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Abstract

The full model of a double-wishbone suspension has more than 30 differential-algebraic
equations which takes a remarkably long time to simulate. By contrast, the look-up table
for the same suspension is simulated much faster, but may not be very accurate. Therefore,
developing reduced models that approximate complex systems is necessary because model
reduction decreases the simulation time in comparison with the original model, enables
real time applications, and produces acceptable accuracy.

In this research, we focus on model reduction techniques for vehicle systems such as
suspensions and how they are approximated by models having lower degrees of freedom.
First, some existing model reduction techniques, such as irreducible realization procedures,
balanced truncation, and activity-based reduction, are implemented to some vehicle sus-
pensions. Based on the application of these techniques, their disadvantages are revealed.
Then, two methods of model reduction for multi-body systems are proposed.

The first proposed method is 2-norm power-based model reduction (2NPR) that com-
bines 2-norm of power and genetic algorithms to derive reduced models having lower de-
grees of freedom and fewer number of components. In the 2NPR, some components such
as mass, damper, and spring are removed from the original system. Afterward, the values
of the remaining components are adjusted by the genetic algorithms. The most important
advantage of the 2NPR is keeping the topology of multi-body systems which is useful for
design purposes.

The second method uses proper orthogonal decomposition. First, the equations of
motion for a multi-body system are converted to explicit second-order differential equa-
tions. Second, the projection matrix is obtained from simulation or experimental data by
proper orthogonal decomposition. Finally, the equations of motion are transferred to a
lower-dimensional state coordinate system.

The implementation of the 2NPR to two double-wishbone suspensions and the compar-
ison with other techniques such as balanced truncation and activity-based model reduction
also demonstrate the efficiency of the new reduction technique.
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Chapter 1

Introduction

1.1 Objectives

Model reduction is a technique that reduces the number of degrees of freedom, or differential
equations (DEs), or components from a system. The first advantage of model reduction
is to decrease simulation time. Model reduction can also enable real-time implementation.
Furthermore, reduced models are extremely useful for the control and design of vehicles.

Singular value-based truncation and Krylov-based reduction are two most common
reduction techniques nowadays. The principle of singular value-based truncation is to
remove less important states by comparing their singular values and simplify the system to
a fewer number of equations. For example, in balanced truncation, Hankel singular values
represent the importance of each state (how states affect the system responses), so the
states that Hankel singular values are relatively smaller than others are removed. On the
other hand, the Krylov-based reduction approximates the transfer function of a system by
matching moments (described in Appendix A.1). The projection matrices of Krylov-based
reduction are derived by applying Arnoldi algorithm or Lanczos process to construct “an
orthogonal basis of Krylov subspace”. These two techniques are very effective in linear
systems. However, they have disadvantages for nonlinear systems, and there are very few
studies for model reduction in vehicle systems or complex suspensions.

In summary, the above factors briefly highlight the importance of developing a model
reduction for vehicle systems. The first goal of this thesis is to apply and extend previ-
ous studies of model reduction, such as irreducible realization procedure (IRP), balanced
truncation, and activity-based model reduction to vehicle systems. In addition, two new
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reduction methods for nonlinear systems are proposed. They are called 2-norm power-
based model reduction and model reduction for multi-body systems via proper orthogonal
decomposition. These two methods can be applied to vehicle systems as well as multi-body
systems in general.

1.2 Outline

The thesis is organized as follows:

Chapter 1 introduces the main goals of the thesis and research outline.

Chapter 2 briefly presents the literature review.

Chapter 3 describes improvements in a previous reduction technique called activity-
based reduction, and suggests a new model reduction based on 2-norm of power, least
squares estimation and genetic algorithms. This method is called 2-norm power-based
model reduction (2NPR).

Chapter 4 introduces a new reduction method for multi-body systems via proper or-
thogonal decomposition.

The application of several model reduction methods to some vehicle systems, such as a
6 DOF planar double-wishbone suspension with bushings, and a piston-crank system, is in-
vestigated in Chapter 5. First, the analytical model of the 6 DOF planar double-wishbone
suspension is derived, and verified by an ADAMS model. Based on two commonly-used sin-
gular value-based reduction, namely irreducible realization procedure (IRP) and balanced
truncation, the linear model with the order of 16 is successfully approximated by a model
having only two states. In addition, the new model reduction, 2NPR, can simplify the 6
DOF suspension to a 2 DOF nonlinear model by eliminating components less affecting to
system behavior (which 2-norms of power are smaller than others) and finding equivalent
values of the remaining components. The 2NPR is also compared with IRP and balanced
truncation methods.

Finally, Chapter 6 discusses the disadvantages of truncation and the advantages of
2NPR, and summarizes the thesis contribution and future work.

2



Chapter 2

Literature Review

In the first chapter, the outline and the motivation of model reduction for vehicle systems
were discussed. The aim of this chapter is to relate this research to previous studies to
evaluate their strengths and weaknesses.

The most commonly-used model reduction techniques are shown in Figure 2.1. These
model reduction techniques can be categorized into four types, namely singular value-based
truncation, Krylov susbspace-based reduction, statistic-based reduction, and physical re-
duction.

First, truncation and singular perturbation are two most popular methods for linear
systems. The basics of truncation and singular perturbation are to transform a linear
system into new coordinates where new states are sorted in a certain order, such as in
decreasing Hankel singular values; and then shorten these new states with truncation or
singular perturbation methods [2]. In order to sort the states, most authors used singular
value decomposition (SVD) [26], or QR decomposition, or RQ decomposition [72]. Sections
5.2, 5.3, and 5.4 will discuss in detail two most commonly used truncation methods for
linear systems.

There are three main characteristics of a linear system, namely controllability, observ-
ability, and stability. Some truncation method can apply to uncontrollable or unobservable
systems to make them controllable and observable [72, 11]. For example, irreducible real-
ization procedure (IRP) is one of the most commonly-used model reduction that separates
the uncontrollable or unobservable states of the original system, and remove these states
to create a new reduced controllable and observable system. However, this truncation is
only available to uncontrollable or unobservable systems since they cannot reduce the or-
der of linear controllable and observable systems. Moreover, defining finite controllability

3



Figure 2.1: Recent Model Reduction

and observability Gramians (Appendix B) for balanced truncation in unstable systems is
extremely difficult. In 1999, Zhou introduced new Gramians in the frequency domain,
and developed a new balancing truncation for unstable systems [81].Another method to
define the Gramians of unstable systems is to use time-limited Gramians [2]. In general,
linear systems are usually reduced by IRP or Zhou’s truncation in [81] in order to make
the systems controllable, observable and stable before being reduced by other methods.
For example, Chapter 5 will suggest that the 6 DOF planar double-wishbone suspension
should be reduced by IRP first, and simplified by balanced truncation afterwards.

In contrast to uncontrollable or unobservable or unstable systems, many truncation
methods, such as balanced truncation and Gaussian balancing, have been developed for
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stable, controllable and observable systems. In this area, Bruce Moore is a pioneer in this
area introducing controllability and observability Gramians (Appendix B), and balanced
truncation for state-space representations [44]. The main goal of balanced truncation is to
remove states that have less effect on the system behaviors. It is achieved by transforming
the states into new states associated to the largest Hankel singular values. Furthermore,
the Lyapunov’s equations are solved to obtain controllability Gramian P and observability
Gramian Q. Hankel singular values are the singular values of the square root of the product
of the controllability Gramian and the observability Gramian (

√
PQ). In addition, the

invertible projection matrix T is calculated based on the controllability and observability
Gramians. The error bound of balanced truncation is also determined as follows [40]:

‖G−Gr‖∞ ≤ 2(σl+1 + · · ·+ σm), (2.1)

where G, Gr, and σi (i = {l + 1, l + 2, · · · ,m}) are, respectively, the transfer function of
the original system and the reduced system, and Hankel singular values corresponding to
the states that are removed. Later, many studies have widely investigated, and extended
balanced truncation in order to improve error bounds, simulation time, and Gramians
functions. For instance, linear-quadratic Gaussian (LQG) balancing truncation uses Riccati
equations in order to find the Gramians and the transformation matrix [27, 28, 29]. It is
not limited to asymptotically stable systems like Lyapunov-based balanced truncation,
and the error bound of LQG balancing truncation is much smaller than that of balanced
truncation. However the disadvantage of LQG is that it is difficult to numerically solve
Riccati equations, especially for the generalized algebraic Riccati equations [33, 77].

Truncation methods have been extended to descriptor systems [67, 26, 42]. For ex-
ample, LQG for descriptor systems solves the generalised algebraic Riccati equations to
obtain the Gramians. Mockel also successfully illustrated this truncation by reducing the
discretization model of the flow of an incompressible fluid with 869 states to a model that
has only 38 states [26]. Nevertheless, the computation of most truncation methods for
descriptor systems is quite complicated.

Al-Saggaf et al. also proposed balanced truncation for discrete-time systems as well as
defined its error bound [70]. In this method, the Gramians are the solutions of Lyapunov
equations for discrete-time systems. In addition, balanced truncation for linear time-
varying systems has been developed by Verriest [75] and Shokoohi [66]. Its error bounds
were determined by Lall [32] and Sandberg [60].

Some balanced truncation methods have been studied for second-order systems by us-
ing position and velocity Gramians [43, 78, 51]. By comparing four structure-preserving
second-order balanced truncation methods with Meyer’s truncation in [43] and Chahlaoui’s
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method in [78], Ries argued that position-velocity singular values-based truncation pre-
serves the stability of symmetric second-order systems. However, all balanced truncation
methods for second-order system do not fully preserves stability in the reduced models
[51].

Truncation is also developed for nonlinear systems. Based on the input and output
energy functions, Scherpen extended balanced truncation for stable nonlinear systems [61].
He defined the controllability and observability functions of a nonlinear system as met-
rics measuring the importance of states. These functions are solutions of Lyapunov and
Hamilton-Jacobi equations. An algorithm to transform a stable nonlinear system into a
balanced form was also presented. Scherpen continued to develop balancing for unstable
nonlinear systems [63] and H∞ balancing for nonlinear system [62]. However Scherpen’s
methods are not intrinsic because their singular value functions are not unique [23], and
these controllability and observability functions still depend on inputs. Hence, Krener in-
troduced a more intrinsic reduction for nonlinear systems than Scherpen’s methods [31].
Based on a Taylor series, the normal forms of the controllability and observability functions
are defined, and quite similar to Scherpen’s. Another approach of truncation for nonlinear
systems is to use empirical Gramians. A constant controllability Gramian is calculated by
the data obtained from many different directions of inputs. In addition, the data observed
from many different initial values distributed on a unit sphere is used to estimate a con-
stant observability Gramian [57]. After that, the transformation matrix T is computed,
and the balanced truncation is applied in the same way for linear systems. The advantage
of this method is that it requires only simple matrix computations, and the reduced model
is nonlinear. Its implementation in some models demonstrates the efficiency of the empiri-
cal Gramians-based truncation. For example, Liu applied the empirical Gramian balanced
truncation to a classical 2 DOF quarter car model, and an exhaust gas recirculation valve
[35]. Although the reduced models of these techniques still depend on the inputs, their
methods of defining these normal forms or using empirical Gramians are potentially useful
for our studies to decrease the influence of inputs on our reduction method that will be
described in Chapter 3.

While most reduction methods focus only on linear systems or nonlinear systems,
Besselink had a different approach for nonlinear systems. It is interesting to know that
some nonlinear systems can be decomposed into a linear subsystem with relatively higher
order and a nonlinear subsystem with relatively lower order (Figure 2.2), then only the
linear subsystem is reduced by truncation methods, for example balanced truncation or
LQG balancing [6]. The condition of the nonlinear system stability and the error bound
of this method are also defined.

The system that Besselink decomposed into two subsystems looks quite similar to in-
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Figure 2.2: Interconnected System: Linear Subsystem
∑

lin and Nonlinear Subsystem
∑

nl

terconnected systems. The studies of balanced truncation in interconnected systems have
been investigated in [18, 49, 71].

The second type of model reduction is based on Krylov subspace, and it is typically
applied to large electronic circuits. The basics of Krylov subspace-based reduction are to
approximate the transfer function of linear systems by matching a finite number of its
moments (described in Appendix A.1). In order to satisfy this moment matching property,
Krylov subspaces are determined to construct projection matrices.

Pillage developed an approximation method related to Krylov subspace [48]. His
method is called asymptotic waveform evaluation (AWE). Developing from AWE, Feld-
mann introduced Pade approximation via Lanczos (PLV) algorithm to compute Pade ap-
proximation via Lanczos process for single-input single-output systems [16], and MPVL
extended to multiple-input multiple-output systems [17]. A Krylov subspace based Lanc-
zos process for model order reduction, and an overview of the development of Krylov
subspace techniques were also reported in [4]. On the other hand, there are different
Krylov subspace-based techniques using Arnoldi algorithm to replace Lanczos process,
for example PRIMA for RLC interconnect circuits [1]. The Krylov techinques based on
Arnoldi algorithm and Lanczos process were briefly described in [59]. The third algorithm
in Krylov subspace-based truncation is rational power [24]. The later studies of Krylov
subspace-based truncation have developed not only the accuracy of reduction, but also the
preservation of the system properties. Some examples of these developments are a rational
Krylov method [20], an algorithm for the construction of structure-preserving projection
matrices in Krylov subspace [80], and Laguerre method [30].

Krylov subspace techniques are available for not only linear systems, but also for second-
order, semi-second-order nonlinear systems. For interconnected systems, Vandendorpe
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suggest ISBT algorithm based on Krylov subspace and Gramian in order to reduce each
subsystem and to preserve their interconnected structure [71]. This algorithm also was
combined some other model reduction and applied to large-scale systems.

Third, the statistic-based reduction includes the proper orthogonal decomposition (POD),
the trajectory piecewise-linear method (TPWL), and parameter estimations. These tech-
niques are fairly similar to linear statistical methods: their reduced models are based on
the statistical data generated by different inputs and different time.

For POD, the importance of each state is determined by the data collected from different
initial values. Considering a nonlinear system:

ẋ = f (x, u)

y = h (x) ,
(2.2)

where u, x, and y, respectively, are input vector, state vector, and output vector. Three
main steps of POD are described as follows:

• obtain snapshots of the state vector from simulation or experiments:
X = [x (t0) x (t1) · · ·x (tN)] , x (t) ∈ RN

• calculate the singular value decomposition of X: X = UΣV T . This decomposition is
possible because X is a numerical matrix.

• transform the model to a new state coordinate system: x̂ = UTx.

˙̂x = UTf (Ux̂, u) , (2.3)

• truncate some states of the new system: let a projection matrix, Ū , be the first K
columns of U , when K < N and N is the numbers of states in the nonlinear system
(equation (2.2)). The lower-dimensional state coordinates x̄ is defined as: x̄ = Ū x̂.
The nonlinear model is transferred to the new lower-dimensional state coordinate
system:

˙̄x = ŪTUTf
(
UŪx̄, u

)
, (2.4)

This method is applied mostly in fluid mechanics, for example turbulence flows, as a
model reduction tool and a model analysis tool based on principal component analysis
[12, 5]. In addition, POD was recently extended to structural dynamics [34], and high
order model obtained from the discretization of PDE’s [3]. However, reduced models of
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POD depend on initial conditions, so they are only valuable for small changes of the initial
conditions.

Rewieski developed a novel model reduction based on linearization collected from many
different training trajectories, and called trajectory piecewise-linear method (TPWL) [52].
In other words, TPWL uses weighting funcations at certain points along the trajectory to
approximate nonlinear functions. The procedure of TPWL is described as follows:

• simulate the nonlinear system with a training input u0 (t)

ẋ = f (x, u)

y = g (x, u) ,
(2.5)

• choose many points on the training trajectory (xi0, u
i
0)

• apply Taylor’s Series to linearize the nonlinear system around point i (xi0, u
i
0)

ẋ ' f
(
xi0, u

i
0

)
+ Ai

(
x− xi0

)
+Bi

(
u− ui0

)
y ' g

(
xi0, u

i
0

)
+ Ci

(
x− xi0

)
+Di

(
u− ui0

)
,

(2.6)

where Ai, Bi, Ci and Di are partial derivatives of f and g with respect to x and u

• rewrite equations (2.6) as a local linearization

ẋ ' fi (x, u)

y ' gi (x, u) ,
(2.7)

where
fi (x, u) = f

(
xi0, u

i
0

)
+ Ai

(
x− xi0

)
+Bi

(
u− ui0

)
gi (x, u) = g

(
xi0, u

i
0

)
+ Ci

(
x− xi0

)
+Di

(
u− ui0

)
.

(2.8)

• choose a weighting function wi (x, u) at each point i in order to obtain the global
linearization

ẋ '
∑
i

wi (x, u) fi (x, u) = f̂ (x, u)

y '
∑
i

wi (x, u) gi (x, u) = ĝ (x, u) .
(2.9)

The nonlinear system has been approximated by the linear model (2.9).
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• apply reduction techniques to reduce the order of the linear model. For instance,
Rewieski used Krylov subspace method to transform the state coordinates z =
Wx,W ∈ Rn̂xn

ż =
∑
i

wi
(
W T z, u

)
Wfi

(
W T z, u

)
y '

∑
i

wi
(
W T z, u

)
gi
(
W T z, u

)
.

(2.10)

TPWL has successfully applied to nonlinear analog circuits, MEMS, and biomems compo-
nents [73, 74], fluid dynamics [22], heat-transfer models [79]. However, TPWL still cannot
well approximate many nonlinear functions [10].

Similar to POD and TPWL, parameter estimation uses the simulation data of the
original models to find equivalent parameters of standard models. Kim et al. developed
a parameter identification process in order to determine the equivalent vehicle parameters
of a quarter-car model that have almost same behaviour as a real suspension [9]. From
the real experimental vehicle, its behavior is measured, such as acceleration of chassis and
knuckle z̈s, z̈u, suspension deflection zsus, and tyre forces ft. For the quarter-car model, the
spring stiffness ks, nonlinear damping rates for extension b1 and compression b2, sprung
mass ms, and unsprung mass mu are unknown and considered as variables. In the first
step, the equations of motion of the quarter-car model are derived as follows:

msz̈s + kszsus + 0.5 [1 + sgn(żsus)] b1żsus + 0.5 [1− sgn(żsus)] b2żsus = 0 (2.11)

muz̈u − kszsus − 0.5 [1 + sgn(żsus)] b1żsus − 0.5 [1− sgn(żsus)] b2żsus − ft = 0. (2.12)

Let θ =
[
ms mu ks b1 b2

]T
be a variable vector of equations (2.11) and (2.12), and

rewrite these equations in the linear form:

θTφ1 = 0 (2.13)

θTφ2 − ft = 0, (2.14)

where φ1 =


z̈s
0
zsus

1+sgn(żsus)
2

żsus
1−sgn(żsus)

2
żsus

 and φ2 =


0
z̈u
−zsus

−1+sgn(żsus)
2

żsus
−1−sgn(żsus)

2
żsus

.
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Let θ̂ =
[
m̂s m̂u k̂s b̂1 b̂2

]T
be an approximation of the variable vector, ε1 and ε2 be

errors:

ε1 = θ̂Tφ1 (2.15)

ε2 = θ̂Tφ2 − ft. (2.16)

The objective function E is

E =
N∑
k=1

[
ε21 (k) + ε22 (k)

]
. (2.17)

E minimizes iff δE

δθ̂
= 0. Hence, the equivalent parameters of the quarter-car model are

calculated from:

θ̂ =

{
N∑
k=1

[
φ1 (k)φT1 (k) + φ2 (k)φT2 (k)

]}−1{ N∑
k=1

φT2 (k) ft (k)

}
. (2.18)

In general, the reduced models of statistic-based reduction techniques depend on inputs
because the statistical data is varied by inputs. Therefore, these reduced models are only
acceptable in a certain domain where inputs slightly change from the nominal inputs.

The last category of model reduction techniques is the physical reduction. Among
energy-based metrics, such as root mean square (RMS) of power and energy [55], Louca
introduced activity which is the time integral of the absolute value of power, and defined
as follows [37]:

A =

∫ t0+T

t0

|P (τ)| dτ, (2.19)

where P (t) is the power. The activity of an element reflects the importance of this ele-
ment in dynamical systems because it represents energy transaction in this element over a
particular time T . In addition, activity is different from energy because energy is just the
time integral of power.

According to Louca, activity is simpler in computation and clearer in physical inter-
pretation than RMS power. Second, a new model order reduction algorithm based on
activity and bond graphs was proposed. In other words, the bond graphs of a system
are used to calculate the power of each energy component. The activity of each element
is then calculated from equation (2.19) in the bond graphs. Because the activity reflects
the importance of components, less important components have relatively smaller activity.
Therefore, the system is reduced by removing these less important componets in the bond
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graphs, and afterwards reconstructed an equivalent dynamical system. Finally, in order to
evaluate the algorithm, Louca applied it to some models such as a nonlinear quarter car
model [37], a tracctor-semitrailer [36], and an integrated hybrid vehicle model consisting
of an engine, drivertrain, hydraulics [38].

In contrast to most of the previous reduction, for example balanced truncation and
proper orthogonal decomposition, where reduced models are just the set of equations or
matrices, the activity-based reduction still preserves the topology of mechanical systems.
Additionally, activity is a potentially useful tool for systems design because it possibly
describes how much each element affects system behavior. However, because the relative
activity of each element varies with the change of inputs, the reduced models of this
reduction still depend on the system inputs like other reduction techniques for nonlinear
system.

In summary, model reduction techniques for linear systems have been studied for a
long time since 1981, but model reductions for nonlinear systems are relatively new, having
been developed in the past decade, and still have some disadvantages such as depending on
inputs. In addition, there are very few studies of model reduction applications to vehicle
systems. Therefore, this thesis is devoted to develop two new model reduction methods
more suitable for vehicle systems and specifically for suspensions. The first method is
called 2-norm power-based model reduction (2NPR) which combines a new energy-based
metric (called 2-norm of power) and genetic algorithms or least squares estimation. In
some multi-body systems, the new energy metric is more accurate in term of estimating
element importance than the activity-based method.

Furthermore, POD is very common in model reduction for partial differential equations,
and has been applied to fluid mechanics, structural mechanics, and heat transfer. However,
for there are very few studies of POD for multi-body systems, which are modeled as
differential-algebraic equations. Therefore, the second proposed method is model reduction
for multi-body systems via POD.
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Chapter 3

2-Norm Power-Based Model
Reduction for Vehicle Systems

The models of vehicle systems as well as multi-body systems in general are often described
by nonlinear algebraic- differential equations that the current reduction methods may not
directly applicable. For example, in order to apply balanced truncation (Section 5.4), the
system needs to be linear, controllable and observable. POD is only applicable for partial
differential equations (PDEs) and ordinary differential equations (ODEs). Therefore, the
preliminary studies in this chapter will look into the extension of the activity-based method
to handle non-bond graph formulation, a new measure based on the 2-norm of power, and
a new model reduction combining a new energy metric and genetic algorithms.

3.1 Extension of Activity-Based Model Reduction

Louca introduced activity for bond-graph models as follows [37]:

A =

∫ t

t0

|P (τ)| dτ =

∫ t

t0

|e(τ)f(τ)| dτ, (3.1)

where P (t) is the power, e(τ) is the element effort, and f(τ) is the element flow. He also
introduced a model order reduction algorithm (MORA) or activity-based model reduction
to eliminate relatively less important components in the bond graphs. This section extends
Louca’s studies from bond-graph modelings to the conventional representation of physical
dynamic systems.
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First, in order to determine the activity of components in the conventional represen-
tation of physical dynamic systems, the power of the components needs to be defined.
Louca defined the power as the product of an element effort and the element flows in the
bond-graph modeling:

P (t) = e(t)f(t). (3.2)

On the other hand, in the conventional representation, the power of a component such as
an applied force, torque, mass, spring, or damper is defined by the time derivative of work
or energy:

P (t) =
dW

dt
=
dE

dt
, (3.3)

where W , E, respectively, are the work and energy of a component.

From equation (3.3), the power P (t) of some components in multi-body systems is
derived as follows:

• applied forces
P (t) = F Tv, (3.4)

• applied torques
P (t) = τTω, (3.5)

• gravity (or the mass affects to the potential energy)

P (t) = mgTv, (3.6)

• moment of inertia (the mass affects to the angular kinetic energy)

P (t) = ωT Iω̇, (3.7)

• mass (the mass affects to the translational kinetic energy)

P (t) = mvT v̇ (3.8)

• springs
P (t) = kLL̇ (3.9)

• dampers
P (t) = CL̇2, (3.10)
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where F =
[
Fx Fy Fz

]T
, τ =

[
τx τy τz

]T
, respectively, are the applied force and

the applied torque; ω =
[
ωx ωy ωy

]T
, v =

[
vx vy vz

]T
, are the angular velocity, and

translational velocity; m is the mass of the object; I is the moment of inertia tensor; g is
the acceleration vector of gravity; k and C, respectively, are the spring constant and the
damping coefficient; L is the distance that spring is stretched or compressed away from its
rest position.

After calculating the activity of all components, MORA will be applied to obtain re-
duced models.

3.2 2-Norm Power-Based Model Reduction

This section will introduce a new energy-based metric and a new algorithm to reduce non-
linear systems called 2-norm power-based reduction, which combines a new enery metric,
least square estimation and genetic algorithms.

3.2.1 2-Norm of Power

In order to determine the importance of components in multi-body systems, some energy
metrics have been studied, such as Rosenberg and Zhou with RMS power [55], and Louca
with activity [37]. Louca argued that the activity of a component presents the amount
of energy flowing through this component, and it is better than other previous metrics
in term of calculation and accuracy, such as the root mean square of power and energy.
A new metric, namely 2-norm of power, is proposed to evaluate the importance of each
component.

The law of conservation of energy demonstrates the total work of all components in
a multi-body system is conserved over time. Therefore, total power of all components in
the multi-body system is equal zero over time. At any arbitrary time point, the larger the
magnitude of power of a component is, the stronger effect it has on the system. That is the
main reason why power is used to determine the effect of each component to a multi-body
response. However, power varies by time, so the question is how to compare the power of
each component for a period of time.

In order to compare the power over a time period, the 2-norm of power is introduced
in this thesis.
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It is also straightforward to demonstrate that if the power of a component A is higher
than that of a component B in a period of time, the 2-norm power of component A is
higher than that of component B.

Figure 3.1 demonstrates different energy-based metrics of an oscillation power P (t) =
sin(Π

2
t)

Figure 3.1: Comparison of Energy-Based Metrics

The general formula of the 2-norm of power is defined as follows:

‖P‖2 =

√∫ t

t0

[P (τ)]2 dτ . (3.11)

If the data is collected from experimental tests, based on Riemann sum, 2-norm of
power can be determined by the following formula:

‖P‖2 '

√√√√N−1∑
i=1

[P (ti)]
2(ti+i − ti), (3.12)

where N is the number of points on the trajectory, P (ti) is the measurement of power at
the time ti, i ∈ {1, 2, 3, ..., N}.
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3.2.2 2-Norm Power-Based Model Reduction (2NPR)

A new model reduction technique called 2-norm power-based model reduction (2NPR)
is proposed in this section. The fundamentals of the 2-norm power-based reduction are
to compare the relative 2-norm of power among components, then remove components
less important to system behavior, and finally find the equivalent values of the remaining
components.

Considering a multi-body system (equations (C.1) and (C.2)), u is the vector and q is
the state vector. Choosing the set of N different input vectors: U =

{
u(1), u(2), · · · , u(N)

}
,

the flow chart of 2NPR is shown in Figure 3.2.

Figure 3.2: 2-Norm Power-Based Reduction

The procedure of 2NPR for a system is described as follows:

• Assign a weight $(j) for each input vector u(j), j ∈ {1, · · · , N} , such that
N∑
j=1

$(j) = 1.
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• Compute the 2-norm of power of every component for each input vector u(j), j ∈
{1, 2, · · · , N}: based on Section 3.2.1, the 2-norm of power of the ith component κ

(j)
i

corresponding to the input vector u(j) is determined. Let K =
{
κ

(1)
i , κ

(2)
i , · · · , κ(N)

i

}
be the set of N 2-norms of power of the ith component corresponding with N input
vectors. The 2-norm of power of the ith component for the data generated from the
input set U is defined as follows:

κi =
N∑
j=1

$jκ
(j)
i . (3.13)

• Compute the relative 2-norm power κri of the ith component for the input set U as
follows:

κri = 100
κi
κtotal

, (3.14)

where κtotal =
N∑
i=1

κi is the sum of 2-norms power of all components in the system.

• Compare and sort the relative 2-norm power among components in decreasing order.

• Remove less important components whose relative 2-norm power is relatively smaller
than others. There is a threshold to determine whether output errors are acceptable.
However, the new equations of motion of reduced models should be numerically solved
after removing these components.

• Derive the equations of motion of the reduced models by Lagrange’s equations.

• Find the equivalent values of the remaining components by the Least Square Estima-
tion (LSE) in Appendix C, or Genetic Algorithms in Appendix D in order to com-
pensate the energy lost by removing some components and to minimize the squared
error with the original model .

Noting that there are three different components for each body in the multi-body
system: the gravity (equation (3.6)), the moment of inertia (equation (3.7)), and the mass
that only affects to kinetic energy (equation (3.8)). Therefore, if a mass is eliminated, the
corresponding gravity component will be removed, but the moment of inertia will be still
available.

It is better to evaluate the advantages and disadvantages of this method after im-
plementing it to some vehicle systems. Therefore, the evaluation of this method will be
discussed later in this thesis (Sections 5.6 and 6.1).
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Chapter 4

Model Reduction for Multi-body
Systems via Proper Orthogonal
Decomposition

POD was developed more than 100 years ago [47]. It has been successfully applied to
turbulent flows, structure mechanics, heat transfer, MEMS, and battery simuation be-
cause POD can reduce the number of partial differential equations (PDE), and ordinary
differential equations (ODE). However, there are very few studies of POD for multi-body
systems.

Some studies about POD for differential-algebraic equations (DAEs) have been inves-
tigated last decade. Most of them do not take into account the Lagrange’s multipliers
[54, 41, 34, 68, 76], so these methods are inapplicable for constrained multibody systems,
such as the 6 DOF suspension in Section 5.1. Recently, other studies started to consider
Lagrange’s multipliers in the equations of motion [8, 58]. These studies assume that these
Lagrange’s multipliers can be measured by experiment [69], or the eigenvalues related to
Lagrange’s multipliers are minus infinite [19]. However, for complex multibody systems,
the Lagrange’s multipliers are unknown variables in the equations of motion, so they can-
not be measured by experiment. The proposed method in this section can apply to any
DAEs of multibody systems without the measurement of Lagrange’s multipliers. This sec-
tion will propose a new model reduction method based on POD that is more suitable for
multi-body systems.

The model reduction for multi-body systems via POD has two main steps. First, DAEs
of the equations of motion in a multi-body system are converted to the following explicit
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second-order differential equation:

q̈ = f (t, q, q̇) (4.1)

Second, POD is applied to equation (4.1) to obtain new reduced models with fewer number
of differential equations.

In order to convert the equations of motion for a multi-body system to equation (4.1),
the following procedures are proposed:

• The equations of motion of every multi-body system have the following form [25]:[
M ΦT

q

Φq 0

] [
q̈
λ

]
=

[
QB (q, q̇)

γ

]
, (4.2)

where q is the state vector, M is the system mass matrix, Φq is the Jacobian matrix
of constraint equations, λ is Lagrange’s multipliers, and γ = − (Φq q̇)q q̇ − 2Φqtq̇ −
Φtt or γ =

[
− (Φq q̇)q q̇ − 2Φqtq̇ − Φtt

]
− 2α (Φq q̇ + Φt)− β2Φ (Baumgarte constraint

stabilization). These equations of motion are derived from the Lagrange’s equations
(4.3) and the constraint equations (4.4):

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ ΦT

q λ = Q (4.3)

Φ = 0. (4.4)

The number of Lagrange’s multipliers is equal to the number of states q minus the
degrees of freedom. Because equations (4.3) and (4.4) for many multi-body systems
maynot be numerically solved, the constraint equation (4.4) is replaced by its second
time derivatives:

Φq q̈ = − (Φq q̇)q q̇, (4.5)

or by Baumgarte constraint equation:

Φq q̈ =
[
− (Φq q̇)q q̇ − 2Φqtq̇ − Φtt

]
− 2α (Φq q̇ + Φt)− β2Φ, (4.6)

where α > 0 and β 6= 0 are constant. Noting that the notation of this section is as
same as Haug’s notation in [25].
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• The next step is to remove Lagrange’s multipliers from equation (4.2). Because
the Jacobian matrix, Φq, may not be constant in many multi-body systems, and
contains the states q, it is extremely difficult to find the QR decomposition of the
symbolic Jacobian matrix, Φq. The transpose of the symbolic Jacobian matrix, ΦT

q ,
is replaced by the value of this transpose at the nominal point, ΦT

q∗ , where q∗ is the
nominal position of the system. Consequently, equation (4.2) is approximated by the
following equation: [

M ΦT
q∗

Φq 0

] [
q̈
λ

]
=

[
QB (q, q̇)

γ

]
. (4.7)

Let (Q1, R1) be the QR decomposition of ΦT
q∗ and Q1 = (Q11 D), where matrix Q11

is first r columns of matrix Q1, r is the number of Lagrange’s multipliers, and D
consists of other columns of Q1. Hence, DTΦT

q∗ = 0.

Multiplying both sides of equation (4.7) with DT , Lagrange’s multipliers are removed,
and equations (4.3) and (4.4) are simplified to:[

DTM
Φq

]
q̈ =

[
DTQB (q, q̇)

γ

]
, (4.8)

Finally, equation (4.8) is rewritten in the second-order differential equation form:

q̈ =

[
DTM

Φq

]−1 [
DTQB (q, q̇)

γ

]
. (4.9)

Equation (4.9) has the same form as equation (4.1) does. If M and Φq are constant,

the inverse matrix of

[
DTM

Φq

]
in equation (4.9) can be easily obtained. However, if the

system mass matrix M is a function of q, its symbolic inverse may not be possible. The

inverse matrix of

[
DTM

Φq

]
is usually calculated by its adjugate matrix. In case the sym-

bolic matrix

[
DTM

Φq

]
is complicated, instead of using its adjugate matrix, the matrix can

be approximated by

[
DTM
Φq∗

]
or

[
DTM∗

Φq

]
, or

[
DTM∗

Φq∗

]
, where M∗ = Mq=q∗ .

After converting the equations of motion of a multi-body system into the explicit
second-order differential equation (4.9), POD is used to find the reduced models of the
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multi-body system. Assuming the state vector q ∈ RN , from the simulation or exper-
iments, the set of N -dimesional state vector q (called empirical data) is obtained. Let
U =

{
q(1), q(2), . . . , q(m)

}
be the empirical data, where m ∈ N+. The main goal of POD

is to find the most accurate subspace W with the lower dimension K (K < N) of the
empirical data U .

Let ϕ1, ϕ2, . . . , ϕK be the orthogonal basis of the subspace W , so each vector q(i) in the
empirical set U is approximated by the following expression:

q(i) ≈
K∑
j=1

< q(i), ϕj > ϕj, (4.10)

where < q(i), ϕj > is the inner product in the Euclidean space RN (or the dot product).

The objective function is the total error defined as follows:

E =
m∑
i=1

‖q(i) −
K∑
j=1

< q(i), ϕj > ϕj‖2
2. (4.11)

Let C = UUT be the covariance matrix of the empirical data. It can be mathematically
proved that the error (equation (4.11)) is rewritten as follows [7]:

E =
m∑
i=1

‖q(i)‖2
2 −

K∑
j=1

ϕTj Cϕj =
m∑
i=1

‖q(i)‖2
2 −

K∑
j=1

ψj, (4.12)

where ψj with j ∈ {1, . . . , K} are the first K largest eigenvalues of the covariance
matrix C, and ϕj with j ∈ {1, . . . , K} are their corresponding eigenvectors.

Denote T = [ϕ1, . . . , ϕN ], and T̄ = [ϕ1, . . . , ϕK ]. Note that T̄ T T̄ is a unit matrix.

The new state vector of the reduced system is determined as follows:

q̄ = T̄ T q. (4.13)

Equations of motion of the multi-body system (equation (4.9)) are transferred by the
projection matrix T̄ :

¨̄q = T̄ T
[
DTM

Φq

]−1 [
DTQB

(
T̄ q̄, T̄ ˙̄q

)
γ

]
. (4.14)

Equation (4.14) is the new reduced model having only K differential equations (K < N).

In summary, this section introduced the model reduction for any constrained multi-
body systems via POD. This method also considers Lagrange’s multiplier in the equations
of motion.
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Chapter 5

Examples and Comparison

In an effort to evaluate the efficiency of the 2-norm power-based reduction, a 6 DOF planar
double-wishbone suspension, a 5 DOF suspension, and a piston-crank system are modeled;
and then IRP, the balanced truncation, the activity-based model reduction, and the 2NPR
are implemented.

5.1 A 6 DOF Double-Wishbone Suspension with Bush-

ings

This section briefly introduces the analytical model of a 6 DOF planar double-wishbone
suspension with bushings, and the method of linearizing its algebraic-differential equations
to a state-space representation.

5.1.1 Geometry

A double-wishbone suspension in vehicle has more than 30 degrees of freedom (Figure 5.1),
so it is complicated to derive its equations of motion. Therefore, in order to implement
model reduction techniques, a 6 DOF planar double-wishbone suspension is suggested
(Figure 5.2).

The chassis with its centre of mass OCH is only able to move in the vertical direction.
The upper arm is ED; the lower arm is AB; and the knuckle is DB fixed to KW . A
revolute joint between the wheel HH ′ and the knuckle KW at the point W has no effect
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Figure 5.1: Double-Wishbone Suspension [15]

Figure 5.2: Suspension Geometry of Planar Double-Wishbone Suspension

on the planar double wishbone suspension. The tire is described as a spring GH. In
many models of a double-wishbone suspension, the upper arm ED connects to the chassis
though the revolute joint at E. However, in this suspension model with bushings, vertical
and horizontal springs at point E are described as a bushing at E. Similarly, vertical and
horizontal springs at A are modelled with a bushing. Please note that IF represents both
the spring and damper. The geometric parameters of the suspension are shown in Table
5.1.

Let yA, zA, α1, α2, yE, zE, α3 and zCH be respectively the horizontal displacement of
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Table 5.1: Parameters of 6 DOF Double-Wishbone Suspension

Suspension parameters Symbols Values

Mass of chassis mCH 400 kg

Mass of wheel mW 40 kg

Inertia of wheel IxW 800000 kg.mm2

Length of lower arm l1 260 mm

Length of spindle l2 280 mm

Length of upper arm l3 180 mm

Distance between points B and F lf 200 mm

Mass of lower arm m1 8.3 kg

Mass of spindle m2 21.8 kg

Mass of upper arm m3 3.4 kg

Inertia of lower arm JXX1 97400 kg.mm2

Inertial of spindle JXX2 90000 kg.mm2

Inertial of upper arm JXX3 10000 kg.mm2

Stiffness of lower arm bushing in x, y directions kLA 497500 N
m

Stiffness of upper arm bushing in x, y directions kUA 303000 N
m

Damping factor of lower arm bushing in x, y directions cLA 9015 Ns
m

Damping factor of upper arm bushing in x, y directions cUA 4560 Ns
m

Nominal stiffness of suspension spring ks 43300 N
m

Damping factor of shock damper cd 2565 Ns
m

Stiffness of tire kt 310000 N
m

Road profile zt 50 sin(πt) mm

point A, the vertical displacement of point A, the angle of link AB, the angle of link BD,
the horizontal and vertical displacements of point E, the angle of link ED, and the vertical
displacement of the chassis at point OCH . The vertical movement of point G representing
the displacement of the road is an input of this suspension. The output, namely the
vertical displacement of chassis (zCH), is determined by solving Lagrange’s equations and
constraint equations.
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5.1.2 Analytical Model

The equations of motion are derived from Lagrange’s equations and constraint equations via
Baumgarte constraint stabilization. All details of the formulas are described in Appendix
E.

The equations of motion are finally re-written in a descriptor form:[
M ΦT

q

Φq 0

] [
q̈
λ

]
=

[
QB

γ̂

]
, (5.1)

where q = [yA, zA, α1, α2, yE, zE, α3, zCH ]T , M is a 8× 8 matrix, Φq is a 2× 8 matrix.

In this planar double-wishbone suspension, the number of links is five, namely ED,
AB, the knuckle, the chassis, and ground; the number of lower pairs is three. Based on
Gruebler’s equation, the number of degrees of freedom is six. However, there are eight
variables. Consequently, two constraint equations are needed. These equations can be
derived from the geometrical constraints:

−→
AB +

−−→
BD +

−−→
DE =

−→
AE. (5.2)

Let [yA0, zA0, α10, α20, yE0, zE0, α30, zCH0]T be an initial position q0. The initial condi-
tions are choosen as follows:

q0 = [0, 0, 0, 1.623, 2.768, 77.73, 345.2, 200]T

q̇0 =0

The input (the vertical displacement of the tire) is 50 sin(πt) mm.

The output (the vertical displacement of the chassis) is described in Figure 5.3 by
solving the equations of motion. In order to verify the analytical model, an ADAMS
model is developed (Figure 5.4). The results of the analytical model are equal to those of
ADAMS model (Figure 5.5).
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Figure 5.3: Displacement of Chassis in Analytical Model
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Figure 5.4: ADAMS Model of Planar Double-Wishbone Suspension
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Figure 5.5: Comparison of Chassis Displacement in Analytical and ADAMS Models
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5.1.3 Linearization

The linearization of differential-algebraic equations to a state-space representation is slightly
different from that of other differential equations. Due to the existence of Lagrange’s mul-
tipliers, the differential-algebraic equations are linearized to a descriptor system, which is
more difficult to apply most model reduction techniques. Therefore, these multipliers need
to be removed from the equations. QR decomposition is one of the most common meth-
ods to eliminate Lagrange’s multipliers [64]. In this section, the linearization of nonlinear
differential-algebraic equations for multi-body systems is introduced.

Based on the results of Chapter 4, the equations of motion (equation (5.1)) can be
converted to equation (5.3): [

DTM
Φq

]
q̈ =

[
DTQB

γ̂

]
. (5.3)

Let y =
[
q q̇ q̈ u

]T
and h(y) =

[
DTM

Φq

]
q̈−
[
DTQB

γ̂

]
,where u is inputs (or displace-

ment of tire zt).
The nominal position satisfies the condition h(y∗) = 0.
Applying Taylor’s series :

h(y) ≈ h(y∗) +
∂h

∂q
|y∗∆q +

∂h

∂q̇
|y∗∆q̇ +

∂h

∂q̈
|y∗∆q̈ +

∂h

∂u
|y∗∆u. (5.4)

Equation (5.1) becomes

∂h

∂q
|y∗∆q +

∂h

∂q̇
|y∗∆q̇ +

∂h

∂q̈
|y∗∆q̈ +

∂h

∂u
|y∗∆u = 0. (5.5)

Hence, the state-space representation of the 6 DOF double wishbone suspension, [I, A,B,C],
is obtained as follows:

Ẋ = AX +Bu

Y = CX,
(5.6)

where X =

[
∆q
∆q̇

]
, B =

[
0

−(∂h
∂q̈
|y∗)−1 ∂h

∂u
|y∗

]
,

A =

[
0 I8

−(∂h
∂q̈
|y∗)−1 ∂h

∂q
|y∗ −(∂h

∂q̈
|y∗)−1 ∂h

∂q̇
|y∗

]
,

C = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], Y = zCH .
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A =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−35713.4 46369.7 −698346.9 −552402.7 −689.1 103.1 −12.3 −50388.3 −595.8 951.3 9859.6 3.6 −10.4 1.6 0.643 −952.9

46871.9 −123205.3 86979.2 −253666.9 497.7 −221.6 15.1 121899.9 897 −2301 −24808.8 −2.23 7.48 −3.341 −0.7915 2304.3

−202.6 512.5 −4133.89 −23.86 −18.639 6.15 −0.474 −525.06 −3.8887 9.7077 78.852 0.0889 −0.28019 0.092808 0.02487 −9.80056

−51.1021 −40.2139 −1551.8 −2729.87 37.79 7.7567 0.1039 14.90994 −0.56629 −0.3525 13.10049 −0.2309 0.568 0.116 −0.00545 0.23608

197.38 810.895 −161803.4 95250.58 −27516.81 63822.4 −1026.94 −64242.37 −18.915 −8.962 −4453.496 −443.244 −415.69 959.8 −42.469 −950.86

638.875 1506.65 396425.7 176287.85 63822.40 −245202.74 3743.66 245445.6 3.7540 0.2520 1128.367 −193.2 959.8 −3689.4 160.3 3689.19

−9.862 −21.687 −7412.76 −2535.8 −389.3 1418.2 −23.099 −1424.2 −0.14927 −0.045 −39.26 1.239 −5.8549 21.3279 −2.8934 −21.282

10.7299 1351.3 18634.035 −0.0 0.0 757.5 −0.0 −2108.79 −0.0 28.95 1164.65 −0.0 0.0 11.4 −0.0 −40.35



,

B =



0

0

0

0

0

0

0

0

3915.42

1527.011

6.36

17.54

−390.9

−1749.5

27.687

−0.0



, C =
[

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
]
.

The linear model has 16 first-order diferential equations, so its order is 16. The output
of the linear model (equation (5.6)) in comparison with the nonlinear model (equation
(5.1)) is shown in Figure 5.6. The error between the state-space representation and the
nonlinear model is acceptable. The linear model is used in the next sections for IRP and
balanced truncation. However, the 2-norm power-based reduction directly applies to the
nonlinear model.
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Figure 5.6: Chassis Displacement of Linear and Nonlinear Models
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5.2 Improvement on IRP & Balanced Truncation

Initial conditions are extremely important in solving differential equations. In other words,
the simulation of reduced models is impossible without the initial values of new reduced
states. One of the main problems in many truncation methods for linear systems is to
approximately determine the initial values of new states. In balanced truncation and
irreducible realization procedure (IRP), many authors such as Varga in [72], Antoulas in
[2], and Mockel in [26] just calculated the error bounds without simulating new reduced
models in order to verify truncation methods. Therefore, two methods of approximating
the initial values in truncation methods are proposed in this section.

One of the methods is based on the transformation matrix. Let X0 and T be, respec-
tively, the initial values of original states and the transformation matrix. The approximated
initial values of r reduced states, namely Xr , are the first r columns of the vector X0T .
The most difficult step of this method is to obtain the transformation matrix T . While
the transformation matrix T is easily obtained from the formula T = RU−1/2 in balanced
truncation, it is slightly complex for IRP. Considering the realization [E,A,B, I] in which
outputs are the states of the original system [E,A,B,C] (equation (5.8)), its reduced out-
put matrix, C

′
r, is obtained after applying IRP. It can mathematically prove that matrix

C
′
r, is the transformation matrix of IRP in the system [E,A,B,C]. The algorithm 5.2

of finding the transformation matrix T in IRP is improved from Varga’s algorithm 1 in
[72]. After calculating the transformation matrix T , the initial conditions of new states in
reduced models are defined as follows:

Xr (0) = X(0)T. (5.7)

Algorithm 5.2: This algorithm is for finding the new initial values of reduced models
in IRP for the following descriptor system:

EẊ = AX +Bu,

Y = CX.
(5.8)

Note that the matrix E can be singular. If E is invertible, the descriptor system can be
converted to the state-space representation.

1. Transform E to the upper-triangular matrix (U-T) by using RQ decomposition: find-
ing the orthogonal matrix Z0 such that EZ0 is an upper-triangular matrix, and
transform to the new system:
EZ0 → E, AZ0 → A, CZ0 → C, C

′
Z0 → C

′
, where C

′
= In is an identity matrix of

size n.
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2. Initial data: j = 1, r = 0, n0 = m,E0 = E,A0 = A,B0 = B,Q = In, and Z = Z0.

3. Compute the orthogonal matrices Qj and Zj:

• apply QR decomposition to Bj−1 to find Qj:

QT
j Bj−1 =

( nj−1︷︸︸︷
nj{ Aj,j−1

ρj{ 0

)
, Aj,j−1 ∈ Rnj×nj−1 . (5.9)

• apply RQ decomposition to QT
j Ej−1 to determine Zj:

QT
j Ej−1Zj =

( nj︷︸︸︷ ρj︷︸︸︷
nj{ Ej,j Ej,j+1

ρj{ 0 Ej

)
, Ej,j ∈ Rnj×nj , Ej,j+1 ∈ Rnj×ρj , Ej ∈ Rρj×ρj .

(5.10)

• compute:

QT
j Aj−1Zj =


nj︷︸︸︷ ρj︷︸︸︷

nj{ Aj,j Aj,j+1

ρj{ Bj Aj

, Aj,j ∈ Rnj×nj , Ej,j+1 ∈ Rnj×ρj ,

Bj ∈ Rρj×nj , Aj ∈ Rρj×ρj .

(5.11)

4. For i from 1 to (j − 1), determine Ai,j and Ei,j by

Ai,jZj = [Ai,j|Ai,j+1] , Ei,jZj = [Ei,j|Ei,j+1] , (5.12)

5. Update the transformation, C
′

and C matrices:

Q = Q

[
Ir 0
0 Qj

]
, Z = Z

[
Ir 0
0 Zj

]
, C = C

[
Ir 0
0 Zj

]
, C
′
= C

′
[
Ir 0
0 Zj

]
, (5.13)

6. Update r = r + n. If ρj = 0, then k = j and stop; else go to step 7

7. If nj = 0, then k = j − 1 and stop; else, increase j by 1 and go to step 3.

34



The second approximation method for calculating the new initial conditions uses a
pseudo-inverse matrix and the relationship between the output Y and the state X: Y =
CX. Let Cr and Y0 respectively be the output matrix of the reduced model and the initial
values of the output. The initial values of the new reduced states, Xr0, are defined as
follows:

Xr0 = (CT
r Cr)

−1CT
r Y0. (5.14)

In term of minimizing a root mean square, (CT
r Cr)

−1CT
r Y is the best approximation of the

initial values of the reduced states [21]. However, matrix CT
r Cr can be singular in some

systems, such as the linear model of the 6 DOF suspension (equation 5.6), so equation
(5.14) is not applicable to this model.

In summary, depending on the number of outputs and new reduced states, and the
difficulty of finding the transformation matrix, one of these two methods is chosen. For ex-
ample, in the balanced truncation, the transformation matrix is straightforwardly derived,
and the number of the new reduced states is usually small; so the first method can give a
better approximation. On the contrary, it is quite complex to determine the transforma-
tion matrix in the irreducible realization procedure, and the number of reduced states is
relatively large. Therefore, the second method is more suitable.
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5.3 Application of IRP to the 6 DOF Double-Wishbone

Suspension

Balanced truncation is one of the most popular model order reduction techniques. However,
balanced truncation is only applicable to controllable, observable, and asymptotically stable
systems while the linear model (equation 5.6) is uncontrollable. Therefore, this section
demonstrates how to apply IRP to remove the uncontrollable states of the linear model
(equation 5.6).

First, the order of the linear system [I, A,B,C] (equation (5.6)) is 16, and rank(A) = 16,
so the system has 16 poles. From Table 5.2, all real parts of these poles are negative, so
the linear system is asymptotically stable. Furthermore,

rank([B AB A2B ... A15B]) = 12 < 16, (5.15)

and

rank


C
CA

...
CA15

 = 16, (5.16)

so the system is uncontrollable and observable, and has four uncontrollable poles.
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Table 5.2: Poles of Linear System with 16 States and Reduced Order System with 12 States

[I, A,B,C] [Ir, Ar, Br, Cr]

−3894.4 −3894.4

−2565.2 −2565.2

−86.82 + 90.757i −86.82 + 90.757i

−86.82− 90.757i −86.82− 90.757i

−89.87 + 59.361i −89.87 + 59.361i

−89.87− 59.361i −89.87− 59.361i

−11.096 + 55.427i −11.096 + 55.427i

−11.096− 55.427i −11.096− 55.427i

−56.417 −56.417

−67.6 −67.6

−1.665 + 11.1i −1.665 + 11.1i

−1.665− 11.1i −1.665− 11.1i

−1 + 0.47 10−4i

−1− 0.47 10−4i

−1 + 0.227 10−4i

−1− 0.227 10−4i

Second, applying IRP in [72] and the algorithm 5.2 which is described in Section 5.2, a
reduced order model [Ir, Ar, Br, Cr] with the order of 12 (having 12 first-order differential
equations) and the initial conditions of new states are obtained:

Ẋ = ArX +Bru

Y = CrX,
(5.17)

where
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Ar =



−645.24 1180.9 957.7 −858.8 2247.5 10270.0 −6496.3 4801.7 −7206.2 17467.0 −379010.0 30150.0

1236.9 −3401.7 −1217.8 1000.7 −3287.2 908.7 −4055.9 2035.5 −4288.7 30884.0 261860.0 256280.0

0.0 −106.8 −240.1 −926.7 345.7 −5343.6 9251.8 7259.2 −9650.7 66112.0 −149670.0 40578.0

0.0 0.0 −308.4 −2629.7 1047.3 −12594.0 5861.4 −1390.7 −17615.0 159050.0 −172310.0 −31734.0

0.0 0.0 0.0 −489.1 226.3 −1356.5 −1164.3 −2668.8 −2215.1 26770.0 −9934.4 −15784.0

0.0 0.0 0.0 0.0 −4.37 −7.35 −124.08 −53.77 23.91 −173.58 2783.3 −1305.1

0.0 0.0 0.0 0.0 0.0 31.37 −24.298 44.66 −11.275 −94.952 904.89 −361.21

0.0 0.0 0.0 0.0 0.0 0.0 −61.10 −73.67 27.247 −40.017 741.31 −383.79

0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.9 −18.727 −32.25 591.27 −324.33

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.65 −57.373 26.781 −27.919

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.807 −32.296 −15.66

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −17.816 −58.47



Br =



−4569.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0


Cr =

[
5.551× 10−17 1.0408× 10−17 0.0000525 −0.00108 0.00627 −0.13448 −0.1863 0.1323 0.5048 0.356 −0.2862 −0.6827

]
.

Based on Table E.1, IRP removes four uncontrollable states, namely−1+0.47 10−4i,−1−
0.47 10−4i,−1 + 0.227 10−4i, and −1− 0.227 10−4i, from the original linear system. There-
fore, the reduced order model is controllable, observable and asymptotically stable. Figure
5.7 also shows the output of the reduced model (equation (5.17)), the linear model with
the order of 16 (equation(5.6)), and the nonlinear model (equation (5.1)).

The output error between the nonlinear 6 DOF suspension and the reduced model with
the order of 12 is shown in Figure 5.8
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Figure 5.7: Comparison of Nonlinear Model, Linear Model with 16 States, and Linear
Model with 12 States

Figure 5.8: Output Error Between 6 DOF Suspension and Reduced Model with 12 States
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5.4 Application of Balanced Truncation to the 6 DOF

Double-Wishbone Suspension

Because the system [I, A,B,C] is uncontrollable, the balanced truncation cannot be ap-
plied to this system. However, after eliminating the uncontrollable states via IRP, the
reduced order system [Ir, Ar, Br, Cr] is controllable, observable and asymptotically stable.
According to the lemma 9.3.1 of [40], the realization [Ir, Ar, Br, Cr] can be transformed to
a balanced realization, and its order can be reduced by the balanced truncation.

The Hankel singular values of a state-space representation are defined as the square root
of eigenvalues of the product of its controllability Gramian and observability Gramian:

σi =
√
λi(PQ). (5.18)

The basis of balanced truncation is to remove states that have relatively smaller Hankel
singular values. The balanced truncation procedure for the state-space representation
,[Ir, Ar, Br, Cr], are described as follows:

1. Solve the Lyapunov’s equations (5.19 & 5.20) to find the controllability and observ-
ability Gramians P,Q:

ArP + PATr +BrB
T
r = 0, (5.19)

ATr Q+QAr + CT
r Cr = 0. (5.20)

2. Find Cholesky factorization: RRT = P.

3. Compute the singular value decomposition (SVD): RTQR = UΣ2UT , where U is
orthogonal, Σ is a diagonal matrix. The main purpose of SVD is to sort the Hankel
singular values in descending order.

4. Determine the projection matrix T = RUΣ
−1
2 .
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5. Transfer the coordinates of the system, and obtain a new model [I, A,B,C]:

Ā = T−1ArT =

( r n− r
r Ā1,1 Ā1,2

n− r Ā2,1 Ā2,2

)
, Ā1,1 ∈ Rr×r, Ā1,2 ∈ Rr×(n−r)

B̄ = T−1Br =

( m

r B̄1

n− r B̄2

)
, B̄1 ∈ Rr×m

C̄ = CrT =
(
C̄1 C̄2

)
, C̄1 ∈ Rp×r,

Ī = Ir,

(5.21)

where n is the order of the system [Ir, Ar, Br, Cr] and r is the reduced order.

6. Apply the truncation (equation (5.22)) to remove less important Hankel singular
values, and obtain a reduced order model [Ir2, Ar2, Br2, Cr2]:

Ar2 = Ā1,1, Br2 = B̄1

Cr2 = C̄1, Ir2 = Ī .
(5.22)

In the linear system [Ir, Ar, Br, Cr] (equation (5.17)), 12 Hankel singular values are
calculated by the balanced truncation procedure in Table 5.3. There are two significant
Hankel singular values in this model, so it can be reduced to a reduced model consisting
of 2 states.

Choosing r2 = 11, the reduced model with order of 11 is derived from the balanced
truncation (Figure 5.9). The error bound between the linear model of order 12 and order
11 is computed:

‖G−Gr‖∞ ≤ 2(σ12) = 4.699 10−9. (5.23)
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Table 5.3: Hankel Singular Values of [Ir, Ar, Br, Cr]

Hankel Singular Values

2.01488

1.49675

0.06860

0.05330

0.00400

0.00123

5.8 10−5

7.5 10−6

4.4 10−7

4.710−8 + 2.0510−8I

4.710−8 − 2.0510−8I

2.3 10−9

Figure 5.9: Comparison of Nonlinear System with Reduced Systems of Order 12 & 11
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Balanced truncation can reduce the order of the linear system from 11 to 2, while their
errors are acceptable (Figure 5.12, & 5.13). For example, the reduced model with order of
2 [Ir2, Ar2, Br2, Cr2] (Figure 5.10) is calculated as follows:

Ar2 =

[
−1.864 −11.178

11.178 −1.492

]
,

Br2 =

[
−2.741

2.113

]
,

Cr2 =
[
−2.741 −2.113

]
.

(5.24)

This reduced model has two first-order differential equations, so its degree of freedom is
one. This model is also equal to a 1 DOF quarter-car model.

Figure 5.10: Comparison of Nonlinear System with Reduced Systems with Order of 2

The error bound between the linear model of order 12 and order 2 is determined:

‖G−Gr‖∞ ≤ 2(σ3 + · · ·+ σ12) = 0.2544. (5.25)

The output error between the nonlinear 6 DOF suspension and the reduced model with
the order of 2 is shown in Figure 5.11
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Figure 5.11: Output Error of Reduced Models with 2 States & 12 States

Other reduced models with different orders are also obtained by balanced truncation.
From Figures 5.12 and 5.13, the reduced models approximate well the nonlinear 6 DOF
suspension in the steady-state period. However, in the transient period, especially the
initial value, the output errors between the 6 DOF suspension and the reduced models
cannot be ignored.
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Figure 5.12: Comparison of Nonlinear System and Reduced Order Models

Figure 5.13: Comparison of Nonlinear System and Reduced Order Models
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5.5 Calculation of Activity in Louca’s Method

The common thing between Louca’s method (MORA) [37] and the 2NPR is that compo-
nents that are relatively less important to the system response are removed in order to
obtain reduced models. While MORA uses the activity as the energy metric to determine
the importance of components, the 2NPR uses 2 norm as the energy metric. In order to
evaluate which metric can represent the importance of components in multi-body systems
better, the calculation of the activity of all components is first described.

Based on Section 3.1, the activity of all components during the time interval [0, 4]
(second) is calculated and shown in Figure 5.14. In addition, the activity and relative
activity (activity indexes) at time t = 4 seconds are computed and shown in Table 5.4. In
addition,. Comparisons between Louca’s method and the 2NPR will be discussed later in
this chapter.

Figure 5.14: Activity of All Components in 6 DOF Suspension in t ∈ [0, 4] (second)
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Table 5.4: Activities of All Components at t = 4 (seconds)

notation components activity activity index

AgCH gravity of chassis 3.03272365100546 ∗ 109 44.46

Asd suspension spring & damper 1.60954275742940 ∗ 109 23.6

AsT tire spring 1.22645607781828 ∗ 109 17.98

AAy horizontal spring & damper at A 2.90086067130067 ∗ 108 4.25

AgW gravity of wheel 1.63769500859663 ∗ 108 2.40

AmCH mass of chassis 1.24829583358167 ∗ 108 1.83

AEy horizontal spring & damper at E 1.03575147527846 ∗ 108 1.52

Ag2 gravity of knuckle 8.88766675408656 ∗ 107 1.30

AAz vertical spring & damper at A 5.62041544204703 ∗ 107 0.82

Ag1 gravity of lower arm 4.56627695655444 ∗ 107 0.67

AmW mass of wheel 2.06366651800508 ∗ 107 0.30

Ag3 gravity of upper arm 1.91095206635904 ∗ 107 0.28

Am2 mass of knuckle 9.35221009906156 ∗ 106 0.14

AIW moment of inertia of wheel 7.96499535658839 ∗ 106 0.1168

AEz vertical spring & damper at E 7.86056729446393 ∗ 106 0.1152

Am1 mass of lower arm 7.49056449075160 ∗ 106 0.1098

Am3 mass of upper arm 3.21531185631446 ∗ 106 0.0471

AI1 moment of inertia of lower arm 2.43246021876212 ∗ 106 0.0357

AI2 moment of inertia of upper arm 8.96061977616198 ∗ 105 0.0131

AI3 moment of inertia of knuckle 5.29589701816148 ∗ 105 0.0078
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5.6 2-Norm Power-based Reduction

Based on the 2-norm of power, the importance of each component to the system response
is evaluated. The reduced models with fewer degrees of freedom are developed by removing
relatively less important components. This section demonstrates how to apply the 2-norm
power-based reduction in Section 3.2.2 to the 6 DOF double-wishbone suspension.

Considering the nonlinear model of the 6 DOF double-wishbone suspension (equation
(5.1)), the input of the model is the road profile. In order to decrease the dependency of
reduced models to the input, the set of input U can be defined based on the set of possible
road profile in reality. For instance, U is the set of trigonometric functions, heaviside
step function, and exponetial sine. However, in this example, the input set is defined as
U = {zt(t) = 50 sin(πt)(mm)}.

Because the size of the input set is one, no weight is required. The formulas of 2-norm
of power of some components are derived as follows:

• gravity of chassis

KgCH =

√∫ t

t0

mCH
2g2 (żCH )2 dτ , (5.26)

• gravity of wheel

KgW =

√∫ t

t0

mW
2g2 (żA + l1 cos (α1) α̇1 + ((1/2 l2 + yKW ) cos (α2)− zKW sin (α2)) α̇2)2 dτ ,

(5.27)

• gravity of lower arm

Kg1 =

√∫ t

t0

m1
2g2

(
żA +

1

2
l1 cos (α1) α̇1

)2

dτ , (5.28)

• gravity of knuckle

Kg2 =

√∫ t

t0

m2
2g2

(
żA + l1 cos (α1) α̇1 +

(
1

2
l2 + yC2

)
cos (α2) α̇2 − zC2 sin (α2) α̇2

)2

dτ ,

(5.29)
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• gravity of upper arm

Kg3 =

√∫ t

t0

m3
2g2

(
żA + l1 cos (α1) α̇1 + l2 cos (α2) α̇2 +

1

2
l3 cos (α3) α̇3

)2

dτ ,

(5.30)

• moment of inertial of lower arm

KI1 =

√∫ t

t0

JXX1
2 (α̇1)2 (α̈1)2 dτ , (5.31)

• moment of inertial of knuckle

KI2 =

√∫ t

t0

JXX2
2 (α̇2)2 (α̈2)2 dτ , (5.32)

• moment of inertial of upper arm

KI3 =

√∫ t

t0

JXX3
2 (α̇3)2 (α̈3)2 dτ , (5.33)

• mass of wheel

KmW =

√∫ t

t0

JXXw
2 (α̇2)2 (α̈2)2 dτ , (5.34)

After that, the 2-norm of power of each component and their relative 2-norms during the
time interval [0, 4] (second) (Table 5.5 and Figure 5.15) are calculated by the first and third
methods described in Section (3.2.1). For the first method, computer takes around 4276
seconds ≈1 hour and 10 minutes. On the other hand, the computer obtains all 2-norm of
power within 56 seconds for the third method. In addition, the 2-norm of power in these
two methods are almost equal each other.
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Table 5.5: 2-Norms of Power of Each Component at t = 4 (seconds)

Notation Components 2-norm Relative 2-norm

KgCH gravity of chassis 2.192 ∗ 109 33.35351

Ksd suspension spring & damper 1.817 ∗ 109 27.65042

KsT tire spring 1.3955 ∗ 109 21.23334

KAy horizontal spring & damper at A 4.197 ∗ 108 6.38637

KmCH mass of chassis 1.4996 ∗ 108 2.281696

KEy horizontal spring & damper at E 1.3087 ∗ 108 1.99125

KAz vertical spring & damper at A 1.306 ∗ 108 1.98714

KgW gravity of wheel 9.1688 ∗ 107 1.395069

KIW moment of inertia of wheel 5.6328 ∗ 107 0.857056

Kg2 gravity of knuckle 4.9823 ∗ 107 0.75807

KmW mass of wheel 4.1924 ∗ 107 0.637885

Kg1 gravity of lower arm 2.827 ∗ 107 0.4301392

Km1 mass of lower arm 1.8398 ∗ 107 0.2799372

Kg3 gravity of upper arm 1.2064 ∗ 107 0.1835658

Km2 mass of knuckle 1.194 ∗ 107 0.1817006

KEz vertical spring & damper at E 9.884 ∗ 106 0.150395

KI2 moment of inertia of knuckle 6.3369 ∗ 106 0.0964188

Km3 mass of upper arm 4.6053 ∗ 106 0.07007

KI1 moment of inertia of lower arm 4.11801 ∗ 106 0.06266

KI3 moment of inertia of upper arm 8.73397 ∗ 105 0.013289
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Figure 5.15: 2-Norm of Power of All Components in t ∈ [0, 4] (second)

From Table 5.5, the moments of inertia of the upper arm, lower arm and knuckle;
mass and gravity of upper arm; and the vertical spring-damper at E can be removed from
the system because the 2-norms of their power are so small in comparison with other
components. Therefore, in the reduced model (Figure 5.16), I1 = I2 = I3 = 0, m3 = 0,
and the bushing at E is replaced by a prismatic joint and the horizontal spring-damper
element. In addition, the reduced model has five links, three lower pairs, and one higher
pair; so its degrees of freedom are 3 × (5 − 1) − 3 × 2 − 1 = 5. The equations of motion
for the 5 DOF reduced model are derived by Lagrange’s equations in the same way for the
6 DOF system that is described in Section (5.1.2). The remaining relative energy, namely
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99.6%, is still remarkable high, so there are slightly small differences between the chassis
displacement of the 5 DOF reduced model and the 6 DOF system (Figure 5.17).

Figure 5.16: Reduced Model with 5 DOF

Figure 5.17: Comparison of Chassis Displacement Between 6 DOF and 5 DOF Model
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Similarly, a reduced system is obtained by continuing to remove components where the
2-norms of power are small: knuckle mass m2, upper arm gravity g3, lower arm mass m1,
lower arm gravity g1, wheel mass mW , knuckle gravity g2, wheel gravity gW , vertical spring
and damper at A. The bushing at A is replaced by a prismatic joint and a horizontal
spring-damper element, so the reduced system has four degrees of freedom (Figure 5.18).
Using Lagrange’s equations, the equations of motion for the 4 DOF reduced model are
derived. The remaining relative 2-norm is 93%, the error in chassis displacement is still
acceptable (Figure 5.19).

Figure 5.18: Reduced Model with 4 DOF

Figure 5.19: Chassis Displacement in Reduced 4 DOF Model
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Continuing to remove the horizontal and damper at E, the degrees of freedom are
reduced to three. The joint at point E now becomes a revolute joint without bushing
(Figure 5.20). The remaining relative 2-norm is 90.9%, and the chassis displacement is
compared with that of other reduced systems (Figure 5.21).

Figure 5.20: Reduced Model with 3 DOF

Figure 5.21: Chassis Displacement in Reduced 3 DOF Model

The 2 DOF model is developed by continuing to remove the horizontal spring and
damper at A, and other components except for the chassis mass mCH , the suspension
spring-damper element, the tire spring and the moment of inertia of the wheel IxW (Figure
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5.22). In other words, the 2 DOF reduced model has only 5 components, namely mCH , ks,
cd, kt, and IxW . Noting that the wheel mass, mW , and the wheel moment of inertia, IxW , are
two different components in the 2NPR. As discussed in Section (3.2.2), when removing less
important components from a system, the equations of motion of the reduced system should
still be able to be numerically solved. For this 2 DOF model, without IxW its equations of
motion cannot be numerically solved. That is the reason why the 2 DOF reduced model
still keeps the moment of inertia of the wheel even though its 2-norm of power KIW is
small (Table 5.5). After deriving the equations of motion from Lagrange’s equation, the
chassis displacement zCH of the 2 DOF reduced model is determined and shown in Figure
5.23. Using QR decomposition described in Chapter 4 to remove Lagrange’s multipliers,
this 2 DOF reduced model has only four differential equations in the form (4.8) with four
variables α1, α2, α3, and zCH . The relative 2-norm of power of the remaining components
is 82%, so the error of this chassis displacement is larger than that of the 3 DOF system.

Figure 5.22: Reduced Model with 2 DOF

Figure 5.23: Chassis Displacement in 2-DOF Models
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Finding Equivalent Values of Remaining Components via Genetic Algorithms:
After removing relatively less important components to system response, the values of the
remaining components need to be adjusted in order to compensate energy lost by removing
other components and to minimize the squared error between the reduced model and the
original model. Choosing a random initial population with 8 individuals, the crossover
probability is 0.55, the mutation probability is 0.05, and the number of evolutions is 10.
Applying the parameter estimation via genetic algorithms (PEvGA) in Appendix D, the
equivalent parameters of the 2 DOF reduced model are determined (see Table 5.6).

Table 5.6: Equivalent Values of 5 Remaining Components in 2 DOF Suspension

Components 6 DOF
Suspension

2 DOF Model in 2NPR via
GAs

Mass of chassis mCH ( kg) 400 400.0045777

Stiffness of tire kt ( N
m

) 310000 2.103088426 105

Nominal stiffness of suspension
spring ks ( N

m
)

43300 33300

Damping factor of shock damper cd
( Ns

m
)

2565 1765

Inertia of wheel IxW ( kg.mm2) 800000 800000
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Figure 5.24: Chassis Displacement After Applying Genetic Algorithms

The output of this new 2 DOF reduced model with the estimated parameters is the
dash blue line in Figure 5.24. The new 2 DOF model is more accurate than the 2DOF
reduced model without parameter estimation.

In summary, the 2NPR reduces the 6 DOF suspension (Figure 5.2) into a 2 DOF model
with its geometry shown in Figure 5.22 and its values of 5 remaining components in Table
5.6. From Figure 5.24, the output of the 2 DOF reduced model (the blue dash line) is very
accurate in the steady-state period. In addition, the computation time of this 2 DOF model
in [0, 5] ( s) is 232 seconds in comparison with 4118 seconds for the 6 DOF suspension.
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Comparison of 2-Norm of Power with Activity: Comparing two energy metrics,
namely activity and 2-norm of power, in term of representing the effect of a component to
the system response, a 4 DOF reduced model without the kinetic energy of chassis (related
to chassi mass, mCH) and a 4 DOF reduced model that removes the potential energy of
the wheel (related to wheel gravity, gW ) are considered. The geometry of these 4 DOF
models are shown in Figure 5.19.

From Table 5.4, the activity of the wheel gravity, namely 1.6 108, is larger than that of
the chassis mass, namely 1.2 108: AgW > AmCH

. According to Louca in [37], the reduced
model that removes the gravity of wheel has larger error than the reduced model without
the mass of chassis.

However, Figure 5.25 shows that the error of the 4 DOF model without the gravity of
wheel is smaller than that of the 4 DOF model without the mass of chassis.

On the other hand, from Table 5.5, the 2-norm of power of mCH is larger than that
of gW . In other words, the 2-norm of power measures the component importance more
accurately than the activity for the 6 DOF suspension.

Figure 5.25: Comparison of Two 4 DOF Reduced Models without Mass of Chassis and
without Gravity of Wheel
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Comparison of 2NPR with IRP and Balanced Truncation: In order to compare
the 2NPR and the truncation methods (including IRP and balanced truncation), the best
reduced models of these two methods in term of minimizing the chassis displacement error
are investigated. The best reduced model of truncation methods has only two first-order
linear differential equations (equation (5.24)) while the 2 DOF reduced model (Figure5.22)
with new values of remaining parameters via genetic algorithm in Table 5.6 is the best
model of 2NPR. The vertical chassis displacement in these two reduced models is almost

Figure 5.26: Comparison of 2NPR and Truncation Methods

equal to that of the 6 DOF suspension. The best reduced model of the truncation methods
has only 2 first-order linear differential equations of motion in comparison to 4 differential-
algebraic equations of the 2 DOF model in the 2NPR. Consequently, the simulation time
of the reduced model via truncation methods is shorter than that of the 2 DOF model via
the 2NPR. On the contrary, the 2 DOF model still keeps the topology of the original 6
DOF suspension, which is useful for the interpretation of the reduced models. In addition,
the initial value of the chassis displacement in the reduced model of 2NPR is more accurate
than that in the reduced model of truncation methods.

The output error between the nonlinear 6 DOF suspension and the 2DOF reduced
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model in the 2NPR is shown in Figure 5.27.

Figure 5.27: Output Error of Reduced Model with 2 States & 2 DOF Model of 2NPR
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5.7 Application of Model Reduction Techniques to 5

DOF Double-Wishbone Suspension

Considering another 5 DOF double-wishbone suspension as shown in Figure 5.28, its input
is the forces acting on the center of the wheel (point W) Fwy (t) = 50 e−1.2 t cos (3.815756806 t)+
50 N, and Fwz (t) = 200 e−1.1 t cos (10.94486181 t) + 200 N; the output is the vertical dis-
placement of the wheel zW .

Figure 5.28: 5 DOF Planar Double-Wishbone Suspension

Applying IRP and balanced truncation, this 5 DOF suspension can be reduced to the
smallest state-space model that has only two state (Figure 5.29). In addition, the 2NPR
not only reduce the degrees of freedom from five to one, but also keep the original topology
(Figure 5.29). The smallest reduced model of 2NPR has only one degree of freedom, and
five out of twelve components.

In this mechanism, the 2NPR gives more accurate reduced model than IRP and bal-
anced truncation.

For activity-based reduction (MORA), the activity of the upper arm gravity Ag3 and
the activity of lower arm mass Am1 may not accurately reflect the importance of these
components to system response. Ag3 is almost twice as larger as Am1 (Figure 5.30), so the
gravity of upper arm g3 is more important and having more effect to the system behavior
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Figure 5.29: Vertical Displacement of Wheel Center: Truncation Methods and 2NPR

than the mass of lower arm m1. However, the error of the reduced system where the gravity
of upper arm g3 is removed from is much smaller than that of the system removing the
mass of lower arm m1 (Figure 5.31).
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Figure 5.30: Activity of Gravity of Upper Arm (Ag3) and Mass of Lower Arm (Am1)

Figure 5.31: Comparison of Systems without Mass of Upper Arm m1 and without Gravity
of Upper Arm g3
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5.8 Application of Model Reduction Techniques to a

Piston-Crank System

Consider the piston-crank system illustrated in Figure 5.32.The system is on the horizontal
plane (no gravity), with the crank length, OA = l1 = 0.15 m, the connecting rod length
AB = l2 = 0.35 m, the crank mass m1 = 0.12 kg, the connecting rod mass m2 = 0.5 kg, the
piston mass m3 = 2 kg, the crank moment of inertia I1 = 0.001 kg.m2, and the connecting
rod moment of inertia I2 = 0.004 kg.m2.

Figure 5.32: Schematic of Piston-Crank Assembly

The piston-crank system has one degree of freedom. Its input is the torque applying
to the crank T = 0.25 e−0.2 t sin (π t) N.m. The output is the displacement of the piston
d(t) = OB.

Considering the mechanism response in [0, 5] second, the 2-norms of power of all five
components are computed and shown in Figure 5.33.

Table 5.7: Values of m2 and m3

Components Original Model Reduced Model via 2NPR

connecting rod mass m2 ( kg) 0.5 0.7437254902

piston mass m3 ( kg) 2 0.9254901961

Based on the Figure 5.33, two most important components are the piston mass m3, and
the connecting rod mass m2. Applying 2NPR, a reduced model is obtained by removing
three other components, namely the crank mass m1, the crank moment of inertia I1, and
the connecting rod moment of inertia I2. In addition, in the reduced model, the equivalent
values of m2 and m3 are described in Table 5.7. The actual displacement of the piston in
the reduced model is quite different from that of the original model (Figure 5.34).
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Figure 5.33: 2-Norm of Power of All Components

Figure 5.34: Displacement of Piston in Reduced Model Before Finding Equivalent Values
of Remaining Components
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5.9 MapleSim Template of Model Reduction

The balanced truncation and IRP discussed above has been implemented in MapleSim to
build the MapleSim template of model reduction (Figure 5.35). This template is attached
to MapleSim interface and has three main functions. The first function is to create a
Maple worksheet connecting to MapleSim model for linearizing the MapleSim model to a
state-space representation. Second, both IRP and balanced truncation are applied to the
state-space representation in order to reduce its order. The output of the reduced model
can also be plotted in the template. Finally, the template can create the MapleSim model
of the reduced system.

Figure 5.35: MapleSim Template of Model Reduction
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Figure 5.36: MapleSim Template of Model Reduction
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Chapter 6

Conclusion and Future Work

6.1 Discussion

Disadvantages of Truncation Methods: There are some important disadvantages of
truncation methods. First, in truncation methods, the initial values of the states in the
reduced model are not clear. Although in Section 5.2 two methods of approximating the
initial values of new states, in some cases, the outputs of the reduced models start at very
different points from the original output. Therefore, the output error between the reduced
models and the original model is quite significant at start (Figure 5.13). Second, most
truncation methods such as IRP and balanced truncation are only applied to several types
of linear systems, so nonlinear systems need to be linearized before applying truncation.
Hence, the error due to the linearization is inevitable. Finally, the topology of a multi-body
system is lost by the truncation methods because its reduced model is a set of differential
equations.

Advantages of 2-Norm Power Reduction: The most important advantage of 2-norm
power-based reduction (2NPR) is that 2NPR preserves the topology of a system. In ad-
dition, because 2NPR is based on the physical properties of a system, the reduced model
of 2NPR has useful interpretation. For instance, users can know how each component
connects to others in the reduced models, or which component strongly affects the system
behavior. Third, 2NPR directly applies to nonlinear systems without linearization, so the
error of linearization does not effect to the reduced model. 2-norm of power in 2NPR can
identify important components to system response more accurately than the activity in
Louca’s model reduction technique (activity-based model reduction).
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6.2 Summary and Thesis Contribution

The thesis presented several reduction techniques for linear and nonlinear systems such as
IRP, balanced truncation, and activity-based model reduction. In addition, a new reduc-
tion method, namely 2NPR, was introduced and implemented along with two truncation
methods to a 6 DOF double-wishbone suspension with bushings and a 5 DOF suspension.
According to the simulation results, the 6 DOF double-wishbone suspension was reduced
to a model consisting of two first-order linear differential equation (which is equivalent to a
1 DOF model) by IRP and balanced truncation, and a 2 DOF model by 2NPR. The output
errors between theses reduced models and the 6 DOF suspension are acceptable (Figure
5.26). Furthermore, two methods of determining initial values of the reduced model for
IRP and balanced truncation were proposed. A MapleSim template is also built to reduce
MapleSim dynamic models by IRP and balanced truncation.

The main contribution of this thesis is a new model reduction method 2NPR that com-
bines both 2-norm of power and genetic algorithms. This method not only removes less
important components, but also determines the equivalent values of the remaining compo-
nents in the reduced system. The advantages of a 2-norm metric over the activity metric
in Louca’s model reduction technique and the comparison of 2NPR to truncation methods
were also demonstrated in a 6 DOF double-wishbone suspension and a 5 DOF suspension.
Second, a new reduction technique for constrained multi-body systems via proper orthog-
onal decomposition is proposed in Chapter 4. This method handles Lagrange’s multipliers
and does not require the linearization of the constrained multi-body systems.

6.3 Future Work

Many nonlinear systems can be decomposed into linear subsystems and nonlinear sub-
systems, for example the interconnected system in Figure 2.2. As a next step, balanced
truncation and 2NPR, respectively, will be used to simplify the linear and nonlinear sub-
systems in a multi-body system.

The implementation of two proposed model reduction methods in Chapters 3 and 4
to real vehicles is really important. First of all, the empirical data on suspension vehicle
corresponding to different inputs will be measured. After that, suitable reduced suspension
models need to be determined by the proposed method. Further investigation and experi-
mentation in real vehicles with reduced suspension models are strongly recommended.

Finally, 2NPR can be potentially extended to electric circuits because the behaviors of
electrical components is quite similar to that of mechanical components (see Figure 6.1).
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Figure 6.1: Equivalent Components of Mechanical And Electrical Circuits [65]
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Appendix A

Definitions

A.1 Moments of a Transfer Function

Considering a descriptor system of the form

Gd :

{
Eẋ(t) = Ax(t) +Bu(t), u ∈ L2[0,∞), x(t) ∈ Rn

y(t) = Cx(t)
(A.1)

with E,A ∈ Rn×n, and B,C ∈ Rn, its transfer function H(s) is defined as follows:

H(s) = CT (sE − A)−1B (A.2)

If the pencil (sE−A) is regular, the transfer function can be rewritten in a polynomial
form for an arbitrary s0 ∈ C:

H(s) =
∞∑
k=0

(−1)kMk(s0)(s− s0)k (A.3)

The coefficients Mk(s0) are called the moments of the transfer function.

A.2 QR Decomposition

QR decomposition of a matrix A is a method to decompose the matrix A into a product
A = QR where Q is an orthogonal matrix, and R is an upper triangular matrix.
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Appendix B

Linear System Control

B.1 Linear State-Space Systems

Considering linear state-space systems

G :

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t)
(B.1)

, where x(t) ∈ Rn: the state; u(t) ∈ Rm: the input; and y(t) ∈ Rp: the output. The state
x(t) and the output y(t) of the linear state-space systems are rewritten as follows

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ) dτ, (B.2)

y(t) = Cx(t) +Du(t). (B.3)

The transfer function is

G(s) = C(sI − A)−1B +D ∈ Cm×p (B.4)

Its H∞-norm of G operator is

‖G‖∞ = sup
s∈C+

‖G(s)‖ = sup
ω
‖G(jω)‖ (B.5)

‖G‖∞, is finite, if and only if G(s) is stable.

Here are some important definitions that we will consider through the report:
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• The realization of the system is the quadruple of matrices [A(t), B(t), C(t), D(t)].

• The realization is observable if for any y(t) and u(t), t ∈ [t0, T ], there exists a unique
x(t0).

• The realization is controllable if and only if, the x(T ) uniquely determines u(t), t ∈
[t0, T ].

• The realization is minimal if other realizations with the same transfer function have
higher state dimensions.

As we known, the realization is minimal if and only if it is not only controllable, but
also observable [40].

B.2 Optimization in Hilbert Space

In order to solve optimal estimation problems, and optimal control problems, to define the
controllability and observability Gramians, and to find projection matrices for balanced
truncation, the following theorem is considered.

Theorem B.2.1 (Luenberger [39]) Suppose A : U → Y is a bounded linear operator,
where U and Y are Hilbert spaces.

1. For fixed y ∈ Y , the vector u ∈ U that minimizes ‖y − Au‖Y satisfies the normal
equations

A∗Au = A∗y (B.6)

If (A∗A) : U → U is invertible, the unique optimal solution is u = (A∗A)−1A∗y.

2. Suppose A has closed range in Y . Then the vector u ∈ U with the smallest norm
‖u‖U satisfying y = Au is given by

u = A∗z, (B.7)

for any z ∈ Y that satisfies AA∗z = y.
If (AA∗) : Y → Y is invertible, the unique optimal solution is u = A∗(AA∗)−1y
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B.3 Signals

The measurable function mapping the real number to a real vector is called a signal. The
set of signal is

S = {f : R 7→ Rn} (B.8)

Let

S+ = {f ∈ S : f(t) = 0 for all t < 0} (B.9)

S− = {f ∈ S : f(t) = 0 for all t > 0} (B.10)

The finite-horizon Lebesgue 2-space is:

L2[0, T ] =
{
f ∈ S+ : ‖f‖2,[0,T ] <∞

}
(B.11)

in which

‖f‖2,[0,T ] =

{∫ T

0

‖f(t)‖2 dt

}1/2

(B.12)

is the finite-horizon 2-norm of the signal f

The infinite-horizon 2-norm is defined as follows

‖f‖2 =

{∫ ∞
−∞
‖f(t)‖2 dt

}1/2

(B.13)

The infinite-horizon Lebesgue 2-space is:

L2[−∞,∞] = {f ∈ S+ : ‖f‖2 <∞} (B.14)

B.4 The Controllability Gramian

Considering the state-space system B.1, let RT be its controllability operator:

RT : L2[0, T ]→ Rn

u(t) 7→ x(T )

x(T ) =

∫ T

0

eA(T−t)Bu(t) dt = RTu

(B.15)
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If the realization is controllable, for any x(T ) = xT ∈ Rn, there are u ∈ L2[0, T ] such
that x(T ) = RTu.

Let R∗T be the Hilbert adjoint of RT :

R∗T : Rn → L2[0, T ]

R∗T = BT eA
T (T−t) (B.16)

Define the controllable gramian P (T )as follows [44]:

P (T ) = RTR
∗
T =

∫ T

o

eAτBBT eA
T τ dt, (B.17)

If the system is controllable, P (T )−1 exists for all T > 0. The input is rewritten from
eqn B.15 by pseudo-inverse

u(t) = R∗T (RTR
∗
T )−1xT = BT eA

T (T−t)P (T )−1xT , (B.18)

Hences, the finite-horizon 2-norm of u is

‖u‖2,[0,T ] =
√
xTTP (T )−1xT (B.19)

Let UPΣ2
PU

T
P be a singular value decomposition of P(T), with ΣP = diag {σ1, · · · , σn} and

UP = (u1 · · ·un)is unitary matrix:

P (T ) = UPΣ2
PU

T
P (B.20)

If we fix the domain of the input ‖u‖2,[0,T ] ≤ 1, the range of the controllable operator RT

is
R =

{
x : x = UPΣP z, ‖z‖2,[0,T ] = 1

}
(B.21)

Therefore, we have the following theorem

Theorem B.4.1 (Bruce Moore [44]): A realization [A,B,C,D] of G is controllable if,
and only if, PT (0) is invertible for all T > 0. The controllable subspace is spanned by the
component vector u1, · · · , ur in UP that correspond to the r ≤ n strictly positive singular
values in ΣP . The singular value σi quantifies how far one can reach in the direction ui
using the input energy ‖u‖2,[0,T ] ≤ 1.
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B.5 The Observability Gramian

The observability Gramian is definded by [44]:

QT (0) =

∫ T

0

xT0 e
AT

CTCeAtx0 dt, (B.22)

The energy of the output is

‖y‖2
2,[0,T ] =

∫ T

0

y(t)Ty(t) dt =

∫ T

0

xT0 e
AT

CTCeAtx0 dt = x0QT (0)x0 (B.23)

The system is observable if, only if, QT (0) is nonsingular for all T > 0.

In practice, it is easier to obtain the observability gramian by solving the Lyapunov
differential equation. If T → ∞, the observability gramian Q(= Q∞(0)) is determined
through the algebraic Lyapunov equation

ATQ+QA+ CTC = 0 (B.24)

Similar to the controllable Gramian, using the singular value decomposition of QT (0)
is to determine which states affect the energy of the output most: QT (0) = UQΣ2

QU
T
Q ,

where UQ = (u1 · · ·u2) is unitary matrix, and ΣP = diag {σ1, · · · , σn} . The direction that
produces the largest energy of the ouput is the vector u1. If the range of the observability
operator

Theorem B.5.1 (Bruce Moore [44]): A realization [A,B,C,D] of G is observable if, and
only if, QT (0) is invertible for all T > 0. the unobservable subspace is spanned by the
component vectors ur+1, · · · , un in UQ that correspond to the possible zero singular values
in ΣQ. The singular value σi quantifies how much energy ‖y‖2,[0,T ] there if x0 = ui.
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Appendix C

Least Squares Estimation (LSE) for
Nonlinear Systems

Kim C. developed least square estimation for ordinary differential equations [9]. However,
this method is inapplicable to the equations of motion containing unknown Lagrange’s
multipliers, which are not measured by experiments. This section is the extension of
least square estimation for multi-body systems with differential-algebraic equations and
Lagrange’s multipliers.

Applying Lagrang’s theory, the differential equations of a multi-body system are equa-
tion (C.1), and the algebraic equations are the constraint equation (C.2).

Mq̈ + ΦT
q λ = QB(q̇, q, u). (C.1)

Φ = 0. (C.2)

The constraint equations are the geometrical constraint of the multi-body systems, so do
not contain any component that has power such as mass, moment of inertia, or forces.
Therefore, parameter estimation only uses differential equations (C.1).

Because λ is a vector of Lagrange’s multipliers, which cannot be obtained from ex-
periments, λ need to be removed from equation (C.1). The first step of this parameter
estimation method is to find the equilibrium or nominal position of the system, q∗, so
ΦT
q ' ΦT

q|q=q∗ = ΦT
q∗ . Equation (C.1) is approximated by:

Mq̈ + ΦT
q∗λ = QB. (C.3)

Let (Q1, R1) be QR decomposition of ΦT
q∗ and Q1 = (Q11 D), where matrix Q11 has

the same number of columns as the number of Lagrange’s multipliers. Hence, DTΦT
q∗ = 0.

78



Multiplying both sides of equation (C.3) with DT , Lagrange’s multipliers are removed;
the equations of motion are simplified as:

DTMq̈ = DTQB. (C.4)

Let n be the size of the variables vector q, so equation (C.4) has n differential equations,
and rewritten in the following forms:

θTφi − fi = 0, (C.5)

where i ∈ {1, 2, · · · , n}; and φi, fi, and θ be, respectively, the vector, the function of
measured states, and a parameter vector. From the generated simulation data or experi-
ments, φi and fi are known.

Let θ̂ be an estimated parameter vector. The errors of approximated equations are
defined as follows: εi = θ̂Tφi − fi.

The objective function for m numbers of measured variables is defined as follows:

E =
m∑
k=1

[
n∑
i=1

ε2i (k)

]
=

m∑
k=1

[
n∑
i=1

(
θ̂Tφi − fi

)2

(k)

]
. (C.6)

The estimated parameters satisfy the condition δE

δθ̂
= 0 in order to minimize E. There-

fore,

θ̂ =

{
m∑
k=1

[
n∑
i=1

φi (k)φTi (k)

]}−1{ m∑
k=1

[
n∑
i=1

φTi (k) fi (k)

]}
(C.7)

Finally, from equation (C.7), the estimated parameters are calculated from the measured
data.

79



Appendix D

Parameter Estimation for Nonlinear
Systems via Genetic Algorithms

The least square estimation is effective for a linear system, however, it is difficult to apply
the least square estimation to minimize the squared output error for a nonlinear system.
For example, LSE in Appendix C is only able to minimize the squared error between the
original equations and the approximated equations (see equation (C.6)). On the contrary,
genetic algorithms (GAs) provide a robust, efficient and flexible method for an optimization
problem. Specially, GAs do not require the derivative of the objective function like LSE.
Therefore, GAs for parameter estimation are investigated in this section.

Considering the following nonlinear systems:

g (t, p, u, q, q̇, q̈) = 0,

y = h (q) ,
(D.1)

where p is parameters, u is inputs, q is states, and y is outputs. The equations of motion
of a multi-body system (equation (C.1) and (C.2)) are easily rewritten into the form (D.1).

The goal of GAs is to find the unknown parameters p that minimize the squared errors
(equation D.2) between the outputs y and desired outputs ŷk, k ∈ {1, · · · ,m}, at m points
along the output trajectory. Therefore, the fitness function of GAs is the inverse of the
square errors f = 1

E
.

E =
m∑
k=1

(yk − ŷk)2 . (D.2)

The flow chart of GAs for parameter estimation is described in Figure D.1.
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Figure D.1: Parameter Estimation via Genetic Algorithms
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Appendix E

Dynamics of a 6 DOF Planar
Double-Wishbone Suspension

E.1 Analytical Model

Although some simulation software can generate the equations of motion of this suspension,
its results are extremely disorderly and cannot be used for model reduction. Therefore,
the analytical model of the 6 DOF suspension is derived by hand.

Let q = [yA, zA, α1, α2, yE, zE, α3, zCH ]T and [yA0, zA0, α10, α20, yE0, zE0, α30, zCH0]T be
an initial position. Denote si = sin (αi), and ci = cos (αi) with i ∈ {1, 2, 3, 10, 20, 30}

The kinetic energy of each component is defined as follows:

• lower arm AB

(E.1)TLA =
1

2
m1

(
ẏA −

1

2
l1s1α̇1

)2

+
1

2
m1

(
żA +

1

2
l1c1α̇1

)2

+
1

2
IX1 α̇

2
1,

• upper arm DE

(E.2)TUA =
1

2
m3

(
ẏE +

1

2
l3s3α̇3

)2

+
1

2
m3

(
˙zE −

1

2
l3c3α̇3

)2

+
1

2
IX3 α̇

2
3,
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• knuckle DBW

(E.3)
TSP =

1

2
m2

(
ẏA − l1s1α̇1 −

((
1

2
l2 + yC2

)
s2 + zC2 c2

)
α̇2

)2

+m2

(
żA +

1

2
l1c1α̇1 +

((
1

2
l2 + yC2

)
c2 − zC2s2

)
α̇2

)2

+
1

2
JXX2 α̇

2
2,

• chassis

(E.4)TCH =
1

2
mCH (żCH )2 ,

• wheel HH ′

(E.5)
TWH =

1

2
mW

(
ẏA − l1s1α̇1 −

((
1

2
l2 + yKW

)
s2 + zKW c2

)
α̇2

)2

+
1

2
mW

(
żA + l1c1α̇1 +

((
1

2
l2 + yKW

)
c2 − zKW s2

)
α̇2

)2

+
1

2
JXXw α̇

2
2.

The total kinetic energy T is:

T = TLA + TUA + TSP + TWH . (E.6)

The potential energy of following components is calculated as follows:

• chassis
(E.7)VgCH = mCH gzCH ,

• lower arm

(E.8)Vg1 = m1g

(
zA +

1

2
l1s1

)
,

• knuckle

(E.9)Vg2 = m2g

[
zA + l1s1 +

(
1

2
l2 + yC2

)
s2 + zC2 c2

]
,
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• upper arm

(E.10)Vg3 = m3g

(
zA + l1s1 + l2s2 +

1

2
l3s3

)
,

• wheel

(E.11)VgW = mWg

[
zA + l1s1 +

(
1

2
l2 + yKW

)
s2 + zKW c2

]
,

• springs at A

(E.12)VsLA =
1

2
kLA (zA − zA0 − zCH + zCH0 )2 +

1

2
kLA (yA − yA0 )2 ,

• springs at E

(E.13)VsUA =
1

2
kUA (zE − zE0 − zCH + zCH0 )2 +

1

2
kUA (yE − yE0 )2 ,

• suspension spring

(E.14)Vssus =
1

2
ksus (ls − ls0 )2 ,

where ls0 is the initial length of the suspension spring, and ls is the length of the
suspension spring at time t

ls =

√
(yA + lfc1 − yA0 − lfc10)2 + (zCH + zA0 + lfs10 − zCH0 + ls0 − zA − lfs1)2,

• tire spring

(E.15)VsT ire =
1

2
kt (ltt − lt0 )2 ,

where lt0 is the initial length of the tire spring, and ltt is the length of the tire spring:

ltt =

√(
zA + l1s1 +

(
1

2
l2 + yKH

)
s2 + zKH c2 − zG

)2

+

(
yA + l1c1 +

(
1

2
l2 + yKH

)
c2 − zKH s2 − yG

)2

.
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The total potential energy V is:

V = Vm + VsUA + VsLA + Vssus + VsT ire. (E.16)

The Lagrangian L is defined as follows:

L = T − V. (E.17)

The generalized forces of each component are:

• suspension damper

Qsus =



0

−Cd (żA + lfc1α̇1 − żCH )

−lfc1Cd (żA + lfc1α̇1 − żCH )

0

0

0

0

Cd (żA + lfc1α̇1 − żCH )


, (E.18)

• dampers at A

QLA =



−CLAẏA

−CLA (żA − żCH )

0

0

0

0

0

CLA (żA − żCH )


, (E.19)
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• dampers at E

QUA =



0

0

0

0

−CUAẏE

−CUA (żE − żCH )

0

CUA (żE − żCH )


. (E.20)

The total generalized force is calculated as follows

QG = QUA +QLA +Qsus. (E.21)

Because the suspension has 6 DOF while the number of variables is eight, two constraint
equations are required: −→

AB +
−−→
BD +

−−→
DE =

−→
AE, (E.22)

or
yA + l1c1 + l2c2 − yE + l3c3 = 0,

zA + l1s1 + l2s2 − zE + l3s3 = 0,
(E.23)

or
Φ = 0, (E.24)

where

Φ =

[
yA + l1c1 + l2c2 − yE + l3c3

zA + l1s1 + l2s2 − zE + l3s3

]
. (E.25)

Lagrange’s equations are:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ ΦT

q λ = Q. (E.26)

Because in this suspension, the equations of motion consisting of Lagrange’s equations
(E.26) and the constraint equation (E.24) cannot be numerically solved, the constraint
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equation need to be replaced by other equations. One of these equations is the second time
derivative of constraint equations defined as follows:

ÿA − l1s1α̈1 − l2s2α̈2 − ÿE − l3s3α̈3 − l1c1α̇
2
1 − l2c2α̇

2
2 − l3c3α̇

2
3 = 0,

z̈A + l1c1α̈1 + l2c2α̈2 − z̈E + l3c3α̈3 − l1s1α̇
2
1 − l2s2α̇

2
2 − l3s3α̇

2
3 = 0.

(E.27)

The constraint equation (E.22) is replaced by its second time derivative (equation(E.27)).
Therefore, the equations of motion are re-written in a descriptor form:[

M ΦT
q

Φq 0

] [
q̈
λ

]
=

[
QB

γ

]
, (E.28)

where

γ =

[
260

(
d
dt
α1

)2
cos (α1) + 280

(
d
dt
α2

)2
cos (α2) + 180

(
d
dt
α3

)2
cos (α3)

260
(
d
dt
α1

)2
sin (α1) + 280

(
d
dt
α2

)2
sin (α2) + 180

(
d
dt
α3

)2
sin (α3)

]
. (E.29)

One of equations (E.28) is:

Linearization: Applying the linearization method discussed in Section 5.1.3, the state-

space representation
[
Î , Â, B̂, Ĉ

]
of the analytical model (equation (E.28)) is obtained as

follows:
Ẋ = ÂX + B̂u

Y = ĈX,
(E.30)
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where X =

[
∆q
∆q̇

]
, Y = zCH ,

Â =



0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

−35713.0 46370.0 −698350.0 −552400.0 −689.12 103.14 −12.585 −50388.0 −595.82 951.32 9859.9 −0.0 −10.371 1.5522 −0.0 −952.87

46872.0 −123210.0 86979.0 −253670.0 497.74 −221.59 15.489 121900.0 897.03 −2301.0 −24810.0 0.0 7.4907 −3.3348 −0.0 2304.3

−202.67 512.55 −4133.9 −23.913 −18.639 6.1516 −0.48666 −525.06 −3.8884 9.7080 78.872 −0.0 −0.28051 0.092579 −0.0 −9.8006

−51.103 −40.214 −1551.8 −2729.8 37.799 7.7569 0.10668 14.910 −0.56712 −0.35282 13.130 −0.0 0.56886 0.11674 0.0 0.23608

196.59 810.56 −161800.0 95472.0 −27516.0 63823.0 −1005.7 −64242.0 −20.503 −9.6352 −4439.6 −0.0 −414.10 960.50 −0.0 −950.87

638.53 1507.0 396550.0 176380.0 63823.0 −245200.0 3663.5 245450.0 3.0686 0.98955 1377.1 0.0 960.50 −3690.2 −0.0 3689.2

−9.8602 −21.695 −7414.8 −2536.4 −389.33 1418.2 −21.653 −1424.2 −0.14495 −0.060495 −43.389 −0.0 −5.8593 21.343 −0.0 −21.283

10.730 1351.3 18634.0 −0.0 −0.0 757.50 −0.0 −2108.8 −0.0 28.950 1164.7 −0.0 −0.0 11.400 −0.0 −40.350



,

B̂ =



0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

3915.4

1527.0

6.3627

17.547

−390.92

−1749.5

27.688

−0.0



, Ĉ =
[

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
].

The linear model has 16 first-order diferential equations, so its order is 16. The output
of the linear model (equation (E.30)) in comparison with the nonlinear model is shown in
Figure E.1.

From Table E.1, there are two unstable poles of the system
[
Î , Â, B̂, Ĉ

]
(equation E.30),

namely 0.106 10−4 and 0.505 10−6. Because the number of digits in the fractional part of
the calculation in Maple is 10 digits and det (A) = −98.6 , these eigenvalues cannot be

considered as zero or numerical errors of the calculation. In fact, the model
[
Î , Â, B̂, Ĉ

]
is

unstable because the constraint equation (E.24) is replaced by its second time derivatives.
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Figure E.1: Chassis Displacement of Linear and Nonlinear Models
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Table E.1: Poles of Linear System
[
Î , Â, B̂, Ĉ

][
Î , Â, B̂, Ĉ

]
-3894.4

-2565.2

-86.82+90.757*i

-86.82-90.757*i

-89.87+59.361*i

-89.87-59.361*i

-11.096+55.427*i

-11.096-55.427*i

-56.417

-67.6

-1.665+11.1*i

-1.665-11.1*i

0.106 10−4

-0.106 10−4

0.505 10−6

-0.505 10−6
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E.2 Baumgarte Constraint Stabilization

In previous section, the constraint equation is replaced by its second time derivative (equa-
tion (E.27)) in order to be able to numerically solve the equations of motion (E.28). How-
ever, the linearized model (equation (E.30)) of this nonlinear model (equation (E.28)) is
unstable because there are two eigenvalues of matrix Â are positive number (see Table
E.1). Therefore, in order to derive a stable analytical model, instead of using the accelera-
tion equation (E.27), the following Baumgarte constraint equations replaces the constraint
equation (E.24) [25]:

Φ̈ + 2αΦ̇ + β2Φ = 0, (E.31)

with α > 0 and β 6= 0 are constant.

Equation (E.31) is rewritten as follows:

Φq q̈ =
(
− (Φq q̇)q q̇ − 2Φqtq̇ − Φtt

)
− 2α (Φq q̇ + Φt)− β2Φ ≡ γ̂. (E.32)

Noting that the notation of this section is as same as Haug’s notation in [25].

The equations of motion of the 6 DOF suspension is rewritten as follows:[
M ΦT

q

Φq 0

] [
q̈
λ

]
=

[
QB

γ̂

]
, (E.33)

In the analytical model (equation(E.33)), choosing α = 1, and β = 1. This analytical
model has almost same output as that of the analytical model (equation (E.28)) using the
second time derivative of the constraint equations (see Figure E.2).

After linearizing the nonlinear model (equation (E.33)) with the method discussed in
Section 5.1.3, its state-space representation [I, A,B,C], is obtained as follows:

Ẋ = AX +Bu

Y = CX,
(E.34)

where
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Figure E.2: Comparison of Chassis Displacement between Two Analytical Models (equa-
tions (E.33) & (E.28))

A =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−35713.4 46369.7 −698346.9 −552402.7 −689.1 103.1 −12.3 −50388.3 −595.8 951.3 9859.6 3.6 −10.4 1.6 0.643 −952.9

46871.9 −123205.3 86979.2 −253666.9 497.7 −221.6 15.1 121899.9 897 −2301 −24808.8 −2.23 7.48 −3.341 −0.7915 2304.3

−202.6 512.5 −4133.89 −23.86 −18.639 6.15 −0.474 −525.06 −3.8887 9.7077 78.852 0.0889 −0.28019 0.092808 0.02487 −9.80056

−51.1021 −40.2139 −1551.8 −2729.87 37.79 7.7567 0.1039 14.90994 −0.56629 −0.3525 13.10049 −0.2309 0.568 0.116 −0.00545 0.23608

197.38 810.895 −161803.4 95250.58 −27516.81 63822.4 −1026.94 −64242.37 −18.915 −8.962 −4453.496 −443.244 −415.69 959.8 −42.469 −950.86

638.875 1506.65 396425.7 176287.85 63822.40 −245202.74 3743.66 245445.6 3.7540 0.2520 1128.367 −193.2 959.8 −3689.4 160.3 3689.19

−9.862 −21.687 −7412.76 −2535.8 −389.3 1418.2 −23.099 −1424.2 −0.14927 −0.045 −39.26 1.239 −5.8549 21.3279 −2.8934 −21.282

10.7299 1351.3 18634.035 −0.0 0.0 757.5 −0.0 −2108.79 −0.0 28.95 1164.65 −0.0 0.0 11.4 −0.0 −40.35



,
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B =



0

0

0

0

0

0

0

0

3915.42

1527.011

6.36

17.54

−390.9

−1749.5

27.687

−0.0



, C =
[

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
]
.

The linear model [I, A,B,C] is asymptotically stable (see Table E.2).

Table E.2: Poles of [I, A,B,C] and
[
Î , Â, B̂, Ĉ

]
Models

[Î , Â, B̂, Ĉ] [I, A,B,C]

-3894.4 -3894.4

-2565.2 -2565.2

-86.82+90.757*i -86.82+90.757*i

-86.82-90.757*i -86.82-90.757*i

-89.87+59.361*i -89.87+59.361*i

-89.87-59.361*i -89.87-59.361*i

-11.096+55.427*i -11.096+55.427*i

-11.096-55.427*i -11.096-55.427*i

-56.417 -56.417

-67.6 -67.6

-1.665+11.1*i -1.665+11.1*i

-1.665-11.1*i -1.665-11.1*i

0.106 10−4 -1+0.47 10−4*i

-0.106 10−4 -1 -0.47 10−4*i

0.505 10−6 -1 +0.227 10−4*i

-0.505 10−6 -1 -0.227 10−4*i
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Appendix F

Demo of Using MapleSim Template
of Model Reduction

There are 2 video demonstrating how to use the MapleSim temple described in Section
5.9 to reduce a 2 DOF double-wishbone suspension (http://youtu.be/sav4oZD33ro) and a
centrifuge (http://youtu.be/aO09WK4GzU4)
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