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Abstract 

Even though the use of renewable energy in electricity generation has significantly increased 

over time, coal is projected to remain as the primary fuel in electricity generation worldwide 

in the next decades due to its availability, stability of supply and cost. However, coal-fired 

power plants are the largest stationary sources of CO2 emissions that contribute to global 

warming. Several technologies have been developed to mitigate CO2 emissions from coal-

fired power plants. Oxy-combustion is a promising pathway to capture CO2 from coal fired 

power plants that competes favourably with other CO2 capture technology pathways such as 

post-combustion and pre-combustion. Oxy-combustion has attracted attention because it 

provides a CO2-enriched flue gas stream which can be further purified using a relatively 

simple multi-stage compression and cooling processes. Currently, there is no oxy-coal-fired 

power plant in commercial-scale operation. Thus, the transition towards commercial scale 

operation is the main challenge for this technology.  

The CO2 capture and purification unit (CO2CPU) is an important unit in oxy-coal-fired 

power plants that determine the quality of the CO2 product and energy consumption of the 

power plants. Several studies published on the CO2CPU process have evaluated the 

performance of this system at steady state. Insight regarding the dynamic behaviour of the 

CO2CPU process is very limited and a mechanistic dynamic model of the CO2CPU is not 

available in open literature. Thus, research on dynamic modelling and control system 

development is still required to demonstrate the operability and controllability of this 

technology.  

This study aims to develop, test and validate a dynamic model of the CO2CPU for oxy-coal-

fired power plants. Detailed mathematical models of each unit operation in the CO2CPU are 

provided in this study. The main challenge was to develop a dynamic model of a multi-

stream heat exchanger that involves multiple process streams and encounters both 

condensing and boiling two phase flows. A dynamic model that is not computationally 

intensive, to slow down the entire CO2CPU plant model, and that can predict reasonable fluid 
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temperatures in the multi-stream heat exchanger was developed in this study. The proposed 

multi-stream heat exchanger model was based on a shell and tube configuration that 

considers only axial changes in flow, i.e., a 1D model. Likewise, the two phase region in this 

unit was modelled using a homogenous model, which is a simplified discretized two-phase 

flow model that reduces the computational effort and complexity of the multi-stream heat 

exchanger process model. The homogenous model takes into account the changes in the fluid 

properties in the two phase region to calculate the heat transfer coefficients of the multi-

stream heat exchanger models. To the author’s knowledge, the model presented in this study 

represents the first mechanistic process model that describes the transient behaviour of a 

CO2CPU for oxy-fired power plant. 

Two design configurations of the CO2CPU were considered in this study, i.e. the Air 

Products’ CO2CPU and the CanmetENERGY’s proprietary CO2CPU (CanCO2). Both plants 

are designed based on a two-stage flash separation process. The CanCO2 is an extended 

design of the Air Products’ CO2CPU. The presence of an external recycle stream , recycling 

a portion of the CO2 rich effluent gas stream from the first flash drum to the compressor 

train,  in the CanCO2 is a major distinction between the two CO2CPU configurations and 

enhances the CO2 capture rate for the CanCO2 process. Nevertheless, the addition of this 

recycle stream makes the CanCO2 plant model convergence more challenging than the Air 

Products’ CO2CPU since it adds natural feedback into the system. A systematic procedure to 

perform the process integration of all the unit operations considered in the CO2CPU 

flowsheets was developed and presented in this study. Stand-alone unit operation models 

were developed, coded and then connected together one at a time. Dynamic models of the 

Air Products’ CO2CPU and the CanCO2 were developed and validated at steady state using 

design data. Reasonable agreement between the developed models and the design data were 

obtained for both CO2CPU configurations. Several dynamic tests were performed to gain 

insight into the transient behaviour of the CO2CPU. The results obtained from the transient 

analyses clearly demonstrate that both CO2CPU plants are highly nonlinear processes.  
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The CO2 recovery and the CO2 product purity obtained from the base case of both plants are 

similar, approximately at 89 wt% and 95 mol% respectively. The operating conditions of the 

first flash drum were found to play a key role on the CO2CPU performance of both plants. In 

addition, both models indicate that the CO2 recovery is more sensitive to the operating 

conditions than that of the CO2 product purity. The CO2 purity is more sensitive to the flue 

gas composition and responds to all changes performed in this study faster than the CO2 

recovery. Because of the recycle stream, the CanCO2 response to all changes is slower than 

the Air Products’ CO2CPU. Nevertheless, the use of a recycle stream improves the CO2 

recovery and increases the number of manipulated variables in the CanCO2, thus this system 

has more alternative control structures than the Air Products’ CO2CPU.  

The models developed in this study can be extended to include the controllability analysis 

and the control structure design for the CO2CPU; and the integration of oxy-boiler, steam 

cycle and also air separation unit (ASU) into a complete dynamic model of the oxy-fired 

power plant that will be very useful for oxyfuel combustion technology scale-up. 
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Chapter 1 

Introduction 

1.1 Introduction 

The world has a constant and increasing need for energy to support its economic growth and 

expanding prosperity across a rising population. The global energy demand has increased 

dramatically since the beginning of industrialization and it is projected to continuously 

increase by approximately 40% in the few decades to come (IEA, 2011). Global energy is 

used in four main sectors, i.e. electricity generation, transportation, industry and household. 

Electricity generation is among the largest driver of the global energy growth, accounting for 

over half of the total global energy demand growth (IEA, 2011; BP, 2013a; Exxonmobil, 

2013). World electricity generation has relied heavily on fossil fuels, i.e. crude oil, natural 

gas and coal, for more than forty years (IEA, 2011). Even though renewable energy will 

become more significant in the future, fossil fuels demand for electricity generation is 

projected to increase substantially over the coming decades (IEA, 2011; BP, 2013a; 

Exxonmobil, 2013).  Among the fossil fuels, coal is the dominant resource for electricity 

generation. Proven coal reserve is enough to last for 109 years at the current rate of coal 

production (BP, 2013a), outlasting oil and gas reserves combined. Also, the coal price is 

relatively cheap and stable compared to the prices of oil and gas. These properties give coal 

advantages over other fuels for electricity generation and thus coal is unlikely to be phased 

out from the electricity supply infrastructure in the medium term.  

Although the electricity supply from coal is reliable and affordable, it is the largest source of 

anthropogenic CO2 emission, accounting for 41% of the total CO2 emission in 2011. Since 

the coal demand has increased continuously, the accumulation of CO2 in the atmosphere has 

risen accordingly. Currently, the global CO2 concentration in the atmosphere reached 400 

ppm (NASA, 2013) for the first time in recorded history. Despite the global warming 

controversy (an ongoing dispute about the effects of humans on global climate and about 

what policies should be implemented to avoid possible undesirable effects of climate 
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change), there is a scientific consensus that it is in favour to limit the global growth of 

anthropogenic greenhouse gas (GHG) emissions, especially CO2, in the near future 

(Sioshansi, 2010; IEA, 2013). In 2009, the Copenhagen Accord was reached at the 15
th

 

session of the Conference of Parties (COP15) to the United Nations Framework Convention 

on Climate Change (UNFCCC, 2009) to limit the average rise in global temperature to no 

more than 2°C above pre-industrial level in order to prevent dangerous anthropogenic 

interference with the climate system (Randalls, 2010). Canada is one of the signatories to the 

UNFCCC which signed onto the Copenhagen Accord in December 2009 and committed to 

reduce its GHG emissions to 17% below 2005 levels by 2020 (Environment Canada, 2013). 

To achieve the 2°C limit, it is necessary to deploy a combination of renewable energy, 

energy efficiency and carbon capture and storage (CCS). While the transition to low carbon 

economy is in process, CCS technology is considered as an attractive option to reduce 

anthropogenic CO2 emissions from power plants, in particular coal-fired units, and other 

carbon-intensive industries. CCS is the only technology available for capturing at least 90% 

of the current CO2 emissions (IEA, 2012a; ZEP, 2013). Implementing CCS at a large scale 

can therefore provide time needed to fully develop sustainable energy systems for the future 

(ZEP, 2013). The concept of CCS is relatively straightforward: capture CO2 from fossil fuel 

facilities; produce a concentrated CO2 stream that can be transported to another facility for its 

permanent storage or its use in other industrial applications. Currently, there are four 

potential approaches for capturing CO2 from power plants: pre-combustion, post-combustion, 

oxyfuel combustion and chemical looping combustion. Post-combustion captures CO2 from 

the flue gas of conventional coal combustion (air-combustion) by typically using chemical 

absorption technique. Pre-combustion transforms coal into synthesis gas (syngas) composed 

of CO and H2 via gasification process. Afterwards, the CO in syngas is converted to CO2 by 

the water-gas shift reaction and can then be separated from the remaining H2 for storage or 

transportation. In oxy-combustion, almost pure O2 is used instead of air to combust coal and 

produce a high content CO2 in flue gas stream which can be easily separated using a 

compression and cooling technique. Chemical looping uses an active metal as an oxygen 

carrier to transport oxygen from air to fuel. An active metal is first oxidized by air in an 
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oxidizer to produce a metal oxide. The metal oxide is then reacted with fuel in a reducer 

producing relatively high purity CO2 and steam.  

Oxy-combustion is a promising pathway to capture CO2 from coal-based power plants that 

can compete favourably with other CO2 capture technology pathways. Oxy-combustion is 

attractive because it provides a CO2-enriched flue gas stream containing up to 90% CO2 on a 

dry basis (GCCSI, 2012a) which is easily purified, if required, using relatively simple multi-

stage compression/cooling processes. In addition, the use of pure oxygen instead of air in 

oxy-combustion significantly reduces the volume of the stack flue gas, thus enabling 

reduction in capital cost and making oxy-combustion an economically attractive CCS 

technology. The investment cost and the reduction in thermal efficiency of oxy-combustion 

plants is comparable to those of post-combustion plants (Adams and Davison, 2007; 

Kanniche et al., 2010; Rubin et al., 2012), while the cost of avoided CO2 (the quantity of CO2 

emission per kWh of a power plant with CO2 capture compared to a baseline plant without 

CO2 capture) is slightly lower (Adams and Davison, 2007; Kananiche et al., 2010). The 

reduction in thermal efficiency of oxy-combustion plants is caused mainly by two energy-

consumer sub-processes: the air separation unit (ASU) and the CO2 compression and 

purification unit (CO2CPU). Commercial ASUs are currently available based on cryogenic 

distillation, while both the CO2CPU and the oxy-combustion power plants have yet to be 

demonstrated at full (commercial) scale. To date, oxy-combustion power plants with CO2 

capture are still under development, but a number of pilot-scale facilities and demonstration 

plants are already well underway providing crucial information for technology scale-up. 

Numerous studies and research on oxy-combustion technology have been performed. Most 

studies have focused on combustion and emission characteristics, and the potential to retrofit 

existing air-fired power plants (Buhre et al., 2005; Jordal et al., 2004; Toftegaard et al., 

2010). Likewise, several studies have been published on the CO2CPU. The CO2CPU is an 

important unit in the oxy-coal-fired power plants as it determines the quality of the CO2 

product and represents a large part of the energy consumption of the plant. A number of 

steady-state models of CO2CPU were developed for various research aspects, e.g. process 
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optimization, heat integration analysis and techno-economic analysis. However, a 

mechanistic dynamic model of the CO2CPU is not currently available in the literature and the 

research on transient analysis of the CO2CPU is still limited. A dynamic model can provide 

insights regarding the operation of the process in the presence of external perturbations and 

uncertainty in the parameters. It is a practical tool to verify the variability of the process and 

to develop a controllability analysis on the system. Moreover, modern plant design methods 

recommend considering process dynamics and control simultaneously with steady-state plant 

design to obtain an efficient and profitable process operation. The integration of process 

design and control will make the designed process flexible and easy to control once it is in 

operation or expanded to commercial scale.  

1.2 Research objectives 

The ultimate goal of this research is to develop and validate a dynamic model of the CO2CPU 

that can be used to design suitable control schemes for this process. This thesis aims to 

characterize the dynamic behaviour of the CO2CPU in response to the various feed 

conditions, operating conditions and expected disturbances. The following tasks have been 

considered to achieve the research goal:  

 Develop a detailed mathematical model of each unit operation in the CO2CPU, i.e., 

compressor, expander, flash drum, heater, cooler and multi-stream heat exchanger. 

 Integrate all unit operations to perform a dynamic model of the CO2CPU. 

 Validate the developed model at steady state using data reported in the open 

literature. 

 Analyze the dynamic behaviour of the CO2CPU in response to changes in flue gas 

conditions, operating conditions and disturbances.  

1.3 Scope of Work 

The dynamic model of the CO2CPU was implemented in gPROMS (general PROcess 

Modelling System), an equation-oriented simulation software system that is powerful for 
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dynamic modelling; optimization; and control software system. Physical and thermodynamic 

properties were obtained from Multiflash™, an add-on property package available in 

gPROMS. The CO2CPU can be divided into three main sections: a multi-stage compression 

and cooling (compressor train), CO2 liquefaction for inerts removal (auto-refrigeration), and 

further compression to the end user’s specifications. Two designs of the CO2CPU were 

considered in this work, i.e. the Air Products’ CO2CPU and the CanmetENERGY’s 

proprietary CO2CPU (CanCO2). The Air Products’ CO2CPU, as the name implied, was 

designed and proposed by Air Products plc., and presented in an IEA Greenhouse Gas R&D 

programme report (Dillon et al., 2005). A dynamic model was developed in this work and 

validated, at steady-state only, using simulation data obtained from the IEAGHG R&D 

programme report (Dillon et al., 2005). The CanCO2 is an extension of the the Air Products’ 

CO2CPU design. The model was developed and validated also at steady state based on the 

design data of the CanCO2 provided by CanmetENERGY. 

1.4 Research contribution 

To the best of the author’s knowledge, only two dynamic simulation studies of the CO2CPU 

for oxyfuel combustion are currently available in the open literature (Kuczynski et al., 2011; 

Pottman et al., 2010). Both studies developed a dynamic model of the CO2CPU using 

commercial sequential-modular software packages, i.e. Aspen HYSYS and Honeywell’s 

Unisim
®
. In the sequential-modular software package, the heat transfer coefficients are 

required as an input for the simulation. The heat transfers coefficients do not change in 

accordance with the variation of fluid properties flowing through the heat exchanger. In 

addition, no mathematical models are provided in either of the two studies above and 

knowledge of the dynamic behaviour of the CO2CPU is very limited.  

This study focuses on the mechanistic dynamic model of the CO2CPU based on an equation-

oriented approach in which the heat transfer coefficients used in the multi-stream heat 

exchangers are considered as process variable solved simultaneously with temperatures and 

other process variables. A detailed mathematical model is provided. In addition, the 

variations of fluid properties in the two phase regions were taken into account to calculate the 
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heat transfer coefficients for multi-stream heat exchanger models. These qualifications give 

the dynamic model of the CO2CPU great distinct advantages over the two models that were 

recently presented in open literature. The developed model can be considered as a first 

attempt at developing a rigorous mathematical dynamic modelling of a CO2CPU for oxy-

fired power plant. Moreover, the developed model can provide insight into the transient 

behaviour that can be further used to design a control system for the CO2CPU. The 

developed model can also be extended to include the controllability analysis that will be 

useful for oxyfuel combustion technology scale-up. 

1.5 Thesis outline 

This proposal is organized as follows:  

Chapter 1 provides motivations behind this research including objectives, scope of work and 

research contribution. 

Chapter 2 provides the background to the role of coal in the global electricity generation and 

CCS technologies; and literature reviews on the oxyfuel combustion technology and the 

CO2CPU. 

Chapter 3 presents mathematical models for each unit operation in the CO2CPU. Detailed 

process descriptions of the Air Products’ CO2CPU and the CanCO2 are also provided. 

Procedures to integrate all unit operations to perform a complete dynamic model of both 

CO2CPU configurations are also explained in this chapter. 

Chapter 4 presents results obtained from the Air Products’ CO2CPU model consisting of two 

main sections, i.e. steady state validation and transient analysis. 

Chapter 5 presents results obtained from the CanCO2 model. Likewise, results are divided 

into two main sections, i.e. steady state validation and transient analysis. 

Chapter 6 concludes the results obtained from this study and provides recommendations for 

further studies.  
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Chapter 2 

Research background and literature reviews 

This chapter provides the background to the role of coal in the global electricity generation 

and oxyfuel combustion CO2 capture technology. The first section describes how important 

the coal-based power plants are in the global energy mix and why the CO2 capture and 

storage (CCS) technologies should be integrated into the power plants. Overviews of the 

CCS technologies and details of the oxyfuel combustion technology are subsequently 

provided. Literature reviews on the CO2 capture and purification unit (CO2CPU) for oxyfuel 

combustion plants, a focus of this research, are provided in section 2.4 and the Canada action 

on climate change was summarized in the last section. 

2.1 Coal in the world electricity generation 

2.1.1 Coal’s share in the fuel mix for electricity generation 

The global energy demand has increased since the beginning of industrialization and it is 

projected to continuously increase in the next few decades due to growth in world population 

and economic development. The total global energy demand will increase by approximately 

40% by 2035 (IEA, 2011; BP, 2013a; Exxonmobil, 2013). The power sector is by far the 

largest driver behind the growing global energy demand accounting for over half of the net 

growth. It is estimated that the global demand for electricity will increase by 80% and could 

double between 2009 and 2035 as more people get access to electricity and economies 

expand in developing countries (IEA, 2011; BP, 2013a; Exxonmobil, 2013; World Coal 

Association, 2013). Today, 41% of the global electricity is generated from coal. With 

growing electricity demand, coal demand in the power sector is projected to increase by 48% 

through 2035 (IEA, 2011). The growth comes overwhelmingly from developing countries 

where the coal-fired power plants are forecasted to double in the coming decade. China alone 

contributes over half of the total increase in the global coal demand due to rapid population 

and economic growth. Chinese coal consumption increased by 50%, between 2005 and 2010 
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which was equivalent to more than the total coal demand in the United States in 2010 (IEA, 

2011). Nonetheless, the share of coal in the fuel mix for power generation is estimated to fall 

over time, as shown in Figure 2.1.  

 

Figure 2.1 The fuel mix for power generation (BP, 2013a) 

It is projected that climate change policies to control the energy-related CO2 emissions will 

come in place by 2020 and then the power generation mix will move toward low-carbon 

technologies, such as renewable and nuclear. The shifts in fuel mix are driven by relative 

cost, technology developments and energy policy. Coal-base generation grows continuously 

between 1990 and 2020, but the growth decreases after 2020 due to the slowdown in total 

power growth and the leading role of both renewables and nuclear. The growth in renewable 

power generation is driven mainly by adopting the carbon pricing and energy subsidies. 

Carbon-pricing encourages investment in low-carbon power generation technologies, such as 

renewable and nuclear, by putting a price on CO2 emitted (IEA, 2011).  Carbon pricing, 

therefore, increases the total cost of electricity generation from fossil fuel power plants which 

are emissions-intensive, and makes the total cost of other technologies (that are relatively 

high) competitive. Carbon pricing along with government subsidies raise the share of 

renewables in the power sector fuel mix by 10% between 2010 and 2030 as shown in Figure 

2.1.  Although the exact share of coal in the electricity supply could decline according to 
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climate change policies in place, coal continues to play an important role in the global 

electricity generation in the next few decades. 

2.1.2 Coal reserve and price 

Coal reserves are widely distributed and available in almost every region of the world. The 

amount of proven recoverable coal reserves exceeds 860 billion tonnes found in almost 80 

countries around the world. By contrast, 53.2% of the world’s gas reserves are found in 

Russia, Iran and Qatar and over 50% of the world’s oil reserves are located in the Middle 

East (World Coal Association, 2013). This global distribution provides stable and secure 

supply of electricity across broad political arenas. 

 

Figure 2.2 Fossil fuel reserves-to-production (R/P) ratios at end 2012, expressed in years 

(BP, 2013b) 

The reserves-to-production (R/P) ratios of fossil fuels which are the amount of economically 

recoverable reserves remaining at the end of 2012 divided by the production rate in 2012 

(expressed in years) are presented in Figure 2.2. The R/P ratios indicate that the world proven 

coal reserves in 2012 were sufficient to meet 109 years of global production while the proven 
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oil and gas reserves are enough to last us around 53 and 56 years, respectively. Coal outlasts 

oil and gas combined. The US holds the largest individual coal reserves, followed by Russia 

and China (BP, 2013b; World Coal Association, 2013). It should be noted that the R/P ratio 

is based only on the recoverable coal reserves, not the entire coal resources. The German 

Federal Institute for Geosciences and Natural Resources estimated that the entire coal 

resources are around 17 times larger than the recoverable coal reserves and account for over 

two thirds of all non-renewable energy sources (World Coal Association, 2013). These data 

illustrated that coal is the world’s most abundant energy fuel. In addition, coal prices have 

historically been lower and more stable than oil and gas prices. Figure 2.3 shows the 

weighted average cost of fossil fuel prices in US power sector.  

 

Figure 2.3 The weighted average cost of fossil fuels for the Electric Power Industry in the 

US (Source: EIA, 2012) 

The relative low and stable cost makes coal a very attractive energy fuel and gives coal-fired 

power plant a cost advantage over other power technologies. Coal is likely to remain the 

most affordable fuel for power generation in many developing and industrialised countries 

for decades. Due to its abundance and affordability, coal is implausible to be phased out from 

the energy infrastructure in the medium term. 
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2.1.3 Energy-related CO2 emission 

While coal is the most abundant and affordable fuel for power generation, it is also the 

leading source of CO2 emissions. Coal is the most carbon-intensive fuel and accounts for 

44% of the total energy-related CO2 emissions increase in 2012 (IEA, 2013). The current 

record of global CO2 emissions from fossil-fuel combustion is 31.6 Gt, growing by 1.4% 

from 2011. If this growth rate is continued, a long-term global temperature will increase by at 

least 3.6°C (IEA, 2013). The largest contribution to the global energy-related CO2 emissions 

increase is from China. The CO2 emissions from China increased by 3.8% in 2013, which is 

less than half of the emission increase in 2011 and its smallest  increase  in the last decade 

(IEA, 2013).  This reflects China’s efforts to reduce the energy intensity and the 

corresponding CO2 emission. Nevertheless, the global energy-related CO2 emission is 

projected to substantially increase until 2030 due to the energy demand growth and uncertain 

political policies on CO2 emission. Exxonmobil forecasted that political policy to control the 

CO2 emission will have a significant impact on the power generation by 2030 (Exxonmobil, 

2013). They assumed that carbon-pricing will be fully implemented by 2030 and thus shift 

the power generation away from coal. Power generation technology is also projected to be 

improved as the new technologies developed. Thus, global CO2 emissions will drop between 

2030 and 2040 due to the efficient use of energy and a shift away from coal to low-carbon 

technologies, as shown in Figure 2.4. 

 

Figure 2.4 Energy-related CO2 emission (Exxonmobil, 2013) 
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As the energy-related CO2 emissions continues to increase political will is still lacking, the 

climate goal of limiting average global temperature increase to 2°C, as called for by the UN 

Framework Convention on Climate Change, is becoming more difficult and likely 

unrealistic. The International Energy Association (IEA) summarized their projection in the 

world energy outlook 2012 (scenario 45) that if action to reduce CO2 emissions is not taken 

before 2017, all the allowable CO2 emissions to keep a limit of 2°C increase would be 

locked-in by energy infrastructure existing at that time (IEA, 2012b). Their examinations 

indicate that no more than one-third of proven reserves of fossil fuels can be consumed prior 

to 2050 if the world is to achieve the 2°C goal, unless carbon capture and storage (CCS) 

technology is widely deployed (IEA, 2012b). To achieve the 2°C goal, it will be necessary to 

halve (from current levels) CO2 emissions by 2050. CCS is the only technology capable of 

achieving the necessary deep cuts in CO2 emission from coal-fired power plants (IEA, 2013). 

In 2010, IEA estimated that the deployment of CCS technologies will contribute to the 

largest CO2 emission reduction, i.e. 31% of the entire mitigation effort needed in the power 

sector, as shown in Figure 2.5. While the use of nuclear and wind energies provide 19% and 

11% reduction, respectively (IEA, 2010).   

 

Figure 2.5 Contribution of different power sector technologies to reductions in CO2 

emissions (IEA, 2010) 

Recently, the IEA proposed that retrofitting existing coal-fired power plants (that have an 

average efficiency less than 35% LHV) with CCS becomes an unattractive option for CO2 
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emission reduction. However, deployment of CCS in high-efficiency coal-fired power plants, 

supercritical (SC) or ultra-supercritical (USC) plants, with efficiencies greater than 40% 

LHV, is more favourable (IEA, 2012a). The high efficiency coal-fired power plants 

integrated with CCS can reduce CO2 emissions by 80% to 90%, bringing CO2 intensity of 

coal-fired units down to less than 100 g/kWh as illustrated in Figure 2.6. 

 

 

Figure 2.6 Reducing CO2 emissions from pulverised coal-fired power generation (IEA, 2012) 

These findings underline the importance of CCS as a key option to mitigate CO2 emissions 

and enable coal-fired power plants to continue supplying reliable and affordable electricity in 

a carbon-constrained world. Details of CCS technologies are provided in the following 

section. 

2.2 Carbon Capture and Storage (CCS) 

2.2.1 Background 

Carbon Capture and Storage (CCS) also referred to as Carbon Sequestration is a promising 

pathway to mitigate anthropogenic CO2 emission from stationary sources such as coal-fired 

power plant. The CCS is comprised of three main aspects: 
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1) Capture: Defined as the separation or removal of CO2 arising from fossil fuel 

combustion and/or other combustion processes. The main objective of CO2 capture is to 

produce a concentrated CO2 stream ready for transport and storage. Currently, there are four 

main pathways to capture CO2:  

 Post-combustion capture CO2 from the flue gas produced by the combustion of 

carbonaceous fuel with air. Chemical absorption using amine solvents is typically 

deployed to separate the small fraction of CO2 from a flue gas. 

 Pre-combustion decarbonise the fuel prior to combustion by gasification to produce 

syngas consisting mainly of CO and H2.  The syngas is then shifted into CO2 and 

more H2 via a water-gas shift reaction. The high concentration of CO2 from pre-

combustion makes the separation process easier than the post-combustion. 

 Oxyfuel combustion uses nearly pure oxygen instead of air for combustion resulting in 

a flue gas that is mainly CO2 and water. The water is then easily removed by 

condensation, thus the CO2 capture process in this approach is relatively simple 

compared to post- and pre-combustion. 

 Chemical looping combustion converts fuel to energy using two reactors (oxidizer 

and reducer). A metal oxide (oxygen carrier) is circulated between two reactors to 

drive the chemical reactions. Air reacts with an active metal to form a metal oxide 

while fuel utilises the oxygen from metal oxide to produce energy. There is no direct 

contact between fuel and air, thus the CO2 produced from combustion is not diluted 

by nitrogen and easily purified.   

2) Transport: Defined as the medium to move the CO2 to storage sites. CO2 

transportation is usually carried out via pipelines. Transportation by trucks, rail and ships are 

also available. The means of transportation rely on the quantity of CO2 to be transported, the 

terrain and the distance between the capture plant and storage site. Pipelines are likely the 

most common method for large scale CO2 transportation and already used in the US to 

transport CO2 for use in Enhance Oil Recovery (EOR). Transport of CO2 by ships is also 

occurring in Europe but on a small scale. Transportation both pipelines and ships do not pose 



15 

 

any higher risk than already safely managed for transporting hydrocarbons such as natural 

gas and oil. International standards are being developed for safe and efficient operation of 

CO2 infrastructure (GCCSI, 2013) 

3) Storage: Defined as a permanent sequestration of CO2 to prevent captured emissions 

from entering the atmosphere. Geologic formations suitable for CO2 storage include depleted 

oil and gas fields, deep coal seams, and saline formations. Injecting CO2 into the oilfield 

reduces the oil viscosity and increases the reservoir pressure, helping to sweep the oil 

towards the production well. This method is known as CO2 Enhance Oil Recovery (EOR). 

The EOR is considered a means for widespread deployment of large-scale CO2 storage 

projects due to a positive commercial value of captured CO2 obtained from EOR. 

2.2.2 CCS global status 

CCS has gained increasing worldwide interests over the last decade due to growing evidence 

of climate change, e.g. more frequent and intense storms and floods; decreasing snowpack; 

longer period of drought in some regions etc. CCS technologies are now well understood and 

the necessary components are available, but the number of large-scale integrated CCS 

projects is still limited. Only 12 Large-Scale Integrated CCS Projects (LSIPs) are in 

operation worldwide providing 25 million tonnes per year CO2 captured as shown in Table 

2.1. It is noted that the LSIPs are defined as those which involve the capture, transport and 

storage of CO2 at a scale of at least 0.8 MtCO2 per annum for coal-based power plants or 0.4 

MtCO2 per annum for industrial facilities. 
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Table 2.1 LSIPs in operation stage (Source: GCCSI 2013) 

Project name Country 
CO2 

(MtPA) 

Operatio

n date 
Capture type Storage type 

Val Verde Natural Gas 

Plants 
US 1.3 1972 

Pre-combustion  

(NG processing) 
EOR 

Enid Fertilizer  

CO2-EOR Project 
US 0.68 1982 Industrial separation EOR 

Shute Creek Gas 

Processing Facility 
US 7 1986 

Pre-combustion  

(NG processing) 
EOR 

Sleipner CO2 Injection Norway 0.85 1996 
Pre-combustion  

(NG processing) 

Deep saline 

formations 

Great Plains Synfuel 

Plant and Weyburn-

Midale Project 

Canada 3 2000 
Pre-combustion 

(gasification) 
EOR 

In Salah CO2 storage Algeria 
Injection 

suspended 
2004 

Pre-combustion  

(NG processing) 

Deep saline 

formations 

Snohvit CO2 Injection Norway 0.6-0.8 2008 
Pre-combustion  

(NG processing) 

Deep saline 

formations 

Century Plant US 8.4 2010 
Pre-combustion  

(NG processing) 
EOR 

Air Products Steam 

Methane Reformer 

EOR Project 

US 1 2013 
Pre-combustion 

(gasification) 
EOR 

Petrobras Lula Oile 

Field CCS Project 
Brazil 0.7 2013 

Pre-combustion  

(NG processing) 
EOR 

Coffeyville 

Gasification Plant 
US 1 2013 Industrial separation EOR 

Lost Cabin Gas Plant US 1 2013 
Pre-combustion  

(NG processing) 
EOR 

 

None of 12 projects in operation is in the power sector. All 12 projects separate CO2 as a part 

of their normal operation; therefore the incurred fewer additional costs than would a CCS 

project in the power sector. In addition, most of them utilise the capture CO2 for EOR. This 
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highlights the role of EOR in the deployment of CCS. Deep saline storage is implemented by 

two projects in Norway, but it should be noted that the carbon tax in Norway is a key driver 

for these projects. In addition these 12 projects capture and store only 25 million tonnes per 

year which is equivalent to 6.25% of CO2 emission increase in 2012 and not enough to 

achieve the 2ºC goal (GCCSI, 2013).  

2.3 Oxyfuel combustion 

2.3.1 Process overview 

Because this research focuses on the oxy-coal-fired power plants, a more detailed overview 

of oxyfuel combustion technology for CO2 capture is provided in this section. The oxyfuel 

combustion technology was initially introduced for the purpose of enhanced oil recovery in 

1982 (Abraham et al., 1982; Horn and Steinber, 1982). This technology was of great interest 

in the mid-90s when global warming effects started to gain public attention. The process flow 

diagram of an oxy-coal combustion process is illustrated in Figure 2.6 with indications of the 

necessary flue gas treatment units: Selective Catalytic Reduction (SCR) for NOx removal, 

Electrostatic Precipitator (ESP) for particulate removal and Flue Gas Desulfurization (FGD). 

Nearly pure oxygen, supplied from an Air Separation Unit (ASU), is used for burning coal to 

produce a high CO2 content flue gas. The current methods of oxygen production are 

cryogenic distillation, adsorption using multi-bed pressure swing units and polymeric 

membranes. However, to date cryogenic distillation is the most commercially efficient 

technique for large scale application of ASU (Toftegaard et al., 2010). The flue gas from 

oxy-combustion consists mainly of CO2 and H2O while some impurities, e.g. SOx, NOx, HCl, 

Ar and excess oxygen may be presented depending on the fuel and the particular oxy-

combustion operation. A high CO2 content flue gas stream obtained from oxy-combustion 

can be easily purify using a compression and cooling technique. Ash resulting from 

combustion is normally removed by the ESP before a portion of flue gas is recycled back to 

the boiler. 
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Figure 2.7 Process flow diagram of oxy-coal combustion system (Hadhipaschalis et al., 

2009) 

The recycle streams are necessary because the combustion of coal in pure oxygen results in a 

high flame temperature of about 3773 K (3500°C) which can damage the furnace materials. 

The acceptable combustion temperature in an oxy-coal-fired boiler is therefore limited to 

about 2173 K (IPCC, 2005). The recycled flue gas is used not only to control the combustion 

temperature but also to make up the volume of the missing N2 to ensure there is enough gas 

to carry the heat through the boiler (Wall, 2007; Toftegaard et al., 2010). The ash-free flue 

gas is further cleaned in the flue gas desulphurization unit (FGD) and then fed to the CO2 

cleaning and compression. The combined CO2 cleaning and compression units in Figure 2.7 

are referred to as the CO2 Capture and Purification Unit or CO2CPU. In the CO2CPU, the 

CO2 is captured and purified from the treated flue gas containing inert impurities (e.g. N2, O2, 

Ar) and water, and then compressed to meet the transportation and storage site requirements. 

This technique offers the possibility of a zero-emission power plant using the oxyfuel 

combustion technology since almost all the CO2 can be captured with this method (Jordal et 

al., 2004). Also, the fact that N2 is eliminated from air prior to burn coal in the furnace 

reduces  the overall gas flow rate and NOx emissions from an oxy-coal-fired power plant. 

Moreover, the size of the boiler and flue gas treatment units in an oxy-coal-fired power plant 
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are smaller, less complex and less expensive than similar equipment used in conventional PC 

plants. Therefore, the capital and operating costs of an oxy-coal-fired power plant should be 

lower than that of a conventional PC plant. However, the cost of the ASU and additional 

CO2CPU significantly reduce this potential economic benefit in oxy-combustion. As a result, 

the development of more efficient, less expensive ASU technology is a key continuing 

research challenge. 

2.3.2 Current status of oxy-fired power plants 

This section reviews the current status of the oxyfuel technology for power generation. 

Oxyfuel combustion is still under development and is not yet been demonstrated at full 

(commercial) scale in the power sector. However, individual component technologies are 

rather mature and ready for integration and demonstration at full-scale. ASUs are currently 

available at commercial scale. A single cryogenic ASU train  can supply 5000 tonnes/day 

oxygen, and three trains of this capacity would be required to run a 2000 MWth oxy-fired 

power plant (GCCSI, 2012a). A number of vendors already deliver this ASU technology 

including Air Products, Air Liquide, Linde and Praxair. New ASU technologies are also 

under development using either membranes or oxygen-capturing adsorbants (Wall et al., 

2011). Unlike ASUs, the CO2CPU and oxy-fired boiler are not yet commercial, but the 

technologies are well developed and ready for integrating with other components. The 

current design of CO2CPUs that is well suited for the oxy-fired power plant is based on an 

auto-refrigeration process (using the liquid CO2 produced as the process refrigerant) since no 

external refrigerant is required, the process is more cost effective than other refrigeration 

processes. A number of test facilities using the auto-refrigeration CO2CPU design have been 

built and research is currently underway to provide necessary information for full-scale oxy-

fired power plants operation (Zanganeh et al., 2009; Wall et al., 2011; White et al., 2013). 

Air Products and Air Liquide are also leading vendors of  the CO2CPU technology. On the 

other hand, various aspects of the oxy-fired boiler have been studied, including flame 

characteristics, heat transfer, emissions, CFD modelling, slagging, fouling and corrosion. 

These studies were performed in both laboratory scale and pilot scale. Results of the research 
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confirm the technology’s readiness for integrating into a full-scale demonstration (Buhre et 

al., 2005; Toftegaard et al., 2010; Davidson and Santos, 2010; Wall et al., 2011; Rubin et al., 

2012).  

Currently, there are five Large-Scale Integrated CCS Projects (LSIPs) based on oxyfuel 

combustion capture technology, but they are all still under planning (GCCSI, 2013). These 

LSIPs are developed for power generation but the construction period and expected start-up 

are still uncertain. Even though LSIPs of the oxyfuel capture technology is still under 

planning, numerous pilot-scale facilities and demonstration plants of oxy-fired power plants 

has been developed as shown in Figure 2.8.   

 

Figure 2.8 Progress towards large-scale demonstration and commercialisation plants of 

oxyfuel combustion technology (Wall et al., 2011) 

In 2008, the world’s first first full chain oxy-fuel pilot demonstration, Vattenfall’s Schwarze 

Pumpe Pilot plant, came into operation in Germany. This pilot plant was designed for lignite 

with a capacity of 30 MWth. The test results are promising so far (Davidson and Santos, 
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2010; Wall et al., 2011; GCCSI, 2012a). TOTAL’s Lacq project, the world’s first integrated 

and industrial natural gas fired oxy-fuel plant was next in service in 2009 with a capacity of 

30 MWth. This project included the CO2 storage in the depleted gas reservoir. It is also the 

world’s first pipeline injected oxy-fuel flue gas (Wall et al., 2011; GCCSI, 2012a). Two 

additional milestones in oxyfuel demonstration projects were recently achieved. In December 

2011, CIUDEN’s 30 MWth oxy-CFB (circulating fluidised bed) boiler was successfully 

tested in Spain (Wall et al., 2011; GCCSI, 2012a and 2012b). This plant is by far the largest 

pilot oxy-CFB plant in the world. In March 2012, CS Energy successfully converted a retired 

100 MWth pulverized coal-fired to oxy-fired power plant at the Callide station in 

Queensland, Australia. The Callide project is the world’s first full scale retrofit 

demonstration. These facilities are already well underway providing crucial information for 

technology scale-up. Insights into operation training and plant safety are also provided. The 

next milestone is to achieve the full-scale demonstration plant by 2018 ((Jäenschwalde in 

Gemany; Compostilla in Spain; FutureGen 2 in the US). The oxyfuel combustion technology 

is expected to be commercialised by 2020 (Davidson and Santos, 2010; Wall et al., 2011). 

2.3.3 Oxyfuel combustion research challenges 

According to pilot-plant testing, technical reports and academic studies, oxyfuel combustion 

is technically viable and economically competitive with other power generation technologies. 

Results obtained from test facilities are encouraging and promising. The technology is 

therefore one step toward commercialization. However, a number of barriers were also 

observed and further research is still required. Continuing research in oxyfuel combustion 

includes: (Wall et al., 2011; GCCSI, 2012): 

 Non-cryogenic O2 supply 

 Higher efficiency steam circuit 

 Boiler design optimised for higher O2 concentration 

 Biomass co-firing 

 Thermally integrated waste heat streams  

 Optimised CO2 compression circuit 
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 Ultra-low emissions during wet compression 

 Further vent gas treatment for higher capture efficiency 

 Re-saleable use of CO2 and acidic waste streams 

 Transport of CO2 via shared pipelines 

 Start-up and shut-down procedure 

 Control system 

Oxy-fired power plants still require solutions reduce the energy consumption and enhance 

CO2 capture and power plant efficiencies.  Non-cryogenic technologies that can result in 

higher production rates at lower energy consumption are a research focus. To date, an ion 

transport membrane (ITM) is a promising O2 supply technology. It is currently operated at 

pilot-scale and expected to expand to commercial scale by 2020 with a capacity up to 2000 

t/day (Wall et al., 2011). Another option is the use of so-called chemical looping combustion. 

In a chemical looping system, the fuel is reacted with O2 rather than air, similar to oxyfuel 

combustion, but the O2 in this case is supplied by the metal oxide instead of ASU. Thus, the 

use of chemical looping can reduce the energy consumption and improve the power plant 

efficiency. To further improve the oxy-fired power plant efficiency, the use of biomass co-

firing, high efficiency pressurized (supercritical or ultra-supercritical) steam cycle, and waste 

heat integration may also be considered. In addition, continued research on CO2CPU is also 

required. The flexibility of CO2CPU is needed to be analysed since the CO2 capture 

efficiency (CO2 product purity and CO2 recovery) may be subject to change with fluctuating 

energy demand, operation of the boiler and price of carbon. Optimization of CO2CPU 

capture efficiency and energy consumption is also required. In addition, process dynamics 

are required to develop proper start-up and shut-down procedures and design control systems 

for the oxy-fired power plant.  

2.4 CO2 compression (capture) and purification unit (CO2CPU) 

The CO2 capture and purification unit (CO2CPU) is a new concept for power plant operation. 

The flue gas from conventional combustion processes is normally released to the atmosphere 
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after treatment by several flue gas cleaning processes, such as ash removal and flue gas 

desulfurization. In the case of oxy-fuel combustion, the flue gas, consisting mainly of CO2 

and H2O, is fed to the CO2CPU in order to recover and purify the CO2, and make it ready for 

transportation and sequestration. In 1999, a patent was issued to Reddy Satish (Satish, 1999) 

for an invention focused on a process in which CO2 is separated from other gases using auto-

refrigeration. This process compresses the flue gas and then cools the flue gas down to 

between -35°C and -55°C. A simple flash separation technique is then used to separate CO2 

from other gases. The tail gas and the liquidfied CO2 produced from the flash separator 

remain at a very low temperature and are recirculated through the heat exchanger to assist in 

cooling the compressed flue gas. Hence, additional refrigerant is not required in this process. 

The auto-refrigeration process was extended to the new design including two-stage flash 

separation and presented in a report published by IEA Greenhouse Gas R&D Programme 

(Dillon et al., 2005). An analysis of the two-stage flash auto-refrigeration performance was 

also presented in this report. In 2006, Zanganeh et al., presented a pilot-scale CO2 capture 

and compression unit (CO2CCU) for integration with the CanmetENERGY’s 0.3 MWth oxy-

fuel combustion facility in Ottawa. This process was also designed based on two-stage flash 

auto-refrigeration, but a gas stream obtained from the first flash stage was partially recycled 

to the compressor train rather than entirely fed to the second-stage separation. The use of gas 

recycle stream differentiated the two-stage flash auto-refrigeration proposed by Dillon et al. 

(2005) from the CO2CCU proposed by Zanganeh et al. (2006). A steady state model of 

CO2CCU was developed in Aspen HYSYS using two refinery flue gas compositions 

(Zanganeh et al, 2006). The simulation results obtained from this study showed that the oxy-

combustion CO2 capture is a viable approach for the refinery flue gases. Another steady state 

process simulation of the CO2CCU was published in 2009 (Zanganeh et al, 2009). Two case 

studies were performed using two different flue gas compositions to evaluate the effect of 

flue gas impurities on the CO2CCU. The simulation results showed that the purity of 

captured CO2 remains above 95% for both cases while the CO2 recovery (the ratio of the 

amount of captured CO2 in the product stream to the amount of CO2 in the flue gas feed 

stream) decreases with increasing impurities in the flue gas stream. In 2010, a patent was 
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issued to Zanganeh and Shafeen (Zanganeh and Shafeen, 2010) for an invention of a 

CO2CCU for capturing CO2 from a mixed gas stream. Zanganeh and Shafeen (2010) claimed 

that the invented CO2CCU is capable of handling a feed gas stream with CO2 concentrations 

from 30% up to and exceeding 90%; and the CO2 product purity remains at least 94%. 

Pipitone and Bolland (2009) studied two purification techniques, i.e. flash separation and 

distillation, for capturing CO2 in the flue gas stream obtained from two oxy-combustion 

power plants: natural gas fired plant and pulverized fuel fired plant. Steady state models were 

developed in SIMSCI PRO/II and used to determine the work and heat requirements for the 

purification process. The reduction in power plant output, CO2 purity and CO2 recovery of 

each separation techniques was also examined. They concluded that the flash separation 

technique is suitable for the low-impurity flue gas stream while distillation is suitable for the 

high-impurity flue gas stream.  

Posch and Haider (2011) also evaluated the two-stage flash separation and distillation 

purification techniques for oxy-combustion plant. They simulated these two techniques in 

Aspen Plus using the Peng-Robinson equation of state and determined the specific 

compression power, specific cooling duty, CO2 purity and CO2 recovery. The effect of the 

Peng-Robinson mixing parameter (kij) was also analysed. Posch and Haider showed that the 

two-stage flash separation has the lower power and cooling requirements compared to the 

distillation technique while the kij mixing parameters of Peng-Robinson equation of state 

have a low influence on the purification process.  

Fu and Gundersen (2011) evaluated three CO2CPU configurations based on flash separation 

techniques for oxy-combustion plants, i.e., one-stage flash, two-stage flash and three-stage 

flash. They performed an exergy analyses and compared the performances of three CO2CPU 

configurations using the exergy losses. Pinch analyses were also applied to determine the 

heat integration potential for reducing the power penalty (a reduction in power plant output) 

caused by CO2CPU. Results showed that the plant performance can be improved by adding 

one additional stage of flash separation. However, a three-stage flash may not be attractive 

when an investment cost is considered since its performance is marginally more than the two-
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stage flash configuration. A techno-economic analyse of these three CO2CPU configurations 

was  also performed by Fu and Gundersen (2012) who showed that the two-stage flash 

separation process is the most cost effective configuration. The design of the two-stage flash 

separation investigated by Fu and Gundersen is essentially similar to the design of the 

CO2CCU proposed by Zanganeh et al, (2006).  

The test results obtained from a pilot-scale CO2 compression and purification plant was 

recently presented (White et al., 2013). This pilot plant was developed under a join 

collaboration agreement between Air Products and Vanttenfall, thus it was named as the Air 

Products-Vattenfall Oxyfuel CO2 compression and Purification or ACPP. The ACPP is 

comprised of three main sub-units: sour compression, auto-refrigeration and membrane vent 

gas recovery. It is an advanced design of the one-stage flash auto-refrigeration process in 

which the SOx and NOx were removed by reacting with water and O2 during compression 

(sour compression process) and the CO2 in vent gas was recovered by membrane. The flue 

gas to the ACPP was taken from the Vanttenfall’s 30 MWth oxyfuel pilot plant (OxPP). 

Experimental tests were carried out to investigate individual unit and evaluate the plant 

performance. Results obtained from tests are promising and support Air Products’ proposed 

sour compression theory. 

Recently, Besong et al. (2013) developed a steady state model of the CO2CPU using Aspen 

HYSYS. Two configurations were considered (i.e. single flash and triple flash auto-

refrigeration process). Both configurations were obtained from a patent invented by 

COSTAIN (a British construction and civil engineering company). Two sets of flue gas 

compositions were simulated to examine the effect of air ingress into the combustion process. 

The sensitivity analysis on the pressure in compressor train and a pinch analysis were also 

performed. It was observed that the triple flash separation process achieved a good 

performance (CO2 purity > 98%, CO2 recovery > 90%) over a wide range of feed conditions. 

The pinch analysis also indicated that the cold duty of the process streams was effectively 

utilized to supply the required refrigeration. 
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The operating conditions of the CO2CPU determine the CO2 product quality, energy 

consumption and the capital cost on the oxy-combustion plant. It is necessary, therefore, to 

ensure that this process can be operated at or near optimal conditions while meeting the 

product quality requirements. However, research on the dynamic behaviour of CO2CPU is 

limited; only two simulation studies are available in the open literature. The first study is a 

collaborative project undertaken by Doosan Power Systems, Air Products, RWE npower, and 

the University of Edinburgh (Kuczenski, 2011); a dynamic model of an oxy-combustion 

process including air separation unit (ASU), boiler, turbine system and CO2CPU, and the 

associated control systems was developed using a proprietary in-house simulation package 

and Aspen HYSYS
®
, a commercial simulation package. For the CO2CPU, a dynamic model 

and control system were developed by Air Products using Aspen HYSYS
®
, however 

dynamic test results were not provided. In the second study, Pottman et al (2011) developed a 

dynamic model of the CO2CPU using a proprietary in-house simulation package together 

with Honeywell’s Unisim
®

 simulator. Dynamic tests were applied to the model by changing 

the feed conditions, i.e. flow rate and CO2 concentration, and dynamic responses were 

illustrated. However, mathematical models and details of basic control strategy development 

were not provided in either of the two studies above. Thus, research on dynamic modelling 

and control system development is still required for demonstrating the operability and 

controllability of oxy-combustion power plants.  

2.5 Canadian Carbon Capture and Storage 

2.5.1 Canada action on climate change 

In 2011, Canada emitted approximately 530 MtCO2 accounting for about 1.7% of the global 

CO2 emissions in that year. CO2 emissions increased by 1.3% year-over-year from 2010 

(IEA, 2013). Even though Canada contributes a small share of the global CO2 emissions, the 

Government of Canada is aware that climate change is a global challenge requiring a global 

solution. Thus, the Government of Canada supports efforts to protect the environment by 

developing policies and programs, conducting scientific research, and working with both 

national and international partners in the fight against climate change. Canada signed onto 
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the Copenhagen Accord in December 2009 and committed to reduce its greenhouse gas 

(GHG) emissions to 17% below 2005 levels (607 MtCO2e) by 2020 (Environment Canada, 

2012). This target was released nationally in January 2010 and the first investment in action 

on climate change was made in April 2010 by $500 million to support research in greenhouse 

gas emissions from building construction. Another action, in August 2010, required 5% 

renewable fuel content in gasoline. In 2011, $240 million was provided to support the 

Boundary Dam carbon capture and storage project, in Saskatchewan. In September 2012 the 

final regulation to reduce the greenhouse gas emissions from coal-fired electricity generation 

was released. Under this regulation new coal-fired electricity generation units and end-of-life 

units (operated more than 45 years) must achieve the standard performance of 375 grams 

carbon dioxide equivalent (CO2e) per kilowatt-hour (420 t/GWh). This performance is 

equivalent to a high-efficiency type of natural gas generation plants. Thus, it is expected that 

this regulation will decrease 33% of GHG emission from electricity generation and thus step 

toward meeting the Canada’s Copenhagen target by 2020. In addition, it is expected that the 

use of high standard performance will increase an annual capital expenditures of coal-fired 

power plants; thereby the coal is likely displaced by natural gas and other clean power 

technologies. The international institute for sustainable development (IISD) estimated that by 

2020 18% of baseline coal-fired power plants will be integrated with CCS while 77% will be 

replaced by natural gas plants, and the rest will be based on renewables (Sawyer and Stiebert, 

2012). With the current measures from federal, provincial and territorial governments, it is 

projected that the Canada’s GHG emissions will be reduced to 720 MtCO2e, half of its 

national effort to meet its Copenhagen target (Environment Canada, 2012), by 2020 as 

illustrated in Figure 2.9. However, there is still a gap to between the current projection and 

the target. This means that Canada will fail to achieve its 2020 Copenhagen target if 

comprehensive policies and regulations are not come in place to widespread deployments of 

low-carbon energy or CCS technologies. 
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Figure 2.9 Scenarios of Canadian Emissions to 2020 (MtCO2e) (Environment Canada, 

2012) 

2.5.2 CCS projects in Canada 

With strong regulations and continued federal support, Canada is at the leading edge of clean 

energy technologies to reduce the GHG emissions. Canada is one of the leaders in the 

development and deployment of CCS that has one large-scale fully-integrated CCS project 

(LSIPs) in commercial operation and another four projects under development. In 2014, 

Canada will make remarkable progress on large-scale CCS deployment when the Boundary 

Dam Integrated CCS demonstration project comes into operation, since this project will be 

among the first projects globally to integrate capture and storage associated with power 

generation (GCCSI, 2013).   
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Table 2.2 Active LSIPs in Canada 

Project name Stage 
CO2 

(MtPA) 

Start 

up 
Capture type 

Storage 

type 
Industry 

Great Plains Synfuel Plant 

and Weyburn-Midale Project 
Operate 3 2000 

Pre-combustion 

(gasification) 
EOR 

Synthetic 

natural gas 

Alberta Carbon Trunk Line 

(ACTL) with Agrium CO2 

Stream 

Execute 0.6 2015 
Industrial 

separation 
EOR 

Fertiliser 

production 

Alberta Carbon Trunk Line 

(ACTL) with North West 

Sturgeon Refinery CO2 

stream 

Execute 1.2 2016 
Pre-combustion 

(gasification) 
EOR 

Oil 

refining 

Boundary Dam Integrated 

CCS Demonstration Project 
Execute 1 2014 Post-combustion EOR 

Power 

generation 

Quest Execute 1.1 2015 
Pre-combustion 

(gasification) 

Onshore 

deep 

saline 

formation 

Hydrogen 

Recently, Canada's federal and provincial governments have committed a total of $3 billion 

in funding for CCS, which could lead to about six additional large-scale demonstration 

projects in Canada (Canada action on climate change, 2013). In addition to LSIPs, a number 

of research centres and test facilities were built to supports the pursuit of CCS development 

and deployment in Canada. Research focuses are on near-zero emissions oxyfuel 

technologies for pulverized coal-fired power plants, oxyfuel circulating fluidized bed 

combustion, high-pressure oxyfuel combustion, feasibility studies of oxyfuel combustion, 

gasification for CCS, computational fluid dynamics (CFD) modelling of oxyfuel combustion, 

CO2 capture and compression technologies, post-combustion CO2 capture, and advanced 

power cycle. The ultimate goal is to identify technologies strategies, processes and 

integration system pathways needed to allow CO2 to be captured and stored in Canada 

(CanmetENERGY, 2013). 

  

http://canmetenergy.nrcan.gc.ca/clean_fossils_fuels/carbon_capture_storage/1453
http://canmetenergy.nrcan.gc.ca/clean_fossils_fuels/carbon_capture_storage/1453
http://canmetenergy.nrcan.gc.ca/clean-fossils-fuels/carbon-capture-storage/1980
http://canmetenergy.nrcan.gc.ca/clean-fossils-fuels/carbon-capture-storage/311
http://canmetenergy.nrcan.gc.ca/clean-fossils-fuels/carbon-capture-storage/1248
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Chapter 3 

Dynamic Modelling 

This chapter describes a dynamic modelling of the CO2 capture and purification unit 

(CO2CPU). Because two configurations of the CO2CPU were considered in this study, i.e. 

the Air Products’ CO2CPU and the CanmetENERGY’s CO2CPU (CanCO2), the first section 

provides the process flow diagram and the process description of each plant. Fundamental 

laws related to chemical process modeling are also reviewed in this chapter. The 

conservation laws of mass and energy, which are basic equations in all unit operation models, 

were first presented in a general form for control volume analysis, and the Peng-Robinson 

equation of state used for physical and thermodynamic properties calculations are 

subsequently described. Mathematical models and sizing equations of each unit operation in 

the CO2CPU, i.e., compressor, expander, flash drum, heater, cooler and multi-stream heat 

exchanger are provided afterwards. Procedures to develop the dynamic model of the Air 

Products’ CO2CPU and the CanCO2 are explained in the last section of this chapter. 

3.1 CO2 capture and purification unit (CO2CPU) 

Two configurations of the CO2CPU were considered in this study. Both configurations are 

based on a two-stage flash separation. The process description and the process flow diagram 

of each plant are provided below.   

3.1.1 The Air Products’ CO2CPU 

The IEA Greenhouse Gas R&D programme commissioned Mitsui Babcock to perform a 

study on feasibility and costs for CO2 capture using oxy-combustion technology in 2005 

(Dillon et al, 2005).  Air Products plc., as a project partner, designed the CO2CPU for a 500 

MWe pulverized bituminous oxy-fired power plant using an in-house proprietary simulation 

package. This design was based on two-stage flash separation, as shown in Figure 3.1 (Dillon 

et al, 2005). 
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Figure 3.1 The Air Products’ CO2CPU (Dillon et al, 2005) 

The flue gas from the oxy-fuel combustion process with high CO2 content (stream 1) is sent 

to a compressor (K-1). The compressed flue gas is passed through a cooler, C-1, to recover 

high grade heat and reduce the flue gas temperature (the first step in the condensation 

process). The condensates contained in the flue gas stream are removed in an inter-stage 

separator, D-1, before the flue gas stream flows to a second compressor, K-2. The resulting 

compressed gas stream from K-2 is passed through another cooler (C-2) that decreases the 

flue gas temperature to 293.15 K. Residual water is removed from the flue gas stream in a 

bed dryer, D-2. The compressed flue gas free of condensates (stream 7) flows through a 

multi-stream heat exchanger (MHX-1). After cooling in MHX-1, stream 7 separates into two 

phases (stream 8) which are separated in flash drum, D-3. The liquid stream, rich in CO2 

(stream 21) leaving D-3, passes through a throttle valve (V-1) and is fed back as a coolant to 

MHX-1 (stream 22) while the vapour stream (stream 9), which contains impurities (Ar, N2, 

O2, SO2, NO) and the remaining CO2, is sent to a second multi-stream heat exchanger, MHX-

2, for further CO2 condensation. The CO2 separation occurs in flash drum, D-4, similar to D-

3. The gas stream, poor in CO2, (stream 11), coming from D-4 is used as a coolant in both 
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heat exchangers, i.e., MHX-1 and MHX-2, and then vented to the atmosphere. The purified 

liquid CO2 stream from D-4 (stream 15) is throttled (V-2) again and used as a coolant in heat 

exchangers MHX-1 and MHX-2 resulting in a vapour phase stream (stream 18). Since 

streams 18 and 23 are vapour, they are compressed in K-4 and K-5 to produce the purified 

high pressure CO2 stream, (stream 26). The cooler, C-3, located after K-4, is used to reduce 

the temperature of the gas sent to K-5 while a cooler, C04, is used to decrease the 

temperature of the CO2 product stream down to about 313.15 K making it suitable for 

transport and sequestration. The flue gas specifications considered in Dillon’s study is 

presented in Table 3.1. It should be noted that the Air Products’ CO2CPU was considered to 

be located after the flue gas cleaning unit in the oxy-fired power plant. Therefore, the flue gas 

is free of particulates and the contents of NOx and SOx are small as presented in Table 3.1. 

According to this flue gas composition, the Air Products’ CO2CPU produces a CO2 product 

with 95% purity that satisfies the basic requirements for sequestration (ANLECR&D, 2009). 

The CO2 recovery, which is the ratio of the amount of captured CO2 in the product stream to 

the amount of CO2 in the flue gas feed, is approximately 91%. 

Table 3.1 Flue gas specification for the Air Products’ CO2CPU model (Dillon et al, 2005) 

Temperature (K) 293.15 

Pressure (bar) 1 

Mass flow rate (kg/hr) 600906 

Composition (%mol)   

  CO2 74.3 

  O2 6.1 

  Ar 2.4 

  N2 15.0 

  H2O 1.8 

  SO2 0.3 

  NO 0.0 
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3.1.2 The CanmetENERGY’s CO2CPU (CanCO2) 

The first advanced oxy-combustion pilot-scale research facility in Canada was built in 1995 

by CanmetENERGY in Ottawa. This facility supports experimental investigation of oxy-fuel 

combustion of various fuels, e.g., natural gas, coal, heavy oil, bitumen, bitumen emulsion, 

petcoke, for conventional and advanced processes and integration with flue gas cleaning 

technologies. In parallel, CanmetENERGY has been pursuing research and development in 

CO2 capture and compression technology to recover CO2 from oxyfuel-derived flue gas 

streams and to its further processing so that it meets the required specifications for 

transportation and storage. CanmentENERGY has developed a proprietary CO2 capture 

process and built a novel trailer-mounted configuration of pilot-scale CO2 capture and 

compression unit (Figure 3.2), which facilitates the transportation and relocation of the unit 

for field demonstration using slip-stream feed gases from large-scale commercial plants 

(Zanganeh et al., 2009).  

 

Figure 3.2 Trailer-mounted configuration of pilot-scale CanCO2 (Zanganeh et al., 2009) 

This pilot-scale capture facility, also referred to as CanCO2, is being used for CO2 capture 

and multi-pollutant control experiments since 2008. The advanced pilot-scale CanCO2 

integrated with the oxy-fuel combustion facility at CanmetENERGY provides an excellent 
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platform for testing and demonstration of integrated oxy-fuel carbon capture system. The 

process flow diagram of CanCO2 is shown in Figure 3.3.  

 

Figure 3.3 CanCO2 process flow diagrams 

Basically, the operation of CanCO2 is similar to the Air Liquids’s CO2CPU. The flue gas is 

compressed to about 30 bars and then cooled down to about 248.15 K through the first multi-

stream heat exchanger (MHX-1), and further reduced to about 218.15 K through the second 

multi-stream heat exchanger (MHX-2). Consequently, the liquid CO2 can be captured in D-5 

and D-6. But in the CanCO2, only 70% of the vapour leaving from D-5 (stream 16) is sent to 

MHX-2. The rest of vapour (stream 18) is expanded and further cooled down. Thus, more 

CO2 can be recovered in D-7. The liquid CO2 (stream 20) is pumped back to D-5 and mixed 

with the liquid CO2 recovered from stream 15 in D-5. The CO2-rich streams from D-5 and D-

6 (stream 24 and 36 respectively) are also used as a coolant in MHX-1 and then expanded via 

the valves V-4 and V-5. A mixture of these two process streams is a CO2 product at a 

pressure of 1 bar.  On the other hand, the vapour stream leaving from D-7 (stream 21) is also 

advantageously used as a coolant in MHX-1 and then recycled to the compressor train. This 
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recycle stream improves the overall CO2 recovery of the CanCO2, but slightly decreases the 

CO2 product purity. The impact of the recycle stream on the CanCO2 capture performance is 

described in chapter 5. According to the flue gas composition shown in Table 3.2, the 

CanCO2 achieves 88.7% CO2 recovery and produce a CO2 product stream with 95% purity, 

similar to the Air Products’ CO2CPU. It is noted that the only difference between flue gas 

specifications of the Air Products’ CO2CPU and the CanCO2 is the mass flow rate. 

Everything else it pretty much the same. Also, the flue gas is assumed to be particulates-free.  

Table 3.2 Flue gas specification for the CanCO2 model  

Temperature (K) 298.15 

Pressure (bar) 1 

Mass flow rate (kg/hr) 120 

Composition (%mol)   

  CO2 74.3 

  O2 6.1 

  Ar 2.4 

  N2 15.0 

  H2O 1.8 

  SO2 0.3 

  NO 0.0 

3.2 Basic equations for dynamic modelling 

The conservation laws of mass and energy used to develop mathematical models for each 

unit operation are presented in this section in a general form for control volume analysis. The 

Peng-Robinson equation of state (EOS) used to calculate thermal and physical properties in 

the CO2CPU model is also described in this section.  

3.2.1 Conservation of mass 

As a quantity of mass flows across the boundary of a control volume, the conservation of 

mass can be expressed for one-dimensional flow model as follows (Moran and Shapiro, 

2010): 
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CV
i e

i e

dm
m m

dt
    (3.1) 

Where CVm is the mass within the control volume, and im  and em  are the instantaneous mass 

flow rate at the inlet and exit of the control volume (Figure 3.4) respectively. 

 

Figure 3.4 One-dimensional control volume (Moran and Shapiro, 2010) 

Another form of conservation of mass can be illustrated by considering a quantity of mass 

flowing with velocity v across an incremental area dA in a time interval Δt. Then, the rate of 

mass flows across the control volume boundary is as follows: 

n

A

m v dA 
 

(3.2) 

where the area integrals are over the areas through which the mass enters or exits the control 

volume and vn denotes the relative velocity normal to dA in the direction of flow. The 

product ρvn is known as the mass flux. The conservation of mass can be expressed in the 

integral form as follows: 

n n

i eV A Ai e

d
dV v dA v dA

dt
  

   
    

   
   

 

(3.3) 

3.2.2 Conservation of energy 

The conservation of energy for a control volume states that the rate of energy within the 

control volume equals the difference between the rates of energy transfer in and out across 
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the boundary. Thus, the control volume energy rate balance can be obtained by taking into 

account the rate of transfer of internal, kinetic and potential energy accompanying by the 

mass flow in and out of the control volume. For the one-dimensional flow, the conservation 

of energy is given as follows (Moran and Shapiro, 2010): 

2 2

2 2

CV i e
i i i e e e

dE v v
Q W m u gz m u gz

dt

   
          

     

(3.4) 

where ECV denotes the energy of the control volume at time t. The terms Q and W represent 

the net rate of energy transfer by heat and work across the boundary of the control volume, 

respectively. The rate of work, W , can be separated into two contributions which are the 

work associated with the fluid pressure and all other work effects associated with rotating 

shaft and electrical effects. Accordingly, the term   ̇ can be written as follows: 

   CV e e e i i iW W P A v PA v  
 

(3.5) 

Where the term PA represents the normal force at the control volume boundary. The product 

of the normal force multiplied by the fluid velocity is thus the work associated with the 

pressure at the inlet and exit of the control volume. The parameter CVW accounts for the 

remaining energy transfers by work across the boundary of the control volume. Equation 

(3.5) can be rewritten as follows: 

   CV e e e i i iW W m PV m PV  
 

(3.6) 

where Vi and Ve are the specific volumes evaluated at the inlet and exit, respectively. 

Combining equations (3.4) and (3.6) yields 

2 2

2 2

CV i e
CV i i i i i e e e e e

dE v v
Q W m u PV gz m u PV gz

dt

   
            

     
(3.7) 
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with the definition of enthalpy, h = u + PV, the conservation of energy for a control volume 

becomes  

2 2

2 2

CV i e
CV i i i e e e

i e

dE v v
Q W m h gz m h gz

dt

   
          

   
 

 

(3.8) 

3.2.3 Peng-Robinson Equation of State 

The equation of state (EOS) that determines the relationship between pressure (P), 

temperature (T) and molar volume (Vm) of substances is a key fundamental aspect for process 

modeling since it is used to predict the physical properties of the system. The equation of 

state has to be selected based on the nature of the process. The more rigorous the equation of 

state, the more accurate the predictions will be. A number of equations of state have been 

developed for gas and liquid systems. One of these equations of state is the Peng-Robinson 

EOS which is well suited for gas processing that contains non-polar or mildly polar 

components. The Peng-Robinson equation of state is presented in equation (3.9). This 

equation is relevant for this project since it will be used to simulate the CO2CPU process 

(Peng and Robinson, 1976).  

     
i

m i m m i i m i

aRT
P

V b V V a b V b
 

   
 

(3.9) 

where 

2 2

0.45724 ci
i i

ci

R T
a

P


 

(3.10) 

 0.07780 ci
i

ci

RT
b

P


 

(3.11) 

  
2

1/21 1i i rim T    
   

(3.12) 

 
20.37464 1.54226 0.26992i i im    
 

(3.13) 

The acentric factor, ωi , is a parameter used to characterize the shape of a molecule. The 

parameters, Tci and Pci, represent the critical temperature and pressure whereas Tri is the 
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reduced temperature of each substance (i.e. T/Tci). Another form of the Peng-Robinson EOS 

can be written in term of compressibility factor, Z, as follows: 

     3 2 2 2 31 3 2 0Z B Z A B B Z AB B B        
 

(3.14) 

where 
2

aP
A

RT


 
(3.15) 

 
bP

B
RT


 

(3.16) 

 mPV
Z

RT


 
(3.17) 

In a mixture, the mixing rule is applied to calculate the parameters a and b as follows: 

 
1 1

1
n n

i j i j ij

i j

a x x a a k
 

 
 

(3.18) 

 

1

n

i i

i

b x b



 

(3.19) 

In equation (3.18), kij is a binary parameter to determine the binary interaction between 

component i and component j. This parameter can be obtained from the regression of phase 

equilibrium data. 

3.3 Mathematical modelling 

The CO2CPU is comprised of compressors, expanders, flash drums, heaters, coolers and 

multi-stream heat exchangers, as shown in Figure 3.1 and 3.3. Mathematical models of each 

unit operation are provided below. Sizing equations are also described for the flash drum and 

the heat exchanger models. 
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3.3.1 Compressor 

A compressor model was developed based on the polytropic real gas compression method 

proposed by Schultz (1962). The main consideration of compressor modeling is to determine 

the total work required for process operation. Thus, the present model analysis assumes 

infinitely fast dynamics; negligible hold-up and inertia of gases within the compressor; and 

no heat input. Also, changes of potential and kinetic energy are considered negligible in this 

unit. The theoretical work of compressor, or compressor head, can be obtained from the 

relationship between the measurable process variables,   and  , as follows:  

2

1

P

P

P

W VdP 
 

(3.20) 

Polytropic compression is a reversible process with heat transfer and variable entropy. The 

relationship between P and V can be determined using (3.21) while the compressor head can 

be calculated as shown in (3.24). 

nPV const  (3.21) 

1 1 2 2

n nPV PV const 
 

(3.22) 

Rearranging (3.22) and substituting V into (3.20) yields:  

2

1

1/

1
1

nP

P

P

P
W V dP

P

 
  

 


 

(3.23) 

Integrating equation (3.23) results in 

 1 /

2
1 1

1

1
1

n n

P

Pn
W Z RT

n P

   
    

       

(3.24) 
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The polytropic exponent, n, depends on the design and operation of the compressor. It can be 

approximated as a slope of a plot of log P versus log V observed from the polytropic 

compression. In this work, the real gas compression theory proposed by Schultz (1962) was 

used to develop a compressor model. To calculate the value of n for the real gas system, 

Schultz proposed two generalized compressibility functions, X and Y, as follows: 

1
P

T V
X

V T

 
  

   

(3.25) 

T

P V
Y

V P

 
   

   

(3.26) 

Recalling a general equation of state for any gas 

PV ZRT  (3.27) 

The two derivative terms in equation (3.25) and (3.26) can be found by differentiation of 

equation (3.27) as shown in equation (3.28) and (3.29) respectively. 

P P

V R Z
Z T

T P T

     
     

       
(3.28) 

T T

V R Z V
T

P P P R

     
     

       
(3.29) 

At this point, the cubic form of Peng-Robinson EOS (equation 3.14) was used to derive the 

two derivative terms of the compressibility factor, Z, in equation (3.28) and (3.29). Solutions 

of the Peng-Robinson EOS for 
P

Z

T

 
 
 

in equation (3.28) is: 
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   

 

2 2

2 2

2 6 2 3

3 2( 1) 2 3

P P

P

A B
B Z Z Z BZ A B B

Z T T

T Z B Z A B B

    
          

       
 

      
 

(3.30) 

where 2 2

2

P

A P a
a

T R T T

   
    

     

(3.31) 

 2

P

B bP

T RT

  
 

   

(3.32) 

 
i i

i ci

m a
a

T T


 


 

(3.33) 

The derivative term, 
T

Z

P

 
 
 

, in equation (3.29) is: 

   

 

2 2

2 2

2 6 2 3

3 2( 1) 2 3

T T

T

A B
B Z Z Z BZ A B B

Z P P

P Z B Z A B B

    
          

       
 

      
 

(3.34) 

where 2 2

T

A a

P R T

 
 

   

(3.35) 

 
T

B b

P RT

 
 

   

(3.36) 

Note that A, B, a, ai, b and i are Peng-Robinson EOS coefficients provided in section 3.2.3.  

Two generalized compressibility functions, X and Y, proposed by Schultz can be used not 

only for calculating the polytropic exponent, n, but also to determine a polytropic 

temperature exponent, m, for calculating the outlet temperature, as follows: 
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2
2 1

1

m

P
T T

P

 
  

   

(3.37) 

where 
1

P P

ZR
m X

C 

 
  

   
(3.38) 

The polytropic efficiency can be calculated as follows: 

2

1

2 1

Polytropic work

Actual work required

P

P

P

VdP

h h
  





 

(3.39) 

Thus, the polytropic exponent can be calculated from 

1

(1 )
n

Y m X


   
(3.40) 

Because T, V, P, Cp, and Z used in equation (3.25)-(3.36) are mean values, a trial-and-error 

solution shown in Figure 3.5 was implemented in gPROMS in order to predict the 

compressed gas outlet temperature and the polytropic work required by the compressor. The 

initial polytropic exponent, m
0
, was calculated using the heat capacity ratio, k, and the initial 

guess of polytropic efficiency and then used in equation (3.37) to calculate the initial outlet 

temperature, T2
0
. The mean pressure and temperature required for calculating V, Cp, X, Y and 

Z can be obtained afterwards. The iterative calculation is repeated until the outlet temperature 

is matched between the previous and current iteration. 
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Figure 3.5 Real gas compression calculation flow chart 

3.3.2 Expander 

An expander model was developed using the same approach as the one implemented in the 

compressor model. The differences between an expander model and a compressor model are 

the equations to calculate the polytropic efficiency and the polytropic temperature exponent 

m. For expansion, the polytropic efficiency is defined as (Sinnott,, 2005): 

Actual work obtained

Polytropic work
P   (3.41) 

Consequently, the polytropic temperature exponent m can be obtained from equation (3.42) 

rather than equation (3.38) which is used for the compression system (Sinnott,, 2005) 
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 
P

ZR
m e X

C
   (3.42) 

3.3.3 Flash drum 

After compression and cooling, the flue gas is partially condensed and fed to a vapour-liquid 

separator where the liquid stream containing mainly CO2 is separated from the vapour 

stream. A mathematical model and sizing equation of the flash drum are provided below. 

3.3.3.1. Mathematical model 

It was assumed that the vapour and liquid phases are in equilibrium, and tha tthere is no 

vapour hold-up in the drum. In addition, the flash drum was assumed to be operating 

isothermally at its inlet stream’s temperature and pressure; i.e. no additional heating or 

cooling is required to separate the CO2 from the flue gas. A separator is considered as a 

control volume that has one inlet stream and two outlet streams, i.e. vapour stream and liquid 

stream. Since there is no chemical reaction occurring inside the separator, equation (3.1) can 

be written on a molar basis as follows. 

( )cvd M
F V L

dt
    (3.43) 

Mcv is the liquid molar hold-up while F, V and L are molar flow rates of feed stream, vapour 

product stream and liquid product stream, respectively. The Mcv can be obtained from 

equation (3.44) while L is calculated using the Bernoulli and continuity equations for ideal 

liquid flow through a pipe, as shown in equation (3.45) (Chalupa et. al., 2012). Thus, the 

liquid level of the drum can be monitored and the level control can be developed for safe 

operation. 

cv

A h
M

MW

  
  (3.44) 

2v vc A gh
L

MW

  
  (3.45) 
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Where cv is a flow coefficient and Av is the flow area related to the valve position as: 

max,vv AsA   (3.46) 

Where s is the stem valve position and Av,max is the maximum flow area of the valve. 

In addition, the component balance given in equation (3.47) is also required in a separator 

model in order to calculate the compositions of the vapour and liquid streams. 

( )cv i
i i i

d M x
F z V y L x

dt


       (3.47) 

In a vapour-liquid separator model, the relation between vapour phase composition (yi) and 

liquid phase compositions (xi) is determined by the vapour-liquid phase equilibrium. Phase 

equilibrium is required for the design of all separation processes that depend on differences 

in concentration between phases. The criterion for thermodynamic equilibrium between two 

phases of a multicomponent mixture is that for every component, i:  

V L

i if f  (3.48) 

where fi
V
 and fi

L
  are the vapour-phase and liquid-phase fugacity of component i, respectively. 

For a pure, ideal gas, the fugacity equals the pressure, and for a component in an ideal gas 

mixture, the fugacity of component i equals its partial pressure. Due to the close relationship 

between fugacity and pressure, it is convenient to define the ratio of fugacity to pressure as a 

fugacity coefficient, i. 

V
V i
i

i

f

y P
   (3.49a) 

L
L i

i

i

f

x P
   (3.49b) 

The superscripts V and L refer to the vapour and liquid phases, respectively. Substituting 

equations (3.49a) and (3.49b) into equation (3.48): 
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V L

i i i iy x   (3.50) 

The ratio between vapour phase composition (yi) and liquid phase compositions (xi) at 

equilibrium condition is defined as a K-value. Thus, the K-value can be calculated from 

liquid and vapour fugacity coefficients, as expressed in equation (3.52). In this work, the 

fugacity coefficient of each phase is provided by the Multiflash™ property package based on 

the Peng-Robinson equation of state.   

i
i

i

y
K

x
  (3.51) 

L

i
i V

i

K



  (3.52) 

 

3.3.3.2. Equipment sizing 

In this study, all vapour-liquid separators in the CO2CPU are oriented vertically and have a 

demister pad installed. A separator diameter depends on the maximum vapour velocity in a 

disengagement section which is calculated from the following equation (Hall, 2012). 

0.5

,max
L V

V V

V

u K
 



 
  

 
 (3.53) 

Where Kv is a factor for vertical separator design obtained from (Barton, 1974): 

 2 3 4 5exp 1.94 0.815 0.179 0.0124 0.0039 0.00026VK X X X X X      
 

(3.54) 

where ln VL

V L

W
X

W





 
   

   

(3.55) 

WL and WV represent the mass flow rates of liquid phase and vapour phase, respectively. 

Once the maximum vapour velocity in the disengagement section is determined, the 

minimum cross-sectional area and diameter of the separator can be calculated as follows. 
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min

,max

L

V V

W
A

u
  (3.56) 

min
min

4A
D


  (3.57) 

The minimum diameter obtained from equation (3.57) may be adjusted to the next higher 

standard increments. In this study, diameters in 6-inch increments which are normally 

fabricated in the US were considered (Hall, 2012). The aspect ratio (the vertical height 

divided by diameter) of the separator can be up to 4:1 depending on the design operation 

(Hall, 2012). In this study, the aspect ratios of all separators were designed to be 2:1. 

3.3.4 Heat exchanger 

A number of heat exchangers are used in the CO2CPU, the models of which were categorized 

as either simple heat exchangers or multi-stream heat exchangers. This section described a 

mathematical model and sizing of a simple heat exchanger used for modelling coolers and 

heaters that have only one hot stream and one cold stream flowing counter-currently; and do 

not encounter two phase flow. To reduce the complexity of the entire dynamic model of 

CO2CPU, a spatial variation along the exchanger length was not taken into account in a 

simple heat exchanger model. Ordinary differential equations were solved in a simple heat 

exchanger to determine the outlet stream temperatures of various process streams. The 

transfer coefficients were calculated using average fluid properties. Details of the 

mathematical model are given below. 

3.3.4.1. Mathematical model 

This model was developed based on shell-and-tube configuration. A fluid that has high 

pressure is assigned to flow through the tube while a fluid with lower pressure flows counter-

currently through the shell. Heat losses and thermal resistance of the tube wall were 

neglected and the mass flow rates were assumed constant. Effects of kinetic and potential 

energy were also ignored. Thus, the energy equation shown in equations (3.7) was simplified 
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to solve for the outlet temperatures at each side of the heat exchanger, as expressed in 

equation (3.58).  

Tube-side: , , ( )
t t

t
t p t t t p t in t out

dT
C V FC T T Q

dt
     (3.58a) 

Shell-side: , , ( )
s s

s
s p s s s p s in s out

dT
C V F C T T Q

dt
     (3.58b) 

where Q is the rate of heat transfer between shell and tube which is calculated from the 

following equation. 

LMTDQ UA T   (3.59) 

, , , ,

, ,

, ,

( ) ( )

( )
ln

( )

t out s in t in s out

LMTD
t out s in

t in s out

T T T T
T

T T

T T

  
 





 
(3.60) 

U and A in equation 3.59 represent the overall heat transfer coefficient and the heat transfer 

area, respectively. ΔTTLMD is the log-mean temperature difference depending on flow 

arrangements in the heat exchanger. Equation 3.60 presents ΔTTLMD of the counter-current 

flow arrangement in a shell-and-tube heat exchanger.  As stated previously, the effect of tube 

wall is negligible, thus the overall heat transfer coefficient, U, per unit area can be obtained 

from: 

1

1 1

t s

U

h h


 

 
 

 
(3.61) 

where ht and hs are heat transfer coefficients of fluids in tube-side and shell-side respectively. 

The general correlations of tube-side heat transfer coefficients used in this work are as follow 

(Sinnott, 2005). 

If Re > 2300: 
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



 
    

   

(3.62) 

If Re < 2300: 

 
0.140.33
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1.86 Re Pr

w

d
Nu

L





  
    

     

(3.63) 

where  Nusselt numberNu hd k    

  Reynolds number =Re vd    

  Prandtl number PPr c k    

d is the tube diameter and L is the tube length. The value of C in equation (3.62) depends on 

the type of the fluid flowing through the heat exchanger. In this case, the C value equals to 

0.023, which is the number recommended for gases (Sinnott, 2005). For the shell-side, the 

local heat transfer coefficient is based on Kern’s method (Sinnott, 2005), as shown in (3.64).  

0.14

1 3Re Prs e
h

w

h d
Nu j

k





 
     

   

(3.64) 

where 

2 24
4

 hydraulic mean diameter 
t

e

p d

d
d





 
 

  
 

(3.65) 

 Tube pitch tp    

jh is a correction factor depending on the fluid Reynolds number, baffle cut, and tube 

arrangement. The value of jh is obtained from a chart presented in (Sinnott, 2005), and 

assumed to be constant. 

3.3.4.2. Equipment sizing 

The tube diameters were selected based on the standard provided in textbooks (Kern, 1950; 

Sinnott,, 2005; Hall, 2012). Diameters in range 5/8 inch to 1 inch are preferable for most 

designs because the exchanger will be more compact, and therefore cheaper than using 



51 

 

bigger tube diameters. There are three patterns of tube arrangement that are usually found in 

an exchanger, i.e. triangular, square, or rotated square pattern, as shown in Figure 4.3. It is 

necessary to consider the tube arrangement because it determines the tube pitch (distance 

between tube centres) that is used to calculate the hydraulic mean diameter and heat transfer 

coefficient as expressed in equation (3.64). In this study, the triangular tube arrangement was 

selected, as it provides high heat transfer rate (Sinnott, 2005). 

 

Figure 3.6 Tube patterns in shell and tube heat exchanger (Sinnott, 2005) 

The recommended tube pitch is normally 1.25 times the outside tube diameter (Sinnott, 2005; 

Hall, 2012). In addition, the segmental baffle is considered in exchanger sizing. The baffle is 

usually installed in the shell as shown in Figure 3.7 in order to increase the fluid velocity and 

improve the heat transfer rate of an exchanger. The dimension of the baffle is usually referred 

to the baffle cut which is a height of the segment removed expressed as a percentage of the 

baffle disc diameter. A typical range of baffle cut is 15%-45%, but a general optimum range 

is 20%-25% (Sinnott, 2005). The distance between baffles is called baffle spacing. The 

shorter the baffle spacing used, the higher the heat transfer rate obtained. The baffle spacing 

can be 0.2-1.0 times the shell diameter, and generally an optimum spacing is 0.3-0.5 times 

the shell diameter (Sinnott, 2005). Therefore, in this study the baffle cut is specified at 20% 

while the baffle spacing is 0.25 times the shell diameter. 
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Figure 3.7 Baffle configuration (Sinnott, 2005) 

The shell diameter must be selected to give as a close fit to the tube bundle as is practical. 

The bundle diameter depends on the number of tubes and the number of tube passes, and can 

be obtained from the following equation (Sinnott, 2005). 

1

1

0

1

n

t
b

N
D d

K

 
  

 
 (3.66) 

   

where Number of tubestN    

 Bundle diameter (mm)bD    

 0 Tube outside diameter (mm)d    

The constants used in equation (3.66) are provided in Table 3.3. The bundle diameter 

obtained from equation (3.66) is used to select the shell diameter from the standard shell size 

which can be found in several textbooks (Kern, 1950; Perry, 2008). The number of tubes that 

can be accommodated in the standard shell size can also be found in textbooks.  

  

Baffle 
Baffle spacing 

20% Baffle cut 
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Table 3.3 Constant for use in equation (3.66) (Sinnott, et al, 2005) 

Triangular pitch, pt = 1.25d0 

No. passes 1 2 4 6 8 

K1 0.319 0.249 0.175 0.0743 0.0365 

n1 2.142 2.207 2.285 2.499 2.675 

Square pitch, pt = 1.25d0 

No. passes 1 2 4 6 8 

K1 0.215 0.156 0.158 0.0402 0.0331 

n1 2.207 2.291 2.263 2.617 2.643 

 

3.3.5 Multi-stream Heat exchanger 

The actual design of a multi-stream heat exchanger is done using a plate-and-fin heat 

exchanger which is widely used in process industries including gas processing and cryogenic 

application. Basically, a plate-and-fin heat exchanger consists of stacked layers of corrugated 

fins separated by parting sheets and sealed along the edge by bars as shown in Figure 3.8. 

The corrugated fins provide an extended surface for heat transfer, thus high thermal 

efficiency is obtained (ALPEMA, 2000).  

 

Figure 3.8 Plate-and-fin multi-stream heat exchanger (Process Cooling, 2000) 
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The steady-state behaviour of a plate-and-fin heat exchanger has been widely studied (Prasad 

and Gutukul, 1992; Lou et al, 2002; Boehme et al, 2003; Ghosh et al, 2006; Ghosh et al,  

2007; Kohil et al, 2010). On the other hand, little efforts have been made to investigate the 

dynamic behaviour of a plate-and-fin heat exchanger. The complex flow patterns of a plate-

and-fin heat exchanger that include cross-flow, counter-flow and parallel-flow arrangements 

make dynamic modelling very challenging. A simple and rapid dynamic model of plate-and-

fin heat exchanger with reasonable accuracy is still required. Dynamic modelling of a plate-

and-fin heat exchanger was initially proposed by Pingaud in 1989. Conservation laws of 

mass, energy and momentum of fluid flows were performed. The variation in parting sheet 

temperature and the phase change were also considered. However, the heat transfer area 

calculation and fluid flow direction used in Pingaud’s model were not clearly stated. 

Correlations to calculate the void fraction in two phase region and heat transfer coefficients 

were not provided. Another dynamic model of plate-and-fin heat exchanger was presented in 

1999 (Averous et al, 1999). In this study, a plate-fin heat exchanger was divided into two 

zones, i.e. distribution zone and exchange zone, and the heat balance was performed 

considering heat transfer between adjacent passages and conduction through the fins. This 

model was developed using a special dynamic simulator of brazed plate-fin heat exchangers, 

ProSec
TM

. The heat transfer coefficients were evaluated with an in-house correlation linked 

with the manufacturer’s data base. Two phase flow was not discussed in this study. A case 

study was performed to evaluate dynamic behaviour of the heat exchanger when one cold 

process stream of the heat exchanger was shut down. More recently, a generalized 

mathematical model for transient analysis in multi-stream heat exchangers was proposed 

(Luo et al, 2003). Four matching matrices were introduced to specify the boundary 

conditions of the spatial energy balance of the fluid flowing through the exchanger. 

Mathematical models were solved using Laplace transform and numerical inverse algorithm. 

The developed model was claimed by the authors to be capable for transient analysis in 

various types of multi-stream heat exchanger including a plate heat exchanger. However, 

two-phase flow is not valid in this model. 
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In the CO2CPU, the multi-stream heat exchanger encounters both condensing and boiling 

two phase flows. The CO2 in the flue gas was cooled and partially condensed while the liquid 

coolant from the flash drum was heated and partially vaporized. Furthermore, the two phase 

region does not exist across the entire exchanger length but occurs only partly in both the 

shell and tube sides. A combination between single phase and two phases governing 

equations is therefore required to model the multi-stream heat exchanger. Including complex 

flow patterns of the plate-and-fin heat exchanger and the two phase flow heat transfer 

phenomena in a dynamic model of multi-stream heat exchanger, a dynamic model of the 

CO2CPU will become extremely elaborate and computationally intensive. Because the 

ultimate goal of this study is to develop a dynamic model of the entire CO2CPU plant for 

control design purpose, a dynamic model that is not overly complicated to prevent extremely 

long dynamic simulation, but accurate enough to provide correct trends of temperature 

variation and time constants in the multi-stream heat exchanger is required. To simplify the 

multi-stream heat exchanger model and also the CO2CPU model, the current model was 

developed based on a shell and tube configuration and employed the simplest spatial 

distributed two phase flow model, i.e. homogenous flow model, to model the two phase 

region in the multi-stream heat exchanger. The use of a shell and tube configuration allows 

for the assumption of one-dimensional flow which is preferred at this stage of modelling. 

Details of mathematical model and the shell-and-tube configuration considered in the multi-

stream heat exchanger model are provided in the next section. 

3.3.5.1. Mathematical model 

To model the multi-stream heat exchanger, both single phase and two phase flow heat 

transfers were employed as described previously. This section provides details of the single 

phase and two phase governing equations. The following assumptions were made for both 

the single phase and the two phase regions in the dynamic model of multi-stream heat 

exchangers.  

1) Fluid flow is one-dimensional. 

2) Effects of kinetic and potential energy are neglected. 
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3) Pressure drop is negligible. 

4) Liquid and vapour in the two-phase region are in thermal equilibrium. 

5) Axial conduction is negligible. 

6) Thermal resistance of the wall to heat transfer area is negligible. 

Since the pressure drop is assumed negligible, the momentum equation can be eliminated. 

The mass and energy balances for the different regions can be simplified as follows.  

1) Single phase region 

Continuity and energy equations of one-dimensional fluid flow in a single phase region were 

developed using partial differential equations as shown in equations (3.67) and (3.68). 
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 
 

 
 (3.67) 

( ) ( ) 4
t

h vh
h T

t z D

  
  

 
 (3.68) 

The right-hand side of equation (3.68) represents the rate of heat transfer from the hot stream 

to the cold stream. Equations (3.62)-(3.64) were used to calculate the heat transfer 

coefficients (ht) in the single phase region. These equations are valid because the multi-

stream heat exchanger is modelled based on a shell and tube configuration.  

2) Two phase region 

A number of two phase flow models have been proposed at different levels of complexity 

and accuracy. Generally, two phase flow models are divided into two main groups, lumped 

parameter and discretized models. A lumped parameter model, also known as a moving 

boundary model, is the most general two-phase flow model in which the entire two-phase 

flow region is considered as a single control volume that has constant properties. A lumped 

parameter model is relatively simple, and therefore, requires less computational effort and 

time. It, however, does not take in to account the spatial variation of fluid properties, thus the 

results obtained are less accurate and may lead to wrong decisions in the controller design. 
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Therefore, a more complicated discretized model was considered in this work. There are 

three types of discretized models commonly used in the literature (Levy, 1999; Faghri and 

Zhang, 2006): 

a) Homogeneous model: This model assumes that the two phases flow at 

equal velocities and are well-mixed. The two-phase flow is discretized into a small control 

volume and modelled using averaged properties. 

b) Separated flow model: This model considers different velocities between 

the two phases but assumes that only the velocities differ. The conservation equations are 

written for the combined flow and also solved using averaged properties. This is a simplified 

version of the two-fluid model (below). 

c) Two-fluid model: The spatial governing equations are defined for each 

individual phase within a two-phase control volume. To solve this model, constitutive 

equations of mass, momentum and heat transfer across the phase boundary are required. 

To reduce computational effort and complexity of the multi-stream heat exchanger model, a 

homogenous two phase flow model was used in this study. The vapour and liquid phases 

were assumed to be in thermal equilibrium, well-mixed and flowing through the exchanger at 

the same velocities. In this case, the two phase region was discretized into a small control 

volume and modelled using area-averaged properties. Studies on dynamic simulation and 

control of two phase flow heat exchangers, i.e., evaporators and condensers, which rely on 

homogenous flow model, are available in literature (Nyers and Stoyan, 1992; Jia et. al, 1995; 

Mithraratne et. al, 2000; Madsen et. al., 2012). The advantage of using a homogenous model 

is that the complicated interfacial phenomena can be avoided and all available analytical 

solutions or experimental correlations for single phase flow can be applied to the 

homogenous flow. One-dimensional continuity and energy equations of a homogeneous two-

phase flow are shown in equations (3.69) and (3.70) (Faghri and Zhang, 2006). 
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The angle bracket, , represents the area-averaged properties of the homogenous flow. If 

the angle bracket, , was dropped for ease, the governing equations of homogenous flow 

become exactly the same as the single phase flow equations. This makes the computational 

coding easier, especially when the boundary of two phase region is unknown, since the 

decision-making algorithm (such as if-else conditions) to switch between sub-models is not 

required. Also, the entire simulation takes considerably less time to converge which is 

favoured when dynamically simulating the CO2CPU. The homogenous properties were 

obtained from the following relations (Levy, 1999):  

 1v l        (3.71) 

G
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 1v lh xh x h    (3.73) 

where  is the vapour void fraction defined as the ratio of cross-sectional area occupied by 

the vapour phase to the total cross-sectional area as shown in equation (3.74).  
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Many void fraction models have been proposed for both general validity and specific flow 

regimes (Winkler et. al., 2012). In this work the Lockhart-Martinelli parameter-based void 

fraction model proposed by Abdul-Razzak et al. (1995) was used. It can be expressed as:  

 0.803

1

1 0.49 ttX
 


 (3.75) 

where Xtt is a Lockhart-Martinelli parameter. For turbulent flow, Xtt is given by (Lockhart 

and Martinelli, 1949): 
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The vapour quality (x), used in equations (3.73) and (3.76), is the ratio of the vapour mass 

flow rate to the total mass flow rate of the mixture given by (Mithraratne et. al., 2000): 
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Since homogenous flow was assumed, the two phase heat transfer coefficient (hTP) can be 

calculated using single phase correlations shown in equations (3.62)-(3.64). But the Reynolds 

number, Prandtl number and Nusselt number were calculated using the density, viscosity and 

thermal conductivity of the homogenous flow defined by equations (3.71), (3.78) and (3.79) 

respectively (Levy, 1999). 

 1v l        (3.78) 

 1f v lk k k     (3.79) 

Because the two phase region exists partly in both the shell and tube sides of heat exchanger 

and the location of phase boundary is unknown, a conditional calculation is implemented in 

the multi-stream heat exchanger model. If the temperature in a discretized element is lower 

than the dew point or higher than the bubble point of the fluid mixture, the homogenous flow 

model will be implemented. Discretized elements that are out of that temperature range will 

be modeled using single phase governing equations. Solving all discretized elements 

simultaneously, temperature profiles of each fluid flowing through the multi-stream heat 

exchanger are obtained. 

3.3.5.2. Equipment sizing 

Since actual design data of multi-stream heat exchangers in the CO2CPU are not yet available 

and a simplified dynamic model is required, the current model was developed based on a 

shell and tube configuration as depicted in Figure 3.9. The hot stream was assigned to flow 
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inside the shell while a number of cold streams flowed counter-currently inside the tubes. 

The tube sheet is divided to accommodate each cold stream. The number of tubes per inlet 

was adjusted to obtain fully developed turbulent flows in which the Reynolds number (Re) 

greater than 4,000. This number is recommended in order to avoid the flow transition region 

in heat exchanger (Halman, 1997; Sinnott, 2005).   

 

Figure 3.9 Multi-stream heat exchanger based on shell and tube design 

The shell and tube diameters were selected based on the standard similar to the simple heat 

exchanger model described in section 3.3.4.2. The triangular tube arrangement with the tube 

pith of 1.25 times tube diameter was selected, while the 20% baffle cut was considered and 

the baffle spacing is 0.25 times the shell diameter. In addition, the tube length was adjusted 

to obtain desired heat transfer area and to validate the outlet temperatures with the plant data. 

3.4 Dynamic modelling of the CO2CPU 

This section describes a procedure to integrate all unit operation models into the CO2CPU 

plant model, namely convergence of the entire mechanistic process model. Two basic 

computational approaches can be used for solving plant simulation, i.e., sequential-modular 

approach and equation-oriented approach. In the sequential-modular approach, the unit 

operation models are solved one-by-one following a flowsheet sequence. To solve a recycled 

process simulation, the sequential-modular tears a recycle stream; provides initial guess of 

the tear stream, such as total flow, composition, temperature and pressure; and then solves 

each unit (module) in the recycled process model in sequence (Dimian, 2003; AspenTech, 

2004). The iterative calculation is required to solve for the final steady state solution, thus the 

 

Hot stream 

Cold inlet 1 

Cold inlet 2 

Cold inlet 3 Inlet 3 

Inlet 2 

Inlet 1 
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sequential-modular approach can be very time-consuming for the recycled process 

simulation. On the other hand, the equation-oriented approach assembles all modelling 

equations and solves them simultaneously. The equation-oriented approach considers 

variables related to the recycle stream as unknowns which are solved simultaneously with 

other equations in each unit operation models to find the final steady state solution for the 

recycled process model. The equation-oriented approach is more efficient than the 

sequential-modular approach for process simulation with recycle stream (Barton, 2000; 

Dimian, 2003; AspenTech, 2004). Even though the use of equation-oriented approach does 

not require an iterative calculation, it requires good initial conditions; large storages and 

computer memory; and also a stable and reliable solver (Ku, 2013).  

In this study, both the Air Products’ CO2CPU and the CanCO2 plant models were developed 

using the efficient equation-oriented approach. The use of product streams from flash drum 

as coolants in the auto-refrigeration process makes the CO2CPU plant model highly 

integrated, and imposes difficulty in flowsheet convergence to both plant models, especially 

in the CanCO2 plant model in which a portion of the gas stream separated from the first flash 

drum is recycled back and mixed with the compressed flue gas upstream. The convergence of 

the recycle loop in the CanCO2 is the most challenging part in this study. Due to the limited 

design data and the complexity of the process stream connections in the CO2CPU plant, it is 

difficult to identify suitable initial conditions for each unit operation model, especially for the 

multi-stream heat exchanger models. Poor or inappropriate initial conditions may lead to 

convergence failure when all unit models are integrated into the CO2CPU plant model. The 

procedure used to integrate all unit operations into a complete dynamic model of both 

CO2CPU plants is described below. 

3.4.1 Dynamic modelling of the Air Products’ CO2CPU 

Dynamic models of both the Air Product’s CO2CPU and the CanCO2 were developed using 

the gPROMS (Process System Enterprise, 2012) equation-oriented simulation software 

system. Physical and thermodynamic properties for this system were obtained from the 

Multiflash™ property package using Peng-Robinson EOS. The flue gas conditions, which 
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are input in the present model, are presented in Table 3.1. Initially, mathematical models of 

each unit operation provided in section 3.3 were coded and validated individually with the 

design data provided by Dillon et al. (2005). The partial differential equations in the multi-

stream heat exchanger model were solved using a gPROMS built-in centred finite difference 

method with 30 discretized elements. Linear temperature profiles and their corresponding 

density profiles were calculated using the inlet and outlet temperatures provided in Dillon et 

al. (2005) as initial conditions for the multi-stream heat exchanger model. Boundary 

conditions were also specified at the inlet of each process stream using steady state data 

obtained from Dillon et al. (2005). Once all the stand-alone dynamic models were developed, 

the unit operation models were connected to describe the transient behaviour of the complete 

Air Products’ CO2CPU. The process stream connections were developed according to the 

flow diagram shown in Figure 3.1. 

A dynamic model of the compressor train was first developed by connecting together the 

models for the units K-1, C-1, D-1, K-2, C-2 and D-2 according to the flow diagram shown 

in Figure 3.1. This step is straightforward since there is no recycle stream in the compressor 

train. Subsequently, a simulation procedure presented in Figure 3.10 was implemented. The 

moisture-free compressed flue gas obtained from a compressor train model (stream 7) was 

connected to a stand-alone MHX-1. The coolant streams 12, 17, and 22 were specified at this 

point using the steady state data provided by Dillon et al. (2005). The first trial was then 

simulated dynamically until the connected model reached steady state. The results obtained 

from the previous run were then used as an input for the next process units, and the 

connected model was again simulated dynamically until it reached a new steady state. The 

model connection proceeded according to the flow diagram shown in Figure 3.1. The process 

units were connected one at a time to facilitate the identification of potential failures in the 

simulation. Once streams 11 and 14 in the MHX-2 model were integrated to the model, the 

tube length of MHX-2 was adjusted to validate the outlet temperature of stream 10 with the 

data from Dillon et al. (2005). After the MHX-2 validation, data for streams 12, 17 and 22 

obtained from the previous simulation were used in the MHX-1 model. Similarly, the tube 

length of MHX-1 was adjusted to validate the outlet temperature of stream 8 with the data 
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from Dillon et al. (2005). The dimensions of the multi-stream heat exchangers and the rest of 

the unit operations of the Air Products’ CO2CPU model are summarized in Appendix A. 

Once all the process unit models were connected and validated, a dynamic simulation of the 

Air Products’ CO2CPU was run over a certain period of simulation time to gather the initial 

steady state condition of the entire plant. These results were used as initial conditions for the 

Air Products’ CO2CPU model in the next run during transient analysis. 

 

Figure 3.10 Procedure to develop the dynamic model of Air Products’ CO2CPU 
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3.4.2 Dynamic modelling of the CanmetENERGY’s CO2CPU (CanCO2) 

Similar to the Air Products’ CO2CPU model, stand-alone dynamic models of each unit 

operation included in the CanCO2 were initially coded and validated in gPROMS. For the 

CanCO2, the developed models were validated with the design data of CanCO2 provided by 

CanmetENERGY. The flue gas conditions required as input for this model are presented in 

Table 3.2. The model connection started with the compressor train and then extended to 

include other process units as shown in Figure 3.11.  

 

Figure 3.11 Procedure to develop the dynamic model of CanmetENERGY’s CO2CPU 

(CanCO2) 
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First, the compressor train model was connected to the stand-alone MHX-1 model by stream 

14, and then the connected model was simulated dynamically to determine stream 15’s 

conditions. Afterwards, the connection was extended to include D-5, E-2, D-7 and P-1, and 

stream 26’s conditions required for the MHX-2 model were determined. Subsequently, the 

MHX-2 was connected to the D-6 model and the tube length was adjusted to validate stream 

27’s temperature with the CanCO2 design data. Once the MHX-2 was validated, streams 21 

and 24 obtained from MHX-2 and streams 29 and 36 obtained from D-7 were connected to 

the MHX-1 model, and the tube length of MHX-1 was adjusted to validated stream 15’s 

temperature with the CanCO2 design data. The dimensions of the multi-stream heat 

exchangers and the rest of the unit operations included in the CanCO2 plant model are 

summarized in Appendix B. The connected model was run over a certain period of time 

(360000 seconds) to gather the initial steady state conditions. These results will be further 

used as an initial condition for the CanCO2 model. Note that stream 22 is not yet recycled to 

the compression train in the procedure described in Figure 3.11. As shown in Figure 3.3, the 

CanCO2 is an integrated model that is very sensitive to the input change. Thus, the entire 

amount of gas present in stream 22 cannot be recycled to the compression train at once. The 

model should be slowly disturbed by a recycle stream; hence a purge valve was introduced to 

make a recycle gas flow rate adjustable as shown in Figure 3.12.   
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Figure 3.12 Purge valve addition to facilitate the CanCO2 plant model convergence 

The amount of gas recycled was determined by a recycle ratio, i.e. the ratio between the mass 

flow rate of gas recycled to the compressor train and the mass flow rate of stream 22. 

22

 ratio Recycle
M

M recycle




  (3.80) 

It should be noted that the purge valve was introduce to facilitate the flowsheet convergence 

of the CanCO2 plant model, i.e., it does not exist in the actual plant. At the beginning of the 

model integration, the recycle ratio was kept constant at 0, i.e. the purge valve was fully open 

meaning and there is no recycle gas flowing to the compressor train. After the procedure 

presented in Figure 3.11 was completed and the initial steady state was obtained, the recycle 

ratio was gradually increased until the total mass flow rate of stream 22 was recycled to the 

compressor train (recycle ratio =1), that is the purge valve was fully closed . It was found that 

the ramp change in the recycle ratio from 0 to 1 within 72000 seconds (simulation time) is 

suitable for the CanCO2 plant model. A faster change in the recycle ratio will cause 
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numerical instabilities in the CanCO2 dynamic plant model. Even though the use of the purge 

valve is a simulation resource used to converge this plant, interesting results were observed 

while changing the recycle ratio, i.e. changing the recycle ratio changes the amount of gas 

recycled from D-5 to the compressor train and thus affect the operation of CanCO2. The 

results obtained from this sensitivity analysis are presented in Chapter 5.  
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Chapter 4 

Dynamic simulation results for the Air Products’CO2CPU process 

This chapter presents the simulation results obtained from both the Air Products’ CO2CPU 

model developed in chapter 3. The steady state validation of the Air Products’ CO2CPU 

model is firstly presented in section 4.1. Five transient analyses were performed on the Air 

Products’ CO2CPU model in order to examine the effect of operating conditions and 

potential disturbances on two key process performances, i.e. the CO2 recovery and CO2 

product purity. Results obtained from these transient analyses are successively presented in 

sections 4.1-4.6.  

4.1 Steady state validation 

The model developed in section 3.4 was used to simulate the Air Products’ CO2CPU plant in 

gPROMS. The first initial steady state results obtained from the model were compared to the 

design data of the Air Products’ CO2CPU provided by an IEAGHG R&D report (Dillon et al, 

2005) and shown in Table 4.1. It should be noted that the data provided by Dillon et al. are 

steady state data obtained from simulation using proprietary software. The product and vent 

streams refer to stream 27 and stream 15 in Figure 3.1, respectively. The CO2 recovery is the 

ratio of the amount of captured CO2 (CO2 in stream 27) to the amount of CO2 in the flue gas 

(CO2 in stream 1). There is excellent agreement between the steady state model results and 

the design data presented in an IEAGHG R&D report (Dillon et al, 2005) with the exception 

of the O2 content in the CO2 product stream. The difference likely results from the use of a 

different physical property packages, not reported in Dillon et al. (2005). Nevertheless, the 

validation with this limited data set is very promising and acceptable to further perform 

transient analysis for the Air Products’ CO2CPU. 
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Table 4.1 Comparison between the simulation results and the Air Products’ CO2CPU design 

data (Dillon et al., 2005) 

 
Simulation results Dillon et al., 2005 Relative error (%) 

Process variables Product Vent Product Vent Product Vent 

Temperature (K) 307.81 293.32 316.15 293.32 2.64 0.40 

Pressure (bar) 110 1.01 110 1.01 - - 

Mass flow rate (kg/s) 128.06 40.68 126.97 38.61 0.86 5.37 

Mole fraction 
  

    
     CO2 0.9534 0.2849 0.9584 0.2462 0.52 15.70 

     O2 0.0158 0.1750 0.0105 0.1942 50.39 9.87 

     AR 0.0060 0.0692 0.0061 0.0712 2.16 2.73 

     N2 0.0201 0.4714 0.0203 0.4872 0.94 3.25 

     H2O 0 0 0 0 - - 

     SO2 0.0046 0 0.0045 0 2.41 - 

     NO 0.0001 0.0011 0.00013 0.00118 14.27 0.77 

CO2 recovery (%Wt) 88.96 

 

91.13 

 

2.39 

 CO2 purity (%mol) 95.34 

 

95.84 

 

0.52 

  

The temperature and vapour quality profiles of the multi-stream heat exchangers, MHX-1 

and MHX-2, resulted from the homogeneous two phase flow model detailed in Chapter 3. To 

avoid confusion and make the results easy to follow, the flow arrangements of MHX-1 and 

MHX-2 are presented in Figure 4.1.  

 

 

Figure 4.1 Flow arrangement in MHX-1  

As shown in Figure 4.1, the hot flue gas enters the multi-stream heat exchanger, MHX-1, at 

the normalized length (z) equal to 1 and leaves to the flash drum, D-3, at z = 0, while the 
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three coolant streams enter MHX-1 at z = 0 and leave at z = 1. The temperature and vapour 

quality profiles of the MHX-1 are shown in Figure 4.2 and Figure 4.3, respectively. Very 

slight changes in the slope of flue gas temperature profile (stream 7-8) are observed in Figure 

4.2 due to the fact that limited condensation is occurring. It is found from Figure 4.3 that the 

hot flue gas (streams 7-8) starts condensing near its outlet, at z ≈ 0.2, until it reaches a final 

quality of about 55% at the exit of the exchanger. Similarly, the slope of the coolant (stream 

22-23) temperature profile changes as shown in Figure 4.2. This stream enters MHX-1 as a 

saturated liquid with slight vapour phase (x ≈ 0.06) and is totally vaporized by the middle of 

MHX-1 (z ≈ 0.5) as shown in Figure 4.3. Stream 17-18 also encounters a phase change but 

the vapour quality changed occurs rapidly between z=0 and z=0.1. Change in the slope of 

stream 17-18’s temperature profile is not obviously shown, thus the phase change cannot be 

recognized in Figure 4.2. Instead, the location of phase boundary can be identified from the 

vapour quality profile shown in Figure 4.3. It is found that the phase boundary is at about z ≈ 

0.1 where stream 17-18 was completely vaporized. Stream 12-13 did not encounter the two 

phase flow, thus its vapour quality was not shown in Figure 4.3. To avoid confusion, the 

arrows were added into Figures 4.2 and 4.3 to indicate the flow directions of each stream the 

multi-stream heat exchanger. 

 

Figure 4.2 Temperature profile in MHX-1 
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Figure 4.3 Vapour quality profiles in MHX-1 

For the second multi-stream heat exchanger (MHX-2), the hot gas (stream 9-10) enters 

MHX-2 at z = 1 and leaves to the flash drum, D-4, at z = 0, while the other three coolants 

enter MHX-2 at z = 0 and leave at z = 1 as shown in Figure 4.4.  

 

 

Figure 4.4 Flow arrangement in MHX-2  

The heat transfer rate in MHX-2 was maximum at the hot stream inlet (z=1) where the largest 

temperature gradient was obtained as shown in Figure 4.5. The use of recycle streams from 

D-4 as coolants resulted in a dead zone between z=0-0.2 in MHX-2. In this zone, the heat 

transfer rate was very small resulting in constant temperature and vapour quality profiles in 

all process streams as shown in Figure 4.5 and Figure 4.6. The dead zone occurred because 

D-4 was operated isothermally at the outlet temperature of the hot gas (stream 10), thus the 

temperatures of the hot gas (stream 9-10) and the two coolants (stream 11-12 and stream 14-
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15) at z = 0 are the same and no heat was exchanged between them.  The hot gas (stream 9-

10) exchanged heat with only one coolant (stream 16-17) within the dead zone and thus the 

temperature profile was not flat as much as stream 11-12 and stream 14-15 as shown in 

Figure 4.5.   

 

Figure 4.5 Temperature profile in MHX-2 

The hot gas entering MHX-2 was saturated so it started condensing immediately upon 

entering MHX-2 at z=1 as shown in Figure 4.6. The vapour quality of the hot gas changes 

significantly within z=0.4-1 and gradually decreased within z=0-0.3 where the hot gas 

exchanged heat with only one coolant stream (stream 16-17). It reaches a final quality of 

about 40% at the exit of the exchanger. Only 10% vapour quality change was observed in 

stream 16-17, while stream 11-12, and stream 14-15  did not encounter the two phase flow, 

thus its vapour quality was not shown in Figure 4.6. 
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Figure 4.6 Temperature and vapour quality profiles in MHX-2 

The model was now used to analyse the transient behaviour of the CO2CPU. Several 

dynamic tests were applied to the inputs of the model and the outlet conditions of each unit 

operation were monitored. The focuses were on the CO2 purity of the product stream (stream 

27) and on the CO2 recovery of the plant as these two variables represent the operating 

performance of the CO2CPU. 

4.2 Effect of compressor train outlet pressure 

A compressor train refers to a combination between two compressors (K-1 and K-2), two 

coolers (C-1 and C-2), one knock-out drum (D-1) and one bed dryer (D-2) in the Air 

Products’ CO2CPU (see Figure 3.1 in chapter 3). In this section, the outlet pressure of the 

compressor train, that is K-2’s discharge pressure, was examined. The test was applied to 

compressor K-2 by ramping up the discharge pressure from 30 bars to 33 bars within 300 

seconds. As the discharge pressure increased, the inlet temperature of flue gas entering C-2 

was increased resulting in an increase in stream 6’s temperature as shown in Figure 4.7. 
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Figure 4.7 Stream 6’s temperature in response to the ramp-up change in K-2 discharge 

pressure 

Even though, the increased pressure enhanced the heat transfer coefficient of the hot gas 

flowing through MHX-1, by increasing the thermal conductivity and the Prandtl number, the 

effect of increasing stream 6’s temperature was found to be more significant than increasing 

the heat transfer coefficient. Consequently, the temperature of stream 8 was increased, as 

shown in Figure 4.8. Since D-3 operates at the temperature and pressure of stream 8, changes 

in conditions of stream 8 affect the amounts of CO2 separated from D-3, as also shown in 

Figure 4.8. Within the first 300 seconds, the rapid change in stream 8’s temperature played a 

key role in the CO2 condensation in D-3. Increasing the temperature reduced the CO2 

condensation, thus the liquid CO2 recovered from D-3 was dropped initially. After 300 

seconds, the stream 8’s temperature is quite steady and the effect of increasing the operating 

pressure becomes significant for CO2 condensation in D-3. Increasing pressure favours the 

CO2 condensation, thus more liquid CO2 was recovered from D-3 as shown in Figure 4.8.  
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Figure 4.8 Stream 8’s temperature and the CO2 recovered from D-3 in response to the ramp-

up change in K-2 discharge pressure 

Consequently, the mass flow rate of stream 9, a gas stream leaving from D-3 to MHX-2, was 

decreased while its temperature was increased in accordance with increasing stream 8’s 

temperature. The increase in stream 9’s temperature caused an increase in stream 10’s 

temperature but the temperature impact was balanced afterwards by the decrease in stream 

9’s mass flow rate. Therefore, the temperature of stream 10 was relatively steady, as shown 

in Figure 4.9. However, the amount of CO2 separated from D-4 had the opposite trend 

compared to D-3. Since the CO2 separated from D-3 decreased within the first 300 seconds, 

the amount of CO2 carried over to D-4 increased initially. This then made the amount of CO2 

obtained from D-4 to increase within the first 300 seconds. Afterwards, the CO2 fed to D-4 

decreased, thereby decreasing the CO2 in the liquid product stream, as shown in Figure 4.9. 

In other words, the amount of CO2 recovered from D-4 was significantly determined by the 

amount of CO2 carried over from D-3 rather than the temperature and pressure of stream 10.  
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Figure 4.9 Stream 10’s temperature and the CO2 recovered from D-4 in response to the 

ramp-up change in K-2 discharge pressure 

The sum of liquid CO2 obtained from D-3 and D-4 was used to calculate the total CO2 

recovery of the CO2CPU, as shown in Figure 4.10. Because the increase in liquid CO2 

recovered from D-3 is more than the decrease in liquid CO2 recovered from D-4, the total 

CO2 recovery of the CO2CPU was improved approximately by 1% when K02 discharge 

pressure increased by 3 bars. 

 

Figure 4.10 The CO2 recovery in response to the ramp-up change in K-2 discharge pressure 
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While the CO2 recovery was improved, the CO2 purity was dropped by 0.5% as shown in 

Figure 4.11. This is because the operating conditions that favour CO2 condensation also 

favour condensation of other (impurity) gases along with CO2, thus the purity of CO2 in the 

liquid stream had an opposite trend compared to the amount of liquid CO2 recovered. Results 

obtained from this section show that the operating temperatures of D-3 and D-4 play a key 

role in the operation of CO2CPU. It is noted that the amount of CO2 captured and the purity 

obtained from D-3 were determined by its operating conditions (stream 8’s pressure and 

temperature), while the amount of CO2 captured and purity obtained from D-4 were 

determined by the amount of CO2 carried over from D-3 to D-4. The CO2 recovery responses 

to the change in operating pressure are slower than the CO2 product purity. The CO2 recovery 

took 3600 seconds while the CO2 product purity took only 720 seconds to reach their new 

steady state values.  

 

Figure 4.11 The CO2 product purity in response to the ramp-up change in K-2 discharge 

pressure 
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the amount of CO2 condensation in D-3 was decreased. Thus, the amount of CO2 carried over 

to MHX-2 was increased and more liquid CO2 was separated from D-4 as shown in Figure 

4.12.  

 

Figure 4.12 The amount of CO2 recovered from D-3 and D-4 in response to the ramp-down 

change in K-2 discharge pressure 

The total CO2 recovery in response to the decrease in K-2 discharge pressure is presented in 

Figure 4.13. The CO2 recovery results from the +10% ramp change is also shown in Figure 

4.13 for comparison. Since the rate of increasing CO2 recovered from D-4 is greater than the 

rate of decreasing CO2 recovered from D-3, the CO2 recovery initially increased, as can be 

seen in Figure 4.13. But since the increase in CO2 recovered from D-3 is more than the 

decrease in CO2 recovered from D-4, the total CO2 recovery was dropped by about 1.3% 

when the K-2 discharge pressure was decreased by 3 bars. It should be noted that the +10% 

and -10% ramp changes in K-2 pressure return different changes in the CO2 recovery. 

On the other hand, the CO2 product purity obtained for -10% ramp changes in K-2 pressure 

was increased because the lower pressure also reduces the condensation of inert impurities. 

Unlike the CO2 recovery, the +10% and -10% ramp changes in K-2 pressure return almost 

the same changes in the CO2 product purity which is about 0.5% mole as shown in Figure 
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pressure more significantly but is slower than for the CO2 product purity, similar to the 

results obtained from the ramp-up change. 

 

 

Figure 4.13 The CO2 recovery in response to the changes in K-2 discharge pressure 

 

Figure 4.14 The CO2 purity in response to the changes in K-2 discharge pressure 
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4.3 Effect of compressor train outlet temperature 

In this section, the effect of the compressor train outlet temperature (stream 7’s temperature) 

is examined. The mass flow rate of the coolant used in the cooler, C-2, was increased by 30% 

in a step manner. Increasing coolant flow rate reduced the hot gas outlet temperature in C-2 

(stream 6’s temperature). Consequently, the temperature of stream 7 decreased 

approximately by 2 K as shown in Figure 4.15. 

 

Figure 4.15 Stream 7’s temperature in response to the step-up change in C-2 coolant flow 

rate 

The rapid change in stream 7’s temperature causes a decrease in stream 8’s temperature by 

about 1 K within the first 120 seconds as shown in Figure 4.16. Consequently, more liquid 

was separated from D-3 and the amount of gas fed to MHX-2 and D-4 was decreased. Thus, 

the coolants flow rates of MHX-1 (streams 12 and 17) were decreased and caused the 

increase in stream 8’s temperature afterwards. But since another coolant used in MHX-1, 

stream 22, was increased, the temperature of stream 8 was gradually decreased and finally 

reached a new steady state after 1 hour. The new steady state value of streams 8’s 

temperature is approximately 0.7 K lower than its initial steady state value. However, this 
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condition favors the CO2 condensation in D-3 therefore the amount of CO2 recovered from 

D-3 was increased by 2.2 kg/s as shown in Figure 4.16.  

 

Figure 4.16 Stream 8’s temperature and the CO2 recovered from D-3 in response to the step-

up change in the C-2 coolant flow rate 

The CO2 condensation in D-4 is affected by two variables, i.e. the temperature and flow rate 

of stream 10. The flow rate of stream 10 is determined by the operation in D-3. In this case, 

the flow rate of stream 10 decreased due to the decrease in D-3 operating temperature. The 

temperature of stream 10 in response to the step change in coolant flow rate is presented in 

Figure 4.17. Because the stream 10’s temperature relies on the temperatures of streams 8 and 

9, it was dropped according to the stream 8’s temperature within the first 240 seconds. 

Subsequently, it was increased again because of decreases in the coolant flow rates in MHX-

2 (streams 12, 14 and 16). The new steady state value of stream 10’s temperature is only 0.3 

K lower than its initial steady state value. This small decrease in the temperature did not help 

the CO2 condensation along in D-4, and since the CO2 carried over to D-4 was decreased, the 

CO2 recovered from D-4 was dropped as also shown in Figure 4.17. 
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Figure 4.17 Stream 10’s temperature and the CO2 recovered from D-4 in response to the 

step-up change in the C-2 coolant flow rate 

The sum of CO2 obtained from D-3 and D-4 was used to calculate the CO2 recovery. Figure 

4.18 presents the total CO2 recovery of the Air Product’s CO2CPU in response to the change 

in the C-2 coolant flow rate. Similar to the ramp change in pressure, an overshoot was found 

in the CO2 recovery response. This is because the rate of decreasing CO2 recovered from D-4 

is more than the rate of increasing CO2 recovered from D-3 at the beginning of responses. 

When the CO2 condensed in D-4 reaches steady state, the amount of CO2 condensed in D-3 

starts playing a role on the CO2 recovery, thereby increasing the CO2 recovery as shown in 

Figure 4.18. Increasing 30% coolant flow rate in C-2 increased only by 0.1wt% the total CO2 

recovery. 
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Figure 4.18 CO2 recovery in response to the step-up change in the C-2 coolant flow rate 

Molar-averaged purities between the CO2 recovered from D-3 and D-4 were calculated to 

determine the CO2 purity in the product stream. In this case, the temperatures of streams 8 

and 10 were decreased by less than 1 K while the pressure remained constant resulting in an 

insignificant change in the CO2 product purity as shown in Figure 4.19. However, it was 

observed that the CO2 purity was changed similarly to the operating temperature of each 

drum. This is because the liquid compositions obtained from the flash drum were calculated 

using the equilibrium K-value which is a function of temperature and pressure of the drum. 

Thus, the trend of CO2 purity was matched the temperature trends streams 8 and 10 as shown 

in Figure 4.19.  
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Figure 4.19 The CO2 purity in response to the step-up change in the C-2 coolant flow rate 

The effect of decreasing C-2 coolant flow rate was also evaluated. The mass flow rate of the 

coolant used in C-2 was decreased by 30% in a step fashion. In this case, the stream 6’s 

temperature changed by 4.5 K. All process variables had opposite trends compared to results 

obtained from the +30% step change in coolant flow rate, but the magnitude of changes were 

different, as shown in Figure 4.20 and Figure 4.21.  

 

Figure 4.20 The CO2 recovery in response to the changes in the C-2 coolant flow rate 

95.1

95.2

95.3

0 1800 3600 5400 7200 9000 10800

P
u

ri
ty

 (
m

o
l%

) 

Time (s) 

90

91

92

93

0 1800 3600 5400 7200 9000 10800

C
O

2
 R

ec
o
v
er

y
 (

w
t%

) 

Time (s) 

+30% Coolant -30% Coolant



85 

 

 

Figure 4.21 The CO2 purity in response to the changes in the C-2 coolant flow rate 

The CO2 recovery decreased by 0.3% while the CO2 product purity decreased by 0.07% in 

response to the -30% coolant flow rate in C-2, as shown in Figure 4.20 and Figure 4.21, 

respectively. It is noted that the changes in the amount of CO2 captured and CO2 purity 

observed in this section were very small due to the slight changes in temperatures of D-3 and 

D-4. The +30% and -30% changes in the coolant flow rate returns different changes in the 

CO2 recovery and the CO2 purity. Additionally, it was observed that the CO2 recovery is 

more sensitive but slower to respond, to the operating conditions than the CO2 purity, as also 

found in the previous section. 

4.4 Effect of flue gas flow rate 

The flue gas flow rate depends on the power plant load which is related to the electricity 

demand, and thus it may vary subject to the changes in the power plant operation. This 

section analyzes the effect of flue gas flow rate on the CO2CPU capture performance. The 

mass flow rate of the flue gas was ramped up by 10% of the base case value presented in 

Table 3.1 (166.9 kg/s) within 1800 seconds while keeping the flue gas composition constant. 

Because the coolant flow rates used in C-1 and C-2 were constant while the amount of hot 
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flue gas increased, the flue gas left the cooler C-2 with a higher temperature as shown in 

Figure 4.22 (stream 7’s temperature). 

 

Figure 4.22 Stream 7’s temperature in response to the ramp-up change in the flue gas flow 

rate 

Increases in the temperature of stream 7 caused an increase in the temperature of stream 8 

within the first 1800 seconds as shown in Figure 4.23. Increasing stream 8’s temperature 

reduced the CO2 condensation in D-3, thus the amount of gas leaving from D-3 to MHX-2 

and then to D-4 increased. Because the amount of gas flowing to MHX-2 and D-4 increased, 

flow rates of streams 12 and 17 produced from D-4 were also increased. Streams 12 and 17 

are used as coolants in MHX-1. Increasing coolant flow rates enhance the heat transfer rates 

resulting in decreasing hot gas temperature. Thus, the stream 8’s temperature was dropped 

after 1800 seconds of ramp change because of increases in flow rates of streams 12 and 17 as 

shown in Figure 4.23. The stream 8’s temperature was eventually steady at about 1.5 K 

higher than its base case value. Furthermore, the increase in stream 8’s temperature affects 

the CO2 condensation in D-3. The amount of CO2 recovered from D-3 was initially dropped 

within 900 seconds due to the rapid increase in stream 8’s temperature. Afterwards, the rate 

of change in stream 8’s temperature was reduced and the amount of CO2 recovered from D-3 

was increased due to the effect of increasing flue gas flow rate. After 1800 seconds, the flue 
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gas flow rate became constant but still played a key role in D-3, such that the CO2 recovered 

continued to increase, as shown in Figure 4.23. It should be noted that the total increase in 

the CO2 recovered from D-3 is about 2 kg/s while the total increase of CO2 in the flue gas 

flow rate is 13.5 kg/s.  

 

  

Figure 4.23 Stream 8’s temperature and CO2 recovered from D-3 in response to the ramp-up 

change in the flue gas flow rate 

The temperature of stream 8 determined the inlet temperature of the hot gas flowing to 

MHX-2 and also the outlet temperature of hot gas (stream 10’s temperature). Since stream 8’ 

temperature increased, the stream 10’s temperature also increased, as shown in Figure 4.24. 

It is found from Figure 4.24 that the stream 10’s temperature has a similar trend to the stream 

8’s temperature. The stream 10’s temperature was initially increased in accordance with 

stream 8’s temperature within 1800 seconds, but dropped afterwards due to the effect of 

increasing flue gas. Increasing flue gas flow rate increased the flow rate of gas leaving from 

D-3 to MHX-2, as described previously. Consequently, the flow rates of streams 11 and 14 

obtained from D-4 were increased. Streams 11 and 14 are used as coolants in MHX-2; 

therefore the hot gas outlet temperature (stream 10’s temperature) was decreased because of 

increases in the flow rates of streams 11 and 14 after 1800 seconds. The temperature of 
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stream 10 decreased to a new steady state at about 218.5 K. Because D-4 operates at 

conditions determined by stream 10, increasing stream 10’s temperature should decrease the 

CO2 condensation in D-4. However, the liquid CO2 recovered from D-4 was increased as a 

consequence of increasing flue gas flow in the CO2CPU. This indicates that a change in the 

flue gas flow rate has a more significant impact on the CO2 condensation in D-4 than the 

change in stream 10’s temperature. The amount of CO2 recovered from D-4 was increased 

approximately by 10 kg/s as shown in Figure 4.24.  

  

Figure 4.24 Stream 10’s temperature and CO2 recovered from D-4 in response to the ramp-

up change in the flue gas flow rate 

The ratio between the sum of CO2 recovered from D-3 and D-4 and the amount of CO2 in the 

flue gas was calculated to determine the total CO2 recovery of the CO2CPU, and the result is 

shown in Figure 4.25. The flue gas flow rate was continuously increased at constant flue gas 

composition, thereby increasing CO2 in the flue gas within 1800 seconds. It was found that 

the rate of increasing CO2 in the flue gas was faster than the rate of increase in the sum of 

CO2 recovered from D-3 and D-4. Therefore, the CO2 recovery initially dropped. After 1800 

seconds, the flue gas flow rate was constant while the sum of CO2 recovered from D-3 and 

D-4 was still increasing. Hence, the CO2 recovery was increased back after 1800 seconds.  
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However, the total increase of liquid CO2 (2 kg/s increased in D-3 and 10 kg/s increased in 

D-4) is still less than the total increase of the CO2 in flue gas (13.5 kg/s). Hence, the overall 

CO2 recovery dropped by approximately 0.3wt% when the flue gas mass flow rate was 

increased by 10% as shown in Figure 4.25.  

  

Figure 4.25 The CO2 recovery in response to the ramp-up change in the flue gas flow rate 

The mole fraction of CO2 in the condensate obtained from D-3 and D-4 are presented in 

Figure 4.26. Because the liquid composition obtained from the flash drum is determined by 

the vapour-liquid equilibrium K-value, which is a function of operating temperature and 

pressure of the flash drum, the mass fraction of CO2 in the condensate obtained from D-3 and 

D-4 followed the temperature trends of streams 8 and 10, respectively. Increasing the 

temperature reduces the inert impurities condensation, thus increasing the purity of liquid 

CO2 recovered from D-3 and D-4, as shown in Figure 4.27. However, the molar-averaged 

between the CO2 mole fractions obtained from D-3 and D-4, that is the overall CO2 product 

purity, decreased, as shown in Figure 4.28. This is because the molar-average purity depends 

not only on the CO2 mole fractions obtained from D-3 and D-4 but also the total amount of 

liquid condensates recovered from D-3 and D-4. 
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Figure 4.26 Purities of liquid CO2 recovered from D-3 and D-4 in response to the ramp-up 

change in the flue gas flow rate 

Within the first 360 seconds, rapid increases in the CO2 mass fractions obtained from D-3 

and D-4 are dominant, thus the CO2 product purity increased correspondingly. Afterwards, 

increases in the amount of liquid condensates recovered from D-3 and D-4 were more 

significant than increases in the CO2 mass fractions; thereby the molar-average purity of the 

CO2 product stream decreased, as shown in Figure 4.28. After 1800 seconds, the operating 

temperatures of D-3 and D-4 were dropped fairly, resulting in decreases in the CO2 mole 

fractions obtained from D-3 and D-4. The molar-average CO2 product purity was then 

continuously decreased but the rate of decrease was relatively faster as can be recognized 

from the change in the slope of CO2 product purity presented in Figure 4.28. Afterwards, the 

CO2 mole fractions obtained from D-3 and D-4 were considerably constant while the amount 

of condensates recovered from D-3 and D-4 were slightly decreased; thereby the molar-

averaged CO2 product purity was slightly increased back after about 2160 seconds. The CO2 

product purity reached a new steady state at 95.17mol% (approximately 0.03mol% lower 

than its initial steady state value), as shown in Figure 4.28. 
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Figure 4.27 CO2 product purity in response to the ramp-up change in the flue gas flow rate 

Five more ramp changes were also performed, -10%, ±20% and ±30% on the flue gas flow 

rate within 1800 seconds. The ramp-down change returned opposite trends while the ramp-up 

changes at different magnitude of  ramp change in the flue gas flow rate returned similar 

responses compared to the +10% change described above. However, it is observed that using 

the same magnitude of change but different direction, e.g., -20% and +20%, returned 

different changes in the CO2 recovery and CO2 product purity as shown in Figure 4.28 and 

Figure 4.29, respectively. The +20% flue gas changed the CO2 recovery by 0.5wt% and the 

CO2 product purity by 0.05mol%, while the -20% flue gas changed the CO2 recovery by 

0.3wt% and the CO2 product purity by 0.01mol%. Although the changes are very small, they 

can indicate the nonlinearity of the Air Products’ CO2CPU design. 
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 Figure 4.28 CO2 recovery in response to the changes in the flue gas flow rate 

 

Figure 4.29 CO2 product purity in response to the changes in the flue gas flow rate 
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4.5 Effect of flue gas composition 

Flue gas flow rate and composition may vary subject to the changes in the power plant 

operation. The flue gas flow rate depends on the power plant load that relies on the electricity 

demand while the flue gas compositions depend on the fuel type and the purity of oxygen 

used for combustion. In this section, it was assumed that changes in power plant operation 

will affect mainly the amount of CO2 in the flue gas. Ramp changes were applied to the mass 

flow rate of CO2 in the flue gas while the mass flow rates of other impurities contained in the 

flue gas, i.e. O2, Ar, N2, H2O, SO2 and NO, were held constant. In this section, six ramp 

changes were performed, ±10%, ±20% and ±30% on the CO2 mass flow rate within 1800 

seconds. The final flue gas flow rate and composition after each ramp change are shown in 

Table 4.2 including the base case value before applying the ramp change.  

Table 4.2 Flue gas conditions after ramp changes in CO2 mass flow rate of the Air Products’ 

CO2CPU 

 

Percentage of the CO2 flow rate change 

Flue gas conditions Base case -10% -20% -30% 10% 20% 30% 

Total mass flow (kg/s) 166.92 180.44 193.97 207.49 153.39 139.87 126.34 

Mass Flow (kg/s) 
 

  
 

        

  CO2 135.25 121.73 108.20 94.68 148.78 162.30 175.83 

  O2 8.12 8.12 8.12 8.12 8.12 8.12 8.12 

  AR 3.98 3.98 3.98 3.98 3.98 3.98 3.98 

  N2 17.35 17.35 17.35 17.35 17.35 17.35 17.35 

  H2O 1.32 1.32 1.32 1.32 1.32 1.32 1.32 

  SO2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 

  NO 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Mole fraction               

  CO2 0.743 0.723 0.699 0.670 0.761 0.777 0.790 

  O2 0.061 0.066 0.072 0.079 0.057 0.053 0.050 

  AR 0.024 0.026 0.028 0.031 0.022 0.021 0.020 

  N2 0.15 0.162 0.176 0.193 0.139 0.130 0.122 

  H2O 0.018 0.019 0.021 0.023 0.016 0.015 0.014 

  SO2 0.003 0.003 0.004 0.004 0.003 0.003 0.003 

  NO 0.000 0.000 0.000 0.001 0.000 0.000 0.000 
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Increasing the mass flow rate of CO2 in the flue gas increases the total flue gas flow rate and 

the mass fraction of CO2. Because the coolants used in coolers C-1 and C-2 were constant 

while the amount of hot flue gas flowing through them was increased, the outlet temperature 

of the flue gas (stream 6’s temperature) was increased. Accordingly, the temperature of 

streams 8 was also increased, as shown in Figure 4.30. 

 

Figure 4.30 Stream 8’s temperature in response to the ramp changes in the flue gas flow rate 

and compositions 

The temperature of stream 8 changed rapidly at the beginning of the ramp change (within 

about 180 seconds) and then the rates of change dropped due to the effect of mass flow rate. 

For example, in the case of increasing CO2 flow rate in the flue gas, the stream 8’s 

temperature initially increased together with increasing CO2 flow rate in the flue gas. On the 

one hand, increasing the temperature limits CO2 condensation in D-3, and on the other hand 

increasing CO2 in the feed increases the total amount of gas in the system; thus the flow rate 

of gas leaving from D-3 to MHX-2 was increased. Accordingly, flow rates of streams 12 and 

17, which are coolants in MHX-1, were increased. Increasing coolant flow rates increases the 

rate of heat transfer in MHX-1, therefore the rate of increasing stream 8’s temperature was 
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dropped after the first 180 seconds of ramp change. Afterwards, the CO2 flow rate and the 

flue gas flow rate were held constant and the effect of increasing coolant flow rates become 

more significant. Hence, the temperature of stream 8 was dropped after 1800 seconds of 

ramp change, as shown in Figure 4.31.  

 

Figure 4.31 Amount of CO2 recovered from D-3 in response to the ramp changes in the flue 

gas flow rate and compositions 

Even though increasing stream 8’s temperature should limit CO2 condensation in D-3, the 

amount of CO2 recovered from D-3 was increased, as shown in Figure 4.32, due to the 

influence of increasing CO2 flow rate in the flue gas. The more CO2 fed to the CO2CPU, the 

more CO2 recovered from D-3. It was observed that the amount of CO2 recovered from D-3 

was relatively constant within the first 900 seconds of ramp change. This is because the 

stream 8’s temperature changed quickly within the first 900 seconds and thus the change in 

stream 8’s temperature had a significant impact on the CO2 condensation in D-3. However, 

the effect of stream 8’s temperature was balanced by the effect of changing CO2 flow rate in 

the flue gas; therefore the total amount of CO2 recovered from D-3 was relatively constant 

within the first 900 seconds. Afterwards, the effect of change in mass flow rate of CO2 in the 
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flue gas was dominant and the amount of CO2 recovered from D-3 was changed according to 

the mass flow rate of CO2, as shown in Figure 4.31. 

Changing stream 8’ temperature affects not only the CO2 recovered from D-3 but also the 

operating temperature of D-4 since it determines the inlet temperature of the hot gas of 

MHX-2 (stream 9). When the temperature of stream 8 was increased, temperatures of 

streams 9 and 10 also increased. Because D-4 operates at the temperature of stream 10, the 

amount of liquid CO2 recovered from D-4 is expected to change corresponding to stream 

10’s temperature. However, six ramp changes in CO2 flow rate showed that the change in 

stream 10’s temperature did not significantly influence the CO2 condensation in D-4. Instead, 

the amount of CO2 recovered from D-4 was changed in accordance with the amount of CO2 

carried over from D-3 to D-4. It was found from the simulation results that the amount of 

CO2 carried over from D-3 to D-4 in this case greatly relied on the mass flow rate of CO2 in 

the flue gas more than the operating temperature of D-3 (stream 8). The more CO2 fed into 

the CO2CPU, the more CO2 carried over and the more CO2 obtained from D-4. Thus, 

increasing the mass flow rate of CO2 in the flue gas increased the amount of liquid CO2 

recovered from both D-3 and D-4. The sum of liquid CO2 recovered from D-3 and D-4 is 

presented in Figure 4.32.  
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Figure 4.32 Sum of CO2 recovered from D-3 and D-4 in response to the ramp changes in the 

flue gas flow rate and compositions 

An overshoot or inverse response was observed when dividing the sum of liquid CO2 

obtained from D-3 and D-4 by the mass flow rate of CO2 in the flue gas to calculate the CO2 

recovery, as shown in Figure 4.34. In the case of increasing CO2 flow rate in the flue gas, the 

CO2 recovery decreases initially because the rate of increasing flow rate of CO2 in the flue 

gas was higher than the rate of increasing CO2 recovered from D-3 and D-4. After 1800 

seconds of ramp change, the flow rate of CO2 in the flue gas was held constant and thus the 

CO2 recovery increased with increasing the sum of liquid CO2 obtained from D-3 and D-4. 

Opposite responses were obtained from the ramp-down tests. The CO2 recoveries of six ramp 

changes are shown in Figure 4.33. The maximum change in the CO2 recovery is about 3% 

when the mass flow rate of CO2 in the flue gas was ramped down by 30% (CO2 content 

reduced from 74% to 67% molar basis). 
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Figure 4.33 The CO2 recovery in response to the ramp changes in the flue gas flow rate and 

compositions 

The molar-averaged between the CO2 mass fractions obtained from D-3 and D-4 was 

calculated to determine the CO2 product purity. As described in the previous section, the 

molar-averaged purity depends on two factors, i.e. the CO2 mass fractions and the total liquid 

condensates obtained from D-3 and D-4. Increasing mass flow rate of CO2 in the flue gas 

increases the total flue gas flow rate and the mass fraction of CO2, but decreases the mass 

fraction of impurities (O2, Ar, N2, H2O, SO2 and NO). Thus, the molar-averaged CO2 purity 

is expected to increase when the CO2 mass flow rate is increased, while the opposite response 

is expected in the case of decreasing the mass flow rate of CO2. Results obtained from six 

ramp changes support this assumption, as shown in Figure 4.34. A slight drop in the CO2 

purity after 1800 seconds of ramp change was observed in Figure 4.34 when the mass flow 

rate of CO2 in the flue gas was ramped up by 30%. This is because the vapour and liquid 

compositions obtained from the flash drum are determined by the equilibrium K-value, 

which is a function of temperature and pressure of the flash drum. If the temperatures of 

streams 8 and 10 (operating temperatures of D-3 and D-4) were significantly changed, the 
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change in CO2 product purity would be observed accordingly. As shown in Figure 4.30, 

stream 8’s temperature decreased after 1800 seconds of the +30% ramp change in the mass 

flow rate of CO2. The trend of change in stream 8’s temperature was already described 

above. Accordingly, the K-value and mole fraction of CO2 in the condensate obtained from 

D-3 were decreased, thereby decreasing the CO2 product purity after 1800 seconds of the 

+30% ramp change as shown in Figure 4.34. Similar results were obtained from the +10% 

and +20% ramp changes and the opposite trends were observed when the CO2 flow rate in 

flue gas was ramped down as shown in Figure 4.34.  The maximum change in the CO2 purity 

is about 0.6mol% when the mass flow rate of CO2 in the flue gas was ramped down by 30% 

(CO2 content reduced from 74% to 67% molar basis). 

 

Figure 4.34 CO2 purity in response to the ramp changes in the flue gas flow rate and 

compositions 

It should also be noted that the +30% and -30% ramp changes in CO2 mass flow rate returns 

different changes in the CO2 recovery and CO2 product purity. Similar results were observed 

from the other tests, as shown in sections 4.2-4.4. These results demonstrate the nonlinearity 

94.4

94.6

94.8

95

95.2

95.4

95.6

95.8

0 3600 7200 10800 14400 18000 21600

C
O

2
 P

u
ri

ty
 (

m
o
l%

) 

Time (s) 

Decrease 10% CO2 Decrease 20% CO2 Decrease 30% CO2

Increase 10% CO2 Increase 20% CO2 Increase 30% CO2



100 

 

of the CO2CPU plant that will make the control system design for CO2CPU more 

challenging. 

4.6 Pilot plant flue gas compositions 

In this section, the flue gas composition is subject to change in accordance with the oxyfuel 

pilot plant operation. Experimental data obtained from the Air Products Vattenfall Oxyfuel 

CO2 Compression and Purification Pilot Plant (ACPP) was recently presented to the Oxyfuel 

combustion conference (White et al., 2013). The flue gas of the ACPP was taken from the 

Vanttenfall’s 30 MWth oxyfuel demonstration plant (OxPP) which periodically turned down 

the oxy-fired mode and allowed air ingress at night. Thus, the ACPP’s CO2 feed composition 

was alternated between two levels as shown in Figure 4.35. During the oxy-fired mode, the 

CO2 concentration was approximately at 78% while the air ingress mode provided about 74% 

CO2 concentration.  

 

Figure 4.35 CO2 content in the flue gas obtained from the Vattenfall’s demonstration plant 

(White et al., 2013) 

Because experimentation data rather than the trend of CO2 concentration shown in Figure 

4.35 were not provided, this section assumed that changes in the power plant operation 

affected mainly the amount of CO2 in the flue gas similar to what was described in section 
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4.5. It was observed that the +10% CO2 flow rate in section 4.5 returned the flue gas 

compositions closed to Figure 4.36 which are 75.6% dry basis at the base case and 77.7% dry 

basis at +10% CO2 increased. Thus, in this section the mass flow rate of CO2 in the flue gas 

feed was changed  in a rectangular impulse fashion starting from the base case value and  

then ramped up by 10% to reach the CO2 concentration of 77.7% and then ramp down with 

the same pace as shown in Figure 4.36. In addition, random noises were applied to the CO2 

flow rate in order to make the change in CO2 composition similar to the demonstration plant 

trend presented in Figure 4.35. The mass flow rates of other impurities contained in the flue 

gas, i.e. O2, Ar, N2, H2O, SO2 and NO, were held constant. The total flue gas flow rate was 

calculated by summing up the component mass flow rates and thus it was changed in 

accordance with the CO2 flow rate. The developed noised rectangular impulse CO2 

concentration of the flue gas which was used as an input of the model in this section is 

presented in Figure 4.37. 

 

Figure 4.36 Developed noised rectangular impulse CO2 concentration in flue gas feed 

Since the Air Products’ CO2CPU operate near the saturation point of the fluid, more 

aggressive noises will dramatically disturbed the physical properties calculations in gPROMS 

model and thus it could not be implemented in this case. The noised CO2 concentration 

presented in Figure 4.36 was calculated using random numbers sampled from a normal 
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distribution with mean 0 and standard deviation 1. Referring to results obtained from the 

+10% CO2 flow rate in section 4.5, the CO2 recovery increased with increasing CO2 flow rate 

in the flue gas and the overshoot was observed at the beginning of the increase. Similar 

results were obtained from this section as shown in Figure 4.37. An overshoot still existed in 

the CO2 recovery response. The CO2 recovery increased with increasing CO2 concentration 

and then decreased back to the initial value when the CO2 concentration was dropped. The 

limited noises also had a significant impact on the CO2 recovery. However, results indicated 

that the CO2 recovery of the Air Products’ CO2CPU was stable in the presence of noise in the 

CO2 concentration. The CO2 recovery changed according to the change in CO2 content in the 

flue gas without difficulty. With 75.6mol% CO2 in flue gas, the CO2 recovery was around 

91.3wt% and then increased to about 92wt% when the CO2 concentration was shifted to 

77.7mol%. The CO2 purity obtained for the noised rectangular impulse of the CO2 

concentration in flue gas feed is presented in Figure 4.38. 

 

Figure 4.37 CO2 recovery in response to the noised rectangular impulse CO2 concentration 

in flue gas feed 
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Figure 4.38 CO2 purity in response to the noised rectangular impulse CO2 concentration in 

flue gas feed 

It was observed from Figure 4.38 that the noises had more significant impact on the CO2 

purity when the CO2 content in the flue gas was around 75.6mol%. When the CO2 content 

was increased to 77.7mol%, the CO2 purity was considerably constant around 95.32mol%. 

Nevertheless, on the whole, the changes were small and the CO2 purity was relatively steady 

compared to the change in CO2 recovery. This result agrees well with the data presented by 

White et al. (2013). 
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Chapter 5 

Dynamic simulation results for the CanCO2 process 

This chapter presents the simulation results obtained from the CanCO2 model described in 

Chapter 3. The CanCO2 is an extended design of the Air Products’ CO2CPU. The use of a 

recycle gas stream represents the major difference between the Air Products’ CO2CPU and 

the CanCO2 process. As shown in Figure 3.3, a gas stream produced from the third separator, 

S-3, is recycled to the compressor train providing more CO2 captured from the CanCO2. As 

described in Chapter 3 (Section 3.5), the simulation were initially started with 0% gas 

recycled to the CanCO2 plant, i.e., that the gas stream obtained from S-3 was assumed to be 

completely purged to the atmosphere after it was utilized as a coolant in MHX-1.The steady 

state results obtained from 0% gas recycled simulation are then used as the initial conditions 

for the next simulation in which a portion of gas recycle is slowly increased until 100% 

recycle is achieved, i.e., 0% purge. The simulation results obtained under the assumption of 

100% gas recycled was validated with the design data of the CanCO2 and it is presented here 

in the next Section. The role of the recycle ratio (defined in equation 3.80) on the CanCO2 

process observed during the 100% recycle CanCO2 model development is presented in 

Section 5.2. Six case studies describing the transient operation of this process at100% recycle 

are presented in Sections 5.3-5.8 A summary of the CO2CPU simulation is provided at the 

end of this Chapter. 

5.1 Steady state validation 

The steady state results obtained from the model with 100% gas recycled were compared to 

the design data of the CanCO2 provided by CanmetENERGY. As shown in Table 5.1, the 

design data for the CanCO2 is limited since the data is only available at some sample points 

within the CanCO2 plant, e.g., stream 22, stream 26, vent gas and CO2 product (see Figure 

3.3), and only mass flow rate, pressure and temperature of each stream are provided. In 

addition, the CO2 contents are provided only for the vent gas and the CO2 product stream. 

The validation with this limited data set is very promising and was used to endorse our model 
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and justify the pursuit of additional simulation results including those resulting from dynamic 

simulations. Because the flue gas compositions used in the Air Product’s CO2CPU model and 

the CanCO2 model are the same, it is expected that the CO2 recovery and CO2 purity 

obtained from the CanCO2 will be higher than those obtained from the Air Product’s 

CO2CPU due to the recycle gas stream. However, the CO2 recovery obtained from the 

CanCO2 was slightly lower than the CO2 recovery of the Air Product’s CO2CPU. With 74 

mol% CO2 in the flue gas (wet basis), the CanCO2 achieved 88.7wt% CO2 recovery while the 

Air Products’ CO2CPU achieved 91wt% CO2 recovery. This is because the first flash drum in 

the CanCO2 process (D-5) was operated at a temperature that is higher than the operating 

temperature of D-3 in Air Products’ CO2CPU. The liquid phase fraction in D-5 was about 

20% and 40% in D-3. The CO2 recovery of the CanCO2 was therefore lower even though the 

recycle gas stream was introduced. However, the CO2 purities obtained from the Air 

Product’s CO2CPU and the CanCO2 were very similar due to the equivalent operating 

pressure (30 bars).  

Table 5.1 Comparison between the simulation results and the CanCO2’s design data obtained 

from CanmetENERGY 

 Simulation results CanCO2 design’s data 

Process variables Product Vent Stream 22 Product Vent Stream 22 

Temperature (K) 292.3 296.6 290.7 - 296. 5 293.2 

Pressure
*
 (bar) 1.01 110 14.8 1.01 110 14.8 

Flow rate (kg/hr) 89.77 29.28 33.5 89.12 29.78 34.95 

Composition (mol%)    
  

 

  CO2 95.2 29.0 65.9 95 30 - 

  O2 1.6 17.3 8.7 - - - 

  Ar 0.6 6.9 3.4 - - - 

  N2 2.1 46.9 20.7 - - - 

  H2O 0 0 0 - - - 

  SO2 0.5 0 0.1 - - - 

  NO 0 0.1 0.1 - - - 

 CO2 recovery (wt%) 88.73      

 Purity (mol%) 95.20      

* indicates an input to the model 
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The temperature and vapour quality profiles of the multi-stream heat exchangers, MHX-1 

and MHX-2, resulted from the homogeneous two phase flow model, are shown below. To 

avoid confusion and make the results easy to follow, the flow arrangements of MHX-1 and 

MHX-2 as presented in Figure 5.1. The location of each stream in the CanCO2 process can be 

seen in Chapter 3 (Figure 3.3). 

 

Figure 5.1 Flow arrangement in MHX-1 of the CanCO2 

The hot flue gas (stream 14-15) enters the multi-stream heat exchanger (MHX-1) at the 

normalized length (z) equal to 1 and leaves to the flash drum (D-5) at z=0; the other four 

coolants enter MHX-1 at z=0 and leave at z=1. The temperature and vapour quality profiles 

of the MHX-1 are shown in Figure 5.2 and Figure 5.3, respectively.  

 

Figure 5.2 Temperature profile in MHX-1 
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Because partial CO2 condensation is occurring in the shell side, the slope of the flue gas 

temperature (stream 14-15) is slightly changed as shown in Figure 5.2. As shown in Figure 

5.3, the hot flue gas (stream 14-15) starts condensing near its outlet, at z ≈ 0.1, until it 

reaches a final quality of about 78% at the exit of the exchanger. Similarly, the slope of the 

coolant temperature profile changes because these streams (streams 24-25 and 36-37) were 

vaporized in MHX-1.  

 

Figure 5.3 Vapour quality profiles in MHX-1  

Stream 24-25 enter MHX-1 as a saturated liquid with lightly vapour phase (x ≈ 0.07) and is 

totally vaporized (x = 1) near the middle of MHX-1 (z ≈ 0.4) as shown in Figure 5.3. Stream 

36-37 also encounters the phase change but the vapour quality changed rapidly between z=0 

and z=0.1. The rest of coolants in MHX-1 (streams 21-22 and 29-30) do not change phases; 

i.e., changes in the slope of the temperature profiles are not observed. For the second multi-

stream heat exchanger (MHX-2), the hot gas (stream 26-27) enter MHX-2 at z = 1 and leaves 

to the flash drum, D-6, at z = 0, while the other three coolants enter MHX-2 at z = 0 and 

leave at z = 1, as shown in Figure 5.4.  
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Figure 5.4 Flow arrangement in MHX-2  

As shown in Figure 5.5, the heat transfer rate in MHX-2 was maximum at the hot stream 

inlet (z=1) where the largest temperature gradient is obtained. The use of product streams 

obtained from D-6 as coolants resulted in a dead zone between z≈0 and z~0.15 in MHX-2; 

this behaviour was also observed in the MHX-2 of The Air Products’ CO2CPU. Thus, heat 

was not exchanged between the hot gas (stream 26-27) and the two coolants obtained from 

D-6 (streams 28-29 and 33-34), but between the hot gas and the coolant stream 35-36.  

 

Figure 5.5 Temperature profile in MHX-2 

The hot gas entering MHX-2 is saturated so it started condensing immediately upon entering 

MHX-2 at z=1 as shown in Figure 5.6. The vapour quality of the hot gas changes 
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significantly within z=0.4-1 and gradually decreased within z=0-0.3 where the hot gas 

exchanged heat with only one coolant stream (stream 35-36). The hot gas (stream 26-27) 

reaches a final quality of about 40% at the exit of the exchanger. The vapour quality of 

stream 35-36 changed by 20% while stream 28-29, and stream 33-34 did not encounter the 

two phase flow; thus, its vapour quality is not shown in Figure 5.6. 

In this section, the results show that the operations of two multi-stream heat exchangers, 

MHX-1 and MHX-2, of both the CanCO2 plant and the Air Products’ CO2CPU plant are very 

similar at steady state, even though the CanCO2 process includes the recycle stream that is 

aimed to improve the CO2 recovery. In the following section, the operation of these two 

multi-stream heat exchangers will be examined to determine the role of the recycle stream on 

the dynamic behaviour of the CanCO2 process. 

 

Figure 5.6 Temperature and vapour quality profiles in MHX-2 

5.2 Effect of a recycle stream 

This section examines the effect of the recycle gas stream on the operating performance of 
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and the total amount of gas collected on stream 22 (see Figure 3.3). To gain insight on the 

influence of the recycle stream over the CanCO2, four ramp changes were applied, +0.25, 

+0.5, +0.75 and +1 to the recycle ratio within 72,000 seconds, which was initially specified 

at 0%. When a portion of gas stream leaving from S-3 to MHX-1 was recycled backed to the 

compressor train instead of being purged to the atmosphere, the total CO2 in the process was 

increased providing more CO2 captured from the CanCO2. The CO2 recovery obtained from 

each ramp change in the recycle ratio was shown in Figure 5.7. 

 

Figure 5.7 CO2 recovery in response to the ramp change in recycle ratio 

Because the ramp change in recycle ratio was occurred slowly, the process conditions were 
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Figure 5.8 CO2 purity in response to the ramp change in recycle ratio 

In summary, it was observed that the recycle stream can improve the CO2 recovery of the 

CO2CPU process but reduce the CO2 purity in the product stream. However, it was observed 

in the CanCO2 model that, the decrease in CO2 purity was very small and insignificant when 

compared to the increase in CO2 recovery obtained (see Figure 5.9). Thus, the CanCO2 is 

normally operated at 100% recycle (recycle ratio = 1). Results obtained from 100% recycle 

were considered as the base case values in this study.  

 

Figure 5.9 Effect of gas recycle stream on the CanCO2 capture performance 
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In the following sections, several dynamic tests were applied to the inputs of the process; in 

these analyses, the recycle ratio was fixed at 1, which means that the purge stream is set to 0. 

The process outputs of each unit operation were monitored and recorded. As in the Air 

Products’ CO2CPU model, the focus is on the CO2 recovery and the CO2 product purity of 

the plant as these two variables represent the key operating performance metrics of the 

CO2CPU process. 

5.3 Effect of a compressor train outlet pressure 

As shown in Figure 3.3, the compressor train in the CanCO2 process includes four 

compressors (K-1 to K-4) and a connection between these four compressors, including four 

knock-out drums and four coolers. In this section, the outlet pressure of the compressor train, 

i.e., K-4’s discharge pressure, was examined. The discharge pressure of compressor K-4 was 

ramped up from 30 bars to 33 bars within 720 seconds. Due to the addition of the recycle gas 

in the CanCO2 model, this process is sensitive to sudden changes in the process inputs. 

Hence, ramp changes within 300 seconds similar to the Air Products’ CO2CPU are 

considered to be fast changes that affect the operability of this plant. As the discharge 

pressure increased, the inlet temperature of flue gas entering C-4 was increased resulting in 

an increase in stream 13’s temperature (gas outlet temperature of C-4) as shown in Figure 

5.10. 

 

Figure 5.10 Stream 13’s temperature in response to the ramped-up in K-4 discharge pressure 
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Increasing K-4 discharge pressure increased stream 15’s pressure and enhanced the CO2 

condensation in D-5, thus increasing the overall amount of liquid recovered from the 

CanCO2. Accordingly, the mass flow rate of recycle gas stream is decreased as more liquid is 

being produced at this operating condition. Decreasing the recycle gas flow rate reduced the 

mass flow rate of the hot gas entering MHX-1 thereby decreasing the heat transfer in MHX-

1. Although an increase in the hot gas inlet temperature (stream 13’s temperature) may 

increase the heat transfer in MHX-1 and decrease the hot gas outlet temperature (stream 15’s 

temperature), the effect of decreasing the hot gas flow rate was found to be more significant 

than the effect of increasing hot gas inlet temperature. Consequently, the total heat transfer in 

MHX-1 was decreased by decreasing the hot gas flow rate. Hence, the hot gas outlet 

temperature (stream 15’s temperature) of MHX-1 was increased as shown in Figure 5.11.  

 

Figure 5.11 Stream 15’s temperature and the CO2 recovered from D-5 in response to the 

ramped-up in K-4 discharge pressure. 
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After 720 seconds of the ramp change, the operating pressure became constant while stream 

15’s temperature was still increasing due to impacts of two factors which are the stream 13’s 

temperature and the coolants flow rate in MHX-1. Because the amount of CO2 recovered 

from D-5 was significantly increased within 720 seconds, the amount of gas carried over to 

MHX-2 and S-3 was dropped. Consequently, flow rates of streams 21, 29 and 36 which are 

coolants in MHX-1 were decreased; therefore, stream 15’s temperature was continuously 

increased after 720 seconds of ramp change. Since the flow rate of stream 21 was decreased, 

the flow rate of the recycle stream was decreased and thus the amount of hot gas fed to 

MHX-1 (stream 13) was decreased. Decreasing stream 13’s flow rate while increasing stream 

15’s temperature prevent condensation of CO2 in D-5. The amount of liquid CO2 recovered 

from D-5 was therefore decreased after 720 seconds of ramp change as shown in Figure 5.11. 

Unlike the results obtained from the Air Products’ CO2CPU, the amount of CO2 recovered 

from D-5 in the CanCO2 is affected not only by the operating conditions in S-3 but also by 

the amount of recycle gas. Thus, an overshoot in the response of CO2 recovered from D-5 

was obtained as shown in Figure 5.11. 

Increasing pressure also increases the heat transfer coefficient of the hot gas; unlike in MHX-

1, the effect of increasing the heat transfer coefficient in MHX-2 was slightly more 

significant than the effect of increasing inlet temperature (stream 26’s temperature). Hence, 

the temperature of stream 27 (hot gas outlet temperature) was fairly dropped within 720 

seconds of the ramp change as shown in Figure 5.12. After 720 seconds, the pressure became 

constant while stream 15’s temperature continued increasing, thus the effect of increasing 

stream 26’s temperature became dominant and caused an increase in stream 27’s 

temperature. On the other hand, a small overshoot of the CO2 recovered from D-6 was 

observed in Figure 5.12. 
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Figure 5.12 Stream 27’s temperature and the CO2 recovered from D-6 in response to the 

ramped-up in K-4 discharge pressure. 

A small change in stream 27’s temperature within 720 seconds did not affect significantly the 
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purity due to the ramp change in pressure. Similar to the Air Products’ CO2CPU process, the 

CO2 product purity was decreased with increasing pressure because the elevated pressure 

enhanced not only the CO2 condensation but also the inert impurities (O2, N2, etc.) 

condensation. Thus, the CO2 purity was decreased with increasing pressure. The CO2 product 

purity was eventually reduced to about 94.7mol% (0.5% lower than its initial value) when the 

pressure was increased by 3 bars. 

 

Figure 5.13 CO2 recovery in response to the ramped-up K-4 discharge pressure 

 

Figure 5.14 CO2 purity in response to the ramp-up in K-4 discharge pressure 
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The ramp-down test on the K-4 discharge pressure was also performed. Results obtained 

from the ramp-down test showed that all process variables changed in the opposite direction 

compared to the ramp-up change described above. Decreasing pressure prevents the CO2 

condensation and other gas impurities in flash drums, thus reducing the CO2 recovery but 

increasing the CO2 product purity. The dynamic responses of the CO2 recovery and CO2 

purity are presented in Figures 5.15 and 5.16, respectively. 

 

Figure 5.15 The CO2 recovery in response to the ramp changes in K-4 discharge pressure 

 

Figure 5.16 The CO2 purity in response to the ramp change in K-4 discharge pressure 
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The results show that changing pressure within ±10% introduced a large overshoot at the 

initial times but did not change considerably the overall change in CO2 recovery of the 

CanCO2 process since the effect of changing pressure was balanced by the changes in recycle 

flow rate. A comparison between Figure 4.13 (ramp changes in the operating pressure in the 

Air Products’ CO2CPU) and Figure 5.15 also shows that a larger overshoot in the CO2 

recovery response was observed from the CanCO2 process model while the Air Products’ 

CO2CPU process model returned a very small overshoot only for the -10% change in the K-4 

discharge pressure. The CO2 recovery response of the Air Products’ CO2CPU followed a 

first-order process response when the operating pressure was increased by 10% (3 bars). 

Unlike the CO2 recovery, significant changes in the CO2 purity are observed for the CanCO2 

as shown in Figure 5.16. A larger change of CO2 purity was observed in the CanCO2 when 

comparing Figure 5.16 with Figure 4.14, which was obtained from the Air Products’ 

CO2CPU process model. That is, the recycle stream makes the changes in CO2 recovery and 

CO2 purity in the CanCO2 more sensitive to the outlet pressure of the compressor train. 

Although the use of recycle stream did not cause an overshoot in the CO2 purity response, it 

reduced the overall purity of CO2 in the product stream since other gas impurities (i.e. O2, Ar, 

N2, SO2 and NO) were also recycled along with the CO2. It should be noted that the +10% 

and -10% ramp changes considered here returned different changes in both CO2 recovery and 

CO2 purity, which reflects the nonlinearity of the CanCO2 process.  

5.4 Effect of a compressor train outlet temperature 

This section examines the effect of temperature of the hot gas leaving from compressor train 

to MHX-1. The flow rate of the coolant used in the cooler C-4 was increased by +20% in a 

step fashion. Since the flue gas flow rate is constant while the coolant flow rate was 

increased, the gas outlet temperature (stream 13’s temperature) was decreased. Increasing the 

coolant flow rate by 20% reduced the temperature of stream 13 by 1.5 K as shown in Figure 

5.17. 
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Figure 5.17 Stream 13’s temperature in response to the step up coolants in C-4 

Figure 5.18 presents the dynamic responses of stream 15’s temperature and the amount of 

CO2 recovered from D-5. As shown in that Figure, a fast change in stream 15’s temperature 

at the beginning was observed; this is caused by a step decreased in stream 13’s temperature. 

Decreasing stream 13’s temperature favours the CO2 condensation in D-5, thus more liquid 

CO2 was recovered from D-5. Because the liquid recovered from D-5 (stream 17) is a coolant 

in MHX-1, increasing stream 17’s flow rate increases the heat transfer in MHX-1. Thus, the 

temperature of stream 15 was gradually decreased afterwards as illustrated in Figure 5.18. 

Moreover, a decrease in stream 15’s temperature affects the flow rate and temperature of the 

hot gas feed (stream 26) of MHX-2, thus affecting the temperature of stream 27 (see Figure 

5.19). The temperature of stream 27 was quickly decreased after the step change was 

introduced into the system and then gradually decreased until it reached a new steady state 

that is 0.2 K lower than its initial temperature value. Because the change in stream 27’s 

temperature was not significant, it did not have a major impact on the CO2 condensation in 

D-6. The amount of liquid CO2 recovered from D-6 was determined by the amount of CO2 

carried over from D-5. Since more liquid CO2 was recovered in D-5, the amount of CO2 

carried over to D-6 was decreased. Therefore, the amount of CO2 recovered from D-6 was 

decreased as shown in Figure 5.19. 
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Figure 5.18 Stream 15’s temperature and the CO2 recovered from D-5 in response to the step 

up coolants in C-4 

 

Figure 5.19 Stream 27’s temperature and the CO2 recovered from D-6 in response to the step 

up coolants in C-4 
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obtained from D-5 within the first 360 seconds after the step change in temperature; thus, the 

CO2 recovery initially dropped as shown in Figure 5.20. 

 

Figure 5.20 The sum of liquid CO2 recovered from D-5 and D-6; and the CO2 recovery in 

response to the step up coolants in C-4 
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pressure remained constant resulting in a slight change in the CO2 product purity as shown in 

Figure 5.21(a). 

  

(a) (b) 

Figure 5.21 The CO2 purity in (a) product stream (b) liquid CO2 recovered from D-5 and D-

6, in response to the step up coolants in C-4 

As shown in Figure 5.18, the operating temperature of D-5 was decreased only by 0.3 K 

which was not enough to favour the condensations of other inert gas impurities in D-5. Thus, 

the liquid mole fraction of CO2 obtained from D-5 was increased along with the amount of 

CO2 recovered. Consequently, the gas leaving from D-5 to D-6 contained more gas 

impurities but less CO2 content. Because the operating temperature of D-6 is much lower 

than the temperature of D-5, the condensation of gas impurities can be easily obtained from 

D-6 when the impurity contents in the gas stream carried over from D-5 increases. Therefore, 

the mole fraction of CO2 obtained from D-6 was decreased as shown in Figure 5.21 (b). 

Because the increase of CO2 mole fraction obtained from D-5 is more than the decrease of 

CO2 mole fraction obtained from D-6, the molar-averaged CO2 product purity was increased 

in accordance with increasing CO2 mole fraction from D-5. In this case, the CO2 product 
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The effect of decreasing C-4’s coolant flow rate was also evaluated. In this case, the mass 

flow rate of the coolant used in the C-4 unit was decreased by 20% in a step fashion. This 

change resulted in a change in stream 13’s temperature by 2.3 K. All process variables had 

opposite trends compared to the +20% step change results; however, the magnitude of the 

changes were different as shown in Figure 5.22 and Figure 5.23.  

 

Figure 5.22 The CO2 recovery in response to the step changes in coolant flow rate in C-4 

 

Figure 5.23 The CO2 purity in response to the step changes in coolant flow rate in C-4 
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The CO2 recovery decreased by 0.14% whereas the CO2 product purity decreased by 0.04% 

in response to the decrease of 20% in the coolant flow rate in C-4 as shown in Figure 5.22 

and Figure 5.23, respectively. It is noted that the changes in the amount of CO2 capture and 

CO2 purity observed in this section were relatively small due to slight changes in the 

operating temperatures of D-5 and D-6. The +20% and -20% changes in the coolant flow rate 

returns different changes in the CO2 recovery and the CO2 purity, thus demonstrating the 

nonlinearity of the CanCO2.  

5.5 Effect of gas splitter 

In the CanCO2 process, the mass flow rate of gas flowing from D-5 to MHX-2 (stream 26) 

can be adjusted by using the gas splitter (SF). It was assumed that the mass flow rate of 

stream 26 is directly proportional to the mass flow rate of stream 15 and can be calculated 

using the split fraction, which is the ratio of mass flow rates of streams 26 and 16 and is as 

follows (see Figure 3.3 for location of each process stream).  

16 stream of rate flow mass Total

26 stream of rate flow mass Total
SF   (5.1) 

In the base case simulation, the split fraction was fixed at 0.7 to match the simulation results 

obtained with the design data of the CanCO2 process. In this section, the split fraction was 

ramped down within 720 seconds in order to examine the effect of the gas splitter operation 

on the CanCO2 process. Since the flue gas conditions were held constant, decreasing split 

fraction reduced the mass flow rate of stream 26 flowing to MHX-2 but increased the mass 

flow rate of recycle stream (stream 22) as shown in Figure 5.24. Increasing the recycle flow 

rate increased the mass flow rate of the hot gas entering the cooler C-4. Because the coolants 

in C-4 remained constant, the outlet temperature of the hot gas (stream 13’s temperature) was 

increased. Nevertheless, the total increase of stream 13’s temperature was only 0.4% with 

respect to the initial temperature while the total increase of the recycle flow rate was almost 
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50% with respect to the initial recycle flow rate. Thus, the effect of increasing mass flow rate 

of stream 13 was dominant in MHX-1.   

 

Figure 5.24 The ramp-down split fraction and the mass flow rate of recycle stream 

Increasing the mass flow rate of the hot gas enhances the heat transfer in MHX-1; thus the 

temperature of the hot gas leaving from MHX-1 (stream 15’s temperature) decreases. In 

addition, decreasing stream 15’s temperature promotes CO2 condensation; therefore, the 

amount of CO2 recovered from D-5 was increased as shown in Figure 5.25. 

 

Figure 5.25 The stream 15’s temperature and the CO2 recovered from D-5 in response to the 

ramp-down change in split fraction  
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In the MHX-2 unit, the hot gas inlet flow rate was reduced due to the ramp-down change in 

the split fraction while the hot gas inlet temperature (stream 26) was also reduced according 

to stream 15’s temperature. Decreasing the mass flow rate of the hot gas also decreases the 

heat transfer and the fluid velocity in MHX-2. Decreasing the velocity increases the 

residence time of the hot gas in MHX-2, which favours the heat transfer in the heat 

exchanger. These two effects were balanced and finally stream 27’s temperature slightly 

dropped in accordance with stream 26’s temperature as shown in Figure 5.26. Even though 

the decrease in stream 27’s temperature favours the CO2 condensation in MHX-2, the amount 

of liquid CO2 obtained from D-6 was reduced. This is because more liquid CO2 was 

recovered from D-5; hence, the amount of CO2 carried over to D-6 was decreased thereby 

decreasing the amount of liquid CO2 recovered from D-6 (see Figure 5.26). Thus, the amount 

of CO2 obtained from D-6 in this case was determined primarily by the amount CO2 carried 

over from D-5.  

 

Figure 5.26 The stream 27’s temperature and the CO2 recovered from D-6 in response to the 

ramp-down change in split fraction  
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within the first 720 seconds of ramp change, the CO2 recovery initially dropped. Afterwards, 

the liquid CO2 obtained from D-6 decreased slowly, thus the CO2 recovery increased with 

increasing liquid CO2 obtained from D-5 and reached the new steady state at which the CO2 

recovery was improved by 0.2wt%. A -10% ramp change in slit fraction was also performed. 

The CO2 recovery obtained from the -10% split fraction is also shown Figure 5.27 for 

comparison. As can be seen, the CO2 recovery obtained from the -10% was opposite to the 

+10% ramp change in split fraction. It is noted that the final CO2 recovery obtained from 

both ramp changes were very close to the initial CO2 recovery because the change in liquid 

CO2 recovered from D-5 was balanced by the opposite change in liquid CO2 recovered from 

D-6.  

 

Figure 5.27 The CO2 recovery in response to the ramp changes in split fraction 

Figure 5.28 shows the CO2 product purity obtained from the +10% and -10% ramp changes 

on the split fraction. As shown in that Figure, the CO2 purity increased when more gas was 

fed to the MHX-2 rather than recycled back to the compressor train. Increasing the recycle 

gas flow rate increases not only the CO2 but also other gas impurities in the process, which 

also increases the CO2 recovery but decreases the CO2 product purity. 
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Figure 5.28 The CO2 purity in response to the ramp changes in split fraction 

5.6 Effect of flue gas flow rate 

The effect of the flue gas flow rate on the CanCO2 process is studied in this section. The flue 

gas flow rate was ramped up by 30% within 1,800 seconds while the flue gas compositions 

were held constant. Similar to the Air Products’ CO2CPU plant, increasing flue gas flow rate 

increases the flue gas outlet temperature of coolers since the coolant flow rate on each 

exchanger was constant. Figure 5.29 illustrates the change in the flue gas outlet temperature 

in unit C-4 (stream 13’s temperature). 
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Figure 5.29 The increased flue gas flow rate and the stream 13’s temperature response 

As shown in Figure 5.29, increasing flue gas flow rate by 30% increased the temperature of 

stream 13 by 4 K and consequently caused an increase in stream 15’s temperature by 3 K as 

shown in Figure 5.30. As shown in Figure 5.30, stream 15’s temperature was linearly 

increased with increasing flue gas flow rate until it reached 252 K. Afterwards, the stream 

15’s temperature was increased rapidly and achieved 253.15 K at the end of the ramp change, 

i.e., around 5400 seconds. Because stream 15’s temperature was continuously increased 

during the ramp change, the gas flow rate leaving from D-5 was increased and thus the flow 

rate of the recycle gas (stream 22) and stream 26 (hot gas feed of MHX-2) were 

correspondingly increased. When the ramp change reached its new steady-state, the 

temperature of stream 15 was yet steady and thus the recycle flow rate and stream 13’s 

temperature were still increasing. Moreover, the temperatures of streams 29 and 36 (coolants 

in MHX-1) leaving from MHX-2 were also increased as a consequence of increasing stream 

15’s temperature. Therefore, stream 15’s temperature was further increased and slowly 

reached to the new steady state at 254 K after 2 hours (7,200 seconds). Since the temperature 

of stream 15 significantly increased, the amount of liquid CO2 recovered from D-5 decreased 

as shown in Figure 5.30. Note that within 1,800 seconds of the ramp change, the amount of 

liquid CO2 obtained from D-5 was slightly increased due to the increase of flue gas flow rate.  
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Figure 5.30 The stream 15’s temperature and the CO2 recovered from D-5 in response to the 

+30% ramp change in flue gas flow rate 

Increasing stream 15’s temperature increased the temperature and flow rate of stream 26, 

which is a hot gas feed of the MHX-2 unit. Similar to MHX-1, the effect of increasing the 

inlet temperature (stream 26’s temperature) play a significant role in MHX-2 and thus the hot 

gas outlet temperature (stream 27’s temperature) was increased as shown in Figure 5.31. 

Since D-6 operates at the temperature and pressure of stream 27, the change in stream 27’s 

temperature affects the amount of liquid CO2 recovered from D-6. Increasing temperature 

prevents the CO2 condensation; therefore, the amount of CO2 recovered from D-6 decreases. 

However, the results showed that more liquid CO2 was obtained from D-6. Because the flue 

gas flow rate was increased, more CO2 was fed to the process but the CO2 recovered from D-

5 decreased thereby increasing the CO2 carried over from D-5 to D-6. Thus, the amount of 

liquid CO2 recovered from D-6 was increased as shown in Figure 5.31. 
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Figure 5.31 The stream 27’s temperature and the CO2 recovered from D-6 in response to the 

+30% ramp change in flue gas flow rate 

The amount of liquid CO2 obtained from D-5 and D-6 was added together and then divided 

by the amount of CO2 in the flue gas feed in order to determine the CO2 recovery of the 

process as shown in equation (5.1).  

   2 2

2

2

mass CO  in stream 17 mass CO  in stream 33
CO recovery (%) = 100

mass CO  in flue gas


  (5.1) 

Within 1,800 seconds, the amount of CO2 in the flue gas was increased according to the ramp 

change of flue gas flow rate and the increase of CO2 feed was more significantly than the 

increases in liquid CO2 obtained from D-5 and D-6. Therefore, the CO2 recovery was initially 

dropped as shown in Figure 5.32 (a). 
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(a) (b) 

Figure 5.32 Responses to the +30% ramp change in flue gas flow rate (a) CO2 recovery (b) 

sum of the CO2 recovered from D-5 and D-6 

Subsequently, the sum of liquid CO2 obtained from D-5 and D-6 was significantly increased 

due to the rapid change in stream 15’s temperature. Thus, the CO2 recovery increased quickly 

and exceeded the initial steady state value to 92wt%. Afterwards, the liquid CO2 obtained 

from D-6 was gradually increased along with decreasing liquid CO2 from D-5. Hence, the 

total CO2 recovered was slowly decreased resulting in decreasing CO2 recovery as shown in 

Figure 5.32(b). 

Figure 5.33 (a) presents the CO2 product purity of the +30% ramp change in flue gas flow 

rate. The CO2 purity is an averaged concentration between the CO2 mole fraction obtained 

from D-5 and D-6, respectively. The CO2 product purity depends on two factors; the CO2 

mole fractions and the total amount of liquid condensates obtained from D-5 and D-6. The 

total amount of liquid condensates changed in accordance with the total liquid CO2 response 

shown in Figure 5.32 (b). The mole fractions of CO2 obtained from D-5 and D-6 is shown in 

Figure 5.33 (b). The liquid mole fraction of the flash drum is determined by the equilibrium 

K-value which is a function of feed compositions; temperature and pressure of the drum. K-

value is defined as the ratio of vapour mole fraction and liquid mole fraction. Increasing K-

value decreases the liquid mole fraction. In D-5, the pressure was constant while the 
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temperature increased, which leads to an increase in the K-value of CO2 in D-5. In addition, 

the inlet impurities were also increased due to the increase in recycle gas flow rate. Thus, the 

mole fraction of CO2 the liquid condensate obtained from D-5 was decreased as shown in 

Figure 5.33 (b).  

  

(a) (b) 

Figure 5.33 Responses to the +30% ramp change in flue gas flow rate (a) CO2 purity (b) 

mole fraction of CO2 obtained from D-5 and D-6 

Consequently, the gas stream leaving from D-5 to D-6 contained high CO2 content but less 

impurity. Thus, the mole fraction of CO2 in the condensate obtained from D-6 increased. 

However, the increase was relatively small since the effect of having less impurity contents 

in the feed was balanced by the increase in the K-value of CO2 in D-6. The K-value in D-6 

was increased due to the increase in stream 27’s temperature. The CO2 product purity was 

decreased in accordance with the purity obtained from D-5 since the decrease of CO2 mole 

fraction obtained from D-5 is greater than the increase in the CO2 mole fraction obtained 

from D-6. The CO2 product purity was reduced by 0.4 mol % when the flue gas flow rate was 

increased by 30% as shown in Figure 5.33 (a). 
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Five additional ramp changes were also implemented on the flue gas flow rate, i.e., ±10%, 

±20% and -30%. The CO2 recovery and the CO2 product purity obtained from each test are 

presented in Figures 5.34 and 5.35, respectively. 

 

Figure 5.34 The CO2 recovery in response to the ramp changes in flue gas flow rate 

 

Figure 5.35 The CO2 purity in response to the ramp changes in flue gas flow rate 
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These responses show that both the CO2 recovery and the CO2 product purity increase when 

the flue gas flow rate decreases at constant flue gas compositions. The CO2 recovery is 

significantly affected by the temperature of stream 15 whereas the CO2 purity response 

depends on the gas carried over from D-5 to D-6, the amount of gas recycled and the 

temperature of stream 27 in the similar way as for the +30% ramp change described above. 

However, those three variables that have a significant impact on the CO2 purity are also 

determined by stream 15’s temperature. Thus, the temperature of stream 15 plays a key role 

in this case. Figures 5.34 and 5.35 also show that the responses obtained from the +30% 

deviates from results obtained from other tests. This can be explained by considering the 

response of stream 15’s temperature shown in Figure 5.36.  

 

Figure 5.36 The stream 15’s temperature in response to the ramp changes in flue gas flow 

rate 

It was recognized that in the +30% flue gas change, stream 15’s temperature reached 252 K 

prior to the end of the ramp change; then the temperature of that stream increased rapidly due 

to a continuous increase in flue gas flow rate, while the temperature of stream 15 obtained 

from the rest of ramp changes has never exceeded 252 K. It was found that at 252 K, the 
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vapour phase fraction of stream 15 shifts from 70% to 90% approaching the saturated vapour 

condition. Accordingly, the physical properties in the system varied significantly since the 

fluid changed from two-phase to vapour-like phase. The fluid viscosity was decreased by 

20% when the vapour phase fraction was shifted to 90% whereas the thermal conductivity 

and the heat capacity decreased by 15% and 9%, respectively. The heat transfer ability of 

stream 15 was correspondingly dropped and thus a rapid increase in stream 15’s temperature 

was obtained as shown in Figure 5.36. Hence, the CO2 recovery and the CO2 purity in the 

case of +30% ramp test dramatically changed in according to stream 15’s temperature as 

explained above. The results obtained from this section indicate that the CO2 recovery 

remained steadily within 88%-90% when the flue gas flow was varied between ±20% of the 

base case condition (120 kg/hr); however, an overshoot of CO2 recovery was always 

obtained. The more flue gas flow rate change, the more aggressive the overshoot observed. 

The CO2 product purity was relatively stable compared to the CO2 recovery and no 

overshoots were observed. The maximum change of CO2 purity was only 0.3mol% obtained 

from the +30% flue gas flow rate test. The results also indicated that the flue gas flow rate 

cannot be increased beyond 30% since stream 15 will be completely vaporized and the D-5 

will dry-up. 

5.7 Effect of flue gas composition 

In this section, it was assumed that changes in the power plant operation will affect mainly 

the amount of CO2 in the flue gas, similar to section 4.5 of the Air Products’ CO2CPU. Ramp 

changes were applied to the mass flow rate of CO2 in the flue gas while the mass flow rates 

of other impurities contained in the flue gas, i.e. O2, Ar, N2, H2O, SO2 and NO, were held 

constant. In this section, six ramp changes were performed, ±10%, ±20% and ±30% on the 

CO2 mass flow rate within 1,800 seconds. The final flue gas flow rate and compositions after 

each ramp change are shown in Table 5.2 including the base case value before applying the 

ramp change. 
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Increasing the mass flow rate of CO2 in the flue gas increases the total flue gas flow rate and 

the mass fraction of CO2. Since the coolants used in coolers C-1 to C-4 were constant while 

the amount of hot flue gas flowing through them was increased, the hot gas outlet 

temperatures of coolers were increased. Accordingly, the temperatures of streams 13 and 15 

were increased. Figure 5.37 presents the changes of stream 15’s temperature in response to 

the CO2 flow rate ramp changes. 

Table 5.2 Final flue gas conditions of ramp changes in CO2 mass flow rate of the CanCO2 

 
Percentage of the CO2 flow rate change 

Flue gas conditions Base case -10% -20% -30% 10% 20% 30% 

Total mass flow (kg/s) 0.033 0.031 0.028 0.025 0.036 0.039 0.041 

Mass flow (kg/s) 
       

   CO2 0.027 0.024 0.022 0.019 0.030 0.032 0.035 

   O2 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

   Ar 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

   N2 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

   H2O 2.6E-04 2.6E-04 2.6E-04 2.6E-04 2.6E-04 2.6E-04 2.6E-04 

   SO2 1.7E-04 1.7E-04 1.7E-04 1.7E-04 1.7E-04 1.7E-04 1.7E-04 

   NO 1.0E-05 1.0E-05 1.0E-05 1.0E-05 1.0E-05 1.0E-05 1.0E-05 

Mole fraction 
       

   CO2 0.743 0.723 0.699 0.670 0.761 0.777 0.790 

   O2 0.061 0.066 0.072 0.079 0.057 0.053 0.050 

   Ar 0.024 0.026 0.028 0.031 0.022 0.021 0.020 

   N2 0.150 0.162 0.176 0.193 0.139 0.130 0.122 

   H2O 0.018 0.019 0.021 0.023 0.016 0.015 0.014 

   SO2 0.003 0.003 0.004 0.004 0.003 0.003 0.003 

   NO 0.000 0.000 0.000 0.001 0.000 0.000 0.000 
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Figure 5.37 The stream 15’s temperature in response to the ramp changes of CO2 flow rate 

in the flue gas 

The temperature of stream 15 significantly increased while the CO2 flow rate in the flue gas 

continuously ramped within 1800 seconds and gradually achieved a new steady state 

afterwards. Because the flue gas compositions were changed, the saturation point was shifted 

away from 252 K and the vapour phase fraction of stream 15 did not exceed 90% in any case.  

When the mass flow rate of CO2 in the flue gas increased, the temperature also increased. 

Even though increasing stream 15’s temperature prevents the CO2 condensation in D-3, the 

amount of CO2 recovered from D-3 was increased, as shown in Figure 5.38. Increasing 

stream 15’s temperature increases the flow rates of streams 16 and 18 and also the flow rate 

of the recycle gas (stream 22). Thus, more CO2 was recycled and the mass flow rate of CO2 

in stream 15 was increased. The effect of increasing CO2 mass flow rate in stream 15 was 

more significant than the effect of increasing stream 15’s temperature, therefore the liquid 

CO2 recovered from D-5 was increased as shown in Figure 5.38. The opposite trends were 

obtained when decreasing CO2 in the flue gas.  
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Figure 5.38 The amount of CO2 recovered from D-5 in response to the ramp changes of CO2 

flow rate in the flue gas 

The increments in the CO2 recovered from D-5 were relatively small when compared to the 

increase of CO2 in the flue gas. For example, in the +30% CO2 ramp change, the amount of 

CO2 in the flue gas was increased by 0.008 kg/s (28.8 kg/hr) while the CO2 recovered from 

D-5 was increased by 0.004 kg/s (13 kg/hr). Thus, the amount of CO2 carried over from D-5 

to D-6 increased and the amount of CO2 recovered from D-6 was increased accordingly. The 

decrease in CO2 recovered from D-6 was obtained when the mass flow rate of CO2 in the flue 

gas was ramped down. The total liquid CO2 recovered from D-5 and D-6 obtained from each 

ramp change is shown in Figure 5.39. Overall, the amount of CO2 recovered increased with 

increasing CO2 in the flue gas flow rate and decreased with decreasing CO2 in the flue gas 

flow rate. The total CO2 recovered changed faster than the amount of CO2 recovered from D-

5 due to the effect of the recycle stream. The operation of D-5 is affected by the changes in 

the recycle stream, flue gas and also the coolants obtained from MHX-2. Thus, the liquid 

CO2 obtained from D-5 slowly approached to the new steady state. Since in the MHX-2 the 

mass flow rate of hot gas inlet was determined by the splitter,and since the split fraction was 

fixed in this case, the recycle stream had less impact on the operation of D-6. Thus, the liquid 
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CO2 obtained from D-6 moved to the new steady state faster than the liquid CO2 obtained 

from D-5. 

 

Figure 5.39 The sum of liquid CO2 recovered from D-5 and D-6 in response to the ramp 

changes of CO2 flow rate in the flue gas 

The ratio between the total CO2 recovered and the amount of CO2 in the flue gas, i.e., the 

CO2 recovery, was calculated and the response is shown in Figure 5.40. Inverse responses of 

the CO2 recovery were observed when the flue gas composition was changed similar to the 

results obtained from the Air Products’ CO2CPU (see section 4.5 in chapter 4). Increasing the 

mass flow rate of CO2 in the flue gas initially decreased the CO2 recovery due to the 

dominant effect of increasing CO2 feed. When the CO2 flow rate remains constant, the effect 

of increasing CO2 recovered from D-5 and D-6 starts to play a role and thus the CO2 

recovery increases. The maximum increase in the CO2 recovery was about 2.1wt% achieved 

when the CO2 flow rate was ramped up by 30%.  
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Figure 5.40 The CO2 recovery in response to the ramp changes of CO2 flow rate in the flue 

gas 

Figure 5.41 presents the molar-averaged CO2 purity obtained from each ramp change in the 

CO2 mass flow rate. Increasing mass flow rate of CO2 in the flue gas increases the total flue 

gas flow rate and the mass fraction of CO2, but it also decreases the mass fraction of 

impurities (O2, Ar, N2, H2O, SO2 and NO). Thus, the CO2 product purity increases when the 

CO2 mass flow rate increases and vice versa. The maximum increase of the CO2 product 

purity is approximately 0.4mol% and was achieved when the mass flow rate of CO2 was 

increased by 30%. This is a largest change in CO2 purity observed for the CanCO2 process. 

This indicates that the CO2 purity is sensitive to the flue gas compositions more than the flue 

gas flow rate and the operating conditions of the CanCO2 process. 
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Figure 5.41  The CO2 recovery in response to the ramp changes of CO2 flow rate in the flue 

gas 

5.8 Pilot plant flue gas composition 

In this section, the variation in the flue gas composition of the Air Products Vattenfall 

Oxyfuel CO2 Compression and Purification Pilot Plant (ACPP) pilot plant presented in 

Figure 4.35 was considered. The aim of this test is to examine dynamic behaviour and 

stability of the CanCO2 in the presence of flue gas composition variation and noises. The 

simulation approach presented in section 4.5 for the Air Products’ CO2CPU model was also 

used here for the CanCO2 model. The mass flow rate of CO2 in the flue gas feed was changed 

in a rectangular impulse fashion starting from the base case value (75.5%) and then ramped 

up by 10% to reach the CO2 concentration of 77.5% and then ramped down with the same 

pace as shown in Figure 5.42. This change is equivalent to the +10% ramp change in mass 

flow rate of CO2 presented in section 5.7. The random noises from a normal distribution with 

mean 0 and standard deviation 1 were added to the CO2 flow rate in order to make the change 

in CO2 composition similar to the pilot plant trend presented in Figure 4.35.  
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Figure 5.42 The rectangular impulse CO2 concentration corrupted with noise (CanCO2 

process). 

In section 5.7, it was observed that the +10% ramp change in CO2 flow rate raised the CO2 

recovery from 88.7wt% to 89.6wt%. An inverse response of the CO2 recovery was also 

obtained similar to section 5.7 but it was not obvious due to the presence of noises. It is 

expected that the CanCO2 process will remain stable in this case and thus the CO2 recovery 

should be alternated between 88.7% and 89.6% in accordance with results presented in 

section 5.7. The results obtained from the simulations support this assumption as illustrated 

in Figure 5.43.  

The CO2 recovery increased with increasing CO2 concentration and then decreased back to 

the initial value when the CO2 concentration was dropped. A small overshoot was observed 

in the CO2 recovery response. Figure 5.43 also shows that the CO2 recovery could not 

completely reach steady state within 12 hours in the presence of a corrupted signal with 

noise, unlike the Air Products’ CO2CPU (see Figure 4.37). Because the CanCO2 has a 

recycle stream, the process usually takes more time to reach new steady states than the Air 

Products’ CO2CPU. Similar results were also observed in the previous tests. The results 

obtained from this section illustrated a significant impact of the developed noises on the CO2 
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recovery of CanCO2. Nevertheless, the CO2 recovery can be alternated between 88.7 wt% to 

89.6 wt% similar to the results obtained from section 5.7. 

 

Figure 5.43 The CO2 recovery in response to the noised rectangular impulse CO2 

concentration  

The CO2 purity obtained from the rectangular impulse of the CO2 concentration corrupted 

with noise in flue gas feed is presented in Figure 5.44. Unlike the CO2 recovery, the CO2 

purity of the CanCO2 was considerably stable over the entire change in the CO2 

concentration. This result agrees well with the data presented by Kourosh and Shafeen (2010) 

and White et al. (2013). The CO2 purity was alternated between 95.2mol% and 95.35mol% 

when the CO2 concentration in the flue gas was changed between 75.5mol% and 77.5% mol. 

This change agrees well with the results obtained from section 5.7. Overall, the results 

obtained from this section indicate that the CanCO2 remains stable in the presence of changes 

in CO2 concentration that include noise. Further, the CO2 purity is found to be less sensitive 

to the noisy signals and had a faster response to the input change when compared to the CO2 

recovery. 
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Figure 5.44 The CO2 purity in response to the noised rectangular impulse CO2 concentration  

5.9 Summary 

The CanCO2 process model developed in this work was validated with design data at steady 

state that was available in the literature. A good agreement between the simulation results 

and design data was obtained. With 74 mol% CO2 (wet basis) in the flue gas, the CanCO2 

achieved 88.7 wt% CO2 recovery and 95.2 mol% CO2 purity. The CO2 recovery was slightly 

lower than that obtained from the Air Products’ CO2CPU because the first flash separator (D-

5) in the CanCO2 process was operated at a relatively high temperature.  However, the CO2 

recovery obtained from the CanCO2 is still comparable to the CO2 recovery obtained from 

the Air Products’ CO2CPU due to the effect of the recycle stream. Increasing the amount of 

gas recycled to the process improved the CO2 recovery of the CanCO2 plant but decreased 

the CO2 product purity. Six case studies were performed to analyse the transient behaviour of 

the CanCO2 process, i.e. ramp change in the K-4 discharge pressure, step change in the 

coolant flow rate of C-4, ramp change in the split fraction of gas splitter, ramp change in flue 

gas flow rate, ramp change in the mass flow rate of CO2 in the flue gas and the pilot plant 

flue gas variation. Similar results between the Air Products’ CO2CPU process model and the 

CanCO2 process model were obtained except for the CO2 recovery response in the ramp 

change of K-4 discharge pressure. A large overshoot in the CO2 recovery response was 
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observed from the CanCO2 model while the Air Products’ CO2CPU model returned a first 

order response in CO2 recovery when the operating pressure was increased by 3 bars.  In 

addition, the time constants of all the process responses in the CanCO2 are substantially 

larger than the time constants obtained from the Air Products’ CO2CPU model as a 

consequence of the gas recycle stream. The results obtained from all case studies indicate 

that the CO2 recovery is more sensitive to the operating condition and feed disturbances than 

the CO2 product purity. An overshoot in the CO2 recovery response was observed, while 

typical first-order process responses were obtained from the CO2 purity in most of the case 

studies performed. The inverse response of the CO2 recovery occurred when the flue gas 

composition was changed; a similar response was obtained from the Air Products’ CO2CPU 

model. The CO2 purity responded to all input changes faster than the CO2 recovery while 

using both the CanCO2 and the Air Products’ CO2CPU models. The changes in CO2 purity 

were essentially small and never exceeded 1mol%. Moreover, the CO2 purity of both 

CO2CPU configurations remained steady at 95% in all the case studies performed here. 

Similar results were reported by Zanganeh and Shafeen (2010) and White et al. (2013). 

  



147 

 

Chapter 6 

Conclusions and recommendations 

6.1 Conclusions 

The main goal of this study was to understand and examine the dynamic behaviour of a CO2 

capture and purification unit (CO2CPU). This study is part of a larger program aiming at 

scaling up and at developing efficient process control strategies. A critical component of this 

work was the development CO2CPU dynamic models.  

Two design configurations of the CO2CPU were considered, i.e., the Air Products’ CO2CPU 

and the CanmetENERGY’s proprietary CO2CPU (CanCO2). Both plants were designed 

based on a two-stage auto-refrigeration process. The CanCO2 is an advanced design of the 

Air Products’ CO2CPU since the gas stream separated from the first flash drum is partially 

recycled to the compressor train instead of purging to the atmosphere as considered in the Air 

Products’ design. The presence of the recycle stream is a major distinction between the two 

CO2CPU configurations. Detailed mathematical models of each unit operation in the 

CO2CPU plant were developed in this study.  

The dynamic model describing the transient operation of a multi-stream heat exchanger was 

by far the most challenging process unit to model in the present analysis. This particular unit 

is challenging because it involves multiple streams entering and leaving this unit combined 

with two phase flows and phase changes due to heat transfer. The homogenous two phase 

flow model was implemented for the two phase region in multi-stream heat exchanger 

models in order to take the fluid properties variation during phase transition into account 

while calculating the heat transfer coefficients. In addition, the multi-stream heat exchanger 

model was developed based on a shell and tube configuration. The hot stream was assigned 

to flows inside the shell while cold streams passed through this unit counter-currently inside 

the tubes. The use of a shell and tube configuration allows for the assumption of one-

dimensional flow, which is preferred at this stage of modelling since this work aims to 

develop a dynamic model of multi-stream heat exchanger that is not too complicated to slow 
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down the dynamic simulation of the entire CO2CPU plant, but accurate enough to provide 

correct trends of temperature variation and time constants.  

The use of product streams from flash drum as coolants in the auto-refrigeration process 

makes both CO2CPU plant models highly integrated, and imposes difficulty in flowsheet 

convergence to both plant models, especially in the CanCO2 plant model in which a gas 

recycle stream exists. The simulations required significant simulation times (i.e. 9 hours for 

the Air Products’ CO2CPU plant model and 21 hours for the CanCO2 plant model) to 

converge  based on limited steady state data obtained from Dillon et al. (2005) and 

CanmetENERGY. However, the steady state results obtained from the first trial were saved 

and used as initial conditions for the next run in order to reduce the convergence time for 

both plant models.  

The flowsheet convergence of the CanCO2 plant model is more challenging and time-

consuming than the Air Products’ CO2CPU plant model due to the presence of a recycle 

stream. A traditional tear stream procedure, which is used to converge a recycle process 

simulation in commercial sequential modular simulation software, failed to achieve 

convergence for the CanCO2 plant model in gPROMS. Thus, a new systematic procedure 

was developed in this study to overcome the difficulty of flowsheet convergence of the 

CanCO2 plant model. A purge stream and valve were introduced into the CanCO2 plant. The 

amount of gas recycled to the compressor train was adjusted by changing the recycle ratio;  

dynamic modelling of the CanCO2 plant model started with a recycle ratio equal to 0, i.e. 0% 

gas recycled to the compressor train or  100% of the gas was purged. During the dynamic 

simulation, the recycle ratio was slowly ramped up until a recycle ratio of 1 was achieved, 

i.e. 100% gas recycled to the compressor train and no gas purged. Using this procedure, the 

CanCO2 plant model converged without difficulty. The results obtained from the ramp 

change in recycle ratio indicate that the use of a recycle stream in the CanCO2 can improve 

the CO2 recovery while maintaining the CO2 product purity at 95 mol%. This result gives the 

CanCO2 an advantage over the Air Products’ CO2CPU. 
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The developed dynamic models of the Air Products’ CO2CPU and the CanCO2 were 

validated at steady state using design data provided by the International Energy Agency 

Greenhouse Gas (IEAGHG) R&D programme (Dillon et al., 2005) and by CanmetENERGY, 

respectively. Good agreement between the developed model and design data were obtained 

for both models. Even though the developed models were validated only at steady state, this 

validation with limited data set is promising and was used to justify the pursuit of additional 

simulation results.  

The developed models were used to characterize the transient behaviour of the CO2CPU. 

Several dynamic tests were performed on both plant models and the main results are as 

follows: 

 The operating temperature and pressure of the first flash drum, i.e. D-3 in the Air 

Products’ CO2CPU and D-5 in the CanCO2, play a key role on the CO2CPU performance. 

The operating conditions of these units determines the amount of liquid CO2 recovered in 

the first drum, the amount of CO2 carried over to MHX-2 and the mass flow rate of hot 

gas flowing to MHX-2, which directly affects the CO2 recovery and CO2 product purity. 

 The CO2 recovery is more sensitive to the operating conditions of the CO2CPU than that 

observed for the CO2 product purity.  

 Overshoots were observed in the CO2 recovery response to all changes performed in this 

study, thus strong interactions between the different process variables that determine the 

plant performance exist. A control system for this process may be challenging due to 

these strong interactions. The CO2 purity is more sensitive to the flue gas composition 

and responds to all changes performed in this study faster than does the CO2 recovery. 

However, the changes in CO2 purity were small and never exceeded 1 mol%.  

 The CO2 purity of both CO2CPU configurations remained essentially at its nominal 

operating condition (at 95%) in all case studies performed in this work.  
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 The temperatures of the process streams flowing through the second multi-stream heat 

exchanger and also the operating temperature of the second flash drum, i.e. D-4 in the Air 

Products’ CO2CPU and D-6 in the CanCO2, were sensitive to changes in the flue gas 

conditions. An undershoot was observed in the second flash drum temperature response 

when the flue gas flow rate and the CO2 content in the flue gas stream were decreased. 

This result demonstrates the possibility of CO2 freezing in the MHX-2 in the presence of 

feed disturbances, especially in the Air Products’ CO2CPU where the nominal operating 

temperature of D-4 is close to the CO2 freezing point. This finding, therefore, is the 

motivation for the implementation of a temperature controller in order to avoid CO2 

freezing in MHX-2.  

 The developed model can therefore be used to design suitable control schemes for this 

process and study the dynamic operability of this process in closed-loop. 

6.2 Recommendations 

The following aspects are recommended for the future work:  

1) Model validation using dynamic data 

Even though good agreement between the simulation results obtained from the 

developed model and the design data were obtained, it is necessary to validate the model 

using dynamic data in order to verify an accuracy of the developed model. However, 

dynamic data for this plant is not currently available in the open literature. Hence, the 

need to develop experimental studies that show the transient behaviour of this plant 

under various conditions. It is therefore recommended to validate the present plant 

model using dynamic data if it becomes available in the future. 

2) Control structure design of the CO2CPU 

The results obtained from this study can be used to design a control structure for the 

CO2CPU. It is undoubtedly that the control objective of the CO2CPU is to maintain the 

CO2 product purity and the capture performance indicated by the CO2 recovery. Thus, the 
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controlled variables of the CO2CPU system may be the CO2 recovery, the CO2 product 

purity, and liquid levels of the first and second flash drums; the potential manipulated 

variables are the compressor train’s outlet pressure, the compressor train’s outlet 

temperature, valve V-1 and valve V-2. The presence of the recycle stream and gas splitter 

in the CanCO2 provides an advantage over the Air Products’ CO2CPU in terms of control 

structure selection since the recycle stream and the gas splitter can be considered as 

additional manipulated variables. Thus, the CanCO2 has more alternative control 

structures than the Air Products’ CO2CPU. However, the recycle loop included in the 

CanCO2 process may add natural feedback into the system; which may impose challenges 

in the design of a suitable control scheme for this system. Moreover, the transient 

analyses obtained from this study show that the CO2CPU is a highly nonlinear process, 

thus the method used for control structure selection may take into account the process 

nonlinearities. A simplified method may provide a poor measure of the control loop 

interactions and may lead to inappropriate control schemes. Furthermore, since 

overshoots were in the CO2 recovery and the CO2 purity responses, a conservative tuning 

design method is more preferable in the CO2CPU to reduce the control loop interactions. 

An extension of the developed model to cover controllability analysis and control 

structure design for the CO2CPU is recommended since the control system is necessary to 

maintain the CO2CPU plant performance in the large-scale operation. 

3) Integration into a complete dynamic model of oxy-fired power plant 

The CO2CPU model developed in this study can be integrated with an oxy-boiler, steam 

cycle and an air separation unit (ASU) models to specify a complete dynamic model of 

the oxy-fired power plant. An integrated model can provide insight regarding the 

dynamics of an oxy-coal-fired power plant with CO2 capture. The combined power plant-

CO2 capture model can be used to analyze the dynamic operability and controllability of 

these systems in the presence of changes in the load or changes in the process operating 

conditions due to changes in the electricity demands. Further, this study will be very 
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useful for the transition towards commercial scale operation of oxy-fuel combustion 

technology.  

4) Implementation of a more accurate two phase flow model 

A more accurate two-phase flow model, e.g., separated flow model and two-fluid flow 

model, and the pressure drop correlations can be implemented in order to improve the 

accuracy of the multi-stream heat exchanger model and make the developed model more 

realistic. However, it will also make the dynamic model of the CO2CPU plant 

computationally intensive and time-consuming while the dynamic responses of key 

variables, i.e. CO2 recovery and CO2 purity, are likely to be similar to the results 

presented in this study. A powerful computer may be required to simulate the CO2CPU 

plant model with a complex two phase flow model. In addition, a complex two phase 

flow model will make the flowsheet convergence of the CO2CPU plant model even more 

challenging. Initial conditions should be well defined in order to avoid the simulation 

failure. It should be noted that the pressure drop across each unit operation in the 

CO2CPU is quite small according to the design data, so the impact of this variable on the 

dynamic behaviour of the CO2CPU needs to be thoroughly studied. 
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Appendix A 

Equipment sizing of the Air Products’ CO2CPU model 

Table A.1 Multi-stream heat exchangers 

 

 

Design variables MHX-1 MHX-1 

Shell diameter (m) 2 2.15 

Number of shell pass 1 2 

Tube diameter (m) 0.01905 0.01905 

Tube length (m) 8.2 5.1 

Number of tubes per inlet 1, 2 and 3 2000, 2200, 2000 1200,1800,1200 

Flow through the shell Stream 7-8
*
 Stream 8-9

*
 

Flow through the tube inlet 1 Stream 12-13
*
 Stream 11-12

*
 

Flow through the tube inlet 2 Stream 17-18
*
 Stream 14-15

*
 

Flow through the tube inlet 3 Stream 22-23
*
 Stream 16-17

*
 

Tube pitch (m) 0.0238 0.0238 

Baffle cut 20% 20% 

Baffle spacing (m) 0.4 0.43 
 *Stream numbers refers to Figure 3.1 
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Table A.2 Heater and coolers 

Design variables C-1 C-2 C-3 C-4 

Shell diameter (m) 1.13 1.13 0.78 1.07 

Number of shell pass 1 1 1 1 

Tube diameter (m) 0.01905 0.01905 0.01905 0.01905 

Tube length (m) 9 13 4.25 5.25 

Number of tubes 2000 2000 900 1800 

Tube pitch (m) 0.0238 0.0238 0.0238 0.0238 

Baffle cut 20% 20% 20% 20% 

Baffle spacing (m) 0.2258 0.2258 0.1555 0.215 

 

Table A.3 Flash drums 

Design variables D-1 D-3 D-4 

   Vertical drum design factor (Kv) 0.028 0.37 0.27 

   Maximum vapour velocity (m/s) 0.05 0.42 0.34 

   Drum diameter (m) 12 7 5 

   Total height (m) 24 14 10 

   Maximum flow area (cm
2
) 8 5.1 5.1 

 

 

  



 

 

Appendix B 

Equipment sizing of the CanCO2 model 

Table B.1 Multi-stream heat exchangers 

 

 

Design variables MHX-1 MHX-1 

Shell diameter (m) 0.1016 0.1524 

Number of shell pass 1 2 

Tube diameter (m) 0.0127 0.0127 

Tube length (m) 10 5.5 

Number of tubes per inlet 1, 2 and 3 4, 1, 4, 2 1, 1, 1 

Flow through the shell Stream 14-15
*
 Stream 26-27

*
 

Flow through the tube inlet 1 Stream 21-22
*
 Stream 28-29

*
 

Flow through the tube inlet 2 Stream 24-25
*
 Stream 33-34

*
 

Flow through the tube inlet 3 Stream 29-30
*
 Stream 35-36

*
 

Flow through the tube inlet 4 Stream 36-37
*
 - 

Tube pitch (m) 0.016 0.016 

Baffle cut 20% 20% 

Baffle spacing (m) 0.02 0.03 
*Stream numbers refers to Figure 3.1 
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Table B.2 Heater and coolers 

Design variables C-1 C-2 C-3 C-4 H-1 H-2 

Shell diameter (m) 0.3048 0.3048 0.3048 0.3048 0.1016 0.1016 

Number of shell pass 1 1 1 1 1 1 

Tube diameter (m) 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 

Tube length (m) 4.5 5.4 5.1 5.1 3 3 

Number of tubes 6 6 6 8 0.86 0.65 

Tube pitch (m) 0.016 0.016 0.016 0.016 0.016 0.016 

Baffle cut 20% 20% 20% 20% 20% 20% 

Baffle spacing (m) 0.06 0.06 0.06 0.06 0.02 0.02 

 

Table B.3 Flash drums 

Design variables D-1 D-2 D-3 D-4 D-5 D-6 D-7 

 Vertical drum  

 design factor (Kv) 
0.17 0.21 0.32 0.32 0.44 0.24 0.38 

 Maximum vapour 

velocity (m/s) 
1.28 1.25 0.97 0.97 0.5 0.3 0.6 

 Drum diameter (m) 0.1016 0.1016 0.1016 0.1016 0.1524 0.1524 0.1016 

 Total height (m) 1 1 1 1 1 1 1 

 Maximum flow area 

(cm
2
) 

0.97 0.97 0.97 0.97 1.27 1.27 0.97 

 

 


