
A Comprehensive Test

and Diagnostic Strategy for

TCAMs

by

Derek Warren Wright

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

©Derek Warren Wright 2004

 ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Derek Warren Wright

 iii

Abstract

Content addressable memories (CAMs) are gaining popularity with computer networks. Testing costs

of CAMs are extremely high owing to their unique configuration. In this thesis, a fault analysis is

carried out on an industrial ternary CAM (TCAM) design, and search path test algorithms are

designed. The proposed algorithms are able to test the TCAM array, multiple-match resolver (MMR),

and match address encoder (MAE). The tests represent a 6x decrease in test complexity compared to

existing algorithms, while dramatically improving fault coverage.

 iv

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Manoj Sachdev for his guidance and

support throughout my graduate studies. His kindness and generosity, along with his experience and

expertise has pointed my life in a direction of research and continuous learning, for which I am

grateful.

I would also like to thank my CAM Group team members, Nitin Mohan and Wilson Fung, who

are both very helpful, intelligent, and enjoyable to work with.

Special thanks to Dr. Arokia Nathan and Dr. Andrew Kennings for reviewing this thesis. Their

time, energy, and willingness to sit down and help me regardless of the task are greatly appreciated.

Finally, I thank my family. Most people are not lucky enough to know someone as supportive,

encouraging, and intelligent as my fiancée, Amy LeRoij, who truly is my lab partner for life. My

parents and brother, who are continually supportive, and Amy’s parents, who treat me like one of

their own, all deserve my true and sincere gratitude because they always have my best interests in

mind.

 v

Table of Contents

Abstract ..iii

Acknowledgements .. iv

List of Figures ...vii

List of Tables..viii

Chapter 1 Introduction .. 1

1.1 Motivation... 2

1.2 Thesis Organization .. 2

Chapter 2 TCAMs: Background... 4

2.1 TCAM Overview .. 4

2.2 TCAM Architecture .. 6

2.2.1 TCAM Array .. 8

2.2.2 Peripheral Components... 10

2.2.3 DfT Components .. 14

Chapter 3 TCAM Spice Model and Cell Fault Analysis ... 15

3.1 TCAM Spice Model.. 15

3.2 TCAM Cell Fault Analysis ... 16

Chapter 4 Testability Issues in TCAMs ... 22

4.1 Previous Work on TCAM Testing .. 22

4.2 Overview of TCAM Testing ... 22

4.2.1 Proposed Test Algorithms .. 23

4.2.2 Design for Test ... 24

4.2.3 BIST Architecture... 26

4.3 DRAM Testing.. 26

4.4 Search Path Testing... 27

4.4.1 MAE Testing .. 28

4.4.2 MMR Testing ... 30

4.4.3 TCAM Array Testing ... 35

4.4.4 Test Summary... 47

4.5 Algorithm Validation .. 48

4.6 Algorithm Benefits and Weaknesses .. 50

 vi

4.6.1 Existing Test Algorithm Complexity.. 51

4.6.2 Comprehensive TCAM Test Strategy Complexity... 52

4.6.3 Comparison of Test Algorithm Complexities... 56

4.6.4 Impact of BIST on Test Complexities .. 57

Chapter 5 Conclusions ... 59

References ... 60

 vii

List of Figures

Figure 2.1 – a) DRAM Cell and b) TCAM Cell... 4
Figure 2.2 – Simplified TCAM Search Architecture ... 6
Figure 2.3 – TCAM Architectural Overview ... 7
Figure 2.4 – TCAM Array Organization .. 9
Figure 2.5 – TCAM Word During Search Operation... 10
Figure 2.6 – MMR Tree Configuration .. 12
Figure 2.7 – 3-bit MAE .. 13
Figure 2.8 – Delay Chain Signal Generation.. 14
Figure 3.1 – TCAM Spice Model... 15
Figure 3.2 – Simplified MLSA... 17
Figure 3.3 – Example Defect and Circuit Equivalence .. 17
Figure 3.4 – Transistor Level Defects Modelled.. 18
Figure 3.5 – Write Time vs. Defect #2 Resistance... 21
Figure 4.1 – DfT Structures.. 25
Figure 4.2 – Detailed View of MMR/MAE Scan Chain .. 29
Figure 4.3 – MAE Input Test Vectors .. 30
Figure 4.4 – L1 MMR Test Bus Configuration .. 32
Figure 4.5 – L2 MMR Test Bus Configuration .. 33
Figure 4.6 – MMR Input Test Vectors ... 35
Figure 4.7 – Comparison Logic Symbolic Representation... 36
Figure 4.8 – Comparison Logic with a) SOP and b) SON Faults .. 37
Figure 4.9 – Memory Space with Logical Columns... 39
Figure 4.10 – Search Patterns for Increasing Values.. 39
Figure 4.11 – Intra-cell Test Algorithm Overview... 40
Figure 4.12 – Influence of Surrounding TCAM Cells.. 44
Figure 4.13 – Inter-cell Test Algorithm Overview... 45
Figure 4.14 – Existing Test Procedure and Complexity... 52
Figure 4.15 – Proposed TCAM Test Procedure and Complexity... 55
Figure 4.16 – Comparison of Proposed and Existing Test Algorithms.. 57

 viii

List of Tables

Table 2.1 – TCAM Storage and Search States ... 5
Table 3.1 – Possible TCAM Intra- and Inter-cell Defects and Detection Methods.............................. 19
Table 4.1 – MMR/MAE Mux Positions and Corresponding Functionality ... 29
Table 4.2 – MMR Mux Positions and Corresponding Functionality ... 31
Table 4.3 – TCAM Test Summary ... 48

 1

Chapter 1
Introduction

Content addressable memories (CAMs) are semiconductor memories. They differ from regular static

and dynamic random access memories (RAMs) by providing additional searching functionality. In a

RAM, information is stored and retrieved at a location determined by an address provided to the

memory. A CAM builds on this functionality by introducing searching capabilities. Every location in

the memory can be compared to a search pattern and the CAM will respond with either a “match” or

“mismatch” signal. In essence, this function can be thought of as the inverse of RAM: In a RAM the

user provides the address, and an operation (read or write) is performed on the data. In a CAM the

user provides the data and an operation is performed that returns the address. This functionality could

be achieved in RAM by successively searching every location in memory until a match is found.

However, this is extremely inefficient. CAMs perform the search in parallel on every location at once,

thus dramatically reducing the search time. A ternary CAM (TCAM) adds masking capabilities by

storing and searching a third “don’t care” state.

Though they have been in existence since the 1960s, CAMs have recently become increasingly

important. Traditionally, CAMs existed as embedded units in microprocessors as the translation

lookaside buffer (TLB). However, the growth of the Internet and the demand for increased bandwidth

of networks has necessitated search capabilities that traditional RAMs can barely meet. The solution

is being found in TCAMs, which are used in network processors and routers. TCAMs have recently

gained popularity as a means of speeding up the destination address search function and quality of

service (QoS) lookup required by network routers. The masking capabilities are extremely useful in

classless inter-domain routing (CIDR) Internet applications where longest-prefix matches (LPM) are

used.

The increasing importance of TCAMs is evident from articles such as [1]. There is no search

throughput performance penalty when using TCAMs with a network processor, as opposed to the

 2

typically logarithmic penalty when using RAMs for searching. This allows wire-speed packet

forwarding at OC-192 and OC-768 rates. These data rates require up to 100 M searches per second

which would be enormously difficult to achieve without a TCAM. The TCAM’s ternary nature allows

LPM for CIDR. The future of TCAMs lies in increasing their density, speed, and word length to

support the exponentially increasing demands placed on networks.

In spite of obvious TCAM benefits, there are challenges in the design and manufacture of TCAMs.

A significant amount of resources is spent on reducing the power consumption of TCAMs and

developing efficient test algorithms. TCAMs are power hungry devices owing to their sheer

complexity, parallel search requirements, and performance specifications [2,3,4]. Similarly, the test

complexity of TCAMs comes from the combination of memory and logic. The traditional memory

test algorithms are necessary but not sufficient for adequate testing of TCAMs.

1.1 Motivation

The motivation for this thesis lies in the fact that TCAM testing has been relatively ignored in

comparison to RAM testing. Thus, this area of research is ripe for new developments, and given the

increasing prevalence of TCAMs, advancements in TCAM testing will be welcomed in industry.

Existing TCAM test methods are often an afterthought of designers, but with test costs dramatically

rising [5] this is no longer an acceptable practice. This thesis represents an attempt by the author to

characterize the major test necessities of TCAMs from both a functional and fault perspective, and to

present methods to detect and diagnose faults in an effective and timely manner.

1.2 Thesis Organization

This thesis is organized as follows: In Chapter 2, an overview of TCAMs is given. It focuses on the

unique properties of TCAMs versus RAMs and binary CAMs. In Chapter 3, a spice model of the

TCAM is presented. The spice model is used to perform a transistor level fault analysis. In Chapter 4,

the connections between the results of the defect analysis of Chapter 3 and the algorithmic aspects of

TCAM testability are described. A MATLAB model is utilized to demonstrate the effectiveness of the

 3

resulting algorithm. Finally, in Chapter 5, conclusions are drawn and future research directions are

suggested.

The overall goal of this thesis is to develop a comprehensive test and diagnostic strategy for

TCAMs. The test strategy is developed by starting with a clear understanding of TCAM architectures,

and by performing a defect analysis of a TCAM cell. The possible failure modes of the cell, along

with the unique configuration of peripheral components, enable the development of a test strategy

consisting of on-chip test circuits and accompanying algorithms. This test strategy is designed to

diagnose specific faulty cells and components. The results of this diagnosis could be used along with

on-chip redundancy to repair some faulty TCAM chips despite their defects. Redundancy is not

covered in this thesis.

 4

Chapter 2
TCAMs: Background

2.1 TCAM Overview

Figure 2.1a) shows a 1-T dynamic RAM (DRAM) cell and Figure 2.1b) shows a 6-T dynamic TCAM

cell. In a DRAM cell, the bit line (BL) is connected to the capacitor when the word line (WL) is high,

thus enabling read and write functionality. In a dynamic TCAM, there are two DRAM storage cells,

(M3 and M6), and the read and write functionality remains the same. The additional four transistors

(M1, M2, M4, and M5) make up the comparison logic used for the match operation.

BL

WL

Access
Transistor

Storage
Capacitor

BL1

WL

BL2

SL1SL2

ML

M1

M2

M3 M6

M5

M4

a)

b)

Figure 2.1 – a) DRAM Cell and b) TCAM Cell

 5

The matchline (ML) is precharged to VDD. The storage nodes are loaded with complementary data.

The search lines (SL) are charged to the value which is being searched. The comparison logic

essentially performs an XNOR operation. In the case of SL data matching the stored data, the ML

does not discharge. If the bits mismatch, then the ML is discharged through two of the four search

transistors. When l bits are placed in parallel with a common ML, if any one bit mismatches, the ML

will discharge. Only if all stored (l) bits and complement match l-pair search lines will the ML remain

charged.

The ternary nature of the TCAM cell is evident when “0” is stored on both capacitors. This turns

off both the lower transistors in the comparison logic. Regardless of the values on the SLs, the ML is

unable to discharge. This effectively represents a “don’t care” condition being stored, hence the name

“ternary”: “1”, “0”, and “don’t care”. Table 2.1 shows the different states that can be stored in the

TCAM cell. The SLs can both be set to “0” as well. This is equivalent to searching for a “don’t care”

condition, which will always match since the ML cannot discharge through either discharge path in

the comparison logic.

Table 2.1 – TCAM Storage and Search States

Value BL1/SL1 BL2/SL2
Zero (0) 0 1
One (1) 1 0
Don’t Care (X) 0 0
Not Used 1 1

Figure 2.2 shows a simplified schematic of a TCAM search architecture. In the event of multiple

matches, a priority encoder (PE) allows the ML with the highest priority to be encoded as a matching

address. The PE is composed of a multiple-match resolver (MMR) and an address encoder (MAE).

The MMR allows only the ML with the highest priority to pass to the MAE, and outputs a multiple-

match detection signal if there is more than one match present. The MAE is a read-only memory

(ROM) that encodes the address of the output from the MMR. These additional components are not

 6

found in RAMs, hence special attention must be paid to testing both these components and the

comparison logic.

Search
Data

TCAM
Array M

M
R

M
A

E Matching
Addresses

PE

Figure 2.2 – Simplified TCAM Search Architecture

2.2 TCAM Architecture

A typical TCAM integrated circuit (IC) consists of three major types of circuits:

1. TCAM arrays to store ternary data

2. Peripheral components to facilitate read, write, and search functionality

3. Design for Test (DfT) components that enable testing of the various other components

Figure 2.3 shows a simplified block diagram of a TCAM illustrating the first two types of circuits.

DfT components will be treated in detail in Chapter 4. The TCAM array consists of TCAM cells that

make up TCAM words. Peripheral to the array is its associated address decoders, line drivers, buffers,

sense amplifiers, etc. Also, the peripheral circuitry includes the MMR and MAE. The DfT

components include the row/column redundancy, on-chip testing circuits, scan chains, and any other

circuits specifically included for testing purposes.

In most applications, a TCAM search can result in multiple matches. An MMR is used to resolve

the multiple match output into a single match that has the highest priority. The output is then encoded

as a matching address by the MAE. Usually the priority is hard-coded based on the physical address

of the TCAM word. For example, a matching word located at a lower address has higher priority than

a matched word located at a higher address. Some schemes employ programmable priority, which

 7

removes the restriction of physical address-based priority and allows the user to assign each word its

own priority. The MMR also generates a multiple-match detection (MMD) signal that indicates the

presence or absence of multiple matches. Thus, the TCAM can be designed to output all the matching

addresses of a search in order of priority by using the MMD signal to indicate to the user that more

matching addresses are available.

TCAM
Array

BL/SL Drivers

M
LS

A

BLSA

M
M

R
M

A
E

A
dd

re
ss

 D
ec

od
er

Read/Write
Address In

Read Data Out

Write/Search
Data In

Matching
Addresses Out

Multiple Match
Detection

Figure 2.3 – TCAM Architectural Overview

In memory semiconductors, it is common practise to segment the entire memory into blocks and

banks. This allows power to be saved by disabling portions of the memory that are not in use. Also,

signal drivers can be made smaller since they only have to drive local busses, and not global busses.

Typically in a TCAM with 144-bit words, one block will contain 128 or 256 words, which maintains

a reasonable layout aspect ratio. The IC may be partitioned into two, four, or eight banks to allow

clock gating and bank disabling to save power [6], but this level of abstraction will not be addressed

in this thesis. In existing stand-alone TCAMs, the chip level may contain several hundred-thousand

words.

 8

A densely-packed large size memory chip requires some degree of DfT to allow observability and

controllability without consuming a large number of I/O pins for testing [5]. The goal of the testing is

to identify faulty components and replace them with redundant on-chip components, and also to

determine whether or not the chip under test can be repaired or if it should be rejected. DfT has the

potential to make testing faster and to dramatically increase fault coverage when compared to

completely off-chip algorithmic solutions.

2.2.1 TCAM Array

Figure 2.4 shows a more detailed block diagram of the TCAM array. Each memory block in a TCAM

chip is implemented as an array of TCAM cells, where each TCAM cell is capable of storing a

ternary state. Typically, a horizontal row forms a word of a TCAM-based table. Within a word, a bit

is located by its column number. All the TCAM cells in a row share a common WL and a common

ML. Similarly, all the TCAM cells in the same column share a common set of BLs and a common set

of SLs. There are l bits and n addresses as shown in the figure.

2.2.1.1 TCAM Word

A TCAM word consists of l TCAM cells all connected to a common WL and ML. During a write

operation, an l-bit word is stored in the TCAM cells at the address specified by the user. The read

operation returns an l-bit word stored at the given address. The search operation compares an l-bit

search word against the l-bits stored in the TCAM word, and if the two match, the address of the

TCAM word is returned.

 9

1 X

X 0

1 0

X X

0 1

0 X

X 1

0 0

B
L1

B
L2

S
L2

S
L1

B
L1

B
L2

S
L2

S
L1

B
L1

B
L2

S
L2

S
L1

B
L1

B
L2

S
L2

S
L1

ML0

WL0

ML1

WL1

MLn-2

WLn-2

MLn-1

WLn-1

Bitl-1 Bitl-2 Bit1 Bit0

Figure 2.4 – TCAM Array Organization

During a search operation, the ML is precharged and the l-bit search word is applied to the TCAM

cells on the SLs. Any mismatching cells cause the ML to discharge, indicating a mismatch. This is

illustrated in Figure 2.5. The “X” (“don’t care”) condition shuts off the search path for that cell, thus

preventing an ML discharge regardless of the applied data. If the ML remains charged, the stored

word and search word match.

 10

φPRE

Search Word

Stored Word

Bits don't match
= ML discharge

1 0 1 1 0 X X 1 1 0 1 X 0 1 1

1 0 1 X X 1 0 1 1 0 1 X 0 1 1

1

0

VDD

ML To MLSA

Figure 2.5 – TCAM Word During Search Operation

2.2.2 Peripheral Components

2.2.2.1 WL and BL Drivers and BLSAs

The WL drivers are the same as in any RAM. The WLs are driven by large buffers activated by an

address decoder. There are existing test algorithms that are quite suitable for testing address decoders

with a high fault coverage [7]. The BL drivers are tristate buffers that can be activated during write

operations, and set to a high-Z state during read operations. The BL sense amplifiers (BLSAs) can be

voltage or current mode, and are single-ended in dynamic memories or double ended (differential) in

static memories. All these components are highly established and researched, and are identically

implemented in TCAMs as they are in RAMs. Thus, they will not be treated any further in this thesis.

2.2.2.2 SL Drivers and MLSA

The SL drivers are buffers very similar to the BL drivers, except that they do not need to be tristate

since the SLs are never read from, only written to. The ML sense amplifiers (MLSAs) are responsible

for detecting whether or not its associated ML has charged or discharged during a search operation.

Since they play a large role in determining the power consumption of TCAM ICs, MLSAs are an area

of increasingly intense research. The MLs are charged during every search operation. Limiting the

minimum charge necessary to make an accurate detection of the ML’s state is critical to reducing the

energy required per search operation. Consequently, there are numerous MLSA designs, all aimed at

 11

lowering the charge used on the ML during the search operation. For the purposes of TCAM array

testing, the MLSA is assumed to provide correct results since a malfunctioning MLSA would result in

grossly incorrect test results (always matching, or always mismatching), which is easily detected.

2.2.2.3 MMR

Due to the technical impracticalities of directly creating an n-bit MMR using traditional designs (the

Boolean expressions are too cumbersome), a tree structure of smaller MMRs is used to create a

distributed n-bit MMR. Each node of the tree is typically a small 16- or 32-bit MMR. This tree

configuration is depicted in Figure 2.6 for a distributed 256-bit MMR. A second MMR level

(L2 MMR) interacts with the first level (L1 MMR) to disable lower priority L1 MMRs in the case of

multiple matches. The figure shows a typical configuration at the block level for a typical block size

of 256 bits. The MMR is implemented at the chip level by introducing higher levels of MMRs which

enable and disable the L2 MMRs (L3, L4, etc.).

For example, assume in Figure 2.6 that address 0 has the highest priority and address 255 is the

lowest. If addresses 3, 15, and 240 are all matches, both L1 MMR0 and L1 MMR15 indicate matches

to the L2 MMR. The L2 MMR detects the conflict and disables L1 MMR15. The L1 MMR0 then

chooses address 3 as higher priority than address 15, and thus the only match passed to the MAE is

address 3, the highest priority address. If each L1 MMR has an “enable” input and a “match found”

output, then the L2 MMR can be functionally the same as the L1 MMRs, using the L1 “match found”

signals as inputs and outputting the “enable” signal to the highest-priority L1 block.

 12

16
-b

it
M

M
R

0
16

-b
it

M
M

R
15

0

15

240

255

16-bit MMR0

. .
 .

. .
. .

 .
. .

.

16
-b

it
M

M
R

1

. .
 .

. .

16

31

16
-b

it
M

M
R

15

224

239
. .

 .
. .

. .
 .

. .

MAE

0

15

240

255

16

31

224

239

L1 MMR

L2 MMR

. .
 .

. .
. .

 .
. .

. .
 .

. .
. .

 .
. .

. .
 .

. .

Figure 2.6 – MMR Tree Configuration

 13

2.2.2.4 MAE

The MAE is essentially an n-input ROM with log2(n) outputs. Each input line results in a hard-coded

output that corresponds to that input line’s address. A simple 3-bit example is depicted in Figure 2.7.

It is a dynamic circuit, and thus requires a precharge clock signal (φPRE). All output lines are

precharged to VDD (logic “1”) through the PMOS transistors, and when the input signal arrives on one

of the n lines, the gates of NMOS transistors discharge the appropriate outputs to zero. For example,

in Figure 2.7 if the input line 6 was “1” and the rest were “0”, the outputs would first be charged to

{Out2 Out1 Out0} = “111”. Then the corresponding NMOS transistor would discharge the Out0 line to

“0”, resulting in an encoded output of “110” = 6.

7

6

1

0

. .
 .

O
ut0

O
ut1

O
ut2

PREφ PREφ PREφ

Figure 2.7 – 3-bit MAE

2.2.2.5 Timing Controllers

Timing controllers are typically implemented as delay chains, which are made up of a chain of

inverters whose delays are tuned to meet internal signal timing specifications. Figure 2.8 depicts an

 14

example of one possible delay chain configuration, and how gates can be used to generate a pulse of a

specific width.

60
ps

60
ps

60
ps

60
ps

60
ps

60
ps

120 ps

Figure 2.8 – Delay Chain Signal Generation

2.2.3 DfT Components

DfT components encompass all subsystems used only during testing, and not during normal

operation. These structures include scan chains, multiplexers, test busses, test controllers and

interfaces, test pins, built-in self test (BIST) structures, and all other subsystems included to aid

testing. Scan chains, multiplexers, and test busses are used in great detail in Chapter 4 to increase

access to the MAE and MMR. Test controllers and interfaces are not addressed in this thesis because

they do not directly affect the test procedures or other DfT components. Test controllers and

interfaces (and sometimes the I/O pins required) are often specified by organizations to help

standardize testing interfaces [8, 9], but say nothing about the tests being performed. BIST moves

some portion of the test algorithm execution directly on-chip with the goal of reducing the burden on

the tester, and allowing certain test parallelization to reduce test time. The impact of BIST on the

algorithms presented in this thesis will be examined in Chapter 4.

 15

Chapter 3
TCAM Spice Model and Cell Fault Analysis

3.1 TCAM Spice Model

A complete spice model of a dynamic TCAM array was constructed for fault analysis in 0.18 µm

CMOS technology. The block diagram of this model is illustrated in Figure 3.1. This model is based

on a commercial design [10]. It contains an array of 16 words by 144 bits dynamic TCAM.

8 x 144
TCAM Array

BL & SL Drivers

M
ai

n-
se

ar
ch

 M
LS

A
&

La
tc

he
s

BLSAAddress
Latches

8 x 144
TCAM Array

BL & SL Drivers

BL & SL Drivers

P
re

-s
ea

rc
h

M
LS

A
&

La
tc

he
s

W
L

D
riv

er
s

Control
Logic

BL & SL
Latches

BL & SL Drivers

Figure 3.1 – TCAM Spice Model

The basic cell is the same as shown in Figure 2.1b). The BLs and SLs run vertically throughout the

array and the WLs and MLs run horizontally. The model consists of the 16 words divided into two

groups of eight with one dummy word above and below the BLSA block to aid in MLSA timing and

operation. BL and SL drivers are located at the top and bottom of each block of eight words to speed

charging and discharging of the highly capacitive lines. WL drivers and address decoders are on the

left of the TCAM array. Basic control was achieved using an asynchronous state machine with four

states: Idle, Read, Write, and Search. Timing was implemented using three separate delay chains with

attached static logic for each operation. Although only one delay chain is typically used, it was easier

to design each delay chain individually, and for the purposes of this research it was not critical that

 16

only one be used. The model has an un-optimized minimum cycle time of 7.2 ns, or 139 MHz. The

model was not optimized for cycle time since performance was not the goal of this study.

The BLSA is a simple voltage-mode sense amplifier consisting of two tristate cross-coupled

inverters. The MLSA is a current-mode sense amplifier, and a simplified diagram is shown in

Figure 3.2. During normal operation φPRE is high, tying ML to ground. During a search operation, ML

is quickly precharged using φFP to a voltage set by VREF. This voltage is less than VDD in order to

reduce the voltage swing on ML, and thus saves energy. The IREF is realized using a current mirror set

at a current less than a one-bit miss (the minimum current drawn from ML during a mismatch), and

greater than the leakage current drawn during a match. If IREF is not supplying enough current, then

the word is a mismatch and the sense point (SP) will discharge. Otherwise, the SP will remain

charged indicating a matching word.

Further energy savings are achieved by separating the search operation into two phases: Pre-search

and Main-search. Pre-search performs the search operation on a small subset of the bits and only if

they all match will the main-search proceed. If the pre-search is a mismatch, the main-search

operation is not executed on that word, thus saving energy. This necessitates the division of the ML

into pre- and main-search MLs. The pre-search ML is connected to 36 of the 144 bits and the main-

search ML is connected to the remaining 108 bits. If the first 36 bits mismatch then the main-search

ML is not precharged. This dramatically reduces power consumption at the cost of a minor increase in

complexity.

3.2 TCAM Cell Fault Analysis

Transistor level faults modeled included gate, source, and drain contact failures, subthreshold

conduction due to poor Leff control and wide Vt spread, gate oxide failures that lead to gate-source or

gate-drain conduction, and inter-cell shorts due to metal spot defects. Each of these defects in the

extreme case is represented as either a short or an open, but intermediate cases occur where the defect

 17

is best modeled as a resistance (see Figure 3.3). Even though the functionality may be preserved,

these faults are more insidious since the timing is affected by increased RC time constants.

IREF

VREF

.

Matchline Area
ML

MLSA Area

Out

Sense
Point
(SP)

Word composed
Of TCAM cells

PREφ

ENφ

FPφ

Figure 3.2 – Simplified MLSA

A transistor level fault analysis was performed on the 6-T TCAM cell. Examining possible

transistor level faults yielded five possible circuit level representations for the faults, which are shown

in Figure 3.4. These five circuit level fault representations were applied to each of the six transistors.

Adding the possibility of a storage capacitor ground fault revealed 16 unique intra-cell faults to be

examined. Inter-transistor coupling defects (caused by spot defects) resulted in nine additional faults

for a total of 25 possible faults.

D S

G

Gate
SourceDrain

Gate oxide
defect

Figure 3.3 – Example Defect and Circuit Equivalence

 18

D S

G

Gate
SourceDrain

Gate

SourceDrain

Gate
SourceDrain

Gate
SourceDrain

Gate
SourceDrain

Gate
SourceDrain

OR

D S

G

D S
G

D S

G

D S

G

Defect Circuit
Equivalent

Defect
Cause

Drain/Source
Contact Defect

Gate Contact
Defect

Gate to Drain
Oxide Failure

Gate to Source
Oxide Failure

Subthreshold
Conduction

Figure 3.4 – Transistor Level Defects Modelled

Analysis and simulation of these faults gave a detailed look into the possible failure modes of the

TCAM cell and also helped determine how easily these faults can be detected. Some faults resulted in

total failure of the cell, whereas other faults resulted in failure only under very specific operating

conditions. This allowed the development of test methods that attempt to catch the subtle faults.

 19

These methods are presented in Table 3.1. The Transistors, M1 through M6, refer to the cell depicted

in Figure 2.1b). The last operation in each method in the column “Detection Method” refers to the

result under correct operating conditions. For example, if Defect #11’s test method results in a

“mismatch”, then there is a fault. When a “wait” is required, no time is specified since the length of

time waited changes the range of faults detected. Sometimes a long wait period is not achievable due

to the dynamic nature of the circuit, the control circuitry used, etc.

Table 3.1 – Possible TCAM Intra- and Inter-cell Defects and Detection Methods

Description Detection Method
1 Storage Capacitor Defect (a) Write “1”; (b) Wait; (c) Read “1”
2 M3 Source/Drain Contact Defect (a) Write “0”; (b) SL2 = “1”; (c) Search for Match

3 M3 Gate Contact Defect (a) WL = “1”; (b) Wait; (c) WL = “0”, BL1 = “1”, SL2 = “1”;
(d) Search for Match

4 M3 Gate to Drain Oxide Failure (a) Write “0”; (b) Read “0”
5 M3 Gate to Source Oxide Failure (a) Write “0”; (b) Read “0”

6 M3 Subthreshold Conduction (a) Write “0”; (b) WL = “0”, BL1 = “1”,SL2 = “1”; (c) Wait;
(d) Search for Match

7 M2 Source/Drain Contact Defect (a) Write “1”; (b) SL2 = “1”; (c) Search for Mismatch

8 M2 Gate Contact Defect (a) Write “1”; (b) SL2 = “1”; (c) Wait; (d) Write “0”;
(e) Search for Match

9 M2 Gate to Drain Oxide Failure (a) Write “1”; (b) SL2 = “1”; (c) Wait; (d) Read “1”
10 M2 Gate to Source Oxide Failure (a) Write “1”; (b) Wait; (c) Read “1”
11 M2 Subthreshold Conduction (a) Write “0”; (b) SL2 = “1”; (c) Search for Match
12 M1 Source/Drain Contact Defect (a) Write “1”; (b) SL2 = “1”; (c) Search for Mismatch

13 M1 Gate Contact Defect (a) Write “1”; (b) SL2 = “1”; (c) Wait; (d) SL2 = “0”;
(e) Search for Match

14 M1 Gate to Drain Oxide Failure (a) SL2 = “0”; (b) Search for Match
15 M1 Gate to Source Oxide Failure (a) Write “1”; (b) SL2 = “1”; (c) Search for Mismatch
16 M1 Subthreshold Conduction (a) Write “1”; (b) SL2 = “0”; (c) Search for Match
17 M1 Gate to M2 Gate Short (a) Write “0”; (b) SL2 = “1”; (c) Read “0”
18 M1 Drain to M4 Drain Short (a) Write “1”; (b) SL1 = “1”; (c) Search for Mismatch

19 M1 Gate to M4 Drain Short (a) Write “1”; (b) SL1 = “1”, SL2 = “0”;
(c) Search for Mismatch

20 M2 Gate to M4 Drain Short (a) Write “1”; (b) SL1 = “1”, SL2 = “0”; (c) Search for Match
21 M1 Gate to M4 Gate Short (a) Write “1”; (b) SL1 = “1”, SL2 = “0”; (c) Search for Match

22 M1 Gate to M5 Gate Short (a) Write “0”; (b) SL1 = “1”, SL2 = “0”;
(c) Search for Mismatch

23 M2 Gate to M5 Gate Short (a) Write “1”; (b) Read “1”

24 M1 Gate to M3 Gate Short (a) Write “1”; (b) SL1 = “1”, BL1 = “0”;
(c) Search for Mismatch

25 M1 Drain to M3 Gate Short (a) Write “0”; (b) SL2 = “1”; (c) Search for Mismatch

 20

Using these defect models, simulations were performed to verify the effectiveness of the detection

methods (Table 3.1) for corresponding defects. For some defects, there are multiple ways to detect the

defect. However, certain methods were able to detect a wider range of defect resistances resulting in a

more robust test method.

As an example, Figure 3.5 illustrates the detection method for Defect #2 (Table 3.1). In a defect-

free case, when BL and WL have appropriate values, the storage capacitor should charge to VDD. This

voltage controls the gate of the M2 transistor. In the presence of the defect, the stored charge becomes

a function of the defect resistance. As the defect resistance increases, lesser charge is stored in a given

time reducing the drive of M2. At a certain resistance value, M2 fails to conduct. This behaviour is

illustrated in the graph in Figure 3.5. As shown in the figure, at the resistance value of 10 kΩ and

above, M2 exhibits the stuck-open (SOP) behaviour for write times of 2.5 ns, which is limited by the

control signal timing.

Most of the techniques presented in Table 3.1 require precise timing of on-chip control signals to

control lines such as WLs, BLs, SLs, and MLs in order to achieve a wide range of fault detection.

However, timing is usually fixed owing to nominal operating conditions, so alternate algorithms were

created that use the higher functions typically available to the tester: Read, Write, and Search. The

high-level test algorithms developed are designed assuming that weak defects will ultimately result in

stuck-on (SON) or SOP faults. This assumption limits the robustness of the fault detection methods

because the timing of the internal control signals is fixed. However, even with these timing limits in

place, most faults can be grouped into SON or SOP as was shown in Figure 3.5.

 21

Good

Bad

Write “1”

WL

BL

Storage
Capacitor

10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

1 100 10k 1M 100M 10G

Write Time = ~2.5ns

SOP Region

Defect #2 Resistance (Ohms)

W
rit

e
Ti

m
e

(s
)

Figure 3.5 – Write Time vs. Defect #2 Resistance

 22

Chapter 4
Testability Issues in TCAMs

In this chapter, we examine the testability aspects of TCAMs. A realistic defect analysis was carried

out on an industrial design. From this analysis an algorithm to identify realistic faults was developed.

Although this algorithm was developed for dynamic TCAMs, it is equally well suited to static

implementations since the comparison logic can be used in conjunction with any static or dynamic

storage cell. New test patterns and test structures are described that provide a full test suite designed

with the special complexities of TCAMs in mind.

4.1 Previous Work on TCAM Testing

Until recently, TCAMs were mostly considered an exotic type of semiconductor memory.

Consequently, most research into memory testing was directed to SRAMs and DRAMs with very

little emphasis on TCAMs. The only previous works of note are [11-14] which focus on testing static

binary CAMs, and [15] which focuses on TLBs, which are also static binary CAMs.

A recent patent [16] describes a TCAM built-in self test (BIST) scheme. From a BIST perspective,

the patent deals only with the TCAM array and does not mention the MMR or MAE. The patent

simply describes several possible permutations of methods used to get test data in and out of the

TCAM array. From an algorithmic standpoint, a brute-force approach is taken and each bit is tested

individually, resulting in the worst case complexity of O(nl). Thus, this patent serves as a good

starting point for further research, but fails to make any unique or truly innovative claims.

4.2 Overview of TCAM Testing

TCAM testing presents new challenges, both in terms of test algorithm development and DfT. Similar

to RAMs, a TCAM also contains address decoders, storage cells, and latches. Hence, there is some

overlap between traditional RAM testing and TCAM testing. However, TCAMs also contain

additional components such as bit-level comparison logic, MLSAs, wide-input MMRs, and MAEs.

 23

These components require the development of new test strategies. As a result, a complete TCAM test

strategy will incorporate both existing RAM tests, and new tests designed specifically for TCAMs.

The largest commercial TCAMs currently available have tens of millions of storage cells. Such a

large number of cells makes TCAM testing very time consuming, thus the tests must be as efficient as

possible. The tests must also have access to individual search-path components working both together

and in isolation. Finally, due to the ubiquitous nature of defects in deep sub-micron technologies

along with the large critical area of TCAMs, test strategies must be developed using defect analysis

and not only using the simple stuck-at fault model.

TCAM testing can be roughly divided into two categories: (i) The first part of the complexity is the

same as that of any DRAM. It encompasses the access transistor and the storage capacitor. This is a

mature research topic with a significant amount of research done on the subject. (ii) The second part

of the test complexity comes from the search operation. The output of the search is available on the

MLs. All ML discharge paths of a given word (2l) are connected to the corresponding ML. Therefore,

each discharge path must be uniquely tested. In a complex TCAM, there could be 36 M such paths

[17], making TCAM testing expensive.

The additional difficulty of TCAM testing lies in identifying and repairing faulty cells. In TCAMs

it is easier to identify the faulty address (row), but it is more time consuming to find the individual

faulty bit (column). Testing the TCAM cells using higher-level functionality presupposes that the

MMR and MAE are functional and fault free. Therefore the MAE and MMR must first be tested and

deemed functional to exploit the high-level Read, Write, and Search functions.

4.2.1 Proposed Test Algorithms

The test algorithms must strive towards full fault coverage, high efficiency, and ease of

implementation to support existing testers. RAM testing is a mature research area since RAM

applications are so prevalent. Hence, existing RAM tests, such as March-based algorithms, can be

used to test the storage cells in TCAMs [18]. These algorithms require slight modifications to account

 24

for the two storage cells per TCAM cell, or a read and write mode built into the TCAM which allows

decoupling of the individual storage cells in order to execute the RAM test algorithm directly without

modification.

The comparison logic contained in every TCAM cell presents new test challenges. Since every

TCAM cell can individually discharge its corresponding ML, every single discharge path in the

TCAM must be verified. For example, testing an 18 Mb TCAM requires coverage of 36 M discharge

paths. Basic TCAM test algorithms result in a complexity of O(nl), where n is the number of words

and l is the number of bits per word since each bit must be tested individually. The algorithms

described in this thesis have reduced the complexity by exploiting the masking capabilities of

TCAMs and result in a complexity of O(nl / log2(n)). Finally, circuits such as the wide-input priority

encoder are more recent and have not had extensive test algorithm development. A basic functional

test algorithm, along with the necessary on-chip test circuitry required to facilitate testing, is

described later in this chapter.

4.2.2 Design for Test

The number of transistors per I/O pin is dramatically increasing as ICs become more highly integrated

and feature sizes shrink. According to the 2003 International Technology Roadmap for

Semiconductors, there are now close to 1 M transistors per I/O pin [5]. This makes I/O pins valuable,

and hence testing should occupy as few pins as possible. If only a few I/O pins are available, off-chip

testing suffers from reduced observability of the IC from the perspective of the tester.

Design for Test (DfT) seeks to alleviate these problems by incorporating circuits and structures

onto an IC during the design phase that make testing easier, faster, and more effective. One aspect of

DfT is that it can achieve low-speed testing of high-speed ICs using on-chip circuitry. Thus, older

testers can be used and do not need to be replaced as often. Another aspect of DfT is the inclusion of

on-chip structures that increase the accessibility and observability of resources that need to be tested.

On-chip test circuitry’s view of the chip is not limited by the narrow window of available I/O pins.

 25

Finally, BIST seeks to implement the necessary test algorithms directly on the die. The tests can be

executed in parallel, require less tester bandwidth, and be fully customized to the IC. BIST can

identify faulty components and replace them with the on-chip TCAM redundancy, and can also help

the tester to determine whether the TCAM IC under test can be repaired or if it should be rejected.

External testers are still required for other essential tests, like IDDQ and parametric testing.

Figure 4.1 shows the DfT architecture that will be used in the remainder of this thesis for algorithm

development. Two scan chains allow test vectors to be scanned in, and results to be scanned out, and

several multiplexers control the movement of test and regular operational data throughout the IC.

S
C

M
M

R

S
C

TCAM
Array M

LS
A

s

M
A

E

Scan In
Scan In

Scan Out

Matching
Addresses

Out

Search
Word

a b1

2

3

Figure 4.1 – DfT Structures

Because the search operation propagates from TCAM array to MMR to MAE, it is logical to test

these structures in reverse order. The multiplexers allow the inputs and outputs of the various units to

switch between the output of the previous stage and a scan chain. Since the multiplexers can be

implemented using pass transistors, there is little area or delay penalty for including them into the

search path of the TCAM. The multiplexers in front of scan chain “b” (SC-b) allow the scan chain

either to input test vectors, or to store the output of the previous stage (MMR). The outputs are then

shifted out serially to the test circuitry. For example, the outputs of the MMR can be examined before

they enter into the MAE.

 26

The TCAM array is tested using the MAE’s output once the MMR and MAE have been tested.

This compacts the results of the TCAM array test into matching addresses, eliminating the need for an

additional scan chain to serially shift out the TCAM array test results. Using the MAE output

compacts the results of the TCAM array test algorithm from n-bit vectors into log2(n)-bit matching

addresses. The following sections assume that scan chains “a” and “b” (SC-a and SC-b), and

multiplexers “1”, “2”, and “3” (Mux-1, Mux-2, and Mux-3) shown above in Figure 4.1 are

implemented on the TCAM. An additional multiplexer, Mux-TB, is also implemented but not shown

in the figure for simplicity. Its operation is discussed in subsequent sections.

4.2.3 BIST Architecture

Test algorithms can be run entirely on a tester with few test provisions designed into the chip. This

option necessitates an advanced tester that is capable of executing all the necessary test algorithms

and most likely would need to operate at the frequency of the IC. Including BIST circuits on the IC

allows test vectors to be generated and results examined directly on chip. This reduces the burden on

the tester, potentially allowing more ICs to be tested at once, and enables test parallelization.

Without BIST, testing typically must occur at the chip level (~64-128k words). With BIST, certain

portions of the test algorithm can be executed at the block level (~128-256 words), on all blocks in

parallel. This reduces the test complexity of the algorithms executed at the block level by a factor of

x, where x is the number of blocks per chip. For example, an 18 Mb TCAM with 128 k words and

blocks of 128 words each benefits from a test time reduction of 1024x. Given the size and complexity

of TCAMs, DfT and BIST are essential for efficient and cost effective testing.

4.3 DRAM Testing

The storage section of the TCAM cell is identical to a DRAM cell. Since DRAMs have been

ubiquitous for decades, a great effort has been directed towards discovering and solving their

testability issues. A look at the various possible defects that can occur in a DRAM is documented in

[19]. An example of a modern test interface for embedded DRAMs is [20].

 27

The testing of DRAMs applies equally to the access transistors and storage capacitors of the

TCAM. If the storage capacitor is faulty, it may not be able to retain charge. Gate oxide capacitors

may have cracks in the oxide which could allow conduction to ground. Other types of capacitors may

have faults with similar effects. The access transistors may suffer from any combination of the faults

previously covered. Tests for DRAM cells can be equally applied to testing these portions of the

TCAM cell. If a static implementation is used, SRAM tests should be applied to the TCAM.

When choosing a RAM test algorithm, it should be noted that there are two storage cells per

TCAM cell. Thus, storing a logical “1” in the TCAM actually results in the physical storage of a “1”

and a “0”, and vice versa. The chosen algorithm must be slightly modified to take these differences

into account. Otherwise, a read and write mode which allows decoupling of the individual storage

cells must be incorporated into the TCAM in order to execute the RAM test algorithm directly

without modification.

4.4 Search Path Testing

The search path consists of the comparison logic, the MMR, and the MAE. The comparison logic

consists of the ML and the four discharge transistors in every cell. A successful test algorithm will

detect if any one of these transistors is SON or SOP, but an efficient test algorithm will do it quickly.

The algorithm presented in this thesis exploits the fact that the search function returns address

information. It detects discrepancies between the expected returned addresses and the actual returned

addresses. This algorithm will detect all comparison logic transistor SON and SOP faults. It was

assumed during the development of this algorithm that the TCAM is able to return all matched

addresses sequentially, as was the TCAM being modeled. In the case of a TCAM that only returns the

highest priority match, all matching addresses can be returned in sequence by writing mismatching

values to the returned address. When a matching address is returned, the complement of the search

value is written to the address, thus ensuring a mismatch. The next highest priority address will then

 28

be returned. Once the searching is complete, the original values can be re-written to the affected

addresses.

The MAE is tested at the chip level by examining its ability to encode every possible address. As

previously discussed, the MMR is a tree-structure of smaller 16- or 32-bit MMRs. It could be

efficiently tested initially at the block level, but must also be tested at the chip level. The TCAM array

can be tested at any level, but testing at the block level would enable time saving parallelism. Each of

these aspects will be discussed in the following sections.

4.4.1 MAE Testing

4.4.1.1 MAE DfT Components

Figure 4.2 shows a detailed view of the test structures in place between the MMR and the MAE. It

shows the registers of SC-b, and Mux-2 and Mux-3 that connect and disconnect them, as depicted in

Figure 4.1. The blocks labelled “R” are the registers of the scan chain, and the switches represent

multiplexers. The MAE is tested by encoding every possible address and examining the output’s

validity. Even at the chip level this results in only n tests, one for each address, and ensures that the

complete hierarchical MAE is fully functional.

When the multiplexers are in position “a”, the scan chain is capable of storing all the outputs of the

MMR in parallel. The values can then be shifted out serially to a tester by switching Mux-2 to

position “b”. Alternately, test vectors can be shifted into the scan chain by keeping Mux-2 in position

“b”. The MAE inputs are connected to multiplexers that allow either the MMR’s outputs to pass

directly to the MAE (Mux-3 position “a”), or the scan chain’s values to pass (Mux-3 position “b”).

Thus, for regular operation, the switch would be in position “a” and the scan chain would not be used.

These modes are described in Table 4.1.

 29

Table 4.1 – MMR/MAE Mux Positions and Corresponding Functionality

Mux-2 Position Mux-3 Position Function

a a Normal operation /
Store MMR outputs in SC-b

b a Normal operation /
Shift SC-b In/Out

a b Not used

b b MAE connected to SC-b /
Shift SC-b In/Out

4.4.1.2 MAE Test Algorithm

An MAE is configured similarly to the one shown in the 3-bit example in Figure 2.7. To test the

MAE, the test controller (either an off-chip tester or a BIST controller) connects the MAE’s inputs to

SC-b using Mux-2 and Mux-3 in position “b”, as they are shown in Figure 4.2.

R0

M
M

R

M
AE

. .
 .

. .
 .

. .
 .

R1

Rn-2

Rn-1

Scan Out

Scan In

Mux-3SC-b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Mux-2

Figure 4.2 – Detailed View of MMR/MAE Scan Chain

A string of zeros is first shifted into the scan chain, or the scan chain registers are simultaneously

reset to zero depending on the kind of registers used. A “1” is shifted into the scan chain followed by

 30

more zeros. These input test vectors are shown in Figure 4.3 for the first eight input bits of the MAE.

Every time the “1” is shifted, the output is examined to ensure that the address has been correctly

encoded. Typically the address would begin at zero and increment each shift until the last address is

detected at n – 1, where n is the number of words. Any time the output address does not match the

expected address, there is a fault present at the expected address in the MAE.

This procedure exhaustively tests every address. Due to the nature of the MMR, it is unnecessary to

apply multiple high (“1”) inputs during testing of the MAE because this input condition should never

occur, and the MAE is not typically designed to handle this type of erroneous input. The MAE test is

of complexity O(n). For example, in a 64k-word TCAM, the test would take 64k shifts to move the

“1” through the scan chain plus the amount of time it would take to reset the scan chain to all zeros.

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

01234567

Ti
m

e

Input Bit

Figure 4.3 – MAE Input Test Vectors

4.4.2 MMR Testing

4.4.2.1 MMR DfT Components

Due to the technical impracticalities of directly creating an n-bit MMR using traditional designs, a

tree structure of smaller MMRs is used to create a distributed n-bit MMR, as shown in Figure 2.6.

This tree-structure of smaller MMRs must eventually be tested at the chip level to ensure higher-level

functionality. However, by first testing the nodes of the MMR tree, the complexity of testing the full

MMR tree is greatly reduced, eliminating special test cases between nodes of the MMR tree. Using

 31

appropriately connected multiplexers, the MMR tree is disconnected to separate each node. Then each

node, which is typically a small 16- or 32-bit MMR, is tested in isolation. The tree is then reconnected

and tested as a whole.

This scan chain and multiplexer configuration is depicted in Figure 4.4 for the L1 MMR. Without

any DfT components in place, the outputs of the MLSAs would be directly connected to the MMR.

Mux-1 is inserted to allow the inputs of the MMR to switch between the MLSA outputs for regular

operation in position “a”, and scan chain register outputs for MMR testing in position “b”. These test

modes are summarized in Table 4.2.

Table 4.2 – MMR Mux Positions and Corresponding Functionality

Mux-TB Position Mux-1 Position Function

a a Normal operation /
SC-a parallel load from TB

b a Normal operation /
SC-a serial load from TB

a b MMR connected to SC-a /
SC-a parallel load from TB

b b MMR connected to SC-a /
SC-a serial load from TB

The input of every sixteenth bit of SC-a is either a 1-bit MMR test bus (TB), or the output of the

previous scan chain register. The Mux-TB serves to switch between the resulting parallel 16-bit scan

chains in position “a”, and one long serial scan chain in position “b”. When Mux-TB is in position

“a”, every sixteenth scan chain register shifts in new test values from the 1-bit MMR TB, thus acting

as numerous parallel 16-bit scan chains. When Mux-TB is in position “b”, every scan chain register

loads its new value from the previous register, thus acting as one long serial scan chain. The scan

chain registers in Figure 4.4 correspond with SC-a in Figure 4.1.

 32

16
-b

it
L1

 M
M

R

1-bit MMR
Test Bus

TCAM Words R0

.
.

.
.

.

.
.

.
.

.

R15

M
LS

A
s

.
.

.
.

.

a b

a

b

a

b

Mux-1
Mux-TB

To Next
16 Words

0

15

Figure 4.4 – L1 MMR Test Bus Configuration

Figure 4.5 shows the scan chain and multiplexer configuration for the L2 MMRs. It is essentially

the same as for L1 MMRs with the exception that the input signals are normally the “match found”

signals from the L1 MMRs, and the outputs are connected to the enable inputs of each L1 MMR.

Thus, when the MMR is being tested as disconnected nodes, all MMR nodes must be individually

enabled to circumvent deactivation by higher-level MMR nodes.

 33

16
-b

it
M

M
R

0

L2 MMR

16
-b

it
S

C
-b

16
-b

it
S

C
-a

P
re

vi
ou

s
16

-b
it

S
C

Scan Out

“Match Found”
signals from L1

MMRs

“Enable” signals
to L1 MMRs

Mux-1

a bMux-TB
1-

bi
t M

M
R

 T
es

t B
us

a

b

Figure 4.5 – L2 MMR Test Bus Configuration

4.4.2.2 MMR Test Algorithm

Initially, the entire SC-a is reset to “0”, Mux-TB is set to position “a” (i.e. SC-a is configured as

parallel 16-bit scan chains), and SC-b is used to capture the output of the MMR. Since exhaustive

testing of p-bit L1 MMRs would require 2p test vectors, and each vector would require p shifts to load

in the p-bit parallel scan chains, it would take p·2p shifts to load the exhaustive test vectors. This

complexity can be reduced to 2p by using a pseudo-random binary sequence (PRBS) generator [21].

However, shifting out the results would require n shifts of the serially connected SC-b, thus

 34

eliminating any benefit of using a PRBS. Exhaustive testing would therefore take n·2p total shifts to

accomplish. Assuming block level testing is possible, blocks of 128 words, and p = 16, this would

result in 128·216 = 225 = 33.6 M shifts. Under most circumstances, this is too costly. A basic

functional test is presented here that attempts to verify the proper functionality of the L1 MMRs while

saving time.

The functional test requires the same initial configuration as stated earlier: Initially, the entire SC-a

is reset to “0”, Mux-TB is set to position “a” (i.e. SC-a is configured as parallel 16-bit scan chains),

and SC-b is used to capture the output of the MMR. A string of “1”s are shifted into the scan chains,

and the L1 MMR outputs are checked to verify that each new “1” inputted into the scan chains results

in the next higher priority output than the previous “1”. This pattern is depicted in Figure 4.6

assuming that the least-significant bit (LSB) is the highest priority. Once all the small L1 MMRs are

verified, the tree is reconnected (“match found” and “enable” signals to and from L2 MMRs are re-

established), and the inputs to the scan chains are set to the outputs of the previous scan chain

(Mux-TB in position “b”). Now, the MAE output can be used to compact the results into matching

addresses since the MAE has already been tested and deemed functional. Any error with the MMR

blocks connected as an n-bit MMR will result in an incorrect address being outputted by the MAE.

The MMR tree is tested as a whole by resetting SC-a to all “0”s, then by shifting in a string of “1”s.

Again the outputs ensure that each new “1” introduced into the scan chain has a higher priority than

all the previous “1”. Consequently, the string of “1”s should proceed from lowest priority input to

highest.

 35

000...000
100...000
110...000
111...000
. .
. .
. .

111...100
111...110
111...111

012...131415

Ti
m

e

Input Bit

Figure 4.6 – MMR Input Test Vectors

It should be noted that each level of the MMR tree is not limited to using 16-bit MMRs.

Theoretically, they can be made of any size MMRs, but typically they are 16- or 32-bits for practical

reasons. One level of the tree need not have the same MMR input size as the previous or following

level. The test algorithm presented is easily extendable to any sized MMR. This thesis assumes 16-bit

MMRs to facilitate algorithm development and presentation. For full MMR testing, the same pattern

shown in Figure 4.6 can be extended to test all n-bits of the MMR. This results in n + 1 input patters

for the serial scan-in (full tree) test mode of the MMR.

4.4.3 TCAM Array Testing

Once the MAE and MMR are known to be functional, the following TCAM array test algorithms can

be executed without any special DfT components to increase observability and controllability. This

algorithm exploits the fact that the search function returns address information. It detects

discrepancies between the expected returned addresses and the actual returned addresses. This

algorithm is designed to detect all intra-cell defects leading to SON and SOP faults, and inter-cell

coupling faults. Also, the row and column of a faulty cell are simultaneously extracted from the

results of this algorithm. Thus, it is equally amenable to both row and column redundancy.

 36

The algorithm exploits the masking capabilities of the TCAM to test many bits at once instead of

existing methods that test only one bit at a time. The test was designed based on the preceding defect

analysis of a commercial TCAM, and the results were found to be applicable to any TCAM that uses

an ML architecture. Commercial standalone TCAMs use ML architectures, so these results are very

portable. An example of a non-ML architecture would be a software program that uses RAM to

mimic the functionality of a TCAM.

To help in visualizing the match operation, Figure 4.7a) shows a symbolic representation of the

comparison logic transistors. BL1, BL2, SL1, and SL2 represent the transistors located in the

comparison logic. For example, if the cell is storing a “1”, then BL1 = “1” and BL2 = “0” as shown in

both Figure 4.7b) and Figure 4.7c). The available states are summarized in Table 2.1. In Figure 4.7b),

the bit being searched for is also a “1” since SL1 = “1” and SL2 = “0”, so there is a match condition

and no path exists for the ML to discharge. However, if a “0” is being searched for, as in Figure 4.7c),

then SL1 = “0” and SL2 = “1”, creating a path for the ML to discharge, thus indicating a mismatch.

Though the BLs are not directly tied to the gates of the transistors in the comparison logic, the

symbols BL1 and BL2 are used to indicate the values stored on the capacitors since these values

initially came from the BLs. This is the reason why this comparison logic configuration can be used

with static memory architectures. As long as the gates of BL1 and BL2 are driven by the values stored

in the memory cells, the type of memory cell is irrelevant.

SL2 SL1

BL1 BL2

ML

0 1

1 0

Match

1 0

1 0

Mismatch

a) b) c)

Figure 4.7 – Comparison Logic Symbolic Representation

 37

4.4.3.1 Intra-cell Testing Overview

If every address contains a unique word, then searching for one of these unique words should return

only one address. However, if an unexpected address is returned, this indicates an SOP fault. This

occurs because the ML could not discharge through the SOP fault and returns a false match. This is

illustrated in Figure 4.8a).

If the expected address is not returned, this indicates a SON fault. Even though all the stored bits in

the expected address match the bits on the SLs, the SON fault allows the ML to discharge indicating a

false mismatch. This is illustrated in Figure 4.8b).

0 SOP

0 1

ML

0 1

1 SON

ML

a) b)

ML cannot discharge ML discharges

Figure 4.8 – Comparison Logic with a) SOP and b) SON Faults

The intra-cell algorithm tests the four comparison logic transistors of every TCAM cell. The

algorithm proceeds as follows: 1) Write unique values to every address. 2a) Check for SOP faults by

looking for erroneous matching addresses. 2b) Check for BL SON faults by looking for missing

expected matching addresses. 2c) Check for SL SON faults at addresses that failed the BL SON test.

3) Repeat the procedure using inverted values when writing and searching.

An easy way to assign a unique word to each address would be to write increasing values to each

address starting with “0”. Hence, if the address contains 16 bits and the word length is 144 bits, by

only assigning unique values to the first 16 bits, one can have a unique pattern in the entire word

space. The rest of the bits (128 padding bits) in every word can be kept as all zeros or ones. Since the

number of bits per word, l, typically exceeds the number of bits in the address, log2(n), many padding

 38

bits are needed per word when writing unique values. However, the above mentioned procedure has

some shortcomings. It takes a lengthy procedure to search for SON faults in the padding bits because

the locations of SON faults in the padding bits are indistinguishable from each other.

An alternative, efficient arrangement can be realized if we divide the word length into logical

columns of 16 bits each (i.e. the same number of bits as the address space, which is log2(n)). In every

logical column the same data pattern is repeated, as shown in Figure 4.9 for a small 16 x 16 TCAM.

For example, if the address is 16 bits and the word length is 144 bits, there will be 144/16 = 9

columns of increasing (or decreasing) 16-bit numbers. Once these numbers are stored in memory,

each column will be searched individually for the correct increasing (or decreasing) values by

masking out the other columns in the search word. This concept is illustrated in Figure 4.10 for the

same small 16 x 16 TCAM. The word is divided into logic columns of 4 bits each.

A diagram of the algorithm’s flow is presented in simplified form in Figure 4.11. It shows the

general steps and decisions executed to successfully implement the first pass (ascending values) of

the test algorithm. This procedure would be repeated using descending values with ascending address

instead – essentially inverting all test data.

 39

0000
0001
0010
0011
.
.
.

1100
1101
1110
1111

0123
Ad

dr
es

s

Bit

0000
0001
0010
0011
.
.
.

1100
1101
1110
1111

0000
0001
0010
0011
.
.
.

1100
1101
1110
1111

0000
0001
0010
0011
.
.
.

1100
1101
1110
1111

456789101112131415

0
1
2
3
.
.
.
12
13
14
15

Logical Columns

Figure 4.9 – Memory Space with Logical Columns

XXXX
...
XXXX
XXXX
...
XXXX
XXXX
...
XXXX
0000
...
1111

0123

Time

Bit

XXXX
...
XXXX
XXXX
...
XXXX
0000
...
1111
XXXX
...
XXXX

XXXX
...
XXXX
0000
...
1111
XXXX
...
XXXX
XXXX
...
XXXX

0000
...
1111
XXXX
...
XXXX
XXXX
...
XXXX
XXXX
...
XXXX

456789101112131415

24 searches
(column 1)

S
ea

rc
h

W
or

ds24 searches
(column 2)

24 searches
(column 3)

24 searches
(column 4)

Figure 4.10 – Search Patterns for Increasing Values

 40

Logically divide each
word into l columns

log2(n)

Write to each word
so that every logical
column contains the
address of that word

Search one column at a
time by masking unused
columns in search word

Perform search for next
value (beginning with 0)

Were any
extra addresses

returned?

SOP fault at
current address

Was the
expected addresses

returned?

Could it
be detected by SL

masking?

Mark address for
further testing

BL SON fault at
current address

Done searching?

Scan marked addresses
for SL SON faults

END

Step 1

Step 2a

Step 2b

Step 2c

Yes

Yes

Yes

Yes

No

No

No

No

Figure 4.11 – Intra-cell Test Algorithm Overview

 41

4.4.3.2 Intra-cell Test Algorithm

This algorithm is composed of three steps, two of which are summarized in Figure 4.11. Step 3 is to

repeat Steps 1 and 2 respectively except that descending values are stored and searched. An

explanation of each step follows.

Step 1: This step is responsible for logically dividing the word into l/log2(n) columns and filling each

column of each word with a value equal to that word’s address. This is accomplished by

taking the modulus of the actual bit position in the word with respect to the number of bits in

the address. This yields the bit’s relative position within its logical column. For example, if

the logical column width is 16 bits, bits 0-15, 16-31, 32-47, etc. are all columns within the

word. Therefore, bits 0, 16, 32, etc. all have the same bit position relative to their column:

relative bit position 0. Once the relative bit position is known, the value of that bit can be

determined based on the current address location.

Step 2: Now that the address space is completely filled with unique values, the search function will

be used to return useful information. Each column is searched individually in ascending

address order. To accomplish this, the logical column is searched and the rest of the search

word is set to “don’t care” (“X”). The TCAM is then searched using the search word. Two

tests are performed based on the address information returned: A test for SOP faults and a test

for SON faults.

Step 2a: The test for SOP faults checks the returned matching addresses to see if addresses

other than the one expected are returned. If there are, then they are caused by SOP faults

in the words located at the unexpected returned addresses. If one of the BL or SL

transistors has an SOP fault, then a transistor is off that should be on. Thus, the ML of

that word cannot discharge through that path. This results in that bit being perceived as a

“don’t care”. The exact location of the bit with the SOP fault can be determined from the

returned address. It is located at relative bit location log2(expected address XOR

 42

unexpected address). For example, if address 9 was expected, but address 13 was also

returned, the defective bit is at relative bit location log2(10012 XOR 11012) = log2(01002)

= log2(4) = 2. This means that the third relative bit inside the word with address 13 has an

SOP fault.

Step 2b: The test for SON faults is slightly more complicated than the test for SOP faults. If

the returned addresses do not contain the expected address at all, then there is an SON

fault that is causing the ML to discharge when it should not. The consequence is a false

mismatch. To find the location of the SON fault, the corresponding search word for the

missing address is repeatedly searched. However, each time it is searched, one of the bits

of the unmasked portion of the search word is replaced with a “don’t care”. If the

expected address is returned during this process, then the SON fault is located in a BL

transistor in the bit that was just masked when the correct address was returned. If the

expected address is not returned, the masked bit is unmasked and a different bit is

masked. Typically the procedure would start by testing the least-significant bit (LSB) of

the logical column and then linearly testing each successive bit. However, if the expected

address is not returned during this process, this indicates that one of the SL transistors at

some location in the entire word is SON and cannot mask properly. This address is noted

and a subsequent portion of the algorithm (Step 2c) finds the defective bit. A binary

search tree algorithm cannot be used with SL masking since too many matching

addresses would be returned. Thus, a linear search is used, masking one bit at a time so

that only one extra unnecessary address is returned each search.

Step 2c: The opposite approach of Step 2b is used to find the remaining SON faults in the

addresses that were noted. The search word is completely unmasked and set to the

expected contents at the faulty address and the stored word uses BL masking to find the

faulty bit location. A binary search tree algorithm can be used, and would begin by re-

 43

writing the data at the address being searched, except that half of the word would be

masked. When searched using a partially masked stored word and unmasked search

word, if the address is successfully returned, then the faulty bit is contained in the masked

portion of the stored word. Otherwise it is contained in the unmasked part of the word.

The algorithm proceeds recursively by further dividing the faulty half of the stored word

in to masked and unmasked quarters, eighths, etc., until the faulty bit is found.

Step 3: Repeat Steps 1 and 2, but write and search using complementary values. This ensures that

each transistor is tested for both SOP and SON faults.

An assumption was made in the algorithm that the number of bits in a word divided by the number

of address bits is an integer (i.e. l/log2(n) is an integer). This may not be the case, but the algorithm

needs only a simple modification to function properly. The remaining bits will be correctly written to

in Step 1. Since bits are searched only as a part of a logically divided column, an extra column with

the same width as the others must overlap the extra bits and also be searched. The only resulting

consequence is that the bits that are contained in both a regular column and the extra column will be

tested twice.

4.4.3.3 Inter-cell Testing Overview

Figure 4.12 shows how surrounding cells can influence the operation of a TCAM cell in the presence

of coupling faults. These coupling faults can lead to corrupted stored data. Since bridging faults due

to excess deposits during fabrication are currently the dominant manufacturing defect [22], therefore

the detection of coupling faults is critical in deep sub-micron technologies.

 44

...00000000

...11111111

...00000000

...11111111

01234567....

Ad
dr

es
s

Bit

0
1
2
3
.
.
.

.

.

.

.

.

.

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

012 Bit

Ad
dr

es
s 0

1

2

0 1 0 1 0 1

1 0 0 0 1 0

0 1 0 1 1 1

012 Bit

A
dd

re
ss

0

1

2

coupling
faults

Figure 4.12 – Influence of Surrounding TCAM Cells

4.4.3.4 Inter-cell Test Algorithm

This algorithm is composed of six steps which are summarized in Figure 4.13. Steps that call for

themselves to be repeated using inverted search data do not show these repeats in the figure for the

sake of clarity. 1) Write a pattern to memory to expose horizontal and vertical inter-cell coupling

faults. 2) Detect if a cell has flipped stored value from either “1” “0” or vice versa. 3) Repeat 1)

and 2) respectively using inverted stored data. 4) Write a pattern to memory to expose diagonal inter-

cell coupling faults. 5) Detect if a cell has flipped stored value from either “1” “0” or vice versa.

6) Repeat 4) and 5) respectively using inverted stored and search data. An explanation of each step

follows.

 45

Write
to
memory:

Search
using:

Were any
addresses
returned?

Coupling fault at
returned addresses

Were any
expected addresses

missing?

Go to Step 1.
Use inverted
stored data

Repeated
with inverted stored

data?

Go to Step 4

Step 1

Step 2a

Step 2b

Step 3

Yes

Yes

No

No

..00000000

..11111111

..00000000

..11111111Ad
dr

es
s

0
1
2
3
.
.

.

.

..00000001

..00000010

..00000100

..00001000

Time
.
.

Search for all zeros

Coupling fault at
missing addresses

Yes

No

Write
to
memory:

Search
using:

Were any
addresses
returned?

Coupling fault at
returned addresses

Were any
expected addresses

missing?

Go to Step 4.
Use inverted
stored and
search data

Repeated
with inverted

stored and search
data?

END

Step 4

Step 5a

Step 5b

Step 6

Yes

Yes

No

No

..00000000

..00000000

..00000000

..00000000Ad
dr

es
s

0
1
2
3
.
.

.

.

..00000001

..00000010

..00000100

..00001000

Time
.
.

Search for all zeros

Coupling fault at
missing addresses

Yes

No

Figure 4.13 – Inter-cell Test Algorithm Overview

Step 1: This step is responsible for writing a pattern to the storage cells which causes alternating ones

and zeros in the storage cells. In Figure 4.13, Step 1 shows a pattern which, when written to

memory, exposes horizontal and vertical inter-cell faults. The alternating rows of ones and

 46

zeros in the storage cells enable horizontal and vertical inter-cell faults to affect the stored

values. When a coupling fault is present it may alter the value of an adjacent cell, possibly

pulling it to “0”, which can change the TCAM cell’s value to a “don’t care” condition, or

pulling it to “1”, which results in faulty mismatches as was depicted in Figure 4.12.

Step 2: This step looks for cases where horizontal and vertical inter-cell coupling faults have either

caused a stored “1” to flip to a “0” (Step 2a), or where a stored “0” has flipped to a “1”

(Step 2b).

Step 2a: The search words in Figure 4.13, Step 2a will detect when an inter-cell coupling fault

has caused a stored “1” to flip to a “0” in the words containing all zeros. In the fault-free

case, there will be no matches to the aforementioned search words. If a match is returned,

then there is a coupling fault in the word at the returned address, and in the bit location

that corresponds with the location of the “1” in the search word. Repeat this step using

inverted search data, this time to detect when an inter-cell coupling fault has caused a

stored “1” to flip to a “0” in the words containing all ones.

Step 2b: Search using a search word of entirely zeros. Half of the addresses, namely the words

storing all zeros, should match. If any addresses are missing, then there was a faulty

mismatch at the missing address. If the exact faulty cell must be identified, then a binary

search tree must be used as in Step 2b in 4.4.3.2. Otherwise, the faulty word can be

replaced using row replacement. Repeat this step using a search word of entirely ones.

This will test the words storing all ones.

Step 3: Steps 1 and 2 are repeated using inverted stored data only.

Step 4: This step is responsible for writing a pattern to the storage cells which causes aligned ones

and zeros in the storage cells. Writing all zeros to memory exposes diagonal inter-cell faults.

 47

The aligned rows of ones and zeros in the storage cells enable horizontal and vertical inter-

cell faults to affect the stored values.

Step 5: This step looks for instances where diagonal inter-cell coupling faults have either caused a

stored “1” to flip to a “0” (Step 5a), or where a stored “0” has flipped to a “1” (Step 5b).

Step 5a: The search words in Figure 4.13, Step 5a will detect if an inter-cell coupling fault has

caused a stored “1” to flip to a “0”. In the fault-free case, there will be no matches to the

aforementioned search words. If a match is returned, then there is a coupling fault in the

word at the returned address, and in the bit location that corresponds with the location of

the “1” in the search word.

Step 5b: Search using a search word of entirely zeros. All of the addresses should match. If

any addresses are missing, then there was a faulty mismatch at the missing address. If the

exact faulty cell must be identified, then a binary search tree must be used as in Step 2b

in 4.4.3.2. Otherwise, the faulty word can be replaced using row replacement.

Step 6: Steps 4 and 5 are repeated using inverted stored data and search words.

4.4.4 Test Summary

The various test algorithms, along with the multiplexer and scan chain states necessary to execute

them, are summarized in Table 4.3. The MAE test uses SC-b as the input and checks for correct

addresses at the MAE output. Mux-2 and Mux-3 are configured so that SC-b acts as a shift register.

The MMR node test uses SC-a to shift in 16-bit test vectors, and uses SC-b to first capture the outputs

(Mux-2 in position “a”), and then to shift the data out (Mux-2 in position “b”). Mux-TB is set to

position “a” so that SC-a acts as parallel 16-bit scan chains and Mux-1 in position “b” sets the inputs

of the MMR to SC-a. For MMR full tree testing, Mux-TB is set to position “b” so that SC-a behaves

as a long serial scan chain, and Mux-1 in position “b” sets the inputs of the MMR to SC-a. Mux-3 is

set to position “a” so that the MAE can be used to compact the test results. Finally, for TCAM array

 48

testing, the TCAM is configured for normal operation by setting Mux-1 and Mux-3 to position “a”.

The standard user interface, consisting of address, data in, and search data in are used as inputs, and

the outputs are the MAE output and data out (for RAM tests).

Table 4.3 – TCAM Test Summary

Test Input Output Mux Positions

MAE SC-b MAE Output Mux-2 position “b”
Mux-3 position “b”

MMR Nodes SC-a SC-b
Mux-TB position “a”
Mux-1 position “b”
Mux-2 alternates (store/shift)

MMR Full SC-a MAE Output
Mux-TB position “b”
Mux-1 position “b”
Mux-3 position “a”

TCAM Array User Interface
(address/data/search) MAE Output Mux-1 position “a”

Mux-3 position “a”

4.5 Algorithm Validation

The algorithms proposed for the MMR and MAE are functional test algorithms and not defect-

oriented. The reasoning behind this is twofold: First, MMRs lack the same level of research and

patent publication that TCAM arrays have achieved. This makes choosing a circuit on which to

perform a defect analysis difficult, and the resulting algorithm may not be very portable to future

designs. Furthermore, the MMR and MAE are not designed to be directly accessible and are only

accessible either through regular functionality or through special DfT circuits. As a result, during

testing a serial interface is used to load test vectors into an n-input device. Thus, every test vector

requires n shifts to load the vector and to read the test vector’s output. This can become excessively

time consuming unless the number of vectors is minimized. To limit the time and complexity of the

MMR and MAE testing, simple functional tests designed to verify the correct output of a set of basic

test vectors are used. Thus, there is a trade-off between fault coverage and test time.

The algorithms proposed for the TCAM array are defect-oriented, and the bandwidth into the array

is not limited by a serial interface as is the case for the MMR and MAE. A MATLAB model was

 49

created consisting of scripts and functions that simulate the higher-level functionality of the TCAM

array. All BLs and SLs are represented as arrays of ones and zeros. Addresses are realized as array

indices. This higher level model allows fast debugging and evaluation of possible TCAM array test

algorithms.

For example, the search function in MATLAB sets a variable “ML” = 1 to represent precharging of

an ML. It then compares the SLs to the BLs bit by bit at an address and sets “ML” = 0 if a mismatch

occurs. All addresses are searched sequentially and each matched address is returned. Thus, though

the MATLAB search function is not a true representation of the TCAM hardware, the TCAM’s

functionality is mimicked in a thorough manner to allow quick algorithmic validation. Algorithms

were validated in MATLAB using a 20-bit word and a 5-bit address. Once debugged, the algorithm

was verified using 144-bit words and 16-bit addresses.

The functions necessary for the TCAM array test algorithms in this thesis are Write, Search, and

Find. The function Write(word, addr) stores word at address addr. This represents the write

functionality of a TCAM. In the algorithm, it is assumed that Search(word) returns an array of

addresses that contain word. This represents the search functionality of a TCAM. The basic premise

of simulating the search functionality is that the ML of a given word will discharge if (SL2 AND

BL1) OR (SL1 AND BL2) is true. This cannot be abbreviated as an XOR statement since SL1 and

SL2 are not necessarily complementary as was shown in Table 2.1. Similarly, BL1 and BL2 are also

not necessarily complementary.

Finally, the Find(condition) function parallels that of the MATLAB “find” function which returns

the indices of an array for which the condition is true. For example, find ([3 1 2 4 5 2] == 2) returns

[3 6], and find ([4] == 2) returns []. The use of this function dictates that the tester used to test the

dies must make decisions during the execution of the test algorithm, either at run time or it must

generate a second follow-up round of testing based on the results of the first round. The Write and

Search functions are implemented in hardware on the TCAM.

 50

4.6 Algorithm Benefits and Weaknesses

There are three main algorithms presented in this thesis. They are designed to test the MAE, the

MMR, and the TCAM array. These algorithms were developed assuming that specific test structures

(scan chains and multiplexers) are included on the chip. The benefits of the MAE test algorithm are

that it exhaustively tests the MAE’s ability to encode every address, and that it only takes n shifts to

accomplish. The MMR test algorithm utilizes the tree configuration of the MMR to individually test

each node of the tree (small 16- or 32-bit MMRs) before connecting them as a whole. This enables

early detection of faulty MMR blocks and simplifies fault identification. The MMR can then be tested

as a whole using test patterns that are designed to stimulate the connections between the nodes of the

tree. The MMR node test is limited because it has to shift the outputs out of a scan chain (SC-b) after

each pattern is inputted. However, its test complexity is still of the order n. The MMR full tree test

uses the MAE to encode the result as an address for quick reading, and testing takes n + 1 shifts to

accomplish. The TCAM array is tested for intra-cell transistor level faults, which is of the order

nl/log2(n). It is then tested for inter-cell transistor level faults, which is of the order n.

 The TCAM array test algorithm identifies both the row and the column location of a faulty bit by

exploiting returned address information by the search function. Furthermore, the algorithm can

determine the exact faulty transistor by examining the location of the faulty returned addresses

relative to the expected returned address; however, it is typically not needed in the redundancy and

repair scenario. Arguably, this function may be needed for defect data collection and yield

improvement. This information is available and can be collected and used.

The main weakness of the MMR test algorithms presented in this thesis is the serial nature of the

scan chains. This increases the number of cycles needed to load each test vector and to read out the

results. Parallel busses could be used to speed data entry during MMR node testing, but would

require more I/O pins and more routing. A PRBS generator can reduce the scan-in of vectors from

p·2p to only 2p, but the scan-out of results still suffers from n·2p complexity. The major weakness of

 51

the TCAM array test algorithm lies in the detection of BL and SL SON faults, which requires some

decision making by the tester. The other algorithm steps can be executed as a script and the results

can be analyzed offline. One possible solution to this problem would be to take the addresses marked

for SL and BL SON fault testing and to test every bit in sequence, lessening the decision making

required of the tester. The resulting data could be analyzed offline and no decision making would be

required of the tester. The other side effect is that the total test time becomes weakly dependent on the

number of SON faults.

An additional benefit of several of the algorithms presented is that they are amenable to block level

parallelization through BIST. Each block could include its own BIST controller that applies test

vectors and examines test results. The BIST controller could then relay this information to an off-chip

tester to enable redundancy replacement, or to indicate that the IC must be discarded.

4.6.1 Existing Test Algorithm Complexity

An existing test algorithm similar to the one used in a recent TCAM testing patent [16] was used as a

basis for comparison. It proceeds in two steps: 1) Test the ability of every address to match. 2) Test

each bit’s ability to mismatch. Step 1 is accomplished as follows: Reset all words to zeros, and then

search for all zeros to see if all addresses are returned as a match. Repeat this step using

complementary values. Step 2 is accomplished as follows: Write 000…001 to all addresses, and then

search for all zeros to ensure that all addresses are mismatches. Left shift the “1” bit (000…010) and

write the pattern to all addresses and repeat the search. Repeat using complementary values. This

algorithm individually tests each bit’s ability to match and mismatch for both ones and zeros, and will

have a total number of writes, searches, and address readouts as follows:

Existing Test Algorithm: ()12 +ln writes, ()12 +l searches, and n2 address readouts

where n = number of addresses and l = number of bits in each word. The factor “2” arises from

having to test both the ones and zeros cases. This doubles the test complexity. There are n writes

 52

required each time every address is written to. Step 1 requires n writes, and Step 2 requires nl writes

to write the corresponding test patterns. Repeating these steps once results in a total of 2n(l + 1)

writes. Step 1 requires one search, and Step 2 requires l searches to test each bit. Repeating these

steps once results in a total of 2(l + 1) searches. In the fault-free case, Step 1 requires n matching

address readouts. Step 2 only results in matches in faulty cases. Thus there are a total of 2n address

readouts. The resulting total complexity is:

Existing Algorithm Complexity (Total): ()()[]nln +++ 112

It can be seen that the 2nl term dominates, and therefore the existing test algorithm’s complexity is

O(nl). For a 64k-word x 144-bit TCAM, this equals 19,005,440 writes, 290 searches, and 131,072

address readouts, for a total of 19,136,802 operations. Figure 4.14 shows the existing procedure along

with its complexity. The total complexity assumes equal penalties for writes, searches, and address

readouts in order to sum their complexities.

Test Match
Conditions

Test Mismatch
Conditions

TC
A

M
 R

edundancy

PASS/FAIL

2n writes
2 searches
2n address readouts

2nl writes
2l searches

Test Procedure Complexity

Total Complexity:
2[(n+1)(l+1) + n]

n = Total words per chip
l = Bits per word

Figure 4.14 – Existing Test Procedure and Complexity

4.6.2 Comprehensive TCAM Test Strategy Complexity

The algorithm presented in this thesis has an average total number of writes, searches, and shifts as

follows assuming S/R scan chains (i.e. one clock cycle to reset the scan chain to zero), no SON faults,

 53

and the ability to simultaneously shift a scan chain or search, and examine a resulting address (i.e.,

only one or the other will be counted during one operation):

MAE Test: n shifts

There are n shifts required to test every possible output address of the MAE, as shown in

Figure 4.3. The MMR should never output more than one matching address, so this functional test is

sufficient. If the MMR did output more than one matching address, an erroneous address would be

encoded by the MAE and detected by the tester.

MMR Node Test: ()111

0
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∑
−

=

p
p

n
m

i
i shifts

where p = number of input signals into each MMR block, and m = number of levels of the MMR

being tested. There are p + 1 test vectors needed for the MMR node test, as shown in Figure 4.6. For

every test vector, the output must be serially shifted out. The number of outputs (total size of SC-b) is

equal to n for the L1 MMRs, plus n/p for the L2 MMRs, plus n/p2 for the L3 MMRs, etc. For

example, for a 64k word TCAM with 16-bit MMRs and 4 levels of testing (n = 216, p = 16, m = 4),

there would be 4,096 L1 MMRs, 256 L2 MMRs, 16 L3 MMRs, and 1 L4 MMR. Thus, the first factor

in brackets represents the total length of SC-b for all levels of MMR being tested, and the second

factor represents the number of test vectors.

MMR Full Tree Test: 1+n shifts

The test pattern in Figure 4.6 can be extended to all n inputs of the full MMR, resulting in n + 1

total patterns. There is no readout penalty since the output of the MAE is used to encode the MMR

output.

 54

TCAM Array Test (intra-cell): n2 writes, and ()⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
n

ln
2log

2 searches

For the intra-cell test, the memory space is written to twice (assuming no SON faults) resulting in

2n writes. Each address in each logical column is searched twice, resulting in 2n searches per column,

and l/log2(n) columns. This explains why the number of searches is divided into two factors, one

representing searchers per logical column, and the other representing the number of logical columns.

TCAM Array Test (inter-cell): n4 writes, l6 searches, and n4 address readouts

Initially, the n addresses are written to, and each bit is tested for SOP faults in both the one and

zero cases, requiring 2l searches. Next, the same stored test data is used twice to search for SON

faults, each time producing n/2 address readouts (in the fault-free case) for a total of n address

readouts. This is repeated with inverted stored data, yielding 2n writes, 4l searches, and 2n address

readouts. Next, the n addresses are re-written with all zeros, and each bit is tested for SOP faults in

zero cases, requiring l searches. Next, the same stored test data is used once to search for SON faults,

each time producing n address readouts (in the fault-free case). This is repeated with inverted stored

and search data, yielding an additional 2n writes, 2l searches, and 2n address readouts. This is a total

of 4n writes, 6l searches, and 4n address readouts.

Comprehensive Test Strategy Complexity (Total):
()

() 16
log

2
1
112

2

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

+ l
n

l
p
ppn

The above equation takes the summation ∑
−

=

1

0

1m

i
ip

 to infinity to simplify the result as
1−p

p
, which

is typically valid since the summation drops off so quickly. The minimum number of MMR levels

being tested at once (during block-level testing) is two, so if the infinite summation was used in this

case, it would also erroneously account for the 16 L3 MMRs, and the 1 L4 MMR used to implement a

64k-word TCAM. Higher-order terms result in non-integer solutions, and can be truncated. Thus, if

 55

precision is needed when calculating the complexity of testing a subset of the word space, the

summation should be used instead of the infinite series.

For a 64k word by 144-bit TCAM with 16-bit MMRs nodes and 5 levels in the MMR tree being

tested, this would result in a total of 1,319,459 shifts, 393,216 writes, 1,180,512 searches, and

262,144 address readouts. This is a total of 3,155,331 operations. Figure 4.15 shows both the

proposed test procedure along with its complexity. The total complexity assumes equal penalties for

shifts, writes, searches, and address readouts in order to sum their complexities.

Intra-cell
TCAM Test

Inter-cell
TCAM Test

TC
A

M

R
edundancy

PASS/FAIL

n shifts

n·p(p+1) shifts
 (p-1)

Test Procedure Complexity

Total Complexity:

n = Total words per chip
l = Bits per word
p = Inputs per MMR node

Test MAE

MMR Node Test

MMR Full
Tree Test n+1 shifts

2n writes
2n· l searches
 log2(n)

4n writes
6l searches
4n address readouts

()
() 16

log
2

1
112

2

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

+ l
n

l
p
ppn

Figure 4.15 – Proposed TCAM Test Procedure and Complexity

The equations given above represent the fixed overhead of the algorithm with no SL or BL SON

faults. The penalty for a BL SON fault is on average log2(n)/2 searches and one address readout (i.e. it

 56

takes an average of searching half the logical column width to find the SON fault, and the successful

search results in one unnecessary address and the expected address). The penalty for a SL SON fault

is log2(l) searches and writes plus the initial log2(n) searches needed to determine that it was not a BL

SON fault. For the aforementioned 64k-word x 144-bit TCAM, this is only an average of 8 searches

plus one extra address readout for BL SON faults, and 24 searches plus 8 writes for SL SON faults.

Thus, SON faults cause a negligible increase in test complexity when using the stated detection

algorithms.

4.6.3 Comparison of Test Algorithm Complexities

Assuming that shifts, writes, searches, and address readouts all take the same number of cycles, the

proposed test algorithms achieve a 6x decrease in total test complexity, and at the same time a drastic

increase in fault coverage when compared to the existing TCAM test algorithm. Furthermore, the

existing algorithm is not designed to test the MAE and MMR, so based on TCAM array testing alone

(writes and searches only) this represents a 10x decrease in complexity.

Figure 4.16 shows how the complexities, and consequently the test times, of the two TCAM test

algorithms compare as the total number of words increases. It assumes p = 16, and l = 144. Though

the new test flow is more intricate than simply executing an exhaustive algorithm, Figure 4.16 clearly

shows the savings by using the new test flow. What is not depicted is the additional coverage of the

new test flow by specifically testing the MAE and the MMR.

 57

New vs. Existing Test Algorithm

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1,000 10,000 100,000 1,000,000

Number of TCAM Words

N
um

be
r o

f O
pe

ra
tio

ns

0

1

2

3

4

5

6

7

x
Im

pr
ov

em
en

t

Existing Algorithm
Proposed Algorithms
Improvement

Figure 4.16 – Comparison of Proposed and Existing Test Algorithms

4.6.4 Impact of BIST on Test Complexities

If BIST is included in the design of a TCAM, and the BIST is implemented such that parallel block

level testing is possible, then the overall complexity of testing can be reduced. If n′ is the number of

words per block, then any test that can be executed at the block level will have the n replaced with n′

in its complexity equation.

For the existing test algorithm, the entire algorithm could be executed at the block level, resulting

in a total complexity of ()()[]'11'2 nln +++ . For blocks of 128 words x 144 bits, this results in a total

of 37,666 operations. Comparing the equivalent part of the new test procedure, the TCAM array test

algorithms, which can be executed at the block level, the resulting total complexity is

() ln
n

ln 6'8
'log

'2
2

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
. For the same blocks of 128 words x 144 bits, this results in a total of 7,264

 58

operations. The MMR node test can operate at the block level, reducing the scan-out time of test

results along SC-b, but the MMR full tree and MAE tests must be executed at the chip level.

These dramatic decreases in test complexity through test parallelization and BIST lead to the

conclusion that BIST with parallel block level testing is essential for large stand-alone TCAMs

regardless of the algorithms used. That being said, the new test algorithms are still significantly faster

than existing TCAM test algorithms.

 59

Chapter 5
Conclusions

In this thesis, the test complexity of a dynamic TCAM was analyzed. A defect-oriented test suite was

developed using realistic transistor level defects. The algorithms were validated using a high-level

MATLAB model. The new tests, compared to existing methods, are 6x faster owing to reduced

complexity. However, the new algorithms also test the MAE and MMR before testing the TCAM

array. The following general conclusions summarize this research:

• The TCAM search path is tested from back to front (MAE, MMR, TCAM array) to ensure

full operation of the individual components and the full operation of the system as a whole

• DfT components are required to increase the observability and controllability of the MMR

and MAE

• The TCAM array test algorithms are executed along with established RAM tests, and its

results are amenable to both row and column redundancy

• BIST enables time saving block level test parallelization and is recommended for any large

stand-alone TCAM

With respect to future research directions:

• There may be overlap between the intra- and inter-cell test algorithms, and opportunities may

exist to prune certain test vectors

• Specific BIST implementations of the new test algorithms could be described

• A solution to the scan-out bottleneck of the MMR node test could be explored

• The new algorithms could be executed in parallel with existing algorithms in a real

manufacturing test environment to determine the true benefits of the new test algorithms

 60

References

[1] K. Schultz, “A CAM Memory for 10Gbit and Terabit Routers and Switches,” Electronic

Engineering, vol. 72, no. 880, pp. 57-62, May 2000.

[2] E. Shen, and J. B. Kuo, “0.8V CMOS Content-Addressable-Memory (CAM) Cell Circuit

With A Fast Tag-Compare Capability Using Bulk PMOS Dynamic-Threshold (BP-DTMOS)

Technique Based On Standard CMOS Technology for Low-Voltage VLSI Systems,” IEEE

International Symposium on Circuits and Systems, pp. 583-586, 2002.

[3] C. A. Zukowski, and S.-Y. Wang, “Use of Selective Precharge for Low-Power Content-

Addressable Memories,” IEEE International Symposium on Circuits and Systems, pp. 1788-

1791, 1997.

[4] G. Thirugnanam, N. Vijaykrishnan, and M. J. Irwin, “A Novel Low Power CAM Design,”

14th Annual IEEE International ASIC/SOC Conference, pp. 198-202, 2001.

[5] 2003 International Technology Roadmap for Semiconductors, Test & Test Equipment

[Online], Available: http://public.itrs.net/Files/2003ITRS/Test2003.pdf

[6] F. Shafai, K. J. Schultz, G. F. R. Gibson, A. G. Bluschke, and D. E. Somppi, “Fully Parallel

30-MHz, 2.5-Mb CAM,” IEEE Journal of Solid-State Circuits, vol. 33, no. 11, November

1998.

[7] M. Sachdev, “Open defects in CMOS RAM address decoders,” IEEE Design & Test of

Computers, vol. 14 , issue 2 , pp. 26-33, April-June 1997.

[8] I. Porneranz, S. M. Reddy, and Y. Zorian, “A test interface for built-in test of non-isolated

scanned cores,” Proceeding of the IEEE VLSI Test Symposium, pp. 371-376, May 2003.

 61

[9] L. van de Logt, F. van der Heyden, and T. Waayers, “An extension to JTAG for at-speed

debug on a system,” Proceedings of the IEEE International Test Conference, pp. 123-130,

October, 2003.

[10] MOSAID Technologies, “MOSAID Class-IC DC9288 Feature Sheet,” February 2003.

[11] P. Sidorowicz, and J. Brzozowski, “Verification of CAM Tests for Input Stuck-at Faults,”

International Workshop on Memory Technology, Design, and Test, pp. 76-82, 1998.

[12] P. Sidorowicz, and J. Brzozowski, “An Approach to Modelling and Testing Memories and its

Application to CAMs,” VLSI Test Symposium, pp. 411-416, 1998.

[13] P.Sidorowicz, “Modelling and Testing Transistor Faults in Content-Addressable Memories,”

International Workshop on Memory Technology, Design, and Test, pp. 83-90, 1999.

[14] K. Lin, and C. Wu, “Testing Content-Addressable Memories Using Functional Fault Models

and March-Like Algorithms,” IEEE Transactions on Computer Aided Design of Integrated

Circuits and Systems, pp. 577-588, 2000.

[15] S. Kornachuk, L. McNaughton, and R. Gibbins, B. Nadeau-Dostie, “A High Speed

Embedded Cache Design with Non-Intrusive BIST,” International Workshop on Memory

Technology, Design, and Test, pp. 40-45, 1994.

[16] S. Gupta, and R. Gibson, “Methods and Circuitry for Built-In Self-Testing of Content

Addressable Memories”, U.S. Patent no. 6,609,222, 2003.

[17] SiberCore Technologies, Ultra-18M SCT1842 Product Brief [Online], Available:

http://www.sibercore.com/pdf/SCT1842_ProdBrief.pdf

[18] L. Shen, and B. F. Cockburn, “An optimal march test for locating faults in DRAMs,” Records

of the IEEE International Workshop on Memory Testing, pp. 61-66, August 1993.

 62

[19] H.-D. Oberle, M. Maue, and P. Muhmenthaler, “Enhanced Fault Modelling for DRAM Test

and Analysis,” VLSI Test Symposium, pp. 149-154, 1991.

[20] S. Miyano, K. Sato, and K. Numata, “Universal Test Interface for Embedded-DRAM

Testing,” IEEE Design and Test of Computers, pp. 53-58, January-March 1999.

[21] S. Kim, M. Kapur, M. Meghelli, A. Rylyakov, Y. Kwark, and D. Friedman, “45-Gb/s SiGe

BiCMOS PRBS generator and PRBS checker [pseudorandom bit sequence],” Proceedings of

the IEEE Custom Integrated Circuits Conference, pp. 313-316, September 2003.

[22] W. Maly, A. J. Strojwas, and S. W. Director, “VLSI Yield Prediction and Estimation: A

Unified Framework,” IEEE Transactions on Computer Aided Design, vol. CAD-5, no. 1,

pp. 114-130, January 1986.

