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Abstract

Protein sequences are essential for encoding molecular structures and functions. Conse-

quently, biologists invest substantial resources and time discovering functional patterns

in proteins. Using high-throughput technologies, biologists are generating an increasing

amount of data. Thus, the major challenge in biosequencing today is the ability to conduct

data analysis in an efficient and productive manner. Conserved amino acids in proteins

reveal important functional domains within protein families. Conversely, less conserved

amino acid variations within these protein sequence patterns reveal areas of evolutionary

and functional divergence.

Exploring protein families using existing methods such as multiple sequence alignment is

computationally expensive, thus pattern search is used. However, at present, combinatorial

methods of pattern search generate a large set of solutions, and probabilistic methods

require richer representations. They require biological ground truth of the input sequences,

such as gene name or taxonomic species, as class labels based on traditional classification

practice to train a model for predicting unknown sequences. However, these algorithms

are inherently biased by mislabelling and may not be able to reveal class characteristics in

a detailed and succinct manner.

A novel pattern representation called an Aligned Pattern Cluster (AP Cluster) as de-

veloped in this dissertation is compact yet rich. It captures conservations and variations

of amino acids and covers more sequences with lower entropy and greatly reduces the

number of patterns. AP Clusters contain statistically significant patterns with variations;

their importance has been confirmed by the following biological evidences: 1) Most of
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the discovered AP Clusters correspond to binding segments while their aligned columns

correspond to binding sites as verified by pFam, PROSITE, and the three-dimensional

structure. 2) By compacting strong correlated functional information together, AP Clus-

ters are able to reveal class characteristics for taxonomical classes, gene classes and other

functional classes, or incorrect class labelling. 3) Co-occurrence of AP Clusters on the

same homologous protein sequences are spatially close in the protein’s three-dimensional

structure.

These results demonstrate the power and usefulness of AP Clusters. They bring in

similar statistically significance patterns with variation together and align them to reveal

protein regional functionality, class characteristics, binding and interacting sites for the

study of protein-protein and protein-drug interactions, for differentiation of cancer tumour

types, targeted gene therapy as well as for drug target discovery.
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Chapter 1

Introduction

I have called this principle, by which

each slight variation, if useful, is

preserved, by the term of Natural

Selection.

Charles Darwin

Proteins are crucial in the biological functions for all living organisms, including human.

Protein sequences are essential in encoding their molecular structures and functions. Con-

sequently, biologists invest substantial resources and time discovering functional patterns

in proteins. The human genome was encoded in a decade-long race between scientists and

industry in the 1990s, and today, the ENCODE (Encyclopedia Of DNA Elements) project,

attempts to identify all functional elements in the human genome sequence. We are now

able to sequence genomes quickly and economically; the next generation sequencing is now

posed at the edge of scientific discoveries. Using high-throughput technologies, biologists
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are generating an increasing amount of data. Thus, the major challenge in acquiring useful

results in biosequencing today is the ability to conduct data analysis in order to discover

useful knowledge from them in an efficient and productive way.

As the amount of the biomolecular data is becoming larger and our understanding

and the use of the inherent patterns in the data become more complex and diverse, new

methods are needed to acquire knowledge from the data quickly and effectively. Today,

exploring useful knowledge from protein families using existing methods, such as multiple

sequence alignment, is computationally expensive; thus, pattern search is used. However,

at present, combinatorial methods of pattern search generate a large set of solutions, and

probabilistic methods require richer representations. In this approach, biological ground

truth of the input sequences, such as gene name or taxonomic species, can be used as

class labels in traditional classification are required to train a model for predicting novel

sequences. However, these algorithms are inherently biased by the training set. Supervised

methods of classifying proteins relying on class labels are often affected by mislabelling of

the class labels in the training set or by unbalanced classes. Among the unsupervised

approaches, the clustering methods of sequence analysis focus on discovering conserved re-

gions of importance. In global alignment, multiple sequence alignment is time consuming

and inaccurate for divergent sequences. On the other hand, motif finding does not repre-

sent the patterns adequately for discovering further knowledge. In most of the clustering

methods, they try to cluster the protein sequences into clusters which might be related

to protein classes. However, as we have observed, different regions may have somewhat

different characteristics when relating to protein classes. It is very difficult to know a priori

how different functional regions are associated with class variation. We have to rely on the

2



data to reveal these subtle relations.

The objective of this dissertation research is to acquire useful information from large

multiple protein sequence datasets. Aligning and clustering patterns attempt to extract

knowledge from data alone and is a paradigm shift from current pattern analysis ap-

proaches. An advantage of this approach is that it does not rely on a priori knowledge,

wet-lab experiments, or stringent constraints to acquire useful information. In fact, it is

a data-driven method with strong statistical backing and algorithmic efficacy to render

knowledge-rich representation quickly, accurately and comprehensively. It is a paradigm

shift from the current pattern analysis approaches. This dissertation explores and follows

the new data to knowledge paradigm in proteomic application; that is, it attempts to ac-

quire protein knowledge directly from protein sequence data. It is intended to create a

rich yet compact pattern representation capturing conservations and variations in a pro-

tein sequence family to reveal biological functionality as well as class characteristics at

the amino acid association level within different protein sequence regions without relying

on class knowledge or being biased by unknown governing class characteristics inherent in

the data. After patterns in the data are discovered, their significance and connection to

the biological data can then be interpreted with the support of statistical and functional

homology. In this dissertation, three major research questions are addressed and answered:

1. Are the discovered AP Clusters, patterns with variations, biologically meaningful

and important? Do the discovered AP Clusters correspond to binding segments and

their aligned columns correspond to binding sites? The answer obtained from the

research question is affirmative as both claims are confirmed by pFam, PROSITE,
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and proteins’ three-dimensional structure.

2. Are the variations significantly found in AP Clusters (in patterns, sites, and amino

acids within certain sites ) reflect biologically important class characteristics? The

answer is that biological ground truth of the input sequences, such as gene names

or taxonomic species, when used as class labels, does verify the above claims in this

dissertation through the use of cluster validity measures which are unaffected by data

biases.

3. Are the highly co-occurring AP Clusters discovered within a homologous protein

structurally and functionally significant? The answer from this dissertation is con-

firmed through the discovery and clustering of distant AP Clusters on the same

homologous protein sequence based on their co-occurrences. They are by and large,

spatially close in the proteins’ three-dimensional structure and/or contain molecular

interacting functionality as reported in biology literatures.

Sequence analysis is at the heart of our understanding of protein functions since biolog-

ical data need to be organized to infer biological knowledge. This data-driven method can

discover specific target motifs, amino acids characteristics, and motif associations to benefit

the scientific community as well as the healthcare and drug industry. The results demon-

strate the power of AP Clusters in revealing protein-drug interactions for drug research

and to differentiate cancer tumors for targeted gene therapy.
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1.1 Thesis Contributions

The contributions of this dissertation can be broken down into three sections. Section

I, covered by Chapter 3 and Chapter 4, addresses the most fundamental notion of the

dissertation, Aligned Pattern Clusters. It is on the alignment and clustering of statistically

significant and non-redundant sequence patterns which are obtained from a previously

developed algorithm. It also encompasses its dual representation in the induced data space

as well as in a compact structural representation known as an Aligned Pattern Directed

Hypergraph. Section II, covered in Chapter 5, brings out the important contribution of

Aligned Pattern Directed Hypergraphs in revealing the class characteristics of different

protein regions without relying on class labels and prior knowledge. It is unsupervised,

data driven, unbiased by the input data, such as mislabelling, unbalanced classes and

insufficient or incorrect class information. Section III, covered by Chapter 6, shows another

novel contribution in revealing joint functionality of different regions of proteins through

clustering via co-occurrence score the discovered Aligned Pattern Clusters. The results of

revealing region to regions interaction and/or bindings have significant impact in the study

of macromolecular interaction and drug discovery.

1.1.1 Section I of the Dissertation: Pattern Clustering and Rep-

resentations

A binding site is a region in in protein that chemically binds another molecule called the

ligand. Binding sites are typically the functional focus of a protein, and therefore, recog-
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nizing them is essential in protein function analysis. Although each protein of the same

protein family performs the same function, there are variations amongst the amino acids

across each primary sequence. Hence, the conserved amino acid associations across the

protein sequences from one protein family reflect its important functions. Similarly, the

ubiquitin protein, which forms an ubiquitin chain to regulate processes, contains seven

binding residues that are also surrounded by binding segments. These binding residues

and segments function by linking individual ubiquitins to create a unique poly-ubiquitin

that can be recognized by other ubiquitins. Linking of these binding proteins is directly

involved in the control of cancer progression [82]. A common approach to study a protein

family’s function is to find sequence patterns that have variations. Functional patterns

can mutate through evolution [37, 30]; thus each occurrence of the pattern may not be an

exact replica at the same location. Hence it is difficult to find and locate the segments that

embed the binding residues. In bioinformatics, the two common approaches for identifying

a protein family’s functions are by multiple sequence alignment and by motif finding. A

motif is a sequence pattern that has biological significance, and is thus typically statisti-

cally significant. Multiple sequence alignment aligns a set of protein sequences from the

same protein family in order to identify important regions and sites in the resulting align-

ment. Common multiple sequence alignments include Clustal Omega[186], T-Coffee[139],

DIALIGN[8] and HMMER[60]. However, finding the global optimal alignment is computa-

tionally expensive, and is known in computational complexity analysis as an NP-complete

problem [202]. Even with approximate heuristics added, multiple sequence alignment is

not efficient in handling large datasets. Moreover, this approach is only appropriate for

highly similar sequences, and not for sequences with considerable dissimilarity. Therefore,
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instead of aligning the entire sequence globally, it is only suitable to identify similarities

locally. Thus, the suspected consensus regions have to be first located and preprocessed

ahead of alignment. Another approach for identifying a protein family’s function by sim-

ilar local subsequences [69] is called motif finding, which builds motifs into combinatorial

models or probabilistic models. The combinatorial model identifies commonly repeated

sequence patterns exhaustively [31, 81, 142]. Work reported in Pevzner et al. [148] and

Mandoiu et al. [131] created cliques where vertices are sequence patterns, edges connect

similar sequence patterns, and complete graphs represent the best consensus patterns.

However, these combinatorial methods are computationally intensive [120] and produce

too many likely candidates. The probabilistic model commonly uses the position weight

matrix (PWM), which estimates an amino acid distribution at each position while assum-

ing that each position is independent [3, 87]. An alternative random sequence synthesis

takes further frame-shifted position into consideration by optimally aligning amino acids

to create a probabilistic sequence [39, 213]. Other probabilistic methods make use of the

Markov model, where the current state depends on a specified set of past states. One such

example is the popular pFam database [175], which builds a profile Hidden Markov Model

(HMM) from the multiple sequence alignment of a protein family for classifying proteins

and predicting their functionality.

1.1.2 Section II of the Dissertation: Class Characteristics

Two well adopted algorithms of protein sequence classification are the Hidden Markov

Models (HMMs) and the Support Vector Machines (SVMs). They have been used to clas-
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sify protein sequences based on their class labels. Both use training sequences with known

class labels (e.g., protein family, gene function or taxonomic species) to train a classification

model and use it later to predict the class of a new protein sequence. However, training a

model may pose a methodological problem because biological class labels may be difficult

or impossible to acquire and, sometimes, may be changed base on new understandings

[209]. As a consequence, the classification accuracy of these methods is often affected by

incorrect or insufficient class information, such as mislabelling, incorrect partitioning, and

imbalanced class samples.

Because of these recognized problems, some researchers prefer to use unsupervised clus-

tering algorithms to identify amino acid variations without being affected by training error

[141]. Traditional methods obtain clusters based on the entire protein sequences encounter

new class association problems, since functional complexity of proteins causes functional

regions to have multiple functional class characteristics. Hence, a more appropriate ap-

proach to study how protein functionality is related to its class characteristics is to first

identify homologous local functional regions before exploring how the regional functionality

related to its inherent class.

Consequently, we summarize the main contribution of this dissertation section in re-

vealing class characteristics as follows:

1. The use of Aligned Pattern Clusters (AP Clusters) reveals class characteristics [115]:

The statistical significant patterns computed in linear time and space when aligned

and clustered into AP Clusters could reveal the functional and class characteristics

of critical protein regions without relying on prior knowledge by taking advantage of
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their patterns and the aligned amino acid variations.

2. External cluster validity measures: Since AP Clusters aggregated the most important

functional information into critical regions, incorporating external class labels related

distinct AP Cluster representations (patterns, columns, and amino acid variations) to

different class distributions. Among these three external measures, the class entropy

of a particular representation reveals how different representations of AP Clusters

are related to class labels. The next two measures, namely Class Information Gain

and Class Mutual Information, related the column of aligned amino acids to its class

labels.

3. Internal cluster validity measures: By bringing and compacting relevant functional

information into AP Clusters, the three internal measures, (1) Entropy Redundancy,

(2) Normalized Sum of Mutual Information Redundancy, and (3) Normalized Sum

of Information Gain, are computed from the data to reveal the columns with class

distribution so as to identify those that may reveal the underlying patterns or residues

corresponding to a single class or various classes. Such an an approach is unsupervised

and data-driven.

1.1.3 Section III of the Dissertation: Co-Occurrence of AP Clus-

ters

No specific methods are available to indicate which amino acids in the pattern are not

statistically or functionally significant in such models. Consequently, the Aligned Pattern
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Cluster (AP Cluster) was introduced in our previous work [116] to provide a knowledge-rich

representation of functional regions, by capturing their statistically significant associations

of the residues along the sequences and the distribution of their occurrence on each of their

aligned segment regions.

With this novel representation, we are now able to study and exploit the co-occurrence

to identify binding sites within a protein, between two interacting proteins [123, 93], and

between protein and DNA [119, 41]. Here, we define co-occurring patterns as patterns

occurring on the same protein sequence. Related works [204, 35, 135] suggests that co-

occurring (correlated) residues can provide insights into protein structures. Their hypoth-

esis is that if two residues of a protein form a contact, an amino acid substitution at one

position is expected to be compensated by a substitution in another position over the evo-

lutionary time-scale. However, there are far too many co-occurring patterns or residues to

consider since the number of patterns discovered and residues as well as their correlations

are enormous. Hence, the major drawback of these approaches is that a large number (i.e.,

the order of 1,000) of homologous and non-redundant protein sequences are required to

learn the underlying statistical model [204, 35].

Also, regarding studies on protein families using Evolutionary Tracing (ET) [124], the

presence or absence of certain clusters of residue on a protein sequence is a main cause

of divergence between globally-specific functions and family-specific functions [129]. Mu-

tagenesis data is required for their studies, and their results suggest that the presence or

absence of co-occurring patterns is likely to be linked to functional divergence [129].

In this aspect, a third important contribution of this dissertation is to provide efficient
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solutions in answering the following two questions: How can we efficiently discover the

frequently co-occurring patterns, given only multiple homologous proteins sequences as

input? And what are the biological reasons for their high co-occurrence and how can

we relate the pattern co-occurrence findings to the underlying reasons? Our hypothesis is

that co-occurring patterns can reflect joint functionality. They might have formed chemical

bonds, or they need to co-operate on certain biological functions. We started our study by

collecting homologous protein sequences from protein databases. We developed an efficient

algorithm based on our previous work [218, 115] to identify the frequently co-occurring

patterns using only sequence data as input. We verified our results by computing spatial

distances between co-occurring patterns using the corresponding 3D structures. We also

surveyed the literature to find additional biological evidence to support the notion of co-

occurrence.

In view of the above observation and experimental results obtained, the contribution

of this dissertation is three-fold. First, we established a framework to study functional re-

gions of proteins by exploiting the co-occurrences of patterns to reveal concurrent distant

functions and structural relations. To our knowledge, this is the first study to identify co-

occurrence of patterns rather than amino acids using only homologous protein sequences

as input. Second, we developed an algorithm that is statistically reliable, efficient, and

visualizable (in domain location, structural and functional relation, amino acid conserva-

tion and variations) as an integrated process. Compared to existing algorithms studying

correlations (in residues), our algorithm is novel in that it does not require a large amount

of homologous protein sequences to identify co-occurrences (of patterns) through training.

Third, our discovered co-occurrences of patterns that are novel to the biological community
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will provide new insights to their studies of biological functions.

1.2 Thesis Organization

The overall structure of the dissertation includes an introduction, a background, and the

remaining chapters divided into three sections: 1) Clustering and Representing Patterns

(Chapters 3, 4); 2) Class Characterization (Chapter 5); and 3) Co-occurring Patterns

(Chapter 6). The contents of these chapters are summarized below with their inter-

dependencies (Fig. 1.1).

Section I of our Aligned Pattern Synthesis Process, as illustrated by the text example,

synthesizes the data by the following steps: the Pattern Discovery Step, the AP Clustering

Step, the Graph Construction Step,and the AP Cluster Refinement Step.

During the Pattern Discovery Step, we discover amongst the family of sequences the

most important sequence patterns, which are non-redundant statistically significant asso-

ciations of amino acids. In the AP Clustering Step, we group and align these patterns

into clusters even though the occurrences of the pattern might start at different positions

in their input sequences. This step synthesizes patterns with variations without having to

search the original input data exhaustively. From this cluster, we synthesize the results

into a probabilistic structural pattern known as an AP Hypergraph; this is accomplished

in the Graph Construction Step. In the AP Cluster Refinement Step, we extend the AP

Clusters into Weak AP Clusters to increase the coverage and then into Conserved AP

Clusters to increase the coverage while maintaining Shannon’s information entropy.
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Figure 1.1: Overview of the AP Synthesis Process applied to the text example. The text
example using the English alphabet will be used repeatedly throughout the dissertation.
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In addition, two steps inferring knowledge from the data Class Characterization Step

and Co-Occurrence Step. Next, in the Class Characterization Step of Section II, we verify

the AP Clusters by six cluster validity measures: three external and three internal ones.

Finally, in the Co-Occurrence Step of Section III, we exploit co-occurring AP Clusters on

the same protein sequence to identify functional regions. We develop an efficient algorithm

to identify the frequently co-occurring patterns using only homologous protein sequences

as input.

1.3 List of Publications

Journal publications related to this dissertation:

1. Pre-Thesis: Andrew K.C. Wong, Dennis Zhuang, Gary C.L. Li, and En-Shiun An-
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quences”, IEEE Transactions on Knowledge and Data Engineering, 24(8), pp. 1408-

1421, 2012.

2. Chapter 3: Andrew K.C. Wong, and En-Shiun Annie Lee. ”Aligning and Cluster-

ing Patterns to Reveal the Functionality of Biosequences”, IEEE Transactions on

Computational Biology and Bioinformatics, 2013 (accepted to appear).

3. Chapter 4: En-Shiun Annie Lee, and Andrew KC Wong. ”Ranking and compacting

binding segments of protein families using aligned pattern clusters.” Proteome Science

11.Suppl 1 (2013): S8.
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4. Chapter 5: En-Shiun Annie Lee, and Andrew K.C. Wong. ”Revealing and Validating

Protein Class Characteristics from Align Pattern Clusters”, BMC Bioinformatics,
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5. Chapter 6: En-Shiun Annie Lee, Sanderz Fung, Ho-Yin Sze-To, and Andrew K.

C. Wong. ”Discovering co-occurring patterns and their biological significance in

protein families”, BMC Bioinformatics, 2014 (Selected for Special Journal edition
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Chapter 2

Literature Review

Biological sequences control many elements of life, from gene expression to enzymatic

reactions. In bioinformatics, revealing the functionality of a protein family’s biological

significance often requires examining its primary sequences. Identifying conserved sequence

patterns in proteins is important for the study of essential protein functions. Furthermore,

mutated amino acids in these conserved regions may reflect special functionality that has

evolutionarily diverged into sub-families [51]. The structure of this literature review is

as follows: (1) experiments and databases, (2) pattern representation and visualization,

(3) multiple sequence alignment, (4) motif finding (discover patterns with variations),

(5) supervised classification, and (6) co-occurring patterns. They are not partitioned by

Section I, II, III because these topics are procedurally progressive and may relate to more

than one section.

1. Experiments and Databases: Traditional experiments are time and labor intensive;
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therefore, their results are stored into databases. These databases store informa-

tion either from human-curated experimental results or from annotation algorithms.

Even though databases are useful search tools, they cannot discover new knowledge;

therefore, sequence analysis techniques like Aligned Pattern Cluster (AP Cluster) as

proposed in this dissertation are employed.

2. Multiple sequence alignment: Two traditional sequence analysis approaches are mul-

tiple sequence alignment and motif finding. Multiple sequence alignment employs a

full set of protein sequences for the entire sequence. However, the alignment depends

on parameter optimization and requires input sequences to be non-divergent with

high similarity.

3. Motif finding: To find local similarity, motif finding discovers patterns either sequen-

tially, probabilistically, or graphically. Motif finding assumes fixed length, number

of mutations, and distance of mutations. Probabilistic patterns compress the rep-

resentations into over-simplified random variables. Lastly, graphical patterns are

computationally intensive. To overcome these shortcomings, AP Cluster is proposed,

which furnishes a flexible, rich, yet fast algorithm for representing patterns with

variations.

4. Classification: Protein sequence classification is by and large based on supervised

methods, such as Hidden Markov Models (HMMs) and Support Vector Machines

(SVMs), which use a training dataset to build a model for predicting the testing

dataset. Any errors in the training dataset, such as mislabelling, incorrect partition-

ing, or unbalanced datasets, will affect the accuracy of the supervised algorithms.
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This can be demonstrated in a synthetic dataset with errors injected. Therefore,

unsupervised clustering with class validity measures for AP Cluster is proposed in

this dissertation instead. Further experiments found a trade-off between predictive

accuracy and algorithmic speed, both of which AP Cluster overcomes.

5. Co-occurring patterns: Existing methods such as Evolutionary Tracing requires pre-

aligned sequences and mutagenesis requires a large amount of input sequences, both

of which are time and data intensive. Alternatively, AP Cluster only considers the

functional regions and relates them by their induced data, which require minimal

dataset due to the fast regional pattern alignment.

Although there are several excellent general reviews of pattern discovery, clustering, and

classification in data mining, machine learning, and bioinformatics, to some extent, each

reflects a particular application domain and research perspective. Due to the pace of

development and breadth of proteomic research, a truly comprehensive review is beyond

the scope of this dissertation. Only a brief review is given in this chapter.

2.1 Wetlab Experiments and Protein Databases

The underlying belief of evolution is that amino acids in functional regions are under selec-

tion pressure to maintain their functional integrity and thus undergo fewer mutations than

less functionally important ones [124]. While wetlab experiments, such as alanine scan,

x-ray crystallography, and mass spectroscopy, are labor and time intensive, experimental

annotations are saved into databases for future searches. Although database scanning can
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be used for finding protein annotations, no novel knowledge discovery can be made. In this

dissertation, the protein sequence datasets were extracted from databases including the

Pfam and UniProt [17]. Pfam [63] sequences are built from multiple sequence alignments

with the help of hidden Markov model; thus, the sequences have been pre-processed for

correctness. UniProt sequences are collected from a string query search of the database, so

the quality of the sequences depends on the search terms. Therefore, the sequence quality

of UniProt is less consistent than Pfam. Additional a priori information for confirming the

computational results are taken from PROSITE, SCOP, CATH, and Protein Databank

(PDB) [20]. These protein databases are described in greater detail below.

The Protein Databank (PDB) [20] contains the coordinate files of three-dimensional

structure of all possible proteins that have been crystallized by experiments. The method-

ology for obtaining these structures includes nuclear magnetic resonance (NMR), electron

microscopy, and x-ray diffraction. UniProt [17] database stores the primary sequences of

these protein structures with functional information. The protein information annotated

in this database includes protein function, enzyme information, protein-protein interac-

tion, patterns, domains, and binding sites. In addition, UniProt Taxonomy allows the

identification of each species’ taxonomy, which acts as the biological class label for the

protein sequence. Hence, these protein databases provide biological background informa-

tion: the PDB provides three-dimensional structural information and UniProt provides the

biologically annotated information, such as binding site and taxonomy.

Proteins are grouped by evolutionary relatedness, i.e., common ancestry of descent, into

protein families that have similar sequences and functions. Several databases describe pro-

tein families: PROSITE, SCOP, CATH, and Pfam. First, PROSITE [16] is a database of
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known homologous protein motifs compiled by biologists who have annotated the database

with motifs of biological significance, such as active sites or binding sites. However, expert

curation of biological knowledge limits the expansion of the database. The PROSITE text

search allows complex regular expressions for its input. Next, Structural Classification of

Proteins (SCOP) [9] is a protein family database that is primarily manually currated into

structural classes based on structure and sequence similarities. Then, Class Architecture

Topology Homologous Super-family (CATH) [45] is a protein family database based on

semi-automatic classification to group the proteins. Finally, Pfam [63] is a protein family

database that classifies the proteins by multiple sequence alignments using hidden Markov

models.

2.2 Multiple Sequence Alignment

Sequence analysis is based on the assumption that evolutionarily conserved sequences are

more similar. Multiple sequence alignment (MSA) takes a set of sequences and lines up

the same amino acids in the same vertical columns by adding wildcard characters, which

matches any single character in the alphabet, and gaps, which is a null character, into the

sequences. Types of MSA algorithms range from exact alignment to heuristic algorithms,

which are trade-offs between runtime and accuracy. Exact alignments are slow (i.e., O(nk)

for k sequences n long) but accurate. Therefore, progressive alignments, such as ClustalW

[108], use an adjusted score for faster approximate solution; however, initialization errors

are propagated. It is not mentioned if ClustalW can benefit from randomized starting

sequences. To overcome propagated errors, consistency alignment, such as T-Coffee [139]
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uses a library combining local and global alignment that runs O(n) times slower. Proba-

bilistic alignment, such as ProbCons [55], is known to have an increase in sensitivity and

accuracy. AP Clusters discover significant patterns, and then aligns and clusters them into

similarity groups; thus, combinatorial complexity in matching is drastically reduced.

Based on the algorithm and the set of sequences inputs, there is no correct alignment

but only optimal alignments according to the score and termination. Thus, parameters

that affect the optimal alignment include: (1) input sequences, (2) score (similarity and

penalty), (3) objective function, (4) algorithm, and (5) termination conditions. To begin,

the set of sequences that is selected for MSA will affect the quality of the results. In

general, sequences with low similarity cannot be aligned, and thus, some practical strategies

such as sub-grouping will pre-align sequences. Secondly, the score’s similarity and penalty

directly affect the optimization of the algorithm. For the similarity score, a matrix of

similarity among amino acids may be used, but it depends on the evolutionary similarity

defined by the user. A penalty is subtracted from the score when gaps are introduced into

the alignment because gaps increase uncertainty in the alignment by adding flexibility to

the alignment. Fixed, affine, position-specific, and residue-specific penalties do not add

any additional runtime to the algorithm; however, linear affine penalties add additional

O(n) to the runtime. Thirdly, the sequence alignment algorithm can be measured by

several possible objective functions: sum-of-pairs, relative entropy, matrix distance, and

normalized matrix distance. Also, additional information may be used to optimize the

algorithm, such as structural information, reading frame, and phylogenetic descent. Finally,

as discovered in this dissertation, the type of the algorithm and how to terminate the

algorithm both affect the resulting alignment as well. These two additional parameters are
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presented in the next chapter (Section I).

Our AP Cluster considers the optimality of the result by comparing entropy of the

results by (1) similarity score, (2) alignment algorithm, and (3) termination condition.

MSAs are evaluated by a set of benchmarks called BaliBASE [188] that contain a set

of true alignments with known three-dimensional structure and conserved regions of the

sequence. The evaluation concludes that MSA is not effective for aligning highly diverged

sequences that may share only limited regions of conservation. For example, sequences

may be derived from ancient recombination events where only a single functional domain

is shared. Therefore, local conservations, such as motif finding, is employed instead.

2.3 Pattern Discovery

Unlike MSA that aligns the full sequence, pattern discovery is able to analyze highly

diverged sequences and find the limited regions of conservation through the similar patterns

it discovers. In motif finding, the input is a group of sequences and a pattern, called the

motif, identified in each sequence at a non-fixed position. Motifs can be rigid without

any degeneracies or variations in the sequence or flexible, allowing some positions to be

wildcards or distant matches. The brute force method of solving flexible motifs is consider

NP-hard [121]. Thus, the better approach is to generate motifs and score them based

on the amount of over-representation (i.e., surprise). In this manner, the highest scoring

motif is the most meaningful. Several motif finding methods exist: iterative, profile, and

graphical. Iterative methods can be (1) bottom-up such as consensus, which greedily adds

motifs, or BLOCKS [77], which generate ungapped blocks; or (2) top-down such as MEME
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[14], which finds the expected motif to maximize the composition iterative, or Gibbs [109],

which use randomly generated solutions are improved iteratively until a local optimum.

Random projection [32] uses MEME and Gibbs starting points and randomly selected

fixed positions. In addition qPMS7 [54] varies q positions of an n-length sequence by no

more than distance d. Both of these heuristic methods are fast, but result in low-quality

motifs. Finally, YMF [173] discovers significant patterns without redundancy and SP-

STAR [32] has a specialized score for subtle signals. Probabilistic methods include Pfam’s

HMM [175] and random graph [213, 39], which represent the pattern as a sequential graph.

Finally the graphical method, WINNOWER [149], builds cliques and finds a consensus.

While sequential methods are bounded by fixed parameters, probabilistic methods are

over-simplified, and graphical methods are slow. The review from Tompa [190] comparing

the motif finding algorithms ranking them from worst to best as follows: CONSENSUS,

MEME, YMF, and Weeder [143]; and the recently published qPMS7 claims to be five times

faster.

AP Cluster (Chapter 3) discovers statistically significant patterns and reduces results by

statistical pruning. It is fast due to its linear time and space algorithm, which is confirmed

by runtime comparison with other methods. The algorithm allows flexible length and

variations, and allows sensitivity trade-off between coverage and entropy.

2.4 Class Characterization

Machine learning can be divided into two categories of algorithms, supervised learning and

unsupervised learning algorithms based on the algorithm’s dependence on external class
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labels. Supervised learning trains a model with desirable class labels to predict future test

samples. Unsupervised learning on the other hand, examines the data itself without class

labels, and creates a model from the given data alone. Its effectiveness of grouping data

according to the group characteristics are usually evaluated through cases with known class

labels.

Supervised learning can be thought of as classification. Typically, the data is separated

into training and testing sets. Each sample given with X as the data and Y as data used

for prediction. Protein sequence classification trains a model using training sequences with

known class labels (e.g., gene function or taxonomic species) to predict the class labels of

new protein sequences. Traditional classification algorithms include decision trees, which

can be extended into random forests, neural networks, and Bayesian methods. However,

these algorithms use class labels exclusively to train the model. However, training a model

is challenging because class labels may be difficult or impossible to acquire and, sometimes,

may not even be correct. The accuracy of these supervised learning algorithms is signifi-

cantly affected by incorrect and changing class labels that occur much more often in omics

research.

Two existing sequential algorithms classify protein sequences based on their class labels:

HMM and the Support Vector Machine (SVM). HMMs are slow and accurate, whereas

SVMs are fast, but their accuracy depend on the kernel, which is a sequence similarity

score; AP Cluster is much faster than both. When compared to AP Cluster, the accuracy

of these methods is effected by mislabelling and unbalance classes, whereas AP Cluster

describe the cluster with respect to these biases.
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To address this question, unsupervised learning employing clusters with validity mea-

sures avoid input class label biases. While previous work uses class labels against the data

in normalized point mutual information [201], AP Cluster utilize Class Information Gain

and Normalized Sum of Mutual Information Redundancy. Information gain has been used

in HMM for selecting a statistically significant model [38], for comparing information gain

between variables [73], and as Markov blankets for removing redundant variables with-

out loosing information [98]. Existing work in cluster validity measures for continuous

variables compare their maximal information-based non-parameteric exploration (MEME)

and MIC (maximal information coefficient) against different measures, Peasron, Spearman,

Mutual Information, Core GC, and Correlation, where the functional relationship provides

scores that roughly equal the coefficient of determination (R2) and is applicable in various

biological datasets [156].

Finally, part of unsupervised learning is the problem of dimensionality reduction, where

a large problem with many dimensions is reduced into a smaller problem with less dimen-

sions. We are furthering developing principal component analysis with spectral analysis

for identifying chemical properties of important sites [165]. As dimensionality increases,

complexity and diversity also increases, and different functional regions may have different

functional characteristics related to different kinds of protein classes. Clustering proteins

based on the entire sequences may mix different functional groups. For instance, certain

functional characteristics in certain regions may be more likely related to gene classes,

taxonomical classes, or others. Therefore, AP Cluster is introduced to first identify a

homologous local functional regions before relating protein functionality to its class char-

acteristics.
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2.5 Co-Occurrence

The final chapter of this dissertation exploits co-occurrence to identify binding sites within

a protein, between two interacting proteins [123, 93], and between a protein and a DNA

[119, 41]. Here, we define co-occurring patterns as patterns occurring on the same protein

sequence. Related works [204, 35, 135] suggests that co-occurring (correlated) residues can

provide insights on protein structures. Their hypothesis is that if two residues of a protein

form a contact, an amino acid substitution at one position is expected to be compensated

by a substitution in another position over the evolutionary timescale. However, the major

drawback of these approaches is that a large number (e.g. the order of 1,000) of homologous

and non-redundant protein sequences are required to learn the underlying statistical model

[204, 35]. Also, regarding studies on protein families using Evolutionary Tracing (ET)

[124], the presence or absence of certain clusters of residue on a protein sequence is a main

cause of divergence between globally-specific functions and family-specific functions [129].

Mutagenesis data is required for their studies, and their results suggest that the presence

or absence of the co-occurring patterns is likely to be linked up with functional divergence

[129].
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Chapter 3

Aligned Pattern Clusters

3.1 Chapter Introduction

In this study, we present the Aligned Pattern Synthesis Process (AP Synthesis Process)

which searches, aggregates, and aligns similar patterns from discovered patterns. First

we use a sequence pattern discovery algorithm [220] that discovers and prunes a set of

statistically significant non-redundant patterns and then aligns and clusters them. By

statistical significance, we mean an imposed statistical criterion such that the association

pattern must significantly deviate from its default random variable with identical and

independently distribution under the null hypothesis. By a redundant pattern, we mean

that the pattern is already covered by a super-pattern that contains it, or the calculated

statistical significance is contributed by the presence of the strong statistically significant

sub-patterns it contains. In this algorithm, first we take a set of multiple sequences of a
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protein family as input. Then, we discover and locate the statistically significant amino

acid association patterns, in linear time and space, while pruning redundant patterns based

on the methodology we have previously developed [220].

Next, we present a new algorithm that aligns and clusters the discovered patterns into

what we call Aligned Pattern Clusters (AP Clusters). We use an hierarchical clustering

algorithm coupled with a dynamic programming alignment procedure with similarity scores

and termination conditions to obtain AP Clusters. We then rank them according to their

statistical significance. The rationale behind aligning and clustering patterns is that once

an AP Cluster with its relative position is obtained, it will reflect the statistically significant

residue association in the patterns (with variations) and also the amino acid distribution

of each of its aligned columns to reveal the functionality of the protein family within the

regions spanned by the patterns in the AP Clusters with statistical ranking and support.

AP Clusters represent protein functional patterns, specifically binding segments, wherever

they are in the input sequences of the protein family.

Applying our AP Synthesis Process to the cytochrome c, ubiquitin, and triosephos-

phate isomerase (TIM) protein families, we found that the AP Clusters do correspond to

the functional binding segments that contain binding residues in all three protein families.

The cytochrome c protein covalently binds the heme [42] attached to two cysteine residues.

The heme’s iron ion is chemically bonded to two binding residues from the opposite sides of

the protein, each of them is surrounded by a sequence pattern with variations (i.e. within

the discovered AP Cluster) referred to as the binding segment. Similarly, the ubiquitin

protein contains seven lysine amino acids as binding residues that function by linking indi-

vidual ubiquitin to create unique poly-ubiquitin recognized by different ubiquitin binding
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proteins. Again, each of them is surrounded by a sequence pattern with variations as the

binding segment. The AP Clusters found in TIM cover both functionally and structurally

important binding sites to the ketose (DHAP) and aldose (GAP) substrates, which are

transformed from one to the other through catalysis. In each of the protein families, we

discover AP Clusters covering significant binding sites. In addition, the AP Synthesis Pro-

cess runs faster than other motif finding algorithms and is not restricted by parameters

such as fixed length and number of variations. This dissertation chapter is organized as fol-

lows: this section on Methods describes the proposed methodology; this section on results

provides the in silico experimental results as evidence of the effectiveness of the proposed

algorithm; and the last results compare different methodologies against our strong, weak,

and conserved AP Clusters.

3.2 Methods

The Input Sequences

Let Σ be an alphabet containing the set of elements {σ1, σ2, . . . , σ|Σ|−1, σ|Σ|}. As an exam-

ple, the English alphabet contains 26 characters, {’a’, ’b’, . . . , ’y’, ’z’}= Σ, mathematically,

σ1 =’a’, σ2 =’b’, . . . , σ25 =’y’, σ26 =’z’, and |Σ| = 26.

A Set of Multiple Sequences Let S = {sk|k = 1, ..., |S|} = {s1, s2, . . . , s|S|−1, s|S|} be

the set of multiple sequences that represents the set of input sequences, where |S| is the

total number of input sequences, and each sequence has length |s1|, |s2|, . . . , |s|S|−1|, |s|S||
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respectively.

Note that the input sequences is also called the data space. Let each sequence, say

sequence k, be sk = sk1 . . . s
k
j . . . s

k
|sk|, where skj ∈ Σ is the element found in sequence k at

position j of that particular sequence. Together the data space is the set of sequences

composed of consecutive elements taken from the alphabet Σ as

s1 = s1
1s

1
2s

1
3 . . . s

1
|s1|, (3.1)

s2 = s2
1s

2
2s

2
3 . . . s

2
|s2|, (3.2)

... (3.3)

sk = sk1 . . . s
k
j . . . s

k
|sk|, (3.4)

... (3.5)

s|S| = s
|S|
1 s
|S|
2 s
|S|
3 . . . s

|S|
|s|S||, (3.6)

A Single Sequence Let sk be a sequence indexed by k composed of consecutive elements

taken from the alphabet Σ. sk = sk1s
k
2 . . . s

k
|sk|−1

sk|sk|, where each ski ∈ Σ and sk is of length

|sk|. For example, bdxejrtewkwkHELLOkcmstsjavtpi is a sequence of length 29. In this

example the pattern is capitalized for the convenience of the reader so it could be easily

observed. This sequence is represented by s1, where |s1| = 29, and the character at position

13 is s1
13 =H.

Definition 1 Each input sequence sk has a class label yk, i.e., (sk, yk). Let y = {y1, y2, ..., y|S|}

be the set of class label corresponding to the set of sequences indexed by k, where each

yk ∈ Y = {class1, class2, ..., class|Y |}, which are a set of class names.

30



3.2.1 The Pattern Discovery Step

In the Pattern Discovery Step, we apply our pattern discovery and pattern pruning al-

gorithm [220] that uses a linear time and space suffix tree to obtain a condensed list of

significant patterns from the family of protein sequences.

Pattern Discovery Definitions

Definition 2 A set of unaligned patterns is defined as P̄ = {p̄i|i = 1, ..., |P̄|} = {p̄1, p̄2, . . . , p̄|P̄|−1, p̄|P̄|}

corresponding to a resulting set of Aligned Patterns P = {pi|i = 1, ..., |P|} = {p1, p2, . . . , p|P|−1, p|P|}

of a fixed length elaborated in the definition for the AP Cluster. An unaligned pattern

p̄i = si1s
i
2...s

i
|p̄i| is an exact substring from S that passes four statistical conditions refined

to a score defined by Wong et al.[220].

An occurrence of the pattern p̄i is expressed as occ(p̄i) = ji such that p̄i = sijis
i
ji+1 . . . s

i
ji+|p̄i|−1,

where i is the index of the sequence in which that pattern occurs, and ji is the starting

index in that sequence si where the pattern begins.

s1 = s1
1...s

1
j1+1s

1
j1+2...s

1
j1+|p̄i|−1s

1
j1+|p̄i|...s

1
|s1| (3.7)

s2 = s2
1...s

2
j2+1s

2
j2+2...s

2
j2+|p̄i|−1s

2
j2+|p̄i|...s

2
|s2| (3.8)

. . . (3.9)

s|S| = s
|S|
1 ...s

|S|
j|S|+1s

|S|
j|S|+2...s

|S|
j|S|+|p̄i|−1

s
|S|
j|S|+|p̄i|...s

|S|
m (3.10)

(3.11)
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Here, a text example (Table 5.1) is examined in detail and presented for clearer under-

standing of the cluster validity measures. The class labels adopted here have no functional

meaning as those related biological classes; they are just class names. These dataset

(Table 5.1) contains three functional patterns of the English words, HELLO, MELLOW, and

BELLOW, which are embedded in fifteen multiple sequences, associated with three class

characteristics: happy, sad, angry.

Table 3.1: Example of Patterns p̄1 =HELLO, p̄2 =MELLOW, and p̄3 =BELLOW
S The Input Sequences

s1 bdxejrtewkwkHELLOkcmstsjavtpi

s2 nfixtHELLOuzdovcaaxnkjfjcvwk

s3 dimtndvkjmkHELLObkcmstsj

s4 tzhgarzofdHELLOpwkxmc

s5 tyjxjqnyHELLOwmopemlqfgptnwnq

s6 kntywtoaxMELLOWbtiasycma

s7 jilxchitivMELLOWriiiweyfzgvuyaa

s8 hmlzvMELLOWorgfeb

s9 xhmlzvqgcanyMELLOWgbfj

s10 vqgcanyffcMELLOWvcnsnjvalbdvr

s11 cbpyhejgkinrphceBELLOWndwzahvkitagtt

s12 ndwlofBELLOWscktbucwqnboeaaklknsrmur

s13 fzomphnlrqhupkqBELLOWyutpfu

s14 skwybrfiBELLOWyvxjdijwqjvs

s15 nknhqexqieaBELLOWybnvrhpnsjnfms

Definition 3 Let D(p̄i) be all the occurrences of the pattern, p̄i, found in the input se-

quence. We refer to D(p̄i) as the data induced by p̄i or the induced data of p̄i. D(p̄i) will

later be used to compute the cluster validity measures to reveal how many amino acids in

each aligned column in an AP Cluster that may correspond to protein classes.
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Pattern Discovery Algorithm: Statistical Conditions for Discovering a Pattern

The Pattern Discovery Step takes advantage of a fast and space-efficient algorithm to dis-

cover high-order patterns that are statistically significant and not redundant [220]. Existing

pattern discovery algorithms use statistical conditions as confidence thresholds to restrict

the patterns discovered. Two existing statistical conditions are frequency count (Table 3.2

(A)), which discovers frequent patterns, and the standard residual test (Table 3.2 (B)),

which discovers statistically significant patterns against the random background

model that is identically and independently distributed. To remove redundant patterns,

Wong et al.[220] introduced a pattern pruning algorithm built into the pattern discovery

algorithm with two additional statistical conditions: (1) delta-closed (Table 3.2 (C)),

and (2) statistically non-induced (Table 3.2 (D)). With condition (1), the algorithm

removes those redundant patterns that are already represented by their super-patterns;

with condition (2) it prunes statistically significant patterns that are actually induced by

their strong statistically significant sub-patterns. Details of these definitions are found in

Wong et al. [220] and the four statistical conditions are presented in Table 3.2, where P is

the pattern, P ′ is the super-pattern, and P ′′ is the sub-pattern. The Pattern Discovery

Table 3.2: Four Statistical Conditions
Conditions Existing Not Redundant
(1) Frequency (A) (C)
Count Frequent Delta-Closed

count(P ) > c count(P ′)
count(P )

< δ

(2) Standard (B) (D)
Residual Statatistically

Significant Non-Induced
zP ≥ t zP |P ′′ ≥ t
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Step with the four statistical conditions from Table 5.1 is executed on the text example.

Each of the resulting patterns and its corresponding four statistical conditions are listed in

Table 3.3. Each column is a statistical condition from Table 3.2 and the patterns satisfy

the conditions.

Table 3.3: Example of the Pattern Discovery Step
(A) c (B) zP (C) δ (D) zP |P ′′

H E L L O 5 904.06 0.8 904.06
M E L L O W 5 5917 0.8 13.97
B E L L O W 5 5917 0.8 13.97

3.2.2 The Aligned Pattern Clustering Step

For the AP Clustering Step, we use a previously developed pattern clustering algorithm to

produce a condensed list of AP Clusters that is flexible in entropy with respect to coverage

[116]. The algorithm groups a set of similar patterns of different lengths obtained from the

Pattern Discovery Step while simultaneously assembling them into aligned sets of patterns

of the same length by inserting gaps and wildcards. The amino acids amongst the patterns

are aligned in the same site (aligned column), reflecting its regional functionality within

the sequence.

Align Pattern Clustering Definitions

Definition 4 A set of AP Clusters C = {C l|l = 1, . . . , |C|} = {C1, C2, . . . , C |C|−1, C |C|}

An AP Cluster, represented by C l, is a group of similar patterns that have been optimally
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grouped and vertically aligned into a set of patterns Pl = {p1, p2, . . . , pm},and is expressed

as

C l = ALIGN(Pl), (3.12)

=



s1
1 s1

2 . . . s1
n

s2
1 s2

2 . . . s2
n

...
...

...
...

sm1 sm2 . . . smn


m×n

=



p1

p2

...

pm


, (3.13)

=

(
c1 c2 . . . cn

)
. (3.14)

where sij ∈ Σ ∪ {−} ∪ {∗} is a pattern pi with a newly aligned column index j. Each of

the |Pl| = m patterns in the rows of C l is of length |C l| = n.

For the text example, the AP Clustering Step creates an AP Cluster containing three

patterns with six aligned columns (Table 3.4).

Table 3.4: Example of an AP Cluster for the text example

pi \cj
(
c1 c2 c3 c4 c5 c6

)
1×6

p1

p2

p3

p4

p5

p6


6×1


H E L L O ∗
B E L L O W
M E L L O W
B A L L S ∗
B A L K S ∗
H A L S ∗


6×6

Definition 5 An Aligned Pattern, which will simply be referred to as a pattern from this
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point forward, is a subsequence of order-preserving elements maximizing the similarity of

the patterns against a set of patterns from AP Cluster, Pl of size |Pl| = m with gaps,

wildcards (any amino acid from the protein alphabet), and mismatches to the length |C l| =

n. Let pi = si1s
i
2 . . . s

i
|pi|, where sij ∈ Σ ∪ {−} ∪ {∗} is an pattern pi with a newly aligned

column index cj.

Definition 6 An aligned column cj in C l represents the jth horizontal position of amino

acids from the set of patterns that forms the current AP Cluster, C l =

(
c1 c2 . . . cn

)
.

A conserved column is an aligned column that is conserved to only one type of amino acid

such that cj = [σ . . . σ . . . σ]T where σ ∈ Σ.

Next, we identify the subset of distinct amino acids that comprises a particular aligned

column, which will be used to calculate its cluster validity measures in Chapter 5. Since

an AP Cluster is composed of a set of aligned sequence patterns, an amino acid in the jth

aligned column, cj, of the patterns in the AP Cluster. Hence, we identify the amino acids

on an aligned column via the patterns in the AP Cluster.

Definition 7 Let Σ(cj) be the set of distinct amino acids that are restricted by an aligned

column cj. In addition, σ is also restricted by the entire pattern it occurs on:

Σ(cj) = {σ = sij|pi = si1...s
i
j...s

i
n, p

i ∈ Pl, σ ∈ Σ}.

We denote σ(cj) as an amino acid in Σ(cj), i.e., σ(cj) ∈ Σ(cj). The notation is used as

pr(σ(cj)), which means pr(cj = σ).
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In the text example, the pattern for the third row is p3 = HELLO, and the aligned

column for the first position is c1 = [HBM ]T . The set of amino acids in the aligned

column c1 is Σ(c1) = {H,B,M}, and the set of amino acids in the aligned column c6 is

Σ(c6) = {∗,W}.

Definition 8 Let Dl be the data induced by AP Cluster C l, which is the subset of the input

sequences, or data space, that is caused by all the occurrences of the patterns contained in

the AP Cluster, C l = {p1, p2, . . . , pm}T . We identify Dl the data induced by C l or the

induced data of C l. As a result, Dl is the union of the extended data (or input sequences)

induced by all the patterns contained in C l, Dl = D1 ∪ D2 ∪ · · · ∪ Dm.

The Overall Align Pattern Clustering Algorithm

The AP Clustering Step is accomplished by the single-linkage hierarchical clustering algo-

rithm that takes an input of a list of patterns and then synthesizes, or more precisely, aligns

and groups them into one or more AP Cluster(s) (Algorithm 1). We modified a hierar-

chical clustering algorithm that synthesizes random sequences [39, 213]. The bi-clustering

nature of the hierarchical clustering algorithm allows sub-clusters to be analyzed with ease

in polynomial time complexity. The hierarchical clustering algorithm iteratively merges

two AP Clusters in a pairwise-manner based on their similarity scores until one of the

termination conditions is reached. The three key parameters of the algorithm are the

Merge Algorithm, the Similarity Score, and the Termination Condition. Using the

text example, Fig. 3.1 demonstrates one iteration of the hierarchical clustering algorithm.

More precisely, it shows the last step of the iterative merge between AP Cluster C1 and
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Algorithm 1 The Single-Linkage Hierarchical Clustering Algorithm

Require: P = {P̄1, ..., P̄|P|} , where |P| = m
Ensure: C = {C1, ..., C|C|}

1: Set all Pi ∈ P as Ci ∈ C
2: while (For all pairs of clusters (Ci, Cj) ∈ C) do
3: Calculate similarity(Ci, Cj)
4: end while
5: while (! termination Conditions) do
6: Select max similarity(Cmaxi , Cmaxj)
7: merge(Cmaxi , Cmaxj) = Cnew
8: Update list of clusters C
9: while (For all pairs of clusters (Cnew, Ci)) do

10: Calculate similarity (Cnew, Ci)
11: end while
12: end while

AP Cluster C2, thereby creating the new AP Cluster C3.

Figure 3.1: The last step in hierarchical clustering. In one iterative step of hierarchical
clustering, an existing AP Cluster, C1 is merged with another AP Cluster, C2, to result in
the new AP Cluster, C3.

Theoretical Runtime Complexity by Big-O Analysis For the runtime of our AP

Synthesis Process (Table 3.5), we assume that m is the number of discovered patterns and

n is the number of aligned columns of the AP Cluster. The first Pattern Discovery Step

results in m number of patterns in O(N) time, where N is the total input size as described
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in Wong et al. [220]. Next, the AP Clustering Step synthesizes a set of AP Clusters as

described in The Single-Linkage Hierarchical Clustering Algorithm. The initiation of each

pattern from line 1 is O(m) time and each pair of AP Clusters afterwards, from lines 2−4,

needs O(m2) time. The main portion of the hierarchical clustering algorithm is a loop

from lines 5− 12 that halts when the Termination Conditions are satisfied. In the worst

case scenario, the loop in line 5 executes m times, when only one pattern is merged into

the main cluster at each iteration. In the best case scenario, the loop executes dlog(m)e

times, where two evenly sized AP Clusters are merged at each iteration. Moreover, the

Termination Conditions typically halt the loop earlier in even fewer iterations. Line 6

selects the maximum value in only O(|C|) time, which is not the longest limiting runtime

step in the loop. In line 7, the main dynamic programming algorithm of the Merge

Algorithm is O(m2) time, when using the Similarity Score to score each column. The

sum-of-pairs scores require an additional O(m1m2) time and the entropy scores need an

additional O(m1 +m2) time, where m1 and m2 are the number of patterns in the first and

the second AP Clusters, respectively. Lastly, line 9 compares the newly created AP Cluster

with all the other existing clusters in O(m) steps. Thus, the overall time complexity of

algorithm is O((m1m2)m2n2) or O((m1 +m2)m2n2). Note that the O(m4) is with respect

to m, which is the total number of patterns discovered in the Pattern Discovery Step.

Therefore to control the runtime for large datasets, the parameters to the Pattern Discovery

Step can be restricted to limit the number of discovered patterns that are inputted into

AP Clustering Step.

In addition, turning on the overlapping support set as a Termination Condition

is a computationally intensive threshold, where the support of the entire AP Cluster is
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Table 3.5: Theoretical Runtime Calculations
Runtime

Pattern Discovery Step O(N)

AP Clustering Step O(n2)
Total O((m1m2)m2n2)

= O(m4)

computed. The loop executing the Merge Algorithm halts if at least one overlapping

support is found in the newly created AP Cluster. The support for each pattern in the AP

Cluster is aggregated and then checked for overlap. This Termination Condition takes

O(|P|numSequences) = O(m|S|) time.

Comparison of Runtimes The following runtime comparison demonstrates that our

AP Synthesis Process is faster than existing motif finding methods. The experimental run-

time was recorded for three protein families: cytochrome c, ubiquitin, and TIM (Table 3.6).

We observed that our AP Synthesis Process was substantially faster than the other motif

finding methods. It should be noted that all the other algorithms were executed under

their default settings. Our AP Synthesis Process is faster because the noisy sequence vari-

ations with weak statistical support were not discovered and thus did not pass as a list

of input patterns to the AP Clustering Step. Overall, the input consists of a shortened

list of discovered patterns rather than the original input sequences. Thus, the runtime

for synthesizing patterns is faster than that for synthesizing all input sequences due to

the smaller search space. Also, in the next AP Clustering Step, the pairwise comparisons

of our hierarchical clustering algorithm are faster than the full, all-way comparisons of

full-linkage k-means clustering algorithms.
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Table 3.6: Runtime Comparisons in Seconds
Methods Cyto c Ubi TIM
AP Cluster 0.18 0.04 0.16
qPMS7 (length≤ 10) [54] 0.21 0.18 0.83
qPMS7 (length> 10) [54] 16.49 17.98 20.16
BLOCKS [77] 2.53 0.15 0.46
Gibbs (w=8-16) [109] 3.32 1.12 2.99
PROJECTION [32] 99.20 4.82 0.25
MEME [14] 111.01 13.98 43.38
CONSENSUS (L=8-16) [80] 289.38 13.53 15.79

The Merge Algorithms

The Merge Algorithm iteratively merges two AP Clusters into one during hierarchical

clustering. Two possible alignment algorithms are considered in this study: the global

Needleman-Wunsch alignment algorithm [136] and the local Smith-Waterman alignment

algorithm [174]. An alignment algorithm is essentially a dynamic programming algorithm

with two steps: (1) forward-scoring that builds a score table by optimizing the sub-scores

recursively and (2)back-tracking that steps through the score table in reverse from the

optimal score to the first possible score in order to arrive at the final solution. The runtime

for computing the score table of two AP Clusters, C1 and C2, in the dynamic programming

algorithm is O(|C1||C2|). Note that, depending on the type of Similarity Score selected,

a linear time complexity is added as described in the next section.

In the resulting score table for the dynamic programming, the final Similarity Score of

the new AP Cluster that is computed from two existing AP Clusters, represented by SAP ,

is used to select the pair of AP Clusters to merge at each iteration of the hierarchical

clustering process. A reward and a penalty are used to calculate the total score of an
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AP Cluster, SAP . A reward, Scol, is added for matching the amino acids in two aligned

columns of each original AP Cluster; a penalty score is deducted for gaps. The equation

below calculates the SAP using global alignment, where ci is an aligned column for C1 and

dj is an aligned column for C2.

SAP [i, j] = max



SAP [i− 1, j − 1] +Scol(ci, dj),

SAP [i, j − 1] +GapPenalty(−, dj),

SAP [i− 1, j] +GapPenalty(ci,−).

(3.15)

The following equation calculates the SAP using local alignment:

SAP [i, j] = max



0

SAP [i− 1, j − 1] +Scol(ci, dj),

SAP [i, j − 1] +GapPenalty(−, dj),

SAP [i− 1, j] +GapPenalty(ci,−).

(3.16)

In the resulting AP Cluster, the symbol ’ ’, the gap, is used to represent the opening

of the pattern by adding an empty null character. The symbol ’*’, the wildcard, is used

to pad the beginning and end of patterns to represent any amino acid that is not a part of

the pattern.

42



The Similarity Scores

Two major categories of Similarity scores, the sum-of-pairs scores and the entropy-based

scores, are examined for mismatches between two original AP Clusters in the Merge

Algorithm. The two aligned columns from each AP Cluster are combined to compute the

Scol score. The sum-of-pairs scores have the runtime of O(m1|C1|m2|C2|), and the entropy-

based scores have the runtime of O((m1 +m2)|C1||C2|), where m1 is the number of patterns

in the first AP Cluster, C1, and m2 is the number of patterns in the second AP Cluster,

C2. To give a formal definition for each of the scores, first let ci =

[
c1
i c2

i . . . cm1
i

]T
be an aligned column for C1 and dj =

[
d1
j d2

j . . . dm2
j

]T
be an aligned column in C2,

where each cki , d
l
j ∈ Σ. The sum-of-pairs scores from the two aligned columns compare all

pairs of amino acids by scoring each comparison as Sone, which is then summed to Scol.

Scol(ci, dj) =
∑
∀cki ∈ci

∑
∀dlj∈dj

Sone(c
k
i , d

l
j). (3.17)

One possible Sone is the Hamming distance, which satisfies the metric properties and thus

can be summed. The matches are rewarded, and the mismatches and the gaps are penal-

ized. We adapted a weighted Hamming distance in order to penalize weighted mismatches

and weighted gaps differently. Table 3.7 presents the different Sone values and their weight-

ings, where w is the weighting on the scores. We also used the BLOSUM[79]/PAM[50]

substitution matrix to reward matches and penalize mismatches based on observed rate of

change.

Alternatively, the entropy-based scores use the probability distribution of the existing

amino acids occurring at the combined aligned columns. The two different entropy-based
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Table 3.7: Four Possible Sone for the sum-of-pairs Scores

Score Sone Match Mismatch Gap
Penalty

Hamming Distance +1 −1 −1
Weighted Gap +1 −1 −w

Weighted Mismatch +w −w −1
BLOSUM/PAM matrix matrix −1

scores considered are:

• Information Entropy Score

Scol(ci, dj) = H(ci ∪ dj) (3.18)

= −
∑

σ∈ci∪dj

Pr(σ) logPr(σ), (3.19)

where Pr(σ) is the probability distribution of σ ∈ Σ from the combined aligned columns,

ci ∪ dj .

• Information Gain Score [39]

Scol(ci, dj) = w1H(ci) + w2H(dj)−H(ci ∪ dj), (3.20)

where n1 is the size of ci and n2 is the size of dj such that w1 = n1
(n1+n2) and w2 = n2

(n1+n2) .

Returning to the text example, consider the last step of the merge preformed on AP

Cluster C1 and AP Cluster C2 using the Global Alignment as the Merge Algorithm and
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the Hamming Distance as the Similarity Score. The resulting dynamic programming

score table for C1 and C2 is illustrated in Table 3.8. Each cell contains the value of the score

with an arrow indicating the backtrace position in the clusters. The negative values in each

of the cells of the score table are the Similarity Score. The optimal solution is marked

with a ’*’ as it is the backtracked solution, shown by the corresponding arrows through

the score table. All entropy scores were normalized and scaled to take on values between

−1 and +1 in order to reward matches and penalize mismatches, thereby adjusting the

entropy by offsetting and scaling the final entropy value. Because the AP Cluster becomes

more random at each iteration, the negative penalty of -1 causes the entropy scores to

become more negative in the score table.

Table 3.8: The Score Table Combining Two Final AP Clusters using Dynamic Programming

d1 d2 d3 d4 d5

B A L L S
B A L K S
H A L S

c1 B M H *−0.740 −1.289 ↖ −1.837 ↖ −2.837 ↖ −3.63 ↖
c2 E E E −1.445 ↖ *−1.740 *↖ −2.289 ↖ −2.287 ↖ −3.287 ↑
c3 L L L −2.151 ↖ −2.445 ↖ *−0.740 *↖ −1.74 ↖ −2.74 ↑
c4 L L L −2.786 ↖ −3.139 ↖ −1.445 ↖ *−0.827 *↖ −1.827 ↑
c5 O O O −3.627 ↖ −3.512 ↖ −2.139 ↖ −1.827 ←− *−1.769 *↖
c6 W W −4.438 ↖ −4.333 ↖ −3.139 ←− −2.827 ←− −2.769 ←−

The Termination Conditions

The termination condition of the Merge Algorithms, just like the Similarity Score

chosen, also determines the quality of the final AP Clusters synthesized. The numerical
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thresholds for Termination Conditions considered are 1) the threshold on the value of

the Average Cluster Entropy, 2) the total number of clusters, 3) the number of patterns

in each cluster, and 4) the threshold on the percentage change in the similarity score.

Lastly, Overlapping Support for the Termination Condition, a non-numerical threshold,

is also used, where the hierarchical clustering process is halted when the AP Cluster occurs

more than once in a single sequence called overlapping support.

3.2.3 The AP Cluster Refinement Step

For the AP Cluster Refinement Step, we improve the sequence coverage while maintaining

the entropy. We call the two types of refined AP Clusters the Weak AP Cluster and

the Conserved AP Cluster. Each original AP Cluster, which will be referred to as the

Strong AP Cluster, has a corresponding Weak AP Cluster as well as a corresponding

Conserved AP Cluster. First we expand an AP Cluster to a Weak AP Cluster by finding

the best matching occurrence for each of the remaining sequences not covered by the

AP Cluster, and then removing those occurrences that are far away in relative position,

which may be false positive occurrences. In this manner, outlying occurrences that do not

match the pattern in the AP Cluster precisely can be covered; higher mutational variation

allows more sequences to be covered by the corresponding Weak AP Cluster. Although

the Weak AP Cluster increases the number of sequences covered, it also increases the

entropy. Thus, we further refine the Weak AP Clusters to the Conserved AP Clusters

by restricting the conserved columns from the original AP Clusters to reduce the number

of sequences covered, and thus decrease the entropy; these are instances that satisfy the
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Weak AP Cluster while adhering to the conserved column. In other words, the conserved

amino acids in the variable pattern (i.e. conserved column) are required to be fixed, while

additional variations in the other non-conserved aligned columns are allowed.

3.2.4 Artificial Datasets for Parameter Tuning

To test the experimental runtime and quality of the resulting AP Clusters of our method,

we created nine sets of synthetic input data containing synthetic patterns of length 10,

where each pattern occurs with a frequency of 5 and each pattern has a 10% chance of

mutation at a random position from the previous pattern. Each dataset varies from the last

amino acid and contains five occurrences of the synthetic pattern. The Pattern Discovery

Step was executed with the following parameters: minimal orderof 3, confidence interval

of 3, minimum occurrence of 5, and delta of 0.8. The parameters of AP Clustering Step

were Merge Algorithm set as Global Alignment with Similarity Score set as Hamming

Distance and no Termination Condition.

Runtime Comparison of Similarity Scores

To compare the runtime of our AP Synthesis Process for each of the Similarity Scores,

we plotted our experimental runtime using each of the Merge Algorithms. The experi-

mental runtime is measured by counting the number of character comparisons, which was

plotted against the number of synthetic patterns in the dataset. The curves of five Simi-

larity Scores are plotted for both the Global and Local alignments (Fig. 3.2). The plotted

runtime curve of our AP Synthesis Process is polynomial with respect to the number of
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patterns in the cluster. As described in the Similarity Score section, the sum-of-pairs

scores performed O(m) slower than the entropy scores due to a more complete pairwise

comparison.

Figure 3.2: Runtime of Alignment Algorithms. The five Similarity Scores are Hamming
Distance, Weighted Mismatch Preferred, Weighted Gap Preferred, Information Entropy
Score, and Information Gain Score. (a) The runtimes of the five Similarity Scores are
compared while executing the Local Merge Algorithm. (b) The runtimes are compared
while executing the Global Merge Algorithm. The sum-of-pairs scores performed more
slowly than the entropy scores, with the exception of Information Entropy Score due to
the uneven sizes of the AP Clusters being merged.

Surprisingly, the Information Gain Score did not compute at O(m2) time as expected

for Entropy Scores because the Information Gain Score causes a highly unbalanced cluster

to be merged at each iteration.
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Qualitative Comparisons of Similarity Score and Alignment Algorithm

To determine the parameters that yield the highest quality AP Clusters, we examined

the combinations of the Merge Algorithm with the Similarity Scores. We measured

the quality of the resulting AP Clusters using Average Cluster Quality, Q(C), which is

the inverse normalized information entropy of the aligned columns from all resulting AP

Clusters:

Q(C) =

∑
∀C∈C

∑
∀cj∈C

∑
∀σi∈Σ

Pr(σi) logPr(σi)

|C||C|
, (3.21)

where H(cj) = −
∑

∀σi∈Σ(cj)

Pr(σi) logPr(σi), Σ is the alphabet, C is the aligned columns

in the AP Cluster, and C is the set of resulting AP Clusters. When the Q(C) is close to

one, the resulting AP Clusters have a desirable quality, which is more stability. When the

Q(C) is close to zero, the resulting AP Clusters are more random.

The first set of tuning experiments identified the optimal combination of the Merge

Algorithm with the Similarity Scores (Fig. 3.3). For the Merge Algorithm, Global

Alignment performs better than local alignment because it aligns the full pattern rather

than the subpatterns of the pattern. Thus, for the five Similarity Scores compared

for Global Alignment, the sum-of-pairs scores performed better than the entropy scores

because they exhaustively compare all pairs of amino acids from both aligned columns.

These extra comparisons take O(m) time longer to execute, where m is the number of

patterns.
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Figure 3.3: Tuning the Merge Algorithm and Similarity Score. (a) The ten Q(C)
are separated into the five Similarity Scores. Of the two Merge Algorithms compared,
Global Alignment results in better AP Clusters, thus we focus on its scores. (b) The ten
Q(C) are separated into the two Merge Algorithms. For Global Alignment, Hamming
Distance performed the best.

The Termination Conditions

To identify the possible threshold values for each of the Termination Conditions, we

adjusted their values for each of the artificial datasets. Considering the results of the

previous optimality experiments, we set the Merge Algorithm to Global Alignment and

the Similarity Score to Hamming Distance, while varying the values of the Termination

Conditions and plotted the resulting Q(C) as displayed in Fig. 3.4. The first Termination

Condition, the Number of Patterns per Cluster, results in an inverse exponential curve.

Here, the ideal threshold value occurs before the quality of the AP Clusters begins to

decrease rapidly. The second Termination Condition fits a logarithmic curve because

decreasing the number of clusters also increases the number of patterns, thereby increasing

the randomness and decreasing the Average Cluster Entropy. The ideal threshold value
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occurs before the curve levels off when the quality of the AP Cluster is rapidly increasing

to the optimal value, which is one.

Figure 3.4: Threshold Trends of Termination Condition. The two Termination
Conditions examined are (a) the Final Number of Clusters, which fits a logarithmic curve,
and (b) The Number of Patterns per Cluster, which fits a inverse exponential curve.

3.3 In Silico Biological Experiments

We conducted a biological experiment on the cytochrome c and the ubiquitin protein

families to examine how the resulting AP Clusters are related to the binding sites that

associate with the most important functionality of the protein. There are three aspects we

explored: the reduction of the set of candidate solutions from the discovered patterns to

the AP Clusters obtained; how each pattern in the AP Cluster surrounding the binding

site represents a binding segment in a single strand of protein; and how binding residues

correlate to their column hyperedge. Finally, we display our results underneath the pFam

multiple sequence alignment to compare the differences in the representations. In the

comparison, we demonstrate the overall hierarchical clustering performance of our AP

Synthesis Process as well as the quality of the resulting AP Clusters.
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3.3.1 The Pfam Cytochrome C Protein Family

Cytochrome C Results

We confirmed that the binding segments of a protein family can be richly represented by AP

Clusters. The 237 input sequences for the cytochrome c protein family were downloaded

from Pfam (PF00034) on January 13th, 2010 from Pfam release 23. These Pfam seed

sequences have an average length 94, identity 18%, and coverage 36.97%. Based on the

identity and coverage of the protein family, we executed the Pattern Discovery Step with

minimum length of 5, delta of 0.9, confidence interval of 3, and minimum occurrence of

10. To reduce the number of singular patterns, the minimum occurrence was adjusted up

by two. We then executed the AP Clustering Step on the list of statistically significant

patterns discovered by the Pattern Discovery Step. As concluded from our experiments

with simulated data, the Merge Algorithm was Global Alignment, the Similarity Score

was Hamming Distance, and the Termination Condition was Non-Overlapping Supports.

Table 3.9 lists the statistically ranked patterns of the cytochrome c protein family

resulted from the Pattern Discovery Step. All but one of these patterns corresponds to

the proximal and distal binding residues (amino acids in bold), which are crucial for the

binding functionality of the protein. By itself, each individual pattern with its variation has

a low frequency count, which is a small fraction of the sequence support. Hence, a single

pattern alone cannot represent the rich variation of the functional motif within the entire

protein family. Therefore, the AP Cluster representing the binding sites, containing a set

of similar patterns, that have been grouped and aligned with variations, provides a much

richer description of the binding segments. In the AP Clustering Step, we demonstrate
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that AP Clusters are able to richly capture the conservation and the variability of patterns

in the aligned columns.

Table 3.9: Statistically Ranked Patterns from the Cytochrome C Protein Family
Rank- Pattern Freq- Score Binding
ing uency Residue
1 CSMCHAREP 11 5021 His18
2 GRCSMCHA 11 928.8 His18
3 RCSMCHA 16 576.9 His18
4 MCHAREP 13 250.4 His18
5 SHAMPP 12 32.00 Met62
6 CAACHG 10 19.68 His18
7 AMPPAN 12 18.27 Met62
8 IYLAG 10 12.59
*9 CAACH 22 27.97 His18
10 CASCH 16 22.41 His18
*11 MPLGN 19 15.88 Met62
12 HAMPP 16 12.94 Met62
13 CVACH 12 12.32 His18
14 CAGCH 13 11.46 His18

The two highest ranking AP Clusters correspond to the proximal and distal binding

segments of the cytochrome c protein family as displayed in Fig. 3.6. Tables 4.5 and 4.6

exhibit the proximal and distal AP Clusters, respectively, and their set of patterns and

frequency counts from the Pattern Discovery Step. Once again, the binding residues crucial

for the functionality of the protein family are represented by one single aligned column (in

bold). The lower frequency of the distal pattern implies that the distal binding segment is

not as well conserved as the proximal binding segment. This lower conservation is reflected

by the lower statistical significance of the distal patterns contained in the distal AP Cluster.

However, we were still able to identify the binding residue as a conserved column in the
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distal AP Cluster.

Table 3.10: The Proximal AP Cluster of the Cytochrome C Family
c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 Freq-

uency
G R C S M C H A * * * 11
* R C S M C H A * * * 16
* * C S M C H A R E P 11
* * * * M C H A R E P 13
* * C V A C H * * * * 12
* * C A S C H * * * * 16
* * C A G C H * * * * 13
* * C A A C H G * * * 10
* * C A A C H * * * * 22

C H 237

Table 3.11: The Distal AP Cluster of the Cytochrome C Family
c1 c2 c3 c4 c5 c6 c7 c8 Freq-

uency
* * * M P L G N 19
* * A M P P A N 12
S H A M P P * * 12
* H A M P P * * 16

M P 153

First, we observed that the most frequent pattern in the proximal AP Cluster is pattern

9, ‘CAACH‘, which covers 22 of the 238 sequences. The most frequent pattern in the

distal AP Cluster is pattern 11, ‘MPLGN‘, which covers 19 of the 238 sequences. By

themselves, the frequency counts of the patterns are not strong enough to identify other

conserved features around the binding residues. Therefore, the AP Cluster containing a

set of similar patterns with variations provides a richer representation that summarizes

the binding segment. Next, we defined a conserved column within the AP Cluster as an
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aligned column that has only one possible amino acid value amongst the patterns in the

AP Cluster. The two conserved columns in the proximal AP Cluster are His18 and Cys17;

similarly, the two conserved columns in the distal AP Cluster are Met62 and Pro63.

If we were to examine the pattern of the combined amino acids of [CH], this 2nd order

pattern would occur in 237 of the 238 sequences, whereas the pattern of the combined

amino acids of [MP] would occur in 153 out of the 238 sequences. Thus, the collection of

conserved columns is able to reveal a strong low-order pattern that has less noise and true

functional significance.

Cytochrome C Discussion

Biologically, the two binding residues in the cytochrome c protein are (1) the proximal

binding residue [42, 100] and (2) the distal binding residue [178] (Fig. 3.5). Our study

showed that these crucial binding segments correspond to AP Clusters that contain con-

served columns, which are the binding residues, the main biological function of the protein.

The rows of the AP Clusters are aligned based on their horizontal patterns because

of their statistical significance, and the aligned columns of the AP Clusters are grouped

based on their vertical amino acid stability. To show the significance of the patterns, first,

each AP Cluster contains a set of horizontal patterns that are similar to one another.

Although these patterns suggest their horizontal significance in the protein sequences,

individually, they do not identify the significance of the amino acid’s conservation and

variation. Thus, the stability of the aligned columns is important for the identification

of the binding residues. Second, the aligned columns of each AP Cluster correspond to
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(a) Cytochrome C Binding Segments (b) Cytochrome C Binding Residues

Figure 3.5: The 3D structure of cytochrome c (PDB ID: 1F1F). (a) The two binding
segments represented as AP Clusters: the pink proximal binding segment and the blue
distal binding segment. (b) Specifically, one particular amino acid from each of the AP
Clusters binds the iron ion.

the conservation of the cluster, which otherwise is not easily identified in each individual

non-variable pattern. The conserved columns of the AP Clusters correspond to binding

residues. The two conserved columns in the proximal AP Cluster, His18 and Cys17, are

essential to the functionality of the cytochrome c protein family for binding the heme

ligand. More precisely, the His18 conserved column acts as the proximal binding residue,

and the Cys17 conserved columns binds the thioether bond to the vinyl group on the

heme. Similarly, the Met62 conserved column in the distal AP Cluster acts as the distal

binding residue. Our proximal AP Cluster for cytochrome c is consistent with the proximal

binding motif, [C]-x(2)-[CH], given by PROSITE (PDOC00169) [16, 172] and also with the

strong emission probability from Pfam[175]. Moreover, our method identified the distal

binding AP Cluster, which is not annotated by PROSITE and is identified by Pfam as
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only a weak emission probability. Furthermore, our method also identified an additional

conserved column, Pro63, in the distal binding segment which does not bind the heme

ligand. Its role may be important for protein conformation during translation. The heme

is attached to the cytochrome after translation; hence, the binding segments must permit

conformational flexibility in order for the heme ligand to enter the binding pocket[75]. Since

the proximal binding segment is a rigid secondary alpha-helix structure with three bonds

to the heme ligand, the distal binding loop must be the flexible segment. We postulate

that the Pro63 conserved column in the distal binding segment, which is a secondary loop

structure, must bend to allow the binding site to open so that the heme ligand can enter

during translation.

3.3.2 The Pfam Ubiquitin Protein Family

Ubiquitin Results

The input of ubiquitin is uniquely identified in Pfam by PF00240, which contains 78 seed

sequences that have an average length of 67.1, identity 44%, and coverage 28.05%, was

downloaded March 19th, 2012 from Pfam release 25. In this experiment, parameters were

the same as cytochrome c, except for a minimum occurrence of 5 due to the protein family’s

sequence length, identity, and coverage.

In the Pattern Discovery Step, fourteen of the twenty-nine discovered patterns contain

one of the seven binding residues. Those twenty-nine patterns are further compressed into

eight AP Clusters with Average Cluster Score of 0.63. Protein motifs exhibit variability,

and thus, AP Clusters represent the protein’s binding sites more effectively and explicitly.
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Our AP Synthesis Process resulted in AP Clusters with dendrograms that trace the

iterative merge of our hierarchical clustering algorithm (Fig. 3.7).

Ubiquitin Discussions

Ubiquitin contains seven lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and

Lys63) that link other ubiquitins to form a poly-ubiquitin chain[94, 223, 85](Fig. 3.9). Our

Figure 3.9: The 3D structure of ubiquitin (PDB ID: 1UBQ). It has seven binding residues
(in pink).

resulting AP Clusters correspond to six of the seven binding residues as listed above. The

remaining Lys33 is found in an AP Cluster with only a single distinct pattern discovered

with high statistical significance; thus, this AP Cluster stands out as a significant functional

group.

For ubiquitin, our AP Clusters are short alignments of patterns that agree with the

emission probabilities of the HMM logo from Pfam (Fig. 3.7). The eight AP Clusters cover

the seven binding residues and agreed with the Pfam HMM emission probabilities but not

with PROSITE’s consensus motif (Pattern PS00299), which has 198 true positives and 197

false negatives when matched against the sequences in UniProtKB/Swiss-Prot.

61



3.3.3 The Pfam TIM Protein Family

TIM Results

To further explore the biological significance of AP Clusters, we applied our method to the

TIM protein family. The input sequences are uniquely identified in Pfam by the family

identification number, PF00121, which contains 56 seed sequences that have a maximal

length of 244 and was downloaded February 19th, 2013 from Pfam release 27. In this

experiment, parameters were the same as cytochrome c, except for a minimum occurrence

of 10 for the Pattern Discovery Step. The 51 discovered patterns were compressed into

nine AP Clusters, which contained four binding residues in three binding segments with

an Average Cluster Quality of 0.40.

TIM Discussions

The AP Cluster IAGNWKMN covers Asn6 and Lys8, which are residues that bind the

DHAP or GAP substrate[106]. These substrates are initially attracted to these residues

through electrostatic interactions to establish the first step of the catalytic reaction[106].

Another AP Cluster covers Thr72, which is found to interact with Lys8 and Glu94, which is

covered by the IAGNWKMN, of another TIM via hydrogen bonds for dimerization [194].

These discovered AP Clusters are important because the enzyme is only active in the

oligomeric [157]; this hypothesizes that there is cooperation between these residues.

The AP Cluster VIGHSERRQ covers His92 in addition to Glu94. His92 is crucial for the

enzymatic reaction by cooperating with Glu164, which is covered by [IV]IAYEPVWAIGTGK.
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According to the classic mechanism [130, 208], Glu164 plays the role of the general

base catalyst by abstracting a proton from the pro(R) position of carbon 1 of DHAP or

the C-2 proton of GAP. However, the carboxylate group of Glu164 alone does not possess

the basicity to abstract a proton. Hence, Glu164 is assisted by His92, the general acid,

to donate a proton to stabilize the negative charge building up on C-2 carbonyl oxygen,

effectively stabilizing the planar endediol(ate) intermediate.

The AP Cluster [IV]IAYEPVWAIGTGK covers residues Tyr163, Glu164, Trp167, Gly172

and Ala175, which correspond to the structure known as loop 6 [88]that is important for

the enzymatic reaction.

In addition to Glu164, Tyr163, Gly172 (the nitrogen atoms on the main chain) and

Ala175 (the nitrogen atoms on the main chain) have hydrogen bonds with Trp167, Ser210

and Tyr207 respectively, in which Tyr207 and Ser210 are covered by C6 [107]

3.4 Comparisons with Existing Methods

3.4.1 Identifying Binding Residues

In the previous sections, we presented each step of our method and its capability to find

binding sites and other amino acids of biological significance for cytochrome c, ubiquitin,

and TIM. In this final section, we compare our AP Synthesis Process with other existing

motif finding methods. Table 3.12 illustrates that our AP Clusters cover the two binding

residues for cytochrome c and all seven binding residues for ubiquitin. Quantitatively,

our AP Clusters cover more binding residues. Of the other methods examined, MEME
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comes closest to finding all the binding residues for cytochrome c, ubiquitin, and TIM.

We measure the quality of patterns by percentage coverage (C) and information entropy

(H) of the pattern in the data. Due to the statistical significance of the patterns found

by our Pattern Discovery Step, our entropy is lower, and thus more stable than those

obtained from the compared methods; however, the sequence coverage of our high quality

AP Clusters is lower than others since we take into account only the strong statistically

significant patterns in the AP Clusters.

3.4.2 Strong, Weak, and Conserved AP Clusters

Therefore, qualitatively, to improve our coverage while maintaining low entropy, we added

two extended steps in the AP Cluster Refinement Step to generate Weak and Conserved AP

Clusters, respectively. First, the Weak AP Clusters added the highest scoring sequence

matches from each of the uncovered sequences within their relative position to improve

the overall coverage. Second, the Conserved AP Clusters restrict occurrences of Weak

AP Clusters to have the conserved columns of the AP Cluster. Hence, the Conserved AP

Cluster has a higher coverage than its corresponding AP Clusters, but a lower entropy than

its Weak AP Clusters. Therefore for entropy, the Conserved AP Cluster has higher entropy

than its corresponding AP Clusters, but a lower entropy than its Weak AP Clusters. The

results from the different AP Clusters are presented in Table 3.13 where we measure the

patterns by percentage coverage (C) and information entropy (H) of the pattern in the

data.
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Table 3.12: Binding Residues Results Compared with Other Methods
Method Binding Length C H

Residue
Cytochrome c:
AP Cluster His18 11 0.35 0.58

Met62 8 0.16 0.51
MEME [14] His18 15 1 0.61

Met62 29 0.25 0.41
Gibbs [109] His18 12 1 0.46
BLOCKS [77] His18 16 0.97 0.61

Met62 5 0.97 0.58
CONSENSUS [80] His18 8 1 0.51
PROJECTION [32] His18 3 0.75 0.24

Met62 3 0.75 0.34

Ubiquitin:
AP Cluster Lys6, Lys11 6 0.12 0.38

Lys27, Lys29 5 0.08 0.11
Lys33 5 0.12 0.00
Lys48 14 0.37 0.53
Lys63 7 0.12 0.21

MEME [14] Lys48 32 0.96 0.60
Lys11, Lys27 29 0.96 0.64
Lys29, Lys33 7 0.03 0.13

Gibbs [109] Lys48 12 0.65 0.28
BLOCKS [77] Lys48 10 1 0.53
CONSENSUS [80] Lys48 16 1 0.53
PROJECTION [32] Lys48 4 1 0.57

Lys27, Lys29 5 0.12 0.35
Lys6 8 0.12 0.42
Lys63 8 0.07 0.12

TIM:
AP Cluster Asn6, Lys8 5 0.52 0.37

His92 10 0.31 0.84
Glu164 14 0.77 0.26

MEME [14] His92 41 0.98 0.59
Glu164 24 0.95 0.49

Gibbs [109] Glu164 9 1 0.24
BLOCKS [77] Asn6, Lys8 11 0.77 0.75

His92 41 0.77 0.65
Glu164 12 0.77 0.47

CONSENSUS [80] Glu164 8 1 0.24
PROJECTION [32] Glu164 8 1 0.36

His92 8 1 0.26
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Table 3.13: Compared Refined AP Cluster
Protein Binding Strong Weak Conserved
Family Residue H C H C H C
Cyto c His18 0.58 0.35 0.64 1 0.59 0.97
Cyto c Met62 0.51 0.16 0.74 1 0.63 0.61
Ubiq Lys6, Lys11 0.38 0.12 0.75 1 0.38 0.12
Ubiq Lys27, Lys29 0.11 0.08 0.68 1 0.11 0.08
Ubiq Lys33 0.00 0.12 0.64 1 0.00 0.12
Ubiq Lys48 0.53 0.37 0.65 1 0.53 0.37
Ubiq Lys63 0.21 0.12 0.78 1 0.21 0.12
TIM Asn6, Lys8 0.37 0.52 0.52 1 0.42 0.77
TIM His92 0.31 0.84 0.40 1 0.32 0.88
TIM Glu164 0.26 0.77 0.37 1 0.27 0.89

Length-Comparable with Existing Methods

Qualitatively, for the most statistically significant ubiquitin motif, our Weak AP Cluster

and Conserved AP Cluster have lower and thus better entropy coverage than the other

methods, with the exception of Gibbs, which has poorer coverage despite the lower entropy.

However, it should be noted that lower and better entropy is a trade off against higher

coverage; thus, our Weak AP Cluster for ubiquitin is able to discover more binding residues

while maintaining comparable coverage and entropy (Figure 3.10). When Table 3.13, we

note that while our AP Synthesis Process can discover all the binding residues, our AP

Cluster Refinement Step allows a balance between the entropy and the coverage to achieve

superior results. Overall, the entropy of our AP Clusters are superior to its motif finding

contemporaries.
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Figure 3.10: Detailed comparison of only the binding residue in the top ranked motif of
the ubiquitin protein family against all the the other methods by percentage coverage and
entropy. Notice the better results have higher percentage coverage that is close to 100%
and lower entropy that is closer to 0%.

3.5 Chapter Conclusion

This study presents an AP Synthesis Process that brings similar patterns together, aligns

and clusters them into AP Clusters with patterns as rows and aligned sites as columns to

reveal both the statistically significant associations of amino acids in the protein segments

as well as the conservations and variations of the amino acids of the aligned sites. The

AP Clusters obtained for the cytochrome c, the ubiquitin, and the TIM protein families

correspond to the protein binding segments respectively. The results of our AP Synthesis

Process agree with the Pfam emission probability and render higher quality binding sites

than its contemporaries. To generate high-quality AP Clusters, we found that using (1)

Global Alignment as the MERGE Algorithm with (2) Hamming Distance as the SIMI-

LARITY Score and setting (3) the TERMINATION Condition to optimal threshold yields

the optimal Average Cluster Quality.
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In conclusion, AP Clusters can be used to reveal functional domains across different

protein families without relying on prior knowledge or clues about the consensus regions as

evidenced by the experimental results obtained from the cytochrome c, ubiquitin and TIM

protein families. In fact, classification results have been obtained from our method and

is addressed in Section II, which is also Chapter 5. In all these cases, our AP Synthesis

Process can discover all the binding residues and our Refinement Step allows a balance

between the entropy and the coverage to achieve superior results. Overall, the quality of

our AP Clusters is superior to its motif finding contemporaries.

As a natural extension of the presented methods, we are (1) using aligned column

variations as amino acid characteristics to classify proteins [114] in Chapter 5 and (2)

extending the algorithm to discover long-distance associations between AP Clusters [111]

in Chapter 6. In more general cases of protein analysis, the location and the nature of

the protein functional domains are not clear. The capability to overcome such difficulties

marks the uniqueness and novelty of our AP Synthesis Process.
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Chapter 4

Aligned Pattern Hypergraph and

Hyperedge

4.1 Chapter Introduction

We approached protein sequence analysis from a data mining or pattern discovery perspec-

tive. Hence in Chapter 3, we began by identifying a set of statistically significant sequence

patterns and developed an Aligned Pattern (AP) Synthesis Process by aligning and clus-

tering similar patterns into a reduced set of Aligned Pattern Clusters (AP Clusters) for

representing the similar sequence patterns in regions that might be associated with binding

segments. Then we converted each AP Cluster into a synthesized probabilistic structural

pattern in the form of an AP Hypergraph, the main goal and definition of this chapter.

The AP Cluster aligns a set of similar patterns, whereas, like network flow, the AP Hy-
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pergraph represents the flow of patterns as well as the similarity and the differences in the

aligned columns as vertices. This reduced set of Aligned Pattern Directed Hypergraphs

captures both the statistically significant sequence association of amino acids as well as

their conservations and variations on each of the amino acids in the regions.

We then examine whether or not the AP Hypergraphs correspond to the binding seg-

ment and binding residues that reflect a protein’s functionality. The three ranking criteria

presented are coverage, quality, and standard residual. When our AP Synthesis Process

was applied to the cytochrome c and ubiquitin protein families, we discovered a reduced

set of AP Hypergraphs solutions, which corresponds to the functional binding segments

and binding residues of both families . Our AP Synthesis Process obtained a set of so-

lutions smaller when compared to the combinatorial methods, rendering a more compact

yet knowledge-rich representation in the form of an AP Hypergraph than the probabilis-

tic method. Having a smaller set with richer representation is crucial in identifying drug

targets for drug discovery.

4.2 Methods

4.2.1 The Digraph Construction Step

An AP Hypergraph is a dual representation of an AP Cluster. In the Graph Construction

Step, the aligned columns of an AP Cluster are grouped by matching the patterns’ amino

acids into a column hyperedge. The set of similar patterns, which are unaligned, is grouped

and aligned into aligned patterns that form an AP Cluster first which is then converted
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into an AP Hypergraph. We first introduce several related definitions. A digraph is a net-

work of vertices and edges; the vertices are transfer points in the network flow graph, and

the directed edges provide a one-way flow of the resources. In an AP Hypergraph, these

resources are the set of patterns that were grouped and aligned in the AP Cluster. Thus,

the full subset of patterns, P = {P1, P2, ..., Pm−1, Pm}, from the patterns are the resources

flowing through vertices and edges of an AP Hypergraph, which is a richer representation.

The term hypergraph is due to the vertices being grouped a) vertically by aligned columns

into a column hyperedge and b) horizontally by the flow of data in the patterns into a pat-

tern hyperedge. A hyperedge is consider a collection of items without defined associations

among them; however, pattern can be considered to have consecutive path association.

Definition 9 An Aligned Pattern Directed Hypergraph (AP Hypergraph) is a directed

graph, G = (V,E), with a set of vertices V that are connected by a set of directed edges,

E. Furthermore, PG = {p1, p2, ..., pm−1, pm} is the set of patterns represented by the AP

Hypergraph, and each pattern is of length n. Since an AP Hypergraph is an alternative rep-

resentation of an AP Cluster, the pattern set and the induced data for both representations

are the same (i.e. PG = PC and DG = DC).

Definition 10 Let νj(σ) be a vertex of an AP Hypergraph; the vertex represents all pat-

terns with the same amino acid, σ, within its aligned column cj:

νj(σ) = {pi = s1
i ...s

j
i ...s

n
i |s

j
i = σ}. (4.1)

where n is the length of each pattern, j is the index of the aligned column cj, and
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σ ∈ {Σ∩∗}. Let Pνj(σ) be the set of patterns from PG that is restricted by the vertex νj(σ).

Thus, the set of all existing vertices in an AP Hypergraph is V = {νj(σ)|j = 1, ..., n, σ 6= ∅},

where a vertex is not created if an amino acid does not occur at the aligned column.

The resulted AP Hypergraph is constructed by applying amino acids as vertex labels of

the aligned columns (Fig. 4.1). For example, a vertex ν at aligned column c1 with residue

σ = H is labelled with ν1(H) having the subset of patterns Pν1(H) = {p3, p6}.

Definition 11 Let an edge ε ∈ E connect two vertices: νj(σ) and νj+1(σ′). The edge is

labelled by εj(σ, σ
′), , indicating that the aligned column cj has amino acid, σ, and the

aligned column cj+1 has amino acid, σ′, in this set of patterns, PG,

εj(σ, σ
′) (4.2)

= {pi = s1
i ...s

j
is
j+1
i ...sni |s

j
i = σ, sj+1

i = σ′}, (4.3)

(4.4)

where j is the index of the aligned column cj and σ, σ′ ∈ Σ(cj) ∈ Σ(cj) ∈ {Σ ∩ ∗}.

Again, let Pεj(σ,σ′) ⊆ P, be the set of patterns that is restricted by the edge.

For example, the edge ε1(H,E) connects the vertex ν1(H) to the vertex ν2(E), and the

edge is the subset containing the pattern {p3} (Fig. 4.1).

The Graph Construction Algorithm To construct the AP Hypergraph from its AP

Cluster, iterate through each aligned column of the AP Hypergraph and isolate the unique

72



Figure 4.1: In the text example, an AP Hypergraph is converted from its AP Cluster.

amino acid of the AP Cluster to construct a table of amino acid distributions (Table 4.1).

In this table, each cell represents the resulting vertex νj(σ) and stores its associated list of

patterns. Furthermore, each pattern in the list references its exact occurrences in the suffix

tree that are used to compute the measures. The resulting AP Hypergraph is constructed

by applying the vertex labels to the AP Cluster (Fig. 4.1).

Algorithm 2 The AP Hypergraph Construction Algorithm

Require: C = {c1, ..., cn} , where n is the length of the AP Hypergraph
Ensure: G = V = {νj(σ)|j = 1...n, σ 6= ∅}

1: for all (aligned column cj ∈ C) do
2: Initialize column hyperedge, Vj, which is a list of vertices
3: for all (Aligned Pattern pi ∈ C) do
4: let σ = sji
5: if vj(σ) does not exist in Vj, then initialize and add to Vj then
6: else add pi to vj(σ)
7: end if
8: end for
9: end for
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Table 4.1: Conversion Table from aligned column to AP Hypergraph Vertices

c1 c2 c3 c4 c5 c6
ν1(H) = {p1, p6} ν2(E) = {p1 − p3} ν3(L) = {p1 − p6} ν4(L) = {p1 − p4} ν5(O) = {p1 − p3} ν6(W ) = {p1, p2}
ν1(B) = {p2, p4, p5} ν2(A) = {p4 − p6} ν4(K) = {p5} ν5(S) = {p4 − p6} ν6( ) = {p3 − p6}
ν1(M) = {p3} ν4( ) = {p6}

4.2.2 Hyperedges in the AP Hypergraph

The introduction of the AP Hypergraph reveals how vertices are associated in the form

of hyperedges in order to indicate the type of associations between them. Since edges

connect two vertices, hyperedges connect a subset of vertices. Three types of hyperedges

are defined for the AP Hypergraph: (a) pattern hyperedge, (b) column hyperedge, and (c)

association hyperedge.

Pattern Hyperedge

Before defining a pattern hyperedge, we must define the sinks, the sources, and the paths

of a AP Hypergraph. The sources of an AP Hypergraph are the starting vertices that begin

at the first position of an aligned column c1 with no entering edges, and the sinks are the

ending vertices that end at cn with no exiting edges. Each pattern, Pi ∈ P, is a path in the

AP Hypergraph that flows through the vertices and edges. This path is of length n from

a source at c1 to a sink at cn:

Vi = {ν1(σ1), ν2(σ2), ..., νn(σn)|σ1σ2...σn = Pi}, (4.5)
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where i is the index of the pattern Pi ∈ P and σ ∈ {Σ ∩ ∗}. For example (Fig. 4.2(a)),

a pattern of length 6, ’HELLO*’, is labelled by the path from source ν1(H) to sink ν6(∗).

This pattern is a path containing vertices {ν1(H), ν2(E), ν3(L), ν4(L), ν5(O), ν6(∗)}.

Column Hyperedge

The set of vertices on the same aligned column is called the column hyperedge. Each

vertex contains a set of patterns at that position due to its distinct amino acid and thus,

has special algebraic set properties.

Definition 12 Let the set of all vertices in an aligned column cj be defined as the column

hyperedge:

Vj = {νj(σ)|∀σ ∈ Σ(cj) ∈ Σ, νj(σ) 6= ∅}, (4.6)

where j is the index of the aligned column cj, and σ ∈ {Σ
⋂
∗}.

For example (Fig. 4.2(b)), the first column hyperedge is V1 that contains vertices {ν1(B), ν1(M), ν1(H)}.

In this case, the first column hyperedge contains all the sources, and the last column hy-

peredge contains all the sinks. The column hyperedges are ordered consecutively; they

have an adjacent relationship if one is next to the other. A vertex in a column hyperedge

connects only to the vertices in the column hyperedge.

The size of a column hyperedge is the number of vertices in the aligned column cj and

is also the number of distinct σ in that aligned column. The size is used to compute the

entropy later and is also used to define Conserved and Variable column hyperedges. A
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(a) pattern hyperedge (b) column hyperedge (c) association hyperedge

Figure 4.2: Further demonstration of the AP Hypergraph to introduce the concepts of
pattern as a path and aligned column c1 as column hyperedge: (a) pattern hyperedge, (b)
column hyperedge, and (c) association hyperedge.

column hyperedge is Conserved when |Vj| = 1 (i.e., the column hyperedge has only one

amino acid). A column hyperedge is Variable when |Vj| > 1 (i.e., the column hyperedge has

multiple distinct amino acids values). Therefore, the Conserved column hyperedge char-

acterises the induced data of an AP Hypergraph because it spans all the patterns and an

Variable column hyperedge partitions the induced data into sub-clusters for unsupervised

classification.

The Set of Patterns in a Column Hyperedge The column hyperedge, Vj, has the

following algebraic set properties defined based on its list of patterns in an AP Hyper-

graph(i.e. , P = {p1, p2, . . . , pm}).

1. Universal Set: It is the entire set of patterns, PG, in an AP Cluster to be used to

specify which patterns will be contained in a column hyperedge. The Universal set
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of a column hyperedge Vj can be expressed as:

⋃
νj(σ)∈Vj

νj(σ) =
⋃

νj(σ)∈Vj
{pi ∈ P|sij = σ}

=
( ⋃
νj(σ)6=∅

{pi ∈ P|sij = σ}
)

=
⋃

σ∈Σ(cj)∈Σ

{pi ∈ P|sij = σ}

= P.

For example for V1, ν1(B) = {p1, p4, p5}, ν1(M) = {p2}, and ν1(H) = {p3, p6}. These

pattern subsets of each of the vertices, {p1, p4, p5}
⋃
{p2}

⋃
{p3, p6}, which together

is the universal pattern set, P.

2. Disjoint Subsets: Since the jth column hyperedge has vertices representing distinct

amino acids, νj(σ) ∩ νj(σ′) = ∅ when σ 6= σ′, and σ′, σ ∈ Σ. In other words, the set

νj(σ),∀σ ∈ Σ are pairwise disjoint.

For example, the first aligned column that contains the vertices of the column hyper-

edge, V1, has {ν1(B), ν1(M), ν1(H)}. The pattern subsets {p1, p4, p5} and {p2} are

disjoint.

3. Empty Subset: By construction, (j, σ) is a vertex if and only if νj(σ) 6= ∅

For example, ν1(E) = ∅ since the amino acid E does not exist at aligned column c1.

These set properties can be generalized for the induced data of an AP Hypergraph, which

is defined and further explained in the next induced data section.
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Association Hyperedge

We use Mutual Information between two aligned columns to determine how much interde-

pendency is between the data represented by the vertices of the two column hyperedges,

where the induced data is used to compute all the differences. This work is being further

developed under future work using cluster validity measures from Chapter 5 with principal

component analysis, which is beyond the scope of this dissertation.

4.2.3 Measuring and Ranking AP Hypergraphs

The Three Measures of AP Hypergraphs

In order to rank a set of constructed AP Hypergraphs, G,three measures are computed for

each AP Hypergraph, Gl. They are measures are Coverage, AP Hypergraph Quality, and

Standard Residual. We develop a ranking algorithm to rank each of the AP Hypergraphs.

Algorithm 3 The AP Hypergraph Ranking Algorithm

Require: List of Gl ∈ G and its corresponding occurrences
Ensure: Measures for each G to be used for ranking the list G

1: for all (G ∈ G) do
2: Get exact data occurrences of G
3: Compute the Measure
4: end for
5: Sort G by the Measure

Coverage The coverage accounts for the fraction of the total input sequences that are

covered by the AP Hypergraph, G, in the input sequences, DG = D, of the data space.
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AP Hypergraph Quality The AP Hypergraph Quality, Q , is the average column

entropy subtracted from one, where entropy is computed from the set of Aligned Patterns,

Pl ∈ Gl. The AP Hypergraph Quality measures the stability or reliability of an AP

Hypergraph, whereas the entropy measures the randomness or variation within an AP

Hypergraph. As the value of Q approaches one, the resulting AP Hypergraph is more

stable. As the value of Q approaches zero, the resulting AP Hypergraph is more random.

Q is expressed as:

Q = 1− 1

n

n∑
j=1

H(Vj), (4.7)

where Vj is the column hyperedge in the resulting AP Hypergraph.

H(Vj) = −
∑
∀σ∈cj

Pr(νj(σ)) logPr(νj(σ)), (4.8)

Pr(νj(σ)) =
1

m

m∑
i=1

1(sji = σ) (4.9)

where σ ∈ Σ ∪ {−} ∪ {∗} is the amino acid sji of pi at Vj, and the probability Pr(νj(σ))

is computed from counting the subset of patterns in P.

Standard Residual The Standard Residual measures the statistical significance of the

AP Hypergraph by comparing the actual number of occurrences, o, of all the patterns in

the AP Hypergraph, against the expected number of occurrences, e, which is computed

from the probability of the amino acid in the defaulted model corresponding to the AP
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Hypergraph. It is written as

StandardResidual =
o− e√
e
, (4.10)

where o is the actual number of occurrences of the pattern in P counted from the input

data, D and e is the expected number of occurrences computed from the probability of the

amino acid in defaulted random model of the AP Hypergraph as shown below:

e = E[G], (4.11)

= N

(
Pr(G)

)
, (4.12)

= N

(
Pr(V1)Pr(V2) . . . P r(Vn)

)
, (4.13)

= N

( n∏
j=1

Pr(Vj)

)
, (4.14)

where N is the length of the input sequence and Vj is the column hyperedge. To compute

the probability, Pr(Vj), of each of the column hyperedges, Vj, each of the vertices in the

column hyperedge must be summed.

Pr(Vj) = Pr(νj(σ1)) + Pr(νj(σ2)) + . . . , (4.15)

=
∑
∀σk∈Vj

Pr(νj(σk)), (4.16)

where the vertex νj(σk) exists only if σk is assumed to exist for that column hyperedge,

Vj, and Pr(σk) is assumed to be drawn from equal probabilities such that Pr(σk) = 1
20

.

Therefore, the final expectation is
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e = E[G], (4.17)

= N

(
n∏
i=1

( ∑
∀σk∈Vj

Pr(νj(σk))

))
. (4.18)

4.3 In Silico Biological Experiments

We conducted a biological experiment on the cytochrome c and the ubiquitin protein

families to examine how the resulting AP Hypergraphs are related to the binding sites that

associate with the most important functionality of the protein. There are three aspects we

explored: the reduction of the set of candidate solutions from the discovered patterns to

the AP Hypergraphs obtained; how each pattern in the AP Hypergraph surrounding the

binding site represents a binding segment in a single strand of protein; and how binding

residues correlate to their column hyperedges. Finally, we display our results underneath

the pFam multiple sequence alignment to compare the differences in the representations.

In the comparison, we demonstrate the overall hierarchical clustering performance of our

AP Synthesis Process as well as the quality of the resulting AP Hypergraphs.

4.3.1 The UniProt Cytochrome C Protein Family

Cytochrome C Results

First, we demonstrated that by grouping similar patterns together, the AP Hypergraph re-

duces the number of candidate solutions to be examined without losing information. Next,

81



we showed that in the binding AP Hypergraphs, each pattern represents a binding segment

in the protein sequence and each of the two binding sites is represented by a specific col-

umn hyperedges. The 317 sequences from the cytochrome c protein family were obtained

on September 17th, 2012 from Uniprot by searching the following terms: cytochrome

c; AND reviewed:yes; AND name:c*; AND mnemonic:c*; AND (name:cytochrome AND

name:c); NOT name:type; NOT name:VPR; NOT name:biogenesis; NOT name:*ase; NOT

(name:cytochrome AND name:b*); NOT like; NOT proba*; AND fragment:no; AND ac-

tive:yes. These selected parameters should help to yield a reasonable number of input

sequences for the AP Synthesis Process. For these 317 input sequences, the Pattern Dis-

covery Step was executed with the minimal order of 5, which is dependent on the number

of input sequences, the minimum occurrence of 20, and the delta of 0.9. The Pattern

Discovery Step discovered 154 patterns from the cytochrome c protein family, where 28

patterns, or 18.18% of the total patterns, contain the proximal binding site, His18, and 23

patterns, or 14.94% of the total patterns, contain the distal binding site, Met62, resulting

in a combined total of 33.12% of the discovered patterns that contain one of the two bind-

ing sites. Therefore, the set of patterns redundantly covers the two binding sites. This

observation indicates that each individual pattern alone covers only a small fraction of the

input sequences in the data space; therefore, a single pattern by itself cannot fully repre-

sent the rich variations of all the input sequences within the entire protein family. Hence,

the AP Hypergraph, which contains a set of similar patterns that have been grouped

and aligned to allow variations, provides a reduced and much richer representation of the

binding segments and binding residues.

We showed that our AP Synthesis Process reduced the number of candidate solutions
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without losing any information and richly captured the binding sites in the compact AP

Hypergraphs where the binding segments are the patterns therein and the binding sites are

the conserved columns. We ensure that all the patterns discovered are strongly statistically

significant by starting with a tighter configuration to ensure the quality of the result.

From this list of 154 statistically significant and non-redundant patterns obtained from the

previous Pattern Discovery Step, the AP Clustering Step was executed with the following

settings: the Merge Algorithm as Global Alignment, the Similarity Score as Hamming

Distance, and the three Termination Conditions include a termination score less than

0.8, a heuristics column distribution score that is greater than 0.8, and a minimum of

three overlapping column matches. Then the resulting 36 AP Hypergraphs, which have an

averageAP Hypergraph Quality of 0.65 (Table 4.2), were converted into the corresponding

AP Hypergraph.

We found the following two results (Table 4.3): five of the AP Hypergraphs (13.89%

of the total number of AP Hypergraphs) discovered contain the proximal binding site,

His18; and five of the AP Hypergraphs (13.89% of the total number of AP Hypergraphs)

contain the distal binding site, Met62; the combined total is 27.78%. This observation

indicates that, while retaining the full information, the 154 patterns were reduced to 36

AP Hypergraphs, a total reduction of 76.62% for documentation and visualization.

As can be seen in Table 4.4, the top four resulting AP Hypergraphs correspond to the

proximal and distal binding segments of the cytochrome c protein family. More specifically,

26 proximal patterns were reduced to the two top AP Hypergraphs (a 92.31% reduction)

and 16 distal patterns were reduced to the two top AP Hypergraphs (a 87.50% reduction),

for a combined reduction of 88.10% for these top four AP Hypergraphs.
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Table 4.2: The 36 AP Hypergraphs of the Cytochrome C Family Ranked by Standard
Residual (where m=the number of patterns in the AP Hypergraph, and n=length of the
AP Hypergraph))

AP Hypergraph (as regular expressions) m n Qual- Cover- Standard Binding
ity age Residual Site

1 WGEDTLMEYLENPKKYIPGTKMIFAGIKKK 8 30 0.57 81 5.92E+16 Met62
2 MGDVEKGKKIFVQ[KR]CAQCHTVEKGGKHKTGPNL 19 33 0.43 119 5.04E+16 His18
3 QCHTVEKGGKHKTGPNLHGLFGRKTGQA 7 28 0.41 46 8.32E+14 His18
4 TLYDYLLNPKKYIPGTKM[VA]FPGLKKPQ 8 27 0.44 116 1.91E+14 Met62
5 GAGHK[QVT]GPNL[NH]GLFGRQSGTT 13 21 0.4 125 3.53E+10
6 GFSYTDANKNKGITWGE 8 17 0.41 66 6.33E+08
7 GEKIFKTKCAQCHTV 3 15 0.57 24 6.45E+07 His18
8 MGDVEKGKKIFVQKC 7 15 0.4 53 5.04E+07
9 GPNLHGLFGRKTGQA 4 15 0.43 46 4.37E+07
10 ERADLIAYLK[KE]ATNE 9 15 0.4 91 3.53E+07
11 HGLFGRKTGQAPGF 9 14 0.46 70 2.10E+07
12 IPGTKMAFGGLKK 4 13 0.42 136 9.06E+06 Met62
13 AANKNKGITWGE 4 12 0.5 54 1.60E+06
14 LHGLFGR[QK]SGTT 6 12 0.42 88 1.07E+06
15 AGYSYSAANKN 5 11 0.43 30 1.40E+05
16 TLYDYLLNP 2 9 0.56 29 2.69E+04
17 GQAPGFSY 2 8 0.5 27 5.57E+03
18 TKMVFAG 2 7 0.57 52 3.38E+03 Met62
19 GGKHKTG 2 7 0.43 64 2.94E+03
20 EKGKKIF 2 7 0.43 62 2.85E+03
21 FAGLKKP 3 7 0.48 57 2.62E+03
22 WGGGKIY 2 7 0.71 27 2.48E+03
23 FAGIKKK 2 7 0.43 51 2.34E+03
24 YLKKAT 1 6 1 29 1.19E+03
25 WGEDTL 1 6 1 25 1.02E+03
26 NCAACH 2 6 0.83 30 8.68E+02 His18
27 KGAGHK 2 6 0.83 26 7.52E+02
28 KGITW 1 5 1 49 4.46E+02
29 GFSYT 1 5 1 42 3.83E+02
30 FVQKC 1 5 1 39 3.55E+02
31 DANKN 1 5 1 34 3.10E+02
32 GYSYT 1 5 1 28 2.55E+02
33 AMPAF 1 5 1 24 2.19E+02 Met62
34 CHAGG 1 5 1 22 2.00E+02 His18
35 FKTRC 1 5 1 20 1.82E+02
36 LFEYL 1 5 1 20 1.82E+02

Table 4.3: Comparing the Number of AP Hypergraphs and Patternss
Patterns AP Hypergraphs
Count %overall Count %overall %Reduction

His18 28 18.18% 5 13.89% 82.14%
Met62 23 14.94% 5 13.89% 78.26%
Total 154 33.12% 36 27.78% 76.62%
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Table 4.4: Comparing the Top Four AP Hypergraphs and their Patterns
Pattern AP Hypergraphs
Count Count %Reduction

His18 26 2 92.31%
Met62 16 2 87.50%
Total 42 4 88.10%

Cytochrome C Discussion

Our results show that the set of AP Hypergraphs discovered by our AP Synthesis Process

that contain the protein binding sites – the main biological function of the protein.

In fact, the four top resulting AP Hypergraphs precisely correspond to these crucial

binding segments that contain conserved columns corresponding to the binding residues.

The ten AP Hypergraphs that correlate to the two binding sites were first clustered

based on their horizontal patterns in their rows and are then aligned into their column

hyperedges that reveal their vertical stability. First, each AP Hypergraph contains a set of

statistically significant patterns that are similar to one another. Although these patterns

suggest their horizontal significance in the protein family, individually they do not identify

the significance of the amino acid’s conservation and variation. Thus, the stability of the

column hyperedges is important for identifying the binding residue. Second, the column

hyperedges of each binding AP Hypergraph show the column hyperedges in the cluster

contain the conserved residue, which otherwise is not easily seen in the individual non-

variable patterns. For example, consider the top two AP Hypergraphs that correspond to

each of the proximal (Table 4.5and Fig. 4.3) and distal binding segments (Table 4.6and

Fig. 4.4). In these Tables, the columns in bold are the conserved columns with R1= 1.0,
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where R1 reflects the specificity of the residue of the site in the AP Hypergraph. The

column hyperedges corresponding to the binding sites of the AP Hypergraphs have an R1

value of 1.0, that is, the amino acid for that column hyperedge is conserved in the data

space. To give a precise example, consider the proximal AP Hypergraph that is ranked

second. This AP Hypergraph has three conserved columns with an R1 value of 1.0: Gln16,

Cys17, and His18. The His18 conserved column is the proximal binding residue, and the

Cys17 binds an adjacent corner on the heme ligand. Similarly, the conserved column

representing Met62 in the distal AP Hypergraph acts as the distal binding residue. The

other conserved columns can be used to identify other important functions in the protein.

Figure 4.3: The corresponding proximal AP Hypergraph of the cytochrome c family that
is ranked second.

Figure 4.4: The corresponding distal AP Hypergraph of the cytochrome c family that is
ranked first.
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Table 4.5: The Proximal AP Hypergraph of the Cytochrome C Family
patterns Count Position

******GKKIFVQKCAQCHTV********* 23 6.27E+04

****EKGKKIFVQKCAQCHT********** 23 1.32E+04

MGDVEKGKKIFVQKCAQCHTVEKGGKHKTG 20 7.50E+07

******GKKIFVQKCAQCHTVEKGGKHKTG 20 1.16E+06

*************KCAQCH*********** 57 1.59E+01

**************CAQCH*********** 89 2.58E+03

*************RCAQCHT********** 21 1.38E+01

**************CAQCHT********** 76 3.01E+01

**********FVQKCAQCHTVE******** 27 5.88E+02

************QKCAQCHT********** 32 6.38E+01

************QKCAQCHTVEKGGKHKTG 23 6.33E+04

*************KCAQCHTVEKG****** 30 4.91E+01

*************KCAQCHTV********* 51 1.73E+01

**************CAQCHTV********* 65 3.10E+01

**************CAQCHTVEK******* 34 1.30E+01

**************CAQCHTVE******** 49 2.41E+01

****************QCHTV********* 95 2.33E+03

****************QCHTVEKGG***** 45 1.75E+01

****************QCHTVE******** 77 3.15E+01

Table 4.6: The Distal AP Hypergraph of the Cytochrome C Family
patterns Count Score

WGEDTLMEYLENPKKYIPGTKMIF****** 22 1.94E+03

***DTLMEYLENPKKYIPGTKM******** 26 1.30E+03

*******EYLENPKKYIPGTKMIFAGIKK* 35 2.54E+02

****TLMEYLENPKKYIPGTKMIFAGIKKK 29 7.34E+02

****TLMEYLENPKKYIPGTKMIFAG**** 34 4.81E+01

********YLENPKKYIPGTKM******** 81 6.51E+02

*******EYLENPKKYIPGTKMIFAG**** 42 5.44E+01

*******EYLENPKKYIPGTKM******** 65 2.88E+01

By matching the individual AP Hypergraphs up to the independent HMM alignment

of pFam (Fig. 4.5 and Fig. 4.6), we confirmed the validity of our set of 36 AP Hypergraphs.
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In addition, our proximal AP Hypergraph for cytochrome c is consistent with the proximal

binding motif: [C]-x(2)-[CH], from PROSITE (PDOC00169) [16, 172] and a strong emission

probability in pFam (PF00034) [175]. Moreover, our method strongly identified the distal

binding in our AP Hypergraphs where PROSITE does not annotate the binding site and

pFam identifies only a weak emission probability.

In conclusion, the AP Hypergraph can represent protein functions such as the binding

segments and binding residues and presents a reduced set of candidate solutions and spec-

ifies their location in the protein family. In cytochrome c, the prevention of binding can

block cancer progression, which is an important drug discovery for cancer treatment.

4.3.2 The UniProt Ubiquitin Protein Family

Ubiquitin Results

To study the general iterative steps and to show the overall resulting quality of AP Hyper-

graphs, we further applied our method to the ubiquitin protein family. The 70 sequences

from the ubiquitin protein family used in our experiment were obtained on August 9th,

2012 from Uniprot by searching the following terms: name:ubiquitin; NOT name:*ase;

NOT name:like; NOT name:ribosomal; NOT name:modifier; NOT name:factor; NOT

name:protein; NOT name:conjugating; NOT name:activating; NOT name:enzyme; AND

reviewed:yes; AND mnemonic:UB*. These adopted parameters help to yield a reason-

able number of input sequences for our study. For these 70 input sequences, the Pattern

Discovery Step was executed with the minimal order of 10 due to the number of input

sequences, the minimum occurrence of 20, and the delta of 0.9 to yield a proper size of
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the results for the study. Table 4.7 shows the thirty discovered patterns, where all except

five of the patterns contained the seven binding residues. Nevertheless, these patterns still

corresponded to the conserved amino acids around the binding residues. Therefore, all the

discovered patterns indicate important functionality in the ubiquitin protein family, such

as the binding site or the areas next to the binding site. Once again, each pattern on its

own occurs only a few times, and has only a low frequency count for representing the bind-

ing segments of this protein family. Since protein binding segments exhibit considerable

variability, AP Hypergraphs represent the protein family’s functional binding sites more

explicitly and effectively.

From this list of 30 statistically significant patterns obtained from the previous Pattern

Discovery Step, the AP Clustering Step was executed with the the same parameters as

before. We demonstrated the efficacy of our AP Synthesis Process by showing the reduced

set of 9 AP Hypergraphs and their binding sites (Table 4.8). s

Ubiquitin Discussion

Our resulting AP Hypergraphs correspond to six of the seven binding sites: Lys6, Lys11,

Lys27, Lys33, Lys48, and Lys63. The remaining Lys33 is found in an AP Hypergraph

with only one pattern and thus stands out as a significant functional group with a distinct

pattern discovered with high statistical significance in the Pattern Discovery Step. Sur-

prisingly, one of the Lysine identified by Pfam, which is not one of the seven binding sites,

is a non-conserved Arginine(R) in our AP Hypergraph. This Lysine is not a binding site,

but just another amino acid in the protein.
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Table 4.7: Statistically Ranked Patterns Discovered from the Sequences of the ubiquitin
Family

Rank- Pattern Freq- Score Binding
ing uency Residue
1 MQIFVKTLTGKTITLEVEPSDTIENVKAKI 21 5.44E+44 Lys6, Lys11, Lys27,

QDKEGIPPDQQRLIFAGKQLEDGRTLSDYN Lys29, Lys33, Lys48,
IQKESTLHLVLRLRGG Lys63

2 MQIFVKTLTGKTITLEVESSDTIDNVKAKI 15 2.86E+44 Lys6, Lys11, Lys27,
QDKEGIPPDQQRLIFAGKQLEDGRTLADYN Lys29, Lys33, Lys48,
IQKESTLHLVLRLRGG Lys63

3 SDTIENVKAKIQDKEGIPPDQQRLIFAGKQ 24 1.25E+33 Lys27, Lys29, Lys33,
LEDGRTLSDYNIQKESTLHLVLRLRGG Lys48, Lys63

4 SDTIDNVKAKIQDKEGIPPDQQRLIFAGKQ 17 7.59E+32 Lys27, Lys29, Lys33,
LEDGRTLADYNIQKESTLHLVLRLRGG Lys48, Lys63

5 MQIFVKTLTGKTITLEVESSDTIDNVKAKI 17 4.76E+31 Lys6, Lys11, Lys27,
QDKEGIPPDQQRLIFAGKQLEDGRTL Lys29, Lys33, Lys48

6 IENVKAKIQDKEGIPPDQQRLIFAGKQL 32 3.48E+31 Lys27, Lys29, Lys33,
EDGRTLSDYNIQKESTLHLVLRLRGG Lys48, Lys63

7 VKTLTGKTITLEVESSDTIDNVKAKIQD 17 1.59E+30 Lys6, Lys11, Lys27,
KEGIPPDQQRLIFAGKQLEDGRTLAD Lys29, Lys33, Lys48

8 TITLEVEPSDTIENVKAKIQDKEGIPPD 24 8.80E+28 Lys27, Lys29, Lys33,
QQRLIFAGKQLEDGRTLSDYNI Lys48

9 KIQDKEGIPPDQQRLIFAGKQLEDGRTL 39 7.43E+27 Lys29, Lys33, Lys48,
SDYNIQKESTLHLVLRLRGG Lys63

10 KEGIPPDQQRLIFAGKQLEDGRTLSDY 44 3.66E+23 Lys33, Lys48, Lys63
NIQKESTLHLVLR

11 IPPDQQRLIFAGKQLEDGRTLADYNIQ 20 3.38E+23 Lys48, Lys63
KESTLHLVLRLRGG

12 NVKAKIQDKEGIPPDQQRLIFAGKQLE 36 6.15E+21 Lys27, Lys29, Lys33,
DGRTLSDYNI Lys48

13 KIQDKEGIPPDQQRLIFAGKQLEDGRT 44 5.20E+18 Lys29, Lys33, Lys48
LSDYN

14 KIQDKEGIPPDQQRLIFAGKQLEDGRT 19 2.23E+16 Lys29, Lys33, Lys48
LAD

15 KTLTGKTITLEVESSDTIDNVKAKIQD 19 8.01E+15 Lys6, Lys11, Lys27,
KEG Lys29, Lys33

16 MQIFVKTLTGKTITLEVEPSDTIENVK 25 1.17E+15 Lys6, Lys11, Lys27
17 MQIFVKTLTGKTITLEVESSDTIDNVK 23 8.48098E+14 Lys6, Lys11, Lys27
18 DYNIQKESTLHLVLRLRGG 62 2.40964E+11 Lys63
19 MQIFVKTLTGKTITLEVE 60 17382565255 Lys6, Lys11
20 KTLTGKTITLEVESSDTI 26 1135719784 Lys6, Lys11
21 LEVESSDTIDNVK 26 7757459.08 Lys27
22 TITLEVEPS 28 28304.96142
23 KTLTGKT 67 3796.714675 Lys6, Lys11
24 DGRTLAD 23 1298.702247
25 STLHL 69 1102.599421
26 KTITL 67 315.8836468 Lys11
27 IENVK 38 309.1891137 Lys27
28 VEPSD 28 260.0761993
29 TLADY 23 191.1286116
30 IDNVK 29 180.0682775 Lys27
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Table 4.8: The 36 AP Hypergraphs of the ubiquitin Family Ranked by Standard Resid-
ual (where m=the number of patterns in the AP Hypergraph, and n=length of the AP
Hypergraph))

AP Hypergraph(as regular expressions) m n Qual- Cover- Standard Binding
ity age Residual Site

1 MQIFVKTLTGKTITLEVE[SP]S 10 76 0.31 61 4.7E+39 Lys6, Lys11,
DTI[DE]NVKAKIQDKEGIPPDQ Lys27, Lys29,
QRLIFAGKQLEDGRTL[SA]DYN Lys33, Lys48,
IQKESTLHLVLRLRGG Lys63

2 NVKAKIQDKEGIPPDQQRLIFAG 5 52 0.5 67 3.3E+29 Lys27, Lys29,
KQLEDGRTL[SA]DYNIQKESTL Lys33, Lys48,
HLVLRLRGG Lys63

3 MQIFVKTLTGKTITLEVEP[SP] 5 27 0.34 67 2.7E+14 Lys6, Lys11,
DTI[ED]NVK Lys27

4 DYNIQKESTLHLVLRLRGG 1 19 1 62 2.2E+12 Lys63
5 LEVE[SP]SDTIDNVK 2 13 0.31 54 1.0E+07 Lys27
6 KTITLEVEPS 2 10 0.4 68 4.0E+05 Lys11, Lys27
7 DGRTLADY 2 8 0.5 24 1.4E+04
8 STLHL 1 5 1 69 1.7E+03
9 I[ED]NVK 2 5 0.8 67 1.2E+03 Lys27

For ubiquitin, our AP Hypergraphs are short alignments of patterns that agree with

the emission probabilities of the pFam profile HMM (Fig. 4.7). All eight AP Hypergraphs

discovered agreed with the pFam HMM emission probability. Surprisingly, our results dif-

fers from PROSITE’s consensus motif (PDOC00271), which missed 172 ubiquitin proteins.

In drug discovery, preventing the linking of ubiquitin to its binding proteins via its binding

site inhibits cancer growth.

4.4 Chapter Conclusion

Our AP Synthesis Process greatly reduces the number of AP Hypergraphs in comparison

with other methods. This is due to the fact that the AP Clustering Step starts with input

patterns from the Pattern Discovery Step rather than the entire input search space. Hence,

it drastically and controllably reduced the search space. From the application aspect, using

94



data from two Uniprot protein families (cytochrome c and ubiquitin), the majority of top-

ranking AP Hypergraphs correspond to their protein binding segments. The resulting

cytochrome c binding AP Hypergraphs agree with the pFam emission probability. An AP

Hypergraph represents a set of patterns as the horizontal rows and its column hyperedges

as the vertical columns, which can be further evaluated for amino acid conservations. In

fact, for cytochrome c, the proximal and distal binding residues correspond to conserved

columns with R1 of 1.0. In addition, the distal AP Hypergraph identifies one conserved

column with R1 of 1.0 as the binding residue, which is not identified in PROSITE or

pFam. While the ubiquitin AP Hypergraphs agree with pFam emission probability, six of

the seven binding residues are successfully identified in the AP Hypergraph.

In conclusion, AP Hypergraphs can be used to reveal functional domains across dif-

ferent protein families without relying on prior knowledge or clues about the consensus

regions. Currently, we are using column hyperedge variations as amino acid characteristics

to classify protein species and gene labels. We are also extending the algorithm to discover

interdependencies within AP Hypergraphs and long-distance associations among AP Hy-

pergraphs. In more general cases of protein analysis, the function and the nature of the

protein function are not clear; thus, the capability that overcomes such difficulties marks

the uniqueness and novelty of our AP Synthesis Process. In the broader sense, this knowl-

edge is essential for understanding the proteins involved in epigenetics for drug discovery.

The development of cancer generally increases with age and with the ageing baby-boomer

population. It is crucial for drug companies to finding cost-saving and time-saving tech-

niques for drug discovery.
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Chapter 5

Cluster Validity Measures

5.1 Chapter Introduction

As biosequences expand quickly and increases in size and complexity, it is difficult to con-

duct effective analysis on the full protein sequences. Thus, identifying conserved sequence

patterns is considered to be important for studying essential disjoint and joint functions

in a protein. It is well recognized that conserved protein patterns are functionally essen-

tial because they are evolutionarily conserved [137] whereas mutated amino acids in these

conserved regions may reflect special functionality that has evolutionarily diverged into

sub-classes [51]. It is hoped that the conserved patterns and mutated amino acids may

shed light on the protein class characteristics. In the past, biological ground truths were

incorporated as class labels (such as protein family, gene function, species taxonomy) for

each protein sequence so as to reveal inherent class characteristics.
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In response to the above observations and challenges, the second important contribution

of this dissertation is to use simple cluster validity measures to reveal relevant information

from Aligned Pattern Clusters (AP Clusters) [115]. More specifically, the cluster validity

measures reveal how distinctive entities of representation, such as Aligned Patterns, AP

Clusters, distinct amino acids, and column of aligned amino acids, reveal class character-

istics of the protein regions that is due to its inherent functionalities. Since AP Clusters

contain aligned statistically significant patterns with strongly associated correlations, their

class characteristics can be effectively revealed by the variation of amino acids on their sites

as they are parts of the association between the class functional patterns. To evaluate the

conservations and variations that reveal similarities and differences between sample seg-

ments and sites in AP Clusters, several cluster validity measures are proposed. It is found

that because of the compact functional information being brought into the AP Clusters,

the measures proposed in this dissertation are very effective at revealing class character-

istics as confirmed by the ground truth and unaffected by external biases from collected

class labels. In our later experiments, we do find that AP Clusters correspond to gene

classes better than taxonomical classes.

To evaluate how the proposed cluster validity measures could reveal the inherent class

characteristics objectively, a synthetic dataset comparing the various degrees of mislabelling

was analyzed. In silico biological case studies on SSAT and cytochrome c were conducted

to showcase the external and internal measures. Furthermore, large scale experiments on

two protein families with two different class labellings were used to study the relationships

between the internal and external measures with correct, ambiguous, or even incorrect

class labels. Finally, we compared the results of our internal and external measures to
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those results from SVM and HMM classification algorithms. Experimental results show

that our clustering algorithm using external and internal cluster validity measures discovers

essential amino acid variations and their relation with inherent class characteristics without

requiring training. Thus, training biases, which are common to classification algorithms

are avoided.

With great potential in revealing group variations, our cluster validity measures can

help biochemists concentrate on identifying specific amino acids and sites with variations

that are most likely to correspond to functionality or class characteristics.

This dissertation chapter is organized as follows: the methodology section describes

the proposed methodology; the results section provides the results and discussion to In

Silico and synthetic artifical experiments as evidence of the effectiveness of the proposed

algorithm; and the conclusion seciton contains the concluding remarks.

5.2 Methodology

The unsupervised algorithm first discovers and clusters sequence patterns into AP Cluster

using our previously developed algorithm from Chapter 3 to discover patterns and cluster

align pattern [115]. Then, cluster validity measures (Table 5.3) are incorporated to measure

the association of the AP Cluster and their representations with class characteristics of the

protein family.

The purpose and use of cluster validity measures are to show how an AP Cluster and

its representations could reveal its inherent class characteristics. Here, a text example
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(Table 5.1) is examined in detail and presented for clearer understanding of the cluster

validity measures. The class labels adopted here have no functional meaning as those

related biological classes; they are just class names. These dataset (Table 5.1) contains

three functional patterns of the English words, HELLO, MELLOW, and BELLOW, which are

embedded in fifteen multiple sequences, associated with three class characteristics: happy,

sad, angry.

Recall that the text example (Table 5.1) presents three sequence patterns discovered in

the Pattern Discovery Step. The dataset contains three functional patterns of the English

words, HELLO, MELLOW, and BELLOW, which are embedded in fifteen multiple sequences

S = {s1, ..., s15} (Table 5.1). The letters outside the patterns are stochastically generated

from the 26 characters of the English alphabet that are identically and independently

distributed.

Table 5.1: Example of Patterns p̄1 =HELLO, p̄2 =MELLOW, and p̄3 =BELLOW
S The Input Sequences Class

s1 bdxejrtewkwkHELLOkcmstsjavtpi happy
s2 nfixtHELLOuzdovcaaxnkjfjcvwk happy
s3 dimtndvkjmkHELLObkcmstsj happy
s4 tzhgarzofdHELLOpwkxmc happy
s5 tyjxjqnyHELLOwmopemlqfgptnwnq happy

s6 kntywtoaxMELLOWbtiasycma happy
s7 jilxchitivMELLOWriiiweyfzgvuyaa happy
s8 hmlzvMELLOWorgfeb sad
s9 xhmlzvqgcanyMELLOWgbfj sad
s10 vqgcanyffcMELLOWvcnsnjvalbdvr angry

s11 cbpyhejgkinrphceBELLOWndwzahvkitagtt sad
s12 ndwlofBELLOWscktbucwqnboeaaklknsrmur angry
s13 fzomphnlrqhupkqBELLOWyutpfu angry
s14 skwybrfiBELLOWyvxjdijwqjvs angry
s15 nknhqexqieaBELLOWybnvrhpnsjnfms angry
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5.2.1 Cluster Validity Measures to Reveal Class Characteristics

Since an AP Cluster brings rich yet compact information of a protein region, we could

relate different aspects of an AP Cluster to the class characteristics of the protein. Hence

we introduce different representations in or of an AP Cluster. A representation within the

AP Cluster is a distinct entity (such as a horizontal pattern, a vertical aligned column, or

a distinct amino acid), which stores its counts that can be associated with external class

characteristics. There are two types of cluster validity measures (Table 5.3): 1) external

measures, which used for validating the representations how they are as related to the

known external class labels, and 2) internal measures, which are derived merely from data

reflecting the inherent functional and class characteristics. Furthermore, three types of in-

formation theory computations are incorporated: Shannon’s information entropy [169], the

change in information entropy (i.e., information gain), and the mutual information. Thus,

by the internal and external measures for the three information theory computations, there

are six cluster validity measures in total as tabulated in Table 5.2: 1) three external mea-

sures, Class Entropy (H) for representations (patterns, AP Clusters, and distinct amino

acids), Class Mutual Information (R2) for column hyperedges, and Class Information Gain

(IG) for column hyperedges, and 2) three internal measures for column hyperedges, En-

tropy Redundancy (R1), Normalized Sum of Mutual Information Redundancy (SR2) and

Normalized Sum of Information Gain (SIG).
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External Measures with Class Labels

To evaluate the class characteristics of an AP Cluster, we would like to find out how

each representation is related to class characteristics. To this end, we consider each of

the following representations from an AP Cluster: the AP Cluster by itself, the column

hyperedges, and the distinct amino acid in a column hyperedge. Hence, the distribution

of the class labels associated with each of the representations is used to calculate the

external measures, thereby measuring the association between the representation and the

class labels.

To generalize the representations from patterns to column hyperedges, we first introduce

the notion of class profile.

Definition 13 The class profile of a representation is an n-tuple of ordered pairs that store

the name and the count of each class. Let ~Y = {~y1, ~y2, ..., ~y|Y |}, where ~yi = (classi, counti)

such that classi is the class name and counti is the class count for class ~yi among the |~Y |

classes in the representation.

Algorithm 4 The Class Profile Algorithm

Require: An AP Cluster, C, and its labels
Ensure: The class profile

1: for all (Patterns p in an AP Cluster) do
2: for all (Class Labels l in a Pattern) do
3: if l.count > maxLabel.count then
4: maxLabel = l
5: Assign p.label = maxLabel
6: end if
7: end for
8: end for
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Shannon’s Information Entropy for Class Labels Class entropy, H, for a represen-

tation is derived from Claude Shannon’s work [169]. If a pattern is associated with only

one class, then its H is 0, i.e., the best possible score, an indication of certainty. Conversely,

if a pattern exists in almost all classes uniformly, then its H is close to 1. Such associations

are extended to other representations’ H, such as an AP Cluster itself, or an amino acid in

a specified column hyperedge of an AP Cluster.

Definition 14 The H for a representation is computed from the distribution of its class

profile and is defined as

HY (R) = − 1

log(|Y |)
(∑
yi∈Y

pr(yi)log(pr(yi))
)
, (5.1)

where |Y | is the number of classes and pr(yi) is the probability of class i occurring in the

sequences restricted by that representation, R.

We extend the H for a pattern to other representations (Table 5.3).

Table 5.3: Class Entropy Variables

Representation R H Variables
1 AP Cluster HY (C l)
2 pattern HY (pi)
3 column hyperedge HY (cj)
4 distinct amino acid HY (σ(cj)), σ(cj) ∈ Σ(cj)

in an column hyperedge

Returning to the text example in Table 5.1, the pattern p1 =HELLO* has a H ofHY (p1) =

0 with Y = {(happy, 5) , (sad, 0) , (angry, 0)} (Table 5.6). In the same table, the AP Cluster
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has a H HY (C1) = 0.95 with three classes: Y = {(happy, 7) , (sad, 3)}, (angry, 5)}.

Table 5.4: Example of an AP Cluster for H of the Horizontal Pattern

Aligned Columns Classes

c1 c2 c3 c4 c5 c6

h
ap

p
y

sa
d

an
gr

y

HY (pi)

p1 H E L L O * 5 0 0 0.00
p2 M E L L O W 2 2 1 0.96
p3 B E L L O W 0 1 4 0.46
HY (C l) 7 3 5 0.95

The H for an AP Cluster is obtained horizontally for a pattern, but it is also obtained

vertically for column hyperedge. However, in an AP Cluster, the vertical distribution of

the class profile is the same for all column hyperedges; therefore, the H for each column

hyperedge is the same as that of the AP Cluster. Therefore, we introduce the class informa-

tion gain (IG) of a column hyperedge in order to measure the change in class information

for each column hyperedge when the individual class profiles of the amino acids are taken

into consideration.

Amino Acid Class Entropy First, let us begin with the H HY (σ(cj)) for each distinct

amino acid’s class profile.

Definition 15 The amino acid H in the column hyperedge can be expressed as

HY (σ(cj)) = − 1

log(|Y |)
(∑
yi∈Y

pr(yi)log(pr(yi))
)
, (5.2)
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where pr(yi) is the probability of class i occurring in the sequences limited by σ(cj) ∈ Σ(cj)

in the column hyperedge cj.

Algorithm 5 The Amino Acid’s Class Profile Algorithm

Require: An AP Cluster and its vertices
Ensure: Each vertex’s class profile {Get class profile of amino acid}

1: for all (column hyperedges cj in AP Cluster) do
2: for all (amino acids σ in cj) do
3: for all (patterns pi in AP Cluster) do
4: if pi.column(cj) = σ then
5: totalLabel+ = pi.labelProfile
6: end if
7: end for
8: end for
9: end for

Returning to the text example, recall that the set of amino acids in column hyperedge

1 is Σ(c1) = {H,B,M}; the amino acid class entropies are computed as HY (H(c1)) = 0.00,

HY (B(c1)) = 0.46, and HY (M(c1)) = 0.96, indicating respectively in Table 5.5 that H is

associated with a unique class; B with two classes; and M with all classes according to

their tabulated distribution in each class. Similar to the H of a pattern, when the amino

acid belongs to only one class, it has an H of 0; when the amino acid belongs to all the

classes uniformly, it has an H of 1.

Class Information Gain of an Aligned Column In information theory, the gain of

information is the loss of entropy. Hence, we define the IG of column hyperedge as the loss

of entropy when additional information is provided. The entropy of the column hyperedge

is obtained based on the class distribution of that column hyperedge, HY (σ(cj)). If we
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Table 5.5: Example showing the H of amino acid

cj σ(cj) happy sad angry HY (σ(cj))
c1 H 5 0 0 0.00
c1 B 0 1 4 0.46
c1 M 2 2 1 0.96
c2 E 7 3 5 0.95
c3 L 7 3 5 0.95
c4 L 7 3 5 0.95
c5 O 7 3 5 0.95
c6 * 5 0 0 0.00
c6 W 2 3 5 0.94

know about the class distributions of each amino acid in the column hyperedge, then we

can compute the H and thus, the loss of these entropies is equivalent to IG.

Definition 16 Let IG be defined as

∆HY (cj) =
1

HY (cj)

(
HY (cj)−

∑
σ(cj)∈Σ(cj)

(
w(σ(cj))HY

(
σ(cj)

)))
, (5.3)

where HY (cj) is the H of the column hyperedge, cj (note that HY (cj) = HY (Cl)), HY (σ(cj))

is the amino acid H, and w(σ(cj)) is the weight for normalizing the occurrences of the amino

acid σ(cj) in the column hyperedge cj. w(σ(cj)) is also considered the probability of σ(cj)

occurring in Σ(cj) such that w(σ(cj)) =
count(σ(cj))

count(cj)
.
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∆HY (c1) =

HY (cj)−
∑

σ(cj)∈Σ(cj)

(
w(σ(cj))HY

(
σ(cj)

))
HY (cj)

(5.4)

=
0.95−

(
5
15

(0.00) + 5
15

(0.46) + 5
15

(0.96))
)

0.95
(5.5)

=
0.48

0.95
(5.6)

= 0.50 (5.7)

In the text example, the IG of column hyperedge 1 is computed (Table 5.6). The upper

bound of IG is 1; HY (σ(cj)) = 1 is the hypothetical situation of maximum entropy when

the amino acids are distributed uniformly among all classes. We observe that the largest

IG is 0.5 (in dark grey) as computed in equation 5.4. HY (σ(cj)) = 1 and the weighted

sum of HY (σ(cj)) is 0 since each amino acid pertains to only one class in that column.

The lower bound of IG is 0 when only one amino acid is in that column hyperedge and

has the same class distribution as the AP Cluster. Hence, there is no additional gain of

information from special associations of the amino acids to the classes.

Class Mutual Information of an Aligned Column Next, we compute the R2 be-

tween classes to account for the correlation of the amino acids in the column hyperedge

with the class labels.
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Table 5.6: Example of an AP Cluster for IG of a Vertical Aligned Column

Aligned Columns
c1 c2 c3 c4 c5 c6

P
at

te
rn

s p1 H E L L O *
p2 M E L L O W
p3 B E L L O W

A
m

in
o

A
ci

d
s

H
Y

(σ
(c
j
))

H E L L O *
0.00 0.95 0.95 0.95 0.95 0.00
B W

0.46 0.94
M

0.96
IG ∆HY (cj) 0.50 0.00 0.00 0.00 0.00 0.34

Definition 17 Let class mutual information be defined as

R2(ci, Y ) =
1

H(ci, Y )

(
H(ci) +H(Y )−H(ci, Y )

)
, (5.8)

where H(ci) is the amino acid information entropy of the column hyperedge ci, H(Y ) is

the class information entropy of the column hyperedge, and lastly, H(ci, Y ) is the joint

information entropy between column hyperedge ci and the class.

Internal Measures without Class Labels

First, the Entropy Redundancy (R1) is a measure that reflects the specificity and diversity

of amino acids distributed in a column hyperedge. R1 measures the amino acid variations

in a column hyperedge. We adopt two additional cluster validity measures: Normalized
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Sum of Mutual Information Redundancy (SR2) [214] and Normalized Sum of Information

Gain (SIG) both of which are used to quantify the interdependencies in all the column

hyperedges.

To compute the internal measures, we first compute the internal information entropy

based on the amino acid distributions in the column hyperedge:

H(ci) = − 1

log(|Σ(ci)|)
( ∑
σ(ci)∈Σ(ci)

pr(σ(ci))log(pr(σ(ci)))
)
, (5.9)

with Pr(σ(ci)) obtained from counting σ in the column hyperedge, cj, using the induced

data, D(C l).

Algorithm 6 Use of induced data to compute cluster validity measures

1: for all (column hyperedges ci ∈ C = C l) do
2: R1 = column entropies from Lo
3: MI = joint entropie from Lo of both
4: for all (column hyperedges cj ∈ C = C l, where cj! = ci)) do
5: SR2 = SUM of all possible joint entropies between (ci, cj)
6: end for
7: end for

Entropy Redundancy (R1) of a column hyperedge

Definition 18 The R1 of a column hyperedge cj, denoted by R1(cj), is defined as

R1(cj) = 1−H(ci). (5.10)

Hence, a conserved column hyperedge has R1(cj) = 1 since the minimum entropy value of
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H(cj) = 0. Conversely, if the amino acid occurrences in D(C l) are equal-probable, then

the maximum entropy value of H(cj) = 1 so that the column hyperedge has R1(cj) =

1−H(cj) = 0.

The Normalized Sum of Information Gain SIG of a column hyperedge is the sum of

the class information gain obtained from all the pairwise interdependencies of the column

hyperedge with the others in the AP Cluster.

Definition 19 The SIG of an column hyperedge in an AP Cluster is computed as

SIG(ci) =
1

n

n∑
j=1,j 6=i

IG(ci, cj), (5.11)

where n is the number of column hyperedges. The IG between all pairs of columns is

computed using the induced data of an AP Cluster [113] by

IG(ci, cj) = ∆H(ci|cj) =
1

H(ci|cj)

(
H(ci|cj)−

∑
σ(cj)∈Σ(cj)

(
w(σ(cj))H(ci|σ(cj))

))
.

The Normalized Sum of Mutual Information Redundancy SR2 is formulated as

the normalized average of the sum of mutual information redundancy between a column

hyperedge and other column hyperedges in an AP Cluster. In other words, SR2 is the

sum of all pairwise interdependencies and is computed as mutual information between

the current column hyperedges and all the other column hyperedge, for all the column

hyperedges in the same AP Cluster.
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Definition 20 The SR2 of a column hyperedge in an AP Cluster is computed as

SR2(ci) =
1

n

n∑
j=1,j 6=i

R2(ci, cj), (5.12)

where n is the number of column hyperedges. The mutual information between all pairs of

columns is computed using the induced data of an AP Cluster [113] by

R2(ci, cj) =
1

H(ci, cj)

(
H(ci) +H(cj)−H(ci, cj)

)
. (5.13)

Note that the mutual information of Conserved column hyperedges, that is column hy-

peredges with only one possible amino acid value, is skipped in the summation. The

probabilities are computed from the induced data. The summing of mutual information in

SR2 reflects the highest interdependence of a column hyperedge with others, thus reflecting

the inherent class dependency characteristics in the induced data of the AP Cluster.

Algorithm 7 Ranking by SR2

Require: An AP Cluster, C, which has the instances of the occurrences from the input
Ensure: Compute the SR2 from the data space and rank the top three SR2.

1: for all (column hyperedges ci ∈ C = C l) do
2: R2 = joint entropy from Lo of both
3: for all (column hyperedges cj ∈ C = C l, where cj! = ci)) do
4: if cj is not a conserved aligned column, then
5: SR2 += mutual information between (ci, cj)
6: end if
7: end for
8: end for
9: return average of SR2
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Returning to the text example(Table 5.1), recall that the set of amino acids in the

column hyperedge 1 is Σ(c1) = {H,B,M}. In Table 5.7, SR2 and R1 are computed from

the amino acid in the induced data.

Table 5.7: R1 and SR2 of an AP Cluster for the text example

sequence Aligned Columns
c1 c2 c3 c4 c5 c6

s1 H E L L O k
s2 H E L L O u
s3 H E L L O b
s4 H E L L O p
s5 H E L L O w
s6 M E L L O W
s7 M E L L O W
s8 M E L L O W
s9 M E L L O W
s10 M E L L O W
s11 B E L L O W
s12 B E L L O W
s13 B E L L O W
s14 B E L L O W
s15 B E L L O W
IG(cj, Y ) 0.5 0 0 0 0 0.34
R2(cj, Y ) 0.32 0 0 0 0 0.27
R1(cj) 0 1 1 1 1 0.08
SR2(cj) 0.58 0 0 0 0 0.58
SIG(cj) 0.58 0 0 0 0 1
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5.2.2 Synthetic Experiments

The ability of the proposed external and internal cluster validity measures to avoid bias

was shown from experiments conducted on the synthetic datasets that were created to

simulate class mislabelling. That is, synthetic datasets that contained class label errors.

To evaluate the ability of the external measures to identify the best column hyperedge for

class characterization in the protein sequences, we created synthetic datasets that contained

variations of amino acids corresponding to different class labels. The degree of mislabelling

would reveal in corresponding changes in the external measures. We first created two

patterns that differs by one amino acid that is perfectly labelled and change the class label

of one sequence occurrence of each pattern for each dataset to simulate mislabelling.

External Measures As the mislabelling increases, both IG and R2 describe the change

of the information value will correspond to the degree of mislabelling, showing that external

measures are ideal for ranking the quality of the amino acid classifier (Fig. 5.1(a)). As a

consequence, the class entropy for patterns increases and then decreases as an indication of

the overall increase in randomness when half of the sequences are mislabelled. This same

observation is evident for H of the patterns; however, H of AP Cluster remains consistent

because the composition of the two patterns did not change.

Internal Measures As for the internal measures (Fig. 5.1(b)), R1, SR2, and SIG they

all remain the consistent as the mislabelling increases because they are computed from the

induced data alone, and not related to the class labels.
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(a) Synthetic Mislabelled External Measures (b) Synthetic Mislabelled Internal Measures

Figure 5.1: The graphs show the trend of the internal and external measures when there
is mislabelling. As mislabelling increases, IG and R2 models it.

5.3 In Silico Biological Experiments

To reveal the underlying biological class characteristics of the critical regions, we studied

results of in silico biological datasets calibrated by their class labels as biologically es-

tablished ground truth due to homology. Homology describes the shared ancestry; thus,

sequence homology describes the sequence ancestry due to speciation event (orthlog) or

duplication event (paralog). For example, homologous sequences are orthologous if they

descend from the same ancestral sequence by a speciation event, i.e. when a species di-

verges into two different species. For example, homologous sequences are paralogous due to

a duplication event, i.e. when a gene in an organism is duplicated to occupy two different

places. Therefore, two types of protein families were studied: the clear gene partitioning

of the paralogous SSAT protein family and the ambiguous taxonomic partitioning of the

orthologous cytochrome c protein family.

First, for the paralogous SSAT protein family, clear gene function of the proteins are
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labelled as SSAT1, SSAT2, and SSAT-L1. Second, for the orthologuous cytochrome c

protein family, taxonomic class labels were collected as Mammals, Plants, Insects, and

Fungi.

5.3.1 Class Entropy for Patterns and Align Pattern Clusters

To reveal the properties of each cluster validity measures, the AP Cluster corresponding

to the distal region of cytochrome c (Table 5.8) was examined in detail. We display the

class counts and class entropy of pattern, HY (pi), and AP Cluster, HY (C l). For H, recall

that if the representation is associating with only one class, then its H is 0 (shaded in light

grey). Conversely, if a the presentation exists in almost all classes uniformly, then its H is

close to 1 (shaded in dark grey).

Table 5.8 displays the class distribution and class entropy of the statistically significant

AP Cluster that corresponds to the distal binding site, Met, of cytochrome c. The top

rows in the table group and align each individual pattern with taxonomic class distribution

and class entropy attached to the AP Cluster. The three light grey rows with zero class

entropies are patterns 11, 12, and 13, dominated by Mammals. The dark grey rows with

the highest class entropies are patterns 3, 5, and 6, which are well distributed throughout

all the taxonomic classes. The distal AP Hypergraph has class entropy 0.95 (in dark grey),

indicating the class distribution for the AP Cluster is almost evenly across the classes.

Discussion Here, we observe that the AP Clusters may contain patterns with low en-

tropy, clearly associated with specific classes, and also high entropy patterns, shared by

115



Table 5.8: Class Entropies of Patterns in the Distal APC found in Cytochrome C

AP Cluster

M
am

m
al

s

P
la

n
ts

F
u
n
gi

In
se

ct
s

HY (pi)

p1 TLYDYLL*NP****************** 0 21 1 0 0.13
p2 *LFEY*LENPKK**************** 0 1 5 9 0.6
p3 ********NPKKYIPGTKM********* 30 24 20 10 0.95
p4 ********NPKKYIPGTKMVF******* 0 23 1 4 0.4
p5 ****Y*LENPKKYIPGTKM********* 30 1 16 10 0.77
p6 ***EY*LENPKKYIPGTKM********* 30 1 5 9 0.66
p7 ********NPKKYIPGTKMAFGGLKK** 0 1 17 0 0.15
p8 *LYDYLL*NPKKYIPGTKMVF******* 0 21 1 0 0.13
p9 ***EY*LENPKKYIPGTKMIFAG***** 22 0 0 6 0.37
p10 ****Y*LENPKKYIPGTKMAFGGLKK** 0 1 15 0 0.17
p11 TLMEY*LENPKKYIPGTKMIF******* 30 0 0 0 0
p12 TLMEY*LENPKKYIPGTKMIFAGIKK*K 17 0 0 0 0
p13 TLMEY*LENPKKYIPGTKMIFAGIKK** 20 0 0 0 0
p14 TLYDYLL*NPKKYIPGTKMVFPGLKKPQ 0 18 1 0 0.15
p15 ****YLL*NPKKYIPGTKMVFPGLKKP* 0 22 1 0 0.13
HY (C l) Distal AP Cluster Total 30 25 21 10 0.95
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more classes. Each individual pattern with H of 0.00 may be a good classifier, but once

it is grouped and aligned into an AP Cluster, the collective AP Cluster share the class

distributions with resulting H close to 1 (in dark grey). Hence such AP Cluster as a whole

is poor classifier; thus, we need to identify the amino acids at the column hyperedges to

partition the classes more precisely.

5.3.2 Class Entropies for Amino Acids

To explore how the amino acids in each of the vertical column hyperedges associate with

classes, we display their class counts and class entropy, HY (σ(cj)). The column hyperedge,

c21, has four possible amino acids:

• The wild card * with the H of 0.90, indicating that it pertains in more than one class,

actually, in all four classes Mammals, Plants, Fungi, and Insects;

• amino acid A with a medium H of 0.37, indicating that it pertains to more than one

class, i.e., two classes Mammals and Insects;

• amino acid P with a low H of 0.13, indicating that it pertains to mostly one class,

i.e., Plants; and

• amino acid G with a low H of 0.15, indicating that it also pertains mostly to one

class, i.e., Fungi.

The four distinct amino acids together in column hyperedge 21 produced an IG of

0.61, indicating a considerable gain of class information of that aligned column when class

entropy and its amino acids are considered.
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Table 5.9: Amino Acids in aligned column 21 of the Distal AP Cluster

σ(cj)

M
am

m
al

s

P
la

n
ts

F
u
n
gi

In
se

ct
s

HY (σ(cj))

* 8 2 3 4 0.90
G 0 1 17 0 0.15
A 22 0 0 6 0.37
P 0 22 1 0 0.13
IG(c21) 0.61

Discussion In general, it is easy to identify the amino acid with the best or the worst

Class Entropy. However, the individual amino acids alone cannot describe the class charac-

teristics inherent in the full AP Cluster, therefore we need to look at each aligned column.

The IG of a column hyperedge renders a more effective cluster validity measure that com-

putes the change in the Class Entropy from that of the AP Cluster after considering each

amino acid in that column hyperedge. Therefore, IG of an column hyperedge is used

because it is a better overall class measure.

5.3.3 Class Information Gain and Class Mutual Information for

the Column Hyperedges

From this point forward, the cluster validity measures are applied to the representation

of column hyperedge. First, we examine the Class Information Gain and Class Mutual

Information for column hyperedge representations. In the distal AP Cluster of cytochrome

c (Table 5.10), the maximum IGs and R2s are column hyperedge 73, 90, and 92 (in dark

grey), each with multiple amino acids in the column hyperedges. High IG and R2 values
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indicate multiple amino acids in the column hyperedge have the most gain in class entropy

is gained after the amino acid class entropies are considered together. Conversely, the

minimum IGs and R2s are column hyperedges 79 to 80 (in light grey) of 0.00, indicating

no additional class entropy is gained vertically when considering the lone amino acid from

the full AP Cluster. Additionally, column hyperedge 77 has R2 of 0.00, but not IG, due

to calculation from pattern space for IG but from induced data for R2 and the rest of the

column hyperedge measures.

Discussion The column hyperedges with multiple amino acids that have even class dis-

tribution have high IG and R2. Therefore, the amino acid variations with the highest

IG and R2 provide the best classifier for partitioning the classes. IG and R2 shows the

same trends, which is also demonstrated later in the synthetic dataset and the large-scale

comparisons.

5.3.4 Internal Measures

To demonstrate the trends and relationships between the internal measures, which do not

depend on external class labels, we examined the relationship between internal measures

R1, SR2, and SIG. From the set of induced data, the internal measures do not depend on

class labels and are computed on data along.

High SR2 corresponds to a high SIG (in dark grey), indicating strong interdependence

of that column hyperedge with all other column hyperedges. In order to minimize the

effect of conserved aligned columns, which has R1 of 1.00 (in dark grey), its SR2 and SIG
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are automatically set to 0.00

Discussion When examined in detail, class partitioning of an AP Cluster and its induced

data are both reflected by the amino acid variations and conservations correlated with

shared class functionality across the class labels. Both SR2 and SIG in this AP Cluster

demonstrate that Mammals and Insects may have shared functionalities since both are from

the Animalia (also called Metazoa) kingdom. It is important to note that functionality

and class may not be partitioned in the same manner. In all our experiments, we found

that SR2 and SIG are good classifiers in the sense that they associate amino acids with

not only distinct classes but also across multiple classes, indicating shared functionalities.

5.3.5 Top Ranking Aligned Pattern Clusters

To confirm that the cluster validity measures are appropriate for identifying column hyper-

edges as classifiers, we rank the AP Clusters by their statistical significance and examine

each of their optimal cluster validity measures (Table 5.11).

Discussion Each of the top ten statistically significant AP Clusters are listed with the

optimal value of each measures and its column hyperedges containing that value. The

multiple column hyperedges per optimal value is due to more than one column hyper-

edge associated with that value; thus, all those column hyperedges are listed on multiple

rows. We observe that the optimal internal measures tend to correspond to the same col-

umn hyperedges and the optimal external measures also tend to correspond to the same

column hyperedges, thereby implying a linear correlation between the internal measures.
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Table 5.11: The Top 10 AP Hypergraphs of the Cytochrome C Ranked by Statistical
Significance

Rank AP Cluster Min Posn Max Posn Max Posn Max Posn Max Posn
R1 R1 SR2 SR2 SIG SIG IG IG R2 R2

1 MGDVEKGKKI 0.01 24K 0.42 35H 0.81 1M 0.46 13[QK] 0.52 13[QK]
FV[QK]T[RK] 25G 36G 4V
CAQCHTV[ED] 26G 37L
KGGKHKTGPNL 38F
HGLFGRKTGQA 39G
PG 40R

41K
42T
43G
44Q
45A

2 KGAGKHK[QT] 0.05 22[TQ] 0.23 22[TQ] 0.64 3A 0.56 23[QT] 0.55 8[QT]
GPNL[HN]GL
FGR[KQ][TS]
AG[TQ][QT]
[AT]PG[YF]SYS

3 TL[YFM][DE] 0.01 22[GAP] 0.3 13Y 0.45 13Y 0.76 3[YFM] 0.58 3[YFM]
YLLENPKKYI 14I 14I 20[VAI]
PGTKM[VAI] 15P 15P
F[GAP]G[LI] 16G 16G
KKP[KQ] 17T 17T

18K 18K
19M 19M

4 AG[YF]SY[TS] 0.02 12K 0.27 15T 0.57 1A 0.52 13G 0.52 13G
[DA]ANKNKG 16W
ITWGE

5 ERADLIAYLK 0.02 11K 0.34 7A 0.49 7A 0.42 12A 0.39 15E
KATNE 8Y 8Y 13T

9L 9L
10K 10K

6 MGDVEKGKKI 0.12 12V 0.18 10I 0.4 3D 0.42 1M 0.58 1M
FVQ 13Q 11F

12V
13Q

7 G[KA]GHK[TQV] 0.01 11[NH] 0.53 2[KA] 0.81 3G 0.73 6[TQV] 0.74 3G
GPNL[NH]G

8 GEK[LI]FKT 0.00 4[LI] 0.64 4[LI] 0.88 3K 0.72 3K 0.56 2E
[RK]CA 10A 8[RK] 4[LI] 4[LI]

10A 8[RK] 8[RK]
10A 10A

9 AGYSY[ST]DA 0.09 7D 0.48 7D 0.74 7D 0.51 6[ST] 0.41 7D
8A 8A 8A 8A

10 GYLKK[AP] 0.00 2Y 0.82 2Y 1.00 1G 0.57 7[TQ] 0.51 7[TQ]
[TQ] 6[AP] 6[AP] 2Y

6[AP]
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We recommend using top ranking internal measures for finding characterizing amino acid

variations for partitioning the classes.

5.3.6 Relationship between Cluster Validity Measures

To study the relationships amongst class characteristics with internal measures, we com-

pared experimental results obtained from two in silico biological datasets. The internal

measures are compared to one another, and the external measures are compared on two

different types of collected external class labels.

Internal Measures The internal measures, R1, SR2, and SIG, do not require external

class labels, and the external measures, do. To determine the relationship between the

internal measures, between the three internal measures, we studied the linear regression by

plotting the linear correlation and calculating the degree of error, which is the coefficient of

determination (R2). Note that this is different from R2, which unfortunately has the same

symbol. The two different types of class labels were not considered for internal measures

because these measures depend on data alone and thus are not affected by differences in

the class labels. Using linear regression, R1 shows a negative relationship with SR2 and

SIG, whereas SR2 and SIG are positively correlated (Fig. 5.2).

This correlation is because an AP Cluster is not an arbitrary array of amino acids,

but rather, a horizontally aligned array of statistically significant patterns (i.e., amino acid

associations). Hence, any differences in amino acids, the amino acid associations extracted

from patterns, in the column could have a strong interdependence with amino acids in other
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(a) CytoC: SR2 v.s. R1 (b) CytoC: SR2 v.s. SIG

(c) SSAT: SR2 v.s. R1 (d) SSAT: SR2 v.s. SIG

Figure 5.2: The negative linear relationship between R1s and SR2s for each column
hyperedge in the AP Cluster. The linear relationship between SIGs and SR2s indicates
that the two different formulae evaluate similar behavior in the class labels.
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aligned columns, explaining why low R1 corresponds to high SR2. An aligned column with

low R1 suggests that the amino acids are more diverse.

SR2 and SIG have the strongest correlation (Fig. 5.3), especially for SSAT, implying

that this dataset have clean class partitioning, which leads to strong correlation between

them. Furthermore, such correlation is stronger in the clean paraloguous protein family

than in the ambiguous orthologuous protein family, indicating that correct partitioning

yields stronger correlations between the internal measures.

Figure 5.3: The strength of R2 measures the relationship between the internal measures.
SR2 and SIG have the strongest correlation, and paraloguous proteins have a stronger
correlation than orthologuous proteins.

External Measures To determine the effects of different class label characteristics on

external measures, we compared R2 and IG of each datasets with its unique class labels

and plotted their histograms (Fig. 5.11). Because the external class labels are incorporated

into the formulae for external measures, two different types of external class labels for

the same set of protein sequence data were collected. First, for the paralogous SSAT
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protein family, two sets of class labels were collected. The first set of class labels correctly

describes the function of the proteins as SSAT1, SSAT2, and SSAT-L1. The second set

of class labels partition the sequences incorrectly by their taxonomic species. Second, for

the orthologuous cytochrome c protein family two different types of taxonomic class labels

were collected. The first set of class labels using kingdoms consists of the top level in

Uniprot taxonomy and the second set consists of second level in Uniprot taxonomy which

partition the sequences into more number of classes.

(a) CytoC: IG v.s. R2 (b) SSAT: IG v.s. R2

Figure 5.4: For each protein, IG v.s. R2 were plotted for each of the two different types
of class labels. Their corresponding histogram values are bar graphs along the x-axis and
y-axis.

The results showed a weak linear relationship between IG and R2. We observe that,

when the taxonomy is expanded to increase the number of classes, the histograms of both

measures expand outward, indicating an increase of the measures, thus the scatter plot
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expands as well. This observation indicates that, as the number of taxonomic classes

increases, it is less likely that a representation belongs to only one class, and thus, class

entropy is smaller than it was previously and is less likely to be zero. Therefore, as shown

in the histograms, R2 is also always smaller and the value of IG increases, leading to a

more expanded and larger value of IG. IG differences the two different histograms for SSAT

indicate that more information can be gained when there are more classes, such that the

results can more likely be divided into negative IG. Therefore, negative IG implies incorrect

partitioning as observed in the SSAT taxonomy IGs.

We recommend using the external measures to rank the quality of the class labels being

used, as well as the internal measure for ranking aligned columns internally by data alone.

5.3.7 State-of-the-Art Comparisons

Cytochrome c and SSAT datasets were used to compare the precision of our method in

revealing mislabelling to those of the other classification algorithms: SVM and HMM

(Fig. 5.5 and 5.6 ). The cytochrome c protein demonstrates noisy partitioning using tax-

onomic class labels, while the SSAT protein demonstrates clean partitioning using gene

class labels. The Uniprot cytochrome c dataset was limited to only Mammals and Plants;

the ENSEMBL SSAT dataset was limited to only SSAT1 and SSAT2. Each dataset was

separated into a training set and a testing set. For each set of experiments, the class labels

for the training set were altered to imitate mislabelling and the entire testing set was kept

constant. Both SVM and HMM are classification learning algorithms that use the training

set to accurately predict the testing set. However, our method is a clustering algorithm
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with external and internal cluster validity measures designed to reveal class characteris-

tics. Thus, both the training set and the testing set were used to identify the best column

hyperedge for each measure as summarized in the conclusion.

For SVM, the Shogun package was executed using linear hard-margin SVM with local

alignment kernel. For HMM, the input sequences were first aligned using Matlab Bioinfor-

matics Toolbox and then the profile HMM was built using HMMER’s hmm build.

Mislabelling Class Labels Classification is strongly influenced by errors in the training

set since the learned model will propagate the mistakes. Therefore, to show the effect of the

errors in the training set, class labels in the training set are changed to imitate mistakes,

and the accuracy of the predicted class labels of the testing set is measured (Fig. 5.5(a) and

5.5(b)). The accuracy of the classification algorithms, SVM and HMM, drops significantly

as mislabelling increases. For our method, SR2 does not change since it is independent

of the class labels. IG drops and climbs to demonstrate that it can independently assess

the associations between the data and the class labels. It should be noted that only the

mislabelled training set was used for IG to demonstrate the concave behaviour of IG in

measuring the proportion of mislabelling. When mislabelling reaches 100%, i.e., becomes

all errors, the IG increase again as it reverses in the error rate.

Unbalanced Distribution of Training Sets To study the effect of the size of the

training sets and unbalanced class labels on the accuracy of the trained models, the input

training set is manipulated and the accuracy of the trained model is measured. In the

training sets, the number of Mammals remains constant, whereas the number of Plants
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(a) Cytochrome C Mislabelling – External Mea-
sures

(b) SSAT Mislabelling – External Measures

(c) Cytochrome C Mislabelling – External Mea-
sures for column hyperedge

(d) SSAT Mislabelling – External Measures for col-
umn hyperedge

(e) Cytochrome C Mislabelling – Internal Measures (f) SSAT Mislabelling – Internal Measures

Figure 5.5: The graphs show our internal and external measures for cytochrome c and
SSAT for class mislabelled training sets.
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(a) Cytochrome C Mislabelling – Supervised Meth-
ods

(b) SSAT Mislabelling – Supervised Methods

(c) Cytochrome C Unbalanced Training Set (d) SSAT Unbalanced Training Set

Figure 5.6: The graphs show the comparison of our method with HMM and SVM for
cytochrome c and SSAT for class mislabelling and unbalanced training sets.
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is varied (Fig. 5.6(c) and 5.6(d)). SVM is unable to accurately predict the testing set

when there is insufficient training data for the Plant class. However, our cluster validity

measures and the profile HMM are not influenced by the size of the training sets because

IG is normalized based on the size of the classes and the profile HMM is trained based on

the MSA of the entire input sequences.

Runtime Comparisons The runtimes for our AP Cluster, SVM and HMM for the two

biological datasets are compared (Table 5.12). Results show that SVM is fast but inaccurate

when insufficient training data is available. On the other hand, HMM is accurate, as it is

unaffected by size of the training set, but is time consuming because it first build the MSA

for training. Therefore, our AP Clusters are accurate as well as fast with a faster runtime

than SVM and MSA.

Table 5.12: Runtime Comparisons (in seconds)
In Seconds Cyto C SSAT
AP Cluster 3.46 0.92
(No training)
SVM Training 4 1
SVM Testing 1 1
HMM Training 20 20
HMM Testing 30 10

5.4 Chapter Conclusions

AP Clusters allow the effective use of clustering that is more general and unbiased than the

traditional classification algorithms, such as SVM and HMM, since AP Clusters depend
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only on internal data alone without requiring external class labels in the algorithm design.

For the synthetic dataset and in silico comparison to SVM and HMM, we observed that

internal measures are unaffected by mislabelling, whereas external measures describe the

relationships. A large-scale experiment of the cluster validity measures of column hyper-

edges was conducted to compare (1) the relationship between internal measures and (2)

the behavior of external measures to different class labelling. Finally, the superiority of

cluster validity measures over SVM and HMM classifiers in handling labelling errors was

confirmed.

Cluster validity measures reveal class characteristics that are inherent in the highly

functionally correlated AP Clusters. Hence, AP Clusters relate regional functionalities

to inherent class partitioning more effectively for both external and internal measures.

If known, the class labels can be used as external validations, whereas if absent, other

internal measures can be used for revealing class discriminability. Therefore, AP Clusters

are suitable for dealing with complex and large datasets because the simple assumption of

class labelling cannot be justified when applied to the entire set of data in an unrestricted

manner.

In conclusion, amino acid variations manifested in column hyperedges with optimal

cluster validity measures are more likely to be functionally significant. Biochemists who

study protein functionalities should focus on these significant amino acids rather than

enumerate all possibilities in high-throughput experiments. Currently, in the next chapter,

we are studying the co-occurrence of AP Clusters and their column hyperedge variations.
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Chapter 6

Co-Occurrence Clusters of Aligned

Pattern Clusters

6.1 Chapter Introduction

Identifying functional regions on proteins is essential for understanding biological mech-

anisms and for designing new drugs. Due to the accessibility to protein sequences on

the web, it is more effective to look for conserved segments from a set of functionally

similar protein sequences than to perform laborious and time-consuming experiments and

computationally intensive modeling. The study of conserved functional regions relies on

the assumption that amino acids in functional regions are integral and thus undergo fewer

mutations throughout evolution than less functionally important amino acids [124]. There-

fore, the functional regions of protein structures can be obtained from analyzing protein
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sequences that have similar biological functions.

Multiple sequence alignment (MSA) [186, 139] is a traditional computational method

which is capable of aligning homologous protein sequences that are highly similar. How-

ever, it is unable to discover functional regions in more divergent protein sequences. Con-

sequently, MSA is a global alignment method suitable for studying closely related proteins

but not proteins that have only region-wise, partially functional similarities [187]. It has

also been shown that finding the global optimal alignment is an NP-complete problem [203].

Coupling analysis [204, 35, 135] is a method based on MSA that examines the substitution

correlation between two aligned columns within the MSA. This study hypothesizes that

if two residues form a contact within a protein, then an amino acid substitution at one

position is expected to be compensated for by a substitution in another position over the

evolutionary time-scale. This observation suggests that co-occurring residues on the same

protein can provide insight into the protein’s structure. However, due to the dependence

on MSA and the complexity of the method, determining the underlying statistical model

requires a large number of homologous non-redundant protein sequences. Evolutionary

tracing [124] is another method based on clustering alignments. The consensus within and

across each group is identified to allow the study of divergent residues that are globally or

functionally preserved in a protein family. Once again, evolutionary tracing is based on

full sequence similarity requiring mutagenesis information for clustering [129]. Hence, it

is not effective for revealing local functionality. Both coupling analysis and evolutionary

tracing are based on examining pairwise amino acid correlations from MSA which focuses

on two identified sites and does not take into account other sequence information.

In comparison to traditional methods, our algorithm finds and analyzes higher order
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sequence patterns in conserved regions, improving the capacity to reveal cross pattern as-

sociation and local and distant functionality. In our previous work, we introduced Aligned

Pattern Clusters (AP Clusters) [115] to represent functional regions as an alternative to

position weight matrices [221]. Aligned Pattern Clusters are sequence patterns with vari-

ations and conservation without assuming independence between residues [115] at sites.

Its strength lies in the retention of statistical significance along the amino acids on a se-

quence and also the tracking of distribution of their occurrences across the sequences. With

this novel representation, we are now able to exploit the APC occurrences and study the

co-occurrence between their patterns on the same protein sequence.

We hypothesize that co-occurring patterns reflect the joint functionality that are needed

for co-operative biological functions such as chemical bonds or binding sites. Thus, we ad-

dress the following two research questions: 1) Given a set of homologous protein sequences,

how can frequently co-occurring patterns be efficiently discovered? 2) How can the bio-

logical reasoning and significance of these co-occurrences be confirmed? To test these

hypotheses, we used our co-occurrence clustering algorithm to find highly co-occurring

patterns among a cluster of APCs and then studied their biological functions. First, we

collect homologous protein sequences from the protein databases Pfam [63] and UniProt

[17] as input. Next, we design an efficient algorithm based on our previous work [218, 115]

to find and represent the frequently co-occurring patterns. Finally, we verify our results by

comparing the three-dimensional distance between the co-occurring patterns against the

average distance between the regions spanned by the patterns. To confirm the biological

functions of the co-occurrences, we search the related scientific literature to support the

conceived role of these co-occurring patterns.
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In view of the above mentioned computational results and biological observations ac-

complished in this paper, the contributions of this study mirror the answers to the research

questions in two ways. First, we have established an algorithm that discovers co-occurring

functional regions that are statistically reliable, measurable, and efficient. To our knowl-

edge, this study is the first to identify the co-occurrence of patterns rather than residues.

Compared to existing algorithms used to study correlations in amino acid residues, the

novelty of our algorithm is that it does not require a large number of homologous protein se-

quences to identify pattern co-occurrences. Secondly, we have verified these co-occurrences

by using the co-occurring patterns’ three-dimensional closeness and by searching biological

literature for support, enriching our understanding of the underlying mechanism. Novel

co-occurrence relationships will provide new insight for the biological community for use

in their study on protein functionalities.

Previously, the Chapter 2 of this dissertation shows that Aligned Pattern Clusters (AP

Clusters) are able to provide a knowledge-rich representation of functional regions of a

protein. With this novel representation, this chapter tries to show that joint functionality of

distant regions in a protein can also be revealed by the co-occurrence of patterns contained

in distant AP Clusters discovered on the same proteins. In other words, in this chapter

we attempt to study and exploit the notion of co-occurrence of patterns in distant AP

Clusters discovered on the same protein in order to find out how co-occurring AP Clusters

are able to reveal interacting or binding segments within a protein.

The three contributions in this chapter of the dissertation are:

• A framework to study functional regions of proteins by exploiting the co-occurrences
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of patterns to reveal concurrent distant functions and structural relations.

• An algorithm which is statistically reliable, efficient, and visualizable (in domain

location, structural and functional relation, amino acid conservation and variations)

in an integrated process and manner.

• Those discovered co-occurrence of patterns that are novel to the biological community

will provide new insights to their studies of biological functions.

The dissertation chapter is organized as follows: methodology section describes details

of the proposed clustering and the three-dimensional confirmation; the experimental section

provides the results and discussion to In Silico case study and structural and functional

biological significance; and the chapter conclusion is the concluding remarks.

6.2 Methods

6.2.1 Algorithm definition and details

The methodology proposed in this dissertation chapter combines three algorithms together

to obtain the Co-occurrence Cluster of Aligned Pattern Clusters (Co-occurrence Cluster)

(Fig. 6.1). The first two algorithms are adopted from our previously dissertation chapters:

1) a pattern discovery algorithm that discovers statistically significant sequence patterns

from a set of sequences of a protein family while pruning the redundant patterns [218]; 2)

an Aligned Pattern Cluster (AP Cluster) algorithm that obtains compact aligned groups

of statistically significant patterns referred to as AP Clusters. These AP Clusters contain
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variations with adjustable low information entropy [115]. Finally, in the third and main

contribution algorithm of this dissertation chapter , Co-occurrence Clusters are obtained by

clustering the AP Clusters discovered using spectral clustering [197] with a co-occurrence

score adopted as a measure of distance.

Figure 6.1: The overall process of our methodology is represented by a pipeline consisting
of three algorithms.0) the input is a set of sequences from the same protein family; 1) the
published pattern discovery algorithm, which results in a list of patterns; 2) the published
APC algorithm, which results in a set of APCs; and 3) the new Co-Occurrence Cluster
algorithm, which cluster APCs by their co-occurrence scores.

Clustering AP Clusters to Co-occurrence Clusters

Co-existence of patterns in different locations of the same protein may indicate that they

are functionally related and important for the protein family. In Co-occurrence Clusters,
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we first apply a spectral clustering algorithm to cluster AP Clusters using a co-occurrence

score between AP Clusters as the similarity measure. Let the graph G = (V,E) be a

relationship graph with AP Clusters as vertices. Let each vertex v be an AP Cluster, and

let each weighted edge e be the co-occurrence for two AP Clusters; the edge weight is the

co-occurrence score to be defined later between the two APCs. The spectral clustering

algorithm is used to obtain Co-occurrence Clusters based on the co-occurrences between

the AP Clusters.

Co-occurrence score To tell how many patterns out of the total number of the discov-

ered patterns co-occur in two AP Clusters, we need a co-occurrence score which will be used

as the similarity measure for clustering co-occurrent AP Clusters. The co-occurrence scores

quantify how often patterns in two AP Clusters appear together on the same sequence.

The Jaccard index is adopted [184]:

J =
|C1

seq ∩ C2
seq|

|C1
seq ∪ C2

seq|
,

where C1
seq = sequences that contain patterns from AP Cluster C1 and C2

seq = sequences

that contain patterns from AP Cluster C2.

The AP Cluster pairs are ranked by co-occurrence score and listed in descending order.

When two or more AP Cluster pairs have the same score, the sequence count of the union

of the two AP Clusters (|C1
seq ∪C2

seq|) is used as a secondary ranking criteria, i.e., the pair

with a higher union size indicates that it covers more sequences and, hence, should be

ranked higher.

139



Spectral clustering For spectral clustering [197], an adjacency matrix W is first created

and filled with the co-occurrence score between the AP Clusters. LetW be an n by nmatrix

(n is the vertex count in G), where W (i, j) is the adjacency weight between vertex vi and

vj, i.e., the co-occurrence score between vertex vi and vj. The following matrices was first

constructed:

di =
∑
j

W (i, j).

D = diag(d1, ..., dn),

where D is an n by n matrix.

Next, using the adjacency matrix, a Laplacian matrix L is created, and L’s eigenvectors

are calculated. Using random walk, construct the Laplacian matrix

Lrw = I −D−1W

where I is an n by n identity matrix. Find both the eigenvalues and their corresponding

eigenvectors for Lrw and sort the eigenvectors by the ascending order of their eigenvalues.

Finally, the eigenvectors are then used as positions for the AP Cluster vertices v, with

the weighted edges e being the Euclidean distance between v in the vertex space of G and

its neighbours. K-means clustering is applied to G, minimizing the Euclidean distance

of the eigenvectors between the vertices. Let k be the final cluster count, defined as the

count before the largest difference between consecutive eigenvalues [197]. We use the first

k columns in the eigenvectors for clustering. Each row in the eigenvector corresponds to

an AP Cluster vector, with each vector having k values. Together the row and columns
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make a point in k-dimensional space. Apply the k-means clustering algorithm on these

given k points, but instead of maximizing similarities between the points within clusters,

minimize the distances between the points.

Algorithm 8 Spectral clustering

Input: A set of AP Clusters C, adjacency matrix W , and the final number of clusters
required by the final k-means clustering algorithm
Output: AP Cluster Clusters K1...Kk

for i = 1 to |C| do
di =

∑
j w(i, j)

end for
D = diag(d1, ..., dn)
Let I be a |C|x|C| identity matrix
Lrw = I −D−1W
Calculate the eigenvectors and their corresponding eigenvalues of Lrw
Sort the eigenvectors by their increasing eigenvalues
Take the first k columns of eigenvectors
Let each row of the eigenvector represent an AP Cluster,
and let each eigenvector column a dimension
Construct a k-dimension graph Gk with the eigenvector values
Apply k-means clustering on Gk, minimizing the Euclidean distance between the points
within the clusters.
return {K1...Kk}

Comparison of clustering algorithms Two other clustering algorithms are imple-

mented to compare with spectral clustering: that is, the k-means clustering and the hier-

archical clustering.

A special variation of the k-means clustering algorithm called k-medoids [23] is used

in this paper. AP Clusters are used to represent the centroids since calculating a centroid

with only co-occurrence scores between AP Clusters is difficult. The medoids are initialized
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to be the first AP Cluster for each connected component due to the small number of AP

Clusters considered. During the clustering process, the medoids are updated by finding

the AP Cluster that maximizes the co-occurrence score between itself and all the other AP

Clusters in the same cluster. Finally, to ensure that clustering provides the best possible

results, five clustering indicators are computed to determine the optimal final number of

clusters, i.e., optimum k, to be adopted for the k-medoids.

The hierarchical clustering algorithm uses a maximum spanning tree (MST) with min-

imal cut. First, an MST is built using Prims algorithm. Next, the minimal weighted edge

of the MST is cut to separate the vertices, which are AP Clusters, into two co-occurrence

clusters. The second step is repeated until an optimal solution is achieved.

The runtimess to find the optimal solutions for the three clustering algorithms are as

follows: O(n4) for hierarchical clustering, O(n3) for spectral clustering, and O(n3) for k-

medoids clustering. During the edge-cutting phase for hierarchical clustering the algorithm

must evaluate all possible MST edges, a maximum of n edges, with each edge taking

O(n2). Since there are a maximum of n MST edges to cut, the total running time is

O(n4). K-medoids clustering takes O(n2) only if the cluster count is given. However, the

algorithm is run n times to compare and obtain the optimal cluster count for the optimal

clustering solution. Hence, the optimal solution has a runtime of O(n3). In comparison,

spectral clustering takes O(n3) even with cluster count given, as the matrix multiplication

that occurs when calculating the Laplacian matrix takes O(n3). However, the matrix

is calculated only once, the optimal cluster count is obtained through the eigenvalues,

and the algorithm uses the same that for the k-medoids algorithm to find the optimal

cluster. Hence, the total runtime for spectral clustering is the same as k-medoids clustering,
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O(n3). Because of the faster runtime, spectral and k-means clustering are preferred over

hierarchical clustering.

Moreover, the spectral clustering algorithm is selected over the k-means clustering al-

gorithm used in [110] because of the nature of the data. Pfam [63] sequences are built

from multiple sequence alignments with the help of hidden Markov model; thus, the se-

quences have been pre-processed for correctness. UniProt [43] sequences are collected from

a string query search of the database, so the quality of the sequences depends on the search

terms. Therefore, the sequence quality of UniProt is less consistent, making it unsuitable

for clustering using the global centroid of k-means since the low-quality sequences are

heavily affected by outliers [86]. Closest neighbour characteristic in the spectral clustering

algorithm is beneficial in handling noisy data. Therefore, this algorithm was selected for

cluster co-occurring AP Clusters.

,

Verification by three-dimensional structure

To evaluate the importance of the AP Cluster regions discovered, we use the three-

dimensional distance between the protein segments corresponding to the AP Clusters

within the Co-occurrence Cluster. The rationale for using the three-dimensional distance

is that if the AP Clusters are close together in three-dimensional space then they will

likely interact with one another. It thus provides biophysical support that these functional

regions are of biological importance to the proteins in the protein family tested.

After applying Co-occurrence Clustering, we manually select the cluster that contains
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the lowest average eigenvector distance as the highly connected Co-occurrence Cluster.

We relate these results to the corresponding three-dimensional protein structure from the

Protein Data Bank (PDB) [20] using Chimera [147], highlighting the regions where the

AP Clusters, or parts of the AP Clusters, appear. The distances between the AP Clusters

are calculated as follows: the positions of each carbon alpha in each AP Cluster region is

averaged, creating an average centroid for each AP Cluster region. The Euclidean distance

is then calculated amongst all centroids. Finally, the AP Cluster distance is compared

to the average pairwise distance, which is the average Euclidean distance of all possible

carbon alpha pairs in the structure.

Using only the highly connected Co-occurrence Cluster and finding its biological im-

portance, we validate 1) that the co-occurrence score ranks important AP Cluster pairs

over the less important one, 2) that co-occurrence clustering is able to separate the less

important AP Clusters out and 3) that our algorithm can provide reasonably good results

in a timely manner, i.e. by not having to search through all AP Clusters discovered.

6.2.2 Datasets

The first dataset selected for our experiment contains two different protein families from

UniProt, which are examined in subsequent detailed case studies. The first set is of ubiqui-

tin protein sequences, downloaded on August 9th, 2012, with the following filters to obtain

high quality sequences: having the name ubiquitin with a mnemonic starting with UB;

and not containing the words ribosomal, modifier, factor, protein, conjugate, activating, or

enzyme to remove other similar names. The second is of cytochrome c protein sequences,
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downloaded on December 20, 2013, similarly with the filters: having the name cytochrome

c with the mnemonic CY*; not ending in ”ase” to prevent the inclusion of oxidase or

reducatase; and not containing biogenesis or probability to remove other similar names.

Each sequence from UniProt has an organism name, which is next searched in UniProt

Taxonomy to acquire the condensed taxonomy lineage. Finally, the top kingdom name is

extracted as the class label.

Next, our method was run on the two UniProt datasets. For the 70 ubiquitin input

sequences, the pattern-discovery step was executed with a minimal length of 5, a maximum

length of 15, a minimum occurrence of 20, and a delta of 0.9 (for control of delta closed

pattern pruning). The maximum length restricted long (or high order) patterns from

being discovered in the highly conserved ubiquitin sequences. Aligned pattern clustering

was then executed with the following settings: Global Alignment with Hamming Distance

and heuristics conditions with a minimum consecutive column match of 3, a minimum

conserved column of 1, and no relative position overlapping. For the 319 cytochrome c

input sequences, the pattern discovery step was executed with a minimal length of 5, a

minimum occurrence of 40, and a delta of 0.9. The increase in the minimum occurrence was

due to the increase in the number of input sequences. Aligned pattern clustering was then

executed with the same settings as above. Lastly, the co-occurrence score was computed,

and the three clustering algorithms were run. For both datasets, spectral clustering and

k-medoids resulted in producing the same Co-occurrence Cluster.

The second dataset contains nine different protein families downloaded from Pfam

Release 3.2 for a large-scale study of the three-dimensional structure of proteins. Pfam

was used due to its well curated and pre-processed data. The proteins are lipocalin
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[Pfam:PF000061]; bacterial rhodopsins [Pfam:PF00061]; bacterial antenna complex [Pfam:PF01036];

cytochrome c oxidase subunit I [Pfam:PF00115]; photosynthetic reaction centre protein

family [Pfam:PF00124]; leptin [Pfam:PF02024]; G-alpha subunit [Pfam:PF00503]; pro-

tein kinase domain [Pfam:PF00069]; and tyrosine kinase [Pfam:PF07714]. The pattern-

discovery and the aligned pattern clustering steps were executed with the same settings

as above, except the minimum occurrence, which was adjusted based on the number of

sequences and their sequence similarity as listed in Pfam. After clustering, we picked the

Co-occurrence Cluster with the lowest average eigenvector distance to be evaluated for the

three-dimensional distance.

6.3 Experimental results and discussions

6.3.1 Proteins verified by three-dimensional structure

We applied our method to nine protein families, confirming that our algorithm is effective

at finding important regions on any protein family. Table 6.1 displays the Co-occurrence

Cluster of closely related AP Clusters in the PDB structure of the related protein family.

We found that these AP Clusters are close in Euclidean distance in the three-dimensional

space.

Of interest are the results from the bacterial antenna complex family [Pfam:PF00556],

where there is an average AP Cluster distance of 0 Å. The reason is that, despite having

5 AP Clusters in the maximum co-occurrence cluster, all AP Clusters overlap with one

another, creating one long continuous region highlighted in blue (Figure 6.2). Furthermore,
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Table 6.1: Results from the nine protein families. Displays the Co-occurrence Cluster with
the lowest average eigenvector distance, and are used to verify the algorithm’s effectiveness
with a PDB structure. The shorter distance in the comparison is bolded. * means that
one or more AP Clusters were not found.
Protein Name Pfam ID Co-occurrence Size PDB ID Average AP Cluster Average

Cluster of the of the Distance of Pairwise
Count Best Cluster Best Cluster the Best Cluster Distance

Lipocalin PF00061 6 4 2CZT 16.77 Å 19.26 Å
Bacterial rhodopsins PF01036 2 2 1JGJ 16.52 Å 22.51 Å
Bacterial antenna com-
plex

PF00556 4 5 1IJD 0 Å 19.92 Å

Cytochrome c oxidase
subunit I

PF00115 2 25 3OM3 26.78 Å* 30.00 Å

Photosynthetic reaction
centre protein family

PF00124 2 7 1PSS 27.87 Å 30.19 Å

Leptin PF02024 2 14 1AX8 15.73 Å 18.37 Å
G-alpha subunit PF00503 3 8 4G5O 15.78 Å 27.45 Å
Protein kinase domain PF00069 2 2 3OZ6 15.32 Å 27.51 Å
Tyrosine kinase PF07714 2 8 4HW7 14.43 Å 24.99 Å

the highlighted region covers positions 9 to 31 of the structure, and has only 46 amino

acids, i.e., the maximum co-occurrence cluster continuously covers close to half of the

whole structure. The figure also indicates that [Pfam:PF00556] might be highly conserved,

exhibiting only minor variations in its primary structure across different proteins in the

family, especially in the regions covered by the maximum co-occurrence cluster. Another

result where the maximum co-occurrence cluster covers most of the amino acids in the

PDB structure is Leptin [Pfam:PF02024, PDB:1AX8], where only 14 amino acids are not

covered by the AP Clusters in the maximum co-occurrence cluster.

All the AP Clusters within the cluster in all the experiments in Table 6.1 were closer in

distance than the average pairwise distance, indicating a relation between co-occurring AP

Clusters and their distance in three-dimensional structures. We were able to observe some

characteristics of the protein family, i.e., the conservation of its primary structure. Hence,
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our algorithm is proven to discover important conserved regions for protein families.

Figure 6.2: Three-dimensional structure of bacterial antenna complex [PDB:1IJD]. The
set of all the patterns in the AP Clusters in the Co-occurrence Clusterinspected are all
contained within one continuous highlighted blue region, indicating how the AP Clusters
overlaps with one another.

6.3.2 Biological validation

In this section, we investigated the biological significance of Co-occurrence Clusters. Our

experimental results revealed the Co-occurrence Clusters of ubiquitin and cytochrome c.

Here we would like to study why co-occurring APCs are close to one another in spatial

distance despite being far from each other in the primary sequence. Our hypothesis is that

they need to form chemical bonding or co-operate in essential biological functions.

Ubiquitin case study

Ubiquitin (UBI) is a small (8.5kDa) protein that consists of a single polypeptide chain of 76

amino acids [196]. It plays an important role in ubiquitination, which is a post translational

protein modification process where either a single ubiquitin or multiple chains of ubiquitin
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are attached to a substrate protein. To form a chain, a ubiquitin connects to another

ubiquitin by binding the diglycine in its C-terminal tail to one of the seven lysine amino

acids of its linking partner.

Ubiquitination is widely used in regulating cellular signaling [53]. It does so by allowing

the attached ubiquitin in substrate proteins to be bound through proteins with ubiquitin-

binding domains (UBD) [53]. Either attaching a ubiquitin to a target protein or connecting

it to another ubiquitin is regulated by the sequential activity of ubiquitin-activating (E1),

ubiquitin-conjugating (E2) and ubiquitin-ligating (E3) enzymes [53].

When the seven lysine amino acids were mapped to our AP Clusters, they were all

covered (Table 6.2). According to the results of our co-occurrence clustering algorithm in

Figure 6.4, the optimum number of clusters of the six AP Clusters is two. The first cluster

includes AP Cluster 1, 2, 3, 4 and 5; the second cluster includes AP Cluster 6 only. Their

biological significance is discussed next.

The AP Clusters in the first cluster to co-occur for two reasons. First, each AP Cluster

covers at least one Lysine (K). The diglycine in the C-terminal tail, i.e., Gly(G)75 and

Gly(G)76 (green shade), is also covered in AP Cluster 3. As discussed earlier, Lysine (K)

and the diglycine in the C-terminal tail are both important for the formation of multiple

ubiquitin chains. Both AP Cluster 5 and AP Cluster 3 also cover important residues for

facilitating the interaction of ubiquitin with E1 enzymes [34]. Mutagenesis experiments

demonstrated that the mutation of Arg(R)42 or Arg(R)72 (red blocks) destabilizes the

binding between Ubiquitin and E1 enzymes significantly, thus in turn, destroying the bio-

logical functions of ubiquitin [34]. Second, all AP Clusters except AP Cluster 5 cover the
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Figure 6.3: Three-dimensional structures of ubiquitin [PDB:1AAR,2JF5,1WR1]. The
binding residues discussed in Table 6.2 and their functions are displayed. a) is the ubiquitin
chain linked by the Lys(K)48 in APC 4 to the diglycine, b) is the ubiquitin chain linked by
the Lys(K)63 in APC 4 to the diglycine, c) is the binding between dskp binding ubiquitin
and ubiquitin by Leu(L)8 of APC 2, Val(V)70 of APC 3, Ile44(I) and Lys(K)48 of APC 4,
and His(H)68 of APC 3.
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Table 6.2: Key residues covered by AP Cluster and their roles in the Co-occurrence Cluster
1 of ubiquitin

AP Cluster Residue(s) Role(s) Literature
1 K6, K11 Lys(K)6 and Lys(K)11 are used for forming

ubiquitin chain(s) in ubiquitination.
[196]

L8 Leu(8) facilitates the interaction between
ubiquitin and E1 enzymes.

[53, 185]

2 K11, K27 Lys(K)11 and Lys(K)27 are used for forming
ubiquitin chain(s) in ubiquitination.

[196]

L8 Leu(8) facilitates the interaction between
ubiquitin and E1 enzymes.

[53, 185]

3 K63 Lys(K)63 is used for forming ubiquitin
chain(s) in ubiquitination.

H68, V70 His(H)68 and Val(V)70 facilitate the binding
between ubiquitin and ubiquitin-binding pro-
teins.

[53, 185]

R72 Arg(R)72 facilitates the interaction between
ubiquitin and E1 enzymes.

[34]

G75,G76 Gly(G)75 and Gly(G)76 are are used for form-
ing ubiquitin chain(s) in ubiquitination.

[196]

4 R42 Arg(R)42 facilitates the interaction between
ubiquitin and E1 enzymes.

[34]

I44 Ile(I) 44 is the binding site between ubiquitin
and the ubiquitin-binding proteins.

[53, 185]

K48 Lys(K)48 is used for forming ubiquitin
chain(s) in ubiquitination. It also facilitates
the binding between ubiquitin and ubiquitin-
binding proteins.

[196, 53, 185]

5 K27,K29,K33 Lys(K)27, Lys(K)29 and Lys(K)33 are used
for forming ubiquitin chain(s) in ubiquitina-
tion.

[196]

R42 Arg(R)42 facilitates the interaction between
ubiquitin and E1 enzymes.

[34]

ubiquitin-binding residues. These residues are important for the tight binding of ubiqui-

tin with ubiquitin-binding proteins [53]. Therefore, the AP Clusters in the Co-occurrence

Cluster 1 are due to both ubiquitination and ubiquitin-binding.

There is only one AP Cluster, AP Cluster 6, in the second cluster (Figure 6.4) which has

no co-occurrence with other AP Clusters. We also observed a certain degree of overlapping
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between AP Cluster 6 and AP Cluster 5. We propose two reasons to explain why AP

Cluster 6 is not merged with AP Cluster 5 but exists alone in another cluster. First, the

conserved amino acid in residue 24 of AP Cluster 6 and AP Cluster 5 is Asp(D)24 and

Glu(E)24 (yellow shade), respectively. We found that ubiquitin of Viridiplantae (plant

kingdom) has mostly Glu(E)24, whereas ubiquitin of Metezoa (animal kingdom) has mostly

Asp(D)24 in our dataset, this site is also well-known for differentiating human (containing

Glu(E)24) ubiquitin from yeast (containing Asp(D)24) ubiquitin [195]. Hence, AP Cluster

6 and AP Cluster 5 are not merged in this study, because they cover patterns with different

amino acids in different species.

Second, AP Cluster 6 does not include ubiquitination-related Arg(R)42 and covers the

alpha helix 1, from residues 23 to 34, more precisely than AP Cluster 5. Previous literature

has discovered that alpha helix 1 is an unconventional recognition site of ubiquitin-binding

proteins [185]. Experiments in the same study revealed that, even if Ile(I)44 and His(H)68

were mutated, a high affinity binding between protein CKS1 and ubiquitin would still be

identified, thereby proving that ubiquitin is unconventionally bound by CKS1 [185]. It

should be noted that the conventional and unconventional ubiquitin-binding is not mutu-

ally exclusive [185]. Hence, AP Cluster 5 in the first cluster and AP Cluster 6 in the second

cluster are not merged. Where AP Cluster 5 represents the scenario that either only con-

ventional ubiquitin-binding occurs or conventional and unconventional ubiquitin-binding

co-occur, AP Cluster 6 represents the scenario that only unconventional ubiquitin-binding

occurs. Our experimental results from ubiquitin and literature search give us very strong

support for the biological significance of the discovered Co-occurrence Cluster.
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Cytochrome c case study

Cytochrome c (cyt-c) is a small (12.4kDa), heme-containing protein that consists of ap-

proximately 104 amino acids [226]. It is an essential component of the electron transport

chain in the mitochondria. The heme group of cyt-c accepts electrons from the complexes

III (cytochrome b-c1 complex or cyt-bc1) and transfers electrons to the complexes IV (cy-

tochrome c oxidase or cyt-c1) [226].

According to the results of our co-occurrence clustering algorithm (Figure 6.6), the

optimum number of clusters of the 8 AP Clusters is 2. The first cluster includes AP

Clusters 1 to 3; the second cluster includes AP Clusters 4 to 8. Their biological significance

is discussed as below.

For the first cluster, we found that all the AP Clusters covered residues that contributed

significantly to the binding of cyc-1 on cyc-bc1. This is crucial for electron transfer. Ex-

periments have established the importance of Lys(K)8, Lys(K)27 and, to a lesser extent,

Lys(K)5, Lys(K)7, Lys(K)25 [182, 161, 97]. They are covered in the AP Clusters in the

first cluster (Table 6.3). Therefore, these AP Clusters co-occur to facilitate the binding of

cyc-1 on cyc-bc1.

Table 6.3: Key residues covered by AP Clusters and their roles in co-occurrence cluster 1
of cytochrome c

AP Cluster Residue(s) Role(s) Literature
1 Lys25, Lys27 The binding sites of cytochrome c cytochrome

BC1 complex
[182, 161, 97]

2 Lys27 The binding sites of cytochrome c cytochrome
BC1 complex

[182, 161, 97]

3 Lys5, Lys7, Lys8 The binding sites of cytochrome c cytochrome
BC1 complex

[182, 161, 97]
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For the second cluster, we found that all the AP Clusters covered residues that were

mostly responsible for the stable axial ligand between cyc-t and the heme group (Figure

6.5), which is the component that takes part in the redox reactions for the electron transfer

between cyt-c and other complexes. AP Cluster 4 covered Cys(C)14 [19, 29], Cys(C)17

[19, 29] and His(H)18 [74, 183]. His(H)18 [74, 183] forms an axial ligand with the heme

from the proximal front. Cys(C)14 [19, 29] and Cys(C)17 [19, 29] enhance and maintain

the axial ligand between His18 and the heme. AP Cluster 5 covered Tyr(Y)67 [200, 226],

Pro(P)71 [199], and Pro(P)76 [24], Met(M)80 [183] and Phe(F)82 [127]. Met(M)80 [183]

forms an axial ligand with the heme from the distal side. Tyr(Y)67 [200, 226], Pro(P)71

[199], Pro(P)76 [24] stabilize and coordinate the axial ligand between Met(M)80 and the

heme. Phe(F)82 [127] stabilizes the native heme environment. AP Cluster 6 covered

Gly(G)41 [89], which holds the axial ligand between Met(M)80 and the heme. AP Cluster

7 covered Asn(N)52 [163, 166], which maintains a hydrogen bond with the heme to stabilize

the environment.

Although AP Cluster 8 did not cover any residues that are directly related to the axial

ligands between cyt-c and the heme group, it covered residues that maintain the cyt-c

structure. Among the 38 intra-molecular hydrophobic interactions reported in [163], AP

Cluster 8 covered 17 (44.7%). It also covered Leu(L)94 [68] and Tyr(Y)97 [68], where one

of them is required to provide a hydrophobic environment in order for cyt-c to function.

Evidently, the AP Clusters in the co-occurrence cluster 2 form and maintain stable axial

ligands with the heme and also provide an appropriate structure and environment for cyt-c

to function.

154



Table 6.4: Key residues covered by AP Clusters and their roles in co-occurrence cluster 2
of cytochrome c

AP Cluster Residue(s) Role(s) Literature
4 Cys(C)14 Cys(C) 14 enhances axial ligand strength be-

tween His18 and the heme.
[19, 29]

Cys(C)17 Cys(C) 17 enhances axial ligand strength be-
tween His18 and the heme.

[19, 29]

His(H)18 His(H)18 forms an axial ligand with the heme
from the proximal front.

[74, 183]

5 Tyr(Y)67 Tyr(Y)67, its hydroxyl group, forms a H-bond
with side chains of Met80 for structural stabi-
lization.

[200, 226]

Pro(P)71 Pro(P)71 helps coordinate the axial ligand be-
tween Met80 and the heme.

[199]

Pro(P)76 Pro(P)76 helps coordinate the axial ligand be-
tween Met80 and the heme.

[24]

Met(M)80 Met(M)80 forms an axial ligand with the heme
from the distal side.

[74, 183]

Phe(F)82 Phe(F)82 helps stabilize the native heme en-
vironment.

[127]

6 Gly(G)41 Gly(G)41 helps stabilize the axial ligand be-
tween Met80 and the heme.

[89]

7 Asn(N)52 Asn(N)52 maintains a hydrogen bond with the
heme to stabilize the environment.

[163, 166]

8 Leu(L)94 One of Leu(L)94 or Tyr(Y)97 is required to
provide a hydrophobic environment for the
function of cyt-c.

[68]

Tyr(Y)97 One of Leu(L)94 or Tyr(Y)97 is required to
provide a hydrophobic environment for the
function of cyt-c.

[68]

6.4 Conclusion

In this dissertation chapter , we address the two research questions that were first posed in

the introduction. We answer the first research question on discovering co-occurrences by

creating a novel algorithm that clusters AP Clusters with frequently co-occurring patterns

into an effective, statistical, and measurable Co-occurrence Clusters. We respond to the

second research question on the biological significance of these Co-occurrence Clusters by
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their three-dimensional closeness and by biological functionality and structural integrity.

We confirm that the Co-occurrence Cluster with the lowest average co-occurrence score

is also closer in three-dimensional distance than the average amino acids in the three-

dimensional structure. We also confirm that co-occurring AP Clusters form chemical bonds

or co-operate in essential biological functions as supported in biological literature. As

a natural extension, we can use correlated amino acid variations to track evolutionary

divergence and extend the algorithms to discover consistence and deviance of chemical

properties. Since it is time-consuming to study the functional and structural sites for

every target protein’s drug interaction in detail, the ability to discover top-ranking Co-

occurrence Clusters could also help to isolate the amino acids of biological significance.

Hence, our method will have great potential to impact drug discovery and the biomedical

community.
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Figure 6.5: Three-dimensional structure of cytochrome c [PDB:1HRC].a) The APCs in
Co-occurrence Cluster2 as listed in Table 6.4. b) The amino acids from APCs in Co-
occurrence Cluster2 mostly interact with the heme to stabilize the axial ligand, as confirmed
by biological literature listed in Table 6.4.
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Chapter 7

Conclusion

It is not the strongest of the species

that survives, nor the most intelligent

that survives. It is the one that is the

most adaptable to change.

Charles Darwin

7.1 Concluding Remarks

The focus of this dissertation is clustering sequence patterns, which are biologically vali-

dated as meaningful and useful. These stable patterns (motifs) with variations are related

to known protein binding functions (Chapter 3 and 4), are accurately and efficiently re-

vealing class characteristics (Chapter 5), and are structurally and functionally significant

if co-occurring on the same protein (Chapter 6). The experimental case studies from in
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silico biological datasets are qualitatively confirmed with statistical significance to reflect

regional functionality such as binding segments and sites. The class characteristics are

confirmed through six proposed cluster validity measures using external class labels or

using only the information inherent in the data alone in revealing the commonalities and

differences in the class types. Finally, the significance of co-occurrence of AP Clusters

is supported biologically by protein three-dimensional structure and through amino acid

interactions between distant regions.

Methods in the literature for biological pattern analysis include database search, mul-

tiple sequence alignments, motif finding, traditional classification, and other co-occurrence

techniques. Current methods are insufficient at identifying the functional regions of pro-

teins, although some solutions have been proposed. First, protein databases containing

existing experimental results and annotations do not contribute additional new knowledge

to the molecule. Sequence alignment approaches such as global alignment and local align-

ment also have their short-cominings. Global alignment of sequences (multiple sequence

alignment) does not perform well in sequences with low similarity caused by evolutionary

divergence and the parameters of local pattern discovery (motif finding) require greater

flexibility in fixed parameters such as length, number of variations, and number of de-

generacies. Until the knowledge discovered in the sequences is organized, external class

labels and pattern interactions cannot be used to learn new knowledge. Existing supervised

classification are inherently biased by mislabelling, incorrect partitioning, and unbalanced

classes. Existing methods for discovering co-occurrence between patterns include evolution-

ary tracing which requires whole-sequence similarity and coupling analysis which requires

a large number of homologuous non-redundant sequences.
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To overcome the hurdles as summarized above, Aligned Pattern Clusters (AP Clusters)

were developed in this dissertation to represent compact yet rich patterns with variations

especially when prior knowledge is unavailable. They capture conservations and varia-

tions by covering more sequences with lower entropy with a greatly reduced number of

patterns. They contain statistically significance patterns with variations and their impor-

tance has been confirmed by the following biological evidence: 1) Most of the discovered

AP Clusters correspond to binding segments while their aligned columns correspond to

binding sites as validated by pFam, PROSITE, and the three-dimensional structure. 2)

By compacting strong correlated functional information together, AP Clusters are able

to reveal class characteristics for taxonomical classes, gene classes and other functional

classes through simple cluster validity measures unaffected by mislabelling biases, incor-

rect partitioning, unbalanced classes, or unknown functional classes. 3) Co-occurrence of

AP Clusters on the same homologous protein sequences are spatially close in the protein’s

three-dimensional structure and their interacting amino acids are functionally important.

These results demonstrate the power and usefulness of AP Clusters. They bring in similar

statistically significant patterns with variation together and align them to reveal protein

regional functionality, class characteristics, binding and interacting sites for the study of

protein-protein and protein-drug interactions for cancer tumours differentiation, targeted

gene therapy as well as drug target discovery.
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7.2 Future Work on Drug Discovery and Next Gen-

eration Sequencing

The next wave of major advances in life science and healthcare will be spurred by the

advent of bioinformatics and computing power, in which next-generation sequencing (NGS)

technology and drug-discovery will play an important role. The main obstacle for NGS is

not in generation of data but in their analysis. The use of AP Clusters in discovering new

knowledge using a data-driven approach will be crucial for targeting the regions and amino

acids of critical biological significance. Already, metagenomics researchers are studying

microbacterial biodomes similar to traditional microarray techniques and cancer researchers

are classifying cancer tumours using a traditional classification approaches such as random

forests. The contributions of this thesis in discovering compact yet rich patterns with

variations can be applied in identifying signals in next-generation sequencing (NGS), as

well as differentiating the single nucleotide polymorphisms (SNPs) of cancer tumour types.

With NGS, we are able to sequence patients who are sensitive to a drug and other patients

who are sensitive to another drug. With appropriate software tools, we can discover the

patterns within the different groups. These patterns will help us to recommend the best

drug for patients with a disease like cancer. This is what we call Personalized Medicine.

Although it seems that we still have a long way to go, we are moving very fast towards the

goal. In addition, the co-occurrence contribution of this dissertation is currently proven for

distant within-protein interaction and being further developed for protein-DNA binding,

protein-protein interaction, and protein-drug interaction.
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Appendix A

Biological Background

This background chapter is designed to include only the minimal biological background

required to understand the premise of this dissertation. The first section begins broadly

with a principle which applies to all organisms: the central dogma of molecular biology.

The protein is described in terms of its static structural organization by breaking down

the level of protein structure organization, i.e. a hierarchical abstraction building protein

from primary to secondary to tertiary to quaternary structures.

A.1 Protein Biochemistry

A.1.1 The Central Dogma of Molecular Biology

The three biological sequences that encode the functions of life are DNA, RNA, and pro-

tein. Today, the full human genome sequences has been decoded, but decoded remains
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disorganized. The challenge is to determine the protein structure that demonstrates the

function behind this genomic sequence information. It is the final product of the protein

sequence, a protein structure, that enables the complex functions within the cell.

The Central dogma of molecular biology demonstrate how information from four letters

alphabet, or four different nucleotides, of DNA flows to RNA and turns into the twenty

letter alphabet, or twenty different amino acids, of protein. The dogma is central because

its processes occur in all living cells. The central dogma of molecular biology describes

how DNA, RNA, and protein form from one to the other: DNA either replicates itself or is

transcribed into RNA intermediary molecule; RNA groups into three letter code, or codon,

and translates to protein [2]. The focus of this thesis is on protein structure prediction,

thus the next section will focus on the third macromolecule, the protein.

Figure A.1: Central dogma of molecular biology describe the flow of genetic information
from DNA to RNA (transcription) and from RNA to protein (translation).
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A.1.2 Levels of Protein Structure Organization

To introduce the protein, this section considers the static components of protein structure

while the next section consider the dynamic aspect of protein folding. Protein can be

divided into structural subunits: from the fundamental building block of amino acid, to

the primary sequence, all the way to the quaternary structure. The energy of protein

folding forces it into its structure, this energy is important to the abstraction of structural

classification.

Amino Acid as the Fundamental Building Block of Protein

Amino acids are the smallest building blocks that assemble together to create proteins. It

is defined by one carboxylic acid group and one amino group; thus it is called amino from

the amino group and acid from the carboxylic acid group. The amino acid is anchored by

a central alpha-carbon, which connects the amino group and the carboxylic acid group, in

addition to a hydrogen and a variable side-chain (R).

Figure A.2: Chemical Formula of an Amino Acid: The chemical formula of an amino acid,
which consists of a central alpha-carbon connected by a amino group, a carboxylic acid
group, a hydrogen and a variable side-chain(R).

166



Twenty different possible side-chains can attach to the central alpha-carbon atom of

the amino acids. Each possible amino acid has its own set of distinct properties, such as

hydrophobic or hydrophilic, charge or uncharged, acid or base, bulkiness, and many others.

Polypeptide Chain as the Primary Structure

The first level of protein structure organization is the primary structure, which is a linear

sequence of amino acids chained together into a polypeptide chain. Two amino acid are

joined by a peptide bond and when multiple amino acids are joined head-to-tail into a long

chain, a polypeptide is created. Along the core of peptide chain is the polypeptide backbone

Figure A.3: Peptide Bond: Two amino acids react with one another to give off one water
and forms one peptide bond.

consists of repeating sequence of carbon and nitrogen atoms. A polypeptide has definite

direction with endings: the amino end (NH2)of polypeptide is called the N-terminus, and

the carboxyl (COOH) end of the polypeptide is called the C-terminus.
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Figure A.4: Polypeptide Chain: Multiple amino acids are chained together by multiple
peptide bonds to form a polypeptide chain.

Hydrogen Bonds Form Regular Substructures as Secondary Structure

The polypeptide chain forms the primary structure, which interacts with its own three-

dimensional space to form substructures. The hydrogen bond is an interaction between the

N-H group of one amino acid and the C=O group in another amino acid, both amino acids

are from polypeptide backbone of the chain. Because it does not involve the variability of

side-chain characteristics, hydrogen bond is a widely common interaction without needing

specificity the exact side-chain. A regular repeating conformation of these hydrogen bonds

form two regular fold patterns: the alpha-helix and the beta-sheet.

The three secondary structures are: alpha helix, beta-sheet, and loop. First, the alpha

helix appears like a twisted telephone cord with regular hydrogen-bond between every first

and fourth residue. In this way, the ith amino acid forms a hydrogen bond locally with the

i+4th amino acid. The alpha helix is a simple regular structure which forms a complete turn

every 3.6 amino acid. The beta sheet looks like a sheet where segments of the polypeptide
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chain line up next to one other and form hydrogen bonds. Its hydrogen bonds are between

two distant strands of the polypeptide chain running side by side. If these two strands

are going in the same direction, then the beta-sheet is called parallel. If one strand folds

back on itself on the second strand causing them to go the opposite direction, then the

beta-sheet is called anti-parallel. Compared to the simple local hydrogen bonds in alpha

helix, the distance between beta-strands causes the prediction difficulty. Finally, a loop

has no definite structure, and usually links other secondary structures.

Tertiary and Quaternary Structures as Higher Structural Organizations

A tertiary structure is a polypeptide chain formed by secondary structures assembled into

a full three-dimensional structure. Quaternary Structure is a complex protein built from

subunits of multiple tertiary structures which are folded polypeptide chains.
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Appendix B

Terminology

B.1 Glossary of Terms

An Alphabet: is a collection of symbols that may be augmented with ’’, which acts as

an empty symbol. For convenience, denote Σ = Σ̂∪−, where Σ̂ = {σ1, σ2, . . . , σ|Σ|−1, σ|Σ|}

A Sequence: S = {sk|k = 1, ..., |S|} = {s1, s2, . . . , s|S|−1, s|S|}

A Set of Unaligned Patterns: P̄ = {p̄i|i = 1, ..., |P̄|} = {p̄1, p̄2, . . . , p̄|P̄|−1, p̄|P̄|}

An Unaligned Pattern: p̄i = si1s
i
2...s

i
|p̄i|

A Set of Aligned Patterns: P = {pi|i = 1, ..., |P|} = {p1, p2, . . . , p|P|−1, p|P|}
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The Occurrence of the Pattern p̄i: occ(p̄i) = ji such that p̄i = sijis
i
ji+1 . . . s

i
ji+|p̄i|−1,

where i is the index of the sequence that pattern occurs in, and ji is the starting index the

pattern in that sequence.

A Set of AP Clusters: C = {C l|l = 1, ..., |C|} = {C1, C2, . . . , C |C|−1, C |C|}

An AP Cluster:

C l = ALIGN(Pl), (B.1)

=



s1
1 s1

2 . . . s1
n

s2
1 s2

2 . . . s2
n

...
...

...
...

sm1 sm2 . . . smn


m×n

=



p1

p2

...

pm


, (B.2)

=

(
c1 c2 . . . cn

)
. (B.3)

where sij ∈ Σ ∪ {−} ∪ {∗} ispattern pi with a newly aligned column index j. Each of the

|Pl| = m patterns in the rows of C l is of length |C l| = n.

An Aligned Pattern: pi = si1s
i
2...s

i
|pi| is a subsequence of order-preserving elements

maximizing the similarity of the patterns against a set of patterns from AP Cluster, Pl,

with gaps, wildcards, and mismatches to the length |Pl| = n.

An Aligned Column: Let cj in C l represents the jth column of amino acids from the

set of patterns that forms the current AP Cluster, C l =
(
c1, c2, . . . ,\

)
.
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Distinct amino acids in the aligned column cj: Σ(cj) = {sij = σ|pi = si1...s
i
j...s

i
n, p

i ∈

Pl, σ ∈ Σ ∪ {−} ∪ {∗}}. We denote σ(cj) as an amino acid in Σ(cj).

Data Induced by the Unaligned Pattern: Let D(p̄i), be all the occurrences of the

pattern, p̄i, that is in the input sequence. We call D(p̄i) the data induced by p̄i or the

induced data of p̄i. We will return to the concept for AP Cluster which is later used for

computing the measures for aligned columns.

Data Induced by AP Cluster: Let D(C l) be data induced by the AP Cluster C l, which

is the subset of segments from the input sequences, or the data subspace containing all the

pattern from the AP Cluster, C l, Pl = {p1, p2, . . . , pm}T . We call D(C l) the data induced by

C l or the induced data of C l. Then D(C l) is then the union of the segements from the input

sequences induced by all the patterns contained in C l, D(C l) = D(p1)∪D(p2)∪· · ·∪D(pm) =⋃
∀pi∈Pl

D(pi)

A AP Hypergraph: An Aligned Pattern Directed Hypergraph (AP Hypergraph) is a

directed graph, G = (V,E), where vertices and directed edges are defined as follows:

V = {νj(σ)|1 ≤ j ≤ n, σ ∈ Σ,P(νj(σ)) 6= ∅}, where P(νj(σ)) = {P ∈ P|sj = σ}

E = {εj(νj(σ), νj+1(σ′))|1 ≤ j ≤ n, σ, σ′ ∈ Σ,P(νj(σ))
⋂
P(νj+1(σ′)) 6= ∅}

Data Induced by AP Hypergraph: Let D(Gl) = D(C l) be data induced by the AP

Hypergraph Gl, which is the subset of segments from the input sequences, or the data

subspace containing all the pattern from the AP Hypergraph, Gl, Pl = {p1, p2, . . . , pm}T .
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We call D(Gl) the data induced by Gl or the induced data of Gl. Then D(Gl) is then the

union of the segements from the input sequences induced by all the patterns contained in

Gl, D(Gl) = D(p1) ∪ D(p2) ∪ · · · ∪ D(pm) =
⋃
∀pi∈Pl

D(pi)

A pattern hyperedge: In the context of the above notations, the ith pattern is Vi =

{ν1(σ1), ν2(σ2), ..., νn(σn)|σ1σ2...σn = Pi}.

A column hyperedge: In the context of the above notations, the jth aligned column

is, Vj = {P(νj(σ))|σ ∈ Σ,P(νj(σ)) 6= ∅}

An association hyperedge: The interdependency is between the data represented by

the vertices of the two column hyperedge.

Coverage: Total input sequences that are covered by the AP Hypergraph.

AP Hypergraph Quality: Q = 1− 1
n

n∑
j=1

H(cj).

Standard Residual: StandardResidual = o−e√
e

where e = N

(
n∏
i=1

( ∑
∀σk∈Vj

Pr(νj(σk))

))
.

Co-occurrence Score (The Jaccard index): J =
|C1
seq∩C2

seq |
|C1
seq∪C2

seq |
where C1

seq = sequences

that contain patterns from AP Cluster C1 and C2
seq = sequences that contain patterns from

AP Cluster C2
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AP Cluster Clusters’ Indicators: k =number of clusters, s(Ki) =average co-occurrence

score in cluster i, s(Ki, Kj) =average co-occurrence score between cluster i and j

Average Score ∑k
i=1 s(Ki)

k

Intra / Inter

k +
∑k

i=1 s(Ki)

k +
∑k

x=1

∑k
y=x+1 s(Kx, Ky)

Dunn index [58]

2−max1≤x,y≤k:x 6=y s(Kx, Ky)

2−min1≤i≤k s(Ki)

Max Intra / Related Inter

s(Kx)∑k
y=1 s(Kx, Ky)

where x ismax∀s(Ki)
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B.2 List of Definitions

A motif is a sequential substring that occurs repeatedly as a pattern throughout a set of

sequences.

A sequence alignment (alignment) is the arrangement of two or more sequences by adding

gaps so that the characters line up optimally. An alignment could be either global or local:

global means that it is optimized from end to end; local means that it can be optimized

for a localized region.

A binding site is a region in the protein that binds a specific ligand, another molecule or

ion, through a chemical bond. A hypergraph is generalized graph where each edge can

connect any number of vertices, this edge is called a hyperedge. Homology describes the

shared ancestry; thus, sequence homology describes the sequence ancestry due to speciation

event (orthlog) or duplication event (paralog). For example, homologous sequences are

orthologous if they descend from the same ancestral sequence by a speciation event, i.e.

when a species diverges into two different species. For example, homologous sequences are

paralogous due to a duplication event, i.e. when a gene in an organism is duplicated to

occupy two different places.
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