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Abstract

Optimal strategies under worst-case scenarios have been studied in Bernard et al.
[2013a]. Bernard et al. utilize copulas to construct cost-efficient strategies with a pre-
defined dependence structure in the tail between the payoff and the market. In their study
they show that such strategies with state-dependent copula constraints dominate tradi-
tional diversification strategies in terms of the provided protection in the states of market
downturns. We derive similar strategies, however using correlation constraints instead of
copula constraints in the tail. We found that for an investor seeking negative dependence
with the market, it is cheaper to construct a strategy with conditional correlation constraint
in the tail. However, the constructed strategies with conditional correlation constraints do
not provide sufficient protection in bad states of the economy. Therefore, when analyzing
a strategy, negative correlation with the market in the tail is not a sufficient indicator for
the protection level in the event of a market crisis.
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Chapter 1

Introduction

1.1 Motivation

This thesis builds on the earlier work of Dybvig [1988] on the payoff distribution model.
The idea is to find the cheapest strategy (also called cost-efficient strategy by Bernard et al.
[2013b]) that achieves a given distribution. This objective makes sense to any investor who
is only interested in the distributional properties of his portfolio and does not care about the
states of the economy when he receives the outcomes/cash-flows of the portfolio. However,
in practice investors do also care about the way their investment strategy interacts with
the economy. Bernard et al. [2013b] give an explicit construction of cost-efficient strategies
and the subsequent paper Bernard et al. [2013a] shows how to construct optimal strategies
with constraints in the tail.

The payoff distribution model (PDM) was introduced by Dybvig [1988] as a technique
to evaluate portfolio performance. In his paper “Distribution Analysis of Portfolio Choice”
Dybvig focuses on an investor who only cares for the final distribution of his wealth,
disregarding the state of the market when a certain outcome occurs. In a complete and
arbitrage-free market he computes the distributional price of a payoff, which is the smallest
price of all payoffs with the same distribution. It turns out that the cheapest payoff is anti-
monotonic with the state price process.

However, the PDM also provides a framework for generating portfolios with desired
distributional properties. Hocquard et al. [2012] use Dybvig’s PDM approach to construct
strategies with a predefined distribution of final wealth. They generate funds with a built-in
insurance using as the target distribution for log-returns a Left Truncated Gaussian dis-
tribution. The desired insurance level can be achieved at lower cost than other traditional
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portfolio insurance strategies like the Constant Proportion Portfolio Insurance (CPPI).
Specifically, they generate a fund with returns characterized by a Left Truncated Gaussian
distribution and compare its effectiveness with traditional portfolio insurance strategies
like the stop-loss insurance, put-option-based replication insurance, and CPPI.

A multivariate version of the Payoff Distribution Model is implemented in Hocquard et
al. [2007]. The authors do not only replicate the marginal distribution of hedge fund returns
but also their dependence with other tradable assets by utilizing copulas. They generate
the distribution of hedge fund returns and its dependence with the investor’s portfolio by
trading only in the investors portfolio and the tradable asset. For payoff replication they
find that optimal hedging, with expected square hedging error as a measure of quality of
replication, dominates delta hedging.

The main goal of this thesis is to construct cost-efficient strategies with conditional
correlation constraints and compare those to cost-efficient strategies with state-dependent
copula constraints as studied in Bernard et al. [2013b] and Bernard et al. [2013a]. We
focus our study on the cost and the provided protection during a crisis by a given strategy.
Since correlation is a broader way of describing dependence structure, we anticipate to see
a decrease in the cost when focusing at a target tail correlation. The two questions remain:
Is enforcing a correlation constraint in the lower tail enough to provide sufficient protection
in a crisis? How does the generated protection compare to the one obtained when using a
copula constraint in the tail?

Explicit representations of cost-efficient strategies with copula constraints were first
derived in Bernard et al. [2013b]. There, Bernard et al. provide a sufficient condition for
a payoff to be cost-efficient which is a central tool for construction of cost-efficient payoffs.
Further research was done in Bernard et al. [2013a], where the authors compare tradi-
tional diversification strategies with cost-efficient strategies satisfying a copula constraint.
Bernard et al. pay special attention to how the strategies behave in a market crisis sit-
uation. The latter strategies outperform traditional strategies in terms of the protection
level provided, though at a higher cost.

This thesis builds mainly on the work of Hocquard et al. [2012] and Bernard et al.
[2013a]. We make the following contributions.

First, we extend the work of Chek Hin Choi [2012] on strategies satisfying global corre-
lation constraints to the case of a two-dimensional Black-Scholes market where the bench-
mark is not the Growth Optimal Portfolio, leading to more realistic strategies.

Second, we derive cost-efficient strategies with conditional correlation constraints in the
tail. In contrast to strategies with global correlation constraint this provides more realistic
payoff structures for the investor.
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Third, we discuss the deficits of strategies with conditional correlation constraints.
Although they are cheaper than strategies with state dependent copula constraints they
do not provide sufficient protection in a market crisis situation.

The rest of the thesis is organized as follows. In the remaining sections of Chapter 1
the market setting is presented. In Chapter 2 we start with an introduction to the PDM
and give later examples of the construction and the replication of payoffs with desired dis-
tributional properties. Chapter 3 focuses on strategies with global correlation constraints
both in one- and two-dimensional market settings and different benchmarks. In Chapter
4 we derive strategies with conditional correlation constraints in the tail. Chapter 5 deals
with strategies satisfying state dependent copula constraints in the tail. Finally, Chapter
6 compares all the strategies especially focusing on the cost and produced protection in
case of a market crisis. Appendix A presents useful identities and most of the proofs can
be found in Appendix B.

1.2 Market Setting

In this section we describe the financial market and the connection between the Growth
Optimal Portfolio (GOP) and pricing. For the ease of exposition we consider a multidi-
mensional Black-Scholes market.

We assume that the market is complete and arbitrage-free. Furthermore, the market is
frictionless and the trading can be done continuously. Let (Ω,F ,P) be the corresponding
probability space. Then there exists a unique state-price process (ξt)t such that for any
traded asset S in this market (ξtSt)t is a martingale under P. The market is equipped with
a risk free bond {Bt = B0e

rt, t ≥ 0} and risky assets S1, S2, ..., Sn which evolve according
to

dSit
Sit

= µidt+ σidW
i
t , i = 1, 2, ..., n,

where {W i
t , t ≥ 0} for i = 1, 2, ..., n are correlated Brownian motions with

ρij = Corr(W i
t ,W

j
t+s), ∀t, s ≥ 0.

Similar as in Bernard et al. [2013b] we define the cost of a payoff in the following way.

Definition 1.2.1. The initial price or the cost of a strategy with terminal payoff XT is
given by

c(XT ) = E[ξTXT ], (1.1)
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where the expectation is taken under the physical measure P.

However, an alternative is to use the GOP as the numeraire for pricing. To get a better
understanding of the GOP, in what is to follow we derive it as the constant-mix portfolio
that maximizes the expected growth rate. Now consider a portfolio with weights πi invested
in the risky assets Si which are kept constant throughout the investment period through
rebalancing. The remaining proportion 1 −∑n

i=1 πi is invested in the risk-free asset. The
value process of such investment strategy follows the equation

dSπt
Sπt

= µπdt+ σπdW
π
t , with W π

t =
∑n
i=1 πiσiW

i
t√

π>Σπ
,

where Σ is the variance-covariance matrix with

(Σ)ij = ρijσiσj, µπ = r + πT (µ− r1), and σ2
π = πTΣπ

where 1 denotes a vector of size n of ones. The payoff of this strategy at time t is equal to

Sπt = Sπ0 exp((µπ − 1
2σ

2
π)t+ σπW

π
t ). (1.2)

The portfolio which maximizes the expected growth rate µπ − 1
2σ

2
π is referred to as the

Growth Optimal Portfolio (π∗ or S∗t ) with π∗ = Σ−1(µ− r1). The cdf of S∗T is given by

FS∗T (x) = Φ

 log
(
x
S∗0

)
−
(
µ∗ − σ2

∗
2

)
T

σ∗
√
T

 . (1.3)

The following proposition establishes the relationship between the state-price process and
the GOP. Please refer to Appendix A of Bernard et al. [2013a] for the proof of Proposition
1.2.1.

Proposition 1.2.1 (State-price process). In the multidimensional Black-Scholes market,
the state-price process {ξt, t ≥ 0} is given by

ξt = S∗0
S∗t
, (1.4)

where S∗t is the GOP.
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We can use the GOP as a numeraire and rewrite the pricing formula as

c(XT ) = EP[ξTXT ] = EP

[
S∗0
S∗T
XT

]
. (1.5)

The GOP S∗ can be interpreted as a major market index, see Platen and Heath [2006].
Similar as in Adrian and Brunnermeier [2010], we define a market crisis as an event when
the market goes below its Value-at-Risk, with other words it corresponds to the states

{S∗T < qα}, (1.6)

where qα is such that P(S∗T < qα) = α (e.g. α = 5%).

1.2.1 Special Case: One-Dimensional Market

In a one dimensional Black-Scholes market the unique state-price process is given by ξt =

e−rt dQ
dP

∣∣∣
t

= e−rte
− 1

2

(
µ1−r
σ1

)2
t−
(
µ1−r
σ1

)
Wt . Then using Proposition 1.2.1 we can compute the

GOP S∗t as

S∗t = S∗0
ξt

= S∗0e
rt+ 1

2

(
µ1−r
σ1

)2
t+
(
µ1−r
σ1

)
Wt

= S∗0e

(
r+
(
µ1−r
σ1

)2
− 1

2

(
µ1−r
σ1

)2
)
t+
(
µ1−r
σ1

)
Wt

= S∗0e

(
µ∗−

σ2
∗

2

)
t+σ∗Wt

with µ∗ = r +
(
µ1−r
σ1

)2
and σ∗ = µ1−r

σ1
.

The setting in Table 1.1 will be used for the construction of all the payoffs in the one-
dimensional market setting. Using the relationship derived in the previous paragraph we
calculated the drift and volatility of the GOP to fit the dynamics of the GOP in Bernard
et al. [2013a]. This is needed to be able to compare the improvement in cost of the strategy
and the change in other metrics to the conditional correlation constraint strategies.
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Table 1.1: Parameter values for the one-dimensional Black-Scholes market

Parameter Symbol Value
Initial Underlying Price S0 100
Drift Rate of the Underlying S µ1 0.08
Volatility of the Underlying S σ1 0.2372
Drift Rate of the GOP S∗ µ∗ 0.066
Volatility of the GOP S∗ σ∗

√
0.016

Risk-free Rate r 0.05

1.2.2 Special Case: Two-Dimensional Market

Consider a two-dimensional Black-Scholes market, where the prices of the risky assets
evolve according to 

dS1
t

S1
t

= µ1dt+ σ1dW
1
t

dS2
t

S2
t

= µ2dt+ σ2dWt

, (1.7)

where W 1
t and Wt are two correlated Brownian motions under the physical measure P with

Wt = ρ12W
1
t +

√
1− ρ2

12W
2
t ,

where W 1
t and W 2

t are independent. In Table 1.2 we set the parameters which will be used
for the construction of all the payoffs in a two-dimensional market setting. We choose the
parameters as in Bernard et al. [2013a] to match the results for strategies in Chapter 5.

1.3 Cost-Efficiency

The notion of cost-efficiency is crucial for this thesis. We use it to derive cheapest payoffs
with different types of constraints in subsequent chapters. It turns out that cost-efficiency
is intimately connected with anti-monotonicity.

Definition 1.3.1. A subset A of R2 is anti-monotonic if for any (x1, y1) and (x2, y2) ∈ A,
(x1 − x2)(y1 − y2) ≤ 0.

Definition 1.3.2. A random pair (X, Y ) is anti-monotonic if there exists an anti-monotonic
set A of R2 such that P((X, Y ) ∈ A) = 1.
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Table 1.2: Parameter values for the two-dimensional Black-Scholes market with i = 1, 2

Parameter Symbol Value
Initial Underlying Price Si0 100
Drift Rate of the Underlying S1 µ1 0.07
Volatility of the Underlying S1 σ1 0.20
Drift Rate of the Underlying S2 µ2 0.08
Volatility of the Underlying S2 σ2 0.30
Drift Rate of the GOP S∗ µ∗ 0.066
Volatility of the GOP S∗ σ∗

√
0.016

Correlation ρ12 0.25
Risk-free Rate r 0.05

Lemma 1.3.1. For given marginal distributions of X and Y , E[XY ] is minimal whenever
X and Y are anti-monotonic.

The bounds for E[XY ] are given by the Fréchet-Hoeffding bounds as in Lemma A.1 of
Bernard et al. [2013c]

l , E[F−1
X (U)F−1

Y (1− U)] ≤ E[XY ] ≤ E[F−1
X (U)F−1

Y (U)] , u, (1.8)

where U ∼ Unif(0, 1), and FX(·) and FY (·) are the cdf of X and Y respectively.
The connection between cheapest payoffs with given distribution and anti-monotonicity

was studied in Bernard et al. [2013b]. Bernard et al. introduce the notion of “cost-
efficiency” and a way to generate cost-efficient payoffs with a desired distribution.

Definition 1.3.3. A strategy is “cost-efficient” if any other strategy that generates the
same distribution costs at least as much.

Proposition 1.3.1. A payoff is cost-efficient if and only if it is non-increasing in the
state-price ξT almost surely.

Although the essential idea of a cheapest payoff with a given distribution was already
introduced by Dybvig [1988], the formula for constructing such cost-efficient strategy was
first presented by Bernard et al. [2013b] in the form of the following corollary.

7



Corollary 1.3.1. Let ξT be continuously distributed and F be a given cdf. Define

X∗T = F−1(1− FξT (ξT )). (1.9)

Then, X∗T is the cheapest way to achieve the distribution F . It is also almost surely unique.

Please refer to the appendix of Bernard et al. [2013b] for the proof of Corollary 1.3.1.
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Chapter 2

Payoff Distribution Replication

2.1 Payoff Distribution Model

The Payoff Distribution Model (PDM) was first introduced by Dybvig [1988] and origi-
nally the model’s aim was to measure the performance of a fund by evaluating the payoff
distribution. To this end Dybvig introduces the notion of the distributional price. The
following definition is a central result of Dybvig [1988].

Definition 2.1.1. The “distributional price” of a cdf F is given by

PD(F ) = min
{XT |XT∼F}

c(XT ) =
1∫

0

F−1
ξT

(u)F−1(1− u)du, (2.1)

where FξT is the state price density.

To better understand equation (2.1) please refer to Section 1.3 on cost-efficiency and
anti-monotonicity. Note that one can interpret the distributional price of a distribution
F as the price of a strategy with distribution F and which is anti-monotonic with the
state-price ξT .

Dybvig describes a measure for inefficiency of fund payoffs utilizing Definition 2.1.1.
The inefficiency is measured as the difference between the initial wealth invested in the
fund with payoff XT and the distributional price of the distribution FXT :

inefficiency = c(XT )− PD(FXT )
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The PDM approach was new in the sense that it allowed performance measurement to
depend on all the moments of a distribution and not only on the first two moments like
in the traditional mean-variance approach. It could be used to measure for example the
performance of hedge funds as in Amin and Kat [2003] and Hocquard et al. [2007]. In
practice, the idea is to evaluate the statistical properties of the ex-post distribution of a
fund by generating a fund with the same distributional properties more efficiently using a
dynamic trading strategy on liquid assets and compare the costs.

However, in this thesis we focus not on the evaluation of fund performances but rather
on generation of funds with desired return distributions. To illustrate the PDM approach,
in the following section we present steps to generate a portfolio with desired distribution
and derive the payoff function for managing downside risk.

2.2 Constructing Desired Payoffs

In this section we focus on the distribution of log returns and construct two strategies, both
in the one-dimensional Black-Scholes market. The goal of the first strategy is to mimic the
returns of the Growth Optimal Portfolio (GOP), and the goal of the second strategy is also
to mimic the returns of the GOP while providing protection against returns below −5%.
Amin and Kat [2003] show that, given an underlying asset S with log returns RUnder and
a specified target distribution of log returns FTarget it is possible to generate the desired
distributional properties of the returns at maturity. In the spirit of Corollary 1.3.1 we
derive the desired payoff as follows.

Proposition 2.2.1. The payoff of a cost-efficient strategy with the desired distribution of
log returns FTarget in the Black-Scholes market with one asset S and µ1 > r is given by

XT = S0e
g(log(ST /S0)) (2.2)

where the function g(x) is defined as

g(x) = F−1
Target(FUnder(x)), ∀x ∈ R+, (2.3)

where FUnder is the distribution of the log returns of the underlying asset S.

To illustrate the construction of a desired payoff we first consider a simple example
where we aim at a normal cdf for the log returns with different mean and volatility than
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the underlying S. The cdf of the log returns of the underlying is given by

FUnder(x) = Φ
(
x− (µ1 − σ2

1/2)T
σ1
√
T

)
, (2.4)

The target distribution of log returns with mean (µ∗− σ2
∗/2)T and volatility σ∗

√
T has an

inverse cdf given by

F−1
Target(y) = (µ∗ − σ2

∗/2)T + σ∗
√
TΦ−1(y). (2.5)

Proposition 2.2.2. (Strategy 1) The cost-efficient payoff with the same distribution of
log returns as the Growth Optimal Portfolio in a one-dimensional Black-Scholes market is
given by

XT = S0e
g(log(ST /S0))

where the function g(x) is defined as

g(x) = (µ∗ − σ2
∗/2)T + σ∗

√
T

(
x− (µ1 − σ2

1/2)T
σ1
√
T

)
.

Proof. It is a straight application of Proposition 2.2.1 and results in equations (2.4) and
(2.5).

Figure 2.1 shows the pdf of the log returns of the payoff in Proposition 2.2.2 and the
payoff itself, where µ∗, σ∗, µ1 and σ1 are chosen as in Table 1.1.

In our next example we focus on a risk management application and seek a distribution
with a downside protection. Similar as in Hocquard et al. [2012] we choose for the target
log returns a Left Truncated Gaussian distribution with the probability density function
described through

f(y, µ, σ2, a) =
(1/
√

2πσ2) exp
(
−(y − µ)2

2σ2

)

1− Φ
(
a− µ
σ

) 1{a<y}, (2.6)

with Φ being the standard normal cumulative distribution function. The Left Truncated
Gaussian distribution is of a special interest to an investor seeking protection. Indeed, the
truncation induces a higher mean, lower volatility and positive skewness when compared
to the non-truncated Gaussian. The truncated pdf can be found in Panel A of Figure 2.2.
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Figure 2.1: Panel A presents the pdf of log(S∗T/S∗0) for T = 1. Panel B presents the
payoff XT from Proposition 2.2.2.

The inverse of the target cdf of log returns has the following form

F−1
Target(y) =(µ∗ − σ2

∗/2)T + σ∗
√
TΦ−1

[
Φ
(
a− (µ∗ − σ2

∗/2)T
σ∗
√
T

)

+ y
[
1− Φ

(
a− (µ∗ − σ2

∗/2)T
σ∗
√
T

)]]
. (2.7)

Proposition 2.2.3. (Strategy 2) The cost-efficient payoff with the same mean and
volatility of the log returns as the Growth Optimal Portfolio, but such that the log re-
turns never go below the insurance level a in a one-dimensional Black-Scholes market is
given by

XT = S0e
g(log(ST /S0))

where the function g(x) is defined as

g(x) =(µ∗ − σ2
∗/2)T + σ∗

√
TΦ−1

[
Φ
(
a− (µ∗ − σ2

∗/2)T
σ∗
√
T

)

+ Φ
(
x− (µ1 − σ2

1/2)T
σ1
√
T

) [
1− Φ

(
a− (µ∗ − σ2

∗/2)T
σ∗
√
T

)]]
.

Proof. It is a straight application of Proposition 2.2.1 and results in equations (2.4) and
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(2.7).

Panel B in Figure 2.2 presents the payoff of the strategy in Proposition 2.2.3.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

60 80 100 120 140 160 180 200
90

100

110

120

130

140

150

160

Price of the Underlying S
T

D
es

ire
d 

P
ay

of
f

Panel A Panel B

Figure 2.2: Panel A presents the pdf of a left truncated Gaussian with mean
(µ∗ − σ2

∗/2)T , volatility σ∗
√
T , truncation level a = −5% and T = 1. Panel B presents

the payoff XT from Proposition 2.2.3.

2.3 Replicating the Payoff

In this section we present a method to replicate the payoffs derived in the previous section.
In fact, it can be used to replicate all the payoffs we present in this thesis. By the term
replication we understand the process of generating the desired payoff by trading in the
underlying asset.

Once we have specified the payoffXT we can replicate it by applying an optimal dynamic
trading strategy by selecting the portfolio (V0, φ) so as to minimize the expected squared
hedging error

E[β2
T{VT (V0, φ)−XT}2], (2.8)

where XT = S0e
g(log(ST /S0)) is the desired payoff at maturity, βT is the discount factor, V0

is the initial value of the replicating portfolio and φ is a weight vector.
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Suppose that (Ω,P,F ) is a probability space with filtration F = {F0, ...,FT} under
which the stochastic process St is defined. We also introduce the weight vector φ =
{φ1, φ2, ..., φT}, where φt is the number of parts of asset S invested during the period
(t−1, t]. Using the self-financing condition of the hedging strategy one can get the following
representation of VT

βTVT (V0, φ) = V0 + ΣT
t=1φt(βtSt − βt−1St−1). (2.9)

The following theorem describes the optimal trading strategy (V0, φ).

Theorem 2.3.1 (Optimal trading strategy). The expected square hedging error E[β2
T{VT (V0, φ)−

XT}2] is minimized by choosing recursively φT , ..., φ1 satisfying

φt = (V ar(St | Ft−1))−1E[{St − E[St | Ft−1]}Xt | Ft−1], t = T, ..., 1, (2.10)

where XT , ..., X0 are defined as

βt−1Xt−1 = βtE[Xt | Ft−1]− φtE[βtSt − βt−1St−1 | Ft−1], t = T, ..., 1, (2.11)

and the optimal value of V0 is X0.

The replication of the payoff is done by implementing a dynamic optimal hedging
strategy on the underlying asset as in Section 3.2 of Del Moral et al. [2006]. Therefore, it
is essential for the underlying asset, or at least for a proxy, to be liquid. Please refer to
Schweizer [1995] for a detailed description of the variance-optimal hedging methodology in
discrete time. For the ease of exposition we are going to demonstrate the optimal hedging
strategy in the Black-Scholes setting using Monte Carlo simulations. For an example with
real market data please refer to Hocquard et al. [2012].

In the case when the price process is Markovian, i.e. the price of the underlying is
path independent and only depends on the previous value, and if additionally the target
payoff XT only depends on the terminal price, then Xt = ft(St) and φt = ψt(St−1) and the
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optimal trading strategy (V0, φ) can be derived as

L1t(s) = E[St | St−1 = s],
L2t(s) = E[S2

t | St−1 = s],
At(s) = L2t(s)− L1t(s)2,

ψt(s) = At(s)−1E[{St − L1t(s)}ft(St) | St−1 = s],
Ut(s, x) = 1− (L1t(s)− βt−1s/βt)At(s)−1(x− L1t(s)),

ft−1(s) = βt
βt−1

E[Ut(s, St)ft(St) | St−1 = s].

Dynamic programming with Monte Carlo simulations and linear interpolation was used
to compute Xt for all t as in the algorithm described in Section 3.2 of Del Moral et al.
[2006].
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Figure 2.3: Sample path showing the replication of Strategy 1 in Proposition 2.2.2
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Figure 2.4: Sample path showing the replication of Strategy 2 in Proposition 2.2.3

We define the hedging error relative to the desired payoff XT as

error = (VT (V0, φ)−XT )/XT .

Consider the statistic in Table 2.1 of the hedging error when using 500 full path replica-
tions. For each replication we used 100,000 simulations and a grid of 150 points for the
interpolation.

Table 2.1: Statistics for the relative hedging error

Statistic Strategy 1 Strategy 2
Mean 0.09% -0.38%
Std. dev. 0.2% 1%
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Chapter 3

Optimal Strategies with Global
Correlation Constraint

The motivation for this chapter is to present a general case for a cost-efficient strategy with
a correlation constraint with a benchmark and its consequences for the payoff structure
before focusing on the tail correlation constraint in Chapter 4.

3.1 Formulation of the Problem

In this section we are going to derive a cost-efficient payoff X∗T with a desired distribution
F and correlation ρ0 with a benchmark AT , which has the cdf H. This benchmark can
be any process which depends on the market dynamics like a stock or an index. In other
words we are looking for X∗T which solves the following problem

min{
XT

∣∣∣∣∣
XT∼F,
ξT∼G,

AT∼H, AT≥0 a.s.,
Corr(AT ,XT )=ρ0 ∈ [−1,1]

}E[ξTXT ]. (3.1)

Note that the main results in this chapter have been derived in Section 3 of Chek Hin
Choi [2012]. We extend this study to the case of a two-dimensional Black-Scholes market.
All important proofs are given in Appendix B. We also derive new applications when the
benchmark is not the Growth Optimal Portfolio (GOP), leading to more realistic strategies.
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Since the marginal distributions of XT and AT are known, the correlation constraint
can be rewritten as

E[ATXT ] = ρ0Std(AT )Std(XT ) + E[AT ]E[XT ] , a0. (3.2)

The bounds for a0 are given by the Fréchet-Hoeffding bounds as in Section 1.3

l , E[F−1(U)H−1(1− U)] ≤ a0 ≤ E[F−1(U)H−1(U)] , u,

where U ∼ Unif(0, 1). The problem in equation (3.1) can be now rewritten as

min{
XT

∣∣∣∣∣
XT∼F,
ξT∼G,

AT∼H, AT≥0 a.s.,
E[ATXT ]=a0

}E[ξTXT ]. (3.3)

To solve the problem in equation (3.3), consider the following dual problem

min{
XT

∣∣∣∣∣ XT∼F,
ξT∼G,

AT∼H, AT≥0 a.s.

}E[ξTXT ] + λE[ATXT ], (3.4)

where λ ∈ R is the Lagrange multiplier. We slightly rewrite the objective function to give
an intuition of how to find the optimal solution to this problem for some fixed λ ∈ R

min{
XT

∣∣∣∣∣ XT∼F,
ξT∼G,

AT∼H, AT≥0 a.s.

}E[(ξT + λAT )XT ]. (3.5)

Proposition 3.1.1. For some given λ > 0, the optimal solution to the problem in equation
(3.5) is

X∗T (λ) = F−1(1− LξT+λAT (ξT + λAT )), (3.6)

where LξT+λAT is the cdf of ξT + λAT .

Note that X∗T (λ) is anti-monotonic with ξT + λAT , therefore it is also anti-monotonic
with ξT and in the spirit of Corollary 1.3.1 it is the cheapest way to achieve the distribution
F . Next step is to establish the connection between the original problem in equation (3.1)
and the dual problem in equation (3.4). The idea is to find λ∗ such that E[ATX∗T (λ∗)] = a0.
We first show the existence of such λ∗.
Lemma 3.1.1. E[ATX∗T (λ)] is a continuous function in λ for λ ≥ 0. Furthermore, for
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any a0 ∈ (l,E[F−1(1−G(ξT ))AT ]], there exists λ∗ ∈ [0,+∞) such that E[ATX∗T (λ∗)] = a0.

Lemma 3.1.1 shows that λ∗ is only guaranteed to exist for a certain range of Corr(XT , AT ).
The next corollary provides a sufficient condition for λ∗ to exist for all a0 ∈ (l, u].

Corollary 3.1.1. If there exists a strictly decreasing and continuous function h such that
AT = h(ξT ), then for any a0 ∈ (l, u], there exists λ∗ ∈ [0,+∞) such that E[ATX∗T (λ∗)] = a0.

Finally, the following proposition shows that the optimal solution to the dual problem
in equation (3.4) is in fact an optimal solution to the problem in equation (3.3).

Proposition 3.1.2. For λ∗ chosen such that E[ATX∗T (λ∗)] = a0 ∈ (l,E[F−1(1−G(ξT ))AT ]],
X∗T (λ∗) is the optimal solution to the problem in equation (3.3).

Corollary 3.1.2. If there exists a strictly decreasing and continuous function h such that
AT = h(ξT ), then for λ∗ chosen such that E[ATX∗T (λ∗)] = a0 ∈ (l, u], X∗T (λ∗) is the optimal
solution to the problem in equation (3.1).

3.2 Growth Optimal Portfolio as Benchmark

In this section we apply Proposition 3.1.1 to find a cost-efficient strategy with the same
distribution FS∗T as the Growth Optimal Portfolio (GOP), which satisfies a global correla-
tion constraint with the GOP. For a detailed description of the GOP please refer to Section
1.2. Thus, our goal is to solve the following problem

minXT
∣∣∣∣∣∣

XT∼FS∗
T
,

ξT∼G,
S∗T∼FS∗T

, S∗T≥0 a.s.,

Corr(S∗T ,XT )=ρ0 ∈ [−1,1]


E[ξTXT ].

Lemma 3.2.1. The cdf of ξT + λS∗T is given by

LξT+λS∗T (y) =

 0 if y < 2
√
λS∗0 ,

Φ
(
xMAX
λ −(µ∗−σ2

∗/2)T
σ∗
√
T

)
− Φ

(
xMIN
λ −(µ∗−σ2

∗/2)T
σ∗
√
T

)
otherwise,

where xMAX
λ and xMIN

λ are the bigger and the smaller roots of the equation e−x+λS∗0ex = y
respectively and λ ≥ 0.
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Combining the results of Lemma 3.2.1, Corollary 3.1.2 and Proposition 3.1.1 we are
getting the following constrained cost-efficient strategy.

Proposition 3.2.1. (Strategy 3) A cost-efficient strategy X∗T with the same distribution
of final wealth as the the GOP but such that Corr(S∗T , X∗T ) = ρ0 is given by

X∗T (λ∗) =S∗0 exp
[(
µ∗ −

σ2
∗

2

)
T + σ∗

√
TΦ−1

(
1−

(
Φ
(
xMAX
λ∗ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)

+Φ
(
xMIN
λ∗ − (µ∗ − σ2

∗/2)T
σ∗
√
T

))
1{ξT+λS∗T≥2

√
λS∗0}

)]
, (3.7)

where λ∗ is chosen such that E[X∗T (λ∗)S∗T ] = a0. Please note that xMAX
λ∗ and xMIN

λ∗ both
depend on ξT + λS∗T .

Figure 3.1 illustrates that λ∗ can be in fact found such that E[X∗T (λ∗)S∗T ] = a0, as
long as a0 is feasible. Payoffs of Strategy 3 are represented in Figure 3.2 for different
global correlation constraints. We can observe that those types of payoffs are not very
investor-friendly.
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Figure 3.2: Payoffs of Strategy 3 as described in Proposition 3.2.1 with different global
correlation constraints

3.3 Stock as Benchmark

In this section we study the case when the benchmark is one of the stocks in a multidi-
mensional market. To this end we consider a two-dimensional Black-Scholes market as
described in Section 1.2.2. Our goal is to find a representation of a cost-efficient strat-
egy with the same distribution of final wealth as the GOP S∗T and a global correlation
constraint with the stock S1

T . Therefore, our aim is to find the solution to the following
optimization problem

minXT
∣∣∣∣∣

XT∼F,
ξT∼G,

S∗T∼H, S
∗
T≥0 a.s.,

Corr(S1
T ,XT )=ρ0 ∈ [−1,1]


E[ξTXT ]. (3.8)

Please note that similar as in equation (3.2) the global correlation constraint can be
rewritten as E[S1

TXT ] = a0. In order to apply Proposition 3.1.1 we need to find the cdf
of ξT + λS1

T first. Since the sum of two log-normal random variables is not log-normal we
apply moment matching to find a proxy for the real cdf. The following lemma summarizes
the results of moment matching.

Lemma 3.3.1. A proxy for the cdf of ξT +λS1
T in a two-dimensional Black-Scholes market
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as described in Section 1.2.2 is given by

LξT+λS1
T
(y) = Φ

(
log(y)− µp(λ)

σp(λ)

)
,

where

µp(λ) = −1
2 log

((
V ar(ξT + λS1

T ) + E[ξT + λS1
T ]2
)
E[ξT + λS1

T ]−4
)

σp(λ) =
√

2 log(E[ξT + λS1
T ])− 2µp(λ),

and λ ≥ 0. See the proof in Appendix B for more details on µp and σp.

In Figure 3.3 we illustrate how well the approximated cdf resembles the actual cdf by
plotting the empirical cdf of ξT + λS1

T based on simulations together with the proxy.
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Figure 3.3: Comparison between the empirical cdf of ξT + λS1
T for λ = 0.02 based on

N = 100, 000 simulations and its proxy based on moment matching

Proposition 3.3.1. In a two-dimensional Black-Scholes setting, a cost-efficient strategy
X∗T with the same distribution of final wealth as the GOP but such that Corr(S1

T , X
∗
T ) = ρ0
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is given by

X∗T (λ∗) = S∗0 exp
((

µ∗ −
σ2
∗

2

)
T + σ∗

√
T (µp(λ∗)− log(ξT + λ∗S1

T ))
σp(λ∗)

)
,

with

µp(λ∗) = −1
2 log

((
V ar(ξT + λ∗S1

T ) + E[ξT + λ∗S1
T ]2
)
E[ξT + λ∗S1

T ]−4
)

σp(λ∗) =
√

2 log(E[ξT + λ∗S1
T ])− 2µp(λ∗),

where λ∗ is chosen such that E[X∗T (λ∗)S1
T ] = a0.
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Chapter 4

Optimal Strategies with Conditional
Correlation Constraints

4.1 Motivation

In the previous chapter we considered strategies with global correlation constraints. As we
found out the payoff structure is such that it does not provide protection in a crisis situation.
In this chapter we would like to focus on the lower tail of the payoff to achieve a controlled
improvement of the strategy according to the needs of the investor. In contrast to Chapter
3 we assume in this chapter that the investor seeks to be negatively correlated with the
market in a crisis situation. This can be achieved by considering a conditional correlation
constraint, where we aim at achieving a negative correlation with the main market index
when the index is below a certain threshold. Note that due to this conditioning we achieve
a more investor-friendly payoff profile than with global correlation constraint as in Figure
3.2.

In the view of Chapter 6, where we compare all the discussed strategies, we are specif-
ically interested in the comparison between a cost-efficient strategy with a conditional
copula constraint versus a cost-efficient strategy with a conditional correlation constraint.
It turns out that although the strategy with the correlation constraint is cheaper when
aiming at achieving a certain correlation in the tail with the market, it does not provide
the anticipated protection against a crisis. This finding can be also understood backwards:
If someone analyzing the correlation in the tail of some strategy finds a negative correlation
with the market in the tail it does not necessary mean that this strategy provides enough
protection
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We follow similar steps as in Chapter 3 where we have shown how to solve the prob-
lem with a global correlation constraint. However, in this chapter we assume that the
correlation constraint is conditioned on the value of the benchmark AT . Our goal is to
find a cost-efficient strategy XT with a desired distribution F and satisfying conditional
correlation constraint with a benchmark AT . The correlation constraint can be written as

Corr(AT , XT | AT < a0) = ρ0

= Cov(AT , XT | AT < a0)√
V ar(AT | AT < a0)V ar(XT | AT < a0)

= E[ATXT | AT < a0]− E[AT | AT < a0]E[XT | AT < a0]√
V ar(AT | AT < a0)V ar(XT | AT < a0)

where ρ0 ∈ [−1, 1]. Hence we can write

E[XTAT | AT < a0] = ρ0

√
V ar(AT | AT < a0)V ar(XT | AT < a0)

+ E[AT | AT < a0]E[XT | AT < a0] (4.1)
= θ0.

Note that in equation (4.1) we know the marginal distributions of XT and AT , however we
don’t know their joint distribution. Therefore, although the values of V ar(AT | AT < a0)
and E[AT | AT < a0] are known, the values of E[XT | AT < a0] and V ar(XT | AT < a0)
are not known from the problem setting. We deal with this issue in more detail in Section
4.3.1.

4.2 Conditional Expectation Constraint

Instead of constraining the correlation in the tail, we first consider the following conditional
expectation constraint

E[XTAT | AT < a0] = θ0. (4.2)

Finding the cost-efficient payoff XT as described in Section 4.1, but such that it satisfies
equation (4.2), is equivalent to solving the following problem

min{
XT

∣∣∣∣∣
XT∼F,
ξT∼G,

AT∼H, AT≥0 a.s.,
E[XTAT |AT<a0]=θ0

}E[ξTXT ] (4.3)
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where (ξt)t is the state price process. We first rewrite the constraint in equation (4.2) as

E[XTAT | AT < a0] = E[XTAT1{AT<a0}]
P(AT < a0) = θ0.

Note, that since we know the distribution of AT , we also know P(AT < a0). So we have
the constraint

E[XTAT1{AT<a0}] = P(AT < a0)θ0 = b0 (4.4)

for some b0 ∈ R+. So the optimization problem in equation (4.3) becomes

minXT
∣∣∣∣∣

XT∼F,
ξT∼G,

AT∼H, AT≥0 a.s.,
E[XTAT1{AT<a0}]=b0


E[ξTXT ]. (4.5)

The bounds on the values of b0 are given in the following lemma.

Lemma 4.2.1. The bounds on E[XTAT1{AT<a0}] = b0 are given by

l , E[F−1(U)H−1
a0 (1− U)] ≤ b0 ≤ E[F−1(U)H−1

a0 (U)] , u,

where F is the cdf of XT , U is a uniform random variable and H−1
a0 is the quasi-inverse of

the cdf of AT1{AT<a0} given by

H−1
a0 (y) = H−1(y − (1−H(a0)))1{y>1−H(a0)}.

Consider the dual problem to the problem in equation (4.5)

min{
XT

∣∣∣∣ XT∼F,
ξT∼G,

AT∼H, AT≥0 a.s.

}E[ξTXT ] + λE[XTAT1{AT<a0}]. (4.6)

The objective function can be rewritten as

E[XT (ξT + λAT1{AT<a0})]. (4.7)

Combining equation (4.7) and Lemma 1.3.1 we get the following theorem.

Theorem 4.2.1. The optimal solution to the problem in equation (4.6) is

X∗T (λ∗) = F−1(1− LξT+λ∗AT1{AT<a0}
(ξT + λ∗AT1{AT<a0})), (4.8)
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where F is the target cdf, ξT is the state-price, AT is the benchmark and λ∗ is chosen such
that E[X∗T (λ∗)AT1{AT<a0}] = b0.

Note that since ξT is continuously distributed ξT + λAT1{AT<a0} is continuously dis-
tributed as well. Therefore, LξT+λAT1{AT<a0}

(ξT + λAT1{AT<a0}) is in fact uniformly dis-
tributed.

Lemma 4.2.2. E[X∗T (λ)AT1{AT<a0}] is a continuous function in λ for λ ≥ 0. Further-
more, for any b0 ∈ (l,E[F−1(1 − G(ξT ))AT1{AT<a0}]), there exists λ∗ ∈ [0,+∞) such that
E[X∗T (λ∗)AT1{AT<a0}] = b0.

Corollary 4.2.1. If there exists a strictly decreasing and continuous function h such that
AT = h(ξT ), then for any b0 ∈ (l, u], there exists λ∗ ∈ [0,+∞) such that E[X∗T (λ∗)AT1{AT<a0}] =
b0.

Finally, the following proposition shows that the optimal solution to the dual problem
in equation (4.6) is in fact an optimal solution to the problem in equation (4.5).

Proposition 4.2.1. For λ∗ chosen such that E[X∗T (λ∗)AT1{AT<a0}] = b0 ∈ (l,E[F−1(1 −
G(ξT ))AT1{AT<a0}]], X∗T (λ∗) is the optimal solution to the problem in equation (4.5).

Corollary 4.2.2. If there exists a strictly decreasing and continuous function h such that
AT = h(ξT ), then for λ∗ chosen such that E[X∗T (λ∗)AT1{AT<a0}] = b0 ∈ (l, u], X∗T (λ∗) is
the optimal solution to the problem in equation (4.3).

4.3 Growth Optimal Portfolio as Benchmark

In this section we present an application of the derived optimal payoff X∗T in Theorem
4.2.1. We consider the case where there is only one source of uncertainty in the sense that
ξT + λAT1{AT<a0} is driven only by one random variable. We set AT to be the Growth
Optimal Portfolio (GOP). The GOP is a portfolio that will outperform any other strictly
positive portfolio when given enough time, it can be interpreted as a major market index,
see Platen and Heath [2006]. Thus, our goal is to solve the following problem

minXT
∣∣∣∣∣∣

XT∼FS∗
T
,

ξT∼G,
S∗T∼FS∗T

, S∗T≥0 a.s.,

E[XTS∗T |S
∗
T<a0]=θ0


E[ξTXT ].
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Recall that the constraint E[XTS
∗
T | S∗T < a0] = θ0 can be rewritten as E[XTS

∗
T1{S∗T<a0}] =

θ0P(S∗T < a0) = b0, where we set a0 to be the α quantile qα as in equation (1.6). In order
to apply the solution for the optimal payoff as in Theorem 4.2.1 we first need to find the
cdf of ξT + λS∗T1{S∗T<a0}.

Lemma 4.3.1. The cdf of ξT + λS∗T1{S∗T<a0} is given by

LξT+λS∗T1{S∗T<a0}
(y) =

Φ
(

log(y)+(µ∗−σ2
∗/2)T

σ∗
√
T

)
if y < S∗0

a0
,

Φ
(

log(
S∗0
a0

)+(µ∗−σ2
∗/2)T

σ∗
√
T

)
if S∗0

a0
≤ y < 2

√
λS∗0 ,

h(y) if 2
√
λS∗0 ≤ y <

S∗0
a0

+ λa0,

Φ
(
−xMIN

λ +(µ∗−σ2
∗/2)T

σ∗
√
T

)
if y ≥ S∗0

a0
+ λa0,

(4.9)

with

h(y) =
(

Φ
(
xMAX
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)
− Φ

(
xMIN
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

))
1{λ>S∗0/a

2
0}

+ Φ
 log(S

∗
0
a0

) + (µ∗ − σ2
∗/2)T

σ∗
√
T

 ,
where xMIN

λ and xMAX
λ are the smaller and bigger root of the equation e−x + λS∗0e

x = y
respectively and λ ≥ 0.

Figure 4.1 presents the relationship between λ and the conditional expectation con-
straint E[X∗T (λ)S∗T1{S∗T<a0}]. This is a graphical illustration of Lemma 4.2.2, in other
words for any feasible b0 it is possible to find a λ∗ such that E[X∗T (λ∗)S∗T1{S∗T<a0}] = b0.

28



0.012 0.014 0.016 0.018 0.02 0.022

333.2

333.4

333.6

333.8

334

334.2

334.4

334.6

λ

E
[X

T*
(λ

)S
T*
(S

T*
<

a 0)]

 

 

Upper Bound
Lower Bound

E[X
T
* (λ)S

T
* (S

T
* <a

0
)]

Figure 4.1: Graph of E[X∗T (λ)S∗T1{S∗T<a0}] against λ. We have used N = 10,000,000
simulations.

4.3.1 Link with Conditional Correlation Constraint

So far we have considered the constraint E[X∗T (λ∗)S∗T1{S∗T<a0}] = b0. We would like to
directly consider a conditional correlation constraint. The correlation constraint can be
written as

Corr(S∗T , XT | S∗T < a0) = ρ0 (4.10)

= Cov(S∗T , XT | S∗T < a0)√
V ar(S∗T | S∗T < a0)V ar(XT | S∗T < a0)

(4.11)

= E(S∗TXT | S∗T < a0)− E[S∗T | S∗T < a0]E[XT | S∗T < a0]√
V ar(S∗T | S∗T < a0)V ar(XT | S∗T < a0)

(4.12)

where ρ0 ∈ [−1, 1]. In contrast to the global constraint case in Chapter 3 there is no
functional relationship between the conditional expectation constraint and the conditional
correlation constraint due to the unknown values E[XT | S∗T < a0] and V ar(XT | S∗T < a0).
To overcome this issue one can empirically find a relationship between b0 and the tail
correlation. This relationship is represented in Figure 4.2.

Now we know that it is feasible using a computer to construct a strategy with desired
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Figure 4.2: Graph of tail correlation Corr(X∗T , S∗T | S∗T < a0) against conditional
expectation constraint E[X∗T (λ)S∗T1{S∗T<a0}](= b0). We have used N = 100,000

simulations for n = 500 values of b0 between the two bounds.

conditional correlation with the GOP. The following proposition describes the desired strat-
egy.
Proposition 4.3.1. (Strategy 4) A cost-efficient strategy with the same distribution of
final wealth as the the GOP but such that Corr(S∗T , X∗T | S∗T < a0) = ρ0 is given by

X∗T (λ∗) = F−1(1− LξT+λ∗S∗T1{S∗T<a0}
(ξT + λ∗S∗T1{S∗T<a0}))

where F is the target cdf, ξT is the state-price, S∗T is the GOP, LξT+λ∗S∗T1{S∗T<a0}
is defined

in Lemma 4.3.1 and λ∗ is chosen such that Corr(S∗T , X∗T (λ∗) | S∗T < a0) = ρ0.

In order to construct such a payoff in practice, one has to follow these steps:

1. Find the bounds for b0 as in Lemma 4.2.1

2. Construct two vectors: vector of b0 and the vector with corresponding conditional
correlations

3. Use linear interpolation to find the b0 which produces the desired conditional corre-
lation ρ0
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4. Once b0 is found, find λ∗ such that the conditional expectation constraint is satisfied

This λ∗ defines the desired payoff in Proposition 4.3.1. The payoffs constructed by
applying Proposition 4.3.1 with different correlation constraint and threshold can be found
in Figure 4.3.
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Figure 4.3: Payoffs of Strategy 4 as described in Proposition 4.3.1 for different settings of
the conditional correlation Corr(S∗T , X∗T | S∗T < a0) = ρ0 and the threshold a0 with T = 1.

In order to check the correctness of the payoff in Figure 4.3 Panel A we consider its tail
correlation and the cdf. The tail correlation is easily calculated to be ρ0 = −0.4994. In
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Figure 4.4 the cdf of the GOP and Strategy 4 with ρ0 = −0.5 and a0 = q0.05 are presented.
Additionally, in Table 4.1 we provide the corresponding statistical values.

50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

x

cd
f o

f S
T*

Empirical CDF

50 75 100 125 150 175 200
0

0.2

0.4

0.6

0.8

1

x

cd
f o

f S
tr

at
eg

y 
4

Empirical CDF

Panel A Panel B

Figure 4.4: Panel A shows the empirical cdf of the GOP. Panel B shows the empirical cdf
of Strategy 4 with ρ0 = −0.5, a0 being the 5% quantile and T = 1.

Table 4.1: Statistics for the comparison of the target cdf and the cdf of Strategy 4

Statistic GOP Strategy 4
Minimum 58.6013 58.6013
Maximum 181.5824 181.5824
Mean 106.7963 106.7959
Median 105.9733 105.9733
Std. dev. 13.5522 13.5532
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Chapter 5

Optimal Strategies with
State-Dependent Copula Constraints

5.1 Cost-Efficient Strategies with State-Dependent Cop-
ula Constraints

In this chapter we examine a different approach to achieve protection in bad states of the
economy. Instead of using correlation to describe the dependence between the payoff of
the strategy and the market, one can also describe the dependence using copulas. This
type of constraint when constructing cost-efficient strategies has been extensively studied
in Bernard et al. [2013b] and Bernard et al. [2013a].

In this section we present a general representation of a cost-efficient strategy with a
dependence in the tail, described through a copula, with the Growth Optimal Portfolio
(GOP). In the following subsections we cover special cases in order to compare the per-
formance and the cost of those strategies with the strategy in Chapter 4. The comparison
can be found in Chapter 6. For the proofs please refer to the appendix of Bernard et al.
[2013a].

The following theorem provides the cheapest strategy with the desired distribution of
final wealth as well as the desired dependence with the market in a crisis regime. This
type of strategy is called constrained cost-efficient strategy, see Bernard et al. [2013b].

Theorem 5.1.1. (Optimal Strategies under a Crisis Regime) Let F be the desired cdf of
terminal payoff XT . We further assume that Q is the desired joint distribution of the final
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payoff XT with the GOP S∗T when there is a financial crisis as specified in equation (1.6),
such that

P(S∗T ≤ s,XT ≤ x | S∗T ≤ qα) = Q(s, x). (5.1)

Then, an optimal strategy X∗T is given by

X∗T =


F−1

(
h(FS∗T (S∗T )− α)

)
when S∗T > qα

F−1
(
q
(

1− FS∗T (S∗T ), jFS∗
T

(S∗T )(FZT (ZT ))
))

when S∗T ≤ qα
, (5.2)

where ZT is any random variable s.t. (S∗T , ZT ) is continuously distributed, hence there
exists a unique copula J(·, ·) with P(S∗T ≤ s, ZT ≤ x) = J(FS∗T (s), FZT (x)). We denote by
ju(v) its first partial derivative and h(x), q(u, v) are defined as

h(x) = inf{c | c− C∗(α, c) ≥ x},

q(u, v) = c−1
u (v), where cu(v) = ∂C∗

∂u
(1− u, v),

where the copula C∗ is determined through Q.

The strength of Theorem 5.1.1 is the explicit form of payoff in equation (5.2). To
better understand the structure of the payoff in equation (5.2) consider first the case
S∗T > qα: It is straightforward to verify that F−1

(
h(FS∗T (S∗T )− α)

)
is non-decreasing in

the GOP S∗T , and therefore by Proposition 1.3.1 cost-efficient. For the case S∗T ≤ qα we
wish to have a certain dependence with the market as specified by equation (5.1). To this
end recall the conditional distribution method used to generate pairs of random variables
with a desired copula, see [Nelsen, 2006, p. 41] for details on the method. First, the
function ju(v) is applied to make jFS∗

T
(S∗T )(FZT (ZT )) independent of 1 − FS∗T (S∗T ). Then

the function q(u, v) = c−1
u (v) is applied to generate the desired dependence C∗ between

q
(

1− FS∗T (S∗T ), jFS∗
T

(S∗T )(FZT (ZT ))
)

and FS∗T (S∗T ). Therefore the desired constraint (5.1) is
satisfied.

In the following sections we apply Theorem 5.1.1 to construct explicit expressions for
optimal strategies with different types of dependence in the tail. To simplify the applica-
tions we present the strategies in a two-dimensional Black-Scholes market as described in
Section 1.2.2. For more general results, please refer to Bernard et al. [2013a].
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5.1.1 Gaussian Dependence in the Tail

A Gaussian dependence provides a flexible way of dealing with diversification. It is espe-
cially useful when one seeks to achieve a negative correlation with the market when there
is a crisis.

Corollary 5.1.1. (Strategy 5) In a two-dimensional Black-Scholes market, the cheapest
path-independent strategy with a cdf F but such that its tail dependence with S∗T when
S∗T ≤ qα is prescribed by the Gaussian copula

C∗(u, v) = Φ2(Φ−1(u),Φ−1(v), ρ),

where Φ2 is the bivariate cdf, Φ is the cdf of N(0, 1) and ρ is the correlation factor, can be
constructed as

X∗T =

 F−1
(
h(FS∗T (S∗T )− α)

)
when S∗T > qα

F−1
(
Φ(A
√

1− ρ2 +Bρ)
)

when S∗T ≤ qα
(5.3)

where

A =
log

(
S1
T

S1
0

)
−
(
µ1 − σ2

1
2

)
T

σ1

√(
(1−ρ12)

2

)
T

−B
√

1 + ρ12

1− ρ12
, and (5.4)

B =
1
σ1

[
log

(
S1
T

S1
0

)
−
(
µ1 − σ2

1
2

)
T
]

√
2(1 + ρ12)T

+
1
σ2

[
log

(
S2
T

S2
0

)
−
(
µ2 − σ2

2
2

)
T
]

√
2(1 + ρ12)T

, (5.5)

and where h is defined implicitly as

h(x) = inf{c|c− C∗(α, c) ≥ x}.
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Figure 5.1: Payoff of Strategy 5 as described in Corollary 5.1.1. We choose the threshold
to be q0.05 and use the parameters in Table 1.2.

5.1.2 Clayton Dependence in the Tail

If one seeks to have a Clayton copula dependence in the tail, it is important to note that it
always exhibits positive correlation. To achieve the desired negative correlation in the tail
one needs to specify a flipped Clayton copula between the final payoff XT and the GOP
S∗T . Recall the inverse relationship between ξT and S∗T from equation (1.4). This means
that a negative dependence between S∗T and XT can be specified via a positive dependence
between ξT and XT .

Corollary 5.1.2. (Strategy 6) Let C∗ be the Clayton copula given as

C∗(u, v) = (u−a + v−a − 1)−1/a.

Then the cheapest strategy in a two-dimensional Black-Scholes market with a cdf F but
such that its tail dependence with S∗T when S∗T ≤ qα, is prescribed by the flipped Clayton
copula with

∀s ∈ [0, qα], y ∈ R,P(S∗T ≤ s,XT ≤ y) = F (y)− C∗(1− FS∗T (s), F (y)),
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can be constructed as

X∗T =


F−1

(
[x−a − (1− α)−a + 1]−1/a

)
when S∗T > qα

F−1
([
u−a(v−a/(1+a) − 1) + 1

]−1/a
)

when S∗T ≤ qα
(5.6)

where A and B are defined as in (5.4) and (5.5), x = Φ(B) − α, u = 1 − x − α and
v = Φ(A).
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Figure 5.2: Payoff of Strategy 6 as described in Corollary 5.1.2. We choose the threshold
to be q0.05 and use the parameters in Table 1.2.

37



Chapter 6

Comparison of the Strategies

6.1 Empirical Results

This chapter presents our empirical study of the comparison of the before mentioned strate-
gies. An overview over the strategies is provided below.

Strategy 1: Investment in the GOP (Proposition 2.2.2). This strategy aims at achieving
the same distribution of final wealth as the GOP at minimal cost. The values in Table 6.1
are calculated using the setting in Section 1.2.1.

Strategy 2: Left Truncated Gaussian distribution of log-returns (Proposition 2.2.3).
This strategy aims at achieving an insurance level of −5% by specifying the desired distri-
bution of log-returns to be the Left Truncated Gaussian distribution with truncation level
−5% and having the same mean and volatility of log-returns as the GOP. The values in
Table 6.1 are calculated using the setting in Section 1.2.1.

Strategy 3: Global correlation constraint (Proposition 3.2.1). Strategy 3 is a constraint
strategy with the same distribution of final wealth as the GOP but that satisfies a global
correlation constraint with the GOP Corr(S∗T , X∗T ) = 0.5. The values in Table 6.1 are
calculated using the setting in Section 1.2.1.

Strategy 4 (4a, 4b): Correlation constraint in the tail (Proposition 4.3.1). Strategy 4
is a constraint strategy with the same distribution of final wealth as the GOP but that
satisfies a conditional correlation constraint with the GOP Corr(S∗T , X∗T | S∗T < q0.05) =
−0.5 (−0.17; 0.03), where q0.05 is a 5% quantile. The values in Table 6.1 are calculated
using the setting in Section 1.2.1.
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Strategy 5: Gaussian dependence in the tail (Corollary 5.1.1). Strategy 5 is a constraint
strategy with the same distribution of final wealth as the GOP but that satisfies a depen-
dence constraint in a crisis, as described in equation (1.6), described through the Gaussian
copula with the correlation coefficient ρ = −0.5. The values in Table 6.1 are calculated
using the setting in Section 1.2.2.

Strategy 6: Clayton dependence in the tail (Corollary 5.1.2). Strategy 6 is a constraint
strategy with the same distribution of final wealth as the GOP but that satisfies a depen-
dence constraint in a crisis, as in equation (1.6), described through the flipped Clayton
copula with the parameter a = 1. The parameter a is chosen such that the Kendall’s τ of
the Clayton copula is equal to the Kendall’s τ of the Gaussian copula with ρ = 0.5. The
values in Table 6.1 are calculated using the setting in Section 1.2.2.

In Table 6.1 we present the results of our empirical analysis of the discussed strategies.
We consider the cost of a strategy, its Sharpe ratio and several conditional probabilities to
figure out how the strategies compete in different market situations. To calculate the cost
we use Definition 1.2.1. The Sharpe ratio is calculated as

E[XT ]−X0e
rT

std(XT ) ,

where X0 is the cost of the strategy. As for the conditional probabilities, we consider
P(A|C), P(A|D) and P(B|C) where C = {S∗T < qα} represents a market crisis, D = {S∗T <
S∗0e

rT} represents a decrease in the market and A = {XT/X0 < erT}, B = {XT/X0 <
75%erT} are the two events of interest.

We have used same random numbers for all the strategies from N = 100, 000 simu-
lations. Furthermore, we have matched the parameters in the one-dimensional and the
two-dimensional markets to have the same parameters for the GOP.

6.2 Observations and Analysis

This section focuses on the analysis of Table 6.1. First of all note that we have constructed
all the strategies such that they have the same distribution of final wealth. Hence E[X1

T ] =
E[X i

T ] and V ar(X1
T ) = V ar(X i

T ) for all i = 2, ..., 6, where X i
T stands for the payoff of

strategy i. We observe a decrease in Sharpe ratio for all the strategies X i
T , i = 2, ..., 6 in

comparison to Strategy 1 (investment in the GOP). This is due to the efficiency loss when
adding constraints to the strategies.
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Table 6.1: Cost, Sharpe ratio and conditional probabilities with A = {XT/X0 < erT},
B = {XT/X0 < 75%erT}, C = {S∗T < qα}, and D = {S∗T < S∗0e

rT}. By tail correlation we
mean Corr(X∗T , S∗T | S∗T < a0).

Tail
Corr

T Cost Sharpe P(A|C) P(A|D) P(B|C)

1 1 100.00 0.1287 100% 100% 18.7%
5 100.00 0.2689 100% 100% 100%

2 1 104.51 0.1249 100% 100% 0%
5 106.59 0.2588 100% 100% 100%

3 1 100.73 0.0732 100% 83% 20.7%
5 102.30 0.1935 100% 95% 100%

4 -0.5 1 100.0130 0.1275 100% 100% 19.4%
5 100.07 0.2666 100% 100% 100%

4a -0.17 1 100.0090 0.1278 100% 100% 19.3%
5 100.06 0.2672 100% 100% 100%

4b 0.03 1 100.0086 0.1280 100% 100% 19.2%
5 100.05 0.2675 100% 100% 100%

5 -0.17 1 100.54 0.0871 11% 91% 0%
5 103.23 0.1645 11% 90% 1%

6 0.03 1 100.39 0.0990 23% 92% 0%
5 102.22 0.1971 23% 91% 2%
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Our main concern is the comparison between Strategy 4 (4a, 4b) and Strategies 5 and
6. To match the tail correlation generated by Strategies 5 and 6 we have introduced
two more cases: Strategy 4a and Strategy 4b. As was expected, the cost for satisfying
a certain correlation constraint in the tail is lower than the cost of satisfying a certain
copula constraint in the tail with the same correlation. The reason behind this is that a
copula provides a much more precise description of the desired dependence whereas just a
correlation constraint may be achieved by many different copulas. Thus it must be cheaper
to produce tail correlation with some benchmark rather than utilizing copulas.

We can also observe a loss in Sharpe ratio when utilizing copulas to describe the tail
dependence. The Sharpe ratio for the Strategies 4, 4a, and 4b is almost the same as for
Strategy 1 suggesting that there is not much inefficiency. The Sharpe ratio is obtained
through a stand-alone evaluation and is therefore not a good measure when it comes to the
question how a strategy performs in certain states of the economy, e.g. a financial crisis.

To this end, we consider conditional probabilities in the last three columns of Table 6.1
which condition on two events: A crisis and a decrease of the market. In both cases we are
interested in the level of protection we can expect from a strategy. The first observation is
that we do not get a significantly better protection with Strategy 4 than the straightforward
Strategy 1. On the other hand, Strategies 5 and 6 provide significant protection in a crisis
situation as seen in P(A|C) and P(B|C) columns.

6.3 Conclusions and Future Directions

We conclude that cost-efficient strategies with conditional correlation constraints are in fact
cheaper than cost-efficient strategies with state-dependent copula constraints exhibiting
the same tail correlation. However, they do not provide adequate protection in bad states
of the economy making them not suitable for an investor seeking protection in a market
crisis situation. This means also that when one analyzes a strategy and finds out that the
strategy exhibits a negative correlation with the market in the lower tail, this does not
mean that it provides sufficient protection in a crisis situation.

Further research can be done on the sensitivity to model risk. It would be interesting
to know whether correlation constraints are less sensitive to model risk than copula con-
straints. Copulas are often said to be very hard to measure and to capture. Thus, one
might expect a lot of model risk and a difficulty to obtain the desired copula by replica-
tion. It might be easier and more practical to target a correlation constraint instead of
targeting a copula constraint. Regarding the replication, one could extend Chapter 2 on
payoff replication to a more general case with more than one underlying.
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Appendix A

Useful Identities

Lemma A.0.1. In the one-dimensional Black-Scholes setting as in Section 1.2.1 the state-
price ξT can be written as an explicit function of the stock price ST as follows

ξT = αT

(
ST
S0

)−β
, (A.1)

where αT = exp
(
θ
σ

(
µ1 − σ2

1
2

)
T −

(
r + θ2

2

)
T
)
, β = θ

σ1
, and θ = µ1−r

σ1
.

Proof. See equation (8) on page 8 in Bernard et al. [2013b].

Lemma A.0.2. In the two-dimensional Black-Scholes setting as in Section 1.2.2 the GOP
S∗T can be expressed explicitly in terms of S1

T and S2
T as

S∗T = S∗0

(
S1
T

S1
0

)π∗1 (S2
T

S2
0

)π∗2
e(br+M)T ,

where b = 1− π∗1 − π∗2, M = − λ̂
1+ρ12

[λ̂− σ1
2 −

σ2
2 ], λ̂ = µ1−r

σ1
= µ2−r

σ2
and

π∗1 = λ̂

(1 + ρ12)σ1
, π∗2 = λ̂

(1 + ρ12)σ2
.

Proof. See A.5 on page 15 in Bernard et al. [2013a].
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Lemma A.0.3. For a random pair (X, Y ) the following statement is true

(X, Y ) is anti-monotonic⇔ (X, Y ) ∼ (F−1
X (U), F−1

Y (1− U)) (A.2)

where FX and FY are the respective distributions for X and Y and U is a standard uniform
random variable.

Proof. For the “⇐” direction, let A = (F−1
X (u), F−1

Y (1 − u)) with u ∈ [0, 1]. Con-
sider now (x1, y1), (x2, y2) ∈ A. Define (x1, y1) = (F−1

X (u1), F−1
Y (1 − u1)) and (x2, y2) =

(F−1
X (u2), F−1

Y (1− u2)) with u1 6= u2 and without loss of generality assume u1 < u2. Then

(x1 − x2)(y1 − y2) = (F−1
X (u1)− F−1

X (u2))(F−1
Y (1− u1)− F−1

Y (1− u2)).

Since F−1
X and F−1

Y are increasing functions, it follows that (x1 − x2)(y1 − y2) ≤ 0 for all
(x1, y1), (x2, y2) ∈ A. Hence, A is anti-monotonic and we also have P((X, Y ) ∈ A) = 1,
thus (X, Y ) is in accordance to Definition 1.3.2 anti-monotonic.

For the “⇒” direction, given (x, y) ∈ R2 we have

P(F−1
X (U) ≤ x, F−1

Y (1− U) ≤ y) = P(U ≤ FX(x), 1− FY (y) ≤ U)
= P(1− FY (y) ≤ U ≤ FX(x)),

since U is standard uniform distributed, we get

P(F−1
X (U) ≤ x, F−1

Y (1− U) ≤ y) = max{FX(x) + FY (y)− 1, 0}. (A.3)

In the next step we will show that an anti-monotonic pair (X, Y ) has the same distribution
as (F−1

X (U), F−1
Y (1− U)). Denote by A its support.

Define A1 = {(x1, y1) ∈ A | x1 ≤ x} and A2 = {(x2, y2) ∈ A | y2 > y}. Then
A1 ⊆ A2 or A2 ⊆ A1 must hold. Otherwise, there would exist (a, b) and (c, d) in A such
that (a, b) ∈ A1 \ A2 and (c, d) ∈ A2 \ A1, i.e., a ≤ x, b ≤ y, c > x and d > y. Hence
(a − c)(b − d) > 0, which is a contradiction with the assumed anti-monotonicity for A.
Note that {X ≤ x, Y > y} = {(X, Y ) ∈ A1 ∩ A2}.
If A1 ⊆ A2 then

P(X ≤ x, Y > y) = P((X, Y ) ∈ A1) = P(X ≤ x) = FX(x).

If A2 ⊆ A1 then

P(X ≤ x, Y > y) = P((X, Y ) ∈ A2) = P(Y > y) = 1− FY (y).
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Thus, P(X ≤ x, Y ≤ y) = P(X ≤ x) − P(X ≤ x, Y > y) = FX(x) − P(X ≤ x, Y > y) is
equal to equation (A.3).
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Appendix B

Proofs

Proof of Lemma 1.3.1 on page 7.

Assume that X and Y are anti-monotonic. From the Fréchet-Hoeffding bounds in Sec-
tion 1.3, one can get P(X ≤ x, Y ≤ y) ≥ max {FX(x) + FY (y)− 1, 0}. Since X and Y
are anti-monotonic we know from Lemma A.0.3 that (X, Y ) ∼ (F−1

X (U), F−1
Y (1− U)) and

from equation (A.3) that P(F−1
X (U) ≤ x, F−1

Y (1− U) ≤ y) = max {FX(x) + FY (y)− 1, 0}.
Therefore, P(X ≤ x, Y ≤ y) is minimal.

Furthermore, for fixed distribution of X and Y , P(X ≥ x, Y ≥ y) is minimal if and
only if P(X ≤ x, Y ≤ y) is minimal. To see this point, consider the following steps

P(X ≥ x, Y ≥ y) + P(X ≥ x, Y ≤ y) = P(X ≥ x) = const

and
P(X ≤ x, Y ≤ y) + P(X ≥ x, Y ≤ y) = P(Y ≤ y) = const.

Therefore, both are equal to (const − P(X ≥ x, Y ≤ y)) and if the one is minimal, the
other one has to be minimal as well.

Write X = X+ − X−, where X+ = max(X, 0) and X− = −min(X, 0). Similarly, we
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write Y = Y + − Y −. Thus,

E[XY ] =E[(X+ −X−)(Y + − Y −)]
=E[X+Y +] + E[X−Y −]− E[X+Y −]− E[X−Y +]

=
∫ +∞

0

∫ +∞

0
P(X+ > x, Y + > y) dx dy +

∫ +∞

0

∫ +∞

0
P(X− > x, Y − > y) dx dy

−
∫ +∞

0

∫ +∞

0
P(X+ > x, Y − > y) dx dy −

∫ +∞

0

∫ +∞

0
P(X− > x, Y + > y) dx dy

=
∫ +∞

0

∫ +∞

0
P(X > x, Y > y) dx dy +

∫ 0

−∞

∫ 0

−∞
P(X ≤ x, Y ≤ y) dx dy

+
∫ 0

−∞

∫ +∞

0
(P(X > x, Y > y)− P(X > x)) dx dy

+
∫ +∞

0

∫ 0

−∞
(P(X > x, Y > y)− P(Y > y)) dx dy,

where for the last equality we have used X+ > x ⇔ X > x and X− > x ⇔ X < −x for
any x > 0. Since P(X ≤ x, Y ≤ y) and P(X > x, Y > y) are both minimal when X and
Y are anti-monotonic, E[XY ] is also minimal.

Proof of Proposition 1.3.1 on page 7.

The proof is a straightforward combination of Definition 1.2.1 and Lemma 1.3.1.

Proof of Proposition 2.2.1 on page 10.

From Corollary 1.3.1 we already know the form of the unique cost-efficient strategy with
the desired distribution F :

X∗T = F−1(1− FξT (ξT )).

First we would like to rewrite it in terms of ST . From Lemma A.0.1 we see that there
exists a function f such that ξT = f(ST ). We assume µ1 > r, which is a reasonable
assumption, then β > 0 and thus f is a strictly decreasing continuous function. Note that
f is invertible, then for all x ∈ R+,

FξT (x) = P(ξT ≤ x) = P(f(ST ) ≤ x)
= P(ST > f−1(x)) = 1− P(ST ≤ f−1(x))
= 1− FST (f−1(x)).
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Therefore, we have X∗T = F−1(FST (ST )). Since log(x/S0) is increasing in x, we have
FST (ST ) = FUnder(log(ST/S0)), where FUnder is the cdf of log(ST/S0). If we set

S0e
Y ∗T = X∗T = F−1(FUnder(log(ST/S0))),

then
Y ∗T = F−1

Target(FUnder(log(ST/S0))),

where F−1
Target is the inverse cdf of log(S∗T/S∗0).

Proof of Proposition 3.1.1 on page 18.

From Lemma 1.3.1, it suffices to show that (X∗T (λ), ξT + λAT ) is an anti-monotonic pair.
From Lemma A.0.3 we know an equivalent statement for anti-monotonicity:

(X, Y ) is anti-monotonic⇔ (X, Y ) ∼ (F−1
X (U), F−1

Y (1− U)).

In our case with X∗T (λ) = F−1(1− LξT+λAT (ξT + λAT )) we get

(X∗T (λ), ξT + λAT ) ∼ (F−1(1− U), L−1
ξT+λAT (U)).

Hence, (X∗T (λ), ξT + λAT ) is an anti-monotonic pair.

Proof of Lemma 3.1.1 on page 18.

(i) Continuity of E[X∗T (λ)AT ] in λ:
From equation (3.6) we see that X∗T is a random variable in AT and ξT , we can
therefore write

E[X∗T (λ)AT ] =
+∞∫
0

+∞∫
0

X∗T (λ)ATfAT ,ξT (AT , ξT ) dAT dξT , (B.1)

where fAT ,ξT is the joint pdf of AT and ξT . By Theorem 3.5.1 in Cheng S. [2008], it
is sufficient to show that X∗T (λ) is continuous and integrable, i.e. that there exists
an integrable function g independent of λ such that |X∗T (λ)| ≤ g. First we note that
since F is continuous, X∗T (λ) is continuous in λ. We are left to show the integrability
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of X∗T (λ).To this end consider the following inequalities

P(ξT + λAT ≤ λy) ≤ P(ξT + λAT ≤ x+ λy) ≤ P(λAT ≤ x+ λy)

⇔ P(ξT
λ

+ AT ≤ y) ≤ LξT+λAT (x+ λy) ≤ P(AT ≤ y + x

λ
). (B.2)

Applying the squeeze theorem on inequality B.2, we have lim
λ→∞

X∗T (λ) = F−1(1 −
H(AT )) pointwise. Fix some ε > 0, then from the definition of limit ∃ λ1 s.t. ∀ λ > λ1,
we have

|X∗T (λ)− F−1(1−H(AT ))| < ε,

therefore |X∗T (λ)| < |F−1(1−H(AT ))|+ ε. For λ ∈ [0, λ1], by extreme value theorem
we have that X∗T (λ0) ≤ X∗T (λ) ≤ X∗T (λ2) for some λ0, λ2 ∈ [0, λ1]. Therefore, for all
λ ≥ 0, we have

|X∗T (λ)| ≤ max {|X∗T (λ0)|, |X∗T (λ2)|, |F−1(1−H(AT ))|+ ε}.

Hence, X∗T (λ) is bounded by an integrable function independent of λ.

(ii) Existence of λ:

lim
λ↘0

E[X∗T (λ)AT ] = E[F−1(1−G(ξT ))AT ]

lim
λ→+∞

E[X∗T (λ)AT ] = E[F−1(1−H(AT ))AT ] = l.

Since E[X∗T (λ)AT ] is a continuous function, by the intermediate value theorem, ∃ λ∗ ∈
[0,+∞) s.t. E[X∗T (λ∗)AT ] = a0 for any a0 ∈ (l,E[F−1(1−G(ξT ))AT ]].

Proof of Corollary 3.1.1 on page 19.

We focus on the upper bound for a0 and show that

E[F−1(1−G(ξT ))AT ] = E[F−1(H(AT ))AT ] = u.

Recall that the cdf of AT is H and that of ξT is G. If there exists a strictly decreasing and
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continuous function h such that AT = h(ξT ), then we have

H(x) = P(AT ≤ x)
= P(h(ξT ) ≤ x)
= P(ξT > h−1(x))
= 1−G(h−1(x)).

Therefore, H(AT ) = 1 − G(ξT ). Combining this with Lemma 3.1.1, one gets the desired
result.

Proof of Proposition 3.1.2 on page 19.

We show that if X∗T (λ∗) minimizes the objective function of the problem in equation (3.4)
with λ∗ chosen such that E[ATX∗T (λ∗)] = a0 it also minimizes the objective function of
problem in equation (3.3). Proposition 3.1.1 implies

E[ξTX∗T (λ∗)] + λ∗E[ATX∗T (λ∗)] ≤ E[ξTXT (λ)] + λE[ATXT (λ)]
E[ξTX∗T (λ∗)] + λ∗a0 ≤ E[ξTXT (λ)] + λa0

E[ξTX∗T (λ∗)] ≤ E[ξTXT (λ)]

The second inequality is due to the fact that for all feasible solutions XT of the problem
in equation (3.3), we have E[ATXT ] = a0. Thus, X∗T (λ∗) clearly solves the problem in
equation (3.3).

Proof of Corollary 3.1.2 on page 19.

It follows directly from Proposition 3.1.2 and Corollary 3.1.1.

Proof of Lemma 3.2.1 on page 19.

From Proposition 1.2.1 we have ξT = S∗0
S∗T

, therefore

ξT + λS∗T = e−(µ∗−σ2
∗/2)T−σ∗W ∗T + λS∗0e

(µ∗−σ2
∗/2)T+σ∗W ∗T

d= e−X + λS∗0e
X ,

with X ∼ N((µ∗−σ2
∗/2)T, σ2

∗T ). Now set g(x) = e−x+λS∗0ex. The function g(x) is strictly
convex and attains its minimum at x = 1

2 log( 1
λS∗0

), with the value 2
√
λS∗0 . Therefore, for
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any y < 2
√
λS∗0 we get LξT+λS∗T (y) = 0. Otherwise, by the convexity of the function g, we

can always find XMAX
λ and XMIN

λ such that

LξT+λS∗T (y) = P(g(X) ≤ y)
= P(XMIN

λ ≤ X ≤ XMAX
λ )

= Φ
(
xMAX
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)
− Φ

(
xMIN
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)
.

Proof of Proposition 3.2.1 on page 20.

This follows immediately from Proposition 3.1.1, Lemma 3.2.1 and equation (1.3).

Proof of Lemma 3.3.1 on page 21.

We use the moment matching technique to find a proxy for the cdf of ξT + λS1
T . Although

a sum of two log-normal random variables is not log-normal we match the moments with a
log-normal random variable. Let Z be standard normally distributed, then we would like
to find µp and σp such that the following is satisfied

E[eµp+σpZ ] = E[ξT + λS1
T ]

V ar(eµp+σpZ) = V ar(ξT + λS1
T ).

On the left hand side we have E[eµp+σpZ ] = eµp+σ2
p/2 and V ar(eµp+σpZ) = (eσ2

p − 1)e2µp+σ2
p .

And on the right hand side E[ξT +λS1
T ] = E[ξT ] +λE[S1

T ] and V ar(ξT +λS1
T ) = V ar(ξT ) +

λ2V ar(S1
T )+2λCov(ξT , S1

T ). After we match the moments we get the following parameters
for the proxy

µp(λ) = −1
2 log

((
V ar(ξT + λS1

T ) + E[ξT + λS1
T ]2
)
E[ξT + λS1

T ]−4
)
,

σp(λ) =
√

2 log(E[ξT + λS1
T ])− 2µp(λ).

The cdf LξT+λS1
T

is a log-normal cdf with parameters µp(λ) and σp(λ).
In what is to follow we present the results of calculations needed to code the proxy

parameters in a computer program. We use Proposition 1.2.1 and Lemma A.0.2 to get a
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representation of ξT . After some calculations one gets the following form for ξT and S1
T

ξT =em1+s1Z1em2+s2Z2

S1
T =S1

0e
m3+s3Z1

where Z1, Z2 ∼ N(0, 1) and Z1 ⊥⊥ Z2 and

m1 = [−(br +M)− π∗1(µ1 − σ2
1/2)]T,

s1 = [−π∗1σ1 − π∗2σ2ρ12]
√
T ,

m2 = [−π∗2(µ2 − σ2
2/2)]T,

s2 = [−π∗2σ2

√
1− ρ2

12]
√
T ,

m3 = (µ1 − σ2
1/2)T,

s3 = σ1
√
T .

With this notation we get

E[S1
T ] = S1

0e
m3+s2

3/2,

V ar(S1
T ) = (S1

0)2(es2
3 − 1)e2m3+s2

3 ,

E[ξT ] = em1+m2+(s2
1+s2

2)/2,

V ar(ξT ) = e2(m1+m2+s2
1+s2

2) − e2(m1+m2+(s2
1+s2

2)/2),

E[ξTS1
T ] = S1

0e
m1+m3+(s1+s3)2/2em2+s2

2/2,

Cov(ξT , S1
T ) = E[ξTS1

T ]− E[ξT ]E[S1
T ].

The expressions above can be used for coding.

Proof of Proposition 3.3.1 on page 22.

The proof is a straight application of Proposition 3.1.1 using the result in Lemma 3.3.1
and equation (1.3).

Proof of Lemma 4.2.1 on page 26.

The bounds are derived by a straightforward application of the Fréchet-Hoeffding bounds
in equation (1.8). What remains to show is the derivation of the quasi-inverse of the cdf
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of AT1{AT<a0}. The cdf of AT1{AT<a0} is given in equation (B.6) as

Ha0(x) = P(AT1{AT<a0} < x) =
{
H(x) + (1−H(a0)) if x < a0,
1 if x ≥ a0.

Its quasi-inverse is given by

H−1
a0 (y) = inf{x | Ha0(x) ≥ y}

=
{
H−1(y − (1−H(a0))) if 1−H(a0) < y ≤ 1,
0 if y ≤ 1−H(a0),

= H−1(y − (1−H(a0)))1{y>1−H(a0)},

where H is the cdf of AT .

Proof of Lemma 4.2.2 on page 27.

(i) Continuity of E[ATX∗T (λ)1{AT<a0}] in λ:
From equation (4.8) we see that X∗T is a random variable in AT and ξT , we can
therefore write

E[X∗T (λ)AT1{AT<a0}] =
+∞∫
0

a0∫
0

X∗T (λ)ATfAT ,ξT (AT , ξT )dATdξT , (B.3)

where fAT ,ξT is the joint pdf of AT and ξT . By Theorem 3.5.1 in Cheng S. [2008], it is
sufficient to show that X∗T (λ) is continuous and integrable. The proof is very similar
to the proof of Lemma 3.1.1.

(ii) Existence of λ:

lim
λ↘0

E[X∗T (λ)AT1{AT<a0}] = E[F−1(1−G(ξT ))AT1{AT<a0}] (B.4)

lim
λ→+∞

E[X∗T (λ)AT1{AT<a0}] = E[F−1(1−Ha0(AT1{AT<a0}))AT1{AT<a0}] = l, (B.5)

where Ha0 is the cdf of AT1{AT<a0} given by

Ha0(x) = P(AT1{AT<a0} < x) =
{
H(x) + (1−H(a0)) if x < a0,
1 if x ≥ a0,

(B.6)
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where we recall that H is the cdf of AT . To justify the value of Ha0(x) when x < a0
in equation (B.6), consider the following calculation. By the law of total probability
we have

P(AT1{AT<a0} < x) = P(AT1{AT<a0} < x;AT < x)
+ P(AT1{AT<a0} < x;x ≤ AT < a0)
+ P(AT1{AT<a0} < x;AT ≥ a0)
= P(AT < x) + P(AT < x;x ≤ AT < a0) + P(AT > a0)
= H(x) + 0 + (1−H(a0)).

Since E[X∗T (λ)AT1{AT<a0}] is a continuous function, by the intermediate value theo-
rem, ∃λ∗ ∈ [0,+∞) s.t.

E[X∗T (λ)AT1{AT<a0}] = b0 (B.7)

for b0 ∈ (l,E[F−1(1 − G(ξT ))AT1{AT<a0}]) ⊂ [l, u]. The upper bound for b0 is from
equation (B.4).

Proof of Corollary 4.2.1 on page 27.

We focus on the upper bound for b0 and show that

E[F−1(1−G(ξT ))AT1{AT<a0}] = E[F−1(H(AT ))AT1{AT<a0}] = u,

where u is given in Lemma 4.2.1. Recall that the cdf of AT is H and that of ξT is G. If
there exists a strictly decreasing and continuous function h such that AT = h(ξT ), then we
have

H(x) = P(AT ≤ x)
= P(h(ξT ) ≤ x)
= P(ξT > h−1(x))
= 1−G(h−1(x)).

Therefore, H(AT ) = 1 − G(ξT ). Combining this with Lemma 4.2.2 one gets the desired
result.
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Proof of Proposition 4.2.1 on page 27.

We show that if X∗T (λ∗) minimizes the objective function of the problem in equation (4.6)
with λ∗ chosen such that E[X∗T (λ∗)AT1{AT<a0}] = b0 it also minimizes the objective func-
tion of problem in equation (4.3). Proposition 4.2.1 implies

E[ξTX∗T (λ∗)] + λ∗E[X∗T (λ∗)AT1{AT<a0}] ≤ E[ξTXT (λ)] + λE[XT (λ)AT1{AT<a0}]
E[ξTX∗T (λ∗)] + λ∗b0 ≤ E[ξTXT (λ)] + λb0

E[ξTX∗T (λ∗)] ≤ E[ξTXT (λ)]

The second inequality is due to the fact that for all feasible solutions XT of the problem in
equation (4.3), we have E[XTAT1{AT<a0}] = b0. Thus, X∗T (λ∗) clearly solves the problem
in equation (4.3).

Proof of Corollary 4.2.2 on page 27.

The statement follows from Proposition 4.2.1 and Corollary 4.2.1.

Proof of Lemma 4.3.1 on page 28.

From Proposition 1.2.1 we have ξT = S∗0
S∗T

, therefore

ξT + λS∗T1{S∗T<a0} = e−(µ∗−σ2
∗/2)T−σ∗W ∗T

+ λS∗0e
(µ∗−σ2

∗/2)T+σ∗W ∗T1
{S∗0e

(µ∗−σ2
∗/2)T+σ∗W∗T<a0}

d= e−X + λS∗0e
X
1S∗0e

X<a0 , (B.8)

with X ∼ N((µ∗ − σ2
∗/2)T, σ2

∗T ). Now set g(x) = e−x + λS∗0e
x
1S∗0e

x<a0 , then

g(x) =
{
e−x + λS∗0e

x if S∗0ex < a0,
e−x if S∗0ex ≥ a0,

=

 e−x + λS∗0e
x if x < log( a0

S∗0
),

e−x if x ≥ log( a0
S∗0

).
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In order to find the cdf of ξT + λS∗T1{S∗T<a0} we need to analyze

LξT+λS∗T1{S∗T<a0}
(y) = P(g(X) ≤ y), (B.9)

where X is distributed as in equation (B.8). Figure B.1 shows the graph of g(x) with
A = 1

2 log( 1
λS∗0

), B = log( a0
S∗0

), C = S∗0
a0

, D = 2
√
λS∗0 and E = S∗0

a0
+ λa0.
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Figure B.1: Function g(x) when λ >
S∗0
a2

0

In order to analyze equation (B.9) we separate two cases:

i A < B ⇔ 1
2 log( 1

λS∗0
) < log( a0

S∗0
) ⇔ λ >

S∗0
a2

0

ii A ≥ B ⇔ 1
2 log( 1

λS∗0
) ≥ log( a0

S∗0
) ⇔ λ ≥ S∗0

a2
0

Consider first the case (i), i.e. we assume that λ >
S∗0
a2

0
holds. Recall again that we are

looking for P(g(X) ≤ y), therefore
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• If y < C = S∗0
a0

, then

P(g(X) ≤ y) = P(e−X ≤ y) = P(X ≥ − log(y))

= 1− Φ
(
− log(y)− (µ∗ − σ2

∗/2)T
σ∗
√
T

)

= Φ
(

log(y) + (µ∗ − σ2
∗/2)T

σ∗
√
T

)
(B.10)

• If S∗0
a0

= C ≤ y < D = 2
√
λS∗0 , then

P(g(X) ≤ y) = P
(
g(X) ≤ S∗0

a0

)
= P

(
X ≥ − log

(
S∗0
a0

))

= 1− Φ
− log(S

∗
0
a0

)− (µ∗ − σ2
∗/2)T

σ∗
√
T


= Φ

 log(S
∗
0
a0

) + (µ∗ − σ2
∗/2)T

σ∗
√
T

 (B.11)

• If 2
√
λS∗0 = D ≤ y < E = S∗0

a0
+ λa0, then by convexity of e−x + λS∗0e

x we can always
find xMIN

λ and xMAX
λ , such that

P(g(X) ≤ y) = P(xMIN
λ ≤ X ≤ xMAX

λ ) + P
(
X ≥ − log

(
S∗0
a0

))
= Φ

(
xMAX
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)
− Φ

(
xMIN
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)

+ 1− Φ
− log(S

∗
0
a0

)− (µ∗ − σ2
∗/2)T

σ∗
√
T


= Φ

(
xMAX
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)
− Φ

(
xMIN
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)

+ Φ
 log(S

∗
0
a0

) + (µ∗ − σ2
∗/2)T

σ∗
√
T

 (B.12)
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• If y ≥ E = S∗0
a0

+ λa0, then there always exists xMIN
λ , such that

P(g(X) ≤ y) = P(X ≤ xMIN
λ ) = 1− Φ

(
xMIN
λ − (µ∗ − σ2

∗/2)T
σ∗
√
T

)

= Φ
(
−xMIN

λ + (µ∗ − σ2
∗/2)T

σ∗
√
T

)
(B.13)

The case (ii) when λ ≥ S∗0
a2

0
is very similar to case (i). The only difference is that for

S∗0
a0

= C ≤ y < E = S∗0
a0

+ λa0 the cdf L is equal to

P(g(X) ≤ y) = 1− Φ
− log(S

∗
0
a0

)− (µ∗ − σ2
∗/2)T

σ∗
√
T


= Φ

 log(S
∗
0
a0

) + (µ∗ − σ2
∗/2)T

σ∗
√
T

 . (B.14)

We therefore omit the full derivation. Combining the results in equations (B.10) to (B.14)
we get the desired cdf LξT+λS∗T1{S∗T<a0}

.

Proof of Proposition 4.3.1 on page 30.

The statement is a combination of Theorem 4.2.1 and Lemma 4.3.1.
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