
Direct Visual Servoing for Grasping
Using Depth Maps

by

Abdullah Hojaij

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2013

c© Abdullah Hojaij 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Visual servoing is extremely helpful for many applications such as tracking objects,
controlling the position of end-effectors, grasping and many others. It has been helpful in
industrial sites, academic projects and research.

Visual servoing is a very challenging task in robotics and research has been done in
order to address and improve the methods used for servoing and the grasping application
in particular. Our goal is to use visual servoing to control the end-effector of a robotic arm
bringing it to a grasping position for the object of interest.

Gaining knowledge about depth was always a major challenge for visual servoing, yet
necessary. Depth knowledge was either assumed to be available from a 3D model or was
estimated using stereo vision or other methods. This process is computationally expensive
and the results might be inaccurate because of its sensitivity to environmental conditions.

Depth map usage has been recently more commonly used by researchers as it is an
easy, fast and cheap way to capture depth information. This solved the problems faced
estimating the 3-D information needed but the developed algorithms were only successful
starting from small initial errors.

An effective position controller capable of reaching the target location starting from
large initial errors is needed.

The thesis presented here uses Kinect depth maps to directly control a robotic arm to
reach a determined grasping location specified by a target image. The algorithm consists
of a 2-phase controller; the first phase is a feature based approach that provides a coarse
alignment with the target image resulting in relatively small errors. The second phase is a
depth map error minimization based control. The second-phase controller minimizes the
difference in depth maps between the current and target images. This controller allows the
system to achieve minimal steady state errors in translation and rotation starting from a
relatively small initial error.

To test the system’s effectiveness, several experiments were conducted. The experi-
mental setup consists of the Barrett WAM robotic arm with a Microsoft Kinect camera
mounted on it in an eye-in-hand configuration. A defined goal scene taken from the grasp-
ing position is inputted to the system whose controller drives it to the target position
starting from any initial condition.

Our system outperforms previous work which tackled this subject. It functions suc-
cessfully even with large initial errors. This successful operation is achieved by preceding

iii

the main control algorithm with a coarse image alignment achieved via a feature based
control.

Automating the system further by automatically detecting the best grasping position
and making that location the robot’s target would be a logical extension to improve and
complete this work.

iv

Acknowledgements

I would like to express my sincere gratitude and appreciation to Prof. John Zelek for
the time he has dedicated to my thesis and for his constructive feedback.
I extend my thanks to my readers Prof. Alex Wong and Prof. Steven Waslander for their
very valued feedback that contributed towards improving my thesis.
Special thanks to Adel Fakih for his substantial help he provided. His advice was very
crucial for the completion of this work.
To Dr. Daniel Asmar I owe thanks for the support and advice he generously provided me
with.
And to my family, I would like to thank them for the spiritual support they gave me as they
always motivated me to overcome the hardships I faced. Without them, my experience
would have been much tougher.
I would also like to thank the Systems Design Engineering Department for offering the
necessary amenities and facilities.
I owe many thanks to my friends especially Firas Mansour for standing next to my side at
all times.

v

Dedication

This work is dedicated to my family, especially my beloved parents.

vi

Table of Contents

List of Figures xi

List of Abbreviations xiii

Nomenclature xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 2

1.3 Outline . 4

2 Literature Review 5

2.1 Introduction . 5

2.2 Visual Servoing . 5

2.2.1 Summary . 5

2.2.2 Visual Servo Control for Manipulation 6

2.2.3 2.5D Visual Servoing . 9

2.3 Estimating 3D Information . 9

2.3.1 Summary . 9

2.3.2 Stereo Visual Odometry . 10

2.3.3 Direct Visual Servoing Using Depth Maps 10

vii

2.4 Image Features . 11

2.4.1 Summary . 11

2.4.2 Image Representation . 13

2.4.3 Feature Detector . 13

2.4.4 Feature Descriptor . 15

2.4.5 Feature Matcher . 17

2.5 Grasping . 17

2.5.1 Summary . 17

2.5.2 Learn To Grasp . 18

2.5.3 Improving Grasps . 18

2.5.4 Control with Visual Feedback . 18

2.5.5 Grasp Simulator . 19

2.5.6 Applications . 19

2.5.7 Universal Gripper . 19

2.6 Grasping Novel Objects . 20

2.6.1 Summary . 20

2.6.2 Determining the Grasping Point . 20

2.6.3 Grasping Points Based on Features 21

2.6.4 Grasping in Cluttered Environments 21

2.6.5 Grasping Based on 3D-Model . 22

2.6.6 Grasp Planning based on Off-line 3D Modelling 23

2.7 3D-Modelling . 23

2.7.1 Summary . 23

2.7.2 Modelling Objects in-Hand . 24

2.7.3 Modelling from a Single View . 24

2.8 Conclusion . 24

viii

3 Theory 25

3.1 Phase One: Coarse Alignment . 27

3.1.1 Image Representation . 27

3.1.2 Feature Detector . 27

3.1.3 Feature Descriptor . 28

3.1.4 Matching Features . 28

3.1.5 Controlling the Robotic Arm . 29

3.2 Phase Two: Error Minimization . 31

3.2.1 Direct Servoing Using Dense Depth Maps 31

3.2.2 The Error to Minimize . 31

3.2.3 The Interaction Matrix . 32

3.2.4 Noise and Incompleteness . 34

3.2.5 Outcome . 34

3.3 Conclusion . 34

4 Methodology of Experiments 35

4.1 Experimental Setup . 35

4.2 Coding and Communicating with Barrett WAM 36

4.3 Experiments . 38

4.3.1 Effectiveness Against Initial Positions and Initial Errors 38

4.3.2 Robustness Against Environment Noise 38

5 Experimental Results and Discussion 40

5.1 About Feature Detection . 40

5.2 Initial Positions and Initial Errors . 41

5.2.1 Experiment 1: . 43

5.2.2 Experiment 2: . 45

5.2.3 Experiment 3: . 46

ix

5.2.4 Conclusion . 46

5.3 Environmental Noise . 46

5.3.1 Experiment 1: . 46

5.3.2 Experiment 2: . 48

5.3.3 Experiment 3: . 49

5.3.4 Conclusion . 50

5.4 Limitations . 50

5.4.1 Rotational Limitations for Phase-One Controller 50

5.4.2 Manual Thresholding . 50

6 Conclusion and Future Recommendations 52

6.1 Conclusion . 52

6.2 Future Recommendations . 53

References 54

APPENDICES 59

A WAM Communication Code 60

B Using MapleSim 69

x

List of Figures

1.1 Visual Servoing Control Loop . 2

1.2 A humanoid Detecting Objects to Grasp 3

2.1 The Difference of Gaussian showing down-sampling 16

3.1 The Barrett WAM with the Kinect camera installed 26

3.2 Case requiring ‘targeted motion mode’ . 30

3.3 Case requiring ‘search mode’ . 30

4.1 The six degrees of freedom illustrated . 36

4.2 Kinect output examples . 37

4.3 Examples of images used for experiments in set 1 39

4.4 Examples of images used for experiments in set 2 39

5.1 Example of good matches . 41

5.2 Example of no good matches . 42

5.3 Example of images used for experiment 1 44

5.4 Example of images used for experiment 2 45

5.5 Example of depth maps during experiment 3 47

5.6 Translational and rotational errors . 47

5.7 Images with noisy backgrounds containing 1 dominant object 48

5.8 Images with white backgrounds containing 2 dominant object 49

xi

5.9 Images with noisy backgrounds containing 2 dominant object 49

B.1 Four DoF Barrett WAM [3] . 70

B.2 Six DoF robotic arm . 71

B.3 MapleSim: The main code . 72

B.4 MapleSim: The 4 DoF WAM . 73

B.5 MapleSim: The 2 DoF PanTilt unit . 74

xii

List of Abbreviations

PBVS Position based visual servoing
IBVS Image based visual servoing
RGB-D Red, green, blue and depth
ToF Time of flight
BoW Bag of words
SIFT Scale invariant feature transform
SURF Speeded up robust features
U-SURF upright speeded up robust features
CenSurE Center surround extrema
DoC Difference of circles
HoG Histogram of oriented gradients
FLANN Fast library for approximate nearest neighbors
LoG Laplacian of Gaussian
DoB Difference of boxes
DoO Difference of octagons
NNS Nearest neighbors search
SSD Sum of squared differences
SFM Structure from motion
RANSAC Random sample consensus
ICP Iterative closest point
PCA Principal component analysis
WAM Whole arm manipulator
DoF Degree of freedom
ssh Secure shell

xiii

Nomenclature

α The ratio of pixel dimensions

λ Constant proportionality gain

ωK Rotational velocity of the Kinect

LZ Interaction matrix related to Z

L+
Z The pseudo-inverse of LZ

vK Kinect velocity screw

Z∗ Vector of depth map values of target scene

Z Vector of depth map values of current scene

xXy Coordinate transformation from frame y to frame x

cu x-coordinate of Kinect camera’s principal point

cv y-coordinate of Kinect camera’s principal point

e The difference between current and target depth maps

f The Kinect camera focal length

xiv

Chapter 1

Introduction

The use of visual data as the source of feedback information for controlling robots and
robotic systems is becoming popular and is called visual sevoing as explained in Fig. 1.1.
This topic attracted the attention of many researchers [17, 21, 2] and has become an
interesting area of study because of its applicability to many of today’s systems such as
personal robots and industrial machines [11, 19, 34]. Various visual servoing techniques,
have been developed and introduced for experimenting and testing [6, 7], such as Image
Based Visual Servoing [12], Position Based Visual Servoing [46] and 2.5 D Visual sevoing [8].
Many of these new methods proved to be effective and successful in performing the control
task for a given problem [43, 40] which other previous methods, like using only infra-red
sensors for example, struggled with because of the existence of several issues, such as light
reflection and refraction for instance. Currently, visual servoing faces many limitations
including accuracy, expensive computations, robustness and stability [43]. The main drive
behind improving upon existing methods, and overcoming the mentioned limitations, is to
suit various applications, ranging from position control to autonomous grasping, for which
the available techniques cannot perform effectively; the current methods are either slow,
too expensive, computationally involved, limited to initial conditions, or not sufficiently
robust.

1.1 Motivation

The benefits of visual servoing are many including the use of low cost sensors (such as
cameras) which are readily available off-the-shelf and the potential for accurate operation
by visually closing the control loop. These benefits made the usage of visual servoing in

1

Figure 1.1: Visual Servoing Control Loop

many of the industrial robotic products more common [48]. It has shown to be extremely
helpful for numerous applications such as tracking objects [34], controlling the position
of end-effectors, grasping [37] and many others. Visual servoing made owning a personal
robot that helps in everyday activity, which once was a dream, possible as shown in Fig. 1.2.
But, as the ideas of more applications, with more complicated requirements and operating
under various conditions, are presented on the table, the need for enhanced visual servoing
techniques increases. These needed techniques should be simple enough not to overload
the available computational capabilities, yet powerful and accurate in order to effectively
control the robotic system resulting in only very small final errors that doesn’t affect the
success of the required task. To be able to do so, the limitations of current visual servoing
methods have to be overcome. This will be discussed further in Section 1.2.

1.2 Challenges

Despite the aforementioned benefits of visual servoing, it is a very challenging task in
robotics. Research has been done in this area in order to address and improve the methods
used and overcome the challenges. Currently, many of the algorithms are slow because
of complex matrix computations, particularly the homography matrix used to estimate
3D information about the scene, or 3D model reconstruction. They are also prone to
singularities, that are present when computing the inverse of the image Jacobian necessary
for the control law [17], and are sensitive to calibration errors and image noise [43]. In
addition, most of these require 3D knowledge that is either computed using stereo vision
or acquired using some depth sensors such as laser sensors. Therefore, speed, stability,
robustness, simplicity and availability of necessary 3D information are all issues to be
handled when working with visual servoing.

2

Figure 1.2: A humanoid Detecting Objects to Grasp [42]

Various visual sevoing techniques have been used but were subject to some of the
limitations mentioned earlier. Also, the use of depth maps, which have recently become
easily, quickly and cheaply computed, has been explored by some papers but were only
successful for small movements [41]. Our goal is to combine the usage of depth maps with
visual servoing in order to control and position the end-effector of a robotic arm close to
an object of interest starting from large initial errors.

The main features of the thesis work are:

• seamless operation (achieved when the algorithm’s computations are performed to
send smooth and continuous motion commands to the robotic arm),

• simplicity and robustness (avoiding complex matrix computations because of the
availability of 3D information extracted directly form the depth maps making the
system also less sensitive to image noise),

• low cost setup and operation (a cheap and readily available Microsoft Kinect camera
is the only sensor needed),

• independence of camera calibration and

3

• independence of any sort of training (ability to handle situations when confronted
with novel objects).

These features, combined, lead to effective work mainly contributing in the process of
successfully controlling the position of a robotic arm towards reaching a specified target
location starting from almost any initial position.

1.3 Outline

Previous work and a literature review is presented in chapter 2 showing the various basic
and improved visual servoing techniques, their advantages and disadvantages and their
suitable applications. Chapter 3 explains our proposed method utilizing visual servoing
techniques and depthmaps information to handle a wide variety of applications. In chap-
ter 4 we explain the experimental setup and the experiments performed to evaluate the
effectiveness of our technique. Experimental results are presented and discussed in chapter
5. Finally, chapter 6 concludes this thesis and opens a window to look at potential future
work.

4

Chapter 2

Literature Review

2.1 Introduction

Visual servoing is a very challenging task in computer vision, but it has lots of benefits
and it is especially useful in many robotics applications. Research has been done in this
area in order to address and improve its speed, robustness, accuracy and reliability. The
work done in this field ranges from explaining and testing the basic visual servoing tech-
niques, to exploring and developing new and enhanced methods to achieve the at required
performance. The following sections present what was discussed in the literature regarding
visual servoing techniques and their applicability. For instance, tracking is one obvious
application that uses visual servoing [2].

2.2 Visual Servoing

Visual servoing is the use of visual data as the source of information used as feedback
necessary to effectively control robotic systems as shown in Fig. 1.1. Because of the uses
of visual servoing, it attracted the attention of many researchers who developed several
techniques to perform it.

2.2.1 Summary

The most basic and most famous visual servoing techniques are the IBVS (Image Based
Visual Servoing) and PBVS (Position Based Visual Servoing) from which hybrid methods

5

were developed that outperform the basic ones. One of the hybrid visual servoing tech-
niques is 2.5 visual servoing which is a compromise between the IBVS and PBVS benefiting
from their advantages and avoiding their disadvantages.

• The PBVS extracts locations in the images and control the robot based on these
locations.

• The IBVS uses information in the images to directly control the robot without com-
puting positions, making it less computationally expensive than the PBVS, however,
it is more prone to singularities.

• The main advantage of 2.5 visual servoing is that it decouples the rotational and
translational control loops, making it more robust and stable against singularities
but more sensitive to image noise.

All these techniques require 3D knowledge and thus 3D information techniques need
to be used. Stereo vision was adopted by some methods to compute the necessary 3D
parameters. Another way is to directly extract the depth information using depth maps.

2.2.2 Visual Servo Control for Manipulation

The authors of [17] present an introduction to visual servo control for robotic manipulators.
They discuss the two main methods for visual servoing, namely image-based visual servoing
(IBVS) and position-based visual servoing (PBVS). Feedback from visual sensors can close
the loop for more accuracy in the system. Details regarding IBVS and PBVS are further
explained in [6] to which [7] adds more advanced techniques such as hybrid visual servoing.

Visual servoing is the use of machine vision to control the position of the end-effector in
a closed loop system. It has been used in numerous applications including robot juggling
and grasping.The tutorial presented in [17] touched upon many important definitions and
aspects of visual servoing which are briefed below.

• Definitions:

– Coordinate Transformation: For tracking, rotations alone are sufficient, while for
simply picking and placing objects, translations only are enough. xXy represents
rotation and translation matrices of either a pose or a coordinate transformation.

6

– Camera Projection Model: Depth information is lost after projecting a 3D scene
into the 2D image plane. To retrieve additional information, several alternatives
can be used including multiple cameras, one camera with multiple views or
having some geometric knowledge. Three major projection models are discussed:

1. Perspective projection which represents a linear projection from camera
frame coordinates to image plane coordinates,

2. scaled orthographic projection which approximates the perspective projec-
tion by a linear scaled orthographic one and

3. affine projection which is another approximation of the perspective projec-
tion.

– Image Features: The image plane coordinates are used as the parameters of the
point features. The projective geometry of the camera is used to map the pose
of the end-effector to the relevant image feature parameters.

– Camera Configuration: There are two main camera configurations:

1. Eye-in-hand configuration represents mounting the camera on the robot
itself so that the camera moves with the robot. In such a configuration, the
relation between the poses of the camera and the end-effector is known and
usually constant denoted by eXc.

2. Eye-to-hand configuration represents cases in which the camera is fixed in
the workspace or on a mobile platform and the robot is seen by the camera.
Camera calibration is a must for such configurations.

• Categorizing Visual Servoing: Visual servoing can be divided into four categories [17]:

1. Dynamic look and move system with a hierarchical control architecture and the
vision system providing input to the joint level controller.

2. In direct visual servo, the joint inputs are directly computed with the visual
servo controller completely replacing the robot controller.

3. In position based control, the vision is used to extract features to estimate the
pose of the target.

4. While in image-based servoing, the extracted features are used to directly com-
pute inputs to the controller. It has lower computational delays than position-
based servoing and is not affected by calibration errors, but it is more challeng-
ing.

The first category is more commonly used in favour of the second one for various
reasons:

7

1. The vision system has relatively low sampling rates

2. Available robots usually utilizes Cartesian position and velocity inputs

3. It separates the kinematic singularities from the visual controller

Endpoint open-loop (EOL) systems only observe the target while endpoint closed-
loop (ECL) systems observe the target and the end-effector resulting in a more accu-
racy in positioning since it is less sensitive to calibration, but it is more demanding.

• Position Based Visual Servoing [17]:

– An error representing the difference between a desired pose and the current pose
of the target with respect to the camera, which is estimated from the extracted
features, is defined. A positioning task is fulfilled by driving a kinematic error
function to zero. This is done via a regulator that sends end-effector velocity
screw inputs to the robot controller at each time instant.

– Point feature-based motions. Point to point positioning tasks drive a point on
the robot’s end-effector to a stationing point in the workspace. Another example
is moving a point on the robot’s end-effector in-line with two fixed points in the
workspace.

– Pose-based motions. Choose a desired stationing pose and define the error
function to be the difference between that pose and the current end-effector’s
pose.

– Pose-based methods are commonly used. However, they are computationally
expensive and depend on knowing a model of the target. When a target model
is not available, feature-based approaches are more appropriate.

• Image Based Visual Servoing [17]:

– The Jacobian matrices for image point coordinates are function of depth which
is to be computed.

– It is computationally less expensive than position based control, but singularities
are present when using this approach.

• Feature Extraction and Tracking [17]:

Window-based tracking techniques are efficient and are done by first acquiring win-
dows and then processing them to locate image features. Edge-based or area-based
methods can be used. The latter is used when a specific feature pattern is desired but

8

is not desired when occlusions or background changes exist. Window-based methods
only work for small displacements unless lower level resolutions are used. Another
disadvantage of such methods is that it relies on exact matches.

2.2.3 2.5D Visual Servoing

2.5D visual servoing [25] is a hybrid servoing method that is between image-based and
position-based visual servoing avoiding the disadvantages of both. It doesn’t need geomet-
ric 3-D model and ensures the control law convergence. The main advantage of the 2.5D
method is that it allows the decoupling of the translational and rotational control loops.
Estimating the rotation and translation of the camera, from the original to the required
configuration, is the base of this method. A survey on visual servoing that focuses on
image-based, position-based and 2.5D visual servoing can be found in [21].

A thesis work about 2.5D visual servoing is presented in [43]. In this work, a 2.5D visual
servoing technique was developed for an eye-to-hand system. Accuracy, real-time operation
and the robot kinematics are three main constraints for pose estimation algorithms. For
the estimation of the 3D parameters without the use of a 3D model, homography was
used. When compared to IBVS and PBVS, experiments showed that the 2.5D is more
stable, robust, and less sensitive to calibration errors. It also helps overcome singularity
problems. On the other hand, it is more sensitive to image noise due to the homography
matrix calculation. Using the depth map of the Kinect as the source for the 3D parameters
would be the next step for improving on this work.

2.3 Estimating 3D Information

As explained in Section 2.2, the methods explored in the literature require some sort of 3D
knowledge. The latter could be either estimated, computed or sensed.

2.3.1 Summary

Some work assumed the availability of a 3D model [45], while some computed the 3D
information off-line [47]. Other work estimated or sensed the 3D information on-line.
Researchers used stereo vision to estimate the 3D pose [14] and others recently relied on
low cost off the shelf depth RGB-D sensors to obtain the depth map of the scene [41].

9

2.3.2 Stereo Visual Odometry

The work in [14] presents a visual odometry algorithm for autonomous ground vehicles. The
algorithm consists of a feature detection step, followed by descriptor formation. Then comes
the inlier detection step after which the frame-frame motion is computed by minimizing
the re-projection error of the features. Finding the inliers rather than rejecting the outliers
is one of this algorithm’s biggest advantages by making it insensitive to incorrect matches.
It is done by forcing the 3D locations of the features to obey a rigidity constraint. This also
makes the algorithm capable of handling scenes that include motions. Another advantage of
this algorithm is that it does not require an initial motion estimate and it can handle large
translations, however, the it cannot handle rotations or scaling. The algorithm presented
in [14] showed high degrees of reliability and accuracy. It is intended to compliment the
use of other sensors for improved performance.

2.3.3 Direct Visual Servoing Using Depth Maps

The work in [41] presents a 3D visual servoing technique based on depth maps extracted
from RGB-D sensor data without estimating 3D pose or matching image features. The
visual error in IBVS techniques is usually the difference between certain geometric features
in current image and the desired one. In [41], differences in depth maps are being used for
the servoing. Depth maps can be constructed using Time-of-flight (TOF) range sensors
or projecting light patterns and sensing the projections to extract the depth information.
The latter method is what the Microsoft Kinect uses and is what is being used in this
thesis [41].
The error that has to be minimized by this IBVS technique is the difference between the
depth map of the current image and a desired depth map as shown in (2.1).

e = Z− Z∗ (2.1)

Where Z is the current depth map and Z∗ is the desired depth map. Based on the control
law discussed in [6], the interaction matrix LZ is related to the velocity screw v and the
rate of change of the depth ∂Z

∂t
as in (2.2):

∂Z

∂t
= LZv (2.2)

As an example, for an exponential decrease in the error (ė = −λe), a simple proportional
control law can be defined as (2.3):

10

v = −λL+
Ze (2.3)

where L+
Z is the pseudo-inverse of LZ and is defined as in (2.4):

L+
Z = (LT

ZLZ)−1LT
Z (2.4)

To improve the robustness of the algorithm, few measures were taken. A 3 × 3 Gaussian
filter is applied to the depth image to reduce the noise. To reduce the effects of occlusion
and scene modifications, M-estimation was implemented by weighing the error according
to a robust function.

To test the effectiveness of the algorithm, several experiments were performed. After
acquiring the desired depth map, the robot was used to some initial position from which
the controller would try the move it to the desired position at which the robot would sense
the desired depth map. A fixed gain, λ = 2.5 was used in all the experiments. The results
showed that the algorithm is robust and insensitive to changes in illuminations. It had
some limitations when it comes to noise and missing data, but the filtering and the use of
M-estimation resolved these limitations.

2.4 Image Features

Features are image pixels containing meaningful information. Features could be of various
sizes ranging from few pixels to a large part of the image. These features can be described in
various ways to be later detected using certain feature detectors. Various feature descriptors
and detectors are studied in the following sections.

2.4.1 Summary

Images are generally represented, after subsequent processing, by either:

• the bag of words (BoW) [9] also called bag of visual features or

• an unstructured list of features [32].

11

The BoW focuses on details found in the image and tries to group the features into
related patches while the other approach captures general information about the image
without finding relations or grouping.

The features present in the image are detected by one of the studied feature detectors.
The most common feature detectors are:

• scale invariant feature transform (SIFT) [24],

• speeded up robust features (SURF) [5],

• center surround extrema (CenSurE) [1] and

• The difference of circles (DoC) [13].

SIFT was shown to be very robust and effective but slower to compute while SURF
was less invariant to rotations but much faster and simpler to compute.

These features are then described using what is called a feature descriptor. Many
feature descriptors were explored in the literature from which we chose to discuss:

• scale invariant feature transform (SIFT) [24],

• speeded-up robust features (SURF) [5] and

• histogram of oriented gradients (HoG) [10].

Each one of the above mentioned descriptors has different advantages and disadvantages
when it comes to speed, robustness and invariance to scale, rotation and illumination.

For applications requiring comparison or recognition, the detected features need to be
matched. For that we discussed two main feature matchers which are:

• the brute-force matcher and

• the fast library for approximate nearest neighbors (FLANN) matcher [30].

All of the feature descriptors, detectors and matchers are further discussed in the sec-
tions to follow.

12

2.4.2 Image Representation

Before deciding on the feature descriptor and detector to be used, we need to choose the
suitable criterion for understanding the image.

The two main categories for image representation are:

• the bag of words (BoW) and

• finding an unstructured list of features.

The BoW finds the occurrence of features in the image [9, 23] focusing on small details
while finding an unstructured list approach is a simpler approach [32] that gathers general
information found in the image by detecting the features that exist [33] and is used to com-
pare the overall context of images as opposed to detailed features. We are more interested
in the unstructured approach as it suits our application more since we are interested in
finding matches between features in the current and target images and we are not looking
for anything specific.

2.4.3 Feature Detector

Images are usually rich in features which represent the useful information in them and to
be able to utilize this information, these features have to be detected. Feature detection
was thoroughly studied in the literature and the most common ones are:

• scale invariant feature transform (SIFT),

• speeded up robust features (SURF),

• center surround extrema (CenSurE) and

• The difference of circles (DoC) was also studied in the literature.

Before discussing the various feature detectors listed above, one should note that feature
detection has been an essential building block in many widely used image processing ap-
plications [26]. In order to effectively achieve the applications’ goals, the detected features
have to satisfy certain characteristics including illumination, scale and rotation invariances.

13

These features’ properties are especially necessary in applications such as tracking and ob-
ject recognition where rotations and scale changes happen quite often. SIFT [24], one of
the most popular feature detectors is scale and rotation invariant. The idea behind it is to
use extrema in the Laplacian of Gaussian (LoG) as a cue of saliency. However, the LoG
is very expensive to compute since it involves computing the square of the derivative at
each pixel; this has to be done at each scale. Approximating the LoG is very common in
the literature where several different approximations exist. For that purpose, Lowe [24]
approximates the LoG by the difference of Gaussian (DoG) which is a faithful approxima-
tion of the LoG, however, it involves convolving the image with a Gaussian filter at each
scale. The latter filter becomes very large at higher scales and the cost of the convolution
becomes very huge. To reduce the computational cost at higher scales, Lowe [24] suggested
down-sampling the image by a factor of four each time the scale was doubled to compensate
for the computational increase. Sub-sampling the image leads to poorer localization of the
features at higher scales.

As a faster detector, the Speeded-up robust features (SURF) was introduced [4]. Specif-
ically, the upright SURF (U-SURF) uses the difference of boxes (DoB) as an approximation
of the LoG, however, the features become no more rotation-invariant unless the rotation
angles are very small and not exceeding 15o [5]. One of the main advantages of using the
DoB is that they can be computed very efficiently using integral images [44]. Other than
resulting in a faster detection, the DoB based method doesn’t require sub-sampling and
hence doesn’t have localization troubles with high scale features.

A solution that is midway between the previous approaches and that could outperform
the previously mentioned detectors, was introduced in [1]. The authors suggested using
the center surround extrema (CenSurE) to detect the image features. The CenSurE are
scale and rotation invariant and yet fast to compute because they take advantage of the
integral images. To maintain some level of rotation invariance, they used the difference
of octagons (DoO) as the LoG approximation, an approximation that is better than DoB.
They avoided using the difference of circles (DoC) although it is more faithful to the LoG
and would also lead to much better rotation invariance [1] because it can not be computed
directly using integral images. The star detector developed at ‘Willow Garage’ is very
similar to the CenSurE and uses the same concepts and ideas, but utilizes the difference of
stars (DoS) instead of octagons where a star is created by having two concentric boxes on
top of each other with the box on top rotated by 45o with respect to the lower one [20]. The
DoC was explored for the purpose of feature detection in [13] which introduces a new kind
of circular integral images to speed up the computation of the DoC which is considered a
very faithful approximation to the Laplacian of Gaussian (LoG) used for feature detection.

14

2.4.4 Feature Descriptor

Features in the images are represented according to the descriptor used to describe them.
Many feature descriptors were studied in details and researchers have done many experi-
ments to compare between them. The most common descriptors are:

• scale invariant feature transform (SIFT),

• speeded-up robust features (SURF) and

• histogram of oriented gradients (HoG).

The histogram of oriented gradients (HoG) evaluates the local normalized histograms of
the gradient of orientations of an image and represents them in a grid. The method is based
on the observation that the intensity gradients’ directions represent local features [10]. The
image is first divided into a grid of small group of cells for which histograms of the directions
are accumulated. The histograms of all the cells are combined and normalized to form the
histogram of oriented gradient (HoG).

Scale invariant feature transform (SIFT) preceded the HoG and was discussed in [24]
which uses extrema in the Laplacian of Gaussian (LoG) as a cue of saliency. Computing
the LoG is very expensive because it involves computing the square of the derivative at
each pixel and at each scale. To speed up the process, Lowe [24] approximates the LoG by
the difference of Gaussian (DoG) which is a faithful approximation to the LoG, however,
it involves convolving the image with a Gaussian filter at each scale. The latter filter
becomes very large at higher scales and the cost of the convolution becomes very huge. To
compute the SIFT descriptor, using a cascade of filters, the keypoint locations are found in
the image around which the image gradient magnitude and orientations are sampled and
filtered using the Gaussain blur [24]. To reduce the computational cost of the Gaussian
filter at higher scales, Lowe [24] suggested down-sampling the image by a factor of four
each time the scale was doubled to compensate for the computational increase as depicted
in Fig. 2.1. The cost of sub-sampling is poorer localization of the features at higher scales
but it saves on the computational time required.

The SIFT descriptor showed to be a good representation of saliency and the experiments
conducted demonstrated its effectiveness in detecting distinctive features which enabled
correct object matching. SIFT proved to be rotation and scale invariant and robust against
image distortions [24].

15

 Scale
 (first
 octave)

Scale
(next
octave)

Gaussian

Difference of
Gaussian (DOG)

. . .

Figure 2.1: The Difference of Gaussian showing the down-sampling at each scale [24]

Despite SIFT’s great performance, it still requires complex computations making it a
relatively slower detector when compared to few other available ones. As a faster descrip-
tor, the Speeded-up robust features (SURF) was introduced [4]. The SURF descriptor is
extracted from square regions which are constructed to be aligned with a fixed orientation
chosen based on information around keypoints [5]. Specifically, the upright SURF (U-
SURF) uses the difference of boxes as an approximation of the LoG as opposed to the DoG
used by SIFT, however, the features become no more rotation-invariant unless the rotation
angles are very small and not exceeding 15o [5]. One of the main advantages of using the
DoB is that they can be computed very efficiently using integral images [44]. Other than
resulting in a faster detection, the DoB based method doesn’t require sub-sampling and
hence doesn’t have localization troubles with high scale features. Therefore, SURF is faster
than SIFT but isn’t as rotation invariant.

16

2.4.5 Feature Matcher

After describing the detected features in an image, these features has to be compared
and matched with features detected in the original image. Several feature matchers are
available in the literature from which we discuss two which are:

• brute-force matcher and

• fast library for approximate nearest neighbors (FLANN) matcher.

The brute-force matcher finds the distances between a feature in the current image and
all the features in the target image. The features with the closest distance represents a
match.

The fast library for approximate nearest neighbors (FLANN) requires training that
allows to quickly find the feature closest to the processed features. This library performs
a fast nearest neighbors search (NNS) and is written in C++ language but can be used in
other programming languages as well [30].

2.5 Grasping

Visual servoing is a tool for robotic manipulation. Grasping is an application that would
use that tool to benefit the world in real life situations. We are particularly interested
in the ability to grasp any object including those seen for the first time. The grasping
component of this research is beyond the scope of this thesis, but it is explored to study
its feasibility for future completion.

2.5.1 Summary

For a robotic arm to grasp, it has to deicide on a grasping point, drive the gripper to
the relevant location and perform the grasp. A robot can learn to grasp using a trial
and error training approach to assess future grasps starting from a full 3D model. Other
strategies handles occlusions and/or unavailability of complete 3D information. Contact
and proximity sensors may be added to enhance on the grasping process. Some grasps were
preceded by visual tracking to make the grasps more realistic and applicable to many tasks
including picking objects from a moving conveyor belt or playing chess. More complicated

17

grasps could be virtually assessed using a grasping simulator, ’GraspIt’. Limitations still
existed hindering the applicability of grasping, so, to overcome some of these limitations,
a jamming gripper was introduced, a new gripper design, allowing compliant grasps using
less information.

2.5.2 Learn To Grasp

Finding the grasping location is a crucial step when attempting a grasp. [19] helps a robotic
arm learn to grasp using visual information based on saving the locations of grasping trials
after grading them. This information is later used to choose grasping points on new targets.
Another teaching scheme is presented in [39] which is designed to function even when only
an incomplete 3D model of the object to grasp is available. The latter algorithm is able
to utilize the partial information visible in order to position a robotic arm in a suitable
grasping location.

2.5.3 Improving Grasps

When attempting an actual grasp, the object to grasp is not always fully known or sensed.
Thus, a robust grasp algorithm should be able to deal with uncertainties in the environment
and the object’s location and shape. To select a proper grasp, [15] uses a contact-reactive
algorithm that performs compliant grasping based on information sensed by sensors in-
stalled on the fingertips of the robotic arm allowing for robust and reliable grasp even
when information is missing.

Another way to improve on grasp algorithms is to use optical proximity sensors installed
on the fingertips of the hand of a robotic arm. [16] uses such proximity sensors to perform
online grasp adjustments to improve on initially found grasp points before the hand gets
in contact with the object to grasp. The presented algorithm compliments previously
presented grasp algorithms.

2.5.4 Control with Visual Feedback

A great way to perform effective grasps is to use computer vision to provide feedback
and close the control loop. A vision sensor could be used to perform visual tracking, for
instance, as a step preceding a grasp attempt in a realistic robotic problem. Such technique
was developed in [34] which used the sum-of-squared differences (SSD) optical flow followed

18

by a Kalman filter to estimate the motion of object being tracked. Similar technique was
used in [48] in order to track and pick objects from a fast moving conveyor belt.

2.5.5 Grasp Simulator

Performing grasps in real life environments requires the robotic arm to have extra capa-
bilities, mainly flexibility. Designing robots with more degrees of freedom needed for more
flexibility comes at the cost of increasing the complexity of the robotic system. Evaluat-
ing and testing these new robots is very essential for the assessment of the validity and
effectiveness of these designs. Thus, [29] came up with a tool that simulates and evaluates,
visually and quantitatively, the feasibility and effectiveness of grasps performed by the
modelled robotic arms. The simulator is called ‘GraspIt’ and very helpful when tackling a
grasping task.

2.5.6 Applications

Grasping methods are developed to eventually suit real life tasks. Few of these applications
were tested and explored in the following papers each addressing a different aspect showing
the vast applicability of grasping.

• Gambit: An Autonomous Chess-Playing Robotic System [28].

• Grasping From the Air: Hovering Capture and Load Stability [35].

• Robotic Ball Catcher [11].

2.5.7 Universal Gripper

Despite the enhancement of the grasping methods and incorporating various sensors to
increase the availability of useful information, limitations still exist, some of which are
imposed by the design of the gripper being the end-effector in contact with the object
being grasped. To eliminate some of these limitations, [18] designed a new innovative
gripper called the ’universal jamming gripper’. The latter consists of bag with from a
flexible membrane containing granulated matter that conforms to the shape of the contact
area between the gripper and the target object. The bag is then vacuum hardened by
adjusting the air pressure inside it allowing for compliant grasps as well. This gripper is
very versatile because it doesn’t require the 3D model knowledge of the target, nor does it
require accurate localization.

19

2.6 Grasping Novel Objects

Most grasping algorithms require knowledge about the object to be grasped and thus, they
struggle when confronted with novel objects seen for the first time by the robot. To address
this issue, several methods were discussed in the literature.

2.6.1 Summary

To be able to grasp novel objects especially those seen for the first time by the robot, grasp-
ing points were determined from the 2D images. Only those points were then triangulated
to find the corresponding 3D grasping position. Such algorithms were enhanced to even
deal with cluttering and the to avoid obstacles existing in the working environment. Other
work was done to generate 3D models using laser scanners, or off-line using structure from
motion.

2.6.2 Determining the Grasping Point

[37] presents a machine learning algorithm that finds grasping points on objects seen for
the first time. This is done after the system is trained on a synthetic set of objects. The
proposed algorithm does not use a 3D-model of the object, nor attempts to build one as
opposed to previous work which assumed that the object being grasped is known or a
3D-model of it is given.

The algorithm works by first detecting features in the image and then calculating the
probability of being a valid grasping point. For each grasping point identified, the 3D po-
sition of that grasping point is computed using triangulation from 2 or more images of the
grasping point. Triangulation is performed only for the valid points rather than triangu-
lating the whole image as is done when acquiring the 3D-models saving on computational
time. The details of [37] are explained in the sections to follow.

Triangulation

For the triangulation process, the 3D-space around the determined grasping point is dis-
cretized into a grid. Rays are then built from the grasping points using the knowledge of
the camera position and pose with a Gaussian conical error around it. The grid cell with
the maximum response from the rays is chosen as the grasping point. Because grasping

20

points can be vague, the spacial structure of the object can be used to improve the choice
of grasping points.

Control

Grasping objects with the robotic arm was done using a two-step control strategy. First, the
end-effector approaches the object, and then move on a straight line towards the grasping
point.

The algorithm was tested using a 5-DOF robotic arm mounted on a mobile platform.
Experiments showed high success rates and accuracies in grasping novel objects.

2.6.3 Grasping Points Based on Features

In [36] and [38], the authors described the approach used to detect features representing
edges, texture and color from which grasping points are selected. To include global prop-
erties of the object, features are extracted at 3 spatial scales. Then, features in a 5×5
window of 25 patches are computed thus including information from 24 neighbours.

Probabilistic Model

To grasp, two or more images are taken from different camera positions. Camera position-
ing errors are taken into account and assumed to be Gaussian. Correspondence issues are
challenging. To deal with them, the 3D-workspace is discretized and rays are built from
each different image to each grid element. Intersecting rays represent good matches. A
match represents a valid grasping point if its 2D position on the image is a grasping point.

2.6.4 Grasping in Cluttered Environments

The authors of [37] and [36] continue their research to address the problem of grasping in
cluttered environments [40]. Their proposed algorithm does four tasks:

1. Decide on a grasp

2. Locate obstacles

3. Plan a trajectory to reach the object without hitting the obstacles

21

4. Finally, actually grasping the object

As mentioned before, most of the work done in the literature assumes the knowledge
of a 3D-model of the object. However, even if stereo vision or laser scanners are used, the
output is not good enough for real world grasping applications; the former produces noisy
point clouds and the points acquired by the latter are sparse.

Algorithm

The system is taught some visual features that represent good grasps and that are consis-
tent among objects of particular types. By this, the robot’s kinematics and workspace are
not considered, so, the best grasp (grasping point and orientation) is to be chosen from the
set of possible grasps determined. Knowing the environment and perceiving the obstacles
in it requires the 3D-model of the workspace. But, because of the inaccuracy problem
accompanied with acquiring the 3D-model (discussed earlier), several fixed objects were
stored into the system. Probabilistic Road Map (PRM) was used as the path planner to
decide on how to navigate the arm while avoiding the obstacles. As for the hand, minimal
opening of the fingers was attempted. Experiments were carried out on the 7-Dof Barrett
WAM and a grasping success rate of 80% was achieved.

2.6.5 Grasping Based on 3D-Model

Others addressed grasping by reconstructing a 3D-model of the object being grasped [45].
The authors used a laser scanner to construct the 3D-model of the object in interest. For
the grasping process, the paper focusses on four issues:

• features found in the object to be grasped,

• the configuration of the hand needed for a proper grasp,

• directions and magnitudes of the contact forces between the hand and the object and

• required forces to be exerted by the fingers on the grasped objects.

Virtual simulations of grasps are done and evaluated using software in order to select
the best grasp that is executed by the actual robot while avoiding collision. The success
rate of the grasps performed was 94% where failures were mainly caused either by the hand
moving the object from the grasp location or by the object slipping from the robot’s hand.

22

2.6.6 Grasp Planning based on Off-line 3D Modelling

In [47], the authors try to generate a 3D-model of an object and manipulate it au-
tonomously. 3D-models were generated using SFM(Structure From Motion) without any
prior object knowledge. The object modelling achieved by this paper had 5mm error for
15cm big objects. 2 major problems faced the authors:

1. Large amount of redundant data was available. The authors dealt with this issue by
using voxels, small cubic bins.

2. Shape errors were present. The authors tackled this by averaging the shape error.

The criteria used to select a grasp were:

• Enough contact area,

• stability against gravity,

• availability of enough space to manipulate the object after grasping it and

• little robot’s motion while executing the grasp.

To meet the criteria, the authors tried to minimize an objective function that encom-
passes the requirements. The experiments performed proved their approach’s effectiveness.

2.7 3D-Modelling

The availability of a 3D model of the target is very essential for many grasping algorithms.
Work has been done to generate a 3D-models of the objects to be grasped. Various tech-
niques and approaches were used.

2.7.1 Summary

A 3D model of the object of interest could be generated using RANSAC and ICP to fuse
images into a coherent 3D model. It was even possible to generate 3D models from a single
scene view using a probabilistic model fitting.

23

2.7.2 Modelling Objects in-Hand

Most of the available literature (including ones discussed earlier) base their modelling
techniques on either training or prior knowledge and cannot handle totally new objects. [22]
addresses the issue of modelling new objects without depending on accurate sensors or
delicate robots. Based on RANSAC (Random Sample Consensus) and ICP (Iterative
Closest Point), the authors use a Kalman filter tracking approach to fuse the images of
the object into a coherent 3D-model. In attempt to autonomously grasp and model new
objects confronting the robot for the first time, the authors use a very simple approach
that performs a PCA (principle component analysis) of the object scene obtained after
subtracting the background from the image. They claimed that this approach worked well
enough for performing initial grasps.

2.7.3 Modelling from a Single View

Based on a single image snapshot, the authors in [27] tried to generate a 3D-model of
the object of interest using a probabilistic model fitting that assumes the object to be a
combination of simple basic shapes. Since the only available data is taken from one image,
then only one view of the object is available; therefore, their approach guesses the shape
of the back of the object assuming symmetries common in everyday’s objects and that
these objects are physically stable. The sensors used are stereo cameras, 3D sensors or a
combination of both. The authors claim that their generated models were precise enough
for the grasping application.

2.8 Conclusion

Much research has been done to improve on visual servoing. Hybrids between the most
common visual servoing techniques (IBVS and PBVS) were developed to help suit a larger
number of real life applications. The use of depth maps was later introduced to directly
perform visual servoing. Conventional visual servoing techniques struggled with stability
and robustness issues in addition to their computationally expensive costs. Despite the
benefits of the state of the art direct visual servoing that include elevating the need for
training or camera calibration, the main limitation of such an approach is that it is only
applicable to small errors. The work in this thesis addresses the direct visual servoing task
to make it suitable for a large range of applicability.

24

Chapter 3

Theory

As discussed earlier, visual servoing is extremely helpful for numerous applications such
as, tracking objects, controlling the position of end-effecters, grasping and many others. It
is a very challenging task in robotics and research has been done in order to address and
improve the methods used for servoing and the grasping application in particular. Our goal
is to utilize visual servoing in order to control the end-effecter of a robotic arm bringing it
to a grasping position for the object of interest.

The research uses off-the-shelf 3D and image sensor, the Kinect, to provide correlated
depth maps and camera images. They are used to control the robotic arm to get to a
determined grasping location specified by a target image. It consists of a 2-phase control;
the first phase is a feature based approach that provides a coarse alignment with the target
image resulting in small errors. The second phase is a depth map error minimization based
control. The latter uses the depth maps directly to perform the control task.

A defined goal scene taken from the grasping position is inputted to the system whose
controller drives it to the target position. This is done via the two-phase controller. The
first controller functions by matching features between the target and current images until a
significant overlap between them is achieved. Only coarse alignment between the images is
required for this phase. The second controller does the fine tuning. It functions by aligning
the current and target depth maps in an attempt to minimize the difference in depth maps
between them. The latter controller is expected to achieve minimal steady state errors
in translation and rotation starting from a relatively small initial error. As a complete
system, it is anticipated to function successfully even with large initial errors making it
capable of handling cases where the robot is on the other side of the working space. This is
achieved by preceding the main control algorithm with a coarse image alignment achieved

25

via a feature based control which functions properly despite the initial errors.

To apply the described algorithm to a practical set up, a Microsoft Kinect camera was
installed on a Barrett WAM (Whole Arm Manipulator) in an eye-in-hand configuration as
depicted in Fig. 3.1.

Figure 3.1: The Barrett WAM with the Kinect camera installed

The Two-Phase Controller

In Section 2.2, we discussed the various visual servoing techniques available in the literature.
Each of these visual servoing methods has its own strengths and weaknesses as discussed in
Section 2.2. None of them is capable of satisfying all our needs. We need a visual servoing
technique that is capable of controlling a robotic arm to reach a specified target location.
The task should be accomplished with minimum complexity and using low cost sensors. It
should also function properly without being restricted to particular initial conditions.

To solve the aforementioned problem, we devised the following technique. It is, essen-
tially, a two-phase controller: The first phase is a feature-based approach that provides
coarse alignment with the target image to reduce initial errors. When significant overlap

26

is achieved, the second phase controller starts. The second phase is a depth map error
minimization based control in which we adopt a strategy similar to the direct servoing
approach. It uses error in depth maps between current and target images as input to the
controller to arrive at the target position.

3.1 Phase One: Coarse Alignment

To tackle the image matching component of the first controller, this area had to be further
explored and a detailed analysis of the background is described in Section 2.4.

3.1.1 Image Representation

As discussed in Section 2.4.2, two main categories for image understanding are:

• the bag of words (BoW) [9] and

• an unstructured list of features [32].

The BoW finds the occurrence of features in the image while the other approach that
uses unstructured list of features captures general information about the image without
grouping or finding relations between them. The unstructured list approach suits our
application more and was the method of choice.

3.1.2 Feature Detector

Deciding on a feature detector is necessary because it is required to detect the features
in an image to extract this information. Feature detection was discussed in details in
Section 2.4.3. Researchers developed many feature detectors resulting in a large variety of
detectors possessing different advantages and disadvantages. These detectors include:

• scale invariant feature transform (SIFT) [24],

• speeded up robust features (SURF) [5],

• center surround extrema (CenSurE) [1] and

27

• the difference of circles (DoC) [13].

For the sake of our system, accuracy is not the biggest concern since the desired outcome
of this phase is only a coarse alignment between images. Choosing a fast, simple and
easy to compute detector is the best choice for this task. Scale and rotation invariance
leading to detecting persistent features is important too. DoC, a new method developed
by computing the DoC feature detector, is fully discussed in [13]. Albeit the latter feature
detector outperforms many of the common famous detectors, we decided to use the SURF
algorithm because our algorithm is not yet fully optimized for speed. However, using DoC
is a subject of study for future implementation.

3.1.3 Feature Descriptor

The next step is to decide on the suitable descriptor to be used. Many feature descriptors
were studied in details and researchers have done many experiments to compare between
them. The most common descriptors are:

• scale invariant feature transform (SIFT),

• speeded-up robust features (SURF) and

• histogram of oriented gradients (HoG).

For the reasons mentioned in Section 3.1.2, choosing a fast and simple descriptor is the
best choice for this task. The choice fell on SURF because it’s one of the most popular,
easy to implement and very fast. Studying the various descriptor available and their effect
on our system and thus selecting the best descriptor is a subject for future research.

3.1.4 Matching Features

Firstly, the SURF algorithm is applied to the target image to which the robot is required
to reach and the features are stored along with their corresponding locations in the target
image. After that, the SURF algorithm is applied to the images taken from the robotic
arm at every later time instant resulting in finding numerous features for each of these
images along with their locations in the current image.

As discussed in Section 2.4.5, two famous feature matchers are:

28

• brute-force matcher and

• fast library for approximate nearest neighbors (FLANN) matcher [30].

We decided to match the features in the current image with the features in the target
image using the fast library for approximate nearest neighbors (FLANN) matcher because
it is a much faster matcher and speed is a major concern for our work.

Deciding on Salient Features

To ensure the robustness of the matching, we picked the strongest matches and ignored
the weaker ones which include the false positives. Choosing the most salient features was
done by assigning a simple threshold to which the match strength was compared. This
threshold is empirically obtained from experiments discussed in Section 5.1. Only those
matches which were stronger than the specified threshold were accepted. This lead to
consistent results which are necessary for deciding on the control input to the the robotic
arm.

Two general cases are possible to occur and are either:

• a match existed and the matches were stored along with their locations in the image
or

• there was no significant match between the two images and the vector of matches
was empty.

3.1.5 Controlling the Robotic Arm

The locations of the features corresponding to the salient matches described in Section 3.1.4
were compared and the relative position of the current image with respect to the target
one was deduced. The relative position is a direct representation of the velocities required
to overlap the current image with the goal image.

Considering the cases mentioned in Section 3.1.4, the controller was faced with one of
two decisions. The two modes that the controller is in are:

• ‘targeted motion mode’ in which the robot moves towards the target image using the
velocities found when salient matches exist depicted in Fig. 3.2 or

29

• ‘search mode’ in which the robot searches its working space taking images at each
time instant and searching for feature matches as shown in Fig. 3.3. Once a match
is found, the robot shifts back to ‘targeted motion mode’.

Figure 3.2: Case requiring ‘targeted motion mode’

Figure 3.3: Case requiring ‘search mode’

Stopping Criterion

The robot will stay in the coarse alignment-phase in an attempt to make the current scene
viewed by the robot’s camera close to the target scene. In this phase of the controller,
accuracy is not a concern. This phase’s role is only to bring the robot into the proximity
of the target location. Thus, simply setting up a threshold is sufficient. The threshold
specified detects when significant overlap between the two images is achieved. As discussed
in Section 5.1, the threshold has to be large enough to allow the feature matching phase to
function without the need for accuracy, yet sufficiently small for the second phase to be able

30

to function properly because this threshold will directly dictate the initial conditions of
the latter phase. A good value for this threshold was chosen empirically. Once the relative
locations of the features in the current scene are within the specified threshold, then this
is a sign for the phase-one controller to be terminated and for phase-two controller to take
over.

3.2 Phase Two: Error Minimization

Phase-two is concerned with doing the finer job of accurately positioning the robotic arm
in the specified target location. This phase is a depth map-based controller which utilizes
the depth maps to directly control the robotic arm. This phase commences only when
the errors between the target and the current images are small enough for a successful
operation. Small errors are ensured by either starting the control task close to the target
image or by implementing phase-one controller to drive the robot close to the target image.
The following sections describe the details of this phase while mathematically deriving the
control law which is a similar implementation of what was done in [41].

3.2.1 Direct Servoing Using Dense Depth Maps

For achieving the task mentioned above, dense depth maps, extracted directly from the
Microsoft Kinect, are used. One advantage of using dense depth maps is its independence
of any sort of matching because the whole depth map is compared with the target depth
map and the difference is directly used as the input to the controller.

3.2.2 The Error to Minimize

To find the difference between the current and the target depth maps, a simple matrix
subtraction is used where the error e is defined as in (3.1):

e = Z− Z∗ (3.1)

where Z and Z∗ are vectors of the depth values of the current and target images respectively.
We are basically interested in controlling the velocity screw vK = (vK , ωK) of the Kinect
camera, where vK and ωK are the instantaneous linear and rotational velocities of the

31

Kinect. It is obvious that vK is directly related to the temporal variation of the depth Ż.
The latter relation is given by (3.2) which would serve as our control law:

Ż = LZvK (3.2)

where LZ is the interaction matrix related to Z [6] and computed in (3.7) and (3.13). The
goal is to minimize e; in order to reduce e exponentially (i.e. ė = −λe), where λ is just a
constant, (3.2) becomes (3.3):

vK = −λL+
Ze (3.3)

where L+
Z is the pseudo-inverse of LZ and is computed by (3.4):

L+
Z = (LT

ZLZ)−1LT
Z (3.4)

3.2.3 The Interaction Matrix

As a fundamental part of our control law, the interaction matrix has to be computed. The
interaction matrix related to the depth Z is the interaction matrix of interest because depth
is the measurement obtained by the Kinect depth sensor. Thus, LZ is being computed in
this section. Based on (3.2), we need to find Ż. Since, Z = Z(x, y, t), then the total
derivative of Z with respect of time is calculated in (3.5):

dZ

dt
=
∂Z

∂x
ẋ+

∂Z

∂y
ẏ +

∂Z

∂t
(3.5)

where ẋ and ẏ are the respective rate of change of x and y, the 2D velocity of image points.
Rearranging (3.5) leads to (3.6):

∂Z

∂t
= Ż − ∂Z

∂x
ẋ+

∂Z

∂y
ẏ (3.6)

with the depth’s velocity in the camera’s frame denoted by Ż = ∂Z
∂t

. Thus, at each depth
point, the interaction matrix is (3.7):

LZ = LPZ
− ∂Z

∂x
Lx +

∂Z

∂y
Ly (3.7)

32

where the interaction matrices Lx, Ly and LPZ
are such that ẋ = LxvK , ẏ = LyvK and

Ż = LPZ
vK . To find these interaction matrices, we perform the well-known 3D velocity

analysis of a point X = (X,Y,Z) in the Kinect’s frame which is described in (3.8) [6]:

Ẋ = −vK − ωK ×X⇔

Ẋ = −vx − ωyZ − ωzY
Ẏ = −vy − ωzX − ωxZ
Ż = −vz − ωxY − ωyX

(3.8)

where (x,y) are the depth-normalized coordinates in the image frame computed from the
pixel coordinates (u,v) and the camera’s intrinsic parameters as in (3.9)[6]:{

x = X
Z

= (u−cu)
fα

y = Y
Z

= (v−cv)
f

(3.9)

Differentiating (3.9) with respect to time results in (3.10):{
ẋ = ẊZ−XŻ

Z2 = Ẋ−xŻ
Z

ẏ = Ẏ Z−Y Ż
Z2 = Ẏ−yŻ

Z

(3.10)

Substituting (3.8) into (3.10) results in (3.11):{
ẋ = −vx

Z
+ xvz

Z
+ xyωx − (1 + x2)ωy + yωz

ẏ = −vy
Z

+ yvz
Z

+ (1 + y2)ωx − xyωy − xωz
(3.11)

Therefore, the interaction matrices in (3.7) are:

Lx = [− 1
Z

0 x
Z

xy −(1 + x2) y]
Ly = [0 − 1

Z
y
Z

1 + y2 −xy −x]
LPz = [0 0 −1 −yZ xZ 0]

(3.12)

Using the matrices computed in (3.12), the depth interaction matrix LZi
, at any point

i, can be computed using (3.7). To find the interaction matrix for the whole depth map
of size N , we stack all the individual interaction matrices which results in a N × 6 depth
interaction matrix as shown in (3.13):

33

LZ =

LZ1

LZi

...
LZN

 (3.13)

3.2.4 Noise and Incompleteness

Noise has always been an important issue to deal with in most, if not all computer vision
applications. To handle noise, a simple 3 × 3 Gaussian filter was applied to the depth
map in order to reduce the effect of noise. For additional more accurate noise removal,
the empirically derived noise model found by [31] can be used. However, for this work,
the 3 × 3 Gaussian filter sufficed for the accuracy needed. While, in order to deal with
the fact that some of the measurements were incomplete or missing, we used a simple
solution; we only used meaningful measurements. In other words, any measurement that
was drastically skewed or invalid was just ignored. We were able to tolerate ignoring all
these measurements because the entire depth map was used which had a lot of redundancy
in it.

3.2.5 Outcome

The second phase controller continues its operation until the current depth map is almost
an exact match with the target depth map resulting in a minimal steady state error.

3.3 Conclusion

A novel two phase controller was introduced that drives a robotic system it to a target
position. The first phase-controller functions by matching features between the target
and current images until a coarse alignment between them is achieved. The second-phase
controller aligns the current and target depth maps by minimizing the difference between
them. As a complete system, it is anticipated to handle even the cases with large initial
errors. Testing the algorithm would be the best way to evaluate the performance of the
algorithm as shown in Chapter 4.

34

Chapter 4

Methodology of Experiments

To put our algorithm to the test, we arranged the following setup:

4.1 Experimental Setup

We are using the Barrett WAM (Whole Arm Manipulator) with a Microsoft Kinect camera
mounted on one of its links as shown in Fig. 3.1. This configuration is called eye-in-hand
configuration. The Barrett WAM available is a 4 DoF (Degree of Freedom) arm which
cannot be positioned at all valid locations in the 3D space. To gain more freedom and
to avoid the limited movement of such a robot we mounted a 2 DoF PanTilt unit as
depicted in Fig. 3.1. The movement of the now 6 DoF robotic arm is illustrated in Fig. 4.1.
More details about the robotic arm configuration and degrees of freedom can be found in
Appendix B. As explained in Chapter 3, our control algorithm solves for the velocity of
the Kinect camera using (3.3). However, since a closed form solution that solves for the
Kinect’s DoFs could not be found, MapleSim software was used. More details about the
closed form solution and the usage of MapleSim can also be found in Appendix B.

The setup is simple, no camera calibration, training or any knowledge is needed except
for the target image. The Microsoft Kinect camera captures RGB-D images. Two types
of images are outputted by the Kinect, color images used for the first-phase controller
and depth maps used for the second-phase controller demonstrated in Fig. 4.2 (a) and (b)
respectively.

The experimental setup consists of the Barrett WAM with a Microsoft Kinect camera
mounted on it in an eye-in-hand configuration. A defined goal scene taken from the grasping

35

Figure 4.1: The six degrees of freedom illustrated

position is inputted to the system whose controller drives it to the target position. This
is done via the two-phase controller. The first controller functions by matching features
between the target and current images until a significant overlap between them is achieved.
Only coarse alignment between the images is required for this phase. The second controller
does the fine tuning. It functions by aligning the current and target depth maps in an
attempt to minimize the difference in depth maps between them. The latter controller is
expected to achieve minimal steady state errors in translation and rotation starting from a
relatively small initial error. As a complete system, it is anticipated to function successfully
even with large initial errors. This is achieved by preceding the main (depth map-based)
control algorithm with a coarse image alignment achieved via feature based control which
functions properly despite the initial errors.

4.2 Coding and Communicating with Barrett WAM

The theory behind the algorithm was detailed in chapter 3. To evaluate the theory, it
had to be implemented. For that reason, we wrote the required code that would perform

36

(a) (b)

Figure 4.2: Kinect output examples: (a) Color image and (b) Depth map image

the control algorithm while receiving feedback from the sensors. The feedback used was
received from images and depth maps captured by the Microsoft Kinect camera mounted
on the Barrett WAM.

The coding language used was C++ because of its efficiency, speed and compatibility.
Several libraries had to be included and used. The main libraries used were the ‘OpenCv’
and the ‘Microsoft SDKs’ libraries. The latter was necessary for the Microsoft Kinect to
capture RGB images and depth maps which, combined, represent the feedback received.
The depth maps were used by the phase-two controller while the RGB images were used
by the phase-one controller. For the RGB images to be meaningful, further processing was
required and for this task we used the ‘OpenCv’ library that helped implement the feature
detection and matching tasks.

Before attempting the algorithm testing, we had to establish the communication envi-
ronment necessary to send control commands, that were decided on by the control algo-
rithm, to the Barrett WAM. The communication used was the ssh (Secure SHell) commu-
nication protocol and for that we included and used the ‘ssh’ library which opens a ssh
session between the main computer and the Barrett WAM’s PC, creates a channel and then
starts an interactive shell in it that allows information to be sent and received between the
main computer and the Barrett WAM’s PC. The main computer then sends commands
to the Barrett WAM’s PC through this shell in order to run a different code written in
C language and that is saved on the WAM’s PC. The latter code is interactive and is
responsible for controlling the various links of the WAM. After that, control commands are
sent to the Barrett WAM’s PC giving it instructions on how to move. These instructions
are executed via the C code run by the Barrett WAM’s PC.

37

Few sample pieces of code picked from the complete C++ code were included in Ap-
pendix A.

After having the prerequisites for executing the control algorithm, the algorithm was
ready to be tested.

4.3 Experiments

As described before, our control algorithm is a two-phase controller. Therefore, we need to
design the experiments in a way that tests both controllers. Thus, we devised the following
experiments to evaluate the control algorithm. For all the experiments that were performed
the experimental setup described above was used.

4.3.1 Effectiveness Against Initial Positions and Initial Errors

After getting the setup ready, the goal is to test the effectiveness of the algorithm when
confronted with various situations. We came up with several cases that would cover the
possible scenarios that could occur. Since, for the sake of this test particularly, we are
only interested in handling initial errors, images with white backgrounds are used. Three
different sets of images were used to test the ability of the robot to deal with various initial
errors:

1. images close to target image, yet far enough for the depth map controller to handle,

2. images that are very far from target image with minimal or no similarity and

3. images that are close to the target image with significant overlap.

Examples of images used for the experiments described in Section 4.3.1 are shown in
Fig. 4.3.

4.3.2 Robustness Against Environment Noise

Another common limitation that many algorithms face is environmental noise, whether
it is cluttered environments or environments with more than one dominant object. It
is important for good control algorithms not to fall into local minima. The goal of the

38

(a) Experiment 1 Example (b) Experiment 2 Example (c) Experiment 3 Example

Figure 4.3: (a), (b) and (c) show examples of images used for the three experiments
explained in Section 4.3.1

following experiments is to check whether our algorithm will get stuck in local minima and
whether it could handle noisy environments. For this reason, another three sets of images
were studied:

1. images with noisy backgrounds,

2. images with white backgrounds but containing two dominant objects and

3. images with noisy backgrounds and containing two dominant objects.

Examples of images used for the experiments described in Section 4.3.2 are shown in
Fig. 4.4.

(a) Experiment 1 Example (b) Experiment 2 Example (c) Experiment 3 Example

Figure 4.4: (a), (b) and (c) show examples of images used for the three experiments
explained in Section 4.3.2

39

Chapter 5

Experimental Results and Discussion

The results of the experiments described in chapter 4 are presented, analysed and discussed
in this chapter.

5.1 About Feature Detection

Before starting the actual experiments which aim at evaluating the effectiveness of our
control algorithm, a simple experiment was performed to test that the controller is func-
tioning properly especially the feature detection part of it. This experiment considered
two cases:

1. a case where the some overlap between the initial and the target images exist as
shown in Fig. 5.1 and

2. a case where minimal overlap exist between between the two images of interest as
shown in Fig. 5.2.

In the first experiment, the current image (shown on the right (b)) is taken by the
camera at some position distant, but not too far from the target image (shown on the left
(a)). Features from both images were detected and then matched. As seen in Fig. 5.1, the
strongest features detected were the ones detected on the object. The algorithm successfully
detected the match and commanded the robotic arm to move accordingly towards the target
image.

40

(a) Target Image (b) Current Camera Scene

Figure 5.1: Example of initial image close to target image showing good feature matches

As for the second experiment, the current image (shown on the right (b)) is taken by the
camera at a different position that is also distant, but, this time, far from the target image
(shown on the left (a)). Again Features from both images were detected and then matched.
It is shown in Fig. 5.2 that even the strongest features matched were still very weak to
represent any true overlap between the two images. The feature matches were assessed
to be weak based on the empirically obtained threshold used in section3.1.4. Setting this
threshold is further discussed in Section 5.4.2. The algorithm was able to detect the lack of
good matches and commanded the robot to go into search mode described in Section 3.1.5.
This is only a general test for the phase-one controller described to show how it works and
to visualize the feature detection and matching steps.

5.2 Initial Positions and Initial Errors

The main contribution of this work is its capability to control the robotic arm without
being limited to scenarios with small initial errors since we argue that, for such a control
algorithm to be practical and applicable to many industrial and real life applications, it has

41

(a) Target Image (b) Current Camera Scene

Figure 5.2: Example of initial image far from target image where good feature matches are
absent

42

to have a large range of functionality and not just limited to small error minimizations. As
explained previously in chapter 3, and because our algorithm is composed of a two-phases
controller, it reacts differently to different situations as it has to decide on which controller-
phase to engage and to smoothly and seamlessly shift between the two phases. This allows
our algorithm to handle the large range of initial conditions and the variety of situations.
Having this in mind helped put together the experiments described in Section 4.3.1. All
the experiments in this section used white background with only one dominant object
because the goal of these experiments is to test the effectiveness of our algorithm as the
initial position of the robot changes and we are not interested in the effect of environmental
changes on the robustness of the algorithm which will be addressed in Section 5.3.

5.2.1 Experiment 1:

The first experiment deals with images that are not too far from the target image yet not
too close. The overlap between the images at the current camera location and the target
image was not sufficient for the depth map controller to handle. This decision is based on
a threshold checking step. First, the distance between the two images is roughly estimated
after quick feature detection and matching steps. Then, this distance is compared against a
specified threshold. If the distance is lower than the threshold distance then the depth map
error minimization (phase-two) controller is called. However, if the distance is higher than
the threshold, then the feature-based (phase-one) controller starts attempting to minimize
the error below the threshold after which the phase-two would take over and continue
moving the robotic arm towards the target location. The threshold is chosen in a way
that is big enough for our coarse alignment (phase-one) to operate successfully, yet small
enough to be within the range of operation of our phase-two controller. Thus, a threshold
of 10 cm was chosen.

As expected, since the initial camera position was sufficiently far from the target posi-
tion, the phase-one controller commenced its operation and commanded the Barrett WAM
in the direction towards reducing the relatively large initial errors. Once the error reached
the chosen threshold, the phase-two controller took over and the latter error was minimized
via the direct depth map error minimization algorithm until the steady state target loca-
tion was achieved. The details of the last step and more quantitative results are further
discussed in experiment 3 in Section 5.2.3. Few examples of some of the experimental cases
that were tested are shown in Fig. 5.3.

43

(a) (b)

(c) (d)

Figure 5.3: Example of the images captured by the Kinect for several cases in experiment 1
showing the initial state at which the experiment started. (a) shows the target image while
(b), (c) and (d) show different images representing several initial positions with relatively
large initial errors

44

5.2.2 Experiment 2:

The second set of experiments were performed starting from initial positions far from the
target location. The images taken from these locations were very far from the target image
showing minimal or no similarity. The algorithm discovered this lack of similarity and
asked the robot to enter ’search mode’ which requires the robot to move around in the its
workspace until some sufficient match between the current image and the target image is
sensed after which the feature matching controller takes over. The phase-one controller
continued and the remainder of this experiment was continued in a fashion similar to
experiment 1. Few examples of some of the experimental cases that resulted in the Barrett
WAM behaving as described above are shown in Fig. 5.4.

(a) (b)

(c) (d)

Figure 5.4: Example of the images captured by the Kinect for several cases in experiment
2 showing the initial state at which the experiment started. (a) shows the target image
while (b), (c) and (d) show different images representing several initial positions with very
large initial errors

45

5.2.3 Experiment 3:

The main goal of the third experiment is to make sure that the algorithm is able to handle
the various situations including the special case that requires the phase-two controller to
start and finish without needing the phase-one controller. Even though this particular case
was tested in experiments 1 and 2 of this section as part of the whole controller, we left the
discussion of the details of the results to this section. Fig. 5.5 shows few depth map images
taken by the Kinect at various time instants during the execution of the commands sent to
the robotic arm in one of the performed experiments. The image sequence in Fig. 5.5 shows
that the algorithm functioned successfully minimizing the initially not too large error. The
algorithm was able to function successfully for the set of experiments performed in which
the initial error did not exceed the specified threshold of 10 cm discussed in Section 5.2.1.
In these experiments, the steady state error we achieved was less than 5 mm in translation
and 1 deg in rotation. The graphs in Fig. 5.6 show the translational and rotational errors
being reduced from the initial errors until the steady state is achieved.

5.2.4 Conclusion

The experiments presented in Section 5.2 showed that our proposed algorithm handles a
large range of initial positions and was capable of using the two phase controller to drive
the Barrett WAM to the target location.

5.3 Environmental Noise

In our algorithm, which was detailed in chapter 3, we performed two simple but effective
measures to deal with image noise and environment clutter. The first measure was applying
a 3 × 3 Gaussian filter to the depth maps before processing them. The second measure
was ignoring all the outliers and considering only the depth values of the pixels that had
depth measurements in both the current and target depth maps. To test how robust our
algorithm is against environmental irregularities after incorporating these measures, we
performed the experiments described in Section 4.3.2.

5.3.1 Experiment 1:

This set of experiments considers the case when the background is not controlled resembling
a more realistic scenario that the robot might face. To simulate that, we tested our

46

(a) Target Depth map (b) Depth map at some time

(c) Depth map at a later time (d) Depth map at steady state

Figure 5.5: Example of the depth maps captured by the Kinect during experiment 3
showing the progression of the algorithm until it reaches steady state

0 20 40 60 80 100 120 140
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Translational Error

Iterations [n]

E
rr

or
s

in
 th

e
x,

 y
 a

nd
 z

 d
ire

ct
io

ns
 [m

]

x
y
z

0 20 40 60 80 100 120 140
−14

−12

−10

−8

−6

−4

−2

0

2

4

6
Rotational Errors

Iterations [n]

E
rr

or
s

in
 th

e
x,

 y
 a

nd
 z

 r
ot

at
io

ns
 [d

eg
]

rx
ry
rz

(a) Translational Errors (b) Rotational Errors

Figure 5.6: (a) and (b) show the progression of the translational and rotational errors
plotted against the iteration number starting from the initial position until the steady
state was reached

47

algorithm by using our lab’s environment as the background for the taken images while
placing a dominant object in the foreground. A couple of examples of the tested cases are
shown in Fig. 5.7.

(a) (b)

Figure 5.7: Example of the images captured by the Kinect for cases in experiment 1 showing
the noisy background. (a) and (b) show two different examples of images representing cases
with noisy backgrounds and containing one dominant object

The results obtained from these images were consistent with the results of the experi-
ments performed in Section 5.2 and the robot was able to successfully move itself to reach
the target location. The reasons behind the robustness against noise are two, the Gaussian
filtering performed and the presence of a dominant object that ensures the existence of
strong feature matches.

5.3.2 Experiment 2:

The second set of experiments performed tackled images that contained two dominant
objects to test if our algorithm is capable of avoiding getting trapped in local minima.
In this experiment, the backgrounds were chosen to be white in order to evaluate the
local minima issue separately. Fig. 5.8 shows two examples of images taken by the robot
representing this experiment’s conditions.

The results for this experiment were also successful, and the algorithm didn’t fall in
local minima because it was able to properly match the features between the objects. The
only extra limitation faced was that we had to adjust the threshold mentioned earlier in
Section 5.1.

48

(a) (b)

Figure 5.8: Example of the images captured by the Kinect for cases in experiment 2. (a)
and (b) show two different examples of images representing cases with white backgrounds
but containing two dominant objects

5.3.3 Experiment 3:

The final experiment performed tested the combined effects of the first two experiments
together. For this experiment we used images with noisy backgrounds and containing two
dominant objects. Again, two examples of images taken by the robot representing this
experiment’s conditions are shown in Fig. 5.9.

(a) (b)

Figure 5.9: Example of the images captured by the Kinect for cases in experiment 2 showing
the noisy background. (a) and (b) show two different examples of images representing cases
with white backgrounds but containing two dominant objects

49

The results for this experiment were similar to those of experiment 2 explained in
Section 5.3.2. Adjusting the threshold for the feature matching strength led to the system
being successfully controlled without falling into local minima.

5.3.4 Conclusion

The experiments conducted in this section showed the robustness of our algorithm against
environment noise, thanks to the 3×3 Gaussian filter and to the outlier rejection process.

5.4 Limitations

Despite the promising results produced by the proposed algorithm, we encountered some
limitations which open a window of opportunity to improve on the algorithm. We mention
here the two main limitations that we faced.

5.4.1 Rotational Limitations for Phase-One Controller

In the feature-based phase-one controller, the algorithm only deals with translational error
reductions and does not attempt at reducing rotational errors. This could be a problem
if the initial rotational error is too big for the phase-two controller to handle. The latter
controller proved to function effectively with rotational errors up to 20 deg. Therefore, to
be able to control scenarios with initial rotational errors larger than 20 deg, the phase-one
controller has to be modified to be capable of reducing rotational errors. Again, only rough
rotational alignment to an intermediate error below 20 deg is sufficient because phase-two
controller is capable of handling such relatively small errors.

5.4.2 Manual Thresholding

Another limitation, that hiders this work from being completely applicable as a standalone
platform for any environment, is that it requires specifying a threshold (mentioned in
Section 5.1) for the phase-one controller that is used to decide on which mode to put
the robotic arm in, namely ‘targeted motion mode’ or ‘search mode’. This threshold was
empirically chosen after performing several experiments (not explained in this work) and
looking at the relevant data.

50

A good way to elevate this limitation is to come up with a different criterion to help
the algorithm make the distinction, or make the algorithm smart enough in order to be
capable of estimating this threshold autonomously.

On the other hand, the threshold specified for transitioning from phase-one to phase-
two (explained in Section 5.2.1) is not a problem and can be extended to any situation
because the phase-two controller proved to be successful for the cases with errors below
that threshold.

51

Chapter 6

Conclusion and Future
Recommendations

6.1 Conclusion

This thesis presented a novel two-phase control algorithm that was used to successfully
position the end effector of the Barrett WAM at a target location in the vicinity of an object
of interest. Visual sevoing methods were implemented to execute this task. Particularly,
a coarse feature matching technique helped approach the object of interest. A second,
more fine, control algorithm was used to match the current scene, captured by the Kinect
camera mounted on the robotic arm, with a target one. Depth maps from the scenes of
interest were matched in order to perform the control motion.

Lots of research has been done to improve on the visual servoing processes. In all the
work that we came across, 3D information was estimated using homography, stereo vision
or was just assumed to be known. Our work managed to overcome this necessity and used
the Kinect’s depth maps to get the 3D information which made our system more robust,
less sensitive to calculation errors and more accurate.

To evaluate the effectiveness of our technique, several experiments were performed in
an attempt to position a WAM robotic arm in the target position close to an object of
interest. Eye-in-hand configuration was the choice for mounting the camera and the sensor
used was the Microsoft Kinect which outputs both the image and the depth map of the
scene being visualized.

The results of the experiments performed showed that the algorithm worked successfully

52

and was able to achieve accurate control with minimal steady state errors despite large
initial errors or environmental noise. However, very large rotational errors were not dealt
with; for that cause, the algorithm should be further improved to handle such errors.

6.2 Future Recommendations

The very first and direct improvement on this thesis work is to extend the algorithm in such
a way that would make it capable of handling very large initial rotational errors. This could
be done in a way similar to the way our algorithm handled the large translational errors.
Using rotationally sensitive features in the coarse image alignment phase is a possible
solution for this necessity. This extension would allow the applicability of the algorithm
to an even broader range of real life and industrial applications.

Another recommendation for future enhancement would be to better remove the noise
from the Kinect depth maps by replacing the 3 × 3 Gaussian filter with a more accurate
filter that accounts for the Kinect’s built-in noise. Better noise removal will naturally lead
to improved accuracies in the results obtained.

The next step would be to add the grasping process and complete the mission of the
application of interest. Automatically determining the target location is the first improve-
ment to implement. Later, grasping can also be improved by taking the objects’ compliance
into consideration. These are natural extensions for the current work, but they are very
involved and demanding tasks that require new research and experimentation.

53

References

[1] M. Agrawal, K. Konolige, and M. Blas. Censure: Center surround extremas for
realtime feature detection and matching. Computer Vision–ECCV 2008, pages 102–
115, 2008.

[2] P.K. Allen, B. Yoshimi, and A. Timcenko. Real-time visual servoing. In Proceedings
of IEEE International Conference on Robotics and Automation, pages 851–856. IEEE,
1991.

[3] Barrett. Four Degrees of Freedom Barrett Whole Arm Manipulator. 4DoFWAM,
2005. http://web.barrett.com/supportFiles/FramesAndJoints/B2731 RevAA-00.pdf.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf).
Computer Vision and Image Understanding, 110(3):346–359, 2008.

[5] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Computer
Vision–ECCV 2006, pages 404–417, 2006.

[6] F. Chaumette and S. Hutchinson. Visual servo control, part i. basic approaches.
Robotics & Automation Magazine, IEEE, 13(4):82–90, 2006.

[7] F. Chaumette and S. Hutchinson. Visual servo control, part ii. advanced approaches
[tutorial]. Robotics & Automation Magazine, IEEE, 14(1):109–118, 2007.

[8] F. Chaumette and E. Malis. 2 1/2 d visual servoing: a possible solution to improve
image-based and position-based visual servoings. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), volume 1, pages 630–635. IEEE,
2000.

[9] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization with
bags of keypoints. In Workshop on statistical learning in computer vision (ECCV),
volume 1, page 22, 2004.

54

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 886–893. IEEE, 2005.

[11] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schaefer, M. Hahnle, and
G. Hirzinger. Off-the-shelf vision for a robotic ball catcher. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3,
pages 1623–1629. IEEE, 2001.

[12] T. Hamel and R. Mahony. Visual servoing of an under-actuated dynamic rigid-body
system: an image-based approach. IEEE Transactions on Robotics and Automation,
18(2):187–198, 2002.

[13] A. Hojaij, A. Fakih, A.and Wong, and J. Zelek. Difference of circles feature detector.
In Ninth Conference on Computer and Robot Vision (CRV), pages 63–69. IEEE, 2012.

[14] A. Howard. Real-time stereo visual odometry for autonomous ground vehicles. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3946–3952. IEEE, 2008.

[15] K. Hsiao, S. Chitta, M. Ciocarlie, and E.G. Jones. Contact-reactive grasping of objects
with partial shape information. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 10, page 2010, 2010.

[16] K. Hsiao, P. Nangeroni, M. Huber, A. Saxena, and A.Y. Ng. Reactive grasping
using optical proximity sensors. In IEEE International Conference on Robotics and
Automation (ICRA), pages 2098–2105. IEEE, 2009.

[17] S. Hutchinson, G.D. Hager, and P.I. Corke. A tutorial on visual servo control. IEEE
Transactions on Robotics and Automation, 12(5):651–670, 1996.

[18] Y. Jiang, JR Amend, H. Lipson, and A. Saxena. Learning hardware agnostic grasps for
a universal jamming gripper. In International Conference on Robotics and Automation
(ICRA), pages 2385–2391. IEEE, 2012.

[19] I. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual information. In
Proceedings of IEEE International Conference on Robotics and Automation, volume 3,
pages 2470–2476. IEEE, 1996.

[20] K. Konolige. Star Detector. Opencv, 2011.
http://pr.willowgarage.com/wiki/Star Detector.

55

[21] D. Kragic, H.I. Christensen, et al. Survey on visual servoing for manipulation. Com-
putational Vision and Active Perception Laboratory, Fiskartorpsv, 15, 2002.

[22] M. Krainin, P. Henry, X. Ren, and D. Fox. Manipulator and object tracking for in-hand
3d object modeling. The International Journal of Robotics Research, 30(11):1311–
1327, 2011.

[23] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, volume 2, pages 2169–2178. IEEE,
2006.

[24] D.G. Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[25] E. Malis, F. Chaumette, and S. Boudet. 21/2 d visual servoing. IEEE Transactions
on Robotics and Automation, 15(2):238–250, 1999.

[26] BS Manjunath, C. Shekhar, and R. Chellappa. A new approach to image feature
detection with applications. Pattern Recognition, 29(4):627–640, 1996.

[27] Z.C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz. General 3d
modelling of novel objects from a single view. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3700–3705. IEEE, 2010.

[28] C. Matuszek, B. Mayton, R. Aimi, M.P. Deisenroth, L. Bo, R. Chu, M. Kung,
L. LeGrand, J.R. Smith, and D. Fox. Gambit: An autonomous chess-playing robotic
system. In IEEE International Conference on Robotics and Automation (ICRA), pages
4291–4297. IEEE, 2011.

[29] A.T. Miller and P.K. Allen. Graspit! a versatile simulator for robotic grasping.
Robotics & Automation Magazine, IEEE, 11(4):110–122, 2004.

[30] M. Muja and D. Lowe. Flann-fast library for approximate nearest neighbors user
manual, 2009.

[31] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sensor noise for improved
3d reconstruction and tracking. In Second International Conference on 3D Imaging,
Modeling, Processing, Visualization and Transmission (3DIMPVT), pages 524–530.
IEEE, 2012.

56

[32] A. Oliva. Gist of the scene. Neurobiology of attention, 696:64, 2005.

[33] A. Oliva and A. Torralba. Building the gist of a scene: The role of global image
features in recognition. Progress in brain research, 155:23–36, 2006.

[34] N.P. Papanikolopoulos, P.K. Khosla, and T. Kanade. Visual tracking of a moving
target by a camera mounted on a robot: A combination of control and vision. IEEE
Transactions on Robotics and Automation, 9(1):14–35, 1993.

[35] P.E.I. Pounds, D.R. Bersak, and A.M. Dollar. Grasping from the air: Hovering capture
and load stability. In IEEE International Conference on Robotics and Automation
(ICRA), pages 2491–2498. IEEE, 2011.

[36] A. Saxena, J. Driemeyer, J. Kearns, and A.Y. Ng. Robotic grasping of novel objects.
In Neural Information Processing Systems. Citeseer, 2006.

[37] A. Saxena, J. Driemeyer, J. Kearns, C. Osondu, and A.Y. Ng. Learning to grasp novel
objects using vision. In Experimental Robotics, pages 33–42. Springer, 2008.

[38] A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic grasping of novel objects using vision.
The International Journal of Robotics Research, 27(2):157–173, 2008.

[39] A. Saxena, L. Wong, and A.Y. Ng. Learning grasp strategies with partial shape
information. In AAAI, volume 8, pages 1491–1494, 2008.

[40] A. Saxena, L. Wong, M. Quigley, and A.Y. Ng. A vision-based system for grasping
novel objects in cluttered environments. Robotics Research, pages 337–348, 2011.

[41] C. Teuliere and E. Marchand. Direct 3d servoing using dense depth maps. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1741–1746. IEEE, 2012.

[42] N. Vahrenkamp. Humanoid. High Performance Humanoid Technologies, 2010.
http://his.anthropomatik.kit.edu/img/planningVS left.png.

[43] Francisco Vina. 2.5d visual servoing of a 7 dof manipulator. KTH Computer Science
and Communication, 2011.

[44] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), volume 1, pages I–511. IEEE, 2001.

57

[45] B. Wang, L. Jiang, JW Li, and HG Cai. Grasping unknown objects based on 3d model
reconstruction. In Proceedings of IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pages 461–466. IEEE, 2005.

[46] W. J. Wilson, C. Williams H., and G. S. Bell. Relative end-effector control using carte-
sian position based visual servoing. IEEE Transactions on Robotics and Automation,
12(5):684–696, 1996.

[47] K. Yamazaki, M. Tomono, T. Tsubouchi, and S. Yuta. A grasp planning for picking
up an unknown object for a mobile manipulator. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), pages 2143–2149. IEEE, 2006.

[48] DB Zhang, L. Van Gool, and A. Oosterlinck. Stochastic predictive control of robot
tracking systems with dynamic visual feedback. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 610–615. IEEE, 1990.

58

APPENDICES

59

Appendix A

WAM Communication Code

Below is the ‘main.cpp’ C++ file that runs the control algorithm:

#include <stdio.h>
#include <iostream>
#include <fstream>

#include ”opencv2/core/core.hpp”
#include ”opencv2/features2d/features2d.hpp”
#include ”opencv2/highgui/highgui.hpp”
#include ”opencv2/calib3d/calib3d.hpp”
#include ”opencv2/nonfree/features2d.hpp”
#include ”opencv2/imgproc/imgproc.hpp”

#include ”ssh Folder/ssh Send.h”
#include ”Kinect Folder/KinectWrapper.h”

#define feature matching 1
#define depthmap matching 2

float* SIFT Kinect(KinectWrapper, cv::SurfFeatureDetector, cv::Mat, {USHORT *,} cv::Mat,
USHORT*, std::vector<cv::KeyPoint>, cv::Mat, int type);

/** @function main */

60

int main()
{
//////////////////////////
// Grabbing OBJECT image:
//////////////////////////
KinectWrapper myKinect;

/* 480x640 Image*/
int rows = 480;
int cols = 640;

unsigned int* color;
color = myKinect.GetImage color();

cv::Mat img object;
cv::Mat img object Gray;
cv::Mat img scene temp;
img scene temp = cv::Mat(rows, cols, CV 8UC4, (uchar*)color);
cv::cvtColor(img scene temp, img object Gray, CV RGB2GRAY);
img object = img object Gray;
USHORT* object depth = myKinect.GetImage depth();

//**
// Saving Depth Image
//**
cv::Mat scene depth2;
float factor;
factor = 255.0/3000.0;
USHORT * scene depth1;
float * scene depth temp = new float[480*640];
scene depth1 = myKinect.GetImage depth();

for (int i = 0; i<480*640; i++)
{
scene depth temp[i] = scene depth1[i];//*factor;
}

img scene temp = cv::Mat(rows, cols, CV 32FC1, scene depth temp);

61

scene depth2 = img scene temp;

std::ofstream output depth(”output depth new.txt”);
for (int i = 0; i<480; i++)
{
float* Mi = scene depth2.ptr<float>(i);
for (int j = 0; j<640; j++)
{
output depth<<Mi[j]<<std::endl;
}
}

//– Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;

cv::SurfFeatureDetector detector(minHessian);

std::vector<cv::KeyPoint> keypoints object;

detector.detect(img object, keypoints object);

//– Step 2: Calculate descriptors (feature vectors)
cv::SurfDescriptorExtractor extractor;

cv::Mat descriptors object;

extractor.compute(img object, keypoints object, descriptors object);

/*************************************
Initializing ssh session:
*************************************/
std::string Host;
std::cout<<”Who is your Host: ”;
std::getline(std::cin, Host);

sshStruct sshStruct session;
sshStruct session = open session (Host);

62

sshStruct session.rc = ssh channel open session(sshStruct session.channel);
if (sshStruct session.rc < 0)
{
close session (sshStruct session);
return 1;
}

sshStruct session.rc = open interactive shell session(sshStruct session.channel);
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}
/*************************************
Calling the interactive shell:
*************************************/
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}

/*************************************
Initializing Control Parameters:
*************************************/
int Pixel x = 600/2;//center of image in x
int Pixel y = 363/2;//center of image in y
int tolerance = 20;
double vx = 0, vy = 0;//endpoint velocities
float px scene = 0, py scene = 0, px obj = 0, py obj = 0;
float* px py scene = new float[2];
float* vx vy scene;// = new float[6];
cv::Mat img scene Gray;
USHORT * scene depth;
scene depth = object depth;

63

int type = 0;

std::string cmd;
int z = 0;

sshStruct session.rc = interactive shell session send(sshStruct session.channel,cmd);
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}
sshStruct session.rc = interactive shell session receive(sshStruct session.channel);
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}

type = depthmap matching; // ”feature matching” for feature matching and ”depthmap matching”
for depthmap matching

/***
Running the C code written on the WAM’s PC:
**/
cmd =”cd btclient/src/btdiag”;
cmd+=”̊”;
sshStruct session.rc = interactive shell session send(sshStruct session.channel,cmd);
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}
cmd =”./btdiag”;
cmd+=”̊”;
sshStruct session.rc = interactive shell session send(sshStruct session.channel,cmd);

64

if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}

while(z<3)
{
z++;
//–Start Velocity Controller:

/*************************************
Getting Object Loacation:
*************************************/

if (type == feature matching)
{
color = myKinect.GetImage color();

std::cout<<”done reading image”;
img scene temp = cv::Mat(rows, cols, CV 8UC4, (uchar*)color);
cv::cvtColor(img scene temp, img scene Gray, CV RGB2GRAY);

px py scene = SIFT Kinect(myKinect, detector, img scene Gray, scene depth, img object,
object depth, keypoints object, descriptors object, type);
cv::waitKey(0);
px scene = px py scene[0];
py scene = px py scene[1];
px obj = px py scene[2];
py obj = px py scene[3];

/*************************************
Executing Simple Controller:
*************************************/
printf(”– Min Index x : %f \n”, px scene);
printf(”– Min Index y : %f \n”, py scene);

65

if (px scene == 0 —— py scene == 0)
{
std::cout<<”No match detected; search mode: \n”;
vx = 0.5;
vy = 0.5;
}
else
{
std::cout<<”Centering object: \n”;
// Image xy-coordinate system (0,0) starts at top left corner
if (px scene <=px obj - tolerance)
{
vx = 0.2;
}
else if (px scene >=px obj + tolerance)
{
vx = -0.2;
}
else
{
vx = 0;
}
if (py scene <=py obj - tolerance)
{
vy = 0.2;
}
else if (py scene >=py obj + tolerance)
{
vy = -0.2;
}
else
{
vy = 0;
}
}
}
else if (type == depthmap matching)
{

66

cv::Mat scene depth2;
float factor;
factor = 255.0/3000.0;
scene depth = myKinect.GetImage depth();
uchar * scene depth temp = new uchar[480*640];

for (int i = 0; i<480*640; i++)
{
scene depth temp[i] = scene depth[i];
}

img scene temp = cv::Mat(rows, cols, CV 8UC1, scene depth temp);
scene depth2 = img scene temp;

cv::imshow(”depth”,scene depth2);
cv::waitKey(0);

vx vy scene = SIFT Kinect(myKinect, detector, img scene Gray, scene depth, img object,
object depth, keypoints object, descriptors object, type);
vx = vx vy scene[0];
vy = vx vy scene[1];
}
if (vx == 0 && vy == 0)
{
type == depthmap matching;
}

printf(”– Velocity in the x : printf(”– Velocity in the y :
/**
Calling the interactive shell For Executing Controller:
**/
cmd =”M”; //Asking the WAM to be ready for the move command
cmd+=”̊”;
sshStruct session.rc = interactive shell session send(sshStruct session.channel,cmd);
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);

67

return 1;
}
cmd =”vx,vy”; //Sending the values for the move command
cmd+=”̊”;
sshStruct session.rc = interactive shell session send(sshStruct session.channel,cmd);
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}
if (z%5==0)
{
sshStruct session.rc = interactive shell session receive(sshStruct session.channel);
if (sshStruct session.rc < 0)
{
printf(”error : %s\n”,ssh get error(sshStruct session.session));
close session (sshStruct session);
return 1;
}
}

}
/*************************************
Closing ssh session:
*************************************/
close session (sshStruct session);

cv::waitKey(0);

return 0;
}

68

Appendix B

Using MapleSim

As mentioned earlier in Section 4.1, the robotic arm used is the 4 DoF Barrett WAM
(shown in Fig. B.1) with a 2 DoF PanTilt unit mounted, as an extension, on its last link
to form a 6 DoF robotic arm. The described robotic arm is shown in Fig. B.2.

A closed form solution for the whole system could not be found because of redundancies
available in the configuration of the robotic arm. To overcome this issue, a MapleSim code
was generated which solves for the degrees of freedom to be input to the robotic arm.

The C++ code included in Appendix A is executed first and, at each iteration, the
next required position for the robotic arm is computed. The latter position is used as an
input to MapleSim which solves for the six degrees of freedom of the robotic arm. These
values are fed to the robotic system to control its six joint motors in order to position it at
the required position. The MapleSim code is depicted in Fig. B.3, Fig. B.4, and Fig. B.5.

69

0

550

186

346

900

REAR

01.00 on

1/1/2005wt Title: WAM 4DOF Dims 2005

Date printed:

www.barrett.com Ph +617-252-9000 Fx +617-252-9021
®

5/19/2005

2. The drawing and its contents shall be guarded as confidential. 3. Upon

Barrett Technology, Inc. Upon accepting receipt of this drawing you agree

wt

This drawing and the intellectual property it describes are the property of

625 Mount Auburn Street, Cambridge, MA 02138 U.S.A.

Barrett Confidential Barrett Technology, Inc.

©1988-2004 Barrett Technology, Inc.

1/1/2005 AA.00

to the following: 1. No copies shall be made without written consent.

request you shall return this drawing and any copies within 2 business days.

Thursday, May 19, 2005 11:41:38 AM B2576

RevScale 1:10

Created by: on Sunday, April 17, 2005 6:20:11 PM Modified by: th Model Rev:

ALL DIMS IN mm

PROFILE

89

89

Shoulder

FRONT

J1,J2,J3

Elbow
J4

X3,X4

XBase

ZBase

X0,X1,X2

XTool

Z3

Z0,Z2

Z4

Z1

ZTool

J2

J1,J3

J4

280150250 348

100

BOTTOM

TOP

ISO

220

50

4x M10 THRU

Figure B.1: Four DoF Barrett WAM [3]

70

Figure B.2: The six degrees of freedom robotic arm showing the 4 DoF Barrett WAM with
the 2 DoF PanTilt mounted

71

F
igu

re
B

.3:
T

h
e

M
ap

leS
im

m
ain

overall
co

d
e

con
tain

in
g

th
e

co
d
e

su
b
sy

stem
s

72

F
igu

re
B

.4:
T

h
e

M
ap

leS
im

su
b
sy

stem
co

d
e

rep
resen

tin
g

th
e

4
D

oF
B

arrett
W

A
M

73

F
igu

re
B

.5:
T

h
e

M
ap

leS
im

su
b
sy

stem
m

o
d
ellin

g
th

e
2

D
oF

P
an

T
ilt

u
n
it

74

	List of Figures
	List of Abbreviations
	Nomenclature
	Introduction
	Motivation
	Challenges
	Outline

	Literature Review
	Introduction
	Visual Servoing
	Summary
	Visual Servo Control for Manipulation
	2.5D Visual Servoing

	Estimating 3D Information
	Summary
	Stereo Visual Odometry
	Direct Visual Servoing Using Depth Maps

	Image Features
	Summary
	Image Representation
	Feature Detector
	Feature Descriptor
	Feature Matcher

	Grasping
	Summary
	Learn To Grasp
	Improving Grasps
	Control with Visual Feedback
	Grasp Simulator
	Applications
	Universal Gripper

	Grasping Novel Objects
	Summary
	Determining the Grasping Point
	Grasping Points Based on Features
	Grasping in Cluttered Environments
	Grasping Based on 3D-Model
	Grasp Planning based on Off-line 3D Modelling

	3D-Modelling
	Summary
	Modelling Objects in-Hand
	Modelling from a Single View

	Conclusion

	Theory
	Phase One: Coarse Alignment
	Image Representation
	Feature Detector
	Feature Descriptor
	Matching Features
	Controlling the Robotic Arm

	Phase Two: Error Minimization
	Direct Servoing Using Dense Depth Maps
	The Error to Minimize
	The Interaction Matrix
	Noise and Incompleteness
	Outcome

	Conclusion

	Methodology of Experiments
	Experimental Setup
	Coding and Communicating with Barrett WAM
	Experiments
	Effectiveness Against Initial Positions and Initial Errors
	Robustness Against Environment Noise

	Experimental Results and Discussion
	About Feature Detection
	Initial Positions and Initial Errors
	Experiment 1:
	Experiment 2:
	Experiment 3:
	Conclusion

	Environmental Noise
	Experiment 1:
	Experiment 2:
	Experiment 3:
	Conclusion

	Limitations
	Rotational Limitations for Phase-One Controller
	Manual Thresholding

	Conclusion and Future Recommendations
	Conclusion
	Future Recommendations

	References
	APPENDICES
	WAM Communication Code
	Using MapleSim

