecoli 7 8 336 Predict localization site from tests

Flag 28 | 8 194 Predict country’s major religion from its flag attributes
Glass 7 214 Predict glass type from oxide content

Iris 3 150 Predict iris type from measurements

Image Segmentation 18 | 7 2310 | Predict texture type from high level image attributes
Statlog (vehicle) [114] | 18 | 4 946 Predict vehicle type from image data

Wine 13 | 3 178 Predict wine origin from chemical analysis

Table 3.4: Description of real data sets used for testing FSHC algorithm. F' gives the
number of features, C' gives the number of classes, NV gives the number of samples.

samples), and hence the database used in this work is shortened, and uses only 1000 sam-
ples from each of the 7 classes, for a total of 7000 samples. This is done to reduce the
amount of time required for training and evaluating the classifiers, since a wrapper method
is being used for evaluation.

The real data sets used in this study are described in detail in Table 3.4. The methods
are also tested on versions of these data sets that include an extra copy of the real features
and an additional four features that are just noise, to test the feature selection capability
of the algorithm.

In all cases, the features of the data are individually normalized to lie in the range of
[0,1]. The data set is divided such that 20% of the data is used for testing, 20% of the data
is used as a validation set for scoring and the remainder is used for training. The reported
accuracy results are for accuracy on the testing set.

The genome employed for feature selection for the one vs. rest, fuzzy one vs. rest,
one vs. one and DAG-SVM uses one gene for each feature for each individual classifier
in the set. Each of these genes take a value of either zero or one, to signify whether that
particular feature is used in that individual classifier. For the one vs. rest and fuzzy one
vs. rest cases, this gives a genome of size F'C', and for the one vs. one and DAG-SVM
cases, the genome size is F'C(C' — 1)/2. This is similar to the feature selection portion of
the hierarchical classifier genome, as described in Section 3.1.1.

The scoring for the feature selection is based on an estimate of accuracy of the full
classifier, found using a validation set. In all cases, there are penalties for the total number
of features used by each of the individual classifiers, and for the number of features used
by the entire system. This is similar to the penalties applied to the hierarchical classifier
design, as described in Section 3.1.1.
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In all cases, the genetic algorithm is initialized with a random population of 500. For
the feature selected hierarchical classifier, the randomly generated genomes are reselected
if they do not generate a valid tree. At each generation, 50 solutions are replaced and bred,
and the mutation rate on the newly generated solutions is 10%. The maximum number of
epochs is set to 70, and the genetic algorithm will stop early if it has run for more than 20
epochs, and the total score for all individuals in the last two epochs is within 0.5% of the
total for the current run. The penalty terms in the score (ay, ap, ay) are all set to a very
low value (0.005), to prioritize accuracy, but to give a very small preference to classifiers
that use fewer numbers of features if the accuracies are the same.

All of the SVMs use linear kernels. Although non-linear kernels can achieve better accu-
racy on many data sets [21], all non-linear kernels have parameters that need to be tuned.
Poorly tuned parameters can affect results, and it is difficult to determine if differences
in performance are the result of the different multi-class extension, or just differences in
parameter tuning. Hence, a linear kernel is used for these experiments. Linear SVMs also
have an advantage over kernel SVMs in terms of testing time. For linear SVM, the class
of a point can be determined by projecting the point onto the normal of the separating
hyperplane and the testing time is therefore proportional to the number of input features
only and not the number of support vectors.

The ABT and decision tree code is written in Matlab. The code for the remaining tests
is written in C++. The SVM implementation is taken from the SVM Lite implementation
by Joachims [73].

Timing is measured using the standard C internal timer (clock()). The timer for the
entire genetic algorithm is started right before the genetic algorithm is started, and stopped
before the results are printed to file. Timing values for training the classifiers are also
given. A timer is started before a base classifier is trained, but after the training data set
is prepared. The timer is stopped when the training is complete and the timing value is
recorded. The total classifier training time is the sum of the training times of the base
classifiers. This gives an indication of how difficult it is to train the classifier.

The accuracy results shown are based on the average accuracy on the test set of the
top 10 best scoring trees, averaged over at least three runs.

The number of base classifiers used for testing is also reported. For the one vs. rest,
fuzzy one vs. rest, one vs. one and DAG-SVM, the same number of base classifiers have
to be queried to classify each point, regardless of the class distribution. For the tree-based
solutions, the number of base classifiers that need to be queried differs depending on the tree
design and on the distribution of the classes. The number of queries required is estimated
empirically by building each tree, and finding the number of base classifiers required to
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classify each class, as illustrated in Fig. 3.8. The number of classifiers is estimated in two
ways. First, by assuming that the number of points in each class is balanced and second
by assuming that the class distribution in the data set is representative. For a balanced
class distribution, the number of queries required is given as:

L
Qbat = ol Z Qe (3.5)
c=1

where @, is the number of queries required, assuming a balanced number of classes, C' is
the number of classes, and Q). is the number of queries required to classify class c.

If the class balance is the same as the data set, the number of queries is estimated as

1 C
Qrep = N CZ:; NCQC (36)

where @),, is the number of queries required, assuming the class balance in the data set,
N is the number of samples in the data set and N, is the number of samples from class c.

The results from these tests as well as the theoretical bounds are presented in 3.1.3.

The tests are all run on the Shared Hierarchical Academic Research Computing Network
(SHARCNET) clusters.

3.1.3 Results and Discussion

Results from tests with the multi-class KNN base classifier and binary SVM classifier are
presented in this section.

Multi-class KNN

Results for FSHC artificial data set 1 are presented in Table 3.5. The hierarchical struc-
tures are shown in Fig. 3.9 and 3.10. The accuracy of a flat classifier with no feature
selection is fairly low for this data set. The distance separating different classes is rela-
tively low compared to the noise, which is difficult for a KNN classifier. Feature selection
alone raises the accuracy significantly for the data set without noise. For the data set with
noise, the gain of feature selection is not as significant.

The hierarchical classifiers are able to give the best accuracy. However, the different
accuracy estimate methods produce quite different results. The validation set appears to
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Figure 3.8: Example classification tree, with the number of queries required to classify
each class, where (). is the number of classifiers required to be queried to classify a point
in class c.

Accuracy # features # features # base

(no repeats) (repeats) classifiers

Test 0% 5% | 0% 5% 0% 5% 0% 5%
All features 0.68 0.68 5 5 5 5 1 1
Features only 0.96 0.87 2 2 2 2 1 1
Validation set 1.00 1.00 2 3 2 3 2 2
Cross-validation | 0.99  1.00 2 3 2 3 1 2
RELIEF 1.00 0.85 5 5 9 7 3 2
Fisher’s 1.00 0.81 5 5 9 7 3 2
Fisher’s (scaled) | 1.00 0.57 5 1 5 1 3 1
Count RELIEF 1.00 1.00 3 5 3 5 2 2

Table 3.5: Results for FSHC artificial data set 1 with 0% and 5% noise. The column “#
features (no repeats)” gives the total number of features used in the hierarchical classifier
(F}). If the same feature is used by more than one base classifier, it is counted only once in
this column. The column “# features (repeats)” sums the total number of features used
by all the base classifiers (Fy). If a feature is used by more than one base classifier, it is
counted each time it is used.
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Classifier 1 Classifier 2 Classifier 1 Classifier 2 Classifier 1
(d) Fisher’s scaled (e) RELIEF (f) count-based RELIEF

Figure 3.9: Hierarchical classifiers generated for F'SHC artificial data set 1 with no noise
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(d) Fisher’s scaled (e) RELIEF (f) count-based RELIEF

Figure 3.10: Hierarchical classifiers generated for FSHC artificial data set 1 with 5%
uniform random noise
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produce good results. In the data set with no noise, the classifier generated using cross-
validation collapses down to the same single-level classifier generated with feature selection
alone.

For the data set with no noise, scaled Fisher performs quite well, and selects the same
tree as was originally envisioned (see Fig. 3.9d). Unfortunately, it does not perform nearly
as well in the data set with additive noise, selecting only a single feature and a flat classifier.
It is likely that the scaling is disproportionately large and the accuracy gain from adding
additional features is outweighed by the scaling factor. Scaling Fisher’s to the maximum
possible size is clearly not a good way to discourage the use of additional features. It is
likely better to simply re-tune the scoring parameters. However, this does mean that the
algorithm will need to be re-tuned for different data sets to give good results.

The unscaled version of Fisher’s criterion selects a similar tree to the scaled version for
the noise-free data set, but selects all five features for the top level of the tree (see Fig.
3.9¢). Although the tree is able to attain 100% accuracy on the test set, the selected tree
is not ideal, as it uses a large number of features and also has an increased chance of a
mis-classified point in the top level of the tree. In the data set with noise, the tree selected
is similar to the tree selected by RELIEF. In both cases, the tree is reasonable, separating
two classes in the top level and the other two classes in a lower level (see Fig. 3.10c and
3.10e). However, in both cases more features than necessary are selected in the top level
of the tree.

The count-based RELIEF measure performs well on both versions of this data set,
creating the same tree as the validation set in the non-noisy data set, and adding two
additional features in the noisy data set that increase the robustness of the classifier. (see
Fig. 3.9f and 3.10f). In fact, using a validation set or count-based RELIEF, the algorithm
was able to obtain a more compact classifier than was originally envisioned (see Fig. 3.9d).
These classifiers separate two classes completely in the first layer and use only two base
classifiers total, as pictured in Fig. 3.9a and 3.9f. This tree uses both fewer base classifiers
and fewer features in the noise-free case, and would be faster on average.

The results for data set two are presented in Table 3.6.

Fisher’s criterion is able to find the correct single-level tree for the data sets with 5%
and 20% noise. However, for the noiseless data set, Fisher’s separates the outputs into three
base classifiers that all use the same feature. For the 5% and noiseless data sets, RELIEF
also splits the classifier into two or three base classifiers, all using the same features. It is
unable to find the correct feature for the 20% data set. The count-based RELIEF measure
is able to find the appropriate one level classifier for the separable data sets, but splits the
20% noise set into a two level tree.
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Accuracy # features # features # base correct
(no repeats) (repeats) classifiers feature?

Test 0% 5% 20% | 0% 5% 20% | 0% 5% 20% | 0% 5% 20% | 0% 5% 20%
All features 0.92 0.93 0.62 4 4 4 4 4 4 1 1 1 N/A
Features only 1.00 1.00 0.74 1 1 1 1 1 1 1 1 1 Y Y Y
Validation set 1.00 1.00 0.58 1 1 4 1 1 5 1 1 2 Y Y N
Cross-validation | 1.00 1.00 0.66 1 1 2 1 1 3 1 1 2 Y Y N
RELIEF 1.00 1.00 0.74 1 1 2 3 2 3 3 2 2 Y Y N
Fisher’s 1.00 1.00 0.74 1 1 1 3 1 1 3 1 1 Y Y Y
Fisher’s (scaled) | 1.00 1.00 0.70 1 1 1 3 1 1 3 1 1 Y Y Y
Count RELIEF 1.00 1.00 0.78 1 1 1 1 1 2 1 1 2 Y Y Y

Table 3.6: Results for FSHC artificial data set 2 with 0%, 5% and 20% noise on feature
0. The column “# features (no repeats)” gives the total number of features used in the
hierarchical classifier (F}). If the same feature is used by more than one base classifier, it
is counted only once in this column. The column “# features (repeats)” sums the total
number of features used by all the base classifiers (F}). If a feature is used by more than
one base classifier, it is counted each time it is used.

Since the only feature used in all these trees is feature 0, the division is unnecessary
for the 1-NN classifier. However, for a classifier with a finite capacity, splitting the data
set in this manner may actually provide a benefit, by allocating more resources to classes
that are more difficult to classify.

In all the tests, the choice of performance measure affects the tree and feature set
selected. This indicates the importance of selecting an appropriate performance measure.

Binary SVM

Results from tests using different multi-class extension methods are shown in Tables 3.7,
3.10, 3.11 and 3.12. The methods are compared on the basis of accuracy, memory footprint,
training and testing time.

Accuracy Table 3.7 shows how the different methods compare in terms of accuracy.
Results are averaged over at least three runs. For tests that use feature selection, accuracy
for each run is averaged over the best 10 trees. The best accuracy is the best individual
solution over all runs.

It does not appear that there is one single method that is the best choice for all cases.
The only method that does not generate good results is the one vs. rest formulation with
no tie-breaking mechanism. The only case where this method generates moderately good
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abalone covertype ecoli
accuracy accuracy accuracy
method FS?| (avg) (best) precision recall|(avg) (best) precision recall|(avg) (best) precision recall
one vs. rest no 0.00 0.00 0.00 0.00| 0.34 0.34 0.61 0.64| 0.63 0.63 0.74 0.71
yes | 0.10 0.14 0.02 0.00| 0.42 047 0.61 0.64| 0.55 0.67 0.78 0.80
fuzzy OVR no 0.13 0.13 0.11 0.16| 0.63 0.63 0.63 0.63| 0.81 0.81 0.78 0.82
yes | 0.20 0.21 0.13 0.14| 0.60 0.62 0.63 0.61| 0.79 0.85 0.72 0.70
one vs. one no 0.20 0.20 0.26 0.17| 0.65 0.65 0.65 0.66| 0.82 0.82 0.79 0.68
yes | 0.18 0.23 0.25 0.17| 0.66 0.66 0.67 0.69| 0.80 0.84 0.72 0.63
DAG-SVM no | 0.24 0.24 0.24 0.17| 0.65 0.65 0.62 0.64| 0.77 0.77 0.77 0.72
yes | 0.11 0.17 0.24 0.16| 0.58 0.66 0.59 0.61| 0.74 0.82 0.74 0.76
SVM-BDT no 0.19 0.19 0.18 0.11| 0.63 0.63 0.61 0.63| 0.79 0.79 0.75 0.68
ABT no [N/JA N/A N/A N/A| 071 0.71 071 071/0.84 084  0.85 0.84
CART no 0.21 0.21 0.20 0.21| 0.79 0.79 0.79 0.79| 0.78 0.78 0.77 0.78
FSHC yes | 0.21 0.25 0.21 0.20| 0.65 0.67 0.62 0.62| 0.71 0.82 0.78 0.80
flag glass iris
accuracy accuracy accuracy
method FS?| (avg) (best) precision recall|(avg) (best) precision recall|(avg) (best) precision recall
one vs. rest no 0.11  0.11 0.52 042 0.12 0.12 0.52 0.38| 0.63 0.63 0.61 0.61
yes | 0.24 0.32 0.43 0.42| 044 045 0.52 0.46| 0.55 0.70 0.82 0.98
fuzzy OVR no 0.42 042 0.42 040| 049 049 0.54 0.51| 0.84 0.84 0.79 0.89
yes | 0.40 0.55 0.44 0.45| 0.57 0.62 0.50 0.50| 0.96 0.97 0.75 0.86
one vs. one no 0.45 0.45 0.36 0.36| 0.52 0.52 0.49 0.45| 096 0.96 0.98 0.97
yes | 0.39 0.45 0.38 0.42| 0.56 0.71 0.48 0.42| 095 1.00 0.83 0.86
DAG-SVM no 0.45 045 0.41 0.38| 0.54 0.54 0.57 0.47| 096 0.96 0.95 0.94
yes | 0.40 0.53 0.41 0.44| 050 0.55 0.50 0.46| 0.92 1.00 0.98 0.98
SVM-BDT no 0.39 0.39 0.39 0.35| 048 048 0.43 0.33| 0.97 0.97 0.96 0.96
ABT no 044 0.44 0.45 0.44| 052 0.52 0.60 0.54| 097 0.97 0.97 0.97
CART no | 0.54 0.54 0.53 0.53| 0.63 0.63 0.62 0.63| 0.93 0.93 0.94 0.93
FSHC yes | 0.38 0.50 0.38 0.41| 0.58 0.64 0.57 0.49| 0.95 1.00 0.98 0.98
image segm. statlog(vehicle) wine
accuracy accuracy accuracy
method FS?| (avg) (best) precision recall|(avg) (best) precision recall|(avg) (best) precision recall
one vs. rest no 0.74 0.74 0.79 0.81| 0.28 0.28 0.50 0.45| 094 0.94 0.99 0.99
yes | 0.72 0.75 0.79 0.81| 036 041 0.46 0.42| 094 0.94 0.99 0.99
fuzzy OVR no 0.87 0.87 0.87 0.89| 0.62 0.62 0.61 0.64| 0.98 0.98 0.96 0.94
yes | 0.91 0.92 0.85 0.86| 0.68 0.72 0.60 0.59| 0.97 1.00 0.97 0.97
one vs. one no 0.90 0.90 091 0.92| 0.68 0.68 0.68 0.66| 0.97 0.97 0.92 0.96
yes | 0.91 0.95 091 0.91| 0.67 0.75 0.66 0.66| 0.92 0.97 0.95 0.95
DAG-SVM  no 091 0.91 0.93 0.93| 0.69 0.69 0.69 0.67| 097 0.97 0.92 0.96
yes | 0.89 0.93 0.90 0.90| 0.70 0.75 0.68 0.69| 0.92 0.97 0.92 0.94
SVM-BDT no 091 091 091 091| 0.65 0.65 0.66 0.71| 097 0.97 0.94 0.95
ABT no | 0.95 0.95 0.94 0.95| 0.80 0.80 0.80 0.80| 0.94 0.94 0.95 0.94
CART no 094 0.94 094 0.94| 0.65 0.65 0.65 0.65| 0.83 0.83 0.83 0.83
FSHC yes | 0.90 0.92 091 091| 066 0.75 0.67 0.66| 0.90 0.94 0.90 0.92
Table continued on page 74

Table 3.7: Accuracy of FSHC and common multi-class extensions on different data sets.
FS column indicates if feature selection is used. The average accuracy gives the average
of the 10 best scoring trees from each genetic algorithm, averaged over at least three runs.
The best accuracy is the best individual solution over all runs. Bold values indicate the
highest accuracy in a column.
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Continued from Table 3.7 on page 73
artificial
accuracy

method FS? | (avg) (best) precision recall
one vs. rest no 0.42 0.42 0.55 0.42
yes | 0.44 0.57 0.49 0.43
fuzzy OVR no 0.61 0.61 0.62 0.63
yes | 0.78 0.96 0.69 0.72
one vs. one no 0.63 0.63 0.63 0.63
yes | 0.85 0.99 0.97 0.98
DAG-SVM no 0.59 0.59 0.65 0.53
yes | 0.92 1.00 0.99 0.99
SVM-BDT no 0.62 0.62 0.60 0.60
ABT no | 1.00 1.00 1.00 1.00
CART no 0.99 0.99 0.99 0.99
FSHC yes | 0.97 1.00 1.00 1.00

Table 3.7 (cont.): Accuracy of FSHC and common multi-class extensions on different data
sets. FS column indicates if feature selection is used. The average accuracy gives the
average of the 10 best scoring trees from each genetic algorithm, averaged over at least
three runs. The best accuracy is the best individual solution over all runs. Bold values
indicate the highest accuracy in a column.

results is on the wine data set, indicating that the classes are likely very separated and the
data is quite well behaved. In all the other cases, the other methods perform better.

It is interesting to note that the much simpler non-SVM-based decision tree classifier
is able to outperform the more complex SVM-based classifiers on several data sets. ABT
also performs well on some of the data sets. These two hierarchical classifiers differ from
the SVM-BDT and FSHC in that they allow classes to be classified as being on both sides
of some nodes. This improves accuracy, but creates a tree with a larger number of nodes,
which increases the memory footprint as well as the test time. For ABT, each node is
based on a classifier that is trained on one pair of classes. If none of the other classes
are well separated by any node, only one class is eliminated at each level. The maximum
number of nodes in the tree is 2(¢~Y which is a problem for data sets with a large number
of classes, such as the 30-class abalone data set.

FSHC has the highest best-run accuracy on three of the tested data sets, indicating
that this method can perform well if the genetic algorithm run is evaluated carefully. Fea-
ture selection helps for all multi-class extensions. The best-run feature selected accuracy
is higher than the non-feature-selected accuracy in 39 out of 45 real tests and in all the ar-
tificial tests. Feature selection also creates classifiers that have a smaller memory footprint
and are faster during the testing phase. Feature selection is the least successful for the one
vs. one and DAG-SVM extensions where in three cases the best-run accuracy is actually
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lower than the un-feature selected case, and an additional three where the difference is less
than 1%. Wrapper methods can select a set of features that works well for the training set,
but not do generalizing well [91]. Both the one vs. one and DAG-SVM train classifiers on
each pair of classes. The number of samples for each classifier is therefore relatively small,
and this increases the possibility of selecting a set of features that does not generalize well
to unseen data.

It is interesting to note that the performance of the fuzzy one vs. rest method is much
better than the one vs. rest with no tie-breaking mechanism. This means that in the one
vs. rest formulation, there are a significant number of points that are being misclassified
by the individual base classifiers in the system. Similarly, it is also possible for the one vs.
one method to recover the correct classification if a point is misclassified by one of the base
classifiers. The tree-based solutions cannot do this. If a point is misclassified by a single
base classifier, then the point will be misclassified.

The variance between different runs is quite high. Looking at only the best run gen-
erates accuracies that are much higher, indicating either that the genetic algorithm is not
converging to an appropriate minimum, or that the selected features do not generalize well.
In particular for the flag and glass data sets, the difference between the average and best
runs for almost all the methods is quite significant, indicating that there may be a large
amount of variance in the data set. This makes intuitive sense for the flag data set, where
the objective is to determine the religion of a country based on characteristics of its flag.
While there are likely to be some similarities between countries of similar religions, there
are also likely to be many outliers.

In order to determine if the large variance is a result of poor initialization, or an
unrepresentative validation set, new tests are run using the same initial population or the
separation of the data set over 10 runs of the algorithm. These tests are run on the flag
and glass data sets, since these data sets exhibit a large amount of variance. The results
from these tests are presented in Table 3.8.

In these tests, the accuracy appears to be lower than average when the test set is held
constant. This most likely occurs because the selected test set is more difficult than the
average. If the test set contains a larger number of difficult to classify points, the accuracy
will be lower.

Although there is a slight decrease in variance when the test set and initialization
are held constant, the variance is still quite high. While using different test sets and
initializations does appear to contribute to the variance between runs, there are also likely
other sources of this variation. It may be that the distribution of the validation set and
test set are very different, and while different configurations give similar results on the
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parameter held flag glass
method FS? | init. data set avg std avg std
fuzzy OVR | yes yes yes 0.42 0.05 | 0.42 0.06
yes yes no 0.38 0.06 | 0.50 0.12
yes no yes 0.35 0.07 | 0.36 0.10
yes no no 0.42 0.06 | 0.50 0.15
one vs. one | yes yes yes 0.42 0.04 | 0.51 0.05
yes yes no 0.38 0.12 | 0.54 0.12
yes no yes 0.41 0.06 | 0.45 0.11
yes no no 0.38 0.09 | 0.57 0.06
DAG-SVM | yes yes yes 0.37 0.04 | 0.42 0.08
yes yes no 0.36 0.05 | 0.46 0.08
yes no yes 0.38 0.05 | 0.38 0.07
yes no no 0.38 0.07 | 0.46 0.08
FSHC yes yes yes 0.34 0.04 | 0.38 0.05
yes yes no 0.36 0.07 | 0.49 0.07
yes no yes 0.34 0.04 | 0.41 0.12
yes no no 0.36 0.07 | 0.47 0.08

Table 3.8: Accuracy of FSHC across different runs while holding initialization or data set
division constant

validation set, the results are quite different on the test set.

In order to test this hypothesis, a new test was run using leave-one-out cross validation
on the training set instead of a validation set as an estimate of the accuracy for the scoring.
This gives a larger number of points on which to base the estimate of the accuracy. However,
this requires that a new model be trained for each point in the training set. Similar to the
validation set, the results from previous tests are saved and re-used when possible, but the
time required for training is still significantly longer than the validation set. The results
from these tests are given in Table 3.9. In all tests, the initialization and data set division
are the same for all runs.

The variation between the tests is lower when using leave-one-out cross validation, but
it is still fairly high, indicating that even the expanded test does not fully capture the
behavior of the test set. The accuracy values themselves are not significantly improved.
Hence, using a leave-one-out cross validation gives results that are slightly more robust,
but at the cost of a much longer training time, with little improvement in accuracy.

Memory footprint The total memory footprint of the classifiers after training is de-
pendent on the number of classifiers that are trained, and also on the number of features
that each classifier uses. For a non-linear SVM, the memory footprint is also dependent
on the number of support vectors. However, for a linear classifier only the normal of the
hyperplane needs to be stored, meaning there is a single vector for each base classifier. The
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flag
method FS? | acc. (avg) acc. (std)
fuzzy OVR | yes 0.42 0.04
one vs. one | yes 0.40 0.02
DAG-SVM | yes 0.39 0.02
FSHC yes 0.35 0.03

Table 3.9: Average and standard deviation of FSHC accuracies for ten runs using leave-one-
out cross validation to estimate accuracy, using the same data set division and initialization
parameters for all tests

total number of features, base classifiers and the total memory footprint for all classifiers
is presented in Table 3.10.

As expected, in most cases the classifiers with the largest memory footprint are the
one vs. one and the DAG-SVM, due to the larger number of base classifiers required. As
the number of classes becomes smaller, this difference becomes less pronounced, and with
only three classes, the number of classifiers required for a one vs. rest and one vs. one
classification are the same. Using a smaller number of classifiers and using feature selection
reduces the memory footprint.

Training time The training times for the feature selection algorithms are presented in
Table 3.11. T,,. gives the average time to train all the base classifiers in one multi-class
classifier. T4 gives the time required to run the entire genetic algorithm. The Epochs
column indicates the number of epochs that the genetic algorithm required to converge.

In most cases, the time required to train the final classifiers is negligible. The time
required to run the full genetic algorithm whether for feature selection or the full feature-
selected hierarchical classifier, is similar in most cases. The time required seems to be more
dependent on the data set than on the extension method.

In some cases, there are outliers that greatly affect the average time required. The
variance between training times in some cases is quite high, and time required for some
training runs appears to be dominated in individual classifiers that are difficult to train
and therefore account for a disproportionately large amount of the training time. This
tends to occur more often with the one vs. one and DAG-SVM and is likely because there
are a larger number of classifiers being trained. The time required for the FSHC method
described in this paper appears to be comparable to using any of the other methods and
using a genetic algorithm for feature selection.
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abalone covertype ecoli
method FS? | Fu; Fiot # base | Fyy Fiot # base | Fyp; Fiot # base
one vs. rest no 8.0 240.0 30.0 | 56.0 392.0 70| 7.0 56.0 8.0
yes 8.0 106.8 30.0 | 55.7 208.3 70| 6.3 27.4 8.0
fuzzy OVR  no 8.0 240.0 30.0 | 56.0 392.0 70| 7.0 56.0 8.0
yes 8.0 110.3 30.0 | 53.7 197.9 7.0 7.0 24.7 8.0
one vs. one  no 8.0 3480.0 435.0 | 56.0 1176.0 21.0| 7.0 196.0 28.0
yes 8.0 1725.0 435.0 | 56.0 603.0 21.0| 7.0 87.7 28.0
DAG-SVM  no 8.0 3480.0 435.0 | 56.0 1176.0 21.0| 7.0 196.0 28.0
yes 8.0 1748.5 435.0 | 56.0 584.0 21.0| 7.0 100.2 28.0
ABT no N/A N/A N/A | 56.0 1332.8(851.2) 23.8(15.2) | 7.0 337.4(147.0) 48.2(21)
SVM-BDT  no 8.0 232.0 29.0 | 56.0 336.0 6.0 7.0 49.0 7.0
FSHC yes 8.0 116.1 29.0 | 55.7 167.3 6.0 7.0 24.2 7.0
flag glass iris
Fau Fot # base | Fuy Fot # base | Fau Fiot  # base
one vs. rest no 28.0 224.0 8.0 9.0 63.0 70| 4.0 12.0 3.0
yes | 27.0 96.9 80| 7.7 22.3 7.0 2.0 3.0 3.0
fuzzy OVR  no 28.0 224.0 8.0 9.0 63.0 7.0 | 4.0 12.0 3.0
yes | 27.7 101.6 8.0 8.7 25.7 7.0 4.0 6.0 3.0
one vs. one  no 28.0 784.0 28.0 9.0 189.0 21.0| 4.0 12.0 3.0
yes | 28.0 364.6 28.0 9.0 79.6 21.0| 2.2 3.8 3.0
DAG-SVM  no 28.0 784.0 28.0 9.0 189.0 21.0| 4.0 12.0 3.0
yes | 28.0 369.8 28.0 9.0 86.1 21.0| 2.6 4.8 3.0
ABT no 28.0 3511.2(778.4) 125.4(27.8) 9.0 169.2(118.8) 18.8(13.2) | 4.0 8.0(8.0) 2.0(2.0)
SVM-BDT  no 28.0 196.0 7.0 9.0 54.0 6.0 4.0 8.0 2.0
FSHC yes | 27.1 87.5 7.0 8.5 29.0 6.0 1.8 2.5 2.0
image segm. statlog (vehicle) wine
Fall Fiot # base Fall Fiot # base Fu,ll Fiot # base
one vs. rest no 18.0 126.0 7.0 | 18.0 72.0 4.0 | 13.0 39.0 3.0
yes | 18.0 65.1 7.0 16.3 34.3 40| 9.3 18.9 3.0
fuzzy OVR  no 18.0 126.0 7.0 | 18.0 72.0 4.0 | 13.0 39.0 3.0
yes | 18.0 66.2 7.0 17.3 34.7 40| 7.5 12.8 3.0
one vs. one  no 18.0 378.0 21.0 | 18.0 108.0 6.0 | 13.0 39.0 3.0
yes | 18.0 191.1 21.0 | 174 55.6 6.0| 7.2 12.2 3.0
DAG-SVM  no 18.0 378.0 21.0 | 18.0 108.0 6.0 | 13.0 39.0 3.0
yes | 18.0 180.5 21.0 | 17.7 59.3 6.0| 7.2 12.2 3.0
ABT no 18.0 450.0(248.4) 25.0(13.8) | 18.0 122.4(104.4) 6.8(5.8) | 13.0 39.0(39.0) 3.0(3.0)
SVM-BDT no 18.0 108.0 6.0 | 18.0 54.0 3.0 | 13.0 26.0 2.0
FSHC yes | 18.0 57.1 6.0 | 16.3 30.2 3.0| 6.8 9.5 2.0
Continued on page 79

Table 3.10: Number of features, base classifiers and memory footprint for FSHC and
common multi-class extensions. Fy; gives the overall number of features used by any of
the base classifiers in the system. Fj, gives the total number of inputs to all the base
classifiers. The column “# base” gives the number of base classifiers that need to be
trained and stored for each method. For ABT, it is possible for the same classifier to
appear at multiple points in the tree. For ABT the total number of classifiers in the tree
is given in the “# base” column, and the number of different base classifiers that would
need to be stored is given in parentheses.
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Continued from Table 3.10 on page 78
artificial

Fall Fiot # base
one vs. rest no 5.0 20.0 4.0
yes 4.0 8.7 4.0
fuzzy OVR no 5.0 20.0 4.0
yes 4.5 7.5 4.0
one vs. one no 5.0 30.0 6.0
yes 4.3 8.3 6.0
DAG-SVM no 5.0 30.0 6.0
yes 4.3 9.0 6.0
ABT no 5.0 15.0(15.0) 3.0(3.0)
SVM-BDT no 5.0 15.0 3.0
FSHC yes 3.8 4.4 3.0

Table 3.10 (cont.): Number of features,base classifiers and memory footprint for FSHC
and common multi-class extension methods. Fy; gives the overall number of features used
by any of the base classifiers in the system. Fj,; gives the total number of inputs to all
the base classifiers. The column “# base” gives the number of base classifiers that need to
be trained and stored for each method. For ABT, it is possible for the same classifier to
appear at multiple points in the tree. For ABT the total number of classifiers in the tree
is given in the “# base” column, and the number of different base classifiers that would
need to be stored is given in parentheses.

Testing time The major advantage of a tree-based solution is the time required for
testing. Because the kernel used is linear, testing a single point on a single base classifier
consists of finding the distance to the normal of the separating hyperplane. This distance
is used directly in the fuzzy one vs. rest formulation, and the others use the classification,
which is found by taking the sign of the distance. For a kernel SVM, the test time is
proportional to the number of support vectors, and these are also reported in Table 3.12.
It is important to note that this implementation does not directly penalize solutions with
larger numbers of support vectors. However, a penalty term could be added to the scoring
function (Eq. 3.4) if a kernel SVM is being used as the base classifier.

Assuming a squared Euclidean distance, each distance measurement consists of F; mul-
tiplies and 2F; additions, where Fj is the number of features used in the base classifier.
Hence the time required for the overall classification is dependent both on the number of
features used by each individual classifier, and the number of base classifiers that need to
be queried.

For the one vs. rest, fuzzy one vs. rest, one vs. one and DAG-SVM, the number of
queries required is always the same for the same data set, regardless of the class balance.
For the one vs. rest and fuzzy one vs. rest methods, all of the C' trained classifiers need to
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Table 3.11: Training times for FSHC and common multi-class extensions. The column FS
indicates if a genetic algorithm is used for feature selection. The column T,,. gives the
average combined time required to train all the base classifiers in one multi-class classifier.
The column T, gives the average time required to run the full genetic algorithm. The
column “epochs” indicates the number of epochs that the genetic algorithm required before

it hit a stopping condition.

80

abalone covertype ecoli flag
method FS?| Twme Tga epochs|Tme Tga epochs| Tyme Tga epochs | Tme Tga epochs
one vs. rest | yes 0.06 388 25.3 | 3.53 748 26.7 | 0.03 34 24.3 | 0.00 436 30.0
fuzzy OVR | yes 0.05 383 21.0 | 5.36 1310 25.3 | 0.00 35 22.3 | 0.05 78 31.8
one vs. one | yes | 86.01 9010 21.3 | 1.07 676 25.0 | 0.03 1500 22.4|0.67 166 27.2
DAG-SVM | yes 0.10 10550 21.0 | 0.72 967 22.0 | 0.00 39 23.3 | 0.02 161 23.7
FSHC yes 0.72 843 28.0 | 1.72 1070 25.7 | 0.05 36 34.0 1 0.01 112 54.7
glass iris image segm. statlog(vehicle)

Tme Tga epochs | Tye Tga epochs | Tme Tga epochs | Tme Tga epochs
one vs. rest | yes 0.00 39 23.3 | 2.40 37 21.0 | 0.06 388 25.3 | 0.06 84 22.7
fuzzy OVR | yes 0.00 37 23.3 | 0.00 29 21.0 | 0.05 383 21.0 | 0.07 83 25.7
one vs. one | yes 0.00 52 21.8 | 0.00 32 21.0 | 86.01 9010 21.3 | 0.24 1360 21.8
DAG-SVM | yes 0.00 52 22.0 | 6.40 30 21.0 | 0.10 10550 21.0 | 0.04 42 21.0
FSHC yes 0.00 38 26.5 | 0.00 31 30.0 | 0.72 843 28.0 | 0.03 59 28.3

wine artificial

Tme Taga epochs | Tye Tga epochs
one vs. rest | yes 0.01 34 22.0 | 154 n/a 21.0
fuzzy OVR | yes 0.00 30 21.0| 7.3 26700 21.4
one vs. one | yes 0.01 336 21.0 | 28.0 n/a 21.0
DAG-SVM | yes 0.03 63 2121 79 46 21.0
FSHC yes 0.00 32 36.5| 2.3 301 21.8




queried. For the one vs. one method, all of the C(C — 1)/2 classifiers need to be queried.
The DAG-SVM requires (C' — 1) queries, with each query eliminating a single class.

For the tree-based solutions, the number of queries required depends heavily on the
structure of the tree. For a balanced class distribution, the smallest number of queries
required occurs when the number of classes is a power of two, and the tree is perfectly
balanced. In this case, the number of queries required is log,(C). The largest number of
queries occurs on a fully unbalanced tree, when one class is separated in each level. In this
case, the number of queries required is:

1 C
Qbal—longTree = E ((; C> - 1) (37)

For an unbalanced set of classes, the number of queries can become quite skewed. If
the tree is balanced, the number of queries is again log,(C'). However, if the tree is also
heavily unbalanced, the average number of queries depends on where in the tree the largest
classes are separated. The worst case occurs when the largest class is at the lowest point
on a heavily unbalanced tree. In this case, the number of queries approaches (C-1), which
is still fewer than the number required for a DAG-SVM. In the best case, if the largest
class is separated at the top of the tree, the number of queries approaches one.

Because the number of queries required for the tree can vary, the number of queries
is estimated empirically, as described in Section 3.1.2. The average number of features,
queries and multiplications for each method are show in Table 3.12.

The time required for testing is also dependent on the time required to calculate any
features. In some cases, there is almost no cost for acquiring features. For example, if
the features are pixels in an image, the features are easy to extract once the image is
obtained. Calculated features may each have an associated cost. For example, averaging
over a number of pixels. Feature cost can also be affected by the features already included
in the set. For example, if some of the features are frequency components in a certain range
or bin, then the cost of adding the first bin is high, because it would require performing a
fast Fourier transform on the data. The added cost of any further bins is lower, because
most of the calculations are already being performed.

In the proposed FSHC algorithm, a penalty for the number of features that need to be
calculated is included in the scoring function as «; (see Equation 3.4), although the penalty
is set to be very small for this test. In this case, the scoring function penalizes each feature
equally. However, because the scoring function of the genetic algorithm is fairly flexible, it
is also possible to use a more complex formulation, penalizing a different amount for using
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abalone covertype

method FS? Favg Qbal Qrep Mbal Mrep vaal SVrep Favg Qbal Q'rep Mbal M’rep SVbal SVrep
one vs. rest no 8.0 30.0 30.0 240 240 7120 T7120| 56.0 7.0 7.0 392 392 8870 8870
yes 3.6 30.0 30.0 106 106 6500 6500| 29.8 7.0 7.0 208 208 9360 9360

fuzzy OVR no 80 30.0 30.0 240 240 7100 T7100| 56.0 7.0 7.0 392 392 8910 8910
yes 3.7 30.0 30.0 110 110 6220 6220|283 7.0 7.0 197 198 9430 9420

one vs. one no 8.0 435.0 435.0 3480 3480 22600 22600| 56.0 21.0 21.0 1180 1180 7700 7710
yes 4.0 435.0 435.0 1725 1725 21700 21700| 28.7 21.0 21.0 603 603 8110 8110

DAG-SVM  no 8.0 29.0 29.0 232 232 1500 1500| 56.0 6.0 6.0 336 336 2190 2190
yes 40 29.0 29.0 116 116 1450 1450|27.8 6.0 6.0 166 166 2530 2530

ABT no |[N/JA N/A N/A N/A N/A N/A N/A| 560 44 44 248 248 1000 1000
SVM-BDT no 8.0 6.7 6.7 53 53 2670 3610| 56.0 3.0 3.0 168 168 2170 2170
FSHC yes 40 5.3 5.3 21 21 4320 4600| 27.9 3.2 3.2 88 88 2840 2840

ecoli flag

Favg Qbal Qrep Mbal Mrep vaal SVrep Favg Qbal Q'rep Mbal Mrep SVbal SVrep

one vs. rest no 7.0 8.0 8.0 56 56 405 405( 28.0 8.0 8.0 224 224 377 377
yes 3.4 8.0 8.0 27 27 392 392(12.1 8.0 8.0 96 97 373 373

fuzzy OVR no 7.0 8.0 8.0 56 56 409 408 28.0 8.0 8.0 224 224 385 385
yes 3.1 8.0 8.0 24 24 409 409| 12.7 80 80 101 101 387 387

one vs. one no 7.0 28.0 28.0 196 196 478 478 | 28.0 28.0 28.0 784 784 670 670
yes 3.1 28.0 28.0 87 87 510 509 | 13.0 28.0 28.0 365 364 605 605

DAG-SVM  no 7.0 7.0 7.0 49 49 121 121 280 7.0 7.0 196 196 163 163
yes 3.6 7.0 7.0 25 25 124 124 13.2 70 7.0 92 92 151 151

ABT no 7.0 6.1 6.1 42 42 53 53| 280 7.0 7.0 195 195 106 106
SVM-BDT no 7.0 3.4 3.5 23 25 119 142 28.0 3.7 4.1 104 114 160 184
FSHC yes 35 3.1 3.4 10.8 11.7 149 159 125 3.2 3.1 40 38 179 181

glass iris

Favg Qbal Q'r‘ep Mpal Mrep SVhai SVrep Favg Qbal Q'rep Mpai M’rep SViai SVrep

one vs. rest no 9.0 7.0 7.0 63 63 370 370 4.0 3.0 3.0 12 12 139 139
yes 3.2 7.0 7.0 22 22 369 369 1.0 3.0 3.0 3 3 140 140

fuzzy OVR no 9.0 7.0 7.0 63 63 357 357 4.0 3.0 3.0 12 12 140 140
yes 3.7 7.0 7.0 26 25 366 366 2.0 3.0 3.0 6 6 142 142

one vs. one no 9.0 21.0 21.0 189 189 366 366 4.0 3.0 3.0 12 12 70 70
yes 3.8 21.0 21.0 80 79 423 423 1.3 3.0 3.0 3 4 106 106

DAG-SVM  no 9.0 6.0 6.0 54 54 415 415 4.0 2.0 2.0 8 8 48 48
yes 4.1 6.0 6.0 25 24 119 119| 16 20 20 3 3 50 50

ABT no 9.0 5.0 5.0 45 45 28600 28600| 4.0 1.7 1.7 7 7 12 12
SVM-BDT no 9.0 3.3 3.7 30 33 113 158| 4.0 1.7 1.7 7 7 50 50
FSHC yes 48 3.1 3.0 15 14 192 193 1.3 1.7 1.7 2 2 49 49

Continued on page 83

Table 3.12: Average number of classifiers, features and multiplications required to classify
a point using FSHC and common multi-class extensions. F,,, gives the average number
of features per base classifier, QQpy gives the number of base classifiers that need to be
queried assuming the number of samples in each class is balanced, @), gives the number
of base classifiers that need to be queried using the class distribution in the data set, and
Mppq and M,., are the number of multiplications required to classify a point using the two
different methods of estimating the class balance. SV, and SV, give the average number
of support vectors in all queried base classifiers for the two different methods of estimating

the class balance. Time gives the testing time for each test data set.
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Continued from Table 3.12 on page 82
image segm. statlog (vehicle)
szg Qbal QTep Mbal M'rsp SVbal SV'rey Favg Qbal Qrep Mbal Mrep SVbal SVTEp
onevs. rest no | 180 7.0 7.0 126 126 1930 1930| 18.0 4.0 4.0 72 72 1350 1350
yes| 93 7.0 7.0 65 65 1930 1930| 8.6 4.0 4.0 34 34 1350 1350
fuzzy OVR no | 180 7.0 7.0 126 126 1940 1940| 180 4.0 4.0 72 72 1350 1350
yes| 9.5 70 7.0 66 66 2000 2000 87 4.0 4.0 35 35 1370 1370
one vs. one no | 18.0 21.0 21.0 378 378 1610 1610| 180 6.0 6.0 108 108 1360 1360
yes| 9.1 21.0 21.0 191 191 1880 1880| 9.3 6.0 6.0 56 56 1380 1380
DAG-SVM no | 180 6.0 6.0 108 108 463 463| 18.0 3.0 3.0 54 54 682 682
yes| 86 6.0 6.0 52 52 511 511 9.9 3.0 3.0 30 30 676 676

ABT no | 18.0 4.5 4.5 81 81 90 90| 18.0 29 29 53 53 240 240

SVM-BDT no | 180 3.6 3.6 64 64 460 460| 18.0 2.3 2.3 40 41 712 719

FSHC yes| 9.5 3.0 3.0 29 29 569 569| 10.1 2.1 2.1 21 21 733 734
wine artificial

szg Qbal QTep Mbal M’!‘Ep SVbal SVTE;H Favg Qbal Qrep Mbal Mrep SVbal SV’V‘EP
one vs. rest no | 13.0 3.0 3.0 39 39 155 154| 5.0 4.0 4.0 20 20 628 628
yes| 63 3.0 3.0 19 19 150 150 2.2 4.0 4.0 8 8 602 602
fuzzy OVR no | 13.0 3.0 3.0 39 39 154 154| 5.0 4.0 4.0 20 20 636 636
yes| 4.3 3.0 3.0 13 13 144 144 1.9 40 4.0 7 7 610 610
one vs. one no | 13.0 3.0 3.0 39 39 107 107 5.0 6.0 6.0 30 30 336 336
yes| 4.1 3.0 3.0 12 12 97 97| 1.4 6.0 6.0 8 8 133 133
DAG-SVM no | 13.0 2.0 20 26 26 71 71| 50 3.0 3.0 15 15 173 173
yes| 4.1 2.0 2.0 8 8 68 68 1.5 3.0 3.0 4 4 38 38

ABT no | 13.0 2.0 20 26 26 18 18| 5.0 2.0 20 10 10 13 13
SVM-BDT no | 13.0 1.7 1.7 22 22 69 721 5.0 2.0 2.0 10 10 157 157
FSHC yes| 4.7 1.7 1.7 8 8 75 76| 1.5 2.0 2.0 3 3 37 37

Table 3.12 (cont.): Average number of classifiers, features and multiplications required to
classify a point using FSHC and common multi-class extensions. F,,, gives the average
number of features per base classifier, Qs gives the number of base classifiers that need
to be queried assuming the number of samples in each class is balanced, Q,¢, gives the
number of base classifiers that need to be queried using the class distribution in the data
set, and M, and M,., are the number of multiplications required to classify a point using
the two different methods of estimating the class balance. SV,, and SV, give the average
number of support vectors in all queried base classifiers for the two different methods of
estimating the class balance. Time gives the testing time for each test data set.
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different features, or adjusting the cost based on the features already included in the set.
This approach would also work if the cost of the features is not a computational cost, but,
for example, a monetary cost, like the cost of a medical test.

Feature selection for noisy and redundant features As shown in Table 3.10, in
most cases almost all the features are selected for use in the tree, even if the individual
classifiers use only a subset of the features. This is not entirely surprising, given that the
features are most often selected for inclusion in a data set because they are thought to hold
some information. Hence, an additional experiment is conducted specifically to test the
effect of redundant and noisy features in a data set. New data sets are created by adding
a redundant copy of each of the features as well as four noisy features. The results for the
various algorithms, both with and without feature selection, are presented in Table 3.13.

In most cases there is a fairly significant reduction in the summed total number of
features used by all the base classifiers. There is a less significant reduction in the total
number of features used by the classifier. In these tests, the penalty for including extra
features is very low (a; = 0.005), to prioritize accuracy. In data sets where the number of
noisy features is large compared the size of the data set (ex. iris), the noisy features and
redundant features are more likely to be eliminated, as they have a larger effect on the
accuracy.

Both the ABT and CART classifiers perform quite well in these tests, at the expense of
a larger number of nodes in the tree. For the fuzzy one vs. rest method and tree methods,
the improvement in accuracy due to feature selection is significant. Most likely the noisy
features are contributing to this reduction in accuracy when feature selection is omitted.
The one vs. rest, one vs. one and tree-based classifiers are more robust to noise, and
the gains in accuracy are much less significant. The one exception is the wine data set,
where the number of features under consideration is 30 (13 original features and 13 copied
features, plus 4 noise features), and the number of samples is only 178. The relatively
small number of samples and large feature set size means the selected features may be
too specific to the training set and do not generalize well, contributing to a reduction in
accuracy.

3.1.4 FSHC Summary

Experiments with the multi-modal KNN classifier show that FSHC is capable of finding
a feature-selected hierarchical classifier that can outperform a single level classifier. It
can also find an appropriate single level classifier, although it has some difficulty with
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ecoli flag glass
FS? | accuracy  Fy;;  Fiot base | accuracy  Fy;  Fiot  base | accuracy  Fy;  Fior base
fuzzy OVR | no 0.85 144 18 8 0.45 480 60 8 0.41 154 22 7
yes 0.78 62.1 17 8 0.51 2154 59.7 8 0.56 61.9 20.8 7
one vs. one | no 0.80 504 18 28 0.45 1680 60 28 0.40 462 22 21
yes 0.82 210.6 18 28 0.55 757.4 60 28 0.46 188.7 22 21
DAG-SVM | no 0.82 504 18 28 0.55 1680 60 28 0.44 462 22 21
yes 0.85 225.5 18 28 0.42 803.7 60 28 0.48 181.2 22 21
SVM-BDT | no 0.80 126 18 7.0 0.37 420 60 7.0 0.48 132 22 6.0
ABT no 0.88 1008 18 56 0.42 7608 60 126.8 0.50 475 22 216
CART no 0.78 20.0 9.0 20 0.51 18.0 10.7 18 0.65 21.7 10.7 21.7
FSHC yes 0.83 53.8 17 7.0 0.41 189.8 59.3 7.0 0.55 55.5 19.3 6.0
iris image segm. vehicle
FS? | accuracy Fa1 Fiot base | accuracy  Fy;;  Fiot base | accuracy Fau  Fiot base
fuzzy OVR | no 0.82 36 12 3 0.84 280 40 7 0.62 160 40 4
yes 0.93 9.3 6 3 0.88 130.9 39.5 7 0.65 719 353 4
one vs. one | no 0.93 36 12 3 0.90 840 40 21 0.63 240 40 6
yes 0.93 8.3 4.7 3 0.90 394.2 40 21 0.67 116.7 39.2 6
DAG-SVM | no 0.95 36 12 3 0.92 840 40 21 0.65 240 40 6
yes 96 8.7 4.8 3 0.91 397.1 40 21 0.67 115.6 38.6 6
SVM-BDT | no 0.93 24 12 2.0 0.91 240 40 6.0 0.56 120 40 3.0
ABT no 0.94 24 12 2.0 0.94 1064 40  26.6 0.81 280 40 7
CART no 0.94 4.0 2.6 4 0.93 43.4 15.3 434 0.69 63.3 21.0 63.3
FSHC yes 0.95 6.6 4.7 2.0 0.92 126.3 39.1 6.0 0.70 56.2 339 3.0
wine artificial
FS? | accuracy  Fy;; Fiot base | accuracy  Fy;  Firot  base
fuzzy OVR | no 1.00 90 30 3 0.53 56 14 4
yes 0.93 22 14.3 3 0.59 20.7 11.5 4
one vs. one | no 0.98 90 30 3 0.47 84 14 6
yes 0.94 19.1 136 3 0.98 24.7 10.9 6
DAG-SVM | no 0.99 90 30 3 0.55 84 14 6
yes 0.93 23 15.3 3 0.99 28.3 10.3 6
SVM-BDT | no 0.97 60 30 2.0 0.53 42 14 3.0
ABT no 0.98 90 30 3 0.99 62 14 4.4
CART no 0.91 6.0 5.0 6 1.00 3.0 3.0 3.0
FSHC yes 0.93 13.3 12 2.0 1.00 10.7 8.3 3.0

Table 3.13: Accuracy, number of features and number of base classifiers for data sets with
added redundant and noisy features for FSHC and multi-class extensions with and without
feature selection

85



inseparable sets. Results with the different accuracy estimation measures show that the
filter measure is an important consideration.

Experiments with the binary SVM show that FSHC is able to achieve accuracies com-
parable with other multi-class methods, but with a shorter testing time. These results also
indicate the importance of feature selection, as feature selection is shown to improve accu-
racy particularly if there are noisy features, or features that are only partially informative
about the classes.

The use of a genetic algorithm does present some problems with robustness, as different
initializations can generate different results. Additionally, both CART and ABT achieve
good results in these tests. The trees generated by these algorithms are different than the
tree structures generated by FSHC. ABT and CART add the ability to let points from a
single class be output on either side of a node, which appears to improve accuracy.

A different tree-generation algorithm is therefore proposed in Section 3.2, which adds
the ability to have classes at more than one node output.

3.2 Multi-modal binary-tree classification (MBT) 2

In this section, the multi-modal binary tree classifier is introduced. Experiments with the
FSHC algorithm indicate that a tree-based approach can achieve good accuracy and is
particularly useful if test time is important. However, FSHC does not allow classes to
appear at more than one node output.

Both ABT and CART achieve good results on many data sets and both allow classes to
appear at both sides of a node. This increases the potential number of nodes of the tree,
but generally improves accuracy. However, the ABT still requires that at least two classes
be separated at each node. The decision tree does not have this restriction, but uses only
a single feature at each node.

Multi-modal binary tree (MBT) tolerates misclassified points by adding additional clas-
sification nodes to re-classify initially misclassified training points as required. This creates
a piecewise linear separation of the data from different classes, which means non-linear and
multi-modal data sets can be separated using a set of simple classifiers such as linear SVMs.

Unlike FSHC, MBT uses a sequential approach to tree design and feature selection
rather than jointly optimizing with a genetic algorithm. There are a number of reasons

2A version of the work in this section was previously published in [53]
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for this change. Because the number of nodes in the tree is variable and restricted by the
number of classes, the tree structure cannot be easily represented by a fixed size genome.
Additionally, the results from the FSHC experiments indicate that there may be some
problems with robustness, and with the increased number of nodes of the tree there is an
increased potential that the training set may not be representative and hence the selected
features may not generalize well.

Figure 3.11 gives a diagram of the MBT algorithm. Starting with all the samples, MBT
first finds the mean of each class in the current set of points. The class means are clustered
into two groups using k-means clustering. The samples are separated into these two sets
of classes, and used to train an SVM.

The points in the training set are then re-classified using the same SVM. If the initial
set of classes was separable, the output should match the class groups. If the classes are
not fully separable, some points will be incorrectly classified.

The classified samples are also checked at this point to ensure that at least some samples
appear at each output. If not, the box constraints are adjusted and the SVM is retrained.

The output of the SVM determines which points are used to train the lower levels of
the tree. The method is applied recursively using the points classified into each output
until the number of incorrectly classified points is below a set misclassification rate (7,.)
or the tree has reached a preset maximum depth. The outputs containing points from only
a single class (or with fewer than r,,. points from other classes) are set as leaf nodes of this
class.

Feature selection can also be applied at each node as a part of the training process
(FS-MBT). Features are selected individually for each SVM in the tree. Features are
selected using a sequential forward search (SFS) technique, guided by the conditional
mutual information maximization (CMIM) filter measure [18]. The selection of this feature
selection measure is discussed in detail in Chapter 4. The number of features to use in each
node is selected using a backwards search. Starting with the maximum number of features,
features are removed one at a time, starting with the least useful feature according the the
SFS/CMIM ordering. Features continue to be removed until the accuracy on the training
set has decrease by more than 7,,.%. The number of features can also be set manually.

3.2.1 Experiments

The proposed algorithm is tested against several techniques for multi-class extension, de-
scribed in Section 2.5. The proposed method is compared with one vs. rest, one vs. one,
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ABT, and CART on the basis of classification accuracy, test time, number of tree nodes
and total number of features, which corresponds to the memory footprint.

All algorithms are implemented in Matlab, using the Matlab SVM implementation with

sequential minimal optimization [125] for training. The decision tree is implemented using
the Matlab CART implementation. All SVMs are tested using a linear kernel. Although
non-linear kernels can achieve better accuracy on many data sets [21], there are two major

advantages to using a linear kernel. First, linear kernels are faster when testing because
points can be classified by simply projecting onto the normal of the separating plane
rather than using all the support vectors. Second, non-linear kernels have parameters
that need to be tuned. Poorly tuned parameters can affect results, and it is difficult to
determine if differences in performance are the result of the different multi-class extension,
or parameter tuning. Hence, a linear kernel is used for these experiments. Tests are
performed with misclassification acceptance rate (r,,.) of 0%. An r,,. of and 6% is also
tested and discussed in Section 3.2.2.

The methods are tested on 20 artificial and 20 real data sets. The data sets are discussed
in detail in Section 3.2.1.

Accuracy values are calculated using five-folds cross validation, averaged over three

runs, as recommended in [133]. Statistical difference between data sets is calculated using
5x 2-folds cross validation F-test [5], which is based on the 5x2-folds cross validation paired
t-test recommended in [15]. Two-folds cross validation is used to ensure independence of

both the test and training set. The F-measure is calculated as [5]:

2
5 2 k
Zz’:l Zk:l (pz( )>
a 2 Z?:l 512
(k)

where p;" is the difference between the error rates of the two classifiers on fold £ of test 7,
and s? is the variance of test 7, calculated as:

s2= (Y =)+ (0 — 1)’ (3.9)

where p; is the average error difference for test i:

f

(3.8)

1
V4

i Nl
P 5 (3.10)

This F test has ten degrees of freedom in the numerator and five degrees of freedom
in the denominator. The null hypothesis that the two tested classifiers are equal can be
rejected with 95% confidence if f > 4.74.
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(a) Simple dependent data set

(b) Partially dependent data set

Figure 3.12: Dependent data sets

Data Sets

Table 3.14 gives the properties of all the tested data sets and gives a brief description of
the real data set problems. The artificial data sets are described in detail below.

The three binary data sets [58] are two class data sets with three noisy binary features.
In binary 1, points are in class 1 if all three features are 1. In binary 2, points are in class
1 if exactly two features are 1. In binary 3, points are in class one if all three features take
the same value.

The Monk data sets [10] use six discrete features and two classes. The six features use
a different number of values and all are individually normalized before testing. For Monk
1, points are in class 1 if (f1 = fo)|(fs = 1). For Monk 2, points are in class 1 if exactly
two features have the value one. Monk 3 contains 5% class noise, and the class is 1 if

(fs=1&fs = D)|(fs £ A&y #3).

The simple dependent, partially dependent and linearly separable sets are all linearly
separable. The features for the two dependent sets are drawn from a uniform distribution,
while the linearly separable set has features drawn from a Gaussian distribution. The
separating lines for simple dependent and linearly separable sets are diagonal lines from
the upper left to the bottom right corner. The partially dependent set uses a dividing line
with a shallower slope, such that one feature is more informative than the other. Please
see Figure 3.12.

The two-way correlated, three-way linear correlated and three-way non-linear correlated
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Artificial data sets N F C

binary 1 80 3 2

binary 2 80 3 2

binary 3 80 3 2

monk 1 556 6 2

monk 2 601 6 2

monk 3 554 6 2

partially dependent 200 2 2

simple dependent 100 2 2

two way linear 200 2 2

three way linear 200 3 2

three way non-linear 200 3 2

monotonic 100 4 4

noise with 1 good feature | 100 4 4

pure noise 100 3 4

redundant 100 4 4

un-nested 100 3 4

one cluster per class 200 2 2

two u’s 400 2 2

Multi-modal 200 2 2

linearly separable 200 2 2
Real data sets N F  C | Classification description
Car Evaluation 1727 6 4 | Acceptability rating from car features and price
Congressional Voting 435 16 2 | Republican or Democrat from voting records
Contraceptive Choice 1473 9 3 | Contraceptive choice from info. about partners
Credit Approval 653 15 2 | Loan extension granted from personal info.
Dermatology 358 34 6 | Eryhemato-Squamous disease type from skin description
E-coli 336 7 18 | Localization site from tests
Flag 194 28 8 | Country’s major religion from flag attributes
Glass 214 9 7 | Glass type from oxide content
Haberman’s Survival 306 3 2 | Breast-cancer surgery survival from patient info.
Tonosphere 351 34 2 | Ionosphere detection from radar data
Iris 150 4 3 | Iris type from measurements
Page blocks 5473 10 5 | Block type from segmented image
Post-op 87 8 3 | Post-surgery assignment from patient measurements
Segmentation 2100 18 7 | Texture type from high level image attributes
Statlog (vehicle) [114] 846 18 4 | Vehicle type from image data
WI Breast Cancer (orig.) [105] | 683 9 2 | Malignant or benign from cell descriptions
WI Breast Cancer (diag.) 569 30 2 | Malignant or benign from cell descriptions
WI Breast Cancer (prog.) 194 32 2 | Cancer patient outcome from tumor description
Wine 178 13 3 | Wine origin from chemical analysis
Yeast 1484 8 10 | Protein localization site from tests

Table 3.14: Properties of artificial and real data sets used for testing MBT and comparing
filter-based feature set evaluation measures. Real data sets as well as the Monk data sets
are taken from the UCI machine learning repository [3]. The binary data sets are described
in [58].
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data sets test how the measures handle correlated features. In the two-way linear, the
second feature is equal to the first feature with 10% uniform random noise and the class is
based on a sum of the features. In three-way linear, the third feature is the average of the
first two features, which are both random. The class is one if the third feature is above 0.5.
In three way non-linear, the third feature is an XOR of the first two noisy binary features.
The class is one when all three features are zero, but the class can be accurately predicted
using any two features. These data sets are illustrated in Figure 3.13.

The monotonic, redundant, noise with one good feature and un-nested data sets are
all four-class problems built around a single feature that corresponds directly to the class.
The redundant set uses four copies of this feature. The noise with one good feature includes
three random features. The monotonic set uses four noisy (20%) copies of this feature.
The un-nested data set uses a noisy (20%) copy of this feature and two features that can
be used together to fully separate the set.

The cluster per class data set is a unimodal data set with two classes centered at (0, 0)
and (1,1). Either feature can be used to predict the class.

The multi-modal data set is a standard XOR function.

The two U’s data set is a two feature set where the data form two interlocking “u”
shapes, where each “u” is one class. This is illustrated in Figure 3.14.

3.2.2 Results and Discussion

The accuracy values for the different methods are presented in Tables 3.15 and 3.16. Both
the feature selected and non-feature selected versions of the MBT perform quite well on
the artificial data sets and the performance of the MBT algorithms is significantly higher
than the other SVM-based alorithms on the multi-modal data sets (binary 3, monk 1, 2
and 8 and multi-modal).

The MBT solutions give the best accuracy on 14 of the 20 artificial data sets, and are
within 2% of the best accuracy for all the remaining data sets with the exception of Monk
2 and the pure noise data set, which is not theoretically separable by any classifier. The
performance of the MBT on the Monk 2 data set is significantly higher than the other
SVM based approaches. It has a lower average accuracy than CART on the five folds cross
validation tests, but the performance of the decision tree is much lower on the two-folds
validation tests used in the f-test calculations. The accuracy of the decision tree also varies
a large amount in the two-folds tests. Hence, they are not considered to be significantly
different using the 5 x 2-folds cross validation f-test although the decision tree does appear
to perform better when using the five-folds tests.
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Figure 3.14: Two U’s data set

The MBT performs particularly well on the multi-modal data set, where a single, linear
classifier cannot separate the data, but the data is easily separated using a piecewise linear
approach. None of the other SVM-based methods are able to separate this data set, but
MBT finds a solution using only two linear classifiers. Using two linear classifiers is also
faster than using a kernel classifier in most cases, because the test time for a linear classifier
is only proportional to the number of features in the classifier, not the number of support
vectors.

MBT also performs well on the real data sets, with the FS-MBT algorithm achieving
the best accuracy on seven of the real data sets, which is more than any of the other
algorithms.

Feature selection appears to help in most cases, with the FS-MBT outperforming or
matching the performance of MBT on all but four real data sets (congressional voting,
dermatology, wine and yeast), all of which experience a decrease of less than 2%. For
the artificial data sets, the accuracy of the feature selected version is comparable to the
non-feature selected versions in most cases, with the exception of the binary 3 data set,
where the performance is slightly better, and the Monk 1 and Monk 2 data sets, where
the performance is slightly lower. For these data sets, a different feature selection measure
may perform better, as they contain dependent features, and Monk 2 contains features
with a greater than pairwise dependency.

One potential way to further improve the accuracy of MBT is to use a slightly different
method for clustering. Although the class means can indicate which classes are furthest
from the others, class means do not fully capture the separability of the classes. Instead,
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accuracy (3 x 5-folds CV) 5 x 2-folds CV F-test 95% (f > 4.74)
MBT FS-MBT MBT FS-MBT
MBT FS-MBT | ABT OVO OVA | CART || vs SVM  vs SVM | vs CART vs CART
Binary 1 0.96 0.99 | 0.99 0.98 0.99 0.93 higher higher
Binary 2 0.99 098 | 096 0.96 0.98 0.76 higher higher
Binary 3 0.90 0.96 | 0.75 0.75 0.75 0.77 higher higher higher higher
Monk 1 0.90 0.84 | 0.69 0.67 0.68 0.88 higher
Monk 2 0.77 0.71| 066 0.66 0.66 0.94 higher
Monk 3 0.98 0.97 | 0.80 0.80 0.80 0.99 higher higher
Partially Dependent 0.99 0.98 | 097 0.98 0.98 0.94
Simple Dependent 0.95 0.93 | 096 0.95 0.97 0.84
2-way linear corr. 0.99 098 | 1.00 0.99 0.99 0.99
3-way linear corr. 1.00 1.00 | 0.97 0.99 0.99 1.00
3-way non-linear corr. 1.00 1.00 | 1.00 1.00 1.00 0.99
1 good feature + noise | 1.00 1.00 | 1.00 1.00 0.69 1.00
Pure noise 0.26 0.28 | 0.34 0.33 0.23 0.30
Un-nested 1.00 1.00 | 1.00 1.00 0.87 0.98
Monotonic 1.00 0.96 | 1.00 1.00 0.63 0.92
Two U’s 0.98 0.99 | 097 097 0.97 0.99
Multimodal 0.98 1.00 | 0.66 0.59 0.59 0.98 higher higher
Linear sep. Gaussian 0.98 096 | 0.97 097 0.96 0.93
Redundant 1.00 1.00 | 1.00 1.00 0.64 1.00
Cluster per class 1.00 1.00 | 1.00 1.00 1.00 1.00

Table 3.15: Accuracy of MBT and common multi-class extensions on artificial data sets.
The second column shows where there is a significant difference between the accuracy of the
MBT algorithms and the other SVM-based methods (ABT and OVO) or CART, measured
using 5 x 2-folds cross validation f-test to a 95% confidence level (f > 4.74).

it may be more beneficial to use a class separability measure such as Fisher’s interclass
separability criterion [43].

The memory footprint of the MBT classifiers is larger than the ABT, as the number of
potential nodes in the tree is larger (see Tables 3.17 and 3.18). This translates into a larger
total number of features in the classifier (see Tables 3.19 and 3.20), which directly affects
the amount of memory required to store the classifier. Even the feature-selected version
of MBT has a larger memory footprint than the other methods. However, for these tests,
Tme 18 set to 0%, which will theoretically make the trees larger, as any misclassified point
will cause a new node to be added. A discussion of how the parameter r,,. affects the tree
size and accuracy is presented in Section 3.2.2. A particular problem for this algorithm is
the pure noise data set, where there is no way to derive the class from the features. In this
case, the number of nodes in the tree is very large, but the accuracy is still approximately
chance.

Despite the larger number of nodes and features, the test time for the MBT is shorter
than many of the other algorithms. Because the SVM is linear, the test time is directly
related to the number of features at each node, since points are classified by taking the
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MBT FS-MBT ABT OVO OVA CART
Car Evaluation 0.94 0.96 0.84 0.85 0.81 0.96
Congressional Voting | 0.95  0.94 0.96 095 096 0.94
Contraceptive Choice | 0.48 0.52 0.51 0.52 048 0.51
Credit Approval 0.84 0.85 0.86 0.86 0.86 0.84
Dermatology 0.97 0.95 095 0.97 0.97 0.95
E-coli 0.79  0.79 0.86 0.86 0.87 0.81
Flag 0.42 0.45 048 0.43 0.46 0.57
Glass 0.63  0.66 049 0.63 0.58 0.69
Haberman’s Survival | 0.71 0.72 0.73 0.72 0.73 0.68
Tonosphere 0.86 0.89 0.89 0.88 0.88 0.88
Iris 0.95 0.95 0.97 0.96 092 094
Page blocks 0.94 0.96 0.96 096 095 0.96
Post-op 0.56  0.60 0.69 0.69 0.69 0.64
Segmentation 0.96 0.96 095 095 092 0.95
Statlog (vehicle) 0.78  0.80 0.80 0.80 0.78 0.70
WI Cancer (orig.) 0.96 0.96 0.96 0.96 0.96 0.94
WI Cancer (diag.) 0.97 097 0.97 097 0.98 0.92
WI Cancer (prog.) 0.66  0.66 0.73 0.72 0.71 0.66
Wine 0.96 0.94 0.97 096 0.98 0091
Yeast 0.50 0.48 0.58 0.58 0.50 0.53

Table 3.16: Accuracy of MBT and common multi-class extensions on real data sets

normal to the separating hyperplane. Tables 3.21 and 3.22 show the average number of
features required to classify a point. Tree classifiers do not require all the nodes to be
queried to classify a point, hence the number of stored features is higher than the number
required to classify a point. Additionally, FS-MBT employs feature selection and therefore
the number of features in each node is relatively small, making the classifier test time quite
fast. Having a fast test time is important even for classifiers that are trained offline if the
intention is to use the classifier in an online manner, where incoming points are classified
as they arrive.

Effect of r,,. on accuracy, number of nodes and memory footprint

In theory, increasing the value of r,,. should decrease the accuracy of the classifier, but
also decrease the number of nodes. Experiments were run using 7,,. = 0% and also using
Tme = 6%. The results are presented in Tables 3.23 and 3.24.

Increasing the value of r,,. appears to have only a small effect on accuracy for both the
artificial and the real data sets. However, increasing r,,. decreases the number of nodes
in the generated trees. This also decreases the total number of features and the number
of features required to classify a point. This is quite beneficial, as it indicates that this
parameter can be used to control the tree size. However, past a certain point, the accuracy
will begin to be affected and the tree will degenerate to a standard binary tree where the
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MBT FS-MBT ABT OVO OVA CART
Binary 1 2.4 1.8 1.0(1.0) 1.0 2.0 2.9
Binary 2 1.7 1.5 1.0(1.0) 1.0 2.0 4.1
Binary 3 5.5 4.3 1.0(1.0) 1.0 2.0 6.2
Monk 1 93 104  1.0(1.0) 1.0 20 191
Monk 2 13.3 144 1.0(1.0) 1.0 2.0 40.5
Monk 3 9.5 9.4 1.0 (1.0) 1.0 2.0 4.7
Partially Dependent 4.8 4.3 1.0(1.0) 1.0 2.0 3.2
Simple Dependent 5.2 5.3 1.0(1.0) 1.0 2.0 4.8
2-way linear corr. 3.6 4.0 1.0(1.0) 1.0 20 1.5
3-way linear corr. 3.9 2.5 1.0(1.0) 1.0 20 1.0
3-way non-linear corr. | 1.1 1.1 1.0(1.0) 1.0 2.0 3.4
1 good feature + noise | 2.9 2.9 46 (46) 6.0 4.0 3.0
Pure noise 48.7  46.9 6.8 (5.8) 6.0 4.0 133
Un-nested 6.3 5.9 3.0 (3.0) 6.0 4.0 3.0
Monotonic 3.0 3.0 4.6 (4.6) 6.0 4.0 4.7
Two U’s 87 73 1.0(1.0) 1.0 20 7.4
Multi-modal 27 29 1.0(1.0) 1.0 20 85
Linear sep. Gaussian | 4.8 6.9 1.0(1.0) 1.0 20 5.8
Redundant 3.1 3.3 3.0 (3.0) 6.0 4.0 3.0
Cluster per class 1.1 1.1 1.0(1.0) 1.0 20 1.0

Table 3.17: Number of base classifiers for MBT and common multi-class extensions exten-
sions using artificial data sets. The number in parenthesis under ABT is the number of
different pairwise trained classifiers.

MBT FS-MBT ABT OVO OVA CART
Car Evaluation 67.9 51.3 7.0 (6.0) 6.0 4.0 36.1
Congressional Voting | 9.2 1.0 (1.0) 1.0 2.0 6.7
Contraceptive Choice| 58.7 50.5 3.0 (3.0) 3.0 3.0 158.7
Credit Approval 16.5 147 1.0 (1.0) 1.0 2.0 333
Dermatology 5.6 34.2 21.2 (13.0) 15.0 6.0 9.3
E-coli 37.9 51.7 41.6 (20.4) 28.0 8.0 18.6
Flag 22.5 20.3 116.6 (27.2) 28.0 8.0 20.5
Glass 37.8 18.4 (13.4) 21.0 7.0 195
Haberman’s Survival | 16.4 144 1.0 (1.0) 1.0 20 253
Ionosphere 6.3 79 1.0 (1.0) 1.0 2.0 14.3
Iris 6.3 79 2.0 (2.0) 30 30 34
Page blocks 108.9 97.8 11.8 (84) 10.0 5.0 60.8
Post-op 22.8 151 2.6 (2.6) 30 3.0 83
Segmentation 33.1 49.3 26.0 (14.0) 21.0 7.0 41.0
Statlog (vehicle) 44.0 399 7.0 (6.0) 6.0 4.0 65.0
WI Cancer (orig.) 6.7 11.3 1.0 (1.0) 1.0 20 113
WI Cancer (diag.) 1.3 75 1.0 (1.0) 1.0 2.0 12.7
WI Cancer (prog.) 8.5 73 1.0 (1.0) 1.0 20 143
Wine 2.5 25 3.0 (3.00 3.0 30 5.8
Yeast 377.3 389.9 176.0 (33.0) 45.0 10.0 161.8

Table 3.18: Number of base classifiers for MBT and common multi-class extensions using
real data sets. The number in parenthesis under ABT is the number of different pairwise
trained classifiers.
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MBT FS-MBT ABT OVO OVA CART
Binary 1 7.2 3.8 3.0 3.0 3.0 6.0
Binary 2 5.2 3.5 3.0 3.0 3.0 6.0
Binary 3 16.4 8.1 3.0 3.0 3.0 6.0
Monk 1 55.6 15.3 6.0 6.0 6.0 12.0
Monk 2 79.6 37.7 6.0 6.0 6.0 12.0
Monk 3 56.8 23.1 6.0 6.0 6.0 12.0
Partially Dependent 9.6 5.8 2.0 2.0 2.0 4.0
Simple Dependent 10.4 7.1 2.0 2.0 2.0 4.0
2-way linear corr. 7.2 5.1 2.0 2.0 2.0 4.0
3-way linear corr. 11.8 3.3 3.0 3.0 3.0 6.0
3-way non-linear corr. 3.4 2.0 3.0 3.0 3.0 6.0
1 good feature + noise | 11.5 3.0 184 184 24.0 16.0
Pure noise 146.2 771 204 174 18.0 12.0
Un-nested 18.8 3.1 9.0 9.0 18.0 12.0
Monotonic 12.0 6.9 184 184 24.0 16.0
Two U’s 17.3 9.2 2.0 2.0 2.0 4.0
Multimodal 5.5 4.1 2.0 2.0 2.0 4.0
Linear sep. Gaussian 9.6 8.6 2.0 2.0 2.0 4.0
Redundant 12.5 3.0 12.0 12.0 24.0 16.0
Cluster per class 2.3 1.0 2.0 2.0 2.0 4.0

Table 3.19: Total number of features used by MBT and common multi-class extensions for
artificial data sets

MBT FS-MBT ABT OVO OVA CART
Car Evaluation 407.6 1226  42.0 36.0 36.0 24.0
Congressional Voting | 147.2 58.9 16.0 16.0 16.0 32.0
Contraceptive Choice | 528.0 198.7 27.0 27.0 27.0 27.0
Credit Approval 248.0 58.9 15.0 15.0 15.0 30.0
Dermatology 190.4 25.3 720.8 442.0 510.0 204.0
E-coli 265.5 124.5 291.2 142.8 196.0 56.0
Flag 630.9 285.1 3264.8 761.6 784.0 224.0
Glass 340.2 156.7 165.6 120.6 189.0 63.0
Haberman’s Survival 49.2 19.3 3.0 3.0 3.0 6.0
Ionosphere 215.3 111.3 34.0 34.0 34.0 68.0
Iris 25.1 12.3 8.0 8.0 12.0 12.0
Page blocks 1089.3 289.3 118.0 84.0 100.0 50.0
Post-op 182.4 47.1 20.8 20.8 24.0 24.0
Segmentation 595.2 307.5 468.0 252.0 378.0 126.0
Statlog (vehicle) 792.0 371.7 126.0 108.0 108.0 72.0
WI Cancer (orig.) 60.6 36.7 9.0 9.0 9.0 18.0
WI Cancer (diag.) 38.0 88.6 30.0 30.0 30.0 60.0
WI Cancer (prog.) 273.1 125.1  32.0 32.0 32.0 64.0
Wine 32.1 14.7  39.0 39.0 39.0 39.0
Yeast 3018.1 1246.4 1408.0 264.0 360.0 80.0

Table 3.20: Total number of features used by MBT and common multi-class extensions for
real data sets
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MBT FS-MBT ABT OVO OVA CART
Binary 1 3.5 31 3.0 3.0 6.0 8.0
Binary 2 3.7 31 3.0 3.0 6.0 9.5
Binary 3 7.9 41 3.0 3.0 6.0 14.2
Monk 1 19.3 5.2 6.0 6.0 12.0 29.6
Monk 2 22.7 8.0 6.0 6.0 120 38.6
Monk 3 18.9 119 6.0 6.0 120 19.0
Partially Dependent 3.4 2.7 2.0 2.0 40 5.7
Simple Dependent 4.1 32 2.0 2.0 4.0 6.9
2-way linear corr. 3.1 20 2.0 20 4.0 4.6
3-way linear corr. 5.4 2.2 3.0 3.0 6.0 6.0
3-way non-linear corr. 3.0 2.0 3.0 3.0 6.0 8.7
1 good feature + noise 8.0 2.0 106 24.0 16.0 12.0
Pure noise 17.2 9.2 9.0 18.0 12.0 18.1
Un-nested 6.0 2.0 6.0 18.0 12.0 9.7
Monotonic 8.0 4.5 10.1 24.0 16.0 14.2
Two U’s 4.9 43 2.0 2.0 4.0 7.8
Multimodal 3.6 32 2.0 2.0 4.0 11.6
Linear sep. Gaussian 3.6 3.3 2.0 20 4.0 6.8
Redundant 8.0 2.0 8.0 24.0 16.0 12.0
Cluster per class 2.0 1.0 2.0 2.0 4.0 4.0

Table 3.21: Average number of features required to classify each point using MBT and
common multi-class extensions for artificial data sets

MBT FS-MBT ABT OVO OVA CART
Car Evaluation 31.4 16.5 18.0 36.0 24.0 29.0
Congressional Voting | 18.3 32.8 16.0 16.0 32.0 48.2
Contraceptive Choice | 54.0 16.4 18.0 27.0 27.0 93.0
Credit Approval 55.1 179 15.0 15.0 30.0 96.5
Dermatology 95.3 11.5 150.8 510.0 204.0 158.6
E-coli 41.2 21.2 40.0 196.0 56.0 38.6
Flag 168.6 114.0 194.4 784.0 224.0 160.8
Glass 59.3 41.7 449 189.0 63.0 59.5
Haberman’s Survival 12.0 5.1 3.0 3.0 6.0 21.1
Ionosphere 75.6 72.3 34.0 34.0 68.0 2394
Iris 8.4 4.4 6.7 120 12.0 12.5
Page blocks 59.0 46.2 39.5 100.0 50.0 134.2
Post-op 35.3 13.8 144 240 24.0 43.2
Segmentation 77.2 46.7 81.0 378.0 126.0 128.7
Statlog (vehicle) 85.6 68.7 54.0 108.0 72.0 139.8
WI Cancer (orig.) 13.5 154 9.0 9.0 18.0 42.5
WI Cancer (diag.) 30.0 53.1 30.0 30.0 60.0 166.9
WI Cancer (prog.) 89.7 62.8 32.0 32.0 64.0 175.8
Wine 22.5 12.4 26.0 39.0 39.0 50.8
Yeast 96.6 43.5 68.6 360.0 80.0 91.5

Table 3.22: Average number of features required to classify each point using MBT and
common multi-class extensions for real data sets
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accuracy nodes Fiot Fiest

0% 6% 0% 6%| 0% 6%| 0% 6%

Binary 1 0.99 0.99| 1.8 1.3] 38 3.0| 3.8 3.0
Binary 2 098 0.98| 15 1.3| 35 3.5| 35 3.5
Binary 3 0.96 0.97| 4.3 45| 8.1 8.1| 8.1 8.1
Monk 1 0.84 0.84| 104 9.9|15.3 12.3|15.3 12.3
Monk 2 0.71 0.66| 14.4 14.3|37.7 27.1|37.7 27.1
Monk 3 0.97 097| 94 5.7[23.1 17.7|23.1 17.7
Partially Dependent 0.98 097| 43 2.6| 58 3.5| 58 3.5
Simple Dependent 093 096 53 3.7| 71 54| 71 5.4
2-way linear corr. 0.98 0.98| 40 1.4| 5.1 1.0| 51 1.0
3-way linear corr. 1.00 099| 25 1.0| 33 1.1| 33 1.1

3-way non-linear corr. {1.00 1.00| 1.1 1.1| 2.0 2.0| 2.0 2.0
1 good feature + noise | 1.00 1.00| 2.9 2.9| 3.0 3.0/ 3.0 3.0
Pure noise 0.28 0.31|46.9 47.1|77.1 75.7|77.1 75.7

Un-nested 1.00 1.00f 59 5.8/ 31 3.0 3.1 3.0
Monotonic 096 091| 3.0 59|69 70|69 7.0
Two U’s 0.99 097 73 1.3| 92 2.0| 92 2.0
Multimodal 1.00 1.00| 29 23| 41 3.8| 4.1 3.8
Linear sep. Gaussian 096 0.96| 69 14| 86 24| 86 2.4
Redundant 1.00 1.00| 3.3 29| 3.0 3.0 3.0 3.0
Cluster per class 1.00 1.00| 1.1 1.1| 10 1.0/ 1.0 1.0

Table 3.23: Comparison FS-MBT with different r,,. values on artificial data sets. Fj,
gives the total number of stored features and Fj s gives the average number of features to
classify a point

divisions are selected simply by clustering the class means.

3.2.3 MBT Summary

The MBT algorithm gives the best performance on a majority of the artificial data sets,
and on a plurality of the real data sets. The performance of the MBT is significantly higher
than other SVM-based methods on multi-modal data sets.

Adding feature selection for the individual classifiers not only improves the accuracy
in many cases, but also reduces the memory footprint of the generated trees. Even with
feature selection, the memory footprint of the classifier is large compared to the other
algorithms. However, because not all the nodes in the tree need to be queried, the feature
selected version of the algorithm has relatively good performance, requiring the fewest
average number of features to classify a point on the majority of the real data sets. This is
especially important if the intention is to use the classifier to classify new, incoming points
in an online manner.

Lastly, the MBT can be used with different classifiers and different feature selection
methods. MBT can also be used with multi-class classifiers by using a different K value to
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accuracy nodes Fiot Fiest

0% 6%| 0% 6% 0% 6% 0% 6%
Car Evaluation 0.96 0.95| 51.3 35.1| 1226 68.8| 165 7.1
Congressional Voting | 0.94 0.95 6.3 58.9 5.2 32.8 1.6
Contraceptive Choice | 0.52 0.52| 50.5 54.1| 198.7 108.5| 16.4 7.7
Credit Approval 0.85 0.86| 14.7 104 58.9 18.4| 179 4.6
Dermatology 0.95 094| 342 124 25.3 13.9| 115 4.0
E-coli 0.79 0.77| 51.7 45.5| 124.5 88.7| 21.2 9.0
Flag 0.45 0.51| 20.3 39.9| 285.1 139.0|114.0 17.3
Glass 0.66 0.68 39.2| 156.7 96.9| 41.7 13.5
Haberman’s Survival | 0.72 0.72| 14.4 12.5 19.3 14.9 51 4.3
Tonosphere 0.89 0.88 7.9 7.8 111.3 11.7| 72.3 5.0
Iris 0.95 0.95 7.9 5.0 12.3 5.2 44 2.2
Page blocks 0.96 0.93| 97.8 70.9| 289.3 128.9| 46.2 9.7
Post-op 0.60 0.62| 15.1 214 47.1 45.2| 13.8 10.9
Segmentation 0.96 0.94| 49.3 53.6| 307.5 145.7| 46.7 8.4
Statlog (vehicle) 0.80 0.76| 39.9 41.7| 371.7 148.6| 68.7 13.4
WI Cancer (orig.) 0.96 0.94| 11.3 7.5 36.7 6.2 154 2.8
WI Cancer (diag.) 0.97 0.93 7.5 6.0 88.6 8.0 53.1 3.4
WI Cancer (prog.) 0.66 0.70| 7.3 10.7| 125.1 68.7| 62.8 15.2
Wine 0.94 091| 2.5 5.8 14.7 8.5| 124 3.5
Yeast 0.48 0.50|389.9 341.5|1246.4 944.8| 43.5 18.9

Table 3.24: Comparison FS-MBT with different r,,. values on real data sets. Fj, gives the
total number of stored features and Fj s gives the average number of features to classify a
point

create the initial class clustering.

3.3 Summary

FSHC uses genetic algorithms to jointly optimize the tree structure and selected features.
Tests with the multi-modal KNN classifier with artificial data sets show that FSHC is ca-
pable of outperforming a flat classifier on certain data sets. Experiments with binary SVM
classifiers show that the accuracy of FSHC is comparable to other multi-class extensions,
but with a shorter testing time.

However, FSHC does suffer from problems with robustness and may select a classifier
structure and features that are too specific to the training set, leading to generalization
problems.

The MBT algorithm aims to correct some of the generalization and robustness prob-
lems by performing the tree design and feature selection sequentially using non-stochastic
methods. Additionally, MBT adds the ability to have classes appear at more than one
node output, which is similar to the ABT and CART algorithms.
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The MBT algorithm performs well compared to the other multi-class extensions, giving
the highest accuracy on the majority of the artificial data sets and a plurality of the real
data sets. The accuracy of the MBT is significantly higher than other classifiers on known
multi-modal data sets.

Importantly, experiments with both the FSHC and MBT show that the feature selection
is beneficial for both tree-based and non-tree-based extensions, and experiments with the
FSHC show that the chosen feature selection measure affects the accuracy and size of the
classifier.
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Chapter 4

Evaluation of filter based feature
selection measures

This chapter describes the testing and evaluation of commonly used filter-based feature
subset evaluation measures. Experiments performed in Chapter 3 show that both the multi-
modal binary tree algorithm and other multi-class extensions benefit from feature selection.
However, experiments with the feature-selected hierarchical classifier show that the selected
feature set evaluation measure is important, as it affects the accuracy. Although there are
many common feature set evaluation measures, it is unclear which measures are appropriate
to use with each classifier.

The goal of this chapter is to assess the ability of commonly used filter-based measures
to correctly identify informative features and to assess their performance with respect to
specific classifiers. As seen in Chapter 2, a large number of feature selection measures have
been proposed in literature. However, there is little consensus on which measures are best
for specific problems.

One of the most intuitive feature subset evaluation measures is a wrapper, where the
feature subset is evaluated directly on the classifier being designed. While wrapper methods
give direct feedback about the ability of the classifier to use the feature set, they tend to
be computationally expensive, since they require training a new classifier for every feature
set to be tested. Wrappers can also over-fit [113].

Filter measures are less computationally expensive, but may not as accurately reflect
the ability of the classifier to use the selected features. The ideal feature set evaluation
measure is a fast filter measure whose value closely reflects the accuracy of the classifier
on that feature set. Numerous filter methods have been proposed, but there has been
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little work directly comparing various filters. This is complicated by the fact that the
“best” filter measure is likely classifier specific, since different classifiers perform best with
different feature sets [31].

For a researcher looking to use feature selection as a tool for solving a specific problem,
the large number of potential solutions and the lack of direct comparison currently available
in the literature can make it difficult to determine which measures are most suitable for a
particular application or classifier. Testing a large number of filter measures is impractical
in many cases, especially when the feature selection method is not the only parameter to
be tuned.

This work tests 16 common filter measures for use with K-nearest neighbours and
support vector machine classifiers. The measures are tested on 20 real and 20 artificial data
sets, which are designed to probe for specific challenges. The strengths and weaknesses
of each measure are discussed with respect to the specific challenges and correlation with
classifier accuracy. The results highlight several major problems with a number of common
filter measures and give guidance about which filter measures are appropriate for different
classifiers.

This information is then used to guide the selection of a feature evaluation measure for
future tests with human motion data. A new feature measure is also proposed, which can
overcome some of the specific deficiencies seen in other feature evaluation measures.

4.1 Filter measures

A detailed description of each of the tested filter measures is given in Chapter 2 Section
2.4.2. The tested measures can be categorized a number of different ways, as described in
Table 2.2 in Chapter 2 Section 2.4.1. The set of tested measures includes both supervised
and unsupervised measures as well as both univariate and multivariate measures. It also
includes a variety of different types of multivariate measures, including both additive and
grouped measures as well as both full set and pairwise measures.

Table 4.1 shows the filter measures and the parameters used for the tests in this chapter.

4.2 Experiments

The purpose of these experiments is to determine the ability of each filter measure to
identify known informative features and also to determine how well each filter measure
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parameters
measure Category Section | description values
Fisher’s interclass distance 2.4.2 - -
separability criterion
RELIEF-F distance 2.4.2 K: # neighbours K={1, 3, 5, 10}
subset-RELIEF distance 2.4.2 K={1, 3, 5, 10}
count-based RELIEF | distance 2.4.2 K={1}
KL divergence probability 2.4.2 continuous / discrete | discrete q={2,3,4,5,10,e,u}
JS divergence probability 2.4.2 q: quantization continuous (single Gaussian)
Bhattacharyya probability 2.4.2
mutual information [information theoretic | 2.4.2 q: quantization q={2, 3, 5, 10}
symmetric information theoretic | 2.4.2 (discrete only)
uncertainty
CMIM information theoretic | 2.4.2
mRMR information theoretic | 2.4.2
FOU information theoretic | 2.4.2
LS neighbouhood graph |2.4.2 K: # neighbours K={2, 3, 5, 10, 25, 50, N/10, N/4, N/2}
Kern: kernel Kern={heat}
t: heat kernel param | t={0.1, 1, 10, 100}
MCFS neighbouhood graph |2.4.2 K: # neighbours K={25, 50, N/4, N/2}
Kern: kernel Kern={heat, dot, zero-one}
t: heat kernel param | t={0.1, 1, 10, 100}
consistency consistency 2.4.2 q: quantization q={2,3,4,5,10,e,u}
CFS correlation / 2.4.2 q: quantization q={2, 3, 5, 10}
information theoretic

Table 4.1: Tested filter measures and parameters

can predict the classification accuracy of different feature sets with a specific classifier. To
determine the prediction ability of the measures, classifiers are first trained using different
feature sets from within each data set. The filter measures are assessed based on the
correlation between the calculated filter value and the classifier accuracy.

The randomized data set selection assesses the ability of the filter measure to correctly
predict the benefit of feature sets selected using stochastic techniques such as genetic
algorithms [35], simulated annealing [54] and dependency aware feature selection [143], all
of which use randomly selected sets.

Sequential methods such as sequential forwards or backwards search (SF'S/SBS) [130]
add features to the selected set one at a time, selecting the feature that is most beneficial
with respect to the other features in the set. These types of feature selection methods
benefit from filter measures that rank the most informative features the most highly.

Ranked selection methods, where each feature is ranked individually and the best @)
features or all features over a pre-set threshold are selected, require univariate measures
that are able to identify the most informative features. These types of methods are most
often used with data sets that have large number of features, where sequential or stochastic
search techniques are impractical.
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Two exemplar classifiers are used to demonstrate the difference between the filter mea-
sures: K-nearest neighbours (KNN) and support vector machine (SVM). Because SVM is
a binary classifier, tests are run using two common multi-class extensions: one vs. one and
one vs. rest. Both the KNN and SVM implementations are from Matlab. The SVM kernel
used is a linear kernel. Although non-linear kernels can achieve better accuracy on many
data sets [21], all non-linear kernels have parameters that need to be tuned. Poorly tuned
parameters can affect results, and it is difficult to determine if differences in performance
are the result of the different multi-class extension, or parameter tuning. Hence, a linear
kernel is used for these experiments.

The accuracy of the classifier is assessed for each feature set using 5-fold cross validation,
averaged three times. Each filter measure described in Section 2.4.2 is calculated on that
feature set. For data sets with fewer than 10 features, the number of feature sets tested
is 2f" — 1, which is the number of unique feature sets. For data sets with more than 10
features, the number of possible feature sets becomes too large to handle easily, and the
number of tests is set to 2« F' x (logy(F') + 1).

In a real feature selection problem, measures are used to compare different feature sets
from within the same data set. Hence, correlation of filter measures and accuracy values
across data sets is not as important as good correlation within each individual data set.
The specific value of the filter measure is also less important than how the value changes for
different feature sets. It is less important to know what the specific accuracy of a feature
set will be than it is to know whether a different feature set will improve accuracy. Hence,
these experiments assess the correlation of the classifier accuracy and filter measure value
for each individual data set. Correlation across different data sets is not assessed.

Correlation is assessed using Pearson’s linear correlation [741]. There are also several
data sets where the accuracy is unchanged regardless of the feature set selected. In these
cases, it is not possible to calculate a correlation. Instead, the tables record the amount
the filter measure changes as more features are added, as a percentage of the single feature
set score:

Nrssi —
1 Ji — Jps=1
; <—Nm )/JFS:l (4.1)

Npss1

where Npg~1 is the number of feature sets that use more than one feature, J; is the filter
measure value for feature set ¢ with more than one feature, and Jpg—; is the average filter
value for all the feature sets that use only one feature.

Tests are performed on a number of artificial and real data sets, as described in Section
4.2.1. The artificial data sets are designed to probe for specific problems with the filter
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measures, and the real data sets are used to determine how well these filter measures
behave in the real world.

There are several measures that require a probability distribution (the probability based
measures, the mutual information-based measures and CFS). In this paper, a continuous
(Gaussian) probability function is tested, and also a discrete form, using a number of
quantization bins. Tests are also run where the number of bins is set to be equal to the
number of clusters in the data. The number of clusters is determined using the Gap statistic

[151].

4.2.1 Data Sets

The selected filter measures are tested on a number of real and artificial data sets. Table
3.14 in Chapter 3 gives a description of each of the real data sets, all taken from the UCI
machine learning repository [8].

The real data sets have a sufficient number of features that in most cases exhaustive
search and wrapper methods are too computationally expensive for real world applications,
especially where the feature set is not the only parameter that needs to be adjusted.
However, the sets do not contain so many features that univariate measures and ranked
selection are preferable. The artificial sets contain fewer features in order to allow a full
exploration and understanding of the set and the possible reasons for failure. Any filter
measure that does not work well for sets with a relatively small number of features is
unlikely to perform well on sets with a larger number of features.

The artificial data sets are described in detail in Chapter 3 Section 3.2.1. The artificial
data sets are designed to test a number of commonly encountered feature selection chal-
lenges, outlined below. Table 4.2 gives the properties of all the tested artificial data sets
and their challenges.

Data set challenges

e non-monotonic sets. In a non-monotonic set, adding a feature reduces the accuracy
of the classifier. A filter measure can capture this reduction only if adding another
feature to a set can also decrease the filter measure value.

e dependence. If two features are fully dependent, there is no accuracy improvement
when one feature is used alone, but a large accuracy improvement when the features
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Artificial data sets N F CJNM dep. corr. red. noise
binary T 80 3 2 4

binary 2 80 3 2 v

binary 3 80 3 2 v

monk 1 556 6 2| Vv v v
monk 2 601 6 2| Vv v v
monk 3 554 6 2| V v v
partially dependent 200 2 2 v

simple dependent 100 2 2 v

two way linear 200 2 2 v v

three way linear 200 3 2| VvV v v

three way non-linear 200 3 2 v v

monotonic 100 4 4 v

noise with 1 good feature|100 4 4 v
redundant easy 100 4 4 v v
un-nested 100 3 4 v

one cluster per class 200 2 2 v v

two u’s 400 2 2

multi-modal 200 2 2 v

linearly separable 200 2 2

Table 4.2: Properties of artificial data sets. N is the number of samples, F is the number
of features, and C is the number of classes. NM describes whether the data set is non-
monotonic, dep. describes whether it contains dependent features, corr. describes whether
it contains correlated features, red. describes if it contains redundant features, and noise

indicates if it contains noisy features.

are used together. A filter measure that considers each feature in isolation will not

be able to find sets of dependent, informative features.

correlated features. Correlated features may be informative, but it is easy for a filter
measure to overestimate the benefit of adding a correlated feature, since some of the

information is already captured by the other features in the set.

redundance. Truly redundant features (copies) do not add any information. A filter
measure should be able to detect true redundance, and adding a redundant feature
should not change the filter measure value.

noise. Pure noise features do not help differentiate classes and can reduce accuracy.

Fully random features should not improve filter measure values.

Artificial data sets

4.2.2 Combining univariate and additive multivariate measures

For univariate measures, the individual feature scores must be combined to give a perfor-
mance measure for the set. Possible methods include summing and averaging the individual
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feature values. Using the minimum or maximum has also been suggested [7].

The minimum and maximum method are theoretically poor because the overall filter
value is dominated by the best or worst feature in the set. Averaging is also a poor choice,
since once the individual best feature is included in the set, any additional features will
only reduce the filter measure value. This method would only work with a data set that
is strictly non-monotonic, which is very unusual. Conversely, summing assumes a strictly
monotonic data set, unless the filter value is able to take negative values, in which case it
is possible for summing to rank smaller sets more highly.

Tests using the RELIEF-F filter measure confirm the poor performance of the minimum,
maximum and averaging methods on the artificial data sets, as seen in Table 4.3. The
results for the real data show the best performance either from summing or from taking
the max, as shown in Table 4.4. However, using the maximum value is theoretically
unsound and will give the same ranking to a larger number of data sets, making it difficult
to differentiate between sets. For these reasons, the remaining tests will find the correlation
of univariate measures by summing the values of the individual features in the set.

When assessing additive multivariate measures, either all features are assessed with
respect to all the other features in the set (grouped method), or the set is assessed using
a sequential forward search method (SFS), where a single feature is selected to start, and
additional features are assessed with respect to the selected features. The highest ranked
feature is then added to the set, the summed filter value is updated, and the remaining
features are re-assessed.

When combining additive multivariate measures, the grouped method is more compu-
tationally efficient, but the SF'S method is theoretically better. Consider, for example, the
two-way linear correlated data set. The individual features are both highly predictive of
the class but are also highly correlated. With a grouped approach, neither feature is scored
highly, because of the correlation with the other features in the set. With an SF'S approach,
one feature is initially scored highly, and only the other feature gets a lower score, due to
the correlation with the feature that has already been added. The SFS method gives a
more realistic view of the performance, where at least one of the features provides a baseline
of accuracy for the classifier, but adding more features adds little. Experiments with the
multivariate mutual information measures all show that the SF'S method performs better,
giving a higher correlation with the classifier accuracy for both classifiers.
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RELIEF-F (K=1)
SVM (one vs. one) SVM (one vs. all) KNN

avg sum | min max |avg sum | min max |avg sum | min max
Abalone 0.00 0.00 [ 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Car Evaluation 0.37 0.77 |-0.01 0.31 |0.32 0.73 |-0.06 0.23 |0.18 0.48 |-0.05 0.13
Cardiotocography 0.01 -0.55|-0.51 0.51 |0.03 -0.57|-0.50 0.52 |-0.17 -0.56 |-0.64 0.44
Congressional Voting 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Contraceptive Choice -0.32 -0.55|-0.55 0.06 | 0.02 -0.21 |-0.21 0.13 | -0.02 -0.14 | -0.14 0.00
Credit Approval -0.03 0.46 | -0.22 0.37 |-0.02 0.46 |-0.21 0.38 | -0.04 0.54 | -0.26 0.41
Dermatology 0.12 0.63 |[-041 0.64 |0.09 0.61 |-0.41 0.63 |0.11 0.66 |-0.43 0.64
E-coli 0.23 -0.35|-0.33 0.60 | 0.21 -0.36 |-0.31 0.55 | 0.20 -0.36 |-0.34 0.58
Flag 0.24 -0.46 |-0.22 0.53 | 0.15 -0.70|-0.32 0.49 | 0.08 -0.32 |-0.22 0.33
Glass 0.23 -0.16 [-0.19 0.41 |0.21 -0.17|-0.15 0.40 | 0.16 -0.16 |-0.18 0.38
Haberman’s Survival 0.84 0.81 [0.78 0.58 |0.55 0.52 |0.83 0.07 |-0.88 -0.74 |-0.82 -0.62
Tonosphere 0.55 0.77 |-041 0.77 |0.54 0.78 |-0.41 0.77 [0.33 0.30 |-0.23 0.36
Iris 0.70 0.74 [0.22 0.92 |0.67 0.81 |0.18 0.90 | 0.70 0.82 |0.17 0.96
Mushroom 0.32 0.64 |-0.03 0.59 |0.32 0.64|-0.02 059 |0.35 0.58 |-0.10 0.63
Page blocks -0.01 0.51 |-0.42 0.26 |0.08 0.63 |-0.34 0.31 | 0.09 0.50 |-0.36 0.24
Post-op 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00
Segmentation 0.33 0.62 |-0.22 0.65 |0.23 0.65|-0.33 0.58 | 0.40 0.55 |-0.18 0.69
Statlog (vehicle) 0.03 048 [-0.50 0.52 |0.03 0.49 |-0.52 0.53 | 0.10 0.41 |-0.44 0.47
WI Breast Cancer (orig.) | 0.11 0.58 [-0.32 0.52 |0.11 0.58 |-0.32 0.52 | 0.19 0.62 |-0.26 0.61
WI Breast Cancer (diag.) | 0.23 0.48 |-0.17 0.63 | 0.23 0.48 |-0.18 0.63 | 0.32 0.53 |-0.11 0.71
WI Breast Cancer (prog.) | 0.05 -0.79 | 0.53 -0.35|0.06 -0.78 | 0.52 -0.35|0.06 0.20 |-0.08 0.08
Wine 0.62 0.76 |-0.20 0.78 | 0.62 0.76 |-0.20 0.78 | 0.61 0.72 |-0.15 0.71
Yeast 0.29 -0.49|-0.22 0.67 | 042 -0.24|-0.03 0.60 | 0.17 -0.58 | -0.34 0.61

Table 4.4: Correlation between the RELIEF filter values and SVM and 1-NN accuracy
values using different methods for combining univariate filter measures on real data sets
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4.3 Results and Discussion

This section presents the results from numerous filter measure tests. Section 4.3.1 describes
whether or not each filter measure gives the highest score to the feature set with the highest
accuracy, and whether or not it is capable of selecting the known informative features in the
artificial data sets. Section 4.3.2 discusses the correlation between the filter measures and
the accuracy of the classifier. Section presents conclusions and discusses the performance
of each filter measure with respect to the specific data set challenges detailed in Section
4.2.1.

Appendix C discusses the performance of the measures on each artificial data set in
detail, describing notable filter measure successes and failures.

4.3.1 Ability of filter measures to identify informative features

Table 4.5 describes whether or not each filter measure can correctly identify the best feature
set. A filter measure that is able to select the best set, but is not otherwise well correlated
with the accuracy may drive a sub-optimal search away from the best set, but will still
select the best set if an exhaustive search is used.

Univariate measures do not work well for non-monotonic sets, but in many cases they do
rate the informative features more highly. In the table, a “*” is used to identify cases where
a univariate measure correctly rates the informative features more highly than the non-
informative features. In these cases, the univariate measures would suffice if the researcher
also had a way to determine the correct number of features in the set, though this itself is a
challenging problem. For other data sets, the best feature set does include all the features.
The univariate measures will select these full sets by default. A“*” is also used to identify
additive multivariate measures that select the informative features first.

The most challenging data sets are the non-monotonic sets, especially the sets where
some informative features are not included in the best set (un-nested and three-way non-
linear). Another very difficult set is Monk 1, where two features are strongly dependent,
and neither individual feature is informative about the class in any way. This data set is
particularly difficult for the univariate measures. The unsupervised measures have trouble
when the classes do not come from clusters in the underlying manifold, or when there are
noisy features included in the set.
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subset-  count- consis-
FS|Fish. RELIEF RELIEF RELIEF prob MI SU mRMR CMIM FOU LS MCFS tency CFS

Binary 1 y v Ve v v v v Y v v v v v v v
Binary 2 y| v v v v v v v v v v v v v v
Binary 3 y| v v v v v v Vv v v v v v v v
Monk 1 v v * v

Monk 2 v v v v vV v v v v v v

Monk 3 v * * * * * *

Simple dependent y v v v v v v Vv v v v v v v v
Partially dependent | y | v v v v v Y v v v v v v

2-way linear corr. y v v v v v vV v v v v v v v
3-way linear corr. * v ¥k Ok * * * v
3-way non-linear y| v v v v v v v v v v v v v v
1 good and noise * v v * K * * * v v
Un-nested v * * * * v
Monotonic y| v v v v v v v v v v v v v v
Two U’s y| v v v v v vV v v v v v v v
Multi-modal (XOR) | y | Vv v v v v vV v v v v v v v
linear sep. Gaussian| y | v v v v v v v v v v v v v

Table 4.5: Ability of different measures to determine the informative features. A check
mark indicates that the measure value was largest for the feature set that contained only
the informative features. A ‘“*” is a value used for univariate and additive multivaraite
measures where the informative features are selected first. The column “FS” indicates a
data set whose best feature set includes all the features (and hence should be selected by
default by the univariate and additive multivariate measures).

4.3.2 Correlation of filter measures with classifier accuracy

The performance of classifiers is different on different data sets. Selecting informative
features is not beneficial if a classifier is unable to properly use them. Therefore, it is
also important to assess the ability of filter measures to predict the accuracy of different
classifiers. It is important to have a filter measure that not only identifies the best set, but
is well correlated with accuracy overall so the search can be guided correctly.

Tables describing the accuracies of the classifiers on the different artificial and real data
sets are available in appendix A.

Tables 4.6 and 4.7 present the correlation between each filter measure and KNN ac-
curacy using the best performing parameters. The correlations for SVM one vs. one are
presented in Tables 4.8 and 4.9. The SVM results for the one vs. all are presented in
Tables 4.10 and 4.11.

For the KNN classifier, the filter measures that have the highest correlation are the
consistency measure, CFS, CMIM and subset RELIEF. CFS and CMIM both only consider
pairwise interactions, but in practice they work well on the real data sets. The consistency
measure matches the KNN results well, especially on the artificial data sets, and has the
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benefit of being relatively computationally inexpensive. However, the consistency measure
does not separate noisy and non-informative features, and is also quite dependent on the
Ny, parameter, which can affect performance greatly. Subset RELIEF is the most closely
related to the KNN classifier. However, it is almost as computationally expensive as a
wrapper.

For SVM, CMIM performs well on the real data sets, and is relatively tolerant to
changes of the parameter settings. CFS and Fisher’s also perform relatively well, and
Fisher’s does not require parameter setting. The consistency measure performs relatively
well on the artificial data sets, but the performance is much worse on the real sets, and
the variance is large between different parameter settings.

None of the univariate measures perform well for either classifier. For a data set with
a reasonably small number of features, a subset based filter measure with a good search
technique would be preferable. The univariate measures have a particular problem with
redundant features, adding multiple unnecessary features to a set.

None of the filter measures work very well for non-monotonic sets. This is unfortunate,
because most of the real world data sets appear to be non-monotonic to some degree. Even
the subset based measures, such as Fisher’s or subset-RELIEF tend to prefer feature sets
with a larger number of features because they are distance based.

RELIEF family

The RELIEF measures are closely related to the KNN classifier and are better correlated
with KNN accuracy than SVM. The subset RELIEF is generally the best performing
RELIEF family measure for both KNN and SVM.

The univariate RELIEF-F does have an advantage over some univariate measures be-
cause it can take negative values and can therefore be used for non-monotonic sets. In the
noise with one good feature data set, the noise features all take negative values, indicating
that these features are undesirable. This also correlates very well with the KNN classifier,
where adding noisy features decreases accuracy.

In the Monk 1 data set subset RELIEF identifies two informative features that the
SVM is unable to use. The SVM one vs. rest formulation suffers from a similar problem
with the one good feature and noise, monotonic and redundant data sets. The SVM one
vs. rest is unable to make use of the informative feature and all of the RELIEF family
measures overestimate the value of these features for this classifier.

The univariate measure fails completely on the multi-modal set. The count-based and
the subset-based RELIEF are much better choices for this data set for both the KNN and
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SVM (one vs. one) SVM (one vs. all) KNN

univariate subset count | univariate subset count | univariate subset  count

K=10 K=1 K=I1 K=10 K=1 K=1 K=10 K=1 K=1

Binary 1 0.57 0.54 0.91 0.54 0.50 0.90 0.92 0.92 0.97
Binary 2 0.70 0.71  0.59 0.56 0.55  0.40 0.92 0.98 0.92
Binary 3 100% 2521% 331% 100% 2521% 331% 0.86 0.90 0.94
Monk 1 0.98 0.48 0.45 0.98 0.47  0.46 0.58 0.90 0.51
Monk 2 - - - - - - 0.00 -0.23 -0.32
Monk 3 0.59 0.69 0.64 0.56 0.67 0.63 0.64 0.81 0.72
Simple dependent 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Partially dependent 0.99 0.99 0.88 0.99 0.99 0.88 0.99 1.00 0.87
2-way linear corr. 0.70 0.64 0.02 1.00 1.00 0.74 0.99 0.97 0.61
3-way linear corr. 0.80 0.90 0.81 0.81 0.90 0.79 0.78 0.90 0.86
3-way non-linear corr. 0.88 0.95 0.99 0.88 0.95 0.99 0.88 0.95 0.99
1 good and noise 0.94 0.97 0.80 0.92 0.94 0.82 0.94 0.97 0.80
Pure noise -0.50 -0.47 0.70 0.32 0.33 -0.78 -0.52 -0.50 0.85
Un-nested 0.78 0.83 0.93 0.85 0.90 0.97 0.81 0.86 0.95
Monotonic 0.81 0.87 0.87 0.80 0.83 0.82 0.84 0.91 0.90
Two U’s 0.94 1.00 0.94 0.90 0.98 0091 0.98 1.00 0.98
Multimodal (XOR) -0.98 1.00 1.00 -0.93 1.00 1.00 -0.93 1.00 1.00
linear sep. Guassian 0.98 0.95 0.94 0.98 0.95 0.95 1.00 0.98 0.97
Redundant 100% 39% 0% -0.65 -0.71 0.00 100.00% 38.93% 0.00%
2 clusters 100% 53% 0% 100% 53% 0% 100% 53% 0%

Table 4.12: Correlations between filter values and SVM and 1-NN accuracy for RELIEF-F,
subset-based RELIEF and count-based RELIEF

the SVM classifiers. Similarly, the univariate measures fail to identify the two dependent
features in Monk 1 as informative. This will be the case for any dependent feature with a
univariate measure.

Overall, subset-based RELIEF outperforms the count-based and univariate RELIEF
measures for KNN classifiers, as shown in Tables 4.12 and 4.13. None of the RELIEF-
based measures appear to be the best choice for the SVM classifiers.

Fishers

Fisher’s interclass separability criterion theoretically works well for SVM because both
prefer feature sets that are compact and have a large margin of separation. Fisher’s achieves
the highest correlation on 11 of the 20 real data sets for the SVM classifier.

Fisher’s does, however, have a slight preference for larger feature sets, because adding
another spatial dimension increases the possible between class distance.

Fisher’s interclass separability criterion performs fairly well for the KNN classifier. The
exceptions are the two-way linear correlated, Monk 1, and Binary 3 data sets. In the
two-way linear correlated set, the two-feature set is slightly better than either of the single
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SVM (one vs. one) SVM (one vs. all) KNN

univariate subset count | univariate subset count | univariate subset count

K=10 K=1 K=1 K=10 K=1 K=1 K=10 K=1 K=1

Abalone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Car Evaluation 0.77 0.70  0.25 0.73 0.66 0.13 0.48 0.43 0.29
Cardiotocography -0.71  0.87 0.72 -0.73 0.88 0.72 -0.68  0.77 0.73
Congressional Voting 0.81 0.80 0.73 0.81 0.80 0.73 0.80 0.76  0.70
Contraceptive Choice 0.12 -0.16 0.70 0.20 -0.17 0.62 0.43 0.19 0.50
Credit Approval 0.46 0.71 0.85 0.46 0.70 0.85 0.54 0.79 0.94
Dermatology 0.63 0.85 0.82 0.61 0.82 0.79 0.65 0.88 0.84
E-coli -0.31 0.88 0.66 -0.36 0.83 0.64 -0.31 0.90 0.66
Flag -0.46 0.30 0.58 -0.72 0.19 0.52 -0.27 0.45 0.65
Glass -0.55 0.75 0.00 -0.53  0.79  0.00 -0.54 0.75 0.00
Haberman’s Survival 0.44 0.10 -0.09 0.23 -0.17 -0.59 -0.11  -0.02 0.05
Ionosphere 0.72 0.74 0.72 0.73 0.75 0.71 0.23 0.32 0.44
Iris 0.74 0.84 0.91 0.81 0.93 0.93 0.82 0.91 0.95
Mushroom 0.64 0.72 0.24 0.64 0.72 0.24 0.58 0.69 0.20
Page blocks 0.50 0.60 0.69 0.62 0.73 0.64 0.48 0.49 0.68
Post-op 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Segmentation 0.62 0.81 0.73 0.65 0.86 0.66 0.55 0.73 0.69
Statlog (vehicle) -0.79 0.89 0.56 -0.80 0.87 0.53 -0.58 0.84 0.76
WI Breast Cancer (orig.) 0.67 0.73 0.60 0.67 0.73 0.60 0.69 0.77 0.64
WI Breast Cancer (diag.) 0.49 0.67 0.64 0.50 0.67 0.64 0.54 0.71 0.70
WI Breast Cancer (prog.) -0.81 -0.65 0.14 -0.80 -0.65 0.12 0.20 0.47 0.47
Wine 0.72 0.85 0.84 0.71 0.86 0.85 0.69 0.83 0.83
Yeast -0.69 0.56 0.29 -0.45 0.53 0.15 -0.78 0.48 0.33

Table 4.13: Correlations between filter values and SVM and 1-NN accuracy for RELIEF-F,
subset-based RELIEF and count-based RELIEF
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feature sets. The filter measure reflects this, but identifies the wrong single feature set as
being better. This is not really a significant problem, but because the correlation is only
between three points, this small error causes a large decrease in the correlation value.

The Monk 1 data set is difficult for the Fisher’s measure, because Fisher’s assumes
compact, unimodal clusters. Not only is the Monk 1 data set multi-modal, but one of the
clusters is elongated. Fisher’s measure underestimates the separability of this data set for
KNN but not for the SVM. A similar problem occurs with the multi-modal binary 3 for
KNN.

Overall, Fisher’s is better for SVM and may not identify certain features that are usable
by the KNN classifier. In particular, Fisher’s will not rank multi-modal features well. This
is the opposite problem of RELIEF, which does not work well for SVM because it does
rank these features highly.

Probability-based measures

The Gaussian measures perform reasonably well for both KNN and SVM on most of the
artificial data sets. However, they are outperformed by the discrete form on both the real
and artificial data sets. This may be an indication that at least some of the classes are not
well represented by a Gaussian.

The different divergence measures are fairly comparable for both the artificial and real
data sets on both classifiers, as seen in Tables 4.14 and 4.15. The Jensen-Shannon measure
is the easiest to use since it does not become undefined if there are bins with a probability
of zero. Hence, Jensen-Shannon would be the best choice if a probability measure was
desirable. Unfortunately, none of the probability-based measures work very well on the
real data sets for either classifier.

The Gaussian measures perform quite well for both KNN and SVM on most of the
artificial data sets. The two major exceptions are the un-nested and three way linear
correlated sets, for both the KNN and SVM classifiers. For the real data sets, the Gaussian
form has a lower correlation than the discrete form in most cases for both the KNN and the
SVM classifiers (see Tables B.11, B.12, B.13 and B.14). This is likely because some classes
are not well represented by a Gaussian. There are some data sets where the Gaussian
performs slightly better, but in many cases the performance is much worse. The discrete
form appears to be a better choice.

Since these measures are univariate, none work well with non-monotonic sets or sets
with dependent features. The three-way non-linear correlated data set is non-monotonic
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Probability measures (N, = 10)
SVM (one vs. one) SVM (one vs. all) KNN

KL JS Bh. KL JS Bh. KL JS Bh.
Binary 1 0.58 0.58 0.58| 0.54 0.54 0.54| 094 094 094
Binary 2 0.70 070 0.70| 056 0.55 0.56| 0.94 095 0.94
Binary 3 100% 100% 100% | 100% 100% 100% | 0.93 0.93 0.93
Monk 1 098 098 098 | 098 098 098| 0.59 059 0.59
Monk 2 100% 100% 100% | 100% 100% 100% | -0.56 -0.56 -0.56
Monk 3 091 095 094| 090 094 092| 095 098 097
Simple dependent 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99
Partially dependent 1.00 1.00 0.99| 1.00 1.00 0.99| 1.00 1.00 0.99
2-way linear corr. 070 0.68 067| 1.00 1.00 1.00| 099 0.98 0.98
3-way linear corr. 080 0.8 079| 081 081 080| 077 0.77 0.77
3-way non-linear corr. | 0.88 0.88 0.88| 0.88 0.88 0.88| 0.88 0.88 0.88
1 good and noise 097 094 098| 094 092 095| 096 0.93 0.96
Pure noise 0.62 053 0.62| -045 -0.33 -0.45| 0.80 0.68 0.80
Un-nested 081 0.8 080| 08 083 08| 083 0.84 0.83
Monotonic 0.80 0.8 0.80| 081 081 0.81| 084 0.84 0.84
Two U’s 098 1.00 097| 099 1.00 095| 094 099 1.00
Multimodal (XOR) 0.87 100 1.00| 078 096 098| 079 0.97 0.98
linear sep. Guassian 098 097 098 098 098 099| 099 0.99 1.00
Redundant 100% 100% 100% | -0.65 -0.65 -0.65 | 100% 100% 100%
2 clusters 100% 100% 100% | 100% 100% 100% | 100% 100% 100%

Table 4.14: Correlation between filter measure and 1-NN and SVM accuracy for various
probability divergence measures

for both the KNN and SVM classifier. The probability based measures successfully detect
the more powerful feature, and show that the less predictive features are better when used
in combination. However, the measures are unable to deal with the non-monotonic nature
of the data set, and give larger values when all three features are used together, when
in fact adding the two less predictive features decreases the accuracy. A similar problem
occurs for the un-nested data set, where the probability measures overestimate the benefit
of adding new features.

Overall, none of the probability measures can be recommended for either classifier. The
closely related mutual information measures are better choices with only a small additional
computational expense.

Mutual Information measures

There are five tested mutual information based measures: two univariate (mutual infor-
mation and symmetric uncertainty) and three additive, pairwise multivariate (conditional
mutual information maximization, minimal-redundancy maximal-relevancy and first order
utility).
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Probability measures (N, = 10)
SVM (one vs. one) SVM (one vs. all) KNN

KL JS Bh. KL JS Bh. KL JS Bh.
Abalone 039 044 039 | 026 026 026 | 067 0.71 0.68
Car Evaluation 0.71 066 0.70 | 0.63 0.57 0.62 | 047 0.45 0.47
Cardiotocography 085 084 086 | 0.87 0.8 087 | 0.75 0.75 0.75
Congressional Voting 0.80 0.77 082 | 0.80 0.77 0.82 | 0.77 0.73 0.79
Contraceptive Choice 0.80 0.80 0.80 0.82 0.82 0.82 0.50 0.46 0.47
Credit Approval 0.88 087 089 | 0.88 0.87 0.89 | 0.89 0.89 0.89
Dermatology 0.73 0.74 0.73 0.71 0.71 0.71 0.77 077 0.77
E-coli 0.77 085 076 | 075 082 0.74 | 0.77 0.84 0.76
Flag 061 063 062 | 0.82 081 082 | 045 0.51 0.45
Glass 0.71 073 0.71 0.77 078 0.77 | 0.68 0.70 0.68
Haberman’s Survival -0.73 -0.70 -0.73 | -0.83 -0.86 -0.83 | 0.55 0.47 0.55
Ionosphere 0.66 0.65 0.44 0.66 0.66 0.44 0.19 0.18 0.13
Iris 0.70  0.69 0.71 0.77 0777 077 | 077 076 0.78
Mushroom 0.68 0.70 0.45 0.68 0.70 0.45 0.61 0.64 0.32
Page blocks 0.72 071 072 | 0.82 0.82 0.81 0.63 0.63 0.62
Post-op -0.12 -0.61 -0.69 | -0.05 -0.64 -0.74 | 0.51 0.30 0.24
Segmentation 0.72 073 072 | 078 078 0.77 | 0.63 0.63 0.63
Statlog (vehicle) 0.81 0.82 0.81 0.84 0.84 083 | 0.66 0.66 0.66
WI Breast Cancer (orig.) | 0.68 068 0.68 | 0.69 068 0.68 | 0.71 0.71 0.70
WI Breast Cancer (diag.) | 0.51  0.51  0.51 0.51 052 0.51 0.55 0.55 0.55
WI Breast Cancer (prog.) | -0.83 -0.83 -0.83 | -0.81 -0.81 -0.81 | 0.19 0.19 0.19
Wine 0.73 073 073 | 073 073 073 | 0.70 0.70 0.70
Yeast 0.74 0.69 0.73 0.43 0.38 0.41 0.83 0.79 0.82

Table 4.15: Correlation between filter measure and 1-NN and SVM accuracy for various
probability divergence measures on real data sets
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The univariate measures only outperform the multivariate measures on one real data set
using KNN or one vs. one SVM. They outperform multivariate measures on three data sets
using one vs. all SVM. The two univariate measures are comparable for all the classifiers,
with the mutual information measure slightly outperforming the symmetric uncertainty
measures. This is likely because all the features are quantized to the same values.

Mutual information tends to rank features with a larger number of nominal values
more highly than symmetric uncertainty [33]. To illustrate the difference between mutual
information and symmetric uncertainty, consider three different features that exactly divide
a data set. The first feature can take values from one to ten, and the class is one when
the value is six or higher. The second feature can take values of zero or one and the
class is one when the feature is one. The third feature can take values from one to ten
and the class is one when the value is even. The mutual information between the feature
and the class for all of these features is exactly 1. However, the symmetric uncertainty for
features one and three (the features with ten nominal values) is 0.46, whereas the symmetric
uncertainty for the second feature is exactly 1. Symmetric uncertainty ranks the simpler
feature more highly, despite the fact that any feature can be used to separate the data set
perfectly when using a KNN classifier. This may or may not be a desirable trait for a filter
measure, and using a simpler feature may be beneficial for computational reasons. It is
important to note, however, that neither the mutual information nor symmetric uncertainty
differentiates between the two ten valued features, despite the different structure. While
KNN is able to perfectly separate the data set with either, a linear SVM would only work
with feature one.

CMIM outperforms the other mutual information based measures on 18 of the 24 real
data sets with the KNN classifier. CMIM also performs well with the SVM classifiers, out-
performing the other mutual information based measures in 14 of the 24 data sets when
using one vs. all, and in 17 of the 24 data sets when using one vs. one. However, CMIM
cannot always detect dependent features, even though it uses the conditional mutual in-
formation. Although the conditional mutual information is higher for pairwise dependent
features, in the CMIM filter measure the conditional mutual information is always calcu-
lated with respect to the selected set of features, with the goal of eliminating correlated
features rather than selecting dependent features. Regardless, CMIM still outperforms
mRMR and FOU.

Both the mRMR and FOU include a term that accounts for the mutual information
between the features in the set. It is possible for this term to be larger than the mutual
information between the feature and the class, giving a negative value for the measure.
Consider, for example, the two way linear correlated data set. The mutual information
between the two features is higher than the mutual information between each feature and
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the class. For both FOU and mRMR, this gives a negative value for the second feature
added to the set. A completely random feature would have zero mutual information with
the class and with the other features. In these cases, the completely random feature would
be selected over the correlated feature. This is extremely undesirable.

A different formulation, where the values are divided rather than subtracted, can avoid
this problem. CFS, which is a mutual information-based measure of this form, works better
than mRMR and FOU. It does not, however, contain a conditional mutual information
term.

Consistency

Although the consistency measure is interesting, it has a number of faults that render
it unsuitable for use in most data sets. The consistency measure does correctly reject
redundant features, and is capable of differentiating between a truly redundant feature
and features that are correlated but still improve accuracy. It is also one of the few
measures that can be less computationally expensive than a KNN wrapper. However, it
implicitly assumes a monotonic set and although the consistency measure can give a rough
estimate of the accuracy, it has difficulty differentiating between similar features. For
most data sets, the linear correlation is higher than the rank correlation, indicating that
the general trends are correct, but small accuracy changes are not correctly distinguished.
The quantization impacts the performance greatly and there is no theoretically sound way
to set his parameter. Selecting the quantization to match the number of clusters in the set
also does not work well, as in most cases IV, is too low to capture detail in the features.

Most importantly, the consistency measure does not work well with noisy features,
as noisy features can easily separate samples without being informative about the class.
Consider, for example, a feature that is different for every sample, such as an ID number.
This feature will have a perfect consistency score, which is highly misleading about its
utility for classification.

For these reasons, consistency cannot be recommended as a good filter measure choice.
Laplacian Score
Overall, the Laplacian score performs poorly. On the real data sets, the highest correlation

it achieves is only 0.77 for KNN, and 0.85 for the SVMs, with most data sets having much
lower correlation. This does not appear to be a good filter measure choice for KNN or
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SVM classifiers as it is likely that the correlation between the features and the accuracy
will be low.

This low correlation is likely because this is one of the few unsupervised feature selec-
tion measures and therefore the class differences are not accounted for when ranking the
features. This is particularly problematic for the artificial sets, where in most cases the
class division is not related to the underlying structure.

Consider, for example, the Monk data sets. Because the features are the same across
all three Monk data sets, the features are ranked in the same order. This is clearly not
desirable, since the informative features are different for the different sets. Additionally,
discrete features with only two values will often have a Laplacian score of zero, regardless
of the feature utility. For these features, points with different values are not neighbours
and points that are neighbours have the same value and therefore also have a zero score.
This indicates a potential problem with neighbourhood graph based techniques when using
discrete features.

For both the KNN and SVM classifiers, the Laplacian score works best when neighbour-
hood size parameter k is relatively large. This may be because none of the tested artificial
data sets really have an underlying structure. If the data set does have an underlying
structure, using a neighbourhood that is too large can cause “short-circuiting” [9], where
points that are distant on the underlying structure are considered neighbours. For data
sets with no underlying structure, using a larger neighbourhood just gives a better repre-
sentation of the entire data set. Larger k£ values also work well on the real data sets, which
may be an indication that many of the real data sets also have no underlying structure. A
similar observation is made for the Isomap algorithm [119] where short-circuiting is found
to help performance on many real data sets [150].

Overall, the performance of the Laplacian score is poor. The supervised measures are
better correlated with classifier accuracy and should be used when possible.

Multi-cluster feature selection

Overall, the performance of the MCFS filter measure is quite poor for both classifiers, for
similar reasons as the Laplacian score. One major problem with the MCFS filter measure
is the transformation to the underlying manifold, which requires solving an eigenvalue
problem. The matrices used are not always well conditioned, which makes this filter
measure unsuitable for some data sets. This is a particular problem for the real data
sets, where the eigenvalue problem cannot be solved for a large number of the sets. It is
also one of the more computationally complex filter measures. Overall, MCFS appears to
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be a poor filter choice for either classifier, due to numerical problems, the computational
expense and the low correlation between the filter scores and the classifier accuracy on
both the artificial and real data sets.

Correlation Feature selection (CFS)

Although this measure is called correlation feature selection, it uses symmetric uncertainty
as a measure of feature correlation. CFS is actually a slightly different formulation of
the mRMR measure, instead of subtracting the feature-feature mutual information, the
two terms are divided. It is also a grouped measure. This circumvents the problem of
correlated features taking negative values, making this filter measure more stable and less
prone to selecting random features.

On the real data sets, CFS outperforms symmetric uncertainty in most cases, and
actually performs quite well overall. With a quantization of 10 bins, CFS gives the best
overall correlation on the flag data set, and is one of the 10 best performing measures for 10
of the 24 data sets. CFS likely performs better on the real data sets because real data sets
are more likely to have some correlation between the features, which is the major strength
of CFS.

CFS does increase slightly as the redundant features are added, but the measure value
is not doubled when a second feature is added, as it is when symmetric uncertainty is used
alone. Because CFS accounts for feature-feature information, the measure value increases
only slightly when a fully redundant feature is added. CFS also performs better than the
simple symmetric uncertainty on the monotonic set and on the correlated sets, where the
symmetric uncertainty overestimates the benefit of adding new features.

Overall, CFS is a fairly good choice, particularly for the KNN classifier.

4.3.3 A note on the Monk 2 data set

None of the tested filter measures work well for the Monk 2 data set. For the Monk 2
data sets, the class is 1 when exactly two classes take the value one. This means that
each cluster of class 1 values is surrounded by clusters of class 0 values. Because this set
is multi-modal, SVM fails completely, achieving the same accuracy with any feature set.
KNN also performs poorly even with all six features. This is due to sampling issues. Using
all six informative features gives a KNN classification accuracy of just 84.1%.
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Figure 4.1: 1-NN accuracy on the Monk 2 data set for feature sets with different numbers
of features

The KNN classifier correlations are also exceptionally low. Although this is a fairly
difficult data set, it is actually the classifier itself that struggles in this case. Because the
classifier reacts in a strange way, the filter measures have difficulty predicting the outcome.

The KNN accuracy values are obtained using the Matlab version of the KNN function.
This function uses the built-in min function to identify the nearest neighbour. If more
than one point has the same minimum value, the function returns the first point in the
list. Because the features in Monk 2 do not include noise, more than one point will often
share the same distance, especially when a reduced feature set is used. In these cases,
the returned class will always be the same, as the list is in the same order. This may or
may not be the majority class for that set of points. For the 1-NN classifier, the accuracy
actually decreases as more features are added to the data set, until all six features are used
(see Fig. 4.1). For this data set, even a wrapper measure would be misleading, as it would
indicate that adding additional features to a small set would decrease the accuracy.

The KNN classifier accuracies would be slightly more predictable if the class of a tied
point was selected stochastically. This can be simulated by adding a small amount of noise
to each of the features in the data set. A new data set is tested using 1% uniform random
noise to the features. As seen in Figure 4.2, when noise is added, adding features tends
to increase the accuracy, which better matches with the predictions of the filter measures.
Table 4.16 shows the correlation between KNN accuracy for the regular Monk 2 data set,
and a version of the Monk 2 data set with 1% added noise. The filter measures in this data
set are all designed to be positively correlated with the accuracy (i.e. the filter measure
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Figure 4.2: 1-NN accuracy on the Monk 2 data set with 1% uniform random noise added
to each feature

increases as the accuracy improves), but for the Monk 2 data set, all the correlation values
are negative. When the noise is added to the data set, the correlations become positive.
The only exception is the Fisher measure, which does not perform well on any multi-modal
data sets. Although the correlation values are still quite low, a positive correlation is still
more desirable than a negative correlation.

4.3.4 Parameter sensitivity

The majority of the tested measures require one or more parameters to be tuned. The
sensitivity to the parameter settings is an important practical consideration for selecting
a measure. Even if a measure is able to achieve good performance under ideal parameter
settings, if the measure is sensitive to parameter changes it may select a poor set of features
if it is not well tuned. These parameters can be tuned using a validation set, but this adds
an additional layer of complexity.

The ideal feature selection measure would return good results over a large range of
parameter settings. This would allow researchers to set the parameters arbitrarily at first,
in order to tune the classifier and determine what level of accuracy is reasonable for the
problem. If necessary, the measure parameters could then be more finely tuned.

Each of the filter measures was tested over a range of parameter settings. Tables 4.17
and 4.18 show the variance of the correlation between the measures and KNN accuracy
as the parameters are changed. Tables 4.19, 4.20, 4.21 and 4.22 show the variance of the
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Monk 2
filter measure without noise  with noise
Fishers Qbpew, J1 0.59 0.30
RELIEF-F (K=10) 0.00 0.42
subset RELIEF (K=1) -0.23 0.85
count-relief -0.32 0.76
KL-divergence (N, = 10) -0.56 0.39
JS-divergence (N, = 10) -0.56 0.31
Bhattacharyya (N, = 10) -0.56 0.39
Mutual information (N, = 10) -0.56 0.31
Symmetric uncertainty (N, = 10) | -0.57 0.34
mRMR (N, = 10) -0.54 0.30
CMIM (N, = 10) -0.59 0.49
FOU (N, = 10) -0.55 0.61
consistency (N, = 10) -0.21 0.64

Table 4.16: Correlation between filter values and 1-NN accuracy values for the Monk 2
data set with and without 1% added noise

correlation between the measures and the SVM one vs. one and one vs. all accuracy as
the parameters are changed. Detailed tables showing the classifier correlation for each of
the measures with each of the tested parameters are presented in Appendix B.

RELIEF family of measures

The RELIEF family of measures all use a single parameter, K, which controls the number
of neighbouring points used to generate the nearest hit and miss values.

Different K values do not appear to have a large effect on the performance of the
measure for either the univariate or subset-based RELIEF measures for either classifier
(see Tables B.1, B.2 B.3 and B.4 in appendix B).

For the KNN classifier, increasing the K value of the univariate measure appears to
slightly improve accuracy. This may be because averaging over K points reduces the effect
of noise. For the subset-based RELIEF, in most cases the highest KNN correlations occur
when K =1 for the artificial data sets. However subset-RELIEF tends to work best with
a large K value (K=10) on the real data sets.

For SVM, the results are more varied, with larger values of K improving the correlation
for some data sets, but decreasing the correlation in others. Overall, however, the choice
of K does not appear to have a large effect on the correlation.
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Probability measures

Three different probability measures are tested, and each are tested using a continuous
Gaussian distribution, discrete distributions with different numbers of bins and discrete
distributions where the number of bins is set to be the estimated number of clusters in the
data. When using the estimated number of clusters to set the bins, the bin centers can
either be evenly spaced (’e’) or spaced to match the cluster centers ("u’).

The correlations for the different parameter values for the artificial data sets are pre-
sented in Tables B.5,B.6, B.7, B.8, B.9and B.10 in appendix B. The correlations for the
different parameter values for the real data sets are presented in Tables B.11, B.12, B.13
and B.14 in appendix B.

The quantization parameter does not appear to have a large effect on the performance
of the measures for either KNN or SVM, as long as there are a sufficient number of bins
to separate the relevant data. Unfortunately, neither the ’e¢’ or 'u’ bin number estima-
tion methods achieve good results and neither one of these quantization methods reliably
outperforms any of the other quantization methods, so cannot be recommended.

Mutual Information measures

For the univariate mutual information measures, the quantization value does not seem to
greatly affect the correlation value for either the KNN or SVM classifier (see Table B.15,
B.16, B.17, B.18 in appendix B). On the real data sets, there is a slight increase in corre-
lation for the larger quantization values, but the increase is not large. Any quantization
value that is sufficiently large to separate the clusters in the data will likely work. Using
a fairly large value such as 10 appears to be a good choice for most data sets.

Neither mRMR nor FOU perform very well on the real data sets. There are no clear
trends with respect to the best quantization value. The best quantization value appears
to be data-set specific (see Tables B.19, B.21, B.22 and B.24 in appendix B).

CMIM, however, does perform quite well on both the artificial and real data sets. For
most data sets, the difference in correlation between the different quantization values is
relatively small, but increases slightly as the quantization value is increased (see Tables
B.20 and B.23 in appendix B). This is not the case for every data set, but as with the
univariate measures, selecting a quantization value that is relatively large should give
reasonable results in most cases.
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Consistency

The correlation values for the correlation filter measure using different quantizations are
presented in Tables B.25 and B.26 in appendix B.

For continuous variables, the quantization of the data is important. If the data is
quantized into a small number of bins, many dissimilar points get grouped together. For
example, in the artificial noise with one good feature data set, one feature directly corre-
sponds to the class. However, since there are four classes, if the data is quantized into fewer
than four bins, the performance is severely compromised, and the correlation between the
accuracy and the filter measure is quite low (0.67).

Even when the quantization is as large or larger than the number of clusters, the
correlation is not perfect. In a KNN classifier, a small amount of noise normally results
in a small change in accuracy. When the values are quantized, these noisy values are all
placed in the same bin, and the small accuracy changes are disregarded. The filter value
gets the correct general area, but not the detail. For this reason, selecting the quantization
to match the number of clusters in the set also does not work well, as in most cases IV, is
too low to capture detail in the features.

In general, the consistency measure appears to work best with larger N, for the KNN
classifier, but the results are much less predictable with the SVM. Overall, the measure
appears to be quite sensitive to the quantization on many data sets, and there is no
theoretically sound way to determine the proper value for this parameter. Therefore, if
the consistency measure is used, the quantization value should be set with care, perhaps
through trial and error or previous knowledge of the system.

Laplacian score

The Laplacian score measure is controlled by two separate parameters. The number of
points that are included in the neighbourhood of each point is controlled by the parameter
k. The parameter t controls the form of the heat kernel that is used to create the similarity
matrix. The exponent of the kernel is the squared Euclidean distance divided by ¢. Hence, a
large t value drives the exponent towards zero, and the similarity value of the neighbouring
points to 1. Hence, as t becomes larger, the heat kernel approaches the 0-1 neighbourhood
graph form. A low t value increases the exponent, emphasizing the distance between the
neighbouring points. The actual value of ¢, however, appears to have little effect on the
performance of the filter measure for either the SVM or KNN classifiers. The correlation
values for different values of ¢ are shown in Tables B.27 and B.30 in appendix B.

140



The Laplacian score correlations for different values of k are given in Tables B.28, B.29
B.31 and B.32 in appendix B. For both the KNN and SVM classifiers, the Laplacian score
appears to work best when the number of neighbours (k) is relatively large. This is the case
both for the artificial sets, which are very simple and do not have an underlying structure,
and for the real data sets where the presence of an underlying structure is unknown.

If a data set does have an underlying structure, using a neighbourhood that is too large
can cause “short-circuiting’ [9]’, where points that are distant on the underlying structure
can be considered neighbours. However, for data sets with no underlying structure, using
a larger neighbourhood basically just gives better sampling and a better representation of
the entire data set. In some cases, the neighbourhood value is to set half the number of
samples, which would almost certainly cause short-circuiting.

Although short-circuiting is normally considered to be a problem with neighbourhood-
graph based algorithms [9], Van der Maaten [155] finds that short-circuiting can be benefi-
cial for Isomap, which is a neighbourhood graph based feature extraction method. Short-
circuiting may be beneficial for the Laplacian score filter measure for similar reasons,
namely that there may not actually be an underlying manifold, or the technique used may
not be able to properly extract it.

The neighbourhood size also affects the absolute value of the filter measure, which is not
an issue if the neighbourhood size is fixed, but is something to be aware of when comparing
between different neighbourhood sizes.

MCFS

MCEFS has parameters controlling the neighbourhood size, k, the kernel type and the heat
kernel parameter ¢. Similar to the Laplacian score, the best ¢ value is data set dependent,
and no single value of ¢ outperforms the others for either the KNN or SVM classifier (see
Tables B.33 and B.37). Three different kernels are also tested, as shown in Tables B.34,
B.35, B.36, B.38, B.39 and B.40. The performance of the three kernels is fairly comparable
for both classifiers. If the MCFS filter measure is being used, the zero-one kernel is likely
a good choice for the kernel as it is the simplest to calculate and also appears to create
eigenvalue problems that are more easily solved.

Because the Laplacian score performed much better with larger k& values, the MCFS
filter is only tested with k values of 25 and higher. The best k value is data set dependent,
with no single value of k outperforming the others for any data set or kernel on either of
the classifiers.

141



CFS

The correlation of CFS and classifier accuracy for different values of N, are presented in
Tables B.41 and B.42. A relatively large N, works well for all the classifiers on both the
artificial and real data sets. Overall, however, the different quantizations do not have a
large effect on the performance. As with the mutual information based measures, any
quantization that is sufficiently large to capture the behaviour of the data will likely work
well.

4.3.5 Summary of filter measure evaluation

While univariate measures are faster to use, they are unable to detect dependencies between
features, and are also unable to identify non-monotonic sets. This is a particular problem
for the real data sets as all the tested data sets are, in fact, non-monotonic to varying
degrees.

For KNN classifiers, the best filter measures appear to be the consistency measure,
CFS, CMIM and subset RELIEF. However, the consistency measure is unable to identify
non-monotonic sets, and is highly sensitive to the quantization parameter. CFS, CMIM or
subset-RELIEF would be a more practical choice.

For SVM classifiers, the best filter measure appears to be Fisher’s interclass separability
criterion, or CMIM if an additive multivariate measure is desirable.

The results for each of these classifiers is summarized in Figures 4.3, 4.4 and 4.5

Table 4.23 summarizes the ability of each filter measure to correctly handle each data
set challenge outlined in Section 4.2.1

Non-monotonic sets

Univariate measures do not work well for non-monotonic sets since the summed values
increase as more features are added. The only exception is RELIEF-F, which can take
negative values.

Additive multivariate measures also have difficulty with non-monotonic sets if the mea-
sures can only take positive values. Because mRMR and FOU can take negative values,
they can theoretically identify non-monotonic sets whereas CMIM, Laplacian score and
MCEFS cannot.
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measure non-monotonic dependence correlation redundance noise
Fisher yes yes yes no yes
RELIEF-F yes no no no yes
subset RELIEF yes yes yes no yes
count-RELIEF yes yes yes yes yes
KL divergence no no no no yes
JS divergence no no no no yes
Bhattacharyya no no no no yes
mutual information no no no no yes
symmetric uncertainty no no no no yes
CMIM no yes* yes no yes
mRMR yes no no no yes
FOU yes yes* no no yes
LS no no yes no no
MCFS no no yes no no
consistency no yes yes yes no
CFS yes no yes no yes

Table 4.23: Common data set challenges for feature selection

The consistency filter also fails for non-monotonic sets, since adding features can only
separate previously inconsistent points.

Dependency

The univariate measures cannot detect dependency because each feature is considered
independently of the other features. The unsupervised filter measures also cannot detect
dependent features because they do not consider the class at all when selecting the features.

CMIM and FOU both include a conditional mutual information (CMI) term that ap-
pears to be able to select dependent features. However, they are designed to exclude
correlated features rather than to select dependent features. The CMI term is high for de-
pendent features. However, because both filter measures measure the CMI with respect to
the selected feature set, these filter measures can only select features that have a high con-
ditional mutual information with a feature that is already selected. Neither, therefore, can
select features that have a low individual mutual information but a high conditional mutual
information (fully dependent). They can, however, select partially dependent features if
one of the features is selected on its own merits.

Subset RELIEF, count-RELIEF and Fisher’s are all able to select dependent features.
Correlation

Univariate measures are unable to detect correlation between features because each feature
is considered independently.
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The supervised multivariate filter measures all consider correlated features either explic-
itly or implicitly. Fisher’s interclass separability criterion, for example, implicitly discounts
correlated features because adding a linearly correlated feature causes a smaller distance
change. Conversely, CFS, FOU and mRMR explicitly discount correlated features by in-
cluding feature-feature correlation as a term in the measure.

FOU and mRMR can actually over-correct if the correlation between the features is
higher than the correlation between the feature and the class. These features have negative
filter measure values, indicating that a correlated feature is highly undesirable even if the
correlated feature can improve classification accuracy. In these cases, the filter measures
will actually prefer a feature that is completely random and has zero mutual information
with the class and with the other feature.

Redundancy

Univariate filter measures always indicate that adding more features will be helpful, which
is incorrect for redundant features. This can cause helpful features to be excluded in favour
of redundant features that contain no additional information.

The multivariate mutual information-based filter measures work well for the redundant
data sets in these tests. The conditional mutual information for a redundant feature is zero,
so CMIM will work well for any truly redundant features. As with the correlated features,
FOU and mRMR can over-correct. Redundant features have a mutual information value
of 1. FOU and mRMR will therefore have a negative value if the correlation between
the feature and the class is not also 1. In these tests, the features in the redundant set
perfectly predict the class and therefore have a mutual information of 1 and FOU and
mRMR mappear to work well. However, as with the correlated features, FOU and mRMR
do not work in the general case.

For the distance-based measures, adding redundant features affects the distances be-
tween classes. The subset RELIEF measure prefers sets that include the redundant fea-
tures, but count-based RELIEF does not.

The consistency measure also performs correctly for redundant features, since adding
a fully redundant feature will never separate any new samples.

Noise

The only filter measures that do not properly identify noisy features are the two unsuper-
vised filter measures (LS and MCFS) and consistency. The unsupervised measures have
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no way to determine if features are correlated with the class, and therefore have difficulty
removing them. The consistency measure also has difficulty with noisy features. Because
the measure only considers separation of pairwise samples and not an overall pattern in
the features, noisy features appear to be good because they separate samples in different
classes, even if the separation is arbitrary.

FOU and mRMR can select noisy features if there are correlated features that are have
a lower mutual information with the class than with the other features in the set.

4.4 Proposal for a new filter measure

It is clear from the results presented in Section 4.3 that some of the tested measures have
difficulty with specific data set challenges. There is no single filter measure that performs
well for every data set. However, there are several candidate filter measures that work well
in many cases, and could be adapted to better handle specific challenges.

One promising candidate is the CMIM measure. In most cases, this measure can prop-
erly discount pairwise correlated features, can identify noisy features and has a relatively
low increase for redundant features. However, it cannot detect all dependent features and
assumes monotonic sets.

As discussed in Section 4.3.5 and 4.3.2, the conditional mutual information can detect
dependent features, but CMIM will not add dependent features unless one of the dependent
features is not already included in the set. This stems from the fact that the original goal
of CMIM was to exclude correlated features rather than include dependent ones.

Consider, for example, the Monk 1 data set. In this data set, the class is 1 when
(r;1 == x9)|(zs == 1). The feature-class mutual information and conditional mutual
information values for the features in this data set are given in Table 4.24. In a sequential
forward search, feature 5 would be selected first. However, I(x1;Y|x5) and I(xzq; Y |x5) are
both low, despite the fact that I(z1;Y|zs) and I(z9; Y |x1) are both high. Hence, features
1 and 2 are not the next selected features despite the fact that they collectively bring a
large amount of information.

One possible way to prevent this problem is to first examine the table of CMI values
and find pairs of features that have high CMI. If the CMI of two features is more than
their summed mutual information then they bring more as a pair than they would as two
individuals and should therefore be added as a pair. The new proposed measure uses
this criterion to identify dependent pairs of features, which are then used to create a new
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Monk 1 data set
mutual information: I(f;;C)
0.00 0.00 0.00 0.00 0.31 0.00
conditional mutual information: I(f;; C[f;)
0.46 0.00 0.00 0.00 0.00

0.46

- 0.00 0.00 0.00 0.00
0.00 0.00 - 0.00 0.00 0.00
0.00 0.00 0.00 - 0.00 0.00
0.31 031 031 0.31

- 0.31
0.00 0.00 0.00 0.00 0.00 -

Table 4.24: Mutual information and conditional mutual information for Monk I data set

combined feature. CMI is then performed normally on the new feature set, adding both
dependent features when the combined feature is selected.

The other difficulty with CMIM is that it assumes monotonic sets. First order utility
[20] can behave non-monotonically because it includes a negative term for correlated fea-
tures. However, it often overestimates the detrimental effect of correlated features, and
although the terms of the filter measure can be parameterized, the correct parameterization
is data set dependent [20].

Although it is called Correlation Feature Selection [58], CFS is actually based on the
symmetric uncertainty, which is an information-theoretic measure. Like mRMR and FOU,
CFS includes a term that explicitly discounts features that are pairwise correlated with
other selected features (as measured using their symmetric uncertainty). However, rather
than subtracting the pairwise correlation term, CFS divides the terms. Because CFS
is applied group-wise, it can be monotonic, but using this division term on an additive
multivariate measure would create a positive monotonic measure.

This section proposes two new filter measures, dCMIM and dFOU, based on CMIM
and CFS/FOU. Both begin by using the matrix of feature-feature CMI values to identify
dependent features, then apply the measures on a set of transformed features. A flow chart
describing this procedure is given in Figure 4.6.

A dependent pair of features is defined as a pair of features where the conditional mutual
information is higher than the sum of the mutual information values for the independent
features. These features bring more information as a pair than as a set of individual
features.

DEP;j = (I(wi; Y|a;) > I Y)+ 12y V) +0)| (1 Yw) > Has V) +1(z5;Y)+1) (4.2)

where DEP, ; is a binary value that determines if a pair of features is dependent, I(x;; Y|z;)
is the conditional mutual information of feature x; and the class labels Y given z; is already
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Find vector of Ml values:
M: Fx1 vector
my=1{x;;Y)

¥
Find matrix of CMI values:
P: FxF matrix
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Find pairs of dependent

features Xy where
py > (M#m+t),
t=MI b/w noise and C

'

Remove any featuresin a

dependent pair from the

set of candidate features
Knew = X_Kd

For each dependent pair,

add a new feature x; that
is the LDA of x; and x;

xnew = >(nev\r L XK

Perform feature selection
as normal using the new
candidate feature set X, o,

|

Select both x; and x; when
feature x; is added from

xI1EW’

Figure 4.6: Flow chart for using dCMIM or dFOU filter measure
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included in the set of selected features, I(x;;Y') is the mutual information between feature
x; and the class labels and ¢ is a tolerance factor that is found using the mean mutual
information of N samples of uniform random noise and the class labels.

The set of dependent features X, consists of all the features that are included in a
dependent pair (DEP,; == TRUE). The set of dependent features is removed from the
new set of input features X,., = X — X;. For each pair of dependent features, a new
feature (x;;) is added to the new feature set. The new feature is the first dimension of the
FDA transform of the two input features.

Tij = FDAl(l‘Z, Ty, Y) (43)

After creating the new set of features X,.,, feature selection is performed normally,
selecting features one at a time from X, using SFS and the standard CMIM measures
as described in 2.4.2. When a dependent pair feature x;; is selected, both z; and x; are
added to the selected feature set, but the remaining CMI values are still calculated with
respect to x;;.

The feature transform is used in place of the pair of features to avoid sampling issues.
The CMI for a single feature with respect to each feature in the selected set I(X;;Y|Xy)
requires calculating a three-way joint probability between the classes and the two features.
The CMI for a pair of dependent features I(X,,; Y| X¢) would require calculating a four-way
joint probability. This problem is exacerbated if pairs of dependent features are already
present in the selected set. FDA is used to create a new feature because it is a relatively
simple supervised feature extraction technique. More complex feature extraction methods
may also yield good results.

A second measure is also proposed, which uses SFS and a new measure that is similar
to FOU or CFS. As with the first measure, a new set of input features, X,,.,, is constructed
by removing the set of dependent features X; and replacing them with the set of FDA
features constructed from each dependent pair. The set of features is selected using SF'S
and a measure based on CMIM and FOU/CFS where the value of adding each new feature
T, to the set of M — 1 previously selected features S,,_; is given as:

_ minges,,, 1(7m;Y]2:)
Lot i i I o)
The numerator of this measure is the CMIM value for feature m. The denominator

includes a term to account for the average feature-feature mutual information between x,,
and the previously selected features.

(4.4)

m
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4.4.1 Experiments

Tests were run using the two new proposed measures: dCMIM, which uses SF'S and CMIM
on the transformed input set X,,.,, and dFOU, which uses SFS and the measures described
in 4.4 on the transfomed input set X,.,. The test environment and data sets are as
described in Section 4.2.

4.4.2 Results and discussion

The results from tests using the two new proposed measures are presented Tables 4.25,
4.26 and 4.27.

On the real data sets, the performance of the measures is fairly comparable to CMIM.
This may be an indication that the real data sets do not contain a large number of depen-
dent features, or that the tested classifiers do not work better with dependent features.

However, the two measures do perform particularly well on the artificial data sets,
which are known to contain dependent features. Table 4.25 shows the ability of dCMIM
and dFOU to find dependent features in a set and to select the known informative features
from the artificial data sets. It is clear from this table that the new measures are able
to find dependent features where the other tested measures fail. In particular, the new
measures are able to correctly identify dependent features in all the Monk data sets, Binary
3, multi-modal and stmple dependent.

The new measures do not, however, correctly identify the features in the partially
dependent set. This is because one of the features is actually relatively powerful, and the
second feature only brings a small amount of additional information. Because the mutual
information for one feature is so large, the features are not flagged as dependent even
though they work better as a pair. Similarly, the two dependent features in the nested
data set are not flagged because the information from the individual features is too high.

These data sets illustrate the problem of defining dependence in features. The newly
proposed measures use a binary condition for dependence. This is necessary to generate
the new feature values. However, feature dependence is likely a more fuzzy concept, with
some features being fully dependent, and others that bring a large amount of information
themselves, but still work somewhat better as a pair. It may be worthwhile to explore this
idea as a future work, using a fuzzy measure of dependence based on the ratio of the CMI
to the mutual information values. This could be particularly beneficial if these measures
were being used as a way of exploring the data set rather than strictly for feature selection.
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The noise features suffer from the opposite problem. Because the mutual information
values for the individual noise features are so low, they are mistakenly flagged as being
dependent when in fact they are just noise. This does not affect the final outcome as the
mutual information values for the newly created features are also quite low, but it does
make the procedure more computationally expensive.

In fact, the computational expense is the largest single drawback to these new measures.
The standard SFS/CMIM procedure requires the calculation of F' x (Q — 1) CMI values
and F mutual information values, where () is the desired number of features. The new
measures require the calculation of F' x F' CMI values and F' mutual information values,
and then an additional calculation of D x (@ — 1) CMI values and D mutual information
values, where D is the number of dependent features. Not only is the calculation of the
initial CMI matrix quite expensive, there is an additional expense for re-calculating the
CMI for the dependent features. In some cases, D can be larger than the initial number
of features if there are large number of dependent pairs.

There several potential ways to reduce this computational cost. Firstly, the CMI calcu-
lations are completely independent and can easily be parallelized with very little additional
programming effort. The mutual information calculations can be similarly parallelized.

A second option is to examine the dependent feature set after each new feature is added.
Any feature z;; can be removed if features 7 and j are already included in the set. This
effectively reduces the size of D as more features are added to the set.

A final option is to reduce the size of D preemptively by including only the best per-
forming dependent pairs. The feature pair with the highest CMI value is added to the set
as feature z;;. Any dependent pairs containing either feature 7 or feature j are then elimi-
nated before their dependent feature is calculated. This would greatly reduce the number
of dependent features, but may also slightly reduce the effectiveness of the measure by
considering only the best initial dependent feature pairs.

4.5 Summary

This chapter presented an extensive empirical evaluation of common filter measures. The
measures are evaluated with respect to their ability to select known informative features,
their correlation with classifier accuracy and their ability to deal with specific feature selec-
tion challenges, including non-monotonic data sets, correlated features, redundant features,
dependent features and noisy features. Based on these tests, several filter measures are
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# dependent features Informative features identified
data set dCMIM / dFOU | dCMIM dFOU
Binary 1 3 0 v v
Binary 2 3 0 v v
Binary 3 3 3 v v
Monk 1 2 2 * *
Monk 2 6 6 v v
Monk 3 3 3 * *
Simple dependent 2 2 v v
Partially dependent 2 0 v v
2-way linear corr. 2 0 v v
3-way linear corr. 2 0 * *
3-way non-linear corr. | 3 0 v v
1 good and noise 0 3 (noise) * *
Un-nested 2 0 - -
Monotonic 0 0 v v
Two U’s 2 0 v v
Multi-modal (XOR) 2 2 v v
linear sep. Gaussian 2 0 v v

Table 4.25: Ability of dCMIM and dFOU to find dependent features and to select in-
formative features from the set. A v indicates that the measure was highest when the
best performing set was selected. A * indicates that the measures was highest for the set
that contained all the features, but that the informative features were selected first. A -
indicates that the measure was unable to recover the best feature set.

KNN SVM (OVO) SVM (OVA)

dCMIM dFOU CMIM | dCMIM dFOU CMIM | dCMIM dFOU CMIM
Binary 1 0.94 0.94 0.97 0.59 0.59 0.59 0.55 0.55 0.55
Binary 2 0.97 0.97 1.00 0.70 0.70 0.70 0.56 0.56 0.56
Binary 3 0.95 0.96 0.94 4.63 3.88 6.52 4.63 3.88 6.52
Monk 1 0.87 0.87 0.82 0.98 0.98 0.60 0.98 0.98 0.60
Monk 2 -0.43 -0.43 -0.50 2.83 2.64 4.60 2.83 2.64 4.60
Monk 3 0.95 0.95 0.86 0.89 0.90 0.89 0.87 0.89 0.88
Simple dependent 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Partially dependent 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2-way linear corr. 0.88 0.73 0.99 0.43 0.18 0.43 0.95 0.83 0.95
3-way linear corr. 0.98 0.97 0.88 0.99 0.99 0.99 0.99 0.99 0.99
3-way non-linear corr. 0.89 0.89 0.95 0.89 0.89 0.89 0.89 0.89 0.89
1 good and noise 0.98 0.99 0.93 0.99 1.00 0.99 0.97 0.97 0.97
Pure noise 0.83 0.83 0.68 0.94 0.95 0.58 -0.20 -0.23 -0.14
Un-nested 0.99 0.98 0.88 0.99 0.98 0.99 0.96 0.95 0.96
Monotonic 0.88 0.88 0.92 0.87 0.88 0.87 0.83 0.82 0.83
Two U’s 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Multimodal (XOR) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
linear sep. Guassian 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Redundant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 clusters 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
best 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
worst 0.87 0.73 0.82 0.43 0.18 0.43 0.55 0.55 0.55

Table 4.26: Correlation of dACMIM and dFOU with classifier accuracy on artificial data
sets, using best parameter set
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KNN SVM (OVO) SVM (OVA)

dCMIM dFOU CMIM | dCMIM dFOU CMIM | dCMIM dFOU CMIM
Car Evaluation 0.53 0.53 0.53 0.81 0.81 0.81 0.77 0.77 0.77
Congressional Voting 0.87 0.90 0.87 0.91 0.93 0.91 0.91 0.93 0.91
Contraceptive Choice 0.60 0.56 0.60 0.87 0.85 0.87 0.78 0.78 0.78
Credit Approval 0.90 0.91 0.91 0.94 0.95 0.94 0.94 0.94 0.94
Dermatology 0.87 0.87 0.87 0.83 0.83 0.83 0.82 0.82 0.82
E-coli 0.95 0.95 0.95 0.97 0.97 0.97 0.94 0.95 0.94
Flag 0.58 0.58 0.57 0.75 0.75 0.73 0.87 0.87 0.88
Glass 0.76 0.74 0.76 0.76 0.76 0.76 0.82 0.82 0.82
Haberman’s Survival 0.44 0.47 0.41 -0.50 -0.50 0.19 -0.40 -0.40 0.22
Tonosphere 0.14 0.15 0.35 0.62 0.62 0.77 0.62 0.63 0.78
Iris 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.98
Page blocks 0.64 0.64 0.64 0.68 0.68 0.68 0.82 0.82 0.82
Post-op 0.43 0.42 0.57 0.24 0.26 -0.10 0.42 0.42 0.11
Segmentation 0.82 0.83 0.82 0.87 0.88 0.87 0.90 0.90 0.90
Statlog (vehicle) 0.76 0.77 0.76 0.87 0.87 0.89 0.87 0.87 0.90
WI Breast Cancer (orig.) 0.79 0.79 0.79 0.81 0.84 0.81 0.81 0.84 0.81
WI Breast Cancer (diag.) 0.66 0.70 0.76 0.63 0.68 0.72 0.64 0.69 0.72
WI Breast Cancer (prog.) 0.23 0.24 0.23 0.00 0.00 -0.75 0.00 0.00 -0.73
Wine 0.76 0.76 0.75 0.83 0.84 0.83 0.84 0.85 0.84
Yeast 0.70 0.70 0.70 0.95 0.95 0.95 0.68 0.68 0.68
best 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.98
worst 0.14 0.15 0.23 -0.50 -0.50 -0.75 -0.40 -0.40 -0.73

Table 4.27: Correlation of dACMIM and dFOU with classifier accuracy on real data sets,
using best parameter set

recommended for the different classifiers. For KNN, subset-RELIEF, CF'S or CMIM are rec-
ommended. For SVM, Fisher’s interclass separability criterion or CMIM is recommended.
CMIM was found to be a good general feature selection measure.

Although the performance of CMIM is generally quite good, it is unable to select fully
dependent features. Two new filter measures are proposed to overcome this problem.
The dCMIM filter measure is based on the CMIM measure, but uses an additional pre-
processing step to explicitly look for dependent features. The dFOU measure also adds a
term to account for feature correlation.

The dependency test is based on a comparison of the pairwise conditional mutual
information terms of the two features to their summed mutual information values. Results
indicate that this test is able to identify a number of strongly dependent features and
the dCMIM and dFOU filter measures are capable of identifying the known informative
features in 19 of the 20 tested artificial data sets.
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Chapter 5

Feature Selection for time-series
human-motion data

The majority of the commonly used classification algorithms do not explicitly deal with
time-series data. Most classifiers use a single set of input variables, corresponding either
to a single time step, or a set of features computed over a-priori defined windows.

A non-temporal classifier can be extended to work with time-series data by adding the
various time-delay components as additional inputs to the system. This is illustrated in
Fig. 5.1b. This type of time-delay system has been used in many applications, including
human motion recognition [135].

The inclusion of time-delay components adds additional parameters that need to be
considered. It is not clear that simply adding a set number of time-delayed inputs of the
selected features will give good results. Adding time-delay components also adds more
features, which can make the classifier slower during both training and testing and also
increase the amount of memory required to store the classifier. When considering time-
delay inputs it is important to determine systematically which features should be included.
In many cases, the entire time-series is considered as a single feature and is included
or excluded accordingly [25]. However, because these time-delay components enter the
classifier as separate inputs, it should be possible to evaluate each time-delay as a separate
feature (see Figure 5.1¢). Time delay selection has also been used in prediction problems
[67], which use a single feature as an input.

When classifying motions, it may be possible to differentiate between motions using only
a portion of the available time-series. For example, when classifying a punching motion
using position or joint data, the classifier may not require the entire arm trajectory. It
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may be sufficient to know that the arm starts near the body, and becomes fully extended
approximately halfway through the motion. A kick motion should be differentiable from
a punch motion by comparing the arm and foot positions midway through the motion,
without knowing the full motion trajectory.

Selection of time delay components is challenging, however. Adding delayed versions of
each feature increases the search space greatly. The time-delayed versions of the features
are also likely to be correlated. In human motion data, for example, the position of any
body part at time ¢ will be similar to the position at time ¢ + 1 because people are only
capable of moving with a finite speed. The features themselves may also be correlated
because of the kinematic and dynamic constraints of the body.

This chapter examines the selection of specific time-delay values for human motion
data. The aim of this chapter is to determine whether time-delay feature selection can be
used to generate classifiers that have a smaller memory footprint and shorter test time, but
maintain a comparable accuracy to classifiers that use the entire time-series of a feature.

Time-delay feature selection is then used with the multi-modal binary tree classifier
outlined in Chapter 3 Section 3.2 to generate a tree-based classifier of human motions.
These techniques are tested on two human motion data sets. The first data set classifies
full-body human motions from joint angle data. The second data set examines hand gesture
recognition from EMG data.

MBT is an intuitively good choice for human motion recognition, as human motions
fall in a naturally hierarchical structure, as shown in [36]. Additionally, humans may use
different movement strategies to perform the same motion. These different strategies can
create multiple clusters of movement types within the same motion class. As demonstrated
in Chapter 3, MBT performs well on multi-modal data sets. Lastly, the MBT requires
fewer multiplications to classify incoming points, resulting in a fast test time. Because
the eventual intention is to create a classifier that is trained offline, but is used to classify
incoming samples in an online manner, test time is an important consideration. The
test time directly affects the time between the receipt of a sample and the output of a
classification result. If the result of the classification is used to trigger another event,
as in gesture control systems, the classification test time directly affects the system lag
and the perceived performance. A computationally efficient classifier is also important for
systems that have little processing power, such as body-worn devices, in order to complete
the classification in a reasonable time and to allow other processes to share the available
resources.
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Figure 5.1: Classifier extensions for time-series data

5.1 Full body motion recognition from joint angles

Tests with the full body human motion recognition data set are designed to explore the
effectiveness of time-series window selection and the performance of the MBT algorithm
on human motion data.

First, the effectiveness of time-window selection is evaluated. The purpose of these
tests is to determine if time-delay feature selection can be used to reduce classifier memory
footprint and test time, while maintaining classifier accuracy.

In many cases, human motion recognition is performed using time-series modeling that
uses the entire time sequence of each feature. For example, [37] models human motions
using hidden Markov models. However, for motion recognition, using the entire time
sequence may be unnecessary. In many cases, for human motion data there is a large
amount of correlation both between different features and between the time windows of
the same feature due to the kinematic constraints of the human body. Additionally, there
may be uninformative features since not all body parts are involved in every motion. For
example, the position of the arms during a kicking motion may not be informative. Using
only a subset of the windows in a feature can reduce classifier memory requirement and
classification time, and may also improve accuracy. Feature selection is a good way to select
among these windows and features because many feature selection methods are designed
specifically to eliminate noisy, uninformative and correlated features.
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In order to separate the effect of the time-window feature selection from the effect of
the MBT classifier design, the time-window feature selection is first evaluated on a two-
class problem using a single SVM classifier. Selection of an entire time-series feature is
compared to the selection of individual time windows.

Based on the initial tests using feature selection to select individual time windows,
a two-stage selection process is proposed. A two-stage feature selection method is used
to reduce the time required for feature selection. Because each of the time windows of
each feature is included as a separate input to the feature selection process, using feature
selection methods for time-series data can be quite time consuming.

Most of the selected windows occur at a local minimum or maximum of either the
average or variance/difference. This suggests a way to reduce the feature selection time by
passing only the local extrema points to the feature selection algorithm. The first stage
of the two-stage selection finds local minimums and maximums in the time series. These
windows are passed to the feature selection algorithm and the remaining windows are
eliminated. This two-stage selection process is investigated using two-class human motion
classification problem as well as several artificial data sets.

Lastly, the MBT algorithm developed in Chapter 3 Section 3.2 is applied to this human
motion data set. Using a tree-based classifier reduces classification time, as discussed in
Section 3.2.2. Additionally, the structure of the tree-based classifier may also be informative
about the motions themselves, indicating which motions are more similar.

5.1.1 Experiments

The first experiments explore whether selecting individual time windows can be as effective
as using the entire time series for human motion recognition. Selection of individual time
windows is compared to selection of the entire feature, where all the time windows are
included as inputs.

Two-class data sets and a single SVM classifier are used for these experiments so the
effect of the time-series selection can be evaluated separately from the effect of the MBT
algorithm. Two two-class human motion recognitions problems are used: classifying kick
vs. punch and throw vs. punch motions from joint angle data. Kick vs. punch is selected
because these motions are intuitively quite different and involve different major limbs. The
features should be fairly distinctive because the problem is relatively simple. Throw vs.
punch is used because these motions use the same limb and are quite similar. This problem
is harder than the kick vs. punch problem.
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The motions are extracted from the human motion recognition data set, which is a 21
feature data set of joint angles. The time-series data from each joint is divided into 20
windows and the average and variance or difference of each window is included as an input
feature for the feature selection process. Tests are run using joint angle features from the
whole body or from the upper body only. The data set is discussed in detail in Section
5.1.1.

Feature selection is performed using sequential forward search[l2] with either CMIM
[18] or FOU [20] as the feature set evaluation measure. Ties are broken using the highest
individual mutual information then by Fisher’s interclass separability on each individual
feature [13].

CMIM is selected as the feature set measure because CMIM with SFS is a good predictor
of linear SVM accuracy, as found in Chapter 4. FOU is used because it explicitly accounts
for feature-feature correlation, which is likely to be high in this data set. Fisher’s interclass
separability criterion is also a good predictor of linear SVM accuracy and hence is used to
break ties. While it is possible for CMIM and MI to generate a number of ties, particularly
if there are multiple highly predictive features, Fisher’s is distance based and hence more
easily ranks the features.

Based on the initial tests, a two-stage feature selection process is proposed where only
the local extrema of the time series are passed to the feature selection method. The two-
stage feature selection is tested on the two-class kick vs. punch and throw vs. punch
motion recognition problems used in the first set of experiments. It is also tested on
artificial data sets of Gaussian curves that are designed to simulate the type of movement
seen by one joint. The artificial data sets are used to explore how well the proposed two-
stage feature selection method works for curves that are very similar. The artificial data
sets are described in detail in Section 5.1.1.

Lastly, the two-stage local min/max feature selection is used with the MBT to generate
a tree of motions. Experiments are run using both a three-class kick vs. punch vs. throw
problem and using the entire set of motions. For the multi-class problem, two similar
feature selection methods are tested. Because each SVM node in the tree creates a binary
separation of the classes, the features can either be evaluated with respect to the original
class labels (multi-class selection) or with respect to the binary class labels for each node
(binary selection). Both methods are tested.

In all tests, accuracy values are calculated using the average of three runs of five folds
cross validation. The average number of features required to classify each point is also
reported. Because the classifiers are linear SVM classifiers, a point can be classified by
projecting the point onto the hyperplane. Hence, the number of features, or dimensionality
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of the hyperplane, directly corresponds to the number of multiplications required to classify
a new point. The total number of multiplications required depends on the number of nodes
used for classification as well as dimensionality, or number of features, at each node.

Data sets

The human motion data set consists of nine movements captured by a motion capture sys-
tem. The data set is provided by Kuli¢, Takano and Nakamura and was used in their 2008
paper in the Journal of Robotics Research [389]. The movements are manually segmented
and labeled. The motion capture system captures 3D positions of passive markers attached
to body landmarks; an inverse kinematics solver is used to compute the corresponding joint
angles, using a 20 degree of freedom kinematic model. The resulting data set includes 20
joint angle features and one unchanging feature showing the sample rate. Table 5.1 lists
the resulting features and indicates the figure numbers illustrating the extracted features.
The sampling time feature is not plotted because the sampling time is the same for every
time delay value and hence the minimum, maximum, average and all the window values
are the same.

The system takes one sample every 33 ms (30 Hz). The segmented motions range in
duration from 63 to 139 samples (2.1 to 4.6 seconds) depending on the motion and the
trial. Although there are time sequence alignment methods, such as dynamic time warping
[130], that would guarantee that key portions of the movement occur in the same time-
delay window, these require a-priori knowledge of the class to generate a template for each
motion. Using the minimum, maximum and average value of a feature is an extremely
rough type of landmark alignment that does not require class knowledge. The lengths of
the motions are normalized by dividing each time series into an equal number of windows.
This ensures that the start and end of the motions are aligned.

For this data set, 20 non-overlapping windows are used. From inspection, the joint
angles of most movements form smooth curves with one or two peaks. Twenty windows
was estimated to be sufficient to distinguish the shape of the curves. Two different tests
are run, either using the average and variance of the samples in the window or the average
of the samples and the difference between two adjacent windows. Both the variance and
the difference give an indication of how much the signal is changing in a single window,
but the variance is more affected by noise. The absolute minimum, maximum and average
are also optionally included.

The time-series artificial data set consists of six different Gaussian curves. The curves
are described in Table 5.2, and each curve is illustrated in Appendix D. Each curve consists
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Figure references
Features Max/min/avg  windowed
Sampling Time - -
Right Leg Yaw D.8 D.28
Right Leg Roll D.9 D.29
Right Leg Pitch D.10 D.30
Right Knee D.11 D.31
Right Ankle Pitch D.12 D.32
Right Ankle Roll D.13 D.33
Right Shoulder Pitch | D.14 D.34
Right Shoulder Yaw D.15 D.35
Right Elbow Roll D.16 D.36
Right Elbow Pitch D.17 D.37
Left Leg Yaw D.18 D.38
Left Leg Roll D.19 D.39
Left Leg Pitch D.20 D.40
Left Knee D.21 D.41
Left Ankle Pitch D.22 D.42
Left Ankle Roll D.23 D.43
Left Shoulder Pitch D.24 D.44
Left Shoulder Yaw D.25 D.45
Left Elbow Roll D.26 D.46
Left Elbow Pitch D.27 D.47

Table 5.1: Measured body features used in the real data sets in this work

name # curves mean std amp
reg 1 50 20 1
low 50 20 0.5

1
moved 1 70 20 1
skinny 1 50 10 1
stacked 2 50 10 0.75
50 30 0.25
extra 2 50 20 1
70 10 0.5

Table 5.2: Description of artificial data set curves

of 100 time samples and each includes 10% noise. The skinny and stacked are also tested
with no noise. A set of binary problems is used, comparing each transformed curve to the
original curve, as described in Table 5.3.

5.1.2 Results and Discussion

Selecting individual time windows

Tables 5.4 and 5.5 show the accuracy of the SVM classifier on the binary human motion

data sets. Tests are run using both CMIM and FOU either selecting the entire time-
series feature (all 20 windows) or selecting individual time windows. Tests selecting the
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Problem #
1 reg vs low

reg vs moved

reg vs skinny

reg vs stacked

reg vs extra

Tk W N

Table 5.3: Binary problems with artificial data set

entire feature include all windows and hence include up to 20x the number of inputs as
the classifiers using individual time window selection. It is clear from the results in both
tables that individual time window selection can be used to drastically reduce the classifier
memory requirements and test time, without greatly affecting the classifier accuracy.

It is also interesting to note that the minimum, maximum and average features perform
well when used alone, and can improve the accuracy when included with the windowed
features.

In general, the feature set that uses the difference between adjacent windows performs
better than the feature set that uses the variance within the window. This is likely due
to the effect of noise. With the variance features, any small changes within the window
contribute to the variance. The difference between windows measures the change in the
window averages, so small changes in the signal are averaged out before the difference is
calculated. Additionally, the feature set that includes joint angles from the entire body
performs slightly better than the feature set that includes only the upper body features.
These two differences underscore the importance of having a good set of candidate features
to provide to the feature selection measure.

Tables 5.6, 5.7, 5.8, 5.9 and 5.10 show the most commonly selected features when using
only minimum, maximum and average features, when selecting the entire feature both
with and without minimum, maximum and average features included and selecting the
individual time windows both with and without minimum, maximum and average features
included.

In most cases, using a larger number of features slightly improves the accuracy (see
Tables 5.4 and 5.5). Depending on the test case, two or three single window features are
sufficient to match the entire time series using 20 inputs. Estimating the proper number of
features is a difficult problem by itself. In many cases, the first feature selected has perfect
mutual information with the class, but adding a second or third feature improves the
accuracy slightly. This is likely because the effects of noise are reduced as more features
are added. However, CMIM does not provide an intuitive stopping criterion or a good
way to add extra features as a protection against noise. If the first feature selected has a
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CMIM

min-max- | selecting full feature | selecting windows | two-stage

# features | avg only | w/ Mma no Mma | w/ Mma no Mma | no Mma

NEE 1.00 1.00 1.00 0.97 0.97 0.97
g2 1.00 1.00 1.00 1.00 1.00 0.99

g |2 % |5and up 1.00 1.00 1.00 1.00 1.00 1.00
SlEla T 0.97 0.97 1.00 0.94 0.94 1.00
ElE| ]2 0.97 0.97 1.00 0.98 0.98 1.00
e B 1 5 and up 1.00 1.00 1.00 0.99 0.99 1.00
f NEEE 1.00 1.00 1.00 0.99 0.97 1.00
@2 ~|2 1.00 1.00 1.00 0.99 0.99 1.00
g < * | 5 and up 1.00 1.00 1.00 1.00 1.00 1.00
Blg a1 0.99 0.99 1.00 0.92 0.90 0.96
B ~12 1.00 1.00 1.00 0.96 0.96 1.00

& | 5and up 1.00 1.00 1.00 1.00 0.99 1.00
NERE 1.00 1.00 1.00 1.00 1.00 1.00
g2 1.00 1.00 1.00 1.00 1.00 1.00

§ 2 | X | 5and up 1.00 1.00 1.00 1.00 1.00 1.00
S|g a1 1.00 1.00 1.00 1.00 1.00 1.00
g5 | > 2 1.00 1.00 1.00 1.00 1.00 1.00
= & | 5 and up 1.00 1.00 1.00 1.00 1.00 1.00
S INEIE 1.00 1.00 1.00 1.00 1.00 1.00
go g~ 2 1.00 1.00 1.00 1.00 1.00 1.00
Z|2 % |5and up 1.00 1.00 1.00 1.00 1.00 1.00
5 g a1 1.00 1.00 1.00 0.98 0.98 0.99
2|~ |2 1.00 1.00 1.00 0.99 0.99 1.00

& | 5 and up 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.4: SVM classification accuracy on kick vs. punch and throw
selecting either the entire feature, individual time windows from the feature and using
a two-stage selection selected using SFS and CMIM. Tests selecting the entire feature
include all windows and hence include up to 20x the number of inputs as the classifiers
using individual time window selection.
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FOU
min-max- | selecting full feature | selecting window | two-stage
# features | avgonly [ w/ Mma no Mma | w/ Mma no Mma | no Mma
N 1 1.00 1.00 1.00 0.97 0.97 0.97
|2 1.00 0.99 1.00 0.97 0.97 0.97
oD 1.00 0.99 1.00 1.00 1.00 1.00
% 10 and up 1.00 1.00 1.00 1.00 1.00 1.00
2 1 0.97 0.97 1.00 0.94 0.94 0.97
o 2 0.97 0.97 1.00 0.94 0.94 0.97
° ER - 1.00 1.00 1.00 0.93 0.93 1.00
Sl E|>~]10 1.00 1.00 1.00 0.97 0.97 1.00
-‘5 & 115 1.00 1.00 1.00 0.97 0.97 1.00
g 20 1.00 1.00 1.00 0.99 0.99 1.00
= 30 and up 1.00 1.00 1.00 1.00 1.00 1.00
& N 1 1.00 1.00 1.00 0.99 0.97 1.00
g |2 1.00 0.98 1.00 0.99 0.99 1.00
2l a5 1.00 0.98 1.00 1.00 1.00 1.00
3 10 and up 1.00 1.00 1.00 1.00 1.00 1.00
f 1 0.99 0.99 1.00 0.92 0.90 0.96
g o 2 1.00 0.97 1.00 0.89 0.88 0.96
S1|5 1.00 1.00 1.00 0.95 0.94 1.00
= | 10 1.00 1.00 1.00 0.95 0.93 0.99
15 1.00 1.00 1.00 0.97 0.97 1.00
all 1.00 1.00 1.00 1.00 1.00 1.00
R 1.00 1.00 1.00 1.00 1.00 1.00
T2 1.00 1.00 1.00 1.00 1.00 1.00
2 | X | 5and up 1.00 1.00 1.00 1.00 1.00 1.00
8 % Al 0.97 0.97 1.00 0.99 0.99 1.00
5 § ~ 12 0.97 0.97 1.00 0.99 0.99 1.00
3 & | 5 and up 1.00 1.00 1.00 1.00 1.00 1.00
% Al 1.00 1.00 1.00 1.00 1.00 1.00
3 ~ 12 1.00 1.00 1.00 1.00 1.00 1.00
- * | 5 and up 1.00 1.00 1.00 1.00 1.00 1.00
< |8 1 0.98 0.98 1.00 0.98 0.98 0.99
4 o 2 0.99 0.99 1.00 0.98 0.98 1.00
° & i 5 1.00 1.00 1.00 1.00 1.00 1.00
Sl |10 1.00 1.00 1.00 0.99 0.97 0.99
15 1.00 1.00 1.00 1.00 1.00 0.99
all 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.5: SVM classification accuracy on kick vs. punch and throw
selecting either the entire feature, individual time windows from the feature and using a
two-stage selection selected using SF'S and FOU. Tests selecting the entire feature include
all windows and hence include up to 20x the number of inputs as the classifiers using
individual time window selection.
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mutual information of 1, the CMI with any additional features will be zero, as adding a
new feature will never improve the mutual information. In these cases, the feature selection
defaults to univariate mutual information and Fisher’s interclass separability criterion as
a tie-breaking mechanism, neither of which discourage correlated features.

FOU does include a term to discourage the inclusion of correlated features. However,
as discussed in Chapter 4, the feature-feature correlation term undervalues the correlated
features. As seen in Table 5.9 and 5.10, the most commonly selected second feature is the
sampling time. However, the sampling time feature is actually a very poor choice, as it
is the same value for all time values and classes. This is because the conditional mutual
information term is zero, due to the high mutual information of the first feature. The
feature-feature correlation is greater than zero, making the FOU value negative, whereas
the FOU value for the sampling time is zero.

The poor feature selection of FOU affects the accuracy. Although the accuracies of the
FOU and CMIM are similar in most cases, there are tests where CMIM outperforms FOU.
For example, in the throw vs. punch classification problem, CMIM gives a better perfor-
mance with fewer features on both the upper only and whole body problems, especially on
the average/variance data sets (see Table 5.4 5.5).

Two-stage feature selection

As seen in Tables 5.9 and 5.10, many of the selected windows occur near the local minimum
or maximum of the time signal. Examples of this are illustrated in Figures D.30 and D.40.
Intuitively, this makes sense as the most distinguishing windows are likely to occur where
the values are the most different or are changing the most. This observation suggests a
possible method to simplify the feature selection process.

In the two-stage selection, the pool of candidate features is first narrowed by only
including windows that are the local minimum or maximum. This two-stage selection is
applied to the binary human motion data and outperforms the full time-series selection in
some cases (see Tables 5.4 and 5.5).

The two-stage selection is also tested on several single-feature time series artificial data
sets, detailed in Tables 5.2 and 5.3. Each curve has a slightly different distinguishing
feature and the artificial data sets are designed to test the conditions under which the two
stage feature selection will work.

The results from the artificial data sets are given in Table 5.11. They illustrate the
ability of the two-stage feature selection to find good features even on difficult data sets.
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with noise no noise
reg. vs. reg. vs. reg. vs. reg. vs. reg. Vs.|Treg. vs. reg. vs.
# features low moved skinny stacked extra skinny stacked
1 1.00 1.00 1.00 0.73 1.00 1.00 1.00
° 2 1.00 1.00 1.00 0.80 1.00 1.00 1.00
= 3 1.00 1.00 1.00 0.82 1.00 1.00 1.00
-S 4 1.00 1.00 1.00 0.81 1.00 1.00 1.00
g 5 1.00 1.00 1.00 0.83 1.00 - 1.00
Y 6 1.00 1.00 1.00 0.85 1.00 - -
% 7 1.00 1.00 1.00 0.87 1.00 - -
8 1.00 1.00 1.00 0.88 1.00 - -
9 1.00 1.00 1.00 0.88 1.00 — —
1 1.00 1.00 1.00 0.93 1.00 1.00 1.00
8 2 1.00 1.00 1.00 0.99 1.00 1.00 1.00
g 3 1.00 1.00 1.00 0.99 1.00 1.00 1.00
&E 4 1.00 1.00 1.00 0.99 1.00 1.00 1.00
= 5 - 1.00 1.00 0.98 1.00 - 1.00
e 6 - 1.00 1.00 0.99 1.00 - -
o 7 - 1.00 1.00 0.98 1.00 - -
= 8 - 1.00 1.00 0.99 - - -
9 - - 1.00 — — — —

Table 5.11: SVM accuracy on artificial data sets using two-stage feature selection. Dashes
indicate feature sets with fewer than the requested number of local minimums.

The two data sets that are inseparable are the regular vs. skinny, where the two curves are
the same height and shape, but with one having a slightly lower standard deviation, and
the regular vs. stacked, where the second curve consists of two summed Gaussians that
have the same mean and different standard deviations. As seen in Figures D.3 and D.4,
these two curves are quite difficult to distinguish. However, when the 10% added noise is
removed, the two-stage feature selection is able to achieve 100% separation.

As with binary human motion data sets, CMIM tends to select correlated features when
the mutual information of the first feature is high. For example, please see Figures D.3,
D.6 and D.7 where the selected features are the mirrored features on either side of the
symmetric curve. These features are highly correlated, but equally predictive. In the noise
free data sets, the features from either side of the curve are fully redundant. Although this
type of perfect symmetry is not often seen in real data sets, the artificial data sets clearly
illustrate the problem with feature selection measures that do not take feature-feature
correlation into account.

Tree-based classification

Tables 5.12 and 5.13 show the accuracy of the MBT classifier on a three-class and a nine-
class human motion classification problem. The tables also give the average number of
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feature selection
multi-class binary
accuracy # features | accuracy # features
avg. & var. 1.00 7.9 1.00 7.9
avg. & diff. 1.00 7.9 1.00 7.9

Table 5.12: Accuracy of multi-modal tree-based classification on three class human motion
problem. Multi-class feature selection evaluates each feature with respect to the original
class labels, binary feature selection evaluates each feature with respect to the binary
division at each node. Avg. & var. features use the window average and variance as the
original candidate features, Avg. & diff. features use the window average and difference
between adjacent windows as the candidate features. Accuracy is calculated using an
average of three runs of five-fold cross validation. # features gives the average number of
features required to classify a new point.

feature selection
multi-class binary
accuracy # features | accuracy # features
avg. & var. 1.00 16.2 1.00 16.1
avg. & diff. 1.00 15.9 1.00 15.8

Table 5.13: Accuracy of multi-modal tree-based classification on nine class human motion
problem. Multi-class feature selection evaluates each feature with respect to the original
class labels, binary feature selection evaluates each feature with respect to the binary
division at each node. Avg. & var. features use the window average and variance as the
original candidate features, Avg. & diff. features use the window average and difference
between adjacent windows as the candidate features. Accuracy is calculated using an
average of three runs of five-fold cross validation. # features gives the average number of
features required to classify a new point.

features required to classify a new point.

It is clear from the table that the MBT is capable of accurately classifying the human
motion data. The computational complexity is quite low, requiring approximately 16
multiplications to classify a new point.

Figure 5.2 shows the tree generated for the three-class motion classification problem
using multi-class feature selection and window average and difference features. The gener-
ated tree mimics the intuitive separation of the motions, with the kick motion separated
first from the more similar throw and punch motions.

Figure 5.3 shows the tree generated for the nine-class motion classification problem
using multi-class feature selection and window average and difference features. As with
the three-class problem, the tree matches the intuitive class separation where the kick
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kick / punch / throw

Left Shoulder Yaw 8 avg, 17 avg
Left Leg Pitch 10 avg

Left Shoulder Pitch 10 avg
Right Elbow Pitch 3 avg

A J ‘ J A

punch / throw

Left Leg Pitch 13 avg
Right Elbow Roll 5 avg
Left Leg Yaw 4 avg, 11 diff
Right Elbow Pitch 7 diff

v ‘ ¥
— v B

{ N [
I punch ) { throw )
- ,» pN /

Figure 5.2: Tree-based classifier structure for three-class human motion classification prob-
lem

motion is separated from the punch and throw motions at the highest node of the tree and
the similar punch and throw motions are separated in the lower nodes.

5.2 Hand gesture recognition from Electromyography
(EMG) sensor data

Tests with the EMG hand gesture recognition data sets are designed to explore whether
feature selection is beneficial for features that have both temporal and spatial components
and whether the MBT classifier can be used successfully for this type of difficult motion
recognition problem.

The EMG hand gesture recognition data set is provided by Thalmic Labs Inc. Thalmic
Labs uses an armband with eight EMG sensors to recognize hand gestures from muscle
activation. The challenge is to recognize hand gestures based on samples from other sub-
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walk / cheer / dance / kick / punch /
leg raise / squat / throw / bow

Left Shoulder Yaw 8 avg, 17 avg
Left Leg Pitch 10 avg

Left Shoulder Pitch 10 avg
Right Elbow Pitch 3 avg

h J h 4
dance/ punch / leg raise / squat /
throw

walk / cheer /[ kick / bow

Left Elbow Pitch 19 avg, 17 avg,
2 avg, 16 avg
Left Shoulder Yaw 17 avg

Right Leg Pitch 6 avg, 5 avg, 4 diff
Right Ankle Roll 12 avg, 15 avg

h 4

h 4 h 4 ¥

dance [ leg raise / squat punch / throw walk / cheer kick / bow

Left Knee 16 avg, 17 avg
Right Shoulder Pitch 6 avg
Left Shoulder Pitch 14 avg
Right Knee 5 avg

Left Knee 12 avg Left Leg Yaw 15 avg, 5 avg, 12 diff
Right Ankle Pitch 7 avg, 8 avg Left Leg Pitch 13 avg, 15 avg
Left Leg Pitch 6 diff, 3 diff

Left Leg Pitch 10 avg, 11 avg
Right Shoulder Pitch 19 avg
Left Elbow Pitch 9 avg, 8 avg

¥

dance / leg raise e e - - - ~
( squat \)I [ punch \\) \/ throw \)I [ walk \)I \/ cheer ) \/ kick ) \/ bow )

Right Shoulder Pitch 5 avg, 6 avg
Left Elbow Roll 5 avg, 14 avg
Left Knee 12 diff

:‘1

o~ P
{ dance | { legraise |
R — S

Figure 5.3: Tree-based classifier structure for nine-class human motion classification prob-

lem
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jects. The data sets in this section were generated using two different prototype versions
of the Thalmic Labs” MYO armband.

This data set is challenging for a number of reasons. The signal itself is noisy because
the EMG sensors are skin mounted. The sensors are detecting electrical activation of the
muscle through a layer of fat and skin. Because the sensors are spatially removed from
the muscles, they pick up electrical activations from a number of different muscles at a
time. Additionally, the sensors are not guaranteed to be placed directly over the desired
arm muscle.

The magnitude of the signal varies from person to person and trial to trial based on a
number of different factors [31]. A larger amount of fat on the arm can reduce the signal
strength because the signal has to travel further though the fat layer. Conversely, an arm
that has a small diameter can cause the sensors to lie slack on the skin, reducing the signal
amplitude and increasing noise due to lack of fixed contact with the arm. Similarly, a large
amount of hair on the arm can also cause contact problems, as can an excessive amount
of sweat. This is particularly problematic as this can change during a session wearing the
band. These problems affect the ability to normalize the signal and perform segmentation
as the threshold for signal activation differs from person to person.

The gesture recognition itself is also difficult as people employ multiple movement
strategies for each gesture, and the strategy can vary from person to person or even from
trial to trial within the same subject.

The noisiness of the signal can be overcome by windowing the signal and applying
a filter or calculating a feature value. Thalmic labs have suggested a set of exemplary
features that can be applied to windowed data. The exemplar features are detailed in
Section 5.2.1. Using these features creates another challenge, however. Each of the 52
features is calculated for 8 sensors and W time windows, where W is variable. Values from
5 to 40 are tested. This gives an S x W matrix of feature values for each feature. This is
an extremely large number of features.

The challenges related to the large number of input features and feature normalization
can be overcome by calculating meta-features from the initial set of candidate features.

In Section 5.1, it was shown that the majority of the selected features appear at or near
to a local maximum of the average or variance of a time-series feature. The features used
in this dataset are slightly different, as they include not only a time component, but also
a spatial component relating to the different sensors around the arm. This is illustrated in
Figure 5.4.

In the feature selection proposed in Section 5.1, the input to the classifier is the feature
value at a certain window. The meta-features tested for EMG signal recognition include
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Figure 5.4: RMS values for a single trial of the “snap” motion

a normalized version of the feature value at a certain sensor and window, but also use a
transposed version of that method, such that the meta-feature describe the time window
and sensor value where the feature 2-D peak occurs. Meta-features describing the width
of the peaks are also included. These meta-feature values naturally have a similar range
of values because they are related to peak location in a fixed size grid, rather than signal
magnitude.

Various sets of features and meta-features are tested with the different forms of the
MBT algorithm. The single level MBT described in Chapter 3 Section 3.2 is compared
to a two-level tree and a one vs. one formulation. Because the MBT uses only the class
centers as a way to generate the output classes for each node, classes with a large spread
can be divided early in the tree. In theory this is not a problem, since the class mean
will change in the lower nodes, and the class will eventually be separated. However, when
the number of samples is small, lower nodes will have fewer samples, which can affect the
generalization capability of the classifier. A two-stage tree first designs the tree-structure,
then uses MBT at each binary node. Because the MBT guarantees the training samples are
correctly classified, each class appears only in one high level output. More easily separable
classes can be removed higher in the tree, to reduce the chance of misclassification for the

177



easier classes and reduce the number of classes and samples to be considered in the lower
nodes of the tree.

The separability of two classes can be estimated using Fisher’s interclass separability
criterion. Calculating this value for each pair of glasses creates a C' x C' matrix of Fisher
values. This matrix is used to create a undirected graph, where each node is a class and
the weight between each class is the negative Fisher score. The minimum graph cut is
then used to recursively separate the graph and define the top level tree. An MBT is used
to fully separate each level of the tree. This effectively separates the tree design from the
piecewise linear separation of classes. The same technique can be applied directly to other
multi-class techniques, using a binary MBT in place of a single level classifier. All three
methods are compared.

5.2.1 Experiments

Three sets of experiments are performed on two different versions of the EMG hand gesture
recognition data set. Each successive group of experiments adjusts the candidate set of
features as more features were added.

For every test, the accuracy of the classifier is assessed using leave-one-subject-out
(LOSO) cross validation, where the data from a single subject is removed from the data
set and used for testing. The classifier is trained on the data from the remaining subjects.
This more closely reflects the real use of the armband, where the classifier will be used to
identify hand gestures on new subjects not present in the training data.

For all tests, the data is windowed, and the features described in Section 5.2.1 are cal-
culated within each window for each sensor. Meta-features are then calculated as described
in Section 5.2.1. The meta-features form the inputs to the MBT algorithm and feature
selection is performed in each node.

The first set of experiments use the features originally suggested as exemplar features
by Thalmic Labs (features 1-51 in Table 5.16) and a subset of the meta-features (meta-
features 1-4 and 17-20 in Table 5.17). Tests were run using single and two-level MBT.
These experiments use an older, eight gesture EMG data set, EMG 1. The data set is
described further in Section 5.2.1. The motions are pre-segmented, using the segmentation
algorithm provided by Thalmic, described in Section 5.2.1. The features are calculated in
20 overlapping windows.

The second set of experiments is performed on a newer version of the data set, EMG 2,
which is generated using a newer prototype armband. The features used include the original
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features as well as the envelope and polar features (features 52-54 in Table 5.16) and the
entire set of meta-features. The polar feature matrix is also included as individual features.
Features are calculated over a set of either 5 or 40 overlapping windows. Additionally, each
feature in Table 5.16 is calculated for each sensor using a window that includes all the time
samples. These features were included because there are several candidate features that
work well to characterize the time-series as a whole. For example, skewness and kurtosis
over the entire signal should be able to describe the behaviour of the peak in time and
across the sensors.

A final test is performed using the simple square integral, wavelet and Hjorth parameter
features (features 5, 16-31 and 33-35 from Table 5.16) calculated over the entire window,
as well as all of the cosine features (features 53 and 54), which are identified in earlier tests
as strong candidate features. The pairwise sensor comparison feature (fe.ss) is calculated
using window size (W) of 20 and a set window shift (W) of 5. The pairwise time com-
parison cosine feature ( f.,s,) is calculated using ten overlapping windows. Segmentation is
performed only for feature f.,s,. Tests are run using a single stage multi-modal SVM tree,
a two-stage multi-modal SVM tree and a one vs. one formulation where each individual
pairwise classifier is a multi-modal SVM tree.

Data sets

The data sets used in this section were provided and collected by Thamic Labs Inc., in
collaboration with the Adaptive Systems Laboratory at the University of Waterloo. The
data sets used in this section are generated using two early prototypes of the MY O armband
from Thalmic labs. The prototype MYO armbands use eight EMG sensors around the arm.
It is placed just below the elbow on the arm and records the eight EMG sensor signals at
300 Hz.

The first data set, EMG 1 uses an earlier prototype version of the hardware. The data
set was collected by Thalmic labs and consists of ten trials each of eight gestures being
performed by nine different subjects. The gestures are described in Table 5.14. The original
data set consists of 800 samples per trial, but includes a short rest period at the start and
end of the gestures. Thalmic labs also provided an exemplary segmentation algorithm,
which labels the active part of the gesture. The segmentation is based on the root mean
squared (RMS) value of the signal. A baseline signal value is established at the start of the
gesture, where the person is assumed to be at rest. The active portion of the gesture starts
when at least two channels pass a threshold and the gesture is considered to be complete
once those two channels fall below a second threshold.
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gesture
rest

fist

left

right
snap

rock on
gun
finger tap

OO\I@OT%OONH:#

Table 5.14: Hand gestures from first MYO armband data set

gesture

rest

fist

paddle in

paddle out

snap

spider man

gun

thumb index finger tap
thumb middle finger tap

10 thumb ring finger tap

11 thumb pinkie finger tap

12  point with index

13 point with inde and middle
14 point with index, middle and ring
15 thumbs up

16 talking hand

@OO\]@CH%QJM»—‘:H:

Table 5.15: Hand gestures from second MYO armband data set

The second data set EMG 2 uses a more recent prototype of the hardware. The data
set includes 5 trials each of 16 gestures by 25 subjects. The gestures are described in
Table 5.15. A subset of the gestures is selected for testing as many of the gestures are
quite similar. The second data set uses a slightly improved segmentation algorithm, also
provided by Thalmic labs. The segmentation uses the entire rest gesture to establish a
baseline for the gestures. The activation thresholds are set dynamically based on the
maximum signal value for each gesture.

Features

Thalmic labs provided a set of exemplary features, as suggested in [123], described in table
5.16. Each EMG signal is segmented and divided into overlapping windows. Each feature
is calculated within each window, giving a matrix of values for each feature. Some features
suggested by Thalmic are described in Section 5.2.1. Later tests also include the signal
Envelope (suggested by Ali-Akbar Samadani), polar co-ordinates (suggested by Thalmic
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Feature
Root mean squared
Integrated EMG
Mean absolute value
Mean absolute value slope
Simple square integral
Variance
Waveform change
Zero crossings
Slope sign change
Willson Amplitude
11-15 Autoregressive coefficient
16-31 Wavelet features
32 Ratio of range to standard deviation
33-35 Hjorth paramters
36 Mean
37 Skewness
38 Kurtosis
39 Accumuated energy
40 Average non-linear energy
41-44 Power in 4 frequency bands
45 Mean power frequency
46 Mid power frequency
47 Peak power frequency
48-50 Spectrum features
51 Frequency Ratio
52  Envelope
53-54 Polar Coordinates
55-56 Cosine of sensor or time vectors

—
S © w1 s w o —3

Table 5.16: Features calculated from EMG data for hand gesture recognition

labs) and two transposed versions of the cosine angle (suggested by Ali-Akbar Samadani
and Thalmic labs).

Root mean squared values (RMS) RMS values are calculated in a window as:

Whn
Frnas,0) = | oo S EMG(1) (5.1

where f,s(s,w) is the RMS value for sensor s in time window w, W, is the number of
samples in the window w and EMG(t) is the EMG value for sample ¢ of the window.

Integrated EMG The integrated EMG is calculated as:

foals,w) = 3 |EMG(D) (5.2
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Mean absolute value and slope of the mean absolute value The mean absolute
value is calculated as:

Fmav(s, w) Z |[EMG(t) (5.3)

The slope of the mean absolute value is calculated as

fsmav(saw) = fmav(saw) - fmav(saw - 1) (’54>

Simple square integral (SSI) The simple square integral is calculated as:

fasils,0) ZEMG (5.5)

Variance The variance is calculated with an assumed mean of zero.

Foar(s,w) ZEMG (5.6)

Waveform change The waveform change measures how much the signal changes be-

tween samples.
Wy, —1

= > |EMG(t+1)— EMG(t)| (5.7)

t=1

Zero crossings The zero crossing feature measures how many times the EMG signal
changes from positive to negative or negative to positive, with a small threshold to prevent
fluctuations around zero from increasing the feature value.

Slope sign change The slope sign change measures the number of times the slope be-
tween two adjacent EMG signals changes from positive to negative or negative to positive.

Willson Amplitude The Wilson amplitude counts the number of times the EMG signal
change is greater than a preset threshold.
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Autoregressive coefficients The signal is modeled as an autoregressive model such
that

lMﬂXﬂzﬁi@EMG@—ﬂ+@ (5.8)

where EMG(t) is the EMG signal at time ¢ and ; is a noise parameter.

The features are the model parameters ®, which are found by solving the Yule-Walker
equations for ®

RO =r (5.9)
where R is the autocorrelation matrix of size m X m where m is the model order
u(t)? u(t)u(t —21) e u@ut—m+1)
R _E u(t — :1)u(t) u(t — 1) <ot — 1)u(t —m+2)
ot —mt Dult) ult—mt Du(t—1) o ut—m+1)?
[ r(0) r(1) r(m—1)
_ r(1) r(0) r(m — 2)
| rm—1) rm—2) - (0)

(5.10)
where u(t) is the signal at time ¢ (here, the EMG signal) and r(t) is the autocorrelation
for a time lag of t. r is an m x 1 vector of autocorrelation values:

u(t)u(t — 1) r(1)
N u(t)u(:t —2) _ r(:2) (5.11)
u(t)u(t —m) r(m)

The model order used is 4, which returns 5 coefficients: the four ® values and a constant
offset.

Wavelet decomposition The wavelet decomposition of a signal is similar to short time
Fourier analysis, but instead of using equally sized windows for each frequency component,
wavelets match the size of the window to the frequency being analyzed. This is accom-
plished through successive convolution of the signal with scaled and shifted versions of a
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mother wavelet [38]. For a discrete signal, this corresponds to dividing the signal by passing
it through a high and a low pass filter, downsampling each side and successively applying
high and low pass filters to the low frequencies. The coefficients from these recursively
applied filters are used to generate the wavelet features.

The wavelet decomposition used in this chapter is a four level decomposition and a
Daubechies wavelet, as recommended in [124]. The sixteen wavelet features are the mini-
mum, maximum, mean and standard deviation of the coefficients at each level.

Ratio of range to standard deviation

maxe, EMG(t) — minge,, EMG(t)
Ve S EMG(H) —

frst(s,w) = log /log W, (5.12)

Hjorth Parameters The three Hjorth parameters are the signal activity, mobility and

complexity [641]. The activity is the variance of the signal, calculated as [(4]:
1 o
frsn(s,w) = 7 ;<EMG<t> — )’ (5.13)
The mobility is the standard deviation of the slope divided by the standard deviation
of the signal [6]. The slope or first derivative of the signal is found as
AEMG(t) = EMG(t) — EMG(t —1) (5.14)

This is then used to calculate the mobility as [64]:

2
9d

Trja(s,w) = (5.15)

o2
where 02 is the variance of the slope of the EMG signal AFMG and o? is the variance of
the EMG signal or fp;1.

The complexity is the mobility of the first derivative of the signal and the mobility of
the signal itself [6]:

0‘2 0'2
fhj3(87 w) - O_dgd//O_Qd (516)
d

where o3, is the variance of the second derivative of the signal, or the slope of AEMG,
calculated as in equation 5.14.
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Mean The mean is calculated as:

W,

1 n
mean (S, W) = —— EMG(t
fnan(5,0) = 7= 3 EMG(0

(5.17)

Skewness The skewness is a measure of how asymmetric a distribution is. The skewness

1S:

fsk(s>w) =LK

EMG — p\*
o
Kurtosis The kurtosis measures the “peakedness” of a distribution:

B[(EMG — )]

Fulos ) = CaitmniG = iy

Accumulated energy The accumulated energy is calculated as:

1 Wh
fae(s,w) = 71— > EMG(t)’
t=1

n

Average non-linear energy The non-linear energy of a signal at time i is:

NE(t) = EMG(t)> — EMG(t — 1)) EMG(t + 1)

The normalized average non-linear energy is:

Wn—1
f . (3 ?,U) — ﬁ t=2 NE(t)
e maxe, NE(t)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Frequency There are a number of features related to the frequency components of the
signals. The features fyrr, for, fur and fygp correspond to the power of the signal in 4

ranges, from 0 to the Nyquist frequency.

The mid and peak power frequency features describe the frequencies at which the signal

achieves half the total power and at which the power peaks.
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Envelope The signal envelope is found first by rectifying the signal and then applying a
low pass filter. The low pass filter used is a second order Butterworth filter [60].

Polar co-ordinates The polar co-ordinates of the signal indicate the angular direction of
each sensor at each time step. There are 9 polar co-ordinate features for each time window,
corresponding to each of the sensor values and the radius. There is one redundant value,
but this is included as an additional feature since feature selection is being performed. The
polar co-ordinates are calculated using the RMS values. The radius of the sensor vector at
time window w is

8
prT‘(w) = Zfrms(s>w)2 (523)
s=1
The angles for each of the sensors s are calculated as:
frms (87 w)
foes(w) = arccos (— (5.24)
’ Frer(w)

Cosine of the vector angle There are two versions of this feature, which are either
used to compare the readings of two sensors over all the time values, or to compare two
time windows across all the sensor readings.

The cosine of the vector angle features are based on the RMS feature, which is calculated
for each of the eight sensors (S) in W time windows. This gives an S x W matrix of RMS
values. For the feature that compares two sensors (fess), two row vectors are extracted
from the matrix and the feature is computed as

Rg;i - Rg;

Jeoss (51 51) = TR

(5.25)

This generates 28 features from the pairwise combination of 8 sensor vectors.

RMS values are taken with a set window size (Ws,) of 20 and a set window shift (W)
of 5. No segmentation is performed. Because the window sizes are set to absolute values,
the number of windows varies from trial to trial. There are approximately 90 windows
per trial. This is not a problem, however, because the feature compares two sensors from
within the same trial, which will always have the same number of features. Because the
dot product is normalized by the magnitude of the two vectors, the values are comparable
across trials.
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# Meta Feature
1 Number of Peaks
2-4 Peak width in windows, samples and sensors to 20% of range
5-7 Peak width in windows, samples and sensors to 30% of range
8-10 Peak width in windows, samples and sensors to 50% of range
11-13 Peak width in windows, samples and sensors to 70% of range
14-16 Peak width in windows, samples and sensors to 90% of range
17-18 Peak distance in from start in windows and samples
19 Peak angular distance from sensor 0
20 Normalized Peak value-average
21 non-normalized peak value
22 range
23 Normalized average
24 Normalized median

Table 5.17: Meta-features used for hand gesture recognition

This feature also does not require segmentation. Because the sensor values are very
low in the rest period, they do not contribute greatly to the dot product value. The
performance degradation from improper segmentation is more detrimental than the small
contribution of the rest period values.

For feature f.,s, each gesture is pre-segmented. The window size and shift are set to
generate 10 equally sized, overlapping windows. The RMS value is taken in each window,
as given in equation 5.1. The feature is calculated column-wise on the resulting RMS

matrix as: o o
Feosw (Wi, Wj) = W (5.26)
7 |Cwil|Cwj]

This generates 45 features from the pairwise combination of 10 window vectors.

Meta-features

Table 5.17 describes the meta-features extracted from the original set of features described
in Section 5.2.1. They are described in detail below.

Number of peaks This feature describes the total number of peaks or valleys found in
the 2-D feature matrix

Position of maximum peak Three meta-features are used, describing the position of
the maximum peak with respect to the gesture start time either in number of windows or
in absolute number of samples. A third meta-feature describes the position of the peak as
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an angular spatial distance from sensor 0. Angular distance is used because the sensors
form a circle around the arm, so sensor 7 is spatially quite close to sensor 0.

Peak widths These features describe the 1-D width of the peak either across the sensors
or time. The width of the peak is measured starting from the peak position and finding
the first feature value where the feature value drops below x% of the feature value range,
where x can take the value of 20%, 30%, 50%, 70% or 90%. As with the position values,
this is described in terms of the number of time windows, the number of time samples an
the angular sensor distance.

Normalized Peak - average This feature describes how much higher the peak value is
than the average. It is normalized by dividing by the range.

Non-normalized peak value This feature is simply the feature value at the peak.

Range This feature describes the feature value range.

Normalized Average or Median This feature is the average or median of the feature
matrix divided by the range.

5.2.2 Results and Discussion

The first set of experiments is performed on data set EMG 1 using both a single level MBT
and a two-level MBT.

Table 5.18 shows the confusion matrix of the single-stage MBT on FMG 1 with 8
gestures. Table 5.19 shows the precision and recall for each individual person for each
gesture. The overall accuracy is only 35%, which is higher than chance, but not sufficient
for use in a real-world situation. Additionally, the precision and recall vary greatly from
person to person.

The top level of the two-stage tree is shown in Figure 5.5. It is tested to the fourth
level (rest vs. right vs. snap vs. finger tap vs. other). The confusion matrix is shown in
Table 5.20. Table 5.21 show the precision and recall for each individual person for each
gesture. The accuracy is 71.0%. The comparable accuracy from the single stage tree is
59.3%, indicating that the two-stage tree may be beneficial.
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classifier result

rest fist left right snap rockon gun finger tap

rest 72 0 1 6 3 2 2 4

fist 2 14 12 24 7 11 9 11

% left 1 10 25 5 3 19 19 8
< right 8 14 6 46 3 4 4 5
L snap 3 9 4 5 45 7 6 11
£ rock on 3 14 15 1 6 13 14 24
gun 1 17 17 4 7 12 22 10
finger tap 2 21 11 8 7 10 10 21

Table 5.18: Confusion matrix for EMG 1 using a single stage MBT

Precision

gesture
person | rest  fist left right snap rockon gun finger tap
1 0.78 0.00 0.17 0.40 0.29 0.17 0.50 0.18
2 1.00 0.17 0.33 0.62 0.75 0.11 0.27 0.32
3 0.83 0.20 0.08 0.25 0.67  0.00 0.17  0.00
4 0.83 0.00 0.20 1.00 0.80  0.00 0.24 0.25
5 1.00 0.07 0.38 047 0.71 0.43 0.00 0.25
6 1.00 0.23 0.36 047 0.50  0.00 0.14 0.67
7 0.88 0.29 0.25 0.64 1.00  0.50 0.36  0.40
8 0.37 0.19 043 0.50 0.36  0.40 0.20 0.10
9 0.88 0.09 040 0.18 0.38 0.14 0.00 0.00

Recall

gesture
person | rest fist left right snap rockon gun finger tap
1 0.70 0.00 0.10 0.20 0.20 0.20 0.60 0.40
2 0.90 0.10 0.30 0.80 0.30 0.10 0.30  0.60
3 1.00 0.30 0.10 0.30 0.20  0.00 0.10  0.00
4 1.00 0.00 0.30 0.60 0.40  0.00 0.40 0.20
5 1.00 0.10 0.30 0.70 1.00 0.30 0.00 0.20
6 0.50 0.30 040 0.70 0.70  0.00 0.10 0.20
7 0.70 0.20 0.30 0.90 0.70  0.40 0.50 0.40
8 0.70 0.30 0.30 0.10 0.40 0.20 0.20 0.10
9 0.70 0.10 0.40 0.30 0.60 0.10 0.00 0.00

Table 5.19: Precision and recall for each individual person on EMG 1 using a single stage

MBT

classifier result
rest right snap finger tap other
@ rest 79 2 2 3 4
K] right 1 52 8 8 21
bt snap 0 4 65 1 20
£ finger tap 5 7 5 20 53
- other 2 16 21 26 295

Table 5.20: Confusion matrix for FMG 1 using a two-stage MBT
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Figure 5.5: Top level of the two-stage tree designed using EMG 1
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Precision Recall

gesture gesture
person | rest snap right finger tap | rest snap right finger tap
1 1.00 0.89 0.57 0.39 0.70 0.80 0.40 0.70
2 1.00 0.62 1.00 0.63 1.00 0.80 0.50 0.50
3 1.00 1.00 0.33 0.00 1.00 0.20 0.10 0.00
4 1.00 1.00 0.91 0.25 1.00 1.00 0.90 0.10
5 1.00 0.89 042 0.40 1.00 0.80 0.50 0.20
6 0.70 0.43 0.82 1.00 0.70 0.90 0.90 0.10
7 0.73 0.89 1.00 0.44 0.80 0.80 0.80 0.40
8 0.90 0.88 0.71 0.00 0.90 0.50 0.70 0.00
9 0.89 0.39 0.15 0.00 0.80 0.90 0.20 0.00

Table 5.21: Precision and recall for each individual person on EMG 1 using a two-stage
MBT

5 windows 40 windows
5 features/ 10 features/ | 5 features/ 10 features/
node node node node
LOSO accuracy 0.77 0.78 0.77 0.75
10 folds accuracy | 0.82 0.79 0.80 0.79

Table 5.22: Accuracy of two-stage MBT on EMG 2

The first set of tests on FMG 2 include only four of the gestures. The gestures are fist,
paddle in, paddle out and thumb/ring finger tap. All were tested using a two-stage MBT
tree, shown in Figure 5.6. Tests were run using either 5 or 40 overlapping windows and
using either 5 or 10 features at each node. Table 5.22 shows the overall accuracy for the
various test cases.

Table 5.23 shows the five most commonly selected features for the different classifier
levels. It is clear from these tables that the wavelet features are quite strong. The Hjorth
parameters are also common in many of the trees, but are selected less frequently than the
wavelet features.

The most commonly selected features are almost all calculated over the entire signal.
There are two reasons for this. Firstly, the feature selection measure used is information
based. Features that are calculated over a larger window can theoretically have a larger
amount of information and therefore should be selected. For this reason, it may be unfair
to compare features with different window lengths using this type of feature selection.
Selecting the proper window length may be a separate problem from feature selection.

Second, it appears that many of the windowed features are dependent. Chapter 4
Section 4.4 proposes a new feature selection measure that first identifies dependent features
using the pairwise conditional mutual information I(x;;Y|z;) and the two feature-class
mutual information values I(z;;Y). The dependence criterion is outlined in equation 4.2.
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Paddle

ot

Paddle in Thumb/

ring tap

Figure 5.6: Top level of the two-stage tree designed using EMG 2 and four class problem

feature

meta-feature

level 1

Wavelet level 1 min
Wavelet level 1 std

RMS

Wavelet level 1 max
Willson amplitude

whole signal sensor 2
whole signal sensor 2
Median / range

whole signal sensor 2
whole signal sensor 6

level 2

Willson amplitude
Wavelet level 1 max
Waveform change
Wavelet level 4 std
Mean abs value

whole signal sensor 4
whole signal sensor 4
whole signal sensor 4
whole signal sensor 4
whole signal sensor 4

level 3

Wayvelet level 3 min
Wavelet level 4 std
Wavelet level 4 max
Wavelet level 3 std
Wavelet level 1 min

whole signal sensor 3
whole signal sensor 3
whole signal sensor 1
whole signal sensor 3
whole signal sensor 3

Table 5.23: Commonly selected features for two-stage MBT on EMG 2
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classes
5 4 6 7 7 6
# feats | R,F,PI,PO,Sn F,PI,PO,TR R,F,PI,PO,Sp,TR R,F,PI,PO,Sn,Sp,TR R,F,PI,PO,Sn,Sp, TP R,F,PI,PO,Sn,TP

5 0.83 0.80 0.72 0.68 0.70 0.77
10 0.88 0.84 0.73 0.69 0.71 0.79
15 0.86 0.83 0.76 0.74 0.75 0.81
20 0.88 0.85 0.76 0.71 0.75 0.79
25 0.86 0.84 0.74 0.75 — 0.82

Table 5.24: Accuracy of single stage MBT classifier using cosine and full window features.
Gestures are as follows: R = Rest, F = Fist, PI=Paddle In, PO = Paddle Out, Sn = Snap,
Sp = Spiderman, TR = Thumb/Ring finger tap, TP = Thumb/Pinky tap.

To test this hypothesis, a smaller data set consisting of the RMS meta-features and the
polar features was tested for dependence. There are a total of 118 features and 13924
pairwise comparisons. Using the definition in 4.2, over 5000 out of the 13924 feature pairs

were identified as dependent. This is a large number of dependent features that will not
be selected by CMIM and which the SVM may be unable to use.

Unfortunately, training the classifier using the extracted dependent features does not
improve accuracy. An MBT generated using the four-gesture data set and no dependent
features yields an accuracy of 56.2%. The accuracy with dependent features is only 53.4%.
This implies that SVM may be unable to properly use all the dependent features, as seen
in Chapter 4 Section 4.4. Additionally, a linear projection of the dependent features using
LDA may be insufficient to capture the information in the two dependent features. A
non-linear projection may be necessary.

A final test on this data compares a single stage MBT to a two-stage MBT to a one
vs. one formulation that uses MBT as the base classifier. The set of candidate features
includes both sets of cosine features (f.,ss and feosw) as well as the simple squared integral,
wavelet and Hjorth parameter features calculated over the entire feature window. These
are included because they are identified as potentially good candidate features in the first
set of tests on the newer data set. These three configurations are tested with a variety of
different gesture sets.

Tables 5.24, 5.25 and 5.26 show the leave-one-subject-out accuracy for the single MBT,
the two-stage MBT and the one vs. one MBT selecting various numbers of features at each
node. Tables 5.27, 5.28 and 5.29 show the average number of features required to classify
a new point.

It is clear from these tables that the new feature set gives a much better performance
than the original set. The one vs. one formulation appears to give the best accuracy at
the expense of a longer test time. The single stage MBT gives a good balance of accuracy

193



classes

5 4 6 7 7 6
# feats | R,F,PL,PO,Sn F,PI,PO,TR R,F,P1,PO,Sp,TR R,F,PI,PO,Sn,Sp,TR R,F,PL,PO,Sn,Sp,TP R,F,PI,PO,Sn,TP
5 0.83 0.82 0.76 0.71 0.73 0.79
10 0.86 0.85 0.73 0.70 - 0.81
15 0.86 0.83 0.75 - 0.75 0.83
20 0.87 0.85 0.77 - 0.76 0.83
25 0.85 0.86 0.75 0.73 0.76 0.83

Table 5.25: Accuracy of two-stage MBT classifier using cosine and full window features.
Gestures are as follows: R = Rest, F = Fist, PI=Paddle In, PO = Paddle Out, Sn = Snap,
Sp = Spiderman, TR = Thumb/Ring finger tap, TP = Thumb/Pinky tap.

classes
5 4 6 7 7 6
# feats | R,F,PI,PO,Sn F,PI,PO,TR R,F,PI,PO.Sp,TR R,F,PLPO,Sn,Sp,TR R,F,PI,PO,Sn,Sp,TP R,F,PI,PO,Sn,TP

5 0.85 0.82 0.76 0.73 0.76 0.81
10 0.87 0.86 0.78 0.76 0.77 0.82
15 0.88 0.84 0.77 0.77 0.77 0.85
20 0.88 0.85 0.80 0.78 0.78 0.85
25 0.89 0.87 0.80 0.78 0.79 0.86

Table 5.26: Accuracy of MBT one vs. one classifier using cosine and full window features.
Gestures are as follows: R = Rest, F = Fist, PI=Paddle In, PO = Paddle Out, Sn = Snap,
Sp = Spiderman, TR = Thumb/Ring finger tap, TP = Thumb/Pinky tap

classes
5 4 6 7 7 6
# feats | R,F,PI,PO,Sn F,PI,PO,TR R,F,PLLPO,Sp,TR R,F,PI,PO,Sn,Sp,TR R,F,PI,PO,Sn,Sp,TP R,F,PI,PO,Sn,TP
5 32 33 42 46 44 38
10 53 57 78 82 82 67
15 69 76 98 116 105 88
20 87 93 115 138 130 109
25 98 110 146 164 — 132

Table 5.27: Average number of features used to classify a new point using a single stage
MBT classifier with cosine and full window features. Gestures are as follows: R = Rest, F
= Fist, PI=Paddle In, PO = Paddle Out, Sn = Snap, Sp = Spiderman, TR = Thumb/Ring
finger tap, TP = Thumb/Pinky tap.
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classes

5 4 6 7 7 6

# feats | R,F,PI,PO,Sn F,PLPO,TR R,F,PLPO,Sp,TR R,F,PI,PO,Sn,Sp,TR R,F,PI,PO,Sn,Sp,TP R,F,PI,PO,Sn,TP
5 40 38 60 73 67 53
10 66 71 107 131 - 92
15 86 89 147 - 157 125
20 115 107 168 - 203 140
25 126 121 186 237 233 167

Table 5.28: Average number of features used to classify a new point using a two-stage MBT
classifier with cosine and full window features. Gestures are as follows: R = Rest, F =
Fist, PI=Paddle In, PO = Paddle Out, Sn = Snap, Sp = Spiderman, TR = Thumb/Ring
finger tap, TP = Thumb/Pinky tap.

classes
5 4 6 7 7 6
# feats | R,F,PI,PO,Sn F,PI,PO,TR R,F,PI,PO,Sp,TR R,F,PI,PO,Sn,Sp,TR R,F,PI,PO,Sn,Sp, TP R,F,PI,PO,Sn,TP
5 107 76 176 265 281 182
10 182 131 318 468 471 296
15 237 165 419 600 599 377
20 284 201 511 715 717 454
25 317 217 584 827 910 515

Table 5.29: Average number of features used to classify a new point using a MBT one vs.
one classifier with cosine and full window features. Gestures are as follows: R = Rest, F =
Fist, PI=Paddle In, PO = Paddle Out, Sn = Snap, Sp = Spiderman, TR = Thumb/Ring
finger tap, TP = Thumb/Pinky tap.
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and number of features. The two-stage MBT has a lower accuracy and longer test time
than the single MBT and is therefore not a good choice.

The performance of all three methods is quite good compared to earlier performance
and compared to other problems seen in literature. For example, [110] quote a 73.0%
accuracy on a five gesture classification problem using EMG signals. Although these are
not directly comparable as the hardware and EMG placement is different, the performance
of the one vs. one MBT appears to be quite good.

5.3 Summary

This chapter examined the use of feature selection for time-series data classification tasks.
Time-series feature selection and the MBT algorithm were then tested on two time-series
human motion recognition problems.

Experiments with the human motion data set demonstrate the benefit of using feature
selection to select individual time windows for time-series classification. Classifiers trained
using only a small selected subset of windows are able to achieve the same accuracy as
classifiers using the entire time-series of a feature. This type of feature selection reduces the
number of inputs from 20 time-series to only two or three features with no loss in accuracy.
The reduced number of inputs directly reduces the memory footprint, the classification
complexity and the time required to classify new points.

In a second set of experiments, time-series feature selection and the MBT classifier
were tested for use with two time-series human motion data sets: full body human motion
recognition from joint angles and hand gesture recognition from EMG. On the full body
motion data set, the feature-selected MBT was able to achieve 100% accuracy on both a
three motion and a nine motion problem. The MBT classifier requires only eight features
to classify the three motion data set and only 16 features to classify the nine motion data
set. On the EMG hand gesture recognition data set the single level MBT achieves 88%
accuracy on a five gesture recognition problem.
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Chapter 6

Conclusions

This thesis analyzes feature selection and class division for classification problems. The first
part of this thesis examines feature selection and class division for the creation of feature-
selected tree-based classifiers. The second part evaluates the performance of different filter-
based feature set evaluation measures with respect to specific classifiers. The last part of
the thesis examines feature selection for time-series data and applies the selected filter
measure and tree-based classifier to two time-series human motion recognition problems.

The first part of this thesis explores the joint contribution of class division and feature
selection to classifier memory requirements, test time and accuracy in tree-based classi-
fiers. Two algorithms are developed to create feature selected tree-based classifiers. The
first algorithm, feature selected hierarchical classification (FSHC), jointly optimizes the
tree structure and features selected at each node of the tree using a genetic algorithm.
This algorithm shows good results with artificial data sets containing partially informative
features. On real data sets the performance is comparable to other multi-class extensions,
but with a shorter test time.

A second feature-selected tree-based classification algorithm, multi-modal binary tree
(MBT), is proposed as a way to overcome some of the challenges with the FSHC algorithm.
Because FSHC uses a genetic algorithm, it has some issues with robustness and generaliza-
tion to the test set. MBT uses a non-stochastic sequential method for tree design and adds
the ability to have classes appear at more than one node output by reclassifying initially
misclassified samples. This allows MBT to separate multi-modal and non-linearly separa-
ble data. MBT performs well on both real and artificial data sets and the accuracy of the
MBT is significantly higher on known multi-modal data sets. The test time of the MBT
is short compared to other multi-class extensions, which is important for applications that
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classify new, incoming samples in an online manner and require low delay. MBT also has
a relatively low computational complexity, which is beneficial for applications that require
low power.

The MBT algorithm can also be implemented as a generic framework, and can easily be
used with different classifiers and different feature selection methods. The MBT can also
be used with multi-class classifiers by using a different K value in the clustering algorithm.

These experiments also show the benefits of feature selection both for reducing classifier
memory requirements and test time, and improving accuracy. However, the performance
of the different feature set evaluation measures is varied and this indicates the importance
of selecting the feature set evaluation measure carefully. The second part of the thesis
presents an empirical evaluation of filter-based feature set evaluation measures. Based on
these findings, a new measure of feature dependence is proposed and evaluated.

Sixteen different univariate and multi-variate filter measures are evaluated with respect
to their ability to identify known informative features and their correlation with classifier
accuracy. Based on the results of these tests, CFS, CMIM and subset-RELIEF are identi-
fieda as good choices for KNN, and Fisher’s interclass separability criterion or CMIM are
recommended for SVM.

Despite the relatively good performance of the CMIM measure, it is unable to identify
dependent, informative features. Two new measures of feature dependence are proposed
to overcome these issues. The measures are based on CMIM and FOU/CFS, but include
an explicit test for feature dependence. These measures are capable of finding informative
dependent features that the other filter measures cannot detect.

The final part of the thesis examines the application of feature selection and the MBT
algorithm to time-series human-motion recognition data. Two different human motion
classification problems are considered: recognition of full-body human motions from joint
angles, and the recognition of hand gestures from EMG data.

The first experiments with the full-body human motion data set use binary classification
problems to assess whether feature selection can be used to select individual windows from
within a time-series input instead of including the entire time series. Results show that
classifiers using a subset of the windowed inputs can achieve the same accuracy as the full
time-series, with a shorter test time and smaller memory footprint. The MBT algorithm
is also applied to the full eight class full-body motion recognition problem. The feature
selected MBT algorithm achieves 100% accuracy on this data set using only two to three
classifiers and ten to fifteen features per classification. This is a significant reduction
in classification time over a standard full -feature multi-class extension with no loss of
accuracy.
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The MBT algorithm is also applied to an EMG-based gesture recognition set. Several
variations of the MBT algorithm are tested, including a single-level tree, a two-level tree
and a one vs. one formulation with MBT used as the base classifier. The one vs. one
MBT algorithm is able to achieve 85% accuracy on a six gesture set and 88% accuracy on
a five gesture set using leave-one-subject-out testing. These test results show the potential
of the MBT algorithm for such difficult problems.

This thesis makes the following contributions:

e The development of the multi-modal binary tree algorithm that can be used to classify
multi-modal and non-linear classes using piecewise separation

e An extensive empirical evaluation of current filter-based feature set evaluation mea-
sures with respect to specific classifiers

e The development of an information-theoretic based test for feature dependence and
the development of a new filter-based feature selection measure that can account for
dependent features

e The application of feature selection and the MBT algorithm to two different time-
series human motion recognition problems

6.1 Future Work

6.1.1 Tree-based classifiers

The initial set of experiments with FSHC compares FSHC to both one vs. rest with no
tie breaking, and fuzzy one vs. rest, which uses the distance to the hyperplane as a way to
classify points that are claimed by multiple classifiers or that are not claimed. Interestingly,
the performance of the fuzzy one vs. rest is much better than the one vs. rest formulation
with no ties. This indicates that there are a number of points that are misclassified by one
or more classifiers in the one vs. rest formulation. The fuzzy one vs. rest can recover a
correct classification even if one or more of the base classifiers is incorrect. This can also
occur in some cases with a one vs. one formulation, but appears to be less common based
on the similar performance of the one. vs. one and the DAG-SVM.

Although the MBT algorithm allows points to be classified into either output of a node,
a misclassification of a test point at any node will result in a misclassification of the point.
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It may be possible to incorporate a fuzzy component into the tree, with each classifier
returning a fuzzy measure of class membership for each output. For example, for an SVM,
this may be distance to the hyperplane, as described in [70]. Such fuzzy membership
functions can also be defined for other classifiers, such as ANN with a linear output layer

[166].

Following each branch in the tree would be quite expensive, but the fuzzy membership
functions can be defined in such a way that a point a certain distance from the hyperplane
or linear output value is considered to be a member of only a single class. In this case,
only a single branch would need to be followed from that node. A fuzzy tree would still be
more computationally expensive than a standard tree, but could be used to give a measure
of confidence in the output.

6.1.2 Dependent features

The dCMIM and dFOU measures proposed in Chapter 4 identify dependent features in
the set. However, not every classifier is capable of using dependent features, or may only
be able to use certain types of dependent features. Even if a classifier is not able to use
the identified dependent features to improve classification accuracy directly, identifying
dependent features is still important. Dependent features carry information that may not
be directly usable by the classifier. Feature extraction techniques may be able to generate
new features from the dependent features.

This is a slightly different way of using feature extraction and feature selection together.
While feature extraction techniques can be used to generate a larger set of candidate fea-
tures for feature selection, for dependent features, the dependent feature selection measure
would be used to generate a candidate set of features that would benefit from feature ex-
traction techniques. The best feature extraction measure to use for such features remains
an open question.

6.1.3 EMG hand gesture classification

There are several possible improvements to the EMG-based hand gesture classifier to
improve accuracy, computational complexity and test time and include new data points
through online training.
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Options for improving accuracy

There are two options for improving the accuracy of the MBT one vs. one classifier. The
first option is to identify the pairwise classifiers with low accuracy on the two-class problem
and use either a more complex kernel, a larger number of features or specifically constructed
features to achieve better accuracy. Using a more computationally expensive classifier on
a small subset of the data may allow the accuracy to be improved, without unnecessarily
increasing the classifier complexity on classes that are already well separated.

Another option is to change the selected outputs. The EMG hand gesture recognition
data set includes a large number of gestures, but not all of the gestures in the set may be
required for a particular application. It may be possible to optimize the set of gestures to
improve the accuracy of the classifier.

One other option, which is slightly less convenient for the user, is to ask for a single
sample of each gesture from the current user and then re-train the classifier using a over-
weighted version of this sample. There are, however, two major issues with this solution.
Firstly, the sample provided by the user may not be representative of all their gestures.
It is possible for a single use to use multiple strategies for a single gesture. Secondly, this
requires re-training the classifier at run-time, which is inconvenient for the user.

Options for reducing computational complexity

Because the base classifiers are linear SVMs, classification at each node is performed by
finding the distance to the hyperplane. This means that the complexity is directly propor-
tional to the number of features at each base classifier. The number of multiplications can
be reduced by reducing the number of features at each node, by reducing the number of
nodes in the tree, or by reducing the number of trees queried.

The easiest method for reducing the number of required multiplications is to reduce
the number of pairwise classifiers that need to be queried. The numbers quoted in Table
5.29 come from a classification method that uses a voting scheme. This scheme trains a
set of pairwise classifier trees and each is queried and casts a vote for its winning class.
An alternate method is DAG-SVM [126]. In DAG-SVM, each queried classifier eliminates
one class. Using DAG-SVM would reduce the number of trees queried from C(C-1)/2 to
C-1. For a 4 class problem, this reduces the number of trees queried from 6 to 3, and for
a b class problem this reduces the number of trees queried from 10 to 4. For the 7 class
problem, the number of trees is reduced from 21 to 6. This is a significant reduction that
requires little effort and almost no reduction in accuracy, as found in [65] and Chapter 3.

201



The second method is to reduce the average number of features used for each node.
In many cases, increasing the number of features improves the accuracy. However, this
improvement is not consistent across all pairwise classifiers. For some pairs of classes, 5
features is sufficient. Other pairwise classifiers require more features. Hence, one simple
method to reduce the average number of features is to set the number of features differently
for each pairwise classifier, using a validation set. This allows the use of smaller feature
sets for the more easily separated classes, while maintaining the accuracy gain from using
a larger number of features on the more difficult pairs.

The last option is to reduce the number of nodes of the tree. This can be accomplished
by adjusting the misclassification error rate r,,., as described in Chapter 3. As with the
number of features, this is a parameter that can be set using a validation set.

Options for decreasing test time

The ideal classifier would be able to determine the gesture being performed before the
gesture is completed. The current system uses features generated over the entire length of
the gesture.

A simple method would be to use a segmentation program to find the start of the action
and then extract the desired feature over a set window size that is shorter than the length
of the average gesture. This would require re-training the classifier on these new features.
This may also adversely affect the accuracy.

Because some gestures are much longer than others, using a standard window length
may adversely affect the accuracy and/or test time. Instead, it may be possible to use an
adjustable gesture length by setting the window length based on the signal peak.

Options for incorporating large amounts of incoming data

Thalmic labs is also pursuing the option of collecting data at run-time from the users.
Incorporating this data back into the classifier can be challenging as it requires continually
re-training classifiers on a progressively larger amount of data. In tests of the commonly
used sequential minimal optimization training method, Platt [120] finds empirically that
the training time scales as N7 where v ~ 2. Hence, as the number of samples gets large,
the training time becomes impractically large.

As the collection of this data is ongoing, the training should be performed online, and
should begin with a trained classifier. The new points then need to be incorporated to
adjust the SVM boudaries, or to add new nodes to the tree.
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For the linear tree SVM, mis-classified points are the most interesting because they
indicate that the current hyperplane is incorrect, or that additional nodes need to be
added. Hence, the amount of data in the training set can be reduced by selecting only
points that are misclassified. Identification of misclassified points may be the next largest
challenge.

Similarly, points that are classified correctly but are very close to the hyperplane may
also alter the classifier training. However, identifying these points would require finding a
distance to the hyperplane rather than just the classification result.

These new misclassified points can be added to the tree online by adding new nodes for
misclassified samples. Each sample is classified by the existing tree. If the classification is
correct, no further nodes need to be added. If the classification is incorect, a new node is
added to properly separate the new samples, as is done in the original tree. Eventually,
this will increase the number of nodes and layers of the tree. If the misclassified points are
maintained in a list, the tree can be re-trained periodically using these new samples in an
effort to reduce the number of nodes and layers by adjusting the nodes higher in the tree
to accommodate the misclassified points.

6.1.4 Application to other domains

One of the benefits of the MBT is its short test time and small computational expense.
This is particularly important for domains where the objective is to perform classification
of incoming data samples in an online manner, even if the initial training is offline. The
MBT may be a good fit for other human motion recognition problems or problems in other
domains. For example, MBT could be applied to motion recognition problems in the area
of rehabilitation. One interesting application examines the performance of rehabilitation
exercises to distinguish between correctly and incorrectly performed motions. This infor-
mation can be used to provide feedback to the patient in real-time. Time-series feature
selection could be beneficial in such a task, allowing the classifier to focus on portion of
motion that may be incorrectly performed. The relatively small computational expense of
the MBT would allow the classifications to be performed with low delay, giving feedback
to the patient in a timely manner.

The MBT could also be beneficial to domains outside of human motion recognition.
One example is in the area of audio-environment recognition for hearing aid background
noise reduction. Because of the extremely small size and low power of hearing aids, any
algorithm used for classification must be extremely computationally efficient. MBT is well
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suited for such a task and may be beneficial to this domain or other domains that require
efficient, low-delay classification of incoming samples.
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APPENDICES
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Appendix A

Classifier accuracy on tested data
sets

This appendix presents the different accuracy values of the various classifiers on the arti-
ficial and real data sets.
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1-NN
Best Worst All Features

acc. FSsize acc. FSsize acc. FSsize
Binary 1 0.99 3 0.80 1 0.99 3
Binary 2 1.00 3 0.55 1 1.00 3
Binary 3 1.00 3 0.59 1 1.00 3
Monk 1 1.00 4 046 5 0.81 6
Monk 2 0.84 6 047 5 084 6
Monk 3 0.99 4 051 3 093 6
Simple dependent 0.92 2 0.62 1 092 2
Partially dependent 0.97 2 0.60 1 097 2
Two way linear correlated 0.99 2 098 1 099 2
Three way linear correlated 1.00 1 0.69 1 097 3
Three was non-linear correlated | 1.00 2 0.72 1 1.00 3
Noise with one good feature 1.00 2 014 1 0.93 4
Pure noise 0.29 2  0.18 1 0.28 3
Un-nested 1.00 2 0.59 1 1.00 3
Monotonic 1.00 4 084 1 1.00 4
Two U’s 1.00 2 075 1 1.00 2
Multimodal (XOR) 1.00 2 051 1 1.00 2
Single cluster linearly separable | 0.95 2  0.66 1 095 2
Redundant features 1.00 3  1.00 3 1.00 4
One cluster per class 1.00 2  1.00 2 1.00 2

Table A.1: Summary of 1-NN accuracy on different artificial data

sets

1-NN
Best Worst All Features

acc. FSsize acc. FSsize acc. FSsize
Abalone 0.21 3 0.12 1 0.20 8
Car Evaluation 0.93 6 0.58 5 0.93 6
Cardiotocography 0.80 12 0.12 2 0.76 22
Congressional Voting 0.95 9 0.69 3 093 16
Contraceptive Choice 0.48 6 0.37 5 044 9
Credit Approval 0.84 9 045 2 0.82 15
Dermatology 0.97 24 0.24 1 0.96 34
E-coli 0.82 6 043 1 0281 7
Flag 0.56 7 0.20 4 044 28
Glass 0.77 4 0.28 2 0.69 9
Haberman’s Survival 0.73 1 0.36 1 0.66 3
Tonosphere 0.91 15 0.74 1 0.86 34
Iris 0.96 2 0.49 1 094 4
Mushroom 1.00 18 0.43 2 1.00 22
Page blocks 0.96 8 0.79 1 0.96 10
Post-op 0.70 5 041 3  0.62 8
Segmentation 0.97 10 0.14 1 096 18
Statlog (vehicle) 0.73 10 0.34 1 0.69 18
Wisconsin Breast Cancer (original) 0.96 7 073 1 095 9
Wisconsin Breast Cancer (diagnostic) | 0.96 13 0.65 1 095 30
Wine 0.97 9 0.37 1 0.95 13
Wisconsin Breast Cancer (prognostic) | 0.72 9 0.58 6 0.67 32
Yeast 0.53 7 0.16 1 0.53 8

Table A.2: Summary of 1-NN accuracy on different real data sets

207



79 BJRP [RIDYILIR JUSISJIP U0 ADRINIOR NAS JO AlRWIWING €'Y 9[e],

z 00T ¢ 00T ¢ 00T | ¢ 00T ¢ 00T ¢ 00T ssepo 1od I03sn[O OUQ
i €9°0 4 190 T 68°0 i 00'T S 00'T S 00°T saanjes] juepunpay
e L60 T eLo ¢ 160 | ¢ 960 I €L0 ¢ 96'0 | olqeaedes A[resur] 99sn S[SuIg
z 650 T Tro ¢ 690 | ¢ €90 1 o ¢ £9°0 (YOX) repownmy
e 160 T €80 ¢ 160 | ¢ 160 1 180 ¢ 16°0 s.0 oM,
2 990 T 790 € 990 | ¥ 00T 1T 80 ¥ 00T IUOJOUON]
€ €80 I L€0 ¢ 180 | € 00T T 090 ¢ 00T pejsou-upn
¢ 0 T 0T0 T 620 | € geo T 6T0 ¢ 9€°0 ostou o g
id 0.0 ¢ 2o 1 €80 | ¥ 00T ¢ 120 ¢ 00'1 2IM3ed} PoO3 U0 YHM BSION
g 00T T L0 ¢ 00T | € 00T I 0.0 ¢ 00'T | PO¥R[OIIO0 TROUI-UOU Sem 991y,
€ 860 T €L0 € 860 | € 860 T Lo 1 66°0 Poje[e1100 Ieaul] Aem 201y,
e 660 T 660 ¢ 660 | ¢ 660 T 860 I 6670 Poje[oLIoD Ieour] Kem OmT,
e 860 I 150 ¢ 860 | ¢ 860 1T 180 ¢ 860 juopuedep A[rersre]
C g60 T L0 ¢ ¢60 | T €60 T 0.0 ¢ €6°0 juspuadsp sdurrg
9 08°0 € 80 ¥ 080 | 9 080 € v0 ¢ 080 € uoN
9 990 ¢ 990 ¢ 990 | 9 990 ¢ 990 ¢ 99°0 T Uo
9 190 T o € 890 | 9 190 ¢ cro ¥ 890 T Yuoy
S GL0 T GL0 T GL0 S GL0 T GL0 T GL0 ¢ Areurg
g 860 ¢ 790 € 860 | € 860 ¢ 0L0 € 860 g Areurg
€ 660 ¢ ¥80 € 660 | € 660 T €80 ¢ 66°0 1 Areurg
@Nﬁm wm *ooe wNMm m,m *0oe wNMw mm *ooe @Nﬁm w,m *ooe @wa mm *0oe wNMw mm *2oe
soanjes [V 1SIOAN 1s0g soanyesq [V 1SIOAN 1sog
(VAO) INAS (OAO) INAS

208



$10S ®IRP [RAI JUDIDHIP U0 AdRINdde NAS JO Arewrwng 'y o[qRl,

8 160 ¢ 00 8 160 | 8 8¢°0 1T 1€0 8 8¢°0 [N
e €0 TC L0 € 9.0 | ¢¢ 7.0 8T 1.0 9T 9.0 | (omsouSoid) 190ue)) 9SRAIG UISUOISIA\
€1 860 1T Fo 0T 660 | €1 160 1 0S'0 0T 86°0 aurp
0 160 T 990 ST 860 | 0€ 160 T 790 61 86°0 | (omsouSerp) 1eoue) jsEOI UISUOISIA
6 960 1T LL0 ¢ 160 | 6 960 1 LL0 9 L6°0 ([eursLio) 1eoue)) jseoly UISUOISIA\
ST 8.0 T ¥Z0 ST 8.0 | 8T 6.0 T 1€0 QT 08°0 (oro1yeA) Soyesg
8T 60 ¥ 10 <l T6'0 | ST 60 1 Y10 2l 96°0 uoryeIUewSeg
8 690 € 690 T 1.0 | 8 690 8 690 9 TL0 do-1s0g4
0T 960 T 680 6 960 | 0T 960 T 06'0 0T 96°0 s3porq efed
(44 660 9 ¥S0 61 660 | ¢ 660 9 ¥S0 61 66°0 wooIysny
2 160 1 g0 € €60 | ¥ 960 T €50 € L6°0 ST
ve 880 1T 790 9T 060 | ¥¢ 180 1 Y90 ¢ 06°0 a1oydsouo]
€ €L0 ¢ TL0 T 7.0 | € €L0 T TLo ¢ 7.0 [BAIAING S URULIOQR]]
6 8g°0 1T cTo 9 190 | 6 €90 ¢ 0€0 9 99°0 ssB[D)
8¢ o 9 ANEDS 160 | 8¢ g0 ¢ oo 11 cg0 Serq
L a0 ¢ 8T0 9 980 | £ 980 T €0 9 98°0 1100-3
7e 960 T 020 ¢ 860 | ¢ 960 T 1€°0 @% 66°0 A3oojeurroq
qT 980 ¥ S0 9 980 | ST 980 ¥ S0 9 98°0 [eaoxddy 31peI)
6 W0 ¢ €0 2 670 | 6 190 ¥ 70 ¥ €20 90101 9a11deoeIjUO))
9T 960 € 190 2T 1670 | 91 960 € 190 2T 96°0 Surjop TeuorsseISuOo)
(éd 8.0 ¢ 110 LT 6.0 | 2¢ ¥80 ¢ 120 ¢l 7870 Aydeigooojorpren
9 180 I 990 9 180 | 9 80 ¥ 0.0 9 ¢80 uoTjenyeAr] Ie)
8 800 ¢ €00 T ¥10 | 8 920 1 810 ¥ 120 ouoreqy
OZIS m,m 0o OZIS mﬁH *0oe 9ZIS m,m ooe OZIS w,m "ooe OZIS m,m 0o OZIS m,m *ooe
m@wﬁaﬁ@ﬁw =< um.HO>> umwm m@,ﬂﬂpﬁ@m =< uw.HO>> umwm
(VAO) INAS (OAO) INAS

209



Appendix B

Filter measure correlation values

This appendix presents the correlation values between different filter measures and classifier
accuracy for different parameter settings.

B.1 RELIEF-based measures
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RELIEF-F (summed)

SVM (one vs. one) SVM (one vs. all) KNN

K=1 K=3 K=5 K=10| K=1 K=3 K=5 K=10| K=1 K=3 K=5 K=10
Abalone 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00
Car Evaluation 0.77 0.77 0.77 0.77 | 0.73 0.73 0.73 0.73 | 0.48 0.48 0.48 0.48
Cardiotocography -0.55 -0.60 -0.64 -0.71 | -0.57 -0.60 -0.65 -0.73 | -0.56 -0.61 -0.64 -0.68
Congressional Voting 0.00 0.82 0.78 0.81 | 0.00 0.82 0.78 0.81 | 0.00 0.82 0.77 0.80
Contraceptive Choice -0.55 0.46 0.46 0.12 | -0.21 0.48 048 0.20 | -0.14 0.56  0.57 0.43
Credit Approval 0.46 0.46 047 0.46 | 0.46 0.47 047 0.46 | 0.54 0.51 0.53 0.54
Dermatology 0.63 0.64 0.64 0.63 0.61 0.62 0.62 0.61 0.66 0.66 0.67 0.65
E-coli -0.35 -0.31 -0.30 -0.31|-0.36 -0.33 -0.33 -0.36 | -0.36 -0.31 -0.30 -0.31
Flag -0.46 -048 -0.44 -0.46 | -0.70 -0.74 -0.71 -0.72 | -0.32 -0.31 -0.25 -0.27
Glass -0.16 -0.33 -0.43 -0.55 | -0.17 -0.29 -0.39 -0.53 | -0.16 -0.31 -0.41 -0.54
Haberman’s Survival 0.81 0.59 0.57 0.44 | 0.52 0.18 0.22 0.23 | -0.74 -0.73 -0.42 -0.11
Tonosphere 0.77 0.76 0.75 0.72 | 0.78 0.77 0.75 0.73 | 030 0.27 0.25 0.23
Iris 0.74 0.74 0.74 0.74 | 0.81 0.81 0.81 0.81 | 0.82 0.82 0.82 0.82
Mushroom 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.58 0.58 0.58 0.58
Page blocks 0.51 0.50 0.50 0.50 | 0.63 0.63 0.63 0.62 | 0.50 0.49 0.48 0.48
Post-op 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00
Segmentation 0.62 0.62 0.62 0.62 | 0.65 0.65 0.65 0.65 | 0.55 0.55 0.55 0.55
Statlog (vehicle) 0.48 0.13 -045 -0.79 | 049 0.14 -0.46 -0.80 | 0.41 0.18 -0.29 -0.58
WI Breast Cancer (orig.) 0.58 0.56 0.61 0.67 | 0.58 0.56 0.61 0.67 | 0.62 0.60 0.63 0.69
WI Breast Cancer (diag.) | 0.48 0.48 0.49 0.49 | 0.48 0.49 0.50 0.50 | 0.53 0.53 0.54 0.54
WI Breast Cancer (prog.) | -0.79 -0.80 -0.81 -0.81 | -0.78 -0.79 -0.79 -0.80 | 0.20 0.21 0.20 0.20
Wine 0.76  0.76  0.75 0.72 | 0.76 0.75 0.74 0.71 | 0.72 0.72 0.71 0.69
Yeast -0.49 -0.66 -0.67 -0.69 | -0.24 -0.42 -0.46 -0.45 | -0.58 -0.74 -0.75 -0.78

Table B.3: Correlation of SVM and 1-NN accuracies

different values of K on real data sets
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and RELIEF-F filter values using




RELIEF-subset
SVM (one vs. one) SVM (one vs. all) KNN

K=1 K=3 K=5 K=10| K=1 K=3 K=5 K=10| K=1 K=3 K=5 K=10
Abalone 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00
Car Evaluation 0.70 0.72 0.69 0.66 | 0.66 0.67 0.65 0.62 | 043 047 0.43 0.39
Cardiotocography 0.87 0.88 0.89 0.90 | 0.88 0.90 0.91 091 | 077 0.77 0.77 0.76
Congressional Voting 0.80 0.85 0.86 0.88 | 0.80 0.85 0.86 0.88 | 0.76 0.81 0.82 0.84
Contraceptive Choice -0.16 -0.31 -0.34 -0.33 | -0.17 -0.33 -0.36 -0.40 | 0.19 0.10 0.10 0.12
Credit Approval 0.71 0.77 0.79 0.81 | 0.70 0.77 0.79 0.80 | 0.79 0.82 0.83 0.84
Dermatology 0.85 0.84 0.84 0.83 | 082 0.81 0.81 0.81 0.88 0.87 0.87 0.86
E-coli 0.88 0.89 0.89 0.88 | 0.83 0.85 0.84 0.83 | 090 091 091 0.91
Flag 0.30 0.16 0.11 0.09 | 0.19 0.04 0.00 0.03 | 045 032 0.26 0.21
Glass 0.75 0.72 0.68 062 | 0.79 0.76 0.72 0.64 | 0.75 0.73 0.70 0.65
Haberman’s Survival 0.10 0.01 0.06 0.11 | -0.17 -0.27 -0.23 -0.16 | -0.02 -0.01 -0.02 0.04
Ionosphere 0.74 0.74 0.73 0.72 | 0.75 0.74 0.73 0.72 | 032 031 0.29 0.29
Iris 0.84 0.87 0.87 0.88 | 093 094 0.95 095 | 091 093 094 0.94
Mushroom 0.72 0.72 0.73 0.73 | 072 0.72 0.72 0.72 | 069 0.70 0.71 0.72
Page blocks 0.60 0.60 0.60 0.59 | 0.73 0.73 0.72 0.72 | 049 049 0.49 0.49
Post-op 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00
Segmentation 0.81 0.82 0.82 0.82 | 0.86 0.86 0.86 0.86 | 0.73 0.73 0.74 0.74
Statlog (vehicle) 0.89 0.88 0.87 0.84 | 0.87 0.86 0.85 0.80 | 0.84 0.85 0.85 0.86
WI Breast Cancer (orig.) 0.73 0.77 0.79 0.81 | 0.73 0.77 0.79 0.81 | 0.77 0.81 0.83 0.83
WI Breast Cancer (diag.) | 0.67 0.66 0.66 0.65 | 0.67 0.67 0.67 0.66 | 0.71 0.70 0.70 0.70
WI Breast Cancer (prog.) | -0.65 -0.69 -0.73 -0.77 | -0.65 -0.69 -0.73 -0.77 | 0.47 0.38 0.33 0.26
Wine 0.85 0.86 0.86 0.86 | 0.86 0.86 0.87 0.86 | 0.83 0.84 0.84 0.84
Yeast 0.56 0.32 0.23 0.21 0.53 0.34 0.25 0.23 | 048 0.22 0.12 0.08

Table B.4: Correlation of SVM and 1-NN accuracies and subset RELIEF filter values using
different values of K on real data sets
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B.2 Probability-based measures

Kullback-Leibler divergence
SVM (one vs. one)
Ny =2 Npy=3 Npy=4 Np,=5 N,=10 Np =e N = u | Gaussian

Binary 1 0.57 0.55 0.54 0.57 0.58 0.57 0.57 0.58
Binary 2 0.69 0.68 0.70 0.70 0.70 0.69 0.69 0.70
Binary 3 - 100% 100%  100% 100% - - 100%
Monk 1 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98
Monk 2 100% 100%  100%  100% 100% 100%  100% 100%
Monk 3 0.95 0.91 0.91 0.91 0.91 0.68 0.91 0.95
Simple dependent 1.00 0.99 0.98 1.00 1.00 0.96 1.00 1.00
Partially dependent 0.99 0.99 1.00 0.99 1.00 -0.36 -0.36 0.99
2-way linear corr. 0.64 0.59 0.66 0.68 0.70 0.77 0.73 0.68
3-way linear corr. 0.79 0.74 0.80 0.78 0.80 0.02 0.02 0.80
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1 good and noise 0.99 0.99 0.99 0.99 0.97 0.98 0.98 1.00
Pure noise 0.67 0.75 0.70 0.63 0.62 0.78 0.77 0.74
Un-nested 0.77 0.78 0.80 0.80 0.81 0.47 0.44 0.12
Monotonic 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.81
Two U’s 0.99 1.00 1.00 1.00 0.98 0.99 0.99 1.00
Multimodal (XOR) 0.79 0.95 0.75 0.86 0.87 0.79 0.79 0.99
linear sep. Guassian 1.00 1.00 0.99 0.91 0.98 0.98 0.98 0.97
Redundant 100% 100%  100%  100% 100% 100%  100% 101%
2 clusters 100% 100% 100%  100% 100% 100%  100% 100%

Kullback-Leibler divergence
SVM (one vs. all)
Ny =2 Npy=3 Npy=4 Np,=5 Np,=10 Np =e N =u | Gaussian

Binary 1 0.54 0.53 0.51 0.54 0.54 0.54 0.54 0.55
Binary 2 0.53 0.51 0.55 0.56 0.56 0.53 0.52 0.54
Binary 3 - 100% 100%  100% 100% - - 100%
Monk 1 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98
Monk 2 100% 100% 100%  100% 100% 100%  100% 100%
Monk 3 0.94 0.90 0.90 0.90 0.90 0.65 0.90 0.95
Simple dependent 1.00 1.00 0.98 1.00 1.00 0.96 1.00 1.00
Partially dependent 0.99 0.99 1.00 0.99 1.00 -0.36 -0.36 0.99
2-way linear corr. 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00
3-way linear corr. 0.80 0.76 0.81 0.80 0.81 0.02 0.02 0.81
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1 good and noise 0.97 0.97 0.97 0.97 0.94 0.95 0.96 0.98
Pure noise -0.53  -0.66 -0.56  -0.47 -0.45  -0.72 -0.70 -0.64
Un-nested 0.83 0.85 0.85 0.85 0.85 0.65 0.62 0.13
Monotonic 0.80 0.81 0.80 0.80 0.81 0.81 0.81 0.79
Two U’s 1.00 1.00 1.00 1.00 0.99 0.97 0.97 0.99
Multimodal (XOR) 0.88 0.88 0.63 0.93 0.78 0.88 0.88 1.00
linear sep. Guassian 0.99 1.00 0.99 0.93 0.98 0.98 0.98 0.98
Redundant -0.65 -0.65 -0.65 -0.65 -0.65  -0.66 -0.67 -0.66
2 clusters 100% 100% 100%  100% 100% 100%  100% 100%

Table B.5: Correlation between SVM accuracies and Kullback-Leibler divergence filter
values using different quantizations on artificial data sets
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Kullback-Leibler divergence
KNN

Ny=2 Ny=3 Ny=4 Ny=5 N, =10 Np =e N, = u | Gaussian
Binary 1 0.93 0.86 0.90 0.92 0.94 0.93 0.93 0.92
Binary 2 0.97 0.97 0.95 0.94 0.94 0.97 0.97 0.96
Binary 3 0.00 0.73 0.84 0.89 0.93 0.00 0.00 0.82
Monk 1 0.60 0.59 0.59 0.59 0.59 0.59 0.60 0.59
Monk 2 -0.47  -0.56 -0.56  -0.56 -0.56  -0.56 -0.48 -0.53
Monk 3 0.98 0.95 0.95 0.95 0.95 0.73 0.95 0.98
Simple dependent 1.00 1.00 0.98 1.00 1.00 0.96 1.00 1.00
Partially dependent 0.98 0.99 0.99 0.99 1.00 -0.32 -0.32 0.98
2-way linear corr. 0.97 0.95 0.98 0.98 0.99 1.00 0.99 0.98
3-way linear corr. 0.77 0.70 0.78 0.75 0.77 0.04 0.04 0.78
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1 good and noise 0.98 0.98 0.98 0.98 0.96 0.97 0.97 0.99
Pure noise 0.78 0.96 0.85 0.72 0.80 0.87 0.87 0.90
Un-nested 0.80 0.81 0.82 0.82 0.83 0.53 0.48 0.15
Monotonic 0.83 0.84 0.84 0.83 0.84 0.84 0.84 0.84
Two U’s 0.95 0.99 0.99 0.98 0.94 1.00 1.00 0.99
Multimodal (XOR) 0.87 0.89 0.64 0.92 0.79 0.87 0.87 1.00
linear sep. Guassian 0.98 0.99 0.98 0.95 0.99 0.99 0.99 0.99
Redundant 100% 100%  100%  100% 100% 100%  100% 101%
2 clusters 100% 100% 100%  100% 100% 100%  100% 100%

Table B.6: Correlation between 1-NN accuracies and Kullback-Leibler divergence filter
values using different quantizations on artificial data sets
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Jensen-Shannon divergence
SVM (one vs. one)
Nb:2 Nb:3 Nb:4 Nb:5 Nb:IO Nb:€ Nb:u

Binary 1 0.57 0.57 0.57 0.58 0.58 0.57 0.57
Binary 2 0.69 0.68 0.70 0.70 0.70 0.69 0.69
Binary 3 - 100% 100% 100% 100% - -
Monk 1 0.99 0.98 0.98 0.98 0.98 0.98 0.99
Monk 2 100% 100% 100%  100% 100% 100%  100%
Monk 3 0.94 0.95 0.95 0.95 0.95 0.95 0.95
Simple dependent 1.00 0.99 0.99 1.00 1.00 0.97 0.95
Partially dependent 0.99 1.00 1.00 0.99 1.00 -0.36 0.99
2-way linear corr. 0.66 0.61 0.67 0.69 0.68 0.61 0.82
3-way linear corr. 0.80 0.73 0.80 0.79 0.80 0.12 0.12
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1 good and noise 0.99 0.99 0.99 0.99 0.94 0.96 0.96
Pure noise 0.67 0.75 0.69 0.72 0.53 0.53 0.45
Un-nested 0.79 0.79 0.81 0.82 0.82 0.47 0.44
Monotonic 0.80 0.80 0.80 0.79 0.80 0.80 0.80
Two U’s 0.99 1.00 1.00 1.00 1.00 1.00 1.00
Multimodal (XOR) 0.79 0.95 0.75 0.73 1.00 0.79 0.79
linear sep. Guassian 1.00 1.00 1.00 0.91 0.97 0.97 0.97
Redundant 100% 100% 100%  100% 100% 100%  100%
2 clusters 100% 100% 100%  100% 100% 100%  100%

Jensen-Shannon divergence
SVM (one vs. all)
Nb:2 Nb:3 Nb:4 Nb:5 Nb:IO Nb:€ Nb:u

Binary 1 0.54 0.54 0.54 0.55 0.54 0.54 0.54
Binary 2 0.53 0.52 0.54 0.55 0.55 0.53 0.52
Binary 3 - 100% 100%  100% 100% - -
Monk 1 0.99 0.98 0.98 0.98 0.98 0.98 0.99
Monk 2 100% 100% 100%  100% 100% 100%  100%
Monk 3 0.94 0.94 0.94 0.94 0.94 0.94 0.94
Simple dependent 1.00 1.00 0.99 1.00 1.00 0.96 0.95
Partially dependent 0.99 1.00 1.00 0.99 1.00 -0.36 0.99
2-way linear corr. 1.00 0.99 1.00 1.00 1.00 0.99 0.98
3-way linear corr. 0.81 0.75 0.81 0.80 0.81 0.15 0.15
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1 good and noise 0.97 0.96 0.96 0.96 0.92 0.93 0.93
Pure noise -0.53 -0.65 -0.55 -0.61 -0.33 -0.33 -0.25
Un-nested 0.83 0.85 0.85 0.85 0.83 0.65 0.62
Monotonic 0.80 0.81 0.80 0.80 0.81 0.81 0.81
Two U’s 1.00 0.99 1.00 1.00 1.00 1.00 0.99
Multimodal (XOR) 0.88 0.88 0.63 0.83 0.96 0.88 0.88
linear sep. Guassian 1.00 1.00 1.00 0.92 0.98 0.98 0.98
Redundant -0.65 -0.65 -0.65 -0.65 -0.65 -0.66 -0.64
2 clusters 100% 100% 100%  100% 100% 100%  100%

Table B.7: Correlation between SVM accuracies and Jensen-Shannon divergence filter
values using different quantizations on artificial data sets
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Jensen-Shannon divergence
KNN

Ny =2 Npy=3 Ny=4 Npy=5 Npy=10 Ny =e Ny =u
Binary 1 0.93 0.90 0.93 0.93 0.94 0.93 0.93
Binary 2 0.97 0.97 0.96 0.95 0.95 0.97 0.97
Binary 3 0.00 0.73 0.84 0.90 0.93 0.00 0.00
Monk 1 0.60 0.59 0.59 0.59 0.59 0.59 0.60
Monk 2 -0.47  -0.56 -0.56  -0.56 -0.56  -0.56 -0.48
Monk 3 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Simple dependent 1.00 1.00 0.99 1.00 1.00 0.97 0.95
Partially dependent 0.99 0.99 0.99 0.99 1.00 -0.32 0.99
2-way linear corr. 0.98 0.96 0.98 0.98 0.98 0.96 1.00
3-way linear corr. 0.78 0.69 0.78 0.75 0.77 0.07 0.07
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1 good and noise 0.98 0.98 0.98 0.97 0.93 0.95 0.95
Pure noise 0.78 0.96 0.84 0.83 0.68 0.68 0.73
Un-nested 0.82 0.82 0.83 0.84 0.84 0.53 0.48
Monotonic 0.84 0.84 0.83 0.83 0.84 0.84 0.84
Two U’s 0.95 1.00 0.98 0.98 0.99 0.99 1.00
Multimodal (XOR) 0.87 0.89 0.65 0.82 0.97 0.87 0.87
linear sep. Guassian 0.98 0.99 0.99 0.95 0.99 0.99 0.99
Redundant 100% 100% 100%  100% 100% 100%  100%
2 clusters 100% 100% 100%  100% 100% 100%  100%

Table B.8: Correlation between 1-NN accuracies and Jensen-Shannon divergence filter
values using different quantizations on artificial data sets
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Bhattacharyya divergence
SVM (one vs. one)
Nb:2 Nb:3 Nb:4 Nb:5 Nb:IO Nb:€ Nb:u Gaussian

Binary 1 0.57 0.55 0.54 0.57 0.58 0.57 0.57 0.58
Binary 2 0.69 0.68 0.70 0.70 0.70 0.69 0.69 0.69
Binary 3 - 100% 100%  100% 100% - - 100%
Monk 1 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98
Monk 2 100% 100% 100%  100% 100% 100%  100% 100%
Monk 3 0.95 0.94 0.94 0.94 0.94 0.70 0.94 0.88
Simple dependent 1.00 0.99 0.98 1.00 0.99 0.91 0.89 0.99
Partially dependent 0.99 0.99 0.99 0.99 099 -0.36 0.99 1.00
2-way linear corr. 0.61 0.57 0.63 0.67 0.67 0.57 0.92 0.69
3-way linear corr. 0.78 0.79 0.79 0.80 0.79 0.12 0.12 0.53
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87
1 good and noise 1.00 0.99 1.00 0.99 0.98 0.98 0.99 1.00
Pure noise 0.67 0.75 0.69 0.63 0.62 0.78 0.77 0.72
Un-nested 0.75 0.75 0.78 0.78 0.80 0.47 0.44 0.12
Monotonic 0.80 0.80 0.80 0.79 0.80 0.80 0.80 0.76
Two U’s 0.99 0.95 0.99 0.99 0.97 0.99 0.94 0.99
Multimodal (XOR) 0.79 0.95 0.75 0.68 1.00 0.79 0.79 1.00
linear sep. Guassian 0.99 1.00 0.99 0.91 0.98 0.98 0.98 1.00
Redundant 100% 100% 100%  100% 100% 100%  100% 100%
2 clusters 100% 100% 100%  100% 100% 100%  100% 100%

Bhattacharyya divergence
SVM (one vs. all)
Nb:2 Nb:3 Nb:4 Nb:5 Nb:IO Nb:€ Nb:u Gaussian

Binary 1 0.54 0.53 0.51 0.54 0.54 0.54 0.54 0.54
Binary 2 0.53 0.51 0.55 0.56 0.56 0.53 0.52 0.51
Binary 3 - 100% 100%  100% 100% - - 100%
Monk 1 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98
Monk 2 100% 100% 100%  100% 100% 100%  100% 100%
Monk 3 0.94 0.92 0.92 0.92 0.92 0.67 0.92 0.86
Simple dependent 1.00 1.00 0.99 1.00 0.99 0.90 0.88 0.99
Partially dependent 0.99 0.99 0.99 0.99 099 -0.36 0.99 1.00
2-way linear corr. 0.99 0.99 1.00 1.00 1.00 0.99 0.92 1.00
3-way linear corr. 0.79 0.81 0.80 0.81 0.80 0.15 0.15 0.56
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87
1 good and noise 0.97 0.97 0.97 0.97 0.95 0.96 0.96 0.98
Pure noise -0.53 -0.66 -0.56  -0.47 -0.45  -0.72 -0.70 -0.66
Un-nested 0.83 0.84 0.85 0.85 0.85 0.65 0.62 0.13
Monotonic 0.80 0.80 0.80 0.80 0.81 0.81 0.81 0.77
Two U’s 1.00 0.92 0.97 0.98 0.95 0.97 0.90 0.98
Multimodal (XOR) 0.88 0.88 0.63 0.80 0.98 0.88 0.88 1.00
linear sep. Guassian 0.99 1.00 0.99 0.92 0.99 0.99 0.99 1.00
Redundant -0.65 -0.65 -0.65 -0.65 -0.65  -0.65 -0.67 -0.65
2 clusters 100% 100% 100%  100% 100% 100%  100% 100%

Table B.9: Correlation between SVM accuracies and Bhattacharyya divergence filter values
using different quantizations on artificial data sets
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Bhattacharyya divergence
KNN

Ny=2 Ny,=3 N,=4 Ny,=5 N, =10 N, =e N = u| Gaussian
Binary 1 0.93 0.86 0.90 0.92 0.94 0.93 0.93 0.93
Binary 2 0.97 0.97 0.96 0.94 0.94 0.97 0.97 0.97
Binary 3 0.00 0.73 0.84 0.90 0.93 0.00 0.00 0.85
Monk 1 0.60 0.59 0.59 0.59 0.59 0.59 0.60 0.59
Monk 2 -0.47  -0.56 -0.56  -0.56 -0.56  -0.56 -0.48 -0.57
Monk 3 0.98 0.98 0.97 0.97 0.97 0.75 0.97 0.92
Simple dependent 1.00 1.00 0.98 1.00 0.99 0.91 0.88 0.99
Partially dependent 0.98 0.99 0.99 0.98 0.99 -0.32 0.98 0.99
2-way linear corr. 0.96 0.95 0.97 0.98 0.98 0.95 0.97 0.98
3-way linear corr. 0.76 0.75 0.77 0.78 0.77 0.07 0.07 0.49
3-way non-linear corr. 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
1 good and noise 0.99 0.98 0.98 0.98 0.96 0.97 0.98 0.99
Pure noise 0.79 0.96 0.85 0.71 0.80 0.87 0.87 0.69
Un-nested 0.79 0.79 0.81 0.81 0.83 0.53 0.48 0.15
Monotonic 0.83 0.84 0.84 0.83 0.84 0.84 0.84 0.79
Two U’s 0.96 0.99 1.00 1.00 1.00 1.00 0.98 1.00
Multimodal (XOR) 0.87 0.89 0.64 0.78 0.98 0.87 0.87 1.00
linear sep. Guassian 0.97 0.99 0.97 0.95 1.00 1.00 1.00 1.00
Redundant 100%  100% 100.01%  100% 100% 100%  100% 100%
2 clusters 100%  100% 100%  100% 100% 100%  100% 100%

Table B.10: Correlation between 1-NN accuracies and Bhattacharyya divergence filter
values using different quantizations on artificial data sets
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Kullback-Leibler divergence
KNN

Ny,=2 N, =3 Ny, =4 Ny, =5 Np =10 Gaus.
Abalone 0.56 0.69 0.69 0.68 0.67| 0.00
Car Evaluation 0.44 0.49 0.47 0.47 0.47| 0.35
Cardiotocography 0.67 0.71 0.73 0.74 0.75| 0.33
Congressional Voting 0.77 0.77 0.77 0.77 0.77| 0.84
Contraceptive Choice 0.14 0.17 0.31 0.34 0.50| 0.14
Credit Approval 0.87 0.88 0.89 0.90 0.89| 0.37
Dermatology 0.76 0.77 0.77 0.77 0.77| 0.75
E-coli 0.75 0.70 0.77 0.80 0.77| 0.05
Flag 0.50 0.48 0.47 0.46 0.45| 0.59
Glass 0.56 0.58 0.61 0.65 0.68| 0.00
Haberman’s Survival 0.63 0.37 0.35 0.47 0.55| 0.50
Tonosphere 0.34 0.23 0.18 0.20 0.19| 0.29
Iris 0.77 0.81 0.79 0.79 0.77] 0.75
Mushroom 0.54 0.59 0.60 0.61 0.61| 0.26
Page blocks 0.50 0.54 0.59 0.60 0.63| 0.60
Post-op 0.00 -0.01 0.63 0.41 0.51| 0.20
Segmentation 0.64 0.61 0.63 0.64 0.63| 0.25
Statlog (vehicle) 0.57 0.66 0.63 0.65 0.66 | 0.63
WI Breast Cancer (orig.) 0.73 0.72 0.71 0.71 0.71| 0.63
WI Breast Cancer (diag.) 0.51 0.55 0.55 0.55 0.55| 0.48
WI Breast Cancer (prog.) 0.16 0.14 0.17 0.17 0.19| 0.16
Wine 0.67 0.69 0.71 0.69 0.70 | 0.66
Yeast 0.45 0.81 0.66 0.73 0.83] 0.02

Table B.12: Correlation between 1-NN accuracies and KL divergence filter values using
different quantizations on real data sets
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Jensen-Shannon divergence
SVM (one vs. one) SVM (one vs. all)

Npy=2 Npy=3 Ny=4 Npy=5 Npy=10[Npy =2 Ny =3 Ny =4 Ny =5 N, =10
Abalone 0.32 0.34 0.42 0.42 0.44 0.28 0.23 0.25 0.26 0.26
Car Evaluation 0.60 0.71 0.66 0.66 0.66 0.53 0.64 0.57 0.57 0.57
Cardiotocography 0.73 0.80 0.82 0.83 0.84 0.74 0.82 0.84 0.85 0.86
Congressional Voting 0.78 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
Contraceptive Choice 0.56 0.58 0.70 0.73 0.80 0.65 0.66 0.77 0.78 0.82
Credit Approval 0.91 0.91 0.90 0.90 0.87 0.90 0.90 0.90 0.90 0.87
Dermatology 0.72 0.74 0.74 0.74 0.74 0.70 0.72 0.72 0.72 0.71
E-coli 0.69 0.65 0.75 0.80 0.85 0.69 0.62 0.74 0.78 0.82
Flag 0.66 0.64 0.64 0.64 0.63 0.84 0.83 0.83 0.82 0.81
Glass 0.64 0.61 0.69 0.73 0.73 0.70 0.67 0.76 0.78 0.78
Haberman’s Survival -0.67 -0.77 -0.71 -0.79 -0.70 -0.70 -0.96 -0.93 -0.92 -0.86
Tonosphere 0.74 0.68 0.67 0.66 0.65 0.75 0.69 0.67 0.67 0.66
Iris 0.69 0.73 0.71 0.71 0.69 0.76 0.79 0.77 0.78 0.77
Mushroom 0.63 0.70 0.70 0.70 0.70 0.63 0.70 0.70 0.70 0.70
Page blocks 0.52 0.56 0.63 0.65 0.71 0.67 0.71 0.76 0.77 0.82
Post-op 0.05 -0.01 -0.29 -0.63 -0.61 0.30 0.25 -0.08 -0.64 -0.64
Segmentation 0.74 0.69 0.71 0.73 0.73 0.80 0.75 0.77 0.79 0.78
Statlog (vehicle) 0.77 0.80 0.80 0.81 0.82 0.79 0.83 0.82 0.84 0.84
WI Breast Cancer (orig.) 0.71 0.69 0.68 0.68 0.68 0.71 0.69 0.68 0.68 0.68
WI Breast Cancer (diag.) 0.48 0.50 0.51 0.51 0.51 0.48 0.51 0.51 0.52 0.52
WI Breast Cancer (prog.) -0.78  -0.83 -0.83 -0.83 -0.83 -0.74  -0.81  -0.81 -0.81 -0.81
Wine 0.73 0.71 0.75 0.73 0.73 0.72 0.71 0.74 0.72 0.73
Yeast 0.35 0.72 0.54 0.55 0.69 0.09 0.45 0.24 0.24 0.38

Jensen-Shannon divergence
KNN

Ny=2 Ny=3 Ny=4 Npy=5 N, =10
Abalone 0.48 0.64 0.69 0.70 0.71
Car Evaluation 0.42 0.47 0.45 0.45 0.45
Cardiotocography 0.68 0.71 0.73 0.74 0.75
Congressional Voting 0.74 0.73 0.73 0.73 0.73
Contraceptive Choice 0.14 0.17 0.31 0.34 0.46
Credit Approval 0.87 0.88 0.90 0.90 0.89
Dermatology 0.76 0.78 0.77 0.77 0.77
E-coli 0.70 0.65 0.76 0.80 0.84
Flag 0.51 0.52 0.53 0.53 0.51
Glass 0.51 0.51 0.56 0.62 0.70
Haberman’s Survival 0.63 0.36 0.35 0.49 0.47
Tonosphere 0.32 0.23 0.18 0.20 0.18
Iris 0.76 0.81 0.78 0.78 0.76
Mushroom 0.54 0.62 0.63 0.63 0.64
Page blocks 0.50 0.54 0.58 0.59 0.63
Post-op 0.59 0.58 0.40 0.35 0.30
Segmentation 0.64 0.61 0.63 0.64 0.63
Statlog (vehicle) 0.60 0.67 0.64 0.65 0.66

WI Breast Cancer (orig.) 0.74 0.71 0.71 0.71 0.71
WI Breast Cancer (diag.) 0.52 0.55 0.55 0.55 0.55
WI Breast Cancer (prog.) 0.15 0.20 0.18 0.19 0.19
Wine 0.68 0.70 0.71 0.69 0.70
Yeast 0.46 0.77 0.63 0.66 0.79

Table B.13: Correlation between SVM and 1-NN accuracies and JS divergence filter values
using different quantizations on real data sets
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B.3 Mutual Information measures

B.3.1 Univariate measures

198 ®JRp [RDYILIR UO suorjeziuenb JUoIoPIp SUISN son[eA Io)y
UOTJRULIOJUL [RNJNUL PUR SOIRINIOR NN-T PUR JNAS U00MI9( UOIIR[OLIO)) :GT { O[R],

%001 %00T %00T %00T | %00T %00T %001 2%00T | %001 %00T %00T %00T SI0}SID g
%001 %00T %00T %00T |S9°0- S9°0- S9°0- S9°0- | %00T %00T %00T %00T juepunpoy
66'0 760 660 860 860 160 00T 660 160 060 00T 00T uersseny) -des reaur|
L6°0 280 680 LSO 96°'0 €80 880 880 00'T €L0 S60 6.0 (4OX) repownnin
660 860 00T S60 00'T 00'T 660 00T |00°T 00T 00T 660 S, oM,
78°0 280 %80 €80 I8°0 080 T80 080 08°'0 6.0 080 080 OIUO}OUOIN
P80 €80 180 6.0 €80 G8°0 S8°0 180 €8°0 T80 8.0 9.0 pajseu-un)
L0 780 L6°0 T80 9€°0- €9°0- L9°0- 8¢0- |SS0 €40 G40 TLO ostou oI g
960 86°0 86°0 860 |¥60 L6°0 L6°0 L6°0 |L60 660 660 00T asiou pue poos |
88°0 88°0 880 880 [S8°0 88°0 880 880 (880 880 880 880 | 1100 IedUI-UOU AeM-¢
LLO  GL0 690 840 |TI80 080 GSL0 T80 |080 6.0 €.L0 080 “1100 Ieaul] Aem-¢
86°0 86°0 960 860 [00°T 00T 660 00T [890 690 190 990 "1100 1edul] Aem-g
00°'T 660 660 660 00'T 660 00T 660 00'T 660 00T 660 juopuadop Aqrerireq
00'T 00'T 00'T O00'T |00°'T OO'T 00T 00T |00°T 00T 00T 00T yuopuadep opdurrg
86'0 86°0 860 860 |¥60 ¥60 ¥6'0 ¥6°0 |S6°0 S6°0 S6°0 760 ¢ Suoy
9G°0- 99°0- 99°0- L¥'0- | %00T %00T %001 %001 | %001 %00T %00T %00T ¢ UoIN
680 650 650 090 |80 860 860 660 [S60 860 860 660 T UON
€6°0 680 €L0 000 %00T %001 %001 - %001 %00T %00T - ¢ Areurg
G660 G60 L6°0 460 [SS°0 SS0 TS0 €S0 040 040 890 690 ¢ Areurg
$6°0 €60 680 €60 S0 SS90 ¥S0  ¥S0 8G°0 850 LS50  LS0 1 Areurg
01 S € c=IN|01 S € c=IN|0I S € =N
NN (Ire_sa ouo) WWAS (ouo "sa su0) NAS
EOENEHOMEM ﬁmﬁudz

225



19 BJRP [RIDYI}IR UO SUOIjezIjuenb Jualopip Sursn
SoNTRA I9)[1] AJUIRLIOOUN JLIJOUINIAS PUR SOIORINIOR -1 pue U92M )0 UOTYR[OILION) 9T ¢ O[(®R
[ [§ AUl L p ! NN-T Pue NAS q uorye| D 9T°d °l9&L

%00T %66°66 %00T  %00T | %00T %00T %001  %00T | %00T %00T %001  %00T SI0YSID g
%00T %001  %00T %001 |S9°0- G9°0- G9°0- S90- |%00T %00T %001  %00T juepunpoy
660 G660 00'T 860 860 T6°0 00'T 660 1670 16°0 00T 00T uersseny) -dos reaur|
L6°0 18°0 1870 180 96°0 €80 G680 88°0 66°0 TL0 €670 6L°0 (HOX) repowiymy
860 1670 66°0 S6°0 00°T 00T 660 00'T |00°T 00T 00T 660 S.1 oM,
$8°0 780 78°0 €80 18°0 080 I8°0 080 080 6L°0 I8°0 080 OIUO}0UOIN
18°0 080 080 8L°0 ¥8°0 €80 ¥8°0 080 840 L0 LL0 QL0 pajseu-up
TL0 ¥8°0 L6°0 280 L€°0- €90~ 890~ 8G0- |9¢0 ¥L0 9.'0 TL0 esiou ang
160 86°0 860 860 |96°0 L6°0 460 160 |S60 660 66°0 00°T astou pue poo3 |
88°0 88°'0 880 880 |88°0 88°'0 S88°0 880 |[S880 88°0 88°0 88'0 | 1100 Ieour-uou Aem-¢
LL°0 9.0 Tl 0 8L°0 |1I8°0 I8°0 8.0 I8°0 [08°0 6L°0 9.0 08°0 "1100 1edul] Aem-¢
66°0 860 1670 860 00°'T 00T 00T 00T [690 89°0 €9°0 990 “1100 Iedul] Aem-g
00°'T 660 660 660 00°'T 660 00°'T 660 00°'T 660 00°'T 660 juepuadaep Aqrerreq
00°T 00T 00T 00T |00°T 00T 00T 00T |00T 00T 00T 00T juopuodop orduurg
66°0 66'0 860 860 76°0 76'0 €60 76'0 |S6'0 g6°'0 760 G6°0 € JUuoy
1870~ LG°0- .80~ AP0~ | %001 %00T  %00T  %00T | %00T %00T %001  %00T ¢ uolN
650 650 650 9°0 860 860 860 66°0 |S60 860 86°0 66°0 T S[UON
26°0 16°0 €L°0 0 %00T %001 %001 - %001 %00T  %00T - ¢ Areurg
960 G660 L6°0 160 |¥S0 960 TS0 €50 040 040 890 69°0 ¢ Areurg
¥6°0 €60 68°0 €60 ¥S°0 G980  ¥S0 780 850 8G°0 150 180 1 Areurg
0T=9N ¢=IN ¢=N ¢=N|0T=9N ¢=IN €= ¢=W|0T=I9N ¢=IN ¢=IN ¢=9
NN (Ire_‘sa ouo) WAS (ouo "sa ouo0) WAS
AJUTR)ISOUN DLIPWMAG

226



19 BJRP [BAI UO SUOIyeZIjuenb JUaISHIp
Suisn senyeA I9)Ij UOIJRULIOJUT [BNINTI PUR SOIORINIOE NN-T PUB JNAS UooM)dq UOIPe[oII0)) :L1°¢( 9[e],

€90 290 09°0 8G°0 960 G680 %50 780 950 G0 750 780 8ae
¥6°0 1870 96°0 99°0 180 970 99°0 920 88°0 80 ¥6°0  1S0 SEEEVN
TL0 1.0 1.0 69°0 L0 VL0 TL0 VL0 GL0 ¥L°0 €L0 ¥L0 SUIA
61°0 810 61°0 G1°0 8°0- 18°0-  80- VL0- | €80 €8°0- 80~  L.°0- | (‘Boad) 1eouey) jseorg M\
G960 gG°0 g0 Tso TS0 TS0 15°0 870 IS0 180 g0 870 (Serp) 1eoue)) jseOIg T
140 140 140 VL0 890 89°0 69°0 140 89°0 890 69°0 L0 (+8110) 100URY) 9sEOIG TN
29°0 S9°0 29°0 190 ¥78°0 ¥8°0 €80 80 z8°0 z8°0 18°0 8L°0 (oro1yen) So[yerg
€90 790 19°0 790 8L°0 640 720 8L°0 zL0 €L'0 69°0 €L°0 uoryejuew3ag
9¢0 9¢0 70 S0 LT°0- LT0-  LT°0- €00~ |¥€0- ¥£0-  9¢0-  ¥T0- do-ys0g
z9'0 650 860 870 Z8°0 8L°0 GL0 99°0 89°0 790 85°0 160 syo0[q o8eq
£€9°0 £€9°0 290 750 L0 20 L0 £€9°0 20 L0 L0 €9°0 WOoOoIYSnN\
8L0 6L°0 18°0 9.0 8L°0 6L°0 8°0 9.0 L0 TL0 L0 69°0 SLI|
810 z0 €20 €¢°0 99°0 190 69°0 GL'0 G9°0 99°0 89°0 L0 a1ar[dsouo]
ST'0 670 80 €9°0 1870~ T6°0-  96°0-  TLO- |TLO- 8°0- 6L0-  89'0- [PAIAING S URULIOQRH
89°0 65°0 8G°0 €50 8°0 8°0 690 7.0 9.0 9L'0 290 69°0 ssern
8G°0 65°0 660 1870 ¥8°0 98°0 98°0 L8°0 69°0 L0 69°0 €L°0 Serq
68°0 68°0 880 88°0 .80 L8°0 98°0 98°0 6°0 6'0 68°0 88°0 1100~
LL°0 LL°0 LL0 9.0 140 140 1.0 L0 €L°0 L0 €L°0 TL0 A3ofoyeunIoq
68°0 6'0 88°0 180 18°0 6'0 6°0 6'0 180 6°0 16°0 16°0 [eaoxddy 41par)
180 60 810 G1°0 z8°0 6L°0 99°0 G9°0 z8°0 1.0 90 2870 so10y)) oa13deoe1suo))
740 VL0 L0 L0 LL°0 LL°0 LL°0  LL0 8L°0 840 8.L°0 8.4°0 Bur1j0A [eUOISSOISUO))
QL0 ¥L°0 1L°0 290 88°0 98°0 £€8°0 ¥L°0 98°0 780 18°0 €L0 Aydeidooojorpren)
1S°0 15°0 180 1S°0 €L0 €L0 L0 vL0 640 640 640 640 UuoTyen[eAL Ie))
20 69°0 69°0 ge0 GZ'0 L2°0 20 L2°0 9%°0 70 70 91°0 suoreqy
OT=9N ¢= €=IN ¢=W|0I=N ¢=I9N €¢=N ¢=N|0I=9N ¢=IN ¢=9N ¢=9NN
NN (Ire_-sa auo) WAS (ouo "sa suo0) WAS
QOE@EHO&HM ﬂmﬁﬁﬁ\é

227



19 BJRP [BAI UO SUOIyeZIjuenb JUaISHIp
SuIsn sonyeA 1991 AJUTR)IOUN JIIJPUWAS PUR SOTORINIIR NN-T PUR NAS U00MId( UOTIFR[OIIO)) QT (] 9[qe],

290 19°0 09°0 180 G0 $S°0 €80 €80 gg0 $S°0 £5°0 15°0 8ae
¥6°0 880 G6°0 89°0 650 670 ¥9°0 620 68°0 z8°0 T6°0 90 SEEEVN
TL0 1.0 1.0 69°0 L0 VL0 TL0 VL0 L0 L0 €L°0 VL0 SUIA
61°0 810 61°0 G1°0 18°0- 18°0-  T180- ¥L0- | €80 €8°0- €80~  8.°0- | (‘Boad) xeouep) jseorg M\
750 $5°0 660 €50 160 TS0 15°0 670 180 180 g0 670 (Serp) 1eoue)) jseOIg T
690 20 L0 €L0 190 190 890 140 290 190 89°0 L0 (+8110) 100URY) 9sEOIG TN
L9°0 99°0 89°'0 190 g8°'0 ¥8°0 €8°0 80 €80 z8°0 18°0 8L°0 (oro1yen) So[yerg
€90 790 19°0 €9°0 LL0 640 GL0 8L°0 zL0 €L'0 69°0 TL0 uoryejuawdag
8%°0 80 ze0 €€°0 L£°0- L£°0- 8¢0- ST'0- | 190" 16°0-  €50-  ¥€°0- do-ys0g
69°0 990 ¥9°0 16°0 98'0 €80 6L°0 69°0 8.0 69°0 290 ¥S°0 s3po[q o8ed
£€9°0 £€9°0 290 950 140 140 140 G9°0 140 140 140 g9°0 WOOIYSN\
8L0 8L°0 8°0 9.0 LL°0 8L°0 640 9.0 L0 1.0 €L'0 69°0 SLI|
12°0 70 ¥2°0 ve0 690 L0 14°0 VL0 69°0 69°0 L0 L0 a1eydsouo]
g0 670 S 19°0 T6°0" ¥6'0- 960- 98°0- |80- €8°0- T80~ 180" [eAlaIng s, ueWIOqR]]
G9°0 8G°0 6S°0 750 640 640 zL0 GL°0 €L0 L0 ¥9°0 1.0 ssern
95°0 95°0 €60 95°0 G680 98°0 680 98°0 69°0 690 89°0 TL0 Serq
88°0 88°0 180 180 .80 980 680 g8°0 68°0 68°0 88°0 180 1100~
940 940 940 6L 0 140 140 1.0 L0 €L°0 L0 €L°0 TL0 A3ofoyeunIoq
880 68°0 68°0 88°0 880 60 60 16°0 680 16°0 16°0 16°0 [eaoxddy 41par)
LY°0 60 LT°0 G1°0 18°0 6L°0 890 G9°0 9.0 gL 0 630 960 so10y)) oa13deoe1suo))
740 VL0 L0 L0 840 8L°0 840 1.0 8.0 840 8.L°0 8.4°0 Bur1j0A [eUOISSOISUO))
QL0 ¥L°0 1L°0 290 68°0 180 78°0 SL0 L8°0 780 18°0 €L0 Aydeidooojorpren)
1S°0 15°0 180 1S°0 €L0 €L0 €L0 vL0 640 640 640 640 UuoTyen[eAL Ie))
20 69°0 69°0 920 GZ'0 L2°0 20 L2°0 a0} 70 1%°0 81°0 suoreqy
OT=9N ¢= €=IN ¢=W|0I=N ¢=I9N €¢=N ¢=N|0I=9N ¢=IN ¢=9N ¢=9NN
NN (Ire_-sa auo) WAS (ouo "sa suo0) WAS
AJUTR)ISOUN DLIPPWAG

228



B.3.2 Multivariate measures

198 ®vJRp [RDYILIR UO suorjeziyuenb
JUOIOPIP SUISTL SON[RA I0J[[J HNYW PUR SoIdRINOOR NN-T PUR [N AS U00MI9( UOIIR[OIIO)) T ¢ O[qR],

%G~ %T- %9 %000 | %STG-  %I- %9 %0 %G- %T- %9 %0 SI9ISU g
%0 %0 %0 %0 00°0 000 000 000 |%0 %0 %0 %0 JuepUNpaYy
180 ¥6°0 1670 860 | 060 16°0 860 66°0 |260 060 660 00°'T uersseny) -des reaur|
90 980 4 €8°0 |ZF0 860 o ¥8°0 |150 S 2870 €L°0 (4OX) repownmiy
GL0 GL0 66°0 960 2570 2570 ¥6°0 00°'T |G90 g9°0 2670 66°0 S, oM,
QL0 8L°0 Z8'0 6.0 6L°0 08°0 9.0 8L°0 9.0 GL0 08°0 9.0 OIUO}OUOIN
26'0 880 ¥8°0 gL 0 06°0 68°0 180 9.0 16°0 G680 18°0 14°0 pajseu-un)
v o- 1%°0 16°0 G660 |8T0 ¥P0- 670~ 990~ |¥¥0- 920 980 69°0 osou o g
960 66'0 66°0 660 |£60 L6°0 L6°0 460 |L60 00T 00T 00T osIou pue poos |
G680 88°0 88°0 880 [980 88°0 880 880 [980 88°0 88°0 88°0 | 1100 Ieour-uou Aem-g¢
GL0 76°0 €80 ¥8°0 LL0 L6°0 180 98°0 LL0 L6°0 180 980 "1100 IeaUl] Aem-¢
ge0 ge'0 G800 S€0 [0S0 0S'0 0S°0 0S°0 |82T0- 8Z0- 8Z0- 8Z0- "1100 1edul] Aem-g
860 860 66'0 660 |660 66'0 660 660 |660 66'0 660 660 juopuadop Aqrerireq
16°0 660 660 00°T [0S0 66°0 00'T 00T |2S0 660 660 00°'T juepuadep ofdurrg
86°0 86'0 860 860 |¥60 ¥6°0 %60 €60 G6°0 G6°0 S6°0 60 ¢ SuoN
$5°0- $S5°0- G690~ SP0- | %es %z8 %98 %¥6 %28 %28 %98 %V6 ¢ SUoIN
860 860 8G°0 650 [860 860 860 66°0 |860 860 860 66°0 T UoN
69°0 L£0 60 00°0 %L %81 %1 - %L %81 %I - ¢ Areurg
o €80 L6°0 460 |1¥°0 630 €50 €80 o €90 040 690 ¢ Areurg
£6°0" V0 $8°0 €6°0 | 750" S1°0 GG°0 S0 2570~ 11°0 LS80 .80 1 Areurg
0I=I9N S=IN ¢=I9N ¢=IN|0T=9N ¢=IN ¢=IN ¢=IN|0T=9N ¢=9N ¢=I9N ¢=WN
NN (Ire_-sa auo) WAS (ouo "sa su0) NAS
"N W

229



198 BJRP [RIDYIJIR UO SUOI)RZ
-1yuenb juaIepIp Sulsn senfea L)Y NN Pue seeinode NN-T Pue NAS Ueamjaq UoIye[p1Io) 0z ¢ el

%0 %0 %9 %0 %0 %0 %9 %0 %0 %0 %9 %0 s193SN g
%0 %0 %0 %0 00°0 00°0 00°0 00°0 %0 %0 %0 %0 JuRpUNPaY
66°0 S6°0 660 00°'T 16°0 %60 00°'T 00°'T 96°0 16°0 00°'T 00°'T uersseny) -des reour
00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T (HOX) repowiyniy
66°0 66°0 00°'T 96°0 66°0 00°'T 86°0 00°'T 00°'T 00°'T 66°0 66°0 S oM,
180 780 88°0 780 £€8°0 18°0 780 8L°0 ¥8°0 8L°0 L8°0 08°0 OIUOJOUOIN
66°0 €6°0 88°0 L2270 96°0 G660 T6°0 6L°0 66°0 16°0 78°0 7.0 pejseu-un)
290 790 640 920 ev0- 2€°0-  9¢0-  ¥TI'0- |8S0 €80 0S°0 2270 ostou oun g
290 96°0 86°0 86°0 89°0 860 L6°0 L6°0 290 96°0 66°0 66°0 estou pue poos |
680 68°0 68°0 680 68°0 88°0 68°0 68°0 68°0 88°0 68°0 68°0 "1100 Iedul[-uou Aem-¢
86°0 T6°0 TL0 760 66°0 G660 SL0 $6°0 66°0 $6°0 720 ¥6°0 "1100 Teaul] Aem-¢
G680 88°0 170 G9°0 €6°0 S6°0 950 LL°0 €0 €70 12°0- 800 "1100 Teaul] Aem-g
00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T juopuadop Aqrerreq
00°'T 00°'T 00°T 00°'T 00T 00°'T 00T 00°'T 00°'T 00°T 00°T 00°'T juspuadep ordurrg
S6°0 G6°0 G6°0 £€6°0 180 280 88°0 $8°0 88°0 88°0 68°0 98°0 ¢ S[uoN
65°0- 65°0- 690~ €S0~ | %09% %95V %S9V %ITS | %09¥ %097  %S9¥  %I1cS G UoIN
9¢'0 9€°0 9€'0 z10 09°0 09°0 09°0 12°0 09°0 09°0 09°0 12°0 T uoN
280 68°0 16°0 88°0 %159 %8I8  %EV8T - %159 %8I8  %EV8T - ¢ Areurq
96°0 96°0 L6°0 L6°0 938°0 zg0 670 €5°0 040 89°0 G9°0 69°0 ¢ Areurg
£6°0 76°0 06°0 £6°0 780 S50 160 $S°0 95°0 65°0 750 150 1 Areurg
0IT=I9N ¢=W €=9N ¢=N|0I1=N ¢=9N €¢=IN ¢=W|0T=9N ¢=WN ¢=N =N
NN (Ire_-sa ouo) WAS (ouo "sa su0) NAS
INTIND

230



19 BJRP [RIDYI}IR UO SUOI}
-eZ1jenb JuaIepIp SUIsn sonfes 103y N ()] PUe SerINdde NN-T PUe JNAS Usamiaq uolye[p1io)) 1z'q 9[qel

%0 %0 %OT %0 %0 %0 %OT %0 %0 %0 %01 %0 s193SN g
%0 %0 %0 %0 00°0 00°0 00°0 00°0 %0 %0 %0 %0 juepunpey
66°0 S6°0 00°'T 00°'T 16°0 %60 00°'T 66°0 96°0 16°0 66°0 66°0 uersseny) -des reour
00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T 00°'T (HOX) repowiyniy
86°0 66°0 66°0 G660 06°0 00°'T 66°0 00°'T 76°0 00°'T 00°T 66°0 S oM,
26'0 06°0 180 G680 16'0 88°0 ¥L°0 8L°0 ¥6°0 180 180 98°0 OIUOJOUOIN
88°0 G8°0 780 9L°0 480 78°0 780 GL0 L8°0 780 6L°0 €L°0 pejseu-un)
¥9°0 6S°0 L0 0S°0 19°0- Te0- ST0-  ¥T0- | 290 gg'0 70 670 ostou oun g
G680 €6°0 96°0 96°0 180 76°0 96°0 S6°0 88°0 S6°0 86°0 26°0 estou pue poos |
180 08°0 08°0 6L°0 180 08°0 08°0 6L°0 18°0 08°0 08°0 6.0 "1100 Iedul[-uou Aem-¢
L6°0 08°0 €9°0 68°0 86°0 780 ¥9°0 16°0 86°0 780 €9°0 06°0 “1100 TeoUl] Aem-¢
ge0 ge'0 ge'0 ge0 0S°0 0S°0 0S°0 0S°0 8%2°0- 82'0- 8Z'0- 8T'0- "1100 Teaul] Aem-g
86°0 00°'T 00°'T 00°'T 66°0 00°'T 00°'T 00°'T 66°0 00°'T 00°'T 00°'T juopuadop Aqrerreq
00°'T 00°'T 00°T 00°'T 00T 00°'T 00T 00°'T 00°'T 00°T 00°T 00°'T juspuadep ordurrg
06°0 06°0 06°0 68°0 08°0 08°0 08°0 8L°0 18°0 18°0 Z8'0 08°0 ¢ S[uoN
GG'0- GG'0- 990~  6F°0- | %98 %G58 %698 %888 | %S98 %998 %698 %888 G UoIN
640 640 640 €L°0 79°0 ¥9°0 $9°0 170 ¥9°0 79°0 $9°0 150 T uoN
€L°0 G6°0 16°0 7670 %0¢€ %6TL  %91TT - %0¢ %6TL  %91TT - ¢ Areurq
680 66°0 00°'T 66°0 6£°0 ¥9°0 €9°0 g9°0 0S°0 L1270 LL°0 6L°0 ¢ Areurg
65°0 $6°0 ¥6°0 96°0 620 85°0 S9°0 S9°0 €0 09°0 29°0 89°0 1 Areurg
0IT=I9N ¢=W €=9N ¢=N|0I1=N ¢=9N €¢=IN ¢=W|0T=9N ¢=WN ¢=N =N
NN (Ire_-sa ouo) WAS (ouo "sa su0) NAS
nod

231



)9S BJEP [BAI UO SUOIYeZI}
-uenb JueIPIp SUISN sonfeA Io)[ HINYW pue someinsde NN-T pue NAS Ueamjaq uore[p1io)) :gg < olqel

9¢°0 S70 670 T80 920 Sv0 050 050 9¢°0 a0 670 670 Sae
G6°0 06°0 G6°0 89°0 630 670 89°0 0€0 060 €80 $6°0 190 AEEETN
GL0 LL°0 940 TL0 7.0 640 1.0 9.0 GL0 640 1.0 9.0 oUIM
91°0- gI'0-  0T'0- O0T'0- |4L0 TL0 69°0 99°0 640 720 1.0 19°0 (8oad) xeouep) jsearg T
¥2°0- 8G°0 ¥9°0 860 el 8G°0 290 760 1270~ 850 29°0 780 (Serp) 1eoue) JseoIg IM
¥T°0 0.0 €L'0 €L°0 Gz'0 TL0 L0 TL0 Gz'0 TL0 L0 TL0 (+8110) 100URY) JsEOIG T
GG 0- L¥°0-  80°0 L3O~ | 990" Zv'0-  ST0 GT°0- | ¥9°0- 6£°0- 610 10 (oporyoea) Soyesg
L0 0.0 89°0 2970 €80 80 18°0 18°0 08°0 8L°0 9.0 9.0 uoryejueawISag
€z°0- €z0-  L00- S¥0 ze 0" ze0- 610  ¥0°0 ¥0- ¥70-  6£0-  0Z°0- do-1s0q
Gz'0 G680 8G°0 870 €70 1.0 €L°0 G890 9¢0 950 280 0G0 S¥P0[q 98ed
11°0 120 8%°0 20 11°0 820 6%°0 g0 1T°0 820 670 ¥€°0 wWOoOoIysn
860 66°0 66°0 9.0 T6°0 G660 96°0 780 1670 860 160 7.0 sty
L0°0- $0'0-  S0°0 0z'0 16°0- ¥F°0- 620~ 00°0 050~ €V'0-  ¥20- 100 a1eydsouof
180 780 070 z8°0 ¥6°0- ¥6'0-  G6°0-  €8°0- | S880- 68°0- €80~ 9L°0- [BATIAING S URULIOQRT]
12°0 o 670 £€5°0 050 8L°0 ¥9°0 9.0 070 124°0 960 690 ssern
140 99°0 19°0 090 88°0 68°0 68°0 180 640 120 7.0 GL0 Sefq
€60 ¥6°0 060 680 £€6°0 760 060 880 ¥6°0 G6°0 760 680 17003
6L°0 6L°0 08'0 8L°0 €L0 €L0 L0 TL0 GL°0 gL 0 940 ¥L°0 A3oojeunio(y
080 G680 €80 L8°0 060 760 T6°0 £€6°0 680 T6°0 760 £€6°0 reaoxddy 41pai)
0T'0 100~ 220~ 600~ |€00- FT°0-  0£0- 00 010 ¥0°0 T1'0- 420 ao10y) aarydeserjuoy)
18°0 18°0 18°0 z8°0 €8°0 €80 €80 ¥8°0 £€8°0 £€8°0 €80 ¥8°0 BUIj0A [eUOISSAISUO))
¥L°0 ¥L°0 TL0 290 06°0 880 680 €L0 88°0 98°0 €80 1.0 AydeiSooojorpre))
180 180 180 1S°0 €L°0 €L0 VL0 L0 640 640 640 6L°0 UOTYRN[RAG] T80
LV0- S0 ¥20- €20 LT°0- 0z0- 200 ¥2°0 9¢°0- 0F'0-  920- 00 suoreqy
0I=I9N ¢=9N €¢=IN ¢=N|0T=9N ¢=IN ¢=I9N ¢=WN|0I1=9N ¢=I9N ¢=IN ¢=9NN
NN (Ire_-sa ouo) WAS (ouo "sa suo0) NAS
HNHW

232



$79S BJRP [€aI UO SUOI)eZ
-1yuenb juaIepIp Sulsn senfea L)Y NN PUe seeinsde NN-T Pue NAS Ueomjoq UOIYR[aII0) €7 ¢ el

89°0 89°0 L9°0 09°0 19°0 19°0 19°0 19°0 ¥9°0 €9°0 19°0 09°0 Sae
96°0 T6°0 96°0 040 19°0 €80 89°0 0€0 260 98°0 S6°0 290 AEEETN
QL0 18°0 z8°0 GL0 6L°0 ¥8°0 €80 080 8L°0 £€8°0 £€8°0 6.0 oUIM
30 0Z°0 €20 T30 18°0- 08°0- 08°0- €.°0- |T180- 18°0-  18°0- G20~ | (‘Soid) mdue)) gseorq I
Tlo 7.0 9.0 290 TL'0 TL'0 TL'0 8G°0 1.0 TL'0 TL'0 180 (Serp) 1eoue) JseoIg IM
9.0 SL0 640 9.0 8L°0 080 18°0 GL0 8L°0 080 18°0 GL0 (+8110) 100URY) JsEOIG T
€L0 €L0 9.0 €9°0 68°0 06°0 68°0 6L°0 88°0 68°0 180 18°0 (oporyoea) Soyesg
9.0 GL0 z8'0 GL0 180 880 06°0 180 780 €80 L8°0 €80 uoryejueawISag
o o 050 L8°0 €00 €00 11°0 11°0- | €1°0- €1'0-  0T'0- 630" do-3sog
¥9°0 860 GG0 S70 z8°0 9.0 €L0 €90 89°0 19°0 2870 670 s3oo[q o8ed
€8°0 18°0 640 8G°0 9.0 6L°0 18°0 19°0 9.0 6L°0 18°0 19°0 wWOoOoIysn
860 66°0 66°0 760 86°0 86°0 86°0 860 86°0 86°0 86°0 16°0 sty
¥T°0 910 020 ge'0 €9°0 19°0 090 8L'0 €9°0 19°0 650 LL°0 aroydsouo]
1€°0 1¥°0 €0 80°0 650" 08°0- .80~ TT0 7e0- 63°0- 690~ 610 [BATIAING S URULIOQRT]
9L'0 690 ¥9°0 960 GL0 z8'0 69°0 9.0 TL0 9.'0 £€9°0 690 ssern
€80 960 960 L9°0 z8°0 G680 98°0 88°0 G9°0 89°0 89°0 L0 Sefq
760 G6°0 T6°0 760 T6°0 76°0 16°0 16°0 ¥6°0 L6°0 760 760 17003
G680 G680 98°0 L8°0 080 080 18°0 Z8'0 z8°0 z8°0 €8°0 £€8°0 A3oojeunio(y
16°0 16°0 88°0 1870 16°0 ¥6°0 €60 €60 160 ¥6°0 €60 €60 reaoxddy 41pai)
09°0 70 120 ST0 9.0 8L'0 ¥L°0 990 L8°0 ¥8°0 ¥L0 G9°0 ao10y) aarydeserjuoy)
¥8°0 ¥8°0 ¥8°0 L8°0 88°0 880 88°0 16°0 88°0 88°0 880 16°0 BUIj0A [eUOISSAISUO))
08'0 6L°0 LL0 €L0 06°0 680 180 9.0 68°0 88°0 G680 GL0 AydeiSooojorpre))
£€S°0 £€5°0 ze0 €9°0 GL 0 QL0 9.0 LL°0 18°0 18°0 18°0 18°0 UOTYRN[RAG] T80
9.°0 69°0 790 ¥€0 LT0 0Z°0 910 ¥2°0 09°0 870 ze0 61°0 suoreqy
0I=I9N ¢=9N €¢=IN ¢=N|0T=9N ¢=IN ¢=I9N ¢=WN|0I1=9N ¢=I9N ¢=IN ¢=9NN
NN (Ire_-sa ouo) WAS (ouo "sa suo0) NAS
INTIND

233



$79S BJRP [BAI UO SUOI}

-eZ1yuwenb JUaIoPIp SuIsn sonfes 10y ()] PUe SoeINdde NN-T PUe JNAS Usam)aq uolye[p1io)) g q o[qel

8G°0 2570 L5°0 €50 €50 €50 €50 ¥S0 S50 R0 780 TS0 Sae
260 060 £€6°0 €L0 890 090 1.0 ¥#%0 060 180 £€6°0 690 AEEETN
09°0 €90 $9°0 £€9°0 €9°0 L9°0 99°0 89°0 z9°0 890 G9°0 89°0 oUIM
11°0 910 92'0 020 L2°0- ¥9°'0-  89°0-  0L0- |62Z'0- 1900 990-  TLO- (8oad) xeouep) jsearg T
8G°0 09°0 8G°0 2670 1870 19°0 180 760 2870 09°0 280 780 (Serp) 1eoue) JseoIg IM
0G0 670 960 12°0 090 960 650 89°0 19°0 950 650 L9°0 (+8110) 100URY) JsEOIG T
¥€0 o 8G°0 €70 19°0 190 640 g9°0 630 99°0 LL°0 1970 (oporyoea) Soyesg
650 09°0 850 960 GL0 LL0 6L 0 7.0 89°0 040 89°0 990 uoryejueawISag
o o S0 $3°0 910~ 91°0- ¥0°0- TT'0- |S€0- Ge'0-  8T'0- S£0- do-3sog
¥9°0 860 650 870 g8°0 080 8L°0 1.0 TL'0 z9°0 090 << s3oo[q o8ed
6S°0 gg°0 ¥5°0 670 290 €90 g9'0 8G°0 290 €9°0 g9°0 8G°0 wWOoOoIysn
86°0 1670 1670 ¥9°0 1670 86°0 86°0 TL0 66°0 1670 760 19°0 sty
L€0 ge0 9z°0 00 TL'0 TL'0 1.0 69°0 TL'0 TL'0 0.0 890 aroydsouo]
8%°0 o 1€°0 910 860~ 98°0-  96°0- 80°0- |9.0- G9°0-  €90- T0°0- [BATIAING S URULIOQRT]
290 960 09°0 750 1.0 L0 69°0 €L0 89°0 040 ¥9°0 040 Ssse[D
8¢°0 €0 8¢°0 8¢°0 GL 0 GL0 940 GL0 T80 ze0 £€39°0 £€35°0 Sefq
98°0 88°0 €80 £€8°0 ¥8°0 g8°0 18°0 18°0 G8°0 480 780 18°0 17003
99'0 99'0 99'0 99°0 690 6S°0 09°0 630 19°0 190 29°0 19°0 A3oojeunio(y
88°0 16°0 68°0 680 180 16°0 T6°0 26°0 180 16°0 760 £€6°0 reaoxddy 41pai)
8¢'0 80 z10 ST°0 89'0 €90 0] ST'0 040 €9°0 860 79°0 ao10y) aarydeserjuoy)
890 89°0 890 140 0470 0.0 040 vL0 040 040 0.0 L0 BUIj0A [eUOISSAISUO))
$9°0 €90 T9°0 19°0 640 8L0 8L°0 €L0 LL°0 9.0 SL0 1.0 AydeiSooojorpre))
09°0 090 19°0 19°0 8L°0 8L0 z8°0 18°0 G8°0 G680 88°0 180 UOTYRN[RAG] T80
6%°0 L£°0 70 ¥€0 £0°0- %00 G1°0 €20 a0} 6T°0 11°0 €10 suoreqy
0I=I9N ¢=9N €¢=IN ¢=N|0T=9N ¢=IN ¢=I9N ¢=WN|0I1=9N ¢=I9N ¢=IN ¢=9NN
NN (Ire_-sa ouo) WAS (ouo "sa suo0) NAS
nod

234



B.4 Consistency
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B.5 Laplacian score
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Laplacian Score (t = 1)
SVM (one vs. one)
k=2 k=3 k=5 k=10 k=25 k=50 E=N/I0 k=N/4d k=N/2

Binary 1 0.51 0.57 0.59 0.59 0.58 0.57 0.59 0.58 0.57
Binary 2 0.68 0.70 0.70 0.70 0.70 0.69 0.68 0.70 0.69
Binary 3 100% 100% 100% 100% 100% 100% 100% 100% 100%
Monk 1 0.89 0.63 0.40 0.48 0.50 0.53 0.54 0.48 0.43
Monk 2 100% 100% 100% 100% 100% 100% 100% 100% 100%
Monk 3 0.61 0.57 0.56 0.64 0.64 0.66 0.66 0.64 0.62
Simple dependent 0.60 0.66 0.95 0.96 0.85 0.90 0.96 0.85 0.90
Partially dependent 0.71 0.58 0.52 0.86 0.80 0.83 0.82 0.83 0.75
2-way linear corr. 1.00 0.99 0.90 1.00 0.80 0.73 0.69 0.73 0.71
3-way linear corr. 0.63 0.49 0.38 0.42 0.40 0.40 0.42 0.40 0.40
3-way non-linear corr. 0.49 0.66 0.62 0.60 0.68 0.77 0.62 0.77 0.87
1 good and noise 0.15 0.26 0.41 0.39 0.42 0.49 0.39 0.42 0.49
Pure noise 0.39 0.38 0.41 0.42 0.38 0.38 0.42 0.38 0.38
Un-nested 0.54 0.54 0.54 0.54 0.76 0.45 0.54 0.76 0.45
Monotonic 0.72 0.77 0.66 0.75 0.80 0.81 0.75 0.80 0.81
Two U’s 0.82 0.95 0.98 1.00 1.00 0.99 1.00 0.98 0.99
Multimodal (XOR) 0.96 0.84 0.92 0.97 0.99 0.95 0.99 0.95 0.93
linear sep. Guassian 0.45 0.86 0.92 0.90 0.99 1.00 0.99 1.00 0.99
Redundant 100% 100% - - 100% 100% - 100% 100%
2 clusters 100% 100% 100% 100% 100% 100% 100% 100% 100%

Laplacian Score (t = 1)
SVM (one vs. all)
k=2 k=3 k=5 k=10 k=25 k=50 k=N/10 k=N/4 k=N/2

Binary 1 0.45 0.51 0.54 0.54 0.53 0.54 0.55 0.53 0.54
Binary 2 0.54 0.55 0.56 0.56 0.56 0.53 0.56 0.56 0.54
Binary 3 100% 100% 100% 100% 100% 100% 100% 100% 100%
Monk 1 0.89 0.62 0.39 0.46 0.49 0.52 0.53 0.46 0.42
Monk 2 100% 100% 100% 100% 100% 100% 100% 100% 100%
Monk 3 0.60 0.58 0.59 0.65 0.66 0.68 0.67 0.65 0.64
Simple dependent 0.62 0.68 0.96 0.97 0.86 0.92 0.97 0.86 0.92
Partially dependent 0.71 0.59 0.52 0.87 0.80 0.83 0.82 0.83 0.75
2-way linear corr. 0.74 0.81 0.30 0.69 0.99 1.00 1.00 1.00 1.00
3-way linear corr. 0.65 0.52 0.41 0.45 0.43 0.43 0.45 0.43 0.43
3-way non-linear corr. 0.51 0.67 0.62 0.61 0.69 0.78 0.63 0.78 0.87
1 good and noise 0.13 0.24 0.38 0.37 0.40 0.47 0.37 0.40 0.47
Pure noise -0.25 -0.16 -0.19 -0.23 -0.19 -0.18 -0.23 -0.19 -0.18
Un-nested 0.37 0.37 0.37 0.37 0.72 0.43 0.37 0.72 0.43
Monotonic 0.63 0.71 0.73 0.81 0.81 0.80 0.81 0.81 0.80
Two U’s 0.87 0.97 0.99 1.00 1.00 1.00 1.00 0.95 1.00
Multimodal (XOR) 1.00 0.92 0.97 1.00 1.00 0.99 1.00 0.99 0.98
linear sep. Guassian 0.47 0.87 0.94 0.92 0.99 1.00 0.99 1.00 1.00
Redundant -0.65 -0.65 0.66 0.65 -0.65 -0.65 0.65 -0.65 -0.65
2 clusters 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table B.28: Correlation between SVM accuracies and Laplacian score using different &
values and ¢t = 1 on artificial data sets
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Laplacian Score (t = 1)
KNN

k=2 k=3 k=5 k=10 k=25 k=50 k=N/10 k=N/4 k=N/2
Binary 1 0.84 0.91 0.94 0.93 0.94 0.93 0.92 0.94 0.94
Binary 2 0.83 0.87 0.90 0.94 0.94 0.97 0.90 0.92 0.97
Binary 3 0.74 0.78 0.86 0.75 0.89 0.90 0.80 0.88 0.90
Monk 1 0.73 0.74 0.63 0.64 0.64 0.64 0.64 0.57 0.52
Monk 2 -0.43 -0.50 -0.53 -0.55 -0.55 -0.57 -0.58 -0.63 -0.63
Monk 3 0.66 0.61 0.60 0.69 0.69 0.72 0.71 0.69 0.67
Simple dependent 0.61 0.68 0.96 0.96 0.86 0.91 0.96 0.86 0.91
Partially dependent 0.73 0.62 0.56 0.88 0.82 0.85 0.85 0.85 0.78
2-way linear corr. 0.84 0.90 0.46 0.80 1.00 0.99 0.99 0.99 0.99
3-way linear corr. 0.59 0.45 0.33 0.38 0.36 0.35 0.37 0.35 0.36
3-way non-linear corr. 0.56 0.71 0.66 0.66 0.73 0.81 0.68 0.81 0.88
1 good and noise 0.13 0.24 0.39 0.38 0.40 0.47 0.38 0.40 0.47
Pure noise 0.28 0.45 0.48 0.45 0.38 0.39 0.45 0.38 0.39
Un-nested 0.50 0.50 0.50 0.50 0.75 0.48 0.50 0.75 0.48
Monotonic 0.76 0.82 0.69 0.77 0.84 0.84 0.77 0.84 0.84
Two U’s 0.72 0.89 0.94 0.98 0.98 0.96 0.97 1.00 0.97
Multimodal (XOR) 0.99 0.91 0.97 0.99 1.00 0.99 1.00 0.99 0.97
linear sep. Guassian 0.54 0.91 0.96 0.95 1.00 1.00 1.00 1.00 1.00
Redundant 100% 100% - - 100% 100% - 100% 100%
2 clusters 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table B.29: Correlation between 1-NN accuracies and Laplacian score using different k
values and ¢t = 1 on artificial data sets
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Laplacian Score (t = 1)
SVM (one vs. one)
k=2 k=3 k=5 k=10 k=25 k=50 k=N/1I0 k=N/4 k=N/2

Abalone 0.44 048 0.52 0.57 0.61 0.62 0.58 0.54 0.30
Car Evaluation 0.15 0.13 0.14 0.26 0.46 0.52 0.56 0.56 0.57
Cardiotocography 0.68 0.67 0.68 0.66 0.66 0.67 0.69 0.71 0.72
Congressional Voting 0.57 0.57 0.55 0.52 0.50 0.49 0.49 0.49 0.50
Contraceptive Choice 074 074 0.75 0.74 0.72 0.69 0.49 0.43 0.41
Credit Approval 0.45 0.46 0.46 0.47 0.48 0.48 0.49 0.50 0.52
Dermatology 0.69 0.68  0.68 0.68 0.68 0.68 0.68 0.69 0.70
E-coli 0.01 0.01 0.01 0.02 0.04 0.05 0.05 0.08 0.14
Flag 0.49 0.49 0.50 0.50 0.51 0.51 0.50 0.51 0.51
Glass 0.37 038 0.37 0.36 0.37 0.37 0.36 0.37 0.33
Haberman’s Survival -0.87 -0.86 -0.86 -0.86 -0.85  -0.84 -0.85 -0.83 -0.81
Ionosphere 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Iris 0.25 0.26 0.29 0.24 0.23 0.29 0.26 0.27 0.16
Mushroom 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Page blocks 0.32 033 0.37 0.41 0.44 0.47 0.54 0.56 0.57
Post-op -0.70 -0.77 -0.78 -0.76 -0.73 -0.71 -0.76 -0.74 -0.72
Segmentation 034 034 034 0.35 0.35 0.35 0.36 0.43 0.48
Statlog (vehicle) 0.77 077 0.77 0.77 0.78 0.79 0.79 0.80 0.82
WI Breast Cancer (orig.) 0.28 030 0.30 0.30 0.33 0.36 0.38 0.45 0.53
WI Breast Cancer (diag.) | 0.46 0.46 0.46 0.46 0.47 0.47 0.47 0.48 0.49
WI Breast Cancer (prog.) | -0.83 -0.83 -0.84 -0.84 -0.84 -0.84 -0.84 -0.84 -0.84
Wine 0.57 0.54 0.55 0.53 0.56 0.59 0.56 0.58 0.65
Yeast 0.80 0.83 0.75 0.75 0.21 0.15 0.14 0.17 0.19

SVM (one vs. all)
k=2 k=3 k=5 k=10 k=25 k=50 k=N/10 k=N/4 k= N/2

Abalone 0.21 0.21 0.21 0.20 0.18 0.16 0.14 0.14 0.10
Car Evaluation 0.09 0.09 0.09 0.22 0.42 0.48 0.52 0.52 0.53
Cardiotocography 070 070 0.71 0.69 0.69 0.70 0.73 0.74 0.75
Congressional Voting 0.56 0.56 0.54 0.51 0.49 0.48 0.48 0.48 0.49
Contraceptive Choice 0.62 062 0.62 0.60 0.57 0.55 0.39 0.33 0.33
Credit Approval 0.46 0.46 0.46 0.47 0.48 0.48 0.48 0.50 0.52
Dermatology 0.67 0.67 0.66 0.66 0.66 0.67 0.67 0.68 0.68
E-coli 0.01 0.01 0.01 0.02 0.04 0.05 0.04 0.07 0.14
Flag 0.68 0.69 0.70 0.70 0.71 0.72 0.71 0.72 0.72
Glass 044 044 043 0.43 0.44 0.45 0.44 0.44 0.41
Haberman’s Survival -0.95 -0.95 -0.95 -0.95 -0.94 -0.94 -0.94 -0.94 -0.93
Ionosphere 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Iris 0.38 040 0.45 0.35 0.32 0.40 0.34 0.37 0.31
Mushroom 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00
Page blocks 0.42 043 0.46 0.49 0.51 0.55 0.64 0.66 0.67
Post-op -0.76 -0.84 -0.85 -0.83 -0.75  -0.70 -0.84 -0.76 -0.71
Segmentation 038 038 0.38 0.39 0.40 0.40 0.42 0.49 0.54
Statlog (vehicle) 0.79 0.79 0.79 0.80 0.80 0.81 0.81 0.81 0.84
WI Breast Cancer (orig.) 0.27 029 0.29 0.30 0.32 0.35 0.37 0.44 0.52
WI Breast Cancer (diag.) | 0.47 047 047 0.47 0.48 0.48 0.48 0.49 0.50
WI Breast Cancer (prog.) | -0.82 -0.82 -0.82 -0.83 -0.83  -0.83 -0.83 -0.83 -0.83
Wine 0.58 0.55 0.56 0.55 0.58 0.60 0.57 0.59 0.66
Yeast 0.80 081 0.77 0.78 0.13 0.07 0.06 0.08 0.09

Table B.31: Correlation between SVM accuracies and Laplacian score using different &
values and ¢ = 1 on real data sets
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Laplacian Score (t = 1)
KNN

k=2 k=3 k=5 k=10 k=25 k=50 k=N/10 k=N/4 k=N/2
Abalone 0.49 0.53 0.58 0.65 0.68 0.72 0.76 0.77 0.67
Car Evaluation 0.13 0.09 0.11 0.18 0.29 0.33 0.35 0.35 0.35
Cardiotocography 053 054 0.54 0.52 0.52 0.53 0.55 0.56 0.57
Congressional Voting 0.52 0.51 049 0.47 0.44 0.43 0.43 0.43 0.44
Contraceptive Choice 0.60 0.60 0.59 0.58 0.53 0.48 0.26 0.18 0.16
Credit Approval 0.55 0.56  0.57 0.59 0.61 0.62 0.62 0.63 0.64
Dermatology 072 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.74
E-coli 0.02 0.02 0.02 0.03 0.06 0.08 0.06 0.10 0.17
Flag 0.32 033 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Glass 024 026 0.26 0.27 0.27 0.24 0.28 0.23 0.18
Haberman’s Survival 0.48 049 0.50 0.50 0.50 0.49 0.50 0.49 0.49
Ionosphere 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Iris 0.31 032 037 0.29 0.27 0.34 0.30 0.32 0.23
Mushroom 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00
Page blocks 0.29 030 0.33 0.36 0.39 0.43 0.51 0.54 0.55
Post-op 024 0.18 0.17 0.18 0.27 0.33 0.17 0.26 0.32
Segmentation 024 023 0.24 0.24 0.24 0.24 0.25 0.32 0.36
Statlog (vehicle) 049 049 049 0.50 0.51 0.52 0.52 0.52 0.56
WI Breast Cancer (orig.) 0.28 030 0.30 0.31 0.34 0.37 0.38 0.46 0.54
WI Breast Cancer (diag.) | 0.46 0.46 0.46 0.47 0.47 0.48 0.48 0.49 0.50
WI Breast Cancer (prog.) | 0.22 0.22 0.22 0.21 0.21 0.21 0.22 0.21 0.21
Wine 0.55 0.53 0.53 0.52 0.55 0.57 0.55 0.57 0.63
Yeast 0.70 0.74  0.67 0.67 0.19 0.13 0.13 0.15 0.18

Table B.32: Correlation between 1-NN accuracies and Laplacian score using different k
values and ¢ = 1 on real data sets
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B.7 CFS

CFS
SVM (one vs. one) SVM (one vs. all) KNN

Ny =2 3 5 10 | Np =2 3 5 10| Ny =2 3 5 10
Binary 1 0.50 0.46 0.50 0.47 0.47 0.44 0.46 0.42 0.90 0.78 0.88 0.89
Binary 2 0.62 0.60 0.60 0.60 0.47 043 0.48 0.44 0.94 0.94 0.86 0.88
Binary 3 - 40% 39% 36% - 40%  39% 36% 0.00 0.44 0.78 0.72
Monk 1 0.95 094 094 0.94 0.95 0.95 0.95 0.95 0.47 046 0.46 0.46
Monk 2 36% 36% 36% 36% 36% 36% 36% 36%| -0.29 -0.43 -0.42 -0.42
Monk 3 0.94 0.93 0.94 0.94 0.93 0.92 0.93 0.93 0.95 094 0.95 0.95
Simple dependent 1.00 0.98 1.00 1.00 1.00 098 0.99 1.00 1.00 0.98 0.99 1.00
Partially dependent 0.91 0.92 0.91 0.92 091 0.92 091 0.92 0.89 0.90 0.90 0.91
2-way linear corr. 0.57 0.47 0.66 0.69 0.99 096 1.00 1.00 0.95 0.90 0.98 0.99
3-way linear corr. 0.80 0.87 0.86 0.84 0.80 0.88 0.86 0.84 0.80 0.83 0.84 0.83
3-way non-linear corr. 0.92 0.91 0.92 0.92 0.92 090 0.92 0.92 091 0.89 0.92 091
1 good and noise 0.96 0.96 0.96 0.96 0.97 096 0.96 0.96 0.96 0.96 0.96 0.96
Pure noise 0.79 0.74 0.80 0.55 -0.73 -0.72 -0.78 -0.38 0.94 0.95 0.94 0.78
Un-nested 0.70 0.74 0.73 0.77 0.80 0.86 0.85 0.88 0.74 0.78 0.77 0.80
Monotonic 0.88 0.92 0.85 0.91 0.84 0.83 0.85 0.86 0.90 0.93 0.87 0.92
Two U’s 0.99 0.94 1.00 0.98 1.00 090 0.99 0.96 0.96 0.98 0.99 1.00
Multimodal (XOR) 0.46 0.70 0.37 0.93 0.61 0.57 0.53 0.86 0.59 0.59 0.51 0.87
linear sep. Guassian 0.88 0.94 0.88 1.00 0.87 093 090 1.00 0.83 0.90 0.93 1.00
Redundant 22% 22% 22% 22%| -0.82 -0.82 -0.82 -0.82 22% 22% 22% 22%
2 clusters 26% 31% 33% 34% 26% 31% 33% 34% 26% 31% 33% 34%

Table B.41: Correlation between SVM and 1-NN accuracies and CFS filter values using
different quantizations on artificial data sets
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Appendix C

Performance of filter measures on the
artificial data sets

C.1 Binary data sets

The binary data sets are all two class data sets with three noisy binary features. All of the
binary data sets require all three features to fully separate the data set.

For binary 1, the class is one when all three features are one. Each individual feature
carries some information about the class, since the class cannot be one if any feature is
zero. KNN achieves an accuracy of 99.17% when all three features are used. For single
feature sets, the KNN achieves accuracies of 80% to 82.5% and adding the second feature
improves the accuracy to an average of 86.0%. The SVM classifiers achieve almost perfect
separation when using all three features (98.8%), but perform better with the single feature
sets then the two feature sets.

Univariate RELIEF-F scores each feature similarly and each has a score greater than
zero. The difference between the nearest hit and nearest miss for points in class zero will
be quite large, and these form the majority of the points in the set. Summing the value of
the individual features mimics the accuracy increase of the KNN, but does not match well
with the non-monotonic SVM. This is similar for all the univariate measures (probability
measures, mutual information and symmetric uncertainty), which all identify each feature
as being somewhat valuable. Fisher’s interclass separability criterion also prefers the two
feature sets over the single feature sets. Subset and count-based RELIEF both perform well
for the KNN classifier, but count-based RELIEF outperforms the subset and univariate
measures for the SVM as there is a large increase in its value for the three feature set.
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In binary 2, points are in class 1 if exactly two features are 1. Each individual feature
carries some information about the class, as the class is more likely to be zero when a
feature is zero, and vice versa. The KNN can achieve an accuracy of 100% when all three
features are used. However, this set appears to be slightly harder than the binary 1 data
set. When only a single feature is used, the average accuracy is only 56.1%. Similar
to binary 1, the SVM performs better with the single feature sets than the two feature
sets while the KNN accuracy is better on the two feature sets. Hence, all the univariate
measures perform better for the KNN, where the accuracy steadily improves are more
features are added. This is the same for the subset and count RELIEF measures as well
as Fisher’s, all of which rank the two feature set more highly.

In binary 3, points are in class one if all three features take the same value. The KNN
can achieve 100% accuracy when all three features are used, but the SVM is unable to
separate the set because it is multi-modal. The SVM achieves 75% accuracy with any
feature set.

Each of the individual features is ranked as being slightly informative by each of the
univariate measures, mostly due to the class imbalance. All of the univariate measures
match more closely with the KNN.

Fisher’s interclass separability criterion does not work well for binary 3. Fisher’s as-
sumes compact, unimodal clusters, but binary 3 is a multi-modal set. For this data set,
Fisher’s identifies the two class centers as being very close, and detects the class width
as being quite large, since the class width encompasses points from two different clusters.
The effect is that the feature set ranking is fairly random.

The additive multi-variate mutual information measures do not appear to work any
better than the univariate mutual information measures for the binary data sets. mRMR
and FOU both include terms that discount features that have a high mutual information
with features that have already been selected. However, the features in the binary data sets
share almost no mutual information and hence these extra terms do not greatly contribute
to the scores. CFS also includes terms to reduce the score of correlated features. For the
binary data sets, it performs no better than the simple symmetric uncertainty on which it
is based.

Because CMIM always takes positive values, it naturally ranks the feature sets con-
taining a larger number of features more highly. This is similar to the univariate measures
and hence CMIM also matches more closely with the KNN than the SVM accuracies for
the binary data sets.

The unsupervised Laplacian score and MCFS both appear to work well for these data
sets for similar reasons as the univariate measures. Each feature is given a similar value,
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and the sum of the feature values ranks feature sets containing a larger number of features
more highly. As with the univariate measures, the correlation is higher for KNN than

SVM.

C.2 Monk 1 and Monk 3

The Monk data sets are two-class sets with six discrete, non-noisy features with varying
numbers of discrete values. All are all non-monotonic. The are also prone to errors from
sampling due to the relatively large number of clusters and small number of samples. None
are linearly separable.

The Monk 3 data set is one when (z5 = 3&z4 = 1)|(x5 # 4&xs # 3). There are three
informative features (x5, 4 and x3). The KNN classifier is able to use all three of these
features to properly separate the set, with the highest accuracy achieved when only the
three informative features are used. Sets that contain the three highest ranked features
perform well, and are also ranked most highly by the mutual information measures. The
SVM classifier accuracy does not improve when f; is included in the set.

Because there is no noise in the set, the univariate RELIEF-F values are all zero because
the nearest hit and miss for an individual feature are all in the same location. The subset-
based RELIEF performs better for this data set.

The mutual information and symmetric uncertainty measures work well for the Monk 3
data set for both classifiers. This data set requires more than one feature for full separation,
but some information about the class is contained in each of the informative features.
Features x5 and x5 have a high mutual information, and feature z, has a much lower
mutual information, but is still much higher than the non-informative features. Similarly,
the probability measures are quite high for features 2 and 5, but are much lower for feature
4. This matches well for both the KNN, which is able to use all three informative features,
and also for the SVM, since the filter measure values for the unhelpful x4 feature are much
lower.

For Monk 1, the class is one when (x1 = x3)|(x5 = 1). The KNN is able to use all three
informative features to improve accuracy. However, the SVM is only able to use feature 5.
Both the KNN and SVM classifiers are non-monotonic.

Feature 5 is the only feature with a RELIEF-F value that is not zero. This is the
same for all the univariate measures (probability, mutual information and symmetric un-
certainty). This is correct for the SVM, but incorrect for the KNN, resulting in a lower
correlation.
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The subset-based RELIEF measure performs much better for the KNN, where includ-
ing features 1 and 2 causes the measure value to increase. For SVM, this decreases the
correlation, because the value of these feature sets is overestimated.

The Monk 1 data set is difficult for the Fisher’s measure, because Fisher’s assumes
compact, unimodal clusters. Not only is the Monk 1 data set multi-modal, but one of the

clusters is elongated. Fisher’s measure underestimates the separability of this data set for
the KNN.

CMIM also struggles with Monk 1, despite the fact that the conditional mutual infor-
mation between x; and x, is high. However, their individual mutual information is low,
and the conditional mutual information with s is low. The first feature selected is feature
five, and since the conditional mutual information is taken with respect to the features
already in the set, adding features one and two does not greatly improve the score. In fact,
the score for the set with only the three informative features is fairly low, which does not
match well with the KNN accuracies.

Neither mRMR or FOU perform better than the univariate mutual information mea-
sures for either of these sets, as the features are not correlated.

The Laplacian score appears to be particularly unsuitable for the Monk data sets for
both the KNN and the SVM classifier. Because the features themselves are the same across
all three Monk data sets, the features are ranked in the same order for all the data sets.
This is clearly not desirable, since the informative features are different for the different
sets. A similar problem occurs for MCFS. Interestingly, the Laplacian score ranks each of
the features differently. The Laplacian score fails for features three and six, both of which
take only 2 values. Points with different values are not neighbours, and not considered, and
points that are neighbours have the same value and therefore contribute nothing. Only
when the number of samples is large do points with different values get included in the
neighbourhood graph, and only then do features three and six get filter values greater
than zero. Hence, Laplacian score may be problematic for data sets with nominal valued
features, where features with too few values are not captured by the neighbourhood graph.

C.3 Monk 2

The Monk 2 data set is discussed in detail in Section 4.3.3.
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C.4 Simple dependent, partially dependent and lin-
early separable Gaussian

All three data sets are two feature, two class sets and all three are monotonic. They theoret-
ically require both features for full separation, but each feature is moderately informative
about the data set since points with lower feature values are more likely to come from
class zero. Because these are only two feature sets, and all work best using both features,
the expectation is that the correlation will be high by default for any filter measure that
naturally tends to prefer larger numbers of features. This is the case for the univariate
measures, LS and MCFS and consistency.

On the KNN classifier, using both features gives an accuracy of 92.0% for the simple
dependent, 97.3% for the partially dependent and 95% for the linearly separable Gaussian.
Points that are along the separating line may be misclassified, as the nearest neighbour
may easily be from the other side. The accuracy is directly related to the number of points
near the line, with the shorter line of the partially dependent set yielding better results. For
the simple dependent and linearly separable Gaussian, the two features are approximately
equally informative and yield similar results. For the partially dependent set, one feature
is more powerful and yields a better accuracy.

For the SVM, the simple dependent and partially dependent sets are, in theory, fully
linearly separable. However, sampling issues along the training line mean that some of
the trained SVMs might be slightly off, and some of the test points along the line may be
misclassified. Using both features, the simple dependent set is only 93.3% accurate. As
with the KNN, the partially dependent is more accurate, as the separating line is shorter.

For simple dependent and linearly separable Gaussian, there is a larger concentration
of points from the same class at the extremes of each feature. This means that the proba-
bility and mutual information measures are able to determine that each individual feature
is informative. It also makes it more likely that the closest point will be in the same class.
Hence, univariate RELIEF-F also determines that both features are moderately informa-
tive. The partially dependent data set is similar, except that this effect is less pronounced
with one feature, and more pronounced with the other. The subset-based and count-based
RELIEF measures also work well for these data sets for both classifiers.

Fisher’s also works well, indicating that the two feature sets are better, since the class
centers are further apart even though the within class scatter is large for all data sets.

The multivariate mutual information measures and CFS do not add much on these
data sets since the features are not correlated and the univariate measures already perform
quite well.
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C.5 Two-way linear, three-way linear and three-way
non-linear correlated data sets

The two-way linear correlated set is monotonic, but adding the second feature does not
improve the accuracy as much as would be expected for non-correlated features. The
individual features give accuracies of 97.5% and 97.8% on the KNN. Including the second
feature increases the accuracy to 99.3%.

The three-way linear correlated data set is non-monotonic on the KNN classifier. The
best performance is achieved when only the third feature is used (100%). The SVM is able
to achieve almost 100% accuracy on any data set that includes the third feature.

The three-way non-linear correlated data set is monotonic, but using more than two
features does not improve the accuracy on either the KNN or the SVM.

Fisher’s interclass separability has a low correlation with the two-way linear accuracy
on both classifiers. In this data set, the two-feature set is slightly better than either of the
single feature sets. The filter measure reflects this, but identifies the wrong single feature
set as being better. This is not really a large problem, but because the correlation is only
between three points, this small error causes a large decrease in the correlation value.

The FOU and mRMR measures both severely undervalue the two-feature set, due to
the high correlation between the features. For this data set, the CMIM and univariate
measures are better. The multivariate measures outperform the univariate measures for
the other correlated data sets. CFS is able to outperform the simple symmetric uncertainty
on these data sets.

The consistency measure works quite well for these data sets at larger quantization
values and is able to correctly determine that the addition of the third feature in the
three-way non-linear set adds nothing. It does not, however, identify the three-way linear
correlated as a non-monotonic set.

The MCFS and Laplacian score filters also perform poorly on the three-way correlated
data sets because the features are ranked almost equally for their ability to preserve the
structure. Because the features are scored individually and summed, the value of adding
more features to the set is overestimated. Neither is capable of determining that only one
feature is required for class separation in the three way linear set, because the labels are
not used.
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C.6 One good feature and noise

The KNN can achieve 100% accuracy on this data set when only the good feature is used.
Adding noise features decreases the accuracy. This data set is non-monotonic for the KNN.
The SVM one vs. one achieves 100% accuracy using any feature set that includes the good
feature. The one vs. all performs best when only the good feature is used, and achieves a
maximum accuracy of 82.7%.

For the data set with a single informative feature and noise, the RELIEF value for
the informative feature is much higher than the noise values, all of which are negative.
Hence, the summing method correctly predicts the degradation of performance of the
KNN classifier that comes from adding noise features. For the SVM classifier, there is
no decrease in accuracy from the noise features, but the accuracy of the all noise set is
significantly lower, as predicted by the measures.

None of the other univariate measures match the non-monotonic response of the KNN
classifier. Similarly, the consistency measure also does not decrease when the noise features
are added, but closely matches the response of the SVM since the single feature is fully
consistent and adding the noise features does not affect the filter value.

Neither MCFS nor Laplacian score work well for this data set, because most of the
neighbouring points are defined by the noise features, rather than the one informative
feature.

C.7 Un-nested

The un-nested set uses three features. Features two and three can be used together to
perfectly separate the set. Feature one matches the class, but contains a large amount
of noise. The best single feature set is feature one, but the best two feature set contains
features two and three.

KNN achieves 100% accuracy as long as both features two and three are included
in the set. Using only feature one gives an accuracy of 82.7%. The SVM one vs. one
achieves 100% accuracy when features two and three are both included. The one vs. rest
configuration is not able to separate the data set, even using the two good features.

None of the univariate measures are able to correctly rank the two-feature set as highly
as the three feature set. Fisher’s also has a slight preference for feature sets with a larger
number of features, because adding another spacial dimension increases the possible be-
tween class distance. It also ranks the three feature set more highly than the two feature
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set. The multivariate mutual information measures outperform the univariate measures
on this set.

Consistency performs quite well on this set, and correctly determines that the two
feature set is as powerful as the three feature set. It also correctly identifies the best single
feature set.

C.8 Monotonic

KNN and SVM one vs. one are able to achieve 100% accuracy on this data set when all
four features are used. The accuracy using data sets with fewer features is lower.

For this data set, although adding more features does improve the accuracy on both
classifiers, most of the univariate measures overestimate the benefit of adding new features.
This is similar to the problems seen in the redundant set. Count-based and subset RELIEF
both perform slightly better than the univariate RELEIF measures for this data set, as do
the multivariate mutual information measures.

CF'S also performs better than the simple symmetric uncertainty on this set, where the
symmetric uncertainty overestimates the benefit of adding new features.

C.9 Two U’s

Using both features on the KNN gives an accuracy of 99.75%. This is slightly better than
the SVM, which gives an accuracy of 97.25% using both features.

This is a relatively easy data set for all the filter measures because despite the fact that
it is not linearly separable, both classifiers work better with both features. Since the U
shapes are interlocked and more spread in one direction, one of the features is significantly
more powerful than the others. Since there are a small number of sample points, the
correlation will be high for any filter measure that ranks the two feature set more highly.
This happens for all the filter measures. Most of the filter measures are also able to find the
more powerful feature. This is even the case for LS and MCFS for most parameterizations.
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C.10 Multi-modal (XOR)

For the multi-modal data set, using a single feature and a KNN classifier gives an accuracy
of 51.1% to 54.8%, which is just over chance, while using both features gives an accuracy
of 100%. The SVM achieves an accuracy of just 62.7% using two features, but is able
to achieve a higher accuracy with the two feature set because the two-feature set allows
the SVM to use a diagonal separating line that divides one of the clusters. The data
set is monotonic and uses two fully dependent features. Neither feature is informative
individually, but together they are quite powerful for the KNN.

The univariate RELIEF measures fail completely for this data set. Neither feature is
individually informative about the class and the nearest hits and misses occur very close
together. The univariate RELIEF measure decreases for the two feature set, since the
RELIEF value for one of the features is negative. The count-based and the subset-based
RELIEF are much better choices for this data set for both the KNN and the SVM classifier,
where using both features together improves the accuracy.

The univariate mutual information measures have a fairly high correlation with the
accuracy, but this is likely due to the low number of sample points. Even a small amount
of mutual information on either feature would indicate that the two feature set is a better
choice. However, they are both outperformed by the multivariate conditional mutual infor-
mation measures, which correctly assess the combined power of the two features. mRMR,
however, is not a good choice for this data set. With mRMR, the two feature set value
is even lower than the univariate measures due to the very small amount of noise-induced
mutual information between the two features.

C.11 Redundant and one cluster per class

Any combination of features in the one cluster per class data set gives 100% accuracy on
both the KNN and SVM classifiers. The data set is technically monotonic, but adding the
second feature does not improve accuracy. The KNN classifier can achieve 100% accuracy
using any set of features in the redundant set. For the redundant set, the one vs. one SVM
achieves 100% accuracy with any feature set. The performance of the one vs. all actually
degrades as more features are added.

For these data sets, all the summed univariate measures drastically overestimate the
benefit of adding more features. As with the univariate measures, Laplacian score and
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MCFS do not work well for redundant features, because each of the features is ranked
individually and then summed.

Subset-based RELIEF score also increases as more features are added. The additional
dimensions increase the distance between the clusters, and imply that more features will
give a higher accuracy. The value of the count-based RELIEF, however, does not change
as more features are added. The one vs. all SVM cannot separate this data set, since the
“rest” portions for classes two and three are multi-modal. For this classifier, the correlation
is actually negative, as adding more features decreases the accuracy of the classifier.

Fisher’s measure performs well on the redundant sets, maintaining the same value for
the redundant set, and increasing only very slightly for the 2 clusters data set. Consistency
also works extremely well for the redundant sets since a duplicate feature can never separate
points that its original does not.

The multivariate mutual information measures perform well on these redundant sets,
but will not necessarily perform well in the general case. FOU and mRMR both include
terms that decrease the filter measure value proportionally to the mutual information
between the features. For these data sets, the mutual information between the features is 1,
and the mutual information between each feature and the class is 1, so these terms perfectly
cancel. However, this will not be the case for every data set with redundant features. If
the mutual information between the redundant features and the class is less than 1, these
measure would indicate that adding a redundant feature would hinder performance, which
is incorrect. Hence, although the multivariate mutual information measures perform well
in these tests, they will not perform well on every set with redundant features.

CF'S does increase slightly as the redundant features are added, but the measure value
is not doubled when a second feature is added, as it is when symmetric uncertainty is used
alone. Because CFS accounts for feature-feature information, the measure value increases
only slightly when a fully redundant feature is added.
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Appendix D

Graphs of artificial time series and
human motion joint angle features

D.1 Artificial data sets
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Figure D.1: Regular vs. low curve Figure D.2: Regular vs. moved curve
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D.2 Human motion data set
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D.2.2 Window average and variance features
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