
Machine-Level Software Optimization
of Cryptographic Protocols

by

Dieter Fishbein

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

© Dieter Fishbein 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This work explores two methods for practical cryptography on mobile devices. The first
method is a quantum-resistant key-exchange protocol proposed by Jao et al.. As the use
of mobile devices increases, the deployment of practical cryptographic protocols designed
for use on these devices is of increasing importance. Furthermore, we are faced with the
possible development of a large-scale quantum computer in the near future and must take
steps to prepare for this possibility. We describe the key-exchange protocol of Jao et al.
and discuss their original implementation. We then describe our modifications to their
scheme that make it suitable for use in mobile devices. Our code is between 18–26% faster
(depending on the security level). The second is an highly optimized implementation of
Miller’s algorithm that efficiently computes the Optimal Ate pairing over Barreto-Naehrig
curves proposed by Grewal et al.. We give an introduction to cryptographic pairings and
describe the Tate pairing and its variants. We then proceed to describe Grewal et al.’s
implementation of Miller’s algorithm, along with their optimizations. We describe our use
of hand-optimized assembly code to increase the performance of their implementation. For
the Optimal Ate pairing over the BN-446 curve, our code is between 7–8% faster depending
on whether the pairing uses affine or projective coordinates.

iii

Acknowledgements

First, I wish to thank my supervisor, David Jao, for his invaluable guidance throughout
my masters program. Thank you also to the authors of [22,26] for providing me with figures
for use in this thesis. Thank you to my readers Alfred Menezes and Edlyn Teske for their
constructive feedback. Finally, I wish to thank my parents for their constant support.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 A Quantum-Resistant Key-Exchange Protocol 3

2.1 Introduction . 3

2.2 Elliptic Curves & Isogenies . 3

2.3 Key Exchange Protocol . 5

2.4 Algorithmics . 6

2.4.1 Parameter Generation . 6

2.4.2 Key Exchange . 7

2.4.3 Computing Isogenies . 8

2.4.4 Choice of Models . 12

2.5 Implementation . 15

3 An Efficient Method of Pairing Computation 17

3.1 Introduction to Cryptographic Pairings . 17

3.1.1 Bilinear Pairings . 17

3.1.2 Applications . 18

v

3.1.3 Divisors . 20

3.1.4 The Tate Pairing . 23

3.1.5 Miller’s Algorithm . 23

3.1.6 Barreto-Naehrig Curves . 24

3.2 Optimal Pairings and the Optimal Ate Pairing 26

3.2.1 The Ate Pairing . 26

3.2.2 Optimal Pairings . 29

3.2.3 The Optimal Ate Pairing . 30

3.3 An Efficient Implementation of the O-Ate Pairing on ARM Processors . . . 33

3.3.1 Grewal et al.’s Optimizations . 33

3.3.2 Curve Arithmetic . 37

3.3.3 Implementation Results . 38

4 Assembly Language and Our Optimizations 40

4.1 Assembly Language . 40

4.2 Optimizations to the Key-Exchange . 44

4.2.1 Porting into C . 44

4.2.2 Assembly Optimizations . 44

4.2.3 Results . 50

4.3 Optimization of the Pairing Computation 51

4.3.1 Integer Multiplication . 51

4.3.2 Results . 53

5 Conclusion 55

References 56

vi

List of Tables

2.1 Comparative costs for multiplication and isogeny evaluation in projective
Kummer coordinates, in number of multiplications and squarings, and as-
suming S = 0.8M . 15

2.2 Comparative costs of the optimal strategy for computing a degree 2514 (` =
2, 4) or 3323 (` = 3) isogeny, assuming S = 0.8M 15

3.1 Timings for affine and projective pairings on different ARM processors and
comparisons with prior literature. Times for the Miller loop (ML) in each
row reflect those of the faster pairing. 39

4.1 Timings for affine and projective pairings on the Arndale Board (ARM v7)
Cortex-A15 at 1.7 GHz. Times for the Miller loop (ML) in each row reflect
those of the faster pairing. 54

vii

List of Figures

2.1 Key-exchange protocol using isogenies on supersingular curves. 6

2.2 Diagram of isogeny computation. 9

2.3 Two ill-formed strategies. 10

2.4 The seven well-formed full strategies for n = 4. Notice that the three middle
strategies share the same binary tree topology and the middle one is the
canonical strategy. 10

2.5 Optimal strategy for two leaves. 12

2.6 The two possible optimal strategies for three leaves superimposed on the
optimal strategy for two leaves. 12

4.1 Timings for our C implementation of the key exchange for `A = 2 and `B = 3 51

viii

Chapter 1

Introduction

It is expected that the use of mobile devices, such as smartphones and tablets, will become
further widespread in the coming years. As their use increases, more people are using
these devices for increasingly sensitive applications such as corporate email, online banking
and for the storage of confidential information. As such, the deployment of practical
cryptographic protocols for use on mobile devices is of the utmost importance.

The goal of this work is to explore two methods for practical cryptography on mobile
devices. The first method is a quantum-resistant key-exchange protocol proposed by Jao
et al. [17, 26]. Since we are faced with the possible development of a large-scale quantum
computer in the near future, it is prudent for us to focus our efforts on the deployment of
classical protocols that are resistant to attacks from such technology. The second is a highly
optimized implementation of Miller’s algorithm that efficiently computes the Optimal Ate
pairing proposed by Grewal et al. [21, 22].

De Feo, Jao, and Plût [17,26] have proposed a Diffie-Hellman type key-exchange scheme
based on computing isogenies between supersingular elliptic curves. The proposed scheme
is believed to be quantum-resistant, and the fastest known attacks are exponential time. In
this work, we present a practical implementation of the key-exchange protocol suitable for
use in mobile (and non-mobile) devices. Our implementation is primarily written in C with
hand-optimized assembly designed for use with either ARMv7 or x86-64 processors. It uses
precomputed public parameters, with all the time-consuming computations offloaded from
the device. Compared to the original implementation of [17], our code is between 18–26%
faster (depending on the security level), and on iOS and Android devices we measured
running times around 0.5–1 second for a round of key exchange at the (quantum) 80-bit
security level.

1

The development of methods to efficiently compute cryptographic pairings is also of
great importance. In the past decade, researchers have found a range of applications for
the use of pairings in cryptography such as in key establishment and short signatures.
These protocols require the efficient computation of the pairing in use. Grewal et al. [21,
22] have proposed a highly optimized implementation of Miller’s algorithm to compute
the Optimal Ate pairing over Barreto-Naehrig curves, designed for use on the ARMv7
processor. Their implementation is written in C and assembly language and, at the time
of publication, is over three times faster that previously reported pairing implementations
on ARM processors. Using similar techniques we used to increase the performance of the
key-exchange, we introduced hand-optimized assembly code to increase the performance
of their implementation. For the Optimal Ate pairing over the BN-446 curve, our code is
between 7–8% faster depending on whether the pairing uses affine or projective coordinates.

The remainder of this work is organized as follows. In Chapter 2 we introduce the
key-exchange protocol of Jao et al. and discuss their original implementation. In Chap-
ter 3, we introduce cryptographic pairings and discuss Grewal et al.’s implementation of
Miller’s algorithm, along with their optimizations. In Chapter 4, we give a brief overview
of assembly language and discuss our optimizations to both the key-exchange protocol and
pairing computation. In Chapter 5 we present our conclusion and some opportunities for
future research.

2

Chapter 2

A Quantum-Resistant Key-Exchange
Protocol

2.1 Introduction

De Feo, Jao, and Plût [17, 26] have proposed a Diffie-Hellman type key-exchange scheme
based on computing isogenies between supersingular elliptic curves. In this section we
present their scheme. Following [17,26] , we discuss elliptic curves, their isogenies, the main
key exchange protocol, low-level algorithmic details and specifics on the implementation.

2.2 Elliptic Curves & Isogenies

We define an elliptic curve over a field K as a projective nonsingular genus-1 algebraic
curve E over K together with a distinguished base point ∞ of E defined over K. When
the characteristic of K does not equal 2 or 3, which is always the case in this work, one
can write E in the form

E : y2 = x3 + ax+ b.

Points on an elliptic curve form a group with an efficiently computable group law, with
identity element∞. An elliptic curve E is determined up to isomorphism by its j-invariant,
defined by

j(E) = 1728
4a3

4a3 + 27b2
.

3

For any positive integer n, the n-torsion group E[n] is defined to be the set of all points P
in E defined over the algebraic closure K of K such that n times P is the identity:

E[n] = {P ∈ E(K) : nP =∞}.

As a group, E[n] has Z-rank equal to 2 provided that the characteristic of K does not
divide n, and thus when viewed as a module over Z/nZ it admits a basis of two elements.

An isogeny
φ : E → E ′

is defined to be an algebraic map satisfying the property that φ is a group homomorphism.
The degree of φ, denoted deg φ, is its degree as an algebraic map. An isogeny is separable
if it is separable as an algebraic map.

We are interested in separable isogenies defined over finite fields. Assume E and E ′ are
elliptic curves defined over a finite field Fq. In this case, isogenies are determined up to
isomorphism by their kernels. Any finite subgroup H of E induces an isogeny E → E/H;
conversely, for any isogeny φ, the group kerφ is a finite subgroup of E. Finite subgroups of
E in turn can be specified by identifying a set of generators. Given such a set of generators,
the corresponding isogeny can be computed by using Vélu’s formulas [41]. Additionally,
every isogeny of degree greater than 1 can be factored into a composition of isogenies of
prime degree over Fq [16].

Two curves E and E ′ are said to be isogenous over Fq if there exists an isogeny φ :
E → E ′ defined over Fq. A theorem of Tate states that E and E ′ are isogenous over Fq if
and only if the number points on both curves are the same [40]. Let φ have degree `. Then
φ has a dual isogeny φ̂ [39] such that φ ◦ φ̂ = [`]. The property of being isogenous over
Fq is an equivalence relation on the set of Fq-isomorphism classes of elliptic curves defined
over Fq. Thus, we define an isogeny class to be an equivalence class under this equivalence
relation.

The key-exchange scheme uses isogenies between supersingular elliptic curves. An ellip-
tic curve is supersingular if its endomorphism ring (defined as the ring of all isogenies from
a curve to itself, under the operations of pointwise addition and functional composition)
has Z-rank equal to 4. An elliptic curve is ordinary if its endomorphishm ring does not
have Z-rank equal to 4 (in this case its endomorphism risk will have Z-rank equal to 1 or
2). Curves in the same isogeny class are either all supersingular or all ordinary.

4

2.3 Key Exchange Protocol

Fix a prime p of the form `aA`
b
B · f ± 1 where `A and `B are small primes, a and b are

positive integers, and f is some (typically very small) cofactor. Let E be a supersingular
elliptic curve defined over Fq = Fp2 . Fix a basis {PA, QA} of E[`aA] over Z/`aAZ and a basis
{PB, QB} of E[`bB] over Z/`bBZ. All of these parameters are public.

The idea of this protocol is a variation à la Diffie-Hellman of the commutative diagram

E E/〈P 〉

E/〈Q〉 E/〈P,Q〉

φ

ψ
(2.3.1)

where φ and ψ are random walks in the graphs of isogenies of degree `A and `B respectively.
The security of the key exchange is based on the difficulty of finding a path connecting two
specified vertices in a graph of supersingular isogenies. We refer the reader to [17, 26] for
a detailed discussion on the security of the protocol.

The key exchange protocol proceeds as follows. Alice chooses two secret, random ele-
ments mA, nA ∈R Z/`aAZ, not both divisible by `A, and computes an isogeny φA : E → EA
with kernel KA := 〈[mA]PA+[nA]QA〉. Alice computes the image {φA(PB), φA(QB)} ⊂ EA
of the basis {PB, QB} for E[`bB] under her secret isogeny φA. She sends these points to
Bob together with EA. Similarly, Bob selects secret, random elements mB, nB ∈R Z/`bBZ,
not both divisible by `B and computes an isogeny φB : E → EB having kernel KB :=
〈[mB]PB + [nB]QB〉. Bob then computes {φB(PA), φB(QA)} and sends the values to Alice
along with EB. With this information, Alice computes an isogeny φ′A : EB → EAB having
kernel equal to {[mA]φB(PA), [nA]φB(QA)}. Bob proceeds mutatis mutandis. Alice and
Bob can then use the common j-invariant of

EAB = φ′B(φA(E)) = φ′A(φB(E)) = E/{[mA]PA + [nA]QA, [mB]PB + [nB]QB}

as their shared secret key. For further details, we refer the reader to [17,26].

5

A B
Input: A,B, sID Input: B
mA, nA ∈R Z/`eAA Z mB, nB ∈R Z/`eBB Z
φA := E/〈[mA]PA+[nA]QA〉 φB := E/〈[mB]PB+[nB]QB〉

A,sID
φA(PB),
φA(QB),
EA−−−−−→
B,sID
φB(PA),
φB(QA),
EB←−−−−−

EAB := EBA :=
EB/〈[mA]φB(PA)+[nA]φB(QA)〉 EA/〈[mB]φA(PB)+[nB]φA(QB)〉

Output: j(EAB), sID Output: j(EBA), sID

E

EA

ker
(φA

)=
〈[mA

]PA
+[nA

]QA
〉

φA
(PB

),φA
(QB

)

EB

ker(φ
B)=〈[m

B]P
B+[n

B]Q
B 〉

φ
B (P

A),φ
B (Q

A)

EAB

ker
(φ
′
A
)=〈[

mA
]φB

(PA
)+[nA

]φB
(QA

)〉

EBA

ker(φ ′
B)=〈[m

B]φ
A (P

B)+[n
B]φ

A (Q
B)〉

‖

Figure 2.1: Key-exchange protocol using isogenies on supersingular curves.

2.4 Algorithmics

2.4.1 Parameter Generation

Jao et al.’s original implementation of the key exchange works for any value of `A and `B.
When `A = 2 and `B = 3, the original implementation performs most of the key exchange
protocol in C (as opposed to Cython) making it more efficient. However, even in this case,
parts of the key-exchange protocol are done in Cython. Our modifications only concern

6

themselves with the case `A = 2 and `B = 3 and we assume those parameter values for the
remainder of the chapter. For any fixed choice of a and b one can choose random values of
f until one of p = `aA`

b
B ·f +1 or p = `aA`

b
B ·f −1 is prime. An effective version of the prime

number theorem in arithmetic progressions by Lagarias and Odlyzko [29] guarantees that
the density of such primes is sufficient.

Fixing a prime p = `aA`
b
B · f ± 1 we now need a supersingular curve E0. A result

by Broker [15] says that it is computationally easy to find a supersingular curve E over
Fp2 with cardinality (p ∓ 1)2 = (`aA`

b
B · f)2. Once can either chose E0 = E or construct

the isogeny graph consisting of all supersingular curves defined over Fp2 and choose E0

via random walks on said isogeny graph. Using either method, we obtain E0 with group
structure (Z/(p∓ 1)Z)2. To obtain a basis for the torsion group E0[`

a
A], choose a random

point P ∈R E0(Fp2) and set P ′ = (`bB · f)2P so that P ′ has order dividing `aA. One checks
whether P ′ has order exactly equal to `aA by multiplying P ′ by powers of `A. If this check
succeeds (which it will with high probability) then we set PA = P ′. We choose a second
point of order `aA, QA, in the same way. One must check that PA and QA are independent
and this is done by computing the Weil pairing e(PA, QA) in E0[`

a
A] and checking that the

result has order `aA via repeated multiplications of `A. If this fails we can simply chose
another point QA and try again.

2.4.2 Key Exchange

The key exchange is performed in two rounds and in each round Alice and Bob proceed as
follows:

1. Compute 〈R〉 = 〈[m]P + [n]Q〉 for points P , Q;

2. Compute the isogeny φ : E → E/〈R〉 for a supersingular curve E;

3. In only the first round, compute φ(R) and φ(S) for some points R, S;

where E, P , Q, R and S depend on both the round and the player. We now discuss how
to implement these three steps.

There are many classical techniques for computing 〈[m]P + [n]Q〉. One first observes
that we need only a single generator. We can compute [m]P + [n]Q naively by repeatedly
adding copies of P and Q together. Note that at least one of m or n will be invertible
modulo the order of the group and so without loss of generality we can assume m is
invertible. In this case, R′ = P + [m−1n]Q is another generator. Though computing R′ via

7

Algorithm 2.1 Three-point ladder to compute P + [t]Q [26].

Require: t, P,Q;
1: Set A = 0, B = Q,C = P ;
2: Compute Q− P ;
3: for i decreasing from |t| to 1 do
4: Let ti be the i-th bit of t;
5: if ti = 0 then
6: B = dadd(A,B,Q), C = dadd(A,C, P), A = 2A;
7: else
8: A = dadd(A,B,Q), C = dadd(B,C,Q− P), B = 2B
9: end if
10: end for
Ensure: C = P + [t]Q.

a standard double and add approach is much more efficient that computing [m]P + [n]Q
naively, it is vulnerable to simple power analysis (SPA) [28]. The choice of model for elliptic
curves in this implementation is the Montgomery curve (see Section 2.4.4). In [35], Jao
et al. proposed Algorithm 2.1 which both efficiently computes R′ on Montgomery curves
and is not vulnerable to SPA. At each iteration of the algorithm, registers A, B and C
contain values [x]Q, [x + 1]Q and P + [x]Q respectively, where x is equal to a certain
number of the leftmost bits of m−1n. When the algorithm terminates, C contains the
required result. The function dadd(A,B,C) is differential addition. It computes the sum
A + B knowing C = A − B. In Montgomery coordinates there is no distinction between
the affine points (x, y) and (x,−y). Thus, Q and −Q have the same coordinates. For
example, in the first iteration of Algorithm 2.1, A − B = 0 − Q = −Q = Q, as required.
Montgomery gave explicit formulas for differential addition on certain curves (now called
Montgomery curves). Such curves have very efficient differential addition so as to make the
ladder in Algorithm 2.1 nearly as efficient as a naive double and add approach, while also
being resistant to SPA attacks. The only (potentially) useful piece of information leaked
by Algorithm 2.1 is the size of t in bits.

2.4.3 Computing Isogenies

Computing the isogenies in the protocol can be accomplished via an iterative process.
Given an elliptic curve E and a point R of order `e, we compute φ : E → E/〈R〉 by
decomposing φ into a chain of degree ` isogenies, φ = φe−1 ◦ · · · ◦φ0, as follows. Set E0 = E

8

and R0 = R, and define

Ei+1 = Ei/〈`e−i−1Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri).

R0

R1

R2

R3

R4

R5

[`1]R

[`2]R

[`3]R

[`4]R

[`5]R

φ0

φ0

φ0

φ0

φ0

φ1

φ1

φ1

φ1

φ2

φ2

φ2

φ3

φ3 φ4

[`]

[`]

[`]

[`]

[`]

[`4]R1 [`3]R2 [`2]R3 [`1]R4

•

• •

• • •

• • • •

• • • • •

• • • • • •

Figure 2.2: Diagram of isogeny computation.

Figure 2.2 shows the computational structure of computing isogenies for c = 6. The
bold dots represent points on E. Points on the same left diagonal belong to the same curve
and points of the same height on the diagram represent points of the same order. Leftward
dashed edges refer to multiplication by `, while rightward dashed edges refer to evaluation
of isogenies of degree `. At the beginning of the algorithm, only R0 is known. In order
to compute φ, we must compute all the elements at the bottom row of Figure 2.2. Using
[`e−i−1]Ri we can compute the kernel of φi via O(`) point additions. We can then apply
Vélu’s formulas to compute φi and Ei+1. Since evaluating degree ` isogenies is generally
twice as expensive as multiplications by `, determining the best approach is a non-trivial
combinatorial problem.

We will now formalize the picture in Figure 2.2 and then discuss an algorithm to
optimally compute φ.

Definition 2.1. Let Tn be the portion of the unit triangular equilateral lattice contained
between the x-axis, the line y =

√
3x and the line y = −

√
3(x − n + 1). Tn is called the

discrete equilateral triangle (DET) of side n.

9

An edge is a segment of unit length directed towards the x-axis connecting two points in
Tn. A left edge is an edge with positive slope. It is called a right edge otherwise. Directing
the edges as such imparts a directed acyclic graph structure on Tn. We equip the points
of Tn with the ordering → defined by x → y if and only if there exists a path in Tn from
x to y. The leaves and root of Tn are the final and initial point(s) respectively. For any
two points y, y′ of Tn, there is at most one point x such that x→ y and x→ y′. We write
x = y ∧ y′. A strategy S is a sub-graph of Tn having a unique root. We call a strategy full
if it contains all the leaves of Tn. In this case we must have that the root of S is the same
as Tn.

One should first note that any full strategy yields a valid algorithm to compute the
isogeny φ. One travels the graph in depth-first left-first oder. Each time the bottom
(x-axis) is hit, one apply’s Vélu’s formulas before proceeding.

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure 2.3: Two ill-formed strategies.

One should note that there are certain types of strategies which cannot be optimal. A
strategy with more than one edge passing through a point is not optimal as one of those
edges is clearly useless. Furthermore, a strategy that has a leaf different from the leaves
of Tn is not optimal as that particular leaf will be immaterial to the isogeny computation.
We define a well-formed strategy to be one that has neither of the preceding flaws. We
call a strategy that is not well-formed, ill-formed.

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

·
· ·
· · ·
· · · ·

Figure 2.4: The seven well-formed full strategies for n = 4. Notice that the three middle
strategies share the same binary tree topology and the middle one is the canonical strategy.

We are interested in computing the “optimal” full strategy, according to some measure
of computational effort. We first note that any well-formed strategy has a particular
binary tree topology obtained by discarding the internal nodes of out-degree less than 2

10

and preserving the same connectivity structure. Conversely, let A be a binary tree with
n leaves and such that no internal nodes have out-degree less than 2. We can canonically
associate a strategy S on A as follows. If n = 1 then S = T1. Otherwise, let S ′ be the
strategy associate to the left branch of A, S ′′ the strategy associated to the right branch
of A translated to the right by |S ′|. Let r′ and r′′ be the roots of S ′ and S ′′ respectively.
Then r′∧r′′ is the root of Tn and our canonical strategy is defined as S = rr′∪rr′′∪S ′∪S ′′
where xx′ denotes the edge between x and x′. This allows us to recursively build a strategy
from an appropriate binary tree. Intuitively, one can view S as being visually the same as
A.

Recall that in a strategy, left edges are multiplications by ` and right edges are `-isogeny
evaluations. The cost of each of these operations is dependent on the specific hardware
and software platform used in implementation. Thus, in striving to achieve an optimal
strategy, it makes sense for us to assign different weights to left and right edges.

Let (p, q) be a pair of positive real numbers where p represents the weight of a left edge
and q represents the weight of a right edge. We call such a (p, q) a measure. For a set of
edges S of Tn let (S) denote the sum of the weights of edges in S.

Jao et al. show that for any measure, the canonical strategy is minimal with respect
to all other strategies sharing the same tree topology. We call a strategy optimal when
it is minimal among all full strategies with n leaves with a respect to a given measure
(p, q). Thus, for a given measure, the optimal strategy would, in theory, give the least
computationally intensive way to compute a degree n isogeny.

Lemma 2.1 ([26], Lemma 4.5). Let S be an optimal strategy. Let S ′ and S ′′ be, respectively,
its left and right branch. Then S ′ and S ′′ are optimal strategies.

Let Cp,q(n) be the cost of the optimal strategies with n leaves. Lemma 2.1 tells us

Cp,q(n) = min
i=1,...,n−1

(
Cp,q(i) + Cp,q(n− i) + (n− i)p+ iq

)
. (2.4.1)

Intuitively, the cost of the optimal strategy S with n leaves is equal to the total cost of
the optimal strategies on its left and right branch plus the cost of the the edges leading to
those branches. This equality suggests a dynamic programming algorithm that for a given
measure (p, q) computes C(n) in O(n2) time. Additionally, determining the cost Cp,q(i)
for i = 1, . . . n will give us the optimal strategy for Tn. For example, assume we wish to
determine the optimal strategy for T3 under a given measure (p, q). One first determines
Cp,q(2) which is always equal to p+ q (we can assume Cp,q(1) = 0). The optimal strategy
on two leaves appears in Figure 2.5.

11

·
· ·

Figure 2.5: Optimal strategy for two leaves.

Then one determines Cp,q(3) which equals either Cp,q(2) + 2p + q or Cp,q(2) + p + 2q.
Determining Cp,q(3) will tell us which additional edges should be added. Cp,q(3) would
be one of the two strategies in Figure 2.6. Thus by determining which of (Cp,q(2) + 2p +
q, Cp,q(2) + p+ 2q) is minimal we determine the optimal strategy on T3.

·
· ·
· · ·

·
· ·
· · ·

Figure 2.6: The two possible optimal strategies for three leaves superimposed on the opti-
mal strategy for two leaves.

Since the optimal strategy can be computed off the device and loaded onto the device as
a precomputed parameter, we need not be very concerned with efficiency of the algorithm.1

A straightforward Python implementation computes the optimal strategies for n = 1024
in under one second [17,26].

2.4.4 Choice of Models

All curves we are concerned with have group structure (Z/(p ∓ 1)Z)2. This forces either
the curve itself or its twist to have a point of order 4. In [10], Bernstein et al. prove that
any elliptic curve having a point of order 4 is isomorphic to a twisted Edwards curve. They
further prove that any twisted Edwards curve is isomorphic to a Montgomery curve. Since,
over a quadratic extension field, an elliptic curve is isomorphic to its quadratic twist, we
see that all curves we are concerned with will be isomorphic to a Montgomery curve.

To estimate efficiency we count the number of elementary operations in Fp2 . We write I,
M , S for the costs of one inversion, multiplication and squaring respectively. We make the

1Optimal strategies can be mathematically characterized, though the dynamic programming algorithm
is satisfactory from an implementation perspective. See [17,26].

12

assumption that S ≤ M ≤ I. We ignore additions, subtractions and comparisons as they
are significantly faster than the operations we include in our estimate. We use the Explicit
Formulas Database (EFD) [11] for operation counts on elliptic curves. However, unlike
the EFD, we count multiplications by constants (other than small integers) as ordinary
multiplications.

Montgomery curves [35] have equation

MB,A : By2 = x3 + Ax2 + x. (2.4.2)

One can represent points on MB,A by (X : Z) where x = X/Z. This is known as a Kummer
representation. One refers to performing operations on a curve with such a representation
as performing operations on the curve’s Kummer line. Such a representation has the
disadvantage of identifying P with −P since the negative of a point only differs in the Y
coordinate. However, Montgomery curves have very efficient arithmetic on their Kummer
line. A point can be doubled using 3M + 2S or 2M + 2S when it is scaled to have Z-
coordinate equal to 1. Since P is identified with −P , it is not possible to add two distinct
points. However, if P −Q is known, one can compute P +Q via differential addition. One
differential addition has a cost of 4M + 2S or 3M + 2S when P − Q is scaled to have Z
coordinate equal to 1. Through the use of a Montgomery ladder, along with doublings and
differential additions, one can compute any scalar multiple of a point [35]. Since P and
−P generate the same subgroup of a group of points on an elliptic curve, and an isogeny
can be uniquely identified with such a subgroup, we see that isogenies can be defined and
evaluated correctly on the Kummer line.

Computing 〈[m]P + [n]Q〉

As discussed in Section 2.4.2, in order to compute [m]P + [n]Q, we will actually compute
P +[m−1n]Q via Algorithm 2.1. We first compute P −Q in projective coordinates by using
the standard chord and tangent law. We then scale P , Q and P −Q to have Z-coordinate
equal to 1 and work on the Kummer line. At each iteration of the for loop in Algorithm
2.1 we perform one doubling and two differential additions at a total cost of 9M + 6S per
iteration.

Isogenies of Montgomery Curves

In [17,26], Jao et al. give explicit formulas for isogenies of Montgomery curves and optimize
the degree 2 and 3 case. We will not derive those formulas here but instead refer the reader

13

to the original paper for those details. Let E be the Montgomery curve defined in equation
2.4.2. It has a point of order two P2 = (0, 0) and a point of order four P4 = (1,

√
(A+ 2)/B)

such that [2]P4 = P2. Let X be the abscissa of P . We now describe the formulas for degree
2, 3 and 4 isogenies that are used in the software implementation. Isogenies of degree 2
are defined by

φ2 : E → F2,

(x, y) 7→
(

(x− 1)2

x
, y

(
1− 1

x2

))
,

and F2 :
B

2
√

2 + A
y2 = x3 +

A+ 6

2
√

2 + A
x2 + x.

(2.4.3)

Isogenies of degree 3 are defined by

φ3 : E → F3,

(x, y) 7→
(
x(x− 1

X)
2

(x−X)2
X2, y

(x− 1
X)((x− 1

X)(x−X)+2x(1
X
−X))

(x−X)3
X2

)
,

and F3 : BX2y2 = x3 +

(
A+

6

X
− 6X

)
X2x2 + x.

(2.4.4)

If we define

ψ : F2 → G,

G :
B

2− A
y2 = x3 − 2

A+ 6

2− A
x2 + x,

and (x, y) 7→
(

1

2− A
(x+ 4)(x+ (A+ 2))

x
,

y

2− A

(
1− 4(2 + A)

x2

))
.

(2.4.5)

Then φ4 := ψ ◦ φ is an isogeny of degree 4.

Jao et al.’s original implementation of the key-exchange is suitable when `A and `B
are arbitrary small primes. However, our implementation is only suitable for `A = 2
and `B = 3. As in Section 2.4.3, isogenies of composite smooth degree are computed
by composing isogenies of prime degree. In the degree 3e case, this is done by simply
composing degree 3 isogenies. Let e ≥ 3. In the degree 2e case, one needs knowledge of a
point of order 8 in order to determine the curve F2 [17,26]. Thus, one cannot simply chain
together multiple isogenies of degree 2. This problem is solved by chaining together e− 2
isogenies of degree 2 followed by an isogeny of degree 4. In [17,26], Jao et al. suggested that
there may be a small speed advantage in using chains of degree 4-isogenies instead. From

14

Table 2.1: Comparative costs for multiplication and isogeny evaluation in projective Kum-
mer coordinates, in number of multiplications and squarings, and assuming S = 0.8M .

` 2 3 4
Isogeny 2M + S 4M + 2S 6M + S

2.8 5.6 6.8
Multiplication 3M + 2S 7M + 4S 6M + 4S

4.6 10.2 9.2

Table 2.2: Comparative costs of the optimal strategy for computing a degree 2514 (` = 2, 4)
or 3323 (` = 3) isogeny, assuming S = 0.8M .

optimal strategy
` 2 3 4
Isogenies 2741 1610 1166
Multiplications 1995 1151 921
Total cost 16852 20756 16402

Table 2.1, this certainly appears plausible. However, after further investigation, we found
that using 4-isogenies seems to be slightly less efficient in practice (< 1% disadvantage
compared to chains of 2-isogenies).

Table 2.1 compares the cost of isogeny evaluations and scalar multiplications for isoge-
nies of degree 2, 3 and 4. We also report the cost obtain by setting S = 0.8M . This figure
is roughly based on the fact that squaring in Fp2 requires 2 multiplications (as oppose to 3
for field multiplication). These figures assume certain expressions have been precomputed,
and common subexpressions shared.

Table 2.2 lists the total cost of isogeny evaluations and scalar multiplications for an
optimal strategy.

2.5 Implementation

The original implementation from [17, 26] uses a mixed C/Cython/Python/Sage architec-
ture. Parameter generation is done in Sage, and the computation of the optimal strategy
for computing isogenies is done in Python using the dynamic programming algorithm dis-
cussed in Section 2.4.3. Arithmetic in Fp2 is written using C, using GMP to support
arithmetic modulo p. Elliptic curve arithmetic is implemented in Cython. In the special

15

case `A = 2 and `B = 3, the key exchange uses a combination of C and Cython, with the
most critical parts done in C. The fact that elliptic curves are implemented using Cython
prevents a pure C implementation. For all other values of `A and `B, the key exchange is
done in Cython.

See Section 4.2 for a description of our contributions and results pertaining to isogeny-
based key-exchange.

16

Chapter 3

An Efficient Method of Pairing
Computation

3.1 Introduction to Cryptographic Pairings

The use of pairings in cryptography was initially proposed by Joux for use in the first three-
party, one-round key agreement protocol that was secure against eavesdroppers [27]. This
protocol was surprisingly simple and solved a problem that had been open for some time.
This sparked researchers to begin investigating the use of pairings in other cryptographic
contexts. Their use was further popularized by Boneh and Franklin as a result of their work
on identity based encryption. Now, we see pairings in a variety of additional areas such
as short signature schemes and attribute based encryption. Implementing these protocols
successfully requires the efficient computation of the pairings involved. Much work has been
done on the efficient computation of pairings on PCs [3,12,20,36]. However, relatively little
work of this nature has been done on ARM-based platforms [2, 22, 25]. In this section we
introduce pairings and discuss how to efficiently compute them. We then focus on recent
work of Grewal et al. [22] which presents an implementation that efficiently computes the
Optimal Ate pairing over Barreto-Naehrig curves.

3.1.1 Bilinear Pairings

Let G1 and G2 be cyclic groups of prime order n written additively with identity ∞, and
let G3 be a cyclic group of order n written multiplicatively with identity 1.

17

Definition 3.1. A bilinear pairing e is a function

e : G1 ×G2 → G3

that satisfies the following additional properties:

(1) (bilinearity) For all P , P ′ ∈ G1 and Q, Q′ ∈ G2,

e(P + P ′, Q) = e(P,Q)e(P ′, Q),

e(P,Q+Q′) = e(P,Q)e(P,Q′).

(2) (non-degeneracy) e(P, P) 6= 1.

Additionally, one wants e to be efficiently computable. From the two properties above,
one can derive several other useful properties of e.

(1) e(P,∞) = e(∞, Q) = 1.

(2) e(P,−Q) = e(−P,Q) = e(P,Q)−1.

(3) e(aP, bQ) = e(P,Q)ab for all a, b ∈ Z.

(4) e(P,Q) = e(Q,P) (only if G1 = G2).

(5) If e(P,Q) = 1 for all Q ∈ G2 then P =∞.

3.1.2 Applications

Tripartite Diffie-Hellman

The first use of pairings in cryptography was the development of the three-party, one-round
key-exchange protocol by Joux in 2000 [27]. This protocol is very much a three-party
version of Diffie-Hellman and its security is based on the following assumption:

Definition 3.2 (Bilinear Diffie-Hellman Assumption). Let e be a bilinear pairing e : G1×
G1 → G2 with P ∈ G1. Given P , aP , bP , cP , it is computationally infeasible to compute
e(P, P)abc.

The protocol works as follows. Let e be a bilinear pairing e : G1 ×G1 → G2.

18

1. The three parties agree on a common point P ∈ G1.

2. Each party chooses a secret integer a, b, c and broadcasts aP , bP , cP .

3. Bilinearity of the pairing (more precisely property (3) above) allows each party to
compute a common secret key. Indeed,

e(P, P)abc = e(aP, bP)c = e(aP, cP)b = e(bP, cP)a.

BLS Short Signatures

An additional use of pairings is in signature schemes. Most discrete logarithm signature
schemes are variants of the ElGamal scheme. In such schemes, signatures are usually
comprised of a pair of integers modulo the order (n) of the underlying group (G). By using
pairings, Boneh, Lynn and Shacham were able to develop a signature scheme that uses
one group element as the signature and where group elements can be represented using
roughly the same number of bits as an integer modulo n [14].

Let e be a bilinear pairing e : G1 ×G1 → G2 where G1 = 〈P 〉 has order n and H be a
cryptographic hash function H : {0, 1}∗ → G1 \ {∞}. The Boneh, Lynn, Shacham (BLS)
short signature scheme is as follows:

Private Key: Alice randomly selects an integer a ∈R [1, n− 1].

Public Key: A := aP .

Signature: Let m ∈ {0, 1}∗ be the message. Then S = aH(m) is the signature.

Verification: Compute M = H(m). Then verify that e(P, S) = e(A,M).

If the signature is valid then we would have

e(P, S) = e(P, aH(m)) = e(aP,H(m)) = e(A,M)

as required for verification.

19

3.1.3 Divisors

All bilinear pairings that we know about are defined on elliptic curves. Furthermore, they
all use the concepts of divisors. In this section, we give an overview of theory of divisors
required for their study. This section is an adaptation of information found in [32]. Let E
be an elliptic curve defined over a field K.

Definition 3.3. A divisor D is a formal sum of points in E.

D =
∑
P∈E

nPP,

where nP ∈ Z. Furthermore, we only allow a finite number of the nP to be non-zero.

The degree of D, denoted deg(D), is defined to be deg(D) =
∑

P∈E nP . We note that
deg(D) is an integer. The order of D at P, denoted ordP (D), is defined to be ordP (D) = nP .

We denote the set of divisors on E as D. Note that D forms an abelian group under a
natural addition rule, ∑

P∈E

nPP +
∑
P∈E

mPP =
∑
P∈E

(nP +mP)P.

Since only a finite number of nP and mP are non-zero, we see that only a finite number of
(nP +mP) will be non-zero. Hence,

∑
P∈E(nP +mP)P satisfies the definition of a divisor.

Let K denote the algebraic closure of K. Let E be an elliptic curve and let K(E)
denote the field of rational functions on E with coefficients in K. Let K[E] denote the
field of polynomial functions with coefficients in K. Let R be a non-zero rational function
in K(E). We wish to define the order of R at a point P denoted (ordP R).

Definition 3.4. Let R be a non-zero element of K(E) and let P ∈ E. If R(P) = 0, then
R is said to have a zero at P . If R is not defined at P then R is said to have a pole at P .

The zeros and poles of the rational functions on E roughly correspond to zeros and
poles of functions in C(x), the field of rational functions over the complex numbers.

Theorem 3.1 ([32], Theorem 23). Let P ∈ E. Then there exists a rational function
U ∈ K(E) with U(P) = 0 such that for each non-zero polynomial function R in K[E],
there exists an integer d and function S in K(E) such that S(P) 6= 0,∞ and R = UdS.
Also, d is only dependent on R and P . The function U is then called a uniformizing
parameter for P .

20

The existence of a uniformizing parameter is proved by explicitly constructing a uni-
formizing parameter for several cases depending on the characteristics of the point P .

Definition 3.5. Let R be a non-zero polynomial in K[E] and P ∈ E. Let U be a uni-
formizing parameter for P . We can write R = UdS where S is a rational function on E
with S(P) 6= 0,∞. We define the order of R at P to be d, denoted ordP (R) = d.

Consider f(x) ∈ C[x]. In this setting, the order of f at a point y ∈ C is defined as the
multiplicity of the zero at f(y). If f(y) 6= 0, the order of f at y would be zero. If f(y) = 0,
the we can rewrite f as f(x) = (x− y)dg(x) where g(x) is a polynomial function in x and
g(y) 6= 0. Then the order of f at y would be equal to d. Again, we see the connection
between functions in K[E] and polynomials defined over C[x].

Now, consider f(x) ∈ C[x], a non-zero polynomial function of degree n. Since C is
algebraically closed, we see that f(x) splits completely into linear factors in C[x]. Now,
if we look at the order of f(x) evaluated at each point in C, we get,

∑
y∈C ordy f(x) = n.

If we consider a non-zero polynomial function R ∈ K[E], the only difference with the
preceding analogy is that we must consider the point at infinity, ∞. One can show that
ord∞R = − deg(R). So intuitively it seems reasonable that

∑
P∈E ordP (R) = 0. This is in

fact true, and also holds where R is a non-zero rational function in K(E). Furthermore,
one can also show that the number of zeros and poles for a function in K(E) is finite.

Theorem 3.2 ([32], Theorem 29). Let R be a non-zero rational function in K(E). Then,
R has a finite number of zeros and poles. Furthermore,

∑
P∈E ordP (R) = 0.

Now, consider
∑

P∈E(ordP R)P where R is a non-zero rational function in K(E). Prov-
ing that R has a finite number of zeros and poles is equivalent to proving that R has a
finite number of points, P , at which ordP R 6= 0. Since we have

∑
P∈E ordP (R) = 0, we see

that
∑

P∈E(ordP R)P satisfies the definition of a divisor. In particular, it is a degree zero
divisor.

Definition 3.6. Let R be a non-zero rational function in K(E). We define the divisor of
R, denoted div(R), as

div(R) =
∑
P∈E

(ordP R)P.

Let D0 denote the set of divisors of degree zero. Note that D0 is a subgroup of D. Let
D ∈ D. We call D a principal divisor if D = div(R) for some non-zero rational function

21

R ∈ K(E). We denote the set of all principal divisors as P. Let R1, R2 ∈ P. It is fairly
clear that P is a subgroup of D0 under addition. The following computation verifies this:

div(R1) + div(R2) =
∑
P∈E

ordP (R1)P +
∑
P∈E

ordP (R2)P

=
∑
P∈E

(ordP (R1) + ordP (R2))P

=
∑
P∈E

(ordP (R1R2))P

= div(R1R2).

Intuitively, the above computation can be explained by realizing that the only points
appearing in div(R1) and div(R2) are the zeros and poles of R1 and R2 respectively, along
with the point at infinity. Since the product of the two functions would have the same
zeros and poles, and also contain the point at infinity, we see that this computation makes
sense.

We can now define
CL0 = D0/P.

This is the quotient group of D0 modulo P and is called the divisor class group of E. Let
D1, D2 ∈ D0. We call D1 and D2 equivalent, denoted D1 v D2, if D1 −D2 ∈ P.

We now state two important results regarding divisors on elliptic curves. The result in
Theorem 3.4 is known as Weil Reciprocity.

Theorem 3.3 ([13], Chapter 9). Let E be an elliptic curve over a field K. Let

D =
∑
P∈E

nP (P)

be a divisor of degree zero on E. Then D ∼ 0 (i.e D is the divisor for some rational function
R ∈ K(E)) if and only if

∑
P∈E[nP]P =∞.

Let R ∈ K(E) and D =
∑

P∈E nP (P) be a divisor of degree zero such that div(R) and
D have disjoint support. Let

R(D) :=
∏
P∈E

R(P)nP .

Theorem 3.4 ([13], Appendix). Let E be an elliptic curve over a field K and R,Q ∈ K(E)
be rational functions on E. Suppose that R and Q have disjoint support. Then

R(div(Q)) = Q(div(R)).

22

3.1.4 The Tate Pairing

The next two subsections follow Menezes’ exposition in [31]. The Tate pairing is a bilinear
pairing defined on the torsion subgroup of the group of points of an elliptic curve over
a finite field. Let E be an elliptic curve over Fq and #E(Fq) = hn where n is a prime
such that gcd(n, q)=1. Let k be minimal such that n|qk − 1 and recall that E[n] denotes
the n-torsion group of E (c.f. Section 2.2). Let µn denote the order-n subgroup of F∗

qk

(µn is also the group of nth roots of unity). Balasubramanian and Koblitz show that
E[n] ⊆ E(Fqk) [5]. Also assume that gcd(n, h)=1 and n - #E(Fqk)/n2. The Tate pairing
is defined as a map

e : E[n]× E[n]→ µn.

We now define the Tate pairing. Let P,Q ∈ E[n]. Let fP ∈ Fq(E) be a function with
div(fP) = n(P) − n(∞). This ensures fP has a zero of order n at P and a pole of order
n at ∞. Thus, fP has no other zeros or poles. We have that nP − n∞ = ∞ since P
is an n-torsion point. Therefore, the existence of fP is guaranteed by Theorem 3.3. Let
R ∈ E[n] such that R /∈ {∞, P,−Q,P − Q} and let DQ = (Q + R) − (R). The choice of
R ensures DQ and div(fP) have disjoint support. The Tate pairing is then defined as

e(P,Q) = fP (DQ)(q
k−1)/n =

(
fP (Q+R)

fP (R)

)(qk−1)/n

.

One can show that the Tate pairing is well defined and satisfies all the required properties
to be a bilinear pairing [6].

If one normalizes fP , then one can ignore DQ and work only with Q. In this case, the
Tate pairing becomes

e(P,Q) = fP (Q)(q
k−1)/n. (3.1.1)

3.1.5 Miller’s Algorithm

The difficult part about computing the Tate pairing is computing the function fP . In
general, any function fi,P (or simply fi if the point P is implied) with divisor i(P) −
(iP)− (i− 1)(∞) is called a Miller function and in this subsection we describe an efficient
algorithm for computing such functions [33]. The success of Miller’s algorithm is based on
the following observation.

23

Theorem 3.5 ([21], Theorem 1.1.21). Let P ∈ E[n] and let i and j be positive integers.
Let l be the line through iP and jP , and let v be the vertical line though iP + jP . Then

fi+j = fifj
l

v
(3.1.2)

Proof. Recall the group law for the group of points on an elliptic curve. One can see that
l will also intersect the point −[i + j]P and that v will intersect , [i + j]P , −[i + j]P and
∞. Thus,

div

(
l

v

)
= (iP) + (jP)− ([i+ j]P)− (∞).

We have,

div

(
fifj

l

v

)
= {i(P)− (iP)− (i− 1)(∞)}+ {j(P)− (jP)− (j − 1)(∞)}

+ {(iP) + (jP)− ([i+ j]P)− (∞)}
= (i+ j)P − ([i+ j]P)− (i+ j − 1)∞
= div(fi+j)

as required.

The basic idea of Miller’s algorithm is to start with f1 = 1 and use Theorem 3.5 above
with a standard double-and-add approach to compute fn for some given n. Algorithm 3.1
presents Miller’s algorithm. We only require the value fn(Q) in order to compute the Tate
pairing. Thus, Miller’s algorithm only computes the value of the intermediate functions
fi at the point Q. Miller’s algorithm requires O(log(n)) iterations with each requiring a
constant number of arithmetic operations in Fqk . We refer to steps 2 through 9 as the
Miller loop.

3.1.6 Barreto-Naehrig Curves

One must be careful when choosing an elliptic curve E for implementing a pairing-based
protocol. As an example, consider the Tate pairing. The coordinates of the points of the
elliptic curve we are working with lie in an extension field Fqk of the field of definition
of E. In this situation, one must be careful to balance security and practicality. If the
embedding degree k is too small, then the DLP may not be intractable in Fqk . However,

24

Algorithm 3.1 Miller’s Algorithm to compute the Tate pairing [33]

Require: P,Q ∈ E[n] and let the binary representation of n be n = (nl−1nl−2...n1n0)2 ∈ N

1: f ← 1, T ← P ,
2: for i = l − 2 to 0 do
3: f ← f 2 · lT,T (Q)

v2T (Q)

4: T ← 2T
5: if li 6= 0 then

6: f ← f · lT,P (Q)

vT+P (Q)

7: T ← T + P
8: end if
9: end for

10: f ← f
qk−1
n

11: return f

if the embedding degree is too large then computations could easily become unwieldy.
Balasubramanian and Koblitz showed that curves with suitably low embedding degrees
are rare. In particular, they showed that one can expect k ≈ q for a randomly selected
prime-order elliptic curve over a randomly selected prime-order field [5]. Furthermore, the
probability that k ≤ log2 q is very small. Similar results have been obtained for Fq where
q is a prime power [30].

In 2005, Barreto and Naehrig discovered what are now called Barreto-Naehrig (BN)
curves [7]. Let q(x) and n(x) be the polynomials

q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

n(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.

Randomly choose an integer x until both q(x) and n(x) evaluate to a prime number and
let q = q(x). Let b ∈ F∗q such that b+ 1 is a quadratic residue. Then consider the curve

E : y2 = x3 + b. (3.1.3)

If E does not have order n(x), then select a new b ∈ F∗q, such that b + 1 is a quadratic
residue and see if E has order n(x). Proceed until a suitable b is found. Then Equation
3.1.3 will define a BN-curve. In addition to having prime order, BN-curves will have an
embedding degree of 12 with respect to n(x). Furthermore, P = (1,

√
b+ 1) is a point on

E that generates E(Fq). Choosing a sufficiently large prime q ensures that Fqk will be large
enough that the DLP will be intractable.

25

3.2 Optimal Pairings and the Optimal Ate Pairing

For the remainder of this Chapter let

λ = q (mod n),

m = (λk − 1)/n.

3.2.1 The Ate Pairing

The Frobenius endomorphism is the map φ : E(Fqk) → E(Fqk) given by (x, y) 7→ (xq, yq).
If k is even then we can find d such that Fqd ⊂ Fqk and Fqk is a quadratic extension. An
element in a ∈ Fqk can be represented as a = α + ωβ where α, β ∈ Fqd and w is a square
root of an element in Fqd such that w 6∈ Fqd . This endomorphism then has two eigenspaces
in E(Fqk)[n] with eigenvalues 1 and q. Since x = xq for all x ∈ Fq, the 1-eigenspace
consists of points of E(Fq). The q-eigenspace consists of points (α, ωβ) [5]. In order to
define the Ate pairing, we assume k is even and restrict Q to be a point of this form. Let
G1 denote the 1-eigenspace and G2 denote the q-eigenspace when restricted to E[n]. Then
both eigenspaces form subgroups of order n when restricted to E[n].

The Ate pairing is an optimized version of the Tate pairing restricted to Frobenius
eigenspaces. It should be noted that Miller’s algorithm to compute the Tate pairing can be
easily modified to compute the Ate pairing, as well as the Optimal Ate pairing. The Ate
pairing is referred to as an optimized version of the Tate pairing since the Miller loop is
purposefully designed to be shorter than that of the Tate pairing. Hence, the Ate pairing
is easier to compute. We follow the approach in [42] and derive the Ate pairing. We will
then motivate and construct the Optimal Ate pairing.

We start with two lemmas about Miller functions from [21,42].

Lemma 3.1. fab,Q = f ba,Q · fb,aQ for all a, b ∈ Z.

Proof. Observe

div(f ba,Q) = b(a(Q)− ([a]Q)− (a− 1)(∞))

= (ba(Q)− b([a]Q)− b(a− 1)(∞))

div(f bb,aQ) = b(aQ)− ([ab]Q)− (b− 1)(∞)).

26

This gives us

div(f ba,Q · f bb,aQ)) = (ba(Q)− b([a]Q)− b(a− 1)(∞)) + b(aQ)− ([ab]Q)− (b− 1)(∞))

= ba(Q)− ([ab]Q)− (ba− 1)(Q)

= div(fab,Q).

Lemma 3.2. Let m ∈ Z and let e(Q,P) be the Tate pairing with Q ∈ G2 and P ∈ G1.
Then e(Q,P)m = fnm,Q(P)(q

k−1)/n.

Proof. We have

e(Q,P)m = fn,Q(P)(q
k−1)m/n

=
fnm,Q(P)(q

k−1)/n

fm,nQ(P)
(by Lemma 3.1)

=
fnm,Q(P)(q

k−1)/n

fm,∞(P)
(Q is an n-torsion point)

= fnm,Q(P)(q
k−1)/n.

We want to find a multiple of n such that computing fmn,Q(P) is reduced to computing
a power of a function fλ,Q(P) with a shorter Miller loop. We claim that such a multiple of
n is λk − 1. We define the reduced Ate pairing as a(Q,P) : G2 ×G1 → µn given by

(Q,P) 7→ fλ,Q(P)
(qk−1)
n . (3.2.1)

Lemma 3.3 ([42], Lemma 1). The reduced Ate pairing is a bilinear pairing which is non-
degenerate for n - m.

Proof. We have

e(Q,P)m = fnm,Q(P)(q
k−1)/n (by Lemma 3.2)

= fλk−1,Q(P)(q
k−1)/n.

27

Since Q is an n-torsion point, we see that ∞ = nQ = nmQ = [λk − 1]Q. Let l be the line
though λkQ and −Q and let v be the line through (λk − 1)Q. By applying Theorem 3.5
to the line above we get

fλk−1,Q(P)(q
k−1)/n =

(
fλk,Q(P) · f−1,Q(P)

l(P)

v(P)

)(qk−1)/n

.

Since λkQ = Q and (λk − 1)Q = ∞, we see that l(P) and v(P) cancel out and we’re left
with (

fλk,Q(P) · f−1,Q(P)
l(P)

v(P)

)(qk−1)/n

=
(
fλk,Q(P) · f−1,Q(P)

)(qk−1)/n
= fλk,Q(P)(q

k−1)/n.

The last step above is realized by noting that f−1,Q(P) = 1. Repeatedly applying Lemma
3.1 gives us

fλk,Q(P)(q
k−1)/n =

(
fλ

k−1

λ,Q (P) · fλk−1,λQ(P)
)(qk−1)/n

=
(
fλ

k−1

λ,Q (P) · fλk−2

λ,λQ (P) · fλk−2,λ2Q(P)
)(qk−1)/n

...

=
(
fλ

k−1

λ,Q (P) · fλk−2

λ,λQ (P) · · · · · fλ,λk−1Q(P)
)(qk−1)/n

=

(
k−1∏
i=0

fλ
k−1−i

λ,qiQ

)(qk−1)/n

.

By using induction and Lemma 3.1, one can prove the following Lemma:

Lemma 3.4 ([21], Fact 2.2.5). fa,qi(Q)(P) = fa,Q(P)q
i

for all a ∈ Z and Q ∈ G2.

Using Lemma 3.4 above we obtain

k−1∏
i=0

fλ
k−1−i

λ,qiQ =
k−1∏
i=0

f q
iqk−1−i

λ,Q (since λ = q (mod n))

=
k−1∏
i=0

f q
k−1

λ,Q

= fλ,Q(P)
∑k−1
i=0 q

k−1

.

28

Thus we see that e(Q,P)m = fλ,Q(P)
qk−1
n

kqk−1
. Let r = k−1q−(k−1) (mod n). Then,

a(Q,P) = e(Q,P)mr = e(Q,P)m[k−1q−(k−1) (mod n)]

= fλ,Q(P)

(
qk−1
n

[k−1q−(k−1) (mod n)]kqk−1

)

= fλ,Q(P)
qk−1
n ,

since n is prime, n - λk−1
n

and m = λk−1
n

. We also see that m[(k−1q−(k−1) mod n)] is
relatively prime to n. This, along with the non-degeneracy and bilinearity of the Tate
pairing, implies that the reduced Ate pairing is non-degenerate and bilinear.

We have λ = q (mod n). By Hasse’s theorem, n = #E(Fq) = q+ 1− t where |t| ≤ 2
√
q

and t is the trace of Frobenius for E (see [39], Chapter V). Thus, q = t−1 (mod n). Since
BN curves have a strictly positive trace of Frobenius [7], we have that t > 0 and λ = t− 1.
Therefore λ is almost half the length of n. Thus, computing the reduced Ate pairing
shortens the Miller loop in comparison to computing the corresponding Tate pairing.

3.2.2 Optimal Pairings

In this section we follow [42] and present the Optimal Ate Pairing which is a variation of
the Ate pairing that further shortens the Miller loop with regard to a natural lower bound.
We first discuss this lower bound on the length of the Miller loop and then define this
pairing.

The j-th cyclotomic polynomial Φj ∈ Z[x] is defined to be the unique irreducible poly-
nomial with integer coefficients that divides xj − 1 and that does not divide xk − 1 for
all k < j. One can show that the complex roots of the polynomial are precisely the j-th

primitive roots of unity e2πi
k
j where k < j and gcd(k, j)=1. This implies the equality

Φj(x) =
∏

1≤k≤j & gcd(k,j)=1

(
x− e2π

k
j

)
. (3.2.2)

The Möbius inversion formula allows us to explicitly express Φj(x) as

Φj(x) =
∏
l|j

(
xl − 1

)µ(j/l)
(3.2.3)

where µ(k) is the Möbius function which takes on values {-1,0,1} depending on the fac-
torization of k into prime factors. Consider an Ate pairing with Miller function fλi,Q for

29

λi = qi (mod n). Recall that n is a large prime such that n | qk − 1. Let d = gcd(i, k).
Then n |

(
(qi)k/d − 1

)
. Thus, by referring to equation 3.2.3 above and by noting that

µ(1) = 1, we see that n | Φk/d(λi). Since the degree of any cyclotomic polynomial Φj(x) is
φ(j) where φ is Euler’s Totient function, we see that the minimal value of λi will be close
to n1/φ(k/d). For d = 1 we see that the smallest lower bound will be close to n1/φ(k). This
bound is attained for several families of elliptic curves including cyclotomic families [18].
This bound motivates the following definition.

Definition 3.7 ([42]). Let e : G1 ×G2 → G3 be a bilinear pairing such that |G1| = |G2| =
|G3| = n. Let the field of definition of G3 be Fqk . Then we call e an optimal pairing if it
can be computed in log2 n/φ(k) + ε(k) basic Miller iterations (i.e iterations of the Miller
loop) where ε(k) ≤ log2(k).

Miller’s algorithm for the Tate pairing presented in Section 3.1.5 can also be used to
compute the Ate pairing. For an optimal pairing, the length of the Miller loop will be
O(log(λi)). Thus, the above definition of optimality seems appropriate. The following
conjecture, and the cases for which it is proven, further indicates that this notion of opti-
mality is the correct one.

Conjecture 3.1 ([42]). Any bilinear pairing on an elliptic curve without efficiently com-
putable endomorphisms different from powers of Frobenius requires at least O(log2 n/φ(k))
basic Miller iterations. Furthermore, the O-constant depends only on k.

The reason we exclude elliptic curves with efficiently computable endomorphisms dif-
ferent from powers of Frobenius is that the presence of such endomorphisms have enabled
many researchers to reduce the number of basic Miller iterations required in the Miller
loop. In 2008, Hess proved Conjecture 3.1 for a very general class of pairing functions that
includes all known pairing functions, including the Optimal Ate pairing [23].

3.2.3 The Optimal Ate Pairing

In constructing the O-Ate pairing, one uses Lemma 3.2 and attempts to find a multiple of
λ = mn such that its base-q expansion λ =

∑l
i=0 ciq

i has small coefficients. The following
theorem shows that such an expansion gives rise to a bilinear pairing. Thus, our problem
of finding an optimal pairing is reduced to finding a value of λ with small coefficients.

Theorem 3.6 ([42], Theorem 4). Let λ = mn with n - m and write λ =
∑l

i=0 ciq
i. Then

a[c0,...,cl] : G2 ×G1 → µn defined as

30

(Q,P) 7→

(
l∏

i=0

f q
i

ci,Q
(P) ·

l−1∏
i=0

l[si+1]Q,[ciqi]Q(P)

v[si]Q(P)

)(qk−1)/n

where si =
∑l

j=i cjq
j. a[c0,...,cl] defines a bilinear pairing if

mkqk−1 6≡ ((qk − 1)/n) ·
l∑

i=0

iciq
i−1 (mod n).

See [21,42] for a proof of the above theorem.

We wish to determine λ =
∑l

i=0 ciq
i with small ci. Since n | qk − 1 we see that

Φk(q) = 0 (mod n). It is therefore tempting to take λ = Φk(q). However, this always leads
to a degenerate pairing [42]. In order to avoid degenerate pairings and to obtain a relation
with small coefficients, it generally suffices to consider powers qi for i = 0, . . . , φ(k) − 1.
To do this we try to find a short vector in the φ(k)-dimensional lattice

L :=

n 0 0 . . . 0
−q 1 0 . . . 0
−q2 0 1 . . . 0

...
...

. . .

−qφ(k)−1 0 . . . 0 1

 .

Finding such a vector will give us an integer relation among the powers qi for i = 0, . . . , φ(k)−
1 that is equal to 0 modulo n. Since k is small this is easy in practice. One could, for ex-
ample, use enumeration as described in [37]. It is not immediately clear that this approach
will give us a short-enough vector for our pairing to be optimal or even that it will give us
a vector that induces a non-degenerate pairing.

Recall that the volume of a lattice is defined as the volume of the fundamental par-
allelepiped associated with L and is thus the absolute magnitude of the determinant of
L. One easily sees that the volume of the above lattice is n. As a consequence of
Minkowski’s theorem we get that there exists a vector V ∈ L such that ||V ||∞ ≤ n1/φ(k)

where ||V ||∞ = maxi |vi| [34]. It is a necessary condition to obtain an optimal pairing that
no single value of ci is greater than n1/φ(k). Thus, we see that this necessary condition
can be fulfilled. However, this condition is not sufficient as, even if it is fulfilled, we may
still require too many basic Miller iterations for our pairing to be optimal. Vercauteren
suggests a method for solving this shortcoming based on considering multiple short vectors

31

in L each having a minimum number of coordinates of size n1/φ(k) [42]. Using his method
will often give us an optimal pairing. Additionally, Vercauteren shows that using more
general expressions of λ =

∑l
i=0 ciq

i, besides those that arise as vectors in L, will not lead
to substantially more efficient pairings than those resulting from the use of his method.

The O-Ate Pairing on BN-Curves

Recall the family of BN-Curves, introduced in Section 3.1.6. This family of curves has
k = 12. Both q and n are given by equations parameterized by an integer x:

q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1,

n(x) = 36x4 + 36x3 + 18x2 + 6x+ 1.

There are at least two different ways one can define an Optimal Ate pairing using this
curve. Since φ(k) = 4, one can either consider the 4-dimensional lattice L and use one
of the shortest vectors in that lattice for the Euclidean norm (there are two) to define λ.
Alternatively, we can look for short vectors with a minimal number of coefficients of size
x.

We have

q(x) = 6x2 (mod n(x)),

q(x)2 = 36x3 − 18x2 − 6x− 1 (mod n(x)),

q(x)3 = 36x3 − 24x2 − 12x− 3 (mod n(x)).

Hence,
λ0 := 6x+ 1 + q(x)− q(x)2 + q(x)3 = 0 (mod n(x)).

Applying Theorem 3.6 with λ0 gives the following O-Ate pairing on BN-curves where
q = q(x):

(Q,P)→ f6x+2,Q(P)f q1,Q(P)f q
2

−1,Q(P)f q
3

1,Q(P)d(P), (3.2.4)

where d(P) is given by

d(P) = l[q−q2+q3]Q(P),[6x+2]Q(P)l[−q2+q3]Q,[q]Q(P)l[q3]Q,[−q2]Q(P). (3.2.5)

The computation of d(P) can be made simpler by using the following lemma:

Lemma 3.5. d(P)
qk−1
n = h(P)

qk−1
n where h(P) = l[6x+2]Q,qQ(P)l[6x+2]Q+qQ,−q2Q(P).

32

This lemma was discovered by Naehrig, Niederhagen and Schwabe [36] and is proven
by manipulating the divisors of d(P) and h(P) to show that they are essentially equal.

One also notes that f1,Q = f−1,Q = 1. Since one is only concerned with computing

d(P)
qk−1
n in the computation of the O-Ate pairing, one can replace d(P) by the simpler

expression h(P) in this computation. Thus, we obtain the following O-Ate pairing on
BN-curves,

(Q,P)→ (f6x+2,Q(P) · h(P))
qk−1
n . (3.2.6)

For the remainder of the discussion let

f := f6x+2,Q(P) · h(P).

3.3 An Efficient Implementation of the O-Ate Pairing

on ARM Processors

In this section we describe an efficient computation of the O-Ate pairing over BN-curves
BN-254, BN-446 and BN-638 [20] specifically designed for use on the ARM platform. This
implementation was presented by Grewal et al. [21, 22]. Their implementation uses an
appropriate adaptation of Miller’s algorithm for the computation of the pairing along with
many optimizations to increase efficiency. We summarize some of the more-important
optimizations and discuss implementation details.

3.3.1 Grewal et al.’s Optimizations

Representation of Extension Fields

The efficient computation of a pairing on a BN-curve relies on arithmetic over finite fields.
Therefore, one needs to implement the underlying fields efficiently. The implementation
uses Fq2 , Fq6 and Fq12 . The IEEE P1363.3 standard recommends using towers to represent
Fqk [1]. The curve BN-254 has prime q congruent to 3 mod 8, while the curves BN-446
and BN-638 have primes q congruent to 7 mod 8. In both cases, a tower construction is
used, the ideas of which come from Benger and Scott [9].

If q = q(x) is the prime characteristic of the field over which a BN-curve is defined and
if x = 7 or 11 (mod 12), then y6 − (1 +

√
−1) is irreducible over Fq2 = Fq(

√
−1). Thus,

33

we see that z3 − (1 +
√
−1) is irreducible over Fq2 = Fq(

√
−1) as well. This gives us the

following tower of extension fields:
Fq2 = Fq[i]/(i2 − β), where β = −1.

Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

Fq12 = Fq6 [w]/(w2 − v).

For the BN-254 curve defined by E : y2 = x3 + 2 over the 254-bit prime field Fq with
x = −(262 + 255 + 1), we see that x = 11 (mod 12) and we can use the above tower
scheme. This towering scheme is efficient as the coefficients of the irreducible polynomial
are minimal, thus ensuring less operations for field arithmetic.

If q = q(x) is the prime characteristic of the field over which a BN-curve is defined and
if x = 2, 3, 4, 6, 7 or 8 (mod 9), then y6 − (1 +

√
−2) is irreducible over Fq2 = Fq(

√
−2).

Thus, we see that z3− (1 +
√
−2) is irreducible over Fq2 = Fq(

√
−2) as well. This gives us

the following tower of extension fields:
Fq2 = Fq[i]/(i2 − β), where β = −2.

Fq6 = Fq2 [v]/(v3 − ξ), where ξ = 1 + i.

Fq12 = Fq6 [w]/(w2 − v).

The BN-446 curve is given by E : y2 = x3+257 defined over the 446-bit prime field Fq with
x = 2110 +236 +1. The BN-638 curve is defined by E : y2 = x3 +257 over the 638-bit prime
field Fq with x = 2158 − 2128 − 268 + 1. In both cases x has the required value modulo 9 to
use the second construction. The value of x modulo 9 is not suitable for us to use the first
construction, which is slightly faster in practice. Again, this towering scheme optimizes
field arithmetic because the coefficients of the irreducible polynomials are minimal.

Field Arithmetic

Arithmetic over finite fields is done using Karatsuba multiplication and squaring while
using lazy reduction for inversion routines as in [3]. The main idea of lazy reduction
techniques is to minimize the number of modular reductions required by carrying out the
maximum amount of preliminary arithmetic possible before reducing. By applying lazy
reduction techniques, one Fq reduction per Fq2 inversion and 13 Fq reductions per Fq12
inversion are saved.

34

Twists on Elliptic Curves

Let E be an elliptic curve over Fq. An elliptic curve E ′ is called a twist of E if there exists
an isomorphism ψ : E ′(Fqr)→ E(Fqr) defined over the extension field Fqr . The minimum
extension degree for which there exists an isomorphism is called the degree of the twist.

BN-curves have two sextic twists when considered over Fq2 [39]. Let E : y2 = x3 + b be
a BN-curve defined over Fq. Let ξ be as in Section 3.3.1. Then

E ′ : y2 = x3 +
b

ξ
, (3.3.1)

E ′′ : y2 = x3 + ξb, (3.3.2)

are sextic twists of E. They are known as a D-type twist and an M-type twist respectively.
Their untwisting isomorphisms are given as ψ′ and ψ′′ respectively where

ψ′ : E ′ → E,

ψ′ : (x, y) 7→ (ψ
1
3x, ψ

1
2y) = (w2x,w3y),

ψ′′ : E ′′ → E,

ψ′′ : (x, y) 7→ (ψ
−2
3 x, ψ

−1
2 y) = (ψ−1w4x, ψ−1w3y).

Exactly one of the above twists will map points in G2 to points on the twisted curve over
Fq2 . Therefore, G2 can be represented using either E ′[n](Fq2) or E ′′[n](Fq2). We call this
G′2. Using G′2 in place of G2 gives us the twisted O-Ate pairing on BN-curves

at : G′2 ×G1 → µn. (3.3.3)

A pair of points (Q′, P) ∈ G′2×G1 is mapped analogously to how the O-Ate pairing maps
a pair of points (Q,P) ∈ G2 × G1. However, the point Q is replaced by the point ψ(Q′)
where ψ = ψ′ or ψ′′ depending on whether we are using a D-type or M-type twist.

Twists can be used to substantially accelerate the Miller loop. First, one determines
the correct twist to use by checking which of the curves has order dividing n. For either
of the above tower schemes, one can take {1, v, v2, w, vw, vw} as a basis of Fq12 over Fq2 .

If the correct twist is a D-type twist then the computation of the untwisting isomor-
phism is almost free as w2 and w3 are basis elements for representing an element of Fq12 .
Thus, in this case, we compute the pairing on the original curve and perform arithmetic

35

on the twisted curve. We then use the efficient untwisting map to map the result back to
the original curve.

If the correct twist is an M-type twist then the untwisting map is not as efficient.
However the twisting map defined by

(ψ′′)−1 : (x, y) 7→ (w2x,w3y),

is nearly free. Thus, in this case, we compute the pairing on the twisted curve E ′′.

Final Exponentiation

The final step of Miller’s algorithm requires f to be raised to the exponent qk−1
n

. Since
BN-curves have k = 12, we can implement Fqk as a quadratic extension of Fqd where d = 6.
Then,

qk − 1

n
=
q2d − 1

n
=

(qd − 1)(qd + 1)

n
.

Since k was chosen to be minimal such that n | qk − 1, we see that n - qd − 1. Since n is
prime, n | qd + 1. We therefore split exponentiation into two parts, first, exponentiation

by qd − 1 and then qd+1
n

.

Let a ∈ Fqk then a = α+ βs where α, β ∈ Fqd and s is an adjoined square root. By the
generalization of the Frobenius endomorphism to extension fields, we see that

(α + βa)q
d

= a− βs. (3.3.4)

The above relation gives us the ability to compute f q
d−1 in an easy way. Computing

(f · h)
qd+1
n is more difficult. This exponent factors as

qd + 1

n
= (q2 + 1)

q4 − q2 + 1

n
.

Like in Equation (3.3.4), exponentiating by q2+1 is an easy operation due to the presence of

the Frobenius endomorphism. Thus, we need only worry about exponentiating by q4−q2+1
n

.

Computing f
q4−q2+1

n relies on the observation that computing the O-Ate pairing to some
suitable power will still give a bilinear pairing. Instead of using q4−q2+1

n
as the exponent,

we can choose a multiple of it. Fuenetes-Castañeda et al. demonstrate how to choose an

36

appropriate multiple in [19] and this is how Grewal et al. implement the final exponentiation
in [21,22]. The final exponentiation is computed as

af 6x2fbqap
2

(bf − 1)p
3

,

where a = f 12x3f 6x2f 6x and b = a(f 2x)−1. At the time that [22] was published, this was
the fastest known method.

3.3.2 Curve Arithmetic

For the remainder of this thesis, let m, s, a, i and r denote the times for multiplication,
squaring, addition, inversion and modular reduction in Fq, respectively. Let m̃, s̃, ã, ĩ and
r̃ denote times for multiplication, squaring, addition, inversion and modular reduction in
Fq2 , respectively.

The authors of the implementation examined the use of Jacobian, affine and homoge-
nous coordinate systems. It was found that homogenous coordinates were most efficient
for this implementation. Explicit formulas for some of the arithmetic operations, along
with operation costs can be found in [21,22].

It should be noted that the most efficient method of curve arithmetic for one platform is
not necessarily the most efficient method for all platforms. For example, ARM optimization
differs from PC optimization because ARM has different performance characteristics. On
the ARM platform, the ratio of cost of field inversions to field multiplications and the
ratio of the cost of field multiplications to field additions is generally lower than on the
PC platform. Therefore, the choice of formulas or coordinate systems geared towards one
platform may not be optimal for another.

One example of this phenomenon that is applicable to the implementation is as follows.
Let T = (X, Y, Z) ∈ E ′(Fq2) be a point on the twist of E in homogeneous coordinates.
Aranha et al. observe that m̃−s̃ ≈ 3ã on a PC processor [3] . However, on ARM processors,
Grewal at al. observe that m̃ − s̃ ≈ 6ã [22]. In order to compute 2T = (X ′, Y ′, Z ′) one is
required to compute XY as an intermediate step. One can compute XY by computing

XY directly or by computing (X+Y)2−X2−Y 2

2
. The first method has costs of 3ã + s̃ = m̃

on a PC and 6ã + s̃ = m̃ on an ARM processor. Assuming the cost of division by two is
equivalent to the cost of addition and that X2 and Y 2 are precomputed, the second method
has cost 4ã+ s̃ on both platforms. Thus, we see that the first method is most efficient on
a PC platform, while the second method is most efficient on the ARM platform.

For detailed operation counts, the reader can refer to [21,22].

37

3.3.3 Implementation Results

Grewal et al. presented the results of this implementation on a Marvell Kirkwood 6281
ARMv5 CPU processor at 1.2 GHz, an IPad 2 using an ARMv7 Cortex-A9 MPCore
processor at 1.0 GHz, and a Samsung Galaxy Nexus using an ARM Cortex-A9 at 1.2
GHz [21,22].

The software is based on version 0.2.3 of the RELIC toolkit with a GMP 5.0.2 backend.
The authors implemented field addition and multiplication using hand-optimized assembly
language for the BN-254 curve. We discuss more details of assembly language in Chapter
4.

The results of the experiment are presented in Table 3.1. For ease of comparison, the
results from [2] are also presented there. This implementation’s timings are roughly 3-4
times faster than those reported in [2]. ML, FE, O-A(a), O-A(p) denote the amount of
time it takes to execute the Miller loop, final exponentiation, the Optimal Ate pairing using
affine coordinates and the Optimal Ate pairing using projective (homogenous) coordinates.
I/M denotes the ratio of i to m.

See Section 4.3 for a description of our contributions and results pertaining to computing
the O-Ate pairing over BN curves.

38

Table 3.1: Timings for affine and projective pairings on different ARM processors and
comparisons with prior literature. Times for the Miller loop (ML) in each row reflect those
of the faster pairing.

Marvell Kirkwood (ARM v5) Feroceon 88FR131 at 1.2 GHz [22]

Field
Language

Operation Timing [µs]

Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit
ASM 0.12 1.49 1.12 17.53 11.8 0.28 4.08 3.44 23.57 9,722 6,176 16,076 15,898

C

0.18 1.74 1.02 17.40 10.0 0.35 4.96 4.01 24.01 11,877 7,550 19,427 19,509

446-bit 0.20 3.79 2.25 34.67 9.1 0.38 10.74 8.57 48.90 42,857 23,137 65,994 65,958

638-bit 0.27 6.82 3.83 52.33 7.7 0.51 18.23 14.93 77.11 98,044 51,351 149,395 153,713

iPad 2 (ARM v7) Apple A5 Cortex-A9 at 1.0 GHz [22]

Field Language Operation Timing [µs]

Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit 0.16 1.28 0.93 13.44 10.5 0.25 3.48 2.88 19.19 8,338 5,483 14,604 13,821

446-bit C 0.16 2.92 1.62 27.15 9.3 0.26 8.03 6.46 37.95 32,087 17,180 49,365 49,267

638-bit 0.20 5.58 2.92 43.62 7.8 0.34 15.07 12.09 64.68 79,056 40,572 119,628 123,410

Galaxy Nexus (ARM v7) TI OMAP 4460 Cortex-A9 at 1.2 GHz [22]

Field Language Operation Timing [µs]

Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit
ASM 0.05 0.93 0.55 9.42 10.1 0.10 2.46 2.07 13.79 6,147 3,758 10,573 9,905

C

0.07 0.98 0.53 9.62 9.8 0.13 2.81 2.11 14.05 6,859 4,382 11,839 11,241

446-bit 0.12 2.36 1.27 23.08 9.8 0.22 6.29 5.17 32.27 25,792 13,752 39,886 39,544

638-bit 0.19 4.87 3.05 38.45 7.9 0.45 12.20 10.39 56.78 65,698 33,658 99,356 99,466

NVidia Tegra 2 (ARM v7) Cortex-A9 at 1.0 GHz [2]

Field Language Operation Timing [µs]

Size a m r i I/M ã m̃ s̃ ĩ ML FE O-A(a) O-A(p)

254-bit 0.67 1.72 n/a 18.35 10.7 1.42 8.18 5.20 26.61 26,320 24,690 51,010 55,190

446-bit C 1.17 4.01 n/a 35.85 8.9 2.37 17.24 10.84 54.23 97,530 86,750 184,280 195,560

638-bit 1.71 8.22 n/a 56.09 6.8 3.48 31.81 20.55 91.92 236,480 413,370 649,850 768,060

39

Chapter 4

Assembly Language and Our
Optimizations

Our main contribution is in the area of low-level optimization of cryptographic protocols.
We modified the key-exchange software to implement elliptic curve arithmetic in pure C
and wrote ARMv7 and x86-64 assembly language routines to implement multi-precision
integer arithmetic. These assembly routines are used in both the key-exchange software
and in the pairing software. In this chapter we first provide an overview of assembly
language, focussing on the ARMv7 and x86-64 assembly languages. We then discuss our
optimizations to both the key-exchange and pairing software.

4.1 Assembly Language

Assembly languages are low-level programming languages in which there is a strong cor-
respondence between the language and the architecture’s machine code instructions. As-
sembly code is converted into machine code by a program called an assembler. Each
assembly language is specific to a certain computer architecture. For example, ARMv7
assembly language differs strongly from x86-64 (PC) assembly language. In this section we
give a high-level introduction to assembly language and describe some differences between
ARMv7 and x86-64 assembly languages. We also focus on some specific features of these
languages that we use in our optimizations.

Programs written in assembly language consist of a series of mnemonic processor in-
structions, pseudo-instructions and data. Mnemonic processor instructions are in one-to-
one correspondence to machine code but have meaningful names which makes their use

40

more user-friendly. The assembler converts these mnemonic instructions directly to the cor-
responding machine code instruction. A pseudo-instruction is converted to more than one
machine code instruction by the assembler. For the remainder of this thesis, we assume the
term instruction refers to either a mnemonic processor instruction or pseudo-instruction.

Generally, an assembly language instruction will be followed by a list of arguments
which consist of data (or the location of data) and sometimes other parameters. The
use of data comes in roughly 3 flavours. One can use an immediate operand, a register
operand or a memory address. An immediate operand is a specific number or binary
string. It is used when you want to pass a specific value to an instruction. Using a register
address is the most efficient way of working with data. A register refers a specific data-
storage located on the processor. Most instructions can only be executed on data that has
already been loaded into registers. In a sense, registers act as variables do in higher-level
programming languages. Assembly languages also provide load and store instructions that
load data from memory or immediate operands into registers and store data from registers
or immediate operands into memory. A memory address is a data-storage location outside
of the processor in main memory. The movement of data from memory to a register (and
from a register to memory) is generally expensive and should be minimized.

LDR r6, =0xa %% loads 10 (base-16) into the register r6

MOV r9, [r6] %% loads the value in register r6 into the register r9

ADD r6, r6, r9 %% adds the value in registers r6 and r9, storing the

%% result in r6

The above sample of ARM assembly language adds the number 10 to itself. The result is
20 and stored in register r6. LDR is pseudo-instruction and both MOV and ADD are mnemonic
processor instructions. The %% symbol denotes the beginning of comments. The code below
performs the same function in x86 assembly language.

MOVQ $10, %r6 %% loads 10 into the register r6

MOVQ %r6, %r9 %% loads the value in register r6 into the register r9

ADDQ r9, r6 %% adds the value in registers r6 and r9, storing the

%% result in r6

Both of these code samples are similar but have subtle differences. Most notably, the x86-
64 assembly language method of adding two values stores the result in the same register
as one of the values it uses as an operand. Also, each instruction in the x86-64 assembly
code sample above is proceeded by a Q. This denotes that the size of the operands for each
instruction is up to 64-bits each. Different letters denote different maximal operand sizes.

41

Before proceeding to discuss our optimizations, we wish to highlight a few important
features of ARMv7 and x86-64 computer architectures. Our ARM assembly code modi-
fications are designed to work with ARMv7 instruction set with a 32-bit word size. The
word size refers to the register size. The ARMv7 instruction set has 16 registers r0,. . .
,r15. The registers r13, r14 and r15 are referred to as the stack pointer, link register
and program counter respectively. They have each have a specific purpose and should not
used for general-purpose calculations by the user. However, registers r0 to r12 can be used
freely by the user.

Similarly, our x86-64 assembly code modifications are designed to work with the x86-64
architecture. This architecture offers sixteen 64-bit registers r8,. . . ,r15, rax, rcx, rdx,

rbx, rsp, rbp, rsi and rdi. The registers rbp and rsp are called the base pointer and
stack pointer respectively. They should not be used for general-purpose calculations by
the user. Comparing architectures, we see that ARMv7 and x86-64 both offer roughly the
same amount of registers we can use for our computations, but x86-64 offers registers that
have double the number of bits. This means that to store a given multi-precision unsigned
integer, we require about half the number of registers on the x86-64 platform than we do
on the ARMv7 platform.

Much more functionality can be obtained from assembly code than the above examples
suggest. One can perform the other basic arithmetic functions, subtraction, multiplication
and division. One can also introduce control structures that change control flow. Bit-
shifting, logical and bitwise logical operators are also implemented as instructions. Below,
we highlight several important features that we use in our optimizations.

Address Offsetting

Both x86-64 and ARMv7 assembly languages provide address offsetting features. These
features allow you to refer to a specific data-storage location specified by a register with a
specific offset. This is best illustrated by example.

LDR r12, [r1, #4]

The above example in ARMv7 assembly language loads the value in register r1 offset by
4 ∗ 8 = 32 bits into register r12. If a 64-bit number had been loaded into r1, then the
above instruction would cause r12 to contain the right-most 32 bits.

MOVQ 16(%rax), %eax

42

In the example of x86-64 assembly language above, the value in register rax offset by
16 ∗ 8 = 128 bits is loaded into register eax.

Address offsetting can also be used when using registers as parameters in most other
instructions.

Program Status Register

Both ARMv7 and x86-64 processors maintain a program status register. This is an area of
memory on the processor that contains information about the state of the program being
executed as well as the most recent operations performed. For example, both ARMv7 and
x86-64 processors keep track of whether the most recent arithmetic operation caused an
overflow. An overflow occurs if the result of an arithmetic operation is too large to be held
in a register. For example, if the instruction ADD r6, r6, r9 is executed and the resulting
value was bigger than the size of r6, then the carry flag in the program status register
would be set to 1. On the ARMv7 architecture, another way to set the carry flag is if
the result of a subtraction is positive or zero. Similarly, x86-64 processors have a borrow
flag. Suppose we are performing a subtraction SUB %rax, %eax. This x86-64 instruction
subtracts the value contained in eax from the value contained in rax, storing the result to
rax. Suppose the value in eax is greater than the value in rax. Then the borrow flag is set
during the execution of the next instruction only. It is then reset to zero unless changed by
a subsequent instruction. This flag is used to determine the output of the subtraction with
borrow instruction SBB. Assume r8 holds the number a and r9 holds the value b. Then
SBB r8, r9 stores the value a-b-B to r8 where B is the value of the borrow bit. As we
will see later, use of the program status register is crucial to implementing multi-precision
arithmetic.

Arithmetic with Accumulator

ARM assembly language conveniently features arithmetic instructions that accumulate. For
example, the UMLAL instruction is the unsigned multiplication with accumulate instruction.
Its syntax is as follows:

UMLAL RdLo, RdHi, Rm, Rs

Like the normal unsigned multiplication instruction (UMULL), the values in registers Rm

and Rs are multiplied together. However, instead of simply putting the highest word of

43

the result in the register RdHi and the lowest word in register RdLo, the highest word
of the result is added to the value in RdHi and the lowest word is added to the value in
RdLo. This feature of ARM assembly language makes implementing multi-precision integer
multiplication very convenient.

4.2 Optimizations to the Key-Exchange

In this section we describe the optimizations we made to the key-exchange protocol de-
scribed in [17, 26]. We first describe optimizations made to the C/Cython portion of the
program and then discuss our assembly optimizations.

4.2.1 Porting into C

The original implementation of the key-exchange (c.f. Section 2.5) has elliptic curves im-
plemented in Cython. Cython is designed to provide an interface between C and Python
code so that both can be used in the same software. This allows for the convenience of
Python while still implementing critical portions in C. However, a pure C implementation
is generally more efficient. We created a C-implementation of elliptic curves and re-wrote
the key-exchange in pure C for the `A = 2 and `B = 3 cases.

In the original implementation, public parameters are generated immediately before
the key-exchange is executed. This is impractical as these computations are done in Sage
and are time-consuming. Furthermore, it is not necessary to have new public parameters
for each run of the key-exchange. We separated parameter generation from the actual
execution of the key-exchange. Parameter generation is done in Sage and the output is
written to a text file. This allows parameter generation to be done on a different device
than the key-exchange protocol. The pure C implementation of the key-exchange takes
the text file as input.

4.2.2 Assembly Optimizations

We used assembly code to speedup multi-precision integer arithmetic in Fq = Fp2 . Multi-
precision integers are integers that are larger than a given machine’s word-size. The major-
ity of programming languages do not provide direct support for multi-precision numbers.
One generally needs to use a specific software package, such as GMP, in order to use them

44

efficiently. However, if one knows the approximate size of the number in advance, one can
sometimes design hand-optimized assembly routines that are more efficient than routines
in these software packages. The disadvantage of this approach is that hand-optimized as-
sembly code is platform-specific and non-portable. We employ the following techniques to
optimize our assembly implementation:

Loop Unrolling: Since we know the maximal size in bits of the operands, we can
unroll all loops. This gives us the ability to avoid conditional branches.

Instruction re-ordering: Often times instructions can compete for the same processor
and data resources, causing the code to be slower. By re-ordering non-dependent
instructions we can increase the amount of instructions that the processor can execute
at the same time. For example, for integer multiplication, loop unrolling makes it
possible to load the data required for the next multiplication while the processor is
performing the current one.

Register Allocation: All available registers were used in order to minimize moving
data from memory to registers.

The key-exchange software uses GMP as an arithmetic backend. GMP stores numbers
in consecutive memory locations and uses the little endian method which stores the least-
significant word at the smallest memory address. We implemented field addition in ARMv7
assembly language and implemented both field addition and field multiplication in x86-
64 assembly language. Field multiplication for Fq requires several additions, 3 integer
multiplications and two modular reductions for which Barrett reduction was used. We
present details of these implementations below. We will not attempt to explain each
assembly instruction in detail but rather try to present the idea of each algorithm we
discuss. For detailed instruction descriptions we refer the reader the ARM Reference
Manual [4] and the Intel Software Developer’s Manual [24].

Field Addition

512-bit Fq addition was implemented on ARMv7 platform and 768-bit Fq addition was
implemented on the x86-64 platform.

When passing three or fewer parameters to a function, the function will place those
parameters in registers r1-r3 and expect to receive any possible output at the memory
address in register r0. In Algorithm 4.1, we give a small-scale example of the technique

45

Algorithm 4.1 96-bit ARMv7 field addition.
1: LDM r1!, r3-r5

2: LDM r2!, r6-r8

3: ADDS r3,r6

4: ADCS r4,r7

5: ADCS r5,r8

6: STM r0!, r3-r5

7: STR r3, [r0],#-12

8: STR r3, [r13], #-12

9: LDM r0!, r3-r5

10: LDR r3, PRIME

11: SUBS r4, r3

12: LDR r3, PRIME+4

13: SUBS r5, r3

14: LDR r3, PRIME+8

15: SUBS r6, r3

16: STMCS r0!, r4-r6

we used to implement field addition on the ARMv7 platform. We assume we are adding
two 96-bit integers instead of two 512-bit integers which is what the actual implementation
does. The technique is the same although the latter version is quite a bit longer. We now
explain Algorithm 4.1 in detail.

◦ Line 1 loads the first operand into registers r3, r4, and r5 with the least significant
word in r3. The ! character increments the memory address after each load so that
the value at r1 is loaded into r3, the value at [address at r1] + 4 bytes is loaded
into r4 and the value at [address at r1] + 8 bytes is loaded into r5. Line 2 loads the
second operand into registers r6, r7, and r8 in the same way.

◦ Lines 3-5 add the first two operands together, storing the result in registers r3, r4
and r5. Register r3 contains the least-significant word, r4 the next most-significant
word and r5 the most-significant word. ADC is the addition with carry instruction
and the S at the end of the instruction indicates that the program status register
should be updated based on addition.

◦ Line 6 stores the result of the addition (r3, r4 and r5) to r0. The register r0 now
contains the least significant word of the result of adding the two operands together
while r0+8 bytes contains the most significant word.

46

◦ After line 6, r0 now points to the value at [address at r0] +12 bytes. The STR

instruction is generally used to transfer data between different locations, but on
Lines 7-8 it is only being used to force r0 to point to the value at r0 and r12 to
point to the value at [address at r12]− 12 bytes.

◦ The LDR instruction moves data from a memory location to a register location. On
line 10, it is moving the value in PRIME to the register r3. PRIME points to the
least-significant word of the order of the prime field Fq. The next significant word is
stored at PRIME+ 4 bytes and the most significant word is stored at PRIME+ 8 bytes.
Lines 9-15 subtract the prime from the result of the addition of the two operands and
store that result to r13. The register r0 now contains the result of the (non-modular
addition) and r13 contains the result of the modular addition.

◦ We must now determine whether the subtraction was necessary. The instruction on
line 16 is similar to that on line 6. However, the CS indicates that the instruction is
only executed if the carry flag in the program status register is set. This flag will only
be set if the value in r3 is less than or equal the value in r6 (see line 15) meaning
that the subtraction was necessary.

When Algorithm 4.1 terminates, we see that the required output value is at the address in
r0. Note that the STM and LDM instructions function much like the STR and LDR instructions.
However, the former instructions are capable of moving multiple registers at the same time.

Our implementation of 768-bit field addition on the x86-64 platform is much simpler.
It was found that is was just as efficient to use the built-in GMP function mpz add to add
the two numbers rather than using an assembly routine. This is likely due to mpz add

being coded in assembly for the ARMv7 platform. After adding the two numbers, we then
check to see if a subtraction is required by using mpz cmp to compare the size of the result
to the prime order of the underlying field. If a subtraction is required, it is done using an
assembly routine to subtract the prime from the result. This routine essentially consists
of the SUB instruction followed by several SBB instructions to subtract the correct pieces of
the prime from the result and adjust for any borrow flags.

Integer Multiplication

768-bit field multiplication was implemented on the x86-64 platform. Like for field addition,
we demonstrate our technique with a minimal example. We assume we are multiplying two
128-bit integers instead of two 768-bit integers. The technique we use is known as column-
wise multiplication and is analogous to the method school-book multiplication taught to

47

Algorithm 4.2 128-bit x86-64 integer multiplication.
1: MOVQ 0(%r8), %rax %%A0*B0

2: MULQ 0(%r9)

3: MOVQ %rax, 0(%r14)

4: MOVQ %rdx, %r10

5:
6: MOVQ 8(%r8), %rax %%A1*B0

7: MULQ 0(%r9)

8: ADDQ %rax, %r10

9: MOVQ %rdx, %r11

10: ADCQ $0, %r11

11:
12: XORQ %r12, %r12

13:
14: MOVQ 0(%r8), %rax %%A0*B1

15: MULQ 8(%r9)

16: ADDQ %rax, %r10

17: MOVQ %r10, 8(%r14)

18: ADCQ %rdx, %r11

19:
20: MOVQ 8(%r8), %rax %%A1*B1

21: MULQ 8(%r9)

22: ADDQ %rax, %r11

23: ADCQ %rdx, %r12

24: ADCQ $0, %r12

25:
26: MOVQ %r11, 16 (%r14)

27: MOVQ %r12, 24(%r14)

young children. Before discussing Algorithm 4.2, we must highlight three important char-
acteristics specific to this assembly language. First, the MUL instruction takes one register
operand and multiplies the value of that operand by the value of the number in register
rax. It stores the double-word result of this multiplication in the registers rax (lowest
word) and rdx (highest word). Second, register labels are preceded by the % character.
Third the MOV instruction moves data between different data-storage locations. MOV is much
like ARMv7’s LDR and STR instructions.

We proceed to discuss details of the algorithm. 128-bit integer multiplication corre-
sponds to multiplying two numbers made up of two words each. We assume the two
numbers we wish to multiply together are in registers r8 and r9 and that we are placing
the output at the address in register r14. Each block of code, other than the last, corre-
sponds to multiplying one word in one number by one word in the other, while the XOR

48

(bitwise exclusive OR) instruction is used as an efficient way to clear the contents of a
register. For ease of explanation, let the two numbers in r8 and r9 be A and B respec-
tively. Let the least significant word of A be A0 and the most-significant be A1. Then
A0 is stored at the address at r8 and A1 at (address at r8) + 8 bytes. We similarly label
the words of B as B0 and B1. The comments (preceded by %%) beside each block of code
corresponds to the two words being multiplied together.

◦ The first block of code multiplies A0 and B0. The lowest word in the result of this
multiplication will be the lowest word in the overall result, thus line 3 updates the
output appropriately.

◦ The second block of code multiplies A1 and B0. It adds the lowest word of the result
of this multiplication to the register r10 which previously contained the highest
word result of the multiplication in the first block. ADC is the addition-with-carry
instruction. Line 10 adds the carry bit (if set) to the register r11. The carry bit
being set would indicate that there was an overflow when rax was added to r10 in
line 8. The ADC instruction in line 10 ensures that this overflow is accounted for in
the overall result.

◦ The third block of code multiplies A0 and B1. It adds the lowest word of the result of
this multiplication to the register r10 which now contains the second-lowest word of
the result of the overall multiplication. Line 17 then updates the output accordingly.

◦ The fourth block of code multiples A1 and B1. The lowest (highest) word in the
result of this multiplication will be the second-highest (highest) word in the overall
result. Lines 26 and 27 updates the output accordingly.

Barrett Reduction

768-bit Barrett reduction was implemented on the x86-64 platform for use in Fq multipli-
cation. The algorithm is implemented using a combination of C and assembly with the
aspects that control the flow of the algorithm implemented in C and the arithmetic por-
tions implemented in assembly. We first give a high-level overview of the algorithm and
then discuss the details of our use of assembly.

In 1986, P. D. Barrett introduced Barrett reduction to compute c = a (mod n) [8].
Barrett is an improvement on naive division algorithms and works assuming that a < n2.
The main idea is to replace expensive divisions by multiplications that can be performed
much cheaper.

49

Algorithm 4.3 Barrett reduction for computing c = a (mod p) [8].

Require: a < p2, k minimal such that 2k > p and m =
⌊
4k/p

⌋
Ensure: c = a (mod n)
1: n = m ∗ a
2: q =

⌊
n/4k

⌋
3: r = a− qn
4: if r < p then
5: c = r
6: else
7: c = r − p
8: end if

We use Barrett reduction to compute c = a (mod p) where Fq = Fp2 . We are able to
make several pre-computations at the parameter generation stage before the key-exchange
is executed and stored in the same text file containing the public parameters for the en-
cryption system. First we compute the minimal k such that 2k > p and then m such that
m =

⌊
4k/p

⌋
. Barrett reduction is outlined in Algorithm 4.3. Functions coded in assembly

language perform the computations for lines 1-3, 5 and 7. The assembly code for lines 1,
3, 5 and 7 are straightforward given what we have already discussed in this section. The
only feature of the algorithm we have not discussed is how to efficiently compute line 2
using assembly language. Since we are dividing by a power of 2, we need not actually do
any division. We simply need to determine which bits of n we wish to keep and define q
accordingly. Since we are dividing by 4k, this amounts to removing the least-significant 2k
bits.

4.2.3 Results

The timing results for our pure C implementation are presented in Figure 4.1 below. No-
tice that our pure C implementation is approximately 20 percent faster than the original
implementation on the Mac OS platform. Due to the variety of software packages required,
the original implementation was not suitable to run on the iOS or Android platform. Thus,
a comparison of running times cannot be made on these platforms, even though our imple-
mentation supports them. Let p512, p768 and p1024 denote the 512-bit, 768-bit and 1024-bit
primes (respectively) that we use to compute running times. They are defined as follows:

p512 = 186 · (22583161)− 1,

p768 = 2 · (23863242)− 1,

p1024 = 353 · (25143323)− 1.

50

Implementing field addition in ARM assembly gave a speedup of 1.5% on the Android

Prime p512 p768 p1024

Quantum Security 85 bits 128 bits 170 bits
Original (Mac OS1) 0.113 s 0.303 s 0.529 s
Pure C (Mac OS)1 0.093 s 0.226 s 0.429 s
Pure C (iOS)2 1.06 s 2.68 s 5.30 s
Pure C (Android)3 0.629 s 1.77 s 3.81 s
C with ARM assembly field

0.620 s
addition (Android)3

C with x86-64 assembly field
0.217 s

addition/multiplication (Mac OS)1
1Macbook Pro Intel Core i5 @ 2.4 GHz, 2Ipad 2 ARM Cortex-A9 @ 1 GHz dual-core, 3Arndale Board ARM Cortex-A15 @

1.7 GHz dual-core

Figure 4.1: Timings for our C implementation of the key exchange for `A = 2 and `B = 3

platform for 512-bit values of p. Implementing both field addition and multiplication in
x86-64 assembly gave a speedup of 4% on the Mac OS X platform for 768-bit values of p.
These improvements are relative to the times in Figure 4.1.

4.3 Optimization of the Pairing Computation

In [22], the authors implement integer multiplication in ARM assembly language to support
field arithmetic for the 254-bit pairing computation. We use their technique, which is
actually the same technique used to implement integer multiplication in Section 4.2.2,
to implement integer multiplication to support field arithmetic for the 446-bit pairing
computation.

4.3.1 Integer Multiplication

We illustrate our technique for integer multiplication with a minimal example that multi-
plies two 64-bit integers. The actual implementation multiplies two 446-bit integers. Since
the word size on ARMv7 is 32-bit, this means the numbers will each be two words in
length. As before, denote the numbers A and B with A0 being the least-significant word
and A1 being the most significant word. Similarly label the words in B as B0 and B1.

51

Algorithm 4.4 64-bit ARMv7 integer multiplication.
1: LDR r12, [r1]

2: LDR r14, [r2]

3: MOV r5, #0

4: UMULL r3, r4, r12, r14 %%A0*B0

5: MOV r11, #0

6: MOV r6, #0

7:
8: LDR r14, [r2, #4]

9: MOV r10, #0

10: UMLAL r4, r5, r12, r14 %%A0*B1

11: MOV r7, #0

12:
13: LDR r12, [r1, #4]

14: LDR r14, [r2]

15: MOV r9, #0

16: UMLAL r4, r11, r12, r14 %%A1*B0

17: MOV r8, #0

18:
19: LDR r14, [r2, #4]

20: ADDS r5, r5, r11

21: ADC r6, r6, #0

22: UMLAL r5, r10, r12, r14 %%A1*B1

23:
24: ADD r6, r6, r10

25: STMIA r0!, {r3-r6}

Assume r1 contains A and r2 contains B. After the algorithm is executed, r0 contains
the output. As previously mentioned, the main idea of Algorithm 4.4 is the same as Algo-
rithm 4.2. Both use column-wise multiplication. However, these algorithms differ slightly
in details since both languages have different instruction sets. The UMLAL instruction was
discussed in Section 4.1. The UMULL instruction is similar, however, the result of the mul-
tiplication is not added to the destination operands, but it replaces any other values in
there. Recall that the ADDS and ADC instructions are addition and addition-with-carry
respectively. The presence of the multiplication with accumulate instruction, as well as
the separation of source operands from destination operands for both UMULL and UMLAL

instructions in ARMv7 assembly language, are in stark contrast to the situation in x86-64
assembly language where the source/destination operands overlap. This difference permits
more-efficient register use in the ARMv7 assembly version.

Given what we have discussed, the code in Algorithm 4.4 should be fairly straightfor-
ward. Each block corresponds to multiplication of one word A by one word in B. The only

52

instruction that we have not discussed is the MOV instruction which has similar behaviour
to its counter-part in the x86-84 assembly language. For example, line 5 moves the value
of 0 into register r11. The final instruction on line 25 is a variant of the STM instruction
and moves the results of the single-word multiplications into the appropriate locations in
the output.

4.3.2 Results

We executed our code on the Arndale Board ARM Cortex-A15 @ 1.7 GHz dual-core plat-
form. Table 4.1 compares the results of our optimization versus the original implementa-
tion described in [22]. Our assembly optimization give a 7-8% speed improvement in the
computation of both the affine and projective 446-bit Optimal Ate pairing.

53

T
ab

le
4.

1:
T

im
in

gs
fo

r
affi

n
e

an
d

p
ro

je
ct

iv
e

p
ai

ri
n
gs

on
th

e
A

rn
d
al

e
B

oa
rd

(A
R

M
v
7)

C
or

te
x
-A

15
at

1.
7

G
H

z.
T

im
es

fo
r

th
e

M
il
le

r
lo

op
(M

L
)

in
ea

ch
ro

w
re

fl
ec

t
th

os
e

of
th

e
fa

st
er

p
ai

ri
n
g.

F
ie

ld
L

an
g.

O
p

er
at

io
n

T
im

in
g

[µ
s]

S
iz

e
a

m
r

i
I/

M
ã

m̃
s̃

ĩ
M

L
F

E
O

-A
(a

)
O

-A
(p

)

25
4-

b
it

A
S
M

0.
14

0.
80

0.
43

10
.8

7
13

.5
9

0.
23

2.
04

1.
60

13
.0

0
5,

01
4

3,
21

5
8,

67
8

8,
42

4
C

0.
08

0.
86

0.
43

10
.9

9
12

.7
8

0.
19

2.
33

1.
83

13
.3

4
5,

76
5

3,
54

5
9,

54
9

9,
65

5
44

6-
b
it

A
S
M

0.
13

1.
69

0.
98

21
.3

2
12

.6
1

0.
26

4.
74

3.
78

26
.9

7
10

,8
75

10
,1

71
29

,5
45

29
,7

92

C
0.

12
1.

78
0.

96
21

.1
9

11
.9

0
0.

23
5.

05
4.

02
27

.5
2

11
,7

14
10

,9
39

31
,8

28
32

,3
20

63
8-

b
it

0.
16

3.
58

1.
78

34
.2

8
9.

58
0.

27
9.

57
7.

73
46

.5
7

20
,2

37
26

,0
03

77
,3

88
78

,6
91

54

Chapter 5

Conclusion

We find that the key-exchange protocol of [17, 26] can be realistically implemented and
used on mobile communication devices at reasonable security levels. The protocol repre-
sents an attractive option for those seeking practical and quantum-resistant cryptographic
primitives for post-quantum cryptography. Furthermore, the same low-level assembly opti-
mization techniques used on the key-exchange protocol can be used to improve performance
in other systems that rely on efficient field arithmetic, such as the computation of the O-Ate
pairing over BN curves presented in [21,22].

There are a variety of other avenues for further research. Firstly, the assembly modi-
fications to the key-exchange could be implemented in a better way. They are primarily
done using inline assembly which allows assembly code to be written in the same file as
regular C code. Although not readily apparent, this method is prone to bugs and inherent
inefficiencies. A better approach would be to write separate files containing the assembly
code and link them to the C program. This approach was used for the modifications to
the pairing computation. Such an approach would likely lead to more efficient code in the
case of the key-exchange software.

A second avenue for further research is incorporating the use of Single-Instruction-
Multiple-Data (SIMD) techniques into the assembly optimizations. Such techniques have
been shown to considerably improve performance of field multiplication in related applica-
tions [38]. One feature of SIMD instructions is to allow multiple multiplication instructions
to be executed at the same time with virtually the same cost as a single multiplication
instruction. If applied in an intelligent way, these techniques could likely improve perfor-
mance in both the key-exchange and pairing computation.

55

References

[1] IEEE P 1363.3: Standard for identity-based cryptographic techniques using pairings.
draft 3:section 5.3.2. http://grouper.ieee.org/groups/1363/IBC/index.html.

[2] Tolga Acar, Kristin Lauter, Michael Naehrig, and Daniel Shumow. Affine pairings
on ARM. Cryptology ePrint Archive, Report 2011/243, 2011. http://eprint.iacr.
org/.

[3] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys, and Julio
López. Faster explicit formulas for computing pairings over ordinary curves. In Ad-
vances in Cryptology–EUROCRYPT 2011, volume 6632 of LNCS, pages 48–68, 2011.

[4] ARM. ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition. [Online;
accessed 25-Feb-2014].

[5] R Balasubramanian and Neal Koblitz. The improbability that an elliptic curve has
subexponential discrete log problem under the Menezes, Okamoto, Vanstone algo-
rithm. Journal of Cryptology, 11(2):141–145, 1998.

[6] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott. Efficient algorithms
for pairing-based cryptosystems. In Advances in Cryptology–CRYPTO 2002, volume
2442 of LNCS, pages 354–369, 2002.

[7] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime
order. In Selected Areas in Cryptography 2005, volume 3897 of LNCS, pages 319–331,
2005.

[8] Paul Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Advances in Cryptology–CRYPTO’
86, volume 263 of LNCS, pages 311–323, 1987.

56

http://grouper.ieee.org/groups/1363/IBC/index.html
http://eprint.iacr.org/
http://eprint.iacr.org/

[9] Naomi Benger and Michael Scott. Constructing tower extensions of finite fields for im-
plementation of pairing-based cryptography. In Proceedings of the Third International
Conference on Arithmetic of Finite Fields, volume 6087 of LNCS, pages 180–195, 2010.

[10] Daniel Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted Edwards Curves. In Progress in Cryptology–AFRICACRYPT 2008, volume
5032 of LNCS, pages 389–405, 2008.

[11] Daniel J. Bernstein and Tanja Lange. Explicit-Formulas Database, 2007. http:

//www.hyperelliptic.org/EFD/index.html.

[12] Jean-Luc Beuchat, Jorge E González-Dı́az, Shigeo Mitsunari, Eiji Okamoto, Francisco
Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-speed software implementation of
the optimal ate pairing over Barreto-Naehrig curves. In Pairing-Based Cryptography–
Pairing 2010, volume 6487 of LNCS, pages 21–39, 2010.

[13] I. F. Blake, G. Seroussi, and N. P. Smart. Advances in Elliptic Curve Cryptography.
London Mathematical Society Lecture Note Series. Cambridge University Press, 2005.

[14] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Advances
in Cryptology–CRYPTO 2004, volume 3152 of LNCS, pages 41–55, 2004.

[15] Reinier Bröker. Constructing supersingular elliptic curves. Journal of Combinatorics
and Number Theory, 1(3):269–273, 2009.

[16] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291, 2006. http://eprint.iacr.org/.

[17] Luca De Feo, David Jao, and Jerome Plut. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Cryptology ePrint Archive, Report
2011/506, 2011. http://eprint.iacr.org/.

[18] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly
elliptic curves. Journal of Cryptology, 23(2):224–280, 2010.

[19] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-Henŕıquez. Faster
hashing to G2. In Selected Areas in Cryptography 2012, volume 7118 of LNCS, pages
412–430, 2012.

[20] C. C. F. Pereira Geovandro, Marcos A. Simpĺıcio Jr., Michael Naehrig, and Paulo S.
L. M. Barreto. A family of implementation-friendly BN elliptic curves. Journal of
Systems and Software, 84(8):1319–1326, 2011.

57

http://www.hyperelliptic.org/EFD/index.html
http://www.hyperelliptic.org/EFD/index.html
http://eprint.iacr.org/
http://eprint.iacr.org/

[21] Gurleen Grewal. Efficient Pairings on Various Platforms. Master’s thesis, Department
of Combinatorics and Optimization, University of Waterloo, Canada, 2012.

[22] Gurleen Grewal, Reza Azarderakhsh, Patrick Longa, Shi Hu, and David Jao. Effi-
cient implementation of bilinear pairings on ARM processors. In Selected Areas in
Cryptography 2013, volume 7707 of LNCS, pages 149–165, 2013.

[23] Florian Hess. Pairing lattices. In Pairing-Based Cryptography–Pairing 2008, volume
5209 of LNCS, pages 18–38, 2008.

[24] Intel. Intel 64 and IA-31 Architectures Software Developer’s Manual. [Online; accessed
26-Feb-2014].

[25] Tadashi Iyama, Shinsaku Kiyomoto, Kazuhide Fukushima, Toshiaki Tanaka, and
Tsuyoshi Takagi. Efficient implementation of pairing on BREW mobile phones. In
Advances in Information and Computer Security–IWSEC 2010, volume 6434 of LNCS,
pages 326–336, 2010.

[26] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. In Post-Quantum Cryptography–PQCrypto 2011, volume
7071 of LNCS, pages 19–34, 2011.

[27] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Proceedings of
the 8th international conference on algorithmic number theory–ANTS-VIII, volume
1838 of LNCS, pages 385–393, 2000.

[28] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Ad-
vances in Cryptology–CRYPTO’ 99, volume 1666 of LNCS, pages 388–397, 1999.

[29] J. Lagarias and A. Odlyzko. Effective versions of the Chebotarev density theorem. In
Algebraic number fields: L-functions and Galois properties, Symposium Proceedings
of the University of Durham, pages 409–464, 1975.

[30] Florian Luca, David Mireles Morales, and Igor Shparlinski. MOV attack in various
subgroups on elliptic curves. Illinois Journal of Mathematics, 48(3):1041–1052, 2004.

[31] Alfred Menezes. An introduction to pairing-based cryptography. 1991. http://cacr.
uwaterloo.ca/~ajmeneze/publications/pairings.pdf.

[32] Alfred Menezes, Wu, Yi-Hong, and Robert Zuchherato. An elementary introduction to
hyperelliptic curves. Appendix in Algebraic Aspects of Cryptography. Springer, 1998.

58

http://cacr.uwaterloo.ca/~ajmeneze/publications/pairings.pdf
http://cacr.uwaterloo.ca/~ajmeneze/publications/pairings.pdf

[33] Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17(4):235–261, 2004.

[34] Hermann Minkowski. Geometrie der Zahlen. B.G. Teubner, Leipzig, 1910.

[35] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, 1987.

[36] Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New software speed records
for cryptographic pairings. In Progress in Cryptology–LATINCRYPT 2010, volume
6212 of LNCS, pages 109–123, 2010.

[37] Xavier Pujol and Damien Stehlé. Rigorous and efficient short lattice vectors enumer-
ation. In Advances in Cryptology–ASIACRYPT 2008, volume 5350 of LNCS, pages
390–405, 2008.

[38] Ana Helena Sánchez and Francisco Rodŕıguez-Henŕıquez. NEON implementation of
an attribute-based encryption scheme. In Applied Cryptography and Network Security
2013, volume 7954 of LNCS, pages 322–338, 2013.

[39] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of GTM. Springer,
New York, 1992.

[40] John Tate. Endomorphisms of abelian varieties over finite fields. Inventiones Mathe-
maticae, 2:134–144, 1966.

[41] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie des
Sciences Paris Séries A-B, 273:A238–A241, 1971.

[42] Frederik Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

59

	List of Tables
	List of Figures
	Introduction
	A Quantum-Resistant Key-Exchange Protocol
	Introduction
	Elliptic Curves & Isogenies
	Key Exchange Protocol
	Algorithmics
	Parameter Generation
	Key Exchange
	Computing Isogenies
	Choice of Models

	Implementation

	An Efficient Method of Pairing Computation
	Introduction to Cryptographic Pairings
	Bilinear Pairings
	Applications
	Divisors
	The Tate Pairing
	Miller's Algorithm
	Barreto-Naehrig Curves

	Optimal Pairings and the Optimal Ate Pairing
	The Ate Pairing
	Optimal Pairings
	The Optimal Ate Pairing

	An Efficient Implementation of the O-Ate Pairing on ARM Processors
	Grewal et al.'s Optimizations
	Curve Arithmetic
	Implementation Results

	Assembly Language and Our Optimizations
	Assembly Language
	Optimizations to the Key-Exchange
	Porting into C
	Assembly Optimizations
	Results

	Optimization of the Pairing Computation
	Integer Multiplication
	Results

	Conclusion
	References

