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Abstract 

Solar road panels are a technology that have the ability to revolutionize the way that roads are built 

and how electricity is generated. Strong incentives towards sustainable solutions in both of these 

fields have led to the design of innovative, multifaceted solutions, of which solar road panels are one 

of the most recent entrants. This research presents some initial analysis into the design of solar road 

panels from the perspective of Canadian pavement engineering. The hypothesis of this research was 

as follows: 

A specially designed modular panel can be constructed to withstand the structural 

and environmental loads on Canadian pavement structures while simultaneously 

generating electricity through embedded photovoltaic cells. 

Through a process that covers the design, construction, and analysis of the structural elements of 

a solar road panel prototype, this research evaluated the impact that solar road panels can have for 

Canada’s pavement infrastructure. Specific elements researched include the material selection for 

such a panel, the flexural response of the composite structure, how the panel will interact with 

traditional pavement and geotechnical materials while in use, and the change in performance of 

transparent layer materials as they are subjected to freeze-thaw cycling and scaling. 

The research found that the initial prototype design included a two 10-mm tempered glass pane 

transparent layers with a 12.7-mm GPO-3 optical layer and 19.1-mm GPO-3 base layer. The concept 

being that the glass would provide the rigidity required to protect the fragile solar cells while the 

fiberglass laminate has demonstrated performance as a traffic-supporting material in adverse 

conditions. 

Testing of this structure found that the performance was easily duplicated through finite element 

analysis, given that the material properties were assumed to be more rigid than the averages for 

tempered glass and GPO-3. Further finite element analysis demonstrated that the prototype solar road 

panel would not fail through traditional fatiguing methods, and in all cases on concrete, asphalt, 

granular, and subgrade bases the panels improved the performance characteristics of the structural 

base. 

The environmental conditioning of acrylic, glass, and polycarbonate specimens demonstrated that 

glass is the ideal material choice for the transparent layer for Canadian solar road panels. It proved to 

have the greatest freeze-thaw and scaling resistance of the three materials, and while the friction 
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characteristic of the flat glass samples would not be suitable for driving on, avenues of research were 

identified that could improve this characteristic. 

In summary, the research conducted clearly proved the hypothesis; it is possible to build a 

structure that can house a photovoltaic system while supporting the structural and environmental 

loads that Canadian pavement are exposed to. The ideal panel would be constructed with a tempered 

glass transparent layer, GPO-3 optical and base layers, and the structure would be installed on a 

concrete structural base. The refinement of this design will be the scope for future research. 
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Chapter 1 

Introduction 

Sustainability has become a leading goal of global infrastructure developments over the last several 

years due to increased understanding of the impacts that engineering decisions have on society and 

the environment. The leading definition for sustainability was created by the Brundtland Commission 

and states that sustainable development is “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs” (World Commission on 

Environment and Development, 1987). This is traditionally accomplished through optimizing the 

balance between design economic, environmental, and societal impacts while still delivering 

infrastructure that meets the original design requirements (Adams, 2006). While it is often possible to 

make traditional designs more sustainable by these metrics through evolutionary modifications, 

revolutionary redesign of infrastructure from first principles allows for rediscovery of its full 

potential. 

This holds true within the realm of pavement infrastructure, where the majority of the materials 

currently used in roads and highways have not changed over the last few decades. Recent pushes have 

been made to make pavements more sustainable in a number of ways. One such way has been looking 

at using more recycled materials in pavements, be it glass, asphalt shingles, recycled asphalt 

pavements, recycled rubber tires, or other additives in asphalt mixes or recycled concrete and other 

additives in concrete mixes. Other focuses for increasing pavement sustainability have included 

reducing the processing temperatures required for asphalt and creating porous pavements which offset 

the need for stormwater management. While these technologies combined help make pavements 

incrementally more sustainable, the fact of the matter is they all look at pavement design through the 

same lens as designers have for the last few decades. 

This becomes a problem within the transportation industry due to how large transportation’s 

impact on the environment is as a whole. It is well established that for our society to be more 

sustainable there must be substantial changes in our energy consumption and greenhouse gas 

emission patterns, and transportation is the cause of 19% of global energy consumption (US EIA, 

2011) and 23% of global CO2 emissions (IEA, 2011). While most of this is a direct result of 

transportation modes and not the infrastructure that satisfies these modes, the infrastructure is always 

designed with the mode energy consumption and emissions in mind. For roads there are direct 

correlations on the impact that roughness (Costello, Bargh, Henning, & Hendry, 2013) and grade 
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have on vehicle fuel consumption, traffic intersections are naturally designed to minimize delays and 

as a result vehicle idling time, and the same applies to minimizing delays when performing road 

maintenance. All of these factors are the responsibility of regional transportation authorities, so 

solutions that minimize their energy or carbon footprint in a major way are highly sought after 

solutions. 

One way that many jurisdictions have started making their transportation corridors more 

sustainable is by incorporating renewable energy projects into their territory. While using 

transportation corridors for utility purposes other than transportation is not a novel idea, the interest in 

incorporating renewable energy projects has only been building slowly over the last few decades. 

Most of the longer term projects exist in Europe, where they have constructed solar railway tunnels in 

Belgium (Enfiinty, 2011), solar highway tunnels in Italy, and solar highway tunnels and noise barriers 

in Germany (US DoT, 2012). Recently in the United States, many state Departments of 

Transportation have investigated the benefits of adding solar panels and wind turbines and using 

highway lands to grow crops for conversion to biofuels (US DoT, 2012). These projects demonstrate 

the interoperability of the right-of-way with renewable energy projects, though they for the most part 

ignore that roads have the capability to be a multifunctional element of our infrastructure. 

1.1 Solar Road Panels 

In Canada there are over 400,000-km of two-lane equivalent paved roads (Transport Canada, 2008) 

which accounts for 2,880-square km of paved surface area. As shown in Figure 1-1, the average daily 

solar energy available on flat mounted surfaces across Canada is 12-MJ/m
2
 (3.3-kWh/m

2
) (NRC, 

2012). As a result the average day sees 9.5-TWh of solar energy incident on paved Canadian roads, 

which is 5.6 times higher than the current daily average electricity generation in Canada of 1.69-TWh 

(Statistics Canada, 2012). Even if you could only convert 5-10% of this energy into electricity due to 

efficiency losses in solar energy conversion systems, it is clear that the amount of solar energy 

available on Canadian paved infrastructure is far from insignificant and is a resource that modern 

pavement design should attempt to utilize. 
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Figure 1-1: Mean daily solar insolation across Canada (NRC, 2012) 

A few different methods have been researched to attempt to generate electricity from this 

resource. The first was done by turning traditional asphalt pavements into solar thermal collectors 

(Bijsterveld, 2001). While this was a logical choice due to the known heat retention of asphalt 

pavements, maintenance of such structures is very challenging as the piping that runs through the 

asphalt disrupts traditional maintenance approaches. More current research is being done on using 

thermoelectric generators to directly extract electricity from the thermal gradient in asphalt pavement 

structures (G. Wu & Yu, 2012), though this research is still in its infancy and has very low conversion 

efficiency. The most promising technology in this field also happens to be the most innovative and is 

the only one to completely disregard traditional paving practices: the development of solar road 

panels. 

Solar road panels are a new technology being designed to serve as the top layer of pavement 

infrastructure. The key benefit from this approach is that it is a modular structure which incorporates 

photovoltaic cells which directly convert the incident solar energy into electricity. This electricity 
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could have a number of uses, such as powering street lights, charging electric vehicles, or being sold 

to local distribution companies. While the greatest influence of these panels would come from 

replacing highway pavements, many lower speed and volume applications are currently being 

considered as ideal locations for installation of these panels (Northmore & Tighe, 2012a). 

The panels are a three layer composite structure that consists of transparent, optical, and base 

layers as shown in Figure 1-2 (Northmore & Tighe, 2012a). The transparent layer handles direct 

interaction with vehicles and allows solar radiation to pass through to the optical layer. The optical 

layer transfers the load on the transparent layer to the base layer by directing it around the embedded 

solar cells within the structural cutouts. Lastly the base layer transfers load to the structured base 

beneath the panel (Northmore & Tighe, 2012b). 

 

Figure 1-2: Exploded view of a conceptual solar road panel (Northmore & Tighe, 2012a) 

Overall the research on solar road panels is also in its infancy. There are only two organizations 

working towards the development of these panels: Solar Roadways in the United States and TNO in 

the Netherlands. The prototypes being developed by these groups are being designed with less focus 

on optimizing the design of a composite pavement structure to act as a solar road module in a variety 

of structural scenarios and neither considers how to mitigate the issues of salting and freeze thaw 

effects experienced during a typical Canadian winter. 

1.2 Research Scope and Hypothesis 

The scope of this research was to define the design of a solar road panel that would be able to 

withstand the structural and environmental loads placed on it under use in a Canadian environment. 

Figure 1-3 shows a flow chart of the research activities completed as part of the scope of this project. 

The hypothesis for this research is as follows:  
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Figure 1-3: Research methodology 

A specially designed modular panel can be constructed to withstand the structural 

and environmental loads on Canadian pavement structures while simultaneously 

generating electricity through embedded photovoltaic cells. 

This research involved the design, construction, and testing of solar road panel prototypes in a 

laboratory environment at the Centre for Pavement and Transportation Technology (CPATT) at the 

University of Waterloo. Additional testing work was performed through the Civil Engineering 
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Structures Laboratory, the Solar Thermal Research Laboratory, and the Mechanical Materials 

Laboratory at the University of Waterloo. 

Laboratory testing of the solar road panel prototypes was done to determine the physical response 

of the panel to loading and to replicate the stresses of Canadian environmental conditions. This work 

was accomplished to properly assess the surface, structural, and optical characteristics of solar road 

panels and candidate transparent layer materials. 

1.3 Research Objectives 

The main objective of this research was to determine how a solar road panel could be constructed. 

The two main criteria considered were structural and environmental performance of the panels and 

associated materials. The specific objectives of this research included: 

1. Determination of the design requirements and material selection required for the optimal 

solar road panel for use in Canadian conditions. 

2. Design a prototype solar road panel to be used for laboratory testing and as a platform for 

future related research. 

1.4 Research Contribution 

It is expected that the research findings will provide a basis for solar road panel design for usage in a 

Canadian environment. This will be largely focused on the performance of the materials within the 

panel but also provide design inputs for the structural base material options and electrical system 

design. 

Another contribution of this research involves guidance on the structural performance of non-

traditional pavement materials as a form of subgrade or pavement reinforcement. Traditional work in 

this field has examined these materials as short-term reinforcement for poor subgrade soils exposed to 

heavy vehicle traffic while this research examines how these materials could perform over the long 

term on strong subgrades or on typical paved bases for city or municipal traffic loads. The work done 

herein is also more focused on finite element modeling of these systems while previous work was 

completed primarily through laboratory experiments. 

The third major contribution of this work is in determining the performance of transparent 

materials as they are subjected to scaling and freeze-thaw cycling. This research is novel in that it 

assesses structural, textural, and optical properties of the materials as they are conditioned, a 
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combination that is seldom investigated. Potential applications of this work include material selection 

for automotive applications, road lighting infrastructure, and building systems exposed to salt based 

corrosion.  

1.5 Organization of Thesis 

This thesis consists of six chapters. A brief description of each chapter is included below. 

Chapter One: An introduction to solar road panels and the scope, hypothesis, and objectives for the 

entire thesis. 

Chapter Two: An analysis of existing literature on design aspects for pavement and conventional 

solar modules and how the two topics converge towards designing solar road panels. This section also 

defines the gaps in existing knowledge regarding solar road panel design. 

Chapter Three: The detailed design and construction processes for developing the prototype solar 

road panel used in testing throughout the rest of this thesis. Also included is a section on lessons 

learned through design and construction for the use of future researchers on this topic. 

Chapter Four: Development of the testing mechanisms for solar road panel prototypes and materials. 

This section discusses the structural and environmental testing conditions that were developed to 

execute this research. Emphasis is placed on the development of the standards for both forms of 

testing and the design and construction of the fixture used for structural testing. 

Chapter Five: Structural testing of the solar road panel prototype and numerical analysis of solar road 

panel designs on simulated structured bases. This section analyses the structural feasibility of solar 

road panels and draws conclusions about material selection, solar road panel design, and the required 

base for panel installation. 

Chapter Six: Environmental testing of transparent materials. This section draws initial conclusions on 

the applicability of various polymer and glass materials as a transparent layer material for solar road 

panels installed in a Canadian climate with typical winter road maintenance practices. This was done 

through analysis of their mechanical, optical, and surface properties.  

Chapter Seven: The conclusions drawn throughout the thesis are summarized in this chapter and 

compiled to define the overall structural feasibility of solar road panels. Recommendations for further 

research in the field of solar road panels are also presented. 
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Chapter 2 

Design Elements 

In order to develop an understanding of the requirements of a solar road panel and the justification for 

this research, a thorough review of pavement and solar module design elements is required. This will 

highlight the contrast between the designs of the two structures and identify the justification for 

thorough research on the design of a combined structure. 

2.1 Pavement Design Elements 

This section of the literature review will identify the materials and processes used in the design of 

traditional pavements, the non-conventional materials and techniques used in novel soil reinforcement 

and flooring applications that are relevant to this research, the structural testing techniques used to 

validate pavement and composite panel structures, and how numerical analysis is incorporated into 

pavement design practices. 

2.1.1 Traditional Pavement Design 

Traditional pavement design is categorized by the type of material used in the structure: flexible or 

rigid. Flexible pavements are those that use asphalt cement binder combined with aggregate materials. 

Rigid pavements are made from a combination of gravel and crushed stone particles bonded by a 

Portland cement and water mixture. While there are many variations of these types of pavements, the 

design considerations are similar (TAC, 2012). 

The main factors taken into pavement design are the desired design life, traffic loading, 

environmental conditions, subgrade soil, drainage, performance of local similar pavements, and 

locational constraints (TAC, 2012). Typical pavement design lives for Ontario, marking the point 

where the pavement structure needs rehabilitation due to inadequate performance, are between 10 and 

20 years for highways depending on the pavement materials used (MTO, 1990). The factors with the 

highest impact on the deterioration of a pavement structure are traffic loading and environmental 

conditions, as these define the stresses applied to the structure that need to be supported. 

Traffic loading is measured in two ways to account for the varying vehicle types that are expected 

to travel on the pavement structure. The first measure for this is the annual average daily traffic with 

the given percentage of that traffic that is trucks. This method has demonstrated correlations to 

pavement performance through older design methods, however newer methodologies require the 
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number of equivalent single axle loads (EASLs) that will travel over the given section (MTO, 1990). 

This method converts each individual vehicle into a number of EASLs, which each represent an 80-

kN axle load with dual tires, through a load equivalency factor (LEF) that approximately follows a 

fourth power law based on vehicle weight. This equivalency is demonstrated in Figure 2-1 for single, 

tandem, and tridem axled vehicles as described by the American Association of State Highway and 

Transportation Officials (AASHTO). 

 

Figure 2-1: LEF relation to axle group load of AASHTO standard trucks (MTO, 1990) 

The environmental conditions that have the greatest impact on pavement degradation are 

temperature and moisture. In Ontario the range of temperatures during the year causes a variety of 

issues, as low temperatures in the winter cause the ground to freeze and heave while high 

temperatures during the summer weaken asphalt structures allowing rutting and other failures. 

Moisture also causes issues because of its ability to infiltrate pavement structures and then freeze and 

thaw cyclically through the winter or wear away the surface pavement material. In designing roads 

this is taken into consideration by accounting for the expected frost penetration depth for the region. 

A map showing the frost penetration design standards for Southern Ontario is shown in Figure 2-2 

(MTO, 1990). 

Another important design factor for pavement engineers is the surface texture of their structure. 

In order for vehicles to safely traverse the structure, the surface must provide ample traction for tires 

to grip. With asphalt pavements there is no extra work needed to achieve this, though concrete 

structures require additional texturing once they have been laid. This is typically achieved through 

dragging a rough material across the surface while the material is curing or mechanically applying a 
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texture after the concrete has hardened. The surface texture is impacted in the short term by weather 

conditions and the long term by vehicle traffic. Water and ice accumulation on pavement can make 

the surface too slippery to traverse if drainage is inadequate, while vehicle traffic will wears the 

surface down and requires maintenance to restore the texture (TAC, 2012). 

 

Figure 2-2: Design depths for frost penetration in Southern Ontario (MTO, 1990) 

2.1.2 Non-Conventional Pavement and Flooring Materials 

In addition to the conventional asphalt and concrete materials, a number of special applications 

require different materials to be used as reinforcement for soft subgrades or as structural surfaces. The 

most common of these are mats used to reinforce existing soils for military operations, specialized 

materials used in bridge decks, and transparent materials used in architectural flooring. 

2.1.2.1 Landing and Road Mats 

The US Department of Defense has funded extensive research into non-traditional road materials 

since the late 1930s. The focus of this work is designing mats that can be rapidly deployed as roads 

and landing surfaces in various environments to better support military operations. This research was 

deemed necessary in light of the operating conditions found during World War II, and has been an 

important part of American military operations globally ever since (Robinson, 2005). 

Between the two, landing mats have a more stringent set of design requirements. This is largely 

due to the higher loadings that these mats are subjected to; the extreme weight of military transport 
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aircraft and the high temperature jet exhaust from fighter aircraft. Another important design factor is 

that these panels must be light weight, so that they can be rapidly deployed. To accomplish this, the 

US Air Force Research Laboratory has set out guidelines that the next generation of landing mats 

should weigh approximately 14-kg/m
2
, handle all aircraft loadings when installed on poor subgrades, 

provide adequate performance at a large range of operating temperatures, withstand all shear stresses 

from aircraft braking, and have an adequate anchoring system to firmly mount the panels (Foster & 

Anderson, 2003). 

The most widely used early landing mats were the British Class 60 Trackway, AM-2 (Rollings, 

1975), and XM19 landing mats (US DoD, 1987). All of these mats are constructed from aluminum 

alloys, which have the benefit of a very high strength to weight ratio, and are typically able to 

withstand 1,000 aircraft movements when placed on subgrades with a strength from 1.3 to 8.0 CBR 

(Ulery & Wolf, 1971). Given the rapid pace of military operations this represents a short service life, 

which then accentuates that the extruded aluminum mats are very expensive when compared to other 

strong materials. Modern advancements in material technologies have led multiple companies to 

develop their own landing mat systems, though all are still based on high strength extrudable alloys. 

An example of one such system is shown in Figure 2-3. 

 

Figure 2-3: Faun Trackway aircraft landing mat system (FAUN, 2012) 

Road mats are designed for a much lower strength operation than landing mats are, so many of 

the materials used in them are lower strength as well. Naturally aluminum and other metal alloys still 

provide strong performance in this application, but the lower loading from vehicles allows other less 
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expensive materials to be considered. The typical application of these mats is the reinforcement of 

poor quality subgrades for the transport of military vehicles, and the mat structures are typically 

fiberglass reinforced polymer (FRP) hexagonal mats, plastic hexagonal mats, aluminum meshes, and 

plastic meshes (Webster & Tingle, 1998). An example of one such system being installed can be 

found in Figure 2-4. 

 

Figure 2-4: Faun Trackway heavy ground mobility system installation (FAUN, 2012) 

The testing performed on road mats is largely done on the lowest strength subgrades that the 

materials would be required to reinforce. Testing of road mats installed over sand and driven on by a 

4,536-kg [5-ton] military truck showed that the plastic mesh mats are prone to extreme rutting, 

developing 84-mm [3.3-in] ruts within 20 vehicle movements. Under the same conditions the plastic 

hexagonal, FRP, and aluminum hexagonal mats developed ruts of 71-mm [2.8-in], 46-mm [1.8-in], 

and 28-mm [1.1-in] after 5,000 vehicle movements, demonstrating that these materials are much more 

suited to the application (Webster & Tingle, 1998). 

An additional study found that the design of the road mat structure was very important to the 

performance of the panel. This was done again on a sand subgrade with a fully loaded six-wheel truck 

supplying the testing load. The majority of the designs using high-density polyethylene (HDPE) as 

the structural material experienced extensive rutting and structural damage over 2,000 vehicle 

movements, though one panel using this same HDPE material only experienced minor delamination 

in the same trials. This study also demonstrated that multiply FRP and aluminum structures provide 
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adequate performance on poor subgrades, though at a higher cost and weight than the HDPE solutions 

(Rushing & Tingle, 2009). 

2.1.2.2 Bridge Decks 

One of the most common applications for non-traditional materials in pavement infrastructure is 

in the design of bridge decks. While highway bridges are traditionally constructed from concrete with 

extensive steel reinforcement and supports, many other applications see bridges designed from other 

materials due to either special load cases, modular construction requirements, or cost considerations. 

One of the longest standing substitutes to concrete bridge deck construction is steel plate bridge 

decks. Being an excellent structural material, steel shows great performance in terms of loading 

capacity and stiffness when used in bridge deck applications. Examples of this type of bridge decking 

include the George Washington Bridge; the Lions Gate Bridge; and the Golden Gate Bridge, as 

shown in Figure 2-5 (ASCE, 2013). 

 

Figure 2-5: Golden Gate Bridge - Steel deck bridge  

Various high strength aluminum alloys have also been used as bridge deck materials, though 

predominantly in pedestrian, portable, or expedient repair applications due to being a lower strength 

and higher cost material than more traditional alternatives. When expedient construction or bridge 

weight concerns are important, extruded aluminum has proven to be a suitable alternative from a 

strength and durability perspective. An example of an aluminum deck vehicle bridge can be found in 

Figure 2-6 (Walbridge & de la Chevrotiere, 2012). 
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Recent research demonstrates that extruded and pulltruded FRP panels are well positioned to 

withstand vehicle loading as an open supported bridge deck. Work completed at the University of 

Kentucky demonstrated that when loading FRP composite bridge deck panels as per AASHTO MS 

22.5 (HS25) specified wheel loading, the typical safety factor against failure was between 3 and 8 for 

a variety of commercially available products. The main failure modes from this testing were 

debonding and flexure shear of the specimens (Alagusundaramoorthy, Harik, & Choo, 2006). 

 

Figure 2-6: Aluminum deck bridge (Walbridge & de la Chevrotiere, 2012) 

2.1.2.3 Architectural Flooring 

Since this research also focuses on the need for transparent materials in transportation 

infrastructure, an important area of study is architectural glass flooring. 

Typically, glass flooring is used in indoor environments as a prominent design feature. Many 

cases have seen installations in walkways, bridges, staircases, and cantilevered floor sections. The 

most notable of these are often in observation decks, such as the one in the CN Tower in Toronto 

(Torontoist, 2013), or on scenic walkways, like the one that loops over a section of the Grand Canyon 

in Arizona (Grand Canyon National Park, 2013). Both of these are shown in Figure 2-7. 

One of the main concerns in the design of glass floors is ensuring for a large safety factor in the 

design. A fear of heights is common, which can make walking over a glass surface a very nerve 

wracking experience. To design these sections so that they are safe enough for people to walk on, the 

standard practice is to make the glass walking surface a three-pane glass structure (Alsop & Saunders, 
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1999). The three panes are laminated together using a typical resin and the glass is thick enough so 

that if any one of the three panes were to break the other two would be able to support the design 

load. This structure is demonstrated in Figure 2-8. 

  

Figure 2-7: Glass Floors at the CN Tower (left) and Grand Canyon (right) 

 

Figure 2-8: Typical glass floor panel structure (ISG, 2013) 

The main reason why the majority of these installations are indoors is because the rubber-glass 

friction coefficient drops substantially when the surface is wet. Even at outdoor installations, people 

are typically not allowed to walk over the surface during inclement weather due to this reduced 

friction. This can be accommodated for by adding a texture to the surface, however this also reduces 

the transparency of the floor and reduces some of the architectural merit of the installation. 
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2.1.3 Structural Testing of Pavement 

A wide variety of approaches are used to determine the structural capacity of pavements. Of most 

importance to this research is how controlled tests are performed on structural pavement sections in a 

laboratory or research environment. 

The objective of structural testing is to determine how a structure will perform under various 

loading conditions that best emulate the real loading case for the structure. In terms of pavements, the 

most ideal test scenario allows vehicles to drive over a test section that has been instrumented to 

measure the strain caused within the structure. This is typically accomplished through two 

approaches, instrumenting new pavement sections of existing road infrastructure and constructing 

dedicated pavement test tracks. Both types of facilities allow researchers to better understand how 

specific pavement materials perform in the environment of the site; the key advantage to instrumented 

roads being that the site is often a better replica of that region’s conditions than a test track while a 

test track has the advantage of a more controlled load scenario than open roads have. Due to the cost 

of the infrastructure required for both, these are often only implemented when determining how a 

new-to-the-region pavement structure will perform. An example of and instrumented road section can 

be found in Figure 2-9. 

 

Figure 2-9: Highway 401 test section instrumentation schematic (El-Hakim, 2009) 

Full pavement structure testing has also been completed in lab environments using confined 

pavement structures at a much smaller scale than test tracks, as shown in Figure 2-10. The concept 

being that when a load is applied to a pavement structure, only a portion of the total base and 
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subgrade materials are deformed. If a confined specimen is able to contain enough material so that the 

deformation only occurs within a section of the contained material then real world results can be 

emulated in a lab. This is most commonly done in the analysis of geosynthetic reinforcing layers in 

flexible pavements. Typical configurations involve the design of a large steel or concrete box that 

contains between 0.25 and 4.5 cubic metres of pavement structural materials depending on the 

designed testing regime (Tingle & Jersey, 2005). Loads are typically applied through hydraulic 

actuators at low frequency in order to simulate vehicle traffic (Tingle & Jersey, 2005). Larger scale 

versions of this testing have been done in concrete pits, which would also allow for vehicles to drive 

over the test installation (Pokharel et al., 2011). The main disadvantages of this testing approach are 

the cost of developing such a setup and the limited size of the test specimens. 

 

Figure 2-10: Schematic diagram of confined pavement test apparatus (Perkins, 1999) 

In lieu of being able to do testing of full pavement structures, the normal method for structurally 

testing pavement materials is to test samples of individual materials to measure comparative 

properties.  These tests often allow for samples to be tested under a wide variety of simulated 

conditions in a controlled laboratory environment. Quite often the performance characteristics 

determined from these tests can be used as an input for mechanistic pavement design systems; while 

the lab results do not directly imply performance in the field, correlations have been developed that 

make these results valuable.  These tests can include dynamic modulus, fatigue beam, and moisture 

susceptibility tests for asphalt samples; compressive strength, flexural strength, and durability testing 

for concrete samples; and soundness, absorption, abrasion, and gradation testing for aggregate 

samples.  
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2.1.4 Numerical Analysis in Pavement Design 

While the majority of pavement design is accomplished through empirical and mechanistic relations, 

specialized applications occasionally make use of finite element analysis (FEA) to determine the 

strain development that is expected within the pavement and subgrade materials for a given site. 

There are a number of reasons for why FEA is not widely used including the variability of pavement 

and soil material properties, the expense of viscoelastic material modeling, the variability introduced 

through constructing the site, and the ability to adequately model all pavement design factors within 

FEA software. As a result of this, FEA tends to be used in niche applications of pavement design. 

Often this can be helpful if dealing with difficult or unknown conditions or when trying to develop a 

better mechanistic understanding of the failure mechanisms of a pavement structure.  

Some of these cases though do provide validated, simplified models for the use in approximating 

pavement structural performance. The first major assumption is that the materials behave only in the 

elastic regime, which is a valid assumption for determining a static response from pavement loading 

but does not account for dynamic effects. These models also often assume homogenous material 

properties within a given layer, which assumes a lot of ideal construction practices and material 

specifications. A sampling of these models has been summarized below in Table 2-1. 

Additionally, work has been completed previously at CPATT on the FE modeling of steel 

reinforcing plates for weak subgrades. This work, using the ABAQUS software package, assessed 

various thicknesses of steel plate reinforcement for a sliding scale of effective subgrade modulus and 

soil bearing capacity. The output of this work demonstrated the type of steel reinforcement required 

for various base conditions and, most importantly for this research, demonstrated the applicability of 

the ABAQUS software package to pavement structure FE analysis (Mak, 2012). 

2.2 Solar Module Design Elements 

This section of the literature review will identify the basics of photovoltaic (PV) energy conversion 

and the requirements that this places on solar module design. The state-of-the-art in solar module 

design will also be assessed as well as the infrastructure requirements for PV solar arrays. 

2.2.1 Photovoltaic Energy Conversion 

The basic element of a PV solar module is the solar cell used to capture the incident photons and 

generate an electric current. There are a variety of technologies that accomplish this task, from thin 

film devices through crystalline solar cells, however since single crystalline silicon PV cells currently 
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offer the best conversion efficiency for mass marketed cells (Luque & Hegedus, 2003) these will be 

the focus of the design of the solar road panel’s electrical system. 

Table 2-1: Simplified FE models of pavement structures 

Author Title and Source Structural 

Design 

Material Properties 

Caliendo 

and 

Parisi 

Stress-Prediction Model for Airport 

Pavements with Jointed Concrete Slabs 

(Caliendo & Parisi, 2010) 

300-mm PCC E = 38,200-MPa 

v = 0.15 

2,500-mm 

subgrade 

E = 50-MPa to 200-MPa 

v = 0.35 

Cho et. 

al. 

Considerations on Finite-Element Method 

Application in Pavement Structural 

Analysis 

(Cho, McCullough, & Weissmann, 1996) 

105-mm HMA E = 2,413-MPa 

v = 0.35 

205-mm PCC E = 27,579-MPa 

v = 0.35 

Infinite base E = 103-MPa 

v = 0.35 

Greene 

et. al. 

Impact of Wide-Base Single Tires on 

Pavement Damage 

(Greene, Toros, Kim, Byron, & Choubane, 

2010) 

130-mm HMA E = 4,800-MPa 

v = 0.35 

270-mm 

limerock 

E = 550-MPa 

v = 0.40 

915-mm 

subgrade 

E = 131-MPa 

v = 0.45 

Xia A Finite Element Model for 

Tire/Pavement Interaction: Application to 

Predicting Pavement Damage 

(Xia, 2010) 

125-mm HMA E = 3,000-MPa 

v = 0.40 

300-mm 

limerock 

E = 167-MPa 

v = 0.30 

2,575-mm 

subgrade 

E = 34-MPa 

v = 0.45 

 

Single crystalline silicon solar cells are thin wafers of a single crystalline silicon ingot that have 

been cut to a prescribed size and doped on the top and bottom of the cell to promote electron 

transmission across the wafer. The top of the cell is heavily doped with a negative charge while the 

bottom of the cell is lightly doped with a positive charge. When photons enter the cell they travel until 

their energy displaces an electron, which then diffuses to the negatively charged top of the cell while 

the resulting hole drifts to the base. This release generates the electrical potential across the cell while 

repeated incident photons generate the electron flow between the layers. When the cells are linked 

together in a circuit, the electron flow passes from cell to cell and by combining enough cells this 

generates usable power (Luque & Hegedus, 2003; Neamen, 2003). 

Typical solar cells used in utility grade solar modules have a high individual current capacity but 

small voltage potential. To accommodate this, solar cells within a module are linked together in series 
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to allow the voltage to build while keeping the current constant. Depending on the size of the module 

there can be multiple strings of series solar cells linked in parallel to achieve the desired power output 

characteristics. In typical module fabrication there are 72 cells combined in two parallel strings of 36 

(Luque & Hegedus, 2003). 

The energy conversion potential within the solar cell is highly dependent on the materials used to 

make the cell. Each material type has a specific bandgap potential that can be achieved, and this is the 

potential that must be exceeded by an incident photon to release an electron (Neamen, 2003). Without 

achieving this minimum requirement no energy generation can occur and all of the photon’s energy is 

lost as heat. Similarly, any excess energy from the photon that is not used to release an electron will 

be lost as heat within the solar cell. For a silicon solar cell, this bandgap energy requirement is 1.1 

eV; a level of energy that exists in the upper infrared region of radiation allowing the solar cells to 

generate current from that point, through the optical spectrum, and onwards though with additional 

thermal losses (Luque & Hegedus, 2003). 

2.2.2 Solar Module Design Requirements 

There are a number of design requirements for solar modules due to the variety of stresses that can be 

placed on them during operation. The main stresses on traditional solar modules are thermal cycling, 

mechanical loading from environmental factors and mounting systems, ultraviolet (UV) radiation, and 

humidity and other atmospheric factors (Perret-Aebi, Li, Chapuis, & Heinstein, 2011). 

Thermal cycling is a large issue in the design of solar modules for a number of reasons. First it is 

important to ensure that the module will withstand the thermal expanding and contracting that the 

materials will endure over the course of a year (Askeland & Phule, 2006). This is especially important 

as the crystalline solar cells used within the modules are very brittle and cannot endure a large lateral 

tensile stress (Luque & Hegedus, 2003). Another issue with thermal performance is that photovoltaic 

solar cells lose efficiency as their temperature increases on the order of 0.5% per degree centigrade 

(Skoplaki & Palyvos, 2009). This is because temperature impacts how the semiconducting cell works; 

it increases the developed short circuit current due to a decrease in the bandgap but also lowers the 

open circuit voltage due to variation in the intrinsic carrier concentration (Neamen, 2003). It is 

therefore important to make careful material selections when designing a solar module to account for 

thermal expansion and the quick removal of the excess thermalization losses from the PV conversion. 
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Mechanical loading plays an important role in the design of solar modules. The majority of 

typical solar modules are installed on a stationary or solar-tracking structural harness to allow for 

optimum exposure of the panels to solar beam radiation. The nature of these harnesses leaves the 

solar modules exposed on the top and bottom sides to wind and snow loading, depending on the 

climate they are installed in. Normal condition loading, including from environmental factors, is not 

an issue for most solar modules however impact or otherwise-transient loading can create issues that 

cause premature failure in the solar modules (Chung, Chang, & Liu, 2008). These need to be 

accounted for in the design by ensuring that the panel is sufficiently rigid to accept loads from hail, 

bird collisions, and like loadings appropriately. 

UV radiation poses a challenge to the material selection for solar modules. While most materials 

are sufficiently protected for short term exterior use, solar modules are designed for an exterior use 

lifetime in excess of twenty years. Combine this with that the solar module must be oriented towards 

incoming solar radiation to be effective and this results in a lot of exposure to UV radiation sources. 

The materials used in solar modules must be appropriately selected so that they do not degrade during 

these operational conditions (Holley Jr, Agro, Galica, & Yorgensen, 1996). 

Humidity and atmospheric conditions pose another large design challenge for solar module 

designers. Due to the electronics encased within the module there must be ample weatherproofing to 

make sure that moisture does not get into it and degrade the system. The same sort of degradation can 

come from particulate matter in the air etching the glass surface, or wearing away at the housing. 

Depending on the mounting strategy used, moisture infiltration can also come from direct contact 

below the panel. This is especially the case for ground or roof mounted units. Therefore proper 

materials should be chosen so that there will not be excessive moisture seeping through the panel, 

weatherproofing completed for the same effect, and that there will be effective resistance against 

other atmospheric particulate matter (Jorgensen et al., 2006). 

2.2.3 Solar Module Design 

Crystalline silicon solar modules are typically made by compiling five layers of material together and 

melting the middle plastic layers to laminate the composite panel together. The layers that make up 

this composite structure, as shown in Figure 2-11, are glass, two layers of ethylene vinyl acetate 

(EVA) encapsulant layers, PV cells and their interconnections, and a Tedlar backsheet. This 

arrangement causes each component of the panel to play a very important role in the overall 

performance of the solar module (El Amrani, Mahrane, Moussa, & Boukennous, 2007). 
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Figure 2-11: Crystalline silicon module structure (El Amrani et al., 2007) 

2.2.3.1 Glass Layer 

Starting with the top layer, the glass is extremely important as it must allow for free passage of 

solar radiation as well as providing the majority of structural support to the panel (Luque & Hegedus, 

2003). Typically PV modules are made with soda-lime-silica glass with low iron content as it has 

excellent transmittance, coatability, weather resisting, and UV resisting properties (Deubener, Helsch, 

Moiseev, & Bornhöft, 2009).  

One common feature of high-performance solar glass is that a texture is applied to the surface in 

order to improve overall performance. This texture is specially designed to trap light within the glass 

and minimize incident light reflection from the glass surface. These properties are both important as 

they help improve the overall efficiency of the solar module; any light that is not being used in the 

conversion process is not useful to the solar module. The texture is specifically designed with the 

geometry of the panel in mind as once light has entered the glass the main points of reflection are 

from the interface with the EVA resin and beyond that the interface between the EVA resin and the 

solar cells. Through knowing these it is possible to texture the glass in such a way that internal 

reflection of light is maximized, with a particular interest on the wavelengths of light that are closest 

to the bandgap of the solar cells being used (Deubener et al., 2009). 

The glass texturing can be done with a number of performance objectives in mind. While a lot of 

research focuses primarily on the light entrapment, surface texturing can also increase the overall 

efficiency of a panel throughout the day and concentrate radiation to the useful portions of the solar 
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cell. Through applying structured textures, it is possible to improve the performance of solar glass to 

light that approaches the panel at a large incident angle. In one case it was found that a 35% to 55% 

efficiency improvement was found through applying a triangular or sinusoidal surface texture to the 

glass when light was at an incident angle of 80° to the normal of the surface. This greatly impacts one 

of the challenges in solar module design, which is that the best performance is achieved with an 

incident angle near zero and that performance tapers on either side of this mark. While this would be 

of little use for solar modules that track the sun’s apparent movement, the majority of solar module 

installations are stationary and this technology would have a great positive impact on their 

performance (Sánchez-Illescas et al., 2008). 

While the majority of surface area on a solar module is exposed to the PV solar cell, there are a 

few areas that are not; gaps between the cells and the bus-bars and fingers on the solar cell. Any light 

that is incident on these areas is not used to excite electrons, so focusing light away from these areas 

and onto the main semiconducting cell has efficiency benefits. It has been demonstrated that by 

specifically texturing the glass above these areas that the shadow losses in a solar module can be 

reduced by 50%, though due to the constraints of ray tracing this is a benefit that can only be 

achieved through modules that have full or partial solar tracking (Bergamin & Sammaraee, 2010). 

While the texture of the glass has an impact on the reflectiveness of the module, another 

important factor is that an anti-reflective coating is often applied to the surface of the glass exposed to 

the atmosphere. These coatings are typically layers of SiO2 or Si3N4 which are thinly deposited onto 

the glass surface and produce a refractive index gradient at the coating-glass transition that maximizes 

transmission. Through most manufacturers this form of textured, coated glass is referred to as solar 

glass, as these specific properties are mostly coveted for only solar panel applications (Deubener et 

al., 2009). 

As noted earlier, the glass is an important element from a structural perspective. With the EVA 

and Tedlar being comparably flexible materials to glass and a minimal aluminum frame with respect 

to the size of the panel, the glass is required to impart its rigidity to the rest of the panel. With the 

environmental loads that solar modules are expected to endure this is not much of an issue, as glass is 

a very strong and rigid material to low pressure loading, impact loads can be very detrimental to the 

performance of solar modules. Most consumer solar modules are considered with relatively thin glass, 

though aftermarket or hobbyist panels are made with thicker layers to provide greater strength though 

at a higher cost (Luque & Hegedus, 2003). 
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2.2.3.2 Encapsulating Layers 

The majority of solar modules use an EVA compound as the laminating material. This layer 

performs a number of tasks for the solar module including protecting the electronics in the module 

from moisture, blocking UV radiation from the cells and backsheet, buffering the solar cells from 

loads placed on the glass or backsheet, and adhering the structure together (El Amrani et al., 2007). In 

mass produced modules, this layer is installed as two plastic layers, one on either side of the solar 

cells, so that when the module is put through lamination the EVA melts and forms around the cells 

and adheres the panel together (Luque & Hegedus, 2003). In hobbyist projects this can also be 

completed using a poured resin, as laminating a solar module without the proper equipment can be 

challenging. 

The laminating material must also meet a number of specifications, including minimum standards 

of electrical, optical, mechanical, and chemical performance (Lange, Luo, Polo, & Zahnd, 2011). 

Equally important to this are the reliability and cost performance of the laminate through the entire 

assembly process of the solar module (Agro & Tucker, 2004). The specific material choice is made 

by the manufacturer and can vary depending on the specific properties that they are looking for; this 

can include benchmarks on curing time, moisture transport properties, and overall assembly 

procedure. Other materials often used as laminates are silicone, polyvinyl butyral, thermoplastic 

polyurethane, and ionomer (Agro & Tucker, 2004; Rose, Jester, & Bunea, 2008). 

2.2.3.3 Solar Cell Interconnections 

The cell interconnections are the next major component of solar modules. These components 

provide the link between each of the cells in order to create the strings of solar cells that generate 

electricity as required through the panel. As a result, it is very important that these elements be 

protected and selected so that failure risk is minimized. The interconnection is essentially a conductor 

that is soldered onto the top busbar of one solar cell and the bottom bus bar of the adjacent cell to 

complete a circuit between them. Most materials used for the interconnection strips and the solder are 

lead based, though switching to a lead-free solder is a major research focus as this would make solar 

module recycling an easier and more environmentally friendly process. The major design challenge 

with interconnections is ensuring that there are not significant power losses across the strings of solar 

cells within the module, as this has been shown to have a large impact when studied in practical 

applications (Hsieh, Lin, & Yu, 2011). 
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2.2.3.4 Backsheet Layer 

The last component in a solar module is the Tedlar backsheet layer. This layer is responsible for 

further protecting the solar cells, particularly from any conditions applied to the back side of the 

panel, as well as ensuring the stability of the whole module. Tedlar is one of the leading materials 

used as a backsheet, though other options such as ethylene propylene diene monomers have been 

considered for use as new combinations of materials can help streamline the assembly process by 

eliminating need for the second EVA layer (Kempe & Thapa, 2008). Typical properties desired in a 

backsheet are high UV resistance and minimal moisture transport as this layer is directly exposed to 

the environment and must maintain protection for the EVA and electronics layers (El Amrani et al., 

2007). 

2.3 Solar Road Panel Systems 

With a strong background in the areas of non-traditional pavement design and solar module design 

established, the next step is to understand the current state-of-the-practice on solar road panel design 

and identify the existing knowledge gaps that need filling in order to meet the objectives of this 

thesis. 

2.3.1 State-of-the-Practice 

As identified in Section 1.1 there are two organizations working on the development of solar road 

panels: Solar Roadways and TNO. 

2.3.1.1 Solar Roadways 

Solar Roadways is a company located in Idaho, U.S. and is developing a solar road panel that 

could potentially be used in highway applications. Work on developing their prototype panel began in 

2009 and was sponsored by the U.S. Federal Highway Administration (FHWA). After they had 

developed their prototype they received a further grant from the FHWA to develop more prototypes 

and install them in their company’s parking lot. This installation of three panels has been scheduled 

for the Spring of 2013 (Solar Roadways, 2013). 

The panel Solar Roadways has developed is a 3.66-m [12-ft] square panel and consists of a 

transparent surface layer made from textured glass, an electronics layer that houses circuit boards 

supplying the electrical links between the solar cells and other systems, and packaging which 

weatherproofs the panel. In addition to simply having solar cells strung together in this system, the 
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Solar Roadways prototype includes LED lighting built into the cell compartments to provide 

messaging and lane markings from the road surface. It also includes resistance heaters to deal with 

any potential snow or ice issues that may develop on the surface during winter operation. An image of 

the first prototype from Solar Roadways can be found in Figure 2-12 (Solar Roadways, 2013). 

 

Figure 2-12: Solar Roadways prototype solar road panel (Solar Roadways, 2013) 

2.3.1.2 TNO 

TNO, the Netherlands Organization for Applied Scientific Research, is based in Delft and is a 

knowledge organization used by local companies and government agencies to develop innovative 

technologies to solve technical challenges in the Netherlands and abroad. Solar road panel 

development is only a small part of this organization’s energy efficiency systems research. They’ve 

partnered with Ooms Avenhon Groep, a civil infrastructure engineering group, and Imtech, an 

electrical and mechanical engineering consulting group, to develop solar road panels within the 

context of the Dutch environment (TNO, 2013). 

The first design of TNO’s SolaRoad concept is being developed for use in cycling paths; 

infrastructure that the Netherlands has an abundance of. The panels they are building are 1.5-m by 

2.5-m and consist of a glass surface layer, crystalline silicon solar cells, and a concrete block housing. 

The trail installation in North-Holland was expected to be installed in the summer of 2012, but to date 

this installation has not been completed. An image of a SolaRoad prototype is found in Figure 2-13 

(TNO, 2013). 
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Figure 2-13: TNO SolaRoad prototype panel (Ooms, 2013) 

2.3.2 Knowledge Gaps 

While there are a large number of knowledge gaps in the realm of solar road panel design, despite the 

prototypes built by Solar Roadways and TNO, the two main ones focused on in this analysis are the 

overall structural analysis of a solar road panel system and the effects of winter environmental 

conditions and maintenance practices on such composite panels. 

One of the main reasons why traditional pavement design is so variable is that no two regions 

provide the exact same set of conditions for building roads. When you start to assess traffic, weather, 

existing soil, and available resource conditions for a region you soon find that you cannot adopt a 

universal design practice everywhere, and this is an important lesson for solar road panel designers. 

In essence a solar road panel would be a modular piece of hardware, like in Solar Roadway’s and 

TNO’s designs, but a lot of consideration has to be made on what you would be installing these 

panels on top of and what materials you should make the panels out of to best optimize the 

performance for a given soil condition. In any case, a solar road panel would need to be placed on a 

structured base and there is room for optimization between various material configurations for solar 

road panels and the types of bases you could provide (compacted soil, granular subgrade, concrete or 

asphalt bed, etc.). No literature thoroughly addresses this issue. 
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In addition, very little consideration has been made for how these panels will operate during 

winter conditions. This is reasonable design for TNO, seeing as the Netherlands only sees 25 snowy 

days on average per year (KNMI, 2013) compared to 64 in Waterloo, Ontario (Environment Canada, 

2013) and much higher through other portions of Canada, but is a lacking element in the design from 

Solar Roadways. 

As identified earlier, the design from Solar Roadways does include a resistance heater in the 

panel to melt any snow or ice that may accumulate however this is not a total solution to winter 

climate and maintenance issues. It solves the issue of damaging the panels through snow plowing 

operations, but salting is still a major part of winter maintenance operations. Even if it was found that 

the surface of the solar road panels does not need to be salted, large volumes of salt would be brought 

onto the solar road panel surface by cars that have been exposed to salt on other roads. Salting 

operations are a large attributor to the damage of civil infrastructure, so it is expected that this needs 

to be studied for solar road panel performance as well.  
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Chapter 3 

Solar Road Panel Design and Construction 

With a thorough understanding of the design of pavement structures and traditional solar panels 

having been established, this section details the design and construction processes used for 

developing the solar road panel prototypes used in later testing and analysis sections of this thesis.  

3.1 Design 

The design process for the solar road panel prototype was completed across three main phases; design 

requirement development, material analysis, and component system design. The material analysis 

focused on determining the materials which are best suited for use in a solar road panel while the 

system design takes the materials and the design concept and produces a functioning, manufacturable 

prototype. 

3.1.1 Design Requirements 

In developing the design requirements for a solar road panel there were two categories that the overall 

system was broken down into with distinct requirements: structural and electrical. 

3.1.1.1 Structural Requirements 

The foremost structural design requirement is that solar road panels must be able to withstand the 

cyclic loading from vehicles without failing through static or cyclic loading (Northmore & Tighe, 

2012b). In the field these panels would be installed on a structured base, be it compacted granular 

materials or a paved asphalt or concrete structure, which provides greater support to the panel and 

must be taken into account during material selection. 

The second major structural requirement is that the surface of the panel must provide adequate 

friction for vehicles to safely travel across it. This is a major challenge as the surface must also be 

transparent enough to allow solar radiation to reach the solar cells embedded within the structural 

layers and any sort of texturing could impair light transmission if not designed properly (Northmore 

& Tighe, 2012b). 

Since modern high-efficiency solar cells are made from brittle silicon wafers, a solar road panel 

design must allow load to be bypassed around the cells. This can be accommodated by cantilevering 



 

 30 

the transparent layer over the solar cell compartments, however the transparent layer would then need 

to be strong enough to not deflect onto and load the solar cells (Northmore & Tighe, 2012b). 

The panel also needs to be designed in such a way that it is weatherproof. This is important for 

both structural and electrical reasons as water and contaminant penetration would degrade the 

structural integrity of the composite panel and damage the embedded electronics (Northmore & 

Tighe, 2012b). 

3.1.1.2 Electrical Requirements 

Many of the electrical design requirements focus on the exposure of the photovoltaic cells to solar 

radiation and the physical robustness of the electrical circuit formed between the individual cells. 

Shading is a major issue for photovoltaic panels because cell area that is not exposed to radiation 

is not able to operate as a part of the electrical circuit and this quickly degrades the performance of 

the panels. Since the design requires the solar cells to be recessed from the transparent layer, care 

needs to be taken to ensure the ledges of the structural layers do not cause internal shading on the 

solar cells. Additionally, debris collecting on the surface would need to be removed through street 

sweeping, rubber removal, or other processes if it begins to impact the overall radiation reaching the 

solar cells (Northmore & Tighe, 2012b). 

In addition to the solar cells being very fragile components, the connecting links between the cells 

are also very fragile. The cell interconnections are typically a tin-lead ribbon that is soldered to the 

top of one solar module and the bottom of the next one in the series. In a solar road panel these 

connections would need to be more robust due to the higher loadings on the panel and the larger 

distances between solar cells due to the ribs in the structural layer design (Northmore & Tighe, 

2012b). 

3.1.2 Material Analysis 

Due to the contrasting material requirements for the structural and transparent layers of the solar road 

panel design concept, as was shown in Figure 1-2, the material analysis for these layers was 

completed separately. 

3.1.2.1 Structural Layers 

As identified in the literature review, many non-traditional pavement materials have demonstrated 

adequate performance as a reinforcing layer for soils with poor subgrades. This indicates that there 
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should be many options available for use in the design of solar road panels as it is expected they 

would always be installed on at least a properly compacted subgrade layer. 

As was shown in Figure 1-2, the structural layers of the solar road panel are the optical and base 

layers within the conceptual design model. The main requirements for the material selection for these 

layers are that the material should be able to provide adequate structural performance for the panel, as 

defined within the design requirements, and that the material be suitable to easy in-house prototype 

construction. This second requirement is of key importance due to the use of this prototype as a 

current and future research platform. 

With these requirements in mind, the candidate materials identified for the structural layers were 

A36 steel, 6061-T6 aluminum, and fiberglass reinforced polymers (FRPs). The mechanical properties 

of these materials are identified in Table 3-1 with the same properties of traditional pavement 

materials used in Ontario for comparison. 

Table 3-1: Structural layer material mechanical properties 

Category Material 
Compressive Yield 

Strength (MPa) 

Young’s 

Modulus (GPa) 

Density 

(g/cm
3
) 

Structural Steel – A36 (ACI, 2013) 152 200 7.85 

Structural 
Aluminum – 6061-T6 

(ACI, 2013) 
276 68.9 2.70 

Structural 

GPO-3 Laminate 

Fiberglass (Rochling, 

2013) 

55 12 1.90 

Structural 
HDPE – Glass Fiber Filled 

(ACI, 2013) 
36.9 7.38 1.25 

Structural 
ABS – Glass Fiber Filled 

(ACI, 2013) 
120 5.55 1.56 

Pavement 
Concrete Pavement (ARA, 

2011) 
32 29.6 2.32 

Pavement 
Asphalt Pavement 

(AASHTO, 1993) 
N/A 2.76 2.46 

 

In terms of material performance one of the major objectives is to minimize deflections within the 

panel due to external loading in order to protect the solar cells. To this end A36 and 6061-T6 are the 

best options due to their high compressive yield strength and Young’s modulus; meaning they can 

withstand large loads and require large loads before substantial deformation occurs to the material. 
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The yield strengths for the FRP materials are more comparable to the ultimate strength of typical 

concrete pavements, however the Young’s modulus only being two to three times that of a typical 

asphalt pavement indicates that these materials are more prone to high strains under low loads given a 

comparable cross section to the A36 and 6061-T6 options. 

Typically the major benefit of the comparatively high strengths of metals over polymers is that 

you are able to use less material to obtain the same level of performance, thus having an overall lower 

cost and lower weight component. While this was demonstrated in several of the landing mat designs 

covered in the literature review, minimizing the material used like this may not be possible in the 

prototype design in order to accommodate the electronics, glass, and housing with readily available 

components. 

Another challenge with the structural layers is choosing a material that is cost effective for 

building a prototype out. This creates a large difference between the available material options as the 

ideal way to construct the details for the optical layer out of a metal is through a casting operation 

while the ideal method for the fiberglass is through customized multi-ply construction. Both of these 

processes are very complicated and expensive to accomplish, though for the purposes of developing a 

one-off prototype it is simpler to go with a multi-ply fiberglass approach. The simpler alternative to 

these is purchasing sheets of the respective material and then cutting them down to the required sizes, 

which is not structurally optimal due to the epoxied ribbing but allows for simple construction of the 

layers out of any desired material. 

One major area where these materials differ is on environmental resistance. Steel and aluminum 

would both require coatings to protect them from rusting and from being conductors of the current 

flowing through the panel from the photovoltaic system. The two glass-filled polymers both have 

typically poor environmental resistance as the polymer matrix degrades in corrosive environments. 

The GPO-3 material is designed to be an electrical insulator and also be inert in challenging 

conditions. 

3.1.2.2 Transparent Layer 

There are naturally less material options for the transparent layer of the solar road prototype due to 

the layer needing to be optically transparent. This limited selection down to acrylic, polycarbonate, 

and tempered glass as these are typical materials used in transparent structural applications, with the 

respective mechanical properties as shown in Table 3-2. 
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Table 3-2: Transparent layer material mechanical properties 

Category Material 
Compressive Yield 

Strength (MPa) 

Young’s 

Modulus (GPa) 

Density 

(g/cm
3
) 

Transparent 
Acrylic – Optical Grade 

(ACI, 2013) 
95.0 2.87 0.655 

Transparent 
Polycarbonate – Optical 

Grade (ACI, 2013) 
70.0 2.35 1.13 

Transparent 
Tempered Glass (Alsop & 

Saunders, 1999) 
>5000

1
 72.0 2.50 

Pavement 
Concrete Pavement (ARA, 

2011) 
32 29.6 2.32 

Pavement 
Asphalt Pavement 

(AASHTO, 1993) 
N/A 2.76 2.46 

Note 1: Tempered glass fails due to the tensile reaction from compressive loading before compressive yielding is achieved 

These materials all demonstrate higher compressive strengths than typical concrete pavements, 

which indicates that they should all be able to operate as a transparent layer within a solar road panel 

through diligent design. The large structural difference comes through the Young’s Modulus of the 

materials, as tempered glass is far more rigid under loading than concrete while acrylic and 

polycarbonate will be nearly as flexible as an asphalt pavement is currently. This could cause issues 

in designing the transparent layer for the polymer materials as they are cantilevered over the solar 

cells and large deflections should be avoided as they may cause damage to the solar cells. 

Another large difference between these materials is the way in which they are most likely to fail 

under loading. As was identified in the literature review, polymer materials under vehicle loading 

typically demonstrate plastic deformation through rutting and shoving of the top layers of the cast 

material. Also, the optical grade versions of these polymers, which are required in order to maximize 

the solar energy that is able to reach the photovoltaic cells, are typically specified for temperatures 

above 0°C, meaning that they should not perform as well as expected under typical Canadian winter 

conditions. 

The tempered glass, on the other hand, does not fail through plastic deformation like the polymer 

options though this means there is less indication of performance loss before failure. In order to safely 

design a tempered glass panel it must conform to typical glass flooring standards, so the structure 

must use multiple redundant panes of tempered glass which are laminated together, for reasons 

outlined in the literature review. The tempering process also means that should a pane 

catastrophically fail it would break into very small shards instead of large sheets of glass while the 



 

 34 

lamination also helps bind these broken shards to the other layers of glass in the panel instead of 

spreading into the rest of the environment. 

The last set of important differences between these materials is in cost and texturing. The 

tempered glass is substantially more expensive a design option than the cast polymers, especially 

since this would have to be outsourced for the construction of the CPATT prototypes. Also, all of 

these materials can have surface textures applied to them through a number of processes during 

casting or in post-processing through etching. 

3.1.3 Electrical System Design 

After identifying the materials available for use in the design of the solar road panel prototypes it was 

important to identify how the electrical system would be installed within the panel. This consists of 

three segments; photovoltaic cell selection, cell interconnection, and external hardware. 

3.1.3.1 Photovoltaic Cell Selection 

As the focus of this thesis is on the structural design of the panel, it was decided that the electrical 

system would use conventional high-efficiency components and allow for future testing of additional 

solar technologies in solar road panel applications. To this extent, the selection for the solar cells was 

narrowed to monocrystalline silicon cells. 

Monocrystalline silicon photovoltaic cells are available in a variety of sizes to meet various needs 

in custom OEM products. The typical size used in utility power generation applications is 150-mm 

square solar cells, as these can be produced efficiently with relatively high energy conversion rates. 

Since 150-mm is a large area to cantilever the transparent material over, the decision was made to use 

the next size down of high efficiency solar cells; 125-mm square solar cells. These still leave a lot of 

the surface area of the panel available to generate electricity while leaving plenty of space for load 

transfer around the solar cells. Additionally, due to packaging requirements for the scaled prototype, 

the 125-mm cells proved a better fit that the 150-mm cells as demonstrated further in this section. 

Figure 3-1 shows the dimensions of the solar cell selected for this project, where all of the specified 

dimensions are in millimetres. 
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Figure 3-1: 125 mm square monocrystalline silicon solar cell (RMSolar, 2012) 

This solar cell selection allowed the DMSolar DMS-125M-280 photovoltaic cell (RMSolar, 

2012) to be used in the design of the prototype panel. This cell has a maximum power point voltage 

and current of 0.521-V and 5.342-A respectively. Due to the smaller size of the cells it is possible to 

fit 25 of them into each square metre of solar road panel, resulting in a total output voltage of 13.025-

V and a peak power output of 69.58-W. 

3.1.3.2 Cell Interconnection 

As identified in Chapter 2, the typical interconnection method between photovoltaic cells in a solar 

module is to solder a tin-lead ribbon to the bus-bars on the top of one cell and the bottom of the 

adjacent cell. This works well in conventional solar module manufacturing due to the low loads 

placed on the connections and due to the cells being adjacent to each other with only minimal cell 

separation; as already identified, neither of these conditions are going to be available in the design of 

a solar road panel. 

To accommodate this, the cell interconnection was designed to be a hybrid between traditional 

tin-lead ribbon and electrical wire. The soldered ribbon is still required to ensure a solid connection 

between the cell’s bus-bar and the electrical conductor, but the ribbon will only be extended as a 

small tab off of the solar cell and an electrical wire will be soldered between the soldered tabs of 

adjacent cells (Northmore & Tighe, 2012b). 22-gauge wire was selected for this application due to the 

expected electrical load throughout the module. This wiring will be done as per the schematic shown 

in Figure 3-2. 
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Figure 3-2: Schematic solar road panel interconnection scheme (Northmore & Tighe, 2012b) 

3.1.3.3 External Hardware 

In addition to the electrical circuit built within the panel, a reverse current protection diode is required 

to ensure that no current is allowed to pass in the wrong direction through the panel as this would 

result in destroying the sensitive electronics. To simplify packaging it was determined that this would 

be done externally to the panel with wire connections to a barrier strip that integrates the reverse 

current protection diode. The diode selected for this provides reverse current protection of up to 5-A 

on voltages up to 40-V; sufficient for the design parameters of the prototype solar road panel given 

that the panel can be handled such that only a minimal reverse current would be subjected to it. 

3.1.4 Transparent Layer Design 

Due to the demonstrated rutting performance of transparent polymers it was determined that the 

prototype panel should have a tempered glass transparent layer. The use of a polymer material would 

require a maintenance program to be established which replaces the transparent layer of the panels 

periodically and the low Young’s modulus means that there would be large deflections of the 

transparent layer through the optical layer. 

With the material selected, the most important design property to determine from a structural 

standpoint is the thickness of the transparent layer. Due to safety considerations it is important to have 

multiple panes of glass laminated together to support the loading, and in this case a two-pane 

configuration was selected such that should one pane break the other would be able to support the 

vehicle load by itself. Under this condition it is known that the design stress for tempered glass 

members is 42-MPa (Alsop & Saunders, 1999). 
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With these conditions it was possible to determine the bending stress that would be found in a 

cantilevered section of the glass. It was assumed that the cantilevered sections would be 140-mm 

square, large enough for a 125-mm solar cell and interconnection space, and that the highest load 

condition would see an even distributed load from a passing vehicle tire, assumed to be 480-kPa of 

pressure. This information was applied to correlations developed for stress relations (Roark & Young, 

1975), using low bending theory, and the results for varying pane thicknesses are shown in Table 3-3. 

Table 3-3: Maximum transparent layer bending stress as a function of glass pane thickness 

Thickness (mm) 6 8 10 12 14 16 18 20 

Maximum Bending 

Stress (MPa) 
75.11 42.25 27.04 18.78 13.80 10.56 8.345 6.760 

Maximum 

Deflection (mm) 
0.5415 0.2284 0.1170 0.06769 0.04262 0.02856 0.02006 0.01462 

As demonstrated, all of these configurations give very minimal deflections even when using thin 

layers of tempered glass, which validates the use of the low bending theory assumptions. For 

individual panes of glass the minimum usable configuration is the 10-mm design, so two 10-mm 

panes were determined to be used in the solar road panel prototype. 

In order to make the glass structure usable in a solar road panel, a texture must be applied to the 

surface and accommodation must be made for the panel to be packaged together by a frame. Since the 

primary focus of this research is on the structural characteristics of a solar road panel and not the 

functional ones, a simple etching pattern was chosen from the catalogue of the supplier of the glass 

structure. This texture will add some tractive capacity to the panel while also not degrading the 

optical quality too severely. 

In order to frame the panel, it was determined that the best approach to ensuring the glass is 

secured into the panel was to design a ledge into the overall glass panel structure. This was done by 

using two 10-mm glass panes cut to different square sizes and centred upon each other during 

lamination. An image of the designed glass layer can be found in Figure 3-3. 

3.1.5 Structural Layer Design 

Since each of the steel, aluminum, and fiberglass materials that were analyzed will provide sufficient 

performance for the structural layers of the solar road panel prototype, emphasis was placed on 

manufacturability when making the final material selection. The metals would have to either be cast, 
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laser cut, or water jet cut in order to produce the required elements in the design while the fiberglass 

can be cut to size using standard equipment. For this main reason the prototype structural layers were 

made from GPO-3 rated fiberglass. 

 

Figure 3-3: Solar road panel prototype transparent layer 

3.1.5.1 Structural Layer Thickness 

The next step in the design of the structural layer was to determine the overall thickness of the panel. 

This was largely based on the availability of components, as the transparent layer, structural layer, 

and frame all have to fit together to make one complete prototype panel. With the glass thickness 

determined at 20-mm, the next step was finding a frame size that would be appropriate for the overall 

structure. 

When designing a road-testable prototype, the frame of the panel is going to have a significant 

impact on the overall structural performance due to load transfer characteristics. For the purposes of 

this study, where the prototype panel is being constructed at a smaller scale than a full-sized road 

panel would be, the frame should have minimal impact on the performance of the transparent and 

structural layer materials. The frame material should also be readily available and easily workable; to 

this end it was determined that the frame should be made out of 6063T5 aluminum channel members. 

With the material selected, the options for the overall panel thickness were narrowed down. 

Typical 6063T5 channel is available in 25.4-mm [1-in], 38.1-mm [1.5-in], 50.8-mm [2-in], and 76.2-

mm [3-in] channel widths, which is the governing dimension for the panel thickness. With the glass 

requiring 20-mm of thickness, it was determined that 50.8-mm is the minimum usable channel size to 

allow for multiple layers of fiberglass to compose the optical and base layers. In terms of structural 

performance a greater thickness of fiberglass would provide more resistance to bending, however due 
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to practical limitations on fiberglass availability the 50.8-mm channel thickness was chosen over the 

76.2-mm channel. 

3.1.5.2 Optical Layer Design 

The transparent layer and frame design effectively leave 31.75-mm [1.25-in] of space for fiberglass 

structural layers. Since the base layer should be as thick a layer of fiberglass as possible, the optical 

layer was designed first as it has more detailed design requirements. 

Overall the optical layer of the solar road panel prototype needs to be thin in order to minimize 

solar cell shading, as outlined in the design requirements. This layer also needs to allow for cutouts to 

be made for cell interconnections, making it easier to design a two-layer structure for the optical 

layer; one with the cutouts for interconnections and one without to support the transparent layer. 

GPO-3 laminate fiberglass is readily available in thicknesses at increments of 3.175-mm [0.125-

in]. In order to keep the material thickness consistent between the optical and base layers, reducing 

the amount of material required, it was decided that only 6.35-mm [0.25-in] and 12.70-mm [0.50-in] 

thick fiberglass sheets would be used. 

This meant that the optical layer would be designed as two layers of 6.35-mm cast fiberglass 

sheet. The pattern used for this layer is shown in Figure 3-4 and accommodates the 125-mm solar 

cells with 6.35-mm of space around the edge to allow for the interconnections to be routed. 

 

Figure 3-4: Cell compartment accommodation in the optical layer 
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In order to make the cutouts in the optical layer for the solar cells, the grid pattern was broken 

down into smaller rectangular bars that could easily be manufactured with a chop-saw that was 

available for use. At full scale production this would be completed through laser or water jet cutting. 

3.1.5.3 Base Layer Design 

With the optical layer having a total thickness of 12.70-mm, there are 19.05-mm [0.75-in] remaining 

for the base layer. Due to the material thickness decision outlined above, this is easily consumed by 

two plates of fiberglass; one 12.70-mm plate and another 6.35-mm plate. In order to accommodate the 

frame design, a lip was required around the base layer just like was included in the design of the 

transparent layer. This was accommodated by dimensioning the 6.35-mm plate to a smaller size than 

the 12.70-mm plate and centring them upon each other, similarly to the transparent layer. An image of 

this setup can be found in Figure 3-5. 

 

Figure 3-5: Base plate configuration 

3.1.6 Frame Design 

As was outlined in 3.1.5.1, the frame is being constructed from 50.8-mm [2-in] 6065T6 aluminum C-

channel. In order to provide a physical bugger between the frame and the structural and transparent 

materials within the panel, weather-stripping and foam inserts were added as shown in Figure 3-6. 

 

Figure 3-6: Assembled frame member 
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3.1.7 Prototype Model 

The overall panel was then assembled as shown in Figure 3-7 and detailed drawings for each 

component can be found in Appendix A. 

 

Figure 3-7: Solar road panel prototype model 

3.2 Construction 

The construction of the prototypes was completed at CPATT at the University of Waterloo between 

the lab facilities on campus and at the Region of Waterloo Emergency Services Training site. Since 

the focus of the prototype is for determining the structural panel performance the construction of the 

electrical subsystem elements has been omitted. 

3.2.1 Bill of Materials 

The itemized bill of materials for the assembly of the prototypes can be found in Appendix B. The 

majority of the structural materials were purchased in bulk and fabricated in-house as outlined in the 

rest of this section, however the transparent layer was outsourced to All-Brite Glass and Tint due to 

the complexity of glass fabrication. This glass layer is as shown in Figure 3-8. 

 

Figure 3-8: Glass transparent layer 
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3.2.2 Fiberglass Fabrication 

As outlined in the Bill of Materials, the fiberglass was all purchased in 6.35-mm and 12.70-mm plates 

and then cut to size in-house for assembly into the solar road panel prototype. 

3.2.2.1 Base Layer Fabrication 

The base layers of the solar road panel prototype require large, solid, square plates of fiberglass cut to 

sizes just under 1-m. This was accomplished across three stages where the first, as shown in Figure 

3-9, was to mark out the required area and use a circular-saw with laminate rated blades to trim the 

bulk of the excess material from the edges of the panel. 

 

Figure 3-9: Base layer fiberglass cutting 

With the bulk of the material trimmed away, the second stage of fabrication was to sand the edges 

of the panel down to the proper, square dimensions using a palm sander and coarse sanding pads. The 

faces of the two pieces to be epoxied together were also sanded to improve bonding. 

The final stage was to epoxy the two base plate materials together to form one large block of 

fiberglass material with the designated lip for the housing. This was accomplished as shown in Figure 

3-10. 

3.2.2.2 Optical Layer Fabrication 

As outlined in the Optical Layer Design section, the fiberglass members for this portion were cut into 

strips small enough so that fabrication could be completed using a chop-saw. Optimally this would be 
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done with a table saw, laser cutter, or water jet cutter but none of these were readily available with 

adequate ventilation. 

 

Figure 3-10: Base layer fiberglass epoxying 

The first stage of this fabrication was done by using a circular saw to cut the large fiberglass 

sheets into portions that could be further cut-up by the chop-saw. All of the sheets required were 

divided into sections for the three different piece sizes that make up the optical layers and taped off to 

designate cutting lines. This overall process is demonstrated in Figure 3-11. 

 

Figure 3-11: Optical layer fiberglass sheet trimming 

With the fiberglass sheets trimmed, the next step was to use the chop saw to cut the lengthwise 

dimensions of the fiberglass pieces. This was accomplished by setting up the chop saw to the 
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designated specimen width and then sequentially trimming the required width one piece at a time, as 

shown in Figure 3-12. 

 

Figure 3-12: Optical rib cutting with a chop saw 

With the correct width of each specimen achieved, the third step was to square one end of each 

member so that the pieces could be trimmed to the correct length. This was not required for members 

that were adjacent to the edge of the finished cast panel, as it was assumed that the acquired fiberglass 

sheets were square enough for our purposes. 

With three of the edges squared, the next step was to mark each of the pieces for the correct 

length so that the last end could be trimmed off and the parts would be the correct dimensions. This 

was done in the lab with all of the pieces marked as shown in Figure 3-13. 

The fifth step was to then trim off these ends to finish the fiberglass pieces. This process was 

accomplished in a similar fashion to what was shown in Figure 3-12. 

With all of the pieces cut to the appropriate size, the sixth step was to measure and sort the pieces 

by the critical dimension. In the case of the short ribs this was the length while this dimension was the 

width of the long rib and edge members. These dimensions were identified as critical because they 

were what would collectively add up to the overall panel dimension in the direction with the most 

cuts, meaning that there were more opportunities for compounding dimensional errors to add-up. 
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Figure 3-13: Fiberglass ribs marked for trimming 

Then, the pieces were all arranged and taped in the pattern required for the optical layer. After the 

taping, the pieces were untapped individually so that all of the connection pointes could be sanded 

manually and epoxied using a standard 2-phase epoxy. The pre-epoxied layout of these pieces is 

shown in Figure 3-14 while the epoxied joints are demonstrated in Figure 3-15. 

 

Figure 3-14: Optical layer pre-epoxying 
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Figure 3-15: Optical layer epoxied joints 

The last step of fabricating the optical layer is to sand down the epoxy on the top and bottom of 

the panel as well as around the edges of the fiberglass to make the layer conform with the required 

dimensions. The end result of the sanding is as demonstrated in Figure 3-16. 

 

Figure 3-16: Optical layer post-sanding 

3.2.3 Housing Fabrication 

The housing of the panel is constructed out of aluminum C-channel and various weather-stripping and 

edge sealing components. The first step in fabricating the housing is to take the aluminum frame 

members are trim and angle the ends to a 45° profile. 
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The next step involved cutting and applying a plastic edge trim to the edges of the aluminum 

frame members. This was completed to protect the structural materials of the solar road panel 

prototypes from contact with the frame members.  

The last step involved cutting and applying weather-resistant foam to selective internal portions 

of the aluminum frame. This was done to create a flexible buffer between the structural materials and 

the frame so that hard contact would be minimized. The foam inserts also helped make-up gaps 

between the frame members and the structural materials. The end result of the edge seal and foam 

application to a frame member is demonstrated in Figure 3-17. 

 

Figure 3-17: Housing frame with edge trim and foam inserts 

3.2.4 Panel Assembly 

The final panel assembly was accomplished by stacking all of the structural layers in order. This 

resulted in a composite structure which, from the bottom up, consisted of the epoxied base layer, two 

optical layers, and the acquired tempered glass structure. The frame members were then positioned 

around the edges of the panel and held in place with tie-straps while the corners were taped to hold 

together. The resulting final assembly is as shown in Figure 3-18. 

3.2.5 Lessons Learned 

One of the most important lessons learned was that the ideal structural way to fabricate the fiberglass 

layers is not possible in-house without extensive knowledge of fiberglass fabrication. To create a 

multi-ply fiberglass layup of the required parts required external expertise. All of the identified 
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research showed that multi-ply areas of fiberglass were the optimal option for the study, but after 

several attempts it was determined that precast fiberglass laminate would have to be used due to the 

challenges of working with multi-ply fiberglass. 

 

Figure 3-18: Completed structural solar road panel prototype 

It was also noted, approximately a year after the glass was acquired from the supplier, that their 

recommended glass structure for this application had changed from being two panes of tempered 

glass laminated together into using a traditional bulletproof glass type structure. This tends to use 

thinner panes of glass and a larger resin layer to protect from impact loading, though it is also 

unknown how the thicker resin layer would impact on the rutting and deformation performance of the 

transparent layer. 

It was also learned, while cutting the base layers of fiberglass, that the optimal method for using a 

skill saw to cut through such large blocks of material is to alternate cutting two close parallel lines. 

Trimming at the edges of the fiberglass plates was not challenging, as the material was able to bend 

away to make room for the saw blades to cut through. However, whenever an interior cut had to be 

made, the circular-saw would bind too easily if a relief line was not being cut right next to it. This 

helped speed up the process of cutting and reduced the number of saw blades that needed to be 

purchased. 
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Chapter 4 

Testing and Analysis Methodology 

With the prototype panel now designed and constructed, the testing and analysis methodology can 

now be outlined. This work is largely divided into three categories: structural testing, FE analysis, and 

environmental testing. 

4.1 Structural Testing 

The purpose of the structural testing was to perform a controlled test on the prototype solar road panel 

to determine how the panel deflects when various loads are applied. The output of this test is to 

validate the design of the prototype that was outlined in Chapter 3 and to act as an input for the FE 

analysis outlined in Section 4.2 below. 

This is largely broken into four segments: determining the testing objectives, test frame design, 

load apparatus design, and instrumentation. 

4.1.1 Testing Objectives 

Since the overall output of this testing is to serve as an input to the FE analysis of this research, the 

specific objective of the structural testing is to determine the flexural response of the designed 

prototype panel to specific low loadings in a manner that can be easily duplicated within the FE 

software. 

The testing should specifically allow for variable loading and variable load application, to ensure 

that performance of the composite panel is truly consistent. Testing will be performed for static 

response and within the elastic range for all materials in question, as the static, low load response will 

be sufficient to determine the comparative response of a panel with in-situ loading. 

4.1.2 Testing Frame 

A number of designs were considered before establishing that the most feasible option for the testing 

frame was to build a structure, as shown in Figure 4-1, where a freely supported prototype could be 

installed upside-down and loaded from underneath. 
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Figure 4-1: Structural testing rig schematic 

4.1.2.1 Test Frame Configuration 

A number of configurations were considered for this testing frame, including confined pavement 

testing, adapting an existing test frame, and a top loading frame, but these were all rejected for the 

bottom loading frame for a number of technical or feasibility considerations. 

The confined pavement testing, while providing the best representation of how the prototype 

would function in in-situ conditions, would provide very specific results depending on the granular 

materials used. This would also be more challenging to duplicate in FE analysis, as the viscoelastic 

properties of the soil base materials would have to be modeled while determining the overall panel 

properties. The cost of this structure would also be the highest, as a steel box would need to be 

procured for the testing and a frame would need to be developed to apply the loading. 

Adapting an existing test frame was quickly discarded as an option due the expected loading 

requirements on a freely-supported panel. Initial analysis of structural loading on the glass panel, as 

shown in Figure 4-2, determined that the prototype would need to be tested at up to 4,448-kN [1,000-

lbf], which would only produce a deflection of 0.84-mm [0.033-in], to ensure it does not fail under 

brittle conditions during testing. The actuators and load cells on the existing test frames are not 

sensitive enough to operate safely at this resolution, especially as there are only a few prototypes 

being made for all forms of testing and analysis. 

The top loading frame was rejected for the bottom loading frame because of the manner of 

loading. A top loading frame would require a structure to be built to support the load apparatus, which 

also makes repositioning the load between tests more cumbersome. A bottom loaded frame structure 
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uses the base of the testing rig and strong-floor of the structures lab as structural support, making it a 

simpler and more efficient design. There are no downsides to testing the panel upside down, as 

gravitational forces can be accounted for within the FE model easily. 

 

 

Figure 4-2: Deflection response of simulated panel to a centred 4,448-N [1,000-lbf] load 

4.1.2.2 Test Frame Design 

As demonstrated in Figure 4-1, the design of the frame was kept as minimal as possible to decrease 

the cost of the frame and make it easier to store after testing. 

It was initially determined that an existing reinforced steel plate could be used as the base plate 

for this testing rig. The plate, 1.5-m by 1.83-m by 0.03-m, is reinforced with 101.6-mm C-channels 

underneath. This provides a very stable surface for building the testing rig onto. An image of this base 

plate can be found in Figure 4-3. 

The next major element of the testing rig is the loading ring that the panel will be loaded against 

during testing. This element must be extremely rigid, as even minimal deflections will affect the 

results from testing, as the expected overall panel deflections are on the order of 0.58-mm. After 

investigating some different material options a 101.6-mm [4-in] by 51.2-mm [2-in] hollow section 

with 6.35-mm [0.25-in] wall thickness was selected as the material for this element due to its high 

resistance to flexure, as demonstrated in Figure 4-4. 
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Figure 4-3: Structural testing rig base plate 

 

Figure 4-4: Deflection response of 101.6-mm x 51.2-mm HSS under 6,672-N [1,500-lbf] 

distributed load 

With the material selected, it was cut and welded into a ring large enough for the panel to support 

itself against. This simulates a simply supported condition that can be simulated in FE software for 

validation of the panel model. The final product of this loading ring is shown in Figure 4-5. 

Legs were also designed to connect the loading ring to the base plate while giving enough room 

for the load apparatus and instrumentation to be installed. Also, since this frame is expected to see 
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limited use after this testing, the legs were designed to be removable so that the frame can easily be 

stored post-testing. The legs designed for this apparatus are shown in Figure 4-6. 

 

Figure 4-5: Structural testing rig loading ring 

 

Figure 4-6: Structural testing rig legs 

The final, constructed apparatus can be found in Figure 4-7 while the detailed design drawings for 

the structural rig can be found in Appendix C. 
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Figure 4-7: Structural testing rig 

4.1.3 Load Apparatus Design 

The load for testing was supplied through an air-over-oil driven actuator as shown in Figure 4-8. This 

system is able to use the lab’s existing air supply lines to pressurize the oil to a variable pressure of up 

to 10.3-MPa [1500-psi]; the specification being used as a possible maximum for testing. A base was 

built for the actuator which allows the location of the actuator to be easily adjusted in between tests. 

 

Figure 4-8: Structural testing air-over-oil system 
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Potential locations to load the panel during testing were all located in the middle of the optical 

layer cutouts. This best represents the expected high stress concentrations that would develop over 

these sections during vehicle loading. Each of these locations were marked on the transparent layer of 

the panel as shown in Figure 4-9. 

 

Figure 4-9: Structural testing load application points 

The load being applied to the panel by a 25.4-mm [1-in] square steel surface covered in a 

medium-stiffness rubber. The square applicator was chosen to simplify the modeling required to 

validate the panel design; square areas are easier to model than circular ones. The rubber was added 

to ensure a smooth contact area with the textured glass panel; accidental point loading would damage 

the glass and cause premature failure of the prototype. 

4.1.4 Instrumentation 

In order to measure the output of the testing a variety of instrumentation is being used. This includes a 

load cell to validate the load supplied to the panel, strain rosettes adhered to the glass and fiberglass 

members, and LVDTs to measure the displacement of the bottom fiberglass layer. 

The load cell being used to validate the loading in the panel is a StrainSert FL5U-2SPKT, as 

shown in Figure 4-10. This was calibrated using a 13.4-kN [3000-lbf] load ring on a range from 0 to 

8.90-kN [2000-lbf]. 
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Figure 4-10: Structural testing load cell 

The instrumentation measuring the response of the panel to the loading is being instrumented 

over an eighth of the panel as demonstrated in Figure 4-11. This was done to minimize the 

instrumentation requirements while allowing for symmetry effects to be assumed from the strain and 

displacement responses from loading in a variety of locations around the panel. As a result, loading 

on reference point C-2 could be simulated through the entire panel by loading points C-2, D-3, C,-4, 

and B-3, for example. 

 

Figure 4-11: Instrumentation locations with respect to the optical layer 
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The strain rosettes being used for the testing are all Vishay Model C2A-06-250LR-350 rosettes. 

These rosettes are designed to be attached to both glass and fiberglass specimens and provide highly 

accurate planar strain measurements. In order to be read by the NI data acquisition system available 

from CPATT, the 350-ohm strain rosettes had to be shunted down to 120-ohm using a 182.6-ohm 

resistor being mounted in parallel across it at the datalogger terminals. 

The transducers being used to measure the displacement of the fiberglass base plate are HP 

24DCDT-050 units. These LVDTs allow for up to a 1.27-mm [0.050-in] displacement, which is well 

above the maximum expected displacement of 0.84-mm as determined from the initial FE analysis as 

shown back in Figure 4-2.  

The transducers were mounted to the load ring of the structural testing frame using magnetic 

based retort stands. An image of the rosette and transducer positioning on the fiberglass base plate 

during testing is shown in Figure 4-12. 

 

Figure 4-12: Rosette and LVDT arrangement 

To collect all of the data simultaneously, a NI SCXI-1000 data acquisition system with multiple 

modules was used. This system was connected to a computer in the structures lab and was accessed 

using NI LabVIEW. The entire setup for the structural testing is shown in Figure 4-13. 
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Figure 4-13: Structural testing setup 

4.2 Finite Element Analysis 

The purpose of this analysis is to determine the static and fatigue responses of the solar road panel 

prototype in potential applications in Ontario. This consists of modeling the output of the structural 

testing in FE software, testing this model installed on top of standard Ontario pavement and subgrade 

structures, and using the maximum stress output from these simulations to determine the static limits 

and fatigue life of the solar road panel prototype. All of the FE analysis is completed using Abaqus 

CAE 6.13 (Abaqus, 2013). 

4.2.1 Prototype Model Development 

The model development consists of two parts; the simplifications that went into making the FE model 

and the modeling and validation procedure used. 

4.2.1.1 Model Simplifications 

The aluminum frame was excluded from the model and the transparent and structural layers were 

extended to be 36-inch squares. This is a reasonable simplification as the aluminum frame is far less 

rigid than the glass being used in the transparent layer, so it will have minimal impact on the 

performance of the model. The validation of the model based on the structural testing will focus on 

modeling the internal load points to mitigate edge loading anomalies. 
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The fiberglass rib portion of the structural layers is modeled as a homogenous block of material 

with the grid of squares cut-out. This is more realistic to how a future state prototype would be 

fabricated, as this layer would be a customized multiply fiberglass layup, but may not accurately 

represent the prototype constructed with epoxied joints.  

The prototype transparent layer has a textured surface but this was modeled as flat for the FE 

analysis. This is a reasonable approximation, as the soft rubber pad on the load applicator will evenly 

apply the load across the contact area. 

The boundary conditions of the structural testing were approximated using a flat plate steel ring, 

with the same dimensions as the load ring shown in Figure 4-5, with an encastre boundary condition 

applied to the top face. This implies that the ring will not deflect at all during testing, which is a 

reasonable approximation for the highly rigid load ring. 

4.2.1.2 Modeling Procedure 

Due to the prototype being much wider and longer than it is thick, all of the layers of the panel need 

to be modeled as shell elements. This is standard procedure for elements with a thickness to length 

ratio of less than 1/15 (Abaqus, 2013) and allowed the transparent layer, when modeled by itself, to 

obtain results identical to recognized load-stress relations for simply supported flat plates with centred 

loading (Roark & Young, 1975). 

To govern the contact between the layers of the panel model, surface-to-surface contact models 

were generated in the standard solver using a simple normal contact property. The slave component 

of the model is adjusted to remove overclosure prior to running the solver as this adjusts the three 

shell elements to be directly adjacent and remove displacement distance added from the shell 

thickness. 

Due to challenges in modeling the interaction between the rigid transparent layer and the more 

flexible structural layers some additional solver tools were required. The normal behavior of the 

contact was driven by hard contact but with a standard linear penalty model applied to allow for some 

error at individual nodes. Similarly, a contact control was added that allows for automatic 

stabilization of the results using the default parameters provided by Abaqus. These techniques were 

both prescribed by the Abaqus user manual (Abaqus, 2013) to solve convergence issues with the 

modeling technique. 
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The two main parameters of the model validation are the meshing and the material properties. 

The mesh has the greatest effect on the accuracy of the FE model, with finer meshes producing more 

accurate results at the cost of increased computational time and memory allocation. The objective of 

mesh optimization is to achieve a mesh that simulates the results of the structural testing with at least 

95% accuracy. This is typical of FE analysis, as increasing accuracy requires exponentially more 

computational time. Most studies found used an objective accuracy between 90% and 95% (Mak, 

2012)(Z. Wu, Chen, & Yang, 2011). 

Due to the geometry of the members structured meshes are easily generated for the transparent 

and base layers, which tend to provide more accurate results. The mesh strategy used for the optical 

layer was a free mesh, due to the continuous nature of the member with irregular cutouts. The 

parameters being varied for the mesh validation are outlined below in Table 4-1, with the default 

variables for the parametric study highlighted in bold. 

Table 4-1: Prototype mesh validation parameters 

Layer Mesh Strategies Mesh Sizing [mm] Mesh Thickness 

Transparent Structured 25.4, 19.05, 12.7, 6.35, 2.54 3, 5, 7, 9 

Optical Free 25.4, 19.05, 12.7, 6.35, 2.54 3, 5, 7, 9 

Base Structured 25.4, 19.05, 12.7, 6.35, 2.54 3, 5, 7, 9 

The material properties assumed for the materials in the prototype are as outlined in Table 4-2. 

The values for tempered glass are typical material property ranges as per the literature (ACI, 2013; 

Alsop & Saunders, 1999); the inherent imperfections in glass manufacturing leaves large margins for 

mechanical properties. The fiberglass laminate used in the prototype meets the NEMA GPO-3 

standard, which has the supplied elastic modulus value from the manufacturer (Rochling, 2013). 

Poisson’s ratio is not a commonly required property of thermoset polymers, so a range of potential 

values was once again determined from the literature (ACI, 2013; Rochling, 2013). In order to satisfy 

these ranges three material property conditions were created to represent the average, most flexible, 

and most rigid combinations. These conditions will be modeled and compared to the results of the 

structural testing. 
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Table 4-2: Prototype material property ranges and analysis categories 

Material Property Range 
Panel Model Properties 

Flexible Average Rigid 

Tempered Glass 
Elastic Modulus [GPa] 70 to 75 70 72.5 75 

Poisson’s Ratio 0.2 to 0.3 0.20 0.25 0.30 

GPO-3 
Elastic Modulus [GPa] 12 11 12 13 

Poisson’s Ratio 0.28 to 0.33 0.28 0.30 0.32 

 

4.2.2 Ontario Pavement Load Cases 

To determine the performance of solar road panels in typical Ontario conditions both the load 

conditions and structural bases needed to be determined with Ontario in mind.  

4.2.2.1 Loading Conditions and Locations 

There were two tire load considerations for this study; a maximum static load and a fatigue load. 

These loads are identified in Table 4-3 and represent the typical pavement design loads for Ontario. 

Table 4-3: Tire loading conditions 

Condition Load [kN] Contact Dimensions 

Static 87.5 0.60-m x 0.25-m 

 Fatigue 40 0.529-m x 0.364-m 

The static load condition is based on the heaviest wheel load applicable by Canadian regulations, 

CAN/CSA-S6 CL-625-ONT (CSA, 2006), which is in this case the heaviest single wheel fourth axle 

load. The fatigue load was determined based on the single wheel load equivalent of the dual wheel 

ESAL load. This was developed in accordance with the geometric relations used to convert dual tire 

loads into single tire loads for the analysis of concrete pavement sections (Huang, 2004), and since 

the relations are all geometric it was assumed to be applicable to loads on non-concrete pavement 

structures. A tire pressure of 600-kPa was assumed in determining this area. 

The loads are applied to the model through a pressure application over the contact area. Abaqus 

allows a total force to be distributed across the selected area, so this technique was used to apply a 

ramped, static, general load to the panel model. This is demonstrated in Figure 4-14 on a sample 
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structural base. The load area is designated on the panel model by partitioning the transparent layer so 

that there is a volume with a designated upper surface area that matches the tire contact area. 

Gravitational loads were also included in the analysis. 

 

Figure 4-14: FE model load application for fatigue load case 

In order to properly assess the performance of the solar road panel it needed to be loaded in four 

distinct locations as shown in Figure 4-15: centre, transverse edge, longitudinal edge, and corner. 

These conditions cover the extremes of typical panel stresses from tire loading, with the total load 

being applied to either one, two, or four panels. 

 

Figure 4-15: FE tire load application locations, direction of travel up the page 
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4.2.2.2 Structural Bases 

The structural bases that were selected for analyzing the panel performance on are the typical 

pavement structure guidelines for minor arterial roads with 1000 annual average daily truck traffic. 

This level of traffic was chosen because it provides a reasonable example of where the panels would 

be installed for initial trials, in lower volume and loading applications. The purpose of the FE study is 

also to determine comparative performance of solar road panels on a variety of structural bases, and 

medium volume road bases will provide a starting point for this comparison. 

The structures for concrete (PCC) and asphalt (HMA) roads are taken directly from the 

StreetPave report (ARA, 2011), which outlines the standards used for pavement infrastructure in 

Ontario. Models for granular and subgrade structural bases are based on the HMA road design with 

the additional layers removed as required. For this the HMA base was chosen over the PCC base 

because of the increased equivalent thickness of the asphalt base, which implies greater strength. The 

high strength subgrade was chosen as the structural subgrade for the models. The layer thicknesses 

for the four structural bases are outlined below in Table 4-4. 

Table 4-4: FE structural base layer thicknesses (ARA, 2011) 

Material Base Structure [mm] 

PCC HMA Granular Subgrade 

PCC 200 - - - 

HMA - 120 - - 

Granular A 200 150 150 - 

Granular B - 300 300 - 

Subgrade Infinite Infinite Infinite Infinite 

The material properties for each of these material layers are defined below in Table 4-5. These 

values are largely derived from Ontario’s default parameters for the AASHTOWare pavement design 

tool (MTO, 2012), the Ontario provincial standards for granular materials (OPSS, 2003), the 

StreetPave report (ARA, 2011), the Canadian Pavement Asset Design and Management Guide (TAC, 

2012), and the AASHTO Guide for Design of Pavement Structures (AASHTO, 1993). These 

documents represent the standard design practice for Ontario pavement structures, so no variability of 

these values is considered in the study. 
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Table 4-5: FE structural base material properties 

Material 
Elastic/Resilient 

Modulus [MPa] 

Poisson’s 

Ratio 

Specific Density 

[kg/m
3
] 

PCC 29,600 0.20 2,320 

HMA 2,758 0.35 2,460 

Granular A 250 0.35 2,400 

Granular B 200 0.35 2,000 

Subgrade 50 0.3 1,750 

4.2.2.3 Modeling Techniques and Validation 

Due to the size of each layer within the study it was possible to accurately model them as 3-

dimensonal solid extrusions with homogenous material properties. Contact properties between the 

layers, and between the panel model and the pavement structure, were defined the same way as within 

the panel model; normal contact with a linear over-closure penalty and with automatic stabilization 

contact control. This was done because of, once again, the large differences in material properties 

between the layers of the models. In some cases the step size was decreased to improve the 

probability of a converging solution, as per the literature recommendation (Mak, 2012). 

Due to the potential size of the model, symmetry effects were used as frequently as possible. Each 

of the load configurations allows for symmetry about the x- and y-axes within the structural base, 

though loading on the edge or corner of sees symmetry not applied to some or all of the edges of the 

panel model. The boundary conditions applied to the bottom and far sides of the modeled structure 

are encastre conditions, as a model of sufficient size allows the base to deform adequately within the 

scope of the model and not interact with the boundaries. A summary of the conditions applied for 

each load case can be found in Table 4-6. 

In order to validate these FE models, an extensive parametric study was completed to determine 

the effects of mesh sizing, base model length and width, and subgrade depth. The range across which 

the parameters are being varied is identified in Table 4-7, with the default variables identified for each 

condition. 

 

 



 

 65 

Table 4-6: FE boundary conditions per load application model 

Load 

Application 

Panel Fraction 

Modeled 

Tire Load 

Applied in 

Model 

Panel Boundary 

Conditions 

Pavement 

Boundary 

Conditions 

Centre 1/4 

1/4 

Near X: Symmetry 

Near Y: Symmetry 

Far X & Y: None 

Near X: Symmetry 

Far X: Symmetry 

Near Y: Encastre 

Far Y: Encastre 

Base: Encastre 

Transverse 

Edge 
1/2 

Near X: Symmetry 

Near Y: None 

Far X & Y: None 

Longitudinal 

Edge 
½ 

Near X: None 

Near Y: Symmetry 

Far X & Y: None 

Corner 1 

Near X: None 

Near Y: None 

Far X & Y: None 

 

Table 4-7: FE load case model validation parameters 

Parameter Default Value Analysis Range 

Subgrade Depth [m] 1.5 0.5, 1.0, 1.5, 2.0, 2.5 

Base Length [m] 3.0 
1.5, 2.0, 3.0, 4.0, 5.0 

Base Width [m] 1.5 

HMA Average Mesh Size [m] 0.025 

0.10, 0.075, 0.05, 0.025, 0.01 
PCC Average Mesh Size [m] 0.025 

Granular A Average Mesh Size [m] 0.025 

Granular B Average Mesh Size [m] 0.025 

Subgrade Average Mesh Size [m] 0.050 0.10, 0.075, 0.05, 0.025 

The mesh strategy in the structural bases is different from the panel model in that biased seeding 

techniques are being used to optimize the analysis. Since the load application is concentrated over a 

small portion of the overall model, a higher density of nodes is required at the load area to accurately 

model stresses, strains, and displacements than in the far corners of the encastred boundaries.  This is 

accomplished by determining the number of nodes along a given edge using the average mesh size 

and seeding the individual edges of the model with that number of elements but with a single bias 

towards the loaded corner and a bias ratio of five, the Abaqus default. This seeding process is used for 

all structural base edges in the x-y plane and the z-direction edges for the subgrade, but double bias 
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seeding is applied for all other z-direction edges to ensure that both upper and lower face contacts are 

modeled accurately. This is demonstrated for the default subgrade layer in Figure 4-16 below. 

 

Figure 4-16: FE subgrade model with complete single bias meshing 

The parameters being optimized through the validation process are the maximum stress, strain, 

and translation within the panel model. For the sake of validation, the panel model is simplified to a 

1-m by 1-m by 25.4-mm layer of tempered glass. The goal of the validation process is to achieve a 

level of 95% accuracy within the model for each of these properties based on the parameters varied 

from Table 4-7. The validation was completed in a cascading fashion, starting with the subgrade 

depth and proceeding down the list identified in the table. This was done so that a value could be 

locked in for each property to converge to the most accurate solution. 

4.2.3 Static and Fatigue Property Analysis 

The values measured to assess the static and fatigue performance of the panels were the maximum 

stress of the transparent, base, and structural base components; the maximum strains in the base and 

structural base; and the maximum deflection of the structural base. These values were compared 

between the different load cases and structured bases to determine which structural base conditions 

the panels are most suited to be installed on. 

4.2.3.1 Fatigue Analysis 

The fatigue analysis was completed differently for the glass, fiberglass, and structural base layers as 

they fail through cyclic loading by different mechanisms, however the objective is to determine the 
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number of ESALs that the panel can withstand on each structural base before failure of any 

component. 

Glass specimens fail through fracture methods due to the brittle nature of the material. The 

method by which this occurs is well documented in literature (Alsop & Saunders, 1999) making this 

analysis method straight forward. The assumption is that there are micro-cracks in the surface of the 

material 0.7-μm in length (Budynas & Nisbett, 2008). As the panel is cyclically loaded the crack 

slowly propagates through the material. This propagation occurs at a constant rate while load is being 

applied to glass, so sensitivity will also be analyzed for the speed of traffic over the panel. Other 

factors including the notch parameters have been identified in literature (Budynas & Nisbett, 2008) 

and will vary as the crack length increases, making this an iterative solution. In order for fatigue 

failure to occur at all, the developed tensile strains must exceed the 69-MPa compressive edge stress 

developed through the tempering process. 

Fiberglass laminate fails through traditional fatigue theory methods, as S-N curves have been 

developed that accurately predict the performance of various laminates to cyclic loading. In this case 

the curve has been developed as shown below, in Figure 4-17, for short glass fiber reinforced 

matrices; which is a best available estimate of the fatigue performance of the GPO-3 used in the 

prototype panel. Determining the number of available load cycles is based on the fatigue load induced 

stress to ultimate stress ratio of the material and then applying the given formula. 

Concrete pavements fail through a number of mechanisms as outlined in the equations shown in 

Figure 4-18; where Nf is the maximum number of stress cycles, σ is the cyclical stress applied to the 

concrete, and Sc is the compressive strength of the concrete. Similarly to the equations for GPO-3, an 

endurance limit exists at a maximum stress of 0.45 times the compressive strength of the concrete at 

which point unlimited fatigue cycles may be applied. The compressive strength assumed for these 

calculations will be 32-MPa, a traditional design value for Ontario pavements (ARA, 2011). These 

conditions are also sensitive to the joint placement as typically higher stresses are realized at the 

edges and corners of concrete slabs. 
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Figure 4-17: S-N curve for cyclic loading performance of short fiber reinforced matrices 

(Demers, 1998) 

 

Figure 4-18: Concrete pavement fatigue life equations (Huang, 2004) 

Asphalt pavements fail through two primary mechanisms; fatigue cracking and rutting. For 

fatigue cracking, the relation between design life and horizontal strain developed at the bottom of the 

asphalt layer is shown below in Figure 4-19; where Nf is the allowable number of load cycles, εt is the 

horizontal strain at the bottom of the asphalt layer, and E1 is the elastic modulus of the asphalt 

material. The elastic modulus value used in this empirical equation must be input in imperial units, so 

a value of 400,000-psi was used. 
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Figure 4-19: Asphalt pavement fatigue life equation (Huang, 2004) 

Rutting, a failure that occurs in both asphalt and granular structures, is a function of the vertical 

compressive strain that is developed at the bottom of the lowest granular layer. The relation for this is 

shown in Figure 4-20; where Nf is the allowable number of load cycles, εt is the vertical compressive 

strain at the bottom of the granular layers, and E1 is the elastic modulus of the asphalt material. 

 

Figure 4-20: Asphalt and granular rutting life equation (Huang, 2004) 

4.3 Environmental Testing 

The purpose of this portion of the testing is to determine the impact that freeze-thaw cycling and 

scaling have on the structural, optical, and textural performance of materials that would be used in the 

transparent layer of a solar road panel. The goal being to identify the initial changes to the properties 

of these materials to identify if further investigations are required. 

4.3.1 Material Selection 

In order to keep the environmental testing consistent with the solar road panel design process; glass, 

acrylic, and polycarbonate were selected as the materials for environmental testing. The materials 

were all ordered to a specific thickness and then cut to the size required for the individual tests. All of 

the samples were prepared with flat, non-textured surfaces so that the effects being analyzed are 

purely from a material perspective and do not include texture variation effects. 

4.3.2 Sample Conditioning and Testing Standards 

The scaling treatment and testing performed on the transparent materials are as identified in Table 

4-8. Variations to the standards were made, as outlined in the following section, to adapt the tests to 

the materials being tested and the facilities available at CPATT and UW. 

4.3.3 Scaling Resistance 

The scaling resistance technique outlined in ASTM C672 (ASTM, 2012b) was designed for use on 

concrete cylinders, making it an ideal candidate for pavement surface conditioning. The standard calls 

for the application of a salt brine to the surface of the samples with freeze-thaw cycling being applied. 
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Samples are to be tested for visible effects of scaling on a subjective scale after 0, 5, 10, 15, 25, and 

50 cycles. After each fifth cycle the samples are to be rinsed and the salt brine reapplied. The output 

of the scaling resistance is the subjective measurement of how much the surface has scaled, where a 

‘0’ implies no scaling and ‘5’ implies that the surface is heavily scaled. 

Table 4-8: Standard procedures for environmental testing 

Purpose Standard Description Sample Size 

Conditioning ASTM 

C672 

Scaling resistance evaluation of concrete 

surfaces exposed to deicing chemicals 

N/A 

Testing ASTM 

D790 

Three-point bending of unreinforced and 

reinforced polymers 

114-mm x 25.4-mm x 

6-mm or 6.35-mm 

Testing ASTM 

E303 

Frictional evaluation using the British 

Pendulum Tester 

89-mm x 152-mm x 6-

mm or 6.35-mm 

Testing ASTM 

E1175 

Determining solar or photopic properties of 

materials using an integrating sphere 

50.8-mm x 50.8-mm x 

6-mm or 6.35-mm 

4.3.3.1 Standard Modifications 

There were two challenges with adapting this standard to the polymer and glass sample being used in 

the environmental testing; salt brine composition and the method by which the salt brine is applied. 

For the purposes of this testing it is important to determine if salt brine application has an impact 

on these materials that should be further investigated and optimized. For this purpose, the four-

percent by weight solution of anhydrous calcium chloride was seen as an inadequate scaling solution. 

In order to determine whether or not the scaling has an impact on the samples, it was determined that 

a 25-percent by weight solution of sodium chloride should be used. This is a common salt that is used 

as a chemical deicer, making it an ideal candidate, and at this concentration is near the maximum that 

can be obtained at room temperature. 

This does add another difference between this and traditional scaling resistance tests. A 25-

percent by weight solution of sodium chloride would not actually freeze at the temperatures we could 

cycled the samples to, though the samples still reach a temperature of -16°C as verified by an infrared 

thermometer. This should have little impact on the study as the typical purpose for freezing the brine 

solution is to propagate the ice into cracks in the material. Due to the smoothness of our samples there 

should be no significant cracks for ice to propagate into, thus making the higher solution strength a 

greater asset in determining corrosion potential and effects. 
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The method of application for the salt brine also proved challenging due to the nature of the 

specimens being tested. The standard calls for a constant solution depth on the surface of the 

specimens to be maintained, however the number of specimens and their irregular sizes being tested 

made this challenging. To accommodate this, it was determined that the specimens could be 

submerged or suspended in containers of the brine solution. This still maintains an adequate level of 

brine being applied to a specific surface of the specimen, and each specimen could be identified for 

weather it was submerged or suspended. The submerged samples were typically glass while the 

polymers were suspended due to the differences in density of the materials. 

4.3.3.2 Conditioning Procedure 

A rolling cart with a custom built rack was used to hold the samples during the scaling resistance 

process, as shown in Figure 4-21. The samples being scaled were kept in the raised bins while the 

regular samples were kept flat on the floor of the cart. The floor of the cart was covered in wax paper 

to protect the specimens from contact with the cart. 

 

Figure 4-21: CPATT freeze-thaw cart arrangement 

This cart was then rolled in and out of the CPATT Lab’s walk-in freezer at intervals allowing at 

least two hours of time for the samples to freeze and two hours of time for the samples to thaw, as 

these were the intervals determined during checks in the first cycling to ensure that the samples met 

their required temperatures as verified by an infrared thermometer. 
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As this cart was also used for freeze-thaw cycling of pervious concrete samples, the tracking 

sheet used to count the testing cycles performed on those samples was modified for use with these 

optical test specimens. 

4.3.4 Three-Point Flexural Testing 

The three-point bending technique outlined in ASTM D790 (ASTM, 2010) was designed for the 

flexural analysis of polymer specimens. Due to the nature of this environmental testing, the same 

conditions were used for the glass samples to maintain a level of uniformity between the tests. 

4.3.4.1 Testing Apparatus 

Due to the small size and low estimated failure load of the components, this testing could not be 

performed on equipment within the Civil Engineering Structures Lab. For this material testing it was 

determined that the best option was to use equipment within the Materials 2 Laboratory, operated by 

Mechanical and Mechatronics Engineering. The load setup used is shown below in Figure 4-22. 

 

Figure 4-22: Materials 2 Laboratory 500-kg Instron 

In order to minimize the cost of the apparatus required for this test, it was decided that an existing 

base would be used for the testing which had the capacity for additional brackets to be fitted to it to 



 

 73 

meet the ASTM D790 specifications. The base, which is used for similar flexural testing, is owned by 

Dr. Marianna Pollak within Civil and Environmental Engineering and is shown below in Figure 4-23. 

 

Figure 4-23: 3-point structural loading base 

Three pieces of hardware were then designed to make this base work with the Instron machine 

from Mechanical Engineering and the ASTM standard we are following; a collar to mount the base to 

the Instron, the support nose brackets, and the load nose assembly. Figure 4-24 shows the finished 

components as manufactured by RJB Machining, and touched up as required, while detailed drawings 

for them can be found in Appendix D. 

 

Figure 4-24: 3-point bending test support noses, base collar, and load nose (left to right) 

4.3.4.2 Testing Specimens 

The samples were originally cut with the intention of doing testing across a 101.6-mm [4-in] span due 

to the standard size of materials being available in 6.35-mm [0.25-in] depth. As a result the specimen 

materials were ordered and the parts were cut to the size outlined in Table 4-8. Some of the materials 
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were only available in a metric sizing, so a 6-mm depth was used for these materials, as this was the 

closest available metric size. The average dimensions and standard deviation of measurements are 

outlined below in Table 4-9. 

Table 4-9: 3-point bending specimen dimensions 

Material 

Length Width Height 

Average 

[mm] 

Standard 

Deviation 

Average 

[mm] 

Standard 

Deviation 

Average 

[mm] 

Standard 

Deviation 

Acrylic 113.8 0.5055 24.83 0.5613 5.687 0.1651 

Glass 114.3 1.400 26.25 1.041 5.550 0.03302 

Polycarbonate 113.7 0.3353 24.93 0.5004 6.233 0.03810 

 

In order to accommodate for the thinner materials, it was determined that a smaller span than 

101.6-mm [4-in] should be used in testing. The span based on the actual material thicknesses was 

determined to be 95.25-mm [3.75-in] as this would allow for all of the specimens to be tested within 

the bounds of sample measurement for the ASTM D790 standard. 

4.3.4.3 Testing Procedure 

The testing rig is shown in Figure 4-25, with the support nose spacing set at 92-mm [3.625-in], a 

value within the valid range of testing as per ASTM D790. Testing was run at a displacement rate of 

2.71-mm/min [0.1067-in/min] in accordance with the ASTM standard and the dimensions of these 

specimens. 

 

Figure 4-25: 3-point bending test apparatus 
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4.3.5 Friction Testing 

The friction testing, as per ASTM E303 (ASTM, 2012b), was performed in the CPATT Lab using the 

existing calibrated British Pendulum. The standard was followed without modification, and based on 

practice it was determined that six sprays of water from a spray bottle were required to fully saturate 

the surface of the specimens with water, as shown in Figure 4-26. 

 

Figure 4-26: Water-saturated friction test specimen 

To accommodate the test specimens, a platform with adjustable bumpers, as shown installed in 

Figure 4-27, was designed to be installed around the existing formwork for the pendulum. This 

platform also allowed for compatibility between ongoing friction testing in the lab, so that the 

pendulum did not have to be constantly readjusted between testing concrete cylinders for other 

research and the optical materials for this analysis. 

 

Figure 4-27: Friction testing platform 
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To ensure repeatability of the tests, one new British rubber slider was acquired and used for all of 

this testing. This was of high importance as rubber sliders kept with the device are often used for 

concrete or asphalt testing in between, which would supply much more damage and impact the results 

of this testing. Calibration of the device in terms of energy loss and slider contact area were 

completed before each set of freeze thaw cycle testing and checked periodically through the testing 

runs. 

The data obtained from this testing is in terms of British Pendulum Numbers, as the values 

obtained were too low for comparison in terms of Skid Number; a value more commonly used in 

pavement evaluation. 

4.3.6 Optical Testing 

The optical testing, as outlined by ASTM E408-13 (ASTM, 2013), E903-12 (ASTM, 2012a), and 

E1175-87 (ASTM, 2009), is performed to determine the transmissivity, reflectivity, and absorptivity 

of materials. The apparatus used for this testing is the Varian Cary 5000 UV/VIS/NIR 

spectrophotometer, as shown in Figure 4-28, operated by the Solar Thermal Research Lab at the 

University of Waterloo. 

 

Figure 4-28: Varian Cary 5000 UV/VIS/NIR Spectrophotometer 

Tests were conducted at 5-nm intervals from 250-nm up to 1200-nm. The 1200-nm ceiling for the 

tests was chosen to ensure that the entire spectrum of absorption for solar PV cells was covered 

(Luque & Hegedus, 2003) and to reduce time from running the test to 2500-nm as was available; the 
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longwave radiation testing, testing over 800-nm, is highly time intensive due to the sensor used for 

data collection. 

For the testing, 50.8-mm [2-in] square samples were used to ensure that material was covering the 

entire opening for light transmission. The samples were cleaned with a glass cleaner prior to testing to 

remove any residue that collected during the scaling process. For transmission testing the samples 

were installed in front of the integrating sphere of the Cary 5000, as shown in Figure 4-29, so that 

electromagnetic radiation could be passed through the sample and into the integrating sphere. For the 

reflection testing, the samples were installed behind the integrating sphere as shown in Figure 4-29. 

  

Figure 4-29: Sample positioning for transmissivity and reflectivity testing (left to right)  
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Chapter 5 

Structural Prototype Testing and Analysis 

This chapter outlines the results from the structural testing and finite element analysis that was 

described in the methodology. 

5.1 Structural Testing Results 

Four data sets were collected which represented three loading locations (centre, side, and diagonal) 

and two applied loads (2.22-kN and 4.44-kN). These three load positions and the grid references used 

to identify locations on the panel during testing are shown in Figure 5-1 and correspond to loads at 

locations C-3, C-2, and D-2. 

 

Figure 5-1: Structural testing load positions on transparent layer 

Since the panel orientation for testing was upside down, as shown in Figure 4-13, the orientation 

of all of the strain and deflection response data is with respect to the locations shown in Figure 5-2. 

This figure still shows the load cases, however since the base layer of the panel is facing upwards in 

this configuration these labels only represent where the maximum strains and deflections should be 

noted during the testing. 
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Figure 5-2: Structural testing result orientation 

Due to the orientation of the rosettes and LVDTs, as outlined in Figure 4-11, there are no values 

collected for A-2, A-4, B-1, B-5, D-1, D-5, E-2, or E-4. This is represented in the figures below as 

having no strain or deflection at these points. 

5.1.1 Strain Response 

The strain response of the panels was largely as expected. As demonstrated in Figure 5-3 for the 4.44-

kN centre load, the glass panel produced the highest strain where the load was applied with the values 

tapering off towards the edge of the panel. 

 

Figure 5-3: 4.44-kN centre load glass strain response 

This same phenomenon applied to all four data sets on the glass panel, including the eccentric 

load placements for the side and diagonal load cases. This is demonstrated below in Figure 5-4 for the 

2.22-kN diagonal load test. 
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Figure 5-4: 2.22-kN diagonal load glass strain response 

Also notable from Figure 5-4 is that the measured strain response is fairly symmetrical about the 

diagonal axis from A-5 to E-1. Given that four tests with 2.22-kN loads at B-2, B-4, D-2, and D-4 

were amalgamated to make this profile, the symmetry represents a high level of accuracy within the 

testing regimen and constructed prototype. 

In some cases for the strain response of the base layer strains were observed at the edges of the 

panel that were higher than at the expected peak location. This is shown in Figure 5-5 for the 2.22-kN 

centre load case. Note that the highest strain would be expected at location C-3, however higher 

values are found at every point around the edges. This is believed to be a result of boundary effects on 

the panel, as repeated testing delivered the same results. 

 

Figure 5-5: 2.22-kN centre load base strain response 
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5.1.2 Deflection Response 

Due to the orientation of the panel and the sensitivity of the transducers being used, deflection 

measurements were only taken for determining the differences in deflection between two load cases. 

As a result, this testing was only accomplished for the centre load condition for the deflection 

difference between 2.22-kN and 4.44-kN. 

The results from this testing followed the trends that were expected, as shown in Figure 5-6, 

where the largest deflection between the 2.22-kN and 4.44-kN loads occurred at the centre of the 

panel and tapered towards the edges.  

 

Figure 5-6: Deflection difference from testing between 2.22-kN and 4.44-kN centre loads 

However, it is important to note that the deflections measured here are much larger than were 

expected based on the initial FEA shown in Figure 4-2. In this figure an expected maximum 

deflection of 0.84-mm is demonstrated for a 4.44-kN centre load, while the test data shows a 

deflection of 1.4-mm between the 2.22-kN and 4.44-kN load conditions. 

Extensive reworking of the laboratory test apparatus occurred in an effort to ensure that the 

testing was appropriate for measuring the deflection responses. As noted earlier, the objective of the 

testing is to drive simulations that can predict the in-field strain and deflection responses of this panel 

to vehicle loading. The displacement transducers were recalibrated to ensure their accuracy using thin 

plates of known thicknesses. The frame members were also removed, as shown in __, as it was 

believed that the foam inserts and edge seal may be affecting the response being measured. 

When the tests were rerun under the new conditions it was found that the deflections measured 

were of a similar magnitude. Since there is a discrepancy between these measurements and the 
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original predicted values, the model development will focus on the measured strain values and the 

deflection will be analysed with respect to these models. 

5.2 Prototype FE Model Development 

5.2.1 Mesh Development 

The summary of the mesh development can be found below in Table 5-1. The smaller meshes for the 

transparent and base layers are as expected since the focus of the mesh development was to accurately 

model the stress, strain, and deflection response of the these layers. The number of integration layers 

remained small for all of the layers because elastic behavior was assumed for the entire model, 

removing the sensitivity of this parameter. 

Table 5-1: Prototype panel mesh development results 

Layer 

Model Parameter 

Integration Layers Mesh Size [mm] 

Transparent Layer 3 6.35 

Optical Layer 3 25.4 

Base Layer 3 6.35 

 

5.2.2 Structural Test Simulation 

Each of the structural tests performed were simulated using the mesh conditions outlined above. 

Figure 5-7 and Figure 5-8, the glass and base layer strain contours from the 2.2-kN diagonal load 

simulation with average material properties, demonstrate the typical results from these simulations. In 

the transparent layer the strain peaks where the load is applied with the strain tapering towards the 

edges of the panel. The strain contours in the base layer peak at the same location, but the actual 

maximum values are closer to the optical layer ribs that transfer the load between the layers.  
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Figure 5-7: 2.22-kN diagonal load simulation average material property glass strain contours 

 

Figure 5-8: 2.22-kN diagonal load simulation average material property base strain contours 
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5.2.3 Model Validation 

To compare the strain data between the structural testing and the simulations the absolute difference 

between the two models was calculated. This result for the 2.22-kN diagonal load with average 

material properties is shown in Figure 5-9. Note that the differences in strain are larger on the 

boundaries than they are on the inside of the model; this is likely due to difficulty in accurate 

boundary condition simulation. 

 

Figure 5-9: 2.22-kN diagonal load absolute strain difference for the average material property 

model 

The results shown in Figure 5-9 were then averaged to provide an average absolute error metric 

which was used to determine the optimal material property configuration. The results of this are 

shown in Figure 5-10 and demonstrate that, across the entire model, the rigid material property 

configuration produces the lowest average absolute strain error. 

This figure, however, does not take into account that the boundaries of the model have larger 

errors due to the boundary conditions. To eliminate these known errors from the decision making, the 

boundaries were removed from the data set by simple exclusion; the new data set did not include 

values from grid locations with A-, E-, -1, or -5 labels. 

New average absolute strain errors were determined as shown in Figure 5-11. This figure shows 

that while the average properties are the best performer for the diagonal load case, that the overall 

best material property configuration for matching the structural testing is still the rigid configuration. 
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Figure 5-10: Average absolute strain error between testing and simulations 

 

Figure 5-11: Average absolute strain error between testing and simulations for non-boundary 

locations 

5.2.4 Strain Modelling Deficiencies 

As has already been noted, the model developed does a poor job of simulating the strains found near 

the boundaries during the structural testing. From the perspective of solar road panel applications this 

is not a major concern because the type of cantilevered support for the panel during testing will not be 

found in the real world. The boundary conditions applied by anchoring the panels may prove to be 

difficult, but refining meshes around these points can mitigate errors. 
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The other deficiency of the model that has been developed is its ability to accurately predict the 

maximum glass strain under the 4.44-kN centred load test. As noted in Figure 5-12, the model under 

predicts the maximum strain seen in the transparent layer by 41-microstrain. The majority of this 

difference is likely due to a mechanical defect in the glass specimen, as unsupported glass should not 

strain that much under similar load and boundary conditions. 

 

Figure 5-12: 4.44-kN centre load absolute strain difference in the transparent layer for the rigid 

material property model 

5.2.5 Deflection Modelling 

As identified in 5.1.2, the deflection results obtained from the structural testing followed the expected 

trend of the initial FEA but were of a much larger magnitude. The final modeled deflections, based on 

the validated strain models, are shown in Figure 5-13 and demonstrate that a maximum deflection 

difference of 0.28-mm is predicted between the 2.22-kN and 4.44-kN centre load tests. 

These values compare to the values obtained from testing as shown in  

Table 5-2. This information shows that the values measured are all consistently larger than the 

values that were predicted. In this case there are two groupings of values that are off by similar 

margins, with C-3, D-3, and D-2 in one group between 300% and 400% and E-3 and E-1 in the other 

around 600% to 650%. This is similar to the results found from the strain model validation as E-3 and 

E-1 are both boundary locations and their test values differ from the model by a larger margin than 

the other central nodes. 
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Figure 5-13: Deflection difference from modelling between 2.22-kN and 4.44-kN centre loads 

 

Table 5-2: Deflection result comparison 

Transducer Location C-3 D-3 E-3 D-2 E-1 

Test Results [mm] 1.39 0.84 0.38 0.60 0.17 

Model Results [mm] 0.29 0.21 0.05 0.15 0.03 

% Difference 387% 306% 655% 309% 593% 

 

The results show that there is a clear difference between the deflections that are being measured 

and those that are being predicted, though the similarity of the deflection profile between the 

measured and predicted results lends confidence that the modelling procedures accurately depicting 

the performance of the panel in the laboratory testing conditions. Further study should focus on the 

deflection performance of these panels, particularly for in-situ applications. 

5.3 Pavement Load Case Simulation 

5.3.1 Model Development 

The summary results of the model development can be found below in Table 5-3 while the detailed 

results can be found in Appendix E. The results of the validation are as expected, where the layers in 

closer contact to the panel model require higher resolutions to determine the panel’s reactions. Also, 

larger base areas were required for the higher modulus materials, which is logical as they have 

properties that naturally spread loads out over a larger area. 
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Table 5-3: Pavement load case model development results 

Parameter 

Base Structure 

PCC HMA Granular Subgrade 

Subgrade Depth [m] 0.5 1.0 1.0 1.5 

Base Length [m] 4.0 3.0 2.0 1.5 

Base Width [m] 4.0 3.0 2.0 1.5 

HMA Average Mesh Size [m] - 0.025 - - 

PCC Average Mesh Size [m] 0.025 - - - 

Granular A Average Mesh Size [m] 0.050 0.050 0.025 - 

Granular B Average Mesh Size [m] - 0.050 0.050 - 

Subgrade Average Mesh Size [m] 0.100 0.100 0.100 0.100 

 

5.3.2 Static and Fatigue Load Simulation Results 

5.3.2.1 Transparent Layer Stress 

The first benchmark for the performance of the panel model in the various conditions is the maximum 

stress produced in the transparent layer. Being the layer directly loaded from vehicles, it sees the 

highest stresses within the panel and pavement model. Figure 5-14 demonstrates these values for all 

of the static load tests. Recall, from Table 3-2, that the compressive stress limit for tempered glass is 

5-GPa and that the tensile stress limit is 1-GPa (Alsop & Saunders, 1999). 

The most important detail to note from Figure 5-14 is that all of the stresses found within the 

transparent layer are far below the tensile and compressive yield strengths of glass, meaning that the 

loads being applied can be safely supported. Also of importance is the ranking order of the pavement 

structures, with the bases demonstrating the least to most stress, in order, were the PCC, HMA, 

Granular, and Subgrade bases. This result was expected as the PCC base contains the most rigid 

materials while each subsequent layer becomes more flexible, providing less resistance to deflection 

and less load spreading. 

The unexpected result from Figure 5-14 is that the centre load case produces the highest stress 

while the corner case is the lowest for each structural base. The opposite is true in typical pavement 

applications due to low load transfer between panels limiting the availability of load spreading. 
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However, Figure 5-15 demonstrates that the maximum stress locations in the solar road panel 

prototype are more dependent on the optical layer grid pattern. 

 

Figure 5-14: Transparent layer stress when subjected to static load 

 

Figure 5-15: Transparent layer stress contours under static, centre load with HMA base 
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While the maximum stress in Figure 5-15 still occurs in the bottom right corner of the member 

directly under the applied load, a second maximum stress location appears directly above it and this 

space corresponds to the adjacent cutout in the optical layer. These higher stresses are a result of the 

glass being cantilevered over the solar cells at these points, and this proves to be the main structural 

criteria for the transparent layer as assumed in section 3.1.4. This phenomenon is further illustrated in 

Figure 5-16 where the maximum stress from the corner load case occurs inset from the corner of the 

panel due to the location of the first optical layer cutout. 

 

Figure 5-16: Transparent layer stress contours under static, corner load with HMA base 

Figure 5-17 demonstrates the maximum stress in the transparent layer as a result from the fatigue 

load application.  

Under the fatigue load case the pattern of the transparent layer stress changes dramatically from 

the static load case. This is because the load being applied is lower, but has a larger width on the glass 

surface due to the dual tire configuration of an ESAL. As a result of the lower load and larger 

application area, the maximum stresses are much smaller than under the static load case. The stress 

contour from the fatigue, centre load with an HMA base can be found in Figure 5-18, and this image 

demonstrates again that the maximum stresses occur in the cantilevered glass sections. 
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Figure 5-17: Transparent layer stress when subjected to fatigue load 

 

Figure 5-18: Transparent layer stress contours under fatigue, centre load with HMA base 
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5.3.2.2 Base Layer Stress 

The second benchmark is the stress that is developed in the base layer. This characteristic is also 

important to determine the structural capacity of the panels to vehicle loading as values under 55-MPa 

are required to avoid yielding, and the results found are shown in Figure 5-19. 

 

Figure 5-19: Base layer stress when subjected to static load 

These results for maximum base layer stress follow the same pattern as was noted for the 

maximum optical layer stress, which was expected. These maximum stresses developed under the 

ribbed sections from the optical layer, as shown in Figure 5-20, with the values decreasing as you get 

farther from the loaded area. It is important to note that the maximum stresses achieved are well 

under the 55-MPa yield strength of GPO-3, so these components also will not fail due to static 

loading. 

The base layer stress for the fatigue load case, as shown in Figure 5-21, also produces similar 

results to the static load case but with much lower peaking under the transverse load condition.  
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Figure 5-20: Base layer stress contours under static, centre load with HMA base 

 

Figure 5-21: Base layer stress when subjected to fatigue load 
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5.3.2.3 Base Layer Strain 

The next benchmark is the strain developed in the base layer. This is important as the mechanical 

limits for solar cells are typically defined in terms of strain limits, so ensuring that this value is under 

6,250-microstrain to prevent damage to the solar cells is critical to the design (Ritchie, 2003). The 

results for the maximum base layer strain under the static load case are found in Figure 5-22. 

 

Figure 5-22: Base layer strain when subjected to static load 

This figure follows the exact same pattern as the maximum base stress figure, as is expected due 

to the linear relationship between stress and strain during elastic deformation. It also shows that the 

maximum strains developed in the base layer are far below the 6,250-microstrain limit that the solar 

cells can be subjected to. Figure 5-23 shows the locations of these maximum strains and it is 

important to note that the maximum strains are located under the optical layer ribs and not in the solar 

cell cutouts, so the actual strains subjected to the solar cells will be far lower than noted in Figure 

5-22. 

The lower stress state of the fatigue load case produces significantly reduced strain profiles, as 

shown in Figure 5-24. 
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Figure 5-23: Base layer strain contours under static, centre load with HMA base 

 

Figure 5-24: Base layer strain when subjected to fatigue load 
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5.3.2.4 Structural Base Deflection 

The final benchmark being assessed is the maximum deflection measured within the structural base. 

This value is representative of the deflection caused in the panel. The results of this are shown in 

Figure 5-25. 

 

Figure 5-25: Structural base deflection when subjected to static load 

The structural base deflections produce similar trends to the structural base strains shown in 

Figure 5-22, which again is logical due to the typical performance of plates used in pavement 

reinforcement. The profile of this deflection through the specimens is found in Figure 5-26, and this 

shows the expected maximum deflection under the loaded section with the deflection reducing 

quickly as you move away from this point. 

 

Figure 5-26: HMA layer deflection contours under static, centre load with HMA base 

Figure 5-27 shows the structural base deflections determined from the fatigue load case. Once 

again these values are noticeably lower than those for the static load. 
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Figure 5-27: Structural base deflection when subjected to fatigue load 

5.3.3 Fatigue Life Analysis 

5.3.3.1 Transparent Layer 

The first criteria for determining if the transparent layer is going to be subjected to fatigue cracking is 

comparing the maximum stresses developed to the compressive stress state established in the edges of 

the glass through tempering. In order to develop fatigue cracks there must be a net tensile stress 

applied to the surface, so the maximum stress measured must be higher than the inherent compressive 

stress in the glass. The minimum specification for tempered glass is a 69-MPa compressive edge 

stress. Figure 5-28 shows all of the maximum transparent layer stresses compared against the 

tempered edge stress. 

Figure 5-28 clearly shows that the transparent layer in the prototype would not form fatigue 

cracks in these configurations. As a result, it is possible to reduce the thickness of the glass panes 

used in testing, in particular when the panel is installed on a PCC, HMA, or Granular structural base. 

As a result of this, no fatigue crack growth analysis was completed. 

5.3.3.2 Optical and Base Layers 

As identified in Figure 4-17, the fatigue criteria for E-glass reinforced polymers such as GPO-3 is 
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however, is only valid when this stress ratio is over 0.3 as components have demonstrated infinite 

fatigue lives and lower stresses. As a result the first check to perform on the optical and base layers is 

to see if they surpass this limit, which is 16.6-MPa for GPO-3 laminates. This is shown below in 

Figure 5-29 for the base layer stresses, which in every case were higher than those in the optical 

layers. 

 

Figure 5-28: Transparent layer fatigue life endurance limit check 

 

Figure 5-29: Base layer fatigue life endurance limit check 
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Figure 5-29 also clearly shows that the fiberglass components were designed under the endurance 

limit of GPO-3, so in the configurations with this prototype design they will not fail either due to 

cyclic loading. 

5.3.3.3 Structural Bases 

For the PCC bases, the important parameter for their design life is the stress developed in the layer. 

This value for the fatigue load cases is plotted in Figure 5-30 against the endurance limit that was 

identified in Figure 4-18. This figure clearly shows that loads on a solar road panel that is placed 

above the centre of a concrete slab will do no damage to the concrete slab or underlying structure. 

The large margin by which the centre-slab stress is under the endurance limit is also an indicator that 

loading through a solar road panel onto the transverse edge, longitudinal edge, or corner of a concrete 

slab would also create stresses under the endurance limit. 

 

Figure 5-30: PCC layer fatigue life endurance limit check 

For the HMA bases there are two critical performance parameters, the horizontal strain at the bottom 

of the HMA layer and the vertical strain at the bottom of the granular layers. The horizontal strain has 

a direct empirical relation to fatigue cracking life, where lower developed strain results in longer 

pavement life. The results noted from this analysis are shown in Figure 5-31 and are compared to the 

strain developed with the same structural base model without the panel. This figure shows that under 

the different load conditions the horizontal strain either remains the same or decreases versus the 
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control, so installing a solar road panel on an asphalt pavement structure increases the fatigue 

cracking life of the asphalt pavement base. 

 

Figure 5-31: HMA layer maximum horizontal strain 

In terms of the vertical compressive strain on the Granular B layer in the HMA base an even greater 

performance improvement is realized by installing the solar road panel. Once again the relation 

identified in Figure 4-20 indicates that lower strains result in higher rutting resistance, and in each 

case the solar road panel installation reduces the vertical compressive strain realized in the Granular B 

layer. 

 

Figure 5-32: HMA base maximum vertical compressive strain in the Granular B layer 
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The vertical compressive strain on the Granular B layer in the granular base, as shown in Figure 5-33, 

followed the same trend as identified within the HMA base; adding the solar road panel to the 

structure increases the rutting resistance of the base in all load conditions. 

 

Figure 5-33: Granular base maximum vertical compressive strain in the Granular B layer 

5.4 Summary of Key Findings 

The first key finding of this section is that it is possible to design and construct a solar road prototype 

with highly predictable performance. The structural testing and finite element analysis described 

above thoroughly demonstrate that solar road panels react to loads following traditional material 

science and can therefore easily have their performance predicted by simulation. 

This section also identified that it is possible to build a panel that can withstand the structural 

loads that pavements are subjected to while incorporating a photovoltaic electrical system. This was 

demonstrated through the finite element and fatigue analyses which showed that the prototype that 

was designed and constructed would need to be subjected to far higher loads than traditional vehicle 

loads in order to induce fatigue based failures. It was also shown that the electrical system would not 

be damaged through the strain cycling that the solar cells would be subjected to; an important metric 

for a solar road panel. 

Lastly, this section clearly identified that adding solar road panels to the top of existing pavement 

structures improves their performance or, at worst case, does not change it. This indicates that 

introduction of the panels provide pavement engineers an opportunity to reduce the amount of 
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traditional paving materials they use in the structural design, which reduces costs and potentially 

improves the overall sustainability of pavements. The concrete base provides the largest opportunity 

for optimization, so this will likely be the preferred base choice for solar road panel installations. 
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Chapter 6 

Environmental Material Testing Results and Analysis 

Consideration of the environmental performance of potential transparent layer materials, as outlined 

in the methodology, is detailed in this chapter. 

6.1 Scaling Resistance Testing 

During the scaling process, no notable effects of scaling were observed on any of the specimens. The 

changes occurring to the materials were believed to occur at a macroscopic level on the surface. The 

most noticeable effect that occurred during testing was an accumulation of salt residue on the 

samples, as identified in Figure 6-1. Figure 6-1 shows examples of glass, acrylic, and polycarbonate 

(from top to bottom) 3-point bending specimens that had been subjected to 50 freeze-thaw cycles. 

The specimens on the left are from the normal set while the specimens on the right are from the 

scaled set. 

 

Figure 6-1: Salt accumulation during scaling resistance testing 

6.2 Three-Point Bending Testing 

6.2.1 Testing Results 

The three-point bending test results were collected in terms of compressive load and extension from 

the datalogger connected to the Instron tester. This data then had to be processed in order to 

determine the flexural modulus of the materials. The range of information required for the flexural 

modulus is early in the testing data, before any plastic effects can be determined. Figure 6-2 shows 
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the raw extension and load output for the first tested glass sample, where the peak represents the load 

at which the sample failed through brittle fracture. 

 
Figure 6-2: 3-point bending raw data for G-0-1 

Since glass is a Hookean material, the straight sloping profile until failure was expected for each 

sample. What was not expected was the dip in the compressive load at approximately 95-N of 

loading. This dip was apparent in all of the testing data for all of the materials, so it was determined 

that the dip was caused by settling that was occurring in the testing rig repeatedly at this load. In order 

to determine the flexural modulus of the materials accurately, the starting point for the flexural 

measurement was taken after the dip occurred with the ending point being taken from later in the 

straight portion of the curve in a consistent manner for each material. All of the calculations based on 

this data were performed as outlined in ASTM D-790. 

6.2.1.1 Acrylic Samples 

The raw data from the first acrylic test is demonstrated in Figure 6-3. It follows the expected profile 

of a thermoplastic polymer, where there is a definite elastic deformation region followed by elastic-

plastic deformation and then failure. Careful inspection of Figure 6-3 shows a slight adjustment to the 

elastic curve around the 95-N loading, as noted before. 
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Figure 6-3: 3-point bending raw data for A-0-1 

The data output from the testing is summarized in Table 6-1. This data demonstrates that the 

average flexural modulus remained relatively consistent despite the scaling and freeze-thaw effects. 

These results are further backed by the very low relative standard deviations, demonstrating the 

resilience and consistency of the material tested. 

Table 6-1: Acrylic 3-point bending results 

Conditioning Measurement 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Normal 
Average Flexural Modulus (GPa) 3.21 3.18 3.13 3.19 3.27 3.17 

RSD (%) 3.6 3.5 2.5 2.2 3.2 3.2 

Scaled 
Average Flexural Modulus (GPa) 3.21 3.11 3.16 3.11 3.23 3.18 

RSD (%) 3.6 2.0 2.9 3.9 7.0 3.5 

 

The one high RSD, 7.0% for the 25
th
 cycle of the scaled set, is due to a sample that had an 

abnormally high modulus value from testing. Analysis of the results and specimen could not 

determine a cause for this variation so the sample was still included in the results. Removal of this 

sample from the testing pool only reduced the average modulus by 0.08 GPa and the RSD by 2.0%. 

6.2.1.2 Glass Samples 

The raw data from the glass testing was demonstrated in Figure 6-2, and as described this profile 

followed the expected results for flexural testing of a glass specimen. The material is very brittle in 

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

C
o

m
p

re
ss

iv
e

 L
o

ad
 (

N
) 

Compressive Extension (mm) 



 

 106 

nature, so the material accepts the load elastically until it reaches its brittle failure point and then 

shatters. The typical glass specimen failed under flexural load as demonstrated in Figure 6-4. 

 

Figure 6-4: Typical glass 3-point bending test failure (Specimen G-15-US-3) 

As shown in Figure 6-4, there was a dominant side from which the failure cracks originated. This 

was consistent across all of the samples as there was a marginal alignment error between the load 

nose and the samples under the bending test.  

One of the challenges with working with glass is that there is a high variability in the distribution 

of particles in the glass matrix. This results in some unpredictability in the properties of the materials 

as the particle distribution also affects where the dislocations are in the material that are where failure 

cracks will propagate from. This is apparent in the initial results from the 3-point bending testing, 

which are demonstrated in Table 6-2. 

Table 6-2: Glass 3-point bending initial results 

Conditioning Measurement 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Normal 
Average Flexural Modulus (GPa) 47.5 49.3 47.2 42.2 48.9 45.8 

RSD (%) 6.3 4.2 6.2 43 4.8 19 

Scaled 
Average Flexural Modulus (GPa) 47.5 47.5 51.2 38.1 50.5 47.6 

RSD (%) 6.3 3.7 2.6 22 3.8 2.3 

While most of the data set had low RSD values, the 15
th
 and 50

th
 normal cycles and the15th 

scaled cycle stand out for their very high RSD values of 43%, 19%, and 22% respectively. While 

there were no discrepancies in the failure mechanisms of the samples in G-15-S, both of the other sets 

had an odd sample failure that implied an unusual defect in the sample being tested. Figure 6-5 

demonstrates these two failure mechanisms, where sample G-15-N-1 broke in a near perfect shear 

failure and sample G-50-N-1 broke in a more dramatic bending failure than the typical sample 

identified in Figure 6-4. 
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Figure 6-5: Irregular failures of samples a) G-15-N-1 and b) G-50-N-1 

With these samples eliminated as outliers, the updated results from the flexural modulus testing 

are shown in Table 6-3.  While the RSD for 15
th
 scaled cycle remains high, the RSD values for 15

th
 

and 50
th
 normal cycles have been reduced to 3.9% and 2.3% respectively. This indicates a much more 

accurate sampling of real flexural modulus data. 

Table 6-3: Glass 3-point bending final results 

Conditioning Measurement 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Normal 
Average Flexural Modulus (GPa) 47.5 49.3 47.2 51.3 48.9 49.5 

RSD (%) 6.3 4.2 6.2 3.9 4.8 2.3 

Scaled 
Average Flexural Modulus (GPa) 47.5 47.5 51.2 38.1 50.5 47.6 

RSD (%) 6.3 3.7 2.6 22 3.8 2.3 

6.2.1.3 Polycarbonate Samples 

The raw data from the first polycarbonate test is demonstrated in Figure 6-6. It follows the expected 

profile of polycarbonate, which is a specialized thermoplastic polymer that can undergo large plastic 

deformations without crack development. The testing of these samples was terminated after an 

extension of 30.5-mm due to the lack of a brittle failure in the material. Careful inspection of Figure 

6-6 shows a slight adjustment to the elastic curve around the 95-N loading, as noted before. 

The data output from the testing is summarized in Table 6-4. This data demonstrates that the 

average flexural modulus remained relatively consistent despite the scaling and freeze-thaw effects. 

These results are further backed by the very low relative standard deviations, demonstrating the 

resilience and consistency of the material tested. 
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Figure 6-6: 3-point bending raw data for P-0-1 

 

Table 6-4: Polycarbonate 3-point bending results 

Conditioning Measurement 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Normal 
Average Flexural Modulus (GPa) 2.46 2.35 2.39 2.37 2.41 2.44 

RSD (%) 3.3 2.7 2.7 1.8 1.8 1.3 

Scaled 
Average Flexural Modulus (GPa) 2.46 2.40 2.42 2.40 2.42 2.47 

RSD (%) 3.3 1.8 1.1 2.3 1.4 1.0 

6.2.2 Material Comparison 

Figure 6-7 shows a comparison of the flexural stress response of the three materials tested, the same 

three specimens profiled in Section 6.2.1, to displacement. This graph much more clearly identifies 

the differences between these three materials in terms of their flexural performance. 

The figure demonstrates that the glass specimens are much more fragile than both of the polymer 

options, with failure occurring at around 50-MPa of flexural stress and at well under 1-mm of 

displacement. However, it is important to note that minimal deflection was outlined as a design 

requirement for a solar road module so that the solar cells would not be damaged from vehicle traffic. 

The stress at which the glass fails is an equivalent stress to the acrylic and polycarbonate samples at 

approximately 4-mm and 5-mm respectively. 
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Figure 6-7: Comparative material flexural stress response to displacement 

Not only does the lower rigidity of the polymer options impact deflection over the solar cells, it 

also places a greater emphasis on the rigidity of the panel being based in the structural layer materials. 

In the current prototype design this is inverted as the rigidity is largely based on the tempered glass 

optical layer with the fiberglass structural layers acting as support. In a design with acrylic or 

polycarbonate as the optical layer, aluminum, steel, or some other structural metal would likely be 

required for the structural layers to make the entire panel rigid enough to minimize stresses on the 

solar cells. 

6.2.3 Statistical Analysis 

Table 6-5 summarizes the results of the two-factor ANOVA completed on each material set. The null 

hypotheses are that the scaled samples will demonstrate a lower flexural modulus than the normal 

samples, and that the performance gap between them will increase with increasing numbers of freeze-

thaw cycles. 

Table 6-5: 3-point bending ANOVA results 

Material Variable 
F-

crit. 

F-

calc. 

P-

Value 

Null 

Hypothesis 

Statistical 

Significance 

Acrylic 
Conditioning 6.61 2.08 0.209 Failed Same 

Freeze-Thaw 5.05 1.07 0.469 Failed Same 

Glass 
Conditioning 6.61 0.61 0.471 Failed Same 

Freeze-Thaw 5.05 0.36 0.855 Failed Same 

Polycarbonate 
Conditioning 6.61 12.96 0.015 Passed Different 

Freeze-Thaw 5.05 14.62 0.005 Passed Different 
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The results in Table 6-5 demonstrate that while there are no measureable trends in the flexural 

modulus of acrylic of glass with respect to conditioning or freeze-thaw cycling, both trends are 

substantiated for polycarbonate. This is further demonstrated in Figure 6-8, which shows the average 

flexural modulus of the normal and scaled polycarbonate samples and plots linear regressions to both 

data sets. 

 

Figure 6-8: Polycarbonate flexural modulus results 

Figure 6-8 demonstrates that the scaled specimens perform better than the normal specimens, 

which is the opposite of what was believed would occur. The general drop in performance and then 

steady increase of both sets is likely due to an adjustment of the polymer chains within the material 

that causes an immediate weakening and then steadily strengthens the material over time. The 

difference in the magnitude of this change between the normal and scaled samples is due to the way 

the normal samples were conditioned; in air as opposed to submerged. It is believed that the salt brine 

provided greater thermal insulation to those specimens during the cycling, so they saw less dramatic 

temperature induced polymer chain relocations. Further study would be required to validate this 

hypothesis. 

Also notable from Figure 6-8 is that the ‘0’ freeze-thaw cycle control set appears to be an outlier 

from determining a strong linear correlation between freeze-thaw cycles and flexural modulus for 

both conditions. This is highlighted below in Table 6-6 which shows the results of determining a 

linear regression fit to both the total and ‘0’-excluded polycarbonate data sets. While the complete set 
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of data does not demonstrate a statistically significant regression, both of the conditions with the ‘0’ 

set excluded are statistically significant. The ‘0’-excluded data set and regressions are shown in Table 

6-6. 

Table 6-6: Polycarbonate 3-point bending regression analysis 

Data Set Condition Intercept Variable P-Value R-squared 

All Control 2390 0.65 0.57 0.09 

Scaled 2416 0.66 0.40 0.18 

‘0’ Excluded Control 2354 1.75 0.02 0.88 

Scaled 2394 1.33 0.04 0.79 

 

 

Figure 6-9: Polycarbonate flexural modulus results, excluding '0' cycle data 

6.3 Friction Testing 

The results from the friction testing of the samples are shown below in Table 6-7. This table shows 
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pavement a BPN of 40 provides an excellent wet frictional characteristic for driving on, however all 

of these tests demonstrate that acrylic, glass, and polycarbonate would require significant micro- and 

macro-texture improvements to provide enough wet friction as a driving surface. 
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small range and any variation in the BPN will have a large impact due to the already low average 

BPN values, though further studies should include a larger sample to minimize this variation. 

Table 6-7: Friction testing results 

Material Condition Measurement 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Acrylic 

Control 
Avg. BPN 5.4 5.2 6.6 7.7 9.7 13.7 

RSD (%) 13.3 5.59 19.5 31.0 5.97 18.5 

Scaled 
Avg. BPN 5.1 6.5 7.6 7.6 9.8 15.8 

RSD (%) 2.84 10.2 13.3 11.6 25.6 8.70 

Glass 

Control 
Avg. BPN 5.3 5.1 6.3 7.3 9.9 11.8 

RSD (%) 8.25 2.84 12.0 25.8 7.70 8.54 

Scaled 
Avg. BPN 5.7 5.7 7.1 6.6 7.3 9.25 

RSD (%) 2.55 13.5 10.8 9.56 3.45 4.68 

Polycarbonate 

Control 
Avg. BPN 6.0 6.8 8.2 8.9 9.3 10.8 

RSD (%) 4.17 7.41 20.4 13.3 10.1 6.15 

Scaled 
Avg. BPN 7.3 6.7 8.4 11.3 10.0 13.7 

RSD (%) 3.94 23.8 6.86 23.2 6.61 13.2 

Figure 6-10 shows the comparative results of the friction testing between the three material sets. 

This chart shows that the performance of all of the materials was very similar, with a slightly higher 

BPN being noted for the polycarbonate samples over the first 15 cycles.  

 

Figure 6-10: Friction testing results 
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A two-factor ANOVA was run for each of these materials and the results of this can be found 

below in Table 6-8. While in this analysis there was no statistical difference between the two types of 

conditioning, statistical differences were found for the freeze-thaw effect in all cases. It should be 

noted that the conditioning of the polycarbonate samples almost demonstrated a significant 

difference. 

Table 6-8: Friction ANOVA results 

Material Variable 
F-

crit. 

F-

calc. 

P-

Value 

Null 

Hypothesis 

Statistical 

Significance 

Acrylic 
Conditioning 6.61 3.27 0.130 Failed Same 

Freeze-Thaw 5.05 52.94 0.0002 Passed Different 

Glass 
Conditioning 6.61 0.67 0.451 Failed Same 

Freeze-Thaw 5.05 11.34 0.009 Passed Different 

Polycarbonate 
Conditioning 6.61 6.48 0.052 Failed Same 

Freeze-Thaw 5.05 13.05 0.007 Passed Different 

The trend established from the results of the acrylic testing is shown in Figure 6-11, where both 

trendlines have a clear increase of friction over increasing freeze-thaw cycling but that there is 

essentially no difference between the two conditioning methods. This increase, as there is no change 

between conditioning methods, is suspected to be related to temperature effects resulting in variations 

in the microtexture on the surface of the material. 

  

Figure 6-11: Acrylic friction results 
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The glass friction results are demonstrated in Figure 6-12 and show the steady increase of friction 

with freeze thaw cycling. While in this case the control samples tend to have higher friction readings, 

there was no statistically significant trend identified from the data. 

  

Figure 6-12: Glass friction results 

The polycarbonate friction results, as shown in Figure 6-13, demonstrate that while the scaled 

samples continually demonstrate higher friction than the normal samples, the results of the two are 

still too similar to identify a difference between them. Overall there is still an increase in friction with 

increasing freeze-thaw cycling. Similar to the acrylic samples, the increasing friction is likely due to 

an impact of temperature cycling on the surface microtexture of the material. 

  

Figure 6-13: Polycarbonate friction results 

0

2

4

6

8

10

12

14

0 10 20 30 40 50

B
ri

ti
sh

 P
e

n
d

u
lu

m
 N

u
m

b
e

r 

Freeze-Thaw Cycles 

Control Scaled Linear (Control) Linear (Scaled)

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50

B
ri

ti
sh

 P
e

n
d

u
lu

m
 N

u
m

b
e

r 

Freeze-Thaw Cycles 

Control Scaled Linear (Control) Linear (Scaled)



 

 115 

The statistical parameters of the linear regressions demonstrated in Figure 6-11 through Figure 

6-13 are shown below in Table 6-9. This data further demonstrates the strength of the correlations 

between freeze-thaw cycling and surface friction for all of the normal and scaled conditions of these 

samples.  

Table 6-9: Friction linear regression results 

Material Condition Intercept Variable P-Value R-squared 

Acrylic Normal 4.942 0.176 8.7E-5 0.985 

Scaled 5.078 0.209 7.5E-5 0.986 

Glass Normal 5.064 0.146 0.0015 0.937 

Scaled 5.683 0.070 0.0023 0.922 

Polycarbonate Normal 6.754 0.089 0.0073 0.864 

Scaled 7.244 0.132 0.0120 0.826 

6.4 Optical Testing 

6.4.1 Acrylic Results and Analysis 

The average results for transmission and reflection for the acrylic samples are shown in Table 6-10 

along with the calculated absorption coefficient and the calculated RSD values for each parameter. 

Table 6-10: Acrylic optical testing results 

Property Condition Value 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Transmissivity 

Control 
Average 81.32 82.03 82.53 82.49 81.69 80.32 

RSD (%) 0.60 0.76 0.20 0.59 0.73 3.88 

Scaled 
Average 81.32 82.68 82.23 82.83 82.26 81.81 

RSD (%) 0.60 0.34 0.60 0.08 0.35 1.35 

Reflectivity 

Control 
Average 8.70 8.56 8.48 8.86 8.69 8.72 

RSD (%) 1.96 4.09 5.04 2.60 2.59 0.28 

Scaled 
Average 8.70 8.78 8.74 8.89 8.85 8.76 

RSD (%) 1.96 2.90 1.96 2.58 3.27 3.19 

Absorptivity 

Control 
Average 9.98 9.41 8.98 8.66 9.61 10.96 

RSD (%) 3.80 9.66 6.27 3.11 7.94 28.64 

Scaled 
Average 9.98 8.54 9.03 8.28 8.90 9.44 

RSD (%) 3.80 1.78 3.86 2.97 6.37 9.50 

The very low RSD values demonstrated in Table 6-10 show that the values obtained from the 

testing are an accurate representation of the actual data. The highest RSD values are for the 

absorptivity measurements, though these high values are a result of summation errors from 

determining the absorptivity values. 
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Table 6-11 shows the results of a two variable ANOVA study on the transmissivity, reflectivity, 

and absorptivity properties of the acrylic samples. This study found that conditioning was a 

significant factor for both transmissivity and absorptivity while freeze-thawing was only significant 

for transmissivity, though it was close for absorptivity as well. 

Table 6-11: Acrylic optical ANOVA results 

Property Variable 
F-

crit. 

F-

calc. 

P-

Value 

Null 

Hypothesis 

Statistical 

Significance 

Transmissivity 
Conditioning 6.61 9.58 0.027 Passed Different 

Freeze-Thaw 5.05 5.82 0.038 Passed Different 

Reflectivity 
Conditioning 6.61 0.40 0.554 Failed Same 

Freeze-Thaw 5.05 0.27 0.911 Failed Same 

Absorptivity 
Conditioning 6.61 9.11 0.029 Passed Different 

Freeze-Thaw 5.05 4.60 0.060 Failed Same 

The results of Table 6-11 are further outlined below in Figure 6-14, which plots the average 

transmissivity values and the linear regression fits to this data. This figure also shows that the scaled 

samples showed a lower drop in transmissivity than the normal samples did, and this is believed to be 

due to the temperature effects outlined for the polycarbonate specimens in the three point bending 

testing analysis. The high variability of the scaled transmission values merits further analysis. 

 

Figure 6-14: Acrylic transmission results 
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The graph for the average reflectivity values, as shown in Figure 6-15, shows the high variability 

of the results that was indicated by the ANOVA analysis. 

 

Figure 6-15: Acrylic reflectivity results 

The results of the absorptivity calculation, as shown in Figure 6-16, show the close regression fits 

for increasing absorptivity with increasing freeze-thaw cycles. The result that the normal samples 

have a higher absorptivity than the scaled samples is believed to be the result of a polymer chain 

realignment as outlined in the transmissivity section. Overall the increase is small though, registering 

at approximately one percent over the 50 freeze-thaw cycles for each set of specimens. 

 

Figure 6-16: Acrylic absorptivity results 
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6.4.2 Glass Results and Analysis 

The average results for transmission and reflection for the glass samples are shown in Table 6-12 

along with the calculated absorption coefficient and the calculated RSD values for each parameter. 

Table 6-12: Glass optical testing results 

Property Condition Value 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Transmissivity 

Control 
Average 79.30 79.84 80.30 80.56 79.87 79.71 

RSD (%) 0.98 1.16 1.15 0.07 0.67 2.12 

Scaled 
Average 79.30 80.57 80.28 80.12 78.81 79.98 

RSD (%) 0.98 1.11 1.12 0.58 0.83 1.18 

Reflectivity 

Control 
Average 7.68 7.77 7.72 7.82 7.70 7.65 

RSD (%) 1.33 0.55 0.55 2.87 0.33 0.23 

Scaled 
Average 7.68 7.70 7.66 7.73 7.66 7.69 

RSD (%) 1.33 0.79 0.48 0.36 0.20 0.75 

Absorptivity 

Control 
Average 13.02 12.39 11.98 11.62 12.43 12.65 

RSD (%) 6.17 7.68 7.78 2.06 4.11 13.48 

Scaled 
Average 13.02 11.73 12.06 12.14 13.53 12.33 

RSD (%) 6.17 7.22 7.19 3.70 4.88 7.71 

The overall results are similar to those found for the acrylic samples; the test values are relatively 

consistent across the range of testing and the RSD values are all low except for the absorptivity 

measurements where compounding errors are present. 

Table 6-13 shows the results of a two variable ANOVA study on the transmissivity, reflectivity, 

and absorptivity properties of the glass samples. This study found that there were no significant 

correlations between conditioning method or freeze-thaw cycling and any optical property of the 

material. This is due to the overall consistent response of the optical properties during testing. 

Table 6-13: Glass optical ANOVA results 

Property Variable 
F-

crit. 

F-

calc. 

P-

Value 

Null 

Hypothesis 

Statistical 

Significance 

Transmissivity 
Conditioning 6.61 0.11 0.750 Failed Same 

Freeze-Thaw 5.05 2.35 0.185 Failed Same 

Reflectivity 
Conditioning 6.61 3.21 0.133 Failed Same 

Freeze-Thaw 5.05 3.23 0.112 Failed Same 

Absorptivity 
Conditioning 6.61 0.22 0.658 Failed Same 

Freeze-Thaw 5.05 2.57 0.161 Failed Same 

Figure 6-17 demonstrates the profile obtained from the transmissivity testing. Both the normal 

and scaled specimen sets produced relatively flat regression fits across the 50 cycles, though the 

scaled set saw slightly greater variability. 
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Figure 6-17: Glass transmissivity results 

Figure 6-18 shows the reflectivity results from the glass samples. The scaled specimens produced 

an almost perfectly flat curve fit while the control set of data shows a decrease, but by only 0.08% 

across the 50 cycles. This demonstrates that in both cases the control and scaled average values are a 

good representation of each set of data. 

 

Figure 6-18: Glass reflectivity results 
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Figure 6-19 shows the profiles that were obtained from determining the absorptivity of the glass 

specimens. While this graph shows the scaled samples as more absorptive, the previous ANOVA 

analysis determined that there is statistically no impact from the conditioning method. 

 

Figure 6-19: Glass absorptivity data 

6.4.3 Polycarbonate Results and Analysis 

The average results for transmission and reflection for the glass samples are shown in Table 6-14 

along with the calculated absorption coefficient and the calculated RSD values for each parameter. 

Table 6-14: Polycarbonate optical testing results 

Property Condition Value 
Freeze-Thaw Cycles 

0 5 10 15 25 50 

Transmissivity 

Control 
Average 81.32 82.03 82.53 82.49 81.69 80.32 

RSD (%) 0.60 0.76 0.20 0.59 0.73 3.88 

Scaled 
Average 81.32 82.68 82.23 82.83 82.26 81.81 

RSD (%) 0.60 0.34 0.60 0.08 0.35 1.35 

Reflectivity 

Control 
Average 8.70 8.56 8.48 8.86 8.69 8.72 

RSD (%) 1.96 4.09 5.04 2.60 2.59 0.28 

Scaled 
Average 8.70 8.78 8.74 8.89 8.85 8.76 

RSD (%) 1.96 2.90 1.96 2.58 3.27 3.19 

Absorptivity 

Control 
Average 9.98 9.41 8.98 8.66 9.61 10.96 

RSD (%) 3.80 9.66 6.27 3.11 7.94 28.64 

Scaled 
Average 9.98 8.54 9.03 8.28 8.90 9.44 

RSD (%) 3.80 1.78 3.86 2.97 6.37 9.50 
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Like the acrylic and glass specimen sets before it, the polycarbonate samples demonstrate 

consistent test results and low RSD values. 

Table 6-15 shows the results of a two variable ANOVA study on the transmissivity, reflectivity, 

and absorptivity properties of the glass samples. This study found that the only significant effect is of 

conditioning on the reflectivity data, but the effect of conditioning on absorptivity and the freeze-thaw 

cycling on both transmissivity and absorptivity come close to being significant. 

Table 6-15: Polycarbonate optical ANOVA results 

Property Variable 
F-

crit. 

F-

calc. 

P-

Value 

Null 

Hypothesis 

Statistical 

Significance 

Transmissivity 
Conditioning 6.61 3.26 0.131 Failed Same 

Freeze-Thaw 5.05 4.27 0.069 Failed Same 

Reflectivity 
Conditioning 6.61 7.09 0.045 Passed Different 

Freeze-Thaw 5.05 2.82 0.140 Failed Same 

Absorptivity 
Conditioning 6.61 5.60 0.064 Failed Same 

Freeze-Thaw 5.05 4.90 0.053 Failed Same 

Figure 6-20 shows the results from the transmissivity testing on the polycarbonate specimens. 

This data shows the same fluctuation that the three point bending results did in Figure 6-8, where the 

transmissivity increases by a substantial margin at first before dropping off with repeated freeze-thaw 

cycles. This is also believed to be caused by a realignment of the polymer chains in the material. 

 

Figure 6-20: Polycarbonate transmissivity results 
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As noted from the ANOVA analysis, there is little difference between the two conditioning 

methods until the 50
th
 cycle, causing the lack of statistical difference between these data sets. It is 

clear though that there is a trend occurring across different freeze-thaw cycles, however the relative 

plateau of results between 5 and 15 cycles causes the evaluation to fall just outside of statistical 

significance. 

Figure 6-21 shows the results of the reflectivity testing, and demonstrates that there is a clear 

difference between the two conditioning methods. The normal samples show an overall lower 

reflectivity than that of the scaled samples, which is likely connected to a combination of the polymer 

chain realignment and the slightly greater impact of the salt brine on the surface microtexture. This 

trend was also noted on the friction results from the polycarbonate samples, as noted in Figure 6-13. 

  

Figure 6-21: Polycarbonate reflectivity results 
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samples were, overall, slightly higher than the polycarbonate results. The transmissivity is the most 

important factor in determining the efficiency of the total solar road panel efficiency, as a higher 

value means more incident radiation on the panel will reach the solar cells, making acrylic the best 

option from this perspective. 

 

Figure 6-22: Polycarbonate absorptivity results 

 

Figure 6-23: Average transmissivity comparison 
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Figure 6-24 shows the comparison between the average reflectivity values of the specimens used in 

the optical testing. From this chart it is apparent that the polycarbonate specimens have the highest 

reflectivity, followed by the glass specimens, and the acrylic specimens have the lowest. In terms of 

transportation engineering reflectivity is a very important safety property; roads that are too reflective 

produce glare that can distract drivers and cause accidents. From this perspective both the acrylic and 

glass materials provide good options in comparison to polycarbonate. 

 

Figure 6-24: Average reflectivity comparison 
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Figure 6-25: Average absorptivity comparison 

6.5 Summary of Key Findings 

The main finding of the environmental testing is that scaling has a very minimal impact on the 

performance of acrylic, polycarbonate, and glass. This was an expected result as both polymer should 

be inert to sodium chloride solutions while glass only corrodes in naturally acidic or basic solutions. 

Despite this minimal impact it was found that the performance of glass never varied with scaling, 

acrylic did in terms of reflectivity, and polycarbonate did for reflectivity and flexural modulus. 

Freeze thaw cycling was observed to have a much bigger impact on the performance of these 

materials.  In every case friction increased as a result of freeze-thaw cycling, the flexural modulus of 

polycarbonate increased, and the transmissivity of acrylic decreased. Again glass proved to be the 

most inert to the conditioning. 

As a result, it was found that a properly designed glass surface would make for the best possible 

transparent layer of a solar road panel.  
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

Overall, this research proved the hypothesis and completed the objectives outlined; it is possible to 

build a solar road panel that can withstand the structural and environmental loads that Ontario 

pavements are subjected to. It was also found that the prototype designed for this research meets all of 

these criteria with no adjustments. 

7.1.1 Design of a Solar Road Panel 

It was found that the optimal starting point for a solar road panel was to build the panels with a two 

10-mm tempered glass pane transparent layer supported by a 12.7-mm GPO-3 optical layer and a 

19.1-mm base layer of the same material. 

This combination of material places the emphasis for the rigidity of the panel on the transparent 

layer. Other configurations, with different transparent layer materials, would likely need rigid 

structural layers in order to minimize the strains that the solar cells are subjected to. These other 

configurations would also suffer from rutting issues similar to those of asphalt pavements, though the 

rutting would occur over the solar cell compartments. This would likely greatly increase the 

roughness of pavements, damage vehicles, and increase the susceptibility of the surface to 

hydroplaning. 

7.1.2 Applicability of Solar Road Panels in Ontario 

7.1.2.1 Structural Considerations 

Given typical materials and structural designs, solar road panels can definitely have a place 

within Ontario’s pavement infrastructure. This research demonstrated that with an adequately 

designed asphalt or concrete base, these panels can improve the life of our pavement structures as the 

stresses from vehicle traffic are distributed further through the panel before they are applied to the 

base underneath. 

The prototype designed for this research demonstrated an infinite design life under both fatigue 

and static load conditions, which indicates that optimizations can be made to reduce the volume of 

material needed in each panel and this will directly lower the cost of the structures. This is especially 
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true when a concrete structural base is considered, as the threshold stresses for failure of the concrete 

are also far from being reached from these load conditions. 

It was also found that this panel was safely designed to ensure that the solar cells will not fail due 

to strain cycling. This finding clears one of the main concerns of the traditional solar module industry, 

which is highly focused on the strain induced microcracking of solar cells due to the flexural 

performance of their encapsulating solar module. Especially in the cases with concrete or asphalt 

bases there is room for design optimization before the strain fatigue criteria would be met. 

7.1.2.2 Environmental Considerations 

This research showed that the typical salting methods applied to roads in Ontario for deicing will 

not have a negative impact on the performance of the driving surface of a solar road panel. Acrylic 

and polycarbonate both showed occasional effects from salt brine application, however the glass 

specimens proved to be inert through all of the testing making it the ideal material choice for this 

application. 

Greater impacts were found from the freeze-thaw cycling of the materials. In particular it was 

found that this conditioning increased the friction available on the surface of all of the specimens in a 

linear fashion over the 50-cycles of testing. This would be a major benefit to solar road panels as 

these transparent surfaces have very poor friction characteristics without textures and coatings, so 

improvements that can be gained through normal operation are highly beneficial. 

Overall it was found that glass proved to be the best transparent material to deal with the 

environmental conditions subjected to Ontario’s pavement infrastructure. It’s inertness to the 

environmental conditioning found in this study confirmed the prototype design decision made to use 

this material for its structural benefits over acrylic and polycarbonate. 

7.2 Recommendations 

The recommendations consist of two main categories; future research that continues the work 

outlined in this thesis and additional areas of study in order to make solar road panels a viable 

product. 

7.2.1 Future Research 

First and foremost, work should be completed towards the design optimization of solar road panels 

and their structural bases. This research showed that the current solar road panel and concrete 
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pavement base structure is heavily overdesigned. Performing an optimization of this with a heavy 

focus on costs would help make a more sustainable case for solar road panels. 

Structural testing of solar road panel prototypes should be expanded to include in-situ testing. If 

frictional issues cannot be resolved easily this could be mitigated by testing the panels in a single 

wheel path, allowing traction to be supplied by all of the wheels not loading the panel. This testing 

would allow for better analysis of fatigue effects on the edges in the optical layer and validate the 

work shown here in the fatigue and static simulations in general. 

Work should be conducted on the wet and dry friction characteristics of coated and uncoated 

glass surfaces. It is highly likely that in order to develop enough friction for safe travel on a tempered 

glass surface that both macro- and micro-textural improvements will be required; these are developed 

through surface texturing and surface coating. Different types of high-impact resistant glasses should 

also be examined for their applicability to this research. 

The pavement load case analysis performed in this research should be updated to include the 

viscoelastic characteristics of asphalt and granular materials as structural bases. It is likely that the 

deterioration of these layers over time will increase the stresses seen in the solar road panel and, as a 

result, will decrease the design life of the panel. 

7.2.2 Additional Areas of Study for Solar Road Panels 

Research should be conducted on the types of solar cells that are best situated for installing in a 

solar road panel. This research prototype was designed considering monocrystalline silicon 

photovoltaic cells, however due to the expected characteristics of the light reaching the solar cells this 

may be a better application for solar cells which are better at diffuse light capturing. 

The research suggested above on the frictional characteristics of textured and coated glasses 

should also include an optimization for the optical properties of the panel as a whole. The texturing 

and coating have the potential to increase the reflectivity of the surface, but also the air pocket 

between the glass and the solar cell encapsulant should be considered to determine what the net 

electricity generation of these panels could be. 

Research should also be done on the costs of solar road panels and their related infrastructure, 

with a focus on the return of investment from installing the infrastructure. Aspects of this should 

include panel design, structural base design, associated grid connecting hardware, and revenue from 

selling the electricity or offsetting buying electricity from the grid. 
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Appendix A 

Solar Road Panel Prototype Design Drawings 
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Appendix B 

Solar Road Panel Prototype Bill of Materials 
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Appendix C 

Structural Testing Frame Design Drawings 
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Appendix D 

Three-Point Bending Apparatus Fixture Drawings 



 

 157 

 



 

 158 

 



 

 159 

 



 

 160 

 
 



 

 161 

 
 



 

 162 

 
 



 

 163 

  



 

 164 

Appendix E 

Prototype Model Validation Results 

  



 

 165 

 



 

 166 

Appendix F 

Pavement Load Case Model Validation Results 
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