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Abstract

The set of non-crossing partitions was first studied by Kreweras in 1972 and was known
to play an important role in combinatorics, geometric group theory, and free probability. In
particular, it has a natural embedding into the symmetric group, and there is an extensive
literature on the asymptotic cycle structures of random permutations. This motivates our
study on analogous results regarding the asymptotic block structure of random non-crossing
partitions.

We first investigate an analogous result of the asymptotic distribution for the total
number of cycles of random permutations due to Goncharov in 1940’s: Goncharov showed
that the total number of cycles in a random permutation is asymptotically normally dis-
tributed with mean log(n) and variance log(n). As a analog of this result, we show that
the total number of blocks in a random non-crossing partition is asymptotically normally
distributed with mean n

2
and variance n

8
.

We also investigate the outer blocks, which arise naturally from non-crossing partitions
and has many connections in combinatorics and free probability. It is a surprising result
that among many blocks of non-crossing partitions, the expected number of outer blocks is
asymptotically 3. We further computed the asymptotic distribution for the total number
of blocks, which is a shifted negative binomial distribution.
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Chapter 1

Introduction

1.1 Non-crossing Partitions

The collection NC(n) of all non-crossing partitions of the set {1, 2, · · · , n} was first stud-
ied by Kreweras [9] in 1972, as an interesting example of partially ordered set. An ele-
ment π ∈ NC(n) is a partition π = {V1, V2, · · · , Vk} of {1, 2, · · · , n}, where V1, V2, · · · , Vk
(called the blocks of π) are non-empty pairwise disjoint sets such that V1

⋃
V2

⋃
· · ·
⋃
Vk =

{1, 2, · · · , n}. Moreover, for any i 6= j, we require that Vi, Vj do not cross; in other words,
it is not possible to have a < b < c < d where a, c ∈ Vi and b, d ∈ Vj. An example of a
non-crossing partition π ∈ NC(9) is shown in Figure 1.1.1.

The point of Kreweras’s paper is that NC(n) has an interesting structure as a poset
(short for partially ordered set), where the partial order is given by reverse refinement: we
say π ≤ ρ whenever every block of ρ is a union of some blocks in π. Kreweras studies several
properties of this partially ordered set, including the Möbius function on the line of Rota’s
program started in [15] (where Rota considered the Möbius function on different posets,
including the poset P(n) of all partitions on {1, 2, · · · , n}). In certain respect, NC(n) turns

Figure 1.1.1: An Example of π ∈ NC(9)
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out to be a nicer poset than Pn, because it has a nice symmetric structure in contrary to the
set of partitions. The symmetry is given by an order-reserving automorphism on NC(n),
which is known as the Kreweras complement. The enumerative properties of non-crossing
partitions was studied by several other authors after Kreweras, and one may refer to the
survey paper [17] by R. Simion in 2000.

More recently, NC(n) has caught the attention of people studying geometric group
theory. This is due to the fact that NC(n) can be naturally embedded into the Cayley
graph of the symmetric group Sn, where the set of generators for Sn is the set of all
transpositions (i, j) with 1 ≤ i < j ≤ n. The embedding can be described by regarding
each block Vi of a non-crossing partition π as a cycle, and writing the numbers of Vi in
increasing order. For example, the non-crossing partition π shown in Figure 1.1.1 can be
regarded as the permutation:(

1 2 3 4 5 6 7 8 9
6 4 3 5 2 1 9 8 7

)
There is a natural partial order on the Cayley graph of Sn, and this embedding of

NC(n) turns out to be an order preserving isomorphism between NC(n) and an interval
in the symmetric group. People in geometric group theory have studied the analog of such
an interval in other Weyl groups, and (starting with Reiner [13]) have found other posets
which can be thought of as non-crossing partitions. For this topic, one can refer to J.
McCammond’s survey paper [10] on the connection between non-crossing partitions and
geometric group.

Another area where NC(n) has found a role recently is the development of free prob-
ability, and in connection to that, the one of random matrix theory. In free probability,
NC(n) plays a critical role in the description of the R-transform, which is the free proba-
bility counterpart of the usual Fourier transform. In the study of random matrices, NC(n)
appears naturally in the leading terms in various trace formulas. A more detailed descrip-
tion on the role of NC(n) in free probability can be found in the Lecture 16 and 23 in the
book [12] by A. Nica and R. Speicher.

1.2 Asymptotic Results on Random Non-crossing Par-

titions

The motivation of this thesis comes from the fact that NC(n) embed canonically into the
symmetric group Sn, and that on the other hand, there is a rather extensive literature
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(going back at least to the 1940’s) on the cycle structure of random permutation. For a
clear and concise presentation of this topic, we refer to Section XIV.4 of the book of B.
Bollobas [2]. By a random permutation, we simply understand an element of Sn is assigned
atomic measure of 1

n!
. When NC(n) embeds into Sn, the blocks of non-crossing partitions

become cycles of permutations. It stands to reason that there should be analogous re-
sults concerning the block structure of a random π ∈ NC(n). The results about random
non-crossing partition will not, however, follow directly from the known results about Sn
because the relative size of NC(n) inside Sn goes to 0 as n→∞.

The first test question that one can ask is about asymptotic distribution of the total
number of blocks in a random π ∈ NC(n). For random permutations, Goncharov [7, 8]
showed that the total number of cycles in a random permutation is asymptotically normally
distributed with mean log(n) and variance log(n). It is clear that we cannot have log(n)
as the asymptotic expectation, because the symmetry given by the Kreweras complement
immediately results in an asymptotic expectation around n

2
. In fact, we shall prove, in

Chapter 3:

Theorem 1.2.1. Let Xn : NC(n)→ N count the total number of blocks in a non-crossing
partition. Then

Xn − n/2√
n/8

d→ N (0, 1)

We also investigate an object arise naturally from non-crossing partition, which we we
call them the outer blocks. For π = {V1, V2, · · · , Vk} ∈ NC(n), a block Vi is called an inner
block if there exists a, b ∈ Vj, j 6= i such that for all v ∈ Vi, a < v < b. If a block is not
inner, we call it an outer block. The word ’outer’ comes from the following observation: If
we draw a non-crossing partition π ∈ NC(n) on a line, the inner block are those enclosed
by some other blocks; the outer blocks are those blocks not enclosed by any other blocks.
For example, the π ∈ NC(9) shown in Figure 1.1.1 has two outer blocks: {1, 6} and {7, 9}
(also colored in red). Outer block arise naturally as we study the block structure of non-
crossing partitions, and are related to some other combinatorial objects as well. They also
play a special role in various summation formulas used in free probability [3, 11]. It is
quite surprising that a random non-crossing partition cannot have too many outer blocks
as the asymptotic expectation of the total number of outer blocks is 3. We established the
following result regarding the asymptotic distribution of the total number of outer blocks:

Theorem 1.2.2. Let Yn : NC(n) → N count the total number of outer blocks in a non-
crossing partition. Let ν be a probability measure with mass k

2·2k at point k = 1, 2, · · · .
Then Yn

d→ ν.
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Beside the present introduction, the thesis is divided into 4 chapters. In Chapter 2, we
shall give a review of background on non-crossing partition and asymptotic distributions.
Then in Chapter 3 and 4, we develop the asymptotic results on the total number of blocks
and total number of outer blocks that are announce in Theorem 1.2.1 and 1.2.2 respectively.
Finally, as this study also opens the door for many interesting topics on non-crossing
partitions, we shall briefly discuss some topics for further research in Chapter 5.
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Chapter 2

Background

2.1 Non-crossing Partitions

This section will discuss the concept of non-crossing partition in more detail. Let us first
introduce the formal definition and some notations.

Definition 2.1.1. Fix an positive integer n,

1. A partition π of the set {1, 2, · · · , n} is a collection {V1, V2, · · · , Vk}, where Vi ⊆
{1, 2, · · · , n} are pairwise disjoint non-empty sets with

⋃k
i=1 Vi = {1, 2, · · · , n}. The

sets Vi are called the blocks of π.

2. A non-crossing partition of {1, 2, · · · , n} is a partition π = {V1, V2, · · · , Vk} of {1, 2, · · ·
, n}, where there is no a < b < c < d, such that a, c ∈ Vi, b, d ∈ Vj, and i 6= j.

3. The set of non-crossing partition for {1, · · · , n} is denoted by NC(n).

The set of non-crossing partitions is one of the many structures that can be enumerated
by Catalan numbers (one may refer to Exercise 6.19 in [19], where Stanley gave 66 such
structures). Catalan number is a well-known number in combinatorics, and we shall use
the following facts later on.

Lemma 2.1.2. Let Cn be the n-th Catalan number, where Cn = 1
n+1

(
2n
n

)
= (2n)!

(n+1)!n!

1. Cn =
∑n−1

i=0 CiCn−i−1
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2. Let C(z) =
∑∞

n=0Cnz
n, then C(z) satisfies 1 + zC(z)2 = C(z). As a result, C(z) =

1−
√

1−4z
z

with radius of convergence 1/4.

The Catalan number appears in various enumeration problems, and it can be shown
that there are bijections between the non-crossing partitions and some other objects which
are known to be enumerated by Catalan numbers. Here, we pick two of them as an
illustrative example.

Definition 2.1.3. A Dyck path of length 2n is a path on Z2, starting at (0, 0) and ending
at (2n, 0). Each step of the path is either (1, 1) (a up move), or (1,−1) (a down move).
Moreover, the path is always above the x-axis. The collection of all these paths is Dn.

It is a well-known result that the total number of Dyck path of length 2n is exactly the
n-th Catalan number Cn.

Definition 2.1.4. A Non-crossing pairing π of the set {1, 2, · · · , 2n} is a non-crossing
partition {(ai, bi)}ni=1 of {1, 2, · · · , 2n}. In other words, it is a non-crossing partition where
every block has exactly two elements. The set of all non-crossing pairings for {1, 2, · · · , 2n}
is denoted as NCP (n).

Proposition 2.1.5. There exists bijections between Dn, NCP (n), and NC(n). In partic-
ular, all of these three sets have cardinality Cn, the n-th Catalan number

Proof. To go from Dn to NCP (n), let us denote a up move by U and a down move by D,
so that each Dyck path can be represented as a sequence of U , D where any subsequence
starting from the first step must have at least as many U as D.

Define the map from Dn to NCP (n) as follow: For each i = 1, 2, 3, ..., 2n, if the i-th step
is U , then i is placed inside a pair with j > i where j-th step is D and the sub-string from
i to j has the equal number of U and D. One can easily check this is indeed a bijection. In
fact, we can describe its inverse explicitly: given any non-crossing pairing P = {(ai, bi)}ni=1

where ai < bi, map it to a Dyck path where each step at ai is U and each step at bi is D.

Now to go from NCP (n) to NC(n), for a non-crossing pairing P on 1, 2, · · · , 2n, define
a non-crossing partition π using the following procedure: for any i, j ∈ {1, 2, · · · , n}, i, j is
in the same block of π if and only if there is no pair (a, b) in P such that a ≤ 2i − 1 and
b ≥ 2i. It is not hard to check this is a bijection.

One can make NC(n) into a partially ordered set via the following definition:

6



Figure 2.1.1: The Hasse Diagram of NC(3)

Definition 2.1.6. For π, τ ∈ NC(n), we say π is an refinement of τ if for every block V
in π, V is also contained in some block of τ . This is denoted by π ≺ τ .

A quick observation is that this refinement defines a partial order on NC(n).

Remark 2.1.7. Once the partial order is defined, we can define the notion of cover: for
two non-crossing partitions π, σ ∈ NC(n), we call π covers σ if there is no other τ ∈ NC(n)
such that π ≺ τ ≺ σ. We can consider the Hasse diagram of this partially ordered set,
which is a undirected graph G whose vertex set is NC(n) and (π, σ) is an edge of G if π
covers σ or vice versa. For example, the Hasse diagram of NC(3) is shown in Figure 2.1.1:

Remark 2.1.8. The notion of cover allows us to define the rank of the non-crossing
partitions: we denote the non-crossing partition e = {{1}, {2}, · · · , {n}}, the minimum
element in this poset, to have rank 0; for any other π ∈ NC(n), define the rank of π to be
the length of the shortest path from e to π in the Hasse diagram. In other words, the rank
of π is the number of covers required to reach π from e.

Remark 2.1.9. Recall for π ∈ NC(n), Xn(π) denotes the total number of blocks in π.
One can observe that the rank of a non-crossing partition π is exactly n−Xn(π).

The Hasse diagram of non-crossing partitions is particularly nice in the sense that there
exists a nice symmetry given by the so-called Kreweras complement map.

Definition 2.1.10. (Kreweras Complement) Let π ∈ NC(n) be a non-crossing partition
on points {1, 2, · · · , n}. The Kreweras complement K(π) is defined to be the biggest
non-crossing partition on points {1′, 2′, · · · , n′}, such that π

⋃
K(π) is also a non-crossing

partition on points 1, 1′, 2, 2′, · · · , n, n′.

7



Example 2.1.11. Let us consider the non-crossing partition π ∈ NC(6) where π =
{{1, 4}, {2}, {3}, {5, 6}}:

To compute its Kreweras complement, we first put nodes 1,1′,2,2′,· · · ,6,6′ in order, and
connect {1, 2, · · · , 6} according to π. Now we notice that the points 1′, 2′, 3′ can be placed
in one block without creating any crossing with blocks in π, but none of the other three
points can be added to this block. Hence {1′, 2′, 3′} is one block of K(π). Similarly, we can
verify that K(π) contains two other blocks {4, 6} and {5}. Figure 2.1.2 gives an illustration
of π (black) and K(π) (red).

Figure 2.1.2: The Kreweras Complement of π

Remark 2.1.12. It can be shown that the Kreweras complement map K is an order revers-
ing automorphism on NC(n). As a result, for any π ∈ NC(n), rank(π) + rank(K(π)) =
n− 1. One can immediately deduce that Xn(π) +Xn(K(π)) = n+ 1.

2.2 Narayana Number and Lukasiewicz Path

Kreweras, when he first investigated non-crossing partitions, also enumerates the number
of non-crossing partitions with a given number of blocks [9]. We are going to present a
proof of this result based on the method discussed in [12] using the Lukasiewicz path.

Definition 2.2.1. 1. An almost-rising path is a lattice path in Z2, starting at (0, 0).
Each step, the path moves in the direction (1, i) where i ≥ −1 is an integer. We call
a step of the path falling if i = −1.

2. A Lukasiewicz path is an almost-rising path γ, which ends on the x-axis and never
goes below the x-axis. We denote the set of all the Lukasiewicz path ending at point
(n, 0) by Luk(n).

Definition 2.2.2. For almost-rising paths γ of n-steps, one can completely describe this
path using a vector (λ1, λ2, · · · , λn), λi ≥ −1. Here, the i-th step in γ is in the direction
(1, λi). This vector is called the rise-vector of γ.

8



Remark 2.2.3. For an almost-rising path γ with rise-vector (λ1, λ2, · · · , λn), γ ∈ Luk(n)
if and only if

∑n
k=1 λk = 0 and

∑i
k=1 λi ≥ 0 for all i = 1, 2, · · · , n.

It turns out that Luk(n) is also in one-to-one correspondence with the set of non-
crossing partitions NC(n) in the way described below:

Proposition 2.2.4. Fix a positive integer n. Define Λ : NC(n) → Luk(n) as follow:
given π ∈ NC(n) where π = {V1, V2, · · · , Vk}. Let the left most element of Vi be ai (i.e.
ai = minVi). Then let

λm =

{
|Vi| − 1 if m = ai

−1 otherwise

There is a unique Lukasiewicz path, defined as Λ(π), that corresponds to the rise-vector
(λ1, λ2, · · · , λn). Moreover, Λ is a bijection.

Remark 2.2.5. It is clear from our construction of Λ that a non-crossing partition π ∈
NC(n) has exactly k blocks if and only if Λ(π) has exactly n − k falling steps: exactly
n − k points out of {1, 2, · · · , n} are not the left-most point of some block, which give
rise to n − k falling steps. The rest k points corresponds to steps of (1, |Vi| − 1) where
|Vi| − 1 ≥ 0.

Remark 2.2.6. The enumeration on Lukasiewicz paths is easier due to the cyclic per-
mutation trick: Consider a Lukasiewicz path γ with rise-vector λ = (λ1, λ2, · · · , λn). By
appending an −1 be the end of the rise vector λ, we get a rise vector for an almost-rising
path ended at (n+ 1,−1).

Recall that cyclic permutation on a vector of n variables is essentially applying the cycle
permutation (1, 2, · · · , n) repeatedly: for example, applying cyclic permutations the vector
(a1, a2, · · · , an) once gives (a2, a3, · · · , an, a1); twice gives (a3, a3, · · · , an, a1, a2), etc..

Now observe that if we apply cyclic permutations on the new rise-vector (λ1, · · · , λn,−1),
we always get another rise-vector of some almost-rising path from (0, 0) to (n+ 1,−1): in-
deed, no matter how we permute this vector, −1 +

∑n
k=1 λk = −1. Hence we may define

a map:

Γ : Luk(n)× {0, 1, · · · , n} → {τ : τ is an almost-rising path ended at (n+1,-1)}

where given γ ∈ Luk(n) with rise-vector λ and 0 ≤ i ≤ n, Γ(γ, i) be the unique almost-
rising path from (0, 0) to (n + 1,−1) whose rise-vector is the same as what we get by

9



apply cyclic permutation on (λ1, · · · , λn,−1) i times. In other words, for 0 ≤ i ≤ n − 1,
Γ(γ, i) has rise vector (λi+1, · · · , λn,−1, λ1, · · · , λi); and when i = n, Γ(γ, i) has rise vector
(−1, λ1, · · · , λn).

Proposition 2.2.7. The map Γ defined in Remark 2.2.6 is a bijection.

For the detailed proof of 2.2.7, please refer to the Proposition 9.11 in the book [12].

Remark 2.2.8. For a Lukasiewicz path γ and any i = 0, 1, · · · , n, Γ(γ, i) contains exactly
one more falling step than γ. Hence for each π ∈ NC(n) with k blocks, Γ(Λ(π), i) contains
n + 1 − k falling steps; Moreover, since Γ,Λ are bijections, each almost-rising path with
n + 1 − k falling steps is the image of Γ(Λ(π), i) for some π ∈ NC(n) with k blocks and
0 ≤ i ≤ n.

Now we can prove the following result on the enumeration of non-crossing partitions
with certain size.

Proposition 2.2.9. Fix n and 1 ≤ k ≤ n. Then the number of π ∈ NC(n) with Xn(π) = k

is given by the Narayana number N(n, k) = 1
n

(
n
k

)(
n
k−1

)
. In particular, P (Xn = k) = N(n,k)

Cn
.

Proof. Let Λ : NC(n) → Luk(n) be the bijection defined in Proposition 2.2.4, and Γ be
the bijection defined in Proposition 2.2.7. It follows from Remark 2.2.8 that the number
of π ∈ NC(n) with k blocks is exactly

1

n+ 1
|{γ : γ almost rising path ended at (n+1,-1), with n+1-k falling steps}|

Now consider γ almost rising path ended at (n + 1,−1) with n + 1 − k falling steps:
let its rise-vector be (λ1, λ2, · · · , λn+1). Among these n + 1 numbers, only k of them are
non-negative. Let them be l1, l2, · · · , lk (in the same order as they appear in λi. Then li
satisfies

∑k
i=1 li − (n+ 1− k) = −1, i.e.

∑k
i=1 li = n− k.

Since li ≥ 0, the equation
∑k

i=1 li = n− k contains exactly
(
n−1
k−1

)
solutions. To choose

these k numbers out of n+ 1 λi’s, there are
(
n+1
k

)
choices. Hence, in total we get:

10



|{π ∈ NC(n) : π has k blocks}|

=
1

n+ 1
|{γ : γ almost rising path ended at (n+1,-1), with n+1-k falling steps}|

=
1

n+ 1

(
n+ 1

k

)(
n− 1

k − 1

)
=

1

n+ 1

(n+ 1)!

k!(n+ 1− k)!

(n− 1)!

(k − 1)!(n− k)!

=
1

n

(
n

k

)(
n

k − 1

)

2.3 Embed Non-crossing partitions in the Symmetric

Group

One might notice the cycle structure of permutations also gives a partition of the set
{1, 2, · · · , n}, though most of the time, this partition has crossings. One can regard a non-
crossing partition as a permutation in the following manner: for a non-crossing partition
π = {V1, V2, · · · , Vk} ∈ NC(n), it corresponds to an element in Pπ ∈ Sn by arranging each
Vi in the increasing order and treating them as a cycle permutation. In other words, for
each Vi = {vi1 < vi2 < · · · < vik}, the permutation Pπ(vij) = vij+1

for j = 1, 2, · · · , k − 1
and Pπ(vik) = vi1 . For example, for a non-crossing partition π = {{1, 5, 7}, {2, 3, 4}, {6}} ∈
NC(7), the corresponding Pπ, when written in cyclic form, is equal to (1, 5, 7)(2, 3, 4)(6).
This map π 7→ Pπ seems like an ad-hoc definition. However, it has been shown, starting
with [1], that this map is quite meaningful. We shall start with Cayley graph structure of
the symmetric group.

Definition 2.3.1. (Cayley graph) Let G be a group with a set of generators T . Assume
T satisfies the following assumptions:

1. e /∈ T (e is the identity in G)

2. If t ∈ T , t−1 is also in T

11



3. If t ∈ T, g ∈ G, then gtg−1 ∈ T .

Then the Cayley graph Γ = Γ(G, T ) is defined as follows:

1. The vertex set V = G

2. The edge set E = {(x, y) : x−1y ∈ T}. Here (x, y) is an unordered pair.

Remark 2.3.2. In the group framework, x−1y is a substitute for the difference between y
and x. At first glance, it might look arbitrary that x−1y is preferred over xy−1, yx−1, y−1x.
It turns out the assumptions on T rule out this ambiguity on E. Indeed, if x−1y ∈ T ,
the by T closed under inversion, y−1x ∈ T . Moreover, if we conjugate x−1y by x, we get
yx−1 ∈ T so that xy−1 ∈ T .

Since we required T to be a set of generators, the Cayley graph Γ must be a connected
graph. We may define the distance between two group elements by the distance to the
Cayley graph.

Definition 2.3.3. For x 6= e ∈ G, define `(x) = minn{∃t1, · · · , tn ∈ T, x = t1t2 · · · tn}. In
addition, define `(e) = 0.

Recall that in order for an edge (x, y) to appear in the Cayley graph, there have to exist
t ∈ T such that y = xt. Because of this, the above definition of `(x) is giving precisely the
length of the shortest path from x to e. This allows us to define the distance on G:

Definition 2.3.4. Let x, y ∈ G, define their distance to be d(x, y) = `(x−1y).

One can check that d defines a metric on the group G. Given this distance, we can
define a partial order on G:

Definition 2.3.5. For any x, y ∈ G, define x ≤ y whenever `(y) = `(x) + d(x, y). In other
words, x ≤ y whenever x is on a shortest path from e to y.

Definition 2.3.6. For any x, y ∈ G with x ≤ y, define the interval [x, y] = {z ∈ G : x ≤
z ≤ y}.

Example 2.3.7. Let G = Sn be the symmetric group. Consider T = {(i, j) ∈ G} be the
set of transpositions. It is clear that T is a set of generators for G. Let us verify T satisfies
the requirement for Cayley graph:

Indeed, every transposition is the inverse of itself. If we have π ∈ G, (i, j) ∈ T , one can
verify that π · (i, j) · π−1 is the transposition (π(i), π(j)).

12



Figure 2.3.1: Embedding of NC(3) into S3

The symmetric group Sn is a finite group so that as a partially ordered set, it has
maximal elements. One can verify the maximal elements in Sn are exactly those long
cycles, i.e., a cycle with n elements. Meanwhile, it has a unique minimal element, namely,
e the identity. Let γn = (1, 2, · · · , n) ∈ Sn be a long cycle. Biane [1], in 1995, showed this
map π 7→ Pπ (discussed in the previous section) identifies NC(n) with the interval [e, γn].

Theorem 2.3.8. The map P : NC(n)→ [ε, γm] is an order preserving isomorphism.

Figure 2.3.1 illustrate the case where NC(3) is embedded as a maximal interval in S3.

As an immediate observation, since all the maximal elements in Sn is a long cycle
of length n, every interval between the minimal element ε and a maximal element γ′ is
isomorphic to NC(n). In terms of the Cayley graph, theorem 2.3.8 implies that the Hasse
diagram of NC(n) is a sub-graph in the Cayley graph of (Sn, T ). This tells us NC(n) is a
quite important chunk of Sn, which motivates our study of their block structures.

2.4 Some Approximation Lemmas

Recall from Proposition 2.2.9 that the total number of non-crossing partitions with a fixed
number of blocks is enumerated using the Narayana number. The goal of this section
is to provide some estimates on the Narayana number, which can be used as a tool to
approximate the asymptotic distribution of the total number of blocks. Since the binomial
coefficients

(
n
k

)
appear in the Narayana number, let us provide some approximations on

them.

We start off with the following well-known result due to Chernoff:

13



Lemma 2.4.1. (Chernoff Bound). Let Z follow a binomial distribution with n trials and
p = 1/2. Then for any α > 0, we have:

P (Z ≥ n

2
+ α) ≤ e−

α2

n

P (Z ≤ n

2
− α) ≤ e−

α2

n

As an immediate corollary:

Corollary 2.4.2. Fix ε > 0. For each non-negative integer 0 ≤ k ≤ n, if |k − n
2
| ≥ n

1+ε
2 ,

then
1

2n

(
n

k

)
≤ e−n

ε

Proof. Suppose Z follows binomial distribution with n and p = 1/2. Then apply Chernoff’s
bound:

1

2n

(
n

k

)
= P (Z = k)

≤ e−
α2

n

= e−n
ε

The good thing about the estimation e−n
ε

is that it is o(np) for all p > 0. So when it is
multiplied by any polynomial in n, the limit will goes to 0. As a result, we may just focus
on the approximation when |k − n

2
| is no bigger than α = n

1+ε
2 . The following version of

Stirling’s approximation can be found in the book [6].

Lemma 2.4.3. (Stirling’s approximation) For all positive integer n,

n! =
√

2πn
(n
e

)n
eλn

where 1
12n+1

< λn <
1

12n
.

14



As an immediate application, one can give the following approximation for the Catalan
numbers:

Corollary 2.4.4. limn→∞
Cn·n3/2
√
π4n

= 1

Before we start the key approximations, it is useful to define the ’Big-O’ notation.

Definition 2.4.5. Let f, g : N → R be two functions. We call f = O(g) whenever

lim supn→∞

∣∣∣f(n)
g(n)

∣∣∣ = c < ∞. Equivalently, f = O(g) whenever there exists a constant K

such that for all n ∈ N, |f(n)| < K|g(n)|.

Now let us approximate 1
2n

(
n

n
2

+j

)
when j is small:

Lemma 2.4.6. Fix n and ε > 0, for each integer j with |j| < n
1+ε
2 , let rn,j satisfies

1

2n

(
n

n
2

+ j

)
=

√
2

πn
e−

2j2

n (1 + rn,j)

Then there exists K > 0 constant such that for all such j and n, |rn,j| ≤ K · n3ε/2−1/2.

Proof. Apply Stirling’s formula (Lemma 2.4.3 ). We have:
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1

2n

(
n

n
2

+ j

)
=

1

2j
n!

(n/2 + j)!(n/2− j)!

=
1

2n

√
2πn

(
n
e

)n
eαn−βn−γn√

2π(n/2 + j)
(

(n/2+j)
e

)n/2+j√
2π(n/2− j)

(
(n/2−j)

e

)n/2−j
=

1

2n

√
n

2π(n/2− j)(n/2 + j)

nn

(n/2 + j)n/2+j(n/2− j)n/2−j
eαn−βn−γn

=
1

2n

√
2

πn

√
n2

n2 − 4j2

nn

(n+ 2j)n/2+j(n− 2j)n/2−j2−(n/2+j)−(n/2−j) e
αn−βn−γn

=

√
2

πn
(1 +

2j

n
)−(n/2+j)(1− 2j

n
)−(n/2−j)eαn−βn−γn

=

√
2

πn
e−(n/2+j) log(1+ 2j

n
)−(n/2−j) log(1− 2j

n
)

√
n2

n2 − 4j2
eαn−βn−γn

=

√
2

πn
e−2j2/ne2j2/n−(n/2+j) log(1+ 2j

n
)−(n/2−j) log(1− 2j

n
)

√
n2

n2 − 4j2
eαn−βn−γn

Hence the error term becomes

1 + rn,j = e−2j/ne2j/n−(n/2+j) log(1+ 2j
n

)−(n/2−j) log(1− 2j
n

)

√
n2

n2 − 4j2
eαn−βn−γn

Let us break it into three pieces:

First of all, eαn−βn−γn , αn, βn, γn comes from the Stirling approximation. We have from
Lemma 2.4.3 that

1

12n+ 1
< αn <

1

12n
1

12(n/2− j) + 1
< βn <

1

12(n/2− j)
1

12(n/2 + j) + 1
< γn <

1

12(n/2 + j)
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One can check lim supn→∞
∣∣n(eαn−βn−γn − 1)

∣∣ = c < ∞, and thus one may find a
constant K1 such that for all n, j, |eαn−βn−γn − 1| < K1 · 1

n
.

Denote α = n
1+ε
2 . The second part

√
n2

n2−4j2
can be bounded as follow:

1 ≤

√
n2

n2 − 4j2

≤
√

n2

n2 − 4α2

=

(
1 +

4α2

n2 − 4α2

)1/2

Now apply Taylor expansion, we have:

(
1 +

4α2

n2 − 4α2

)1/2

= 1 +
2α2

n2 − 4α2
+O(

α4

n4
)

The error term 2α2

n2−4α2 +O(α
4

n4 ) satisfies

limn→∞

2α2

n2−4α2
+O(α

4

n4
)

nε−1 = 2 and thus we can pick a constant K2 > 2 such that for all n,

| 2α2

n2−4α2 +O(α
4

n4 | < K2 · nε−1

The last piece comes from e2j2/n−(n/2+j) log(1+ 2j
n

)−(n/2−j) log(1− 2j
n

). Let us consider its
exponent:

2j2/n− (n/2 + j) log(1 +
2j

n
)− (n/2− j) log(1− 2j

n
)

= 2j2/n− (n/2 + j)(
2j

n
− 2j2

n2
+O(

j3

n3
))− (n/2− j)(−2j

n
− 2j2

n2
+O(

j3

n3
))

= O(
j3

n2
)
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Now take the exponential,

e2j2/n−(n/2+j) log(1+ 2j
n

)−(n/2−j) log(1− 2j
n

) = 1 +O(
j3

n2
)

The error term O( j
3

n2 ) can be bounded above by

O(
j3

n2
) = O(

α3

n2
)

= O(n
3ε
2
−1/2)

We can thus find constant K3 such that e2j2/n−(n/2+j) log(1+ 2j
n

)−(n/2−j) log(1− 2j
n

) < 1 +
K3n

3ε
2
−1/2 for all n, j.

When we multiply these three error terms together, the overall error term rn,j is

bounded by K1 · 1
n

+ K2 · nε−1 + K3n
3ε
2
−1/2 + O(n

5ε
2
−3/2), for all valid choices of n, j.

One can check this bound can be reduced to K ′3n
3ε
2
−1/2 when ε < 1/3.

2.5 Asymptotic Distribution and the Method of Mo-

ments

Given a sequence of random variables, we often want to study their behavior asymptotically.
In other words, we want to know how a sequence of random variables, which in some sense,
converges to a particular probability measure. One natural way to define this convergence
is the weak convergence.

Definition 2.5.1. Let (Ω,A) be a measurable space where Ω is a metric space, and νn, ν
are probability measure on it. We say νn converges to ν weakly if for all bounded continuous
function f : Ω→ R,

lim
n→∞

∫
Ω

fdνn =

∫
Ω

fdν

18



Fix a measure space (Ω,A, P ). Recall that each real-valued Borel random variable
X : Ω → R defines a associated Borel measure PX on R via PX(A) = P (X−1(A)). This
allows us to define the weak convergence of random variables.

Definition 2.5.2. Let Xn be a sequence of real-valued Borel random variables on measure
spaces (Ωn,An, Pn) and X be a real-values Borel random variable on a measure space
(Ω,A, P ). Let the associated probability measures of Xn, and X be νn, and ν respectively.
Then we say Xn converges to X weakly whenever νn converges to ν weakly.

Equivalently, since
∫
R f(t)dνn(t) =

∫
Ωn
f(Xn)dPn, we have Xn converges to X weakly

whenever for all bounded continuous function f ∈ Cb(R,R),

lim
n→∞

∫
Ωn

f(Xn)dPn =

∫
Ω

f(X)dP

When (Ω,A) = (R,B), the real line equipped with the Borel σ-algebra, one can define
the distribution function (also called the cumulative distribution function) F (t) for any
Borel measure ν by F (t) = ν((−∞, t])). The distribution function can be easily seen to
be right continuous and left limit exists everywhere. Moreover, whenever ν({t}) = 0, F is
continuous at t.

In such cases, one can define the convergence in terms of the distribution function:

Definition 2.5.3. Let νn, and ν be Borel measures on R, with distribution functions Fn,
and F respectively. We call νn converges to ν in distribution, if for any t at which F is
continuous,

lim
n→∞

Fn(t) = F (t)

It turns out that these two definition are the same for probability measures on R.

Theorem 2.5.4. (Helly Bray theorem) Let νn, ν be Borel measures on R. Then νn con-
verges to ν weakly if and only if νn converges to ν in distribution.

This theorem is a special case of a more general type of theorems called the Portmanteau
theorem, which involves the equivalent conditions of weak convergence. Here we provide
one version of it:

Theorem 2.5.5. (Portmanteau Theorem) Let νn, ν be probability measures on a measurable
metric space (Ω,A). Then the following are equivalent:

1. νv converges to ν weakly
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2. For all open set U ⊂ Ω, lim infn→∞ νn(U) ≥ ν(U)

3. For all closed set F ⊂ Ω, lim supn→∞ νn(F ) ≤ ν(F )

4. For all A ⊂ Ω with P (∂A) = 0, limn→∞ νn(A) = ν(A). Here ∂A is the boundary of
A.

For detailed proof and more background on these results, please refer to R.M.Dudley’s
book [4].

The definition of weak convergence is not easy to apply directly, since one has to check
all possible bounded continuous function f if

∫
Ω
fdνn converges to

∫
Ω
fdν. A natural

question to ask is whether it is possible to check a smaller collection of functions and still
get the weak convergence. There are many approaches to this question, and we will focus
on one of them: the method of moments. Recall, for a Borel probability measure µ on R,
the k-th moment of µ is defined as

∫
R x

kdµ. As an illustrating example:

Proposition 2.5.6. Let νn, ν be Borel measures on R. Assume that their supports are
all included in a compact interval [−N,N ]. Then νn → ν weakly if and only if for every
k ≥ 0, limn→∞

∫
R x

kdνn =
∫
R x

kdν

Proof. Since νn, ν are all supported within the compact interval [−N,N ], νn → ν weakly
if and only if for every continuous function f : [−N,N ] → R, limn→∞

∫
R fdνn =

∫
R fdν.

Now the space of continuous functions C([−N,N ],R) can be approximated uniformly by
polynomials due to the Stone-Weierstrass theorem. This uniform convergence is strong
enough to guarantee that limn→∞

∫
R fdνn =

∫
R fdν if and only if limn→∞

∫
R x

kdνn =∫
R x

kdν for all integer k ≥ 0.

In general, we do not have the result above if the condition of compactly supported
is dropped. The case when νn, and ν are not compactly supported is more complicated
and requires much more care. We need some extra conditions on νn, and ν to make this
theorem holds.

Definition 2.5.7. Let ν be a Borel measure on R. We call ν is determined by its moments
if for any Borel measure µ on R with

∫
R x

kdν =
∫
R x

kdµ <∞ for all integer k ≥ 0, it must
be the case that ν = µ.

Theorem 2.5.8. Let νn, and ν be Borel measures on R with limn→∞
∫
R x

kdνn =
∫
R x

kdν
for all integer k ≥ 0. Assume furthermore that ν is determined by its moments. Then
νn → ν weakly.
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Theorem 2.5.8 gives us a condition that only depends on the limiting distribution ν,
instead of all νn. Now what kind of measures is determined by its moments?

Definition 2.5.9. Let ν be a Borel measure on R.

1. The characteristic function of ν is defined as φν(t) =
∫
R e

itxdν(x), when the integral
exists.

2. The moment generating function of ν is defined as Mν(t) =
∫
R e

txdν(x), when the
integral exists.

Rosenthal’s book [14] provide a great introduction on this material. The following two
results comes from section 11.1 to 11.4 from his book. We will omit their detailed proofs.

Theorem 2.5.10. Let ν, and µ be Borel measures on R. Then ν = µ if and only if
φν = φµ.

Proposition 2.5.11. Let ν be a Borel measure on R. Assume there exists ε > 0 such that
Mν(t) is finite for |t| < ε, then ν is determined by its moments.

Example 2.5.12. Let ν be the measure of standard normal distribution (i.e. dν(x) =
1√
2π
e−

x2

2 dx). Then the moment generating function for ν is Mν(t) = e
t2

2 for all t ∈ R. In
particular, it follows from Theorem 2.5.11 that the Gaussian distribution is determined by
its moments.

Notation 2.5.13. Denote the k-th falling factorial of n by [n]k = n(n− 1) · · · (n− k+ 1).

Corollary 2.5.14. Let νn, and ν be Borel measures on R with limn→∞
∫
R[x]kdνn =

∫
R[x]kdν

for all integer k ≥ 0. Assume furthermore that ν is determined by its moments. Then
νn → ν weakly.

21



Chapter 3

The Number of Blocks of a Random
Non-crossing Partition

3.1 Introduction

Let us denote Xn : NC(n) → R be the random variable that counts the total number
of blocks of a random non-crossing partition. Our goal is to understand the asymptotic
distribution of Xn.

First of all, let us recall from Remark 2.1.12 that the Kreweras complement K, a order
reversing automorphism defined on NC(n), give raise to the relation Xn(π) +Xn(K(π)) =
n+ 1. Since K is an automorphism on NC(n) where NC(n) is assigned with the uniform
measure, E(Xn) = E(K(Xn)). Immediately, one can deduce that E(Xn) = n+1

2
. However,

the calculation of higher moments are not easy in general. Recall from Proposition 2.2.9
that the total number of non-crossing partitions in NC(n) with exactly k blocks is enu-
merated by the Narayana numbers N(n, k) = 1

n

(
n
k

)(
n
k−1

)
. One can explicitly write down a

formula for the k-th moments of Xn in terms of Narayana number:

E(Xk
n) =

n∑
i=1

N(n, i)

Cn
ik

Even though we have this explicit expression for the k-th moment, its direct computa-
tion is not easy. We shall discuss its computation in Section 3.3, where we are able to give an
explicit formula for the factorial moments E([Xn−1]k) = E((Xn−1)(Xn−2) · · · (Xn−k)).
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Based on these results, we can compute the following table that shows the results for the
first few moments:

Moments Explicit Formula
E(Xn) n+1

2

E(X2
n) (n+1)(n2+n−1)

2(2n−1)

E(X3
n) (n+1)2(n2+2n−2)

4(2n−1)

E(X4
n) (n+1)(n5+4n4−3n3−12n2+2n+6)

4(2n−1)(2n−3)

E(X5
n) (n+1)2(n5+6n4−n3−24n2+4n+12)

8(2n−1)(2n−3)

Table 3.1: Moments of Xn

Since E(Xn) = n+1
2

, one might want to normalize Xn by subtracting its mean. It is not
hard to compute this centralized moments based on table 3.1.

Moments Explicit Formula Asymptotic Formula
E(Xn − n+1

2
) 0 0

E(
(
Xn − n+1

2

)2
) (n+1)(n−1)

4(2n−1)
n
8

E(
(
Xn − n+1

2

)3
) 0 0

E(
(
Xn − n+1

2

)4
) (n+1)(n−1)(3n2−4n−3)

16(2n−1)(2n−3)
3n2

64

E(
(
Xn − n+1

2

)5
) 0 0

Table 3.2: Centralized Moments of Xn

From table 3.2, one may notice the centralized moments matches the Gaussian distri-
bution asymptotically. However, since we only have a nice formula for the falling factorials
of Xn−1, the conversion to centralized moments is not easy and there are some mysterious
reductions that we do not understand. Fortunately, Section 2.4 provides powerful tools for
us to approximate the centralized moments which leads to the main results in Section 3.2

3.2 Main Result

We obtained the following result on the asymptotic distribution for the total number of
blocks in random non-crossing partitions.
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Theorem 1.2.1. Let Xn : NC(n)→ N count the total number of blocks in a non-crossing
partition. Then

Xn − n/2√
n/8

d→ N (0, 1)

First, recall from Proposition 2.2.9, one can explicitly write down the p-th moment of
this normalized Xn:

E

((√
8

n
(Xn − n/2)

)p)
=

1

Cn

n∑
k=1

1

n

(
n

k

)(
n

k − 1

)(√
8

n
(k − n

2
)

)p

(3.2.1)

We first reduce the summation to those k close enough to n/2:

Lemma 3.2.1. Fix ε > 0. We have:

lim
n→∞

1

nCn

∑
|k−n

2
|>n

1+ε
2 +1

(
n

k

)(
n

k − 1

)(√
8

n
(k − n

2
)

)p

= 0

Proof. Let Sn = 1
nCn

∑
|k−n

2
|>n

1+ε
2 +1

(
n
k

)(
n
k−1

) (√
8
n
(k − n

2
)
)p

.

Sn =
1

nCn

∑
|k−n

2
|>n

1+ε
2 +1

(
n

k

)(
n

k − 1

)(√
8

n
(k − n

2
)

)p

=
4n

nCn

∑
|k−n

2
|>n

1+ε
2 +1

1

2n

(
n

k

)
1

2n

(
n

k − 1

)(√
8

n
(k − n

2
)

)p

Now apply the approximation of Catalan numbers (Corollary 2.4.4),

lim
n→∞

√
n
π

∑
|k−n

2
|>n

1+ε
2 +1

1
2n

(
n
k

)
1

2n

(
n
k−1

) (√
8
n
(k − n

2
)
)p

Sn
= 1
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Now whenever |k − n
2
| > n

1+ε
2 + 1, both k and k + 1 are at least n

1+ε
2 away from n/2,

so that Corollary 2.4.2 applies to both
(
n
k

)
and

(
n
k−1

)
to obtain an upper bound of e−n

ε
.

Moreover, for any 1 ≤ k ≤ n,

(√
8

n
(k − n

2
)

)p

≤

(√
8

n
(
n

2
)

)p

= (2n)p/2

Hence we have:

0 ≤
√
n

π

∑
|k−n

2
|>n

1+ε
2 +1

1

2n

(
n

k

)
1

2n

(
n

k − 1

)(√
8

n
(k − n

2
)

)p

≤
√
n

π

∑
|k−n

2
|>n

1+ε
2 +1

e−2nε(2n)p/2

≤
√
n

π
· n · e−2nε(2n)np/2

Take n→∞, we get:

√
n

π

∑
|k−n

2
|>n

1+ε
2 +1

1

2n

(
n

k

)
1

2n

(
n

k − 1

)(√
8

n
(k − n

2
)

)p

→ 0

and thus the same holds for Sn.

Now it suffices the evaluate the sum only when |k−n/2| ≤ n
1+ε
2 . The following lemma

simplifies the summation for computational convenience:

25



Lemma 3.2.2. The limit

lim
n→∞

1

nCn

∑
|j|≤n

1+ε
2

(
n

n
2

+ j

)(
n

n
2

+ j − 1

)(√
8

n
j

)p

exists if and only if

lim
n→∞

1

nCn

∑
|j|≤n

1+ε
2

(
n

n
2

+ j

)2
(√

8

n
j

)p

exists. Moreover, the limit are the same (if they exist).

Proof. Notice
(
n
k

)
= n−k

k

(
n
k−1

)
. So that for each |j| ≤ n

1+ε
2 ,(

n
n
2

+ j − 1

)
=

n
2

+ j
n
2
− j

(
n

n
2

+ j

)
Now j is small compared to n, we may have the following estimate:

n
2

+ j
n
2
− j

= 1 +
2j

n
2
− j

= 1 +
2

n
2j
− 1

≤ 1 +

∣∣∣∣∣ 2
n

2n
1+ε
2
− 1

∣∣∣∣∣
= 1 +O(n−(1−ε)/2)

The bound O(n−(1−ε)/2) provides an uniform bound of the error term, independent of
j. Apply squeeze theorem, we get the desired result.

Now we are well equipped for the proof of the main theorem:
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Theorem 3.2.3.

lim
n→∞

E

((√
8

n
(Xn −

n

2
)

)p)
=

∫
R

1√
2π
e−t

2/2tpdt

Proof. Recall Equation 3.2.1 where we can write E
((√

8
n
(Xn − n

2
)
)p)

explicitly as:

E(

(√
8

n
(Xn − n/2)

)p

) =
1

Cn

n∑
k=1

1

n

(
n

k

)(
n

k − 1

)(√
8

n
(k − n

2
)

)p

Lemma 3.2.1 reduces this summation over all k with |k − n/2| ≤ n
1+ε
2 . Lemma 3.2.2

further shows that this summation is the same as the summation where
(
n
k−1

)
is replaced

by
(
n
k

)
. We are now arrived at the following equation:

lim
n→∞

E

((√
8

n
(Xn −

n

2
)

)p)
= lim

n→∞

4n

nCn

∑
|j|≤n

1+ε
2

1

4n

(
n

n
2

+ j

)2
(√

8

n
j

)p

(3.2.2)

Now apply Lemma 2.4.6, for each j with |j| ≤ n
1+ε
2 , we have the equation:

1

2n

(
n

n
2

+ j

)
=

√
2

πn
e−

2j2

n (1 + rn,j) (3.2.3)

where there exists a constant K such that |rn,j| ≤ K · n3ε/2−1/2 for all |j| ≤ n
1+ε
2 .

Substitute Equation 3.2.3 into the Equation 3.2.2,
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lim
n→∞

E

((√
8

n
(Xn −

n

2
)

)p)

= lim
n→∞

4n

nCn

∑
|j|≤n

1+ε
2

(√
2

πn
e−

2j2

n (1 + rn,j)

)2(√
8

n
j

)p

= lim
n→∞

4n

nCn

∑
|j|≤n

1+ε
2

2

πn
e−

4j2

n (1 + rn,j)
2

(√
8

n
j

)p

= lim
n→∞

4n√
πn3/2Cn

∑
|j|≤n

1+ε
2

1√
2π

√
8

n
e−

4j2

n (1 + rn,j)
2

(√
8

n
j

)p

Apply the asymptotic formula of Catalan number as suggested in Corollary 2.4.4,

lim
n→∞

E

((√
8

n
(Xn −

n

2
)

)p)

= lim
n→∞

∑
|j|≤n

1+ε
2

1√
2π

√
8

n
e−

4j2

n (1 + rn,j)
2

(√
8

n
j

)p

= lim
n→∞

∑
|j|≤n

1+ε
2

1√
2π

√
8

n
e−

(√
8
n j

)2

2 (1 + rn,j)
2

(√
8

n
j

)p

The factor (1 + rn,j)
2 can be bounded uniformly using by (1 − K · n3ε/2−1/2)2 ≤ (1 +

rn,j)
2 ≤ (1+K ·n3ε/2−1/2)2. For ε small enough, both (1−K ·n3ε/2−1/2)2, (1+K ·n3ε/2−1/2)2

converges to 1 as n→∞. Hence it suffices to remove the factor of (1 + rn,j)
2 and consider

the following summation:

∑
|j|≤n

1+ε
2

1√
2π

√
8

n
e−

(√
8
n j

)2

2

(√
8

n
j

)p
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Observe that this can be thought as a Riemann sum with sampling points at
√

8
n
j,

where |j| ≤ n
1+ε
2 .

√
8
n
j will lie in an interval of width in the order of nε/2, which goes to

∞ as n → ∞. We deduce immediately that this summation converges to the following
Riemann Integral:

∑
|j|≤n

1+ε
2

1√
2π

√
8

n
e−

(√
8
n j

)2

2

(√
8

n
j

)p

=

∫
R

1√
2π
e−t

2/2tpdt

This is exactly the desired result.

Now Theorem 1.2.1 follows from 3.2.3:

Proof. Recall from 3.2.3, the p-th moment of
√

8
n
(Xn−n/2) is asymptotically equal to the

integral ∫
R

1√
2π
e−t

2/2tpdt

Recall the probability density function of N (0, 1) is ρ(t) = 1√
2π
e−t

2/2. Hence the p-th

moment of
√

8
n
(Xn − n/2) is asymptotically equal to the p-th moment of N (0, 1).

We have shown that normal distributions are uniquely determined by its moments in

Example 2.5.12, and thus Theorem 2.5.8 can be applied to obtain
√

8
n
(Xn−n/2) converges

weakly to standard normal distribution.

3.3 Moments of the Total Number of Blocks

We are able to compute the moments of Xn explicitly. Recall the notation [n]l denotes the
l-th falling factorial which is [n]l = n(n−1) · · · (n− l+1). The following theorem computes
the falling factorial moments of Xn:
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Proposition 3.3.1. For every positive integer l,

E([Xn − 1]l) =
[n]l[n− 1]l

[2n]l

Proof. First we notice from the distribution of Xn, we have:

E([Xn − 1]l) =
1

nCn

n∑
k=1

(
n

k

)(
n

k − 1

)
[k − 1]l

=
1

nCn

n∑
k=1

(
n

n− k

)(
n

k − 1

)
[k − 1]l

Let us denote

g(z) = (1 + z)n =
n∑
k=0

(
n

k

)
zk

f(z) =
n∑
k=1

(
n

k − 1

)
zk−1 = (1 + z)n − zn

Then,

fl(z) =
dl

dzl
f(z)

= [n]l((1 + z)n−l − zn−l)

=
n∑
k=1

(
n

k − 1

)
[k − 1]lz

k−l−1

Consider fl(z) · g(z): on one hand,
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fl(z) · g(z) =

(
n∑
k=1

(
n

k − 1

)
[k − 1]lz

k−l−1

)
·

(
n∑
k=0

(
n

k

)
zk

)

=
n∑
k=1

n∑
j=0

(
n

k − 1

)
[k − 1]lz

k−l−1

(
n

j

)
zj

=
2n∑
d=1

n∑
k=0

(
n

k − 1

)
[k − 1]l

(
n

d− k

)
zd−l−1

So consider the coefficient of zn−l−1 in fl(z) · g(z), it is exactly:

n∑
k=0

(
n

k − 1

)
[k − 1]l

(
n

n− k

)
On the other hand,

fl(z) · g(z) = [n]l((1 + z)n−l − zn−l) · (1 + z)n

= [n]l((1 + z)2n−l − zn−l(1 + z)n)

One can check the coefficient for zn−l−1 is exactly [n]l
(

2n−l
n−l−1

)
Now plug everything back, we have:

E([Xn − 1]l) =
1

Cn

1

n

n∑
k=1

(
n

k

)(
n

k − 1

)
[k − 1]l

=
1

nCn
[n]l

(
2n− l
n− l − 1

)
=

(n+ 1)!n!

(2n)!

1

n
[n]l

(2n− l)!
(n− l − 1)!(n+ 1)!

= [n]l
(n− 1)!

(n− l − 1)!

(2n− l)!
(2n)!

=
[n]l[n− 1]l

[2n]l
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Based on Theorem 3.3.1, one can explicitly compute the first few moments of Xn as
shown in table 3.1. However, it is hard to use this method to handle more generalized
problems. Since we are interested in the moments of centralized Xn, let us try to compute
E([Xn − n

2
− 1]l).

Corollary 3.3.2.

E([Xn −
n+ 1

2
− 1]l) =

1

nCn

l∑
j=0

(
l

j

)
[−n/2]j[n]l−j

(
2n− l + j

n− l + j − 1

)

Proof. As before, we can explicitly write

E([Xn −
n

2
− 1]l) =

1

nCn

n∑
k=1

(
n

n− k

)(
n

k − 1

)
[k − n/2− 1]l (3.3.1)

Using the same trick, if we let

g(z) = (1 + z)n =
n∑
k=0

(
n

k

)
zk

f(z) =
n∑
k=1

(
n

k − 1

)
zk−1 = (1 + z)n − zn

However, since we have the factor [k− n/2− 1]l instead of [k− 1]l, we need to find the
l-th derivative

Fl(z) =
dl

dzl
z−n/2f(z)

=
n∑
k=1

(
n

k − 1

)
[k − n/2− 1]lz

k−l−1−n/2

But in this case, we need to apply the product rule to find Fl(z):
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Fl(z) =
dl

dzl
z−n/2f(z)

=
l∑

j=0

(
l

j

)
dj

dzj
z−n/2

dl−j

dzl−j
f(z)

=
l∑

j=0

(
l

j

)
[−n/2]jz

−n/2−jfl−j(z)

Here fi(z) are the same as those in the proof of Proposition 3.3.1.

Then consider Fl(z)·g(z): a similar argument gives us that
∑n

k=1

(
n

n−k

)(
n
k−1

)
[k−n/2−1]l

is the coefficient of zn/2−l−1 in Fl(z)g(z).

Now we break Fl(z) into a sum of l+ 1 pieces, consider the coefficient of zn/2−l−1 in the
j-th piece [−n/2]jz

−n/2−jfl−j(z)g(z). One can check it is equal to [−n/2]l[n]l−j
(

2n−l+j
n−l+j−1

)
.

Combine everything back, we get

E([Xn − n/2− 1]l) =
1

nCn

l∑
j=0

(
l

j

)
[−n/2]j[n]l−j

(
2n− l + j

n− l + j − 1

)

In some sense, Corollary 3.3.2 is a big step towards our main result in the sense that it
can express the l-th factorial moments of centralized Xn in terms of a sum of l + 1 pieces,
where each piece is a rational function of n of order nl

However, due to Theorem 1.2.1, we know E([Xn−n/2−1]l) should have order nl/2 when
l is even and n(l−1)/2 when l is odd. This suggests that this summation of l + 1 rational
functions of order nl should have extensive cancellations so that the order is reduced by
about a half after the summation. It is not known how these cancellations happen.
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Chapter 4

The Number of Outer Blocks of a
Random Non-crossing Partition

4.1 Introduction

Recall an outer block Vi from a non-crossing partition π ∈ NC(n) is a block which is not
enclosed by any other blocks. We denote Yn : NC(n)→ N to be the random variable that
sends each π ∈ NC(n) to the number of outer blocks in π. In this chapter, we study the
asymptotic distribution for the random variable Yn.

Remark 4.1.1. The number of outer blocks turns to be connected with many combina-
torical objects. Let Zn : Dn → N count the number of zeros in a Dyck path of length 2n
(Here Dn contains all the Dyck paths of length 2n, and it is assigned with the uniform
measure). Then Zn − 1 and Yn (the number of outer blocks) have the same distribution.
In fact, let τ : Dn → NC(n) be the bijection discussed discussed in Proposition 2.1.5, we
have Zn − 1 = Yn ◦ τ .

Remark 4.1.2. Outer blocks also contains important information on the structures of non-
crossing partition. For example, consider the non-crossing partition π = {{1, 6}, {2, 4, 5},
{3}, {7, 9}, {8}} ∈ NC(9). It has two outer blocks {1, 6} and {7, 9}. These two outer
blocks break the points {1, 2, · · · , 9} into two chunks, namely a chunk from 2 to 5 and
another chunk of single point 8. Now focus on the chunk of from 2 to 5, π restricted to this
chunk is another non-crossing partition in NC(4). On this section there is only one outer
block {2, 4, 5}, which further divides this chunk into a chunk of one point 3. In general,
we can obtain any non-crossing partition using the a similar procedure of placing layers of
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Figure 4.1.1: An Example of Outer Block Layers

outer blocks. It starts with the first layer of outer blocks, which divides {1, 2, · · · , n} into
smaller chunks. We then repeatedly place the next layer of outer blocks consisting of those
outer blocks for each of these small chunks, and each layer further divides the points into
smaller chunks. Figure 4.1.1 illustrates this process for π defined as above.

In essence, outer blocks breaks the non-crossing partition into self-similar pieces of
smaller non-crossing partition.

Remark 4.1.3. In the preceding chapter, we saw that the expected total number of blocks
of π ∈ NC(n) is n+1

2
. In view of that, it is rather surprising to find out that, as it will

follow from the main theorem of the present chapter, the expected number of outer blocks
of π ∈ NC(n) is Cn−Cn−1

Cn−1
, which is asymptotically 3. Notice that the block containing 1

or n is automatically an outer block. Thus, when 1, n are in different blocks, we already
have two outer blocks on the left-most and right-most end of the non-crossing partition.
Furthermore, if we only count those outer blocks with 1 elements (which we call it outer
singletons), it is shown in Proposition 5.3.1 that the expected number of outer singletons
is exactly 1 for all n ∈ N.

There is no immediate analog of outer blocks in terms of random permutations. How-
ever, the following observation, which we shall prove as Lemma 4.3.1, relates the number
of outer blocks with the size of the block containing a certain vertex:

Observation 4.1.4. For π ∈ NC(n), define Y ′n(π) to be the size of the block that the node
n belongs to. Then, for any π ∈ NC(n), Yn(π) = Y ′(K(π)). Here K(π) is the Krewewas
complement of π. One can immediately deduce that Yn has the same distribution as the
random variable on NC(n) that counts the size of the block containing 1.
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Remark 4.1.5. Let the random variable θn be the size of the cycle containing 1. This
can be seen by Observation 4.1.4 as an analog of the number of outer block in the context
of random permutations. Consider the probability that θn = k: to have 1 contained in a
cycle of length k, we need to first choose and arrange the rest k− 1 elements for the cycle.
This gives us

(
n−1
k−1

)
· (k− 1)! choices. The rest n− k elements has (n− k)! ways to arrange,

so in total, we have P (θn = k) =
(
n−1
k−1

)
· (k− 1)! · (n− k)! = 1

n
. This tells us θn is a uniform

distribution on {1, 2, · · · , n}.

The goal of this chapter is to derive the asymptotic distribution of Yn, the total number
of outer blocks. Our main result is:

Theorem 1.2.2. Let ν be a probability measure with mass k
2·2k at point k = 1, 2, · · · . Then

Yn
d→ ν.

The proof requires a deeper understanding of the asymptotic behavior of coefficients in
function composition, which we shall develop in Section 4.2.

4.2 Coefficients in the Composition of Functions

Recall the notation [zn]f(z) = an, where f(z) =
∑∞

n=0 anz
n. In the study of the asymptotic

distribution of Yn, the following result is handy at multiple occasions:

Proposition 4.2.1. Let C(z) be the generation function of the Catalan numbers. Then,

lim
n→∞

[zn]C(z)k

[zn]C(z)
= k · 2k−1

This section gives a proof for a more general problem: consider two analytical functions
f(z) and g(z), what is the asymptotic behavior of the coefficients in the composition of g
and f (i.e. [zn]g(f(z))) in terms of f and g? One can quickly observe that Proposition
4.2.1 is an special case of this question where f(z) = C(z) is the generating function of
Catalan numbers, and g(z) = zk. The main result we obtained in this special case is the
following Proposition:

Proposition 4.2.2. f(z) =
∑∞

n=0 anz
n where limn→∞

an
an+1

= r and an ≥ 0. Now let

g be another analytic function with non-negative coefficients (i.e. [zn]g(z) ≥ 0 for all
n = 0, 1, · · · ) such that g′(f(r)) exists. Assume furthermore that an

an+1
≤ r for all n. Then,

lim
n→∞

[zn]g(f(z))

[zn]f(z)
= g′(f(r))
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Remark 4.2.3. Let f(z) = C(z) be the generating function of Catalan numbers and
g(z) = zk. Then one can check that limn→∞

Cn
Cn+1

= 1
4

and moreover Cn
Cn+1

= n+2
4n+2

≤ 1
4
. We

also have C(1/4) = 2 and g′(2) = k · 2k−1 exists. Thus Proposition 4.2.2 applies, which
gives the Proposition 4.2.1

Now observe that for any function h(z), [zn]h′(z) = (n+ 1)[zn+1]h(z). Hence the ratio
[zn]g(f(z))

[zn]f(z)
remains the same when we take derivatives on both the top and the bottom. In

other words,

[zn+1]g(f(z))

[zn+1]f(z)
=

[zn]g′(f(z))f ′(z)

[zn]f ′(z)
(4.2.1)

Set u(z) = f ′(z) and v(z) = g′(f(z)), and observe that for u(z) =
∑∞

n=0 unz
n, the

condition limn→∞
un
un+1

= r is still satisfied. This leads to the following equivalent result of
Proposition 4.2.2:

Proposition 4.2.4. Let u(z) =
∑∞

n=1 unz
n and v(z) =

∑∞
n=0 vnz

n be such that ui, vi ≥ 0
for all i ≥ 0 and limn→∞

un
un+1

= r. Assuming further that v(r) =
∑∞

n=0 vnr
n converges and

un
un+1
≤ r for all n, then

[zn]v(z)u(z)

[zn]u(z)
= v(r)

Proof. Define a positive measure on N where ν =
∑∞

n=0 viδi, where δi is the Dirac measure
at point i. Denote fn : R → R be such that fn(i) = un−i

un
for all i = 0, 1, · · · , n and 0

otherwise. Define f : R → R by f(i) = ri for all positive integer i ≥ 0 and 0 otherwise.
Then by our condition on un, we know 0 ≤ fn ≤ f , and fn converges to f pointwisely.

Now notice

∫
fndν =

∑n
i=0 viun−i
un

=
[zn]v(z)u(z)

[zn]u(z)

Moreover,
∫
fdν =

∑∞
n=0 vnr

n exists, f is an integrable function that dominates each
fn. Apply the dominated convergence theorem to obtain
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lim
n→∞

[zn]v(z)u(z)

[zn]u(z)
= lim

n→∞

∫
fndν

=

∫
fdν

= v(r)

4.3 Asymptotic Distribution of Outer Blocks

Let us start this section with the following Lemma, which plays an important role in the
proof:

Lemma 4.3.1. For π ∈ NC(n), define B
(i)
n (π) be the size of the block containing node i

where i = 1, 2, · · · , n. Then,

1. For any π ∈ NC(n), Yn(π) = B
(n)
n (K(π)). Here K(π) is the Krewewas complement

of π.

2. For a fixed integer n > 0, B
(i)
n has the same distribution for all i = 1, 2, · · · , n.

Moreover, Yn has the same distribution as B
(1)
n .

Now we have all the tools to prove the Theorem 1.2.2. Lemma 4.3.1 suggests that it
suffices to compute the asymptotic distribution of B

(1)
n .

Let Dn,k be the cardinality of the set {π ∈ NC(n)|1 belongs to a block of size k}. De-
fine its joint generating function

D(t, z) =
∞∑
n=0

n∑
k=0

Dn,kt
kzn

The following Lemma gives an explicit formula for D(t, z):

Lemma 4.3.2. D(t, z) = 1
1−tzC(z)

, where C(z) is the generating function for Catalan
numbers.
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Proof. Let us fix a k for which we compute Dk(z) =
∑∞

n=0Dn,kz
n. Consider the set

An,k = {π ∈ NC(n)|1 belongs to a block of size k}, the block V containing node 1 divides
the set {1, 2, · · · , n}\V into k disjoint chunks. We can thus partition this set An,k according
to the number of points in each chunk: let there are d1 points in the first chunk, d2 in the
second, and so on. Then d1, d2, · · · , dk are non-negative integers satisfies

∑k
i=1 di = n− k.

Now let us count how many π ∈ NC(n) satisfies that 1 is in a block of size k that
breaks {1, 2, · · · , n} into chunks of given sizes d1, d2, · · · , dk. In each chunk, we can fill
in any non-crossing partition, and two different chunks will not interfere with each other.
One can check this implies there is a total of Cd1Cd2 · · ·Cdk ways to fill π.

Sum over all possible {d1, d2, · · · , dk}, we obtain that

Dk(z) =
∞∑
n=0

Dn,kz
n

=
∞∑
n=0

∑
d1+d2+···+dk=n−k

Cd1Cd2 · · ·Cdkzn

=
∞∑
n=0

[zn−k]C(z)kzn

= (zC(z))k

Hence,

D(t, z) =
∞∑
k=0

Dk(z)tk

=
∞∑
k=0

(tzC(z))k

=
1

1− tzC(z)
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We are able to compute the asymptotic factorial moments based given this explicit
formula of D(t, z):

Theorem 4.3.3. limn→∞E([B
(1)
n ]p) = (2p+ 1) · p!

Proof. Observe that P (B
(1)
n = k) =

Dn,k
Cn

. Let λ
(p)
n =

∑n
k=1Dn,k[k]p. We have that

E([B
(1)
n ]p) = λ

(p)
n

Cn
.

Consider ∂pD(t,z)
∂tp

: on one hand, we have:

∂pD(t, z)

∂tp
=
∞∑
n=0

n∑
k=p

[k]pDn,kt
k−pzn

Set t = 1, it becomes:

∂pD(t, z)

∂tp
|t=1 =

∞∑
n=0

(
n∑
k=p

[k]pDn,k

)
zn

=
∞∑
n=0

λ(p)
n zn

This is exactly the generating function for λ
(p)
n .

On the other hand, we may compute this p-th partial derivative explicitly by using the
formula obtained in Lemma 4.3.2:

D(t, z) = (1− tzC(z))−1

∂D(t, z)

∂t
= zC(z)(1− tzC(z))−2

∂2D(t, z)

∂t2
= 2(zC(z))2(1− tzC(z))−3

...
∂pD(t, z)

∂tp
= p!(zC(z))p(1− tzC(z))−p−1
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Set t = 1, and according to Lemma 2.1.2, C(z) = 1 + zC(z)2. We have 1 − zC(z) =
1/C(z). Hence

∂pD(t, z)

∂tp
|t=1 = p!zpC(z)2p+1

Combine these facts together, we reach the following:

E([Ŷn]p) =
λ

(p)
n

Cn

=
[zn]p!zpC(z)2p+1

[zn]C(z)

= p!
[zn−p]C(z)2p+1

[zn]C(z)

= p!
[zn−p]C(z)2p+1

[zn−p]C(z)

[zn−p]C(z)

[zn]C(z)

By Lemma 2.1.2, C(z) has convergence radius 1/4, so limn→∞
[zn−p]C(z)

[zn]C(z)
= 1

4p

Apply the Proposition 4.2.1 discussed in the previous section:

lim
n→∞

[zn−p]C(z)2p+1

[zn−p]C(z)
= f ′(C(1/4)) = (2p+ 1)22p

Hence

lim
n→∞

E([B(1)
n ]p) = p! · (2p+ 1)22p · 1

4p
= (2p+ 1)p!

Recall Corollary 2.5.14 that if the factorial moments of a sequence of probability mea-
sures νn converges to a probability measure ν which is uniquely determined by its moments,
then νn converges weakly to ν. Theorem 4.3.3 computes the asymptotic factorial moments
of these random variables B

(1)
n . This raises a question: which distribution does B

(1)
n con-

verges to?

Now fix n, and consider B
(1)
n :
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Lemma 4.3.4. P (B
(1)
n = k) =

∑
d1+···+dk=n−k

Cd1Cd2 ···Cdk
Cn

. Moreover, limn→∞ P (B
(1)
n = k) =

k
2·2k .

Proof. Consider what happens when the vertex 1 is in a block of size k: this block divides
{1, · · · , n} into k buckets. Let di be the number of points in each bucket. For each bucket,
the points inside cannot connect to any other buckets, so there is Cdi ways to partition
them in a non-crossing way. Clearly,

∑k
i=1 di = n − k. This gives the first part of the

lemma.

Observe that
∑

d1+···+dk=n−k Cd1Cd2 · · ·Cdk = [zn−k]C(z)k. Apply Lemma 4.2.1 to get
the second part of the result.

Lemma 4.3.4 gives a good candidate for us to verify, namely a distribution ν where
ν(k) = k

2·2k for all k = 1, 2, · · · . It remains to verify the factorial moments of ν are indeed
what we had in Theorem 4.3.3 and ν is uniquely determined by its moments, after which
we can conclude that ν is the limiting distribution of the total number of Outer blocks.

Proposition 4.3.5. Let ν be a positive measure on N determined by the requirement that
ν({k}) = k

2·2k for all k = 1, 2, · · · . Then ν is a probability measure with finite moments of
all orders, where the p-th factorial moments of ν is (2p+ 1)p! for all p ∈ N.

Proof. We first check the following equation, from which we may prove ν is a probability
measure with the desired moments.

∞∑
k=1

k

2 · 2k
[k]p = (2p+ 1)p! (4.3.1)

Let f(z) = 1
1−z =

∑∞
k=0 z

k. Then consider its p-th derivative. On one hand, one can

easily check dp

dzp
f(z) = p!(1− z)−p−1. On the other hand,

dp

dzp
f(z) =

∞∑
k=0

[k]pz
k−p

Hence put z = 1/2,
∞∑
k=0

[k]p
1

2k−p
= p!2p+1

42



Multiply both sides by 1
2p+1 , we obtain

∞∑
k=1

1

2 · 2k
[k]p = p! (4.3.2)

Now k · [k]p = (k − p) · [k]p + p · [k]p, and thus we may apply Equation 4.3.2 to obtain:

∞∑
k=1

k

2 · 2k
[k]p =

∞∑
k=1

1

2 · 2k
[k]p+1 + p ·

∞∑
k=1

1

2 · 2k
[k]p

= (p+ 1)! + p · p!
= (2p+ 1)p!

Now to verify ν is uniquely determined by its moments, consider its moment generating
function

∫
N e

txdν(x):

∫
N
etxdν(x) =

∞∑
k=1

k

2 · 2k
etk

=
1

2

∞∑
k=1

k ·
(
et

2

)k

Recall 1
1−z =

∑∞
k=0 z

k for all |z| < 1. Taking the derivative we get

1

(1− z)2
=
∞∑
k=0

k · zk−1

Hence

∫
N
etxdν(x) =

1

2

∞∑
k=1

k ·
(
et

2

)k
=

et

4

1

(1− et/2)2
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which converges for all t where |t| < ln(2). It follows from the Proposition 2.5.11 that
ν is uniquely determined by its moments.

Remark 4.3.6. The probability measure ν where ν(k) = k
2·2k comes from shifting the

negative binomial distribution NB(2, 1/2) by 1. Recall a negative binomial distribution
NB(n, p) assigns probability

(
k+n−1

k

)
(1− p)npk at each k = 0, 1, 2, · · · .
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Chapter 5

Further Discussions

5.1 Further Research

This section discusses some further questions regarding the block structure of random
non-crossing partitions.

First of all, there are many other statistics considered for random permutations that
have natural analog in the context of non-crossing partitions. For example, if Ln : Sn →
N be the random variable that gives the length of the longest cycle, then the limit
limn→∞

E(Ln)
n

converges to an integral
∫∞

0
exp(−x−

∫∞
x
e−y/ydy)dx, which is approximately

equal to 0.62432965 · · · [16]. We can ask the same question for non-crossing partitions:

Question 5.1.1. Let Ln : NC(n)→ N be the random variable which gives the size of the
largest block (i.e., for π = {V1, V2, · · · , Vk} ∈ NC(n), L(π) = max |Vi|). Then, what is the
asymptotic behavior of Ln when it is restricted to non-crossing partition?

Another question we would like to ask comes from our motivation of studying outer
blocks. Recall, one of the motivations to study outer blocks is that it breaks a non-crossing
partitions into layers of self similar parts. One can define the depth of a non-crossing
partition to be the number of outer block layers in a non-crossing partition. For example,
the non-crossing partition shown in Figure 4.1.1 contains three layers of outer blocks, so
we define it to have depth 3. A natural question to ask is:

Question 5.1.2. What is the asymptotic distribution of the “depth” of a non-crossing
partition?
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As a generalization of our main results, one natural question to ask is the joint distribu-
tion of the total number of blocks or outer blocks sorted by size. Denote X

(k)
n : NC(n)→ N

the random variable that counts the total number of blocks of size k, and Y
(k)
n : NC(n)→ N

the one that counts the total number of outer blocks of size k. The more general question
would be:

Question 5.1.3. Fix a positive integer k, and consider the joint distribution of the random
vectors (X

(1)
n , X

(2)
n , · · · , X(k)

n ) and (Y
(1)
n , Y

(2)
n , · · · , Y (k)

n ). What are their asymptotic joint
distributions?

For random permutations, it is not hard to check for any k, the number of k-cycles
is asymptotically Poisson distributed with mean 1

k
. We have numerical evidence that, in

contrary to that for random permutations, the total number of blocks of size k in a random
non-crossing partition will have asymptotically a normal distribution. However, no proof
is known so far for general k, and even for the simplest case when k = 1, we shall show in
Section 5.2 that we do not have the tool to solve its asymptotic distribution yet.

The rest of this chapter will focus on the simplest case of Question 5.1.3: Section
5.2 discusses the asymptotic distribution of the total number of singletons (i.e. blocks of
size 1), and Section 5.3 proves a result regarding the asymptotic distribution of the total
number of outer singletons.

5.2 Asymptotic Distribution of Singleton Blocks

Let us denote by Sn : NC(n) → N the random variable that counts the total number of
singletons. It turns out that the factorial moments of Sn has a nice formula:

Proposition 5.2.1. Let p be a fixed positive integer, then for every n ≥ p, we have
E([Sn]p) = [n]p

Cn−p
Cn

. If we denote γn = nCn−1

Cn
, then we can write this as E([Sn]p) =

γnγn−1 · · · γn−p+1

Proof. Consider E
((

Sn
p

))
= 1

p!
E([Sn]p) =

∑
π∈NC(n)

1
Cn

(
Sn(π)
p

)
. For each π ∈ NC(n),(

Sn(π)
p

)
counts the total number of i1 < i2 < · · · < ip where {ij} is a block of π for each

j = 1, 2, · · · , p. So instead of summing over π ∈ NC(n), we may switch it to a sum over
all such indices of i1 < i2 < · · · < ip in the following way:
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∑
π∈NC(n)

(
Sn(π)

p

)
=

∑
i1<i2<···<ip

|{π ∈ NC(n) : each {ij} is a block of π}|

Now fix i1 < i2 < · · · < ip, the total number of π that contains {ij} as a block for all
j = 1, 2, · · · , p can be easily seen to be |NC(n− p)| = Cn−p. There is a total of

(
n
p

)
ways

to fix such p distinct indices. Hence,

E([Sn]p) = p!E

((
Sn
p

))
=

p!

Cn

∑
i1<i2<···<ip

|{π ∈ NC(n) : each {ij} is a block of π}|

= p!

(
n

p

)
Cn−p
Cn

= [n]p
Cn−p
Cn

One can check by setting γn = nCn−1

Cn
, this is exactly the product γnγn−1 · · · γn−p+1

Remark 5.2.2. It is immediate that the expectation of Sn is asymptotically n/4, and its
variance is o(n2). By Cheybeshev’s inequality, one can check Sn concentrate in an interval
of size o(n) around its mean n/4. However, we are still interested in the behavior of Sn
around its mean value.

Using computer programs, we can easily generate random non-crossing partitions for
simulation purposes. Based on our simulation of 10000 randomly selected non-crossing
partitions from NC(1000), the observed Sn is “close” to a normal distribution, in the
sense that its quantile matches with that of the normal distributions. In Figure 5.2.1,
we used the software R to make histogram and QQ-plot (quantile of the sampled Sv v.s.
the quantile of the standard normal distribution). One may observe in the QQ-plot, the
sample points are close to a straight line. Roughly speaking, this implies the normalized
Sn has its distribution function similar to the distribution function of the standard normal
distribution.
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Figure 5.2.1: Histogram and QQ-plot for simulated Sn

Moments Asymptotic Formula
E(Sn − n

4
) 3

4

E(
(
Sn − n

4

)2
) 3n

16

E(
(
Sn − n

4

)3
) 39n

128

E(
(
Sn − n

4

)4
) 27n2

256

E(
(
Sn − n

4

)5
) 765n2

2048

E(
(
Sn − n

4

)6
) 405n3

4096

Table 5.1: Centralized Moments of Sn

We can explicitly compute the first few ’centralized’ moments, where Sn is shifted by
its asymptotic mean value n/4. Here we record the asymptotic behavior of the first few
centralized moments in Table 5.1

If we scale this centralized Sn by
(

3n
16

)−1/2
, the resulting normalized random variable

has first six moments matching the standard normal distribution. We have the following
conjecture regarding the asymptotic distribution of Sn.

Conjecture 5.2.3. Let Sn : NC(n) → N count the total number of singletons in a non-
crossing partition. Then

Sn − n/4√
3n/16

d→ N (0, 1)
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One could hope that Conjecture 5.2.3 can be proved using the same types of methods
as we used for proving the main theorem of Chapter 3. However, recall that the proof in
Chapter 3 was based on Proposition 2.2.9, which showed that the number of non-crossing
partitions with a certain number of blocks can be enumerated by the Narayana number.
Then the formula for Narayana numbers can be approximated with a quite sharp bound
using the Lemma 2.4.6. The sharp bound on Narayana numbers directly leads to the proof
of the main result (Theorem 1.2.1). Two natural questions to ask is

1. What is the analog of Proposition 2.2.9 to enumerate the total number of singletons?

2. Can this enumeration be well approximated similar to Lemma 2.4.6?

We have a analog of the Narayana number in the context of singletons which solves
question (1), but we cannot solve question (2) yet due to lack of sharp approximations on
this number. We solve the first question by using the Motzkin sum

Definition 5.2.4. The Motzkin sum Mn (sometimes called the Riordan number) is equal
to the total number of π ∈ NC(n) where π has no singleton block.

Proposition 5.2.5. There exists a sequence of non-negative integers Mn, such that

1. The total number of π ∈ NC(n) with k singletons is exactly
(
n
k

)
Mn−k

2. Mn satisfies the recursive formula Mn = Cn −
∑n

k=1

(
n
k

)
Mn−k.

Proof. Consider the procedure of constructing a π ∈ NC(n) with k singletons: we first
choose k points from {1, 2, · · · , n} which gives a total of

(
n
k

)
choices. The remaining n− k

points needs to be connected using a non-crossing partition in NC(n−k). Since we require
π to have exactly k singletons, the non-crossing partition on n− k points cannot have any
singletons, which is exactly enumerated by Mn−k.

Now enumerate π ∈ NC(n) based on its total number of singletons, we can obtain the
desired recursive formula of Mn.

It is known that Motzkin sum satisfies the following properties [18].
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Fact 5.2.6. 1. It has an explicit formula given by

Mn = Cn −
(
n

1

)
Cn−1 +

(
n

2

)
Cn−2 + · · ·+ (−1)n

(
n

n

)
C0

where Cn is the n-th Catalan number

2. Its moment generating function
∑∞

n=0 Mnz
n = 1+x−

√
1−2x−3x2

2x(1+x)
, with convergence ra-

dius 1
3
.

However, we cannot find a nice approximation of the Motzkin sum that is similar
to Lemma 2.4.6. Hence, the asymptotic behavior of the total number singletons is still
unknown.

5.3 Asymptotic Distribution of Outer Singleton Blocks

Let us denote On : NC(n) → N the random variable that counts the total number of
outer singletons. The technique used in the Proposition 5.2.1 can be borrowed here to
immediately obtain the following result:

Proposition 5.3.1. For each positive integer p, limn→∞E([On]p) = (p+1)!
2p

Proof. Similar to the proof of Proposition 5.2.1,

E

((
On

p

))
=

1

p!
E([On]p) =

∑
π∈NC(n)

1

Cn

(
On(π)

p

)

and rewrite the summation as:

∑
π∈NC(n)

(
On(π)

p

)
=

∑
i1<i2<···<ip

|{π ∈ NC(n) : each {ij} is an outer block of π}|

Now i1, i2, · · · , ip divides the set {1, 2, · · · , n} into p+ 1 chunks. Let dj be the number
of points strictly contained in the j-th chunk. One can check d1 = i1 − 1, d2 = i2 − i1 − 1,
d3 = i3 − i2 − 1, · · · , dp+1 = n− ip, and

∑p+1
j=1 dj = n− p.
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Now instead of summing over i1, i2, · · · , ip, it is equivalent of summing over all such dj
where

∑p+1
j=1 dj = n− p.

Now fix a particular choice of dj and corresponding ik for which we compute

|{π ∈ NC(n) : each {ij} is an outer block of π}|

The points i1, i2, · · · , ip are all outer blocks, so that no other block can connect two
points from two different chunks. This immediately leads to a total of Cd1Cd2 · · ·Cdp+1

choices of π.

Hence, we have

E([On]p) = p!
∑

π∈NC(n)

1

Cn

(
On(π)

p

)

= p!

∑
d1+d2+···+dp+1=n−pCd1Cd2 · · ·Cdp+1

Cn

Notice that
∑

d1+d2+···+dp+1=n−pCd1Cd2 · · ·Cdp+1 = [zn−p]C(z)p+1. Apply Proposition
4.2.1, we obtain

lim
n→∞

E([On]p) = p! limn→∞
∑

d1+d2+···+dp+1=n−pCd1Cd2 · · ·Cdp+1

Cn

= p! lim
n→∞

[zn−p]C(z)p+1

[zn−pC(z)
· [zn−pC(z)

[znC(z)

= p! · (p+ 1)2p · 1

4p

=
(p+ 1)!

2p

If we can find a probability measure ν on N such that
∫
N[x]pdν = (p+1)!

2p
and ν is de-

termined by its moments, one can immediately deduce from Corollary 2.5.14 that this
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sequence On converges in distribution to ν. The general technique to obtain the moment
generating function from the factorial moments is through the probability generating func-
tion:

Definition 5.3.2. Let ν be a probability measure on N with mass pk at each k = 0, 1, · · · .
Then the probability generating function of ν is defined as G(z) =

∑∞
k=0 pkz

k.

Remark 5.3.3. Recall from Definition 2.5.9 that the moment generating function M(t)
is defined by M(t) =

∑∞
k=0 pke

kt. It is immediate that M(t) = G(et).

Remark 5.3.4. It is immediate that G(1) =
∑∞

k=0 pk = 1. Assuming its convergence
radius is great than 1 and thus we can consider its analytic expansion around z = 1: for
any positive integer p, the p-th derivative evaluated at 1:

dp

dzp
G(z) |z=1 =

∞∑
k=0

pk[k]p

which is exactly the p-th factorial moment of ν. Hence if Gp are the p-th factorial
moments of the measure ν, then

G(z) =
∞∑
p=0

Gp

p!
(z − 1)p

Combining these two observations, we can reach the following main result regarding
the asymptotic distribution of On:

Theorem 5.3.5. On
d→ NB(1/3, 2), where NB(1/3, 2) is a probability measure on N with

mass 4
9
(k + 1) 1

3k
at each k = 0, 1, 2, · · · .

Proof. Let G(z) =
∑∞

k=0
1
k!

(k+1)!
2k

(z − 1)k. Then if On converges to a probability measure
ν in distribution, we must have that the probability generating function of ν is G(z). We
first compute G(z) explicitly:

G(z) =
∞∑
k=0

1

k!

(k + 1)!

2k
(z − 1)k

=
∞∑
k=0

(k + 1)

2k
(z − 1)k

=
4

(z − 3)2
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The corresponding moment generating function is M(t) = G(et) = 4
(3−et)2 . This

matches the moment generating function of the negative binomial distribution NB(2, 1
3
),

where it has probability mass pk = 4
9
(k + 1) 1

3k
at each k = 0, 1, 2, · · · . The result follows

from Theorem 2.5.8
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