
Efficient Transaction Processing for
Short-Lived Transactions in the

Cloud

by

Sharon Choy

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Sharon Choy 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The cloud, in the past few years, has become the preferred platform for hosting web
applications. Many of these web applications store their data in a distributed cloud storage
system, which greatly simplifies application development and provides increased availabil-
ity and reliability. However, with increasing user demand for web applications, these
cloud storage systems often become the performance bottleneck. To address the cloud’s
performance demands, many storage system features, such as strong consistency and trans-
actional support, are often omitted in favour of performance. Nonetheless, transactions
remain necessary to ensure data integrity and application correctness.

In this thesis, we introduce CrossStitch, which is an efficient transaction processing
framework for distributed key-value storage systems. CrossStitch supports general trans-
actions, where transactions include both computation and key accesses. It is specifically
optimized for short-lived transactions that are typical of cloud-deployed web applications.
In CrossStitch, a transaction is partitioned into a series of components that form a trans-
action chain. These components are executed and the transaction is propagated along the
storage servers instead of being executed on the application server. This chained structure,
in which servers only communicate with their immediate neighbours, enables CrossStitch
to implement a pipelined version of two-phase commit to ensure transactional atomicity.
CrossStitch is able to eliminate a significant amount of setup overhead using this structure
by executing the transaction and the atomic commit protocol concurrently. Therefore,
CrossStitch provides low latency and efficient transactional support for cloud storage sys-
tems. Our evaluation demonstrates that CrossStitch is a scalable and efficient transaction
processing framework for web transactions.
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Chapter 1

Introduction

In recent years, web applications have emerged as a popular alternative to traditional
client-side applications. The rise in popularity of web applications is partially due to the
pervasiveness and availability of web browsers, which greatly reduce the barrier to deploying
web applications by eliminating the need to download a separate application binary. Users
are able to access web applications without concerning themselves with security patches
or software upgrades. Web applications offer end-users platform independence as they can
be deployed on any web browser and also on any computer. Their popularity has resulted
in a demand for highly scalable infrastructure that is able to service a large number of
concurrent users. Furthermore, these applications must serve client requests quickly as
previous studies [11] have demonstrated that even a small increase in access latency can
significantly reduce the user traffic volume.

The scalability and performance requirements of web applications have made the cloud
the preferred application hosting platform for most developers. Web applications running in
the cloud can quickly increase their resource allocation, which can be used to run additional
web or application servers, to handle increased client demand. However, these applications
may still experience scalability problems when accessing and updating shared data in
a cloud storage system. For example, the storage mechanism responsible for hosting a
shopping cart application must remain highly available and allow consumers to add and
remove items efficiently. As a result, many NoSQL systems, which provide their end users
with simple key-value interfaces, have been developed in response to the need for high
scalability and performance. These storage systems trade off rich functionality in favour
of performance. For example, features such as strong consistency, which ensures that all
replicas are up-to-date, are often omitted. This concession is made in order to improve
performance for applications that can accept weaker consistency models.
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In addition to the omission of a strong consistency model, many cloud storage systems
also lack support for general transactions. Distributed transactional support has tradi-
tionally been complicated and expensive due to the coordination that is required between
different servers. The required coordination results in many message round trips between
participating servers. Therefore, providing transactions results in additional system com-
plexity that hinders performance. Nonetheless, transactions remain critical for many web
applications because they are needed to ensure the correctness of the application and the
integrity of the storage system. Currently, since many commercially available NoSQL
systems do not offer support for transactions, most applications requiring transactions
implement transactional support at the application layer; thus, the burden of providing
transactions rests on the application developer. This method for providing transactions is
error prone since the application’s implementation may be done poorly, inefficiently, or in
an ad-hoc manner. Alternatively, developers may use existing cloud storage systems that
provide transactional support; however, these systems have significant limitations. For
example, some systems (e.g., [12]) require that all key accesses be within a certain range.
Other systems may experience significant latency for certain operations. For example,
Megastore [9] has a write latency of 100 ms-400 ms, whereas its read latency is in the tens
of milliseconds.

1.1 Towards a Framework for Supporting Short-Lived

Transactions in the Cloud

We consider characteristics of typical transactions found in web applications in order to
build an efficient transaction processing framework. Moreover, we need to consider the
performance requirements for hosting such a framework in the cloud.

1.1.1 Characteristics of Transactions in Web Applications

Most web transactions exhibit the following properties:

• Web transactions are short-lived: A typical web transaction must complete
quickly (i.e., on the order of milliseconds). These transactions generally access and
update only a few items in the datastore. Consider the example of an e-commerce web
application where a buyer wishes to purchase an item from the seller. A transaction
is necessary for the payment of the items to ensure that a debit can occur (i.e., the
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buyer has enough funds to purchase the item) and that the seller’s account is credited.
Because a web transaction is short-lived, the overhead in setting up the transaction
may account for a significant fraction of the transaction’s execution time. Therefore,
a transaction processing system for web transactions should aim to minimize this
overhead.

• Most web transactions are executed sequentially: Many key accesses in a
web transaction depend on the current state of the application or on computation
that depends upon the result of previous key accesses. We consider an application
that adds interest to a bank account. The application must first retrieve the account
type and country of residence in order to determine the interest rate. Afterwards,
the application obtains the current account balance, calculates the new balance,
and writes the new value into the datastore. Another example is a data indexing
application that uses transactions to ensure data consistency and integrity. In this
application, an index is keyed on a secondary data attribute, called the secondary
key, and each index entry contains the primary keys of data items that share the same
secondary key. Accessing a data item using an index requires an index lookup followed
by at least one primary key lookup. These lookups are dependent on each other
and must be performed sequentially. Therefore, a transaction processing system for
web applications must efficiently support transactions that execute sequentially and
determine their key accesses dynamically rather than at the start of the transaction.

• Web transactions may request data that is distributed across many dat-
acenters: Client data may be partitioned and distributed across multiple dat-
acenters. Therefore, a transaction processing framework must be able to handle
transactions that span more than one datacenter. Additionally, application servers
and storage servers may be geographically distant from each other, or they may be
in different parts of the same datacenter network; thus, these servers may experience
additional latency when communicating with each other. Therefore, a transaction
processing framework should also minimize the number of round-trips between dis-
tant servers.

1.1.2 Requirements for a Transaction Processing System

In addition to considering the characteristics of web transactions, a transaction processing
system must also account for the cloud’s performance requirements. Firstly, it must be
scalable and handle workloads that are typically found in a web application. These work-
loads include serving many end-users concurrently. Existing commercial databases (e.g.,
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[3, 5, 6]) require a coordinator to setup and finalize a transaction. The use of a transaction
coordinator often results in a bottleneck at a single node, which could hinder the scalabil-
ity of a transactional system. Therefore, an efficient transaction processing system should
ideally avoid having a centralized coordinator.

Secondly, a transaction processing framework needs to be highly available, as a service
outage can result in a significant loss of revenue for the application developer. Therefore,
such a system must be able to handle node failures and its transactions must be able to
make forward progress (i.e., determine if the transaction needs to commit or abort) despite
the presence of such failures. In traditional database systems, servers detect failures and
ensure that a transaction does not make forward progress in the event of a failure. More-
over, data is synchronously written into persistent storage in order to provide durability,
which enables data to be retrieved and the failed server to recover. In these systems, data
may not be replicated across multiple servers. Although such a system provides durability,
it does not provide high availability as a transaction will need to wait for a failed server
to recover. Conversely, NoSQL systems use replication as an alternative to synchronous
writes, which eliminates the waiting time required for data to be written to persistent
storage. Most cloud storage systems provide high availability and reliability through repli-
cation and do not provide durability through synchronized writes to persistent storage.
Therefore, a transaction processing framework that is hosted in the cloud should provide
similar reliability and availability guarantees as cloud storage systems.

Lastly, a transaction processing framework must be able to provide low latency for
its end-users since latency significantly affects end-user experience. As stated in [11],
a latency that is greater than 100ms may cause a customer to seek alternative service
providers. Since the transaction processing framework is deployed in the cloud, we may
need to consider a scenario where the application server is geographically distant from the
datacenter that hosts the storage servers. In traditional transactional systems, there is
substantial communication between the application server and storage servers. Therefore,
if application servers and storage servers are geographically distant from each other, there
may be significant delay in completing the transaction.

1.2 CrossStitch: An Efficient Transaction Processing

Framework for Short-lived Transactions

In this thesis, we introduce CrossStitch, which is an efficient transaction processing frame-
work for distributed key-value storage systems that is optimized for web transactions.
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CrossStitch supports general transactions for key-value stores, where transactions include
computation and key accesses. CrossStitch transactions do not require the transaction
writer to know all key accesses prior to the execution of the transaction. Moreover, key
requests do not have any restrictions on their physical location or on any other character-
istic. For example, CrossStitch key requests are not limited to a single node or a single
datacenter, whereas other systems such as G-Store [20] require all keys to reside on a single
node.

CrossStitch introduces a novel execution method where a transaction is partitioned
into a series of components that form a chain. These components are executed on storage
servers instead of application servers. The transaction comprises a series of components
that form a chain and is propagated from server to server. Each CrossStitch component is
characterized by a key request and application-defined computation. Each component also
takes in as a parameter the result of the previous component as an input parameter. For
each occurrence of a key request, the execution transitions from one component to another.
And during each transition, the key request and the transaction’s implementation code is
delivered to the key’s storage server and executed.

In a traditional transaction processing system, clients (e.g., application servers) are
responsible for registering the transaction with a transaction coordinator, for issuing key
requests to servers, and for notifying the transactional coordinator once the transaction has
completed all of its key requests and is ready to commit. Unlike a traditional transaction
processing system, a CrossStitch client is not responsible for requesting every key access
from remote servers and performing the computation. Instead, a CrossStitch client sends
its transaction to the server that hosts its first key access. Afterwards, each CrossStitch
server executes a single component in the transaction chain and forwards the transaction to
the next server that is responsible for the key request. The final server sends the result to
the client. As a result, CrossStitch eliminates multiple round trips between the client and
servers. Therefore, since there may be significant delay between application and storage
servers due to geographical distance, CrossStitch is able to reduce the amount of latency
that is normally incurred by traditional transaction processing systems.

By having a chained structure for a CrossStitch transaction, we can perform additional
optimizations such as pipelining the traditional two-phase commit protocol and eliminating
the need for a transaction coordinator. Upon receiving a transaction, each CrossStitch
server executes its assigned component and queries the previous server (or the client) in
the transaction chain to determine if the previous server can commit. If a CrossStitch server
can confirm that the previous server can commit and that the next server has received the
transaction, it enters a precommit state, which indicates that it is ready to commit. When
the final server completes the transaction, it notifies all participating servers to commit the
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transaction’s operations. By performing the two-phase commit protocol in line, CrossStitch
introduces minimal latency to the transaction’s execution.

We show the liveness and safety properties of CrossStitch’s pipelined two-phase commit
protocol by providing an exhaustive enumeration of execution states. We first consider the
case where there are no server failures in a CrossStitch transaction chain. We show that a
CrossStitch transaction always progresses to completion when there are no server failures.
We further extend this argument to show that a CrossStitch transaction terminates in the
presence of a single server failure. This thesis makes three contributions:

• Low-latency for cross-datacenter transactions: CrossStitch’s execution pat-
tern eliminates the use of a transaction coordinator and thereby eliminates the setup
overhead that occurs in a traditional transaction. Moreover, CrossStitch’s chained-
message structure reduces messaging between application servers and storage servers.
By eliminating setup overhead and reducing the number of messages, we can signifi-
cantly reduce the latency of transactions. These performance improvements are sig-
nificant in an environment where a transaction spans multiple, geographically-distant
servers.

• Pipelined two-phase commit: CrossStitch introduces a pipelined two-phase
commit protocol for ensuring the atomicity of a transaction. This protocol eliminates
the requirement of a separate coordinator and it executes concurrently with the
transaction. As a result, it provides CrossStitch with lower latency when completing
a transaction.

• Liveness and safety properties of CrossStitch’s protocol: We demonstrate
that CrossStitch transactions, even in the presence of a single server failure, offer
liveness. In other words, all CrossStitch transactions either commit or abort. More-
over, we show the safety of CrossStitch’s pipelined two-phase commit protocol by
demonstrating that it provides atomicity.

In our deployment, we find that CrossStitch is efficient and scalable. As expected, our
experimental results demonstrate that the time to complete a transaction scales linearly
with the chain length. Similarly, the number of concurrent threads also scales linearly
with a transaction’s completion time. We also find that by increasing the number of
CrossStitch servers, CrossStitch is able support more clients. Our experiments show that
a single client requires 14 ms to complete a transaction with five key accesses. We also
find that CrossStitch provides significant latency improvements when a transaction accesses
geographically distant servers. For a transaction with eight key accesses, we find that using
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CrossStitch can provide up to a 39% improvement in latency over a traditional transaction
processing system. Therefore, by offering an efficient and low-latency alternative to current
transaction processing systems, CrossStitch has the potential to radically change how we
perform transaction processing for web applications in cloud storage systems.
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Chapter 2

Background and Related Work

In this chapter, we provide the background and motivation for CrossStitch. We further
explore existing transaction processing systems and the mechanisms they use to provide
transactional properties. Moreover, we look at current distributed storage systems and the
motivation for their design and creation. We also describe the challenges that are present
when providing transactions in modern cloud storage systems. Lastly, we explore current
NoSQL transactional systems.

2.1 Transactions

As defined by Jim Gray [25], a transaction is a collection of operations on the physical and
abstract application state that have the following (”ACID”) properties:

• Atomicity: All of the transaction’s operations and changes are applied, or none of
the operations are applied.

• Consistency: A transaction does not violate any system invariants.

• Isolation: Transactions that execute concurrently appear to be executed sequen-
tially.

• Durability: Once a transaction completes successfully or commits, the changes
that it made persist in the event of a failure.

8



ACID properties for transactions are essential in ensuring application correctness. They
ensure that all operations within a single transaction either complete or fail, that system
invariants are not violated, and that the execution of a transaction appears to be in isolation
from other transactions.

2.1.1 Motivation for Transactions

Transactions are desirable in many applications since they help ensure application correct-
ness. A banking transaction is a canonical example that demonstrates how transactions
can help to provide application correctness. Suppose one client wishes to transfer funds to
another client. Atomicity is critical since one must ensure that the entirety of the transac-
tion’s operations are either executed or not executed. In particular, incorrect application
behaviour would include debiting one account without crediting another account. Further-
more, a system invariant might include that a client’s account balance cannot be negative.
An application developer can use transactions to make certain that all system invariants
are not violated. Furthermore, isolation is necessary to ensure that transactions accessing
other accounts do not affect the correctness of our example. Lastly, once the transaction
completes, durability is required to guarantee that changes to the clients’ bank account
persist in the event of failures.

In addition to the example banking transaction, many web applications can benefit
from having transactions. As many web transactions are short and sequential in nature, a
framework that provides low overhead when executing transactions is valuable. Further-
more, such a framework can contribute to ensuring application correctness. For example,
ticket purchasing applications need to ensure that they do not double book patrons into
the same seat and that the correct admission amount is transferred between the patron
and seller. Moreover, many online games are deployed as web applications and many of
these games involve purchasing in-game items or trading items among players. In order to
achieve fair game play, transactions are necessary to ensure that no items are lost or inad-
vertently gained. Auction systems also require transactions as they need to ensure that the
highest bid wins and that the correct amount is debited from the buyer and credited to the
seller. We can imagine that any application that involves finances can benefit from having
transactions, as transactions ensure that there is no loss of money, or unearned gain of
money, for all parties involved. In addition to financial applications, any application that
needs to ensure correctness of an operation can benefit from a transaction. For example,
an internal messaging system, such as those found in social networking sites or business
accounts, needs to ensure messages have been sent and received by the intended parties.
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2.1.2 Existing Transaction Processing Systems

The focus of the cloud is to provide high scalability and reliability for its users. As a
result, client data may be replicated at many locations or client data is sharded over
various servers to provide reliability. Partitioning of data is necessary to ensure that the
cloud is able to handle high volumes of data and client requests. Consequently, there is a
need for distributed transactions in order to correctly operate upon client data. We define a
distributed transaction to be a collection of operations that have ACID properties and are
executed on more than one server. A common distributed transaction processing standard
is the X/Open transaction processing model [4]. In this model, there are three primary
components in a distributed transaction system: the application, the transaction manager,
and resource managers. An application is responsible for defining a transaction’s set of
operations. An application may partition its work, such as retrieving data, into multiple
client-server requests. However, transactions found in web applications typically consist
of a single client that wishes to obtain information from various servers. As a result, we
model an application as a single client that performs key accesses. Intuitively, a transaction
program is implemented using the following steps:

• Begin the transaction: Upon beginning a transaction, the client contacts a trans-
action coordinator/manager to arrange timestamps and identifier.

• Execute the transaction’s operations: The client contacts resource managers to
access necessary resources.

• Verify the transaction is successful: Upon completion of all key accesses, a trans-
action manager or coordinator determines if all parties involved in the transaction
can commit. If so, we commit the transaction.

• Abort the transaction if necessary: If one or more participants, such as resource
managers, are unable to commit, the transaction manager or coordinator aborts the
transaction.

When beginning a transaction, the application registers the transaction with the trans-
action manager in order to obtain a unique transaction identifier. In addition to providing
transaction identifiers, a transaction manager is responsible for monitoring the transaction
and determining if a transaction can commit or abort. After the transaction has begun, the
application requests resources from the resource manager. A resource manager provides
access to resources such as databases and is also responsible for ensuring that ACID prop-
erties are provided. Upon a resource request from an application, the resource manager
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notifies the transaction manager that it is participating in the transaction. Consequently,
the aforementioned resource manager participates in the decision of whether or not the
transaction will commit or abort.

In order to ensure that transactions occur in isolated environments and that they do
not conflict with each other, transactional systems need to employ concurrency control
mechanisms. Many systems employ locking to ensure that only one transaction accesses a
data object at any given time and to prevent other transactions from seeing uncommitted
updates. In order to manage locks across distributed resources, a lock manager must
be provided to resource managers in order to provide isolation. Although locks can be
used to provide isolation, the transaction processing system’s performance can significantly
degrade if there is contention for resources. An alternative to locking is to use optimistic
concurrency control. This model relies on the assumption that most transactions do not
conflict with each other. However, in order to detect conflicts, an optimistic concurrency
control scheme depends on a validation phase in order to determine if a transaction can
commit. In the event of a conflict, the transaction is required to abort and the state
of the system needs to be rolled back. An example of an optimistic concurrency control
mechanism is multi-version timestamp ordering where many versions of a data object are
maintained in order to provide a consistent view of data at a given time.

In addition to providing a lock manager, a transactional framework must also provide
a log manager in order to ensure a consistent view of the system in the event of a failure.
A log manager is responsible for recording all changes made by transactions; thus, it is
able to reconstruct the system’s state upon restarting, should a component of the system
fail. The use of a log manager assumes that data is stored on one server; therefore, logs are
required to reconstruct a server’s state. However, in the case of NoSQL stores, reliability
is provided through the existence of many replicas.

Once all of the resource managers have completed the application’s requests, the trans-
action manager queries them to determine if the transaction is consistent and complete.
In many systems, a multi-phase atomic commit protocol is employed to determine if there
is a consensus among all participating resource managers. The transaction manager acts
as the coordinator in two-phase commit and the resource managers are the participants.

2.1.3 Multi-phase Atomic Commit Protocols

Multi-phase atomic commit protocols are responsible for notifying all participants (resource
managers) to commit or abort a transaction. If all participants in the transaction agree
to commit a transaction, then the changes made by the transaction are applied locally on
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the resources. Otherwise, if one or more participants decide to abort the transaction, then
none of the transaction’s changes are applied

Two-phase Commit

In order to determine if all participants are able to commit, many systems employ the
two-phase commit protocol, which consists of a voting phase and a commit/abort phase.
We describe the phases and the messages that are sent between the participants and co-
ordinator using terminology similar to [36]. In the first phase, the coordinator will send a
vote request to all participants in the transaction. Upon receipt of a vote request, a partic-
ipant replies to the coordinator with a vote commit if it is able to commit. Otherwise, the
participant sends a vote abort to the coordinator. After the voting phase, the coordinator
is responsible for determining if all of the participants were able to reach a consensus.
Unless every participant voted to commit the transaction, the coordinator sends a global
abort message to the participants. If every participant voted to commit the transaction,
then the coordinator sends a global commit message to the participants. If a participant
receives a global abort message, then it ignores the transaction’s changes and rolls back to
its previous state. If a global commit message is received, then the participant applies the
transaction’s changes.

Although two-phase commit can atomically determine if all of the participants are
able to reach a consensus, it has certain properties such that it is not suitable for web
applications that demand low latency. Firstly, there is a significant amount of messaging
overhead that is incurred between all participants and the coordinator, which in turn
increases the transaction’s latency.

Secondly, the coordinator in two-phase commit can also pose a performance bottleneck.
As the coordinator blocks until all votes from participants are received (or there is a
timeout), it becomes a source of contention if there are many entities (i.e., clients and
servers) that wish to contact the coordinator. If there is a single transaction manager in
a system, the transaction manager becomes a bottleneck when coordinating transactions
between many clients and servers. Although a transaction may have its own coordinator,
we find that many system implementations use a single entity for coordinating transactions.
For example, systems such as ElasTras [18] use a single instance of ZooKeeper [26] in order
to manage transactions’ metadata and to provide coordination.

Lastly, a coordinator crash would render the participants unable to come to a consensus;
thus, participants will have to wait for the coordinator to recover. In order to reduce the
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need for participants to remain blocked until the coordinator recovers, three-phase commit
was introduced.

Three-phase Commit

Similar to two-phase commit, three-phase commit [36] includes a voting phase where vote
request messages are sent to all participants. However, unlike two-phase commit, a par-
ticipant enters a state that indicates it has sent a vote commit message (call this the
precommit state). Similarly, once the coordinator sends out a global commit message, it
also enters the precommit state. If the coordinator fails, a participant that has not yet
received a vote request can query other participants to see if they are in the precommit
state. If so, then the transaction can be committed. Otherwise, the transaction is aborted.
By maintaining an additional state and having participants query other participants in the
case of a coordinator failure, three-phase commit trades off latency for resilience.

Paxos Consensus Protocol

In addition to two-phase commit and three-phase commit, Paxos [29] may also be used
to determine if all participants are able to reach a consensus. Paxos is a quorum based
consensus protocol that involves the use of proposers, acceptors, and learners. Proposers
send prepare requests, which comprise a value and a request number, to acceptors. An
acceptor may or may not accept the proposer’s value depending on whether or not it has
accepted a value which has a greater request number. If the proposer receives a majority
of accept responses from the acceptors, then it issues accept messages to the the acceptors.
As a result, acceptors receiving an accept message will accept the proposer’s value. Once a
value has been accepted, learners must determine that a proposal has been accepted by a
majority of acceptors. This can be done by having an acceptor send the value to learners,
or finding out from other learners the acceptor’s response. In [24], Gray and Lamport show
that two-phase commit is a special case of the Paxos commit algorithm.

2.2 Existing Cloud Storage Systems

Since the cloud is designed to be highly scalable and available, it has become the preferred
platform for hosting web applications. The effectiveness of the cloud’s underlying storage
system has a significant impact on its overall performance. Most cloud storage systems
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are designed as key-value stores where data is identified using a primary key. A key-value
store is designed to allow users to retrieve and store information that is associated with a
single key. In this section, we provide a description of key-value stores that are employed
in industry.

2.2.1 Storage Models

Key-value stores generally partition data as a means to balance load across multiple servers.
One method of partitioning data is consistent hashing [27] where each object is mapped
to a single point on a line or ring. Subsequently, the line or ring is partitioned into
multiple sections by some distance metric and each section is mapped to a server. An
insertion or deletion of a single server does not require all keys to be remapped. Instead,
a node insertion or deletion only affects keys in its neighbouring nodes. Systems such as
Dynamo [21] (Amazon’s key-value store) and Cassandra [28] (Facebook) use consistent
hashing to distribute load. Other key-value stores, such as Bigtable [12] and Yahoo!’s
PNUTS [13], use a directory service where different parts of the key-space are mapped
to different servers. The use of a directory service will require load balancing to occur
periodically. Many of these key-value stores allow for schemas which provide a structure
for the data that is stored. For example, PNUTs organizes data into tables of records that
have attributes and a key is required in order to index into a table. Similarly, Bigtable uses
a distributed multi-dimensional sorted map where data is indexed using three dimensions:
rows, columns, and timestamps.

2.2.2 Consistency Models

In order to achieve high availability and scalability, many cloud storage systems opt to omit
strong consistency, which ensures that all replicas have the same state and see all updates.
Although synchronous replication techniques provide strong consistency, they may not
be appropriate for cloud storage systems. For example, read operations may need to be
performed at the primary, which results in the primary server becoming a bottleneck.
Moreover, writes need to be propagated synchronously to replicas, thereby causing the
transaction to incur additional latency. In order to address the issues associated with
synchronous replication mechanisms, a cloud storage system may employ asynchronous
replication techniques where data is replicated in the background and use secondary nodes
to serve requests, thereby providing eventual consistency. In other words, if no additional
updates are made to an object in the database, all accesses would eventually obtain the
latest version of the object [38].
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For example, Amazon’s Dynamo provides eventual consistency by asynchronously up-
dating replicas, because it needs to maintain high availability for writes in order to service
its shopping cart application. As a result, Dynamo uses vector clocks in order to as-
sign versions to each read. In order to provide consistency, differing versions are resolved
using vector clocks and quorums are used when executing get and put operations. In
some cases, clients will read two versions and the client is responsible for reconciling the
differing versions. Instead of eventual consistency, PNUTS provides per-record timeline
consistency which guarantees that all updates are applied to all replicas of a given key in
the same order. This ensures that a read or get operation will return a consistent view
with respect to a record’s timeline; however, this model is weaker than strong consistency.
Finally, Cassandra [28] uses quorums to achieve consistency. Write requests are sent to a
quorum of replicas that acknowledge the completion of writes. Depending on the client’s
requirements, a read request may be performed by one or many replicas.

2.2.3 Providing Reliability

The underlying systems for hosting web applications must be highly reliable as the inability
to serve end-users, even for short periods of time, results in loss of revenue and customer
trust. As a result, many systems employ multiple replicas for fault tolerance and reliability
purposes. In Amazon’s Dynamo, data is replicated over N nodes, where N is the number
of copies for a key. This list of nodes, which is responsible for storing a particular key,
is called a preference list. In the event of a node failure, Dynamo uses a sloppy quorum
where read and write operations are performed on the first N healthy nodes, as opposed
to the first N nodes on the preference list. Bigtable [12] uses Google File System [23] to
store logs and data. Bigtable leverages the Google File System for maintaining multiple
replicas of each file. Yahoo!’s PNUTS uses asynchronous replication in order to provide
low latency. One copy of a record in PNUTS is designated as a master, and all updates
are propagated to non-master replicas using a message broker service. Yahoo! chose this
mechanism since their workloads exhibit write locality. In Cassandra, each data item is
replicated at N hosts and a coordinator is in charge of data replication. In the event of a
node failure, Cassandra relaxes quorum requirements for read and write operations.

2.3 Existing Distributed Transaction Systems

In this section, we survey existing storage systems that provide transactions. Firstly, we
look at commercially available systems and we find that these systems utilize transaction
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managers and coordinators to facilitate a transaction. Secondly, we describe key-value
stores that provide transactional properties. Lastly, we outline works that provide transac-
tions using various mechanisms including a shared memory model, timestamps, and other
methods for providing transactional support.

2.3.1 Commercially Available Systems

There are various commercial databases that are able to provide distributed transactions.
Such databases include Oracle [6], IBM’s DB2 [3], and Microsoft’s SQL Server [5]. All
of these systems use a transaction coordinator to execute the transaction and two-phase
commit to commit or abort the transaction.

Most commercially available databases follow the X/Open Distributed Transaction Pro-
cessing Model, which we described in Section 2.1.2. IBM’s DB2 follows the X/Open Dis-
tributed Transaction Processing Model in its transaction manager products. Microsoft’s
SQL Server does not inherently support transactions. Instead, transactions are provided
through Microsoft Distributed Transaction Coordinator (DTC), which closely follows the
X/Open Distributed Transaction Processing Model.

Oracle’s system is a slight departure from the X/Open model. It comprises clients,
database servers, global coordinators, local coordinators, and commit point sites. Sup-
pose an application that wishes to access data on a remote server initiates a distributed
transaction to access data that is stored on the database server. The server on which the
application initiates the transaction is called the global coordinator. A global coordinator
is responsible for sending the distributed transaction’s SQL statements and executing re-
mote procedure calls. Furthermore, a global coordinator may also be a local coordinator,
since a local coordinator is defined as a node that must reference data on other nodes in
order to complete its part of the distributed transaction. Once the global coordinator has
completed the transaction, it notifies the commit point site, which is a node that commits
or rolls back the transaction as instructed, to commit a transaction. In order to commit,
Oracle’s system employs two-phase commits.

The use of a coordinator in Oracle, DB2, and Microsoft’s SQL server may result in
greater latency as applications may need to continuously communicate with transaction
and resource managers before proceeding with the transaction. The use of a coordinator
introduces a single point of failure, thereby decreasing robustness. Furthermore, a cen-
tralized coordinator may hinder the scalability of a system as it introduces a performance
bottleneck.
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2.3.2 Transactional Key-Value Stores

In addition to commercially available database systems, other works such as G-Store [20]
and Megastore [9] provide transactions by grouping and/or partitioning keys. These works
restrict transactions to certain partitions and key groups.

G-Store provides transactions on multi-key accesses by using a key group abstraction
that defines a relationship between a group of keys. G-Store’s key grouping protocol uses
a key group to transfer ownership of all keys in a group to a single node. Within a key
group, G-store assigns a leader key, which is used as part of the identity of the key group,
and the remaining keys are follower keys. The node that owns the leader key is assigned
ownership of the key group and can guarantee consistent access to keys in the key group
without distributed synchronization. Consequently, the size of a key group is limited to
the number of keys that can be hosted on a single node. At any given time, a key can
be a part of a single key group; however, a key may be a part of multiple groups over
its lifetime. As a result, a transaction’s key requests are limited to keys that are stored
in a single node. G-Store also employs write-ahead logging to achieve durability. Using
this key group abstraction, G-Store offers transactional multi-key access guarantees over a
non-overlapping group of keys within a key-value store.

Similar to G-Store, Megastore [9] provides ACID semantics within fine-grained parti-
tions of data. Megastore partitions the data-store and replicates each partition separately;
thus, Megastore is able to have transactional guarantees within a single partition; how-
ever, it can only offer limited consistency guarantees across the partitions. In order to
scale throughput and localize outages, Megastore partitions data into a collection of en-
tity groups that are synchronously replicated over a wide area. Entities within an entity
group are mutated with ACID transactions, and the commit record is replicated via Paxos.
Operations across entity groups rely on two-phase commits, which are relatively expensive.

Therefore, by partitioning data, systems such as G-Store and Megastore are able to
provide transactions over a well-defined partition. However, both systems require knowl-
edge of all key accesses in order to create key groups or entity groups so that transactions
may be executed efficiently.

2.3.3 Using Shared Memory to Provide Transactional Support

Instead of partitioning data into fine-grained modules so that transactions may occur, other
work such as Sinfonia [8] uses a shared memory model. Sinfonia removes message passing
protocols between distributed systems and simply allows developers to manipulate data
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structures and allow applications to share data. As a result, Sinfonia presents lightweight
minitransactions, which are primitives that applications can use to access and modify data.
A minitransaction consists of a compare items set, a read items set, and a write items set.
During its execution, a minitransaction checks data as indicated by the compare items set,
and if all comparisons succeed, the minitransaction returns the memory locations of the
read items and write items. The minitransaction is piggybacked onto the first phase of
the two-phase commit protocol. The Sinfonia infrastructure consists of application nodes,
where applications are run, and memory nodes, which hold application data. Sinfonia
primarily targets infrastructure applications (e.g., cluster file systems, lock managers, and
group communication servers) instead of typical applications that are found in the cloud.

2.3.4 Snapshot Isolation and Timestamp-Related Mechanisms

Systems such as Spanner and Walter use timestamp-related mechanisms to provide transac-
tional support. Spanner [15] is Google’s multi-version database that is globally-distributed,
synchronously-replicated, and designed for long lived transactions. Spanner stores data in
tablets, where a tablet is a collection of mappings that map a key and timestamp to a
string. Spanner assigns global commit timestamps which are used to reflect serialization
order. Thus, it is able to provide externally consistent reads and writes and globally-
consistent reads across the database at a given timestamp. Spanner supports read-write
transactions, read-only transactions, and snapshot reads. Write transactions in Spanner
are buffered at the client until the transaction commits, and once a client has completed all
reads and buffered writes, it executes the two-phase commit protocol. Currently Spanner
is used to serve Google’s advertising back-end.

Walter [35] is a key-value store that supports transactions and asynchronously replicates
data across distant sites. Walter utilizes a new property called parallel snapshot isolation
(PSI) to replicate data asynchronously while providing strong guarantees within each site.
Walter uses preferred sites to implement PSI and prevent write-write conflicts. Parallel
snapshot isolation enforces causal ordering of transactions and allows different commit
orderings at different sites. Causal ordering is defined as follows: if a transaction T2 reads
information from T1, then T1 is ordered before T2 at every site. Walter utilizes preferred
sites where each object is assigned a preferred site and writes to the object at the preferred
site can be committed without checking other sites for write conflicts.
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2.3.5 Transaction Coordination Systems

Systems such as Cloud TPS [39] and Granola [17] utilize a transaction coordination sys-
tem in order to execute transactions. In Cloud TPS, the authors observe that a centralized
transaction manager would become a bottleneck, as it must execute all incoming trans-
actions, and it would run out of storage space since a transaction manager needs to keep
a local copy of all data accesses. The intuition behind Cloud TPS is that it splits the
centralized transaction manager into a number of local transaction managers. Similar to
CrossStitch, Cloud TPS aims to provide transactions for web applications. Cloud TPS
implements a transaction as a group of subtransactions. If subtransactions, within a single
transaction, have data conflicts, then the subtransactions are executed sequentially. Cloud
TPS requires that the application provide the primary keys of all data items that a single
transaction wishes to access.

Granola is another transaction coordination infrastructure that specifically supports
independent transactions, which are transactions that execute atomically across a set of
participants and do not require locking since they do not contend with other transactions.
Granola serializes these transactions using its own timestamp-based coordination mecha-
nism in order to provide lower latency and higher throughput. There is a single round of
communication between the client and a set of repositories (participants). These one-round
transactions do not allow for interaction with the client (which means that client cannot
execute multiple sub-statements or queries). One-round transactions must also execute
to completion at each repository (participant) with no communication to other reposito-
ries. Granola’s repositories execute transactions and communicate with one another to
coordinate the transaction.

2.3.6 Separating Transaction Processing from the Database

There have been many works which separate transactional processing from the data stor-
age layer. ElasTraS [19] is a light-weight data store that supports a subset of operations
that are supported by traditional database systems. ElasTraS uses a key-value store for
data storage and uses a two-level hierarchy of transaction managers in order to provide
transactional guarantees. ElasTraS allows data to be partitioned statically or dynami-
cally. If an ElasTraS data store is partitioned statically, it can provide ACID transactional
guarantees for transactions limited to a single partition. If an ElasTras data store is parti-
tioned dynamically, it only supports minitransactions, which have restricted transactional
semantics, ensuring recovery but not global synchronization. Similar to other decoupled
architectures, ElasTraS partitions functionality into various layers: the data storage layer,
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owning transaction managers, and higher level transaction managers. The data storage
layer is responsible for replication and fault tolerance. The owning transaction managers
are responsible for the execution of transactions on the partitions of databases, concur-
rency control, and recovery functionality. The higher level transaction managers absorb
all read-only transactions and cache a subset of the database for read-only purposes.

Other works such as Lomet et al. [31] propose providing transactions by factoring a
cloud storage engine into two layers: a transactional component and a data component.
The transactional component works at a logical level and a data component is responsi-
ble for the physical storage structure. The transactional component is responsible for the
locking, concurrency control, and logging, for the purposes of durability. Only the data
component has knowledge of the pages; thus, the transactional component must invoke
operations for the data component. The transactional component is responsible for en-
suring isolation, transactional atomicity, and logging. Similarly, the data component is
responsible for providing atomic operations on the data, maintaining indexes and storage
structures (e.g., if data is stored in a structure such as a B-tree) , and providing cache man-
agement. The notion of unbundling the transactional component and data component is
also found in Deuteronomy [30]. Deuteronomy supports ACID transactions by decompos-
ing the database into a transactional component and a data component. A transactional
component is responsible for managing transactions, concurrency control, and recovery. A
data component maintains a cache and accesses data. When a client wishes to execute
a transaction, the transactional component performs all operations that are necessary for
the transaction (e.g., logging/locking), and routes data update operations to the correct
data component.

Another transactional system that uses a modularized approach is Calvin [37], which
provides transaction scheduling and a data replication layer. Calvin is designed to run
alongside a non-transactional storage system. In order to reduce contention, Calvin servers
determine how to handle a transaction before acquiring locks and beginning to execute a
transaction. Once all Calvin servers have determined how to handle a transaction, the
transaction must be executed to completion. Thus, Calvin consists of a sequencing layer
that intercepts transactional inputs and places them into a global transactional input pat-
tern. During every epoch, which refers to a 10 ms time frame where a server collects
transaction requests from clients, Calvin’s sequencer collects and replicates the transac-
tional requests. Afterwards, a message is sent to the scheduler on every partition for the
purposes of replication. Calvin’s scheduling layer is then responsible for the execution of
the transaction and it uses a deterministic locking scheme to guarantee equivalence to the
serial order that is specified using the sequencing layer. The storage layer handles the
physical data layout. Calvin does not support transactions that must perform reads in
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order to determine their full read/write set. This is due to Calvin’s deterministic locking
protocol which requires advance knowledge of all transactions’ read/write sets.
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Chapter 3

CrossStitch: An Efficient Transaction
Processing Framework for Web
Applications

In this chapter, we provide an overview of the CrossStitch transaction processing system.
We describe the structure of a CrossStitch transaction and its operations. We also illustrate
the method for implementing a CrossStitch transaction. We then explain CrossStitch’s
messaging protocol and the servers’ messaging pattern. Lastly, we outline the CrossStitch
architecture and detail its design.

3.1 Basics of a CrossStitch Transaction

CrossStitch is a transaction processing framework that adds transactional support for key-
value stores. CrossStitch clients submit their transactions to CrossStitch servers which
are responsible for maintaining the transaction’s changes until the transaction commits.
Moreover, CrossStitch ensures the atomicity of a transaction and that a transaction aborts
if any isolation or consistency constraints are violated.

3.1.1 Implementing a Transaction

As discussed in Section 1.2, CrossStitch transactions are structured as a series of compo-
nents, where each components consists of a single key access (i.e., get, put and delete) and

22



additional computation. We refer to the series of components as a transaction chain. Intu-
itively, a component is analogous to a link in a chain. A CrossStitch transaction proceeds
to the next component when a key access is executed; therefore, the transaction’s next
component is specified each time one of these operations is called. The terminating com-
ponent of a transaction chain is identified by the lack of a key access. A detailed example
of how to implement a transaction is provided in Section 3.2.

Each key operation produces a value that is used as a parameter to the subsequent
component in the transaction chain. A get operation retrieves the value in the key-value
store and this value is passed as a parameter into the next component in the transaction
chain. Delete and put operations produce an empty value that is generally unused by the
subsequent component. The terminating component’s return value is the final value that
is returned by the transaction; this value is also sent to the client.

In our CrossStitch implementation, a transaction is implemented as a class that inher-
its from a base class that implements the transaction’s operations. Each method in the
transaction class represents a single transaction component that comprises a key access
and some computation. We use Python in our CrossStitch implementation.

3.1.2 CrossStitch Timestamps

CrossStitch assigns a client-specified timestamp to each transaction in order to determine
ordering. CrossStitch uses a variant of multi-version timestamp ordering to provide se-
rializability; thus, a transaction’s timestamp is used to determine which version of data
is retrieved and it serves as metadata when writing an item to the key-value store. All
CrossStitch servers and clients need to be loosely time synchronized in order to allow for
timestamp comparison. The system time of servers determines the ordering of transactions
and it determines if a transaction is too stale and needs to be rejected. Therefore, using
clients and servers with vastly different clocks significantly impacts transaction ordering
and results in a greater abort rate. However, the differences between client and server
clocks do not affect correctness as the ordering of all transactions is reflected on all servers.

Since multiple transactions can begin at the same time, a CrossStitch timestamp also
combines a client identifier and a transaction identifier to ensure uniqueness. Client iden-
tifiers uniquely identify each client in the system and transaction identifiers are unique
within each client. Therefore, a transaction as a whole is uniquely identified by the time,
client identifier, and transaction identifier. CrossStitch maintains additional state in order
to ensure that the pipelined two-phase commit protocol, as we describe in Section 3.2.2,
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proceeds correctly. As mentioned previously, a CrossStitch transaction consists of mul-
tiple, sequential components that form a chain and more than one component may be
executed on a single server. Therefore, in order to uniquely identify each component in
the transaction chain, we also use a chain identifier, which refers to the nth component of
the transaction. Therefore, a CrossStitch timestamp of an individual component (i.e., key
access and computation) comprises system time, a client identifier, a transaction identifier
and a chain identifier.

3.1.3 CrossStitch Concurrency Control

CrossStitch uses multi-version timestamp ordering that provides optimistic concurrency
control. Every version of an item in CrossStitch’s datastore maintains a read timestamp
and a write timestamp. The write timestamp indicates when the object was created.
The read timestamp indicates the most recent time that the object was accessed. Both
timestamps are used to determine if a transaction needs to abort.

CrossStitch maintains multiple versions of an item in order to provide concurrency
control. When executing a key operation such as a get, put, or delete, the transaction’s
timestamp is compared with the timestamp of items found in the underlying data store
in order to determine the version of the item that is retrieved. This comparison is done
immediately when a transaction arrives and is executed at the server since a CrossStitch
component consists of a key access followed by computation. When a transaction retrieves
an object that is associated with a given key, it invokes the get operation. CrossStitch
returns the version (call this v) of the object that satisfies the following two conditions:

• The write timestamp of the committed returned version (v) is earlier than the trans-
action’s timestamp.

• There does not exist another committed version of the object that has a write times-
tamp more recent than v and earlier than the transaction.

3.1.4 Timestamp Related Abort Cases

As the CrossStitch transaction chain progresses, all pending get, put, and delete operations
are maintained by the server executing the key request. Upon the receipt of a commit
message, the server will write the pending operations into the underlying datastore. As
CrossStitch utilizes multi-version timestamp ordering, it maintains multiple versions of an
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object in its datastore. Each version of each object x has an associated read timestamp
(rts) and a write timestamp (wts). An object’s rts and wts are unaffected by pending
operations. However, once a pending read or write is committed, the object ’s rts or wts is
updated accordingly. In order to ensure that a transaction’s view of an object is consistent,
CrossStitch’s transaction processing layer verifies that a write operation does not invalidate
a read operation. If a transaction violates any of the timestamp conditions as described
in this section, then it is aborted. A server immediately determines whether or not a key
operation aborts once the transaction arrives. The component’s execution comprises a key
access, followed by computation. The key access and the check for timestamp violations
are performed before any additional computation. If the key access results in a timestamp
violation, then the transaction is aborted.

For this section, let rts(x) denote the read timestamp of object x, and let wts(x) de-
note the write timestamp of object x, where x is a version of an item. We use the terms
previous pending read (PPR) and previous pending write (PPW) to denote the most recent
(i.e., highest timestamp value) pending get and put operations that are before the transac-
tion’s timestamp. Similarly, previous committed read (PCR) and previous committed write
(PCW) refer to most recent committed get and put operations that are before the execut-
ing transaction’s timestamp. Suppose a transaction wishes to access key x. CrossStitch
aborts for the following read-write and write-write conflicts:

• Reading an uncommitted write: The transaction aborts when a get operation
attempts to read a version of an item that has not been committed. If tsPCW <
tsPPW < tstransaction, then the transaction may read a value that is later aborted. As
a result, we abort the transaction. Our multi-version timestamp ordering concurrency
control implementation aborts if a read would access an uncommitted write. This
allows for a simpler implementation at the expense of an increased abort rate. This is
a simplification of the traditional multi-version timestamp ordering mechanism that
blocks until the transaction containing the uncommitted write operation completes.

• Invalidating a read: Let ts(Ti) denote our transaction’s timestamp, and Ti wishes
to write to the key x. Let xprev be a previous committed version of the object
that is referenced by x. If x does not exist in the datastore (i.e., it has not been
written to), then rts(xprev) = −∞. The transaction aborts if rts(xprev) is more
recent than ts(Ti) since Ti will invalidate a read operation that is performed by
another transaction. Let NPR (next pending read) denote a pending read operation
such that ts(Ti) < ts(NPR). If there does not exist a committed write (CW) such
that ts(Ti) ≤ ts(CW ) ≤ ts(NPR), then Ti aborts since the read operation NPR
would become invalidated.
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CrossStitch aborts a transaction if the transaction’s timestamp is older than the oldest
version of the requested item. It maintains a limited number of versions in its datastore
to bound storage requirements and keeps the most recent version of items in its datastore.

In addition to our variation of the multi-version timestamp ordering mechanism (i.e.,
reading an uncommitted write causes an abort), we have already begun exploring a new
variant of this optimistic concurrency control mechanism in order to lower CrossStitch’s
abort rate. In order to prevent reads from aborting, a read operation may need to block
and wait for a pending write to be committed. However, this may not be appropriate
for web transactions since they are sensitive to latency. As a result, our new variant of
multi-version timestamp ordering allows a transaction to continue by performing the read
operation on an uncommitted write. However, a server does not indicate that it is ready to
commit until the pending write operation has been committed. The trade-off is that if the
transaction for the pending write operation is aborted, it may cause a cascading abort for
the transaction that contains the read operation. Preliminary results demonstrate that this
variant of multi-version timestamp ordering results in a lower abort rate for high contention
workloads. This more complex variant is not described in this thesis and is left as future
work.

3.1.5 Non-timestamp Related Abort Cases

In addition to the abort cases described in the previous section, a transaction may also
be aborted if it violates certain system conditions (e.g., incorrect implementation or the
transaction chain forms a loop) or if the application (e.g., end user) wishes to abort.

System Conditions Violated

A client can create an infinite loop in the transaction by creating component transitions
that occur in a cycle. In the event of an infinite loop, the transaction does not complete, and
it would consume resources, making them unavailable to other transactions. As a result, a
transaction aborts after it has reached a predetermined number of hops or operations. This
number is significantly greater than our expected web transaction so that transactions do
not unnecessarily abort.

26



Users Requesting Termination

Users may also request the transaction to be aborted by calling the abort function in the
transaction’s underlying base class. A user may want to do this when its logical constraints
are violated. For example, in a bank transaction, a user’s account may not be negative
after a debit operation occurs. Suppose a client’s balance is retrieved, and it does not have
sufficient funds to make the requested withdrawal. The client needs to be able to abort
the transaction.

3.1.6 CrossStitch’s Supported Operations

CrossStitch supports three primitive operations: get, put, and delete. Upon the arrival
of a transaction, the server immediately executes the get, put, or delete operation that is
associated with its assigned component in the transaction chain. When the key operation is
executed, CrossStitch determines if the transaction needs to be aborted due to timestamp
violations, which were described in Section 3.1.4. After executing the key operation, the
server maintains, or buffers, the operation and the operation’s corresponding timestamp
until the operation’s transaction commits. Once a transaction commits, all of its operations
(i.e., gets, puts, deletes) are applied to the datastore with the corresponding timestamp.

An end-user invokes a get operation by calling the function below.

transaction.get(next_component, parameters, key)

next component indicates the next user-defined component in the transaction chain
that will be run by the server once the get operation completes. A user-defined component
is a method that implements a part of the transaction’s function. The client specifies a
finite-sized list called parameters, which is used as input for the next component in the
transaction chain. Lastly, key refers to the key that the end-user desires to access.

When executing a put operation, CrossStitch adds an object into the datastore that is
indexed using the provided key. The write timestamp indicates an object’s version. A put
operation is called by the end-user as follows:

transaction.put(next_component, parameters, key, value)

The next component, parameters, and key parameters are as described for the get op-
eration. The put operation also specifies value, which is the object that is written into the
datastore and is indexed using key.
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A delete operation is implemented using the put operation, which was described pre-
viously. However, instead of specifying a value, CrossStitch writes a pre-defined empty
object, which is used to indicate that a key’s value has been deleted, into the datastore
using the transaction’s timestamp. The delete operation’s parameters are identical to the
parameters of the get operation. A delete operation is called by the end-user as follows:

transaction.delete(next_component, parameters, key)

3.2 An Example Transaction

In this section, we provide an example transaction to explain the structure of a CrossStitch
transaction, illustrate the messages that are sent between CrossStitch servers and demon-
strate how CrossStitch transactions are executed. Suppose we want to implement a trans-
action that accesses key x and increments its value by one. The transaction also adds the
value of y to the value of x before it was incremented in order to construct its return value.
Intuitively, a transaction would be implemented in the following manner:

BEGIN_TRANSACTION

value = get(x)

put(x, value+1)

second_value = get(y)

return (value + second_value)

END_TRANSACTION

Figure 3.1: An Example Transaction

In the CrossStitch framework, the application developer would decompose the trans-
action in Figure 3.1 into a series of components that form the transaction chain, where
each component, other than the final component, comprises a single key access and com-
putation. The final component in the transaction chain does not perform an additional
key access and provides a return value back to the client. An example CrossStitch trans-
action is shown in Figure 3.2. We also call the transaction that is specified in Figure 3.2
as example.py.

The transaction’s execution shifts from one component to another when it accesses a
key through a get, put, or delete operation. Each key access requires the name of the next
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Figure 3.2: An Example Transaction’s Implementation.

component, the value returned by the previous key access, and a list of parameters as its
input. The number of parameters in the subsequent component must match the input
parameter list’s length.

We also note that start component is not referenced by any other state. In our imple-
mentation of CrossStitch, the transaction’s initial component is called the start component.
The client begins the transaction by executing the start component, and the transaction
runs on the client until the start component makes a key request.
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3.2.1 Launching and Running a Transaction

tclient.client(host_name = None,

port_num = None,

cid = None)

Figure 3.3: Instantiating a CrossStitch Client

The application developer must create a CrossStitch client in order to execute a transaction.
Figure 3.3 demonstrates how to instantiate a CrossStitch client. Once the client has been
instantiated, it calls start transaction to launch the transaction. start transaction requires
the following parameters:

• Timestamp: This is the system time that is used to construct the transaction’s
timestamp.

• Implementation file: This file contains the transaction’s code. An example of
this is Figure 3.2. We call the code presented in Figure 3.2 example.py.

• transaction class (transaction name): This is the name of the transaction
class that is to be executed. In the case for Figure 3.2, the client specifies basic add.

• start comp params (user-defined parameters): This is a list of parameters
that the end-user wishes to pass to the first component in the transaction chain.

The start transaction function is defined in Figure 3.4:

client.start_transaction(ts,

transaction_file,

transaction_class,

start_comp_params=None)

Figure 3.4: API Call to Start a Transaction

Figure 3.5 demonstrates how an end-user would create a client and launch a transaction.
The end-user launches the basic add transaction from example.py. It uses the system time
and does not pass in any parameters to start transaction.
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import time

import tclient

client_one = tclient.client()

return_value = client_one.start_transaction(

time.time(),

"example.py",

"basic_add",

[])

Figure 3.5: Creating and Launching a Transaction

3.2.2 Basic Messaging Chain

In order to provide low latency, CrossStitch minimizes the number of messages sent between
the client and servers by executing the transaction’s computation on the servers and by
forwarding the transaction to servers that are responsible for the key accesses. Moreover,
CrossStitch performs a pipelined two-phase commit protocol while the transaction is being
executed on the servers. As a result, CrossStitch can significantly reduce latency and
completion time in the case where client to data-center latency is high. Figure 3.6 shows
the messages that are sent among all participants for our example transaction.

Intuitively, throughout the execution of the transaction, CrossStitch’s pipelined two-
phase commit protocol transfers the role of the traditional transaction coordinator to the
server that is executing the key access. When a transaction arrives at a server, it is executed
in order to determine the next key access. The next key in the transaction is sent back to
the previous server in the form of an acknowledgement message. By having knowledge of
subsequent keys in the transaction chain, a server may query another server that is later
in the transaction chain for the purposes of failure handling and recovery. In addition to
the acknowledgement message, a server sends a precommit message to the next node if it
is ready to commit (i.e., has voted commit in the traditional two-phase commit protocol).
In effect, each server enters the vote commit state as the transaction progresses. Once the
last server in the transaction chain completes executing its assigned component, it notifies
its replica, which is another datastore, that it is ready to commit. In this context, the
replica is responsible for recording the successful completion of the transaction and is not
a data replica. We later discuss its use for fault tolerance in Chapter 5. The last server
then proceeds to send commit messages to all participating servers and the result back to
the client.
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Figure 3.6: CrossStitch’s Messaging Pattern

In Figure 3.6, the client begins by executing start component until it reaches a key
request. The client determines that Server1 is responsible for hosting key x, and the
transaction is forwarded to Server1. Upon receiving the transaction message, as indicated
by the label “1. Transaction”, Server1 executes comp 2 until it reaches the put request.
Similar to the client, Server1 determines the server that is responsible for the put(x) key
access, which is labelled as Server2 in Figure 3.6. When Server1 sends the transaction to
Server2, it also sends an acknowledgement message to the client. The acknowledgement
message notifies the client that Server1 was able to successfully execute its assigned com-
ponent in the transaction chain. The client then replies with a precommit message, which
notifies Server1 that it has received the acknowledgement message and is now waiting for
the final result.

We note that Server1 and Server2 are the same physical server as they both access the
same key. However, we name these hops Server1 and Server2 to denote the hops in the
transaction chain. Generally, two consecutive hops in a transaction chain may be found
on the same server. The CrossStitch framework handles this case by having servers send
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messages to themselves.

After Server1 has sent the transaction to Server2, Server1 waits for an acknowledge-
ment message from Server2 and a precommit message from the client. Server1 can shift
to the precommit state and send a precommit message to Server2 once it has received
these messages. By doing so, Server1 indicates that it is able to commit and is waiting
for a commit or an abort message. Therefore, the precommit message is analogous to
the vote commit message in two-phase commit. As the transaction progresses, Server2
executes comp 3, and Server3 executes comp done. The messaging between Server2 and
Server3 is identical to the messaging between Server1 and Server2. After successfully
executing the transaction, Server3 sends a primary to secondary message to the trans-
action’s replica, Server′3. As Server′3 is now aware that the transaction has completed,
in the event that Server3 fails, Server2 may query Server′3 in order to determine if the
transaction is successful. Server′3 replies with a primary to secondary acknowledgement
message to notify the primary server that it has a record of the transaction. Once Server3
receives the primary to secondary acknowledgement message, the transaction is considered
to be committed and Server3 returns the value to the client and notifies all servers in the
transaction chain to commit.

3.2.3 CrossStitch Messages

CrossStitch employs a number of messages to execute its pipelined two-phase commit
protocol. Intuitively, these messages are used to forward the transaction from server to
server, to acknowledge the receipt of a transaction, and to confirm that a server is ready
to commit. In this section, we describe the messages that are sent between CrossStitch
servers and clients.

• Transaction Message: In addition to the client identification number, transaction
identification number, and timestamp, this type of message also contains transac-
tion code and information, which includes the name of the next component in the
transaction chain, parameters, and the result of the previous component.

• Acknowledgement Message: Once a server receives a transaction message, it
executes its assigned component to determine the next transaction operation or the
returned value. Afterwards, the server sends an acknowledgement message to the
sender of the transaction message. This message may contain the server that is the
next hop for fault tolerance purposes as described in Chapter 5.
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• Precommit Message: A precommit message is used by a client or server to notify a
subsequent server that it is ready to commit. It is sent once a server has received all of
its expected messages or if a client has received an acknowledgement message. These
messages include the transaction, the acknowledgement message, and the precommit
message from the previous node in the transaction chain. A precommit message has
the same functionality as a vote commit message in two-phase commit.

• Primary to Secondary Message: The primary to secondary message is sent
from the transaction’s final server to the final server’s replica. This message is used
to notify the replica that the transaction has completed and is able to commit. By
having knowledge of the transaction in the replica, CrossStitch is able to tolerate up
to one server failure.

• Primary to Secondary Acknowledgement Message: The primary to sec-
ondary acknowledgement message is sent from the transaction’s final server’s replica
to the primary. The purpose of this message is to notify the primary server that the
transaction has been recorded.

• Commit Message: When a transaction has completed successfully, the last server
in the CrossStitch transaction chain sends a commit message to all servers that
participated in executing the transaction. Once a server receives a commit message,
it commits the transaction by applying the pending operation to the datastore.

• Abort Message: If a transaction aborts (e.g., due to conflicting write operations),
then the server that is responsible for the abort sends abort messages to all servers
that have participated in executing the transaction. Once a server receives an abort
message, it removes the transaction’s pending operation and transitions to the abort
state.

• Result Message: This message is sent by the last server in the transaction chain
(also called an end server) to the client and it contains the result of the transaction.
The server sends this message to the client once it has committed the transaction.

3.3 Managing the Transaction on the Server

In order to implement CrossStitch’s pipelined two-phase commit protocol, a significant
amount of state must be maintained for each operation that occurs. In this section, we
explore the functionality of the server and we describe our server implementation. We
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illustrate the state machines that CrossStitch servers maintain. Lastly, we describe how
CrossStitch interacts with the underlying datastore.

3.3.1 Server Configuration

In our implementation of CrossStitch, all servers are connected to each other, forming
an n-complete graph. CrossStitch servers maintain persistent TCP connections with each
other in order to avoid incurring additional latency that is the result of performing a TCP
handshake when establishing a connection. By establishing all connections beforehand,
CrossStitch servers can easily communicate with each other as the transaction progresses.
For similar reasons, a client creates a connection to each CrossStitch server so that con-
nections to not have to be established and closed each time a client executes a transaction.
Although this configuration requires n2 connections to be made, it may limit scalability.
However, n is sufficiently small in practice such that it is feasible to establish all connections
beforehand. For example, Google’s Bigtable [12] is built for thousands of servers.

The underlying storage system is responsible for determining the location of the keys.
In our implementation of CrossStitch, we use a simple storage system that assigns keys to
servers using the modulus of a key’s hash value. For example, if the servers were indexed
0 through n− 1, then the server responsible for hosting k is k’s hash value mod n.

3.3.2 Maintaining State Machines

Until a transaction is committed or aborted, a server maintains information regarding the
transaction in case the transaction aborts later in the chain or conflicting writes occur.
In order to maintain this information, each server maintains state for all of its assigned
components in the transaction chain and a list of pending operations. The pending oper-
ations are applied when the server receives a commit message, or they are removed when
the server receives an abort message.

In particular, a server needs to determine the messages that it is expecting for a key
access and computation (e.g., an acknowledgement from the next server, a precommit from
the previous server, or a notify message from the previous server’s replica). By maintaining
a component’s state, a server is able to determine when it can send the appropriate messages
(e.g., a precommit message to the next server). Keeping track of the component’s state is
imperative for ensuring CrossStitch’s correctness.
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• Start State: When a new transaction arrives at a server, it begins at the start
state once it arrives at its assigned server. Once the server completes executing its
assigned component in the transaction chain, the component’s state transitions from
the start state to the Wait for Messages State.

• Wait for Messages State: In this state, the server waits for all of the component’s
expected messages. For components in the transaction chain that are not the last
hop in the chain, this includes a precommit message from the previous server and an
acknowledgement message from the next server. Once all of the expected messages
are received, the server sends a precommit message to the next server, and the state
of the component changes to the precommit state. Components that are the last
hop in the transaction chain only wait for the precommit message from the previous
server before transitioning to the Primary to Secondary Message Sent State.

• Precommit State: A component in the transaction chain enters this state if and
only if it has been successfully executed and if its server has received an acknowledge-
ment from the next server in the transaction chain and a precommit message from
the previous server in the transaction chain. From this state, the server cannot abort
the transaction. This state aborts if and only if it receives an abort message from a
subsequent state in the transaction chain. The component may enter the abort state
or commit state from the precommit state.

• Primary to Secondary Message Sent State: The end server in the transaction
chain enters this state once it has received a precommit message from the previous
server. Upon entering this state, the server responsible for the final component sends
a primary to secondary commit request message to its replica, which is another
datastore. The primary to secondary commit request message notifies the replica that
the transaction has successfully completed. Once the replica replies with a primary
to secondary commit acknowledgement, the final component’s state transitions to
the commit state.

• Commit State: When a component is in the precommit state and it receives
a commit message, its state moves to the commit state. This state indicates the
transaction has completed successfully.

• Abort State: When a component is in the precommit or the wait for messages
state and it receives an abort message, the component moves to the abort state. A
component can also move to the abort state from the start state when it executes
the transaction, and the transaction aborts due to a key conflict.
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Figure 3.7: Intermediate Server’s State Machine

In this section, we describe how a server transitions between various states for its
assigned key access and computation. We call the last server in the transaction chain
an end server, and its state machine is depicted in Figure 3.8. All other servers in the
transaction chain are called intermediate servers. The state machine of an intermediate
server is shown in Figure 3.7. Upon the receipt of a new component, CrossStitch constructs
a new start state object on the server. The start state object is indexed using the state’s
timestamp, which consists of system time, transaction identifier, client identifier, and chain
identifier.

Upon receipt of subsequent messages that have the start state object’s identifier, the
server entry for the transaction is updated with a new state object that reflects the mes-
sages that have been received. For example, when a transaction’s key access is received
at a server, the entry in the state machine shifts from the Start State to the Wait for
all Messages State. While in the Wait for all Messages State, the server waits for an
acknowledgement message from the next server (to ensure that the transaction has been
received), and a precommit message from the previous server. Once the server has received
all messages that it is expecting, it enters the precommit state (as shown in Figure 3.7. If
the server’s assigned component is the last hop in the transaction chain, the server notifies
its replica that it is ready to commit (shown in Figure 3.8). The component’s state enters
the commit state if one of the following conditions holds:
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Figure 3.8: End Server’s State Machine

• It is in the precommit state and it receives a commit message from the last server in
the transaction chain.

• It is the last server in the transaction chain and it has received an acknowledgement
message from its replica.

In the event that a read or write operation fails, the responsible server notifies all servers
in the transactional chain to abort the transaction.
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Chapter 4

Liveness and Safety

In this chapter, we demonstrate the soundness of CrossStitch’s protocol and show that
in the absence of failures, CrossStitch offers liveness and safety. We use the results in
this chapter to demonstrate safety and liveness in the presence of a single server failure
in Chapter 5. Informally, the liveness property ensures that the transaction eventually
reaches a final state. Specifically, a CrossStitch transaction always commits or aborts and
does not indefinitely remain in an intermediate state. The safety property ensures that
transactions are isolated and atomic.

4.1 Liveness Properties

In this section, we provide an exhaustive analysis to demonstrate that CrossStitch offers
liveness. In particular, we first present the liveness properties of the CrossStitch servers.
Given the liveness of the servers, we then demonstrate the liveness properties of the client.
We show that a transaction is either committed or aborted.

4.1.1 Liveness Properties of the Server

As Owicki and Lamport define in [32], “a liveness property asserts that program execution
eventually reaches some desirable state.” We first demonstrate the liveness properties of the
server. In CrossStitch, final states for a server in the transaction chain include the commit
state (CS) and the abort state (AS). We prove that an end server cannot remain in the
start state (SS), primary to secondary message sent state (PSMS) or the wait for messages
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state (WFM) and that an intermediate server cannot remain in the wait for messages state
or the precommit state (PS).

Liveness of the End Server

To show that an end server cannot remain in the start state is trivial since a server does not
remain in the start state once it executes its assigned component. Since we are showing
liveness properties in the absence of failures, an end server must be able to execute its
assigned component. By doing so, an end server may enter the abort state, which is a
final state, or it may enter the primary to secondary message sent state. This transition is
shown in Figure 4.1
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Figure 4.1: Server State Transition from the SS to the WFM

We now demonstrate that an end server cannot remain in primary to secondary message
sent state or the wait for messages state. Suppose that the end server, Servern, remains
in the primary to secondary message sent state indefinitely. If Servern is in the primary
to secondary message sent state, then Servern−1 must be in the precommit state since
Servern requires a precommit message from Servern−1 in order to enter the primary to
secondary message sent state. Furthermore, Servern−1 must be in the precommit state
before sending the precommit message to Servern. For a server to enter the precommit
state, it must receive a precommit message from its predecessor in the transaction chain.
This transition is shown later Figure 4.4. As a result, all previous servers in the transaction
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chain were able to successfully execute their assigned component and they must be in
precommit state. For Servern to remain indefinitely in the primary to secondary message
sent state, the transaction’s replica server must never reply with a primary to secondary
acknowledgement message since this would cause Servern to enter the commit state and
send commit messages to all servers in the transaction chain. This transition is shown in
Figure 4.2. However, since our model’s analysis does not assume server or network failures,
the transaction’s replica server must reply to the primary end server with a primary to
secondary acknowledgement message. As a result, Servern enters the commit state, which
is a final state, and sends commit messages to all servers in the transaction chain.
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Figure 4.2: Server State Transition from PSMS to CS

We now suppose that the end server remains indefinitely in the wait for messages state.
For the end server to remain in this state, it must never receive a precommit message from
the previous server. The transition from the wait for messages state to the primary to
secondary message sent state is shown in Figure 4.3. Suppose that a precommit message is
never sent to the end server (Servern). A precommit message is not sent if the transaction
aborts at a server in the transaction chain. However, in CrossStitch’s specification, if the
transaction aborts at an intermediate server, the transaction is not forwarded to the next
server. Consequently, in the case that an intermediate server aborts, the transaction would
not have been sent to Servern.
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Figure 4.3: Server State Transition from WFM to PSMS

Now suppose that Servern−1 never enters the precommit state, hence the precommit
message is never sent to Servern. For an intermediate server to never enter the precommit
state, it must not have received an acknowledgement message from the subsequent server or
a precommit message from its previous server in the transaction chain. The state transitions
of an intermediate server are shown in Figure 4.4. Previously, we have considered the case
where an intermediate server aborts the transaction. We now consider the case where all
intermediate servers successfully complete executing their assigned components. In this
case, the transaction is forwarded to subsequent servers in the transaction chain. Since we
are demonstrating liveness in the absence of failures, an intermediate server must receive
an acknowledgement message from its subsequent server. Similarly, the client receives an
acknowledgement message from the first server in the transaction chain. The CrossStitch
specification states that the client sends a precommit message to the first server when it
receives an acknowledgement message. Therefore, the first server enters the precommit
state and sends a precommit message to the next server in the transaction chain. This
argument is applied to all subsequent servers in the chain. Eventually, Servern−1 receives
a precommit message from Servern−2 and an acknowledgement message from Servern. By
the CrossStitch specification, Servern−1 must enter the precommit state.
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Figure 4.4: Server State Transition from WFM to PS

Finally, we now suppose that an intermediate server does not receive a precommit
message from its previous server (or the client if the intermediate server is the first server in
the transaction chain). If Serveri, where i ≤ (n−1), does not receive a precommit message,
then Serveri−1 must not have received a precommit message. Consequently, Servern
remains indefinitely in the wait for messages state and all intermediate servers in the
transaction chain must also be in the wait for messages state. Therefore, we now consider
the client and the first server in the transaction chain. We have shown that the client and
all intermediate servers in the transaction chain must receive an acknowledgement message
in the absence of failures. Upon receiving an acknowledgement message, the client will send
a precommit message to the first server in the transaction chain. Thus, the first server
in the transaction chain will enter the precommit state and send a precommit message to
the second server in the transaction chain. Eventually, the precommit messages are sent
from server to server in the transaction chain. Servern−1 receives the precommit message
and enters the precommit state; thus, it will send a precommit message to Servern, which
causes Servern to transition from the wait for messages state to the primary to secondary
message sent state. Therefore, an end server cannot remain in the wait for messages state.
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Liveness Properties of the Intermediate Servers

We now demonstrate the liveness properties of intermediate servers in the absence of fail-
ures. Again, final states are the commit state or the abort state. Therefore, in this section,
we show that an intermediate server cannot remain in the start state, the wait for messages
state or the precommit state.

An intermediate server cannot remain in the start state since it must execute its assigned
component. Upon doing so, it enters the wait for messages state. This transition is depicted
in Figure 4.5
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Figure 4.5: Server State Transition from SS to WFM

We now suppose that an intermediate server, Serveri, remains indefinitely at the wait
for messages state. Serveri is waiting for an acknowledgement message from Serveri+1 (if it
has received a precommit message from Serveri−1), or a precommit message from Serveri−1
(if it has received an acknowledgement message from Serveri+1), or both precommit and
acknowledgement messages. Suppose that Serveri is waiting for an acknowledgement mes-
sage from Serveri+1. If Serveri+1 aborts the transaction, then it sends an abort message
to all of the previous servers in the transaction chain, which includes Serveri. Therefore,
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Serveri cannot remain in the wait for messages state if the transaction aborts at a server
that is further down in the transaction chain. Now suppose that Serveri+1 successfully
executes its assigned component. Thus, Serveri+1 sends an acknowledgement message to
Serveri. In this case, for Serveri to remain indefinitely in the wait for messages state, it
must never receive a precommit message from Serveri−1 (if Serveri is the first hop in the
transaction chain, it cannot receive a precommit message from the client). However, as
we have shown in Section 4.1.1, the client cannot have received an acknowledgement mes-
sage from Server1, otherwise it would send a precommit message to Server1, which would
cause Server1 to enter the precommit state; thus, precommit messages would be sent from
server to server along the transaction chain. However, this contradicts the fact that all
servers prior to and including Serveri+1 were able to successfully complete executing their
assigned components. We have now shown that an intermediate server cannot indefinitely
remain in the wait for messages state.

Moreover, we suppose that an intermediate server, Serveri, remains indefinitely at the
precommit state. Suppose that the transaction aborts further down in the transaction
chain. As a result, an abort message is sent to Serveri. Therefore, Serveri enters the
abort state, which is a final state. Suppose that the transaction does not abort. Since
transaction chains are finite in length, the transaction will reach its end server. As we have
demonstrated the liveness properties for the end server in the absence of failures, an end
server will either commit or abort. As a result, either a commit or an abort message is
sent to Serveri. Consequently, Serveri cannot remain in the precommit state indefinitely.

We have now shown that all servers in the transaction chain enter either the commit or
the abort state. Thus, we have demonstrated the liveness property of CrossStitch servers
in the absence of failures.
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4.1.2 Liveness Properties of the Client
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Figure 4.6: Client State Machine

In this section, we now demonstrate that the CrossStitch client offers liveness. Final states
for a client include the result received state (RR), which indicates that the transaction is
committed, the abort received state (AR). To demonstrate the liveness of the client, we
assume that the transaction terminates (i.e. there are no infinite loops). Moreover, we
assume the liveness of the servers, which was demonstrated in Section 4.1.1. With these
assumptions, we can show the liveness properties of the clients.

As shown in Figure 4.6, the client commences at the start state (SS) whereupon it begins
executing the transaction. Eventually, the client encounters a key access and transitions
from the start state to the wait for acknowledgement state (WFAS). Since a transaction
comprises at least one key access, the client will always make this transition. To perform
this key access, the client forwards the transaction to the first server in the transaction
chain. The first server in the transaction chain, which is responsible for executing the
transaction’s first component, replies to the client with an acknowledgement message or an
abort message. If the transaction is not successful, it sends an abort message to the client.
The client’s state transitions from wait for acknowledgement state to the abort received
state, which is one of the termination states. However, if the server successfully completes
executing the first state, it sends an acknowledgement message to the client. The client
state transitions to the precommit state (PS) from wait for acknowledgement state and
sends a precommit message to the first server.

Upon entering the precommit state, the client waits for the final result of the transaction
to be returned from a server. This result may be the result of the transaction or an abort
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message. Since we have shown the liveness of CrossStitch’s servers, we can safely assume
that the servers will always reply back to the client with the result of the transaction
(commit) or with an abort message. As a result, the client will transition into a final state.
Therefore, the client will always transition from the precommit state to the result received
state or the abort received state and result received state. Since the abort received and
result received states are termination states, we have shown the liveness of the client.

4.2 Safety Properties

In addition to the aforementioned liveness properties, we show that CrossStitch also pro-
vides safety. In this section, we present properties that are derived from CrossStitch’s
specification. Using these properties, we show that CrossStitch provides safety. We show
that CrossStitch provides transactional isolation and atomicity (i.e., either all servers in
the transaction chain commit or all servers in the transaction chain abort). Similar to
Section 4.1, our presented safety properties assume that there are no failures. In other
words, servers do not fail and receive all sent messages.

4.2.1 Providing Isolation

As mentioned in Chapter 3, CrossStitch uses multiversion timestamp ordering to provide
optimistic concurrency control. As shown in [16], the use of multiversion concurrency con-
trol mechanisms such as multiversion timestamp order results in serializability. Therefore,
CrossStitch provides serializability.

4.2.2 Precommit Safety Property

In order to demonstrate that CrossStitch provides transactional atomicity, we demonstrate
the following properties:

• Servers in a transaction chain do not have differing final states. Therefore, if one
server in the transaction chain is in the commit state, there cannot exist another
server in the transaction chain in the abort state. Similarly, if one server in the
transaction chain is in the abort state, there cannot exist another server in the
transaction chain in the commit state.
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• If the client receives the result of the transaction (i.e., it enters the result received
(RR) state), then the end server in the transaction chain is committed and no other
server in the transaction chain has aborted.

• If a server in the transaction chain receives an abort message, then at least one server
in the transaction chain is in the abort state.

• If a server is in the abort state, then the end server is not in the commit state.

In CrossStitch, once a server enters the precommit state, it cannot initiate an abort for
the transaction. As shown in Figure 4.7, a server in the precommit state may enter the
abort state if and only if it receives an abort message from a server that is further down
in the transaction chain. This property is a result of the CrossStitch specification and is
used to demonstrate our aforementioned safety properties. We now show that CrossStitch
provides the above safety properties.
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Figure 4.7: Server State Transition from PS to CS
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Servers in a transaction chain cannot be in different final states

We first demonstrate that servers, which execute different components, in a transaction
chain do not have different final states. We show that if an end server is committed, then
every server is in precommit or commit state. Suppose that the end server is in commit
state and that there is at least one server, Serveri, that is not in precommit or commit
state. Therefore, Serveri must be in one of the following states: start state, wait for
messages state, or abort state. If Serveri is in the start state, then by definition it has
not begun executed its assigned component. As a result, the end server cannot be in
the commit state since the transaction’s execution is not complete. Furthermore, the end
server, Servern, must receive a precommit message from Servern−1 in order to enter the
commit state. For this to happen, Servern−1 must be in the precommit state. As a result,
Servern−1 also cannot be in the wait for messages state since Servern would not be able
to enter the primary to secondary message sent state, which is the state prior to entering
the commit state. Similarly, for Servern−1 to enter the precommit state, it must receive a
precommit message from Servern−2, which indicates that Servern−2 is in the precommit
state. This argument extends to all previous intermediate servers and the client in the
transaction chain. Lastly, suppose there exists at least one server in the transaction chain
that is in the abort state. To enter the abort state, a server must receive an abort message
from another server or abort the transaction due to a key conflict or user abort, which we
call an abort condition. In both cases, there exists one server that encountered an abort
condition when executing its assigned component. As a result, abort messages are issued
to all participating servers in the transaction chain, and the end server never receives the
transaction and cannot enter the commit state. Therefore, since all intermediate servers
cannot be in the start state, wait for messages state, or the abort state, they must be in
either the precommit state or commit state.

End server in commit state and no servers aborted if client receives result

We now show that if the client receives the result of the transaction (i.e., it is in the result
received state), then the end server is in commit state and no server in the transaction
chain is in abort state. We first suppose that the client received the result of the transaction
and that the end server is not in the commit state. By CrossStitch’s specification, the final
result of the transaction is sent when the end server enters the commit state. Therefore,
for the client to receive the result, the end server must have committed the transaction.
As shown previously, servers in a transaction chain cannot be in different final states.
Therefore, if the client receives the result of the transaction and the end server is in the
commit state, no other server in the transaction chain may be in the abort state.
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Receipt of an abort message indicates that at least one server is in the abort
state

We demonstrate that the receipt of an abort message indicates that one server is in the
abort state. Suppose that there are no servers in the abort state and that Serveri receives
an abort message. According to our specification, a CrossStitch server generates an abort
message if it encounters an abort condition. Upon encountering an abort condition and
sending an abort message, it enters the abort state. For an abort message to be received by
Serveri, there must be a server that is already in the abort state. Therefore, if a server in
the transaction chain receives an abort message, then at least one server in the transaction
chain is in the abort state.

A server in the abort state indicates that the end server is not in the commit
state

If there is one server in the abort state, then the end server is not in the commit state.
Suppose that the end server is in the commit state and has committed the transaction.
As we have shown in earlier in this section, servers in a transaction chain cannot be in
different final states. Since the abort state and the commit state are final states, if there
is one server in the abort state, then the end server, which is also part of the transaction
chain, cannot be in the commit state.

In this chapter, we have shown that CrossStitch provides liveness and safety. We have
shown that the client and every server in the transaction chain eventually enter a final
state (i.e., commit state or abort state). Moreover, we have shown that either all servers
and the client enter the abort state or the client receives a result and all servers enter the
commit state.
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Chapter 5

Handling Failures

In this chapter, we describe CrossStitch’s failure handling mechanism. We demonstrate
that the liveness and safety properties presented in Chapter 4 hold even in the presence of
a single failure. Instead of providing durability through replication, we assume that before
a server enters the precommit state, it writes its data to durable storage so that it is aware
of its state when it recovers1. When the failed server recovers, it can query other servers
in the transaction chain regarding the status of the transaction and abort or commit the
transaction based on this status. We cannot ensure that data on a failed server is available;
however, we ensure that the data is available once the failed server recovers. In practice,
the use persistent storage to provide availability is not desirable as a synchronous write to
disk is expensive; thus, it would not be appropriate for web applications that demand low
latency. Although a replication mechanism is more appropriate for low latency applications,
we do not describe it in this thesis and leave it for future work.

Our analysis uses a fail-stop model in which servers are aware of other server failures.
In this chapter, we describe how CrossStitch uses a timeout mechanism to enable servers to
determine their respective course of action in the event of a failure. We also exhaustively
enumerate the different failure scenarios and illustrate how CrossStitch recovers from them.

1Because our evaluation is based on an in-memory datastore, this overhead is not captured in our result
in Chapter 6.
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5.1 Timeout Mechanisms

CrossStitch uses timeouts as part of its failure detection and recovery protocol. If a server in
the transaction chain does not receive an expected message (acknowledgement, precommit,
etc.) after a certain amount of time has passed, it may be the result of a server failure.
Therefore, timeouts are used as a mechanism to determine when it is appropriate for a
server to query another server that is further down the transaction chain. If a server has
not received its expected precommit, acknowledgement, or result messages, then it may
begin querying other servers in the transaction chain once the timeout has passed. By
querying servers that are further along the transaction chain, a server can determine if a
transaction successfully completed and was forwarded. This allows a server to determine
whether or not to abort. If the server has entered the precommit state, it cannot abort the
transaction as shown in Section 4.2.2. Therefore, the server may now request that another
server abort on its behalf. We use this timeout mechanism to provide safety and liveness
in the presence of a single server failure.

5.2 Failure Model

In the following sections, we describe how CrossStitch handles server failures. Again, we use
the term intermediate server to refer to a server that is not the last server in the transaction
chain and the term end server to refer to the server that is the last server in the transaction
chain. Our analysis assumes a fail-stop failure model for our servers. Thus, servers can
detect if other servers have failed. For our analysis, we do not explicitly handle network
partitions; however, we consider an unreachable server to be a failed server. Therefore,
CrossStitch can support a network partition so long as the smaller partition consists of at
most one server.

We demonstrate CrossStitch’s liveness in the presence of a single failure. Again, final
states for a CrossStitch transaction include the commit state and the abort state. We
consider client failure, intermediate server failure, and end server failure. For all failure
scenarios, suppose that Server1, Server2, and Server3 are three consecutive servers in the
transaction chain where Server1 is the first hop. We first consider the case where Server1,
Server2, and Server3 are intermediate servers. Our presented analysis can be extended
to Serveri−1, Serveri, and Serveri+1, which are intermediate servers in the transaction
chain. Moreover, we also consider the case where Server1 and Server2 are intermediate
servers and Server3 is an end server. As CrossStitch uses a transaction replica, we say that
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Server′3 is Server3’s replica for the transaction. In this scenario, our presented analysis
can extend to any last three servers in the transaction chain.

5.2.1 Client Failure

We enumerate the instances when a client can possibly fail and we describe how CrossStitch
can rectify the failure in order to determine the next action. In the figures in this section,
an unsent message is equivalent to a message that is not received. We suppose that the
client and the servers wish to execute transaction Ti.

Figure 5.1: Client Failure: Case 1

C1: The client fails before sending the transaction (Figure 5.1). If the client
fails prior to sending the transaction, knowledge of Ti does not exist on any server in the
transaction chain. Therefore, servers in the transaction chain do not need to abort or
commit Ti.

Figure 5.2: Client Failure: Case 2

C2: The client fails after sending the transaction, but before the acknowl-
edgement message is received (Figure 5.2). The client has not sent a precommit
message to Server1 since it has not received an acknowledgement message. Without the
precommit message from the client, Server1 does not enter the precommit state. Eventu-
ally, Server1 timesout while executing transaction Ti and it aborts Ti.
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Figure 5.3: Client Failure: Case 3

C3: The client fails after receiving the acknowledgement message but before
sending the precommit message (Figure 5.3). Server1 has not received the precom-
mit message from the client; thus, it remains able to abort the transaction. Eventually,
Server1 timesout while waiting for a precommit message from the client and it aborts
transaction Ti.

Figure 5.4: Client Failure: Case 4

C4: The client fails after sending the precommit message (Figure 5.4).
Server1 receives the precommit message and enters the precommit state. Transaction
Ti proceeds normally on the remaining servers in the transaction chain. In the event that
the client does not recover from its failure by the time Ti completes, Server3 can maintain
the result of the transaction and wait for the client to complete its recovery.

5.2.2 Intermediate Server Failure

We now consider the scenarios where an intermediate server fails. In the following cases, we
suppose that Server2 fails. Similar arguments hold if Server1 fails as the messages between
the client, Server1, and Server2 are isomorphic to the messages between Server1, Server2,
and Server3. We enumerate the instances in which Server2 may fail. We note that we
do not assume a second server failure. For our analysis, once Server2 sends a message to
another server (e.g., Serveri), we assume the recipient (Serveri) receives the message.
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Figure 5.5: Intermediate Server Failure: Case 1

I1. Server2 fails before receiving the transaction from Server1 (Figure 5.5).
Server1 never receives an acknowledgement message from Server2; therefore, after the
timeout, Server1 aborts the transaction. Server1 is able to abort the transaction as it has
not entered the precommit state.

Figure 5.6: Intermediate Server Failure: Case 2

I2. Server2 fails after receiving the transaction from Server1. However,
Server2 does not send an acknowledgement message to Server1 and the transac-
tion to Server3 (Figure 5.6). Server1 never receives an acknowledgement message from
Server2; therefore, after the timeout has passed, Server1 aborts the transaction. Server1
is able to abort the transaction as it has not entered the precommit state.

Figure 5.7: Intermediate Server Failure: Case 3

I3. Server2 fails after receiving the transaction from Server1 and sending
an acknowledgement message to Server1. However, Server2 does not send the
transaction to Server3 (Figure 5.7). Given that Server1 has received the acknowledge-
ment message from Server2, it is aware that Server3 is the next server in the transaction
chain. Since Server3 never receives the transaction, the transaction does not complete.
Therefore, Server1 eventually reaches a timeout since it does not receive the result of the
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transaction. Server1 queries Server3 whereupon it discovers that Server3 has not received
the transaction. Server1 is in the precommit state; thus, it requests Server3 to abort the
transaction on its behalf. We note that there is a definite ordering for the sending of trans-
action and acknowledgement messages; however, the operating system may reorder these
messages, so we enumerate all cases in I3, I4, and I5.

Figure 5.8: Intermediate Server Failure: Case 4

I4. Server2 fails after receiving the transaction from Server1 and after sending
the transaction to Server3. However, it does not send an acknowledgement
message to Server1 (Figure 5.8). Since Server1 does not receive an acknowledgement
message, it does not enter the precommit state. As a result, all servers after Server1 do not
enter the precommit state. Eventually, Server1 reaches its timeout and queries Server2
only to discover that Server2 has failed. Server1 aborts the transaction by notifying all
previous servers in the transaction chain. Similarly, Server3 becomes unable to send an
acknowledgement to Server2 and does not receive a precommit message from Server2.
When Server3 reaches its timeout, it must send an abort message to all participating
servers in the transaction chain. We note that servers that are further along the transaction
chain will also timeout. However, these servers will reach the same conclusion regarding the
status of the transaction as Server3 and all subsequent servers are not in the precommit
state.

Figure 5.9: Intermediate Server Failure: Case 5

I5. Server2 fails after receiving a precommit message from Server1. How-
ever, it fails before sending the transaction to Server3 (Figure 5.9). In this case,
Server1’s timeout expires while waiting for a commit or an abort message. Server1 queries

56



Server3 and discovers that Server3 has not received transaction. Therefore, Server1 re-
quests Server3 to abort the transaction on its behalf.

Figure 5.10: Intermediate Server Failure: Case 6

I6. Server2 fails after sending the transaction to Server3 and after receiving
an acknowledgement message from Server3. Server2 has not sent an acknowl-
edgement message to Server1. The timeout for Server3 expires since it never receives
a precommit message from Server2. Server3 queries Server2 and discovers that Server2
has failed. As a result, since Server3 is not in the precommit state, it aborts the trans-
action. Server1 may also abort the transaction as it never receives the acknowledgement
message from Server2. Since Server1 is not in the precommit state, it may also abort the
transaction.

Figure 5.11: Intermediate Server Failure: Case 7

I7. Server2 fails after sending the transaction to Server3 and after sending the
acknowledgement message to Server1. However, it does not receive a precommit
message from Server1. This case is similar to case I5. Server1 eventually queries Server3
after its timeout value has expired. Since Server3 is not in the precommit state, it aborts
the transaction on Server1’s behalf.

Figure 5.12: Intermediate Server Failure: Case 8
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I8. Server2 fails after sending an acknowledgement message to Server1 and
after receiving an acknowledgement message from Server3 (Figure 5.12). Since
we assume that there is at most a single server failure, Server1 enters the precommit
state after receiving the acknowledgement message from Server2. Therefore, this case is
similar to I7. Server1 eventually queries Server3 after its timeout value has expired. Since
Server3 is not in the precommit state, it aborts the transaction on Server1’s behalf. In
this case, Server3’s timeout may expire when it is waiting for the precommit message. As
a result, since Server3 is not in the precommit state, it may also abort the transaction.

Figure 5.13: Intermediate Server Failure: Case 9

I9. Server2 fails before receiving an acknowledgement message from Server3;
however, Server2 has received a precommit from Server1 and has sent the trans-
action to Server3. Server3 never receives a precommit message from Server2. Eventually,
Server3 reaches its timeout and queries Server2 to discover that Server2 has failed.

Figure 5.14: Intermediate Server Failure: Case 10

I10. Server2 fails after receiving an acknowledgement message from Server3
but before sending a precommit message to Server3; however, Server2 has re-
ceived a precommit from Server1 and has sent the transaction to Server3. This
case is similar to I7. Server1 eventually queries Server3 after its timeout value has ex-
pired. Since Server3 is not in the precommit state, it aborts the transaction on Server1’s
behalf. We note that Server3 may also timeout. However, since Server3 is not in the
precommit state, Server3 may query Server2 and discover that Server2 has failed. In this
case, Server3 may also abort the transaction.
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Figure 5.15: Intermediate Server Failure: Case 11

I11. Server2 fails after sending the precommit message to Server3. Since our
analysis only assumes a single server failure, we know that Server3 will eventually have
all the prerequisites to enter the precommit state. As the transaction proceeds along the
chain, the end server commits the transaction. Since we are assuming a fail stop model,
once the end server is aware that Server2 has recovered, the end server notifies Server2 to
commit the transaction.

5.2.3 End Server Failure

In this section, we describe the failure and recovery scenarios in the case where Server3
fails. We note that Server3 is the end server in this transaction chain.

Figure 5.16: End Server Failure: Case 1

E1. Server3 fails before receiving the transaction from Server2 (Figure 5.16).
Server2 becomes unable to send the transaction. Moreover, Server2 does not receive an

59



acknowledgement message from Server3, which is necessary to enter the precommit state.
Therefore Server2 may abort the transaction.

Figure 5.17: End Server Failure: Case 2

E2. Server3 fails after receiving the transaction from Server2 but before
sending an acknowledgement message to Server2 (Figure 5.17). Since Server2
does not receive an acknowledgement message, it does not transition to the precommit
state. Therefore, after its timeout value has passed, it aborts the transaction.
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Figure 5.18: End Server Failure: Case 3

E3. Server3 fails after sending an acknowledgement to Server2 (Figure 5.18).
Since our analysis does not include more than one server failure, once Server2 receives
the acknowledgement message, it is able to enter the precommit state since it received a
precommit message from Server1. As we are using the fail-stop model in our analysis,
once Server2 is aware of Server3’s failure, Server2 requests Server′3 abort on its behalf.
However, in the fail-silent model, we note that Server3 has the role of the coordinator in
two-phase commit. In CrossStitch, we say that a transaction commits once the end server
receives a primary to secondary acknowledgement message from the transaction’s replica.
Since the Server′3 has not sent the primary to secondary acknowledgement message to
Server3, Server2 may query Server′3, and Server′3 can abort the transaction on Server2’s
behalf.
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Figure 5.19: End Server Failure: Case 4

E4. Server3 fails after receiving a precommit message from Server2 but before
sending the primary to secondary commit message to Server′3 (Figure 5.19). This
case is analogous to case E3.

Figure 5.20: End Server Failure: Case 5
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E5. Server3 fails after sending the primary to secondary commit message
to Server′3 but before receiving the primary to secondary acknowledgement
from Server′3 (Figure 5.20). A transaction is committed once the end server, which
is responsible for issuing the commit messages and sending the result back to the client,
receives the primary to secondary acknowledgement message from its replica. Since it
is in the precommit state, Server2 requests that Server′3 aborts the transaction on its
behalf. Similar to case E3, in the fail-silent model Server3 has the role of the transaction
coordinator. In this case, Server2 and Server′3 must wait for Server3 to recover.

Figure 5.21: End Server Failure: Case 6

E6. Server3 fails after receiving the primary to secondary acknowledgement
from Server′3 (Figure 5.21). At this point, since Server3 has received the primary to
secondary acknowledgement, the transaction is considered committed. Therefore Server2
may query Server′3 in order to determine that Server3 has successfully completed its
assigned component in the transaction chain. Server′3 notifies Server2 that it has sent the
primary to secondary acknowledgement to Server3. Therefore, Server2 may commit the
transaction.

5.2.4 End Replica Server Failure

The end server’s replica may also fail. In this section, we enumerate the cases where
Server′3 may fail.
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Figure 5.22: End Server Replica Failure: Case 1

ER1. Server′3 fails before receiving the primary to secondary commit mes-
sage (Figure 5.22). Server3 has not entered the precommit state; therefore, it is able to
abort the transaction after its timeout has passed.

Figure 5.23: End Server Replica Failure: Case 2

64



ER2. Server′3 fails after receiving the primary to secondary commit message,
but before sending the primary to secondary acknowledgement message (Fig-
ure 5.23). Server3 has not entered the precommit state; therefore, it is able to abort the
transaction after its timeout has passed. However, in a fail-silent failure model, Server′3
has the role of the traditional transaction coordinator. Therefore, Server3 would need to
wait for Server′3 to recover before it is able to commit the transaction.

Figure 5.24: End Server Replica Failure: Case 3

ER3. Server′3 fails after sending the primary to secondary acknowledge-
ment message (Figure 5.24). Since Server3 has received the primary to secondary
acknowledgement message, the transaction is now committed. Server3 can simply notify
all participants in the transaction chain to commit.

By enumerating all failure cases, we can show that CrossStitch provides liveness and
safety in the presence of a single server failure.
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Chapter 6

Evaluation

In this section, we present an evaluation of the CrossStitch transaction processing frame-
work. We vary factors that would affect CrossStitch’s performance in order to investigate
its performance under different environments and workloads. These factors include the
number of concurrent clients, the distribution of key accesses, the length of the transac-
tion, and the read/write ratio of the operations. Firstly, we investigate contention in the
presence of multiple clients and significant demand for a small set of keys. Secondly, we
analyse the latency of CrossStitch in various scenarios such as different key access distri-
butions and read/write ratios. Lastly, we demonstrate how different key access patterns
affect CrossStitch’s performance.

6.1 Experimental Setup

In CrossStitch’s evaluation, we use eight Intel Xeon machines as servers. Each server has
a 3.06 GHz processor, 1024 KB Cache, and 2GB of RAM. Moreover, we utilize a single
client machine that has the same specification as the servers. All machines are in the same
internal network; thus, our evaluation is representative of an intra-datacenter transaction.

In order to evaluate CrossStitch, we use a dataset that consists of a collection of key-
value pairs where each key is 24-bytes. Each key maps to a 1024-byte string. 2,000,000
keys are used in the evaluation of CrossStitch. We use YCSB [14] to generate the keys
used in our evaluation.

As CrossStitch uses multi-version timestamp ordering as a means to provide isolation,
it maintains multiple versions of data. However, this may lead to excessive memory usage.
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In order to reduce memory usage, CrossStitch maintains at most four versions of a single
key. Similarly, CrossStitch removes old state machines (i.e., ones that are in either commit
state or abort state) that are at least two minutes old. Old versions of data and old state
machines are removed in order to limit CrossStitch’s memory requirement. Moreover,
our implementation of CrossStitch uses an in-memory datastore and does not write to
persistent storage. In our implementation, writes are sent to a replica server in addition
to the primary server. The replica also sends a notify message to the subsequent server
in the transaction chain. As a result, write latency is greater than read latency. On the
client-side, CrossStitch is evaluated using a single machine that spawns multiple client
applications.

In our evaluation, we show the results using both the CrossStitch implementation that
is described in this thesis and an optimized implementation where a server withholds a
precommit message in the event of a read-write conflict instead of aborting (as described
in Section 3.1.4). Our optimized version also has additional performance optimizations
to improve transaction latency including disabling Nagle’s algorithm in our TCP sockets.
By disabling Nagle’s algorithm, messages are sent immediately, thereby reducing latency.
Although our optimized implementation includes two major changes, we note that these
changes affect different dimensions of CrossStitch’s performance and do not have a con-
founding effect on each other. By turning off Nagle, we reduce the latency of a CrossStitch
transaction. Withholding a precommit message in the even of a read-write conflict allows
CrossStitch to reduce its abort rate.

6.2 Contention in CrossStitch

We first explore the effects of key contention on CrossStitch. We evaluate CrossStitch
using various key distributions including random and various Zipfian distributions. A
Zipfian distribution is defined by the probability function as follows: x−α/ζ(a), where ζ(a)
is the Riemenn Zeta function and α is the distribution parameter.

Intuitively, a greater value of α indicates that the key accesses are more skewed. To
provide a representation of Zipfian distribution, we use Python’s numpy module to draw
10,000 items. Table 6.1 depicts the number of occurrences that an item of a given rank
is drawn, where an item of rank 1 is the most popular item. In a Zipfian distribution,
the rank of an item is inversely proportional to the number of times it is drawn. Various
studies such as [10, 33] indicate different alpha values for the Zipfian distribution. We select
Zipfian alphas of 1.05 and 1.30 to demonstrate the effect of varying key distributions. In
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Table 6.1, we find that with an α = 1.30, the most popular item occurs a quarter of the
time.

Rank α = 1.05 α = 1.30

1 494 2563
2 236 1043
3 174 647
4 135 398
5 95 337

Table 6.1: Zipfian Distribution for 10,000 Randomly Drawn Items

Moreover, we explore the success rate of transactions using CrossStitch when fac-
tors such as the number of concurrent clients, the distribution of key accesses, and the
read/write ratios are varied. The default read-write ratio we use is 80-20 and the default
number of concurrent clients is 10. Unless otherwise noted, each experiment consists of
1000 transactions.

In Figure 6.1, we show the number of successful transactions, out of 1000, when we
increase the number of concurrent clients. In this experiment, we use a read-write ratio
of 80-20. We later show that using an 80-20 read-write ratio results in the greatest abort
rate when using CrossStitch; nonetheless, 90% of transactions with a read-write ratio of
80-20 are able to complete successfully when using the optimized version of CrossStitch.
Although not depicted in Figure 6.1, we find that a random key distribution, in which
there is minimal key contention, results in virtually no failures for up to 20 concurrent
clients even in the non-optimized implementation of CrossStitch. Moreover, Figure 6.1
demonstrates that a greater contention for keys, which is reflected in a higher alpha value,
results in fewer transactions completing successfully. We find that using the optimized
version of CrossStitch, we can significantly reduce the abort rate. For 20 concurrent clients
and a data distribution with α = 1.05, the number of successful transactions improves
from 644 to 938 when using the optimized version of CrossStitch.

In our first experiment, we investigate the abort rate as the amount of key contention
increases. We vary the α value for the Zipfian distribution in which a lower α indicates that
the data is less skewed. In Figure 6.2, we show that the greater the alpha value, the fewer
transactions complete successfully, regardless of the number of concurrent clients. In the
above experiment, we fix the chain length of each transaction to be five. Nonetheless, from
the results of our optimized implementation, we find that the abort rate is significantly
reduced if we wait for a read operation to commit or abort before aborting the conflicting
write operation.
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In Figure 6.3, we illustrate the number of successful transactions versus the percentage
of read operations. We find that transactions do not abort in an all-read or an all-write
scenario since conflicts only occur when a transaction attempts to overwrite a version
that has already been read, or when a transaction attempts to read a write that is still
pending. As expected, the key access distribution also greatly affects the success rate of the
transactions, with a random key access leading to the greatest success rate, since there is
little, if any, contention for key accesses. Therefore, we find that the key access distribution
and the read/write ratio affect the successful completion rate in CrossStitch.
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Figure 6.3: Number of Successful Transactions versus the Percentage of Reads

6.3 Transactional Latency in CrossStitch

We also investigate the latency of a transaction in the CrossStitch transaction processing
framework, as latency significantly impacts the performance of a web application. We find
that the number of concurrent users (clients), the distribution of key accesses, and the
read/write ratio also affect latency in CrossStitch. In Figure 6.4, we run 1000 transactions,
each with a chain length of five. The transaction completion time is determined by taking
the average of the 1000 transactions. We find that transaction completion time increases
linearly with the number of concurrent users. However, we find that the rate of increase
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is higher when the key accesses are more skewed (in other words, the key accesses follow a
Zipfian distribution with a higher alpha value).
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Figure 6.4: Transaction Completion Time versus Number of Threads

In Figure 6.5, we find that if key accesses follow a Zipfian distribution, then the alpha
value, which refers to the distribution of data, can have an impact on the transaction’s
completion time. Regardless of the number of concurrent users, the latency of a CrossStitch
transaction increases as the Zipfian distribution’s alpha value increases from 1.05 to 1.30.
In addition to key access distribution, we find that the read/write ratio of transactional
operations in CrossStitch also affect a transaction’s completion time, which shows that
there is some overhead incurred when executing a write operation.
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Figure 6.6 depicts the relationship between transaction completion time (latency) and
read/write ratio. As expected, we find that a greater percentage of reads leads to lower
latency.

Additionally, we find that the length of the transaction chain also affects the transac-
tion’s completion time. This is intuitive as each additional key access is likely an extra
hop; thus, the transaction will require more time to complete. In Figure 6.7, we find that
the transaction completion time is proportional to the length of its chain.
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6.4 Scalability of CrossStitch

In this section, we investigate the scalability of CrossStitch by varying the number of
CrossStitch servers. We performed our experiments using Amazon EC2 medium [1] in-
stances as our servers and an Amazon EC2 large instance as our client. We run 5000
transactions to determine the throughput. Each transaction consists of five key accesses,
and we use a read-write ratio of 80-20. For these experiments, we use a random key distri-
bution in our experiment in order to better showcase the benefits of using CrossStitch. We
omitted the random key distribution from our previous figures in order to reduce clutter.
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Moreover, we use the non-optimized CrossStitch implementation. The results are shown in
Figure 6.8. We also depict the throughput for a various number of clients. Between 0 to 24
servers, we find that doubling the number of servers results in a 67% to 73% improvement
in throughput for ten concurrent clients.
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6.5 CrossStitch for Geographically Distant Servers

One of the key benefits of CrossStitch is its effectiveness at serving transactions that
span geographically distant servers. In this experiment, we use a read-write ratio of 80-
20, 50 concurrent clients, and a transaction chain length of five. Although we use a
random key distribution, we configure our transactions to access keys that are located on
specific datacenters. Suppose a transaction sequentially accesses key1, key2, key3, key4,
and key5. In Figure 6.9, the line labelled as Random indicates that the transaction’s key
accesses alternate between datacenters. For example, key1, key3 and key5 are located on
one datacenter (i.e., Amazon EC2 servers on the East coast); key2 and key4 are located
on another datacenter (i.e., Amazon EC2 servers on the West coast). The behaviour
exhibited by the Random experiment is similar to the traditional transaction processing
system where the client is geographically distant from half of the servers. For the line that
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is labelled as Fixed, they keys are partitioned such that key1, key2 and key3 are located
on one datacenter; key4 and key5 are located on another datacenter. In this experiment,
the transaction only performs a single cross-datacenter hop from key3 to key4. We show in
Figure 6.9 that CrossStitch has the potential to significantly reduce latency if transactions
are designed well. We show that for a transaction chain length of 16 that accesses data
on both the East and West coasts, CrossStitch provides a 58 % latency reduction when
compared to a traditional transaction processing system.
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In summary, we have demonstrated that key contention results in a greater abort rate
and higher latency. We have also shown that CrossStitch provides low latency for sequential
transactions that are typical of web applications. We find that a transaction that has an
80-20 read-write ratio and contains five key accesses has a latency of 37ms to 100ms when
executing in an environment with ten concurrent clients.
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Chapter 7

Conclusion

As the cloud has become the preferred platform for hosting web applications, most com-
mercially available cloud storage systems have focused on scalability and performance.
However, transactions have remained critical when performing data operations in order to
ensure the integrity of the data that is stored. Therefore, in this work, we presented a new
framework, called CrossStitch, for providing transactions for key-value stores, which are
the underlying structure for cloud storage systems.

Many commercially available storage systems either do not support transactions or sup-
port for transactions is limited within a restricted dataset. Thus, CrossStitch addressed
the lack of support for general transactions in today’s cloud storage systems. The design of
CrossStitch focused on servicing transactions that are typical of web applications. There-
fore, we considered the common requirements and characteristics for web transactions.
Firstly, in order to meet end-user requirements and expectations, a transactional system
must have low-latency. Secondly, web transactions are typically short; their functionality
normally comprises retrieving a value for a given key or writing a value in a data store.
Lastly, web transactions are highly sequential. The value of a key may be used as a key to
access another value.

As a result, CrossStitch was developed to provide web applications, hosted in the
cloud, with lightweight and efficient transactions that are able to complete quickly. The
novelty of CrossStitch lies in its messaging protocol. Since CrossStitch targets serving
web transactions, which are short, CrossStitch sends the transactional code to the servers
responsible for executing the key request. Each server that is responsible for hosting a
key executes the key request and component of the transaction chain until the subsequent
key request is made. Afterwards, the server forwards the transaction, along with the
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transactional code, to the subsequent server. Therefore, servers communicate with each
other until the transaction is completed. The server that completes the execution of the
transaction is then responsible for notifying all servers in the transaction to commit and for
sending the reply back to the client. CrossStitch’s messaging protocol effectively emulates
the functionality of a two-phase commit. Servers that are adjacent to each other in the
transaction chain send each other acknowledgement and precommit messages; thus, as the
transaction progresses, servers incrementally enter the precommit state.

CrossStitch’s messaging framework reduces latency at the client. The client sends only
one message to the storage servers and receives a single message that contains the result
of the transaction from the servers. If the client is located far away from the server,
CrossStitch’s transactional framework helps reduce latency as it eliminates back and forth
messages between the client and the servers.

We also demonstrated that CrossStitch performs well compared to other systems of-
fering transactions. In particular, we find that CrossStitch scales with the number of
concurrent clients that are executing transactions and the length of the transaction chain.
Therefore, CrossStitch caters to the requirements and characteristics of web applications
and it is able to provide low-latency, lightweight transactions for web-applications.
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