Hemispheres in conflict: When the left is mad, but the right is sad.

Gina M. Grimshaw

A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Psychology

Waterloo, Ontario, Canada, 1996 ©Gina M. Grimshaw, 1996

National Library of Canada

Acquisitions and Bibliographic Services

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque nationale du Canada

Acquisitions et services bibliographiques

395, rue Wellington Ottawa ON K1A 0N4 Canada

Your file Votre référence

Our file Notre référence

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced with the author's permission.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-21352-8

Canadä

The University of Waterloo requires the signatures of all persons using or photocopying this thesis. Please sign below, and give address and date.

Abstract

The two cerebral hemispheres have distinct processing strengths. However, almost any task calls on the skills of both hemispheres. In this thesis, I explore the integration of left- and right-hemisphere processes in speech perception. Previous research has demonstrated that the left hemisphere is specialized for processing the linguistic aspects of speech, and that the right hemisphere is specialized for processing prosody, or information that is carried in the tone of voice. The present series of experiments used an interference paradigm in which the linguistic content of the stimulus conflicted with the tone of voice in which it was spoken. Two theortetical viewpoints were considered. According to the shielding hypothesis, the fact that linguistic and prosodic processes are carried out in opposite hemispheres should minimize the interference between them. However, an alternative view is that there is a bilateral speech processing module with a specialized callosal relay channel to maximize integration (and therefore interference) between the two dimensions. These hypotheses were tested in a series of four experiments.

The first two experiments were designed to demonstrate that the stimuli met two criteria linguistic and prosodic dimensions were processed in opposite hemispheres, and they produced interference. Experiments 3 and 4 used dichotic listening techniques to compare interference within a hemisphere to interference between hemispheres. Results from both experiments were incompatible with the shielding hypothesis, and the results from Experiment 4 were consistent with the specialized callosal relay hypothesis, in that interference was greater across hemispheres than within hemisphere.

In summary, the findings are consistent with the hypothesis that there is a specialized callosal relay channel between linguistic processing centres in the left hemisphere and prosodic processing centres in the right hemisphere. In the present study, this bilateral processing system maximized interference between linguistic and prosodic processes. However, in most speech processing situations, linguistic and prosodic information is congruent. The bilateral processing system would therefore lead to highly efficient integration of both dimensions.

(iv)

Acknowledgments

This thesis would surely not have been completed without the support of many people. I thank my committee members Phil Merikle, for his ability to provide useful commentary under severe time pressure, Eric Roy, for those threatening email messages, Barbara Bulman-Fleming for being so smart and for being my friend, and Derek Besner, for doing all the right things (and for his financial contributions on poker night).

I have also been very fortunate to have the support of the Bryden lab group - an exceptional group of people who are intelligent, kind, and funny. Marg Ingleton helped write the sort programs, and Myra Fernandes tested subjects for Experiments 3 and 4. Lorin Elias, Jacqui Crebolder, and Heather McNeely listened to my ramblings, and always seemed to understand me. Jocelyn Keillor and Karen Arnell (an honourary Philly) have been my dearest friends since our first days of graduate school, and have helped to make these years the best of my life. In the past few months, Jocelyn has become my constant companion. I thank her for her practical assistance with the thesis, for some great brainstorming sessions, and for staying up too late too often. But mostly I thank her for being the only one who truly understands how I feel right now.

My thanks and my love also go to my family. To my parents, for never placing any limits on my aspirations, and to my big brother and sisters, for always treating me like an adult. To my great love Dave, for never questioning my goals, for making too many sacrifices, for being a wonderful father, and for being a merciless editor. To my babies Laurel and Emma, for making motherhood easy, and giving me some perspective.

And finally, thanks, love, and respect to my advisor and mentor, Phil Bryden, for taking a chance and accepting me to graduate school. Phil taught me everything I know. He was a remarkable advisor, a remarkable scholar, and a remarkable man. I consider myself both fortunate and unfortunate to be among his last students. I do know that I want to be just like him when I grow up (I'll have to learn to hrrmph at my students). My greatest wish is that I had had the opportunity to make him proud of me. The world is certainly a less interesting place without him.

•

To Phil

1934 - 1996

Table of Contents

	C
Models of Dichotic Listening Performance 4 Theories of Interhemispheric Integration 8 The Shielding Hypothesis 9	3
Method I Participants I Stimuli and Apparatus I Procedure I Results and Discussion I Response Times I	15 15 15 16 16 18
Method 1 Participants 1 Stimuli and Apparatus 1 Procedure 1 Results and Discussion 2 Response Times 2	19 19 19 19 20 20 23
Method 2 Participants 2 Stimuli and Apparatus 2 Procedure 2 Results and Discussion 2 Response Times 2 Omnibus ANOVA 3 Binaural Trials 3 Dichotic Trials 3 Omnibus ANOVA 3 Binaural Trials 3 Dichotic Trials 3 Binaural Trials 3 Omnibus ANOVA 3 Binaural Trials 3 Omnibus ANOVA 3 Binaural Trials 3	26 27 27 27 28 20 34 35 35 35 35 35
Method	37 37 37 38 38

Response Times38Omnibus ANOVA38Binaural Trials39Dichotic Trials39Error Rates43Omnibus ANOVA43Binaural Trials43Dichotic Trials43Jichotic Trials43Another Alexandre Alexa
General Discussion
Appendix A: Experiment 1: Individual Subject Data
Appendix B: Experiment 2: Individual Subject Data
Appendix C: Experiment 3: Individual Subject Data
Appendix D: Experiment 4: Individual Subject Data
References

List of Tables

Table 1:	Summary of Predictions
Table 2:	Experiment 2: Response Times as a Function of Task and Congruency 21
Table 3:	Experiment 2: Percent Error as a Function of Task and Congruency24
Table 4:	Experiment 3: Response Times as a Function of Task, Congruency, Ear, and Response Hand
Table 5:	Experiment 3: Percent Error as a Function of Task, Congruency, Ear, and Response Hand
Table 6:	Experiment 4: Response Times as a Function of Task, Congruency, Ear, and Response Hand
Table 7:	Experiment 4: Percent Error as a Function of Task, Congruency, Ear, and Response Hand

List of Illustrations

Figure 1:	Models of dichotic listening performance
Figure 2:	Experiment 1: Response times and error rates for the detection of linguistic and prosodic targets as a function of ear
Figure 3:	Experiment 2: Response times and error rates for the identification of linguistic and prosodic dimensions
Figure 4:	Experiment 3: Interference (in ms and % error) on the linguistic task as a function of ear and response hand
Figure 5:	Experiment 3: Interference (in ms and % error) on the prosodic task as a function of ear and response hand
Figure 6:	Experiment 4: Interference (in ms and % error) on the linguistic task as a function of ear and response hand
Figure 7:	Experiment 4: Interference (in ms and % error) on the prosodic task as a function of ear and response hand

Introduction

The two cerebral hemispheres have long been known to be specialized for different processes. Early research on laterality focused on each hemisphere in isolation, through the study of patients with unilateral brain damage (Broca, 1861) or callosal disconnection (Sperry, 1974). Experimental techniques such as dichotic listening and visual half-field presentation were developed and refined to produce functional isolation in the intact brain - at least for a few milliseconds (Bryden, 1982). Catalogues of left- and right-hemisphere skills were developed: the left hemisphere is specialized for language, temporal processing, and praxis; the right for emotion, music, and spatial ability (see Hellige, 1993, for a review).

The catalogue approach assumed that the left and right hemispheres are specialized for different *tasks*. It has since become apparent that the two hemispheres may be specialized for different processes, but that many different processes contribute to the performance of any task. Although some processes may be completely lateralized (e.g., phonological processing appears to be restricted to the left hemisphere), other processes may exhibit only relative specialization to one hemisphere. The question then becomes: how do the hemispheres accomplish their division of labour, and how do they coordinate their resources?

Division of Labour in the Hemispheres

There are two possible approaches to the division of labour across hemispheres. The first is a division of processing based on *division of input*. For example, in the visual modality, the left visual field (LVF) projects to the right hemisphere, and the right visual field (RVF) projects to the left hemisphere. Each hemisphere may therefore process the information with which it is presented, and then provide its products for integration. Banich and colleagues have tested this hypothesis in their studies of the bilateral advantage (see Banich, in press, for a review). In a typical experiment (Banich & Belger, 1990), subjects compared a lateralized target stimulus to two probe stimuli - one in the same visual field and one in the opposite visual field. When the comparison is simple (e.g., Does the target have the same identity as either probe?) there is an advantage for within - hemisphere processing. However, when the task becomes more complex (e.g., Does the target plus one of the probes sum to a number greater than 10?) there is an advantage for cross - hemisphere processing. The bilateral advantage has been interpreted in terms of an increase in resources (in terms of neural space) when processing can be divided across hemispheres. There is some cost associated with the integration stage, but when the task is complex, the costs of integration are offset by the benefits of parallel processing.

According to this bilateral processing approach, the hemispheres divide processing according to stimulus input. However, it is assumed that each hemisphere performs the same *type* of processing. Another way that the hemispheres can share processing is for each to *process the same input in qualitatively different ways*. For example, given that our view of the world is not tachistoscopic, each hemisphere has equal access to the whole visual scene (at least in central vision). However, the left hemisphere is specialized for the processing of local information whereas the right is specialized for the processing of global information (Lamb, Robertson, & Knight, 1989; Martin, 1979; Sergent, 1983). Each hemisphere therefore performs different (possibly parallel) computations on the same input. At some point, local and global analyses are integrated to produce a unified percept .

It is likely that a similar division of labour occurs in the processing of speech input. Although left-hemisphere specialization for language is a central tenet of neuropsychological theory, it has been demonstrated that the left hemisphere is specialized for processing linguistic aspects of language (phonology, semantics, syntax) but that the right hemisphere is specialized for the processing of pragmatic aspects, especially prosody (information that is carried in the tone of voice). For example, patients with righthemisphere damage (particularly in right parieto-temporal areas) are impaired in their judgment of the emotional prosody of sentences (Heilman, Scholes, & Watson, 1975; Tucker, Watson, & Heilman, 1977). A similar dissociation can be observed in normals.

- 2 -

Ley and Bryden (1982) presented dichotic sentences spoken in emotional tones of voice, and had subjects make decisions about either the meaning or the tone of voice. For the linguistic task, a right ear advantage (REA) was observed, reflecting left-hemisphere specialization, whereas for the prosodic task, a left ear advantage (LEA) was observed, reflecting right-hemisphere specialization. This finding suggests that each hemisphere processes the same stimulus in a qualitatively different way.

The lateralization of linguistic and prosodic processing to opposite hemispheres is referred to as a complementary pattern. Bryden and MacRae (1989) found that complementarity of linguistic and prosodic processing could also be observed with single words. They used the words "bower", "dower", "tower", and "power", spoken in tones of voice that were *mad*, *sad*, *glad*, and *neutral*. Stimuli were presented dichotically, such that there was a different word in a different tone of voice at each ear on each trial. In the linguistic task, subjects listened for a target word; in the prosodic task they listened for a target tone of voice. As expected, an REA was observed for the linguistic task, and an LEA was observed for the prosodic task.

In this thesis I will examine the integration of linguistic and prosodic information in speech perception. Given that these two dimensions of speech are processed primarily in opposite hemispheres, an examination of their interaction may serve to elucidate more general principles of interhemispheric integration. Integration of linguistic and prosodic information will be examined using a Stroop-like interference paradigm in which the linguistic meaning of words can conflict with the prosodic voice in which they are spoken.

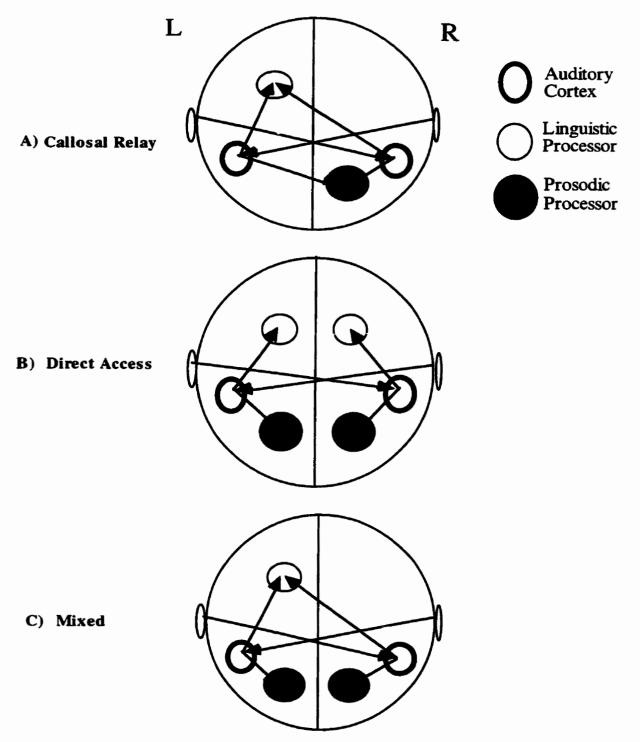
In a standard Stroop experiment, subjects are required to identify the ink colour in which colour words are written (MacLeod, 1991; Stroop, 1935). Stimuli can be either congruent, incongruent, or neutral with respect to the relationship between ink colour and word. The typical finding is interference on incongruent trials relative to the neutral condition, and (less consistently) facilitation on congruent trials. The Stroop effect is asymmetric, that is, words interfere with the ability to identify ink colour, but ink colour

- 3 -

does not generally interfere with the ability to name words. Most theoretical accounts of the Stroop effect suggest that interference arises at a response selection stage. The word sometimes enters the response selection mechanism first, either because it is processed faster (Morton & Chambers, 1973; Posner & Snyder, 1975) or automatically (Dunbar & MacLeod, 1988; Stroop, 1935), or because it is more strongly associated with the response (Cohen, Dunbar, & McLelland, 1990).

The stimuli for this series of experiments are the words "mad", "sad", "glad", and "fad", spoken in tones of voice that are *mad*, *sad*, *glad*, or *neutral*. Stimuli are therefore congruent, incongruent, or neutral with respect to the relationship between linguistic and prosodic information. The experiments are designed to examine the interference (and therefore the integration) of these components when the dimensions can be processed across hemispheres versus when they are processed in the same hemisphere. It is assumed that, under binaural conditions, each hemisphere has equal access to both dimensions, so each hemisphere processes the stimulus according to its own strengths. Dichotic manipulations are used to examine interference that occurs within a single hemisphere. Experiments 1 and 2 demonstrate that the two dimensions are processed in opposite hemispheres, and that they do interfere with each other. Experiments 3 and 4 use dichotic presentation to compare interference between and within hemispheres.

Models of Dichotic Listening Performance


The interpretation of results from a dichotic listening experiment depends on the model of dichotic listening performance that is assumed. In a typical dichotic listening experiment, competing stimuli are presented to each ear simultaneously. The auditory system is configured such that there are both contralateral and ipsilateral pathways from each ear to auditory cortex. However, it is thought that the ipsilateral pathways are suppressed under dichotic conditions, producing solely contralateral projection (Kimura, 1967). This structural model can be contrasted with attentional models of dichotic listening performance. For example, Kinsbourne (1975) proposed that the act of engaging in a

- 4 -

verbal task activates the left hemisphere, and produces a bias toward the right ear. Similarly, engaging in a nonverbal (e.g., spatial) task leads to activation of the right hemisphere, and a leftward bias. Although attentional factors can clearly contribute to the production of perceptual asymmetries (Mondor & Bryden, 1992) there is compelling anatomical evidence for the structural model of performance, based on findings with splitbrain patients who can verbally report the left ear stimulus under monaural conditions, but not under dichotic conditions. (Clarke, David, & Zaidel, 1993; Kimura, 1967).

When subjects engage in verbal processing in a dichotic listening task, an REA is typically observed. However, even if one assumes a structural model of performance, there are a number of ways in which the REA might arise. Zaidel (1995) distinguishes between direct access (in which stimuli are processed in the hemisphere to which they are projected, regardless of hemispheric specialization) and callosal relay (in which stimuli must be relayed to the appropriate hemisphere for processing). According to the direct access account, the REA reflects the inferior linguistic capabilities of the right hemisphere, which must process the left ear stimulus. Alternatively, the REA could reflect the delay (and possible degradation) that occurs when the left ear stimulus must be relayed to the left hemisphere. If one wishes only to determine which hemisphere is specialized for a specific process, the distinction between direct access and callosal relay is irrelevant. However, if one wishes to draw conclusions about the locus of processing with dichotic presentation, these models need to be made explicit.

With respect to the present experiments, in which stimuli have both linguistic and prosodic information, there are three possibilities for the locus of processing that is produced by dichotic presentation. These are illustrated schematically in Figure 1.

Figure l

Models of dichotic listening performance. Under the mixed model, there is direct access for prosodic processing, but callosal relay for linguistic processing. Placement of modules within hemispheres is schematic, and does not reflect anatomical localization. A) *Callosal relay for both linguistic and prosodic information* Regardless of the ear of presentation, linguistic information is processed in the left hemisphere, and prosodic information is processed in the right hemisphere. Therefore linguistic information must be relayed from the left ear stimulus, and prosodic information must be relayed from the right ear stimulus. Both dichotic and binaural conditions therefore produce processing across hemispheres. The callosal relay model is based on the premise of absolute specialization, in that the operations of left and right hemispheres are mutually exclusive. All-or-none models of hemispheric specialization are not well-accepted, and so this possibility will be eliminated in future discussion.

B) *Direct access for both dimensions* For the right ear stimulus, both linguistic and prosodic dimensions are processed in the left hemisphere, and for the left ear stimulus, both dimensions are processed in the right hemisphere. Dichotic presentation therefore produces within-hemisphere processing.

C) Callosal relay for linguistic information, and direct access for prosodic information. Direct access and callosal relay are not competing hypotheses, and they are not mutually exclusive. It is possible that the hemispheres process according to direct access if possible (e.g., prosodic processing), but resort to callosal relay for phonological processing. Consistent with this hypothesis is the finding that lateralization of prosody is not as strong or as consistent as that for phonological processing (Bryden & MacRae, 1989; Grimshaw, Bryden, & Finegan, 1994; Ley & Bryden, 1982). Studies of clinical populations also point to some capacity for prosodic judgment in the left hemisphere (Bowers et al., 1987). but little or no capacity for phonological processing in the right hemisphere (Zaidel & Peters, 1981). This model may be particularly appropriate when subjects are attending to the prosodic content of the stimulus, and linguistic information is unattended. According to this model, right ear presentation produces processing within the left hemisphere, but left ear presentation produces cross-hemisphere processing.

Theories of Interhemispheric Integration

There are two theoretical perspectives that predict different relations between lateralization of linguistic and prosodic processes and the interference between them. Each is based on differing viewpoints of the role of the corpus callosum and other commissures in interhemispheric interaction (see Chiarello & Maxfield, 1996, for a review of these and other models of interhemispheric inhibition).

The corpus callosum is the largest fibre tract in the human brain, consisting of approximately 200 million fibres (Aboitiz, Scheibel, Fisher, & Zaidel, 1992), ranging in size from very small, unmyelinated axons (less than 2 μ m) to gigantic, myelinated axons (larger than 3 μ m). Callosal fibres connect mainly homologous areas of cortex. Primary sensory areas are connected by large, fast fibres, whereas association areas are connected by small, slow fibres. The callosum is therefore highly heterogeneous, and it has been proposed that there are callosal channels (distinguished by topography, size, and speed) that serve different functions (Banich, 1995; Braun, Sapin-Leduc, Picard, Bonnefant, Achim, & Daigneault, 1994; Kinsbourne, 1995). It is therefore not necessary for callosal function to be uniform in all situations. There are also a number of subcortical commissures that can convey limited types of information.

The most traditional view of the role of the callosum in interhemispheric integration is that it acts as a shield to isolate each hemisphere from the other. More controversially, Robertson and colleagues (Lamb, Robertson, & Knight, 1989; Robertson, Lamb, & Zaidel, 1993) have proposed that the callosum acts as a specialized communication channel between component processes in left and right hemispheres. In the remainder of the introduction each theory will be reviewed and explicit predictions made about the patterns of interference that should be observed between linguistic and prosodic processes in this series of studies.

The Shielding Hypothesis

According to the shielding hypothesis, the corpus callosum is a gate that protects each hemisphere from the other, permitting independent and parallel processing. Of course, the gate must open (at some late stage of processing) to allow the integration of leftand right-hemisphere computations. This hypothesis has its roots in Kinsbourne and Hicks' (1978) Functional Cerebral Distance Hypothesis, which states that the interference between two tasks is inversely proportional to the functional distance between the anatomical substrates that subserve those tasks, and that points in opposite hemispheres are maximally distant. This premise was formalized by Friedman and Polson (1981), who claimed that the two hemispheres have independent and mutually inaccessible pools of resources (but see Pashler & O'Brien, 1993). Therefore, two processes that are completed entirely in opposite hemispheres should not interfere with each other. Recall from Figure 1 that, according to the direct access model, presentation to each ear produces withinhemisphere processing (and therefore interference). According to the mixed model, rightear presentation should produce interference, but left-ear presentation, which produces cross-hemisphere processing, should not produce interference.

The shielding hypothesis has been used with some success for the localization of cognitive function using dual task methodology. For example, concurrent verbal activity affects right finger-tapping more than left finger-tapping, whereas concurrent spatial processing affects left finger-tapping more than right finger-tapping (Hiscock, 1982). Similarly, verbal memory for nonsense syllables is better during left finger-tapping than during right finger-tapping (Friedman, Polson, & Dafoe, 1988).

Shielding is assumed in the explanation of the bilateral advantage described above (Banich, in press). Recall that the bilateral advantage is proposed to result from the increase in resources that are available when processing can be divided across hemispheres, following the assumption that the hemispheres have independent resource pools. Each hemisphere is presumed to process its input in an independent and parallel fashion.

However, Chiarello and Maxfield (1996) have argued that, although callosal shielding is implied in the explanation of the bilateral effect, it is not a necessary conclusion on the basis of the data. Indeed, an advantage for cross-hemisphere processing may reflect more efficient connectivity (and integration) across hemispheres than within hemispheres.

Findings about the lateralization of the Stroop effect are mixed, but they provide limited support for the shielding hypothesis. The primary prediction of the shielding hypothesis is that interference should be greater within a hemisphere than across hemispheres. This hypothesis has been tested using a paradigm in which the word and colour patch are spatially separated, and performance is compared for bilateral versus unilateral presentation (note that the interpretation of results from these experiments makes the implicit assumption of direct access for both word reading and colour naming with lateralized visual presentation). Several experimenters have used this paradigm and found greater interference for unilateral versus bilateral presentation (David, 1992; Zaidel, 1994) although others have observed no differences (Weekes & Zaidel, 1996; Shenker, Dori & Banich, 1994).

A corollary of the shielding hypothesis is that the pattern of interference within a hemisphere will be influenced by hemispheric specialization. Specifically, greater Stroop interference should be observed in the verbally oriented left hemisphere than in the nonverbal right hemisphere (assuming that colour naming can be performed by either hemisphere). This hypothesis has been confirmed in a number of studies using lateralized presentation of Stroop stimuli (Guiard, 1981; Hugdahl & Franzon, 1985; Schmitt & Davis, 1974). To the extent that the stimuli in the present series of experiments are Stroop-like, one might predict similar results. Specifically, one might expect more linguistic interference in the left hemisphere, and more prosodic interference in the right hemisphere. Predictions from the shielding hypothesis are outlined in Table 1.

Specialized Callosal Channels

An alternative to the shielding hypothesis comes from Robertson and colleagues (Lamb, Robertson, & Knight, 1990; Robertson, Lamb, & Zaidel, 1993), who suggest that the callosum does not reduce interference, it causes it. Their hypothesis is specific to the integration of global and local information in visual processing. There is considerable evidence that the left hemisphere is specialized for the processing of local information, and the right hemisphere is specialized for the processing of global information. For example, when copying a hierarchical stimulus (e.g., a large letter "S" made of small letter "T"s), patients with left hemisphere damage (particularly in areas of the temporo-parietal junction) will draw the global letter but not its local elements, whereas patients with damage in homologous areas of the right hemisphere will draw the local elements, but not arrange them into an appropriate global configuration (Delis, Robertson, & Efron, 1986; Robertson & Lamb, 1991). Studies of split-brain patients indicate that hemispheric specialization reflects a processing bias toward global or local levels, and not absolute lateralization of processing (Robertson, Lamb, & Zaidel, 1993). All three split-brain patients tested by Robertson et al. were able to make global judgments (identifying the global letter of hierarchical stimuli) of stimuli presented to the left hemisphere, and two of three were able to make local judgments of stimuli presented to the right hemisphere.

In normal subjects, global information interferes with local processing (Navon, 1977), a phenomenon known as global interference. Interestingly, both in patients with unilateral damage to temporo-parietal junction (T-P; Lamb, Robertson, & Knight, 1989, 1990) and in split-brain patients (Robertson et al., 1993), global interference is absent. In a series of 12 patients with unilateral T-P damage (5 left hemisphere and 7 right hemisphere), Robertson et al. (1990) found that left T-P damage produced very long responses to local information (250 ms global advantage versus a 30 ms global ad::antage in normals), but no global interference. In the studies of the three split-brain patients (Robertson et al., 1993), hierarchical stimuli were presented unilaterally. Patients

identified the global or local letters in separate blocks. When stimuli were presented to the right hemisphere, RTs for global identification were similar to those for controls, but RTs for local identification were much slower (300 - 400 ms). None the less, none of the subjects demonstrated global interference, and in fact, two of the three exhibited slightly longer RTs when information at global and local levels was congruent than when it was incongruent. When stimuli were presented bilaterally, so that each hemisphere could process according to its own processing strengths, global interference was still absent. This finding suggests that it is interhemispheric communication that produces global interference. The effect is specific to the processing of global and local information, and does not represent some generalized ability to inhibit unattended information. For example, these same patients still exhibit normal Stroop interference (Henik, Lamb, & Robertson, 1993), cited in Robertson, 1995).

This pattern of results is highly counter-intuitive, especially given our often implicit acceptance of the hemispheric shielding view of interhemispheric interaction. However, Robertson and colleagues argue that it reflects the operation of a highly efficient bilateral system that integrates global and local analyses to produce unified visual perception. Global/local integration is therefore a desirable product of visual processing, and it is only under the artificially contrived situation in which global and local analyses conflict that interference arises. A specialized communication channel is proposed to connect homologous areas of T-P cortex. When this channel is disrupted, either through callosal disconnection or unilateral damage, global and local levels of analysis can no longer interact, and global interference is no longer observed.

Robertson's results might also be conceptualized in terms of differing mechanisms of selection across versus within hemispheres. Given that each hemisphere can process at either the global or local level, early selection mechanisms within a hemisphere must bias processing toward one level, and eliminate the possibility of interference between levels.

- 12 -

However, across hemispheres, global and local analyses run in parallel, leading to late selection of one dimension, and the potential for interference.

Although Robertson's hypothesis is specific to the integration of global and local information in visual processing, it is possible that a similar bilateral system operates for the integration of linguistic and prosodic information in speech perception. If so, maximal interference between linguistic and prosodic information would be expected when processing is divided across hemispheres. According to a direct access model of dichotic listening, no interference would be expected with dichotic presentation to either ear, as this produces processing of both dimensions within the same hemisphere According to the mixed model, one would expect interference with presentation to the left ear (as this produces cross-hemisphere processing) but not with presentation to the right ear (as both dimensions are then processed in the left hemisphere). This pattern might be particularly evident when subjects are attending to the prosodic dimension, as this is the situation in which callosal relay of linguistic information is most likely. These predictions are outlined in Table 1.

Experiments 1 and 2 establish that the stimuli used in this series of experiments meet two criteria: First, the linguistic and prosodic dimensions are processed in opposite hemispheres and second, they interfere with each other. Experiments 3 and 4 examine interference that occurs under dichotic conditions, in order to examine interference within and across hemispheres.

Table 1

Predicted patterns of interference on linguistic and prosodic tasks.

	Model of Dichoti	c Listening
Theory	Direct Access	Mixed
Shielding		
Linguistic Task	L > R	R > L
Prosodic Task	R > L	R > L
Callosal Channel		
Linguistic Task	$\mathbf{L} = \mathbf{R} = 0$	L > R
Prosodic Task	$\mathbf{L} = \mathbf{R} = 0$	L > R

Note: Each cell depicts the relative magnitude of interference from the opposite dimension. L = Left Ear, R = Right Ear.

EXPERIMENT 1

Experiment 1 was designed to determine if the linguistic and prosodic dimensions of the stimuli are processed in opposite hemispheres. It employed a target detection procedure similar to that in Bryden and MacRae (1989). Stimuli were presented dichotically, and subjects attended to a linguistic target in one block, and a prosodic target in another block. It was expected that an REA would be observed on the linguistic task, and an LEA would be observed on the prosodic task.

Method

Participants

Participants were 32 right-handed undergraduate students (16 men and 16 women). All spoke English as a first language, or learned English before the age of 5. None had any history of audiological problems. They received either course credit or payment for their participation.

Stimuli and Apparatus

Stimuli for this and all other experiments were the words "mad", "sad", "glad" and "fad", spoken in emotional tones of voice that were *mad*, *sad*, *glad*, or *neutral*. Words were spoken in a female voice and digitized in 16 bits at a sampling rate of 44.1 kHz on a PowerMacintosh 7100AV computer, using SoundEdit 16 software. Individual speech tokens were edited to include 30 ms of silence prior to the onset of the initial burst, and were truncated if necessary at 750 ms. Four samples of each token were initially recorded, for a total of 64 tokens. These tokens were then presented binaurally in random sequence to four raters who were required to identify the emotional tone of voice without time pressure. On the basis of these ratings, one sample of each token was selected for which the emotional tone had been identified with 100% accuracy. Tokens were then combined in all possible pairings, with the constraint that a different word and a different tone of voice were presented to each ear on each trial. This produced 144 stimulus pairs. The experiment was presented on a PowerMacintosh 7100AV computer equipped with a 15

inch AV monitor through JVC headphones with circumaural cushions. PsyScope software was used to control the experiment (Cohen, MacWhinney, Flatt, & Provost, 1993). The same computer apparatus was used for all five experiments.

Procedure

Participants attended to a linguistic target and a prosodic target in separate blocks. Initially, they heard each of the 16 tokens presented once binaurally, and they were required to indicate if their target was present or absent, using the index fingers of the left and right hands on the [z] and [/] keys of the computer keyboard. Participants then proceeded to the dichotic trials. They were instructed to indicate whether their target was present in either ear, or absent. Targets were present on 50% of the trials, half in the left ear and half in the right ear. Participants were instructed to respond as quickly and as accurately as possible, and response time (RT) was recorded. They then proceeded to their second target, repeating the binaural practice trials and then the experimental dichotic trials. Subjects performed 2 blocks of 72 trials for each task, for a total of 288 trials. Earphones were reversed between the first and second blocks of each instructional condition to control for mechanical effects. Each possible target combination was assigned to two subjects (1 man and 1 woman). Task order and response hand for present versus absent trials were counterbalanced across subjects. The experiment took approximately 30 minutes to complete.

Results and Discussion

Mean response times for correct responses were calculated for each condition. Outliers were identified using a simple recursive outlier procedure with a criterion of 3 standard deviations (Van Selst & Jolicoeur, 1994). Fewer than 1% of data points were excluded on this basis. Mean RTs and error rates (misses) are presented in Figure 2.

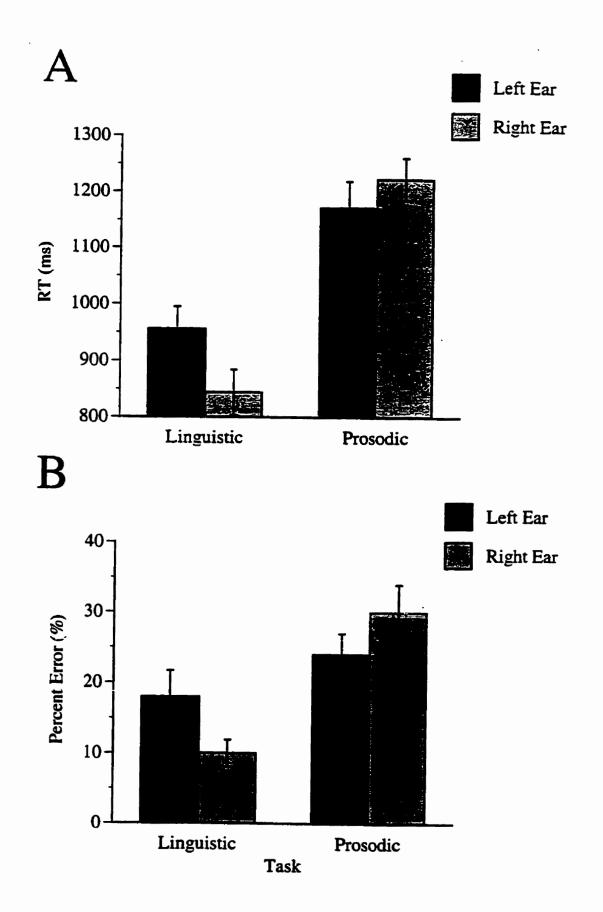


Figure 2. Experiment 1: Response times (A) and error rates (B) for the detection of linguistic and prosodic targets as a function of ear.

Response Times

RTs for present trials were analyzed in a 2 (Task) x 2 (Ear) x 2 (Sex) x 2 (Response Hand) analysis of variance (ANOVA) with Task and Ear as within-subjects variables, and Sex and Response Hand as between-subjects variables. No effects of Sex or Response Hand were observed, and so they were eliminated from the analyses. A main effect of Task was observed, F(1, 31) = 28.50, p < .001, reflecting faster responses for linguistic targets. Also, a Task x Ear interaction was observed, F(1, 31) = 4.44, p < .05. Planned comparisons of the ear advantage for each task revealed a significant REA of 112 ms for the linguistic task, t(31) = 3.52, p = .001, and a nonsignificant LEA of 52 ms for the prosodic task, t(31) = -0.95, ns (see Figure 2).

Error Rates

Error rates for present trials (misses) were analyzed in a similar manner. The main effect of Task was again observed, F(1, 31) = 14.68, p = .001, as was the Task x Ear interaction, F(1, 31) = 10.98, p = .002. A significant REA was observed for the linguistic task, t(31) = 2.40, p = .02 and a significant LEA was observed for the prosodic task, t(31)= -2.06, p = .04.

Experiment 1 clearly indicates that there is differential hemispheric specialization for the two dimensions of these stimuli, with linguistic information processed primarily in the left hemisphere, and prosodic information processed primarily in the right hemisphere. They are therefore good candidates for this study of interhemispheric integration. Although both the interaction of Task and Ear and the REA for linguistic targets were significant in both RT and error data, the LEA for prosodic targets was significant only in the error data. It should be noted that the LEA for prosodic information was smaller than the REA for linguistic information, a common finding in laterality studies, which may reflect some lefthemisphere competence for prosodic analysis.

EXPERIMENT 2

Experiment 2 consisted of a binaural identification task in which subjects identified either the word or the tone of voice of each stimulus. Although interference in the standard Stroop task is asymmetric, that is, words interfere with colour-naming, but colours do not interfere with word-naming, it was not clear what pattern of interference should be observed between linguistic and prosodic information. This experiment therefore identified the interference pattern that should be expected under standard binaural conditions.

Method

Participants

Participants were 24 right-handed undergraduate students (12 men and 12 women). All were either native speakers of English, or learned English before the age of 5. None reported any history of audiological problems. They received either course credit or payment for their participation.

Stimuli and Apparatus

The stimuli were the same auditory tokens used in Experiment 1, presented on the same computer system. Stimuli were either congruent (e.g., "mad" in a *mad* voice), incongruent (e.g., "mad" in a *glad* voice), or neutral. Neutral stimuli for the linguistic task were the words "mad", "sad", and "glad" spoken in a *neutral* tone of voice. Neutral stimuli for the prosodic task were the word "fad" spoken in *mad*, *sad*, and *glad* voices. *Procedure*

Participants attended to either the tone of voice or the word in separate blocks. In the linguistic task, they identified the words "mad", "sad", and "glad" spoken in tones of voice that were *mad*, *sad*, *glad*, or *neutral*, using the three middle fingers of one hand on the [b], [n], and [m] keys of the computer keyboard. In the prosodic task, they identified the emotions *mad*, *sad*, and *glad*, carried by the words "mad", "sad", "glad" and "fad", using the same three fingers on the same keys. Each block of 72 experimental trials was proceeded by 36 neutral practice trials, that were designed to help subjects learn the response mapping. Equal numbers of congruent, incongruent and neutral trials were presented. Response hand and response mapping (6 possible configurations) were counterbalanced across subjects. The experiment took approximately 15 minutes to complete.

Results and Discussion

Response times for correct responses were subjected to a recursive outlier procedure using a criterion of 3 standard deviations (Van Selst & Jolicoeur, 1994). Fewer than 1% of data points were eliminated on this basis. Although both congruent, neutral, and incongruent stimuli were presented, only neutral and incongruent trials (i.e., interference) were analyzed. Because attention to either dimension on a congruent trial leads to the same response, it is impossible to know the source of any facilitation. Better performance on congruent than neutral trials may not reflect true cognitive facilitation, but might rather be an artifact produced by the participant occasionally responding to the wrong dimension (MacLeod & MacDonald, in press; Vanayan, 1992). Therefore, all analyses are based on only neutral and incongruent trials. All data for congruent trials (for this and all other experiments) are presented in the appendices.

Response Times

Mean response times for each condition are presented in Table 2. They were analyzed in a 2 (Task) x 2 (Congruency) x 2 (Response Hand) analysis of variance with Task and Congruency as within-subjects variables, and Response Hand as a betweensubject variable. A main effect of Congruency, F(1, 22) = 12.40, p = .002 and a main effect of Task, F(1, 22) = 22.52, p < .001 were modulated by a Task x Congruency interaction, F(1, 22) = 11.52, p = .003. RTs were much shorter for the linguistic task than for the prosodic task. Interference effects were assessed for each task separately and are presented in Figure 3A. In this and in all experiments, interference is assessed

Table 2

Experiment 2: Response Times as a Function of Task and Congruency (n=24)

rence	U 2	 62	137	
 <u>Interference</u>	Mean	32 *	110 *	
truent	S.D.	194	236	
Incongruent	Mean	795	1030	
Iral	S.D.	061	188	-
Neutral Neutral	Mean	763	920	Interference is
	Task	Linguistic	Prosodic	Note

Note. Interference is measured as [Incongruent - Neutral]

* p < .05 (one-tailed)

•

.

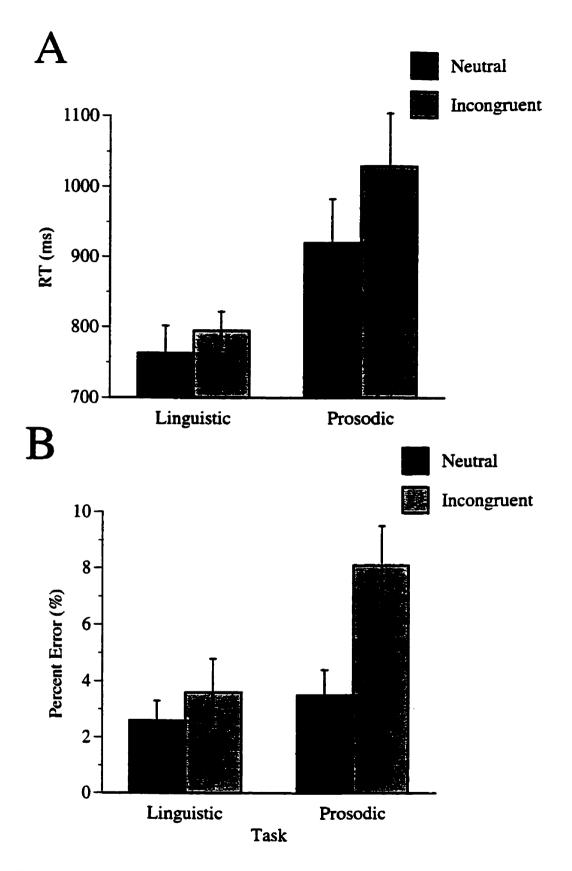


Figure 3. Experiment 2: Response times (A) and error rates (B) for the identification of linguistic and prosodic dimensions.

as the difference between incongruent and neutral trials. All statistical tests of interference effects are one-tailed, because, by definition, interference occurs when performance on incongruent trials is slower or less accurate than that on neutral trials. Significant interference was observed in both the prosodic t(23) = 3.92, p < .001 and lingustic tasks, t(23) = 1.98, p = .03.

Error Rates

Error rates are presented in Table 3, and were analyzed in a similar manner. Again, main effects of Congruency, F(1, 22) = 8.46, p = .008, and Task, F(1, 22) = 7.17, p = .014 were observed. Error rates were higher on the prosodic task than on the linguistic task. The Task x Congruency interaction that was observed in the RT data approached significance, F(1, 22) = 3.93, p = .06. Interference was significant in the prosodic task, t(23) = 3.50, p = .001, but not in the linguistic task, t(23) = 0.40, ns. Interference effects are presented in Figure 3B.

In summary, linguistic information produced a great deal of interference when subjects were identifying the prosodic content of the stimulus. Although mean RTs for the prosodic task were almost 200 ms slower than those for the linguistic task, prosodic information still produced significant but modest interference when subjects were identifying the linguistic content of the stimulus. This suggests that speed-of-processing cannot account entirely for the interference that is observed on the prosodic task, although a task that is, on average, slower can interfere with one that is, on average, faster, if there is some overlap in the response time distributions (MacLeod, 1991).

S
<u>e</u>
p
Ta

Experiment 2: Percent Error as a Function of Task and Congruency (n=24)

	Ň	Neutral	Incon	Incongruent	Interf	<u>Interference</u>
Task	Mean	S.D.	Mean	S.D.	Mean	U.S.
Linguistic	2.6	3.4	3.6	6.1	1.0	6.2 K 2
Prosodic	3.5	4.5	8.1	7.0	4.6 *	2 Y
Note. Int	Interference is	measured as [Ir	lerference is measured as [Incongruent - Neutral]	trall		

* p < .05 (one-tailed)

The results of Experiments 1 and 2 together indicate that linguistic and prosodic dimensions of these Stroop-like stimuli are processed primarily in opposite hemispheres, and they interfere with each other. They are therefore excellent stimuli for the investigation of interhemispheric interference. Experiments 3 and 4 examine interference that is observed under binaural conditions, when hemispheres can divide processing according to their own strengths, and that observed under conditions of dichotic stimulation, when the stimulus is initially projected to only one hemisphere.

EXPERIMENT 3

Experiment 3 used dichotic presentation in order to examine interference when stimuli were initially projected to one hemisphere or the other. On a dichotic trial, the target stimulus was presented to one ear, and the *neutral* word "fad" was presented to the other ear. This distractor stimulus was required to produce dichotic presentation, and therefore maximize ipsilateral suppression. However, it provided no specific interference or facilitation for either the linguistic or prosodic dimension. Subjects identified the word or the tone of voice, and responded to the stimulus in the right ear or left ear in separate blocks.

Recall that the actual locus of processing with dichotic presentation is not known, but inferences depend on the model of dichotic listening that is assumed. Under direct access, both dimensions of the stimulus from the left ear are processed in the right hemisphere, and both dimensions of the stimulus from the right ear are processed in the left hemisphere. Both left- and right-ear presentation therefore produce within-hemisphere processing. The shielding hypothesis therefore predicts that interference will appear under dichotic conditions, and that linguistic interference will be greater in the right ear and prosodic interference will be greater in the left ear. In contrast, the callosal channel hypothesis predicts that interference will be eliminated under dichotic conditions. Under the mixed model, with callosal relay for linguistic information and direct access for prosodic information, linguistic information is always processed in the left hemisphere, but prosodic information is processed in the left hemisphere with right ear presentation, and in the right hemisphere with left ear presentation. Therefore right-ear presentation produces within-hemisphere processing, and left-ear presentation produces cross-hemisphere processing (see Figure 1). The shielding hypothesis therefore predicts greater interference at the right than at the left ear (regardless of task), and the callosal channel hypothesis predicts greater interference at the left than at the right ear.

Binaural trials, in which the target stimulus was presented to both ears, were mixed with the dichotic trials. Binaural trials served two purposes. First, they provided a baseline measure of interference that occurs when both hemispheres have equal access to all information, and can divide processing according to hemispheric specialization. Second, they allowed an examination of the effects of attending to either the left or right ear on the interference between linguistic and prosodic dimensions. It is assumed that dichotic presentation influences the locus of processing (according to the models described above), and therefore any differences between the ears reflect differences within or across hemispheres. However, it is also possible that attention to a single ear (especially over a block of trials) produces activation of the contralateral hemisphere (Kinsbourne, 1970). Therefore, attention to the right ear may bias performance toward linguistic processing, and attention to the left ear may bias performance toward prosodic processing. If so, different patterns of interference may be observed on binaural trials as a function of the direction of attention.

Method

Participants

Participants were 32 right-handed undergraduate students from the University of Waterloo. None reported a history of hearing problems, and all were either native speakers of English or learned English before the age of 5. They were paid for their participation. *Stimuli and Apparatus*

Stimuli were the same as those described in Experiment 1. On dichotic trials, a target stimulus (congruent, neutral, or incongruent) was presented in the attended ear, and the *neutral* word "fad" was presented in the opposite ear. On binaural trials, the target stimulus was presented to each ear.

Procedure

Each task manipulation (linguistic or prosodic identification) was preceded by 36 binaural practice trials (to teach response mapping). Each task condition consisted of 4

- 27 -

blocks of 36 trials. Subjects attended to and reported from one ear in the first and fourth blocks, and from the other ear in the second and third blocks. Earphones were reversed after the second block to control for mechanical effects. Within blocks, one half of the trials were dichotic, and one half were binaural. Subjects identified the stimulus in the target ear as mad, sad, or glad, using the keys [b], [n], and [m], respectively. Half of the subjects responded with the middle three fingers of their left hands, and half with the middle three fingers of their right hands. Although it would have been desirable to balance response hand within subjects, the three-finger response mapping proved difficult to translate across hands. Orders of task and ear of report were also counterbalanced across subjects. The experiment took approximately 30 minutes to complete.

The design was a 2 Task (linguistic/prosodic) x 2 Congruency (neutral/incongruent) x 2 Presentation (dichotic/binaural) x 2 Attended Ear (left/right), x 2 Response Hand (left/right) factorial ANOVA with 12 trials per condition.

Results and Discussion

Response Times

RTs were subjected to a simple recursive outlier procedure on a cell by cell basis, with a criterion of 3 standard deviations (Van Selst & Jolicoeur, 1994). Fewer than 1% of the data points were excluded on this basis. Mean RTs are presented in Table 4. Interference effects are presented in Figures 4A (linguistic task) and 5A (prosodic task). Because of the large number of comparisons associated with a 5-way design, analyses were carried out to test specific hypotheses. First, the omnibus ANOVA is reported, for completeness. Then, interference effects are analyzed for binaural and dichotic conditions separately. The analysis of binaural trials was carried out to confirm that the typical pattern of interference (as demonstrated in Experiment 2) was still observed, and to determine whether directed attention itself influenced that pattern. Analysis of dichotic trials was planned to compare the magnitude of interference when the stimulus is presented to the left or right ear. This analysis is the test of the two hypotheses of interhemispheric interaction.

Table 4

Experiment 3: Response Times as a Function of Task, Congruency, Ear, and Response Hand

			Lett H	Hand (n=16)					Right Ha	Right Hand (n=16)		
Task	Ne Mean	Neutral an <i>S.D</i> .	Incol Mean	Incongruent Aean S.D.	Interf Mean	Interference dean c.n.	Nei	Neutral	Incon	Incongruent		Interference
Linguistic	0						Mean	S.D.	Mean	<i>S.D.</i>	Mean	S.D.
Left Ear	898	280	929	329	31 *	12	815	133	008		1	
Binaural	768	16	817	141	49 *	92	756	146	600 00L	611	Ń,	601
Right Ear	813	150	819	127	Ŷ	87	846	174	786	c11 • c1	5	57
Prosodic										071	00-	16
Left Ear	1082	275	1177	270	95 *	178	1087	100				
Binaural	1055	268	6601	121	45	159	2001	4CC	1601	247	10	177
Right Ear	1113	234	1122	173	6	861	1065	218 301	1052	258 250	94 *	115

* p < .05 (one-tailed)

Omnibus ANOVA. Mean RTs were analyzed in a mixed analysis of variance with Task, Ear, Presentation and Congruency as within-subjects variables, and Response Hand as a between-subjects variable. Because of the large number of effects associated with a 5-way analysis, only significant effects will be reported here. The omnibus ANOVA revealed main effects of Task, F(1, 30) = 63.05, p < .001, Ear, F(1, 30) = 4.22, p = .049, Presentation, F(1, 30) = 26.08, p < .001, Congruency, F(1, 30) = 10.27, p = .003, and interactions of Type x Congruency, F(1, 30) = 5.42, p = .027, Hand x Task x Ear, F(1, 30) = 4.37, p = .045.

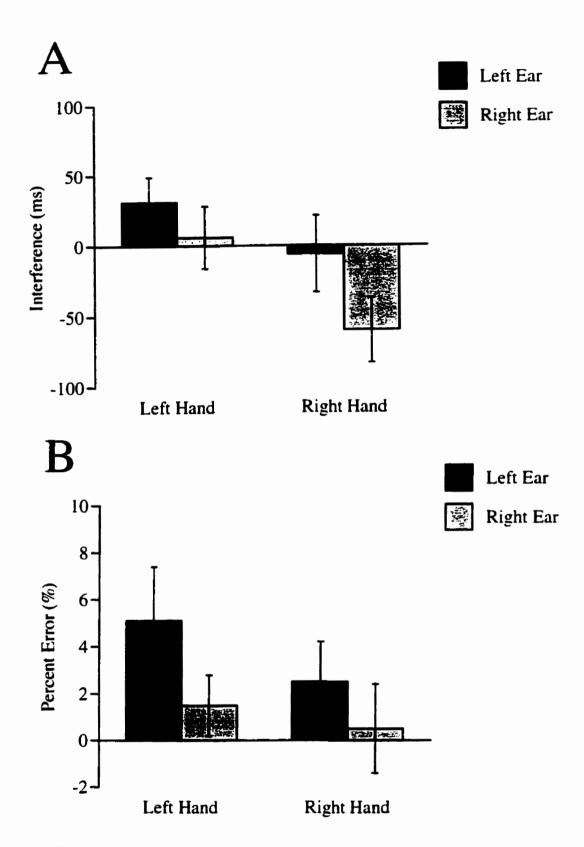


Figure 4. Experiment 3: Interference in ms (A) and % error (B) on the linguistic task as a function of ear and response hand. Interference = [Incongruent - Neutral].

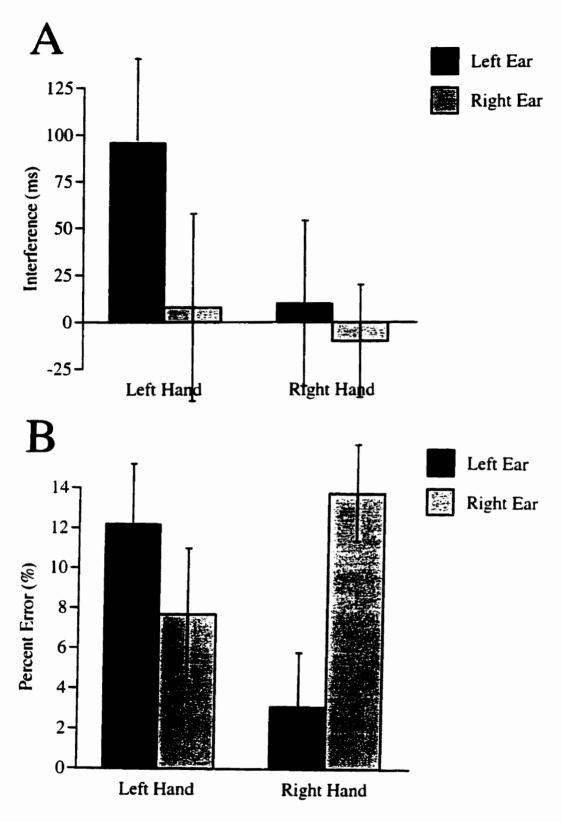


Figure 5. Experiment 3: Interference in ms (A) and % error (B) on the prosodic task as a function of ear and response hand. Interference = [Incongruent - Neutral].

Table 5

Experiment 3: Percent Error as a Function of Task, Congruency, Ear, and Response Hand

			Left Ha	efi Hand (n=16)	-)		Right Hand (n=16)	Right Hand (n=16)		
Task	Neı Mean	Neutral an S.D.	Incon Mean	Incongruent fean S.D	Interfo Mean	Interference Ason C.D.	Net	Neutral	Incon	Incongruent		Interference
Linguistic							Mean	<u>,0,</u>	Mean	S.D.	Mean	S.D.
Left Ear	4.1	12.5	9.2	18.7	5.1 *	9.3	2.5	4 R	50	r y		
Binaural	1.0	1.8	1.8	2.9	0.8	3.3	8	2 5		4. C	C]	7.0
Right Ear	1.5	3.2	3.0	5.0	1.5	5.2	0.6		<u>)</u> - (2.3	-0.8	3.6
							0.0	0.0	3.5	5.0	0.5	7.4
Prosodic												
Left Ear	4.0	4.1	16.2	9.6	12.3 *	12.0	5.5	63	86	02		
Binaural	4.8	4.9	8.6	7.0	3.8	9.1	2.8	3.8		0.7 2 2	1.6	10.6
Right Ear	5.6	9.3	13.3	11.3	7.7 *	13.4	0.5	2.0	14.3	0.C	13.8 *	0.7 9.5
Note. I	Interferei	nce is mea	sured as	Incongru	Interference is measured as [Incongruent-Neutral]	=						

* p < .05 (one-tailed)

Binaural Trials. In order to examine the effects of directed attention on binaural performance, a separate ANOVA was carried out for binaural trials. The results revealed the expected main effects of Task, F(1, 30) = 57.01, p < .001, and Congruency, F(1, 30) = 15.28, p < .001, as well as a main effect of Ear, F(1, 30) = 5.57, p = .025, which reflected faster response times when subjects were attending to the right ear. Importantly, this ear advantage did not interact with Task or Congruency. It is interesting to note that the Task x Congruency interaction did not approach significance, F(1, 30) = 1.28, p = .266, indicating that, in contrast to Experiment 2, equivalent interference was observed on linguistic and prosodic tasks. Overall, there was 37 ms of interference on the linguistic task, and 69 ms of interference on the prosodic task.

Dichotic Trials. Of greatest interest for the hypotheses is the comparison of interference effects at left and right ears under dichotic conditions. Therefore, an ANOVA was carried out on just dichotic trials. This analysis revealed only the expected main effect of Task, F(1, 30) = 56.90, p < .001. However, several interactions approached significance. The interaction of Hand and Congruency, F(1, 30) = 3.72, p = .063 reflected the fact that larger interference effects were observed with the left hand. This difference must be qualified by the inexplicable finding of 60 ms of facilitation (incongruent trials faster than neutral trials) on the linguistic task in the right ear of subjects who responded with the right hand. Most importantly, the interaction of Ear and Congruency, F(1, 30) = 3.79, p = .061, reflects greater interference overall in the left than in the right ear. This effect did not interact with Task.

In summary, greater interference was observed in the left ear than in the right ear, for both the linguistic and prosodic tasks. Furthermore, interference effects were larger in subjects who responded with the left hand. These findings cannot be reconciled with the shielding hypothesis of interhemispheric interaction. However, they are consistent with a callosal-channel account if one assumes the mixed model of dichotic-listening performance, in which direct access is observed for prosodic processing, but callosal relay is necessary for linguistic processing. According to this model, when stimuli are presented to the right ear, both linguistic and prosodic dimensions are processed in the left hemisphere. It is in this within-hemisphere condition that interference is eliminated. This pattern is particularly evident on the prosodic task (see Figure 5). The effect of response hand is also consistent with the callosal-channel interpretation. It is when subjects are responding with the left hand that prosodic processing is most likely to occur in the right hemisphere, as both processing and output factors are biased toward the right.

Error Rates

Omnibus ANOVA. Percent errors were similarly analyzed in a 5-way ANOVA, with Task, Ear, Presentation, and Congruency as within-subjects variables, and Response Hand as a between-subjects variable. Cell means are presented in Table 3, and interference effects are plotted in Figures 4B and 5B. The omnibus ANOVA revealed main effects of Task, F(1, 30) = 48.15, p < .001, Presentation, F(1, 30) = 12.81, p < .001, and Congruency, F(1, 30) = 60.87, p < .001, and a Type x Congruency interaction, F(1, 30) = 9.94, p = .004. These effects all mirrored those in the RT data. A Task x Congruency interaction, F(1, 30) = 22.51, p < .001 indicated that greater interference was observed on the prosodic than on the linguistic task.

An interaction of Hand x Ear x Congruency was observed, F(1, 30) = 4.85, p = .035. In general, interference effects were larger in the left ear in subjects who responded with the left hand, but were larger in the right ear of subjects who responded with the right hand. This effect interacted with Presentation, F(1, 30) = 4.19, p = .05, such that it was observed only on dichotic trials. This Hand x Ear interaction suggests that interference effects are larger when callosal relay is not necessary for response execution.

Binaural Trials. Analysis of the binaural trials revealed only the expected effects of Task, F(1, 30) = 55.99, p < .001, Congruency, F(1, 30) = 7.07, p = .012, and the Task x Congruency interaction, F(1, 30) = 12.06, p = .002. There were no main effects or

interactions involving ear, indicating that directed attention did not influence accuracy in the binaural condition.

Dichotic Trials. Performance was compared on left- and right-ear dichotic trials. This analysis again revealed the effects of Task, F(1, 30) = 16.59, p < .001, Congruency, F(1, 30) = 81.06, p < .001, and the Task x Congruency interaction, F(1, 30) = 12.96, p =.001. There was an interaction of Hand x Ear x Congruency, F(1, 30) = 7.00, p = .013, and there was a trend for this effect to interact with Task, F(1, 30) = 3.20, p = .084. In subjects who responded with the left hand, there was more interference at the left than at the right ear on both the linguistic and prosodic tasks. This pattern is consistent with that observed in the RT data, and with that predicted by the callosal channel hypothesis. However, in subjects who responded with the right hand, there was more interference at the right ear than at the left than at the right ear on the linguistic task, but more interference at the right ear than at the left ear on the prosodic task.

The findings from the error data are not consistent with the shielding hypothesis of interhemispheric interaction. However, they are also less clearly supportive of the callosal channel hypothesis than are the RT data. The inconsistency between results in the RT and the error data in right-hand responders makes their data impossible to interpret. Experiment 4 was designed to resolve these issues.

EXPERIMENT 4

Experiment 4 was designed to provide converging evidence for the callosal channel hypothesis using a slightly different procedure to examine interference between linguistic and prosodic processes with binaural and dichotic presentation. Given the response hand interactions that were observed in Experiment 3, response hand was balanced within subjects. Additional practice trials were included whenever response hand changed, in order to help subjects adjust to the response mapping.

The design of Experiment 4 was similar to that of Experiment 3, except that ear of report was cued on a trial by trial basis with a tone presented in the target ear, 450 ms before the onset of the stimulus. This manipulation served two purposes. It allowed for a replication of the findings of Experiment 3 using a different manipulation, and it allowed ear of report to vary from trial to trial, so as to minimize any potential effects of attentional set such as specific hemispheric activation (Kinsbourne, 1975). Again, dichotic and binaural trials were mixed.

Method

Participants

Participants were 32 right-handed undergraduates from the University of Waterloo. None reported any history of hearing loss, and all were either native speakers of English, or learned English before the age of 5. Subjects were paid for their participation. *Stimuli and Apparatus*

Speech stimuli and the computer apparatus were the same as those described in Experiment 1. On dichotic trials, the stimulus was presented to the target ear, and the *neutral* word "fad" was presented to the opposite ear. Ear of report was cued with a 1000 Hz pure tone, 100 ms in duration, presented at a stimulus onset asynchrony (SOA) of 450 ms. Binaural trials consisted of the identical stimulus in each ear. Binaural trials were also cued, although the cue was irrelevant for the purposes of report.

Procedure.

Each task manipulation (linguistic or prosodic identification) was preceded by 36 binaural practice trials (to teach response mapping). Each task condition consisted of 4 blocks of 60 trials. Subjects responded with one hand for the first and second blocks, and the other hand for the third and fourth blocks. Earphones were reversed after the first and third blocks to control for mechanical effects. Subjects performed 12 practice trials whenever response hand was changed. Within blocks, one half of the trials were dichotic, and one half were binaural, and half were cued to each ear. Subjects identified the stimulus in the target ear as mad, sad, or glad, using the keys [b], [n], and [m], respectively. Orders of task and initial response hand were counterbalanced across subjects. The experiment took approximately 40 minutes to complete.

The design was a 2 Task (linguistic/prosodic) x 2 Congruency (neutral/incongruent) x 2 Presentation (dichotic/binaural) x 2 Attended Ear (left/right), x 2 Response Hand (left/right) factorial ANOVA with 10 trials per condition.

Results and Discussion

RTs were subjected to a simple recursive outlier procedure on a cell by cell basis, with a criterion of 3 standard deviations (Van Selst & Jolicoeur, 1994). Fewer than 1% of data points were excluded on this basis. Analyses followed the same plan outlined in Experiment 3.

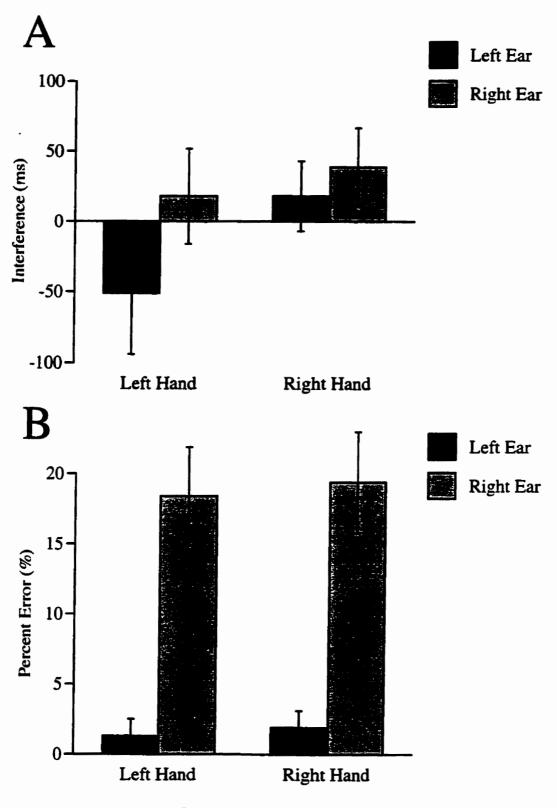
Response Times

Omnibus ANOVA. Mean RTs are presented in Table 6, and interference effects are presented in Figures 6A (linguistic task) and 7A (prosodic task). Results from the 5way repeated measures ANOVA (Task x Ear x Presentation x Congruency x Response Hand) revealed effects of Task, F(1, 30) = 97.31, p < .001, Congruency, F(1, 30) =32.88, p < .001, Task x Congruency, F(1, 30) = 4.26, p = .048, and Presentation, F(1,30) = 67.02, p < .001. These effects were all consistent with those observed in Experiment 3. The Task x Congruency effect interacted with both Ear, F(1, 30) = 11.40, p = .002 and Hand, F(1, 30) = 4.28, p = .047. The interaction with Ear indicated that there was greater interference when the cue was at the left ear than at the right ear, on the prosodic task, but greater at the right than the left ear on the linguistic task. A similar interaction was observed with Response Hand. Greater interference was observed when subjects were responding with the left than with the right hand, and again this effect was limited to the prosodic task.

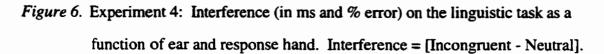
Binaural Trials. Analysis of the binaural trials revealed no main effects or interactions involving Ear, suggesting that the lateralization of the tone cue did not affect processing on binaural trials.

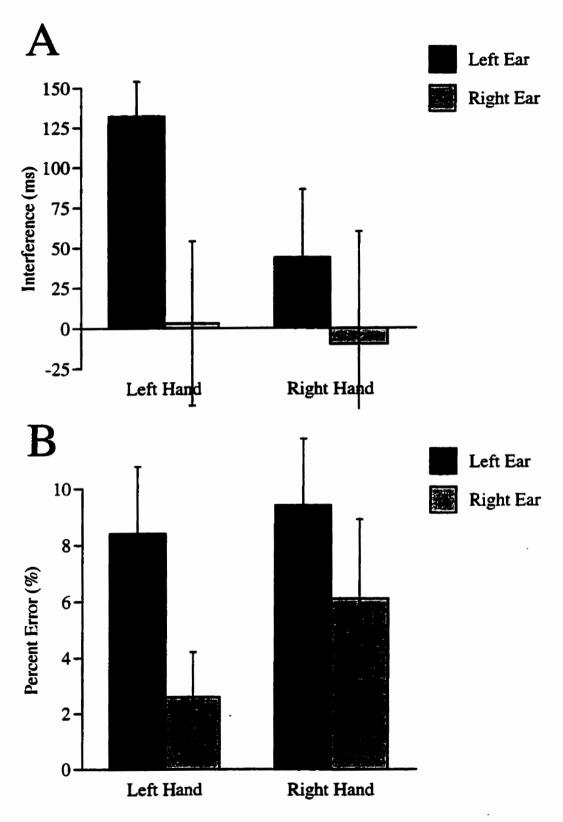
Dichotic Trials. Interference at left and right ears was compared in a 2 (Task) x 2 (Ear) x 2 (Congruency) x 2 (Response Hand) ANOVA. This analysis revealed the expected main effect of Task, F(1, 30) = 78.78, p < .001, and a Task x Ear x Congruency interaction, F(1, 30) = 6.47, p = .016. This effect reflected greater interference at the left than in the right ear, but only on the prosodic task. This pattern of results is strikingly similar to that observed in Experiment 3, and is consistent with the callosal-channel account of interhemispheric interference, if one assumes the mixed model of dichotic-listening performance. According to this model, when the stimulus is in the right ear, both linguistic and prosodic dimensions are processed in the left hemisphere. It is under these conditions that interference is eliminated. Interference is greatest when the stimulus is in the left ear. Under these conditions, prosodic information is processed in the right hemisphere, and linguistic information is processed in the left hemisphere. Interference (and therefore integration) is maximal when the two dimensions are processed in opposite hemispheres. No interactions with response hand were observed.

Table	6
-------	---

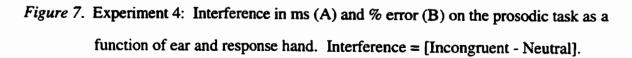

Experiment 4: Response Times as a Function of Task, Congruency, Ear, and Response Hand (n=32)

			Left	Hand					Right	Hand		
Task		utral	Incong	-	Interf		Neu	ıtral	Incon	gruent	Interf	erence
	Mean	<u>S.D.</u>	Mean	<u>S.D.</u>	Mean	S.D.	Mean	<u>S.D.</u>	Mean	<u>S.D.</u>	Mean	<u>S.D.</u>
Linguistic												
Left Ear	939	360	887	190	-51	237	873	233	891	227	18	138
Binaural	784	166	769	170	-14	80	740	162	803	214	63 *	123
Right Ear	849	267	867	195	18	191	839	233	878	255	39	157
Prosodic												
Left Ear	1113	290	1245	274	133 *	120	1157	313	1202	262	44	231
Binaural	1021	228	1107	303	86 *	160	1017	259	1081	236	64 *	133
Right Ear	1192	359	1195	254	3	283	1229	534	1219	375	-10	388


Note. Interference is measured as [Incongruent-Neutral]


.

* p < .05 (one-tailed)



Linguistic Task

Prosodic Task

Error Rates

Omnibus ANOVA. Mean error rates are presented in Table 7, and interference effects are plotted in Figures 6B (linguistic task) and 7B (prosodic task). The 5-way ANOVA revealed many significant effects. Effects were observed of Task, F(1, 30) =9.22, p = .005, Ear, F(1, 30) = 14.74, p = .001, Presentation, F(1, 30) = 71.65, p <.001, Congruency, F(1, 30) = 86.78, p < .001, Task x Ear, F(1, 30) = 13.90, p = .001, Task x Presentation, F(1, 30) = 9.19, p = .005, Ear x Presentation, F(1, 30) = 16.44, p <.001, Ear x Congruency, F(1, 30) = 12.76, p = .001, Presentation x Congruency, F(1, 30) = 30.42, p < .001, Task x Ear x Presentation, F(1, 30) = 15.24, p < .001, Task x Ear x Congruency, F(1, 30) = 18.56, p < .001, Task x Presentation x Congruency, F(1, 30) =21.46, p < .001, Ear x Presentation x Congruency, F(1, 30) = 18.56, p < .001, Task x Presentation x Congruency, F(1, 30) =

Binaural Trials. Binaural trials were analyzed separately in order to assess the effects of left and right tone cues on interference. No main effects or interactions involving Ear were observed, indicating that accuracy on binaural trials did not vary as a function of the location of the tone cue.

Dichotic Trials. Dichotic trials were analyzed in order to compare interference when attending to the left and right ears. An Ear x Congruency interaction was observed, F(1, 30) = 32.18, p < .001 that further interacted with Task F(1, 30) = 59.36, p < .001. Interference was greater in the left ear than in the right ear, but only for the prosodic task. This pattern of results is again similar to that observed in Experiment 3, and is consistent with a callosal channel account of interhemispheric interference if one assumes direct access for prosodic processing, and callosal relay for linguistic processing. In contrast with Experiment 3, no interactions involving response hand were observed. Response hand interactions in Experiment 3 may therefore have reflected group differences, or may have been the result of using the same hand throughout the experiment.

Table 7

se Hand (n
se Ha
spon
d Re:
ır, an
y, Ea
nenc
ongr
sk, C
of Ta
tion
Func
as a
Error
cent
Per
ent 4:
erime
Exp

TaskNeutral MeanIncongruentInterferenceNeLinguisticS.D.MeanS.D.MeanS.D.MeanLinguistic3.99.95.29.31.3 6.7 2.6Left Ear3.99.95.29.31.3 6.7 2.6Binaural2.14.62.74.0 0.6 5.1 1.6Right Ear1.65.920.019.718.4 *19.32.9Prosodic18.414.515.28.4 *13.25.5	Task	2											
ic 3.9 9.9 5.2 9.3 1.3 6.7 2.1 4.6 2.7 4.0 0.6 5.1 7 1.6 5.9 20.0 19.7 18.4* 19.3 6.1 8.4 14.5 15.2 8.4* 13.2		N Mean	ΞI	Incon Mean	gruent S.D.	Interf Mean	erence S.D.	Neı Mean	Neutral an <i>S.D.</i>	Incon Mean	Incongruent	Interf	Interference
3.9 9.9 5.2 9.3 1.3 6.7 2.1 4.6 2.7 4.0 0.6 5.1 2.1 4.6 2.7 4.0 0.6 5.1 7 1.6 5.9 20.0 19.7 18.4* 19.3 6.1 8.4 14.5 15.2 8.4* 13.2	Linguistic										12.0	INICAL	. <u>U.C</u>
2.1 4.6 2.7 4.0 0.6 5.1 r 1.6 5.9 20.0 19.7 18.4 * 19.3 6.1 8.4 14.5 15.2 8.4 * 13.2	Left Ear	3.9	9.9	5.2	9.3	1.3	6.7	2.6	4.5	4.5	7.7	1.9	7.0
r 1.6 5.9 20.0 <i>19.7</i> 18.4* 19.3 6.1 8.4 14.5 15.2 8.4* 13.2	Binaural	2.1	4.6	2.7	4.0	0.6	5.1	1.6	4.9	3.1	4.8	1.5 *	3.9
6.1 8.4 14.5 15.2 8.4 * 13.2	Right Ear	1.6	5.9	20.0	19.7	18.4 *	19.3	2.9	6.9	22.3	19.6	19.4 *	20.1
6.1 8.4 14.5 15.2 8.4 * 13.2	Prosodic												
	Left Ear	6.1	8.4	14.5	15.2	8.4 *	13.2	5.5	10.3	14.8	16.3	9.4 *	13.1
Binaural 3.4 5.2 8.7 8.0 5.3* 6.7 4.8	Binaural	3.4	5.2	8.7	8.0	5.3 *	6.7	4.8	5.8	12.6	12.5	7.4 *	10.8
Right Ear 8.7 11.2 11.3 9.6 2.6 8.9 7.1	Right Ear	8.7	11.2	11.3	9.6	2.6	8.9	7.1	9.7	13.2	14.9	6.1 *	15.4

* p < .05 (one-tailed)

In summary, the pattern of interference observed in Experiment 4 is very similar to that observed in Experiment 3. Generally, greater interference was observed at the left than at the right ear, especially on the prosodic task. This pattern of results is not consistent with any interpretation of the shielding hypothesis, but is consistent with the callosalchannel account if one assumes a mixed model of dichotic listening performance. Experiments 3 and 4 therefore provide converging evidence in support of the hypothesis that interference between linguistic and prosodic processes arises through interhemispheric communication.

GENERAL DISCUSSION

This series of experiments examined the interference between linguistic and prosodic processes in speech perception. Previous studies have demonstrated that these two dimensions are processed in opposite hemispheres (Bowers et al., 1987; Ley & Bryden, 1982) and Experiment 1 demonstrates that this complementary pattern of specialization maintains for the Stroop-like stimuli employed in this study. Interference therefore reflects interhemispheric integration.

Interference between linguistic and prosodic dimensions is asymmetric, that is, linguistic information interferes with prosodic processing more than prosodic information interferes with linguistic processing. However, modest interference was observed on the linguistic task in Experiment 2, and in several conditions of Experiments 3 and 4. This finding argues against a simple speed-of-processing account of the interference effect, as prosodic identification is 200 - 300 ms slower than linguistic identification. Rather, it suggests that linguistic and prosodic information interact throughout the process of speech perception.

These stimuli therefore meet the criteria outlined in the introduction in that they consist of two dimensions that are processed in opposite hemispheres and they interfere with each other.

Experiments 3 and 4 were designed to compare interference that occurs within a hemisphere to that which occurs across hemispheres. The shielding hypothesis predicts greater interference within than across hemispheres, whereas the callosal channel hypothesis makes the opposite prediction. Results from Experiment 3 were somewhat ambiguous, in that a different pattern of results was observed in the RT and in the error data for subjects who responded with the right hand. Similarly, results from the linguistic task are difficult to interpret, in that facilitation was sometimes observed on incongruent trials, and interference effects were not reliable. The findings from left-hand responders on the prosodic task are consistent with the callosal channel hypothesis if one assumes a mixed

model of dichotic listening performance, in that interference was greater at the left ear than at the right ear. Recall from Figure 1 that left-ear presentation produces cross-hemisphere processing, but right-ear presentation produces within-hemisphere processing.

The results from Experiment 4 are somewhat more straightforward, at least for the prosodic task. In both the RT and the error data, interference was greater at the left than at the right ear, a finding that is again consistent with the callosal channel hypothesis, and irreconcilable with the shielding hypothesis. Results from the linguistic task are again difficult to interpret, because the interference effects are not reliable. In Experiment 2, under normal binaural conditions, a small amount of interference was observed on the linguistic task. In order to detect differences between ears under dichotic conditions one would have to greatly increase the power of the experiment, either by using more subjects or more trials, or by increasing the amount of prosodic interference through probability manipulations or alteration of the stimuli.

Bilateral Processing Systems

Robertson's theory was developed to explain the integration of global and local analyses in visual processing. She has proposed that there is a bilateral visual processing network in which the left hemisphere component is biased toward local processing and the right hemisphere component is biased toward global processing (Robertson, 1995). The two components of the network are connected by a dedicated callosal communication channel that provides foroptimal integration of global and local analyses.

The speech processing system bears some resemblance to the visual system as it relates to global and local processing. First, speech perception may be an analogous system, in that the two components of speech processing are lateralized to opposite hemispheres. A specialized interhemispheric communication channel would therefore provide optimal integration of linguistic and prosodic information.

Secondly, the relationship may be more concrete, in that both global/local interference and linguistic/prosodic interference may be manifestations of a common

mechanism. It has been argued that the global/local dichotomy is a reflection of the hemispheres' differential sensitivities to spatial frequency information (e.g., Hellige, 1995). Specifically, the left hemisphere is specialized for the processing of relatively high spatial frequencies, whereas the right hemisphere is specialized for the processing of relatively high spatial frequencies, whereas the right hemisphere is specialized for the processing of relatively low spatial frequencies (Christman, Kitterle, & Hellige, 1991; Sergent, 1992). It has recently been reported that there are hemispheric differences in the processing of auditory stimuli on the basis of temporal frequency that parallel those for visual stimuli (Ivry & Lebby, 1993). It has therefore been argued that the left hemisphere is tuned to high frequency information (spatial or temporal) and the right hemisphere is tuned to low frequency information (Hellige, 1995). Note that phonological information is carried in the high temporal frequencies, and prosodic information is carried in the low temporal frequencies. Linguistic and prosodic components of speech may be auditory analogues of local and global components in visual processing.

Consistent with this hypothesis is the finding that global interference is dissociable from global and local processing in patients. Damage to several cortical areas can result in the impairment of global or local judgments. However, it is only damage to the temporoparietal junction (T-P) in either hemisphere that disrupts global interference. Global interference may therefore reflect the more general phenomenon of integration of high and low frequency information. This argument is further supported by the fact that the T-P junction is a multi-modal association area, rich in connections to all sensory systems (Robertson, 1995). It would be interesting to determine if patients with damage in this area (or split-brain patients) demonstrate reduced interference between linguistic and prosodic processes, as well as reduced global interference.

The findings of this series of experiments seem very counterintuitive. Robertson's hypothesis provides a theoretical framework that can explain the pattern of results. An alternative explanation can be found in Semmes (1968) hypothesis that localization in the left hemisphere is highly modular, but representation in the right hemisphere is diffuse. If

- 48 -

one assumed only direct assess, one would expect greater interference between two dimensions in the diffuse right hemisphere (left ear) than in the modular left hemisphere (right ear). However, this hypothesis does not hold for Stroop stimuli, as Stroop interference is greater in the modularized left hemisphere than in the diffuse right hemisphere (Hugdahl & Franzon, 1985; Schmitt & Davis, 1974).

However, linguistic/prosodic interference is unlike Stroop interference in many ways. I suggest that this is because it reflects the operation of an efficient, bilateral, processing mechanism, designed for the integration of both dimensions. One would hardly expect the development of a bilateral system for the integration of word and colour information.

Whereas the present series of experiments examined linguistic/prosodic interference in normal subjects using dichotic listening techniques, the callosal channel hypothesis was developed on the basis of findings with patients with unilateral lesions and callosal disconnection. If global interference and linguistic interference are analogous (or even identical) mechanisms, converging evidence should be sought from patient studies of linguistic/prosodic integration, and experimental studies of global interference in normals. Appendix A

Experiment 1: Individual Subject Data

	ent	% error		-	6	Э	0	0	42	0	e	0	34	
	Absent	RT	1130	1071	1231	1045	1058	861	1416	186	1123	1079	680	
<u>Task</u>	ar	% error	6	0	36	6	3	0	3	3	0	14	41	
Linguistic Task	Right Ear	RT	882	116	1049	696	1000	629	966	965	888	926	775	
		% error	24	0	18	5	0	8	6	9	6	68	35	
	Left Ear	RT	1144	942	1179	838	1044	780	1104	931	980	0061	746	
		Target	mad	mad	mad	sad	sad	sad	glad	glad	glad	fad	fad	
		Sex	E	يىن	E	E	Ξ	E			æ			
		i.d.	-	3	£	4	S	9	٢	œ	6	10	11	

Continued on next page

Experiment 1: Linguistic Task

51

i.d.	Sex	Target	Le RT	Left Ear % error	Right Ear RT 9	Ear % error	A RT	Absent % error
12	ш	fad	765	38	783	35	683	36
13	f	mad	1026	12	818	14	1201	0
14	نب	mad	1003	0	1014	0	1152	_
15	i jan	mad	887	18	826	3	1016	_
16	i,	sad	724	Ξ	564	3	763	4
17	i yan	sad	1131	=	963	6	0601	0
18	f	sad	606	ε	116	6	1170	-
61	ij	glad	869	20	747	6	915	S
20	ŗ	glad	829	3	802	6	870	0
21	Ļ	glad	630	20	487	Ξ	697	12
22	يسون	fad	885	28	835	16	738	0
23	f	fad	985	Ξ	942	16	1077	Ш
Continue	Continued on next page	t page						

Linguistic Task

	% error	2	S	0	0	0	0	-	4	3	5.7
	Absent										
	RT	883	1022	1179	1094	1143	1503	809	965	1284	1029
c Task	Ear % error	2	17	0	6	ŝ	8	6	9	30	9.8
Linguistic Task	Right Ear RT 9	571	824	954	116	830	910	663	712	1179	844
	Ear % error	92	29	0	0	S	15	0	31	57	18.1
	Left Ear RT	848	988	1055	886	986	995	732	792	1081	956
	Target		mad	sad	glad	fad	mad	sad	glad	fad	
	Sex	f	f	نيب	ſ	Ļ	B	Е	E	æ	
	i.d. Sex	24	25	26	27	28	29	30	31	32 m	Means

Continued on next page

.

Experiment 1: Prosodic Task

			Lef	t Ear	Rigi	nt Ear	Ab	sent
<u>i.d.</u>	Sex	Target	RT	% error	RT	% error	RT	% error
1	m	sad	1711	44	1389	45	1483	3
2	f	glad	1015	0	1009	0	1061	0
3	m	neutral	1235	28	1232	25	1326	51
4	m	mađ	891	38	849	38	988	0
5	m	glad	933	3	949	3	1024	0
6	m	neutral	1109	42	1150	34	1091	46
7	m	mad	1554	38	1718	59	2082	8
8	m	sad	1250	32	1056	21	1147	1
9	m	neutral	2376	33	1879	13	2482	43
10	m	mad	1414	62	2672	76	984	3
11	m	sad	1488	29	1407	39	1355	33

Prosodic Task

P i	Sev	Tornet	Dr D	Left Ear		Right Ear		Absent
		I al gct	R	% error	RT	% error	RT	% error
12	E	glad	1225	41	1211	43	1180	47
3	f	sad	875	6	1412	26	1218	-
4	يسر	glad	879	3	959	0	1118	1
15	نب	neutral	1786	17	1772	61	1949	33
16	f	mad	794	22	878	24	6101	-
17	Ļ	glad	1064	0	939	0	1026	0
18	ئ يس	neutral	1554	61	1762	78	1618	24
19	f	mad	914	68	1020	59	798	0
20	ų	sad	1042	15	1102	32	1148	24
21	ŧ	neutral	874	36	877	53	809	29
22	÷	mad	1054	30	1093	35	1195	0
23	<u>ب</u>	sad	1125	18	1219	37	1071	-

Prosodic Task

. |

			Lef	t Ear	Rigl	nt Ear	Ab	sent
<u>i.d.</u>	Sex	Target	RT	% error	RT	% error	RT	% error
24	f	glad	697	3	693	0	897	7
25	f	mad	844	27	849	38	927	7
26	f	sad	1379	18	1157	8	1563	29
27	f	glad	782	3	808	0	885	0
28	f	neutral	1665	19	1325	28	1754	17
29	m	mad	1070	16	1751	68	1222	3
30	m	sad	940	3	1053	8	1047	0
31	m	glad	774	22	678	5	926	1
32	m	neutral	1175	28	1288	44	1480	18
Means			1172	23.9	1224	29.9	1246	13.6

Prosodic Task

Appendix B

Experiment 2: Individual Subject Data

						<u>Linguis</u>	tic Task				
i.d	Sex	Cong RT	gruent % error	Facil RT	itation % error	Nei RT	utral % error	Interf RT	erence % error	Incon RT	gruent % error
1	f	700	0	-31	-8	731	8	97	0	828	8
2	f	1009	12	-101	8	1110	4	143	22	1253	26
3	f	888	4	122	4	766	0	153	4	919	4
4	f	717	4	-25	-4	742	8	60	-8	802	0
5	f	641	0	51	-4	590	4	10	-4	600	0
6	m	607	0	-16	0	623	0	-18	4	605	4
7	m	714	0	-32	0	746	0	-18	4	728	4
8	m	614	0	-8	0	622	0	119	0	741	0
9	f	724	0	-39	-4	763	4	-15	-4	748	0
10	f	602	0	-29	0	631	0	0	4	631	4
11	f	974	0	176	0	798	0	164	0	962	0

Experiment 2: Linguistic Task

		Cons	Congruent	Harili	Hacilitation	Non				1	
i.d	Sex	RT	% error	RT	nauton % error	Neutral RT %	itrai % error	Interf	Interference RT % error	Incon RT	Incongruent RT % error
12	Ļ	1064	0	-51	0	1115	0	-13	0	1102	0
13	E	1148	0	31	9-	1117	9	0	7	1117	13
14	ш	874	0	73	0	801	0	116	0	617	0
15	н	1279	0	100	4	1179	4	-170	0	1009	4
16	Е	606	0	-34	0	640	0	-20	0	620	0
17	E	458	0	-44	0	502	0	ထု	4	494	4
18	÷	580	œ	-27	ø	607	0	98	0	705	0
19	E	547	œ	0	×	547	0	34	0	581	0
20	E	675	0	-83	-12	758	12	-85	-12	673	0
21	E	620	0	21	4	599	4	26	0	625	ব
22	E	749	4	-38	0	787	4	88	4	875	0

٠

Linguistic Task

		Con	gruent	Facil	itation	Ne	utral	Inter	ference	Incor	gruent
i.d	Sex	RT	% error	RT	% error	RT	_% error	RT	% error	RT	% error
23	f	713	0	28	0	685	0	-5	0	680	0
24	f	845	0	-2	-4	847	4	12	8	859	12
Means		765	1.7	2	-0.9	763	2.6	32	1	795	3.6

Linguistic Task

		Con	gruent	Facil	itation	Ne	utral	Inter	ference	Incor	ngruent
i.d	Sex	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
1	f	735	0	-21	-4	756	4	124	0	880	4
2	f	1447	0	319	-12	1128	12	558	17	1686	29
3	f	1439	0	-24	0	1463	0	160	12	1623	12
4	f	877	0	0	0	877	0	96	12	973	12
5	f	703	0	-200	0	903	0	-21	8	882	8
6	m	776	4	-98	-4	874	8	41	4	915	12
7	m	787	0	-14	-4	801	4	82	-4	883	0
8	m	685	0	-67	0	752	0	84	8	836	8
9	f	830	0	97	0	733	0	161	8	894	8
10	f	764	0	-38	-4	802	4	164	-4	966	0
11	f	1076	0	-19	0	1095	0	17	8	1112	8
11	ł	1070	v	-17	v	1097	v	1 /	U	1112	

Experiment 2: Prosodic Task

Continued on next page

Prosodic Task

		Cong	gruent	Facil	itation	Neutral		Interference		Incongruent	
i.d	Sex	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
12	f	1101	0	-14	0	1115	0	57	8	1172	8
13	m	931	4	158	0	773	4	123	0	896	4
14	m	923	0	7	0	916	0	123	0	1039	0
15	m	867	2	-270	2	1137	0	-270	14	867	14
16	m	909	0	-41	0	950	0	150	0	1100	0
17	m	697	0	31	-8	666	8	192	-4	858	4
18	f	955	0	-203	-4	1158	4	142	16	1300	20
19	m	739	0	-111	-8	850	8	133	4	983	12
20	m	857	0	-34	-8	891	8	11	4	902	12
21	m	607	4	-38	4	645	0	13	4	658	4
22	m	879	0	-7	0	886	0	219	0	1105	0

Prosodic Task

<u>isk</u>	
Ta	
<u>.</u>	
В	
SO	
4	

Incongrisant	mgrucin % error	12	4	8.1
Incor	RT	1050	1130	1030
Interference	% error	4	0	4.6
Interf	RT	149	120	110
Neutral	% error	16	4	3.5
Neı	RT	106	1010	920
Facilitation	% error	-16	4-	-2.9
Facil	RT	6	64	-22
Congruent	% error	0	0	0.6
Conf	RT	907	1074	899
	i.d Sex	ů.	ليسع	
	p.i	23	24	Means

Appendix C

Experiment 3: Individual Subject Data

.

Experiment 3: Linguistic Dichotic Task

Linguistic Dichotic Task

Ear
eft]
Ľ

	Inconornent	% error	0.0	75.0	8.0	0.0	0.0	0.0	0.0	16.0	0.0
	Incon	RT	975	2055	728	1106	961	883	633	695	668
	Interference	% error	0.0	25.0	8.0	0.0	0.0	0.0	-8.0	16.0	-8.0
	Interf	RT	-41	208	- 147	5	٢	-	36	-68	63
Left Ear	itral	% error	0.0	50.0	0.0	0.0	0.0	0.0	8.0	0.0	8.0
Left	Neutral	RT	1016	1847	875	1101	954	882	597	763	605
	Facilitation	% error	0.0	8.0	0.0	0.0	0.0	0.0	-8.0	0.0	-8.0
	Facili	RT	-57	122	-57	171	-121	-66	72	0	ŝ
	Congruent	% error	0.0	58.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Cong	RT	959	1969	818	1272	833	816	699	763	608
		Hand	<u>ب</u>	-	L	_	L	-	L	_	`
		Sex	E	E	E	E	نب	ų.	f	÷	Е
		i.d.	-	7	ŝ	4	S	9	٢	œ	6

Linguistic Dichotic Task Left Ear

Incongruent	% error 16.0	0.0	0.0	0.0	0.0	B .0	8.0	8.0	16.0	16.0
Incon	11/6	765	931	973	1070	883	906	769	704	728
Interference RT % error	16.0	0.0	0.0	0.0	-8.0	8.0	8.0	0.0	16.0	16.0
Interf RT	5	-205	3	14	155	-83	34	60	-72	-115
Neutral	0.0	0.0	0.0	0.0	8.0	0.0	0.0	8.0	0.0	0.0
Nei RT	696	026	929	959	915	996	932	209	776	843
Facilitation XT % error	0.0	8.0	8.0	0.0	-8.0	8.0	0.0	-8.0	0.0	0.0
Facili RT	-125	-143	11-	-64	21	-181	-42	11-	-54	-13
Congruent ET % error	0.0	8.0	8.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0
Con RT	844	827	918	895	936	785	890	869	722	830
Hand	-	L	-	-	_	`	_	L	-	-
Sex	E	Ε	æ	ų	f	÷	÷	æ	E	æ
i.d.	10	Ξ	12	13	14	15	16	17	18	61

Left Ear

uent % error	0.0	8.0	8.0	0.0	0.0	0.0	0.0	16.0	0.0	0.0
Incongruent RT % ei	-		-	•	-	-	•	-		•
Ince RT	901	922	786	902	672	748	780	623	823	834
Interference RT % error	0.0	8.0	8.0	0.0	-8.0	0.0	0.0	0.0	0.0	0.0
Interfi RT	67	201	13	162	57	36	33	-118	-21	L-
Neutral % error	0.0	0.0	0.0	0.0	8.0	0.0	0.0	16.0	0.0	0.0
Nei RT	834	721	773	740	615	712	747	741	844	841
Facilitation XT % error	0.0	16.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Facili RT	104	120	-32	43	48	-12	-48	-95	-76	-25
Congruent KT % error	0.0	16.0	0.0	0.0	8.0	0.0	0.0	16.0	0.0	0.0
Cong RT	938	841	741	783	663	700	669	646	768	816
Hand	_	÷	-	5	-	5	_	г	-	-
Sex	E	÷	f	Ļ	ن ب	E	Ξ	E	E	i.
i.d.	20	21	22	23	24	25	26	27	28	29

Left Ear

			Cong	Congruent F		Facilitation		utral	Interference		Incongruent	
<u>i.d.</u>	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
30	f	ł	731	0.0	-44	0.0	775	0.0	51	0.0	826	0.0
31	f	r	823	0.0	40	0.0	783	0.0	50	16.0	833	16.0
32	f	I	677	8.0	16	8.0	661	0.0	28	8.0	689	8.0
Means	5		840	4.1	-16	0.8	856	3.3	13	3.8	869	7.1

Right Ear

1

			Con	gruent	Facilitation		Nei	utral	Interference		Incongruent	
i.d	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
1	m	r	820	0.0	-524	0.0	1344	0	-308	0	1036	0
2	m	1	847	0.0	-165	0.0	1012	0	-103	0	909	0
3	m	r	836	0.0	2	-8.0	834	8	9	-8	843	0
4	m	I	822	0.0	-14	-8.0	836	8	-53	-8	783	0
5	f	r	746	8.0	-177	8.0	923	0	-84	0	839	0
6	f	1	987	0.0	-153	0.0	1140	0	-97	16	1043	16
7	f	r	727	0.0	-107	0.0	834	0	-45	8	789	8
8	f	ł	760	8.0	35	8.0	725	0	47	0	772	0
9	m	r	538	0.0	-104	-8.0	642	8	-34	-8	608	0

Right Ear

uent % arror	0	œ	×	0	0	0	0	×	0	0
Incongruent RT % a		848	818	1046	951	765	1058	672	565	768
		00	00	Ξ	6	Ľ	10	Q,	S.	26
Interference RT % error	0	ထု	0	0	0	8-	0	8	0	0
Interf RT	-22	42	84	-13	37	28	156	-86	-47	-80
Neutral	0	16	œ	0	0	œ	0	0	0	0
Neı RT	788	806	734	1059	914	737	902	758	612	848
tation % error	8.0	-16.0	-8.0	16.0	0.0	-8.0	8.0	8.0	0.0	0.0
Facilitation RT % et	61	-11	93	-213	-192	56	17	-28	-37	11
Congruent 8T % error	8.0	0.0	0.0	16.0	0.0	0.0	8.0	8.0	0.0	0.0
Cong RT	849	795	827	846	722	793	919	730	575	616
Hand	-		_	Ŀ	-	Ŀ	-	L		L
Sex	Ш	E	Ξ	÷	ц.	f	f	E	E	E
i.d.	10	11	12	13	14	15	16	17	18	61

Continued on next page

Right Ear

uent % error	0	16	œ	×	œ	œ	0	0	0	0
Incongruent RT % et		673	806	845	683	736	805	583	848	767
rence % error	0	16	œ	œ	×	œ	0	တို	0	0
Interference RT % er	-136	-149	6	4-	96	ŝ	-20	-	68	-38
itral % error	0	0	0	0	0	0	0	80	0	0
Neutral RT %	779	822	L97	849	587	741	825	584	780	805
ation % error	0.0	0.0	0.0	0.0	0.0	0.0	8.0	-8.0	0.0	0.0
Facilitation RT % el	-65	-261	-125	24	92	33	-106	Ś	-47	60
ruent % error	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.0	0.0	0.0
Congruent RT % e	912	561	672	873	619	774	719	589	733	865
Hand	-	ب	-	Ŀ	-	<u> </u>	_	`	_	5
Sex	B	نيس	ι.	ι	i,	Е	Е	E	Ξ	÷
i.d.	20	21	22	23	24	25	26	27	28	29

Right Ear

			Con	gruent	Facilitation		Ne	utral	Interf	erence	Incor	gruent
<u>i.d.</u>	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
30	f	ł	672	0.0	47	0.0	625	0	136	0	761	0
31	f	r	880	0.0	-74	0.0	954	0	-193	0	761	0
32	f	I	691	8.0	-59	0.0	750	8	-53	0	697	8
Means	8		771	2.3	-58	0.0	830	2.3	-27	1.0	803	3.3

Experiment 3: Linguistic Binaural Task

Linguistic Binaural Task

	gruent % error	0.0	0.0	0.0	8.0	0.0	0.0	8.0	0.0	0.0
	Incongruent RT % eri	1002	973	LLL	912	865	758	690	645	541
	Interference RT % error	0.0	0.0	0.0	8.0	0.0	0.0	8.0	0.0	0.0
	Interf RT	9	74	25	-29	ဆု	-26	-85	-43	- 14
Left Ear	ıtral % error	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Left	Ncutral RT %	1008	899	752	941	873	784	775	688	555
	Facilitation 8T % error	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0
	Facili RT	21	133	6	06-	-	24	ŗ.	49	ين
	ngruent % error	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0
	Cong RT	1029	1032	758	851	862	808	770	737	550
	Hand	Ŀ		L		L	-	ن	_	٤
	Sex	Е	E	E	E	ب ب	i.	نب	ب	æ
	i.d.	-	2	æ	4	Ś	9	٢	œ	6

Linguistic Binaural Task

•

Left Ear

gno	955 0.0		1242 8.0	0.0 866	809 8.0	847 0.0	956 0.0	734 0.0	672 8.0	812 8.0
Interference	0.0	0.0	8.0	-8.0	8.0	0.0	-8.0	0.0	8.0	8.0
Inter	88	ŝ	359	45	27	92	87	73	0	68
Neutral	0.0	8.0	0.0	8.0	0.0	0.0	8.0	0.0	0.0	0.0
Nc BT	897	804	883	953	782	755	869	661	672	744
Facilitation 2T % error	0.0	-8.0	8.0	-8.0	8.0	0.0	-8.0	0.0	0.0	16.0
Facil RT	02	6-	104	-22	117	81	43	26	-51	50
Congruent RT % error	0.0	0.0	8.0	0.0	8.0	0.0	0.0	0.0	0.0	16.0
Con	967	795	987	931	668	836	912	687	621	794
Hand	-	1	-	ب	I	ы	_	'n	-	ï
Sex	1	Ш	ш	ί.	f	ų.	Ļ	E	В	E
i.d.	0	II	12	13	14	15	16	17	18	19

Linguistic Binaural Task

Left Ear

ruent % error	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0	9
Incongruent RT % err		0	0	0	0	0	0.0	0.0	0.0	0.0
Inco RT	905	811	706	805	623	669	679	668	875	752
Interference RT % error	0.0	0.0	-8.0	0.0	0.0	-8.0	0.0	0.0	0.0	0.0
Inter RT	12	164	20	×	80	12	-27	23	76	Ļ
Neutral % error	0.0	0.0	8.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0
Ne RT	893	647	686	797	543	687	706	645	66L	755
Facilitation XT % error	0.0	0.0	-8.0	0.0	0.0	-8.0	0.0	0.0	0.0	0.0
Facil RT	-42	44	-36	76	105	-15	×	30	19	-32
Congruent 8T % error	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RT Con	851	169	650	873	648	672	714	675	818	723
Hand	_	-	-	-	-	۲.	_	L		-
Sex	u	j.	ų		f	ε	E	E	E	÷
i.d.	20	21	22	23	24	25	26	27	28	29

<u>Linguistic Binaural Task</u>

Left Ear

	.Or		-		
Inconariant	igi ucilit % error	0.0	0.0	8.0	2.0
lncon	RT	830	801	635	806
Interference	% error	0.0	0.0	0.0	0.5
Inter	RT	86	114	12-	37
Neutral	% error	0.0	0.0	8.0	1.5
Ne	RT	744	687	706	768
Facilitation	% error	0.0	0.0	-8.0	-0.3
Facil	RT	-10	36	-69	20
ongruent	% error	0.0	0.0	0.0	1.3
Con	RT	734	723	637	789
	i.d. Sex Hand	-	'n	1	
	Sex	ن ب	۰ ب	ί μι	
	i.d.	30	31	32	Means

Linguistic Binaural Task

Ear	
Right	

		or									
	Incongruent	% error	0	0	0	0	0	0	œ	0	0
	Incor	RT	1027	1052	812	<i>6LL</i>	833	200	768	700	605
	Interference	% error	0	8-	ø,	0	0	0	8	0	0
	Inter	RŢ	-213	180	19	68	39	31	67	-65	85
	Neutral	% error	0	80	80	0	0	0	0	0	0
0	Nei	RT	1240	872	793	711	794	876	101	765	520
	Facilitation	% error	0.0	-8.0	-8.0	0.0	0.0	0.0	0.0	8.0	0.0
	Facil	T	-249	-33	-51	6-	161	165	54	-87	57
	ngruent	% error	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.0
		RT	166	839	742	702	955	1041	755	678	577
	-	Sex Hand	'n	-	L	-	-	-	5		ы
	5	Sex	E	E	E	E	÷	ц.	ų.	۰ ب	Ε
	-	1.d.	-	3	ŝ	4	Ś	9	٢	œ	6

<u>Linguistic Binaural Task</u>

Right Ear

879 848 1041 890 948 948 948 729 729 745 745		Sex	Hand	Con, RT	Congruent 8T % error	Facil RT	Facilitation RT % error	Ne RT	Neutral F % error	Interl RT	Interference RT % error	Incor RT	Incongruent RT % error
0.0 30 0.0 781 0 67 0 848 0.0 22 0.0 718 0 323 8 1041 0.0 -175 0.0 993 0 -103 0 890 0.0 -175 0.0 919 0 293 0 990 0.0 -322 0.0 919 0 299 0 948 0.0 -103 -160 723 16 729 0 948 0.0 -103 -160 723 16 6 729 0 0.0 11 0.0 855 0 50 0 729 145 0.0 28 0.0 572 0 733 0 745 145 145 0.0 -54 0.0 733 0 733 0 740 140 140	E		_	816	0.0	47	0.0	769	0	110	0	879	0
0.0 22 0.0 718 0 323 8 1041 0.0 -175 0.0 993 0 -103 0 890 . 0.0 -175 0.0 919 0 -103 0 890 . 0.0 -32 0.0 919 0 29 0 948 0.0 -103 -16.0 723 16 6 -16 729 9 0.0 -103 -16.0 723 16 6 716 729 9 0.0 11 0.0 855 0 50 0 745 9 0.0 28 0.0 572 0 173 0 745 145 0.0 -54 0.0 733 0 734 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140	Ξ		<u>`-</u>	811	0.0	30	0.0	781	0	67	0	848	0
0.0 -175 0.0 993 0 -103 0 890 . 0.0 -32 0.0 919 0 29 0 948 9 0.0 -103 -16.0 723 16 6 -16 729 9 0.0 -103 -16.0 723 16 6 -16 729 9 0.0 11 0.0 855 0 50 0 905 9 9 905 9 <			-	740	0.0	22	0.0	718	0	323	×	1041	œ
0.0 -32 0.0 919 0 29 0 948 0.0 -103 -16.0 723 16 6 -16 729 1 0.0 -103 -16.0 723 16 6 -16 729 1 0.0 11 0.0 855 0 50 0 905 0 0.0 11 0.0 855 0 50 0 745 0 0.0 28 0.0 572 0 173 0 745 0 0.0 581 0 135 0 726 0 726 0 0.0 -54 0.0 733 0 73 0 740 0 740 0 740 0 740 0 740 0 740 0 740 0 740 0 740 0 740 0 740 0 740 0 740 <td></td> <td></td> <td>i</td> <td>818</td> <td>0.0</td> <td>-175</td> <td>0.0</td> <td>993</td> <td>0</td> <td>-103</td> <td>0</td> <td>890</td> <td>0</td>			i	818	0.0	-175	0.0	993	0	-103	0	890	0
0.0 -103 -16.0 723 16 6 -16 729 7 0.0 11 0.0 855 0 50 0 905 9 0.0 11 0.0 855 0 50 0 905 9 0.0 28 0.0 572 0 173 0 745 0 0.0 6 0.0 591 0 135 0 726 0 0.0 -54 0.0 733 0 7 0 740 0			1	887	0.0	-32	0.0	616	0	29	0	948	0
0.0 11 0.0 855 0 50 0 905 0 0.0 28 0.0 572 0 173 0 745 0 0.0 6 0.0 591 0 135 0 726 0 0.0 -54 0.0 733 0 7 0 740 0			'n	620	0.0	-103	-16.0	723	16	9	-16	729	0
0.0 28 0.0 572 0 173 0 745 0.0 6 0.0 591 0 135 0 726 0.0 -54 0.0 733 0 7 0 740			_	866	0.0	11	0.0	855	0	50	0	905	0
0.0 6 0.0 591 0 135 0 726 0.0 -54 0.0 733 0 7 0 740	Ξ		L	600	0.0	28	0.0	572	0	173	0	745	0
0.0 -54 0.0 733 0 7 0 740	E		-	597	0.0	9	0.0	165	0	135	0	726	0
	E		1 -	679	0.0	-54	0.0	733	0	7	0	740	0

Linguistic Binaural Task

Right Ear

0.0 18 0.0 811 0 65 0 876 0 0.0 -31 0.0 625 0 69 0 694 0 0.0 -71 0.0 625 0 619 679 0 0.0 -78 -8.0 919 8 62 -8 981 0 0.0 -78 -8.0 919 8 62 -8 981 0 0.0 -77 0.0 586 0 89 0 675 0 0.0 27 0.0 586 0 -3 0 708 0 0.0 1 0.0 711 0 -3 0 708 0 0.0 -39 0.0 713 0 713 0 703 0 0.0 -56 8.0 71 0 713 0 715 0 715 0	Hand	1	Con RT	Congruent RT % error	Facil RT	Facilitation 8T % error	RT	Neutral	Inter RT	Interference RT % error	Incol RT	Incongruent RT % error
-31 0.0 625 0 69 0 694 -7 0.0 690 0 -11 0 679 -78 -8.0 919 8 62 -8 981 271 0.0 586 0 89 981 27 0.0 711 0 89 981 1 0.0 711 0 89 981 -39 0.0 711 0 708 908 -39 0.0 805 0 3 0 708 56 8.0 480 0 13 0 493 -6 0.0 712 0 713 0 695 -94 0.0 784 0 60 0 715	1 829	829		0.0	18	0.0	811	0	65	0	876	0
-7 0.0 690 0 -11 0 679 -78 -8.0 919 8 62 -8 981 27 0.0 586 0 89 0 675 271 0.0 586 0 89 0 675 1 0.0 711 0 89 0 708 -39 0.0 711 0 -3 0 708 -39 0.0 805 0 3 0 808 -39 0.0 713 0 713 0 493 -6 0.0 712 0 13 0 695 -94 0.0 784 0 -17 0 695 9	г 594	594		0.0	-31	0.0	625	0	69	0	694	0
-78 -8.0 919 8 62 -8 981 27 0.0 586 0 89 0 675 1 0.0 586 0 89 0 675 1 0.0 711 0 -3 0 708 -39 0.0 711 0 -3 0 708 -39 0.0 805 0 3 0 708 -39 0.0 805 0 3 0 808 -39 0.0 713 0 493 0 493 -94 0.0 784 0 -569 0 715 0	1 683			0.0	L-	0.0	069	0	-	0	619	0
27 0.0 586 0 89 0 675 1 0.0 711 0 -3 0 708 -39 0.0 805 0 3 0 708 -39 0.0 805 0 3 0 808 -56 8.0 480 0 13 0 493 -6 0.0 712 0 13 0 695 -94 0.0 784 0 -69 0 715 0			0	0.0	-78	-8.0	616	œ	62	œ	186	0
1 0.0 711 0 -3 0 708 -39 0.0 805 0 3 0 808 56 8.0 480 0 13 0 493 -6 0.0 712 0 13 0 493 -94 0.0 784 0 -69 0 715			0	0.	27	0.0	586	0	89	0	675	0
-39 0.0 805 0 3 0 808 56 8.0 480 0 13 0 493 -6 0.0 712 0 -17 0 695 -94 0.0 784 0 -69 0 715	r 712 0		Ö	0	-	0.0	711	0	ę.	0	708	0
56 8.0 480 0 13 0 493 -6 0.0 712 0 -17 0 695 -94 0.0 784 0 -69 0 715			Ö	0	-39	0.0	805	0	3	0	808	0
-6 0.0 712 0 -17 0 695 -94 0.0 784 0 -69 0 715			α	0	56	8.0	480	0	13	0	493	0
-94 0.0 784 0 -69 0 715			0	0.	ę	0.0	712	0	-17	0	695	0
	r 690 0		0	0.	-94	0.0	784	0	69-	0	715	0

Linguistic Binaural Task

Right Ear

			Con	gruent	Facil	litation	Ne	utral	Inter	ference	Incor	ngruent
<u>i.d.</u>	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
30	f	1	719	0.0	1	0.0	718	0	-63	0	655	0
31	f	r	726	0.0	6	0.0	720	0	35	0	755	0
32	f	I	661	0.0	-23	0.0	684	0	-34	8	650	8
Means	2		743	0.5	-12	-0.8	755	1.25	36	-0,5	791	0.75

Experiment 3: Prosodic Dichotic Task

Prosodic Dichotic Task

Ear	
Left]	

ruent % error	16	16	œ	41	0	16	∞	∞	16
Incongruent RT % er	1486	1614	812	1935	1181	1031	983	1222	983
rence % error	8.0	8.0	8.0	41.0	0.0	16.0	0.0	0.0	16.0
Interference RT % en	-311	-163	78	582	12	19	208	611	216
ral % error	œ	×	0	0	0	0	œ	×	0
Ncutral RT %	1797	1777	734	1353	1169	1012	775	1103	767
ution % error	0.0	8.0	0.0	0.0	0.0	0.0	-8.0	-8.0	0.0
Facilitation RT % et	-111	-407	-10	-149	62-	-54	-85	œ	20
uent % error	œ	16	0	0	0	0	0	0	0
Congruent RT % e	1686	1370	724	1204	1090	958	069		787
Hand	ب	-	`		Ŀ	_	5	_	-
Sex	E	E	E	Ε	ىب	ų	با	ί	E
i.d.	-	2	e.	4	S	9	٢	×	6

Left Ear

uent % error	∞	25	25	œ	œ	œ	25	8	16	0
Incongruent RT % er									-	Ŭ
Inco RT	1253	1086	959	1389	1092	1142	1116	781	1175	1618
Interference RT % error	0.0	25.0	25.0	8.0	8.0	-8.0	17.0	8.0	16.0	-8.0
Inter RT	-151	156	281	347	216	-251	∞	99	-52	-110
ıtral % error	œ	0	0	0	0	16	×	0	0	80
Neutral RT %	1404	930	678	1042	876	1393	1108	715	1227	1728
ation % error	0.0	8.0	8.0	0.0	0.0	-16.0	-8.0	8.0	8.0	-8.0
Facilitation RT % ei	-344	-37	87	167	204	-359	-24	57	-209	142
ruent % error	œ	80	œ	0	0	0	0	80	œ	0
Congruent RT % e	1060	893	765	1209	1080	1034	1084	772	1018	1870
Hand	1		_	L	_	۲	_	L	_	-
Sex	В	æ	E	4 -	f	ليس	ن يس	E	ε	E
i.d.	10	11	12	13	14	15	16	17	18	61

Left Ear

				gruent	Facil	itation	Nei	utral	Interf	erence	Incon	gruent
<u>i.d.</u>	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
20	m	I	1016	0	-119	-8.0	1135	8	20	8.0	1155	16
21	f	r	850	0	-158	-16.0	1008	16	-11	-8.0	997	8
22	f	l	858	0	-31	-8.0	889	8	124	0.0	1013	8
23	f	r	1025	8	-200	0.0	1225	8	-3	-8.0	1222	0
24	f	ł	686	8	-77	8.0	763	0	22	16.0	785	16
25	m	r	841	0	-57	0.0	898	0	-79	8.0	819	8
26	m	1	1038	8	-1	8.0	1039	0	116	25.0	1155	25
27	m	r	768	8	-57	8.0	825	0	-29	16.0	796	16
28	m	1	841	0	63	-8.0	778	8	163	-8.0	941	0
29	f	r	1012	0	-4	-8.0	1016	8	74	-8.0	1090	0

Left Ear

			Cong	gruent	Facil	itation	Nei	utral	Interf	erence	Incon	gruent
<u>i.d.</u>	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
30	f	1	958	0	-174	0.0	1132	0	37	16.0	1169	16
31	f	r	1234	0	-50	-16.0	1284	16	-209	-8.0	1075	8
32	f	1	871	8	-164	0.0	1035	8	183	8.0	1218	16
Means	1		1013	3.3	-69	-1.5	1082	4.8	52	7.7	1134	12.4

<u> </u>
S
3
La
·
<u> </u>
Ξ.
0
-
S
\square
ă
Š
Ö
5

Ear	
Right	

Incongruent RT % error	0	16	25	33	×	0	25	33	16
Incon, RT	1624	1318	835	1126	1222	1254	006	1181	890
Interference RT % error	0	0	25	25	8	0	25	33	16
Interf RT	86-	-311	-52	-105	53	46	44	-148	208
ıtral % error	0	16	0	8	0	0	0	0	0
Ncutral RT %	1722	1629	887	1231	1169	1208	856	1329	682
Facilitation 8T % error	8.0	9.0	8.0	-8.0	0.0	8.0	0.0	0.0	0.0
Facili RT	-85	-461	-141	-29	-111	-181	69-	-379	22
Congruent XT % error	œ	25	œ	0	0	œ	0	0	0
Cong RT	1637	1168	746	1202	1058	1027	787	950	704
Hand	i	_	۲	-	Ŀ	_	L	_	L
Sex	E	E	E	E	ų	f	ي	ليعم	E
i.d.	-	5	c.	4	S	9	7	×	6

Right Ear

			Cong	gruent	Facili	itation	Ne	utral	Interf	erence	Incon	gruent
<u>i.d.</u>	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error
10	m	1	1309	0	168	0.0	1141	0	312	16	1453	16
11	m	r	890	0	-31	~8.0	921	8	160	25	1081	33
12	m	I	840	0	ì	-33.0	839	33	121	-17	960	16
13	f	r	983	0	-54	0.0	1037	0	99	8	1136	8
14	f	I	987	0	-248	0.0	1235	0	-260	8	975	8
15	f	r	1107	0	-167	0.0	1274	0	14	25	1288	25
16	f	I	968	0	-45	-8.0	1013	8	261	0	1274	8
17	m	r	836	8	-91	8.0	927	0	-122	0	805	0
18	m	I	1213	8	-246	-8.0	1459	16	-270	-8	1189	8
19	m	r	1887	0	260	0.0	1627	0	-170	25	1457	25

Right Ear

ror										
Incongruent RT % error	0	16	8	8	œ	œ	0	0	0	0
Incon RT	841	673	806	845	683	736	805	583	848	767
Interference RT % error	0	16	œ	œ	œ	œ	0	0	0	0
Interf RT	11-	-178	-134	-517	-230	96-	161-	-160	94	-281
ıtral % error	0	0	0	0	0	0	0	0	0	0
Neutral RT %	912	851	940	1362	913	832	966	743	754	1048
tation % error	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Facilitation RT % el	61	-34	-150	661-	-138	-58	-70	-86	25	-182
Congruent RT % error	0	0	0	0	0	0	0	0	0	0
Cong RT	973	817	190	1163	775	774	926	657	<i>6LL</i>	866
Sex Hand	-	<u>ب</u>	_	-		-	-	L	_	-
Sex	E	÷	f	ų	ų	E	E	Ħ	E	ų
i.d.	20	21	22	23	24	25	26	27	28	29

Right Ear

Incongruent	% error	0	3	16	25		12.3
Incon	Ī	934		106	1357		1023
Interference DT <u>m</u>	% error	0	2	0	17		9.2
Interfa DT		-102		007-	188		-66
itral % error		0	C	>	8		3.0
Neutral RT %		1036	1011		1169		1089
ation % error		0.0	0.0	•	-8.0		-1.0
Facilitation RT % et		13	-126		-157		-93
uent % error		0	0		0		2.0
Congruent RT % e		1049	975		1012		995
i.d. Sex Hand		-	L				
Sex		ب	÷	¢	-		
i.d.		30	31	Ċ	25	Mana	INICALIS

Experiment 3: Prosodic Binaural Task

Prosodic Binaural Task

Left Ear

	snt	% error	8	œ	0	œ	0	0	8	œ	8	
	gno:		6	4	~	4	~	•			~	
	-		1336	1334	838	1204	1463	1029	1051	1463	1031	
	Interference BT & arror		8.0	0.0	0.0	0.0	0.0	-8.0	8.0	8.0	8.0	
	Inter RT		-65	-337	90	-206	65	122	186	508	334	
Left Ear	Neutral		0	œ	0	8	0	œ	0	0	0	
Let	Nei RT		1401	1671	748	1410	1398	607	865	955	697	
	Facilitation 8T % error	00	0.0	0.0	0.0	-8.0	0.0	-8.0	0.0	0.0	0.0	
	Facil RT	61	701	-121	-27	48	-189	183	-29	-87	169	
	Congruent 8T % error	c	>	œ	0	0	0	0	0	0	0	
	Con _{ RT	1583		1550	721	1458	1209	1090	836	868	866	
	Hand	5	,	_	. .	_	-		5	_	L	
	Sex	H		8	E	E	نب	÷	÷	ن يہ	m	
	i.d.	_		2	ŝ	4	S	9	2	œ	6	

Continued on next page

.

Left Ear

i.d.	Sex	Hand	RT Con	Congruent 8T % error	Facili RT	Facilitation 2T % error	Nei RT	Neutral	Interf RT	Interference RT % error	Incon RT	Incongruent RT % error
10	Ξ	_	1172	0	-559	-16.0	1731	16	-443	-8.0	1288	x
11	E	÷	778	16	-138	8.0	916	œ	ę	0.0	910	œ
12	E	-	781	0	18	0.0	763	0	73	8.0	836	œ
13	نيسة	5	1184	0	13	-8.0	1171	8	33	0.0	1204	œ
14	f	-	913	0	-127	0.0	1040	0	18	33.0	1058	33
15	ئیے	Ŀ	938	0	-252	0.0	1190	0	-67	0.0	1123	0
16	ст.	-	936	0	-48	0.0	984	0	70	0.0	1054	0
17	E	<u>-</u>	687	0	-22	0.0	709	0	30	0.0	739	0
18	E	_	1090	0	13	0.0	1077	0	373	16.0	1450	16
61	E	L	1492	0	427	0.0	1065	0	813	8.0	1878	×

Left Ear

lt rror		-		_	_					
Incongruent RT % error	0	0	00	0	0	25	16	8	œ	0
Incol RT	106	1073	959	1195	815	881	1066	880	877	1105
Interference RT % error	-8.0	-16.0	8.0	0.0	-16.0	25.0	8.0	8.0	8.0	0.0
Inter RT	-237	152	83	67	5	93	-15	179	961	105
Neutral % error	œ	16	0	0	16	0	œ	0	0	0
Nei RT	1138	921	876	1098	813	788	1081	701	681	0001
Facilitation XT % error	-8.0	-8.0	0.0	0.0	-16.0	0.0	-8.0	0.0	0.0	8.0
Facili RT	-329	150	4-	-128	-112	173	-41	47	53	-123
Congruent RT % error	0	ø	0	0	0	0	0	0	0	×
Cong RT	608	1071	872	970	701	961	1040	748	734	877
Hand	1	<u>.</u>	-	÷	_	L	_	i	-	<u>ب</u>
Sex	E	÷	ų	Ļ	(ins	E	E	E	E	ίμ.
i.d.	20	21	22	23	24	25	26	27	28	29

Continued on next page

Left Ear

ł

	Congruent					litation	Neutral I		Inter	Interference		Incongruent	
i.d	. Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error	
30) f	I	991	0	-66	0.0	1057	0	97	8.0	1154	8	
31	f	r	801	16	-60	16.0	861	0	137	16.0	998	16	
32	f f	1	989	0	-21	-8.0	1010	8	70	8.0	1080	16	
Меа	ans		991	1.8	-31	-1.8	1023	3.5	80	4.1	1102	7.6	

-

Ear	
Right	

	ruent % error	0	0	33	80	0	0	25	80	8	
	Incongruent RT % err	1391	1376	781	1431	0611	104	750 2	1053	891	
	or	0	ş	33	0	0	0	25	0	0	
	Interference RT % err	57	-187	80	-211	153	143	-37	154	75	
Eal	tral % error	0	œ	0	œ	0	0	0	œ	×	
NIGH CAI	Neutral RT %	1334	1563	773	1642	1037	961	787	668	816	
	tation % error	0.0	-8.0	0.0	-8.0	0.0	0.0	0.0	-8.0	-8.0	
	Facilitation RT % err	693	-565	-38	-401	-56	٢	-36	ę	-42	
	ruent % error	0	0	0	0	0	0	0	0	0	
	Congruent RT % err	2027	866	735	1241	981	968	751	893	774	
	Sex Hand	<u>ت</u>	_	.	_	:	-	`	-	'n	
	Sex	E	B	ε	æ	ij	Ļ	·+	ب	E	
	i.d.	-	7	e	4	Ś	9	7	×	6	

Right Ear

	Incongruent	0	8	œ	16	16	80	œ	0	16	0	
	Incol	1497	948	862	666	1043	1260	1063	723	1118	1601	
	Interference RT % error	φ	0	8	œ	16	ø	8	0	16	0	
	Inter RT	228	121	118	27	166	21	-41	42	127	113	
	Neutral	œ	8	0	×	0	16	0	0	0	0	
9	Nei RT	1269	827	744	972	877	1239	1104	681	166	1488	
	Facilitation XT % error	-8.0	-8.0	0.0	-8.0	0.0	-16.0	0.0	0.0	0.0	0.0	
	Facil RT	83	193	-	-42	11	-228	-135	45	-134	-134	
	Congruent ST % error	0	0	0	0	0	0	0	0	0	0	
	Con _{	1352	1020	733	930	954	1011	696	726	857	1354	
	Sex Hand	-	ч	-	-	-	-	_	-	_	-	
	Sex	E	Ε	ł	f	f	Ļ	نب	æ	E	E	
	i.d.	10	П	12	13	14	15	16	17	18	19	

Right Ear

-

ruent % error	œ	×	0	16	16	00	16	œ	0	œ
Incongruent RT % eri	1076	913	696	1126	1066	831	906	730	920	907
rrence % error	0	8	ő	16	0	œ	16	œ	0	œ
Interference RT % err	-13	100	-37	108	320	38	87	68	137	101
itral % error	×	0	×	0	16	0	0	0	0	0
Ncutral RT %	1089	813	1006	1018	746	793	819	662	783	806
Facilitation 8T % error	-8.0	0.0	-8.0	0.0	-16.0	0.0	0.0	0.0	0.0	0.0
Facili RT	-152	-51	-51	-67	6	-41	62	10	0	22
gruent % error	0	0	0	0	0	0	0	0	0	0
Congruent RT % err	937	762	955	951	755	752	868	672	783	828
i.d. Sex Hand	H	L	-	÷	-	L	-	5	-	-
Sex	E	Ţ	4 4	ų.	4	E	E	E	E	Ŷ
i.d.	20	21	22	23	24	25	26	27	28	29

Ŧ

Right Ear

						Congruent		Facilitation		Neutral		Interference		Incongruent	
<u>i.d.</u>	Sex	Hand	RT	% error	RT	% error	RT	% error	RT	% error	RT	% error			
30	f	I	984	0	-74	0.0	1058	0	16	0	1074	0			
31	f	r	754	0	-330	-16.0	1084	16	-166	0	918	16			
32	f	I	990	0	-14	-8.0	1004	8	42	17	1046	25			
Means	5		947	0.0	-43	-4.0	990	4	59	5.1	1049	9.1			

Appendix D

-

Experiment 4: Individual Subject Data

Experiment 4

			Congruent	Facil	Facilitation	Nei	Neutral	Interf	Interference	Incon	Incongruent
i.d.	Sex		% Error	RT	% Error	RT	% Error	RŢ	% Error	RT	% Error
-	E	885	0	-174	0.0	1059	0	-150	0.0	606	0
2	æ	1160	0	-13	0.0	1173	0	-33	0.0	1140	0
ŝ	E	713	0	27	0.0	686	0	7	0.0	688	0
4	E	924	10	-20	10.0	944	0	187	0.0	1131	0
5	Ļ	116	0	30	-20.0	881	20	18	0.0	899	20
9	f	916	0	-44	0.0	960	0	15	0.0	975	0
٢	ų	755	0	-13	0.0	768	0	-67	0.0	701	0
œ	يسع	1208	20	65	-30.0	1143	50	-60	30.0	1083	80
6	E	631	0	ő	0.0	639	0	162	0.0	801	0
10	E	858	0	52	0.0	806	0	175	0.0	186	0
11	E	616	0	46	0.0	570	0	16	0.0	586	0
12	E	874	0	-66	-10.0	940	10	-17	-10.0	923	0

Linguistic Dichotic Task - Left Hand, Left Ea

_

10	0	10	0	10	10	0	20	0	10	0	20	0	40	0
829	629	1118	768	700	746	1026	843	856	766	921	914	869	702	926
10.0	0.0	0.0	0.0	10.0	10.0	0.0	20.0	0.0	10.0	0.0	10.0	0.0	-10.0	0.0
93	-112	-87	83	49	-42	-343	-25	-15	-317	25	44	7	-254	120
0	0	10	0	0	0	0	0	0	0	0	10	0	50	0
736	741	1205	685	651	788	1369	868	871	1083	896	870	169	926	806
0.0	0.0	-10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	-20.0	0.0
114	-51	-285	-	117	-117	-210	-58	253	-337	-108	-197	23	-407	227
0	0	0	0	0	0	0	0	0	0	0	10	20	30	0
850	690	920	686	768	671	1159	810	1124	746	788	673	714	549	1033
فيس	f	ų	يسة	E	E	E	E	f	Ļ	نب	4 - 1	E	æ	E
13	14	15	16	11	18	19	20	21	22	23	24	25	26	27

~

C	0	10	0	0	8
1000	1126	1501	748	196	894
0.0	-10.0	10.0	0.0	-10.0	2
222	-68	-1099	-211	34	-52
0	10	0	0	10	S
778	1194	2600	959	927	945
10.0	-10.0	10.0	0.0	-10.0	' 2
-47	-328	-913	-200	98	62-
10	0	10	0	0	e
731	866	1687	759	1025	866
E	i yan	f	f	f	
28	29	30	31	32	Means

and. Left Ear
<u>Task - Left Ha</u>
uistic Binaural
Ling

ruent % Error	0	10	0	0	0	10	0	60	10	0	0	0
Incongruent RT % Er	818	1188	51	Ξ	17	S		87	-	Ū.	9	8
- 2	œ	11	621	841	671	725	721	1187	681	793	616	748
Interference RT % Error	0.0	0.01	0.0	0.0	0.0	10.0	0.0	-30.0	10.0	0.0	0.0	0.0
Inter RT	-34	-35	-105	36	9	89	4	137	Ś	22	13	-37
Ncutral	0	0	0	0	0	0	0	06	0	0	0	0
Ne	852	1223	726	805	665	636	725	1050	676	171	603	785
Facilitation 8T % Error	0.0	10.0	0.0	0.0	0.0	0.0	0.0	-40.0	0.0	0.0	0.0	20.0
Facil RT	73	-18	-170	71	20	132	-67	116	65	-10	-93	46
gruent % Error	0	10	0	0	0	0	0	50	0	0	0	20
Congruent Sex RT % Ei	925	1205	556	876	685	768	658	1166	741	761	510	831
Sex	B	B	ш	E	ţ.	ų	Ļ	Ļ	E	ш	B	E
i.d.	I	7	S	4	S	S	7	œ	6	10	11	12

0	0	0	0	0	10	0	20	0	0	0	0	0	10	0
698	683	969	661	608	786	949	631	785	109	745	661	708	109	734
0.0	0.0	0.0	-20.0	0.0	10.0	0.0	20.0	0.0	-10.0	0.0	0.0	0.0	-10.0	0.0
-37	72	-327	72	40	145	43	Ŝ	67	-136	12-	50	29	-347	-62
0	0	0	20	0	0	0	0	0	10	0	0	0	20	0
735	611	1023	589	568	641	906	636	718	737	816	611	679	948	796
0.0	0.0	0.0	-20.0	10.0	0.0	10.0	0.0	0.0	-10.0	10.0	0.0	0.0	0.0	0.0
63	62	-210	67	35	-41	30	7	152	-87	43	-81	-54	-240	-45
0	0	0	0	10	0	10	0	0	0	10	0	0	20	0
798	069	813	656	603	600	936	643	870	650	859	530	625	708	751
÷	с т	i,	f	Ξ	Ξ	E	E	يو	ų	Ŧ,	ليس	m	E	E
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

_

4	772	0	-19	S	162	-	-14	5	ררר		Means
0	888	0.0	-283	0	1171	10.0	-229	10	942	نب	32
0	656	0.0	-260	0	916	0.0	-192	0	724	f	31
10	1379	10.0	296	0	1083	30.0	17	30	1100	د ب	30
0	101	-10.0	43	10	968	-10.0	165	0	1133	4	29
0	615	0.0	-15	0	630	0.0	-87	0	543	H	28

	Incongruent		2 0	, o	0	0	10	0	0 9	40	50	30	1
	Incor	1140	1155	673	1093	841	101	741	1029	746	823	507	
	Interference RT & Brror	10.0	0.0	0.0	0.0	0.0	10.0	0.0	-10.0	40.0	50.0	30.0	
nt Ear	Inter RT	-156	-196	65	45	-59	412	93	-443	46	-348	-28	
<u> Dichotic Task - Left Hand, Right Ear</u>	Neutral F % Error	0	0	0	0	0	0	0	70	0	0	0	
<u>sk - Left</u>	Ne RT	1296	1351	608	1048	006	689	648	1472	700	1171	535	
<u>vichotic Ta</u>	Facilitation ST % Error	0.0	0.0	0.0	20.0	0.0	20.0	0.0	0.0	0.0	10.0	10.0	
<u>Inguistic E</u>	Facil RT	-131	-235	120	187	-36	81	101	-539	75	-433	57	
<u>Lin</u>	Congruent RT % Error	0	0	0	20	0	20	0	70	0	10	10	
	Con. RT	1165	1116	728	1235	864	770	749	933	775	738	592	
	Sex	E	E	E	E	J.	ų	j.	f	E	E	Ξ	
	i.d.	-	2	ŝ	4	ŝ	Ś	7	80	6	10	Π	

10

787

10.0

61

0

726

0.0

-50

0

676

E

12

<u>Linguistic Dichotic Task - Left Hand, Right Far</u>

_

40	40	40	40	0	0	10	0	0	0	0	0	40	40	20
894	616	833	622	714	721	988	806	1128	721	924	566	841	780	962
40.0	40.0	40.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	10.0	20.0
114	-42	-460	61	128	55	176	-70	273	83	19	-38	7	107	156
0	0	0	0	0	0	10	0	0	0	0	0	0	30	0
780	658	1293	603	586	666	812	876	855	638	905	604	843	673	806
10.0	10.0	30.0	10.0	0.0	0.0	-10.0	0.0	0.0	0.0	10.0	10.0	0.0	-20.0	0.0
31	œ	-174	-26	119	-41	276	-256	421	78	76	142	-10	803	17
10	10	30	10	0	0	0	0	0	0	10	10	0	10	0
811	666	1119	577	705	625	1088	620	1276	716	1002	746	833	1476	823
Ļ	Ļ	Ļ	i.	E	E	E	E	τ	j.	ų	نب	E	E	B
13	14	15	16	17	18	61	20	21	22	23	24	25	26	27

40	20	40	50	50	21
LLL	1027	1183	933	1249	873
40.0	20.0	30.0	50.0	50.0	18
156	-109	-416	230	246	4
0	0	10	0	0	4
621	1136	1599	703	1003	869
0.0	0.0	0.0	0.0	10.0	4
84	-151	-444	'n	-50	4
0	0	10	0	10	œ
705	985	1155	869	953	873
H	Į	Į	نيسة	÷	
28	29	30	31	32	Means

					<u>unaulai task</u>	-	CIL Hand, Kign	kigni bar			
i.d.		Congruent RT % Er	gruent % Error	Facili RT	Facilitation XT % Error	Nei RT	Neutral F % Error	Interfa RT	Interference RT % Error	Incon RT	Incongruent RT % Error
-	E	838	0	123	0.0	715	0	10	0.0	725	0
7		1018	0	-305	0.0	1323	0	-154	0.0	1169	0
ũ		566	0	Ι	0.0	565	0	-12	10.0	553	10
4		960	0	-34	0.0	994	0	-95	0.0	668	0
2		406	0	73	0.0	636	0	177	0.0	813	0
S		069	0	-61	0.0	751	0	-63	0.0	688	0
٢	نيت	621	0	-44	0.0	665	0	84	0.0	749	0
œ	Ļ	770	09	-238	0.0	1008	60	-92	10.0	916	70
6		635	10	06-	10.0	725	0	-44	0.0	189	0
10	Ħ	793	0	-87	0.0	880	0	-144	0.0	736	0
Π		646	0	11	0.0	575	0	60	0.0	635	0
12		741	0	-65	0.0	806	0	-65	0.0	741	0

Linguistic Binaural Task - Left Hand, Right Ear

0	0	0	0	0	10	0	0	10	10	0	0	0	20	0
559	568	656	611	666	631	1028	758	762	729	931	525	763	1237	916
0.0	0.0	-10.0	-10.0	-10.0	10.0	0.0	0.0	10.0	10.0	0.0	0.0	-10.0	0.0	0.0
-157	-138	-25	-213	-46	13	232	20	-39	94	60	- 145	65	525	160
0	0	10	10	10	0	0	0	0	0	0	0	10	20	0
716	706	681	824	712	618	796	738	108	635	871	670	869	712	756
0.0	0.0	-10.0	-10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-10.0	-10.0	0.0
12	-125	125	-216	-25	77	. 6L	-101	2	101	-141	-86	60	<i>LL-</i>	-86
0	0	0	0	20	0	0	0	0	0	0	0	0	10	0
728	581	806	608	687	695	875	637	806	736	730	584	758	635	670
Ļ	ų	ţ	÷	æ	E	E	E	ł	f	÷	۲ ب	B	u	E
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

10	0	0	0	20	S
616	1028	1206	601	<i>LL</i> 6	784
10.0	0.0	-10.0	0.0	20.0	_
L-	-152	-44	-154	16	6-
0	0	10	0	0	4
623	1180	1250	755	961	792
10.0	10.0	-10.0	0.0	0.0	0
	-269	-267	-85	-86	-55
10	10	0	0	0	4
622	116	983	670	875	737
E	÷	يت	يل	i	
28	29	30	31	32	Means

					IN - VIEL	<u>it nanu, Lei</u>	<u>u car</u>			
i.d.	Coi RT	Congruent Sex RT % Error	Facil RT	Facilitation XT % Error	Ne RT	Neutral	Interf RT	Interference RT % Error	Incon RT	Incongruent RT % Error
-	711	0	-62	0.0	773	0	-37	10.0	736	10
7	874	0	-119	0.0	993	0	41	0.0	1034	0
e	610	0	ы.	0.0	613	0	1	0.0	614	0
4	751	0	e	0.0	748	0	15	0.0	763	0
Ś	1003	0	250	0.0	753	0	-45	0.0	708	0
S	651	10	-50	10.0	701	0	-18	10.0	683	10
٢	831	0	111	0.0	720	0	65	0.0	785	0
œ	820	09	-125	0.0	945	60	-29	-10.0	916	50
6	853	0	-152	-10.0	1005	10	-153	10.0	852	20
10	861	0	60	-10.0	801	10	49	-10.0	850	0
11	629	0	20	0.0	639	0	167	0.0	806	0
12	1126	10	-37	10.0	1163	0	\$	0.0	1158	0

<u>Linguistic Dichotic Task - Right Hand, Left Ear</u>

0	0	10	0	20	0	20	20	0	0	0	0	0	20	0
824	661	966	826	787	733	1093	723	913	856	828	1053	653	1274	926
-10.0	0.0	10.0	-10.0	10.0	0.0	10.0	20.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0
110	-75	88	28	36	30	117	-115	10	56	-255	95	-48	597	0
10	0	0	10	01	0	10	0	0	0	0	0	0	10	0
714	736	878	798	751	703	916	838	903	800	1083	958	101	677	926
-10.0	0.0	0.0	-10.0	-10.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0
64	-102	7	-92	-115	58	29	-38	30	-104	-268	62	-18	76	92
0	0	0	0	0	0	10	10	0	0	0	0	0	20	0
778	634	880	706	636	761	1005	800	933	969	815	1020	683	774	1048
÷	ų	ų	4-1	Е	E	E	E	ų	÷	f	Ļ	B	æ	E
13	14	15	16	17	18	61	20	21	22	23	24	25	26	27

_

28	ш	168	0	100	0.0	162	0	69	0.0	860	0
29	÷	1108	0	ő	0.0	1116	0	-81	0.0	1035	0
30	Į	1814	10	-42	10.0	1856	0	-67	10.0	1789	10
31	- ب	855	0	-154	-10.0	1009	10	-76	-10.0	933	0
32	f	810	0	-106	0.0	916	0	-50	0.0	866	0
Means		856	4	61-	0	875	4	16	7	892	9

_

PLEASE NOTE

Page(s) not included with original material and unavailable from author or university. Filmed as received.

.

.

UMI

0	0	0	0	10	0	0	10	01	10	0	0	0	20	0
726	598	1001	793	683	610	861	869	683	712	651	166	753	1833	960
0.0	0.0	0.0	0.0	10.0	0.0	0.0	10.0	10.0	0.01	0.0	0.0	0.0	0.0	0.0
-64	5	173	LL	70	-85	ċ.	-86	23	-69	48	223	110	1117	255
0	0	0	0	0	0	0	0	0	0	0	0	0	20	0
190	593	918	716	613	695	864	784	660	781	603	768	643	716	705
0.0	10.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-10.0	0.0
-54	10	-30	-76	20	-37	66	-66	51	-107	48	28	-37	44	418
0	10	0	10	10	0	0	0	0	0	0	0	0	10	0
736	603	888	640	633	658	963	718	711	674	651	796	606	760	1123
<u>ب</u>	ي.	÷	ų	E	E	E	æ	يو	ý	ť	Ŧ	Ξ	æ	E
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

20	0	10	0	0	9
545	1023	1735	823	836	834
20.0	0.0	0.0	0.0	-10.0	7
-124	63	128	-190	33	65
0	0	10	0	10	4
699	096	1607	1013	803	769
0.0	0.0	10.0	10.0	-10.0	Ι
39	168	-514	-189	-145	-20
0	0	20	10	0	S
708	1128	1093	824	658	749
Ξ	Ļ	ليسم	ų.	ſ	
28	29	30	31	32	Means

			Con	gruent	Facil	itation	Ne	utral	Interf	erence	Incon	gruent
_	i.d.	Sex	RT	% Error	RT	% Error	RT	% Error	RT	% Error	RT	% Error
	1	m	999	10	156	-10.0	843	20	68	20.0	911	40
	2	m	874	10	-156	10.0	1030	0	6	50.0	1036	50
	3	m	495	0	-36	0.0	531	0	-29	30.0	502	30
	4	m	708	0	-163	0.0	871	0	81	40.0	952	40
	5	f	725	0	86	0.0	639	0	14	50.0	653	50
	5	f	661	10	-114	10.0	775	0	48	50.0	823	50
	7	f	626	0	-59	0.0	685	0	62	30.0	747	30
	8	f	881	20	-123	-40.0	1004	60	-160	10.0	844	70
	9	m	758	0	58	-10.0	700	10	359	-10.0	1059	0
	10	m	763	0	60	0.0	703	0	36	0.0	739	0
	11	m	711	0	73	0.0	638	0	120	0.0	758	0
	12	m	1011	0	-330	0.0	1341	0	115	20.0	1456	20

Linguisitic Dichotic Task - Right Hand, Right Ear

Т

13	f	793	0	97	0.0	696	0	-17	0.0	679	0
14	f	585	0	-89	-10.0	674	10	41	-10.0	715	0
15	f	1009	10	58	10.0	951	0	361	20.0	1312	20
16	f	643	20	-40	20.0	683	0	22	0.0	705	0
17	m	764	0	210	0.0	554	0	-2	40.0	552	40
18	m	598	0	4	-10.0	594	10	136	30.0	730	40
19	m	770	0	-291	0.0	1061	0	152	40.0	1213	40
20	m	1563	0	467	-10.0	1096	10	-471	50.0	625	60
21	f	841	0	5	0.0	836	0	166	40.0	1002	40
22	f	761	0	23	0.0	738	0	17	40.0	755	40
23	f	583	0	-168	0.0	751	0	7	20.0	758	20
24	f	650	0	-260	0.0	910	0	-108	30.0	802	30
25	m	609	0	-104	0.0	713	0	-14	0.0	699	0
26	m	679	20	87	-10.0	592	30	266	-10.0	858	20
27	m	1018	0	-227	0.0	1245	0	-142	0.0	1103	0

PLEASE NOTE

Page(s) not included with original material and unavailable from author or university. Filmed as received.

.

UMI

			Ĩ				SINT INTIMET				
i.d.	Sex	Con RT	Congruent RT % Error	Facil RT	Facilitation XT % Error	Ne RT	Neutral	Interf RT	Interference RT % Error	Incon RT	Incongruent RT % Error
-	E	625	0	89	0.0	536	0	76	0.0	633	0
7	E	1003	0	82	0.0	921	0	60	0.0	1011	0
Ċ		458	0	-72	0.0	530	0	-59	0.0	471	0
4		753	0	S	0.0	748	0	15	0.0	763	0
S		625	0	42	0.0	583	0	4	10.0	579	10
S	لهم	571	0	-154	0.0	725	0	-159	0.0	566	0
٢		626	0	-47	0.0	673	0	53	0.0	726	0
8	f	866	40	112	-20.0	754	60	96	20.0	850	80
6	m	670	0	-245	0.0	915	0	-80	0.0	835	0
10	m	820	0	LL	0.0	743	0	-17	0.0	726	0
11	m	578	0	50	0.0	528	0	105	0.0	633	0
12	ш	938	0	L-	0.0	945	0	66-	0.0	846	0

Linguistic Binaural Task - Right Hand, Right Ear

0	0	0	0	0	0	10	0	0	0	0	0	0	20	0
671	603	1061	684	566	618	855	700	726	693	748	1011	638	558	806
0.0	0.0	-10.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	-10.0	0.0
-65	7	347	36	-44	60	95	10	83	-10	LL	283	- 18	-56	23
0	0	10	0	0	0	0	0	0	0	0	0	0	30	0
736	596	714	648	610	558	760	069	643	703	671	728	656	614	783
0.0	0.0	-10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	-10.0	0.0
-10	6 -	102	41	S	30	156	-87	0	-13	-155	66-	S	-19	123
0	0	0	0	0	0	0	0	0	0	0	10	0	20	0
726	593	816	689	615	588	916	603	643	069	516	629	661	595	906
ų	f	f	÷	E	E	E	E	ι.	ىيە	يو	يون	Е	E	E
13	14	15	16	17	18	61	20	21	22	23	24	25	26	27

_

0	0	0	0	20	4
845	1131	1325	781	1135	775
0.0	0.0	-10.0	0.0	20.0	-
176	168	223	71	370	59
0	0	10	0	0	e
699	963	1102	710	765	716
0.0	0.0	0.0	0.0	0.0	-
39	-170	244	171	140	14
0	0	10	0	0	ŝ
708	793	1346	881	905	730
Е	ц.	نیس	دي	ц.	
28	29	30	31	32	Means

	ruent % Frror	40	20	0	0	30	50	0	60	30	0	40	10
	Incongruent RT % Fr		1420	869	1041	1247	1143	1160	787 (945 3	1509	1038 4	1276 1
	rence % Error		10.0	0.0	0.0	20.0	20.0	-10.0	10.0	20.0	0.0	20.0 10	10.0
Ear	Interference RT % Err	-46	-31	73	L-	403	272	294	I	ڊ.	246	207	145
<u>land, Left</u>	tral % Error	0	10	0	0	10	30	10	50	10	0	20	0
sk - Left F	Neutral RT %	1001	1451	796	1048	844	871	866	786	948	1263	831	1131
riosouic Dichonic Lask - Left Hand, Left Ear	Facilitation 8T % Error	0.0	-10.0	0.0	10.0	-10.0	0.0	-10.0	-10.0	-10.0	0.0	-20.0	0.0
Osouic D	Facili RT	185	-65	-150	-210	311	229	254	50	-18	-75	107	18
	gruent % Error	0	0	0	10	0	30	0	40	0	0	0	0
	Congruent RT % Er	1186	1386	646	838	1155	0011	1120	836	930	1188	938	1149
	Sex	ш	Е	E	E	f	Ļ	f	f	E	Е	E	E
	i.d.	-	7	ŝ	4	S	ŝ	7	œ	6	10	11	12

Prosodic Dichotic Task - Left Hand, Left Ear

I

30	30	30	0	0	0	20	0	20	0	0	30	10	10	0
1162	1126	2085	893	1186	996	1262	1056	1433	1193	1406	1254	1014	1535	1438
20.0	30.0	0.0	0.0	-10.0	-10.0	20.0	0.0	20.0	0.0	-10.0	30.0	0.0	0.0	0.0
329	-65	152	142	114	35	24	186	243	110	27	194	109	217	LL
01	0	30	0	10	10	0	0	0	0	10	0	10	10	0
833	1611	1933	751	1072	931	1238	870	1190	1083	1379	1060	905	1318	1361
0.0	0.0	-30.0	0.0	-10.0	0.0	0.0	0.0	0.0	0.0	-10.0	0.0	0.0	-10.0	30.0
76	-401	-317	35	-32	-80	-55	09-	-219	-25	-116	-112	-111	-115	-28
10	0	0	0	0	10	0	0	0	0	0	0	10	0	30
606	061	1616	786	1040	851	1183	810	179	1058	1263	948	794	1203	1333
نب	سون	بون	Ļ	Ξ	E	E	E	ų	يسې	f	Ļ	Ξ	Ε	æ
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

 $\overline{}$

m 981 0 31 f 1276 0 125	0 0		31 125		0.0	950 1151	0 0	324 125	10.0 0.0	1274 1276	0 10
	°+	1676	10	-139	10.0	1815	0	14	0.0	1829	0
	÷	1306	0	-225	0.0	1531	0	73	20.0	1604	20
	ليس	810	20	-75	10.0	885	10	129	10.0	1014	20
		1065	S	-38	-2	1103	×	129	œ	1231	16

		Con	gruent	Facil	litation	Ne	utral	Inter	ference	Incon	gruent
<u>i.d.</u>	Sex	<u> </u>	% Error	<u>RT</u>	% Error	RT	% Error	RT	% Error	RT	% Error
1	m	1227	10	187	10.0	1040	0	-126	10.0	914	10
2	m	1311	0	-177	0.0	1488	0	247	0.0	1735	0
3	m	574	0	-122	-10.0	696	10	15	0.0	711	10
4	m	859	0	-167	0.0	1026	0	179	0.0	1205	0
5	f	776	0	-72	0.0	848	0	63	0.0	911	0
5	f	848	10	39	-20.0	809	30	-19	-20.0	790	10
7	f	775	0	-46	0.0	821	0	251	10.0	1072	10
8	f	749	60	-13	0.0	762	60	132	10.0	894	70
9	m	670	0	32	-10.0	638	10	107	10.0	745	20
10	m	1083	0	117	-10.0	966	10	328	-10.0	1294	0
11	m	728	0	-97	0.0	825	0	84	10.0	909	10
12	m	968	0	-151	0.0	1119	0	-19	10.0	1100	10

Prosodic Binaural Task - Left Hand, Left Ear

20	10	20	0	10	0	01	10	0	10	0	10	0	0	0
1023	978	2137	1094	809	876	1137	942	1118	1007	1213	1042	936	1343	1268
20.0	0.0	-10.0	0.0	0.0	0.0	10.0	10.0	0.0	10.0	0.0	10.0	0.0	-10.0	0.0
162	128	816	218	-217	LL	-163	26	153	56	28	-2	153	25	25
0	10	30	0	10	0	0	0	0	0	0	0	0	10	0
861	850	1321	876	1026	66 <i>L</i>	1300	916	965	951	1185	1044	783	1318	1243
10.0	-10.0	-30.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	-10.0	0.0
-54	-149	-345	-40	-295	-78	89	16-	261	235	-160	-314	22	-568	78
10	0	0	0	10	0	0	0	10	0	0	0	0	0	0
807	101	916	836	731	721	1389	825	1226	1186	1025	730	805	750	1321
نب	f	f	f	В	ε	٤	E	ţ.	f	Ļ	f	E	E	Е
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

C	0	0	10	0	œ
1114	1185	1536	1148	888	9601
0.0	0.0	-10.0	10.0	0.0	2
134	24	131	105	212	104
0	0	10	0	0	9
086	1161	1405	1043	676	992
10.0	0.0	-10.0	0.0	10.0	-2
195	-155	-114	-59	170	-58
10	0	0	0	10	4
1175	1006	1291	984	846	934
E	Ļ	f	Ŧ	Į	
28	29	30	31	32	Means

.

						<u>v - LCILI</u>	CIL FIGHT, NIGHT	Lar			
i.d.	Sex	Con RT	Congruent RT % Error	Facil RT	Facilitation 8T % Error	Nei RT	Neutral F % Error	Interf RT	Interference RT % Error	Incon RT	Incongruent RT % Error
-		926	0	-329	-10.0	1255	10	309	10.0	1564	20
7		1479	10	105	10.0	1374	0	227	10.0	1601	01
c.	m	718	0	-108	0.0	826	0	12	10.0	838	10
4		873	0	-176	0.0	1049	0	204	0.0	1253	0
S		948	10	-58	10.0	1006	0	80	10.0	1014	10
S	ب ـب	787	20	-435	10.0	1222	10	-89	0.0	1133	10
٢	f	774	0	-322	-10.0	1096	10	-20	-10.0	1076	0
œ	f	704	30	-16	-30.0	720	60	151	0.0	871	60
6	ш	625	0	-158	0.0	783	0	214	20.0	L 66	20
10	E	1601	0	-112	0.0	1203	0	141	10.0	1344	10
Ξ	E	926	0	-496	-20.0	1422	20	-470	10.0	952	30
12	æ	1083	0	-59	-10.0	1142	10	-49	-10.0	1093	0

Prosodic Dichotic Task - Left Hand, Right Ear

.

_

0	10	30	10	30	10	10	10	0	0	0	10	0	20	20
1081	1038	1500	920	1116	827	1303	1309	1196	946	1461	1129	871	1727	1220
-10.0	0.0	-10.0	10.0	0.0	-10.0	10.0	10.0	0.0	0.0	0.0	10.0	-10.0	0.0	0.0
24	133	-958	-48	-81	-108	263	306	-42	-205	292	135	-84	267	-561
10	10	40	0	30	20	0	0	0	0	0	0	10	20	20
1057	905	2458	968	1197	935	1040	1003	1238	1151	1169	994	955	1460	1781
0.0	-10.0	-40.0	10.0	-30.0	-20.0	20.0	10.0	0.0	0.0	0.0	0.0	-10.0	-10.0	-10.0
-209	4-	-1127	-252	-331	-117	224	-53	06-	-438	104	-53	-85	-342	-467
10	0	0	10	0	0	20	10	0	0	0	0	0	10	10
848	106	1331	716	866	818	1264	950	1148	713	1273	941	870	1118	1314
f	f	Ļ	÷	E	E	E	Ħ	f	f	f	ţ	ш	E	E
13	14	15	16	17	81	61	20	21	22	23	24	25	26	27

1150 0	1433 10			895 20	
0.0	10.0	-10.0	20.0	0.0	
210	282	-308	-93	171	I
0	0	30	0	20	
940	1151	2007	1451	718	
0.0	0.0	-10.0	0.0	-10.0	u
16	6L	-43	-83	161	371
0	0	20	0	10	v
956	1230	1964	1368	879	1013
E	Ţ	f	f	i yana	Ű
28	29	30	31	32	Meane

<u>o</u>												
Incongruent RT % Error	9	10	10	20	10	30	10	50	10	0	30	20
Incor RT	1122	1711	879	666	116	616	838	793	814	1168	928	1160
Interference RT % Error	0.0	10.0	10.0	20.0	10.0	20.0	10.0	-20.0	0.0	0.0	30.0	20.0
Inter	161	288	134	93	23	-192	-38	127	70	-118	85	116
Neutral F % Error	10	0	0	0	0	10	0	70	10	0	0	0
Ne	961	1423	745	906	888	1111	876	999	744	1286	843	1044
Facilitation 8T % Error	-10.0	0.0	0.0	0.0	0.0	0.0	0.0	-30.0	-10.0	0.0	0.0	0.0
Facil RT	-103	193	-60	-73	-80	-288	-72	84	-93	-155	-93	56
Congruent RT % Error	0	0	0	0	0	10	0	40	0	0	0	0
Con RT	858	1616	685	833	808	823	804	750	651	1131	750	1100
Sex	E	E	E	E	نب	f	f	f	E	E	E	E
ı.d.	-	7	æ	4	Ś	S	7	8	6	10	Ξ	12

Prosodic Binaural Task - Left Hand. Right Ear

0	10	50	10	0	0	30	20	0	0	0	0	10	30	10
1118	842	2226	861	1095	774	1016	616	1165	946	1438	785	787	1516	1172
0.0	-10.0	50.0	10.0	0.0	0.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	30.0	10.0
223	51	733	128	227	г	-293	194	39	-20	120	-65	-229	263	117
0	20	0	0	0	0	10	0	0	0	0	0	10	0	0
895	161	1493	733	868	773	1309	785	1126	996	1318	850	1016	1253	1055
0.0	-20.0	10.0	0.0	0.0	0.0	-10.0	0.0	10.0	0.0	0.0	0.0	-10.0	0.0	0.0
-150	-85	-536	-10	-57	-13	-281	121	-239	49	-78	6	-198	80	111
0	0	10	0	0	0	0	0	10	0	0	0	0	0	0
745	706	957	723	811	760	1028	906	887	1015	1240	859	818	1333	1166
f	ų.	Ļ	f	E	Ξ	E	æ	Ъ.	Į	f	Ļ	æ	Ε	E
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

13	1102	×	70	S	1031	۰. د	L6-	6	934		Means
0	1000	-10.0	245	10	755	-10.0	131	0	886	ي.	32
0	1265	0.0	-43	0	1308	0.0	-207	0	1011	۲ <u>ب</u>	31
20	1787	20.0	39	0	1748	0.0	-477	0	1271	ليسم	30
0	1291	0.0	-32	0	1323	0.0	-390	0	933	Ļ	29
0	953	0.0	-195	0	1148	0.0	-205	0	943	E	28

				T TOSOTT		III	nanu, Len	<u>Lar</u>			
i.d.			Congruent RT % Error	Facil RT	Facilitation 8T % Error	Ner RT	Neutral	Interf RT	Interference RT % Error	Incongruent RT % Er	gruent % Error
-	E	879	0	-87	- 10.0	966	10	-69	10.0	897	20
7		1420	10	-221	-10.0	1641	20	-146	0.0	1495	20
°.		798	0	21	-10.0	TTT	10	137	0.0	914	10
4		779	10	-138	10.0	1115	0	71	0.0	1186	0
S		894	0	-223	-10.0	1117	10	73	0.0	0611	10
S		1211	10	-188	-40.0	1399	50	-289	0.0	1110	50
٢	ι.	876	0	-237	0.0	1113	0	-60	10.0	1053	10
œ	ليسع	783	40	-56	0.0	839	40	86	40.0	925	80
6		818	0	135	0.0	683	0	179	20.0	862	20
10	E	1089	0	-184	0.0	1273	0	-50	0.0	1223	0
11		833	0	-13	0.0	846	0	125	0.0	179	0
12		1311	0	130	0.0	1181	0	104	10.0	1285	10

Prosodic Dichotic Task - Right Hand. Left Ear

134

0	10	70	10	10	10	10	10	0	0	20	10	10	40	0
856	1322	1161	874	1153	953	1270	1072	1308	1283	1771	1335	1066	1602	1673
0.0	10.0	50.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	20.0	10.0	0.0	30.0	0.0
-95	406	-562	69	-127	163	-268	-205	178	137	435	334	185	234	487
0	0	20	0	0	10	10	10	0	0	0	0	10	10	0
951	916	1723	805	1280	790	1538	1277	1130	1146	1336	1001	881	1368	1186
0.0	10.0	-10.0	0.0	0.0	0.0	-10.0	-10.0	0.0	0.0	10.0	0.0	0.0	-10.0	0.0
-52	-242	-322	11	-10	13	-242	61	183	42	28	-155	-126	-260	372
0	10	10	0	0	10	0	0	0	0	10	0	10	0	0
899	674	1401	816	1270	803	1296	1338	1313	1188	1364	846	755	1108	1558
ئيس	f	ن ب	ц,	æ	B	B	æ	i.	ц.	ų	ų	E	ш	Е
13	14	15	16	17	18	61	20	21	22	23	24	25	26	27

5 30	4 10	3 0	4 20	9 40	3 17
1095	1224	1873	1154	101	1193
30.0	10.0	0.0	20.0	40.0	10
180	21	-250	-152	123	45
0	0	0	0	0	7
915	1203	2123	1306	896	1148
0.0	10.0	0.0	0.0	0.0	-3
51	156	-177	-40	24	-55
0	10	0	0	0	4
906	1359	1946	1266	920	1093
E	f	ί.	ίπ.	Ļ	-
28	29	30	31	32	Means

....

		Con	oruent	Facil	Facilitation			ŭ		,	
Sej		RT	% Error	RT	% Error	RT	Neutral F % Error	Interf	Interference RT % Error	Incon RT	Incongruent RT % Error
E	_	743	l m 743 0	-75	0.0	818	0	104	10.0	922	01
Ĵ	_	1553	10	-85	10.0	1638	0	164	30.0	1802	30
E	_	723	0	98	-10.0	625	10	96	-10.0	721	0
E	-	821	0	L6-	0.0	918	0	95	0.0	1013	0
ب		830	0	-31	0.0	861	0	102	10.0	963	10
د ب		844	10	-133	-10.0	779	20	-152	20.0	825	40
ليسي		778	0	-73	0.0	851	0	143	10.0	994	10
4		612	60	-63	-20.0	675	80	33	0.0	708	80
E	_	759	10	37	0.0	722	10	150	30.0	872	40
E	_	871	0	-78	-10.0	949	10	229	-10.0	1178	0
Ξ	_	726	0	17	-10.0	709	10	222	-10.0	931	0
E	_	1290	0	181	0.0	6011	0	-19	0.0	0601	0

Prosodic Binaural Task - Right Hand, Left Ear

137

والمعادية والمعادية

	01	10	60	0	10	40	20	30	20	10	10	0	10	20	10
	994	783	1262	1095	207	913	1199	<i>L</i> 66	1321	1029	1568	913	606	1410	1174
	10.0	10.0	50.0	0.0	10.0	30.0	20.0	30.0	20.0	0.0	10.0	0.0	10.0	10.0	10.0
	153	28	292	287	136	160	62-	21	-177	-146	-13	-66	93	-658	21
	0	0	10	0	0	10	0	0	0	10	0	0	0	10	0
	841	755	010	808	171	753	1278	976	1498	1175	1581	616	816	2068	1153
0	0.0	0.0	-10.0	0.0	0.0	-10.0	0.0	0.0	0.0	-10.0	0.0	0.0	0.0	- 10.0	0.0
0	-00	-15	-62	-100	388	62	-110	-42	-413	-62	-537	-46	-17	-1182	98
¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	157	740	908	708	1159	815	1168	934	1085	1113	1044	933	661	886	1251
c	÷	Ļ	ىل	بين	E	E	E	E	ي	ئيس	ί μ	ija.	E	E	Е
ç	El	14	15	16	17	18	19	20	21	22	23	24	25	26	27

17	1074	10	52	7	1022	4	-89	ŝ	933		Means
20	872	20.0	-61	0	933	0.0	-124	0	809	f	32
10	1168	10.0	107	0	1061	0.0	45	0	1106	ن ب	31
0	1650	-20.0	221	20	1429	-20.0	-46	0	1383	щ.	30
0	1173	-10.0	20	10	1153	-10.0	-140	0	1013	÷	29
20	1027	10.0	165	10	862	0.0	-149	10	713	E	28

		Con	gruent	Facil	itation	Ne	utral	Inter	ference	Incon	gruent
<u>i.d.</u>	Sex	RT	% Error	RT	% Error	RT	% Error	RT	% Error	<u>RT</u>	% Error
1	m	935	10	-263	0.0	1198	10	97	20.0	1295	30
2	m	1390	0	-140	-30.0	1530	30	105	-20.0	1635	10
3	m	716	0	-2	0.0	718	0	60	30.0	778	30
4	m	1178	0	214	0.0	964	0	155	0.0	1119	0
5	f	830	0	-214	0.0	1044	0	12	0.0	1056	0
5	f	1060	20	103	10.0	957	10	9	50.0	966	60
7	f	929	10	-10	10.0	939	0	-5	0.0	934	0
8	f	939	50	194	-10.0	745	60	67	0.0	812	60
9	m	605	10	-40	10.0	645	0	326	30.0	971	30
10	m	944	0	-364	0.0	1308	0	340	10.0	1648	10
11	m	808	0	-223	0.0	1031	0	-19	20.0	1012	20
12	m	1268	10	-18	10.0	1286	0	-43	0.0	1243	0

Prosodic Dichotic Task - Right Hand, Right Ear

20	0	30	0	10	0	20	10	0	10	40	10	0	30	0
906	959	2016	816	1203	904	1200	1085	1171	1268	1441	679	905	1721	976
20.0	0.0	10.0	0.0	0.0	-20.0	20.0	10.0	-10.0	10.0	20.0	10.0	-20.0	0.0	0.0
-92	Ξ	262	46	29	Ш	-303	-38	-390	95	27	-66	145	-1736	-484
0	0	20	0	10	20	0	0	10	0	20	0	20	30	0
866	948	1754	170	1174	793	1503	1123	1561	1173	1414	1045	760	3457	1460
10.0	0.0	-20.0	0.0	-10.0	-20.0	0.0	0.0	-10.0	0.0	-20.0	10.0	-20.0	-30.0	0.0
-63	-92	-410	13	52	43	-413	0	-607	-270	212	271	61	-2486	65
10	0	0	0	0	0	0	0	0	0	0	10	0	0	0
935	856	1344	783	1226	836	0601	1123	954	903	1626	1316	821	179	1525
ۍب ا	بب	Ĺ.	Ţ,	E	m	Е	E	Ŧ	Ļ	ţ.	ч ния	æ	E	Е
13	14	15	16	17	81	61	20	21	22	23	24	25	26	27

.

28	u	1126	10	271	0.0	855	10	458	0.0	1313	10
29	f	1031	0	-504	0.0	1535	0	-209	10.0	1326	10
30	ب	2016	10	-154	-10.0	2170	20	307	0.0	2477	20
31	÷	1405	0	407	-10.0	866	10	518	-10.0	1516	0
32	î.	739	0	-246	0.0	985	0	-34	0.0	951	0
Means		1070	Ś	- 144	4	1214	6	L-	9	1206	15

0	10	20	0	10	30	20	0	10	0	10	0	10	20	0
813	907	1614	886	1083	959	1419	1085	1344	1049	1326	941	814	1077	1106
0.0	0.0	10.0	-10.0	0.0	30,0	10.0	0.0	10.0	0.0	10.0	0.0	10.0	-10.0	-10.0
-15	102	476	103	-100	148	99	-236	438	196	-124	-47	130	-35	86
0	10	10	10	10	0	10	0	0	0	0	0	0	30	10
828	805	1138	783	1183	811	1353	1321	906	853	1450	988	684	1112	1020
10.0	-10.0	-10.0	- 10.0	-10.0	0.0	-10.0	0.0	0.0	0.0	0.0	0.0	0.0	-20.0	-10.0
159	-115	-70	68	-365	6/	-102	-316	-67	170	-184	-165	52	-14	6-
01	0	0	0	0	0	0	0	0	0	0	0	0	10	0
987	069	1068	851	818	890	1251	1005	839	1023	1266	823	736	1098	101
نيب	يو	÷	نيسة	E	ш	æ	E	ų	ليسا	Ļ	÷	E	В	٤
13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

922 20	0 1011	1660 0	1103 0	916 10	1064 12
20.0	0.0	·	0.0	0.0	4
54	LL-	340	92	211	75
0	0	10	0	10	٢
868	1178	1320	101	705	988
0.0	0.0	-10.0	0.0	-10.0	4
-142	215	238	34	11	-33
0	0	0	0	0	e
726	1393	1558	1045	716	956
E	f	Ļ	ţ	-با	
28	29	30	31	32	Means

References

- Aboitiz, F., Scheibel, A.B., Fisher, R.S., & Zaidel, E. (1992). Fiber composition of the human corpus callosum. *Brain Research*, 598, 143-153.
- Bradshaw, J.L., & Nettleton, N.C. (1981). The nature of hemispheric specialization in man. Behavioral and Brain Sciences, 4, 51-92.
- Banich, M.T. (in press). The missing link: The role of interhemispheric interaction in attentional processing. *Brain and Language.*
- Banich, M.T. (1995). Interhemispheric processing: Theoretical considerations and empirical approaches. In R.J. Davidson and K. Hugdahl, (Eds.), *Brain Asymmetry* (pp. 427-450). Cambridge, MA: M.I.T. Press.
- Banich, M.T., & Belger, A. (1990). Interhemispheric interaction: How do the hemispheres divide and conquer a task? Cortex, 26, 77-94.
- Boles, D.B. (1995). Parameters of the bilateral effect. In F.L. Kitterle, (Ed.),
 Hemispheric communication: Mechanisms and models (pp. 231-254). Hillsdale, NJ:
 Erlbaum.
- Bowers, D., Coslett., H.B., Bauer, R.M., Speedie, L.J., & Heilman, K. (1987).
 Comprehension of emotional prosody following unilateral hemispheric lesions:
 Processing defect versus distraction defect. *Neuropsychologia*, 25, 317-328.
- Broca, P. (1861). Remarques sur le siege de la faculte du langage articule, suivies d'une observation d'aphemie (perte de la parole). Bulletins de la Societe Anatomique de Paris, 2, 333-357.
- Bryden, M.P. (1982). Laterality: Functional asymmetry in the intact brain. New York: Academic Press.
- Bryden, M.P., & MacRae, L. (1989). Dichotic laterality effects obtained with emotional words. *Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 1*, 171-176.

- Chiarello, C., & Maxfield, L. (1996). Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. *Brain and Cognition*, 30, 81-108.
- Clarke, J.M., David, A.S., & Zaidel, E. (1993). Dichotic listening performance during selective attention in commissurotomized & hemispherectomized patients. Paper presented and the 21st Annual Meeting of the International Neuropsychological Society, Galveston, TX, February 24-27, 1993.
- Cohen JD, MacWhinney B, Flatt M & Provost J (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. *Behavioral Research Methods, Instruments & Computers*, 25, 257-271.
- Cohen, J.D., Dunbar, K., & McLelland, J.L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. *Psychological Review*, 97, 332-361.
- David, A.S. (1992). Stroop effects within and between the cerebral hemispheres: Studies in normals and acallosals. *Neuropsychologia*, 30, pp. 161-175.
- Delis, D.C., Robertson, L.C., & Efron, R. (1986). Hemispheric specialization of memory for visual hierarchical stimuli. *Neuropsychologia*, 24, 205-206.
- Dunbar, K.N., & MacLeod, C.M. (1984). A horse race of a different colour: Stroop interference patterns with transformed words. Journal of Experimental Psychology: Human Perception and Performance, 10, 622-639.
- Friedman, A., & Polson, M.C. (1981). Hemispheres as independent resource systems: Limited-capacity processing and cerebral specialization. Journal of Experimental Psychology: Human Perception and Performance, 7, 1031-1058.
- Friedman, A., Polson, M.C., & Dafoe, C.G. (1988). Dividing attention between the hands and the head: Performance trade-offs between rapid finger tapping and verbal memory. Journal of Experimental Psychology: Human Perception and Performance, 14, 60-68.

- Grimshaw, G.M., Bryden, M.P., & Finegan, J.K (1995). Relations between prenatal testosterone and cerebral lateralization in children. *Neuropsychology*, 9, 68-79.
- Hiscock, M. (1982). Verbal-manual time sharing in children as a function of task priority. Brain and Cognition, 1, 119-131.
- Heilman, K., Scholes, R. and Watson, R. (1975). Auditory affective agnosia: disturbed comprehension of affective speech. Journal of Neurology, Neurosurgery, and Psychiatry, 38, 69-72.
- Hellige, J.B. (1993). Hemispheric asymmetry: What's right and what's left. Cambridge,MA: Cambridge University Press.
- Hellige, J.B. (1995). Hemispheric asymmetry for components of visual information processing. In R.J. Davidson and K. Hugdahl (Eds.), *Brain asymmetry* (pp. 100-121). Cambridge, MA: MIT Press.
- Hugdahl, K. & Franzon, M. (1985). Visual half-field presentations of incongruent colorwords reveal mirror-reversal of language lateralization in dextral and sinistral subjects. *Cortex*, 21, 359-374.
- Ivry, R.B., & Lebby, P. (1993). Hemispheric differences in auditory perception are similar to those found in visual perception. *Psychological Science*, 4, 41-45
- Kimura, D. (1967). Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163-178.
- Kinsbourne, M. (1975). The mechanism of hemispheric control of the lateral gradient of attention. In P.M.A. Rabbitt and S. Dornic (Eds.), Attention and Performance V (pp.81-97). New York: Academic Press.
- Kinsbourne, M., & Hicks, R.E. (1978). Functional cerebral space: A model for overflow, transfer and interference effects in human performance: A tutorial review. *Attention and Performance*, 7, 345-362.
- Lamb, M. R., Robertson, L.C., & Knight, R.T. (1990). Component mechanisms underlying the processing of hierarchically organized patterns: Inferences from

patients with unilateral cortical lesions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 471-483.

- Ley, R.G., & Bryden, M.P. (1982). A dissociation of right and left hemispheric effects for recognizing emotional tone and verbal content. *Brain and Cognition*, 1, 3-9.
- MacLeod, C.M. (1991). Half a century of research on the Stroop effect: An integrative review. *Psychological Bulletin*, 109, 163-203.
- MacLeod, C.M., & Dunbar, K. (1988). Training and Stroop-like interference: Evidence for a continuum of automaticity. <u>Journal of Experimental Psychology</u>: Learning, Memory, and Cognition, 14,, 126-135.
- Martin, M. (1979). Hemisphere specialization for local and global processing. Neuropsychologia, 17, 33-40.
- Mondor, T. & Bryden, M.P. (1992). On the relation between auditory spatial attention and auditory spatial asymmetries. *Perception and Psychophysics*, 52, 393-402.
- Morton, J., & Chambers, S.M. (1973). Selective attention to words and colours. Quarterly Journal of Experimental Psychology, 25, 387-397.
- Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383.
- Pashler, H., & O'Brien S. (1993). Dual-task interference and the cerebral hemispheres. Journal of Experimental Psychology: Human Perception and Performance, 19, 315-330.
- Posner, M.I., & Snyder, C.R. (1975). Attention and cognitive control. In R.L. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 55-85).
 Hillsdale, NJ: Erlbaum.
- Robertson, L.C., & Delis, D.C. (1986). "Part-whole" processing in unilateral brain damaged patients: Dysfunction of hierarchical organization. *Neuropsychologia*, 24, 363-370.

- Robertson, L.C., & Lamb, M.R. (1991). Neuropsychological contributions to part-whole organization. *Cognitive Psychology*, 23, 299-330.
- Robertson, L.C., Lamb, M.R., & Zaidel, E. (1993). Interhemispheric relations in processing hierarchical patterns: Evidence from normal and commissurotomized subjects. *Neuropsychology*, 7, 325-342.
- Schmitt, V., & Davis, R. (1974). The role of hemispheric specialization in the analysis of stroop stimuli. Acta Psychologica, 38, 149-158.
- Sergent, J. (1983). The role of input in visual hemispheric asymmetries. *Psychological Bulletin*, 93, 481-514.
- Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing: A PET study. *Brain*, 115, 15-29.
- Sperry, R.W. (1974). Lateral specialization in the surgically separated hemispheres. In F.O. Schmitt and F.G. Worden (Eds.), *The Neurosciences: Third Study Program*. Cambridge, MA: MIT Press.
- Steenhuis, R.E., & Bryden, M.P. (1989). Different dimensions of hand preference that relate to skilled and unskilled activities. *Cortex*, 25, 289-304.
- Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643-662.
- Tucker, D., Watson, R. & Heilman, K. (1977). Affective discrimination and evocation in patients with right parietal disease. *Neurology*, 27, 947-950.
- Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology, 47, 631-650.
- Zaidel, E. (1995). Interhemispheric transfer in the split brain: Long-term status following complete cerebral commissurotomy. In R.J. Davidson and K. Hugdahl, (Eds.), Brain Asymmetry (pp. 491-532). Cambridge, MA: M.I.T. Press.

Zaidel, E., & Peters, A.M. (1981). Phonological encoding and ideographic reading by the disconnected right hemisphere: Two case studies. *Brain and Language 14*, 205-234.