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Abstract 

The last few decades have seen growing concern about climate change caused by global warming, 

and it now seems that the very future of humanity depends on saving the environment. With 

recognition of CO2 emissions as the primary cause of global warming, their reduction has become 

critically important. An effective method of achieving this goal is to focus on the sectors that 

represent the greatest contribution to these emissions: electricity generation and transportation. For 

these reasons, the goal of the work presented in this thesis was to address the challenges associated 

with the accommodation of a high penetration of plug-in electric vehicles (PEVs) in combination with 

renewable energy sources.   

Every utility must consider how to manage the challenges created by PEVs. The current 

structure of distribution systems is capable of accommodating low PEV penetration; however, high 

penetration (20 % to 60 %) is expected over the next decades due to the accelerated growth in both 

the PEV market and emission reduction plans. The energy consumed by such a high penetration of 

PEVs is expected to add considerable loading on distribution networks, with consequences such as 

thermal overloading, higher losses, and equipment degradation. A further consideration is that 

renewable energy resources, which are neither exhaustible nor polluting, currently offer the only 

clean-energy option and should thus be utilized in place of conventional sources in order to supply the 

additional transportation-related demand. Otherwise, PEV technology would merely transfer 

emissions from the transportation sector to the electricity generation sector. 

As a means of facilitating the accommodation of high PEV penetration, this thesis proposes 

methodologies focused on two main themes: uncontrolled and coordinated charging. For uncontrolled 

charging, which represents current grid conditions, the proposal is to utilize dispatchable and 

renewable distributed generation (DG) units to address the high PEV penetration in a way that would 

not be counterproductive. This objective is achieved through three main steps. First, the benefits of 

allocating renewable DG in distribution systems are investigated, with different methodologies 

developed for their evaluation. The benefits are defined as the deferral of system upgrade 

investments, the reduction in the energy losses, and the reliability improvement. The research also 

includes a proposal for applying the developed methodologies for an assessment of the benefits of 

renewable DG in a planning approach for the optimal allocation of the DG units. The second step 

involves the development of a novel probabilistic energy consumption model for uncontrolled PEV 
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charging, which includes consideration of the drivers’ behaviors and ambient temperature effect 

associated with vehicle usage. The final step integrates the approaches and models developed in the 

previous two steps, where a long-term dynamic planning approach is developed for the optimal 

allocation of renewable and dispatchable DG units in order to accommodate the rising penetration of 

PEV uncontrolled charging. The proposed planning approach is multi-objective and includes 

consideration of system emissions and costs. 

The second theme addressed in this thesis is coordinated PEV charging, which is dependent 

on the ongoing development of a smart grid communication infrastructure, in which vehicle-grid 

communication is feasible via appropriate communication pathways. This part of the work led to the 

development of a proposed coordinated charging architecture that can efficiently improve the 

performance of the real-time coordinating PEV charging in the smart grid. The architecture is 

comprised of two novel units: a prediction unit and an optimization unit. The prediction unit provides 

an accurate forecast of future PEV power demand, and the optimization unit generates optimal 

coordinated charging/discharging decisions that maximize service reliability, minimize operating 

costs, and satisfy system constraints. 
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Chapter 1 

Introduction and Objectives 

Over the last few decades, a growing body of evidence has shown that global temperatures are rising 

due to the accumulation of greenhouse gases (GHG), which will result in severe climate changes and 

rises in sea levels. Such predictions have made the reduction of gas emissions a vital necessity, and 

governments around the globe are taking action to minimize their emissions. More than 140 countries 

have reacted to global warming, and in 1997 they agreed on the implementation of the Kyoto protocol 

for reducing emissions [1]. Canada's Kyoto target was a 6 % total reduction of 1990 GHG emission 

levels by 2012. Despite the measures implemented, by 2011 Canada’s GHG had actually increased by 

18.8 % compared to 1990 levels [2], as shown in Figure 1.1. In 2010, Canada therefore submitted a 

revised emissions reduction target under the Copenhagen Accord: a reduction 17 % compared to 2005 

emission levels. 

A key component in the reduction of CO2 emissions is to shift to low- or zero-emission 

vehicles for transportation because the transportation sector is responsible for the largest share of 

Canadian GHG: almost 24 %, as shown in Figure 1.2. To this end, the electrification of vehicles has 

become the best option for reducing transportation emissions, given that the electric power system is 

best positioned to provide the requisite infrastructure for these vehicles.  

Concerns about emissions coupled with developments in plug-in electric vehicle (PEV) 

technology have led to the expectation that PEV penetration
1
 will rise rapidly over the next few 

decades. Some countries have created a target of up to 7.9 million of PEVs by 2030, as reported by 

the International Energy Agency [3]. The targets of a selection of countries are listed in Table 1.1.  

However, insufficient research is available to enable verification of the impact on distribution 

networks. Even with low PEV penetration (5 % to 10 %), the PEV charging process has been shown 

to create potential risk to the electric power system [4, 5], due mainly to the expectation that PEVs 

will likely be clustered in specific geographical areas, resulting in higher penetrations (40 % to 60 %) 

in some territories. Such concentrations can lead to significant stress on local power distribution 

systems. If not managed effectively, the additional load imposed by high PEV penetration is expected 

to have severe consequences, such as feeders’ thermal limit violation, phase imbalance, transformer 

                                                      
1 PEV penetration is defined as the percentage of the total population of vehicles in the system represented by the PEVs. 

http://unfccc.int/files/meetings/cop_15/copenhagen_accord/application/pdf/canadacphaccord_app1.pdf
http://unfccc.int/files/meetings/cop_15/copenhagen_accord/application/pdf/canadacphaccord_app1.pdf
http://unfccc.int/files/meetings/cop_15/application/pdf/cop15_cph_auv.pdf
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degradation, and fuse blowouts [4]. The accommodation of high PEV penetration in distribution 

networks thus requires further study and analysis. 

With high PEV penetration, two main scenarios are expected: uncontrolled charging and 

controlled charging.  An uncontrolled charging scenario, which represents the current practice for 

charging PEVs, includes no communication between the grid and the vehicles, and the vehicles start 

charging as soon as they are plugged in. Managing the uncontrolled charging scenario requires the 

development of uncontrolled PEV charging load models that can facilitate appropriate planning in the 

distribution system infrastructure so that the excess load can be accommodated. An additional factor 

is the expectation that renewable energy resources will play an important role in supplying energy to 

the transportation sector because delivering the required energy from conventional generation units 

will have the effect of shifting the emissions to the electric energy sector rather than reducing them. 

Renewable resources are characterized by highly variable and uncertain output power that is 

dependent on wind speed and solar irradiance, and distribution networks were not originally designed 

to accommodate such energy sources. Planning for PEV accommodation must therefore include 

consideration of these renewable distributed generation (DG) units. 

The uncontrolled charging is the current practice for PEV charging and is expected to persist 

in the near future to enable a transition period for the PEV penetration to be significant, hence it paves 

the way for the coordinated charging, which is the second expected scenario.  For this scenario, a 

coordinated charging system should be developed under the smart grid paradigm. This system must 

be able to deal with real-time measurements and parking lot dynamics through the utilization of the 

two-way smart grid communication infrastructure. The primary target of such a coordinated charging 

system is the best use of smart grid resources so that the PEV load can be shifted to optimal periods 

during the PEV parking duration in order to maximize customer satisfaction without jeopardizing 

system equipment.   

The research presented in this thesis was focused primarily on these two scenarios. The work 

presented can thus be described as consisting of two phases: with the first addresses uncoordinated 

charging and the second deals with coordinated charging. These two phases are described in detail in 

the next section. 
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Figure 1.1  National greenhouse gas emissions, Canada, 1990 to 2011 [2] 

 

Figure 1.2  Canada’s emissions breakdown by sector for 2011 [2] 

Table 1.1  Announced national PEV targets  

Country Target [3] 

Canada 2018: 500 000 

Denmark 2020: 200 000 

France 2020: 2 000 000 

Ireland 2020: 230 000 

Spain 2020: 2 500 000 

Sweden 2020: 600 000 

United Kingdom 2030: 7 900 000 

United States 2015: 1 000 000 
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1.1 Research Objectives 

As mentioned in the previous section, high PEV penetration can be managed through two scenarios: 

uncontrolled charging and coordinated charging. In the first scenario, the excess load due to 

uncontrolled PEV charging can be managed through the installation of DG units and/or the upgrading 

of the network infrastructure [5]. On the other hand, the coordinated charging scenario relies on the 

two-way communication infrastructure inherent in a smart grid paradigm as a means of optimally 

coordinating PEV charging requirements [6]. The research was therefore based on five main 

objectives related to these two scenarios, as shown in Figure 1.3 and outlined below. 

1.1.1 Uncontrolled PEV charging scenario 

To accommodate a high penetration of uncontrolled PEV charging, which entails the vehicles starting 

to charge as soon as they are plugged in, the utility can upgrade its distribution system infrastructure 

and/or deploy DG units to supply the extra load [5]. For this scenario, the research resulted in the 

development of a proposed long-term multi-objective planning approach to accommodate the rising 

penetration of uncontrolled PEV charging. The completion of this task was guided by the definition 

of three objectives, as shown in Figure 1.3. 

1.1.1.1 Objective (1): DG allocation in distribution networks 

For this objective, the task was to develop methodologies for evaluating the economic benefits of 

dispatchable and renewable DG, which are defined as the deferral of system upgrade investments, the 

reduction in the cost of energy losses, and the reduction in the cost of interruptions. The developed 

methodologies were also used for evaluating the benefits of renewable DG in a planning approach for 

the optimal allocation of these units. A number of scenarios were considered with respect to two types 

of DG units: natural gas dispatchable DG (NGDG) units and wind-based DG (WDG) units. 

1.1.1.2 Objective (2): Modeling of uncontrolled PEV charging load 

For the second objective, the research was focused on the development of a probabilistic energy 

consumption model for uncontrolled PEV charging. It was assumed that the batteries of the vehicles 

start charging as soon as they are plugged into the charger. The proposed model includes 

consideration of the uncertainty and variability associated with vehicle usage as well as ambient 

temperature effect.  
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Chapter 3

Chapter 4

Chapter 5
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PEV charging load 

Chapter 6

Objective (4): Coordinated charging 

prediction unit
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Coordinated Charging

 

Figure 1.3  Research objectives 

1.1.1.3 Objective (3): Utilization of DG units to accommodate high PEV penetration 

For this objective, the models and methodologies developed as a result of the previous two objectives 

were utilized. The aim was to develop a long-term dynamic planning approach to accommodate rising 

PEV penetration through the utilization of renewable and dispatchable DG units to mitigate the 

impact of PEVs in the distribution networks. Higher penetration limits would thus be permitted under 

the uncontrolled charging scenario. In addition to the economic benefits in objective (1), the work 

also incorporated an equivalency factor for CO2 emission. In addition to facilitating the use of DG 

units to reduce system costs the proposed methodology can thus enable the accommodation of high 

PEV penetration and the reduction of emissions through a multi-objective planning approach.  

1.1.2 Coordinated PEV charging scenario 

The proposed coordinated charging architecture consists of three main units: data collection and 

storage, prediction, and optimization [7]. The data collection and storage unit collects information 

related to current PEV charging demands, the current state-of-charge (SOC) of the PEV batteries, and 

the demand for normal loads. The prediction unit estimates the normal and PEV charging load for a 

short time horizon, and the optimization unit computes the optimal charging decision. The research 
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resulted in the development of two novel proposed prediction and optimization units for managing the 

dynamics of coordinated PEV charging in real-time, as indicated in Figure 1.3 and described below. 

1.1.2.1 Objective (4): Coordinated charging prediction unit 

Meeting this objective entailed the development of the PEV prediction unit, which estimates the 

number of PEVs that will be simultaneously present in the parking lots under the jurisdiction of a 

specific aggregator. This unit must include consideration of the dynamics of PEV arrivals and 

departures in the parking lots, and the unit is incorporated into the PEV coordination architecture as a 

means of enhancing the PEV coordination mechanism. 

1.1.2.2 Objective (5): Coordinated charging optimization unit 

This objective is related to the development of an optimization methodology for determining the 

optimal coordination of PEV charging in a distribution network. The proposed solution relies on the 

ongoing development of the smart grid communication infrastructure, which can efficiently mitigate 

the impact of uncontrolled PEV charging through smart coordination. The outcome of meeting this 

objective will be an improved smart grid performance under high PEV penetration.  

1.2 Thesis outline  

The remainder of the thesis is organized as shown in Figure 1.3. The details of each chapter are as 

follows:  

Chapter 2 provides a brief review of the background topics and associated literature pertinent 

to this research.  

Chapter 3 presents the proposed approach for renewable DG allocation along with related 

simulation results.  

Chapter 4 explains the proposed uncontrolled PEV charging load model.  

Chapter 5 introduces the proposed long-term multi-objective planning approach for the 

accommodation of rising penetration of uncontrolled PEV charging in distribution 

networks.  

Chapter 6 describes the proposed architecture for the coordinated charging mechanism.  

Chapter 7 summarizes the research and its contributions and offers suggestions for future work.  
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Chapter 2 

Background and literature review 

2.1 Introduction 

This chapter provides an introduction to and background information about DG modeling and electric 

vehicles (EVs), followed by a discussion of previous research. Finally, the drawbacks with respect to 

DG allocation, uncontrolled PEV charging load modeling, and coordinated PEV charging are 

highlighted in the summary.  

2.2 DG modeling 

The IEEE definition of DG is “the generation of electricity by facilities that are sufficiently smaller 

than central generating plants as to allow interconnection at nearly any point in a power system.” 

DG units can be categorized according to the interface, output power, and energy source. The 

classification based on energy source is illustrated in Figure 2.1.  With respect to output power, they 

can be classified as dispatchable or non-dispatchable resources. The next two subsections discuss 

common techniques described in the literature for modeling dispatchable and non-dispatchable DG 

systems. 

 

 

Figure 2.1  DG classification based on energy source [8] 
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2.2.1 Modeling of dispatchable DG 

Dispatchable DG units can be divided into two groups: synchronous machine based, such as biomass 

and NGDG, and inverter based, such as fuel cells and micro turbines. The output of these DG units is 

assumed to be constant in normal operating mode. However, during islanding mode, the output is 

assumed to be varied in order to manage the active and reactive power balance. For studies that 

require analysis of a snapshot of the system, these types of DG are usually treated as a constant power 

source, as in [9-11]. For long-term planning studies, the DG model must take into account internal 

failures or scheduled maintenance, so a two-state model is used to represent the operation of these DG 

units [12], as shown in Figure 2.2. The up state indicates that the DG unit is in an operating state and 

the down state implies that the element is inoperable due to a failure or a scheduled off period. This 

type of model can be used in a Monte Carlo simulation (MCS) to produce artificial operating 

scenarios for each dispatchable DG unit. 

 

UNIT 

DOWN

UNIT 

UP

Failure

Repair

 

Figure 2.2  Two-state model [12] 

2.2.2 Modeling of non-dispatchable renewable DG  

Because renewable resources are characterized by a high degree of uncertainty and variability, no 

unique model exists for them. Different models are therefore used to describe the output of these 

types of DG units: probabilistic analytical models that use an appropriate probability density function 

(pdf), probabilistic chronological models that employ an MCS, and time-series models. Although 

only models of WDG units are described in this chapter, the same concepts can be applied for 

photovoltaic-based DG (PVDG).  

Time-series models are generally used for short-term studies involving periods of a few hours 

or a few days ahead, such as unit commitment and storage scheduling. On the other hand, 

probabilistic analytical and chronological models are suitable for long-term studies representing a few 

years to a few decades. Time-series modelling, probabilistic modelling, and MCS modelling are 

explained in the following subsections with respect to wind speed, followed by a description of the 

output power characteristics of WDG units. 
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2.2.2.1 Time-series modeling 

A time series is a set of time-ordered observations of a phenomenon at uniform time intervals. Time-

series models are used to predict data points before they are measured based on known past 

observations. Because time-series models reflect the fact that observations close together in time are 

more closely related than observations further apart, these models are suitable for the analysis of short 

periods ranging from a few hours to few days. The autoregressive moving-average (ARMA) 

technique is one of the most popular for wind-speed time-series modeling. As reported in [13-16], it 

has been used for modeling wind turbine output power for the purposes of adequacy assessment, 

storage analysis, and the unit commitment problem. A typical ARMA model for wind speed is 

described in [17]. 

2.2.2.2 Analytical probabilistic modelling using an appropriate pdf  

A Weibull pdf       is the pdf most commonly used to represent wind variability [18]. Its formula 

[19], which describes the probability of the wind speed  , is given in (2.1). In [18, 20, 21], it is used 

to model wind speed variability for the purposes of site matching, capacity factor estimation, energy 

loss calculations, and the assessment of supply adequacy.  
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where 

k is the shape parameter;  

c is the scale parameter; 

     is the sample speed for the  th
 time segment; 

  is a gamma function operator. 

Reference [18] describes a typical analytical probabilistic wind speed model, in which 

historical wind speed data are utilized for modeling the output power of the WDG units. The entire 

year is first divided into clusters (seasons or months). Historical data for each cluster are then used for 

generating the frequency distribution of the wind speed measurements for a typical day, as a 

representation of each cluster. The day corresponding to each cluster is further subdivided into time 

segments, usually hourly. From these data, the mean and standard deviation for each time segment are 

calculated and used in order to generate the Weibull pdf for each hour, based on (2.2) to (2.5). The 

entire range of wind speeds is then discretized into a definite number of states. The final step is to 

convert these wind speed states into output power, as explained in subsection 2.2.2.4. 

2.2.2.3 Chronological probabilistic modelling using MCS 

MCS is a computerized mathematical technique that allows the building of virtual models of possible 

scenarios involving phenomena that entail significant uncertainty. The use of MCS is reported in [21-

23] for the modeling of the random output of renewable resources, load variation, and the availability 

of system components. A typical MCS wind model is described in [21]: the period under study is 

divided into time segments (usually hourly), and the system state is then examined in each segment to 

enable the evaluation of the reliability indices. To generate the MCS model for wind speeds, virtual 

simulated scenarios of wind speeds are first generated using the inverse of the Weibull cumulative 

distribution function [24] for each time segment, as defined in (2.6), where an appropriate stopping 

criterion is adopted to insure accuracy of the simulation. The wind speeds in the model are then 

converted into output power based on the wind turbine power-speed characteristics, as explained in 

the next subsection. In the final step, the forced outage rate (FOR) of the WDG is utilized in order to 

generate an artificial two-state availability model, which is convolved with the previously generated 

virtual scenarios.  

 

 
            (       ) 

 

                           (2.6) 
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where    is the set of uniformly distributed random numbers between 0 and 1. 

2.2.2.4 Wind turbine output power states  

The wind speed outcomes from any of the three previously mentioned models are converted to output 

power using the wind turbine characteristics [18], as in (2.7). These characteristics are also illustrated 

in Figure 2.3.  
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where 

       is the wind turbine output corresponding to wind speed  ; 

   ,       , and      are the cut-in, rated, and cut-out speeds of the utilized wind turbine, 

respectively; 

   
      is the rated power of the wind turbine. 

 

 

Figure 2.3  WDG output power [18] 
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2.3 Optimal allocation of DG 

Given the challenges currently associated with electricity generation and the recent restructuring of 

energy systems, renewable DG has become a vitally important option. As mentioned, renewable 

energy resources are the key to a sustainable energy supply infrastructure because they are neither 

exhaustible nor polluting [18]. Both the local distribution company (LDC) and its customers can 

derive numerous technical and economic benefits from the installation of DG units [25-29]:  

 Deferral of upgrade investments 

 Reduced energy losses 

 Reduced emissions  

 Improved voltage profile  

 Enhanced reliability  

 Improved power quality 

 Increased energy security 

However, installing renewable DG units in the distribution system has a significant impact, 

given that the system was originally designed to be passive, i.e., to have a single supply structure. 

When DG units are incorporated, a distribution system ceases to be passive and becomes designated 

as an active distribution network (ADN). Improper allocation of DG units in the system might have 

detrimental effects, including violation of voltage technical limits, overloading of system equipment, 

increase in system power losses, and/or failure of the protective equipment. The proper allocation of 

DG units into an existing distribution system is thus a very important aspect of DG operational 

planning. As well, the intermittent nature of renewable DG units such as wind and PV also introduces 

additional technical and economic challenges to the planning problem.  

Many researchers have addressed the problem of DG allocation in ADNs, yet previously 

proposed solutions have focused primarily on three main benefits. 

The first benefit is the relief of congestion in network feeders and the deferral of previously 

required system upgrades. With respect to system upgrades for addressing load growth and security 

issues, DG can provide a superior planning alternative for utilities, which can be the most valuable 

contribution [30] of DG installation. In [10], a multi-year multi-period optimal power flow is 

suggested for the optimal allocation of DG units in ADNs in order to minimize system upgrades, 

taking into consideration the effect of distribution network operators’ regulations for DG ownership, 

whereby each year in the planning period is divided into four loading periods: peak, normal, medium, 
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and minimum. However, that study considered only non-intermittent DG, which offers a firm supply 

of energy and failed to account for the effect of DG on protective equipment. In [31, 32], different 

methodologies are presented for evaluating the effect of DG with respect to reinforcing the deferral of 

investments; however, the researchers considered only dispatchable DG units that have predefined 

sizes and locations. A multi-objective approach to DG allocation based on a genetic algorithm (GA) 

is presented in [33]: grid upgrades and the cost of losses are considered as objectives; however, only 

dispatchable DG with fixed output power is considered. The work described in [9] is based on a long-

term dynamic multi-objective DG allocation methodology, whereby emissions and a variety of 

system costs, such as purchased energy and reinforcement costs, are minimized, but the effect of DG 

on energy losses or reliability is not taken into account. The studies presented in [9, 10, 31-33] 

included consideration of dispatchable DG units only. 

Some research, however, has included consideration of renewable DG, such as in [34], in 

which the system peak load and the capacity credit of WDG units are utilized in the planning 

problem. A multi-objective GA-based approach is introduced in [35] as a means of minimizing losses 

and upgrade costs, taking into consideration emissions constraints. However, the work presented in 

both of these studies ignores the stochastic nature of WDG units. The variability and uncertainty 

associated with renewable DG is an important factor that has a significant effect on system upgrade 

investments and that has not been fully considered in any of the research mentioned above.    

The second benefit of installing DG units in the distribution network is the reduction in 

energy losses. Some researchers have proposed the optimal placement of DG units as a technique for 

minimizing power losses in the system. The DG allocation algorithm presented in [36] was developed 

with the goal of improving the voltage profile and reducing power losses on radial feeders in the case 

of a non-uniformly distributed load; however, the algorithm includes consideration of only 

dispatchable DG units with fixed output power. In [37] an approach is presented for determining the 

optimal allocation of dispatchable DG with the goal of minimizing power loss; however, load 

variability is not taken into account. A method of minimizing system power loss by establishing the 

optimal size and power factor for four types of dispatchable DG units is proposed in [38]. While all 

four units are dispatchable, they differ with respect to their ability to inject active or reactive power. 

In [39], the researchers describe a multi-objective approach based on a GA, in which a variety of 

objectives are introduced: improved voltage profile, reduced power loss, increased spinning reserve, 

and reduced power flow in critical lines. Again, only dispatchable DG units are considered. In [40], 

the authors present a heuristic approach to optimal investment in DG units so that distribution 
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companies can meet their load growth. The objective in this case is to minimize DG capital and 

operating costs, the cost of purchasing power, and the cost of system losses. The report discusses only 

fixed output power DG and ignores the effect of DG on system upgrades, which can have a major 

impact. As a means of minimizing power loss, a new optimization approach for DG allocation based 

on an artificial bee colony algorithm is presented in [41]; however, the suggested solution fails to 

include the effect of load variability. In [42], the authors introduce a multi-objective technique for 

optimal DG allocation that factors in system losses and voltage profile; however, consideration of 

load variability is once more omitted. The work presented in [36-42] is based only on conventional 

DG units with dispatchable output power.   

In [11], time-varying loads and DG power are factored into the determination of the optimal 

DG allocation on a radial feeder. Consideration of WDG units is included, but the modeling of the 

wind turbines is based on only a single day’s worth of historical data for variable output power: the 

effects of the variability and uncertainty of wind speeds are thus neglected. The uncertainty associated 

with renewable DG units is addressed in the work presented in [18]. The authors propose an approach 

for minimizing energy losses through the optimal placement of renewable DG, taking into 

consideration both the variability and uncertainty associated with renewable DG resources. However, 

the focus is on reducing energy losses regardless of the time at which the loss occurred, rather than on 

the cost of the energy losses, which would provide a better representation of utility requirements. In 

[43], the researchers compared the calculation of optimal DG penetration using different technologies 

by examining how changing the penetration level affects annual energy losses. However, the 

locations of the DG units are assumed to be fixed, and the capacities of the DG units are all varied 

linearly together until the optimum sizes are reached, which does not guarantee optimal penetration 

because different penetration levels at system buses for the installed DG units may result in better 

outcomes with respect to the sizing problem. In [44], the effect of renewable DG unit allocation on 

the minimization of energy losses is demonstrated through a technique based on a multi-period AC 

optimal power flow, taking into consideration smart control schemes. A multi-objective approach is 

presented in [45] for the optimal allocation of variable and controllable DG units in the system with 

the goal of minimizing different objectives, including line losses and CO2 emissions. A multi-

objective approach to allocating WDG based on a GA is proposed in [46]; the objectives considered 

are the maximization of energy exports, the minimization of losses, and the minimization of short-

circuit levels. However, all of these studies focus on reducing either the power loss or the annual 

energy losses, neither of which provides an accurate representation of LDC requirements because the 
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most important factor is the cost of the annual energy losses. As well, in addition to energy losses, 

another key aspect that should be included in the planning problem is the effect of DG on system 

upgrades because it can have greater significance than system losses.  

The third benefit is the enhancement of the reliability of the power supply for different 

customers. DG power can affect system reliability only if islanding is allowed. While current policies 

prohibit the connection of DG units to the system in the case of islanding, in the next few years, given 

the government-supported trend toward smarter grids, it is expected that DG units will be allowed to 

operate in islanding mode. DG units will thus be able to supply customers during main supply 

failures. Most of the previously mentioned studies do not include investigation of the impact of DG 

units on system reliability. However, some research has been conducted in this area, as in [47], for 

example, which presents a multi-objective approach based on a GA for optimal DG allocation. The 

method developed includes consideration of the benefits of DG connection, such as those related to 

upgrades, losses, and reliability. An algorithm for determining an optimum DG operating strategy is 

described in [48]; it incorporates the evaluation of the reliability value of a distribution system, in 

order to minimize the cost of customer interruption. However, the authors of both of these studies 

based their work on an assumption of conventional dispatchable DG. In contrast, in [49], a method for 

determining the optimal placement of renewable DG units for maximum system improvement is 

proposed; however, considering reliability as a single objective in the allocation problem may result 

in a negative impact on other system costs, such as upgrades and losses.  

2.4 Background information about EVs 

Due to increased emission rates over the last few decades, which are a major factor in global 

warming, interest in zero- or low-emission vehicles has increased substantially, and such vehicles are 

now considered essential [50]. Therefore, a key element in future propulsion strategies for many 

vehicle manufacturers around the world is the replacement of gasoline with alternative clean energy 

source. Due to the recent development of renewable energy sources and the almost universal 

availability of electric power systems, the electrification of vehicles is now considered an effective 

solution that will reduce fuel consumption and emissions as well as increase energy security through 

the diversification of available energy sources [51]. The electric energy generated from low-emission 

renewable resources will play a vital role in supplying the transportation sector with the electric 

energy required and will also address concerns about shifting emissions from the transportation sector 

to the electricity generation sector.   
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The history of EVs began a hundred years ago in the early 1900s, when more electric than 

fossil-fuel vehicles were on the roads, and EVs outsold their gasoline counterparts [52]. However, due 

to the limitations of battery technology and the lack of power electronics technologies, the speed and 

range of EVs were limited. Gasoline engines offered superior performance, which led to the decline 

of the EV industry by the late 1930s. Recently, however, EVs have begun to reappear as a result of 

new developments in battery and power electronics technologies that make possible speeds and 

ranges comparable to those of fossil-fuel vehicles.  

With the support of many governments, vehicle manufacturers are now racing to develop 

EVs; challenges related to size, weight, cost, and driving range have been effectively resolved over 

the last few years. EVs have now become a reality and are commercially available in many sizes and 

ranges, with thousands on the roads in many countries in North America, Europe, and Asia. Some 

governments have initiated incentive programs to increase the EV market share. In Canada, beginning 

in July 2010, the Ontario government established a rebate of up to $8,500 CAD for the purchase or 

lease of a new EV [53], and the goal for 2020 is for one of every 20 vehicles driven in Ontario to be 

electric. This program constitutes part of the government's climate change plan for reducing both gas 

emissions and the province’s carbon footprint. In the U.S., the government is providing a $2.4 billion 

USD fund for the development of the next generation of PEVs and advanced battery components that 

will increase the efficiency and driving range of these vehicles [54]. This fund will provide a tax 

credit of up to $7,500 USD for the purchase of any new PEV as part of the government’s plan to have 

more than 1 million EVs on the roads by 2015. 

The next subsections include a description of the different types of EVs, followed by a 

detailed discussion of PEV operation, chargers, and communication as well as the associated impact 

on the grid.  

2.4.1 EV types and modes of operation  

An EV is any vehicle whose driving torque is produced by any type of electric motor. Three main 

types of EVs are currently available:  

 Hybrid EVs (HEVs): These vehicles have an electric propulsion system in conjunction 

with a FFICE. However, as with conventional vehicles, the only source of energy is the 

fossil fuel. Due to the efficiency-improving technologies incorporated into these vehicles, 

such as regenerative braking, which reduces fuel consumption and emissions, they 

produce fewer emissions and provide greater efficiency than FFICE vehicles.  
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 PEVs: Two types of PEVs are available in the markets: 

o Plug-in hybrid EV (PHEV) or extended-range EV: The construction of these 

vehicles is almost the same as that of HEVs, except that they use higher-capacity 

batteries that can be recharged through connection to an external electric power 

source. They can therefore operate as pure EVs as long as the battery charge is not 

depleted. This type of vehicle offers greater efficiency than an HEV and also 

produces fewer emissions.  

o Plug-in pure EV: These vehicles can be considered to be special case of the PHEV 

with zero-emission because they rely only on energy stored in the battery and are 

not equipped with a conventional fossil-fuel internal combustion engine (FFICE). 

As needed, their batteries can be plugged into a source of electric energy to restore 

their charge or exchanged with fully charged battery, but the market for them is 

very limited due to the high initial cost, and the limited availability of charging 

stations. 

 Fuel cell EVs: These vehicles utilize fuel cell technology to power the motor by 

converting chemical energy from the fuel to electric energy. Hydrogen is used as the fuel 

for these vehicles, which are considered to be zero-emission vehicles. The driving range of 

this type of vehicle is acceptable and is comparable to that of conventional fossil-fuel 

vehicles. The only limitation with respect to this type of vehicle is the hydrogen 

transmission infrastructure, which is very expensive, a factor that keeps hydrogen 

suppliers from constructing such infrastructures without an adequate market for fuel cell 

EVs in their territory. On the other hand, users will not purchase these vehicles unless a 

satisfactory hydrogen supply is available in their driving region.  

2.4.2 PEVs 

The most promising of these types of EVs is the PEV, whose operating modes can be generally 

classified as either battery charge depletion (BCD) or battery charge sustaining (BCS) [50]. In BCD 

mode, the energy stored in the battery is used to supply the motor with power. The total distance that 

can be traveled in this mode starting with fully charged batteries is defined as the all-electric range 

(AER) of the vehicle. When all of the battery energy has been used, or when the energy stored in the 

battery must be reserved for any reason, the vehicle enters the BCS mode, in which it operates as a 

conventional fossil-fuel-consuming vehicle. Accordingly, pure electric plug-in vehicles operate in 
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BCD mode all the time. Common PEV architectures are shown in Figure 2.4 [55]. The two basic 

designs are the parallel and series configurations illustrated in Figure 2.4 (a) and (b). In a series 

configuration, the output of the engine is converted to electricity via a generator. This electricity can 

be used either to charge the battery or to supply the motor that propels the wheels. In a parallel 

configuration, the engine and the battery can propel the wheels separately because the electric motor 

and the engine are coupled through clutches to the transmission system. In both configurations, 

regenerative braking is applied to increase system efficiency: any excess energy generated during 

braking is fed back to add to the battery charge.  Other configurations designed to improve system 

efficiency, such as a series/parallel configuration, are also available. 

2.4.3 Charger ratings 

Three main types of chargers are commonly used for PEV charging. The specifications [56] for each 

type are listed in Table 2.1. The charger most often used in Canada is the level 2R charger, which is 

recommended by vehicle manufacturers [57]. 

 

 

(a) Series hybrid (b) Parallel hybrid
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Figure 2.4  Common architectures of a typical PEV [55] 
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Table 2.1  PEV charger ratings 

Type Specifications  

Level 1R 

 110/120 V, AC, 15 -20 amp 

 Does not require installation and can use standard 120 V electrical outlet 

 Typical charge times: 8-12 hours  

Level 2R 

 208-240 V, AC, 15-30 amp  

 Requires special installation  

 Typical charge times: 3-8 hours  

Level 3R 

 Known as “DC fast charging” 

 440 V, DC, 125 amp, 55 kW or higher  

 Requires special installation 

 Typically returns 50 % of PEV battery charge in under 30 min  

2.4.4 Communication and control 

Any communication between the grid and a vehicle is likely to be executed through the charger 

because it is fixed in place. Sending information to the grid about the location of the vehicle when it 

is plugged in is therefore unnecessary. However, customers who install level 2R charging or higher 

must give advance notice to the electric utility [56]. Vehicles chargers are equipped with different 

levels of communication and control capabilities. Table 2.2 shows the capabilities of each level, as 

stated in [58]. 

Since standards for vehicle-grid communication have not yet been fully developed, several 

pathways [59, 60] for communication between the chargers and the grid are possible: 

 Wireless network: In this method, a transceiver is installed at each charger location. Since the 

scheduling of the charging is not a critical operation and the rate of data to be sent is 

relatively low (9.6 to 56 kb/s) [61], time division multiple access can be used for sharing the 

communication medium among customers in the same region, thus enabling the use of a 

lower bandwidth.  

 Power line carrier (PLC): Power lines were originally designed to transmit electric power at 

frequencies ranging from 50 Hz to 60 Hz. For requirements related to protection, PLC was 
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used primarily for the transmission of data over power lines. Due to the high levels of noise 

and signal fading in power lines, standards are in force to limit data transfer rates to 14 Mb/s 

[62]. This rate is more than sufficient for PEV control and home energy management. 

However, issues associated with reliability and vulnerability require additional investigation.  

 Over internet protocol (IP): This method may be the cheapest and simplest. A local area 

network circuit is built inside the charger, which connects it to the internet through cables or a 

wireless modem. Each user has an individual account and can monitor his or her vehicle 

charging from a personal computer or mobile device. However, communication over IP also 

has drawbacks: the need of an internet service provider wherever there is an EV, the 

reliability of the service is not guaranteed, and the system is vulnerable. 

Table 2.2 Control and communication levels 

Charger control and 

communication level 
Capabilities 

Level 0cc 

 Only charges the vehicle: discharging not allowed 

 Controls the charging current and voltage of the battery pack in the 

vehicle, which should match the battery specifications  

 Supplies electric energy to the vehicle battery directly as soon as it is 

plugged in 

Level 1cc 

 Includes the features of level 0cc 

 Includes time delay circuitry so the vehicle owner can control the starting 

time and possibly the finish time for charging the vehicle  

Level 2cc 

 Includes the features of level 0cc  

 Enables two-way communications with the electric utility 

 Receives on or off enabling signal from the electric utility 

 Reports vehicle identification to the electric utility upon connection to the 

vehicle 

Level 3cc 
 Includes the features of level 2cc 

 Includes bidirectional power flow to enable vehicle discharge to the grid 
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2.4.5 Potential impact of uncontrolled PEV charging on distribution systems 

Because battery charging takes hours for level 1R and 2R, it is unlikely to be achieved at charging 

stations; instead, the majority of PEVs are expected to be charged at home, in parking lots, or in 

public locations. Studies show that level 1R charging does not have a significant impact on a 

distribution system [56]. However, if not managed properly, level 2R charging can pose a potential 

risk to the system even if PEV penetration is low (5 % to 10 %) [4, 5]. The risk is associated with the 

expectation that PEVs will likely be clustered in specific geographical areas, which can be a source of 

significant additional stress on local distribution equipment, especially with multiple residential 

customers. 

A high PEV penetration (20 % to 60 %) [3] is expected in the next few decades. The energy 

consumed by these PEVs is anticipated to add considerable loading to the distribution networks. 

According to [4, 50, 51, 56, 63], if not managed effectively, PEV charging can have severe 

consequences: increased power losses, phase imbalance, power quality problems, violations of feeder 

thermal limits, transformer degradation, and fuse blowouts. 

2.5 Load modeling of uncontrolled PEV charging  

This section presents a discussion of the work published with respect to PEV modeling. In [50], it is 

assumed that a specific percentage of PEVs will be operated as pure EVs in BCD mode; however, 

this percentage is entirely dependent on travel patterns and can change from day to day. In [64], a 

specific daily mileage is assigned to all vehicles, and a single charge per day is assumed. The reality 

is that vehicle mileage varies from one vehicle to another, and some vehicles may charge more than 

once per day or not at all. In the study reported in [65], all battery charging is assumed to have the 

same start time and duration. The work presented in [66, 67] involves a rigid recharging schedule, 

based on which vehicles are plugged in at a specific time and left until fully charged. Energy 

consumption is assumed to be constant for any recharging event, whereas in the real world, charging 

could occur at any time during the day, with different amounts of energy consumption, depending on 

the available charge in the battery.  

Some authors, such as in [66-69], have assumed same AER for all vehicles, which does not 

reflect the different ranges available in the market. In [68, 69], the percentage of annual trips under 

the AER is assumed to be the same percentage of all vehicle miles driven in electric mode. This 

assumption is questionable for two reasons. First, for trip distances greater than the vehicle AER, the 

battery is still used until depleted, and gasoline then powers the remainder of the trip. Secondly, the 
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gasoline engine could be used for trips less than the vehicle AER due to insufficient stored energy in 

the battery because not all vehicles begin a trip with a fully charged battery. This assumption 

therefore results in inaccurate estimations of the energy consumed by the PEVs. A remarkable study 

is reported in [70] with respect to quantifying the benefits of smart metering and demand side 

management in a distribution system. The work includes consideration of the control of PEV 

charging; however, drivers’ travel patterns are not taken into account, and all trips shorter than 100 

miles are assumed to be powered by the batteries, which may lead to inaccurate results, as explained 

above. The authors of [71] discuss different charging scenarios, including a controlled charging 

scenario based on the minimization of the charging costs. A one-day charging pattern is considered in 

this work; however, even within a single week, charging patterns vary because weekend charging 

differs from weekday charging, and the charging pattern is also different according to the month. 

Conclusions based on a one-day charging pattern may thus be misleading because alternative days 

can exhibit severe peaks in load or PEV charging demand, which must be taken into account.  

The PEV charging model presented in [72] assumes one charging event per day after the last 

trip, and also ignores seasonal variations throughout the year. The entire consumption is modeled 

based on two days only: weekday and weekend. A methodology is presented in [73] for the modeling 

and optimal coordination of PEV charging so that energy losses and voltage deviations on a radial 

distribution feeder are minimized. The results reveal the effectiveness of the methodology with 

respect to reducing system energy losses, but the study is based on assumed fixed battery capacities 

and identical charger ratings for all vehicles. In addition, the proposed methodology is based on a 

two-day model: one to represent summer, and the other to represent winter. The PEV energy-

consumption model presented in [74] excludes consideration of any variability in usage associated 

with the PEV charging. In [75], all PEVs are assumed to have the same charging duration as well as a 

rigid starting time. An investigation of the impact of PEV charging on power system and gas 

emissions is described in [76] with respect to four different charging scenarios: uncontrolled at home, 

uncontrolled at any location, delayed, and controlled. However, one charging event per day and a 

fixed percentage of daily miles driven in electric mode are assumed. The work conducted in [77] is 

based on different battery capacities, but all vehicles are assumed to consume and charge all their 

batteries each day, which does not account for variable usage.  

Notable work is reported in [66] with respect to investigating the potential impact of PEV 

charging in different U.S. regions. The methodology developed, in this study, involves the generation 

of an annual PEV energy consumption model, which is then added to the normal load model for each 
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region. However, the research was based on the assumption that the vehicles are plugged in at a fixed 

time during the day and remain plugged in until fully charged, an assumption that neglects the 

variability inherent in PEV charging. 

In [74], the impact of PEV charging on the expected life of distribution transformers is 

examined. The model developed is based on the average daily energy consumed by a light duty fleet 

(LDF) of PEVs, which may be misleading because PEV energy consumption is dependent on the 

habits of drivers, which on some days can result in significant peaks in system demand and which 

must be taken into consideration.  

2.6 Coordinated PEV charging  

The literature provides two categories of solutions that have been proposed in order to accommodate 

the PEV charging in distribution networks. The first involves uncoordinated PEV charging, which is 

possible either through upgrades to the power system infrastructure or through the deployment of DG 

units to meet the excess power demand [78]. The second category targets coordinated PEV charging 

or charging/discharging, which relies on a two-way communication infrastructure under a smart grid 

paradigm [6]. Coordinated smart PEV charging and discharging is known to be overall more 

beneficial for electric grid operators and customers than uncoordinated operation [79]. 

The literature includes reports of a number of studies related to the problem of coordinated 

PEV charging and discharging in a smart grid. This work can be divided into two categories of 

solutions: The first includes myopic solutions, in which the charging and discharging decisions are 

based solely on the current information in the grid [80-84]. The second category includes forecast-

based solutions, in which future power demands in the grid are considered during the determination 

of the charging and discharging decisions [85-90]. 

In [80], a real-time coordinated PEV charging strategy is proposed, which takes into account 

the time-varying energy process and the charging time and zone preferred by the PEV owner. PEV 

demand side management is presented in [81], with the goal of providing dynamically configurable 

dispersed energy storage during peak power demand and outage conditions. An autonomous 

distributed vehicle-to-grid (V2G) control system is suggested in [82] as a means of satisfying the 

requirements for scheduled charging. In [83], the development of a framework is for V2G ancillary 

service modeling and operation is described. An optimal PEV charging model that responds to the 

time-of-use price in a regulated market is proposed in [84]. The authors in [91] presented a new PEV 

battery energy management mechanism based on cloud computing networks, which reduces PEV 



 

 24 

interactions with parking lots and the grid. The energy management mechanism is useful for massive 

implementations of PEVs and other smart devices that require direct communication with the grid. 

However, the work fails to include consideration of the utility benefits and the distribution system 

constraints. Since the studies mentioned are based on myopic solutions, the effect of current and 

future PEV charging and discharging decisions on the power grid is not considered. The feasibility of 

such decisions is thus not guaranteed, which means that achieving the target SOC level for PEVs can 

jeopardize distribution system equipment. 

In [85], a probabilistic method is proposed for the estimation of the amount of power that 

can be delivered from PEVs to the grid. The charging coordination strategy presented in [86] is 

based on solving a global problem that optimizes day-ahead charging decisions and a local problem 

that optimizes the real-time connection of the vehicles to the grid. In [87], the researchers 

introduce a PEV charging coordination methodology based on day-ahead and/or real-time markets. 

Another study [88] led to the development of an intelligent unit commitment model for V2G that 

optimizes power system costs and emissions. Stochastic unit commitment models for PEV 

operation with volatile wind power generation are proposed in [89, 90]. The work described in 

[92] resulted in fuzzy logic controllers for managing PEV charging/discharging in real time. The 

authors of [93] developed a dual PEV coordination mechanism that operates on two different levels: 

market operation and real-time operation. While these existing studies deal with coordinated 

decisions based on forecast data, they fail to include a method of forecasting the PEV load and are 

not based on real-time measurements and short-term predictions. The system response to short-

term fluctuations in PEV load has thus not yet been examined. 

2.7 Summary 

The brief literature review included in this chapter reveals that a number of studies have been 

conducted in the areas of DG allocation and the accommodation of PEV charging. Despite the 

amount of research undertaken, major drawbacks are still unresolved and have provided the impetus 

for the work presented in this thesis. With respect to the DG allocation methodologies described in 

the literature, these drawbacks can be summarized as follows: 

 No accurate method has been proposed for evaluating the upgrade requirements in ADNs 

with renewable DG units connections. 

 Most of the work involves single-objective optimization, which may result in a negative 

impact on other objectives. On the other hand, some studies incorporated multi-objective 
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optimization using a weighted sum, but identifying weighting factors for a planning problem 

a priori is usually questionable and can result in misleading outcomes. 

 The work related to the minimization of system losses was based on consideration of either 

the system power loss or the average energy cost of the energy loss. In fact, the cost of energy 

losses cannot hinge on the average cost of the energy because the effect of renewable DG on 

energy losses is not uniform during the day and can be concentrated during periods of low or 

high energy prices.   

It is also clear from the discussion in section 2.5 that the research published in the area of the 

modeling of uncontrolled PEV charging loads is insufficient. The primary drawbacks exhibited by the 

models presented in the literature can be summarized as follows: 

 The variability and uncertainty inherent in vehicle usage are ignored, which can lead to 

inaccurate results that cannot be relied upon to accurately quantify the effects of PEVs on 

distribution networks.  

 When the effect of ambient temperature on PEV energy consumption is not considered, the 

results may be misleading because extreme temperatures could dramatically reduce a 

vehicle’s AER [94]. 

The charging coordination methodologies presented in the literature are characterized by the 

following drawbacks:  

 Feasible charging decisions are not guaranteed. In general, the formulation of PEV charging 

coordination described in the literature is based on either single-objective or multi-objective 

optimization. Single-objective approaches are aimed at minimizing the charging cost or 

system losses. In the absence of appropriate coordination, the inclusion of the customer target 

SOC in the problem constraints may result in infeasible decisions during cases involving 

extreme peak load levels. An additional objective is to maximize the SOC of the PEV 

batteries, which, however, might be achieved at the expense of higher system operating costs. 

In multi-objective optimization, the objective function is to balance the operating cost with 

customer satisfaction. In fact, customer satisfaction and the reliability of the PEV charging 

service should have higher priority than the system operating cost. Some research also fails to 

address power system constraints in the problem formulation, e.g., [81, 84, 86]. The solutions 

proposed in the literature thus guarantee neither the feasibility of the charging and 

discharging decisions nor customer satisfaction. 
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 Previous research has failed to develop a charging coordination mechanism that is based on 

real-time measurements and that includes consideration of current and future information 

obtained from PEVs and the grid. The effect of current and future PEV charging and 

discharging decisions on the power grid has therefore not been considered.  

 The literature contains no mention of a prediction scheme for PEVs. Previous work either 

ignores future information or assumes that the PEV load forecast data are perfect. Hence, the 

system response to short-term fluctuations in the PEV load has not been examined. 

 

The research presented in this thesis was motivated by the above shortcomings. The next four 

chapters describe the work conducted to address these deficiencies and to develop useful 

methodologies that can benefit both utility operators and customers. Specifically, Chapter 3 focuses 

on the development of an optimal DG allocation approach, and Chapter 4 introduces a new method of 

modeling an uncoordinated PEV charging load. Chapter 5 presents the use of these models and 

methods in a planning approach for the accommodation of increased uncoordinated PEV penetration 

that utilizes DG units. Chapter 6 details a new charging coordination methodology that can 

accommodate real-time parking lot dynamics. 
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Chapter 3 

DG optimal allocation 

3.1 Introduction 

This chapter presents an approach for evaluating the economic benefits of renewable DG. Also 

proposed is a long-term planning procedure for maximizing the benefits of DG allocation in ADNs. 

Due to the complexity of the long-term optimal DG allocation planning problem, a GA-based 

approach is utilized. The proposed approach addresses the drawbacks mentioned in Chapter 2 by 

taking into account the following: 

 The uncertainty and variability associated with DG output 

 The variable hourly cost of energy 

 Load variability and type of customer sector 

 Protection and metering equipment upgrades 

The next two sections describe the problem and explain the modeling. The problem 

formulation, a sample case study, and concluding remarks are presented in the last three sections of 

this chapter.  

3.2 Problem description 

This work includes consideration of three economic benefits associated with DG allocation in 

distribution systems: deferral of system upgrade investments, reduced cost of energy losses, and 

reduced cost of interruptions. The following subsections provide details about these benefits:  

3.2.1 System Upgrade Cost 

In this work, system upgrade cost is considered to be the sum of the cost of upgrading the lines and 

the protection and metering equipment. The main substation transformers are assumed to be 

redundant, which is the common practice in Ontario, Canada. The costs considered are explained in 

the next subsections. 

3.2.1.1 Line reinforcement costs 

Increased loads may result in mandatory line or cable upgrades. Line upgrades can also be used as a 

means of avoiding voltage violation and increasing system security. If carefully planned, the 
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installation of DG units in a distribution system can relieve feeder congestion, which would have the 

effect of deferring such upgrades. 

3.2.1.2 Protection and metering equipment upgrades 

High DG penetration can cause reverse power flow at a substation, which would necessitate the 

upgrading of the metering equipment at that location. Installing DG units in the system also 

contributes to short circuit levels, with a consequent requirement to upgrade protective equipment.  

3.2.1.3 Cost of energy losses 

Installing DG units in a distribution network affects energy losses; however, due to the variations in 

the load, energy prices, and the DG units’ output power, the cost of annual energy losses must be 

calculated hourly. This requirement translates into the necessity of performing the load flow analysis  

          times, where      is the number of scenarios generated by MCS, which is impractical. 

In this work, the proposed approach limits the iterations of the load flow analysis to the number of 

states of the combined load and the DG model. 

The process of predicting electric energy price variations along the planning horizon is very 

complicated because of its dependency on so many factors. Energy price variations are therefore 

assumed as input for this study and are beyond the scope of the research. For these reasons, the 2010 

hourly energy prices in Ontario, Canada, have been utilized to represent each year in the planning 

horizon. Using variable hourly energy prices is assumed to provide a better assessment of the effect of 

renewable DG on system losses because the effect can be concentrated during periods of low or high 

energy prices during the day.  

3.2.1.4 Cost of interruptions 

The distribution system is an important link between the transmission-generation systems and the 

customers. In most cases, these links are radial, which makes them susceptible to outages caused by 

the failure of a single element. Statistical analysis conducted by the Canadian Electrical Association 

indicates that almost 80 % of the outages experienced by Canadian utility customers arise from faults 

in the distribution system [95]. A system typically has two operating modes: 

 Grid connected: The grid and the installed DG are supplying the load requirements. Both 

dispatchable and renewable DG units dump the power they generate into the system. 

 Islanded system: A distribution network is fed from a transmission network, and when the 

connection to the transmission system is lost, the distribution network is islanded. According 
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to [96], DG units can supply system loads during scheduled or unscheduled outage events, 

which can improve system reliability.  

The following assumptions are considered in the proposed approach for evaluating the cost of 

interruptions in distribution networks that include renewable DG connections:  

 Islanding operating mode is assumed to be allowed [96], which benefits both the LDC and 

the customers. 

 During islanded operating mode, sole reliance on renewable DG may cause stability problems 

with respect to voltage and frequency variations [97]. Dispatchable DG units are therefore 

typically allocated for the management of the power balance in the island between the 

generation (involving dispatchable and renewable DG units) from one side and the load from 

the other. Hence, if there is enough generated power, a minimum percentage of dispatchable 

DG must be assumed for successful islanding to be ensured. As given in [97], the threshold is 

assumed to be 60 % of the total DG units installed in the system. Below this threshold, 

renewable DG units must disconnect during islanding operating mode. 

 For an island to be successful, the power generated from all DG units within the island must 

be higher than or equal to a specific percentage of the power required for the load. The 

success of an island is not dependent on the setting of an upper limit for the DG units because 

the communication signals are assumed to control the output of dispatchable DG units, and if 

required, to curtail the output of renewable DG units. 

3.3 Generation and load modeling 

This section introduces the generation and load models, which are utilized later in the proposed 

planning problem formulation. The generation models include both dispatchable and non-

dispatchable DG units while the load model represents the normal load of the system. 

3.3.1 Dispatchable DG unit modeling 

NGDG are considered in this work both because they are known to produce the lowest level of 

emissions compared to other fossil-fuel DG [98] and because of the availability of natural gas 

networks. In normal operating mode, the output of these DG units is assumed to be fixed. However, 

during islanding mode, their output is considered to be variable in order to manage the active and 

reactive power balance. A two-state model has been used for modeling the operation of each DG, as 



 

 30 

described in subsection 2.2.1. This model is employed in an MCS to produce an artificial annual 

operating scenario for each dispatchable DG unit.  

3.3.2 WDG modeling 

Due to the variability in the hourly cost of energy and the nonlinear cost damage function, for wind 

generation modeling, an MCS model is utilized for the determination of the cost of the energy loss 

and the cost of interruptions, while a probabilistic wind speed model is used for evaluating the cost of 

upgrades. A time series model is not used in the proposed long-term planning allocation problem 

because this type of model is unsuitable for use with time spans that cover decades. The principles of 

the two models are described in subsection 2.2.2. Before the output power of WDG units can be 

modeled, the wind speed measurements must be adjusted to the proper height. The heights of 

meteorological masts used for wind speed measurements are usually much lower than the hub height 

of wind turbines, so wind speed measurements must be adjusted to reflect the hub height. The hourly 

wind data provided by [99] was measured at a height of 10 m, which must be adjusted to the typical 

hub heights of modern wind turbines (50 m to 120 m). The correction can be determined based on the 

roughness factor, which is available for the measured historical data. Along with the data listed in 

Table 3.1, the following formula has been used to adjust the historical data to the hub height [100]:  

 

       (
    

  
  

 

    
  
  

 
) (3.1) 

 

where 

    is the wind speed at hub height; 

   is the measured wind speed; 

   is the meteorological mast height;  

   is the  hub height of the turbine; 

   is the roughness factor, which varies from 0.0002 to 1 [101], according to the terrain descriptions 

listed in Table 3.1. 
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Table 3.1 Roughness factor for different terrains [101] 

Terrain Description    (m) 

Open sea, fetch at least 5 km 0.0002 

Mud flats, snow; no vegetation, no obstacles 0.005 

Open flat terrain; grass, few isolated obstacles 0.03 

Low crops, occasional large obstacles 0.10 

High crops, scattered obstacles 0.25 

Parkland, bushes, numerous obstacles 0.50 

Normal large obstacle coverage (suburb, forest) 1.0 

City centre with high- and low-rise buildings ≥ 2.0 

 

After the wind speeds have been modified to correspond to the appropriate wind turbine hub 

height, three years of historical wind speed data are utilized for modeling the output power of the 

wind DG units. The entire year is then divided into 12 months, and the historical data for each month 

are used in order to generate the frequency distributions of the wind speed measurements for a typical 

day [102]. The day that represents each month is further subdivided into 24 hourly time segments. 

Thus, 288 time segments represent the year (24 for each month). Considering a month to be 30 days, 

each time segment then has 90 data points to indicate the wind speed level (3 years × 30 days per 

month). From these data, the mean and standard deviation for each time segment are calculated, from 

which a Weibull pdf is generated for each hour, using (2.2) to (2.5). 

For each time segment, the entire range of wind speeds is discretized into a defined number of 

states        , where       is the set of WDG output power states. In this work, 14 states [18] 

have been chosen to represent the entire wind speed range for each hour. The number of states is a 

trade-off between accuracy and the complexity of the problem [18]. The values of these states have 

been selected based on the central centroid sorting process described in [103]. These states are 

described in Table 3.2, with each state having a probability corresponding to the Weibull pdf. The 

wind speed probabilities for each hour are converted to hourly output power probabilities. Hence, for 

a specific wind turbine, the output power for each state is calculated using (2.7). For each of the 14 

states of wind speed, the average speed is used for the calculation of the power for that state. The 
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wind turbine utilized in the system under study is assumed to have the most common [104] cut-in, 

rated, and cut-out speeds: 4 m/s, 16 m/s, and 25 m/s, respectively.  

In the final step, the wind turbine is modeled as a multi-state model for each of the 288 hours 

representing the year. This generated model is designated a probabilistic model. The same 

configuration of states is also used in order to convert the MCS speed model to an output power 

multi-state model, as explained in subsection 2.2.2.  

3.3.3 Load modeling 

The load in the distribution network under study is assumed to follow the IEEE reliability test 

system (RTS) load pattern [105]. The load is modeled based on a defined number of states, depending 

on the desired accuracy, time scale, and speed of simulation. The central centroid sorting process 

described in [103] is utilized to discretize the hourly RTS load model into seven states      , where 

    is the set of load power states, which are listed in Table 3.3. The uncertainty inherent in specific 

percentages can be used as a means of generating a variety of annual scenarios. 

Table 3.2  Wind states 

State From (m/s) To (m/s) Output Power 

0 
0.000 4.000 

0 
>25.000 

1 4.000 5.560 

For each state, the average 

speed in the range is used in 

(2.7) for calculating the 

output power. 

2 5.560 6.280 

3 6.280 7.065 

4 7.065 7.545 

5 7.545 8.200 

6 8.200 8.920 

7 8.920 10.005 

8 10.005 11.330 

9 11.330 12.345 

10 12.345 13.300 

11 13.300 14.140 

12 14.140 16.000 

13 16.000 25.000    
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Table 3.3  Load states 

Load state State as a percentage of peak load 

1 30.0 % 

2 43.0 % 

3 52.0 % 

4 62.4 % 

5 70.1 % 

6 81.1 % 

7 100.0 % 

3.3.4 Combined generation-load model 

This model describes all system states        and their probabilities        that correspond to 

different generation and load states. For the generation of this model, the year is divided into 12 

months, and each month is modeled for two types of days: weekday and weekend. For each time 

segment of the 576 (24 h ×2 d × 12 months), the probability of each combined state              is 

then calculated as the convolution of all the probabilities associated with that state, as in (3.2). The 

probability of the occurrence of each state        during any time segment is also evaluated, as in 

(3.3). For each time segment (1 h), different random variables representing the load and the 

generation are assumed to be uncorrelated, an assumption that preserves the spatial correlation 

between different random variables. Although the NGDG units are considered to be firm generation, 

the problem formulation is generic: different states can be incorporated for the NGDG. The total 

number of system states    can be given by               , where    ,    , and      are the 

number of states representing the NGDG, the WDG, and the load, respectively.  

 

                                                              (3.2) 

      (
 

   
)  ∑       

   

   
                 (3.3) 

 

where 

       is the probability of state     in time segment  ; 
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     is the probability of the occurrence of state    ; 

       is the set of states for the NGDG units. 

3.4  The DG allocation planning problem 

This section is divided into two parts:  the first presents a number of approaches for evaluating the 

three costs considered in this work, and the second introduces the proposed DG planning problem 

formulation. This work is based on the following assumptions: 

 Most of the utilities force the DG units to operate in constant power factor mode, so the DG 

units are assumed to operate at a unity power factor [18]. 

 The capacities of the DG units are discretized at a defined step, which is assumed to be 100 

kW for this work.  

3.4.1 System cost evaluation 

3.4.1.1 System upgrades 

This subsection describes the methodology proposed for evaluating the cost of system upgrades. A 

risk factor RF is proposed, which represents the expected total duration of the annual overloading and 

is used in the calculation of the cost of line upgrades. 

3.4.1.1.1 Line upgrades 

For radial systems with no DG units, the reinforcement cost can be calculated at the extreme power 

flow condition in the lines, which is simply a single condition at peak load because the power flow is 

always from the substation to the load points. However, for this study, when DG units are present in 

the system, load flow analysis is performed for each system state. The procedure for evaluating the 

cost of system upgrades is illustrated in Figure 3.1 and outlined in the following steps: 

1.  For each state  , execute steps 2 to 4. 

2.  For each year  , execute steps 3 to 4. 

3.  Update loads with the annual rise, and run the load flow analysis for state   and year  . 

4.  For each line    , record the year        in which the upgrade is required and then calculate the 

corresponding net present value (NPV) of the cost of the upgrade for each line for each state  . 

5.  For each line, arrange the combined generation and load states in descending order according to 

the calculated NPV. 
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6.  For each line    , if the probability of the state corresponding to the maximum cost of the 

upgrade is greater than the RF, proceed to step 7; if not, proceed to the next state that contribute the 

most to the upgrade of line  . If the sum of the probabilities of this state and the previous state(s) is 

greater than the RF, go to step 7; if not, proceed to the next state and repeat the process specified in 

the previous statement. 

7.  Record this upgrade cost and repeat step 6 for the next line. 

8.  Evaluate the NPV of the reinforcement investments for the required lines          during the 

period under study using the following formula [40]:   

 

 
         ∑

      

            

   

 (3.4) 

 

where 

        is the cost of the reinforcement  ;  

   is the effective discount rate, which is related to the discount rate   and the inflation rate   by 

   
   

   
, as given in [106]. 

 For evaluating the cost of line upgrades in the case of WDG units, if the RF is taken to be 

zero, the cost is greater than or equal to the cost of the line upgrades without the DG. For example, if 

the combined load and generation states are assumed to be 224 states, these states have two extremes, 

defined as zero DG output power at the peak load and as the rated DG output power at the minimum 

load. Each state contributes to the line l upgrade. For zero RF, all states are considered, including the 

first extreme mentioned above: the case without DG, which does not affect the upgrades. Moreover, 

the second extreme must be included, which may result in higher upgrade costs due to reverse power. 

Thus, if the RF is zero, the cost of each line upgrade is greater than or equal to the case without DG.  

Assuming that the state that contributes the most to the cost of the reinforcement   has a 

probability of occurrence of 0.05 %, which corresponds to almost 4 hours per year. For an RF of 6 

hours per year, this state is neglected because the probability of its occurrence is less than the RF, and 

other states will be considered. This process may result in the reduction of the cost of the line upgrade 

to a level lower than the cost with the base case based on predefined risk. 
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Figure 3.1 Evaluation of the NPV of the cost of the upgrades [102] 
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3.4.1.1.2 Metering equipment upgrade  

At the substation terminals where the metering devices are installed, the direction of the power flow is 

checked with respect to the state of the minimum load and the rated DG output. The cost of upgrading 

the metering devices is then calculated accordingly. 

3.4.1.1.3 Protection switch gear upgrade  

To prevent false tripping and for effective fault clearing, a short circuit analysis of the system must be 

performed when DG units have been installed in the system. The cost of upgrading the protective 

equipment is therefore calculated, with the installed DG units being classified as one of the following: 

 Synchronous machines (Diesel, natural gas DG units) 

 Induction machines (Class A, B, and C wind turbines) 

 Inverter-based (Class D WDG and PVDG units) 

3.4.1.2 Cost of energy loss 

The power loss for each of the combined generation and load states        is calculated for each 

year in the period under study, incorporating load growth. The NPV of the cost of the energy loss for 

the period under study is then calculated according to the methodology shown in Figure 3.2, which 

can be described as follows [102]: 

The power loss for each year is represented as a vector         
       of length    in which each 

element represents the power loss corresponding to state       , as follows: 

 

         
                                        (3.5) 

 

A binary matrix      is also defined for each scenario              generated in the 

probabilistic chronological model, using an MCS. This binary matrix is of size 8760    , where 

each row consists of       zeroes and one element of value 1; this element corresponds to the actual 

load state. This matrix is generated only once for a system with specific load and generation profiles, 

providing an hourly calculation of the cost of the energy losses.  

For example, assume a system with only WDG, in which the load states are given by     

{0.5,1} and the generation states are given by       {0,1}. There are thus four combined load and 

generation states, as given by       {(0.5,0),(0.5,1),(1,0),(1,1)}. If the period under study is assumed 
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to be 5 h,  the hourly load curve and the hourly DG output for a specific scenario      are given by 

[0.5 0.5 1  0.5 1] and [1  0  1  0  0], respectively. The result is that during the first time segment, the 

second state (0.5,1) occurs; then the first state (0.5,0) occurs; and so on. The state number represents 

the locations of the ones in the rows of the binary matrix     , which is given by 

 

 

     

[
 
 
 
 
    
    
    
    
    ]

 
 
 
 

  (3.6) 

 

The cost of the annual energy losses         
       can then be evaluated as follows:  

 

 

        
       

 

    
 ∑ [           

         
      

    
]
 

              

    

   

 (3.7) 

 

Vector         represents the hourly energy price in $/kWh for the 8760 h for year  , which is 

assumed as input for this study. For simplicity, the hourly market clearing prices of electric energy in 

2010 from the IESO website [107] are therefore utilized as vector        . The final step is to 

calculate the NPV of the total cost of energy losses         for the period under study, as follows: 

 

 
        ∑

        
      

       

 

 (3.8) 

3.4.1.3 Cost of interruptions 

A distribution network usually contains a mix of residential, commercial, and industrial customers. 

According to [108], the cost of interruptions, which is known as the cost damage function (CDF), is 

nonlinear and varies according to the duration of the interruption, as indicated in Figure 3.3 [108], 

which shows estimates of the average cost of an interruption expressed as a function of the duration 

of the interruption for each customer sector.  

Since the CDF is nonlinear, as can be seen in Figure 3.3, the outage cost cannot be determined 

analytically; an MCS is therefore utilized. The outage cost for load point     is thus evaluated using 
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Figure 3.2  Evaluating the NPV of the cost of energy losses 
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    ∑             

      

 (3.9) 

 

where 

          is the outage cost of load point   in year  ; 

   (       ) is the outage cost corresponding to interruption event        with an outage duration 

of        ; 

     is the set of interruption events for load  ; 

         
    is the average demand power for load point  . 

In the above method of calculating the contribution of DG to the interruption cost of different 

types of customers, the CDF is assumed to be constant for specific outage duration. For example, the 

cost of a 2 h interruption is the same for a specific customer type whenever the 2 h interruption occurs 

during the day. To accurately express the effect of these DG units on the reduction in the cost of 

interruptions, the CDF has been modified to reflect an assumed dependency on the time of the 

interruption event. For example, an interruption event of 4 h at peak load costs more than a similar 

event at minimum load. The cost of an interruption for a specific load point can therefore be 

calculated as  

 

 

Figure 3.3  CDFs for different types of customers [108] 
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 (3.10) 

 

 

where           
       is the actual load power at time   for load point  . 

The procedure for calculating the cost of interruptions is as follows [102]: 

1. Divide the system into segments based on the locations of the protective devices, as in [109]. 

2. For each segment, perform steps 3 to 11. 

3. Define two sets: set (1), which includes all elements outside the segment whose failure has 

caused the power outage to that segment, and set (2), all elements within the segment whose 

failure has caused the outage to all load points within that segment. 

4. Generate a two-state model for each element within the two sets using the failure rate and repair 

time for each element, and then combine these models to construct a two-state model for each 

set.  

5. Repeat steps 6 to 10 for each year in the period under study. 

6. If no dispatchable DG units are installed within the segment, go to step 9. 

7. If the percentage of dispatchable DG units within the segment is below the dispatchable share 

threshold, deactivate all renewable DG units within the segment. This threshold is not yet 

defined in the standards [96], and for this work, it is assumed to be 60 %. 

8. For each outage event in set (1), determine whether the islanding is successful or not. No 

standard yet exists with respect to the reserve margin required within the island because it is 

dependent on the variability and magnitude of the load, reliability requirements, and types and 

availability of DG units [96]. It is therefore assumed that the island is successful if the sum of 

the output power generated from all DG units within the segment is greater than or equal to a 

specific percentage of the required load power that represents load requirements, system losses, 

and the reserve margin. For dispatchable DG units only, this percentage is assumed to be 110 %; 

when both renewable and dispatchable DG units are connected to the system, the percentage is 

115 % because an excess reserve margin is required due to the variability and uncertainty 

associated with renewable DG units. The outage event in set (1) is therefore modified to up time 

for successful islanding or left as down time for unsuccessful islanding.  

9. Generate the final availability model for the segment under study from the convolution of set (1) 

and set (2). 
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10. Calculate the cost of the interruption using (3.10). 

11. Calculate the NPV of the cost of interruption       , as follows: 

 

        ∑
∑             

       

 

 (3.11) 

3.4.2 Problem formulation 

For a determination of the effects of the installation of DG units with respect to system upgrades, 

energy losses, and reliability, typical costs in Canadian dollars are used for each individual objective. 

The next subsection explains how a GA is utilized as a means of finding the optimal sizes and 

locations of DG units in order to minimize the objective function. For simplicity, the DG units are 

assumed to have been placed in the first year of the study. The proposed planning problem is thus 

mixed-integer nonlinear programming that can be described by (3.12). The costs included in (3.12) 

are defined in (3.4), (3.8), (3.11), and (3.13).  

 
   

 
(                                )    

      (3.14) - (3.28) 

(3.12) 

                                    (3.13) 

where 

  denotes the vector of decision variables; 

       is the NPV of the monetary incentives; 

           is the corresponding NPV of the total upgrades required; 

         is the NPV of upgrading the metering equipment at the substation; 

      is the NPV of the protection switch gear upgrades. 

The incentives included in (3.12) are assumed to be the monetary amounts received by the 

LDC for each renewable MW connected to the system [102] and are not considered in the case study 

presented. The problem constraints can be described as follows: 

1. Power flow constraints: 

                     ∑                           (                          )       

   

 (3.14) 
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  ∑                           (                          )       

   

 
(3.15) 

where  

          and           are the active and reactive power demands at bus   corresponding to state   

and year  ;  

          and           are the active and reactive powers generated at bus   corresponding to state   

and year  ; 

         and          denote the per unit magnitude and angle of the voltage; 

          and          are the per unit magnitude and angle of the Y-bus matrix admittance. 

 

2. Voltage limit constraints: The voltage limit constraints are defined as follows: 

 

                              (3.16) 

 

where      and      are the minimum and maximum allowable voltage limits in the systems, 

respectively.  

3. Constraints related to the discrete DG size: The DG capacities connected at each bus are assumed 

to be discretized at a fixed step that is dependent on the type of DG: 

 

                                  
    

      (3.17) 

                              
    

      (3.18) 

where 

          and         are integer variables indicating the installed DG size as a multiple of a 

fixed step for the NGDG and WDG, respectively; 

          and         are binary variables indicating the decision to install NGDG and WDG 

units at bus  , respectively; 

     
    

 and     
    

 are the discretized steps for NGDG and WDG capacities, respectively. 
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4.  Load rise constraints: In this work, the annual load rise is assumed to be an input value and to be 

constant, which is a typical assumption for this type of study [10]:  

 

                                        (3.19) 

                                        
(3.20) 

where   is the annual load rise. 

5. Maximum reverse power flow constraints: The maximum allowable DG penetration is the 

penetration that causes the maximum reverse power flow for the minimum loading condition. In 

this study, the minimum loading condition occurs at   = 1. According to [110], the maximum 

reverse active power flow is limited to 60 % of the main substation rating: 

 

 ∑(                    
 

(         ))

   

     
           (3.21) 

where     
    denotes the allowable limit of reverse power flow at the substation.  

6. Limit on the number of DG units: The number of DG units installed in the system during the 

planning horizon is assumed to be limited to a maximum value, as follows: 

 

 ∑        

   

      
      (3.22) 

 ∑       

   

     
      (3.23) 

where      
      and     

      are the maximum number of DG units installed in the system for NGDG 

and WGD, respectively. 

7. Candidate bus constraints: DG units are permitted to be connected only at the candidate buses, 

depending on the type of DG and the system: 

                                          (3.24) 

                                       (3.25) 
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where         and        are sets of candidate buses for NGDG and WDG, respectively. 

8. Constraints related to the maximum bus connection: The maximum capacity of the DG connection 

to any individual bus is limited based on the voltage level and on the technical constraints 

associated with the LDC: 

                        
                  (3.26) 

where       
      is the maximum limit of the connected DG capacity at bus  . 

9. Feeder upgrade constraints: In this study, substation transformers are assumed to be redundant, 

which is the common practice in Ontario, Canada. As shown in (3.27), the upgrade costs depend 

on the upgrade year for each feeder, with the feeder upgrade cost being based on reinforcing that 

feeder with an additional one. The feeder upgrade constraints can therefore be described as 

follows: 

                                         (3.27) 

           {
    
                                   

    
        

                  

             (3.28) 

where  

         denotes the magnitude of the current for state   and year   flowing in line  ; 

          denotes the maximum allowable current in line   in year  ; 

        is the set of all considered states that contribute to the upgrade of  line  , which can be 

generated using the algorithm in Figure 3.1; 

    
    denotes the current-carrying capacity of line  ; 

    
    is a multiplier that denotes the reinforcement of the line at year        and also indicates that 

the line require no further upgrading during the remainder of the planning period. 

3.4.3 Genetic algorithm implementation 

Due to the complexity of the planning problem, a meta-heuristic optimization technique is utilized, as 

described in this subsection. This family of techniques has been proven to be effective for solving a 
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number of complicated practical problems, such as DG planning [45], unit commitment [111], and 

economical dispatch [112]. The planning problem presented in this chapter utilizes a GA, which is a 

population-based searching algorithm. The population consists of chromosomes, each of which is 

comprised of a number of genes.  

For radial distribution systems, the number of genes corresponding to decision variable vector 

  is selected to be a multiple of the number of candidate buses based on the types of DG units to be 

installed. For example, when two types of DG units are considered in the allocation problem, such as 

NGDG and WDG, each chromosome in the population consists of a vector whose length is equal to 

four times the number of candidate buses, as shown in Figure 3.4. Each candidate bus is represented 

by four genes, as indicated by the shading in Figure 3.4. Two genes carry binary values that denote 

the decision about installing each of the two types of DG units at the corresponding bus. The other 

two genes carry integer values that indicate, for each DG type, the capacity of the corresponding DG 

units as a multiple of a defined step. 

In contrast, for mesh distribution networks, which involve more than one decision for line 

upgrades, the chromosome should include two additional genes for each line in the system, as shown 

in Figure 3.4. The first gene carries a binary value that represents the decision about upgrading the 

corresponding line. The second gene carries an integer value that denotes the year of the upgrade. For 

each iteration, the fitness of each individual in the population is evaluated. This fitness value 

represents the total cost of the objective(s) considered in the objective function described in (3.12).  
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Figure 3.4  Structure of a typical chromosome in the proposed planning problem  

3.5 Sample case study 

The distribution system considered for the case study is the one described in [113], which contains a 

mix of residential, commercial, and industrial customers supplied from a common supply point, in a 
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manner similar to the Canadian distribution, as shown in Figure 3.5. The system data and types of 

customers are listed in Appendix A. The total system peak load is 4.37 MVA divided into five 

segments [109]. Candidate DG bus locations are determined based on detailed planning analysis that 

includes technical, environmental, and economic studies. The results of the analysis are assumed as 

input but are beyond the scope of the work presented in this thesis. The candidate buses were selected 

for the case study on a totally arbitrary basis and are located as shown in Figure 3.5. The location of 

the candidate buses implies that islanding is effective in reducing the cost of interruptions only for 

segments 3 and 5. 

For the purposes of the technical evaluation of the effect of the DG units on reliability, the 

expected energy not served (EENS) of the system is evaluated as given in [105]. The maximum 

number of each type of DG unit in the system      
      and     

      is five, as specified in (3.22) and 

(3.23). Four different cases are included: the base case, NGDG, WDG, and a mix of both types of 

DG. Each case includes a variety of scenarios. The objective and RF for each scenario are listed in 

Table 3.4. The outcomes of the allocation problem for a 20 year study period are shown in Figure 3.6. 

For each scenario included in Table 3.4, Table 3.5 provides details based on typical prices in 

Canadian dollars. The costs of interruption in [108] are used in this study; however, they are updated 

by a factor of 140.88 % to reflect the inflation rate from 1994 to 2013 according to Bank of Canada 

statistics [114]. For NPV calculations, the discount and inflation rates are assumed to be 9.15 % [40] 

and 1.8 %, respectively. 

 

Table 3.4  Scenario descriptions 

Case DG type Scenario Objective(s) RF 

A No DG A.0 None 

0 
B NGDG 

B.1 UG 

B.2 EL 

B.3 INT 

B.4 UG+EL+INT 

C WDG 

C.1.a UG 3/8760 

C.1.b 6/8760 

C.2 EL 

3/8760 

C.3 UG+EL 

D 
NGDG and 

WDG 

D.1 UG 

D.2 EL 

D.3 INT 

D.4 UG+EL+INT 

* UG: Cost of upgrades, EL: Cost of energy losses, INT: Cost of interruptions 
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Figure 3.5  System under study 
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Figure 3.6  Scenario results  

3.5.1 Base case results 

For the base case defined by scenario (A.0), the total cost of system upgrades, energy losses, and 

interruptions is $3.254 M. The share attributable to system upgrades is 49.53 %, to energy losses is 

9.565 %, and to interruptions is 40.90 %. These costs are system dependent, and upgrade costs 

represent the greatest percentage; however, the impact of each type of cost is dependent on the 

savings that can be obtained, as described for subsequent cases.  

3.5.2 Dispatchable DG results 

The next four scenarios illustrate the results obtained when dispatchable DG units are allocated in the 

system under study, which is denoted case (B); the objective of each scenario is shown in Table 3.4. 

For scenario (B.1), the results were found to be at the boundary of upgrading the protection and 

metering equipment because increasing any DG unit size beyond the values obtained triggers an 

upgrade to this equipment, which increases the total cost of the required upgrades. The reduction in 

the cost of upgrades is 72.1 %, which is highly significant. However, for a lower value of discount 

rate, the effect of deferring the investments becomes less significant, as the NPV of the investments 

increases. For example, the total cost for scenarios (A.0) and (B.1) are $3.968 M  and $2.578 M  

respectively, for a discount rate of 6 %, i.e.,       . The total savings are 35.04 % compared to 
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38.91 % with         , which shows that the percentage reduction decreases for a lower discount 

rate. 

The upgrade cost savings are due to the deferral of most of the line upgrades to later years. 

For example, the line between buses 3 and 23 in the base case needed to be upgraded in the third year; 

however, in scenario (B.1), the upgrade is deferred to the 19
th
 year. The cost of energy losses is 

reduced by 33.4 %, which represents a positive result, although it is not the objective in this scenario. 

On the other hand, the cost of interruptions is unaffected because DG units 36, 37, and 38 affect the 

cost of interruptions only in segments 3 and 5, as indicated in Figure 3.5. The outcomes with 

scenario (B.1) also show small capacities at these locations, which have no effect on interruptions, as 

shown by the results. The total percentage saved is 38.91 %, which effectively demonstrates that the 

proposed methodology can significantly reduce system costs.  

With scenario (B.2), the cost of energy losses is reduced by 49.7 %, and the cost of upgrades 

is reduced by 48.5 %, while the cost of interruptions is affected only slightly. This slight reduction is 

due to the higher capacities of the DG units in segments 3 and 5 than with the previous scenario. 

However, the reduction in the cost of interruptions is still almost negligible, because this factor is not 

the objective in this scenario. The percentage saved is 29.6 %, which indicates that, with this scenario, 

the cost of upgrades is more significant because the total savings are greater than with scenario (B.1). 

For scenario (B.3), because of the technical limitations associated with the DG units in 

segments 3 and 5 and the fact that the DG units in other segments have no effect on the cost of 

interruptions, there may be infinite solutions that provide the minimum cost of interruptions. Thus, 

the solution presented represents the minimum penetration solution. The result is that the outcomes of 

the planning problem show installed DG units only in segments 3 and 5. It is important to note that 

the cost of interruptions in segments 3 and 5 cannot be reduced to zero because only outages due to 

the failure of set (1) elements are affected by islanding, while outages due to set (2) element failures 

are unavoidable, as explained earlier in this chapter. The percentage saved with respect to the cost of 

interruptions is 18.3 %, which corresponds to an EENS reduction from 13,855 to 11,561 kWh/yr. In 

contrast, the savings in the costs of upgrades and energy losses are 19.4 % and 28.5 %, respectively. It 

should be further noted that any increase in the size of the DG units does not affect the cost of 

interruptions because no additional reductions can be achieved. The total percentage saved is about 

19.8 %, which confirms that the cost of interruptions is the least significant cost in the case under 

study. These results are indeed system dependent.  
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In scenario (B.4), the objective is to minimize the three costs under consideration. The results 

are the same as for scenario (B.1) and indicate that for the case under study, the cost of upgrades is 

the most dominant type of cost. However, if the discrete size constraints incorporated in (3.17) and 

(3.18) are relaxed, scenario (B.4) produces slightly better results than scenario (B.1). 

All the mentioned NPVs are the expected costs to occur during the planning period. However, 

these costs have a pdf that describes their probability distribution. Figure 3.7 shows the cumulative 

distribution function that describes the probabilities of the total cost NPVs for scenarios (A.0) and 

(B.4). As shown in Figure 3.7, the mean and the minimum of the total system cost are reduced in 

scenario (B.4) compared to scenario (A.0) as a result of the optimal DG allocation. 

 

 

Figure 3.7  Cumulative distribution function of the total system cost 

3.5.3 WDG results 

In this case, only WDG units are considered, so the cost of interruptions is unaffected because the 

percentage of dispatchable DG units in the system is lower than the 60 % threshold, as explained 

earlier. 

For the case under study, the outcomes of the allocation problem for the cost of upgrades at a 

zero RF are found to converge to the base case without DG units. A zero RF means that all combined 

wind and load states are considered regardless of the associated probability because the LDC is 

unwilling to risk overloading their lines. Based on this result, if the RF is taken to be zero, the 

variability and uncertainty associated with WDG result in equal or higher upgrade costs compared to 

the case without DG, as explained in section 3.4. In the subsequent scenarios, which are characterized 

by a non-zero RF, the RF defines the risk of overloading the system. This risk arises from the 

neglecting of one or more states that contribute most to the reinforcement requirements. For this 
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study, the RF was assigned a number of values (scenarios C.1.a and C.1.b), as can be seen in Table 

3.5 (b). 

Table 3.5  Detailed results for each scenario 

(a) Results for cases (A) and (B) 

DG type No DG Dispatchable 

Scenario A.0 B.1 B.2 B.3 B.4 

Objective 
 

UG EL INT UG + EL + INT 

D
G

 u
n

it
s 

(M
W

) 

in
st

a
ll

ed
 a

t 

ca
n

d
id

a
te

 b
u

se
s 

DG 34 0.0 0.5 0.3 0 0.5 

DG 35 0.0 0.0 0.0 0 0.0 

DG 36 0.0 0.0 0.2 0.6 0.0 

DG 37 0.0 0.1 0.2 0 0.1 

DG 38 0.0 0.2 0.4 1.1 0.2 

DG 39 0.0 0.1 0.9 0 0.1 

Total penetration (MW) 0.0 0.9 2.0 1.7 0.9 

N
P

V
 o

f 
 c

o
st

 o
f 

sy
st

em
 

u
p

g
ra

d
es

 

Line upgrades ($) 1,611,533 449,572 489,515 1,199,013 449,572 

Metering 

upgrades ($) 
0 0 40,000 40,000 0 

Protection 

upgrades ($) 
0 0 300,000 60,000 0 

Total ($) 1,611,533 449,572 829,515 1,299,013 449,572 

% saved 0.00 % 72.10 % 48.53 % 19.39 % 72.10 % 

N
P

V
 o

f 
co

st
 

o
f 

en
er

g
y

 

lo
ss

es
 Cost ($) 311,190 207,187 156,597 222,339 207,187 

% saved 0.00 % 33.42 % 49.68 % 28.55 % 33.42 % 

N
P

V
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f 
 c

o
st

 o
f 

in
te

rr
u

p
ti

o
n
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Segment 1 ($) 211,540 211,540 211,540 211,541 211,541 

Segment 2 ($) 67,227 67,227 67,227 67,227 67,227 

Segment 3 ($) 374,568 374,568 366,029 265,414 374,569 

Segment 4 ($) 431,081 431,081 431,081 431,082 431,082 

Segment 5 ($) 246,413 246,413 229,934 111,903 246,414 

Total ($) 1,330,829 1,330,829 1,305,811 1,087,167 1,330,832 

% saved 0.00 % 0.00 % 1.88 % 18.31 % 0.00 % 

Average annual EENS (kWh/yr) 13,855 13,855 13,261 11,561 13,855 

Total cost ($) 3,253,552 1,987,588 2,291,923 2,608,519 1,987,591 

% of total savings 0.00 % 38.91 % 29.56 % 19.83 % 38.91 % 

UG share of cost savings 0.00 % 35.71 % 24.04 % 9.61 % 35.71 % 

EL share of cost savings 0.00 % 3.20 % 4.75 % 2.73 % 3.20 % 

INT share of cost savings 0.00 % 0.00 % 0.77 % 7.49 % 0.00 % 
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(b)  Results for case (C) 

DG type WDG 

Scenario C.1.a C.1.b C.2 C.3 

Objective 
UG UG 

EL UG + EL 
RF = 3/8760 RF = 6/8760 

D
G

 u
n

it
s 

(M
W

) 

in
st

a
ll

ed
 a

t 

ca
n

d
id

a
te

 b
u

se
s 

DG 34 0.0 0.3 0.4 0.2 

DG 35 0.0 0.0 0.0 0.0 

DG 36 0.0 0.0 0.3 0.1 

DG 37 0.2 0.2 0.3 0.2 

DG 38 0.5 0.6 0.7 0.2 

DG 39 0.0 0.0 1.3 0.0 

Total penetration (MW) 0.7 1.1 3.0 0.7 

N
P

V
 o

f 
 c

o
st

 o
f 

sy
st

em
 

u
p

g
ra

d
es

 

Line upgrades ($) 1,515,014 1,262,909 1,781,822 1,526,419 

Metering 

upgrades ($) 
0 0 40,000 0 

Protection 

upgrades ($) 
0 0 300,000 0 

Total ($) 1,515,014 1,262,909 2,121,822 1,526,419 

% saved 5.99 % 21.63 % -31.66 % 5.28 % 

N
P

V
 o

f 
co

st
 

o
f 

en
er

g
y
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ss

es
 Cost ($) 270,204 249,095 203,197 256,249 

% saved 13.17 % 19.95 % 34.70 % 17.66 % 

N
P

V
 o

f 
 c

o
st

 o
f 

in
te

rr
u

p
ti

o
n

s 
 

Segment 1 ($) 211,540 211,540 211,540 211,540 

Segment 2 ($) 67,227 67,227 67,227 67,227 

Segment 3 ($) 374,568 374,568 374,568 374,568 

Segment 4 ($) 431,081 431,081 431,081 431,081 

Segment 5 ($) 246,413 246,413 246,413 246,413 

Total ($) 1,330,829 1,330,829 1,330,829 1,330,829 

% saved 0.00 % 0.00 % 0.00 % 0.00 % 

Average annual EENS (kWh/yr) 13,855 13,855 13,855 13,855 

Total cost ($) 3,116,050 2,842,836 3,655,851 3,113,500 

% of total savings 4.23 % 12.62 % -12.36 % 4.30 % 

UG share of cost savings 2.97 % 10.72 % -15.68 % 2.62 % 

EL share of cost savings 1.26 % 1.91 % 3.32 % 1.69 % 

INT share of cost savings 0.00 % 0.00 % 0.00 % 0.00 % 
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(c)  Results for case (D) 

DG type WDG and NGDG 

Scenario D.1 D.2 D.3 D.4 

Objective 
UG EL INT UG + EL + INT 

NGDG WDG NGDG WDG NGDG WDG NGDG WDG 

In
st

a
ll

ed
 D

G
 u

n
it

s 

(M
W

) 
a

t 
ca

n
d

id
a

te
 

b
u
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DG 34 0.2 0.0 0.2 0.0 0.0 0.0 0.2 0.0 

DG 35 0.1 0.4 0.0 0.2 0.0 0.0 0.1 0.4 

DG 36 0.2 0.0 0.2 0.0 0.4 0.4 0.2 0.0 

DG 37 0.1 0.0 0.2 0.0 0.2 0.2 0.1 0.0 

DG 38 0.3 0.1 0.3 0.2 1.1 0.5 0.3 0.1 

DG 39 0.0 0.1 0.6 0.7 0.0 0.1 0.0 0.1 

Total penetration (MW) 0.9 0.6 1.5 1.1 1.7 1.2 0.9 0.6 

N
P

V
 o

f 
 c

o
st

 o
f 

sy
st

em
 

u
p

g
ra

d
es

 

Line upgrades 

($) 
426,337 489,515 1,663,194 426,337 

Metering 

upgrades ($) 
40,000 40,000 40,000 40,000 

Protection 

upgrades ($) 
60,000 300,000 180,000 60,000 

Total ($) 526,337 829,515 1,883,194 526,337 

% saved 67.34 % 48.53 % -16.86 % 67.34 % 

N
P

V
 o

f 
co

st
 o

f 

en
er

g
y

 l
o

ss
es

 

Cost ($) 179,967 157,563 245,091 179,967 

% saved 42.17 % 49.37 % 21.24 % 42.17 % 

N
P

V
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f 
 c

o
st

 o
f 

in
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rr
u

p
ti

o
n
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Segment 1 ($) 211,541 211,541 211,541 211,541 

Segment 2 ($) 67,227 67,227 67,227 67,227 

Segment 3 ($) 366,030 366,030 265,414 366,030 

Segment 4 ($) 431,081 431,081 431,081 431,081 

Segment 5 ($) 235,011 229,935 111,903 235,011 

Total ($) 1,310,890 1,305,813 1,087,166 1,310,890 

% saved 1.50 % 1.88 % 18.31 % 1.50 % 

Average annual EENS (kWh/yr) 13,382 13,379 12,069 13,382 

Total cost ($) 2,017,194 2,292,891 3,215,451 2,017,194 

% of total savings 38.00% 29.53% 1.17% 38.00% 

UG share of cost savings 33.35 % 24.04 % -8.35 % 33.35 % 

EL share of cost savings 4.03 % 4.72 % 2.03 % 4.03 % 

INT share of cost savings 0.61 % 0.77 % 7.49 % 0.61 % 
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In scenario (C.1.a), the RF value is taken to be 3 h per year. The outcomes of the allocation 

problem show a savings of 6 % with respect to upgrade costs, while the percentage saved in the cost 

of energy losses is 13.2 %. In scenario (C.1.b), the objective is still the minimization of the upgrade 

costs. The RF value is taken to be 6 h per year; the cost of upgrades is further reduced by 21.6 %. It 

can also be observed that, as the RF increases, the cost of upgrading decreases correspondingly. In 

other words, as the LDC increases the risk of overloading their lines due to the stochastic nature of 

renewable DG units, the cost of expected upgrades declines, as shown in Figure 3.8, where the results 

of scenario (C.1.b) are reiterated for different values of RF. The results also reveal that the reduction 

in the upgrade costs is not uniform but is dependent on wind pattern, the load curve, and the system 

under study. On the other hand, if the renewable DG units are represented by constant DG output 

power, the outcomes of the allocation problem are considered to be misleading because the inherent 

risk of overloading system lines is not reflected. 

Therefore, for the sake of comparison, the capacity credit equivalent for wind DG units is 

used for the calculation of the upgrade costs, as used traditionally in evaluating the upgrade costs 

[34]. As shown in Figure 3.8, modeling the wind DG units with a 30 % capacity credit is equivalent 

to a risk of almost 44 h of overloading per year. These results demonstrate the value of the proposed 

methodology for providing a superior assessment of system upgrades in the presence of renewable 

DG connections. The LDC can thus define the RF according to its preference, which allows the 

renewable DG to contribute to a reduction in the system upgrade costs within a predefined level of 

risk. 

  

Figure 3.8  Relation of upgrade costs with the RF 
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For scenario (C.2), with an RF of 3 h per year, the cost of energy losses is reduced by 34.7 %, 

while the cost of upgrades is higher than the base case by 31.7 %. The increase in the upgrade costs is 

due to the objective in this scenario, which is to minimize energy losses only. A comparison of 

scenario (C.2) with scenario (B.2) makes it clear that the variability and uncertainty associated with 

WDG result a smaller reduction in energy losses than that associated with dispatchable DG units. 

As well, to demonstrate the importance of including consideration of the variable hourly cost 

of energy in the renewable DG planning problem, the results of scenario (C.2) can be compared to the 

approaches previously proposed in [11, 18, 38, 42, 43], which provide examples of the traditional 

technique in which the energy losses or the cost of the energy losses is minimized based on a fixed 

energy price. As shown in Table 3.6, the results obtained using a variable hourly energy cost show an 

NPV of $0.203 M for energy losses. On the other hand, the NPV of the cost of energy losses for the 

same DG configuration from scenario (C.2) was found to be $0.193 M, based on the average energy 

cost. This result is 4.9 % lower than the result produced in the case with a variable cost, which proves 

that assuming an average energy cost in renewable DG planning problems may result in inaccurate 

outcomes because the effect of renewable DG on system losses is not uniform over time and may be 

concentrated during periods of low or high energy costs. 

 

Table 3.6  Scenario (C.2) results based on variable and fixed hourly energy prices  

DG type WDG 

Scenario C.2 

Objective Cost of energy losses 

DG units (MW) 

installed at 

candidate buses 

DG 34 0.4 

DG 35 0.0 

DG 36 0.3 

DG 37 0.3 

DG 38 0.7 

DG 39 1.3 

Energy prices 
Variable as in 

Table 3.5 (b) 
Fixed 

Total penetration (MW) 3.0 3.0 

NPV of the cost of energy losses 

($) 
203,197 193,202 

% saved compared to base case 34.70 % 37.9 % 
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For scenario (C.3), the total percentage saved with respect to the costs of upgrades and energy 

losses is 4.3 %, which is slightly higher than for scenario (C.1.a), in which the percentage saved in the 

cost of upgrades is 5.29 % and the percentage saved in the cost of energy losses is 17.66 %. A 

comparison of the outcomes produced with the different case (C) scenarios reveals that, for WDG 

units, the most significant reduction is in the cost of energy losses, despite the risk of overloading 

system lines. The stochastic nature of renewable DG units limits their ability to reduce the cost of 

upgrades and energy losses; however, the effect of the reduction in upgrade costs on the total savings 

is the most due to impact of the RF.  

3.5.4 Dispatchable and WDG results 

In case (D), dispatchable and WDG units are considered. Due to the superiority of dispatchable DG 

relative to WDG with respect to minimizing the costs under consideration, the optimization outcome 

converges to the results from case (B), in which only dispatchable DG units are deployed. Therefore, 

to ensure that the integration of renewable DG is included in the problem, a minimum of 40 % 

renewable DG capacity is assumed to be installed. In other words, the capacities of the wind DG units 

should be at least two-thirds of the capacities of the dispatchable DG units installed in the system. 

Accordingly, the following green energy constraint is added to the constraints included in (3.29): 

 

 ∑       

   

 
 

 
 ∑        

   

           (3.29) 

 

Another way to increase WDG penetration is to add a monetary value incentive in the 

objective function from (3.12) in order to mimic the actual incentives the LDC receives from the 

government for each MW of renewable DG capacity installed in their system. With scenario (D.1), 

the percentage saved with respect to the cost of upgrades is 67.34 %, which is lower than with 

scenario (B.1) due to the green energy constraint included in (3.29). The total capacity of the wind 

DG units is 0.6 MW, which is exactly two-thirds of the total capacity of the dispatchable DG units. 

This result shows that the system is at the boundary of the limits imposed by the green energy 

constraint. In fact, if this constraint is relaxed, the outcomes of the planning problem include only 

dispatchable DG units, as mentioned previously. With scenario (D.2), the reduction in the cost of 

energy losses is 49.4 %, which is close to the savings produced with scenario (B.2) but with higher 

DG capacities connected to the system. This result indicates that a mix of dispatchable and renewable 
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DG units in the system can have almost the same effect on annual energy losses, but when both types 

of DG are considered, higher capacities are entailed as a consequence of the capacity factor of the 

renewable DG units [18]. 

In scenario (D.3), the objective function is the cost of interruptions. Although the total DG 

capacity connected to the system with scenario (D.3) is greater than that with scenario (B.3), the 

maximum savings with respect to interruption costs are lower due to the intermittent effect of WDG 

units, which limits their contribution to the reduction in interruption costs.  

The difference between the use of a time-independent CDF in (3.9) and a time-dependent 

CDF in (3.10) was also evaluated. As described in subsection 3.2.1 but using (3.9) rather than (3.10), 

the same DG configuration employed with scenario (D.3) is used for the calculation of the NPV of 

the cost of interruptions based on a time-independent CDF. The NPV of the cost of interruptions is 

$1.087 M for scenario (D.3) when a time-dependent CDF is used, as shown in Table 3.5 (c). On the 

other hand, for the same DG configuration, the cost of interruptions was found to be lower by only 1 

% when a time-independent CDF is used. This result is attributable to the effect of the incorporation 

of wind DG on the cost of interruptions, which is concentrated during periods characterized by low 

load requirements. In the sample case, the difference between the two methods is insignificant for two 

reasons: 1) the cost of interruptions in the system under study is insignificant, and 2) the DG 

configuration used in the comparison tends to saturate the cost of interruptions, which is minimized 

according to the objective of scenario (D.3). Although the difference between the two methods is 

almost negligible, it might be significant for other systems. The recommendation is therefore to use a 

time-dependent CDF, which is assumed to provide a better assessment of the impact of DG on the 

cost of interruptions.   

For scenario (D.4), in which the objective function contains all three of the previously 

mentioned costs, the outcomes are the same as for scenario (D.1), which demonstrates that the 

savings related to the cost of upgrades are still the most significant.  

A comparison of scenario (D.4), for which the total savings are 38 %, with scenario (B.4), for 

which the total savings are 38.9 %, reveals that the savings provided by a mix of dispatchable and 

WDG units are slightly less than those resulting from the incorporation of dispatchable DG units 

alone. However, scenario (B.4) entails no risk of overloading system lines, while scenario (D.4) is 

associated with a risk of 3 h of overloading per year. Moreover, the system is able to accommodate 

higher DG capacities of 1.5 MW in scenario (D.4) compared to 0.9 MW in scenario (B.4). 
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The results presented in this section demonstrate the effectiveness of the proposed 

methodology for maximizing the benefits of incorporating renewable DG in distribution networks. 

The developed methodology also provides a more accurate means of evaluating the value of 

connecting renewable DG. 

3.6 Conclusion 

This chapter has presented a proposed GA-based, multi-objective optimization approach for the 

optimal allocation of a variety of types of DG units into a distribution system. The primary objective 

of the optimization is to maximize savings with respect to the deferral of investments in system 

upgrades, the cost of annual energy losses, and the cost of interruptions. The benefits of connecting 

DG to the system are represented in monetary terms as a means of facilitating the comparison and 

avoiding the use of weighting factors, which are usually questionable and may produce misleading 

results. 

The proposed method is based on the generation of combined generation-load model, which 

addresses all possible operating conditions. The uncertainty inherent in the output from renewable 

DG units is taken into account in the model, as are load type and variability. Technical system 

constraints, protection equipment upgrades, metering equipment upgrades, and the cost of 

interruptions with respect to a variety of customer types are all considered. 

With respect to the evaluation of upgrade requirements when a distribution system 

incorporates renewable DG, this work has also introduced an innovative approach involving the 

introduction of a new factor for representing the risk of overloading system lines. 

The research has also resulted in the development of a new technique for incorporating the 

variable hourly cost of energy along a planning horizon, while limiting the computational complexity 

to the number of combined generation-load model states. This method is expected to provide a more 

accurate evaluation of the cost of energy losses in long-term planning problems, especially when 

renewable DG is connected. 

Due to variations in the DG contribution to the outage events, a time-dependent CDF is 

utilized in this work as a means of achieving more accurate results with respect to the interruption 

cost because the effect of renewable DG units during islanding mode may vary according to the 

timing of outage events. The proposed planning technique has been applied for a number of scenarios 

involving a typical distribution system. The results reveal the effectiveness of the proposed long-term 

multi-objective allocation algorithm with respect to significantly reducing the types of costs 
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mentioned.  However, it was shown that reducing the cost of upgrades is the most significant 

economic benefit, while the cost of interruption is the least significant.  

All possible factors that can affect the costs are considered, which provides benefits for both 

the LDC and consumers. For the LDC, the use of a GA allows the determination of a satisfactory 

feasible solution to the planning problem in a timely manner, identifying the best locations in the 

system for connecting different types of DG units. The proposed method can be easily applied to any 

radial system, and a variety of incentives could be added to the planning problem based on the 

priorities of the LDC. The algorithm can also be applied to any type of DG unit. Dispatchable DG 

units are handled in the same manner as natural gas DG units, and renewable DG units are managed 

in the same way as WDG units. However, any differences that may arise must be taken into account 

in the modeling of each DG type. 

 

  



 

 61 

Chapter 4 

PEV Modeling 

4.1 Introduction 

The work presented in this chapter tackles the PEV modeling in power systems based on the current 

situation of the grid, where smart signals to charging locations are not yet available. The near future 

PEV charging mechanism is thus expected to be uncontrolled. For the electricity providers, the best 

time to charge the vehicles in their territory is typically at night, when normal load demand in 

minimum and low cost generating units are the marginal producers. The extra load due to vehicles 

charging is therefore met at low cost and without straining the existing transmission and distribution 

systems [115]. On the other hand, the preferred time for consumers is as soon as they return home 

from a trip, when the charging is most convenient, as the driver is already at the vehicle. In addition, 

the drivers will want their vehicles batteries to be as fully charged as possible whenever needed. This 

situation of the consumers is denoted as the uncontrolled charging scenario. 

As charging process takes hours with level 2R charger, it is not likely to be performed in 

charging stations. The PEV charging is thus assumed to occur at home in the work introduced in this 

chapter, where the chargers are assumed to be of level 0cc, as shown in Table 2.2.  

4.2 Modeling PEV charging for power flow analysis 

Two models have been reported in the literature to model the PEV charging load for the power flow 

analysis. The first model represents the PEV charging load as a constant-power load, which is the 

most popular model in the literature. On the other hand, in the second model, the PEV charging load 

is modeled as a constant-current load [116-118]. The rationale for this model is that: most of the PEV 

charging is performed in a constant-current mode.  

Therefore, to adopt the correct model, the following brief explanation is introduced. The PEV 

charging system consists of two converters: the AC/DC grid side converter, and the DC/DC battery 

side converter [119], as shown in Figure 4.1. The DC/DC converter controls the delivered power to 

the battery pack, which depends on the battery characteristics. On the other hand, the grid side 

converter maintains a constant DC link voltage and a constant power factor on the grid side, which is 

typically unity. Therefore, it is obvious that the delivered power to the battery pack is independent on 

the grid voltage due to the isolation via the power electronics converters. The PEV charging load is 

thus modeled as a constant-power load at unity power factor. With this assumption, a probabilistic 
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model for the charging power of a PEV fleet is explained in details in the next section.  

 

AC grid AC/DC converter DC/DC converter PHEV Battery

AC DCDC link

Charger

 

Figure 4.1  PEV battery charger [119] 

4.3 Probabilistic model of uncontrolled PEV charging load  

In this work, a novel annual model for the energy consumption of a LDF of PEVs is developed. MCS 

is utilized to generate this model, which includes consideration of: 

 Driver habits by incorporating the trip purpose 

 Diversity of usage from a vehicle to another 

 Different trip mileage 

 Different AER vehicles and charger ratings 

 Ambient temperature effect 

The proposed model mainly consists of two consecutive models: the travel pattern model and 

the energy consumption model, where the second model utilizes the outcomes of the first model. 

Figure 4.2 shows the proposed model, where the details are described in the next subsections.  

4.3.1 Travel Pattern Model 

The output of this model can be described as the covered distances by finished trips for each time 

segment. To incorporate the driving habits of the vehicles users, the model takes into consideration 

the purpose of the trip, e.g., commuting, education, holiday trip, etc. MCS is utilized to generate 

virtual trip distances for each purpose to cover the diversity in usage. The outcomes of the hourly trip 

model are further utilized in the next subsection for energy consumption model. The model consists 

of six stages, which are illustrated in Figure 4.2 and outlined as follows:  
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Distribute the annual trips according to purposes

Determine the annual trips of a group of Nvh 

vehicles.

For each purpose, distribute the annual purpose 

trips over 12 months.

Model each month by 2 types of days: weekday 

and weekend. Distribute the monthly purpose trips  

accordingly.

Generate NMCS virtual annual scenarios for the trip 

distances using MCS.

g =1

Annual scenario

Distribute the finished hourly trips among Nvh 

vehicles so that the earliest finished trip is assigned 

to the vehicle with largest remaining trips on this 

day.  

Update energy consumption from the grid 

according to chargers’ ratings.

Update battery consumption after a finished trip. 

g = g +1

Record the hourly demand curve of the group of 

vehicles under study for annual scenario g.

Yes

No

Distribute the daily trips among 

the group of Nvh vehicles, 

indicating the number of trips per 

day for any purpose.

For each purpose, distribute the 

daily trips over 24 hours 

according to time the trip is 

finished.

Satisfy stop 
criterion?

Terminate

Travel pattern 

model

Energy 

consumption 

model

 

Figure 4.2  Proposed PEV charging model 
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1. Purpose annual trips: 

The annual trips are distributed into a predefined number of purposes   . This distribution is 

performed according to the probability of a trip being for any purpose         
      . Since the trip purpose 

is a random, discrete, multi-valued variable; therefore, it is represented by a categorical distribution 

[120] defined in (4.1). This pdf is utilized to calculate the annual trips for each purpose     as in 

(4.2). 

 

   (     )  ∏(        
      )

           

  

   

            (4.1) 

         
                

      (     )            (4.2) 

 

where 

        is the Iverson bracket (evaluates to 1 if     is true and 0 otherwise); 

  is the set of the trip purposes; 

      is a vector of length   , which consists of zeroes except for the     element, which is 1; 

        
       is the annual number of trips for purpose  ; 

     
    is the average annual trips per vehicle;  

    is the total number of vehicles in the considered fleet. 

2. Purpose monthly trips:  

The annual trips of each purpose are distributed monthly. The categorical pdfs          defined in 

(4.3) represent the probability of a trip of a certain purpose     to be in a certain month. These pdfs 

are hence utilized to distribute the annual trips of each purpose into 12 months, as in (4.4).  
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  is the index of months; 
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      is a vector of length 12, which consists of zeroes except for the     element, which is 1; 

          
      is the probability of a trip of purpose    to be in month  ;  

          
      is the total number of trips of purpose   in month  . 

3. Daily trips per purpose: 

Each month is modeled by a typical week. The categorical pdfs          defined in (4.5) represent the 

probability of a trip of a certain purpose   to be in a specific day. These pdfs are utilized to calculate 

the number of daily trips for each purpose as in (4.6). In this work, each month is modeled by 2 days: 

weekday and weekend. In other words,           
   

 is the same for   = 1, 2, 3, 4 and 5 (weekdays), and 

it has another value for both   = 6 and 7 (weekend). 
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where 

  is the index of days; 

      is a vector of length 7, which consists of zeroes except for the     element, which is 1; 

          
   

 is the probability of a trip of purpose    to be in day  ;  

            
   

 is the total number of trips of purpose   in month   and day  ; 

        is the number of days in month  . 

4. Hourly trips per purpose: 

In this stage, the daily trips of each purpose are distributed hourly. The categorical pdfs          

defined in (4.7) represent the probability of a trip of a specific purpose   to be finished in a specific 

hour. Hence, these pdfs are utilized to distribute the daily trips of each purpose into 24 hours, as in 

(4.8).  
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where 

  is the index of hours; 

      is a vector of length 24, which consists of zeroes except for the     element, which is 1; 

          
     is the probability of a trip of purpose    to be in hour  ; 

               
     is the total number of trips of purpose   in month  , day  , and hour  . 

5. Trips per vehicle: 

The daily trips generated from the third stage are utilized in this stage. The total number of daily trips 

is distributed among the group of vehicles according to a discrete lognormal pdf           , which has 

a mean defined by the average daily trips per vehicles and a standard deviation of one trip, as in (4.9)-

(4.11). The outcomes for a typical day show that almost 49% of the daily vehicle’s trips are single trip 

per day, and almost 32% are two trips per day, as shown in Figure 4.3. The remained vehicles have 

either more than two trips per day, or no trips at all.  

 

 

       
       

           
       

                               (4.9) 

            

 

{
 
 

 
  

           √  
   

 (     ∑                 
     

   )
 

 (        )
        

                                                                                                             

        
(4.10) 



 

 67 

 

      
      ⁄

     

{
  
 

  
 ∫            

   

    

                          

 ∫            
      

         

               

                   (4.11) 

 

where 

   is a positive integer number indicating the number of daily trips per vehicle, which is assumed to 

be the nearest integer to variable   ; 

       
       

     is the total number of vehicles with daily trips    in month   and day  ; 

                
    is the mean daily trip per vehicle, which is defined as             

   
     ; 

          is the standard deviation, which is assumed to be one trip;  

      
      ⁄

     is the probability of having daily trips    per vehicle in month   and day  . 

 

 

Figure 4.3  Probability of daily trips per vehicle 

6. Distance per trip: 

In the last stage, the outcomes of the fifth and fourth stages are utilized to generate the final trip 

model. Therefore, to generate      equiprobable virtual scenarios with a probability of occurrence of 

      , MCS is utilized to generate virtual trip distances  of               
          for every purpose 
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trips finished in a specific hour. This should cover the diverse of usage among the vehicles in the 

same scenario and in different scenarios. Further, for each scenario, the daily trips are assigned to the 

vehicles according to the following assumption: the trips with the earliest finish time are assigned to 

the vehicles with the largest number of remaining trips per day.             
    , which represents the 

finished trip distance in mi for purpose   in month  , day  , hour  , and scenario  , can thus be 

given by 

 

           
            

                                      (4.12) 

 

where 

              is a vector of length               
     of uniformly distributed random variable between 0 

and 1 corresponding to the     scenario;  

       
   is the inverse of the cumulative density function, which describes the probability of a trip of 

purpose   to be less than specific distance. 

4.3.2 Energy Consumption Model 

In this model, the travel pattern model is utilized to generate hourly energy consumption model as 

shown in Figure 4.2. In this mode, the following assumptions are considered: 

 The time step is one hour, i.e., any change within the hour is neglected. 

 The vehicle batteries are fully charged at the beginning of the first hour of the annual model. 

 Four classes of vehicles are assumed to represent the light duty fleet, which are cars, vans, 

sports utility vehicle (SUVs) and pick-up trucks [50]. 

 Two temperature thresholds are assumed, beyond or below these thresholds [57], the vehicle 

engine starts to provide energy for heating or cooling. This is independent of the battery 

available charge. 

 A transient period of 10 minutes is taken by air conditioner (A/C) and Heater (HT) at start 

before settling to their continuous normal loading [94]. In the presented model, the starting 

period is averaged over the hour.   

The energy consumption model for each scenario   consists of two main vectors. The first 

vector       represents the consumed power by the considered vehicle fleet during each hour. This 
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vector has a length of 8760 and is initially set to zeroes. The other vector        
    with length     

represents the SOC of the fleet batteries at the end of each hour, as in (4.13). The initial value of the 

battery SOC, which represents the useful battery charge, is defined as in (4.14). It is assumed that this 

vector is shared between the four classes of the considered fleet according to the percentage sharing 

of each class, as shown in Table 4.1. 

 

        
                                                    (4.13) 

 
           

             

             
               (4.14) 

 

where 

           represents the battery available charge in kWh for vehicle    in scenario   at the end of 

hour  ; 

         is AER in miles for vehicle    in scenario  ;  

      is the average tractive effort required in kWh/mi, which depends on the class of the vehicle;  

   ,    ,   , and    are the efficiency of battery, onboard power electronics, motor and accessory 

load, respectively.  

To generate the hourly energy consumption model, vectors        
    and       are required to 

be updated each hour. This is performed through the following procedure, which can be described in 

two major stages: battery discharging model and battery charging model.  

 

Table 4.1  Vehicle class percentage sharing [50] 

 CAR VAN SUV PICK-UP 

Percentage share 53.0% 8.9% 19.4% 18.7% 

 

1. Battery Discharging Model 

In this stage the battery SOCs are updated hourly by the consumed energy for each finished trip by 

vehicle               
    , as in (4.15) and (4.16). The consumed energy by each finished trip is calculated 
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as a sum of two values: the total tractive energy required to overcome vehicle inertia, road resistance, 

and aerodynamics drag as defined in (4.17), and the energy required to maintain a comfortable cabin 

temperature for the vehicle driver and the passengers as in (4.18)–(4.21). 
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where 

         
     denotes the total tractive energy required in kWh to overcome vehicle inertia, road 

resistance, and aerodynamics  drag for the trip finished by vehicle    in scenario   at the end of 

hour  ; 

         
     denotes the energy in kWh required to maintain a comfortable cabin temperature for the 

vehicle driver and the passengers during the trip finished by vehicle    in scenario   at the end of 

hour  ; 

               
     is the distance in mi of the finished trip for purpose   in month  , day  , hour  , 

vehicle   , and scenario  ; 

    ,      denote the maximum and minimum temperature limits for battery usage in BCD mode, 

respectively; 

   ,     are the thresholds for A/C and HT operation, respectively; 

           ,             denote the energies in kWh consumed by A/C and HT respectively, during 

the trip finished by vehicle    in scenario   at the end of hour  ; 

              denotes the duration in minutes of the trip finished by vehicle    in scenario   at the end 

of hour  ; 

          
    denote the average vehicle speed in mi/h for purpose  ; 

   
  ,      

   denote the powers in kW consumed by A/C during starting and continuous operation, 

respectively; 

   
  ,      

   denote the powers in kW consumed by HT during starting and continuous operation, 

respectively. 

2. Battery Charging Model: 

When a vehicle finishes a trip, it may or may not be plugged in the charger. When plugged, the time 

and amount of energy supplied by the charger depend on the battery available charge, the allowable 

charging rate, and the charger ratings. It is assumed that the set of charging vehicles at each hour 

contains all the plugged vehicles, under the uncontrolled charging scenario. The consumed energy 

vector       is initially zero, and is updated each hour for each charging vehicle using (4.22).  The 

hourly demand of the batteries is approximated as in [66] and [121, 122], where the charging 

process is approximated to two charging levels. In this work, chargers operate with full capacity 

except for the final charging hour. This is modeled in (4.23) by setting the charging time to 1 hour if 
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it is a fraction of an hour. Finally, the batteries available charges of the plugged vehicles are updated 

using (4.24): 
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where 

        denotes the  th
 element in vector      , and represents the average consumed power in kW 

during hour   in scenario  ; 

    denotes the charger efficiency; 

            denotes the required charging time in hours to fully charge the battery of vehicle    at time 

  in scenario  ; 

           
       

 denotes the charger continuous rating in kW for vehicle   ; 

      denotes the set of vehicles required to be charged at hour  . 

4.4  Sample case study 

The outcomes of the energy consumption model for an LDF of PEV under the uncontrolled charging 

scenario are presented in this case study. Then, the impacts of different penetration levels of PEV 

uncontrolled charging are investigated on a test distribution system. 

The considered purposes in this work are shown in Table 4.2. The data for the pdfs utilized in 

the travel pattern model are provided by Department of Transportation, Great Britain. For the sixth 

stage in the travel pattern model, four pdfs are utilized to fit the actual data of each purpose: 

Exponential, Lognormal, Gamma and Weibull.  The maximum likelihood method was used to 
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estimate the parameters of the closest pdf for each purpose actual data. Then, the highest likelihood 

pdf is chosen to represent each purpose. Table 4.3 shows the parameters of the fitted pdfs, which 

are used for        
   in (4.12). It was observed that the purposes with low average distance per trip 

are more likely fitted by Lognormal pdf, due to its steep curvature specially for low mean values. 

On the other hand, the purposes with high average distance per trip are more likely fitted with 

Weibull pdf, due to its flexibility in fitting such types of pdf. 

Three levels of chargers are available in the market, as mentioned in chapter 2 and shown in 

Table 2.1. In this study, level 2R chargers are only considered in this work, which are recommended 

by vehicle manufacturers [57], and are expected to be the most commonly used home charger. 

However, the charger ratings for this level depend on available capacity in the household. The 

flexibility of the model enables utilizing a mix of different chargers ratings as in [50]. Accordingly, 

half of the chargers are considered of 16 A current rating , and the other half of 30 A. Regarding the 

temperature model, the daily temperatures in a specific month are assumed to be normally distributed 

between maximum and minimum temperatures in the last five years for this month. 

As mentioned before, the work presented in this study considers only the uncontrolled at 

home charging scenario. Hence, the set of the vehicles that are required to be charged       

includes all the vehicles in the fleet under study. Moreover, the PEV AERs assumed in this study 

are samples of the commercially available ranges. However, there are other available ranges 

(released or under development) that have different impacts on the system. Higher AER vehicles 

consume more energy and have less diversity in charging. They are thus accompanied with more stress 

on the system compared to lower AERs, which will be proven in the case study. 

 

 

Table 4.2  Considered purposes in the PEV model 

q Purpose q Purpose 

1 Commuting 6 Other escort and personal business  

2 Business  7 Visit friends  

3 Education  8 Holiday trip  

4 Escort education  9 Day trip  

5 Shopping  10 Other like: entertainment, public activity,  etc. 
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Table 4.3 Fitted pdfs parameters for different purposes 

q Fitted pdf Parameters q Fitted pdf Parameters 

1 Lognormal μ = 3.27 σ =  1.02 6 Lognormal μ = 3.02 σ =  1.32 

2 Weibull c = 111.75 k = 1.27 7 Weibull c = 83.81 k = 0.93 

3 Lognormal μ = 2.48 σ =  1.16 8 Weibull c = 176.47 k = 2.67 

4 Lognormal μ = 2.16 σ =  1.38 9 Weibull c = 79.63 k = 1.19 

5 Lognormal μ = 2.76 σ =  1.18 10 Lognormal μ = 3.42 σ =  1.29 

 

where 

μ and σ are mean and standard deviation of the Lognormal pdf respectively; 

k and c are the shape and scale parameters of the Weibull pdf respectively. 

4.4.1 Energy consumption model results 

The results presented in this case study are based on the values shown in Table 4.4, where the 

temperature thresholds are assumed to be the average thresholds of the collected data from the 

vehicles manufacturers and the PEVs users. Unfortunately, this data is not available; therefore, the 

presented temperature thresholds are reasonably assumed.  

Figure 4.4 (a) and (b) show 10 scenarios for the uncoordinated charging of 100 vehicles in a 

typical weekday and weekend in March, respectively. As shown in the figures, consumption is higher 

during the weekend compared weekdays, and the consumption peaks occur at later times during the 

weekends: between 5:00 pm and 6:00 pm rather than 4:00 pm to 5:00 pm on weekdays. It can also be 

observed that relatively higher consumption occurs during the period between 7:00 pm and 10:00 pm, 

which is due to the higher probability of longer daily trips during weekends.  

On the other hand, Figure 4.4 (c) shows 10 scenarios for the uncoordinated charging of 100 

vehicles during a typical July weekday. The effects of considering the trip purpose and ambient 

temperature are striking with respect to the energy consumed. In July, the peaks are higher because of 

the longer day trips and increased air conditioner usage. In addition, the peaks of the consumption in 

March occur between 4:00 pm to 5:00 pm; however, the peaks in July are shifted to the period 
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between 6:00 pm and 7:00 pm because of longer daylight hours and fewer education-related trips 

during July, when drivers tend to return home at a later time compared to March. Education-related 

trips also result in relatively lower peaks occurring in March between 1:00 pm and 2:00 pm.  

4.4.2 PEV uncontrolled charging penetration limits 

To investigate the impacts of a high penetration of PEV uncontrolled charging on distribution 

systems, three scenarios are studied: 30-mile AER, 50-mile AER and a mix. The mix scenario has 50 

% of the PEVs with 30-mile AER and 50 % with 50-mile AER. It is assumed in this study that the 

PEV charging occurs only at home (residential customer busses), there are 1.86 vehicles per house-

hold [123], and the average peak demand is 5 kW [124] for a typical residential home. Due to lack of 

customers’ hourly load data, the customer load curve is represented by the reliability test system load 

model [125]. 

Two systems are studied for each scenario, where each system is characterized by different residential 

customer sharing percentage. The system in Figure 4.5 is used in this study. The customer types are 

given in Table 4.5 [5], while the system line and load data are given in Appendix A.  

 

Table 4.4  Simulation parameters 

Parameter Value Parameter Value 

     
    395 trip/year [126]    92 % [50] 

     -10 oC    88 % [50] 

    5 oC     95 % [50] 

    27 oC    
   2.99 kW [94] 

     40 oC      
   2.1 kW [94] 

    92 % [50]    
   4 kW [94] 

    95 % [50]      
   2 kW [94] 
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Figure 4.4  PEV consumption of 10 scenarios during a typical: (a) March weekday, (b) March 

weekend, and (c) July weekday 
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Figure 4.5  System under study 
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Table 4.5  System data  

Bus System A  System B Bus System A  System B Bus System A   System B Bus System A   System B 

2 R R 10 C C 18 I R 26 C C 

3 I I 11 C C 19 R R 27 I I 

4 C C 12 R R 20 C C 28 C C 

5 R R 13 C R 21 I I 29 C C 

6 I I 14 R R 22 R R 30 C C 

7 C C 15 C C 23 C C 31 R R 

8 C C 16 I I 24 C C 32 R R 

9 I I 17 C R 25 C R 33 C R 

* R: residential customer, I: industrial customer, and C: commercial customer. 

 

4.4.2.1 System A 

This case represents a 24 % residential customers sharing, in terms of active power demand. The 

loading levels of the system lines are examined under different penetration levels of PEVs. Three 

scenarios are studied. These scenarios are defined as 30-mile, mix and 50-mile AER.  

Two lines mainly experience significant overloading. One of these lines is line 5 between 

buses 21 and 22; the other line is line 19 between buses 31 and 33. These are the lines that are 

significantly affected by the PEV charging. This is because line 19 supplies the required energy for 

two residential customer buses, which are buses 31 and 32, and line 5 supply residential loads on bus 

22.  The penetration up to 30 % does not cause severe overloading in the system lines, which are 

assumed to have a maximum limit of 120 % of the kVA flow at the peak load condition. However, to 

limit the loading level of each line to its normal level, which is 100 %, the penetration limits of the 

three scenarios are found to be 23 %, 17.5 %, and 15 % for the 30-mile, mix and 50-mile scenarios 

respectively, as shown in Figure 4.6. These penetration levels represent the maximum capability of 

the system to accommodate PEV chargers. 

The penetration limits based on worst case condition are shown in Figure 4.6, where all the 

system chargers are assumed to operate at the same time. As shown in Figure 4.6, the penetration is 

limited to 2.5 % and it is not affected by the AER. Comparing the penetration limits of the proposed 

model with the worst case condition, it is assumed that the proposed model takes into consideration 

the diversity in usage, which is an important factor that has to be considered in planning.  



 

 79 

 

Figure 4.6  Penetration limits for the system A 

4.4.2.2 System B 

This case represents a distribution network with dominant residential load of 45 % share, which exists 

in reality in many areas. The same three scenarios mentioned before are applied to this system. It was 

noticed that lines 4, 5, 9 and 19 experience significant overloading. Line 9 supplies a considerable 

residential load on bus 25. Lines 4 and 5 supply residential loads on buses 21 and 22. The excess 

loading on system lines due to the PEV charging limits the penetration of PEVs to 7 %, 6 %, and 4.5 

% for the 30-mile, mix and 50-mile scenarios respectively, as shown in Figure 4.7. These are 

relatively low percentages as the PEV penetration, which is predicted to exceed 20 % in the next 

decade. The presented results show that PEV charging can have significant effect on systems with 

dominant residential loads. 

The penetration limits based on worst case condition are shown in Figure 4.7, which are 

limited to 1.8 % and unaffected by the AER. Comparing Figure 4.6 and Figure 4.7, it is shown that as 

the density of the residential customers increases, the diversity in usage gets closer to the worst case 

condition. 
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Figure 4.7  Penetration limits for system B 

4.5 Conclusions 

In this chapter, a novel probabilistic based model for PEVs has been proposed and developed. The 

model utilizes MCS to generate virtual trip distances for each purpose trips, and takes into 

consideration different factors, such as the variations in driving habits, different electric range 

vehicles, multiple charging events per day, and recharging time variation. These aspects are assumed 

to present more accurate model for the consumed energy by PEVs, compared to the mentioned 

literature. 

Furthermore, the proposed model integrates the effect of ambient temperature on vehicles 

energy consumption as an important factor that affects the model accuracy. The effect of ambient 

temperature can be very significant, especially in regions with severe weather conditions like Canada, 

north USA, and north Europe.  

In addition, the model represented the PEVs consumption as an annual model which 

coincides with the normal load model, resulting in more accurate evaluation of the impacts of the 

extra load imposed by vehicles charging on the distribution networks. Aggregating this model in a 

daily model, as in most of the mentioned literature, may result in misleading outcomes that cannot be 

relied upon. This is because a significant consumption peaks may occur in certain days in the annual 

model which are averaged out in the daily model.  
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The proposed model has been applied to different scenarios for two configurations of a 

typical distribution system. The results reveal that the effects of high penetration of PEVs are not 

significant on systems with commercial and industrial dominant loads. On the other hand, they show 

a significant effect on lines loading levels for systems with dominant residential loads. The proposed 

model can be utilized by local distribution companies to quantify the penetration limits, expected 

impacts, and the required upgrades in the distribution networks as a result of PEVs uncontrolled 

charging. Moreover, the proposed model can be used by grid operators and national energy agencies 

to quantify the expected impacts of the target PEV penetration levels on the generation level and the 

distribution level. 
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Chapter 5 

Accommodating High Penetrations of PEVs and Renewable DG in 

Distribution Systems  

5.1 Introduction and motivations 

Accommodating a high penetration of PEV charging has been dealt with in the literature using 

coordinated charging, as in [71, 75, 127, 128]. Obvious gaps exist between the solutions proposed in 

the literature and the current status of the grid, which can be summarized as follows: 

 With only few exceptions, smart signals between the LDCs and the PEV charger load points 

are currently not available, and their implementation may require decades, especially in 

developing countries. 

 For a charging coordination scheme to be effective, historical data of PEV are required, such 

as arrival and departure SOC levels, seasonal variations of consumption, and market shares of 

different battery technologies. This will be available in future, when the PEV penetration 

becomes significant. For the coordination of PEV charging to be robust and adequate, a 

transition period of uncoordinated PEV charging is therefore required. 

 If the accommodation of the PEV charging load is not to be counterproductive, renewable 

resources of energy must be taken into account to supply the PEV needs. This aspect is 

critical because meeting PEV load requirements through conventional generating units 

transfers the emissions from the transportation sector to the electric sector. 

The work proposed in this chapter here was thus undertaken with the goal of filling these 

gaps through the proposal of a multi-year multi-objective planning algorithm, where the current rising 

integration of renewable DG is utilized as a means of accommodating the expected growing 

penetration of uncoordinated PEV charging. The results of this work are therefore assumed to provide 

an alternative to coordinated charging during a transition period between the current status of the grid 

and a significant penetration of PEV, where the deployment of smart signaling might be essential. 

5.2 Problem description 

In this section, the proposed multi-objective long-term planning algorithm is described, including the 

system emissions and considered costs.  The input to the proposed algorithm is comprised of the DG 

unit models, the load models, and the PEV uncoordinated charging model, all of which are explained 
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in the next section. The output of the proposed algorithm consists of the location, size, and year of 

installation of each DG unit, as well as the optimum target PEV penetration.  

Normally, no unique solution can simultaneously optimize all of the objectives of a multi-

objective problem [129], so different methods are thus employed to address such problems. Some rely 

on weights as a means of combining all of the objectives into one single objective; however, a 

drawback of this method is the difficulty sometimes associated with the prior setting of the criteria for 

selecting the weights [129]. Other methods address the multi-objective problem using a posteriori
2
 

technique, which results in an optimum set of solutions called a Pareto frontier [131]. The decision-

maker (DM) can therefore choose the best solution among the Pareto frontier.  

The work presented in this chapter is based on the second type of method, which deals 

directly with the objectives. The objectives that are minimized by the proposed planning algorithm 

are as follows. 

5.2.1 System Costs 

The accommodation of the expected growth in PEV penetration over the next few years requires 

system reinforcements and recognition that might lead to system losses increase. Further, the cost of 

interruption proved to be of least importance in Chapter 3 compared to other benefits of installing DG 

units. The following costs were therefore considered in this work: 

 Cost of upgrades: DG units can relieve congestion in network feeders and defer previously 

required system upgrades, thus reducing the NPV of the required upgrades, as explained in 

Chapter 3. However, the costs of upgrading the protective equipment are not considered in 

this work for simplicity. 

 Cost of energy losses: The growing extra load imposed by PEVs will increase system losses; 

however, installing DG units can alleviate this problem because of their proven effectiveness 

in reducing system losses. In the work presented in this chapter, an average price of energy is 

used to evaluate the cost of energy losses. This average price is used to avoid using MCS, 

which require huge computational effort in this problem. 

5.2.2 System Emissions 

In this work, system emissions are assumed to include three elements, represented by three terms, 

which are described as follows: 

                                                      
2 Posteriori techniques or generate-first-choose-later approaches do not require prior preference information from the decision-maker 

[130]. 
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 The first term represents the carbon footprint of the electricity purchased from the grid, which 

is dependent on the region or province where the system is located.  

 The second term represents the emissions from the DG units connected to the system, which 

are contingent on the type of DG unit and the amount of energy supplied.  

 The last term represents the reduction in transport sector emissions due to the replacement of 

conventional vehicles with PEVs, which is assumed to be a credit for the grid operator.  

5.3 Generation and Load Modeling 

In this section, the generation and load models are described. After the models are developed, they are 

combined into one multi-state gen-load model that represents all possible system states, based on the 

following assumptions: 

 The time step is one hour, i.e., any changes within the hour are excluded. 

 The DG units operate at a fixed power factor, which is assumed to be unity for the purposes 

of this work. 

 The DG output power, the normal load, and the PEV load are discretized into a definite 

number of states, which represents a trade-off between accuracy and the complexity of the 

planning problem. 

5.3.1 DG Modeling 

Three types of DG units are considered in this work:   

5.3.1.1 NGDG 

The NGDG is an example of a dispatchable DG unit, and any other type of dispatchable DG unit can 

be treated in the same manner. For the long-term study presented in this work, these DG units are 

considered firm generation units, which is a typical practice for this type of analysis [10]. In other 

words, these units have no associated uncertainties and operate at rated capacities.  

5.3.1.2 WDG 

A typical analytical probabilistic model of wind speeds is described in subsection 2.2.2. In the work 

presented here, six years of historical wind speed data are used to generate the model. First, the entire 

year is divided into clusters (months), following which, historical data for each cluster is used in order 

to generate a typical daily frequency distribution of the wind speed measurements. The day that 
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represents each cluster is further subdivided into hourly time segments. From this data, the mean and 

standard deviation for each segment are calculated and then become the basis for the generation of the 

Weibull pdf for each hour. The entire range of wind speeds is next discretized into a definite number 

of states: in this work, six states are chosen to represent the entire wind speed range for each hour. 

The values of these states are chosen based on the central centroid sorting process [103]. Finally, the 

wind speed states are converted into output power based on the wind turbine characteristics described 

in subsection 2.2.2. The final output of the model is comprised of the probabilities of the six states for 

the 288 time segments (12 months × 24 h) that represent the year.  

5.3.1.3 PVDG 

The same technique used to model wind speed is also used to model solar irradiance. However, for a 

specific time segment, the solar irradiance data usually have a bimodal distribution function [18]. 

Therefore, the data for each time segment are divided into two groups, each with a unimodal 

distribution function described by a beta pdf [132]. Six states are chosen to represent the solar 

irradiance level for each of the 288 states representing a year. Solar irradiance is further converted to 

output power from the PVDG based on the characteristics of the photo-voltaic panel, as explained in 

[106]. 

5.3.2 Normal Load Modeling 

Three types of system loads are assumed: residential, commercial, and industrial. The data for each 

load type are represented by a multi-state model. The year is divided into 12 months, each of which is 

modeled based on two types of days: weekday and weekend. The probability of each state for the 576 

time segments representing the year is calculated based on the historical data. For this work, four 

states were chosen to represent each type of load; the values of the states are calculated based on the 

central centroid sorting process [103]. 

5.3.3 Uncoordinated PEV Charging Model 

The probabilistic annual model described in Chapter 4 is utilized in this work, where MCS is used to 

generate virtual scenarios of PEV energy consumption.  The output of this model is       

equiprobable virtual scenarios with a probability of occurrence of       . These scenarios describe 

the annual 8760 h consumption of a group of PEVs. Further, the powers absorbed by all vehicles at 

each hour   in scenario   are normalized to their peak value. Then, the central centroid method [103] 

is used to discretize this model into definite number of states to be able to combine it to other 
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analytical probabilistic models. In this work, six states are chosen to represent the PEV uncontrolled 

charging load. Finally, the probability of occurrence of each state in each hour during the weekdays 

and weekends for each month in the year is evaluated. 

5.3.4 Combined Gen-Load Model 

This model describes the system state for each load type and for each generation. The details of this 

model are introduced in 3.3.4. However, the PEV load and the PVDG are considered in the work. 

Moreover, the normal load is categorized into three types, namely residential, commercial, and 

industrial. Each customer has different behavior. Thus, the formulas in (3.2) and (3.3) are modified to  
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where, 

      is the set of states for the NGDG units; 

     is the set of PEV consumption power states; 

   ,    , and     are the set of load power states for residential, commercial, and industrial 

customers, respectively. 

5.4 Planning Problem Formulation 

In this section, the proposed multi-objective multi-year planning problem formulation and the non-

dominated sorting GA (NDSGA) implementation used to solve the problem are presented. The 

problem is classified as mixed-integer nonlinear programming and is defined by the objective 

function and constraints explained in the following subsections. 

5.4.1 Objective (Fitness) Function 

In Ontario, Canada, LDCs are not permitted to connect their own DG units. However, private sector 

proposals for DG connections in the Feed-in Tariff program are accepted after they pass technical and 

economical evaluations. Therefore, in this work, the capital, operational and maintenance, and output 
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energy costs of DG units are not considered in (5.4) because the goal of this study was to encourage 

the LDCs to accept proposals that maximize their benefits. On the other hand, if the LDC is installing 

its own DG units, these costs must be considered in (5.4), which completely changes the planning 

outcomes. This adjustment can be achieved through the addition of a third term in (5.4) to represent 

DG costs, which are the sum of the capital, installation, and operational costs minus the costs of the 

energy delivered to the system. 

The objectives and problem formulation presented in this work are oriented more toward 

publicly owned LDCs, where the effect of emissions can be taken into consideration as a decision 

factor. On the other hand, privately owned LDCs can use the proposed method in order to quantify 

their carbon footprint and then choose the optimal operating point from the Pareto frontier based on 

their preferences, which could be the minimum cost operating point.  

The proposed dynamic long-term planning problem can be defined by 
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where 

         denotes the objective     required to be minimized; 

  denotes the vector of decision variables; 

    
    ,     

  , and     
    denote the emissions due to energy purchased from the grid, DG unit 

emissions, and PEV emission reduction, respectively, in equivalent kg CO2.  

        
       denotes the cost of energy losses for year  ; 

           denotes the power loss corresponding to state   and year  ; 

    
    denotes the average cost of energy; 

    
     denotes the equivalent CO2 emissions for the energy purchased from the grid, in kg/kWh; 

    
     denotes the equivalent CO2 emissions from NGDG, in kg/kWh; 

           denotes the connected capacity of the NGDG on bus   in year  ; 

        
     denotes the generated power corresponding to state   as a fraction of the NGDG capacity; 

 
      
    denotes the optimal penetration of PEV in year  ; 

       
    denotes the annual energy consumption for 100 % PEV penetration in the system, in kWh; 

       
    denotes the average distance travelled per kWh; 

        denotes the equivalent CO2 emissions per mile from conventional vehicles in kg /mi; 

         
     denotes the peak active power demand for PEVs at 100 % penetration; 

       
     denotes the fraction of the peak PEV demand corresponding to state  . 

5.4.2 Constraints 

The following are the salient constraints considered in the proposed problem formulation:  
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1. Power flow constraints: The power generated at each bus is dependent on the type of DG and 

the connected capacity at that bus. On the other hand, the power consumed at each bus is the 

sum of the normal load power, which is dependent on the type of sector, plus the load power 

required for PEV charging. It is assumed that the PEV chargers operate at a unity power 

factor. Thus, the PEV load does not contribute to the load reactive power in the system. 
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where 

           and           denote the capacities in pu of the connected PVDG, and WDG 

respectively on bus   in year  ; 

        
     and       

     denote the generated powers corresponding to state   as a fraction of the 

PVDG and the WDG capacities, respectively; 

      ,       , and       denote the power factor of the NGDG, PVDG, and WDG, 

respectively; 

           and          
    denote the normal load and PEV load respectively at bus   in year   

corresponding to state  ; 

        
     denote the peak active power demand for normal loads on bus   in year  ; 

      
    ,       

    , and       
     denote the fraction of the peak demand corresponding to state   

for residential, commercial, and industrial loads, respectively; 

   ,    ,    , and       denote the sets of residential, commercial, industrial, and PEV load 

buses respectively, where    ,    ,    ,       ; 

       denote the power factor of the normal load on bus    . 

2. Load rise constraints: In this work, the annual load rise is assumed to be an input value and 

to be constant, which is a typical assumption for this kind of studies [14]. Thus, the active 

power demand rise can be defined as in (5.21) and the reactive power demand is assumed to 

rise with same rate as in (5.20). The annual increase in the normal load demand is assumed to 

be accompanied by an increase in the number of vehicles. Thus, the value of          
     is 

assumed to rise at same rate as the normal load. However, the actual penetration        
    for 

each year in the planning horizon is considered a decision variable, which can vary between 

the minimum and the maximum limits for each year. For example, assume the value of 

         
     is equivalent to a load of   vehicles in the first year for a certain load point. 

Therefore, for 1% load rise, the value of          
     in the second year is equivalent to a load of 

1.01    vehicles.   
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                           (5.22) 

 

where        
     and         

     denote the peak demand on bus   at the beginning of the planning 

period for the normal loads and the 100% penetration PEV charging load, respectively. 

3. Years of DG placement constraints: The DG output power at each bus is set to zero before 

the DG placement and then updated to the installed capacity at and after the year of 

placement, as given in (5.23) to (5.25).   
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where 

     
    ,      

    , and      
    denote the capacities of the installed NGDG, PVDG, and WDG 

units on bus  , respectively; 

    
    ,     

    , and     
    denote the years of placing NGDG, PVDG, and WDG units on bus 

 , respectively.  

4. Voltage limit constraints: The voltage limits constraints are defined as follows: 

 

                              (5.26) 
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5. Maximum reverse power flow constraints: These constraints limit the DG penetration in the 

system for every year, with the maximum allowable DG penetration being that which causes 

the maximum reverse power flow at the minimum load condition as in (5.27). 

 

 ∑(                                   
 

(         ))

   

     
           (5.27) 

 

6. Discrete size of DG constraints: The connected DG capacities at each bus   are assumed to be 

discretized at a fixed step that is dependent on the type of DG. 

 

      
                             

    
      (5.28) 
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where 

         denotes an integer variables indicating the installed PVDG size as multiple of fixed 

step; 

         denotes a binary variables indicating the decision of installing PVDG on bus  ; 

     
    

 denotes the discretized step of PVDG capacity. 

7. Limit on the number of DG units: The number of DG units installed in the system during the 

planning horizon is assumed to be limited based on the preferences of the LDC. It is worth 

noting that, if these constraints are ignored, the outcomes of the planning problem would 

result in numerous small-capacity DG units spread throughout the system, which is not 

practical. 
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where      
      denotes the maximum number of PVDG units installed in the system. 

8. Candidate bus constraints: DG units are not permitted to be connected to any bus in the 

system other than the candidate buses sets, as in (5.34) to (5.36). 

 

                                          (5.34) 

                                       (5.35) 

                                         (5.36) 

 

where         denote the set of candidate buses for PVDG units. 

9. PEV penetration constraints: The constraints in (5.37) limit the PEV penetration to a 

maximum and a minimum value. Moreover, the constraints in (5.38) are required to ensure 

that the penetration for each year is higher than or equal to that of the previous year. 
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                  (5.38) 

 

where        
    denotes the allowable minimum PEV penetration in year  . 

10. Maximum bus connection constraint: The maximum capacity of the DG connection to any 

individual bus is limited to       
     , which depends on the voltage level at the bus and on the 

technical constraints of the LDC. 
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                  (5.39) 

 

11. Feeders upgrade constraints: The NPV of the feeders’ upgrade costs depend on the upgrade 

year of each feeder, where the feeder upgrade is assumed to be based on reinforcing the 

feeder by another one. The feeder upgrade constraints can therefore be described as in (5.40) 

and (5.41). 

 

                                 (5.40) 
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             (5.41) 

5.4.3 NDSGA Implementation 

Evolutionary algorithms are well known to be suitable for solving multi-objective problems because 

they are less sensitive to the shape and continuity of the Pareto frontier [133]. In this work, a NDSGA 

was utilized for solving the proposed problem. As explained in detail in [134], this method is widely 

used in multi-objective problems because of its reduced computational effort and faster convergence 

compared to other methods. However, the obtained solution is no guaranteed to be the true Pareto-

optimal front. Still, it is a satisfactory solution and close to the true Pareto-optima front [134]. 

It is a population-based, algorithm in which each individual   in the population consists of 

four parts. The first part includes the DG capacity integer variables      ,      , and     , and 

the second incorporates the binary decision variables      ,      , and     . The lengths of these 

two parts are equal and depend on the type of DG units as well as the number of candidate buses for 

each type. The third part involves the year of installation and the feeders upgrade decisions, which are 

based on the number of DG units that are permitted to be connected to the system (     
     ,      

     , 

and     
     ) and the number of feeders, respectively. The final part indicates the optimal PEV 

penetration        
    and its length equals the years under study. 

5.5 Sample Case Study  

This section presents a simulated case study, the results of which are discussed in next section. The 

38-bus 12.66 kV system [113] shown in Figure 5.1 and described in Appendix A is used as the study 
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case. The system contains a mix of residential, commercial, and industrial customers who share 23%, 

67% and 10% of the total system load respectively. The total peak load of the system is 4.37 MVA.  

 The PEV uncontrolled charging model developed in Chapter 4 is used in this case study. The 

minimum and maximum PEV penetration for the 20-year study period are assumed to start at 1 % and 

to increase linearly until they reach 20 % and 60 % respectively at the end of the study period . The 

remaining data used in the case study are shown in Table 5.1. In this study, PEV charging is assumed 

to occur at home so that the PEV extra load on the system is located only at residential buses; i.e., the 

set of PEV buses      is the same as the set of residential load buses    . 

 

Table 5.1  Simulation parameters 

WDG  PARAMETERS 

Cut-in, rated, and cut-out speeds (m/s)  4, 16,  and 25, respectively 

    
    

  (kW) 100 

PVDG PARAMETERS [18] 

Peak power or      
    

 (W) 75 

Open circuit voltage (V) 21.98 

Short circuit current (A) 5.32 

Voltage at maximum power (V) 17.32 

Current at maximum power (A) 4.76 

Voltage temperature coefficient (mV/oC) 14.40 

Current temperature coefficient (mA/oC) 1.22 

Nominal cell operating temperature (oC) 43.00 

PEV MODEL PARAMETERS 

AER (mi) 70 Level 2 charger [5] 240 V, 16-30 A 

COST-RELATED PARAMETERS 

    
    ($/kWh) 0.0665 [135]   (%) 9.15 

  (%) 
1.8        

   
 (mi/kWh) 3.54 [50] 

EMISSIONS PARAMETERS 

    
     (kg/kWh)  143 CO2 and 0.18 NO2 [135] 

    
     (kg/kWh) 307 CO2 and 0.236 NO2 [136] 

        (kg/mi)   0.21 CO2 [137] 
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Table 5.2  WDG and PVDG states 

States as a percentage of DG capacity 

WDG 0.00 % 12.47 % 28.18 % 42.58 % 59.59 % 100.00 % 

PVDG 0.00 % 10.15 % 23.56 % 40.13 % 58.84 % 80.20 % 

 

Candidate DG bus locations are determined based on detailed techno-economic planning 

analysis, which is outside the scope of the work presented here. The locations were assumed as input 

to the model. All system buses were therefore assumed to be candidates for dispatchable and PVDG 

connections. However, as a reflection of the limitations on installing wind turbines in populated areas, 

for WDG, only buses 34, 35, 36, 37, and 38 were assumed as candidate buses.  
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Figure 5.1  System under study 



 

 97 

As mentioned in subsection 5.3.1, the WDG and PVDG output powers are discretized into six 

states based on the central centroid sorting process presented in [103], as shown in Table 5.2. The 

number of states is a tradeoff between accuracy and the computational time required for the solution 

of the proposed problem. 

5.6 Results and Discussion 

This section includes optimization results for the case study described earlier. The values presented 

are entirely system dependent and are contingent on a number of factors, such as the system structure, 

candidate buses, allowable DG connections, load types, load demand, load growth, and the region 

where the system is located. 

5.6.1 Base Case Results 

The base case, which represents the system with no DG units and with minimum PEV penetration, is 

shown as scenario A in Figure 5.2, with the details appearing in Table 5.3 and Figure 5.3. As shown 

in Table 5.3, the total system costs are $2.219 M, and the total system emissions are 6.5818 × 10
7
 kg 

CO2 over the 20 years under study. The shares of the system costs represented by upgrades and losses 

are 80.7 % and 19.3 %, respectively, which shows that, in the system under study, reducing upgrade 

costs is more effective than reducing the costs associated with losses. On the other hand, the reduction 

in emissions associated with PEV charging decreased the total emissions by 21.4 % for the minimum 

PEV penetration permitted. This percentage can be increased if the target PEV penetration in the 

system is expanded, as can be observed in the next scenarios. For the system under study, the total 

system costs and emission values are assumed to be significant with a peak load of 4.37 MVA.  

5.6.2 Pareto Frontier Results 

In this case, the NDSGA technique is used to generate the Pareto frontier, which represents the 

optimal system scenarios. Two points represent the boundary scenarios: scenario B represents 

minimum system costs, and scenario C represents minimum system emissions. For these two 

boundary scenarios, the details of the system costs and emissions, and of the DG units in the system, 

are shown in Table 5.4. The target penetration levels for both scenarios are shown in Figure 5.3. As 

shown in Table 5.4, the system costs for scenario B are lower than the base case by 69.35 %, which is 

very significant. However, the system emissions are 61.41 % higher than the emissions in the base 

case, and the target PEV penetration is set to the minimum. The outcome of the problem shows 1.6 

MW of dispatchable DG units and 0.22 MW of PVDG connected to the system, which represent the 



 

 98 

optimal mix of DG units for minimizing the system costs. The connected DG units have a significant 

effect on reducing system costs, but also dramatically increase emissions. The mix of NGDG and 

PVDG is able to reduce the cost of upgrades and the cost of system losses by 73.45 % and 52.21 %, 

respectively. This scenario shows the effect of the stochastic nature of renewable DG units, which 

limits their ability to reduce system costs. It has previously been proven [18, 44] that renewable DG 

units can effectively reduce system losses. However, as explained in detail in Chapter 3, when system 

upgrades are considered, no risk of overloading is considered, so renewable DG units can therefore 

not contribute to a reduction in the cost of upgrades. It is worth noting that, the connected DG units in 

this scenario are mainly dispatchable, and the PVDG units shown in outcomes affect only the system 

losses.     

 

 

Figure 5.2  Pareto frontier results 
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On the other hand, scenario C represents minimum system emissions. As shown in Table 5.4, 

the system costs are 60.91 % higher than with the base case, and the system emissions are 72.64 % 

lower than the base case emissions. The outcome of the problem shows 0.6 MW WDG and almost 2.4 

MW PVDG connected to the system. The benefit of this mix of renewable DG types is due to the 

advantages of each type relative to the other. PVDG has two advantages: the PVDG unit capacities 

can be almost any value (multiples of 75 W) compared to the discretized capacities of WDG 

(multiples of 100 kW), and PVDG can be connected to any bus in the system, while the WDG can be 

connected only to 5 buses. On the other hand, the WDG has two advantages: it is more appropriate 

for providing output power for the extra load imposed by PEV charging because most PEV charging 

occurs at evening and night when wind speeds are high and solar irradiance is negligible, and WDG 

has a higher capacity factor than PVDG. In this scenario, the target PEV penetration reaches 60 % in 

20 years, as shown in Figure 5.3. 

 

 

Figure 5.3  PEV target penetration levels for different scenarios 

Table 5.3 Base case results 
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Upgrade Losses Total 
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Table 5.4  Results for boundary scenarios 

Results for scenario B 

System Costs ($) 

Upgrade Losses Total 

4.752 × 105 2.049 × 105 6.801 × 105 

System Emissions (kg CO2 equivalent) 

Energy from grid DG units Reduction due to PEV Total 

3.467 × 107 8.954 × 107 1.797 × 107 10.624 × 107 

DG Units (kW) 

NGDG WDG PVDG 

Size Bus Year Size Bus Year Size Bus Year 

200 13 1    63.88 13 1 

100 18 1    2.78 18 1 

900 24 1    126.67 24 2 

200 31 1    1.883 31 1 

200 33 2    26.65 33 1 

Results for scenario C 

System Costs ($) 

Upgrade Losses Total 

3.196 × 106 0.374 × 106 3.570 × 106 

System Emissions (kg CO2 equivalent) 

Energy from grid DG units Reduction due to PEV Total 

7.192 × 107 0 5.391 × 107 1.801 × 107 

DG Units (kW) 

NGDG WDG PVDG 

Size Bus Year Size Bus Year Size Bus Year 

   600 35 1 624.8 11 1 

      1.66 13 1 

      739.02 17 1 

      2.22 18 1 

      1032.23 29 1 
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5.6.3 Compromise Solution 

Depending on the preferences of the DM, any point on the Pareto frontier can be chosen as an 

operating point if it conforms to their operational policies and reflects their emission/cost 

requirements. However, one of the widely used posteriori techniques for choosing a compromise 

solution for multi-objective problems is based on minimizing the distance between the Pareto frontier 

and an ideal solution called the utopia point [138]. This point is infeasible because it is impossible to 

minimize the two objectives simultaneously, i.e., it lies outside the feasible region. Thus, the utopia 

point, which represents the minimum system costs and the minimum system emissions, was defined 

as scenario D, as shown in Figure 5.2. The costs and emissions for the ideal scenario D are $0.680 M 

and 1.801 × 10
7
 kg CO2, respectively. Assume    is the set of feasible solution vectors and       

is the set of optimal solution vectors, which corresponds to the Pareto frontier. Thus, among the 

solution Pareto frontier vectors      , there is only one solution vector     
        corresponds 

to the optimum value for each objective         . The dissatisfaction associated with any operating 

point        
   is defined as the normalized distance to the ideal point (    

         
       , as in 

[138]. Therefore, the compromise solution can be defined as in (5.43). 

 

        
   √

(                 (    
    ))

 

(     (    
    )       (    

    ))
  (5.42) 

    
  

(√∑ (         )
 

    

)    (5.43) 

 

where     
     is the solution vector on the Pareto frontier that corresponds to the maximum value for 

objective  .  

The point corresponding to the compromise solution is shown in Figure 5.2 as scenario E. 

The outcomes of this scenario are shown in Table 5.5 and Figure 5.3. For scenario E, the target PEV 

penetration reaches 21.7 % after 20 years, and the reductions in the system costs and emissions, 

compared to the base case, are 32.82 % and 9.55 %, respectively. This solution shows DG units with 

a total capacity of 1.689 MW connected to the system, involving 11.84 %, 5.92 %, and 82.2 % 

NGDG, WDG, and PVDG, respectively. This mix represents the optimal mix for the compromise 

solution E for the two objectives considered.  
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Table 5.5  Compromise solution results 

Results for scenario E 

System Costs ($) 

Upgrade Losses Total 

1.184 × 106 0.306 × 106 1.491 × 106 

System Emissions (kg CO2 equivalent) 

Energy from grid DG units Reduction due to PEV Total 

6.776 × 107 1.126 × 107 1.949 × 107 5.953 × 107 

DG Units (kW) 

NGDG WDG PVDG 

Size Bus Year Size Bus Year Size Bus Year 

100 15 1 100 35 1 16.91 13 1 

100 18 1    27.99 17 1 

      9.32 18 1 

      347.05 24 1 

      988.54 29 1 

Results for scenario F 

System Costs ($) 

Upgrade Losses Total 

1.459 × 106 0.304 × 106 1.762 × 106 

System Emissions (kg CO2 equivalent) 

Energy from grid DG units Reduction due to PEV Total 

6.739 × 107 1.126 × 107 2.503× 107 5.362 × 107 

DG Units (kW) 

NGDG WDG PVDG 

Size Bus Year Size Bus Year Size Bus Year 

200 15 1 100 35 1 14.60 13 1 

      141.00 17 1 

      8.32 18 1 

      392.35 24 1 

      995.50 29 1 
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The second best solution is scenario F, in which the reduction in system costs and emissions 

are 20.57 % and 18.53 %, respectively, as shown in Table 5.5. The target PEV penetration for 

scenario F reaches 28.01 % after 20 years, as shown in Figure 5.3. This penetration level increases the 

total costs and reduces the total emissions as compared to scenario E. As shown in Table 5.5, scenario 

F is also characterized by a PVDG share of almost 91.83 % of the total DG installation in the system.  

In summary, the two optimal solutions E and F represent the solutions closest to the ideal 

scenario, and each encompasses different percentages of DG types, years of DG installation, PEV 

penetration levels, emission reductions, and cost reductions. Based on operational preferences, the 

DM can choose either of these two optimal solutions or can select any other solution from the Pareto 

frontier as an operational point. For example, for higher PEV penetration, the DM can choose 

scenario G as an operating point, which is characterized by maximum penetration 46.98 %, as shown 

in Figure 5.3. 

5.7 Conclusions 

This chapter has presented a long-term dynamic planning approach to accommodate a rising 

penetration of uncoordinated PEV charging load in distribution networks. The presented method can 

help the LDCs to better assess the impacts of PEV charging load on their systems and enable them to 

gather additional information about the PEV charging demand before deploying charging 

coordination infrastructure.  

The proposed work can also assist the LDC in evaluating DG connection proposals based on 

a determination of the optimal location, size, and year of installation of renewable and dispatchable 

DG units so that system costs and emissions are minimized while higher percentages of PEV 

integration are permitted in the system. The proposed method takes into consideration the stochastic 

nature of renewable DG, load variability, load types, and the technical constraints of the system. A 

probabilistic method is also proposed as a means of generating virtual scenarios of PEV charging 

patterns, while taking into account travel patterns, variable charging times, multiple charging events 

per day, and the effect of ambient temperature.  

The planning problem is defined as multi-objective mixed-integer nonlinear programming, in 

which an NDSGA is used to obtain the Pareto frontier. The outcome of the planning problem shows 

the domination of dispatchable DG units with respect to system costs, while a mix of WDG and 

PVDG can effectively reduce system emissions. The results demonstrate that a significant reduction 

in either system costs or system emissions can be obtained. However, because system costs and 
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system emissions cannot both be minimized simultaneously, a compromise solution must be chosen 

based on the preferences of the DMs. Although the results are entirely system dependent, the 

proposed method is generalizable and can be applied to any distribution network.  
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Chapter 6 

Real-time PEV Charging Coordination in Smart Distribution 

Systems 

6.1 Introduction 

Two categories of solutions have been proposed in the literature as a means of facilitating the 

accommodation of high PEV penetration. The first involves uncoordinated PEV charging, which is 

possible either through upgrades to the power system infrastructure or through the deployment of DG 

units to meet the excess power demand. The second category, which is addressed in this chapter, 

targets coordinated PEV charging or charging/discharging, which relies on a two-way communication 

infrastructure under the smart grid paradigm.  

Smart charging/discharging coordination architecture consists of three main units: a data 

collection and storage unit, a prediction unit, and an optimization unit [7]. The data collection and 

storage unit governs the collection of information related to current power demands of PEVs and 

regular loads. In most cases, an aggregator is assumed to be in place to deal with PEV data collection 

and storage. The role of the aggregator is to collect information from the PEVs and send it to the 

control center, and to send charging/discharging decisions from the control center to the chargers. The 

prediction unit should provide accurate forecasts of future PEV power demands and regular loads in 

the system. Based on this information, the optimization unit should then make optimal coordinated 

charging and discharging decisions that guarantee service reliability, maximize operator profit, satisfy 

system constraints, and meet customer power demands. 

As mentioned in section 2.6, one limitation of the solutions proposed in the literature is that 

most fail to address coordinated PEV charging and discharging decisions that are based on real-time 

measurements from the grid. As a result, the effect of current and future PEV charging and 

discharging decisions on the power grid is not considered. While some studies involve coordinated 

decisions based on PEV load forecast data, not many details are available with respect to the actual 

performance of the PEV load forecast, and perfect PEV load forecast data are usually assumed. The 

system response to short-term fluctuations in the PEV load is therefore not examined. As well, in 

most cases, the problem formulation fails to include consideration of electric power grid constraints 

and customer power demands. Customer satisfaction and the feasibility of the decisions are hence not 

guaranteed. 
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Motivated by the above deficiencies, a novel online coordination method for the charging of 

PEVs in smart distribution networks is proposed in this chapter. The goal of the proposed method is 

to optimally charge the PEVs in order to maximize the PEV owners' satisfaction and to minimize 

system operating costs without violating the grid constraints. Unlike the solutions reported in the 

literature, the proposed charging architecture guarantees the feasibility of the charging decisions by 

means of a novel prediction unit that can forecast future PEVs power demand and through an 

innovative two-stage optimization unit that ensures effective charging coordination. 

In the next section an overview of the proposed PEV coordination architecture is introduced, followed 

by detailed descriptions of the proposed prediction unit and optimization unit. 

6.2 Proposed PEV coordination architecture 

The proposed smart real-time coordination system (SRTCS) architecture is shown in Figure 6.1. The 

smart distribution system has a set of buses  . The smart distribution is also partitioned into sections, 

each served by one aggregator. The set of system aggregators is denoted by 

  {                 }, where     is the total number of aggregators in the system. Each bus 

      
    has a set of parking lots        , where     

    is the set of buses under the jurisdiction of 

aggregator    . A set of chargers   (        )
 is defined for each parking lot               , which 

is connected to any bus       
   . A maximum of one PEV is connected per charger. The whole 

system is served by one central vehicle controller (CVC). The prediction and optimization units are 

located inside the aggregators and the CVC, respectively.  

Each vehicle driver provides the system with the vehicle charging identity (ID), his/her 

parking duration, and the required SOC value, which should be less than or equal to a maximum 

value displayed on the charging panel. The driver-required SOC value can be less than the maximum 

SOC value because it is dependent on the driver’s preferences, the current electricity price, and 

his/her daily trips. The maximum SOC value depends on the battery capacity, the battery 

characteristics, the charger capacity, and the parking duration. The current SOC value of the PEV is 

also made available to the aggregator through the physical measurement of the battery pack voltage. 

Three types of SOC values can therefore be defined: required, maximum, and current.  

The operation of the CVC and the aggregator is illustrated in Figure 6.2, and is described as 

follows. The aggregator receives a request for information from the CVC at a time instant     , 

     with    denoting the set for the CVC information request events.  
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Figure 6.1  Proposed SRTCS architecture. 

At     , the aggregator starts to process the vehicle data in all parking lots in the territory 

served by the aggregator. Using the processed data an individual prediction interval       
    for each 

    and     . The prediction interval       
    can be defined as the maximum parking duration of 

all PEVs under the jurisdiction of the aggregator    .  

Each aggregator sends its individual prediction duration       
    to the CVC, which defines a 

unified prediction interval        
    so that all aggregators can impose a synchronous operation. The 

choice of        
    ensures that the CVC has information about the PEV load in the system sufficiently 

far ahead to enable optimal coordination decisions to be produced. Given        
   , which is sent back 

from the CVC, each aggregator runs its prediction unit in order to forecast the number of PEVs in the 

system during the next        
    interval, given the current PEVs in the system.  
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Figure 6.2  Flow chart of the CVC and aggregator operation [139]. 

Each aggregator then transmits to the CVC the information about currently connected PEVs 

along with the predicted number of PEVs. Once the CVC receives this information from all 

aggregators in the system, it runs its optimization unit. To produce its charging/discharging decisions, 

the optimization unit solves a two-stage optimization problem. The first stage is aimed at reaching a 
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feasible power allocation decision with respect to a target SOC value for each PEV connected, while 

including consideration of the electric grid constraints, customer demand (SOC required by the PEV), 

and current and future system power loads. Future power loads include both the PEV loads predicted 

by the aggregators for the next        
    interval and the regular load forecast. The regular load forecast 

can follow any of the conventional techniques described in [140]. 

The first stage is referred to as the delivered energy maximization stage (DEMS). The second 

stage is designed to achieve the efficient utilization of the available resources in order to satisfy the 

target PEV SOC, as calculated in the DEMS, while minimizing system operating costs. The second 

optimization stage is referred to as the cost minimization stage (CMS). This sequential structure 

results in charging/discharging decisions that are guaranteed to be feasible, as will be explained later. 

The decisions are then transmitted from the CVC to the aggregators, which send an individual control 

signal to each charger under its jurisdiction. The entire process is repeated after a time duration    for 

a synchronous operation,           
   . The duration of    should be sufficiently long to allow for 

computation and communication delays. In the following two sections, the aggregator prediction unit 

and the CVC optimization unit are discussed in greater detail. 

6.3 Aggregator PEV Prediction Unit 

The aggregator PEV prediction unit predicts the number of PEVs that will be simultaneously present 

in the parking lots under the jurisdiction of that aggregator during the next        
    interval. 

 

  

Figure 6.3 Temporal variation of the PEV arrival rates over the day. 
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The time is partitioned into a set of intervals                      , where   covers 24 h 

of the day. The time intervals of   reflect temporal variations in the PEV arrival rates during the 

course of a day, as shown in Figure 6.3, which shows a typical weekday arrival pattern in a 

commercial parking lot in downtown Toronto, Canada. Within time interval       , PEV arrivals 

to parking lot        under the jurisdiction of aggregator   are modeled as a Poisson process, with an 

arrival rate  (        ). The durations of the PEVs' stay in the parking lot                follow a general 

distribution with pdf     (        )    and mean time               
   . The capacity of each parking lot 

       under the jurisdiction of aggregator   is          
    PEVs. 

The next operation takes place during each time interval        and for each parking lot 

       under the jurisdiction of each aggregator    . Once the aggregator receives the unified 

prediction interval value        
    from the CVC, the prediction unit determines the number of PEVs 

that will be simultaneously present during        
   . The prediction interval is partitioned into a set of 

periods      { (    )
  (    )

    (    )
}, each with an equal duration   , where      

       
   

  
. This 

process is shown in Figure 6.4, with the end of period  (    )
  being denoted by  (    )

, where 

               . 

Given the number of PEVs present at the time instant          ( (    )
) and their parking 

durations, a simple calculation provides the number of PEVs that will stay until the end of each 

period in     , which is denoted by  ̃         ( (    )
). Since the PEV arrivals follow a Poisson 

process, the duration of each PEV’s stay follows a general distribution, and since all PEVs are served 

without queueing, the transient analysis of an       queueing model [141, 142] can be used to 

determine the number of PEVs that will arrive during  (    )
      and stay in each parking lot until 

the end of each period  (    )
. Specifically, assuming a stationary PEV arrival and departure process 

in       , PEV arrivals follow a Poisson process with a mean   (             )
  (        )       

                   denotes the probability that a PEV arriving at a parking lot under the jurisdiction of 

aggregator   during (      (    )
] is still present in the same parking lot at time  (    )

. The probability 

                 is given by the following [142] 
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Figure 6.4  Prediction interval sliding window. 
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(6.1) 

 

Hence, the predicted number of new PEV arrivals by the end of period  (    )
,  ̃         ( (    )

) is 

given as the minimum integer that satisfies 
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∑

(  (             )
)
 

     (   (             )
)

  

 ̃         
( 

(    )
)

   

       
(6.2) 

 

where         is the prediction error probability. 

As a result, the predicted number of PEVs that will be simultaneously present in the parking 

lots under the jurisdiction of aggregator   by the end of  (    )
 is given by  ̃        ( (    )

)  

 ̃    ( (    )
)   ̃         ( (    )

). If  ̃        ( (    )
)           

   , then  ̃        ( (    )
)           

    

because additional PEVs will not have access to the parking lot chargers. All aggregators reply to the 

CVC request with their prediction of the number of PEVs under their jurisdiction during the next 

interval        
   . 

Figure 6.5 presents sample results for short term prediction for a parking lot of 25 chargers 

capacity, where   = 1.5 vehicle/min and   = 0.01. As shown in Figure 6.5, the prediction unit 

successfully predicted the incoming PEVs to the parking lot. As shown in Figure 6.5, the actual PEVs 

in the parking lot are less than or equal the predicted PEVs with a probability of    , as stated in 

(6.2).  It is assumed that satisfying this condition results in more robust operation. This is because the 

coordination decisions are based on a future predicted load that is higher than the future actual load. 

 

 

Figure 6.5  Sample results for the prediction units. 
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6.4 The CVC optimization unit 

The CVC optimization unit makes coordinated charging/discharging decisions over a time duration 

       
    for all chargers located under its jurisdiction. Two optimization units are proposed: the first 

does not allow PEV discharging, while the second does. Over the prediction interval        
    and with 

consideration of the predicted PEV and regular load values, each unit solves two sequential 

optimization stages: DEMS and CMS. Although the two stages provide charging or 

charging/discharging decisions at every time instant      and  (    )
, during        

   , only the decisions 

at time instant      are implemented. The decisions at the other time instants  (    )
 during        

    are 

used as initial conditions employed for the solution of the two stages for the next prediction interval 

         
   , as shown in Figure 6.4. 

According to the distribution system code developed by the Ontario Energy Board, a local 

distribution company may disconnect loads for the following reasons: non-payment, emergency, 

safety, or technical limit violation [143]. In this work, it is therefore assumed that the utility will 

deliver the required amount of energy to customers unless there is a technical limit violation. Hence, 

as a first priority, the CVC unit satisfies PEV energy requirements subject to the technical limits of 

the system. As a second priority, the system then minimizes operating costs. 

The flow charts of the proposed CVC optimization unit for the charging only and charging 

discharging modes of operation are shown in Figure 6.6. The detailed procedure and mathematical 

formulation are explained in the next two subsections. 

6.4.1 Charging Only Optimization Unit  

In this case, only charging decisions are allowed. The optimization unit solves the following two 

stages. 

6.4.1.1 DEMS  

The objective of this stage is to maximize the energy delivered to all PEV batteries, including both 

those already connected and those predicted. The energy delivered from  (    )
 to  (      ) is denoted 

for a PEV (actual or predicted) connected to charger   (      )
   (      )

 in parking lot        

        at bus       
   , due to a decision taken at time instant  (    )

 as   (  (      )
     ). The 

charging decision  (  (      )
     ) is a percentage of the charging power permitted for charger 
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  (      )
 at time instant  (    )

, i.e.,  (  (      )
     )       . The objective of the DEMS can then 

be described as 
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Figure 6.6  Proposed CVC optimization unit: (a) charging only and (b) charging/discharging 
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     (       )                                   

     (6.4)-(6.15) 

(6.3) 

 

The DEMS should satisfy the power flow constraints, as given by 

 

              (      )
 ∑ (      )

 (      )
         (        (      )

  (      )
)        

   

 (6.4) 

 

             (      )

  ∑ (      )
 (      )

         (        (      )
  (      )

)        

   

 
(6.5) 

 

  

 

where 

            and            denote the per unit active and reactive power generated at bus   for time 

instant  (    )
; 

   (      )
 and   (      )

 denote the per unit active and reactive power demands at bus   for time instant 

 (    )
; 

  (      )
 and  (      )

 denote the per unit magnitude and the angle of the voltage at bus   for time 

instant  (    )
;  

       and        are the per unit magnitude and angle of the Y-bus matrix admittance. 

The voltage limits and thermal limits of the feeders should also hold, i.e., 

 

       (      )
                 (6.6) 

  (      )
     

               (6.7) 
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where  (      )
 denotes the per unit current through line     for time instant  (    )

. 

The power generated at each bus is obtained from the DG connected to that bus: 

                                                                   (6.8) 

 

where             and             denote the per unit DG active and reactive power levels generated at 

bus   for time instant  (    )
, which is based on current measurements and forecasted data. 

The total active power consumed by load   (      )
 is the sum of the power consumed by the regular 

load    (      )
 and the PEV load   (      )

   
: 

 

               (      )
    (      )

                  (6.9) 

 

The consumed power at each bus due to the PEV load depends on the charging decision 

 (  (      )
     ), the charger’s power limit transferred to/from the battery in kW 

   (  (      )
     ), and the efficiency of the charger    (  (      )

), as given by 

 

 
  (      )

       ∑∑
 (       )    (       )

             
       

                             

                     

(6.10) 

 

where       is the base power for the per unit system in kW. The charger’s power transfer limit     

is a function of the PEV battery SOC and is limited by the capacity of the charger, i.e.     

       
       

. This function is dependent on the characteristics of the battery: 

 

 
   (       )            

  (            
     )                                    

             (      )
      

(6.11) 
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where 

           
   is a function that represents the characteristics of the PEV battery connected to charger 

     (      )
   (        )

 at bus   for time  (    )
; 

            
      is the reached SOC at time instant  (      ) for a PEV connected to charger    

  (      )
   (        )

 at bus   due to a decision taken at time  (      ).  

The relationship between the energy delivered to a PEV battery and the battery SOC is 

expressed as 

 

  (       )           ∑(   (       )
         (       )

       )     

    

     

                                           

(6.12) 

 
where  

         is the battery capacity in kWh of the vehicle connected to charger   ; 

   (       )
        denotes the initial SOC for the PEV connected to charger    at  (    )

. 

The SOC of the connected PEVs to the set of active chargers        
           should be 

limited by the SOC desired by the user    (       )
       : 

 

 
   (       )

          (       )
                         

                   

                    
(6.13) 

 

On the other hand, the predicted incoming PEVs are assumed to require a final SOC of 100% 

and to arrive with a minimum SOC of       , which represent a worst case condition: 

 

 
   (       )

                  (       )
                              

 

                                     
(6.14) 

 

where         
          denote the chargers reserved for the newly incoming PEVs. 

The SOC of different PEVs are updated according to 
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   (         )

         (       )
      

 (       )    (       )        

        
           

        
                                                

(6.15) 

6.4.1.2 CMS 

Based on the charging decisions  , a feasible target SOC          
      

    (       )
      can be 

calculated for each PEV from the DEMS, given the  power  system  constraints  and  the  SOC 

required by customers.  The target SOC will be the same as the customer-desired SOC as long as it 

does not violate the technical constraints of the system.  The CMS is designed to find alternative 

charging decisions   that can satisfy the feasible target SOC    
(       )

      
 and system constraints, while 

at the same time minimizing either the charging costs for PEV owners or the system operating costs. 

It is assumed in this work that the system operating costs are minimized, and the utility charges the 

PEV owners with the minimum rate during their parking duration in return. During time interval 

       
   

 , the operating costs consist of two parts: t he  cost of losses   (       
   ) and the peak 

demand charges   (       
   ). The cost of losses is given by 

 

   (       
   )  ∑ (    )

                      

    

 
  

  
  (6.16) 

 

where  (    )
    is the price signal, which represents the cost of kWh during interval  (    )

 and 

            is the system power loss, which is given by 

 

 

            
 

 
∑∑      ( (      )

   (      )
 

      

   (      )
 (      )

   ( (      )
  (      )

))         

(6.17) 

 

where        is the per unit conductance of the line between buses   and  . The peak demand charges 

are calculated based on the peak load reached within one month, but the SRTCS operates in real time 

over time interval         
   

 . To incorporate the peak demand charges   (       
   ) within the SRTCS, a 
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target peak value  ̃   (       
   ) is therefore used as in [144], which is updated to the maximum 

incurred total load power during        
    ,     (       

   ), but only if this maximum power exceeds 

 ̃   (       
   ): 
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The CMS minimizes the peak demand charges only if the maximum power incurred during 

       
    is greater than the target peak value: 
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where    is the peak demand charges in $/kW. By definition, 
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The CMS is hence given by 
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6.4.2 Charging/Discharging Optimization Unit 

In this case, discharging decisions are allowed. However, charging/discharging decisions are not 

implemented unless the charging-only decisions cannot satisfy the customer needs, as shown in 

Figure 6.6. In other words, decisions from the charging-only unit are checked first, and if they satisfy 
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all of the customers’ needs (100 % success), the charging decision is implemented. If the charging 

decisions cannot achieve 100 % success, the charging/discharging unit is enabled, and its results are 

implemented only if they would achieve greater success than those produced by the charging-only 

unit, as shown in Figure 6.6. The charging/discharging optimization unit has the same structure as the 

charging-only one, including the objective functions and constraints of the DEMS and CMS, with the 

exception of constraints (6.10) and (6.11), and the   range, as discussed next. 

Since discharging is permitted,         , in which positive decisions denote charging and 

negative ones indicate discharging. The power delivered or consumed by each charger is given by 
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The total PEV delivered or consumed power by at any bus   at  (    )
 is given by  
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The power transfer limit of the charger    (       ) has different characteristics for 

charging and discharging: 

 

 
   (       )  {

          
  (            

     )       

          
   (            

     )       
                            

                    (      )
       

(6.24) 

 

The charge/discharge optimization unit uses discharging only to increase the PEV charging 

success rate, through vehicle to vehicle (V2V) scheme, i.e., no power is delivered to the grid. Hence, 
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the constraint in (6.26) is included to ensure that power is exchanged only among PEVs within the 

same parking lot; i.e., no power is delivered to the grid
3
. 

 

   (      )
                   (6.25) 

 

To ensure that whenever the vehicle owner unplugs his/her PEV before the declared 

departure time the SOC is not lower than its initial value, the discharging scheme should satisfy the 

following constraint: 

 

    (       )
         (       )

        (6.26) 

6.5 Simulation Results and Discussion 

To evaluate the performance of the proposed SRTCS, two case studies were examined using a 38-bus 

system [113] that contains a mix of residential, commercial, and industrial customers and PEV 

parking lots, all of which are supplied from the main substation, as shown in Figure 6.7. The total 

system peak load is 4.37 MVA. The system line data, and load point demand are as given in 

Appendix A. Three profiles were used to model the regular load in the system, as shown in Figure 6.8 

[145]. The system under study, including aggregators and prediction units, was modeled in a 

MATLAB software tool. The CVC optimization unit was modeled in a General Algebraic Modeling 

System (GAMS) software tool. To update the SOC of the PEV batteries, charging/discharging 

decisions are sent from the GAMS to the MATLAB environment. For the simulation,     10 min, 

and the simulation covers 24 h of one day. The maximum computation times for the prediction and 

optimization units in the system under study are 1.1 sec and 75 sec, respectively. The computer 

utilized for simulation was a quad core 2.8 GHz processor with 6 GB of RAM. The error probability 

for the prediction unit is     0.1. The peak demand charge is 3 $/kW [146], and the energy price is 

assumed to be proportional to the regular load demand of the system with an average of 50 $/MW. 

The initial moving peak value for the day under study is set to the maximum regular load demand: 

3.55 MW. 

The system contains four parking lots on buses 25, 29, 34, and 36, as shown in Figure 6.7. 

For simplicity, all chargers are assumed to be second-level chargers with a 7.2 kW rating. All PEVs 

                                                      
3 For V2G scheme, this constraint is removed from the SRTCS 
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are assumed to have an AER of 50 miles. All PEV batteries have the same charging characteristics, as 

given in [147] and shown in Figure 6.9 with adjustment to match the ratings of the PEV chargers and 

the AER. These characteristics are approximated as in [122] , while the discharging power limit for 

all PEV batteries is set to the maximum limit of the charger. To encounter for the initial and the 

desired SOCs variability, their randomness is assumed to follow a uniform distribution between a 30 

% to 50 % for the initial SOC and 80 % to 100 % for desired SOC.   

Two case studies were examined. The first investigated the performance of the SRTCS with 

charging-only (SRTCS-C) decisions for a low PEV penetration level. The second case study 

evaluated the performance of the SRTCS for a high PEV penetration level with both charging-only 

and charging/discharging (SRTCS-C/D) decisions. In both cases, the proposed SRTCS was compared 

to first-come, first-served (FCFS) benchmark for coordinated charging decisions [148]. In the FCFS 

approach, PEV charging decisions are based on allocating priority to vehicles that arrive at the 

parking lot earlier. The SRTCS was also compared to an uncoordinated charging approach, whereby 

all PEVs connected to the grid are charged without consideration of the technical limitations of the 

system and in the absence of communication between the grid operators and the PEVs. A success 

factor    was introduced as a figure of merit related to customer’s satisfaction. The success factor is 

defined as the average success of PEV charging for all vehicles in the system over the 24 h period 

under study and is given by 

 

    
 

      
∑

      

      

      

    

 (6.27) 

 

where 

       denotes the total number of PEVs served during the 24 h of the day; 

        and        denote the delivered and required energy for PEV   , respectively. 

 

6.5.1 Smart PEV charging with low PEV penetration 

In this case study, the total PEV demand represents 12 % of the regular load. The total regular load of 

the system over the 24 h period is shown in Figure 6.10 (a). As shown in Figure 6.10 (b), both the 

uncoordinated (UNCR) and FCFS approaches yield the same performance, which is attributable to 
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the low PEV penetration level, which enables the system to charge all connected PEVs without 

violating the technical limitations.  
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Figure 6.7  38-bus distribution test feeder. 

 

Figure 6.8 Regular load profiles [145]. 
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Figure 6.9  Li-ion battery characteristics [147]. 

 

On the other hand, the proposed SRTCS can significantly reshape the charging requirement 

of the PEVs connected to the system. With the use of the SRTCS, during the normal load peak, PEV 

charging is limited and is performed either before or after the peak load interval, thanks to the 

prediction unit. In contrast to the uncoordinated and FCFS approaches, with the SRTCS, the PEV 

charging peaks occur at the troughs of normal load: around 3:00 pm, and after midnight. With low 

PEV penetration, all three charging approaches can achieve a success factor of     100%. Table 6.1 

shows the percentage increase in operating costs compared to the case without PEV. Because the 

PEV charging load is shifted to the off-peak periods, the SRTCS results in a significant reduction in 

the peak demand charges compared to the FCFS approach. It can be inferred from Figure 6.10 (b) that 

the system peak without PEV, which occurs at 12:00 pm, is not affected by the SRTCS, which 

reduces the charging load of the PEVs to zero during this period. On the other hand, the FCFS 

approach results in 8 % increase in the system peak. The increase in the cost of the system losses for 

the SRTCS are also 6 % lower compared to the FCFS approach due to the ability of the SRTCS to 

allocate the PEV charging energy during low price periods. 

6.5.2 Smart PEV charging/discharging with high PEV penetration 

In the second case study, the total PEV demand represents 50 % of the regular load. For 

uncoordinated vehicle charging, such a penetration level is beyond the technical limitations of the 

system. The PEV parking lots on buses 25 and 29 are assumed to be residential, while those on buses 
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34 and 36 are assumed to be commercial. For the commercial parking lots, arrival and departure data 

are provided by Toronto Parking Authority. The PEV load results are shown in Figure 6.10 (c) and 

 

Table 6.2. While the uncoordinated approach can achieve a success factor of     100 %, the 

charging decisions are infeasible because they violate the system constraints. On the other hand, the 

FCFS approach delivered 90.37 % of the required energy to the PEV, i.e.,     90.37 %.  

Using the predictions for the normal and PEV loads, the SRTCS can shift the PEV load so that a 

higher success factor is achieved than with the FCFS approach, at a lower cost of losses and same 

peak load, as shown in Table 6.2.  The SRTCS achieves a significantly higher success factor of 93.4% 

and 95.3 % for the charging-only and charging/discharging, respectively. The results demonstrate that 

the SRTCS is more reliable than the other approaches with respect to addressing the PEV charging 

requirements through the efficient utilization of system resources.  

The performance of the SRTCS-C/D is very close to the SRTCS-C, which is dependent on 

several factors: PEV arrivals, parking durations, system configuration, and regular load. A higher    

is achieved when discharging is enabled; however, this result is obtained at the expense of a higher 

operating cost than in the charging-only case. The higher cost with respect to losses is due to excess 

charging energy, which correlates with the higher success factor. Although the discharging operation 

results in an improvement in the    compared to the charging only operation, a number of related 

technical issues present challenges, such as its impact on battery life and appropriate compensation 

for PEV owners who adopt such a strategy. For the presented case study, the discharging 

effectiveness is questionable, due to the mentioned challenges, and the minor effect on the system 

compared to the charging only approach. However, as the parking lots dynamics increase, the 

charging/discharging may lead to significantly better results compared to the charging-only operation.   

 

Table 6.1  System operating costs and success factors for the low penetration case 

Scheme    (%) 
Percentage increase 

in    (%) 

Percentage increase 

in    (%) 
Feasibility 

UNCR 100.0 12.76 7.97 feasible 

FCFS 100.0 12.76 7.97 feasible 

SRTCS-C 100.0 6.81 0 feasible 
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Figure 6.10  Power demands for normal and PEV loads for different scenarios: (a) Normal load 

demand; (b) PEV demand at low penetration; and (c) PEV demand at high penetration. 
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Therefore, the application of charging/discharging strategy for V2V has not yet been proved. 

Future research should thus include the investigation of the impacts on battery life and appropriate 

compensation. For compensation that is too low would discourage the PEV owners from embracing 

the discharging strategy, while compensation that is too high would motivate utilities to deploy other 

options such as DG or storage devices. The establishment of an appropriate compensation value that 

balances the benefits for both PEV owners and utilities needs further study. 

 

Table 6.2  System operating costs and success factor for the high penetration case 

Scheme    (%) 
Percentage increase 

in    (%) 

Percentage increase 

in    (%) 
Feasibility 

UNCR 100.0 82.48 55.11 infeasible 

FCFS 90.37 56.54 10.18 feasible 

SRTCS-C 93.38 47.45 10.18 feasible 

SRTCS-C/D 95.33 49.75 10.18 feasible 

 

6.6 Conclusions 

In this chapter, a proposed real-time system was developed for managing the dynamics associated 

with coordinated charging/discharging decisions for PEVs in a smart grid. The SRTCS incorporates 

two novel prediction and optimization units. The prediction unit provides information regarding the 

future PEV load in the system for better coordination of vehicle charging. The two-stage optimization 

unit guarantees the feasibility of the charging/discharging decisions by first maximizing PEV owner 

satisfaction and then minimizing system operating costs. The performance of the SRTCS has been 

investigated for both low and high PEV penetration levels and for charging-only and 

charging/discharging decisions. The simulation results demonstrate the robust performance of the 

proposed SRTCS with respect to its ability to address the dynamics of multiple parking lots in a 

timely manner. The findings also reveal the effectiveness of the SRTCS architecture in providing a 

higher PEV charging success than other charging approaches. The advantages of the proposed 

SRTCS can thus be summarized as providing immunity to extreme loading conditions, robustness, 

and an acceptable computation time, all of which make it suitable for practical implementation. The 

results also reveal that the improvement in the SRTCS is minor when discharging is enabled. Given 
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the challenges accompanied with the implementation of the charging/discharging coordination 

strategy, further research is required to investigate its effectiveness. 
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Chapter 7 

Concluding remarks 

7.1 Summary and Conclusions 

 
The research in this thesis presents new approaches to accommodate high PEV penetration in 

distribution networks. Two main scenarios were presented, namely the uncontrolled charging scenario 

considering the current situation of the grid (without communication) and the coordinated charging 

under the smart grid paradigm (with two way communication).  

Under the uncontrolled charging, three stages were presented in chapters 3, 4, and 5. In 

chapter 3, an approach to evaluate the economic benefits of renewable DG was developed. Moreover, 

a GA based approach was proposed for long-term multi-objective optimal DG allocation. Three 

economic benefits associated with DG allocation are considered in this chapter: deferral of system 

upgrade investments, reduced cost of energy losses, and reduced cost of interruptions. The proposed 

planning technique has been applied to different scenarios for a typical distribution system. The 

results reveal the effectiveness of the proposed approach in significantly reducing the mentioned 

costs, which benefits both the LDC and the consumers.  It is concluded in this chapter that the cost of 

upgrades is the most effective economic benefit, which is highly affected by the intermittent nature of 

renewable DG units.  It has been shown that for the renewable DG units to contribute to the cost of 

upgrade, a risk has to be taken, which depends mainly on the output power patterns of the renewable 

DG units. On the other hand, the cost of interruption was found to be of least significance due to the 

limitations on the islanded mode of operation in distribution networks.  

In chapter 4, a novel uncontrolled PEV charging load model was developed.  The model 

incorporates different aspects, such as driver behaviour and ambient temperature effect, to reflect the 

variations and uncertainty of the PEV charging. Moreover, the developed model has been applied to 

different scenarios for two configurations of a typical distribution system. It is concluded in this 

chapter that including the driving habits and ambient temperature in the energy consumption pattern 

in the PEV load model affects the results significantly. Moreover, it is concluded that the effects of 

high penetration of PEVs are not significant on systems with commercial and industrial dominant 

loads assuming charging at home, where the vehicles are parked most of the time. On the other hand, 

the lines loading levels for systems with dominant residential loads are significantly affected with 

high penetration of PEV charging.  
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In chapter 5, a multi-objective long-term dynamic planning approach was proposed to 

accommodate the high penetration of PEV uncontrolled charging utilizing renewable DG units. In 

this chapter, the different models and approaches developed in chapters 3 and 4 are utilized. It can be 

concluded that the dispatchable DG units are dominant with respect to system costs, while a mix of 

WDG and PVDG can effectively reduce system emissions. The results demonstrate that a significant 

reduction in either system costs or system emissions can be obtained. However, because system costs 

and system emissions cannot both be minimized simultaneously, a compromised solution can be 

chosen based on the preferences of the LDC. Moreover, neither the WDG nor the PVDG can be 

superior to each other, and the mix of these renewable DG types is the optimal installation due to the 

advantages of each type.  

Under the coordinated charging scenario, a real-time coordinated PEV charging architecture 

is presented in chapter 6, which consists of three units, namely data collection and storage unit, 

prediction unit, and optimization unit. The proposed architecture was developed in two stages. In the 

first stage, a novel PEV prediction unit was developed. The unit predicts the number of PEVs that 

will be simultaneously present in the parking lots under the aggregator jurisdiction. In the second 

stage, a central multi-stage optimization unit which makes the charging/discharging coordinated 

decisions was developed. The provided simulation results prove that the proposed charging 

mechanism gives immunity to extreme loading conditions, robustness, and acceptable computational 

time. These advantages make it adequate for practical implementation. It was concluded in this 

chapter that for high PEV penetration, the uncontrolled charging can impose potential risk on the 

system equipment. On the other hand, the proposed coordinated charging can efficiently maximize 

the PEV owner satisfaction and minimize the system operating costs without jeopardizing system 

equipment. Moreover, it was concluded that the effectiveness of V2V discharging scheme requires 

further investigation.  

 
8.2 Contributions 

 

The main contribution of this thesis is the development of different approaches to accommodate high 

PEV penetration in distribution networks. Under the main contribution, two sub-contributions can be 

highlighted as follows: 

 The development of a long-term multi-objective dynamic planning approach to accommodate 

high penetration of uncontrolled PEV charging in distribution networks utilizing renewable 

and dispatchable DG units.  
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 The development of a new real-time charging/discharging architecture to manage the 

dynamics of coordinated charging of PEVs in smart distribution networks. 

 

8.3 Directions for Future Work 
 

In continuation of this work, the following subjects are suggested for future studies: 

 Investigating the ancillary services that can be offered by discharging of PEVs in smart 

distribution systems: These ancillary services can be described as active or reactive power 

support. For example, during outages events, the PEVs stored energy can be used to supply 

critical loads through vehicle-to-grid active power support (V2GP) strategy.  Also, the PEVs 

can be used to improve the system voltage profile and relax the tap operation of the on-load 

tap changers through vehicle-to-grid reactive power support (V2GQ) strategy. In this work, 

the coordination methodology developed in chapter 6 will be modified to perform the 

required V2G strategy. 

 Developing planning approaches for smart buildings with smart parking lots: The objective 

of this research work is to determine the investment decisions for smart buildings whose 

owners may consider making benefit from selling electricity to PEVs in there parking lots. 

Moreover, the work can consider other investment decisions that can be integrated to 

facilitate accommodating the PEV charging units, such as PVDG units and battery storage 

systems.  

 Developing planning approach for fast PEV charging stations: In fast charging stations, the 

PEV batteries are charged with high current and high voltage leading to the recovery of 50 % 

battery charge within less than 20 min. Planning the locations, capacities, and control 

strategies of these charging stations requires investigating several aspects, such as PEV 

arrival rates in this charging stations, queueing strategies, clusters of PEVs in the market, and 

the impacts of this sudden load on the existing grid. 
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Appendix A 

The 38-bus test system data 

Table A.1 38-bus test system data [113] 

F T Ln Line impedance in pu 
To node - load 

P Q 

1 2 1 0.000574+0.000293j 0.1 0.06 

2 3 6 0.00307+0.001564j 0.09 0.04 

3 4 11 0.002279+0.001161j 0.12 0.08 

4 5 12 0.002373+0.001209j 0.06 0.03 

5 6 13 0.0051+0.004402j 0.06 0.02 

6 7 22 0.001166+0.003853j 0.2 0.1 

7 8 23 0.00443+0.001464j 0.2 0.1 

8 9 25 0.006413+0.004608j 0.06 0.02 

9 10 27 0.006501+0.004608j 0.06 0.02 

10 11 28 0.001224+0.000405j 0.045 0.03 

11 12 29 0.002331+0.000771j 0.06 0.035 

12 13 31 0.009141+0.007192j 0.06 0.035 

13 14 32 0.003372+0.004439j 0.12 0.08 

14 15 33 0.00368+0.003275j 0.06 0.01 

15 16 34 0.004647+0.003394j 0.06 0.02 

16 17 35 0.008026+0.010716j 0.06 0.02 

17 18 36 0.004558+0.003574j 0.09 0.04 

2 19 2 0.001021+0.000974j 0.09 0.04 

19 20 3 0.009366+0.00844j 0.09 0.04 

20 21 4 0.00255+0.002979j 0.09 0.04 

21 22 5 0.004414+0.005836j 0.09 0.04 

3 23 7 0.002809+0.00192j 0.09 0.05 

23 24 8 0.005592+0.004415j 0.42 0.2 

24 25 9 0.005579+0.004366j 0.42 0.2 

6 26 14 0.001264+0.000644j 0.06 0.025 

26 27 15 0.00177+0.000901j 0.06 0.025 

27 28 16 0.006594+0.005814j 0.06 0.02 

28 29 17 0.005007+0.004362j 0.12 0.07 

29 30 18 0.00316+0.00161j 0.2 0.6 

30 31 19 0.006067+0.005996j 0.15 0.07 

31 32 20 0.001933+0.002253j 0.21 0.1 

32 33 21 0.002123+0.003301j 0.06 0.04 

8 34 24 0.012453+0.012453j 0 0 

9 35 26 0.012453+0.012453j 0 0 

12 36 30 0.012453+0.012453j 0 0 

18 37 37 0.003113+0.003113j 0 0 

25 38 10 0.003113+0.003113j 0 0 
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