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Abstract: 

Lithium ion batteries (LIBs) play an essential role in modern life. Although relatively unknown 

throughout past decades, LIBs have supplanted several categories of chemically rechargeable 

batteries including lead-acid, nickel-cadmium and nickel-hydrogen batteries. Nowadays, LIBs 

dominate the market of portable electronic devices such as mobile phones, digital cameras and 

laptops. As the price of petroleum keeps increasing, electrically powered or assisted vehicles 

using LIBs are similarly gaining in the automotive market. However, current state-of-art LIBs 

using graphite as their electrical anode and Li metal oxides as the cathode are facing major 

challenges. For example, the current LIBs are approaching their capacity limit. Batteries that can 

maintain high charge and discharge rates are in great demand, which has not been adequately 

addressed by modern LIBs. Safety issues with these current batteries are being reported even 

from some market leaders such as Boeing and Tesla.  

Herein, several categories of novel anode materials have been investigated in a search for 

promising candidates to enable evolution of the next generation of lithium ion batteries. This 

research included silicon-carbon based materials, especially silicon-graphene (Si-G) materials 

and their derivatives, and transitional metal based materials, e.g., cobalt oxide (Co3O4). 

In this proposed work, Si-G composites were synthesized via a freeze-drying method; the 

conditions of the synthesis were controlled and adjusted to obtain a Si-G composite with the 

most promising morphology as well as battery performance. Based on preliminary results, 

graphene wrapped silicon electrodes showed significantly improved cycling performance than 

bare silicon electrodes. At high charge and discharge rates it was found that Si-G composites also 

showed superior stability and capacity retention over bare silicon electrodes. After 200 cycles, 

the optimized Si-G composite maintained a capacity retention close to 100%, with a capacity of 
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800 mAh g
-1

 at a 0.2 C rate and 600 mAh g
-1

 at a 1 C rate. This observation was a prominent 

increase from the performance of commercial graphite-based batteries at a theoretical capacity 

372 mAh g
-1

. Considering the facile fabrication method and increasing use of commercial silicon 

nano-particles (Si-NPs) into account, Si-G composites could be a promising candidate for the 

anode material in LIBs. Extended work on the Si-G project also involved further decorations 

based on the Si-G composite synthesized from the method previously mentioned, as well as 

improvement on the synthesis method to make it more applicable for industrial purposes. 

Cobalt Oxide (Co3O4), a transitional metal oxide which has a theoretical capacity of 890 mAh g
-1

, 

draws attention as an anode material in LIBs due to its capacity compared to graphite and heavily 

reduced degradation compared to silicon. A novel electrode fabrication procedure was adopted in 

this research together with a simple material-synthesizing methodology. Similar to common 

silicon electrodes, Co3O4 suffers from poor electron conductivity volume change upon cycling. 

Herein the Co3O4 active material is directly deposited on stainless steel mesh, serving as both a 

current collector and a substrate for the active material. Through adapting the electrode 

fabrication process by directly depositing on the stainless steel electron conductor, the traditional 

conductive carbon material and binder requirements can be avoided. As a result, the process is 

reduced in both cost and complexity. The presented novel electrode design facilitates both ion 

diffusion and electron transportation, improving the overall performance of the material in LIBs. 

After 100 cycles of charge and discharge, Co3O4 on stainless steel mesh shows a capacity around 

770 mAh g
-1

, which is more than twice that of graphite. The capacity retention was around 90% 

in this case. 
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1.0  Introduction 

The ever soaring price of fossil fuels and increasing global environmental awareness have 

resulted in significant efforts to develop and adopt alternative energy technologies, e.g. 

widespread implementation of nuclear, solar and wind energy. A proactively increasing ratio of 

clean energy is both produced and consumed within recent decades. However, the energy storage 

and power supply technology has developed relatively slowly compared to the progress of 

alternative energies. It is a universal recognition that gas emissions from countless automobiles 

are accentuating localized air pollution as well as global warming. The high dependence on oils 

also leads to social problems and make the continued development of modern society 

unsustainable. These concerns stimulated the exploration of applicable electrically powered 

engines to replace the role of combustion engines. Modern electronic devices are most often 

powered by lithium ion batteries, replacing previous generations of nickel-cadmium, nickel-

metal hydride, zinc-manganese batteries etc. When compared to the conventional batteries 

mentioned above, lithium ion batteries have many attractive advantages such as environmental 

benignity, high volumetric and gravimetric density, fast charging and discharging rates, and no 

memory effects.
1
 Vehicles driven by batteries are gaining increasing market in the past decade. 

However, compared with internal combustion engines, current batteries are unable to match their 

energy density, power density or reliability. In addition, electronic devices employing more 

powerful applications and requirements drain batteries quickly. The urgent demand for high-

energy and high-power density batteries from both the electronic and automobile industries 

drives research on the next-generation of batteries. 

This thesis is structured to present readers an explicit idea of the modern battery progress along 

with ongoing development of energy conversion and storage devices and the fundamental 
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working mechanism of lithium ion batteries. The thesis then reviews the work reported by peers 

in this field, i.e. the development of novel anode materials, especially the design and application 

of silicon based and cobalt based materials. The work based on silicon materials focuses on the 

structural design and electrochemical performance of silicon graphene (Si-G) composites. More 

specifically, Si-G composites with different ratios were studied, including the synthesis, 

structural and morphological characterizations, and electrochemical characterizations. The cobalt 

project revealed a direct growth of active material on the substrate and its use in a battery's anode. 

Necessary characterizations were accomplished in addition to the sample preparation. In 

conclusion, the thesis consists of following parts: 

ⅰ. The development of anode materials in lithium ion batteries. (This section is mainly based on 

literature review of other people’s work) 

ⅱ. Research on the advance of silicon based materials and cobalt based materials.  

ⅲ. An introduction of all principal characterization techniques. 

ⅳ. A detailed description of the Si-G project. 

ⅴ. A detailed description of the cobalt oxide project. 

ⅵ. A summary and an outline for the future direction of the project. 

1.1 Lithium ion batteries 

Researchers were first motivated to explore lithium based batteries because lithium has the 

highest electropositive potential (-3.04 V versus standard hydrogen electrode (SHE)) and it is the 

lightest metal in the universe (molecular weight of lithium is 6.94 g mol 
-1

 at a density of 0.53 g 
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cm
-3

). These characteristics promote lithium as it can facilitate the design of batteries with a high 

energy density.
2
 As shown in Figure 1, compared to traditional batteries like lead-acid and 

nickel-cadmium as well as relatively new batteries such as nickel-hydrogen, lithium based 

batteries including lithium-metal, lithium-ion, and polymeric lithium-ion batteries demonstrate 

much higher energy density in terms of both volume and mass. The first prototypes of lithium 

batteries were created in 1970s. These lithium cells were often referred to as lithium primary 

batteries, meaning they are non-rechargeable.
3
 Due to the intrinsic properties of lithium batteries 

such as their high capacity and adjustable discharge rate, they were rapidly used to power 

devices in many fields, e.g. watches, implantable medical devices. At the same time researchers 

found that lithium can react with many compounds in a reversible way, eliciting speculation on 

the possibility of building rechargeable lithium batteries with these compounds. Intercalation 

reactions of lithium were first introduced in conference proceedings by Steele and Armand in 

Fast Ion Transport in Solids in 1973.
4
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Figure 1: A diagram of volumetric and gravimetric energy density of different battery 

technologies mostly popular in market, namely, lead-acid, nickel-cadmium, nickel-metal hydride, 

and lithium based batteries.
2
 Permission from Nature Publishing Group. 

 

Whittingham, M. S at Exxon first used TiS2 as a cathode in 1975, lithium metal as an anode and 

lithium perchlorate in dioxolane as the electrolyte. This prototype lithium metal battery exhibited 

revolutionary performance and the positive electrode material was incontestable at that era. 

However, lithium metal as the anode material encountered severe safety issues due to the 

continuous growth of dendritic lithium following charge and discharge cycles. As shown in 

Figure 2 (a), dendritic lithium is generated and cumulated on the anode upon cycling. Lithium in 
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this form is highly reactive, making this kind of battery extremely dangerous for disposal or 

during use if not properly sealed. The problem was first solved by substituting lithium metal with 

a lithium-aluminum (Li-Al) alloy.
5
  The working mechanism diagram of lithium ion batteries is 

illustrated in Figure 2 (b). Although the problem of dendrite formation could be solved by using 

this alloy, the cycle stability of Li-Al caused another issue in lithium batteries due to their severe 

volume change upon cycling.
6
 After the successful development of graphite as an anode material 

for LIBs, research continues to find that carbon based negative electrodes can be further 

optimized to improve their performance.
7
 Meanwhile, efforts have also been made into the 

alternatives for carbon materials in a search for materials with enhanced characteristics in terms 

of capacity, rate capability and safety. Lithium transitional metal compounds were found to have 

the potential to meet these requirements.
8,9

 In addition to carbon materials, Group IV elements 

such as silicon, germanium and tin also show high promise for application in LIBs.
10-13
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Figure 2: Schematic view of components and operating principals of lithium metal batteries (a) 

and lithium ion batteries (b).
2
 Permission from Nature Publishing Group. 
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In addition to developments occurring using materials previously mentioned, certain oxides 

demonstrating high capacity and operating voltage were developed. More importantly, 

materials with multi-dimensions such as V6O13 were proved to function well as lithium ion 

battery electrodes.
14

 Further on, Dr. John Goodenough in Oxford University developed 

various lithium metal oxides (LixMO2, where M could be Manganese (Mn), Cobalt (Co) or 

Nickel (Ni)). These materials still dominate the cathode materials in lithium ion batteries 

today.
15,16

 In the late 1980s and early 1990s, Murphy et al. and Scrosati et al. demonstrated 

the concept of replacing metallic lithium with layered insertion material. This was the 

prototype of modern lithium ion batteries in which elemental lithium can be ionically 

transported and transformed.
17,18

 However, the adoption of insertion materials in the anode 

inevitably decreased the overall battery potential. In order to make up for the potential loss, 

lithium metal oxides were further investigated to replace the previously used metal 

disulphides such as TiS2.
9
 In 1983, in addition to LiCoO2, spinel manganese was also 

discovered to possess the capability of storing and releasing lithium.
16

 Its low-cost and good 

electron and lithium ion conductivity also boosted its promise in real applications, eventually 

migrating to commercialized cells. The pure manganese spinel faces fading problem upon 

exposure to cycling yet this problem can be effectively solved by morphology control and 

chemical decoration.
19,20

 Another reason for the delay of wide spread application of these 

insertion materials was because of the failure of electrolyte. Although graphite was 

demonstrated as a replacement anode material for lithium metal by Samar in 1977,
21,22

 the 

electrolyte at that time easily decomposed during the charge and discharge of batteries 

containing anodic graphite. Yazami first developed a rechargeable graphite anode with a 

solid state electrolyte to prove that lithium could be intercalated into graphite reversibly with 
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an electrochemical mechanism.
23

 The graphite anode developed by Yazami is still 

exclusively used in commercial batteries owing to its low cost, high abundance and stable 

performance. Meanwhile, development of stable liquid and solid electrolytes has also played 

a very important role in promoting the widespread application of lithium ion batteries. Due to 

lithium ion battery’s high operating potential it requires electrolytes to be thermodynamically 

and kinetically stable over potentials as high as 4.5 V.
24

 The most satisfactory electrolyte also 

needs to meet several vital requirements,
25

 for example: 

1) High lithium ion conductivity, normally larger than 10
4
 S/cm for all temperatures at which 

the batteries operate. 

2) Capability to retain the interphase of electrode and electrolyte. 

3) Chemical stability at all operation temperatures of lithium ion batteries. 

4) Cheap and environmentally friendly 

5) Nonflammable and non-explosive in case of leaking or breaking. 

Based on the cumulative progress of lithium ion battery technology, Sony finally 

commercially introduced lithium ion batteries into the worldwide market. In their devices 

they used carbon as an anode material and LiCoO2 as the cathode. The charging voltage was 

4.2 V while the operational voltage was 3.7 V, 3 times that of alkaline metal batteries at 1.2 

V.
26

 As shown in Figure 3, various types of cathode and anode materials are depicted in the 

diagram with energy density as the X-axis and potential versus lithium as the Y-axis. The 

potential range of cathode materials is much smaller than that of anode materials and the 

capacity of cathode materials is generally lower than that of anode materials. This 

demonstrates one of the main limitations of the overall capacity of modern LIBs, driving 

meaningful investigation into cathode materials with high capacities. Although the capacity 
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of anode materials is demonstrably higher, it is still desirable to pursue novel anode materials 

with high charge and discharge rates and better durability. Despite the capacity setback of 

cathode materials, the relatively larger potential range of cathode materials introduces a 

possibility of building batteries with an ultra-high open circuit and working potentials. Since 

the first success of commercialized LIBs, billions of these batteries have been built to fulfill a 

foundational role in the evolution of modern electronic and communication industries. 

However, development on the technology of lithium ion batteries moves much slower than 

the demand for high-power and high-energy batteries throughout the last two decades. 

Although many other electrode materials have been found to be electroactive for lithium ion 

batteries, e.g. different carbon materials,
27-31

 tin-based materials,
11,12,32

 lithium alloys,
33-41

 

transitional metal oxides,
42-47

 lithium metal oxides with low electrochemical potential
48-53

 as 

anode materials and cathode materials including manganese compounds,
54-57

 nickel 

compounds,
58-60

 vanadium compounds,
61-64

 iron compounds,
65-69

 mixed metal oxides
20,70-73

 

and so on, significant amounts of current lithium ion batteries still use LiCoO2 and graphite 

as their electrode materials. Applicable electrode materials with high capacity and fast charge 

and discharge rate have not been widely used commercially due to several fatal drawbacks 

such as high cost, inadequacy for mass production, poor stability and the possibility of 

catastrophic internal discharge. 
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Figure 3: Comparison on electric potential and capacity of typical anode and cathode materials.
2
 

With permission from Nature Publishing Group. 

 

1.1.1 Operational principles of lithium ion batteries 

A typical lithium ion battery consists of a cathode, an anode, a separator, electrolyte, and a 

container. A lithium ion battery based on LiCoO2 and carbon is a typical example of batteries 

used today.
74

 The working mechanism of a lithium ion battery is illustrated in Figure 4. The 

cathode and anode consist of LiCoO2 and carbon respectively, separated by a porous polymer 

membrane, commonly made from polypropylene. The electrolyte is not shown in the diagram, 

but it is worthwhile to know that lithium hexa-fluoro-phosphate (LiPF6) dissolved in alkyl 

carbonate solvents is used commonly as the electrolyte. Some specific additives may be added to 

the electrolyte to enhance the electrode material. For example, fluoroethylene carbonate (FEC) is 

found to exhibit dramatic improvement on the performance of silicon anodes.
75

 The container of 
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a LIB is built to be airproof and waterproof in most cases since both electrode materials and 

electrolytes are sensitive to air and water. Exposure of battery components to these air or water 

may lead to explosions or fires. The working mechanism of this type of batteries can be 

illustrated as follows: When the battery is discharged, the electromotive force from the outer 

circuit drives the electrons to move from anode to cathode (anode and cathode here represent 

electrodes inside the battery), and lithium ions are driven from anode to cathode as well. The 

anode is delithiated afterwards and the cathode becomes LiCoO2 again. The operating voltage 

decreases, and the chemical energy is transformed to electric energy. When the battery is charged, 

electrons move from cathode to anode through an external circuit, and lithium ions shift from 

cathode to anode within the battery. Lithium ions are intercalated into carbon layers and LixCoO2 

(where x is usually between 0.5 and 1) is formed upon losing lithium ions. Electric energy is 

released in the form of chemical energy with an increase of open circuit voltage.
76

 Surface films 

on both cathode and anode materials are observed in Figure 4. This phenomenon is due to the 

complex process that takes place on the surface of both cathode and anode materials, including 

decomposition of solvents in the electrolyte and dendritic growth of electrode materials, etc.
77

 

The films can protect the electrode from further direct exposure to the electrolyte and prevent 

side reactions from happening; however, the films can also increase the resistance of lithium ion 

transportation.
78,79

 



12 
 

 

Figure 4: A schematic representation of a lithium ion battery with LiCoO2 as a cathode and 

carbon as an anode, in its simplest form.
74

 Permission from Royal Society of Chemistry is 

required. 

The electrode reaction in the cathode is as follows: 

LiCoO2 ↔ 0.5 Li
+
 + 0.5 e

-
 + Li0.5CoO2  (1) 

The maximum electrochemical potential of LiCoO2 against lithium metal is 4.2 V upon 

delithiation of LiCoO2, in correspondence to the formation of Li0.5CoO2. This process can 

contribute a capacity of 140 mAh g
-1

 for the cathode.
80,81

 The reaction above is the first step of 

the reactions in a battery, with the oxidation and delithiation of LiCoO2 to Li0.5CoO2. 

Simultaneously, graphite at the anode obtains lithium ions and electrons and forms LiC6 as a 

product of the reaction as shown below: 

Li
+
+e

-
+C6↔LiC6    (2) 

The overall electrode reaction is: 
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C6+LiCoO2↔LiC6 + Li0.5CoO2  (3) 

The double arrows in these equations represent that those reactions are reversible. The 

intercalation of lithium into graphite occurs in multiple stages, with formation of LiC27, LiC24, 

LiC12 and LiC6 respectively.
82

 A passivating layer, consisting of electrolyte solution and the 

lithium source, may irreversibly form to prevent further loss of electrolyte during the first cycle 

of lithium insertion. The passivating layer is also referred to as the solid electrolyte interphase 

(SEI).
79,83

 Since the formation of SEI consumes lithium, and the lithium source in a lithium ion 

battery mainly comes from the cathode, it is critical to keep cathode material in excess. Research 

in maintaining the minimum amount of cathode material is also a meaningful task. 

During the early stages of development of lithium ion batteries, finding suitable electrolyte for 

batteries was a key issue. As shown in Figure 5, several categories of electrolyte systems have 

been found suitable for LIBs, including ethers based, esters based, alkyl carbonates based, and 

nitriles based electrolytes. Alkyl carbonate solutions such as ethylene carbonate (EC), dimethyl 

carbonate (DMC), diethyl carbonate (DEC) and the lithium salt lithium hexafluorophosphate 

(LiPF6) were found to function impeccably and most widely used in lithium ion batteries.
84,85

 

The electrochemical stability of different solvents was investigated by D. Aurbach et al.
74,86,87
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Figure 5: (a) Several typical alkyl carbonates for lithium ion battery electrolyte. (b) 

Electrochemical windows of various solvents tested with tetra-alkyl ammonium salts. (c) 

Electrochemical windows of lithium salt solutions if different solvents. 

 

1.1.2 Technical challenges, prospects and motivations. 

The most popular lithium ion batteries are comprised of graphite anodes and cathodes made from 

various materials including LiCoO2, LiFePO4 and other less widely used materials. Apart from 

graphite anodes, other anode materials such as soft carbon and hard carbon have also been 

adopted in commercial batteries to obtain improved stability and higher capacity. Key criteria 

include energy density, power density, safety, battery’s working potential, cost, and durability. 

As shown in Figure 6, many attractive solutions to optimize the cost and safety of lithium ion 
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batteries have been proposed. The most commonly used separators are made from polypropylene 

and polyethylene. The electrolytes that are currently widely used are alkyl carbonates based 

solutions with some aprotic lithium salts. To achieve different technical standards and fulfill 

various applications, batteries are designed with different combinations of cathode and anode 

materials. For example, LiMn2O4 and some other cathode materials are used to combine with 

Li4Ti5O12 anode to fabricate batteries out of concern for safety. The charging and discharging 

plateau of Li4Ti5O12 is at more than 1 V versus lithium metal and there is no destructive SEI 

formation during charge and discharge.
88

 Safer batteries are achieved at the compromise of 

capacity, i.e. a capacity of only around 85 Wh kg
-1

 is achieved in LiMn2O4/ Li4Ti5O12 cells 

compared to that of 140 Wh kg
-1

 in LiMn2O4/C cells.
89
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Figure 6: A schematic view of safety concerns on lithium ion batteries and efforts made aiming 

to build safe batteries.
89

 Permission from The Royal Society Publishing if required. 

Significant efforts are also seen to be put into the research for novel separators as separators with 

high wettability for electrolyte solutions are highly desirable.
90

 To overcome the intrinsic 

shortcomings of liquid electrolytes, such as dendrite growth from electrolyte solution upon 

cycling, poor accommodation for volume change of electrodes, considerable reactivity with 

electrodes, safety issues and difficult shape control,
91-93

 solid state electrolytes are under 

consideration as a replacement.
94-96

 Although solid electrolytes solve many of the issues listed 

above, there are still certain challenges to overcome: 
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1) The ionic conductivity. Namely, the conductivity of lithium ions of current solid or 

polymer electrolytes needs improvement. Commonly used liquid electrolytes have an ionic 

conductivity of around 10
-3

 to 10
-2

 S cm
-1

. The solid electrolyte should also have the ionic 

conductivity close to that value.
97

 

2) Transference number. It is also a crucial measure to increase the transference number of 

the electrolyte. Normally the transference number of both liquid and solid electrolytes is smaller 

than 0.5.
98,99

 It is desirable to have a relatively large transference number to reduce the 

concentration polarization of electrolytes and provide higher power density. 

3) Thermal, chemical, and electrochemical stabilities. The applicable electrolytes should 

have enough stable potential range to accommodate different kinds of batteries. 

4) Mechanical strength. Although the solid electrolytes can be fabricated to be free-standing 

now. Its mechanical strength still needs to be improved in order to be manufactured with a large 

scale coating process. 

Apart from the challenges from electrolytes, the most critical factor limiting the development of 

LIBs comes from the electrode materials, namely, cathode and anode materials. In the first 

generation LIBs, electrodes were composed of millimeter-sized particles. Although the energy 

density of those batteries was high, the power density of these batteries was less competitive. 

The limit of the power density came from the intrinsic limitation of lithium ion diffusion rate in 

the solid state materials. The charge and discharge rate is hence hindered by the slow lithium 

intercalation or extraction of the electrode material. Modern applications of lithium ion batteries, 

such as electric and hybrid vehicles demands both high energy and high power density batteries, 

thus a new concept should be proposed to break the rate limit of LIBs.  
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Nanomaterials, owing to their reduced dimensions, have been proposed as a cure for the rate 

problem of conventional batteries. It is a fact that nanomaterials can enable much faster lithium 

intercalation and extraction rate (graphite or Li4Ti5O12). The conversion rate of Li2O/metal can 

also be improved for the electrode materials that undergo conversion reactions (transitional metal 

oxides), and thus improve the overall performance. In spite of the advantages of nanomaterials 

for LIBs, it is also worthwhile to learn their disadvantages. With a thorough understanding of 

both their strengths and weaknesses, we can find suitable strategies to tackle the issues and build 

LIBs with enhanced performance.  

In general, advantages and disadvantages of nanomaterials for lithium ion batteries can be 

concluded as follows: 

Advantages:  

1) Nanomaterials can allow reactions to take place that cannot happen for bulky state 

materials; for instance, β-MnO2 can endure the lithium intercalation and extraction processes and 

maintain the original rutile structure, which is impossible for bulky MnO2.
100

 

This also applies other materials like α-Fe2O3. As shown in Figure 7 and 8, nanostructured Fe2O3 

demonstrated much better cycling performance than Fe2O3 at bulky state. In addition, the 

capacity of nanostructured Fe2O3 is much higher than that of bulky Fe2O3. The stability variance 

is due to the fact that lithium can be intercalated reversibly into the oxide through a single-phase 

process, while the packing order of Fe2O3 in the bulky state changes in order to accommodate the 

volume change due to lithium insertion and extraction. Severe volume change may also lead to 

the pulverization of the electrode and trigger continuous side reactions at the surface and cause 

electrode failure. Nanostructured Fe2O3 can hold up to 1 Li per Fe2O3, while less than 0.1 Li per 
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Fe2O3 can be inserted into bulky Fe2O3.
101

 This finding introduces the possibility that many 

materials considered unsuitable for lithium storage might fulfill the criteria. 

 

Figure 7: SEM images of nano-sized Fe2O3 (up) and bulky Fe2O3 (down).
101

 Permission from 

The Electrochemical Society if required. 
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Figure 8: A comparison of electrochemical performance of bulky and nano-sized α-Fe2O3. The 

cycling data and the SEM images are shown in insets.
101

 Permission from The Electrochemical 

Society if required.  

2) The significantly reduced sizes of the electrode materials can greatly improve the rate of 

the conversion and intercalation reactions of lithium. This is due to the shortened distances for 
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lithium ion diffusion between grains and between the electrolyte and the material. The diffusion 

rate of lithium ions can be characterized as t=L
2
/D, in which L is the diffusion distance and D is 

a diffusion constant. With the increase of the diffusion distance, t increases with the square of L, 

and this means the diffusion rate decreases much faster with the increase of the size of the 

electrode materials.
1
 

3) Nano-materials also exhibit extremely high specific surface area, and hence lead to better 

contact between the electrolyte and the material.  

4) Electron transport also benefits from the reduced dimension of the material, the 

mechanism of which is similar to that of ion transport. 

5) The chemical potentials of some materials for lithium conversion or intercalation may be 

modified to be thermodynamically favorable for these reactions.
102

 

6) Large contact area between these nanocomposites and short lithium ion diffusion paths 

are kinetically favorable for the reversible conversion of transitional metals and Li2O.
103,104

 

7) Nanoparticles can usually form solid solutions with a much larger range of 

compositions,
105

 and the ability to accommodate for volume change is much better than bulky 

materials. 

As shown in Figure 9 (a), silicon experiences significant volume increase upon the formation of 

Li22Si5. As a result, bulky silicon plates and particles fail to endure the volume change and will 

pulverize, causing the loss of contact points between the active material and current collector. 

Furthermore, the unstable surface of these bulky materials can lead to the continuous growth and 

crackdown of SEI. As illustrated in Figure 9 (b), nanostructured silicon wires not only provide 

efficient electron transport pathway, but also well relax the strain from the volume expansion, 

and thus present themselves as a promising candidate for lithium ion battery anode.
106
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Figure 9: A schematic presentation of how silicon nanowire accommodates the strain, (a) bulky 

film and particles as electrodes before and after cycling, (b) nanowires before and after 

cycling.
106

 Permission from Nature Publishing Group if required. 

Disadvantages: 

1) The synthesis of nanomaterials might be more difficult, and may cost more than normal 

materials. It is also more difficult to control the morphology and the dimensions of nanomaterials. 
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2) High surface area of nanomaterials can contribute to the better contact of electrolyte and 

electrode materials; however, the large surface area can lead to irreversible side reactions and 

difficulty in maintaining the inter-particle contact. 

3) The tap density of nanomaterials is usually lower than that of bulky materials. This may 

inevitably decrease the volumetric energy density. 

To conclude, LIBs have been contributing tremendously to the evolution of the modern 

communication industry in recent years. Applications of LIBs include mobile phones, laptops, 

digital cameras, and many other portable electronic devices.
26

 As fossil fuels are being consumed 

at an astonishing speed and their price continues to rise, LIBs as the power source for vehicles 

are garnering more and more attention. Commercialization of electric vehicles is proceeding 

slowly due to several fatal drawbacks of current commercial batteries, e.g. lower energy density 

compared to fossil fuels and their frequently-reported safety issues.
107

 In order to meet the ever-

increasing demand of high energy and power density LIBs, alternative anode materials have been 

widely investigated, including lithium metal alloys,
108,109

 transitional metal compounds,
110-114

 and 

silicon-based materials.
115-121

 These materials have all been reported to present significantly 

higher capacities than commercial graphite. Among all these materials, silicon has the highest as-

known specific capacity of 4200 mAh g
-1

 at the full lithiation stage (corresponding to the 

formation of Si-Li alloy Li22Si5), showing a huge potential for the increase of LIB’s capacity. 

These materials suffer from severe volume expansion and contraction during charge and 

discharge process. The insertion and extraction of such a large amount of lithium leads to severe 

volume change of silicon (300 percent of volume increase upon full lithiation), which further 

causes the pulverization of silicon in electrode material, loss of conductive points and the 

damage of solid electrolyte interphase (SEI). All these result in silicon’s poor stability upon 



24 
 

cycling, which leads to poor long-term cycling stability.
122

 To achieve a long cycle life of a LIB, 

it is critical to accommodate the volume change of silicon and help to form a stable SEI layer. 

Significant efforts have been made to deal with the above issues with silicon. Two most 

frequently reported methodologies to address current issues with silicon are engineering special 

morphologies of silicon and combining conductive materials with semi-conductive silicon.  

1.2 Silicon based anode materials 

 

Table 1: A comparison of some common anode materials for lithium ion batteries. The 

parameters of the materials include their densities, lithiated phases, theoretical capacities, volume 

changes, potentials versus lithium.
123

 

Properties of several commonly studied anode materials are shown in Table 1. It can be seen that 

silicon possesses the highest theoretical specific capacity (4200 mAh g
-1

) among all these 

materials listed in the table, corresponding to the formation of Li4.4Si. Silicon is the second most 

abundant element in the earth crust, and the technique of processing silicon has also been well 

developed. Despite the advantages of silicon anode materials, it is also important to note the 

disadvantages of using silicon anodes. For instance, the significant volume change of silicon 

during charge and discharge leads to poor capacity retention of silicon anodes.
124,125

 It has been 

experimentally proven that silicon undergoes phase change during the lithiation and delithiation 

process, i.e. crystalline to amorphous phase transition.
126

 In addition, the electric conductivity of 

Materials Li C Li4Ti5O12 Si Sn Sb Al Mg

Density (g/cm3) 0.53 2.25 3.5 2.3 7.3 6.7 2.7 1.3

Lithiated phase Li LiC6 Li7Ti5O12 Li4.4Si Li4.4Sn Li3Sb LiAl Li3Mg

Theoretical specific capacity (mAh/g) 3862 372 175 4200 994 660 993 3350
Volume change (%) 100 12 1 420 260 200 96 100
Potential versus Li (V) 0 0.05 1.6 0.4 0.6 0.9 0.3 0.1



25 
 

silicon is poor since it is a semiconductor, making it challenging to apply silicon to high-power 

batteries. In general, three fundamental challenges of silicon anodes can be concluded as follows: 

1) Pulverization of silicon materials. The large volume change of silicon may often cause 

cracking down of the material, especially in bulky silicon materials (Figure 10 a). 

 

Figure 10: graphical illustrations of fundamental failing mechanisms of silicon electrodes: (a) 

Material pulverization, (b) electrode degradation, (c) formation of an unstable SEI.
123

 Permission 

from Elsevier if required. 

2) Volume and morphology change of the whole electrode. The volume and morphology 

change of the electrode may lead to the loss of contact points between electrode materials and the 

substrate. The detachment of active material to the substrate inevitably increases the electrical 

resistance of the electrode and thus results in the battery failure (Figure 10 b). 
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3) Unstable solid electrolyte interphase. As shown in Figure 10 c, continuous breaking down 

and growth of SEI may lead to ceaseless side reactions at the surface of silicon and 

decomposition of electrolyte. The process is irreversible, and the thick SEI may block the lithium 

ion conductive pathways and retard lithium intercalation and extraction.
127

 

To overcome the obstacles listed above, significant efforts have been made in the field of 

nanostructured silicon anodes. Silicon nanowires,
128

 silicon nanoparticles,
129

 hollow silicon 

nanostructures,
130

 and silicon nanostructures decorated with conductive materials
131

 have been 

reported exclusively to obtain stable and high capacity lithium ion battery anode. In spite of the 

effort made on electrode materials, specialized binders such as carboxymethyl cellulose
132

 and 

sodium alginate
133

, and electrolyte additives including FEC
75

 have also been put under scrutiny.  

In this thesis, silicon and graphene composites have been systematically studied to learn the 

effect of graphene on the performance of silicon nanoparticles, and highly promising results are 

obtained from this research. 

1.3 Cobalt oxide as anode materials 

P.Poizot et al. proved for the first time that transitional metal oxides can store lithium via a 

heterogeneous conversion reaction mechanism:
47

 

MxOy + 2y Li → y Li2O + x M  (4) 

In this generalized reaction equation, M stands for any applicable metal, and x and y represent 

integers in the most simplified reaction formula. This reaction was not expected to happen due to 

the very inert reactivity of Li2O with transitional metal oxides at room temperature. It was later 

clarified that the strengthened electrochemical reactivity of Li2O is owing to the nanostructure of 

the metal oxides. In these nanostructures, Li2O and transitional metals can form ultra-tiny grains 
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that can interphase homogeneously.
134

 Large contact area between these nanocomposites and the 

short lithium ion diffusion paths are kinetically favorable for the reversible conversion of 

transitional metals and Li2O.
103,104

  

Nano-sized Co3O4 has been known as a lithium electroactive anode material in LIBs for many 

years and many methods have been used to obtain different morphology of Co3O4 

nanostructures.
135

 Co3O4 nanoparticles,
136

 nanotubes,
137

 nanowires,
138

 cages,
139

 and Co3O4-

carbon composites
140

 have all been reported as effective materials for LIBs as Co3O4 exhibits 

relatively high theoretical capacity of 890 mAh g
-1

; more than twice that of commercial graphite. 

Common powder-type materials require a conventional electrode fabrication process with a 

binder and carbon material which will decrease the specific energy density of batteries; besides, 

contact between active material and current collector may deteriorate upon cycling, causing the 

long term cycle stability and rate capability failure.
141

 

1.4 Project’s scopes and objectives     

Lithium ion batteries are highly promising for next-generation powerful and durable electric 

vehicles. Current anode materials cannot fulfill the ever-increasingly rigorous requirements for 

lithium ion batteries. Silicon, as a potential anode material, has been well known for its high 

capacity, although the durability of the material is an issue due to its intrinsic drawbacks and has 

been a main hindrance to its implementation in the LIB industry. Co3O4 also provides much 

higher theoretical capacity than commercial graphite anodes, and it is easy to engineer various 

dimensions and morphologies with Co3O4. Co3O4 undergoes conversion reaction during lithium 

storage and release, and the formation and decomposition of Li2O is kinetically unfavorable, 

making the reaction slow. Furthermore, the phase change during the conversion reaction may 

lead to irreversible capacity and cause the failure of the electrode. 
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To overcome the shortcomings of these two materials, the work in this thesis includes the design 

of graphene wrapped silicon composites and direct growth of Co3O4 nanowires on a flexible 

stainless steel mesh. Both pronounced capacity and rate capability are achieved in these materials, 

and this provides a possible solution to the urgent demand for next generation lithium ion 

batteries. 

In general, the objectives of this thesis are listed as follows: 

 Develop novel anode materials with improved capacity and durability. 

 Explore new advanced anode material with enhanced rate capability. 

 Design facile materials synthesis and simple electrode fabrication methods. 
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2.0 Structural and Electrochemical Characterization Techniques 

Material synthesis and characterization are both vital to our research. Necessary characterization 

techniques can provide a fundamental understanding of the mechanism of the synthesis process, 

and help decide the necessary changes to the design of the experiments. For example, the 

preliminary scanning electron microscope (SEM) images provide the detailed morphological 

information of the synthesized Si-G composites, from which the sizes of Si particles and 

graphene can be determined. In addition, it can help with the analysis of finding the proper ratio 

of Si and graphene needed to form a well-wrapped Si-G composite. Thermogravimetric analysis 

(TGA), X-ray diffraction (XRD), transmission electron microscope (TEM), Raman spectroscopy, 

etc. are all indispensable to obtain the necessary characteristics of the materials. Electrochemical 

characterization is a key part to the accomplishment of the project. The electrochemical 

performance is recorded with several basic measurements, e.g. cyclic voltammetry, long term 

charge and discharge, electrochemical impedance spectroscopy and rate capability test. Detailed 

description of some essential characterization techniques and materials synthesis methodology 

are explained in the following sections. 

2.1 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) is a very useful tool to detect a sample’s topology and 

composition. A fine SEM can be competent to obtain morphological images of a sample to a 

scale of several nanometers. As shown in Figure 11, silicon nanoparticles (50 nm-70 nm) are 

wrapped by graphene, and the distribution of silicon nanoparticles and the fringes of graphene 

sheet can be clearly observed from SEM images.  
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SEM is an electron microscope which produces electron beams to interact with a sample, and 

reflects the samples’ properties by collecting the signal of electrons after interaction with the 

sample. Normal SEMs operate at a high vacuum atmosphere (~10
-5

 mmbar), but according to 

different real applications, there are special SEMs which can work under low vacuum or even 

atmosphere, for example, environmental SEM. 

 

Figure 11 A SEM image of a silicon-graphene composite sample. 

As shown in Figure 12, main components in a SEM system include an electron gun, an electron 

lens, a scanning system, a detector, a display, and a vacuum system. Electron beams are firstly 

generated by an electron generating device, such as a tungsten filament cathode, or a field 

emission electron gun. Electrons are subsequently accelerated by the electric field to 0.2 to 40 

keV. Meanwhile, the beam is condensed to be with a diameter of less than ten nanometers. Then 
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the electron beam goes through the scanning coil, where the beam can be controlled by an 

operator to scan the specimen. The signals from the sample are detected, amplified and shown on 

the display simultaneously. 

 

Figure 12. A schematic view of a SEM system. 

2.2 Transmission Electron Microscopy  

Transmission electron microscopy (TEM) is another versatile electron microscopy. Unlike SEM, 

a beam of highly focused electrons are directed toward a thinned sample (<200 nm) in a TEM, 

and high energy incident electrons interact with the sample. Information of the sample is 

obtained from both deflected and non-deflected transmitted electrons, backscattered and 

secondary electrons, and emitted photons.  As illustrated in Figure 13, similar to a SEM, a TEM 

also has an electron gun, which can be either a thermionic or a field emission gun. Followed is a 
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condenser which can narrow the electron beam. Different from that of SEM, electrons in a TEM 

are typically accelerated to 100 to 400 keV to gain enough energy to transmit the specimen and 

hit the fluorescent screen. Electrons are accelerated shortly after they are generated from the 

emission source. After that, the electron beam is condensed through an aperture. Then electrons 

meet with the specimen and generate different kinds of electrons, which are used to obtain 

different information of the sample. Objective lens and diffraction lens after the sample chamber 

are used to help converge electrons from transmission and diffraction. Those electrons are further 

expanded by the projector lens to form images on the display devices. The magnification of the 

TEM is closely related to the ratio of the distances between the specimen and the objective lens' 

image plane, as well as the diameter of the display’s size.  
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Figure 13. A schematic view of a TEM system. 

The resolution of a TEM can be as high as 0.2 nm, which is much higher than that of a SEM. As 

a result crystal structure of a sample can be obtained with those high resolution TEMs, which are 

usually referred to as HRTEM. In Figure 14, a high-resolution TEM image of intrinsic silicon 

shows the regular arrangement of silicon atoms, from which the crystal structure of the sample 

can be determined.  
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Figure 14: A high resolution TEM image of a silicon sample. 

The selected area electron diffraction (SAED) equipped in many TEMs can provide a diffraction 

pattern of the specimen by adjusting the magnetic lenses such that the back focal plane of the 

lens rather than the imaging plane is placed on the imaging apparatus. Lattice information of a 

sample can be obtained from the SAED. Furthermore, a TEM equipped with an electron energy 

loss spectroscopy can select particular energy values, which can be attributed to how electrons 
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interact with the specimen. For instance, different elements from a specimen can lead to different 

electron energies in the beam after interaction with the sample. The difference in electron energy 

can further result in chromatic aberration, and this can be an effective approach to generate an 

image with the information on elemental composition of the detected sample, based upon the 

atomic transition during electron-electron interaction.  

2.3 X‐ray Diffraction 

X-ray diffraction (XRD) is a powerful tool for determining a sample’s composition and its 

crystalline information. In an XRD measurement (As shown in Figure 15 A), a sample is placed 

on top of a goniometer, which is rotated gradually while constantly exposed to incoming X-rays. 

Scatters of X-rays after hitting the atoms in the sample may have different scattering angles and 

diffractions due to different arrangements of atoms in the sample. Although in most directions 

the diffraction waves cancel each other out by a destructive interference, in some specific 

directions, diffraction waves are strengthened by a constructive interference, and this is 

determined by the Bragg’s Law: 

2dsin θ=n λ,  (1) 

where d is the spacing between diffracting planes, θ is the incident angle, n is the correspondent 

integer, and λ is the wavelength of the beam (Figure 15 B). 
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Figure 15: A schematic representation of an X-ray diffractometer (A), and a graphic illustration 

of the Bragg’s law (B).  

By measuring the angles (θ) and the correspondent beam intensities of these diffracted beams, 

the positions of atoms in a crystal can be determined, as well as their disorder, types of chemical 

bonds, and other kinds of information. XRD can be used to determine various types of sample 

with no tedious sample preparation. Samples for XRD can be a bulky inorganic material, 

biological tissues or segments including DNAs, proteins, nucleic acids, nano-sized powder 

materials and so on. 

2.4 Raman Spectroscopy  

Raman spectroscopy is a spectroscopic technique used to detect a system’s vibrational, rotational 

and other low-frequency modes. As shown in Figure 16 A, When a sample is radiated by a 

monochromatic laser beam, both elastic scattering (Rayleigh scattering) and inelastic scattering 

(Stokes and Anti-stokes) are generated, while only the inelastic scattering is used in Raman 

spectroscopy to give Raman signals. Samples in Raman may exist in solid, liquid and also 

gaseous phases. A Raman set-up typically consists of several key components including a 

radiation source (usually a laser generator), a sample illumination system and light collection 
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optics, a wavelength selector (filter or spectrophotometer) and a detector, frequently functioned 

by a charge coupled device, photo multiplier tube or photo diode array (Figure 16 B).  

 

Figure 16: Different kinds of scatter in an energy diagram (A), a schematic view of Raman 

spectroscope. 

In a Raman spectroscope, illumination laser can be in ultra-violet, visible, and also near-infrared 

region according to the specific requirement of different samples. Scattered light is condensed by 

a lens and then sent through an interference filter or spectrophotometer to obtain Raman 

spectrum of a sample. Around 99.999% of the scattering in a normal Raman Spectroscope is 

Raman-inactive Rayleigh scattering, and only the rest 0.001% is inelastic Raman scattering, 

which makes it very difficult for a detector to filter the useful signal from all the scattering 

radiation. This requires special treatment on the signals to distinguish the target Raman signal 

from other useless signals. Several categories of instruments including laser stop apertures, 

tunable filters, notch filters, spectrometric systems, double and triple are used to separate high-

quality Raman spectra from strong Rayleigh scattering. 
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2.5 Fourier Transformed Infrared Radiation 

Infrared light is one kind of electromagnetic radiation with a wavelength between 1 millimeter 

and 700 nanometers. The frequency of IR falls in the range of 300GHz to 430THz. The 

corresponding photon energy is from 1.4mV to 1.7eV. IR is beyond the range of visible lights for 

human beings. But applications of IR can be widely found in both daily life and research areas. 

Infrared light is generated or absorbed by the change of rotational-vibrational movements in 

molecules. A change in the dipole moment can reflect the corresponding vibrational mode and 

infrared energy, offering useful information for studying the energy states and the vibrational 

modes in molecules. Absorption and transmission of photons in the infrared energy range are 

easily examined by the infrared spectroscopy. Fourier Transformed Infrared Radiation (FTIR) 

spectroscopy is a kind of more advanced infrared spectroscopy. Compared to traditional IR, 

FTIR spectrometers have several significant advantages: (1) The scan time is greatly reduced for 

scanning in all frequencies (less than 1s). (2) The error in the wavelengths is much smaller. (3) 

The signal-to-noise ratio of spectrum is prominently improved. (4) The scan range of FTIR is 

dramatically enlarged. (5) The interference issue in other obsolete IRs is well addressed in FTIR. 

(6) The resolution of FTIR is much higher.  

As demonstrated in Figure 17, a common FTIR spectrometer consists of an IR emitter, 

interferometer, sample compartment, detector, signal amplifier, A/D convertor, data processor 

and a display. The IR from the radiation source passes through the interferometer and arrived at 

the detector. After that, the signal is amplified and converted to digital signal by an amplifier and 

analog-to-digital converter. Finally, Fourier transform of the signal is realized on a computer. 

Below is a simplified FTIR diagram. 
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Figure 17: A simplified diagram of FTIR 

Fourier transform is named after the French mathematician and physicist Jean Baptiste Joseph 

Fourier. It is a mathematical method to transform a function into a new function. The following 

equation is a common form of the Fourier transform with unitary normalization constants: 

 ( )  
 

√  
∫  ( )     
 

  
     (2) 

where t represents time, i is the unit of imaginary number. 

The equation below is another form of the Fourier transform (trigonometric function form), 

where imaginary number i is eliminated.  
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The equation shows the mathematical relationship between F(v) and (t), and is in the form of 

Fourier transform. 
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Fourier Transform of Interferogram to Spectrum: 

The original signal from the interferogram is time domain since it is a function of time. After the 

Fourier transformation, a spectrum represented by frequency domain is obtained. Figure 18 

shows the Fourier transform spectrum from an interferogram of a polychromatic light. 

 

Figure 18: An example of Fourier transform from original signal to FTIR spectrum. 

2.6 Thermogravimetric Analysis  

Thermogravimetric analysis (TGA) is used to measure thermal properties of a sample by 

increasing the sample’s temperature at a set rate in a specific atmosphere. A typical TGA 

apparatus contains a precise balance, a thermo-tolerant sample pan, and a programmable furnace. 

It can provide information of a sample such as its melting point, boiling point, dehydration 

temperature, combustion temperature, and composition of a sample with several components. 

For example, in this thesis, the mass ratio of silicon in Si-G composites can be obtained by a 

TGA test. The sample is put into a TGA burning chamber in atmosphere, and the final 
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temperature is set to be 900°C. The ramp rate is set to be 10 °C/min. As the temperature 

increases, graphene is first burned away since it has a lower burning temperature than silicon. 

There is a steep drop on the mass-temperature curve, and from the minimum of the curve the 

mass ratio of silicon in the whole composite can be observed. Since the sample only contains two 

ingredients, the mass ratio of graphene can also be obtained by deducting the mass ratio of 

silicon from a 100%.  

2.7 Lithium Ion Battery Evaluation 

To evaluate the electrochemical properties of the synthesized material, lithium ion coin cells 

(CR2032) are fabricated. Electrode fabrication methods in this thesis vary according to different 

materials; electrode compositions are also based on the characteristics and requirements of 

different materials. In the Si-G project, electrodes were fabricated using a doctor-blade cast, with 

an electrode composition of 6:2:2, i.e. 60% active material: 20% super-P：20% polyvinylidene 

fluoride (PVDF) binder. In other silicon projects, carboxymethyl cellulose (CMC) binder is 

adopted instead of PVDF. The ratio of active material, binder, and super-P also varies from 

project to project. In the project where Si-GO was reduced at a low temperature, electrodes are 

first fabricated with a ratio of 60% Si-GO, 20% super-P, and 20% binder, and the binder is 

2%V/V CMC solution. The electrodes were heated in a vacuum oven at 150 degrees Celsius for 

drying, and at the same time, GO is reduced to graphene and CMC binder is cured.  

Unlike the silicon projects, active material is directly deposited on the current collector and 

substrate directly during the synthesis process in the Co3O4 project, and no binder or additional 

conducting material is used in the electrode fabrication.  
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Electrochemical tests include constant current charge and discharge, which can obtain the 

cycling performance and the profile data of charge and discharge process. Rate capability data of 

an electrode can be obtained when different currents are applied in the charge and discharge tests. 

Cyclic voltammetry is used to study the characteristic peaks of electrode reactions. In some 

projects, electrochemical impedance spectroscopy is used to study the internal resistance of 

batteries to evaluate the property of electrode materials. 
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3.0 Effects of graphene on the performance of silicon based anode materials in 

LIBs 

Reprinted in adapted form with permission from Elsevier. Copyright 2014 Elsevier “Graphene 

Wrapped Silicon Nanocomposites for Enhanced Electrochemical Performance in Lithium Ion 

Batteries” Electrochimica Acta. http://dx.doi.org/10.1016/j.electacta.2014.02.135  

3.1 Introduction and purpose of study  

Silicon has been considered as the anode material for next generation lithium ion batteries with 

high energy density because of its high theoretical specific capacity, reaching 4200 mA h g
-1

 at 

full lithiation (Si-Li alloy, Li22Si5).
142,143

 This is highly favourable compared to the graphite 

anode materials used in current Li-ion batteries, which exhibit theoretical capacity of only 372 

mA h g
-1

 and low energy density. Unfortunately, the high specific capacity of Si is accompanied 

by substantial volume expansion and contraction during the lithiation/delithiation of silicon 

(>300%), which results in poor cycling stability due to the rapid pulverization of silicon 

electrodes, disconnection of electrical contacts, and instability of the solid electrolyte interphase 

(SEI).
33,123-125,144

 To successfully develop next-generation lithium-ion batteries containing Si 

anode materials and offering long cycle life, it is critical to develop a strategy to either 

accommodate or restrict this volume change and form a stable SEI layer. One approach has been 

explored to engineer silicon nanostructure, including the development of silicon nanowire,
106

 

silicon nanotube,
130

 hollow silicon nanoparticle,
145

 and nano-porous silicon.
146

 Another effective 

strategy is to apply carbon coatings on silicon, which can not only accommodate the volume 

change of silicon, but also enhance the electric conductivity of the electrode and contribute to a 

stable SEI layer.
147-153 

http://dx.doi.org/10.1016/j.electacta.2014.02.135
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Graphene, a two-dimensional structure composed of carbon atoms, has garnered remarkable 

attention due to its unique structure and properties, such as: excellent electrical conductivity, 

high surface area, good flexibility and high mechanical strength.
154-157

 As an anode material for 

LIBs, graphene has demonstrated promising performance compared to graphite and more 

recently Si-G materials have been shown to alleviate the issues associated with bare Si.
67,118,158-

160
 However, it remains a challenge to evenly disperse Si within the graphene sheets. As a result, 

it is difficult to form stable composites and lithium diffusion could be hindered by sluggish ion 

diffusion within the poorly distributed composite materials.
161-163

  

 

In this work, we synthesized Si-G composites with a freeze-drying method in order to combine 

the merits of Si, graphene and freeze drying. We believe that an effective strategy for the 

production of uniformly dispersed Si-G composites is to reduce graphene oxide (GO) to 

graphene after mixing with silicon. This is attributed to graphene being very hydrophobic and 

thus difficult to disperse in aqueous solution, while GO is highly hydrophilic and Si-NPs are 

slightly hydrophilic due to the native oxygen functionality on the surface of Si. However, the 

agglomeration of nano-sized silicon caused by the surface tension when drying in aqueous 

solution can also lead to inadequate composite performance.
164

 Freeze-drying has been reported 

as an effective way to fabricate three-dimensional (3D) architectures and aligned structures, 

avoiding the agglomeration that commonly occurs during drying.
165,166

 After the Si and GO are 

well dispersed in water, the mixture is frozen immediately with liquid nitrogen so that GO and 

silicon nanoparticles can maintain their original morphology. Then the water is sublimated to 

vapour phase directly in a freeze-dryer, and a 3-D network of graphene wrapping silicon is 
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formed by the following heat treatment. The 3-D structure will benefit LIBs in terms of easier 

lithium ion transportation, faster electrolyte diffusion, as well as better retention of its structure 

during cycling. In a previous communication published by Zhou et al., one ratio of Si-G 

composite was synthesized by the freeze drying method and tested in LIBs.
166

 However, 

advanced study for an optimal composition of Si-G is suggested to improve cycle stability and 

investigate the trade-off between capacity and stability. We systematically investigate the impact 

of varying the graphene content on the performance of Si-G composites in LIBs, in order to 

obtain an optimal Si to graphene ratio with enhanced cyclic stability and high specific capacity. 

All composites had improved stability compared to bare Si-NPs, but most notable was the 

superior cyclic stability and rate capability of the composite employing a starting ratio of 1:2 (Si-

NP:GO). The 3D architecture of the Si-G 1:2 composite materials reveal capacity retention after 

200 cycles was 96% @ 0.2 C and around 100% @ 1C, corresponding to 786.3 mA h g
-1

 and 

594.6 mA h g
-1

 respectively. We believe that the graphene wrapped silicon will maintain the 

electrical connection even if the fracture and pulverization occur in silicon due to diffusion-

induced stress exceeding the fracture strength. At the same time, the silicon particles are most 

likely isolated from the electrolyte, so that the majority of SEI will form just on graphene surface 

which would not go through the huge volume expansion and contraction along with Si. As a 

result, the cycle efficiency can be improved. In addition, hydrofluoric acid (HF) has been widely 

used to remove the SiOX layer on pristine silicon,
167-169

 but recent studies have shown that an 

amorphous SiOX layer can help prevent the electroactive silicon from agglomerating during 

cycling. More importantly, the SiOX also form lithium silicate during cycling (Li2Si2O5),
 
which 

can function as a buffer layer to reduce the damage to and restrict the volume expansion of Si 

and stabilize the SEI layer.
160

 For these reasons and to increase cost effectiveness of the material, 
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HF treatment was avoided. In addition, no expensive electrolyte additives, such as vinylene 

carbonate (VC) and fluoroethylene carbonate (FEC) were used in the electrolyte. 

 

3.2 Experimental methods  

Figure 19 schematically shows the process to synthesize the Si-G nanocomposite. Silicon 

nanoparticles (Si-NPs) (Nanostructured & Amorphous Materials Inc, USA. 50-70 nm) were 

sonicated in water for five hours. Meanwhile, graphene oxide (GO) synthesized by a modified 

Hummers’ method was sonicated separately for five hours as well. Detailed procedures for the 

fabrication of GO were described in a paper previously published by our group.
170

 The two 

suspensions were then mixed and sonicated for another five hours to achieve a thorough 

dispersion. Next, the mixture was frozen rapidly with liquid nitrogen and a freeze-dryer 

(Labconco Freezone 1, USA) was subsequently used to freeze dry the sample for 48 hours, 

retaining its as-frozen shape. Then the Si-GO composite was pyrolysed under an argon 

atmosphere with 10% hydrogen at a flow rate of 70 cm
3
 min

-1
, purging for 30 min before the 

furnace was turned on. Finally, the sample was heated up to 700 
o
C @ 0.5 

o
C min

-1
 and held for 

3 hours to generate the final graphene-wrapped silicon composites. Characterization of the 

graphene formation and Si stability in the as-prepared Si-graphene composites was studied by X-

ray diffraction (XRD). Field Emission Scanning Electron Microscopy (FESEM) (Zeiss Ultra 

Plus, UK) and Transmission Electron Microscopy (TEM) (FEI Philips CM300, USA) were 

utilized to obtain the morphology and further reveal the structure of the composites. 

Thermoravimetric Analysis (TGA) (TA instrument Q500, USA) was used to determine Si/G 

mass ratio in the composites. TGA testing was performed in air with a temperature range of 25 

o
C to 900 

o
C and a ramp rate of 10 

o
C min

-1
. 
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Figure 19: Schematic view for synthesis of the Si-G composites. 

 

To study the balance between the high capacity of Si and the cycle stability of graphene, as well 

as optimizing battery performance, graphene-wrapped silicon composites were prepared by 

varying the ratios of the starting materials. The initial Si:GO ratios tested include 1:3, 1:2, 1:1 

and 1:0.5, in addition to pure GO and bare Si-NP. The graphene-wrapped composites produced 

will be further referred to as Si-G 1:3, Si-G 1:2, Si-G 1:1, and Si-G 1:0.5, respectively. Coin cells 

(CR 2032) were fabricated to study the electrochemical properties of the nanocomposites using a 

slurry containing: 60 wt% of the active composite material, 20 wt% Super P carbon black as a 

conductive material, and 20% polyvinylidene fluoride (PVDF). Lithium metal (Aldrich, USA) 

was used as a counter/reference electrode. The electrolyte was a 1 M LiPF6 solution with a 

mixture of ethylene carbonate (EC)/dimethyl carbonate (DMC) (3:7) as a solvent, with no 
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additives. The two electrodes were separated by a polypropylene membrane (high porosity, 20 

μm micro porous, Celgard PP2075, USA) and assembled in an argon-filled glove box 

(MBRAUN 10, USA). Charging and discharging of cells was conducted on battery testing 

equipment (Neware, China), employing a cut-off voltage range from 0.05V to 1.5 V. Cyclic 

voltammetry (CV) was conducted on an electrochemical station (Versa Stat MC, Princeton 

Applied Research, USA) with a scanning rate of 0.1 mV s
-1

. All tests above were conducted at 

room temperature. 

3.3 Results and discussion  

The SEM analysis in Figure 20 demonstrates the 3D morphology of the synthesized Si-G 

composites, depicting the well-distributed Si-NP encapsulated by the graphene after freeze-

drying and reduction. For Si-G 1:3, shown in the Figure 20 (b) image, the Si-NPs (homogenous 

50-70 nm size distribution, (shown in Figure 20 (f)) are scarcely distributed on and under the 

graphene sheets. Meanwhile, Si-G 1:2 clearly displays a larger Si content and the graphene 

wrapping is more visible in Figure 20 (c). As the amount of Si-NPs in the starting material 

increases, the Si clusters within the composite become denser (Figure 20 (d, e)). Interestingly, 

despite the low graphene content in Si-G 1:0.5, the composite still forms small 3D clusters of Si-

NPs wrapped by the graphene. The SEM image in Figure 20 (a) shows the morphology of a 

graphene only sample, produced by the same procedure as the Si-G composites. The extensive 

graphene wrinkling and sharp folds may offer a large number of ideal anchoring sites for silicon 

nanoparticles during reduction. 
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Figure 20: SEM images of (a) graphene, (b) Si-G 1:3, (c) Si-G 1:2, (d) Si-G 1:1, and (e) Si-G 

1:0.5, (f) bare silicon nanoparticles. 

 

To further illustrate the morphology of the as-obtained composites, TEM images were taken and 

shown in Figure 21. Both the Si-NPs and wrinkled graphene sheets can be clearly seen. Analysis 

of Si-G 1:2 highlights the sparse Si-NPs, with minimal overlap, anchored to the graphene sheet 
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in Figure 21 (a). However, the Si-NPs in Si-G 1:1 were dense and relatively clustered within the 

graphene sheets (Figure 21 (b)). Retention of the wrapped structure despite the extended 

sonication required for sample preparation suggests the Si-G composites exhibit a certain degree 

of structural integrity.  

 

 

Figure 21: TEM images of Si-G 1:2 (a) and Si-G 1:1 (b), and HRTEM images of the surface of 

Si in Si-G 1:2 (c) and Si-G 1:1 (d). 

 

It is proposed that the re-stacking nature of graphene sheets, initiated by increased Van der 

Waals force during reduction from GO, leads to the novel morphology illustrated in Figure 22. In 

contrast, intercalated silicon nanoparticles in GO layers also prevent graphene sheets from 
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further restacking, facilitating the electrolyte diffusion.
171-173

 High resolution TEM (HRTEM) 

(Figure 21 (c) and (d)) was used to further characterize the surface of the Si-NPs after treatment 

to form Si-G 1:2 and Si-G 1:1. A distinct boundary between the crystalline Si core and an 

amorphous SiOx layer can be easily observed in both composites. A slightly thicker layer of SiOx 

can be seen in Si-G 1:2, which can be attributed to the higher content of oxygen in the starting 

material. Apart from the difference of silicon content in these two composites, the amount of 

SiOx can also partially explain why the capacity of Si-G 1:2 is lower than that of Si-G 1:1. 

 

Figure 22: Hypothetic illustration of formation process of 3-D Si-G composites. 

 

XRD was carried out to determine if any side reactions occurred during preparation of the 

composites. Figure 23 (a) shows the diffraction pattern of the as-prepared Si-G 1:2 composite, 

which is closely match to: the crystalline peaks for Si and the characteristic broad peak for 

graphene at 26.7
o
.
174

 The remaining peaks can be attributed to characteristic peaks of the 

aluminum holder showing through the composite samples. The absence of any additional 

unassigned peaks confirms that no silicon carbide was formed during heat treatment and the lack 

of a SiO2 pattern suggests most of the Si remains un-oxidized.175 
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Figure 23: XRD patterns of Si-G 1:2 and Si (a). TGA results of Si-G composites with different 

ratios of silicon and graphene (b). 
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The other composites were also examined by XRD (Figure 24), and they shared a spectrum 

similar to Si-G 1:2. Some variation in the peak intensities of graphene and silicon was observed 

due to the different ratios of silicon and graphene in these composites. Then, TGA analysis was 

used to more accurately determine the ratio of graphene to silicon within the various Si-G 

composites, after removing the majority of the oxygen functional groups from GO during the 

reduction process. The results shown in the Figure 23 (b) illustrate the ratio of silicon in 

composites increases from 33.2% (Si-G 1:3) to 79.0% (Si-G 1:0.5) as the amount of Si in the 

starting materials increases.  

 

 

Figure 24: XRD patterns of Si-G 1:0.5, Si-G 1:1 and Si-G 1:3. 
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Galvanostatic measurements were conducted on each of the Si-G composites (Figure 25). The 

cut-off voltage range for all tests was from 0.05V to 1.5V, and the current used for the first three 

cycles was 100 mA g
-1

 based on the total mass of the active materials, graphene and Si. In the 

first discharge, decomposition of electrolyte on the composite surface to form the SEI layer is 

confirmed by a small plateau region at 0.8V, which is no longer present in later cycles.
176

 Further, 

a flat plateau at around 0.1 V appears in every material’s profile curve, which corresponds to the 

characteristic discharging voltage of silicon in a half cell.
177

 As shown in Figure 26, over 90% of 

the bare Si-NP electrode’s first discharge capacity exists within the characteristic region. 

However, with decreasing Si content in the Si-G composite, the capacity contribution of this 

0.1V plateau during first discharge decreases from ~80% (Si-G 1:0.5) to only ~25% (Si-G 1:3). 

Prominence of the slope between 0.8V and 0.1V can be attributed to the change in graphene 

content, which exhibits a nearly continuous slope below 0.8V and the cut-off potential (Figure 26 

(a)).
178

 First cycle discharge efficiencies of the composites in order of decreasing graphene 

content are 40.9%, 46.4%, 54.0% and 63.0% respectively, indicating that first cycle efficiency 

and total discharge capacity are sacrificed in order to improve cycle stability. Table 2 provides 

detailed information about the first cycle data obtained. The reduced efficiency can be attributed 

to graphene’s intrinsic properties and limitation of the graphene capacity imposed by the cut-off 

voltage (0.05 V-1.5 V).
179

 It is important to note that the charge capacity of both Si-G 1:2 (Figure 

26 (c)) and Si-G 1:1 (Figure 26 (d)) increased during the initial cycles, likely due to the 

continued activation of the Si, while that of the unstable bare Si-NPs drops significantly and pure 

graphene decreases only slightly. This increase in charge capacity demonstrates the successful 

accommodation of silicon’s volume change within the optimally wrapped Si-G composites.  
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Figure 26: Charge and discharge profiles of the first three cycles from: (a) graphene, (b) Si-G 1:3, 

(c) Si-G 1:2, (d) Si-G 1:1, (e) Si-G 1:0.5, and (f) bare silicon, tested at 100 mA g
-1

. 
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Table 2: Discharge/charge capacities, coloumbic efficiency of the first cycles at 100 mA g-1, as 

well as capacity retention after 100 cycles at 0.2 C; for each of the composites tested. 

Composite 

Type 

Discharge capacity  

(mAh/g) 

Charge capacity  

(mAh/g) 

Coulombic 

efficiency 

100
th 

cycle 

capacity retention 

G 985.0 360.8 36.6% 78.2% 

Si-G 1:3 1310.2 514.7 39.3% 55.5% 

Si-G 1:2 1806.2 837.7 46.4% 103.3% 

Si-G 1:1 2312.4 1248.8 54.0% 78.7% 

Si-G 1:0.5 2599.2 1636.5 63.0% 15.7% 

Si 3499.3 2356.1 67.3% 2.5% 

 

To study long-term cycling stability of the Si-G composites, batteries were adjusted to cycle at 

0.2 C, based on the capacity of each material after 5 cycles at 100 mA g
-1

 (Figure 27). The 

corresponding 1 C rates adopted were 300 mA g
-1

, 500 mA g
-1

, 900 mA g
-1

 ,1300 mA g
-1

, 1500 

mA g
-1

, and 1500 mA g
-1

 for graphene, Si-G 1:3, Si-G 1:2, Si-G 1:1, Si-G 1:0.5, and Si-NP, 

respectively. Figure 27 (a) shows that both Si-G 1:1 and Si-G 1:2 are promising composites in 

terms of specific capacities and cycling stability, in contrast to the limited Si capacity 

contribution to Si-G 1:3 and inferior cycle stability of Si-G 1:0.5.  
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Figure 27: Long-term cycling performance for all composites at 0.2 C (a) and 1 C rate data for 

Si-G 1:2 and Si-G 1:1 (b). 
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From SEM, the low graphene content in Si-G 1:0.5 left many of the Si-NPs uncovered and less 

void space was available to allow sufficient Si expansion. This helps to explain, why, after 100 

cycles at 0.2 C the capacity decreases to 257 mA h g
-1

(15.7% of initial reversible capacity). Still, 

Si-G 1:0.5 offers much better cycling performance than the bare Si-NP (Figure 28) which 

degraded to a specific capacity of ~60 mA h g
-1

 after only 100 cycles.
125,180

 This shows that the 

graphene in the composite helps improve the cycling stability of the battery, but due to the 

limited amount of graphene, the capacity still fades quickly. With the increase of graphene 

content in the composite, the cycling stability increased. Si-G 1:1 presents much better stability 

and higher capacity than Si-G 1:0.5 after cycling, with a capacity of 982.8 mAh g
-1

 and capacity 

retention of 78.7% (Figure 27(a)). Optimal stability was observed for Si-G 1:2 which produced a 

specific capacity of 865.2 mA h g
-1

 after 100 cycles. Remarkably, this was higher than the initial 

charge capacity and a significant improvement over the theoretical capacity of graphite (372 mA 

h g
-1

) and the stabilized graphene after 100 cycles (~280 m Ah g
-1

, Figure 28). In addition, the 

composites capacity after the 5th cycle (Si:GO 1:2, 824 mAh g
-1

) exceeds that of the estimate 

determined from the summed capac ity of bare graphene and bare silicon, based on their mass 

ratios in the optimized Si:GO 1:2 composite (779 mAh g
-1

). This demonstrates the synergistic 

effect between Si NPs and graphene, leading to excellent cycle stability for the composite. The 

capacity increase during cycling can be attributed to gradual reorganization of Si structure during 

the insertion/extraction process,
159,181

 enabling activation of additional Si for future cycles. 

Lately, Xin et al., presented the 3D Si/graphene composite by a direct synthesis of Si 

nanoparticles on graphene sheets followed by spray drying to form 3D morphologies.
159

 They 

demonstrated the effectiveness of the 3D architecture of Si/graphene composite on the cycle 
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stability by comparing with the nanosheets of Si/graphene. However, they showed the stability 

with only 30 cycles at 100 mA g
-1

.  

 

 

Figure 28: Long-term cycling performance for Si-G 1:2, silicon and graphene at 0.2 C. 

 

To support the effectiveness of controlling the Si-G mass ratio, correlation of surface areas 

between Si and graphene is considered. The optimum performance and cycle stability may be 

surface area dependent, as the graphene sheets provide the charge transport pathways and active 

sites. In light of the surface area measurement for these materials, graphene has a specific surface 

area of 483.4 m
2
 g

-1
, and silicon nanoparticles have a specific surface area of 18.5 m

2
 g

-1
, 

according to N2 adsorption–desorption isotherms (Figure 29). Taking the mass ratio of graphene 
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and Si in each composite into account, the specific surface area ratios of graphene to silicon are 

52.6, 17.0, 11.3, 6.9 for Si-G 1:3, Si-G 1:2, Si-G 1:1 and Si-G 1:0.5 respectively.  

 

 

Figure 29: N2 adsorption–desorption isotherms of graphene (a) and Si-NP (b) 
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From the performance of the composites in this study, Si-G 1:2 with the graphene-silicon surface 

area ratio of 17.0 shows the best performance. This alludes to the optimum surface area ratio for 

Si-G composites, relevant to Si particles of varying size and different graphene precursors used 

for future study. Further, after 200 cycles, Si-G 1:2 (96% retention) had higher capacity than that 

of Si-G 1:1 (58.7% retention), intersecting after 165 cycles at the 0.2 C rate (Figure 30).  

 

 

 

Figure 30: Long-term cycling performance for Si-G 1:1 and Si-G 1:2 at 0.2 C.  

 

The Si-G 1:2 and Si-G 1:1 composites were also both tested at a high rate of 1 C, and the results 

are shown in Figure 31. The results in Figure 27 (b) and Figure 28 show Si-G 1:2 had excellent 

capacity retention, specific capacity increased for the first 50 cycles and remained stable at 600 
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mA h g
-1

 for the 200 cycles tested. However, the stability of Si-G 1:1 suffered at the increased 

rate, capacity retention decreased to 42% of the initial reversible capacity after 200 cycles.  

 

 

Figure 31: Capacity retention ratio of Si-G 1:2 and Si-G 1:1 at 1 C. 

 

Besides the unique morphology and optimal composition of Si-G composites, the superior cycle 

stability is also attributed to the remaining SiOX. According to previous researches, a surface 

layer of SiOX on Si plays the role of enhancing the stability of Si during cycling.
159,169

 The 

thicker SiOX layer of Si-G 1:2 due to the higher starting GO content enhances the cycle stability 

as well, compared to Si-G 1:1. It is worth noting that the previous communication report with Si-

G composites demonstrated that their composites only retained around 60% of its initial capacity 

after 100 cycles at a current density of 200 mA g
-1

 with even a precious additive, vinylene 

carbonate (VC), in the electrolyte to improve the cycle stability and an HF pre-treatment to 
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purify the composites.
166

 According to our study, the poor cycle stability is attributed to high 

ratio (~78%) of Si content in the composites which means its amount was not optimal for the 

composite. In addition, the purification step with HF treatment might have resulted in the inferior 

cycle stability due to the elimination of the adjuvant SiOx layer for long term stability.   

 

Table 3: Capacity retention data of Si-G 1:2 and Si-G 1:1 in rate capability tests at different 

current densities. 

Samples 0.2 C 0.5 C 1.0 C 1.5 C 2.0 C 0.2 C 

Si-G 1:2 101.4% 93.0% 85.0% 78.6% 72.3% 101.5% 

Si-G 1:1 95.6% 85.7% 79.7% 69.5% 60.3% 89.7% 

 

To further investigate the rate capability of Si-G composites, Si-G 1:2 and Si-G 1:1 were tested 

at different current densities including 100 mA g
-1

, 0.2 C, 0.5 C, 1 C, 1.5 C and 2 C. As shown in 

Figure 32 (a), the composite Si-G 1:2 retains most of its capacity at low current densities, such as 

100 mA g
-1

 and 0.2 C. With increasing current density the capacity drops a bit, but remains 

stable, producing 600 mA h g
-1

 @ 2 C (72.3% retention). Returning to 0.2 C, the capacity of Si-

G 1:2 remains above 100% retention, minimal degradation is observed from the high rate cycling. 

As previously determined, Si-G 1:1 gives higher capacity at all current densities applied (Figure 

32 (b)), but inferior stability compared to Si-G 1:2. As detailed in Table 3, the capacity retention 

of Si-G 1:1 is consistently lower than Si-G 1:2 for all rates tested, but even after higher rates 

were applied it still retained 89.7% capacity. 
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Figure 32: Rate capability data of Si-G 1:2 (a) and Si-G 1:1 (b). 
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Cycle stability and rate capability both confirmed that Si-G 1:2 ratio outperforms the other 

composites and determined the optimum ratio to maximize the long-term battery performance. 

Therefore, CV was conducted on the batteries composed from the Si-G 1:2 composite to more 

closely investigate electrochemical reactions during discharge and charge (Figure 33). The CV 

test was performed on a freshly-prepared cell with a scan rate of 0.1 mV s
-1

 and a voltage range 

of 0.05-1.5 V. In the first cathodic scan (lithiation), the current begins to increase sharply at 0.8 

V, followed by a current plateau from around 0.7 V to around 0.2 V. This is due to the 

decomposition of electrolyte and the formation of SEI.
182,183

 In addition, the irreversible first 

cycle capacity of graphene also helps to explain the long plateau. The remaining peak extending 

from 0.2 V to the low cut-off voltage is characteristic to the lithiation of Si. Meanwhile, the first 

anodic scan (delithiation) develops a weak current plateau from 0.2V to 0.5V. In future cycles, 

the CV curve reveals the development of a 0.2 V peak in the cathodic scan and two peaks at 0.3 

V and 0.5 V within the anodic scan, characteristic to the formation of amorphous silicon.
166,181

 

The area circumscribed by the anodic curves in each full cycle keeps increasing in the first five 

cycles and after accounting for the initial irreversible discharge capacity the area of the cathodic 

scan increases for each of the future cycles. This further suggests that more silicon is activated as 

the stress for lithiation and delithiation decreases in future cycles. 
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Figure 33: Cyclic voltammetry curves of Si-G 1:2 composite of first five cycles at a scan rate of 

0.1 mV s-1 in the voltage range of 0.05-1.5 V. 

 

3.4 Conclusions and remarks  

In summary, graphene wrapped silicon composites were fabricated by a facile freeze-drying 

method and a subsequent annealing treatment. Different ratios of Si and GO were used to obtain 

a variety of Si-Gs, which were further characterized and investigated by both structural and 

electrochemical tests. When appropriate Si and GO ratios were utilized, such as 1:1 and 1:2, the 

Si-NPs were well wrapped by graphene. The wrapped Si-G composites not only utilize the high 

capacity of Si, but also harness graphene’s conductivity and flexibility to contribute conductivity 

to the electrode and accommodate the volume change of Si. The first of two composites showing 

promising electrochemical performance, Si-G 1:1 showed a high reversible capacity of 1200 mA 
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h g
-1

, much higher than graphene and with much better stability than the regular Si-NP electrode. 

The more optimal composite Si-G 1:2 achieved superior stability, its capacity continuing to 

increase for the first 50 cycles. After 200 cycles, Si-G 1:2 retained a specific capacity of 786.3 

mA h g
-1

, similar to its initial capacity. This performance was achieved with no tedious or 

extreme treatments and without the presence of electrolyte additives, making it possible for mass 

production in commercial applications. Both the facile synthesis of the material and superior 

performance make Si-G composite a promising anode material for next-generation lithium ion 

batteries. 

Extended efforts have been made for this project. Carbon coating by a chemical-vapor-

deposition (CVD) method was used to build a carbon layer within the space of the silicon and 

graphene composite. With this method, the pathways for the electron transport from graphene to 

silicon nano particles as well the contact between active material and current collector was better 

accommodated. Low temperature reduction of graphene in the above Si-G project also continues 

to draw attention from both industrial and academic fields. Here the Si-GO composite was first 

fabricated and then made into electrodes, followed by low temperature reduction of GO at 150 

degrees Celsius. GO in the Si-GO composites was examined by Raman spectroscopy and FTIR 

to study the effect of low temperature reduction. The result showed the Go was well reduced and 

implied qualities of graphene. From both the material characterization and battery performance it 

can be concluded that graphene oxide is effectively reduced to graphene, offering significantly 

improved performance for silicon regarding both capacity and stability. 
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4.0 Co3O4 grown on stainless steel mesh for LIB’s anode material 

4.1 Introduction and purpose of study  

Compared to the conventional graphite (372 mAh g
-1

) used in lithium ion batteries, transition 

metal oxides such as TiO2,
110

 Co3O4, 
111

 Mn3O4,
112

 Fe3O4
113

 and CoO
114

 show as high as twice or 

three times the capacity. Unfortunately, similar to that of materials mentioned above, practical 

usage of transitional metal oxides in LIBs is also hindered by their large irreversible capacity at 

1
st
 discharge and large volume change with severe particle aggregation during charge and 

discharge, which leads to poor rate performance and cycle capabilities caused by electrode 

degradation by loss of contact points between the active material and the current collector.
140,141

 

Poizot et al. proved for the first time that transitional metal oxides can store lithium via a 

heterogeneous conversion reaction mechanism:
47

 

MxOy + 2y Li → y Li2O + x M  (5) 

In this generalized reaction equation, M stands for any applicable metal, and x and y represent 

integers in the most simplified reaction formula. This reaction was not expected to happen due to 

the very inert reactivity of Li2O with transitional metal oxides at room temperature.
109

 It was 

later clarified that the strengthened electrochemical reactivity of Li2O is owing to the 

nanostructure of the metal oxides. In these nanostructures, Li2O and transitional metals can form 

ultra-tiny grains and they can interphase homogeneously.
134

  

Co3O4 has been known with high lithium electroactivity as anode material in LIBs for many 

years and different methods have been tried to obtain various kinds of Co3O4 nanomaterial.
135

 

Co3O4 nanoparticle, nanotube, nanowire, cage, and Co3O4-carbon composite have all been 

reported to find applications in LIBs because the theoretical capacity of Co3O4 is as high as 
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890mAh g
-1

; more than twice the value of graphite (<372mAh g
-1

) ,which is widely used in 

commercial LIBs. LIBs with Co3O4 as their anode materials are found to store and release energy 

via a process of intercalation and deintercalation of lithium ions, which can also be interpreted as 

formation or decomposition of Li2O.
184

 However, common powder-type materials need a 

conventional electrode fabrication process with a binder and carbon material which will decrease 

the specific energy density of batteries; besides, the long term cycle stability and rate capability 

require further improvement.  

Directly grown Co3O4 nano-materials on current collectors with several strategies have also been 

proposed for LIBs. For example, Fu et al. introduced lemongrass-like morphology of Co3O4 on 

Ni foam with a remarkable performance. However, compared to stainless steel mesh, Nickel 

foam is thicker, thus occupying more space in the battery and lowering the volumetric energy 

density in practical application. Besides, the mechanic strength of the Nickel foam is weaker than 

that of stainless steel. Li et al. introduced the directly grown Co3O4 nanotubes on alumina 

membranes for LIBs and gas sensors.
185

 Compared to the alumina membrane, stainless steel has 

a superior flexibility. Stainless steel has also been adopted as a current collector and substrate by 

some researchers with attractive performances, e.g. Chan et al. developed Si NW on stainless 

steel substrate with a high performance.
106

 Boyano, I et al. successfully deposited C-

LiFePO4\polypyrrole on stainless steel mesh for cathode in LIB.
186

 Thus, we proposed the 

method of directly growing active material on the current collector to enhance the conductivity 

between the current collector and active material. Here, the SS mesh acts as both a current 

collector and a substrate. This method is not only easier but also more economically acceptable 

than other methods using extra substrate, additional conductive materials, and a binder, all of 

which
106

 make the battery fabrication process very time consuming and expensive. Also, 
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conventional battery fabrication methods as mentioned are confronted with the problem of less 

tight contact between the active material and the substrate, which may add difficulties in battery 

fabrication and increase internal resistance of batteries.
138

 Furthermore, the Co3O4 NW can be 

grown on both sides of the mesh at the same time to eliminate a complicated double side coating 

process. In addition, stainless steel has a good mechanical strength as well as a reliable 

electrochemical stability in LIBs. As shown in Figure 34 (A), SS mesh has a great flexibility; 

Co3O4 NW on SS mesh was not peeled off by considerable curling (Figure 34 (B)), which makes 

it promising for application in flexible batteries.
187,188

 

 

Figure 34: Photographs of stainless steel mesh before (A) and after (B) the growth of Co3O4 

nanowire. 

The porous electrode structure and nanostructured active material shown in Figure 34 (B) are 

believed to give huge surface area, large free volume, along with increased lithium-ion diffusion 

rate,
189-192

 endowing the LIBs made from it with superior performance during charge and 

discharge process. The performance of batteries made with Co3O4 on SS mesh was highly 
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satisfactory with a stable capacity of around 800mAh g
-1

after 100 cycles with a current density 

of 200mA g
-1

.  

 

4.2 Experimental methods  

 

Figure 35: A schematic view of the synthesis of the Co3O4 NW on the SS mesh.  

 

Stainless steel (SS) mesh-supported Co3O4 NW electrodes were synthesized via a template-free 

growth method as described in Figure 35. Cobalt Nitrate(10mmol, Co(NO3)2·6H2O, Sigma-

Aldrich) and Ammonia Nitrate(5mmol, NH4NO3, Sigma-Aldrich) were dissolved in an ammonia 

solution consisting of 35 ml water(de-ionized, same below) and 15 ml ammonia (30wt%).Then, 

it was slowly mixed by a magnetic stirrer for 10 min in air at room temperature. After that, the 

solution was transferred to a Petri dish wrapped with Teflon tape. The following perheating step 

was conducted by placing the covered Petri dish in the 90 
o
C oven for 2 h. Meanwhile, the 500-
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mesh SS (3 cm × 3 cm) was sonicated in water and acetone for 15 min respectively to remove 

inorganic salts and organic impurities on the mesh. Then the SS mesh was soaked in 6.0 M HCl 

for 15 min and rinsed with water thoroughly to get rid of metal oxides. After the solution was 

preheated for 2 h, the SS mesh was immersed in it and kept for 12 h at the same temperature. 

After the reaction, the SS mesh was rinsed with de-ionized water and dried in an oven at 60 
o
C, 

followed by calcination under 300 
o
C for 2 h in air with a ramping rate of 2

 o
C per minute. The 

structure and phase composition of the samples obtained was examined by X-ray diffraction 

(XRD). Then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) 

were adapted to investigate the morphology of the sample. To evaluate the performances, CR-

2032 coin cells were fabricated with lithium metal foil as both the reference and counter 

electrode, and 1 M LiPF6 in a mixed solution of ethylene carbonate (EC) and diethyl carbonate 

(DEC) (1:1 volume ratio, Novolyte, USA) was used as the electrolyte. The conventional Co3O4 

NW electrode consisted of Co3O4 NW collected from the SS mesh-supported Co3O4 NW 

electrode, carbon black as a conductive material, PVDF as a binder, and copper (Cu) foil as a 

current collector. 

4.3 Results and discussion  

The color of the SS mesh turned black from the original silver gray color (Figure 34 A) after the 

reaction in the Petri dish. The black material attached to the mesh tightly even after vigorous 

rinse with water and ethanol. The sample was calcined under 300
 o

C after drying in air. The 

black material on the mesh didn’t peel off after the calcination (Figure 34 B).  

Figure 36 A shows the XRD pattern of the SS mesh electrode with the diffraction peaks observed 

at 18.95°, 31.29°, 36.8°, 44.9°, 59.39° and 65.25°, which are indexed to (111), (220), (311), 
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(440), (511) and (440) planes of crystalline Co3O4, in accordance with the standard JCPDS Card 

NO. 42-1467.
193

 No other obvious peaks exist, indicating the absence of any impurities.  

 

Figure 36: XRD patterns of Co3O4 NW on SS mesh before (A) and after (B) cycling. 

 

The morphology of the synthesized material on the SS mesh was clearly shown by SEM that 

Co3O4 NW grew on the SS mesh substrate densely and vertically, making the bare SS wires 

barely visible (Figure 37 A). However, it revealed that the NWs did not block the net skeletons 

of the SS mesh, thus improving the electrolyte diffusion and reaction kinetics between the Co3O4 

NW materials and the electrolyte on both sides. Figure 37 B indicates that the diameters of NWs 

are around 300 nm and some NWs are interconnected during the synthesis. Figure 37 C shows a 

typical TEM image of several Co3O4 NWs peeled off from the SS mesh with dimensions 

consistent with SEM results. In addition, surface roughness can be clearly observed, resulting in 

increased surface area between the electrode and electrolyte. The high crystallinity of Co3O4 

NWs is revealed by the SAED pattern inset in Figure 37 C. The fringes observed in high-
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resolution TEM image in Figure 37 D also confirms crystalline Co3O4 NW with the lattice 

distance of 0.233 nm measured corresponding to (222) plane. 

 

Figure 37: SEM images of Co3O4 NWs on SS mesh at low magnification (A) and high 

magnification (B), TEM image of the Co3O4 NWs on SS mesh (C) (Inset is SAED pattern) and 

the corresponding HRTEM image (D). 

To investigate the electrochemical process during charge and discharge of Co3O4 NW on SS 

mesh, cyclic voltammetry (CV) of the prepared electrode was conducted at a scan rate of 1mV s
-

1
 from 0.01V to 3V (Figure 38). The cathodic peak was observed at 0.52 V in the first cycle, 

corresponding to the first electochemical reduction reaciton of Co3O4 and the formation of solid 

electrolyte interface (SEI). P. Poizot et al have suggested that the formation and decomposition 
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of Li2O takes place in the electrochemical reaction between transitional metal oxides, such as 

CoO and Li in LIBs.
47

 The single reduction peak at 0.52V, which is different from the previous 

result, can be attributed to the incomplete decomposition of Co3O4 in the first discharge 

reaction.
137

 The first anodic peak was observed at 2.11V, corresponding to the oxidation of Co
0
 

to Co
3+

. The electrochemical reaction mechanism of Co3O4 and Li can be interpreted as follows: 

8Li ↔ 8Li
+ 

+ 8e
-
    (6) 

Co3O4 + 8Li
+
 + 8e

-
 ↔ 4Li2O + 3Co  (7) 

Co3O4 + 8Li 4Li2O + 3Co   (8) 
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Figure 38. CV curves of Co3O4 NW on SS mesh. Scan rate 1mV s
-1

, potential range 0.01-3 V. 

 

As shown in Figure 39 A, the cycle stability and rate capability of SS mesh-supported Co3O4 

NW electrode and conventional Co3O4 NW electrode were investigated by the galvanostatic 

discharge and charge measurement with various applied currents. The specific discharge and 

charge capacities in the first cycle of SS mesh-supported Co3O4 NW electrode were 1106.9 mAh 

g
-1

 and 855.1 mAh g
-1

 at a current density of 100 mA g
-1

, with a coulometric efficiency of 77.3%. 

The specific discharge capacity in the second cycle was 883.4 mAh g
-1

 with capacity retention of 

79.8% in respect of first two cycles. The specific capacities of conventional Co3O4 electrode in 

first discharge and charge were 1129 mAh g
-1

 and 782 mAh g
-1

, and the coulometric efficiency 

was 69.3%, 8 percentage points lower than that of Co3O4 NW on SS mesh. The specific 

discharge capacity in the second cycle was 801 mAh g
-1

 and the capacity retention was 70.9%, 

which was 9 percentage points lower than that of Co3O4 NW on SS mesh. 
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Figure 39: Galvanostatic charge and discharge curves of the Co3O4 NW on SS mesh (A) and the 

conventional Co3O4 NW electrode (B). Co3O4 NW on SS mesh and the conventional Co3O4 NW 

electrode at various current rates from 100 to 800 mA g
-1

 with respect to the cycle number (C) 

and cyclic performances of batteries made from Co3O4 NW on SS mesh and conventional Co3O4 

(D). 

The large irreversible capacity during first cycle is attributed to the irreversible conversion 

reaction of the Co3O4 NW by Li ions and the formation of a solid electrolyte interface (SEI) 

layer by electrolyte decomposition. During the second cycle, the difference of the discharge and 

charge capacity was reduced, suggesting that most of irreversible reactions including the 

formation of an SEI layer occurred during the first cycle. Figure 39 C demonstrates the cycle 

stability of SS mesh-supported Co3O4 NW electrode with various current densities. The charge 
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capacity achieved 645 mAh g
-1

 at a current rate of 800 mA g
-1

, which was significantly better 

than that of conventional Co3O4 NW electrode (366 mAh g
-1

). Furthermore, after 30 cycles with 

various current densities, the mesh-supported Co3O4 NW electrode was stabilized at around 880 

mAh g
-1

, introducing the superior cycle stability of the electrode. The recoverable capacity in 

subsequent cycles also well implies the structure integrity of the Co3O4 NW on the electrode. In 

Figure 39 D, Co3O4 NW on SS mesh was first tested at a current density of 100 mA g
-1

. In first 

20 cycles, the capacity increased gradually by around 30 mAh g
-1

 from ~850 to ~880 mAh g
-1

. 

After that, the current density was altered to 200 mA g
-1

. The battery had an initial capacity of 

around 841.3 mAh g
-1

 under 200mA g
-1

. After 100 cycles in total, there was still a capacity of 

765.8mAh g
-1

, which was about 90% the capacity of the initial value. The battery with 

conventional Co3O4 was tested at 100mA g
-1

, but the cyclic performance was far worse than the 

Co3O4 NW on SS mesh, indicating that the battery with Co3O4 NW on SS mesh was superior due 

to the three-dimensional structure of the electrode. 

As mentioned in introduction part, electrode materials being directly synthesized on current 

collector has been reported. To be convenient, a battery’s capacity is usually presented based on 

electrode’s area. The areal capacity of Co3O4 on SS mesh after 100 cycles was calculated to be 

0.675 mAh cm
-2

 at a charge/discharge rate of 0.173 mA cm
-2

. The above capacity is very 

competitive, namely, two to three times that of the reported values in the peer-reviewed articles 

published recent years.
45,46

 

It is assumed that the excellent cycle stability and rate capability are attributed to its unique 

morphology in which the Co3O4 NW is directly connected to the current collector and its porous 

structure of the electrode. These structures of the electrode are expected to reduce resistance of 

the electrode and improve the performance of Li ion batteries, and the idea was confirmed by 
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electrochemical impedance spectroscopy (EIS) measurement compared with the conventional 

Co3O4 NW electrode at fully discharged states (Figure 40). The results of EIS revealed that 

charge transfer resistance of the mesh-supported Co3O4 NW electrode was around 40 ohm lower 

than that of conventional Co3O4 NW electrode. These results correspond to the rate capability 

test in Figure 39 C. Furthermore, it is confirmed that the electrochemical reactions in the directly 

grown Co3O4 NW on mesh are faster, suggesting that the faster electron conduction between the 

current collector and the active materials plays a critical role in the overall battery performance. 

 

Figure 40: EIS results of the Co3O4 nanowires on SS mesh and conventional Co3O4 NW 

electrode at fully discharged states. 



80 
 

Figure 41 shows the pictures of Co3O4 NW on SS mesh after 100 cycles. A coin cell was 

dissembled at fully-charged state to obtain the cycled electrode, which was subsequently washed 

with dimethyl carbonate (DMC) to remove any residue electrolyte or organic by-product from 

electrode reaction. The cycled electrode was bent by fingers (Figure 41 A) and tweezers (Figure 

41 B). No active material peeled off from the significant deformation. This proves that Co3O4 

NW is firmly attached to SS mesh even after the electrochemical process.   

 

Figure 41 Photographs of Co3O4 NW on SS mesh after cycling, (A) bended with fingers, (B) 

bended with tweezers. 

XRD and SEM were adopted to study the morphology and composition of the electrode. XRD 

was first conducted to confirm the composition of the used electrode. As shown in Figure 36 B, 

only stainless steel’s characteristic peaks are found in the pattern, which proves that Co3O4 did 

not return to its original spinel crystalline form after cycling. This result is consistent with 

several previous reports about the chemical reactivity of Co3O4.
138,188,194

 However, despite the 

structure transformation, the Co3O4 NW maintained its structure integrity after long-term cycling 

as shown in the following SEM images. Figure 42 A shows the Co3O4 NW on SS mesh from a 

large scale. It is easy to see that the 3-D network structure of the original electrode is well 
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maintained after cycling; Co3O4 NWs are firmly attached to the mesh without being peeled off 

by the repeated lithiation/delithition processes. Compared to Figure 37 A, the pores on the mesh 

do not vanish, although the size of these pores diminishes after cycling, thus these pores can 

continue contributing to offer a better pathway for Li
+
 diffusion in the electrolyte than traditional 

copper foil electrode.  Figure 42 B is a zoomed-in image of the same mesh. The average 

diameter of Co3O4 NWs is around 300 nm, which is approximately 100 nm greater than its 

original value. This volume expansion can be an effect of lithiation during the discharge process 

of the half cell. 

 

Figure 42 SEM images of Co3O4 NW on SS mesh after cycling. 

 

4.4 Conclusions and remarks  

In conclusion, a facile way was introduced to synthesize Co3O4 NW on stainless steel mesh 

substrate directly with a novel morphology and an excellent electrochemical performance in 

LIBs. The directly-grown Co3O4 NW on SS mesh was prepared via an ammonia-evaporation-

induced method followed by calcination under 300 ℃  in air. Free from the tedious and 



82 
 

economically unfavorable electrode fabrication, Co3O4 NW on SS mesh simplified the process 

by a direct grow technique. Furthermore, it better addresses the capacity as well as the durability 

issue of Co3O4. Together with its superior mechanical strength and flexibility, this novel Co3O4 

may find many applications in different types of LIBs. The crystal structure of as-obtained 

Co3O4 was identified by X-ray diffraction. The morphology of prepared Co3O4 NW on SS mesh 

was characterized by SEM and TEM. SEM images showed a SS mesh-sketched structure with 

densely grown nanowires and ordered meshes on it. The charge and discharge capabilities were 

stabilized at around 880mAh g
-1

 after 30 cycles with various current densities. Electrochemical 

impedance spectroscopy (EIS) confirmed that the charge transfer resistance of the mesh-

supported Co3O4 NW electrode was prominently lower than that of conventional Co3O4 NW 

electrode.  

It was confirmed that Co3O4 NW was directly and vertically formed on the SS-mesh substrate 

with the original net structure of the mesh. We suggest that the unique morphology of the 

material and the structure of the electrode should be responsible for the superior performance for 

the LIB with the low charge transfer resistance. Consequently, the Co3O4 NW on the SS-mesh 

anode exhibited 855.1 mAh g
-1

 of initial capacity at 100 mA g
-1

 of the current density, which 

corresponds to the theoretical capacity of Co3O4. Furthermore, it presents a capacity of 655 mAh 

g
-1

 at 800 mA g
-1

 of the current density which is 300 mAh g
-1

 higher than the capacity of 

conventionally prepared electrode of Co3O4 NW. After 30 cycles of the rate capability test, the 

electrode revealed superior cycle stability with 880 mAh g
-1

 at the current density of 100 mA g
-1

, 

which is a little higher than the initial capacity. All these results suggest that the SS-mesh 

supported Co3O4 nanowire anode should be a promising electrode for Li ion batteries. 
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5.0 Summary and future direction  

As a key component in a LIB, an anode plays a vital role in determining the overall performance 

of a battery. Thus, it is an essential task to develop novel anode materials with enhanced 

performance to meet high-energy and high-power demands of next generation LIBs. Herein, 

successful efforts have been made to obtain Si-G composites and electrodes with Co3O4 NW 

directly grown on the SS mesh. Graphene wrapped silicon nanoparticles not only provide better 

electric conductivity of the active material, but also help protect silicon from irreversible 

structural destruction. A stable SEI layer is formed on the surface of the Si-G composite upon 

cycling, contributing to the evident reduction of side reactions in following cycles. Co3O4 NW on 

the SS mesh as an electrode material in LIBs has an advantage over traditional electrode 

materials in terms of both electrode fabrication and electrochemical performance. The 

preparation Co3O4 NW on the SS mesh eliminates the time-consuming and expensive electrode-

casting process by directly growing active material on the substrate. By abandoning binder 

materials and conductive additives, the Co3O4 NW improves the utility of overall electrode mass. 

The directly grown Co3O4 NW on SS mesh possesses merits that can improve its performance in 

LIBs. Direct growth of Co3O4 NW on SS mesh presents a better contact between the active 

material and the substrate, and thus enhances the electric conductivity in between. The nano 

porous structure of the material also provides sufficient pathways for lithium ion diffusion. The 

internal resistance of batteries can be lessened due to these virtues. 

Promising results have been presented with both silicon and cobalt materials. To obtain more 

competitive anode materials, continuous work should be devoted to relevant research. For 

example, the synthesis process of the Si-G composite can be simplified by using low temperature 

reduction instead of the high-temperature pyrolysis adopted in this research. Silicon has a 
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theoretical capacity of 4200 mA g
-1

, but only 800 mAh g
-1

 is achieved in this research, leaving 

much room for improvement. Except for Co3O4, other transitional metal oxides such manganese 

oxides, iron oxides present attractive performance in LIBs, while offers easy synthesis and low 

cost, and research in these areas bears tremendous significance. 
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