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Abstract 

The increased use of synthetic nitrogen fertilizers since the early 1900s has resulted in greater food 

production but also problems with nitrogen pollution in freshwaters. Nitrate (NO3
-) is a common 

pollutant in rivers and groundwater in agricultural watersheds; the drinking water limit in Canada is 

10 mg N/L. Microbial processing of NO3
- and ammonium (NH4

+) can produce nitrous oxide (N2O), a 

potent greenhouse gas responsible for about 5% of the greenhouse effect. Rivers provide a complex 

environment, where a variety of redox conditions, available substrates and microbial populations can 

co-exist on small spatial and temporal scales. Therefore, many questions remain about N cycling in 

river environments. 

N2O is produced during anoxic microbial NO3
- or NO2

- reduction to N2 (denitrification) and oxic 

microbial NH4
+ oxidation to NO3

- (nitrification). A significant portion (~25%) of global 

anthropogenic N2O is produced in rivers and estuaries, but mechanisms are not clear and 

predictability is poor. The United Nations Intergovernmental Panel on Climate Change (IPCC) 

provides default equations for calculating N2O emission estimates, in which annual NO3
- loading to 

rivers is positively linearly related to N2O emissions. However, it is unclear how sound these linear 

relationships are and if measured N2O emissions are similar to IPCC estimates.  

The Grand River watershed is the largest in southern Ontario. Nutrient discharge to the Grand 

River is high due to extensive agriculture and high urban populations. The river often has a hypoxic 

water column due to high community respiration in summer. However, although nitrogen pollution is 

significant, N cycling is not well understood in the river. This thesis shows that NO3
- and NH4

+ do not 

typically change on the diel scale, with the exception of two sites downstream of wastewater 

treatment plants (WWTPs). However, N2O concentration changes dramatically. N2O concentrations 

are higher at night and lower during the day for most sites, but are reversed at very low-nutrient sites. 

N2O is therefore a sensitive indicator of changes in N cycling that may not be evident from NO3
- and 

NH4
+ concentrations or stable isotope ratios. Additionally, this work shows the importance of having 

a sampling design that captures diel variability in N2O. 

Previous work in rivers and streams worldwide focused on the appropriate N2O:NO3
- ratio used to 

predict N2O emissions. In contrast, this thesis shows that there is a significant but very weak 

relationship between instantaneous N2O emissions and NO3
- concentrations. However, there is a much 

stronger negative exponential relationship between DO and N2O. Annual N2O emissions tripled 

between 2006 and 2007 but NO3
- masses in the river were only 10% higher, likely because river 
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levels were lower and anoxia more prevalent in 2007. This research suggests that the IPCC needs a 

new conceptual model for N2O-NO3
- relationships in rivers. 

N2O is produced in rivers, partially due to microbial processing of NO3
- and NH4

+ from WWTP 

effluent. However, WWTP effluent may also include dissolved N2O and CH4 but this previously had 

not been directly quantified. It was also unclear if stable isotopic ratios of NH4
+, NO3

-, N2O and CH4 

in WWTP effluent were distinct from river sources and could be used for effluent tracing. N2O 

emissions from three WWTPs in the Grand River Watershed were measured over 24 hours in summer 

and winter. N2O emissions were similar to direct emissions from WWTPs but CH4 emissions were 

about an order of magnitude lower than direct WWTP emissions. This is a previously-ignored source 

of N2O and CH4 to the atmosphere. While stable isotopic ranges of NO3
- and NH4

+ were not always 

distinct from river sources, δ15N-N2O, δ18O-N2O and δ13C-CH4 were distinct, making them potentially 

useful tracers of WWTP effluent in rivers. 

N2O isotopic signatures may help determine production and removal processes in rivers, but 

isotopic effects of the major production pathway, denitrification, have not been characterized for river 

sediments. This was addressed by preparing anoxic laboratory incubations of river sediment from two 

sites (non-urban and urban) in the Grand River and measuring stable isotopic effects of N2O 

production via denitrification. Stable isotopic fractionations were similar to published values but, 

surprisingly, strongly negatively correlated to production rate, even though NO3
- substrate was 

plentiful. This novel finding suggests that N2O reduction resulting in isotopic effects is more 

prevalent in high-substrate systems than previously thought, and that N2O reduction may be inhibited 

by high NO3
- or NO2

- or by lags in N2O reductase activity in high N2O-production incubations. This 

could explain why N2O emissions from the Grand River are lower than predicted by IPCC equations, 

which assume that N2O:(N2O+N2) ratios produced by denitrification are constant. 

Concern about NO3
- export to freshwater lakes and to oceans is growing, but the role of large, 

eutrophic rivers in removing watershed NO3
- loading via denitrification and biotic assimilation is not 

clear. To understand how much NO3
- the Grand River receives, and how much it removes annually, a 

NO3
- isotope mass balance for the Grand River was created. The river denitrified between 0.5% and 

17% of incoming NO3
-, less than the 50% suggested by the IPCC. This is surprising, as the river is 

well mixed, has moderate to high NO3
- concentrations, experiences hypoxia (promoting 

denitrification), and has extensive biomass (biofilm and macrophytes) that assimilate N. However, the 

river’s short residence time (~3 days not counting reservoirs), organic carbon-poor sediment and 
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mineralization of organic matter could contribute to low denitrification rates. These findings suggest 

that denitrification rates in rivers worldwide could be lower than previously estimated. 

Although error was high, most δ15N-NO3
- values for losses were in the expected range for 

denitrification and most δ15N-NO3
- values for gains were within ranges from tributaries, WWTP 

effluent and groundwater measured in the watershed. The model suggests that 68% to 83% of N loads 

to the watershed are lost before entering the Grand River, and 13% is exported to Lake Erie, leaving 5 

to 19% lost in the Grand River from a combination of denitrification, assimilation and storage. These 

findings suggest that large rivers are much less efficient in denitrification than other locations in 

watersheds such as small streams, ponds, groundwater and riparian zones. They also indicate that 

agricultural NO3
- loading is much higher than WWTP effluent, suggesting that N management 

strategies should focus on agricultural runoff and groundwater. 

Given that N2O:NO3
- relationships are weak and non-linear in the Grand River, a new conceptual 

model for N2O:NO3
- relationships is presented. First, the Grand River dataset was supplemented with 

data from high-oxygen streams in southern Ontario. Regression tree analysis shows a weak 

relationship between NO3
- and N2O in these streams with no other factors (temperature, DO, NH4

+, 

TP, DOC, etc.) improving fit. A conceptual model was then created, which posits that N2O emission 

variability (between and within sites) increases with NO3
- concentration when NO3

- concentrations are 

above the threshold for NO3
- limitation. The global dataset does not dispute this model, though a NO3

- 

threshold was not clear. The lack of sites with both high NO3
- and high N2O may indicate a paucity of 

research on eutrophic sites. Alternatively, high NO3
- may indicate oxic conditions (i.e. little to no 

denitrification to remove it) which are incompatible with very high N2O emissions. In this case, the 

conceptual model can be modified such that N2O variability decreases when NO3
- > ~ 4 mg N/L. The 

work also shows that low DO consistently results in high N2O emissions but high temperatures result 

in a very large range of N2O emissions. This approach allows N2O emissions, which have very high 

variability and are difficult to predict, to be constrained to likely ranges. 
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Chapter 1: Introduction 

1.1 Anthropogenic Nitrogen in the Environment 

Nitrogen is an essential nutrient for all life. It is an important component of amino acids and other 

biochemicals. However, most nitrogen on the Earth’s surface is in mineral form or in the atmosphere 

as N2, both of which are generally biologically unavailable (Galloway 2003). Biologically reactive 

nitrogen (Nr) includes reduced ions (NH4
+), oxidized ions (NO3

-, NO2
-), reduced and oxidized gases 

(NH3, NO, N2O, NOx) and organic compounds (amino acids, uric acid, etc.). Before the early 20th 

century, almost all production of Nr occurred by biological fixation of N2 to NH4
+, performed by 

cyanobacteria, heterotrophic bacteria and fungi. This is an energy-intensive process in oxic conditions 

because of the triple bond between the N atoms (780 kJ/mol N2) (Gutschick 1978) and seems to be 

favoured in anoxic environments (Vitousek et al. 2002). Additionally, Nr is created in the atmosphere 

via lightning. 

Before the industrial revolution, farmers added Nr to N-limited crops, primarily as manure, human 

waste, guano and nitrate mineral extraction (Galloway 2003). Additionally, legumes with symbiotic 

N-fixing fungi were planted. In pre-industrial times, between 100 and 290 Tg N/yr Nr was added to 

the environment by terrestrial biological N fixation (Galloway 2003), though the true value is likely 

on the low end of this range (Galloway et al. 2004). In 1909, the Haber-Bosch process of industrial N 

fixation was invented. Today, anthropogenic Nr production – a combination of the Haber-Bosch 

process, NOx production from fossil fuel burning, and cultivation of legumes – is around 165 Tg N/yr, 

approximately doubling natural Nr sources. 

The Haber-Bosch process has dramatically helped increase agricultural yields and feed the growing 

human population worldwide, but has also increased Nr in the environment, as biological Nr removal 

(denitrification and anammox) rates have not kept up with Nr production rates (Galloway 2003). This 

is not without ecological costs. About 56 Tg total N/yr enters costal systems (Boyer and Howarth 

2008), about 25 Tg N/yr of which is dissolved inorganic nitrogen (DIN) (Dumont et al. 2005). 

Leached N can over-fertilize aquatic ecosystems, resulting in eutrophication (Section 1.2).  

Eutrophication, production of toxic gases (NOx) and greenhouse gases (N2O) resulting from 

anthropogenic Nr are occurring today (Galloway 2003) but the problem will likely worsen in the 

future. Human population is projected to stabilize at around 9.6 billion people by 2070 (United 
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Nations Department of Economic and Social Affairs 2004, United Nations Department of Economic 

and Social Affairs 2013). Additionally, wealth increases are expected to reduce the number of people 

in absolute poverty from 1.4 billion to between 0.2 and 1.1 billion by 2050 (Hillebrand 2011). This 

will result in greater food consumption and greater meat consumption. Therefore, Nr export to coastal 

zones is expected to almost double to 47 Tg N/yr by 2050 (Seitzinger et al. 2002).  

1.2 Biological Nitrogen Cycling in Rivers 

The biological N cycle is complex, with many processes occurring in rivers and/or river sediments 

(Figure 1.1). The major processes significant to this thesis are briefly outlined here. 

1.2.1 Autotrophic Nitrification  

Nitrification, or oxidation of ammonia (NH3) to nitrite (NO2
-), is performed by chemolithotrophic 

bacteria and archaea, which couple this half-reaction to CO2 fixation to organic carbon. The most 

well-studied nitrifying organisms are bacteria in the Nitrosomonadaceae family (e.g. Nitrosomonas, 

Nitrosococcus, etc.), but recent research has indicated that archaea of the Thaumarchaeota phylum 

perform most nitrification in many systems (Hatzenpichler 2012). It appears that bacteria are more 

competitive in high-NH4
+ systems such as sewage plants and aquaria while archaea dominate 

nitrification in low-N systems such as the ocean (Sauder et al. 2011). 

Bacterial nitrification occurs in two steps: NH4
+ oxidation to hydroxylamine (NH2OH) and 

oxidation of NH2OH to NO2
- (Equation 1.1, Equation 1.2). The first reaction is catalyzed by ammonia 

monooxygenase (Amo) and the second by hydroxylamine oxidoreductase (Hao).  

��� + �� + ��� → �����+���      Equation 1.1 

�����+��� → ���	 + 
�� + ��	      Equation 1.2 

Hydroxylamine oxidation can result in byproduct nitrous oxide (N2O), by two mechanisms. First, 

Hao can catalyze the reaction between NH2OH and NO2
- to produce N2O. Alternatively, NH2OH can 

be converted to NO- by Hao and subsequently converted to N2O (Otte et al. 1999), which can then 

diffuse out of the cell. 

The pathway for nitrification by ammonia oxidizing archaea (AOAs) is not well-understood 

(Hatzenpichler 2012). AOAs have a gene similar to the amo gene in nitrifying bacteria but the 

predicted protein structure is quite different and the protein may have a different function 

(Hatzenpichler 2012). They do not have a hao gene homologue. It has been proposed that archaeal 
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Amo oxidizes NH3 to nitroxyl hydride (HNO), which is reduced to NO2
- by an undescribed nitroxyl 

oxidoreductase (NxOR) but this has not been proven (Hatzenpichler 2012). AOAs produce N2O in 

cultures and in oceans (Loscher et al. 2012, Santoro et al. 2011) but the mechanism is not known. 

1.2.2 Heterotrophic Nitrification 

Heterotrophic nitrifiers include bacteria and fungi that oxidize NH3 to NO2
- but do not fix CO2. Many 

are also capable of reducing NO2
- and/or NO3

- to N2 (see Section 1.2.4 below) in aerobic conditions 

(Stein and Yung 2003, Zhang et al. 2011). They have a similar Amo enzyme to autotrophic nitrifying 

bacteria but a different hydroxylamine reductase enzyme. This enzyme apparently is responsible for 

N2O production in this pathway but is not inhibited by acetylene (C2H2), unlike the Hao used by 

autotrophic nitrifying bacteria. C2H2 is commonly used to block N2O production by nitrification in 

soil and sediment incubations examining N2O from denitrification but does not block N2O production 

from heterotrophic nitrification.  

1.2.3 Nitrite Oxidation  

Nitrite oxidization is carried out by different bacteria than NH3 oxidation, although both processes are 

often combined in the term “nitrification”. Many nitrite oxidizing bacteria belong to the Nitrobacter 

and Nitrococcus genera. The reaction (Equation 1.3) is catalyzed by nitrite oxidoreductase (Noxr): 

���	 +��� → ���	 + ��� + ��	      Equation 1.3 

This is an autotrophic process usually coupled to CO2 fixation. N2O is not produced during nitrite 

oxidation. There is no evidence that AOAs or any other archaea can perform nitrite oxidation.  

1.2.4 Denitrification 

Denitrification is the multi-step reduction of NO3
- to N2, via NO2

-, nitric oxide (NO) and N2O. Each 

step requires a unique enzyme. Denitrification is almost always a heterotrophic process usually 

coupled with organic carbon oxidation to CO2 or other energy-yielding oxidation reactions. 

Denitrification occurs in hypoxic (low-oxygen) or anoxic (oxygen-free) environments. It is carried 

out by a large group of bacteria, fungi and archaea. All bacterial denitrifiers that have been isolated in 

laboratory are facultative anaerobes (i.e. will reduce O2 if available and switch to NO3
- reduction 

otherwise) (Cabello et al. 2004). 

Heterotrophic denitrification is NO3
- reduction coupled with reduction of organic carbon to CO2. It 

yields ~452 kJ energy per mole organic carbon oxidized, depending on substrate type and 
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concentration (less than aerobic respiration: 476 kJ/mole), which is used to generate ATP. The sum of 

the four half reactions coupled with CH2O oxidation is shown below: 

����	 + 

���+ ��� → ��� + ����+ 

��    Equation 1.4 

The half-reactions are catalyzed by nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide 

reductase (Nor) and nitrous oxide reductase (Nos) (Figure 1.2). Denitrification enzymes are typically 

inhibited by high O2 concentration, but each enzyme appears to have a unique O2 threshold for 

activation, which changes with N substrate (Körner and Zumft 1989). Additionally, some 

denitrification enzymes appear to be continually present in cells even in oxic conditions (e.g. 

unspecified nitrate reductase (Patureau et al. 1996); Nar, Nir and Nor (Firestone and Tiedje 1979) and 

Nos (Körner and Zumft 1989)) and some are synthesized on the onset of denitrification (e.g. Nos 

(Firestone and Tiedje 1979). This appears to differ by microbial species. 

Interestingly, up to one third of denitrifying bacteria in soils lack the nos gene, meaning that they 

cannot produce N2 and therefore emit substantial N2O (Philippot et al. 2011). Archaeal denitrification 

enzymes are not well understood but appear to be homologous to bacterial and fungal enzymes 

(Cabello et al. 2004). Some but not all denitrifying archaea are able to reduce N2O to N2 (Cabello et 

al. 2004). 

Autotrophic denitrification is the coupling of NO3
- reduction to oxidation of inorganic substrates. 

The resulting energy produced is used to fix CO2 to organic carbon. This commonly occurs in areas 

with low organic carbon and available mineral substrates such as groundwater (Rivett et al. 2008). 

Typical inorganic substrates used in this reaction are thiosulphate (S2O3
2-), pyrite (FeS2), hydrogen 

gas (H2) and ferrous carbonate (FeCO3). Autotrophic denitrification can occur in oxic environments 

(Zumft 1997), meaning that N2O produced by this pathway can be confused with that from 

nitrification. 

1.2.4.1  “Nitrifier denitrification” 

The term “nitrifier denitrification” is typically used in the literature to refer to N2O production via 

NO2
- reduction by nitrifying bacteria, which occurs over a large range of oxygen concentrations. The 

term can also encompass any N2O production occurring in oxic environments. Thus, several 

processes can be included, described briefly below. 

First, many autotrophic nitrifying bacteria have functional denitrification enzymes and can reduce 

NO2
- to N2O or N2, especially under low-O2 conditions. This is thought to fill one or more of three 
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functions: remove toxic NO2
- from cells, use NO2

- as an electron acceptor when O2 is low, and/or 

outcompete nitrite oxidizing bacteria for O2 by removing their substrate NO2
- (Hayatsu et al. 2008). 

Additional pathways lumped in the term “nitrifier denitrification” include denitrification by 

heterotrophic nitrifiers in oxic environments (Section 1.2.2), which typically have low N2O yields. In 

contrast, aerobic denitrification can also be performed by autotrophic denitrifiers which cannot 

oxidize NH3 but can operate in oxic conditions. They typically have high N2O yields (Zumft 1997). 

Methanotrophic bacteria, which oxidize CH4 to CO2 for energy and also use CH4 for cellular-C, 

simultaneously oxidize NH3 to NH2OH and then NO2
- under oxic conditions. Instead of using Amo, 

they use methane monooxygenase for the first step and an Hao may be similar to that of autotrophic 

nitrifiers (Bedard and Knowles 1989). This reaction can produce N2O but the reaction pathway is not 

well understood (Stein and Yung 2003). 

“Nitrifier-denitrification” can also include the coupling of nitrification and denitrification by 

different organisms. For example, in aerobic sediments, nitrifiers and nitrite oxidizers produce NO3
-, 

which is then taken up by denitrifying organisms living in anoxic microsites in the sediment. In low-

NO3
- systems, denitrification rates may be tightly coupled with NO3

- production rates (Seitzinger et al. 

2006).  

The term “nitrifier-denitrification” will be avoided in this work because it encompasses many N2O 

production pathways using different enzymes and it is unlikely that all pathways share common 

geochemical predictors and may result similar stable isotopic effects. 

1.2.5 Nr Assimilation 

Nr is taken up by almost all biota for use in cellular molecules such as proteins. N-fixing organisms 

can also form Nr by splitting N2. This typically, but not always, occurs when Nr resources are low or 

unavailable. N-fixers include specialized cyanobacteria, heterotrophic bacteria, archaea and fungi. 

In many rivers and streams, Nr uptake rates are around one order of magnitude higher than 

denitrification rates (Mulholland et al. 2004) and thus are a significant part of the biotic N cycle. 

Aquatic plants and algae make up a large part of the total biomass in many streams and rivers and 

therefore take up most Nr (Wetzel 1975). However, plant and algae N uptake is not as well 

understood as microbial and fungal N assimilation. NO3
- uptake in plants and algae requires ATP-

binding cassette enzymes, which use energy to draw NO3
- into the cell (González-Ballester et al. 

2004, Kraiser et al. 2011). In contrast, plants, alga and other organisms use ammonia transporters 
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(Amts) for NH4
+ assimilation, but it is unclear if they passively channel NH3 (which also passively 

diffuses into cells) or actively transport NH4
+ across the cell membrane (Andrade et al. 2005). NH4

+ 

uptake is more energetically efficient than NO3
- uptake, but NH4

+ is typically at least an order of 

magnitude lower in concentration than NO3
- in well-oxygenated streams and rivers (Wetzel 1975). 

Multicellular, rooted plants (macrophytes) are also capable of “luxury uptake” of Nr that can be used 

later if Nr becomes scarce (James et al. 2006). 

In gram-negative bacteria, NO3
- is taken from outside the cell into the periplasm by an “unknown 

porin”; porins do not require energy for transport of small ions (Song and Niederweis 2012, Steen et 

al. 2013). However, NO3
- transport from the periplasm to the cytoplasm requires two complexed 

proteins (NarK1 and NarK2) that require energy in the form of the proton motor force (i.e. H+ must be 

pumped across the membrane to maintain an electromotive force) (Lin and Stewart 1998, Moir and 

Wood 2001, Wood et al. 2002). NO3
- is then reduced in the cytoplasm using nitrate reductases (Nap 

and Nas) similar but not identical to those used in denitrification (Jepson et al. 2006). Cyanobacteria 

use Amts, which are presumed to be active transporters, to transport NH4
+ into cells (Herrero et al. 

2001). Assimilative nitrate reductase (NAS) in gram-negative bacteria is inhibited by NH4
+ 

(Warnecke-Eberz and Friedrich 1993), indicating that bacteria preferentially assimilate NH4
+ over 

NO3
-. 

1.2.6 Other N Cycling Processes 

Several other biological N cycling processes occur in streams and rivers. Most are thought to play a 

small role in N cycling but some may be more important than previously realized. They are discussed 

briefly below. 

Dissimilatory nitrate reduction to ammonia (DNRA) is an anaerobic heterotrophic process similar 

to denitrification but the end product is NH4
+ (Rutting et al. 2011). It is performed by a variety of 

bacteria and fungi. DNRA theoretically produces less energy per mole CH2O than does denitrification 

(299 kJ and 452 kJ, respectively) (Rutting et al. 2011) but laboratory studies indicate that actual 

energy yield is higher for DNRA (Strohm et al. 2007). Recent research has indicated that DNRA can 

be a major N cycling pathway in some aquatic ecosystems (Dong et al. 2011). The pathway uses Nir 

and cytochrome c nitrite reductase (Nrf) to produce NH4
+ from NO2

- (Simon 2002). Typically, about 

1-2% NO2
- reduced is converted to N2O, probably as a detoxification byproduct (Rutting et al. 2011). 

N2O production can be difficult to attribute to DNRA because many organisms may perform DNRA 

and denitrification simultaneously (Rutting et al. 2011). 
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Anammox (anaerobic ammonium oxidation) is a pathway performed by specialized bacteria in the 

phylum Planctomycetes. These bacteria react NO2
- and NH4

+ to produce N2, H2O and energy. The 

reaction occurs in a specialized organelle called an anammoxosome, which isolates a toxic 

intermediate produce, hydrazine (N2H4) (Thamdrup and Dalsgaard 2002). Anammox bacteria are 

slow-growing but exist in diverse environments such as the open ocean (Thamdrup and Dalsgaard 

2002), groundwater (Robertson et al. 2012) and Arctic Ocean sediments (Rysgaard et al. 2004). 

Anammox bacteria are cultured commercially for use in wastewater treatment plants (WWTPs). N2O 

is often produced in small quantities (~2% of total product) in WWTPs using anammox 

(Kampschreur et al. 2008) and in laboratory anammox cultures (Kartal et al. 2007); this may be due to 

N2O production by anammox bacteria, possibly as a detoxification pathway, although the 

mechanisms is not understood (Kartal et al. 2007) 

Denitrification was long thought to be the only biological sink for N2O. However, it is now 

apparent that many bacteria have genes for a modified N2O reductase (similar but not identical to Nos 

used in denitrification) but do not have genes for other enzymes needed for complete denitrification 

(Sanford et al. 2012). DNRA bacteria with a modified Nos gene were shown to reduce N2O to N2 

(Sanford et al. 2012). Additionally, N2O fixation to organic N using the enzyme for N2 fixation 

(nitrogenase) was very recently demonstrated in marine cyanobacteria in situ and in laboratory 

experiments (Farías et al. 2013). The recent discovery of these two pathways indicates that biological 

N2O removal could be more significant and complex than previously thought.  

1.3 Stable Isotope Dynamics in N Cycling 

1.3.1 Stable Isotope Theory 

Stable isotopes are non-radioactive variants of elements with different numbers of neutrons but the 

same number of protons. Isotopes of the same element have near-identical chemical properties but the 

difference in nuclear mass results in changes in chemical, biological and physical reaction rates. 

Typically, in enzyme-mediated biological reactions, light isotopes are used preferentially because less 

energy is required to break bonds between light atoms. 

Stable isotopic ratios are typically reported in delta (δ) notation relative to an international 

standard, in per mil (‰) units: 

� = �������
��������� − �        Equation 1.5 
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where Rsample is the heavy-to-light isotopic ratio of the sample (e.g. 15N/14N) and Rstandard is the same 

for the standard. The international standard for N is N2 in air (15N/14N = 0.003677) and the 

international standard for O is Vienna Standard Mean Ocean Water (VSMOW, 18O/16O = 0.0020052) 

(Kendall and Caldwell 1998). 

There are two ways to report differences in isotopic ratios between substrates and products in 

biological reactions. The first is the isotope fractionation factor (α), defined as: 

� = ����� !�/�� #������       Equation 1.6  

α is a unitless ratio. However, because isotopic fractionations can be small, resulting in α values 

near 1, sometimes the isotopic fractionation (ε) notation is used: 

ε = %&'()*+,
-.*/.,'0,1 -1        Equation 1.7 

Like δ values, ε values are reported in permil (‰) units. To distinguish between N and O stable 

isotopic fractionations, the notations ε15N and ε18O will be used here. 

The stable isotope ratios of N compounds (NH4
+, NO3

-, N2O) can be used with other geochemical 

techniques to trace sources of N to rivers and streams, and to determine in-river N transformation 

processes. For NO3
- and N2O, both 15N/14N and 18O/16O can be measured. Much work has been 

conducted to understand how stable isotope ratios change between N species during biological N 

cycling processes. These are discussed briefly below. 

1.3.2 How and Why Stable Isotopic Fractionations Occur 

Differences in reaction rates between heavy and light stable isotopes result in changes in isotope 

ratios between substrates and products for biological reactions. Typically, lighter isotopes have faster 

reaction rates. However, the observed fractionation depends on substrate availability, substrate uptake 

rate, and the number of rate-limiting steps in the reaction. 

For instance, in laboratory studies with no substrate limitation, maximum isotopic effects typically 

are observed. In natural systems, substrate may be limited, and organisms will take up and process all 

or most available substrate. If all substrate is used, the isotopic ratio of the product must equal that of 

the substrate to conserve mass. Natural systems and sediment incubation studies include many 

organisms which may have different inherent fractionation factors for the same pathway, and/or be 
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operating at different rates. In this case, the observed fractionation is an average of the relative 

fractionation factors and rates of all organisms contributing to the reaction. 

There are three ways to measure the stable isotopic fractionation of a biological process. First, the 

substrate and products can both be measured outside cells. For example, in nitrification, NH4
+ 

(substrate) and NO3
- (product) can be measured. Alternatively, the substrate can be measured at 

multiple times as a single pool of substrate is used. This is useful in open systems where the end 

product disappears, or when the end product is difficult to measure isotopically: for instance, during 

denitrification, as N2 may leave the system by degassing and is very difficult to measure without 

contamination with air. Lastly, in multi-step biological reactions, the substrate and an intermediate 

species can be measured. For instance, in denitrification, NO3
- (substrate) and N2O (intermediate) can 

be isotopically characterized, but this cannot produce an isotopic fractionation for full denitrification 

to N2. 

When only the substrate is measured, there are two possible ways that isotopic fractionation can be 

expressed. In scenario 1, the cell only uptakes the amount of substrate it requires for a reaction, and 

all substrate is used once it enters the cell. Isotopic fractionation therefore must occur upon substrate 

uptake. In scenario 2, isotopic fractionation occurs not during uptake but during enzyme-mediated 

reactions inside the cell. If fractionation in the remaining substrate is measurable, more substrate must 

be taken up than is used, and residual, unused substrate must leave the cell and mix with substrate in 

the environment (Figure 1.3). These scenarios may have different implications for controls on 

isotopic fractionation of N pathways in the environment and will be discussed below. 

1.3.3 Nitrification and Nitrite Oxidation 

Bacterial nitrification typically has a strongly negative ε15N between NH4
+ and NO2

-. An extensive 

literature review reports a range of -38‰ to -14‰, based on pure culture studies (Snider 2011). 

Bacterial nitrite oxidation has a positive ε15N (i.e. the product has more 15N than the substrate), which 

is unusual in enzyme catalyzed reactions, ranging from 8‰ to 24‰ (Casciotti 2009). 

As NH4
+ does not contain oxygen, NO3

- produced from nitrification and nitrite oxidation uses O 

atoms from water and oxygen. It was long thought that 2/3 of the O atoms came from water and 1/3 

from O2, with no isotopic fractionation (Kendall and Caldwell 1998). However, recent work suggests 

that this model is incorrect (Snider et al. 2010). Snider et al. (2010) found that between 37% and 88% 
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of O in nitrifier NO3
- was from H2O in temperate forest and agricultural soils. It also appears that 

isotopic fractionation occurs on incorporation of O into NO3
-.  

Isotopic fractionations between NH4
+ and nitrifier-derived N2O can also be measured. The literature 

range for ε15N is -112‰ to -12‰ (Snider 2011). Snider (2011) found ε15N values for NH4
+ to N2O 

ranging from -35‰ to -16‰ in soil incubations using temperature agricultural and forest soils. δ18O-

N2O from hydroxylamine oxidation commonly ranges from 13‰ to 31‰ but reason is not well 

understood (Snider 2011). 

Interestingly, ε15N values between NH4
+ and N2O in cultured marine ammonia oxidizing archaea 

(AOAs) are higher than their bacterial counterparts (range: 3.8‰ to 7.6‰) (Santoro et al. 2011). 

δ
18O-N2O values had a very narrow range (33.0‰ to 34.9‰) and were slightly higher than bacterial 

nitrifier values (Santoro et al. 2011). These differences probably result from the unique but 

uncharacterized archaeal N2O production enzyme. 

1.3.4 Denitrification 

Because contamination with air during N2 isotopic analysis is difficult to avoid, only the NO3
- to N2O 

pathway will be addressed here. Typically, ε15N values for denitrification N2O are lower than those 

for nitrification N2O; values from the literature range from -55‰ to -10‰ (Snider 2011). Values of 

ε18O have a very large range, from -54‰ to 32‰ (Snider 2011). This is because ε18O is large and 

positive but can be overprinted by abiotic O exchange between H2O (typically, δ18O-H2O: -20‰ to 

0‰ in temperate and tropical environments) and intermediates in the denitrification process, 

particularly NO2
- (Snider et al. 2009). Lower net ε18O values in denitrification typically indicate high 

O exchange (Snider et al. 2009). 

1.3.5 Nr Assimilation 

The data on isotopic fractionation during N assimilation by plants, algae and microbes is scarce. The 

marine phytoplankton Skeletonema costatum was shown to isotopically fractionate upon assimilative 

uptake of NO3
- at a concentration-independent value of -9‰ (Pennock et al. 1996). In contrast, 

fractionation during NH4
+ uptake is concentration-dependent. At high NH4

+ (> 0.28 mg N/L), 

fractionation ranged from -28.8‰ to -19.1‰. When NH4
+> 0.28 mg N/L, fractionation is closer to 

zero (-7.3‰ ±3.0‰) (Pennock et al. 1996). A similar experiment with other marine alga showed 

concentration-dependency and a range of ε15N values from -20‰ to -5‰, suggesting that ε15N in 

algal NH4
+ uptake may be species-dependent (Hoch et al. 1994).  
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 Studies of isotopic fractionation during N uptake of submerged freshwater macrophytes are 

scarce. Myriophyllum spicatum did not exhibit any isotope fractionation when exposed to 15N-labelled 

NO3
- because it assimilated all available NO3

- (Cohen and Bradham 2010). Several studies note that 

δ
15N of macrophyte tissue is very similar to WWTP effluent δ15N values (Derse et al. 2007, Savage 

and Elmgren 2004). In contrast, in a survey of 30 UK lakes, macrophytes could be as much as 6‰ 

lower in δ15N than total dissolved nitrogen (TDN) or sediment but could also be higher (Jones et al. 

2004). This suggests that they may exhibit isotopic fractionation during N uptake. Isotopic 

fractionation (-7.9‰ to +7.5‰) during NH4
+ uptake was noted in emergent rice plants in heavily-

fertilized rice paddies, but not in NO3
- uptake (Yoneyama et al. 1991). These contrasting data suggest 

that isotopic fractionation could be expressed in submerged macrophytes when Nr supplies are 

plentiful, but are not expressed when Nr is low. 

1.4 Global Estimates of NO3
- Leaching to and N2O Emissions from Rivers and 

Streams 

Rivers and streams are vulnerable to excess NH4
+ and NO3

- runoff and discharge from human 

activities of agricultural fertilization and human sewage outfalls. Excess Nr may result in 

eutrophication, though the role of N in limiting growth in rivers is variable and hotly debated (Conley 

et al. 2009, Schindler 2012, Elsaholi and Kelly-Quinn 2013). Eutrophication is the ecosystem 

response to excess nutrients, and has several undesirable effects. Typically, high nutrients promote 

high primary production. This leads to high community respiration, resulting in low oxygen 

conditions (hypoxia). Hypoxia is toxic to aerobic aquatic organisms such as invertebrates and fish 

(Wetzel 1975). Eutrophication also typically results in decreased biodiversity and ecosystem function 

(Wetzel 1975). 

Additionally, both NH4
+ and NO3

- are toxic to wildlife. Environment Canada considers dissolved 

ammonia gas (NH3) concentrations greater than 0.019 mg N/L toxic to aquatic life (Environment 

Canada 2003). This equals 0.30 mg N/L (NH3 + NH4
+) at pH 8, a typical pH value for the Grand 

River. NO3
- concentrations greater than 2.9 mg N/L are considered toxic to aquatic life and the 

drinking water limit is 10 mg N/L (Environment Canada 2003). NH4
+ and NO3

- export to N-limited 

estuaries and oceanic coastal zones can cause eutrophication. The hypoxic zones in the Gulf of St. 

Lawrence are caused by high Nr inputs from the St. Lawrence River system, including the Grand 

River and the Laurentian Great Lakes (Ouellet et al. 2010). 
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Additionally, rivers, streams and estuaries produce around 25% of anthropogenic N2O emissions to 

the atmosphere (Syakila and Kroeze 2011). N2O is a greenhouse gas 298 times more powerful than 

CO2 on a 100 year time scale (IPCC 2007). Additionally, N2O breakdown in the stratosphere 

produces NO, the current primary cause of ozone depletion (Ravishankara et al. 2009). N2O 

concentration in the atmosphere has been increasing since the industrial revolution, and now is ~320 

ppb (European Environment Agency 2013), higher than pre-industrial concentrations of 270 ppb. The 

signatory countries to the United Nations Framework for Climate Change must report annual N2O 

emissions from anthropogenic sources, including N2O from rivers resulting from human NH4
+ and 

NO3
- additions. The IPCC encourages direct N2O measurements but also provides “default equations” 

to estimate N2O production in rivers. Canada currently uses these equations (Chang Liang, 

Environment Canada, personal communication) as do many other countries. 

The conceptual model of the IPCC equations is as follows. Nr is applied to the landscape as 

synthetic fertilizer (FSN), manure and sludge applied to crops (FON), urine and dung from grazing 

animals (FPRP), N in crop residue (FCR), and in soil organic matter (FSOM). A fraction of the sum 

(FracLEACH) is expected to leach into surface waters (IPCC 2007): 

�234
� 	= 	 (78� 	+	9�� 	+ 	9:�: 	+ 	9
� +	98�;) × 9>?@234
�  Equation 1.8 

Where all values but FracLEACH (unitless) are in kg N/year. 

Once NLEACH enters freshwater bodies, a fraction (EF5) is expected to become N2O via nitrification 

and denitrification. Therefore the equation for N2O production from groundwater, rivers and estuaries 

is: 

���	��A��A�� = 37
 × �234
�      Equation 1.9  

where N2O emission is in kg N/year and EF5 is a unitless ratio. EF5 is further subdivided into portions 

that occur in groundwater and small agricultural streams (EF5-g, default: 0.0025), rivers (EF5-r, default: 

0.0025) and estuaries (EF5-e, default: 0.0025) (Ivens et al. 2011). 

In the IPCC’s Third Assessment Report (Intergovernmental Panel on Climate Change 1996), the 

default value for EF5 (including groundwater, rivers and estuaries) was 0.025 (Table 1.1). The default 

EF5-g was 0.015, based on a review of six studies of N2O and NO3
- in agricultural groundwater 

(Nevison 2000). Nitrification and denitrification were assumed to have an equal emission factor of 

0.005. Therefore, EF5-r was set to 0.0075, on the assumption that all NLEACH would nitrify and half 

would denitrify (Nevison 2000). The remaining half of NLEACH that was not denitrified entered 
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estuaries, where half of it was nitrified and half denitrified, resulting in an EFr-e default value of 

0.0025. 

Since the Third Assessment Report, several studies suggested that EF5-g and EF5-r values were too 

high (Clough et al. 2006, Reay et al. 2003). Therefore both values were lowered to 0.0025 to match 

EFr-e in the Fourth Assessment Report (IPCC 2007), resulting in a total EF5 of 0.0075. Since then, 

other studies have suggested that the 1996 EF5-g and EF5-r values may be valid (Beaulieu et al. 2010, 

Beaulieu et al. 2011). The conceptual model the equations are based on is now unclear, but if the 

assumption that the fraction N2O produced during nitrification and denitrification is the same is kept, 

one quarter of NLEACH is nitrified and one-quarter is denitrified in each of the three locations 

(groundwater, river, estuary) with no permanent loss of NLEACH through the system (Table 1.1, Figure 

1.4).  

1.5 The Grand River – Background 

The 300 km-long Grand River is the largest Canadian river draining into Lake Erie. Its 7000 km2 

watershed has predominantly (80%) agricultural land use and 30 WWTPs discharging to the river and 

its tributaries. The Grand River is seventh-order at the mouth, with an annual average discharge of 56 

m3/s (Aquaresource 2009). The watershed is underlain by calcium carbonate-rich glacial tills and 

limestone and dolostone bedrock (Karrow and Morgan 2004).Because of high nutrient loading from 

wastewater and agricultural runoff and groundwater, the Grand River has several ecological and 

drinking problems. The central river, downstream of the large Kitchener-Waterloo-Cambridge area 

has very high macrophyte biomass (Hood 2012), high community respiration rates (Venkiteswaran et 

al, in submission), and periods of low dissolved oxygen in summer at night (Jamieson 2010, Thuss 

2008). Biodiversity of benthic invertebrates and fish is also low in this region (Loomer 2009). There 

is concern that poor water quality and high water temperatures negatively impact the recreational 

fishery industry in the Grand River (Cooke 2006).  

High nutrient concentrations also affect drinking water quality in the Grand River. Of the 

watershed’s 900 000 residents, about half (~500 000) drink Grand River water (Grand River 

Conservation Authority 2008)Water quality problems often occur in Brantford, which is downstream 

of Kitchener-Waterloo and derives 100% of its drinking water from the river. NH4
+ concentrations in 

winter at Brantford can be high enough to force the closure of drinking water intake pipes. NO3
- 

concentrations are typically below the drinking water limit of 10 mg N/L. However, currently the 
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largest WWTP on the Grand River, in Kitchener, releases NH4
+ in effluent. The plant is currently 

being upgraded to release NO3
-. This may reduce NH4

+ in Brantford’s drinking water but drastically 

increase NO3
- (Mark Anderson, personal communication). Nitrogen loading to the watershed, 

removal and storage on the landscape, and removal and transport in the river are not well understood, 

although this is crucial to managing the river for ecosystem health and drinking water quality. 

1.6 Study Sites 

The Grand River contains mesotrophic sites in the upper basin but is predominantly eutrophic, with 

high total phosphorus concentrations (range: 11.4 to 117.2 µg P/L, Table 1.2), and high epilithion and 

macrophyte biomass in summer. Dissolved oxygen (DO) has a strong diel cycle in summer, changing 

by >10 mg/L/day in some sites, with night-time DO concentrations at some sites < 2 mg/L. This 

raises concern about ecosystem stress and fish habitat. Additionally, the Grand River watershed 

population was 887 400 in 2006 (GSP Group 2010), about half of whom use river water for drinking. 

High NO3
- and NH4

+ concentrations, especially in winter, can force closure of municipal water intake 

pipes in the downstream communities of Brantford and Port Maitland (Cooke 2006). The river has 

significant seasonal changes in water chemistry; Figure 1.5 shows NO3
- and N2O concentrations from 

2006 to 2012 at two sites: Bridgeport (Site 9), upstream of a large municipal area, and Blair (Site 11), 

downstream of the urban area. 

This thesis utilizes 23 sampling sites on the Grand River, from ~6 km downstream of the source to 

the mouth. Sites are numbered 1 through 23 but Chapter 2 used a different naming system for four 

sites (Table 1.2). Sites were chosen to match Provincial Water Quality Monitoring Network sites and 

to capture the influence of upstream effects such as dams, WWTPs and major tributaries (Table 1.2). 

These sites can be divided into four areas based on geomorphology and land use, described in more 

detail in Chapter 6. The Upper Agricultural area (Sites 1-9) is located in a glaciated till plain and 

moraine area. Most land use is agricultural, though effluent from small WWTPs from the towns of 

Dundalk, Arthur, Grand Valley, Elora, Fergus and Conestogo enters the river here. Many sites are 

mesotrophic (Table 1.2). The sixth-order Conestogo River joins the Grand River above Site 9. The 

Urban section (Sites 10 – 12) is dominated by the Kitchener-Waterloo-Cambridge municipal area 

(total population: 480 000). Sites here are heavily influenced by effluent from the Waterloo, 

Kitchener, Galt and Preston WWTPs. Site 11 (Blair) in particular routinely has DO < 2mg/L in 

summer at night-time. The Groundwater Recharge section (Sites 13 – 16) is in a predominantly 
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agricultural area with one town (Paris, population: 12 000). The Paris moraine, consisting largely of 

sand and gravel, contributes significant groundwater discharge into the river (Aquaresource 2009). 

This groundwater varies in NO3
- and DO concentration but overall appears to dilute some of the 

nutrients and pollution from the Urban section (Westberg 2012). Lastly, the Lower Agricultural 

section (Sites 17 – 23) is again primarily agricultural. Here, the river flows over a low-gradient 

glaciolacustrine clay plain, and is deeper and slower than previous sites. The city of Brantford 

(population: 90 000) and smaller towns of Cayuga (population: 1500), York and Dunnville 

(population: 12 000) release treated WWTP effluent to the river. 

1.7 Thesis Outline 

Previous work on the Grand River has indicated that it had severe hypoxia problems in the Urban 

section (Jamieson 2010). Coupling of N and O cycles on the diel scale had been observed during 

night time hypoxic events at Site 11 (Thuss 2008) but where not reported elsewhere in the Grand 

River catchment. N2O concentrations were known to be oversaturated with respect to the atmosphere 

at many sites in the river but N2O emissions to the atmosphere were not quantified (Thuss 2008). 

Globally, N2O emissions were thought to be linearly related to NO3
- additions to rivers, after the IPCC 

equations (Section 1.4). WWTP effluent was known to contain NH4
+ and NO3

- but its N2O and CH4 

content and stable isotopic composition was unknown. N2O stable isotopic effects were well-

characterized for soils but not for river sediments. The usefulness of N2O stable isotopes in rivers to 

identify N cycling pathways was not clear. NH4
+ and NO3

- additions from runoff and WWTP effluent 

were known to be significant Nr sources to the Grand (Cooke 2006) but were not well quantified.  

Thus, the overall goal of this thesis is to fill in the research gaps on N cycling described above in 

the Grand River, in order to better understand (a) N2O production and emission, and (b) NO3
- sources 

and processing in impacted rivers. I hope that this thesis will help make science-based management 

decisions for the Grand River Watershed and elsewhere. The thesis includes an introductory chapter 

(Chapter 1), six research chapters (2 through 7) and a conclusions chapter (8). The specific objectives 

of each chapter are discussed below. 

Chapter 2 was previously published in the Journal of Environmental Quality (Rosamond et al. 

2011) and addressed the coupling of N and O cycles on the diel scale in the Grand River and two of 

its tributaries (the Speed and Eramosa Rivers). Summer diel DO cycling exists at all sites where DO 

has been measured in the Grand River; even mesotrophic sites experience diel DO ranges of ~4 
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mg/L/day. Previous work had documented dramatic changes in N species (NO3
-, NH4

+ and N2O) at 

Site 11 during hypoxic events at night (Thuss 2008). However, the presence or extent of N and O 

coupling on the diel scale when DO changes but conditions were always oxic was not known in the 

Grand River and little previous work had been published for other systems (Laursen and Seitzinger 

2004, Harrison et al. 2005). DO, NO3
-, NH4

+ and N2O were measured over ~28 hours in May, June, 

August and October at six river sites to determine the presence and extent of diel cycles in N species. 

Relationships between N2O diel ranges and a variety of potential controls (NO3
-, temperature, gas 

exchange coefficient, DO) were examined. Lastly, several sampling strategies were assessed on their 

ability to capture diel variability and to estimate the diel mean N2O concentration. 

Chapter 3 was previously published in Nature Geoscience (Rosamond et al. 2012). This chapter 

reports N2O emissions from all 23 sites in the river, over a 2 year time span, with a special focus on 

the middle Grand River (Sites 8, 9, 11 and 13). It is the most complete dataset of riverine N2O fluxes 

currently published. N2O emissions were compared to temperature and concentrations of NO3
-, NH4

+ 

and DO to determine if IPCC equations held true. N2O emissions and NO3
- mass were also compared 

between a wet and dry year. The chapter discusses the usefulness of the IPCC paradigm and suggests 

alternate approaches based on this extensive dataset.  

Chapter 4 is in review for publication in Environmental Science and Technology (manuscript 

number: es-2013-032776). WWTP effluent typically contains high concentrations of NH4
+ and/or 

NO3
-. Downstream N2O production via these compounds is included in IPCC N2O estimates but 

strangely, N2O and CH4 concentrations in effluent had never been measured and published. Some 

studies report δ15N-N2O and δ18O-N2O in wastewater within WWTPs (i.e. before they are emitted to 

water bodies) (e.g. (Townsend-Small et al. 2011, Toyoda et al. 2011)) but values varied by site and it 

was unclear if δ15N-N2O, δ18O-N2O and δ13C-CH4 could be predicted by WWTP type or if they were 

distinct from in-situ river sources and could be used as WWTP effluent tracers. Effluent was collected 

in summer and winter of a 24-hour cycle at a non-nitrifying WWTP, a partially nitrifying WWTP and 

a fully nitrifying WWTP in the Grand River watershed. DO, NO3
-, NH4

+, N2O and CH4 

concentrations were measured, as well as δ15N-NO3
-, δ15N-NH4

+, δ15N-N2O, δ18O-N2O and δ13C-CH4. 

Dissolved N2O and CH4 concentrations were multiplied by effluent flow to estimate emissions and 

compared to direct emissions from WWTPs and to downstream emissions resulting from nitrification 

and denitrification of effluent NH4
+ and NO3

-. Stable isotopic values were compared to literature 

values for WWTP effluent (when available) and to river values to determine if effluent could be 

traced with stable isotopes. 
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Chapter 5 describes laboratory incubations measuring stable isotopic fractionation between NO3
- 

and N2O during denitrification in Grand River sediments. It is the first measurement of its kind using 

river sediment. The incubation set-up was modelled after denitrification incubations conducted using 

forest and agricultural soil (Snider et al. 2009) and quantified ε15N and εnet
18O for the production of 

N2O from NO3
-. Additionally, 18O-labelled water was added so that the fraction O exchange (i.e. O in 

N2O from H2O, not from NO3
-) could be quantified. ε15N, εnet

18O and O exchange were compared to 

net N2O production rate in order to determine if N2O reduction to N2 played a major role in isotopic 

fractionations. 

Chapter 6 presents a NO3
- mass balance for the Grand River in three seasons, using denitrification 

rates extrapolated from N2O production rates and solving for NO3
- loss or gain for 23 reaches in the 

river. A stable isotope mass balance is also presented, showing δ15N-NO3
- values for incoming or 

outgoing NO3
-. Lastly, an annual box model for the watershed is presented, including NO3

- loads to 

the river from agriculture, WWTPs and septic beds. The objective is to quantify NO3
- application to 

the watershed, leaching from the watershed and loss before the Grand River, NO3
- loss within the 

Grand River and export to Lake Erie. It is hoped that this information is useful to managers in river 

systems where drinking water pollution by NO3
- is a concern. 

Chapter 7 examines N2O-NO3
- relationships in 24 oxic streams and rivers in Southern Ontario, to 

examine whether N2O-NO3
- relationships exist when DO is high. Regression tree analysis was used to 

determine if non-parametric relationships between N2O and a variety of factors (temperature, DO, 

NH4
+, TP, DOC, etc.) existed. These data are compared to the global published dataset, and a 

conceptual model was developed to explain changes in N2O emission variability with NO3
- 

concentration. The objective is to present a tool for scientists and managers for NO3
- and N2O 

management and measurement. 

Chapter 8 summarizes the conclusions of the previous six chapters and puts them in context of 

greenhouse budgets, inventories, river management ecosystem health and drinking water quality. It 

outlines future directions that research can take to improve our understanding of N cycling and N2O 

production and emission from rivers. 
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Table 1.1: IPCC emission factors for N2O production in groundwater (EF5-g), rivers (EF5-r) and estuaries (EF5-e), from the Third 

Assessment Report (Intergovernmental Panel on Climate Change 1996) and Fourth Assessment Report (IPCC 2007). Nitrification and 

denitrification were both assumed to produce 0.005 kg N2O-N per kg NO3
—

N (Nevison 2000) in the Third Assessment Report. 

 1999 2007 

 Value Reasoning (Ivens et al. 

2011, Nevison 2000) 

Value Reasoning (Ivens et al. 

2011) 

EF5-g 0.015 Literature review 0.0025 Literature review 

EF5-r 0.0075 All nitrified, half 

denitrified 

0.0025 Literature review 

EF5-e 0.0025 Remainder nitrified, half 

denitrified 

0.0025 Literature review 

EF5 (total) 0.025  0.0075  
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Table 1.2: Site descriptions, locations and codes in the Grand River discussed in this work. Some sites have different codes in Chapter 2. E 

= eutrophic (TP > 75 µg P/L), M = mesotrophic (TP: 25 to 75 µg P/L), O = oligotrophic (TP < 25 µg/L) (Dodds et al. 1998). Other points of 

interest (tributaries, WWTPs, dams etc.) are shown in grey shading where they enter the river. TP concentrations are means of three 

sampling events in June 2007, September 2007 and April 2009. See Chapter 6 for details on TP collection and analysis. 

Sampling 
Site 

Number 

Site 
code in 
Chapter 

2 Site Name Latitude Longitude 

Distance 
from source 

(km) 
Altitude 
(masl) 

Strahler 
number 
(Grand 
River) 

Strahler 
number 
(smaller 

river) 

Mean TP 
(µg P/L) 
(Trophic 
Status) 

1 
 

Dundalk 44̊ 8’ 44.98” -80̊ 20’ 31.96” 2.93 517 3 
 

23 (O) 

2 
 

Keldon 44̊ 2’ 15.72” -80̊ 22’ 58.8” 21.43 481 4 
 

29 (M) 

  

Black Creek 
(Luther Marsh) 

Confluence 

43̊ 58’ 
26.26” 

-80̊ 21’ 36.23” 32.31 465 5 4  

3 
 

Leggatt 43̊ 58’ 2.7” -80̊ 21’ 17.84” 33.18 465 6 
 

29 (M) 

4 
 

above Grand 
Valley 

43̊ 55’ 
22.97” 

-80̊ 19’ 15.58” 40.45 458 6 
 

25 (M) 

  
Grand Valley 
WWTP (1489) 

43̊ 53’ 35” -80̊ 18’ 55” 44.86 450 6 
 

 

5 
 

Below Grand 
Valley 

43̊ 51’ 
42.34” 

-80̊ 16’ 20.93” 53.11 444 6 
 

27 (M) 

6 
 

Shands 43̊ 43’ 29.9” -80̊ 20’ 38.3” 71.01 406 6 
 

29 (M) 

  
Fergus WWTP 

(6050) 
43̊ 42’ 1.5” -80̊ 22’ 48.4” 75.38 390 6 

 
 

  
Elora WWTP 

(3583) 
43̊ 40’ 49.0” -80̊ 25’ 53.2” 80.84 370 6 

 
 

7 
 

Elora Gorge 
43̊ 40’ 
35.77” 

-80̊ 26’ 45.38” 83.91 354 6 
 

25 (M) 
 

8 GR-1 
West 

Montrose 
43̊ 35’ 8” -80̊ 28’ 53.6” 98.05 323 6 

 
20 (O) 

  
Canagagigue 

Creek 
43̊ 34’ 
25.42” 

-80̊ 29’ 25.63” 99.85 319 6 5 
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Confluence 

  

Conestogo 
Golf 

Subdivision 
(101) 

43̊ 32’ 37” -80̊ 29’ 47” 105.71 311 6 
 

 

  
Conestogo 
Confluence 

43̊ 32’ 
18.65” 

-80̊ 29’ 10.98” 106.78 310 7 6 
 

  
Laurel Creek 
Confluence 

43̊̊ 28’ 
57.83” 

-80̊ 28’ 53.06” 119.12 299 7 4 
 

9 GR-2 Bridgeport 43̊ 28’ 54.7” -80̊ 28’ 53.6” 119.24 298 7 
 

24 (O) 

  

Waterloo 
WWTP 
(66627) 

43̊ 28’ 46.1” -80̊ 28’ 56.0” 119.47 295 7 
 

 

  
Hopewell 

Confluence 
43̊ 28’ 
43.88” 

-80̊ 25’ 18.58” 125.27 295 7 4 
 

10 
 

Freeport 43̊ 25’ 18.5” -80̊ 24” 39.3” 135 282 7 
 

29 (M) 

  

Kitchener 
WWTP 

(164000) 
43̊ 24’ 3.3” -80̊ 25’ 12.1” 140.29 275 7 

 
 

11 GR-3 Blair 43̊ 23’ 9.8” -80̊ 23’ 9.1” 145.82 274 7 
 

82 (E) 

  
Speed River 
Confluence 

43̊ 23’ 
14.01” 

-80̊ 22’ 1.00” 147.46 265 7 6  

  

Preston 
WWTP 
(18727) 

43̊ 23’ 
10.22” 

-80̊ 21’ 1.55” 148.91 265 7 
 

 

12 
 

Parkhill Dam 43̊ 21’ 49.4 “-80̊ 19’ 1.2” 153.07 264 7 
 

78 (E) 

  
Galt WWTP 

(60000) 
43̊ 20’ 18.1” -80̊ 19” 4.1” 155.93 255 7 

 
 

13 GR-4 Glen Morris 
43̊ 16’ 
38.02” 

-80̊ 20’ 40.17” 164.13 244 7 
 

54 (M) 

14 
 

Paris 43̊ 11’ 52.7” -80̊ 22’ 55.1” 175.45 229 7 
 

42 (M) 

  
Nith 

Confluence 
43̊ 11’ 
32.91” 

-80̊ 22’ 56.94” 176.04 219 7 6  

  
Paris WWTP 

(7700) 
43̊ 10’ 42.6” -80̊ 22’ 26.1” 179.3 215 7 
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15 
 

Power Line 
Road 

43̊ 10 26.58 -80̊ 21’ 11.06” 181.76 210 7 
 

31 (M) 

16 
 

Brant CA 
footbridge 

43̊ 9 8.34 -80̊ 19’ 2.23” 187.89 208 7 
 

25 (M) 

  

Brantford 
WWTP 
(73000) 

43̊ 7 13.9 -80̊ 13’ 45.8” 204.26 190 7 
 

 

17 
 

Newport 43̊ 5 57.87 -80̊ 14’ 25.39” 216.64 189 7 
 

46 (M) 

  

Fairchild 
Creek 

Confluence 
43̊ 6 37.47 -80̊ 7’ 36.42” 228.28 188 7 6  

18 
 

Six Nations 43̊ 5 50.50 -80̊ 5’ 43.50” 232.29 187 7 
 

44 (M) 

  
Caledonia 

WWTP (5655) 
43̊ 4 8.1 -79̊ 56’ 41.9” 246.34 185 7 
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Sims Lock 43̊ 2 38.82 -79̊ 54’ 32.28” 250.6 182 7 
 

37 (M) 

20 
 

York 43̊ 1 14.40 -79̊ 53’ 30.80” 253.6 181 7 
 

41 (M) 

21 
 

Cayuga 42̊ 56 58.64 -79̊ 51’ 38.04” 263.05 174 7 
 

35 (M) 

  
Cayuga 

WWTP (1258) 
42̊ 56 22.7 -79̊ 51’ 16.0” 264.42 174 7 

 
 

22 
 

Dunnville 42̊ 54 4.4 -79̊ 37’ 8.5” 288.12 174 7 
 

85 (E) 

  
Dunnville 

WWTP (5182) 
42̊ 53 50.5 -79̊ 36’ 29.0” 289.01 174 7 

 
 

23 
 

Port Maitland 42̊ 51 35.74 -79̊ 34’ 32.08” 295.66 173 7 
 

62 
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Figure 1.1: Selected biological N pathways found in rivers and streams.  
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Figure 1.2: Heterotrophic denitrification in gram-negative bacteria. Transporters (active or 

passive) are represented by ovals and enzymes by rectangles. Non-charged gases NO, N2O and 

N2 can freely diffusion through the cell’s outer membrane but NO3
- 
and NO2

- 
must be 

transported across it. Nar: nitrate reductase; Nir: nitrite reductase; Nor: nitric oxide reductase; 

Nos: nitrous oxide reductase. Isotopic fractionations for 
18

O only are shown for brevity. The net 

isotopic fractionation (εnet
18

O) is the sum of ε 1 through ε 4. O exchange with H2O may occur with 

NO2- or
 
NO, inside or outside the cell, but is only shown with NO2

- 
for brevity. The possible 

fractionation resulting from O exchange is shown as εH2O. Figure adapted from Figure 3 

(Averill 1996) and Figure 1 (Steen et al. 2013).  
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Figure 1.3: Conceptual model of stable isotopic effects measured during intracellular biological 

processes, using denitrification as an example. If a difference in isotopic ratios of the substrate 

(NO3-) outside the cell is measured, it is because (A) isotopic fractionation occurs on uptake 

into the cell, or (B) excess substrate is taken up with no fractionation and isotopic fractionation 

occurs during enzyme-mediated reactions in the cell and excess substrate leaves the cell. If 

products (N2O, N2) are isotopically distinct from substrate, at least one enzymatic reaction (in 

purple) must exhibit isotopic fractionation. Reactions and transports shown with blue arrows 

have no known isotopic fractionation. 
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Figure 1.4: Conceptual model of the IPCC default equations for N2O production and emissions 

from streams and rivers, using default values from the Fourth Assessment Report (IPCC 2007). 
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Figure 1.5: Seasonal changes in NO3
- 
(top) and N2O concentrations (bottom) at two sites in the 

Grand River over seven years. NO3
- 
concentrations are higher at Site 9 and in winter. N2O 

concentrations are higher at Site 11 and in summer. 

0

1

2

3

4

5

6

7

8

9

10

2/1/05 2/1/06 2/1/07 2/1/08 1/1/09 1/1/10 1/1/11 1/1/12

N
O

3
-
(m

g
 N

/L
)

Date

Site 9 (Bridgeport)

Site 11 (Blair)

1

10

100

1000

2/1/05 2/1/06 2/1/07 2/1/08 1/1/09 1/1/10 1/1/11 1/1/12

N
2
O

 (
n

m
o

l/
L)

Date

Site 9 (Bridgeport)

Site 11 (Blair)



 

27 

 

 

 

 

Figure 1.6: Map of the Grand River, Ontario and 23 sampling sites. WWTPs and dams are also 

shown. See Table 1.2 for site descriptions. 
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Chapter 2: Coupled Cycles of Dissolved Oxygen and Nitrous Oxide 

in Rivers along a Trophic Gradient in Southern Ontario, Canada 

Abstract 

Diel (24-h) cycling of dissolved O2 (DO) in rivers is well documented, but evidence for coupled diel 

changes in DO and nitrogen cycling has only been demonstrated in hypereutrophic systems where 

DO approaches zero at night. Here, we show diel changes in N2O and DO concentration at several 

sites across a trophic gradient. Nitrous oxide concentration increased at night at all but one site in 

spring and summer, even when gas exchange was rapid and minimum water column DO was well 

above hypoxic conditions. Diel N2O curves were not mirror images of DO curves and were not 

symmetrical about the mean. Although inter- and intrasite variation was high, N2O peaked around the 

time of lowest DO at most of the sites. These results suggest that N2O must be measured several times 

per diel period to characterize curve shape and timing. Nitrous oxide concentration was not 

significantly correlated with NO3
- concentration, contrary to studies in agricultural streams and to the 

current United Nations Intergovernmental Panel for Climate Change protocols for N2O emission 

estimation. The strong negative correlation between N2O concentration and daily minimum DO 

concentration suggested that N2O production was limited by DO. This is consistent with N2O 

produced by nitrite reduction. The ubiquity of diel N2O cycling suggests that most DO and N2O 

sampling strategies used in rivers are insufficient to capture natural variability. Ecosystem-level 

effects of microbial processes, such as denitrification, are sensitive to small changes in redox 

conditions in the water column even in low-nutrient oxic rivers, suggesting diel cycling of redox-

sensitive compounds may exist in many aquatic systems. 

2.1 Introduction 

River and stream ecosystems are threatened by anthropogenic inputs of nutrients such as nitrogen and 

phosphorus. Excess nutrients can result in eutrophication, decreases in drinking water quality and 

aquatic habitat, and increased rates of production of greenhouse gases such as carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O). Characterizing spatial and temporal variation in water 

chemistry is important for understanding biogeochemical cycling and for effective nutrient 

management.  

Diel (24-h) cycles of many compounds have been noted in streams and rivers. Diel cycling 

may be caused by changes in temperature (e.g., (Gammons et al. 2005, Grimm and Petrone 1997)) 

and light (e.g., (Diez Ercilla et al. 2009, McKnight and Duren 2004)). Light-driven changes in net 
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photosynthesis and respiration can result in changes in dissolved inorganic carbon, which affects pH, 

and dissolved oxygen (DO) (e.g., (Odum 1956, Parker et al. 2009, Parker et al. 2010, Parkhill and 

Gulliver 1998, Poulson and Sullivan 2010). Nighttime DO lows are of particular concern because 

they can limit the habitat of aerobic organisms such as fish (Vanderploeg et al. 2009). Many 

microbial processes are sensitive to the redox state, which is affected by DO. Once-per-day sampling 

protocols for water quality can under-represent diel changes in water chemistry, skewing data and 

impinging on the ability to understand ecosystems processes and mitigate the impacts of 

eutrophication. 

Diel cycling of nitrogen compounds is of particular interest because biologically reactive 

nitrogen compounds (i.e., nitrate [NO3
-] and ammonium [NH4

+]) are important nutrients, and 

sometimes pollutants, in aquatic ecosystems. The major microbial N cycling pathways of nitrification 

and denitrification are redox-sensitive. Nitrification is a term used for two oxic reactions performed 

by different groups of microbes: NH4
+ oxidation to nitrite (NO2

-) and oxidation of NO2
- and NO3

- 

through the stepwise reactions shown in Figure 2.1. The first reaction is performed by bacteria 

of the family Nitrobacteriaceae, methane-oxidizing bacteria, fungi, and crenoarchaea (Hayatsu et al. 

2008). The second reaction is performed mostly by Nitrobacter spp. These reactions are often 

coupled with autotrophic CO2 fixation to organic carbon (Hayatsu et al. 2008). Nitrous oxide, a 

powerful greenhouse gas, can be produced as a by-product of hydroxylamine oxidation in the first 

reaction or by nitrifier-denitrification, the reduction of NO2
- to N2 by nitrifiers. The latter reaction 

typically occurs in low-oxygen environments (Hayatsu et al. 2008). Denitrification, or anoxic NO3
- 

reduction through NO, N2O, and N2 (Figure 2.1), is a respiratory pathway often coupled with 

oxidation of organic carbon or sulfide (Hayatsu et al. 2008). Denitrification is performed by a wide 

variety of microbes in aquatic communities. In very anoxic environments, N2O can be taken up by 

cells and further reduced to N2 (Zafiriou 1990) 

 Two types of diel patterns in denitrification rates in aquatic systems have been observed: 

daytime and nighttime increases. Daytime increases in N2O concentration have been shown to occur 

when nitrification rates increase during the day due to higher temperature and pH, which then 

stimulates denitrification (e.g., (An and Joye 2001, Laursen and Seitzinger 2004, Lorenzen et al. 

1998)). This may occur when sediment is NO3
- -limited or when there is minimal diel DO cycling at 

the sediment surface. Laursen and Seitzinger (2004) found higher rates of denitrification (and 

presumably nitrification) during the day in small agricultural streams but higher N2O production at 

night, suggesting that the ratio of N2O produced per mole of NO3
-or N2 produced by nitrification or 

denitrification, respectively, increased during the night. 
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Denitrification rates may decrease during the day due to DO dynamics. In environments with 

well-lit sediments colonized by photoautotrophs, benthic daytime oxygen production increases the 

depth to the sediment redox boundary, increasing the diffusion path length for NO3
- from the 

overlying sediment surface and water column to the sediment anoxic zone (e.g., (Laursen and Carlton 

1999, Lorenzen et al. 1998, Nielsen et al. 1990, Nielsen et al. 1990, Risgaard-Petersen et al. 1994). A 

similar diel pattern is observed in hypereutrophic systems with nighttime hypoxia (DO < 2 mg/L) 

driven by high community respiration. Diel cycling of compounds involved in anoxic metabolic 

processes (e.g., denitrification; iron, manganese, and sulfate reduction; and methanogenesis) suggest 

that rates of anoxic processes increase at night and are limited during the day by diffusion or higher 

DO (Gammons et al. 2009, Harrison et al. 2005). Harrison et al. (2005) associated daytime decreases 

in NH4
+ and increases in NO3

- with nitrification and associated nighttime NO3
- disappearance and 

N2O formation with denitrification. 

 In this study, we provide evidence of coupling of DO and N cycles in three temperate rivers 

(southern Ontario, Canada) with different trophic status. Dissolved oxygen and N cycling processes 

are linked because major N cycling processes are redox sensitive. We have chosen N2O as an 

indicator of N cycling changes because it is produced by multiple N pathways (Figure 2.1); it is easily 

measured at the nmol/L level with good precision, allowing good quantification of small 

concentration changes; it degases to the atmosphere, making it less influenced by ground- or surface-

water inputs than dissolved ions such as NO3
-; and the extent of diel N2O variability in rivers is not 

well understood. Although rivers and estuaries are thought to be significant sources of N2O to the 

atmosphere (Kroeze et al. 2005), the diel variability of N2O has been examined in only a few rivers 

and streams (Clough et al. 2006, Laursen and Seitzinger 2004). If diel cycling of N2O is significant, 

once-per-day water chemistry sampling can misrepresent the mean diel concentration needed for 

calculating mean daily N2O emissions to the atmosphere. In addition, the factors controlling N2O 

production and N2O diel cycling are not well understood. N2O emissions from streams and rivers to 

the atmosphere are often estimated by assuming a linear correlation with NO3
- concentration based on 

research in agricultural streams (IPCC 2007, Reay et al. 2003, Reay et al. 2005). However, this 

relationship does not consider the impact of redox state on N2O dynamics in fluvial systems and has 

not been tested in larger or heavily affected rivers. Additionally, the effect of gas exchange on diel 

N2O signals has not been examined in streams and rivers, even though high rates of gas exchange 

could remove diel signals in N2O production. The expression of diel cycling of gaseous compounds 

depends on the rates of in-stream production and consumption and any diel changes to input (e.g., 

anthropogenic loading) and gas exchange with the atmosphere, which varies directly with the gas 

exchange coefficient (k) and the degree of saturation of the gas in question. The gas exchange 
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coefficient is dependent on water depth and velocity in turbulent systems such as rivers (Wilcock 

1988). When flow conditions are constant over a diel period (e.g., in large rivers), only small, 

temperature-based diel changes in k occur. At constant hydraulic conditions, the gas flux is therefore 

dependent on the concentration of the dissolved gas relative to the atmosphere. If gas exchange rates 

are higher than diel changes in the net production of the gas of interest, then no diel change in 

concentration will be observed. 

 The purposes of this study were to determine (i) the presence and extent of diel variation in 

N2O over the growing season (May to October) at several sites across the trophic gradient 

(oligotrophic to eutrophic); (ii) if N2O diel curves are predictable (i.e., if they are consistent with DO 

curves, which are easier to measure and often better known); (iii) the potential factors influencing diel 

N2O variability, such as diel DO amplitude and minimum, NO3
- concentration, temperature, and gas 

exchange coefficient; (iv) the appropriate sampling methodology to capture diel variability and 

average daily N2O concentrations and fluxes in lotic freshwaters; and (v) the implications for the 

sensitivity of in-stream N cycling processes to small diel changes in redox conditions in the water 

column. 

2.2 Materials and Methods 

2.2.1 Study Sites 

The Grand River watershed (Figure 2.2), located in southern Ontario, Canada, is 6800 km2 in area 

and has a population of approximately 1 million. About 80% of the land use is agricultural. Treated 

municipal wastewater, agricultural runoff/discharge, and septic tank releases are the main 

anthropogenic sources of nitrate (Cooke 2006). About half the population lives in the metropolitan 

area of the Region of Waterloo, in the middle of the watershed. 

 The Grand River is seventh-order and has an annual average discharge of 56 m3/s to Lake 

Erie (Aquaresource 2009). Flows are heavily regulated by discharge from the Bellwood Reservoir 

above the Shand Dam (Figure 2.2). The catchment contains Paleozoic limestone and shale overlain by 

calcite-rich glacial drift. River water is typically well buffered by dissolved carbonate, and the pH 

ranged from 7.0 to 9.0 at all sites in this study. Anthropogenic eutrophication in the middle, urban 

reach of the river has been observed since at least the 1960s (Rott et al. 1998). 

Four sites on the Grand River (GR) were sampled for diel variations in river water chemistry 

(Table 2.1and Table 2.2). Sites were numbered sequentially downstream. Unless otherwise noted 

below, no sites have significant regional groundwater loss or gain (Holysh et al. 2001) because the 

Grand River channel overlies a compacted, clayey till (Catfish Creek Till) (Barnett 1992), which is 
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considered an aquitard with low hydraulic conductivity (Martin and Frind 1998). Flow was very 

consistent over 28-h sampling events at all sites, except for a rise in flow due to a rain event at sites 

GR-1 and GR-2 in October 2006 (Mark Anderson, Grand River Conservation Authority, personal 

communication). Water depth was generally between 0.5 and 1 m during our sampling events. The 

substrate at all sites was similar, consisting primarily of coarse material (sand to cobble), with finer 

sediments in pool areas. Porosity was not measured. All sites had well lit substrates and significant 

epilithic biofilm on gravel cobbles at all sampling times, but biomass was not quantified for this 

study. Periphyton-coated macrophytes were present at all sites and times but were lower in abundance 

in May and October. Unpublished work on the Grand River indicates that epilithon drives community 

photosynthesis in early spring, but macrophytes dominate in summer (June through September), 

while the effect of sestonic photosynthesis is minor (Gao Chen, personal communication). A previous 

study at a site approximately 10 km upstream of site GR-1 indicated that epilithic biomass is often 

one order of magnitude higher than planktonic algal biomass (Barlow-Busch et al. 2006). Suspended 

chlorophyll a concentrations ranged from below detection to 10.7 mg/L over this study (sites 

Eramosa River [ER]-1 and SP-1 were not quantified). 

Sites GR-1 and GR-2 are downstream of primarily agricultural areas and small towns with 

populations under 10,000. Based on total phosphorus (TP) concentrations (Table 2.2, after (Dodds et 

al. 1998)), site GR-1 was considered oligotrophic in May and July and mesotrophic in August and 

October. Site GR-2 was mesotrophic on all sampling dates. Patchy macrophyte growth was present at 

both sites in summer. Site GR-3 is downstream of two large municipal wastewater treatment plants 

(WWTPs) that release partially nitrified effluent to the Grand River. The effluent plume is generally 

fully mixed at this site, and there is no visible effluent “dead zone” of decreased algal and macrophyte 

growth. NH4
+ is elevated at this site (typically > 0.1 mg N/L) (Table 2.2) compared with all other sites 

studied. Summer macrophyte growth is densest at site GR-3, where nightly hypoxic events are 

common (Cooke 2006). Site GR-3 was mesotrophic in May, July, and August 2006 and was 

eutrophic in October 2006 and June 2007. Diel variation in total P at site GR-3 (measured three to 

four times per diel cycle) was low (CV, 2.6–8.8%), suggesting that any diel changes in WWTP 

effluent flow did not affect the trophic status of the site. Site GR-4 is about 40 km downstream of the 

heavily urbanized area. There is significant groundwater recharge to the river starting about 3 km 

upstream of the site (Cooke 2006). The site was mesotrophic on all sampling dates, and macrophyte 

growth was sparse.  

To increase the range of trophic levels and inorganic nitrogen concentrations in our study, we 

examined three sites on the Speed River (SP), a main tributary of the Grand River, and its tributary, 

the Eramosa River (ER). Sites ER-1 and SP-1 are located in agricultural areas, upstream of any 
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WWTPs. Both sites are oligotrophic in all seasons. Site SP-2 is artificially channelized and in a large 

urban area, about 200 m downstream of a top-draw reservoir and dam (Figure 2.2). Site SP-3 is about 

2 km downstream of the Guelph WWTP, downstream of the “dead zone” of the effluent plume. Sites 

SP-2 and SP-3 were mesotrophic in July 2006 and oligotrophic in July 2007. 

All sites were sampled 17 to 20 times over approximately 28 h on each sampling date. Cloudless 

days were chosen when possible. Grand River sites were sampled in May, July, August, and October 

2006. Sites GR-1 and GR-2 were sampled simultaneously, and GR-3 and GR-4 were sampled 1 or 2 d 

later. Sites GR-2 and GR-3 were also sampled once in June 2007 to assess interannual variation in 

summer diel cycling. Sites SP-2 and SP-3 were sampled in July 2006, and all sites on the Speed and 

Eramosa Rivers were sampled in July 2007. 

The average daily maximum temperature in July 2006 was 26.9°C, and total July precipitation was 

152 mm. Temperatures in the summer of 2007 were similar (average July maximum: 25.2°C), but 

precipitation was much lower (total July precipitation: 50 mm) (Seglenieks 2011). Flows were 

regulated by reservoir discharge and were lower in 2007 than in 2006 (Table 2.2). 

2.2.2 Sampling and Analysis 

For consistency, sampling locations were marked with buoys in flowing water as near to the thalweg 

as was safe. At each sampling time, temperature, conductivity, and pH were measured with a YSI 556 

MPS multiprobe (YSI, Yellow Springs, OH). The probe was calibrated with conductivity and pH 

standards before deployment at each sampling time. Dissolved oxygen (DO) samples were collected 

in 300-mL glass biological oxygen demand bottles with ground glass stoppers. Samples for NO3
-
 

and NH4
+ were collected in 125-mL HDPE bottles, which had been washed in 1.2 mol/L HCl, rinsed, 

and soaked in deionized water to remove residual Cl− before sampling. Dissolved N2O samples were 

collected in two 50-mL glass serum bottles with prebaked red rubber stoppers (BD Vacutainer, 

Franklin Lakes, NJ) (a needle was used to remove bubbles during underwater capping). Nitrous oxide 

samples were preserved with 0.2 mL saturated HgCl2 solution. Samples for stable isotopic analysis of 

DO (δ18O-DO) were collected in pre-evacuated 125-mL serum bottles with prebaked butyl-rubber 

stoppers and metal crimps; 0.3 g of NaN3 was added as a preservative before the bottles were 

evacuated. Total P samples were collected in 50-mL centrifuge tubes with plastic screw caps. All 

samples were kept at < 4°C in the dark until analyzed. 

Samples of DO were analyzed within 24 h using the sodium azide modification of the Winkler 

titration technique ((American Public Health Association 1995)), with a precision of 0.2 mg/L. 

Samples of NO3
-
 and NH4

+
 were filtered to 0.45 mm in the lab, and NH4

+ samples were acidified to pH 

4 with sulfuric acid. Concentration of NO3
-
 was analyzed on an ion chromatograph (ICS-90; Dionex 
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Corp., Sunnyvale, CA) with 0.07 mg N/L precision (SD of 15 replicates of a standard solution) and a 

detection limit of 0.05 mg N/L. Samples of NH4
+

 were analyzed by the salicylate and nitroprusside 

colorimetric method (American Public Health Association 1995) on a Technicon AutoAnalyzer II 

(Technicon Instruments, Terrytown, NY) at 660 nm wavelength with a precision of 0.005 mg N/L and 

detection limit of 0.01 mg N/L. Samples with concentration >2 mg N/L were diluted.  

Our instrumentation could detect the presence of nitrite (NO2
-) but could not quantify it accurately. 

Nitrite (likely < 0.5 mg N/L) was noted at the GR-3 site in July 2006, August 2006, and June 2007. 

Nitrite here may have come directly from effluent from the Kitchener WWTP, in which it is 

sometimes observed (unpublished data). 

Samples of N2O were analyzed using a headspace method in which 5 mL of sample was removed 

while 10 mL of He was added. Bottles were shaken to equilibrate the headspace and dissolved phases. 

Approximately 3 mL of headspace was removed from the serum bottle and analyzed on a gas 

chromatograph (model CP3000; Varian, Santa Clara, CA) with an electron capture detector and 2 m × 

3.2 mm SS column packed with Hayesep D 80/100 mesh (VICI Valco Instruments, Houston, TX). A 

P-5 mix (95% Ar and 5% CH4) was used as the carrier gas. Dissolved N2O concentration was 

calculated using Henry’s Law after Lide and Fredrikse (1995). Precision (standard deviation of 

multiple air-equilibrated samples) was 6% or less at 8.5 nmol N2O/L, and the detection limit was 3 

nmol N2O/L. Samples of δ18O-DO were run with a helium headspace method on a modified 

Micromass VG IsoChrom gas chromatograph-isotope ratio mass spectrometer (Micromass HK, 

Manchester, UK) ((Venkiteswaran et al. 2008)). Total P samples were analyzed by the persulfate 

digestion and the ascorbic acid/molybdenum blue colorimetric method (APHA, 1995) on a Cary 100 

US-VIS spectrophotometer (Varian) at 885 nm wavelength. The precision and minimum detection 

limits were both 0.05 mg P/L. 

We used a non–steady-state model (PoRGy) to estimate gas exchange coefficient (k) values for 

dissolved oxygen (kDO) by fitting diel DO and δ18O-DO curves to equations containing the 

photosynthesis rate, the respiration rate, the δ18O-H2O value, the isotopic effect of community 

respiration, and k (Venkiteswaran et al. 2007). The value of k plays a large role in the concentration 

of dissolved gases in aqueous environments. However, k is difficult to measure directly in large 

rivers. Empirical equations can give a wide range of values for the same input parameters (Raymond 

and Cole 2001). Injected gas tracers such as SF6 are impractical for large rivers and must be 

quantified multiple times in different flow conditions (Wilcock 1988). The PoRGy model avoids 

these problems but does not take into account flow changes or groundwater input, which influence 

modeled k values. These factors are probably negligible at our study sites except for site GR-4, which 

receives groundwater input from the Paris Moraine (Holysh et al. 2001). Best fit was obtained by 
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adjusting the input parameters to minimize the combined sum of squared error between the field data 

and model outputs. The model was run multiple times per dataset using random starting points, and 

the first five “good fits” (r2 > 0.8 for DO and δ18O-DO curves) were chosen and averaged. Standard 

deviations of k obtained by multiple runs of the same dataset were very low (< 0.0001–0.007; n = 5). 

Sites SP-3 and GR-4 (October) did not exhibit sufficient diel cycling in DO and δ18O-O2, and the k 

values for these sites were thus unmodelable (r2
 < 0.5). The k values for N2O (kN2O) were calculated 

from kDO using Schmidt numbers (Wanninkhof 1992). 

An estimate of error on the modeled k values was obtained from the standard error (SE) of the 

slope of the regression between field and modeled DO and δ18O-DO values, using the following 

equation: 

83	�B	����� = �����	 × (� − ��) × C. 
/[� × (� − �)C.
]    Equation 2.1 

where n is the number of samples and r is the correlation coefficient (Zar 1996). 

Standard errors of the slopes of the δ18O-DO regression were larger than those for DO 

concentration and are therefore reported here. They ranged from 3.5% to 14.4%. Because these values 

incorporate error from all fitted parameters in the model (photosynthesis rate, the respiration rate, the 

isotopic effect of bulk respiration, and k), they are liberal estimates of the error on k. They are 

comparable to previously published error estimates on k (Moog and Jirka 1998). 

Regression analysis of factors that may influence N2O production rates (temperature, kN2O, NO3
-, 

minimum DO) and N2O was completed in Systat SigmaPlot version 10.0 (Systat, Chicago, IL). P 

values < 0.05 were considered significant. 

2.3 Results and Discussion 

2.3.1 Presence and Extent of Diel Dissolved Oxygen, Nitrate, Ammonia, and Nitrous 

Oxide Cycling 

River conditions varied substantially between diel sampling periods. Across all sites and seasons, 

average daily water temperature ranged from 10.6°C to 26.9°C. Flows ranged from summer low 

flows in July 2006 and June 2007 to storm flows in October 2006. Samplings from sites GR-1 and 

GR-2 were taken shortly after a storm on 4 October (10.8 mm rain) (Seglenieks 2011) (Table 2.1). 

Submerged macrophytes were present at all sites at all times but were less abundant in May and 

October than during summer sampling. Epilithon was present at all sites and times. Dissolved 

inorganic nitrogen concentrations were always three or four orders of magnitude higher than soluble 

reactive P concentrations, indicating that all systems were likely P limited (data not shown). Previous 
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research has also found evidence that periphyton (including diatoms) and seston are P limited in the 

Grand River (Barlow-Busch et al. 2006, Rott et al. 1998). 

Diel DO curves were present at all sites and times, even with the large variation in river conditions. 

The presence of diel DO curves was determined by a diel concentration range (maximum – 

minimum) greater than twice the method precision and a minimum occurring before sunrise and a 

maximum occurring near solar noon. Dissolved oxygen increased during the day due to net in-stream 

autotrophy (i.e., photosynthesis > respiration) and decreased at night due to heterotrophy (Figure 2.3 

to Figure 2.5). Diel DO curve amplitude was highest in July or August and was smallest in October at 

all Grand River sites. Site SP-2 (July 2007), immediately downstream of a dam, had the smallest diel 

range in DO (1.0 mg/L). Dissolved oxygen concentration was generally above 4 mg/L (~50% 

saturation) at all sites. The exception was site GR-3, where hypoxic conditions (DO < 2 mg/L) 

occurred during two sampling events. In July 2006 and June 2007, the nighttime DO minima were 1.1 

and 0.8 mg/L (13.0 and 6.3% saturation), respectively. 

Diel cycles of NO3
-
 and NH4

+ were only observed in midsummer at the few sites that were affected 

by WWTP effluent. NO3
-
 decreased during the night at sites GR-3 and GR-4 in July 2006 and June 

2007 and at site SP-3 at both sampling times. Diel NO3
-
 concentration varied by 10% to 90% at these 

sites (Table 2.2). NH4
+ increased during the night at site GR-3 in July and June by 1430% and 1640%, 

respectively (Table 2.2). Sites GR-3 and GR-4 are downstream of the Kitchener WWTP, which 

releases significant loads of NH4
+ (Table 2.1) that are rapidly removed during the day by a 

combination of volatilization, biological uptake, and nitrification (Murray 2008). Site SP-3 is 

downstream of a WWTP releasing mostly NO3
-
 (Table 2.1). Concentrations of NH4

+ and NO3
-
 at all 

WWTPs change little over 24 h or show little diel trend (Rosamond et al., unpublished). Decreases in 

NO3
-
 concentration at night may have resulted from increased denitrification or decreased nitrification 

at night, but changes in biological uptake or effluent chemistry also could have occurred. 

Diel cycling of N2O occurred at every site and on most dates (Figure 2.3 to Figure 2.5). In general, 

there appeared to be two diel curve shapes: single peak and double peak. The majority of sampling 

events showed single peaks (e.g., sites GR-1, GR-2, and GR-4 on all dates but October 2006; site SP-

1; and site SP-3), with N2O increasing during the night and decreasing during the day. Some curves 

(site GR-3 in July, October, and June; site ER-1; and site SP-2 in July 2007) had a daytime and 

nighttime peak in N2O. With the exception of site ER-1, nighttime N2O peaks were higher than 

daytime peaks. Nitrous oxide was variable over 24 h at all GR sites in October but did not show 

consistent diel patterns except at site GR-3. Nitrous oxide patterns may have been affected by high 

storm-related flows at this sampling time. 
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The diel range of N2O concentration (i.e., maximum N2O concentration – minimum N2O 

concentration) varied substantially within and between sites. Within a site, the diel N2O range tended 

to increase with temperature, peaking in midsummer (July 2006 or June 2007) for all Grand River 

sites but site GR-1. This corresponded with low flow, high water temperature, and low nighttime 

minimum DO (Table 2.2). Photosynthetic biomass was also observed, but not quantified, to be 

highest at this time of year. 

Intersite variation of the diel N2O range was quite high, ranging from 2.3 nmol/L N2O at site GR-4 

(October) to 569.4 nmol/L N2O at site GR-3 (July). Sites with the highest N2O concentration and 

range (sites GR-3 and SP-3) were immediately downstream of WWTPs. Nutrients in the effluent 

increased productivity, resulting in larger diel DO ranges. Nitrous oxide concentrations were closest 

to saturation and had small diel ranges at less affected sites of lower trophic order with small diel DO 

cycles (e.g., sites ER-1 and SP-1). Nitrous oxide was always oversaturated, indicating that it was 

produced upstream of all sites, even those of lower trophic level and low NO3
-
 concentration (Table 

2.2). The kDO values in rivers and streams are typically high (0.03–0.35 m/h, this study; 0.02–0.5 m/h, 

(Venkiteswaran et al. 2008) and references therein) compared with lentic systems with wind-driven 

gas exchange (0.005–0.11 m/h) ((Venkiteswaran et al. 2008) and references therein). The gas 

exchange coefficient in rivers is understood to be controlled by turbulent flow (i.e., water depth and 

velocity) and thus varies little in rivers over a diel period in the absence of hydraulic changes 

(McCutcheon 1989, Raymond and Cole 2001). Therefore, the presence of diel N2O cycles at all sites 

indicates that gas exchange was not rapid enough to remove the diel signal, which must be related to 

changes in production, consumption, or the rate of N2O diffusion from sediments, which are affected 

by depth of the sediment redox boundary. 

There are few literature reports of diel N2O variation in streams and rivers. Nitrous oxide 

concentration has been shown to increase during the day in a low-productivity river (Clough et al. 

2007) and to increase at night in high-productivity rivers ((Harrison et al. 2005); this study: site GR-3 

in July 2006 and August 2007). Laursen and Seitzinger (2004) measured N2O twice over a diel cycle 

in low-productivity streams, showing higher nighttime N2O concentration. Until now, however, 

complete diel N2O curves peaking at night have not been demonstrated in oligotrophic and 

mesotrophic systems where diel cycling of NO3
- and NH4

+
 does not occur and DO minima are well 

above hypoxic conditions. 

2.3.2 Predictability of Shape and Timing of Diel Nitrous Oxide Curves 

To examine the consistency of diel N2O curve shape and timing across sites and dates, we compared 

diel N2O and DO curves. This normalizes for the effects of gas exchange, which changes the timing 
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of the DO diel peak and trough relative to solar noon (Chapra and Di Toro 1991, Venkiteswaran et al. 

2008). However, the differences in kDO and kN2O at the same temperature and the change in the kDO/kN2O 

ratio with temperature could affect the timing between the DO and N2O peaks (Wanninkhof 1992). 

We used the largest and smallest values of kDO modeled in this study (0.35 m/h at site GR-4 in May 

and 0.04 m/h at site SP-3 in July 2007) and calculated kN2O. kN2O values were then changed to reflect 

the temperature range over the study (10.6–26.9°C). Dissolved oxygen curves were modeled using 

kDO and kN2O with PoRGy. Differences between kDO and kN2O and differences with temperature affected 

the time of peak DO by one model time-step (5 min), which was much less than the sampling 

resolution in this study (~90 min). Thus, small, temperature-driven changes in k values do not 

significantly contribute to changes in peak timing for DO curves relative to N2O curves. 

Diel N2O cycles were less smooth than DO curves, and the timing of N2O peaks was less consistent 

(Figure 2.3 to Figure 2.5). Although N2O curves typically peaked when DO concentrations were low, 

they were not mirror images of DO curves. Nitrous oxide curves were more asymmetrical about the 

mean than DO curves. Although the shape of N2O curves was not consistent across sites or dates, 

N2O peaks tended to be sharper than N2O troughs, similar to DO curves. Ignoring October samples 

(except site GR-3), which do not show clear diel N2O curves, the nighttime N2O peak occurred on 

average 0.4 h after the DO minimum (SD, 2.1 h; n = 21; see Table 2.1). Daytime N2O peaks 

(typically smaller than nighttime peaks) occurred on average 12.1 h after the DO minimum (SD, 1.9 

h; n = 5). The resolution of these calculations is 60 to 90 min, or the time between samplings. Peak 

timing did not appear to have any relationship with season (i.e., the month of sampling) or with water 

temperature. 

The high variability in diel N2O curve shape and timing is likely because N2O was typically farther 

from saturation than DO and because N2O production processes are sensitive to changes in redox 

conditions and not to the more regular photoperiod. Like DO curves, N2O curves are affected by 

physical factors (k value and temperature), production and consumption rates, microbial community 

composition, and variation in loading from an upstream point and nonpoint sources such as WWTP 

outfalls and areas of groundwater discharge. However, N2O production by nitrification and 

denitrification is redox dependent. When the water column is oxic, denitrification can only occur in 

the anoxic lower sediment, whereas DO production is redox-independent and occurs in the water 

column and on the sediment surface (Muller and Weise 1987). Also, the ratio of N2O to N2 produced 

during denitrification has been shown to change with redox conditions, NO3
- supply, and temperature, 

but these relationships are not fully understood (Silvennoinen et al. 2008). We therefore cannot 

predict when the maximum or average N2O concentration will occur based on diel DO curves. 

Furthermore, diel N2O curve shape is not consistent at one sampling site over multiple dates or on one 
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date over multiple sites. Therefore, N2O must be sampled several times over a diel period to fully 

characterize the shape and timing of the diel curve. 

2.3.3 Correlating Diel Nitrous Oxide Concentration Range to Potential Limiting Factors 

To determine if the diel concentration range of N2O can be predicted and to suggest factors limiting 

net N2O production rates in these rivers, we compared diel N2O concentration range (i.e., maximum 

concentration – minimum concentration per sampling event) with kN2O and with factors that may 

influence nitrification or denitrification rates (average daily temperature, minimum DO concentration, 

diel DO concentration range, average daily NH4
+, and NO3

- concentration). 

Diel N2O range showed no significant correlation with kN2O (p = 0.602) (Fig. 6), although kN2O 

ranged by a factor of 10 between sites. The N2O concentration is a balance between net N2O 

production and loss to the atmosphere by gas exchange. Thus, similar N2O production rates result in 

different N2O concentrations if kN2O is different between sites. However, the variation in diel N2O 

range seen here must result from different net N2O production rates because high kN2O values did not 

correlate to low diel N2O range. There was also no correlation with total P (p = 0.2277), indicating 

that trophic level cannot be used to predict the N2O diel range at our sites. Small but significant 

correlations with temperature (r 
2= 0.20; p < 0.0001), NO3

-
 (r2

 = 0.46; p = 0.0003), and NH4
+

 (r2 = 

0.20; p= 0.0277) were observed, but the correlations appear to be controlled by the two sampling 

events at site GR-3 with very high N2O, midrange temperature, midrange NO3
-
 concentrations, and 

high NH4
+

 concentrations (Figure 2.6). When these points are removed, the relationships are no longer 

strong (r2 < 0.05 for all) or significant (p > 0.2 for NO3
-
 and NH4

+). 

Thus, N2O production was not limited by temperature, NO3
-
 or NH4

+
 at our sites. This contrasts with 

previous work showing linear relationships between NO3
-
 and N2O in agricultural streams (Reay et al. 

2003, Reay et al. 2005), which form the basis for the protocol for estimating N2O fluxes from rivers 

and streams sanctioned by the Intergovernmental Panel on Climate Change (IPCC 2007). The 

assumption that increases in in-stream NO3
-
 concentration (e.g., from intensification of agriculture) 

result directly in increases in N2O is not true at our sites. This finding raises the possibility that NO3
- 

and N2O are not related in rivers affected by anthropogenic N sources, as is often assumed. A re-

evaluation of this relationship at other field sites is necessary to determine if NO3
-
 and N2O are 

correlated across larger NO3
-
 concentration ranges and on regional scales on which Intergovernmental 

Panel for Climate Change flux estimations are performed.  

Diel N2O range had a very strong inverse correlation with nighttime minimum DO concentration 

over a large range (0.8–8.8 mg/L) (r2= 0.97; p = 0.0001). When the GR-3 data with very high N2O 

concentrations were removed, the linear relationship was weaker but still significant (r2
 = 0.43; p = 
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0.0010). This suggests that sites have sufficient NO3
-
 or NH4

+ to support N2O production and are 

limited by high DO concentrations. Nitrous oxide production in the sediment likely follows DO 

concentrations at the sediment surface, which are affected by benthic photosynthesis and respiration 

and hyporrheic flow, as well as water column DO. However, all sites are shallow (0.5–1 m) and well 

mixed, indicating that benthic influences on DO should be expressed in the water column. 

The relationship between minimum DO concentration and N2O diel range suggests that one or 

more microbial processes favored by low DO are responsible for the bulk of N2O production. 

Elevated nighttime N2O production could result from increased rates of denitrification (as observed 

by (Harrison et al. 2005)) or from an increase in the N2O/NO3
- ratio produced by nitrification, which 

occurs in low-DO environments and likely results from the nitrifier-denitrification pathway (Campos 

et al. 2009, Goreau et al. 1980).  

Further evidence for the importance of nighttime denitrification was provided at our most eutrophic 

sites (sites GR-3, GR-4, and SP-3), where NO3
- sometimes decreased overnight. This trend has also 

been noted by Harrison et al. (2005) in a hypereutrophic stream. Nitrate removal at night is likely 

caused by denitrification (or by a decrease in nitrification at site GR-3, where NH4
+

 is high) because 

other NO3
-
 removal mechanisms, such as biological uptake, would not be expected to be higher at 

night. Furthermore, the N2O concentration peaked several hours before sunrise, while DO was still 

low, at site GR-3 in July 2006 and June 2007. This may be because very anoxic conditions resulted in 

a decrease in the N2O/N2 ratio produced by denitrification. Theoretically, the N2O/N2 ratio should 

decrease as anoxia develops because N2O reduction to N2 becomes more energetically favorable 

(Betlach and Tiedje 1981). However, a relationship between N2O/N2 and DO is not always observed 

in denitrification experiments (e.g., (Silvennoinen et al. 2008)). 

Daytime N2O production may have been low in our study because denitrification was diffusion-

limited as DO production increased the depth to the sediment anoxic zone. This pattern in 

denitrification rates has previously been noted in sediment incubation experiments quantifying 

denitrification rate (Lorenzen et al. 1998, Rysgaard et al. 1994). Also, a longer N2O travel path from 

the sediment anoxic zone to the surface could have allowed further reduction of N2O to N2. Two sites 

(site GR-3 in July, October, and June and site SP-2 in July 2007) showed double-peaked N2O curves, 

with one peak occurring with high DO concentration. This pattern has not, to our knowledge, been 

observed before. However, small daytime single N2O peaks have been observed in low-NO3
-streams 

(An and Joye 2001, Clough et al. 2007, Lorenzen et al. 1998) and have been attributed to increased 

coupled nitrification and denitrification due to increased temperature, DO, and pH during the day. 

This mechanism may explain the daytime data at sites ER-1 (showing only a daytime peak) and SP-2, 

where the DO range was narrow (1.7 and 3.1 mg/L, respectively) and NO3
-
 concentrations were low 
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(0.7 and 0.2 mg N/L, respectively); NO3
-
 may have been a more important limiting factor than DO in 

these cases. The double peaks at site GR-3, however, occurred when nitrification of NH4
+ from 

WWTP effluent was high and may include N2O produced by nitrification or coupled nitrification–

denitrification or may be affected by variation in WWTP effluent chemistry (Thuss 2008). 

This study did not examine all potential influences on diel N2O dynamics. Diel N2O changes may 

have resulted from microbial cycling on or in sediment and attached to macrophytes. Alternatively, 

diel changes in sediment biogeochemistry may have modified hyporrheic water quality, resulting in 

water column cycles. Intersite differences in sediment and sediment pore water properties (e.g., the 

abundance of labile organic carbon substrate in sediment; pore water NO3
-, NO2

-
, and NH4

+ 

concentration; thickness of the sediment anoxic layer; and the diffusion coefficient across the 

sediment–water interface) could also have been important. Changes in N2O production rates may also 

be related to changes in microbial community make-up, if different species cycle N at different rates 

or have different N2O/N2 or N2O/NO3
- ratios. Microbial ecology is understudied in aquatic systems, 

although Iribar et al. (Iribar et al. 2008) found that microbial communities in denitrification hotspots 

were not significantly genetically different from those in other areas in a river riparian zone. An 

examination of the relationship between NO2
-
 and N2O could be useful. We might expect nitrifier-

denitrification or coupled nitrification–denitrification to become NO2
- limited in anoxic environments 

(because oxic NH4
+ oxidation to NO2

- slows or stops) but not denitrification, which produces NO2
- 

without DO. Stable isotopic analysis of NH4
+, NO3

-, and N2O could also provide further insight into 

the production pathways of N2O at our sites. 

2.3.4 Implications for Sampling Strategies and N-Cycling Sensitivity to Redox 

Conditions 

The wide extent of coupled DO and N2O cycling demonstrated here suggests that (i) sampling 

programs must be designed to capture diel cycles when examining river biogeochemistry or 

greenhouse gas emissions and (ii) N2O production processes are sensitive to relatively small changes 

in redox conditions. 

To illustrate the effect of sampling protocol on calculated average N2O concentration, several 

sampling strategies were examined (Figure 2.7). Because N2O is typically lower in the day than at 

night, sampling once per diel in the daylight results in underestimation of the average diel N2O 

concentration. Site GR-1 (July) was chosen to represent “typical” conditions because the diel N2O 

range here is approximately the median of all samples collected. The diel N2O curve with the greatest 

range (site GR-3, June) was used as the “worst case.” We examined the variability of the calculated 

diel mean based on the number of points collected over the day (approximately equally spaced) and 
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the time of sampling. The following strategies were examined: (i) sampling eight times per diel cycle 

(i.e., every second diel point, about every 3 h); (ii) sampling four times per diel cycle (i.e., every third 

diel point, about every 6 h); (iii) sampling twice per diel cycle (approximately every 12 h); (iv) 

sampling once per 24 h; (v) sampling once per 24 h, but only during working hours (0830–1700 h 

local time), to replicate typical sampling protocols; and (vi) sampling twice per day at or around 

sunrise and solar noon (S+N). Each data point on the graph represents the calculated average N2O 

concentration with a different sampling start time. For the first three scenarios, the simple mean of the 

samples collected over the diel cycle was calculated. Depending on the starting time chosen, there can 

be significant variation (i.e., greater than twice the analytical precision) in scenarios with one or few 

samplings per day. All calculated mean values are compared with the mean calculated using all diel 

points (Figure 2.7). 

The ratio of (Conce-per-day - Csat)/(Cdaily-average - Csat) is equal to Fonce-per-day/Fdaily-average, where Conce-per-day is the 

N2O concentration measured once per day, Csat is the saturation concentration, Cdaily-average is the average 

of samples collected over 24 h, and F is the flux of N2O to the atmosphere. In the typical scenario, the 

mean N2O value using all data points (average sampling resolution: 1.4 h) was 14.1 nmol/L. 

Calculated mean N2O values were within 3 nmol/L when sampling resolution varied between 3 and 

12 h (Figure 2.7). However, once-per-day sampling resulted in average N2O concentration estimations 

ranging over 13 nmol/L, depending on the time of sampling chosen. The variation of samples 

collected during working hours was 5.3 nmol/L, but values were mostly below the diel average. The 

S+N method gave a value of 15.9 nmol/L, which is about 12% higher than the average N2O 

concentration calculated with a 1.4-h resolution. Using the ratio above, emission calculations using 

N2O concentration values collected once per day are 20 to 240% of those calculated using the 1.4-h 

time step. Using the sunrise and solar noon (S+N) method, emissions are 140% of those calculated 

with the 1.4-h time step. 

In the “worst case,” the diel mean N2O concentration (average sampling resolution: 1.7 h) was 291 

nmol/L. The range of the calculated mean N2O was very high (194 nmol/L) with a 12-h time step and 

even higher with once-per-day sampling (569 nmol/L). Samples collected during working hours were 

lower than the diel mean. Averaging sunrise and solar noon values gives 271 nmol/L, which is about 

10% lower than the diel average and within our analytical precision value for N2O concentration. 

Using a concentration value collected once per day results in emissions 20% to 160% of those 

calculated with a 1.7-h time step. However, the S+N method gives an emission value 90% of that 

calculated with a 1.7-h time step. 

The high variability in N2O diel curve timing relative to the diel DO curve makes prediction of the 

maximum or average diel N2O concentration difficult. To fully describe the timing and shape of the 
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diel N2O curve and to accurately measure average and maximum diel values, several samples per 24-

h period are recommended. At the least, sampling twice per day around sunrise and solar noon (i.e., 

approximately the highest and lowest N2O concentration) produces an average within 15% of the diel 

mean concentration and emission calculations within 40% of diel mean emissions in our two 

examples. Once-per-day or occasional sampling methods are common in studies examining N2O 

emissions from rivers (e.g., (Beaulieu et al. 2008, Clough et al. 2006, Cole and Caraco 1998, Garnier 

et al. 2006, McElroy et al. 1978, McMahon and Böhlke 1996, Nirmal Rajkumar et al. 2008, Richey et 

al. 1988, Robinson et al. 1998)), but this practice requires re-examination even when N2O 

concentrations are not particularly high. The presence of N2O diel cycling at all sites implies that rates 

of redox-sensitive microbial metabolic processes appear to respond to small diel changes in DO even 

when the system remains oxic. We have demonstrated that diel N2O cycles can thus be produced at 

low- and high-productivity sites with a range of diel DO variability. Coupled diel cycles of DO, N2O, 

and other redox-related compounds likely occur in many aquatic systems with diel DO cycles, even 

when hypoxic conditions do not occur. 

2.4 Summary 

Diel N2O cycles coupled with diel DO cycles were present at all river sites studied across a trophic 

gradient in spring and summer. Some sites did not exhibit this pattern during an autumn sampling, 

possibly because of decreased in-stream productivity related to storm activity and macrophyte 

senescence. 

The maximum N2O concentration and the diel N2O range were highest in summer at sites with low 

DO. Single and doubled-peaked diel N2O curves were observed. Diel N2O curves peaked, on average, 

0.4 h before DO minima with a large standard deviation and were asymmetrical about the mean. In 

contrast to diel DO curves, the timing of N2O peaks was inconsistent across sites and dates, indicating 

that diel N2O curves cannot be predicted from diel DO curves. 

The diel range in N2O concentration did not correlate significantly with kN2O, indicating that diel 

N2O curves represent changing production rates. The diel N2O range also did not correlate 

significantly with NO3
-, indicating that N2O production is not NO3

- limited at these sites over a NO3
-

range typical for agriculturally affected systems. The assumption that N2O concentration is a linear 

function of NO3
-, commonly made when estimating N2O emissions, did not hold at these sites and 

bears further investigation. Diel N2O range showed a very strong negative correlation with minimum 

DO concentration, and N2O maxima occurred at night when DO was low. This suggests that N2O is 

produced by an anoxic metabolic process such as denitrification or nitrifier-denitrification and that 

this process was limited by high DO. Several samples per diel cycle are necessary to fully describe 
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the observed diel variation in N2O concentration, especially when diel N2O range is large, but 

reasonable estimates (±15%) can be made by averaging concentrations at sunrise and solar noon at 

our sites. The near-ubiquity of diel N2O cycling observed here indicates that measurable 

biogeochemical responses to small changes in water column redox potential are likely overlooked in 

many oligotrophic and mesotrophic aquatic systems. 
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Table 2.1: Site locations and descriptions. 

Site Location 

Stream 

Order 

Distance 

Downstream of 

Major WWTP 

(km) 

WWTP 

Name 

NO3
- load from 

WWTP 

(tonnes N/y) 

NH4
+ load 

from WWTP 

(tonnes N/y) Other Notes 

GR-1 
43°35'7.43"N, 

80°28'53.99"W 
6 N/A N/A N/A N/A 

 

GR-2 
43°28'54.43"N, 

80°28'53.06"W 
7 N/A N/A N/A N/A 

c. 10 km downstream of 

Conestogo R. confluence 

GR-3 
43°23'9.94"N, 

80°23'9.96"W 
7 5 Kitchener 77 511 

 

   20 Waterloo 170 135  

GR-4 
43°16'35.13"N, 

80°20'49.95"W 
7 9 Galt 228 9.4 

c. 16 km downstream of 

Speed R. confluence 

   15  61 0.8  

ER-1 
43°41'15.48"N, 80° 

7'8.32"W 
4 N/A  N/A N/A 

 

SP-1 
43°41'21.26"N, 

80°14'38.07"W 
4 N/A  N/A N/A 

 

SP-2 
43°32'4.44"N, 

80°15'4.07"W 
6 N/A  N/A N/A 

c. 100 m downstream of 

top-draw dam 

SP-3 
43°29'3.25"N, 

80°16'54.03"W 
6 1.5 Guelph 1798 16 

 

N/A = not applicable (i.e. no upstream WWTP). WWTP effluent data from Environment Canada (2008). 



 

 

 

46 

Table 2.2: Physical and chemical data for diel sampling occasions, by site. Mean values are calculated over 24 hours. Trophic status after 

Dodds (1998). 

Site 

Sampling 

Date 

Mean 

Flow 

(m3/s) 

Mean 

Temperature 

(°C) 

Mean TP 

(µg/L) 

Trophic 

Status 

NH4
+ range 

(mg N/L) 

NO3
- range 

(mg N/L) 

Time of N2O 

peak - Time 

of DO 

minimum (h) 

GR-1 May-06 8.1 18.0 19.9 Oligotrophic 0.01 - 0.05 2.37 - 2.66 0.0 

 Jul-06 4.8 19.5 19.2 Oligotrophic 0.02 - 0.08 0.96 - 1.28 1.4 

 Aug-06 7.7 22.9 21.7 Oligotrophic 0.02 - 0.03 0.50 - 0.69 0.0 

 Oct-06 8.4 12.9 33.0 Mesotrophic 0.02 - 0.52 0.87 - 1.55  

GR-2 May-06 14.7 15.6 23.4 Oligotrophic 0.01 - 0.02 3.41 - 3.65 -1.5 

 Jul-06 9.4 21.9 28.2 Mesotrophic 0.02 - 0.05 1.52 - 1.72 -3.0 

 Aug-06 11.0 24.1 39.6 Mesotrophic 0.02 - 0.05 0.74 - 0.82 1.7 

 Oct-06 14.9 13.9 56.8 Mesotrophic 0.01 - 0.07 1.07 - 2.90  

 Jun-07 7.5 26.8 31.1 Mesotrophic 0.01 - 0.06 1.18 - 1.42 0.0 

GR-3† May-06 32.7 12.2 49.4 Mesotrophic 0.37 - 0.87 3.41 - 3.8 -4.7 

 Jul-06 13.6 21.9 50.3 Mesotrophic 0.03 - 0.43 2.40 - 3.29 -1.3 

 Aug-06 13.5 23.1 68.3 Mesotrophic 0.03 - 0.09 1.93 - 2.62 -1.5 

 Oct-06 17.0 13.8 77.6 Eutrophic 0.33 - 1.05 2.07 - 2.40  

 Jun-07 9.6 26.9 86.9 Eutrophic 0.07 - 1.15 1.40 - 2.70 -3.3 

GR-4‡ May-06 49.9 10.6 54.1 Mesotrophic 0.06 - 0.21 3.33 - 3.83 -1.6 

 Jul-06 21.4 21.5 42.5 Mesotrophic BD - 0.02 2.48 - 3.20 0.0 
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 Aug-06 15.9 23.3 58.7 Mesotrophic 0.02 - 0.04 2.25 - 3.22 0.0 

 Oct-06 26.1 13.6 58.3 Mesotrophic 0.09 - 0.17 2.54 - 2.77  

ER-1 Jul-07 N/D 15.9 11.8 Oligotrophic 0.01 - 0.02 0.59 - 0.88 11.7 

SP-1 Jul-07 N/D 18.2 8.6 Oligotrophic 0.01 - 0.02 0.14 - 0.25 0.0 

SP-2 Jul-06 N/D 24.4 36.4 Mesotrophic 0.03 - 0.06 0.62 - 0.84 2.8 

 Jul-07 2.1 21.2 13.4 Oligotrophic 0.02 0.49 - 0.56 3.0 

SP-3 Jul-06 N/D 24.2 59.5 Mesotrophic 0.02 - 0.04 3.55 - 4.80 -3.0 

 Jul-07 N/D 21.2 12.2 Oligotrophic 0.02 2.99 - 5.74 3.3 

BD = Below Detection. N/D = no data. 

† Flow data collected c. 5 km upstream 

‡ Flow data collected c. 15 km upstream 
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Figure 2.1: Common pathways of NO3
-
, N2O, and N2 production. Hydroxylamine oxidation is 

considered part of nitrification. 
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Figure 2.2: The Grand River Watershed, southern Ontario, Canada. Study sites on the Grand 

River, Eramosa R., and Speed R. are represented with triangles. Circles indicate towns and 

squares indicate dams. Note the large urban areas upstream of sites GR-3 and SP-3.
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Figure 2.3: Diel variability in DO and N2O concentration at Grand River (GR) sites, 2006. Scale bars for DO are on the left, N2O on the 

right. DO concentration at 100% saturation (20° C): 8.7 mg/L; N2O concentration at 100% saturation (20° C): 8.9 nmol/L). Grey areas 

represent night-time concentrations. Error bars represent machine or technique precision (DO: 0.2 mg/L, N2O: 6%). Note the different 

secondary y-axis scale for GR-3 on all dates but May 2006.
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Figure 2.4: Diel variability in DO and N2O concentration at Grand River (GR) sites, 2007. Scale 

bars for DO are on the left, N2O on the right. DO concentration at 100% saturation (20° C): 8.7 

mg/L; N2O concentration at 100% saturation (20° C): 8.9 nmol/L). Grey areas represent night-

time concentrations. Error bars represent machine or technique precision (DO: 0.2 mg/L, N2O: 

6%). Note the different secondary y-axis scale for GR-3 on both dates. 
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Figure 2.5: Diel variability in DO and N2O concentration at Speed (SP) and Eramosa (ER) 

River sites. DO concentration at 100% saturation (20° C): 8.7 mg/L; N2O concentration at 

100% saturation (20° C): 8.9 nmol/L). Grey areas represent night-time concentrations. Error 

bars represent machine or technique precision (DO: 0.2 mg/L, N2O: 6%). Note the unique 

secondary N2O axis for each site. 



 

54 

 

 
 

Figure 2.6: N2O diel curve range versus temperature, minimum DO concentration, NO3
- 

concentration and gas exchange coefficient (kN2O). All correlations with diel N2O range were 

insignificant (p > 0.05) except night-time minimum DO. Correlations of N2O range and 

temperature, NO3
-
 and NH4

+
 do not include the two points from GR-3 with very high N2O. The 
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gas exchange coefficient could not be determined during the following sampling events: GM-3 

(June 2007), GM-4 (August 2006, October 2006), SP-2 (July 2006, July 2007). 
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Figure 2.7: The range in estimates of the daily mean N2O concentration using different sampling resolutions in a “typical” (average daily 

mean N2O) and “worst case” (highest daily mean N2O) conditions. Grey bars represent the diel average calculated with 14 to 17 samples 

per 24 h, plus or minus analytical precision (6%). Once = once per 24 hours, Twice = approximately every 12 hours, etc. Once (day) = 

once per diel period during typical working hours (8:30 AM to 5:00 PM, EDT). S+N = average of samples collected nearest to sunrise and 

solar noon. Note the difference in scales for the typical and worst case scenarios. Samples collected during working hours underestimate 

N2O concentrations in the “worst case”. The mean of the S+N sample is within 15% of the diel average for each site.
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Chapter 3: Dependence of riverine nitrous oxide emissions on 

dissolved oxygen levels 

Abstract 

Nitrous oxide is a potent greenhouse gas, and it destroys stratospheric ozone (Ravishankara et al. 

2009). Seventeen per cent of agricultural nitrous oxide emissions come from the production of nitrous 

oxide in streams, rivers and estuaries (Syakila and Kroeze 2011), in turn a result of inorganic nitrogen 

input through leaching, runoff and sewage. The Intergovernmental Panel on Climate Change and 

global nitrous oxide budgets assume that riverine nitrous oxide emissions increase linearly with 

dissolved inorganic nitrogen loads, but data are sparse and conflicting (Nevison 2000, Syakila and 

Kroeze 2011). Here we report measurements over two years of nitrous oxide emissions in the Grand 

River, Canada, a seventh-order temperate river that is affected by agricultural runoff and outflow 

from 30 waste-water treatment plants. Emissions were disproportionately high in urban areas and 

during nocturnal summer periods. Moreover, annual emission estimates that are based on dissolved 

inorganic nitrogen loads overestimated the measured emissions in a wet year and underestimated 

them in a dry year. We found no correlations of nitrous oxide emissions with nitrate or dissolved 

inorganic nitrogen, but detected negative correlations with dissolved oxygen, suggesting that nitrate 

concentrations did not limit emissions. We conclude that future increases in nitrate export to rivers 

will not necessarily lead to higher nitrous oxide emissions, but more widespread hypoxia most likely 

will. 

3.1 Introduction 

Nitrous oxide (N2O) is responsible for about 9% of global climate forcing (IPCC 2007) but sources 

have been poorly quantified. Anthropogenic N2O is largely produced by microbial metabolism of 

reactive N from agricultural fertilizers and/or human waste (IPCC 2007). The dominant pathways are 

nitrification of ammonium (NH4
+) to nitrate (NO3

-) and denitrification of NO3
- to N2O and finally N2 

(IPCC 2007). The global N2O budget assumes a linear relationship between dissolved inorganic 

nitrogen (DIN) loads to rivers and riverine N2O emissions, estimating global riverine N2O emissions 

at 0.9 Tg/yr, or about 17% of anthropogenic agricultural N2O emissions (Syakila and Kroeze 2011). 

However, the global budget indicates an N2O increase of 5.4 Tg/yr (range: -7.5 to 18.7), whereas 
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atmospheric measurements indicate the value is 3.9 Tg/yr (range: 3.1 - 4.7; (IPCC 2007)). 

Uncertainty may be caused by paucity and poor quantification of spatial and temporal N2O emission 

data from rivers (Table 3.1). Only one previous estimate of N2O emissions includes diel data (Clough 

et al. 2007). To better capture spatial and temporal trends in riverine N2O emissions and to examine 

the DIN/N2O relationship, we measured dissolved N2O concentrations and calculated emissions from 

the 300 km length of the seventh-order, highly nutrient-impacted Grand River. 

The Grand River is the largest Canadian river draining into Lake Erie (watershed area: 6,800 km2; 

river discharge at mouth: 56 m3/s; (Aquaresource 2009) (Figure 3.1). Eighty per cent of the catchment 

is agricultural land (Cooke 2006) and 29 wastewater treatment plants (WWTPs) discharge DIN to the 

river and its tributaries (Figure 3.1, Table 3.2). We sampled every two to three weeks for two 

consecutive years, from May 2006 to April 2008. Average July temperature maxima were similar in 

2006 and 2007 (26.9°C and 25.2°C respectively) but total July precipitation was lower in 2007 (50 

mm versus 152 mm in 2006). Summer river flows were about 30% lower in 2007 than in 2006 at site 

11 (Water Survey of Canada 2010). Twenty-three sites along the river were sampled, representing 

four major areas: agricultural land on a glacial till plain (sites 1-9), urban and downstream areas 

influenced by large WWTPs (sites 10-13), a reach with significant groundwater input (sites 14-16) 

and another predominantly agricultural area on a clay plain (sites 17-23; (Cooke 2006), Figure 3.1). 

Night-time hypoxia (DO < 2 m/L) has been observed at site 11, which is 5 km downstream of a 

WWTP releasing NH4
+

 to the river (Table 3.2). 

3.2 Methods 

Twenty-three sites along the length of the Grand River, Ontario, Canada (Figure 3.1) were sampled 

twice a day (before sunrise and in the early afternoon) on 14 June 2007, 5 September 2007 and 24 

April 2009. Sites 1, 4, 8, 12, 16, 20 and 23 were also sampled at mid-morning. We sampled all sites 

once per day on 18 April 2008, 16 October 2008 and 24 March 2009. Sampling was conducted every 

two to three weeks at sites 8, 9, 11 and 13, from May 2006 to April 2008. Diel-intensive sampling 

(about every 1.5 h over 28 h) was conducted five times in spring, summer and fall in 2006 to 2008 at 

the same four sites. As the Grand River is shallow (mean depth < 1m at most sites) and well mixed, 

we filled sample bottles at wrist depth. 

Duplicate samples for dissolved N2O analyses were collected in 50 ml glass serum bottles, 

preserved with 0.2 ml saturated HgCl2 solution in the field, and analysed using headspace gas 
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chromatography (Varian CP3000 gas chromatograph with an electron capture detector, 2m × 3.2mm 

stainless-steel column packed with Hayesep D 80/100 mesh) with a detection limit of 3 nmol/L N2O 

and a precision (s.d. of multiple air-equilibrated samples) of 6% or less. DO was measured using the 

sodium azide modification of the Winkler titration (American Public Health Association 1995). The 

detection limit and precision were both 0.2 mg/l. The temperature was measured with a multiprobe 

(YSI 556 MPS). Flow data were provided by the Grand River Conservation Authority (D. Boyd, 

personal communication). Gas exchange coefficients (k) were calculated using the PoRGy model 

(Venkiteswaran et al. 2007, Wassenaar et al. 2010) for diel changes in DO and δ18O-DO. Model runs 

with r2 values of 0.8 or higher between observed and model-predicted values were used. During 

periods with no diel DO changes (that is, winter), mean k values for each site were used. No 

significant relationship between k and flow was found at sites 8, 9 and 13 (p > 0:005): The negative 

linear relationship between k and flow at site 11 (r2
 = 0:35, p < 0.0001) was considered too weak to 

adequately estimate winter k values based on flow measurements. Sites 6, 22 and 23 are lake-like 

reservoir sites, where the wind speed is expected to drive k. Here, k was calculated after (Crusius and 

Wanninkhof 2003) with wind speed data provided by the Grand River Conservation Authority (D. 

Boyd, personal communication). 

N2O emission rates were calculated using the thin boundary layer equation: 

���	��A��A�� = G × (
���� ��� − 
���)      Equation 3.1 

where emissions are in micromoles per square metre per day, k is in metres per day, Cmeasured is the 

measured N2O concentration (mol/m3) and Csat is the equilibrium N2O concentration, calculated after 

(Weiss 1970). Emissions were integrated linearly over time to obtain annual emissions. For areal 

integration, each sampling site represented a portion of the river, using the reaches of the Grand River 

Simulation Model (Anderson 2012). Reach boundaries were chosen to coincide with factors 

potentially changing water chemistry (for example, dams, tributaries, WWTPs and so on). To 

estimate annual N2O emissions from the entire river, we assumed that the time-weighted average ratio 

of emissions from the middle Grand (sites 8-13) to emissions from the whole river during whole-river 

samplings (43%) was the same for annual emissions for the few months when there was insufficient 

data from the entire river. 

Jackknifed Monte Carlo simulations were used to estimate the effects on modelled k values of 

using three data points per diel cycle. At four sites of diel-intensive sampling, data from four different 
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sampling dates were chosen for the simulations. The field data were randomly subsampled with 

decreasing numbers of points while ensuring that at least one sample was drawn from the three times 

of day (before sunrise, mid-morning and early afternoon) as in the less intensive diel sampling. 

Twenty-four combinations of data were modelled five times at each level of data. All acceptable 

model runs, those with r2
 values greater than 0.8 and providing a visually acceptable solution, were 

averaged. The k values at each level were compared with Welch's analysis of variance (R Core 

Development Team, 2011) to account for the unequal variances across levels. Across all field sites 

and dates, k values from 3-point modelling differed from those from 18-point modelling by 13-25% 

with a central tendency of 10%. Thus, we apply an error value of 10% to k values derived from three 

data points, and take the largest resulting propagated error (16%) as the error on emission 

measurements. Errors in reach area were not available from the Grand River Simulation Model but 

were much less than errors in k values. 

Linear regressions were performed in Matlab, version R2011b (MathWorks). N2O emission data 

were log-transformed (log10(emission+35)) to include negative numbers to pass normality tests. p 

values < 0.05 were considered significant. Goodness of fit was assessed with the Akaike Information 

Criterion. 

3.3 Results and Discussion 

The river was a source of N2O to the atmosphere at almost all sites and times (flux rates: -35 to 4,200 

µmol/m2/d, n = 651). Annual whole-river N2O emissions were 177 ± 5 kmol/yr and 490 ±14 kmol/yr 

(1.6±0.05 and 4.2±0.1 mol/km/d) in the 2006-2007 and 2007-2008 seasons, respectively. Spatial 

variation in emission rates was large; emissions were highest in the urban middle reach, especially 

downstream of the Kitchener WWTP (Figure 3.2). Although the river's urban-impacted reach (sites 

10-13) represents only 5% of the total surface area, it accounted for 36%-38% of N2O emissions 

(Table 3.3). Spikes in N2O concentrations immediately downstream of WWTPs were similar to those 

in the Potomac River (McElroy et al. 1978) and Ohio River (Beaulieu et al. 2010). Summer emissions 

(June-August, 25% of the year) contributed disproportionately to annual N2O emissions (42% in 

2006-2007 and 56% in 2007-2008; Table 3.3). 

Concentrations of N2O varied on a diel basis at many sites in the watershed and were consistently 

highest at night when DO was low (Rosamond et al. 2011). This results in up to a 10-fold variability 

in diel N2O emissions at the same site because the gas exchange coefficient (k) in rivers is controlled 
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by turbulent flow and diel changes in k are negligible (O'Connor and Dobbins 1958). Therefore, diel 

N2O emissions can vary by over a factor of 10 at the same site. In the summer, night comprised 38% 

of the time but 50%-52% of the N2O emissions from the river (Table 3.3). The largest measured 

instantaneous N2O emission (4165 µmol/m2/d) occurred at site 11 (downstream of the Kitchener 

WWTP) in July 2007 at night. These findings confirm previous suggestions (Rosamond et al. 2011) 

that other river studies have biased their N2O emission estimates by omitting diel, seasonal and spatial 

variability in N2O concentration (Table 3.1), although N2O concentrations in a hypereutrophic 

drainage canal have also been shown to be highest at night (Harrison et al. 2005) 

Despite the large impact of the urban zone on N2O emissions, average N2O emission rates from the 

entire Grand River were similar to those from rivers of similar catchment size (Table 3.1), although 

our sampling regime was much more intensive than previous studies. N2O emissions in 2007-2008 

were almost double those of 2006-2007. Several years' data may be required to characterize climate-

driven inter-annual variation in N2O emissions. 

We compared measured N2O emissions to estimations using Intergovernmental Panel on Climate 

Change (IPCC) equations, used by the signatory countries of the United Nations Framework 

Convention on Climate Change to report annual N2O emissions. N2O produced in rivers is assumed to 

relate linearly to DIN loads from agricultural fertilizers and manure and from sewage effluent. The 

former is estimated with the following equation: 

���	��A��A��� = �234
� × 37
	�     Equation 3.2 

where N2O emissions are in tonnes N/yr, NLEACH is the annual flux of reactive N leached into the 

river from agricultural sources (tonnes N/yr) and EF5-r is the fraction of DIN nitrified and denitrified 

to N2O over a year in rivers and streams, assuming constant N2O production rates for each process 

and no groundwater N2O input (Nevison 2000). The default value was formerly set at 0.0075 

(Nevison 2000) in the 1996 IPCC protocol but was decreased to 0.0025 in 2006 because field studies 

suggested it was too high (Clough et al. 2006). 

The second equation is for sewage effluent discharged directly to rivers: 

���	��A��A��� = 	�3772H3�I × 373772H3�I    Equation 3.3  

where NEFFLUENT is the total annual mass of nitrogen in waste-water effluent (tonnes N/r) and 

EFEFFLUENT is an emission factor with a default value of 0.005 (IPCC 2007). We calculated IPCC 

estimates using annual WWTP DIN loadings (Table 3.2) and dissolved DIN loads in the upper, 
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agricultural watershed (upstream of site 8). This avoids including emissions from large tributaries but 

provides a conservative estimate of agricultural loading, as DIN is rapidly consumed and recycled in 

aquatic ecosystems (Ensign and Doyle 2006). Using default IPCC EF5-r and EFEFFLUENT values, N2O 

emission estimates for the whole river were 233 and 254 kmol N2O/yr in 2006-2007 and 2007-2008, 

respectively, or about 130% and 50% of the measured values, respectively (177 and 490 kmol/yr; 

Table 3.3). The discrepancies between measured N2O emissions and IPCC estimates suggest that 

linear DIN models do not adequately predict N2O emissions from rivers (Table 3.3). This has 

implications for the global N2O budget, which is balanced using present IPCC EF5-r values (Syakila 

and Kroeze 2011). 

Annual DIN loads and N2O emissions do not have a simple linear relationship. DIN loads were 

13% higher in 2007-2008 than in the previous year, but measured N2O emissions were almost triple. 

The assumption made by the IPCC (IPCC 2007) and the global N2O budget (Syakila and Kroeze 

2011), that increases in DIN loads to rivers cause increases in N2O emissions, should be carefully re-

examined. Previous studies examining EF5 values have suggested modifications (Clough et al. 2006, 

Reay et al. 2005) even when acknowledging no significant linear relationship between N2O and DIN 

(Clough et al. 2006). 

To understand potential controls on N2O emissions, we compared instantaneous emissions with 

DIN, NO3
-, temperature and DO (Figure 3.3). To our knowledge, no previous studies have made these 

comparisons. Contrary to IPCC assumptions, the highest N2O emissions occurred at moderate NO3
-
 

concentrations. Temperature, NO3
-
 and DIN all showed significant but small (r < 0.20) relationships 

with N2O emission. However, DO showed a stronger, significant and negative relationship with N2O 

emissions (Rosamond et al. 2011) (Figure 3.3). Multiple linear regressions combining DO, DIN and 

temperature did not increase goodness of fit. We suggest that EF values and simple or multiple linear 

regression analyses are not appropriate for N2O dynamics in complex natural systems. Future work 

should consider approaches that include DO in N2O predictive models.  

DO seems to be a much stronger control than NO3
-
 on N2O emissions in impacted systems. The 

relationship is especially strong in the river's urban reach where NO3
- production is high (r = 0.61, 

Table 3.4). Although NO3
-
 concentrations are low to moderate, N2O production does not seem to be 

NO3
- limited. We suggest that N2O is largely produced by denitrification in hypoxic or anoxic 

sediment. Summer low-flow conditions promote hypoxia through high community respiration and 

decreased DO solubility. Low DO in the water column is probably a proxy for poorly oxygenated 
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sediment. Many denitrifying microbes are facultative anaerobes, and switch from oxic respiration to 

denitrification in hypoxic environments17. During hypoxia, N2O emissions dominate total annual 

emissions, whereas N2O emissions from low-NO3
-
 areas in the upper watershed are quite low (Table 

3.3, Figure 3.2). The large increase in N2O emission in the second year with almost no DIN increase 

was probably due to increased hypoxia at lower flows and higher temperatures. At present, IPCC 

methodology and the global N2O budget (Syakila and Kroeze 2011) underestimate N2O in 2007-2008, 

when more N2O was produced during night-time hypoxia in the urban reach. This finding has 

implications for present and future N2O budgets. N2O emissions could be over- or underestimated 

worldwide, depending on the extent of hypoxia in rivers and the role of temperature in controlling 

microbial metabolic rates. The predicted doubling of DIN load to rivers by 2050 (Seitzinger et al. 

2002) may not result in more N2O. However, an increase in hypoxia due to eutrophication (from 

increased N and/or P input (Seitzinger et al. 2005)) would probably result in large increases in annual 

N2O emissions from rivers and further decoupling of DIN and N2O. Climate-change-related increase 

in water temperature causing decreased DO solubility and higher rates of microbial respiration and 

denitrification could have the same effect. This suggests that N2O budget predictive modelling must 

take riverine DO dynamics into account. Many countries reporting to the IPCC do not have detailed 

DO data from rivers, but could perhaps estimate hypoxia using proxies such as water velocity and 

depth, summer air temperature and precipitation, and biological productivity or total phosphorus 

(Dodds et al. 1998). 

3.4 Conclusions 

This is the most complete multi-annual estimate of N2O emissions from a single river and is 

the first study to compare N2O emissions and DO. The highest N2O emissions occurred in urban areas 

downstream of WWTPs, particularly during hypoxic summer nights. N2O emissions are dynamic in 

rivers with large diel and/or spatial fluctuations in DO. Thus, previous studies of N2O emissions from 

rivers probably missed crucial periods of high N2O emissions (urban, night-time), skewing annual 

averages. Global N2O budgets and sampling protocols in streams and rivers must recognize spatial 

and temporal variation in both DO and N2O. Whole-river N2O emissions can be either significantly 

lower or higher than DIN-based estimates, depending on the extent of hypoxia. This suggests that the 

global N2O budget should be revised to consider DO-dependency of riverine N2O emissions. 
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Table 3.1: NO3
-
 concentrations, N2O emissions and sampling frequency from streams and rivers, ordered by catchment size. Sites are 

divided into agricultural streams (top), mid-sized rivers (middle), and large rivers (bottom). Estuarine emissions are not included. 

 

Ecosystem 

Name 

Catchment 

area (km2) 

Average 

annual 

discharge 

(m3 s-1) 

Length of river 

segment 

studied/ Total 

river length 

(km km-1) 

NO3
- range 

or average 

(mg N/L) 

Average 

summer 

N2O 

emission 

(µmol/m2/d) 

Average 

winter 

N2O 

emission 

(µmol/m2

/d) 

Average 

yearly N2O 

emission 

(µmol/m2/

d) 

Number 

of years 

sampled 

Sampling sites 

per stream or 

river 

Total 

samples 

collected 

per stream 

or river 

Frequency of 

sampling 

Toenepi Stream, 

NZ (Wilcock 

and Sorrell 

2008) 

15.5 ND 4.5/ND 
0.070 to 

3.44 
0 to 27.5    3 20 

Periodically in 

spring, 

summer, fall 

Whangamaire 

Stream, NZ 

(Wilcock and 

Sorrell 2008) 

23 ND 5.2/ND 8.17 to 16.0 
0.11 to 

96.9 
   3 18 

Periodically in 

spring, 

summer, fall 

Whakapipi 

Stream, NZ 

(Wilcock and 

Sorrell 2008) 

48.9 ND 0.4/ND 1.42 to 4.47 0 to 5.21    3 5 

Periodically in 

spring, 

summer, fall 

Sitka Stream, 

Czech 

Republic 

(Hlavacova et 

al. 2006) 

 

119 0.81 0.014/ND ND   37 1 1 12 I 



 

 

 

65 

12 agri streams 

in Michigan 

(Beaulieu et al. 

2008) 

ND ND 0.1/NA 
0.003 to 

27.4 
  30.2* 0.5 to 1  6 to 12 

Once per 

month 

10 streams, 

southern ON, 

Canada (Baulch 

et al. 2011) 

 

ND 
0.001 to 

0.181 
N/D 0.63 78   2 1 to 2 6 to 62 

Summer diel 

sampling 

events (every 

3-6 hours) 

Drainage canals, 

Sonora, Mexico 

(Harrison and 

Matson 2003) 

8 to 430 
< 0.001 to 

0.002 
ND BD to 14.4   140.6    

Once per 

month year-

round 

LII River, New 

Zealand(Clough 

et al. 2006) 

ND ND 12/12 2.56 to 5.19  146.6  1 4 52 

Once to twice 

per month in 

spring, fall 

and winter 

Ouse R., UK 

(Dong et al. 

2004) 

 

3315 ND ND 4.52 (0.56)   0.6 1 

10 to 16 

(including 

estuary) 

4 
Once per 

season 

Grand R., ON, 

Canada (this 

study) 

 

6800 56 298/298 BD to 9.0   35.7 2 23 370 

Bi- or 

triweekly 

year-round 

Grand R., ON, 

Canada (this 
6800 56 298/298 BD to 9.0   16.5 2 23 281 

Bi- or 

triweekly 
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study) year-round 

Temmesjoki R., 

Finland 

(Silvennoinen et 

al. 2008) 

ND ND ND 1.18 (0.67)   46.4 1.75 6 78 

~Once per 

month year-

round at one 

site, spring to 

fall at 5 sites 

Colne R., UK 

(Dong et al. 

2004) 
ND ND ND 5.91 (0.25)   0.3 1 

10 to 16 

(including 

estuary) 

4 
Once per 

season 

Stour R., UK 

(Dong et al. 

2004) 
ND ND ND 5.64 (0.29)   0.3 1 

10 to 16 

(including 

estuary) 

4 
Once per 

season 

Orwell R., UK 

(Dong et al. 

2004) 

ND ND ND 5.24 (0.27)   0.3 1 

10 to 16 

(including 

estuary) 

4 
Once per 

season 

Deben R., UK 
(Dong et al. 2004) 

ND ND ND 5.77 (0.46)   0.5 1 

10 to 16 

(including 

estuary) 

4 
Once per 

season 

Trent R., UK 

(Dong et al. 

2004) 
ND 85 ND 8.33 (0.48)   0.5 1 

10 to 16 

(including 

estuary) 

4 
Once per 

season 

Conwy R., UK 

(Dong et al. 

2004) 
ND ND ND 0.23 (0.04) 0.04    

10 to 16 

(including 

estuary) 

3 

Winter, 

spring, 

summer 
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Hudson River, 

NY (Cole and 

Caraco 2001) 

 

33500 ND 240/507 0.84   5.5 1.5 19 121 

Annual 

biweekly at 

one site; 

multiple site 

surveys in 

June, August, 

Sept. 

 

South Platte 

River, CO 

(McMahon and 

Dennehy 1999) 

63000 22.9 707/707 4.2 to 9.8   128.6 1 9 27 

Fall, spring, 

summer 

 

Ohio R., Ohio, 

USA (Beaulieu 

et al. 2010) 

 

508202 2371 153/1579 0.82 +/- 0.05   10.3 1 29 61 

Biweekly 

year-round at 

one site, one 

longitudinal 

study 

 

Amazon River 

(Richey et al. 

1988) 

6000000 209000 
2000/640

0 
N/D   9.8 3 11 99 

~ Every four 

months 

Numbers in brackets are standard error. ND = no data. BD = below detection. 

*Annual emission includes streams sampled over 6 months and over 12 months. 
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Table 3.2: Nitrate and ammonium loads from the WWTPs on the Grand River in 2008 or 2009. 

Unless otherwise specified, data is from Environment Canada (Environment Canada 2010). 

N/D = no data. No effluent information for small WWTPs is collected by Environment Canada. 

The locations of the plants, relative to the sampling sites shown in Figure 3.1, are also given. 

 

WWTP Name 

  

NO3
- 

load 

from 

WWTP 

NH4
+ 

load 

from 

WWTP Closest 

downstream 

site 

Distance to 

closest 

downstream 

site 

Population 

Load 

(tonnes 

N/yr) 

(tonnes 

N/yr) (km) 

Dundalk Lagoon  1400 N/D 0.9 2 ~20 

Grand Valley  1489 N/D N/A 5 8.25 

Fergus  6050 N/D 0.4 7 8.53 

Elora  3583 N/D 5.6 7 3.07 

Conestogo 101 N/D N/A 9 13.53 

Waterloo  66627 135 255 10 15.53 

Kitchener  164000 47 583 11 5.53 

Preston  18727 82 0.5 12 4.16 

Galt  60000 279 4.5 13 8.2 

Paris  7700 N/D 1.7 15 2.46 

Brantford  73000 139 96 17 12.38 

Caledonia  5655 N/D N/D 19 4.26 

Cayuga  1258 N/D N/D 22 23.7 

Dunnville  5182 N/D N/D 23 6.65 
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Table 3.3: Summary of meteorological data, NO3
- 
loads, and

 
N2O emissions by location and time 

over two years and the importance of urban, summer-time and night-time emissions to the total 

annual N2O emission budget. 

 

Percentage 

of river 

area or time 2006-2007 2007-2008 

Average July daytime high temperature (°C) 

(Seglenieks 2011) 26.9 25.2 

Total July precipitation (mm) (Seglenieks 2011) 152 50 

Average July discharge near site 11 (m3/s) (Water 

Survey of Canada 2010)  12.5 9.6 

Annual DIN load (tonnes N) 2160 2448 

Total Annual N2O Emission from River (kmol) 177 490 

Annual N2O Emission Predicted by IPCC Equations 

and global N2O budget (Syakila and Kroeze 2011) 

(kmol) 233 254 

N2O Emission from Urban area (sites 10-13) 

(percentage of total annual) 

 5 36 38 

Summer N2O Emission from River (June - August) 

(percentage of total annual) 25 42 56 

Nighttime N2O Emission (percentage of total annual) 50 56 57 

Summer Nighttime N2O Emission (percentage of 

summer) 38 50 52 
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Table 3.4: r values for linear correlations of various factors versus N2O emission by section of 

the Grand River. The multiple linear correlation includes all three variables and is calculated 

by comparing predicted and measured N2O emission rates. 

Section of 
River 

Description Number of 
Data Points 

Temperature NO3
- DO Multiple 

Linear 
Correlation 

1 (Sites 1 – 
9) 
 

Agricultural 
till plain 

265 -0.13 0.33 -0.06 0.43 

2 (Sites 10-
12) 

 
Urban 220 0.34 -0.41 -0.61 0.61 

3 (Sites 13- 
Groundwater 
recharge area 

19 -0.14 0.41 -0.25 0.47 

4 (Sites - 
23) 

Agricultural 
clay plain 

39 0.34 -0.17 -0.04 0.23 
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Figure 3.1: Map of the Grand River, Ontario, Canada. The 23 sampling sites (circles) used in this 

study and wastewater treatment plans (triangles) are shown.  
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Figure 3.2: N2O emissions at 23 sampling sites along the Grand River over six sampling events, 

showing elevated emissions in summer (black symbols) and in the urban reach (2). Black lines 

separate distinct reaches: Reach 1: Agricultural till-plain, Reach 2: Urban and Impacted, 

Reach 3: Groundwater Recharge, Reach 4: Agricultural clay plain. Symbols represent 

sampling events: Open squares: March 2009; open circles: April 2008; open triangles: April 

2009; black triangles: June 2007; black circles: September 2007; grey circles: October 2008. 

Measurement error is smaller than symbols. Note the logarithmic y-axis. 
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Figure 3.3: Instantaneous N2O emissions versus NO3
- 
(a), DIN (b), temperature (c) and DO (d). 

Linear correlation r and p values are shown. Error bars (standard deviation of multiple 

standard runs) are smaller than symbols. Note the log scale on the y-axis. 
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Chapter 4: Nitrous oxide and methane in wastewater effluent: 

Significance to global budgets and stable isotope tracing 

4.1 Abstract 

Few published data on N2O and CH4 concentration and stable isotope ratios from wastewater 

treatment plant (WWTP) effluents exist. It is therefore unclear if these are significant to atmospheric 

greenhouse gas budgets and if stable isotopic ratios are distinct from upstream sources. We present 

the first comparison of NH4
+, NO3

-, N2O and CH4 concentrations and stable isotopic ratios in summer 

and winter effluents from non-nitrifying, partially-nitrifying, and fully nitrifying WWTPs. Effluents 

were always supersaturated in N2O and CH4, even at WWTPs with extensive aeration. Dissolved N2O 

loads in effluents were similar to direct emissions from WWTPs, and CH4 emissions from effluents 

were < 5% of IPCC direct CH4 emissions. NH4
+ and NO3

-, N2O and CH4 isotopic ratios had seasonal 

variability but low diel variability. N2O isotopic ratios could not be predicted from NH4
+ or NO3

- 

values. NH4
+ and NO3

- stable isotopic ratios were not always different than upstream sources. 

However, N2O and CH4 stable isotopic ratios were consistently distinct from up-river sources, 

suggesting that isotopes could be used to trace effluent sources but must be characterized in stable 

isotopic mass balances of human-impacted systems. 

4.2 Introduction 

Nitrous oxide (N2O) and methane (CH4) are potent greenhouse gases (GHGs) responsible for about 

6% and 18% of net anthropogenic climate forcing, respectively (IPCC 2007, Rodhe 1990). As of 

2007, 190 countries have signed the United Nations Framework Convention on Climate Change, and 

are required to report yearly anthropogenic GHG emissions from various sources, using field 

measurements and/or empirical estimations determined by the Intergovernmental Panel on Climate 

Change (IPCC) (Intergovernmental Panel on Climate Change 1996). 

N2O is produced primarily by microbial metabolism of ammonia (NH4
+) and nitrate (NO3

-) in both 

terrestrial and aquatic ecosystems (Zafiriou 1990) (Figure 4.1). Some N2O is also produced by fossil 

fuel combustion (Sahely et al. 2006). There are few studies on GHG production from WWTPs, 

although they contributed significant CH4 and N2O (690 Mt CO2 equivalent) to the atmosphere in 

2005 (IPCC 2007). 
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WWTPs release GHGs three ways: directly from the WWTP to the atmosphere; dissolved in 

effluent that is later degassed in downstream ecosystems such as rivers, estuaries, lakes or oceans; and 

indirectly via downstream processing of effluent NO3
- and/or NH4

+. Direct N2O emissions from 

WWTPs in North America, Europe and Japan have been quantified (Czepiel et al. 1995) (Table 4.1). 

Dissolved N2O loads in treated effluent released to aquatic environments have only been estimated, 

but not measured directly (Kimochi et al. 1998, Toyoda et al. 2011). The IPCC (IPCC 2007) assumes 

that WWTPs produce 3.2 g N2O /capita/yr, based on one study of a small (population 6000 – 12000) 

secondary nitrifying WWTP in New Hampshire (Czepiel et al. 1995). Indirect N2O emissions are 

predicted to be much larger than direct emissions from the WWTP itself. They are estimated with the 

following IPCC empirical equation (Intergovernmental Panel on Climate Change 1996): 

J�K	LMN	J�K	O>	�P = JQRRSTQUVLMN	J	O>	�P × W9QRRSTQUV × ��
�X (MN	J�KMN	J )  Equation 4.1 

where EFeffluent is an emission factor with a default value of 0.005 (IPCC 2007). 

 CH4 is produced by microbial fermentation of organic carbon. CH4 emissions from WWTPs 

are poorly studied (Czepiel et al. 1993, Toyoda et al. 2011), perhaps because many WWTPs in 

developed nations combust some CH4 produced during treatment (Sahely et al. 2006). CH4 emissions 

from centralized, aerobic WWTPs are estimated by the IPCC (IPCC 2007) as follows: 

YZ�	(MN	YZ�	O>	�) 	= 	 [∑ (\] ∗ _] 	 ∗ W9`)],` ] ∗ (_Kb− c) − �   Equation 4.2 

Where Ui is the fraction of the population in income group i, Ti is the degree of use of the treatment 

path by income group i, EFj is the emission factor in kg CH4/capita/yr, TOW is the total organics in 

wastewater per year in kg/yr, S is organic component removed as sludge in kg/yr, and R is CH4 

recovery per year in kg/yr. The default EFj value is zero, resulting in no estimated fluxes to the 

atmosphere from aerobic WWTPs. Emissions occurring downstream of WWTP resulting from 

riverine metabolism of effluent organic carbon are not considered. 

While some studies have measured N2O fluxes released directly from WWTPs to the atmosphere 

(Czepiel et al. 1995, Townsend-Small et al. 2011), only two previous studies measured dissolved 

N2O, δ15N-N2O and δ18O-N2O during wastewater treatment. Townsend-Small et al. (Townsend-Small 

et al. 2011) measured N2O within a combined nitrification-denitrification water reclamation plant and 

in a partially nitrifying WWTP. Toyoda et al. (Toyoda et al. 2011) measured NO3
-, N2O and CH4 

concentration and stable isotopic values in a nitrifying plant in Tokyo. Neither directly measured 
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WWTP discharge. Fluxes and isotopic values are summarized in Table 4.1, Figure 4.4 and Figure 4.5. 

Both studies quantify GHG emissions to the atmosphere and attempt to determine gas production 

pathways (i.e. nitrification, denitrification, methane oxidation). However, they do not compare 

emissions to IPCC estimations, nor do they compare stable isotopic values of N2O and CH4 to 

upstream sources to determine if sewage GHGs can be traced isotopically in the environment.  

Stable isotopic studies of NH4
+, NO3

-, N2O and CH4 in rivers can help elucidate sources and cycling 

processes (Rock and Mayer 2004, Sjodin et al. 1997). It is therefore important to know if point 

sources such as WWTP effluent are isotopically distinct from background river values. If so, they can 

be used as tracers of effluent downstream of discharge points. However, very few studies have 

isotopically characterized both effluent and upstream river sources (Table 4.1). In this study, we (a) 

compare dissolved loads of N2O and CH4 to estimates of direct emissions from WWTPs and from 

downstream processing of effluent NH4
+ and NO3

- to determine if WWTP effluent is an important, 

overlooked source of greenhouse gases to the atmosphere, (b) characterize both diel and seasonal 

variability in N2O and CH4 concentrations and isotopic values, as well as isotopic fractionations 

between substrates (NH4
+ and NO3

-) and N2O, to determine the best sampling strategies to capture 

variability, and (c) determine if effluent N2O and CH4 are distinct isotopically from previous 

published data and from background sources and can therefore be used as tracers or indicators of 

anthropogenic impact. 

4.3 Materials and Methods 

In July 2007 and February 2008, 5-7 effluent samples over 24 hours were collected from three 

WWTPs in southern Ontario, Canada: WWTPs A and B on a seventh order river, and WWTP C on a 

sixth order river. WWTP A is approximately 20 km downstream of WWTP B. We also report data 

from a river site approximately 100 m upstream of WWTP A collected contemporaneously with 

effluent sampling. In July, this upstream site was sampled approximately every 1.5 hours over 28 

hours. In February, it was sampled once, due to a lack of diel variability in winter river chemistry 

(Rosamond et al. 2011). River samples were collected at mid-arm depth in fast-flowing water. We 

have followed the Ontario Water Resources Act in considering the months of April to October 

“summer” and November to March “winter” (Ministry of the Environment of Ontario 2007). 

Each WWTP treats wastewater differently. WWTPs A and B use secondary treatment and have a 

preliminary settler, a primary clarifier and aerator combination, and a secondary settling tank 
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(Vesilind 2003). WWTP C is a tertiary system, similar to the other two WWTPs, but with a longer 

aeration residence time and final sand filtration. Effluent is chlorinated at all three WWTPs before 

release, and subsequently chemically dechlorinated only at WWTP C. Little or no nitrification of 

sewage occurs in WWTP A, incomplete nitrification occurs at WWTP B, and complete nitrification 

occurs at WWTP C (Table 4.2). 

Effluent was collected as close to its discharge point to the river as possible. It was collected 

directly from the discharge pipe before it entered the river at WWTPs B (pipe length: about 2 km) and 

C (pipe length: about 20 m). Longer pipe length between the WWTP and river may result in loss of 

GHGs by gas exchange. Effluent from WWTP A discharges effluent through a diffuser in the 

riverbed. Therefore, effluent was collected within the WWTP, immediately before it entered the 

discharge pipe. Effluent temperature; conductivity; concentration of dissolved oxygen (DO), chloride 

(Cl-), NO3
-, NH4

+ , N2O and CH4; 
15N/14N ratios of NH4

+, NO3
- and N2O; 18O/16O of N2O; and 13C/12C 

of CH4 were measured. NO3
- and NH4

+ samples were filtered to 0.45 µm, and NH4
+ samples were 

acidified to pH 4 with sulfuric acid. Dissolved N2O and CH4 concentration samples were collected in 

50 mL serum bottles with no headspace and capped with pre-baked rubber VacutainerTM stoppers. 

N2O and CH4 isotope samples were similarly collected in 100 mL serum bottles. N2O and CH4 

concentration and isotope samples were preserved with 2 mL saturated aqueous mercuric chloride per 

L and kept refrigerated until analyzed within two weeks of collection. Temperature and conductivity 

were measured with a multiprobe (YSI 556 MPS). 

NO3
- and Cl- concentrations were analyzed on a Dionex ICS-90 ion chromatograph. Precision and 

detection limit were 0.07 mg N/L and 0.05 mg N/L for NO3
- and 1 mg/L and 0.2 mg/L for Cl-. The 

chromatograph could detect but not quantify nitrite (NO2
-), because Cl- and NO2

- peaks overlapped. 

Cl- samples higher than 2 mg/L were diluted. NH4
+ samples were analyzed by the salicylate and 

nitroprusside colorimetric method (American Public Health Association 1995) on a Technicon Auto 

analyzer at 660 nm wavelength with a precision of 0.005 mg N/L and detection limit of 0.01 mg N/L. 

Duplicate CH4 and N2O concentration samples were analyzed with a Varian CP-3800 gas 

chromatograph with a flame ionization detector and an electron capture detector, respectively, using a 

helium headspace equilibration technique. Concentrations were calculated using Henry’s Law after 

Lide and Fredrikse (Lide and Frederikse 1995). Dissolved oxygen was titrated using the sodium azide 

modification of the Winkler technique with a precision and detection limit of 0.2 mg/ L (American 

Public Health Association 1995). 



   

78 

 

δ
15N-NH4

+ was analyzed using a modified acidified disk-PTFE trap method on a Micromass 

IsoChrom continuous flow mass spectrometer (Brooks et al. 1989, Spoelstra et al. 2011). δ15N -NO3
- 

was analyzed using the modified silver nitrate method (Silva et al. 2000). This method may include 

nitrite (NO2
-) present in the sample. Precision of δ15N for both methods was 0.3‰. 

Dissolved N2O was stripped from samples using a novel technique (Thuss 2008) and stored in 10 

mL borosilicate vials with butyl-blue rubber stoppers until analyzed. CH4 isotopes were prepared with 

a helium headspace method (Venkiteswaran and Schiff 2005). CH4 concentrations from WWTP C in 

winter were insufficient for δ13C analysis. N2O and CH4 isotopic ratios were analyzed with a GV 

Isoprime mass spectrometer with a preconcentrator system. N2O isotopic data were corrected after 

Kaiser et al. (Kaiser et al. 2003), using two internal N2O standards. Precision was 0.2‰ for δ15N and 

0.5‰ for δ18O. Two N2O isotope samples were rejected due to errors in sample processing. CH4 

isotope data were corrected to two internal standards according to Venkiteswaran and Schiff 

(Venkiteswaran and Schiff 2005) with a precision of 0.5‰. All isotope values are reported in permil 

(‰) notation: δ15N versus air, δ18O versus VSMOW, and δ13C verses VPDB. 

4.4 Results 

Effluent temperatures varied little over any 24 period and were about 10° C to 15° C cooler in winter 

than in summer (Figure 4.2A-C), although daily high air temperature varied by over 30°C between 

summer (WWTPs A and B: 32.0°C; WWTP C: 26.5°C) and winter (WWTPs A and B: -1.8° C; 

WWTP C: -12.1°C) (Seglenieks 2011). All effluents were oxic, but DO concentrations were 

consistently lowest at WWTP A (mean: 4.8 mg/L), intermediate at WWTP B (7.7 mg/L) and highest 

at WWTP C (8.6 mg/L). DO concentrations varied little on the diel scale and were only slightly 

higher in winter than in summer at all sites (Figure 4.2A-C). 

Total inorganic nitrogen (TIN = NO3
-+NH4

+), was similar at WWTPs A and C (about 25 mg N/L) 

but was often lower at WWTP B (about 13 mg N/L). Unless otherwise noted, values reported are 

means of both summer and winter samples, ± standard deviation. NH4
+ concentrations were highest at 

WWTP A (24.2 ± 3.2 mg N/L) and lowest at WWTP C (0.10 ± 0.03 mg N/L), with the reverse trend 

in NO3
- (Figure 4.2D-F). At all sites, mean NO3

- concentrations were at least 0.5 mg N/L higher in 

winter than summer (Figure 4.2D-F). Data are not shown for summer NO3
- values at WWTP A 

(range: 0.01 mg N/L to 0.22 mg N/L) and NH4
+ concentrations at WWTP C year-round (range: 0.03 

mg N/L to 0.12 mg N/L) due to insufficient sample size for isotopic analyses. NO2
- was detected but 
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not quantified at WWTP B in summer. At other sampling times and locations, any NO2
- present was 

not observed because of very high Cl- peaks.  

δ
15N-NH4

+ values were generally confined to a narrow range and were about 3‰ higher in summer 

than in winter at WWTPs A and B (Figure 4.2D-F). WWTP A had lower values (summer: 6.4±1.6 ‰, 

winter: 3.8±0.5‰) than WWTP B (summer mean: 15.2±1.4‰, winter mean: 11.5±1.0‰). δ15N -NO3
- 

also showed a narrow range over a 24 hour period but had a very large seasonal difference at WWTP 

B (summer: 25.3±1.2‰, winter: 8.9±1.5‰). WWTP C δ15N-NO3
- values were similar in summer 

(7.2± 1.1‰) and winter (8.2±0.4‰) (Figure 4.2D-F).  

All samples collected were supersaturated in N2O (210% to 14 100%). WWTP A had the highest 

concentration of N2O in summer (837±475 nmol/L), but was lower in winter (280±77 nmol/L). 

WWTPs B and C showed smaller seasonal differences (Plant B: 389±177 nmol/L in summer and 

484±73 in winter; Plant C: 179±90 nmol/L in summer and 322±61 nmol/L in winter).  

δ
15N -N2O values ranged widely between WWTPs but were generally well-constrained within 

individual WWTPs (Figure 4.3). δ15N -N2O values higher in summer than winter at all sites. δ15N-

N2O values were lowest at WWTP B, moderate at WWTP C and highest at WWTP A (Figure 4.3). 

WWTP A. δ18O -N2O values were lower in summer than in winter at WWTP A (summer: 

16.5±3.2‰, winter: 22.6±0.5‰) but otherwise were very similar between plants with no seasonal 

variation (WWTP B: 20.1±1.1‰; Plant C: 19.7±5.2‰) (Figure 4.2G-I, Figure 4.3). 

Similar to the only previously published study of WWTP CH4 (Toyoda et al. 2011), CH4 was 

always extremely supersaturated (430% to 51 430%). Like N2O, CH4 was highest at WWTP A and 

lowest at WWTP C (Figure 4.2J-I). δ13C-CH4 values showed little seasonal variation. Values were 

similar at WWTP A (-44.8±2.6‰) and WWTP B (-40.2±4.4‰) and were higher at WWTP C, where 

only winter values could be analysed due to insufficient sample sizes in summer (-32.7±1.8‰) 

(Figure 4.4). 

4.5 Discussion and Conclusion 

N2O concentrations at WWTP C were similar to those reported for another nitrifying plant (132 

nmol/L (Toyoda et al. 2009)); N2O was higher at WWTPs A and B. Dissolved effluent N2O load, 

calculated from data in Table 4.2 , is 2.0, 1.1, and 1.8 g-N2O/capita/yr for WWTPs A, B, and C 

respectively. Since the rivers upstream of the WWTPs studied are consistently supersaturated in N2O 

(Rosamond et al. 2011) and CH4 (S. Timsic, unpublished data), we can therefore assume that all N2O 
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dissolved in the released effluent will be released to the atmosphere from the river. In comparison, the 

median reported estimate of N2O emissions directly from WWTPs is 11.4 g N2O/capita/yr and the 

range is very large (range: 0.1 g N2O/capita/yr to 1580 g N2O/capita/yr) (Table 4.1). Emissions of 

dissolved N2O in effluent discharged to rivers and other water bodies, a source ignored by the IPCC, 

can be similar in magnitude to direct N2O emissions from WWTPs themselves. Additionally, N2O 

emissions from WWTPs A and C are underestimated because any N2O lost during travel within 

effluent pipes from the WWTP to the river was not measured. 

Direct N2O emissions from WWTP effluent can also be compared to indirect emissions produced 

by downstream microbial cycling of effluent N, calculated with Equation 4.1 (IPCC 2007). We 

compared mean measured N2O and CH4 emissions from effluent to calculated indirect emissions. 

Indirect emissions were calculated using both (a) total N (NO3
- + NH4

+ + organic N) loads in effluent, 

as reported in WWTP annual reports (Table 4.2), and to (b) our measured NO3
- and NH4

+. We did not 

quantify organic N. In both cases, direct effluent N2O emissions are similar (range: 6% to 13% of 

indirect emissions (Table 4.2). Organic N in effluent (not quantified in our study) may mineralize 

downstream and contribute to higher indirect emission estimations. Thus, direct N2O fluxes from 

WWTPs are small relative to estimated indirect fluxes. However, as IPCC estimates have been shown 

to both over- and underestimate indirect N2O fluxes (Beaulieu et al. 2011, Rosamond et al. 2012), 

more research is needed to compare effluent loads with measured fluxes from rivers, to improve 

empirical emissions calculations.  

Czepiel et al. (Czepiel et al. 1993) estimated direct CH4 emissions to the atmosphere of 39 g 

CH4/capita/yr from a WWTP in New Hampshire, while our estimates of direct CH4 emissions from 

effluent were much smaller: 0.9 g CH4/capita/yr, 0.8 g CH4/capita/yr and 0.3 g CH4/capita/yr for 

WWTPs A, B, and C respectively. These are similar to indirect estimates of CH4 in-river (0.2 g 

CH4/capita/yr) from a nitrifying plant in Japan (Toyoda et al. 2009) (Table 4.1). This source is 

currently unaccounted for in IPCC methodology (Intergovernmental Panel on Climate Change 1996, 

IPCC 2006). 

TIN, N2O and CH4 concentrations varied over 24 hours at all three WWTPs (Figure 4.2). Effluent 

discharge from Plants A and B varies by about four-fold over a 24 hour period (Figure 4.5). If 

discharge changes resulted in dilution and not in changes to N cycling, TIN and/or N2O should 

correlate to Cl-, a conservative tracer. Alternatively, N2O could be correlated to TIN if a constant 

fraction of TIN in the effluent is microbially processed to N2O during treatment. To determine if Cl- 
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or TIN could be used as a proxy measurement for N2O, we compared N2O concentration to Cl- and 

TIN. All WWTPs showed high variability of TIN and N2O over the diel period but little variation in 

Cl- (Figure 4.5). Therefore, studies of WWTP effluent must be designed to take diel and seasonal 

variability N2O and CH4 concentration into account. Cl- and TIN are not good proxies for N2O 

concentration. 

In contrast, the stable isotopic ratios of NH4
+, NO3

-, N2O and CH4 from all WWTPs had only a 

small diel range. However, δ15N of NH4
+, NO3

-, and N2O changed between summer and winter in 

most WWTPs (Figure 4.2). There was little (< 2‰) difference between mean summer and winter 

values of δ13C-CH4 at WWTPs A and B (summer δ13C-CH4 values for WWTP C were not measured) 

or δ18O-N2O at WWTPs B and C. Thus, isotopic values of N2O and CH4 must include summer and 

winter data but need not be characterized on a diel scale. 

There are few literature values of δ15N-NH4
+ values in effluent and variation between and within 

WWTP types is large (Figure 4.1). (Secondary WWTPs, no nitrification: δ15N-NH4
+: 2.9‰ to 14.7‰; 

secondary WWTPs, partial nitrification: 10.5‰ to 13‰). Our data show the same trend: Plant B 

(partial nitrification) has higher δ15N-NH4
+ values than Plant A (no nitrification (Figure 4.2). 

Presumably the large variation in volatilization and nitrification result in the large range within plant 

types. There are also few published δ15N-NO3
- values for effluent (Table 4.1). δ15N-NH4

+ values from 

WWTP A and δ15N-NO3
- values from WWTP C are generally similar to other WWTPs with similar 

processing methods (Table 4.1). Again, variation is large and denitrifying WWTPs seem to have 

higher δ15N-NO3
- values than do non-nitrifying and nitrifying WWTPs (Table 4.1). The large ranges 

in δ15N-NH4
+ and δ15N-NO3

- values from the few published reports suggests that these values must be 

measured for each study site, not estimated from previous work. 

Our measured δ15N -N2O and δ18O -N2O values in effluent were much lower than the tropospheric 

average (δ15N -N2O: 6.7‰, and δ18O -N2O: 44.6‰ (Kaiser et al. 2003)) (Figure 4.3). δ13C-CH4 values 

in WWTP effluent were higher than the tropospheric value (-47.4‰, (Quay et al. 1999)), except for 

three samples from WWTPs A and B (Figure 4.4). Only two previous studies have published N2O 

isotope data from WWTPs; δ15N-N2O values from our effluents were similar (Townsend-Small et al. 

2011, Toyoda et al. 2011) (Figure 4.3). However, N2O from our WWTP effluents had lower δ18O-

N2O values than all previously published WWTP effluent, except for one nitrifying WWTP 

(Townsend-Small et al. 2011). Therefore, N2O from our study sites plots in a unique area on a δ18O-

N2O - δ15N-N2O isotope cross-plot (Figure 4.3). Most of our samples have higher δ13C-CH4 values 
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than that of one previous study ((Townsend-Small et al. 2011, Toyoda et al. 2011). There is a large 

range of stable isotopic values of NH4
+, NO3

-, N2O and CH4 from WWTPs in the literature, even 

though the amount of published data is very small. This indicates that these values must be quantified 

for each study site, and using literature values is not sufficient. 

Stable isotopic fractionations for N2O production from nitrification and denitrification can be 

calculated with the following equation: 

d = (α-1)         Equation 4.3 

where α = RN2O/RNH4 for nitrification or RN2O/RNO3- for denitrification. Because we did not measure 

δ
18O-NO3

- in effluent, we calculated 15N isotopic fractionations only. ε values are shown in permil 

units. 

It is unclear which process dominates N2O production (if any) in the WWTPs, so ε values for both 

nitrification (εNH4) and denitrification (εNO3) were calculated where possible. However, this calculation 

does not take into account that as substrates (NH4
+, NO3

-) are consumed, (a) concentrations decrease, 

making isotopic analysis impossible, and (b) isotopic values of substrate increase (if ε is negative). 

Additionally, other processes such as NH4
+ volatilization change the concentration and isotopic 

composition of substrates. Therefore, these isotopic fractionations are not meant to represent in-plant 

processing, but rather to determine if δ15N-N2O is predictable from δ15N-NH4
+ and/or δ15N-NO3

-. 

Isotopic fractionations were always negative (δ15N-N2O < δ15N-NH4
+ or δ15N-NO3

-, Table 4.3). 

Within each WWTP, isotopic fractionations vary by season by 8‰ to 12‰ with no consistent trend. 

The only exception is WWTP B (partial nitrification), where εNH4 only varied by 2‰ between 

seasons. εNH4 is closer to zero at WWTP A than at WWTP B and was not quantified at WWTP C. In 

contrast, there is significant overlap between WWTPs in εNO3 values. The diel variability of isotopic 

fractionations was also relatively high (> 5‰) at WWTPs A and C, due to high variability in δ15N-

N2O. Thus, δ15N-N2O is not predictable from δ15N-NH4
+ or δ15N-NO3

- values and must be 

characterized for individual WWTPs on the seasonal scale.  

As in most rivers (Wetzel 1975), NH4
+ concentrations upstream of the WWTPs were too low for 

isotopic analysis. However, δ 15N-NH4
+ values at WWTP B (10.5‰ to 16.0‰) were similar to or 

higher than the only previous published river δ15N-NH4
+ value for a river upstream of a WWTP 

(11‰) (Sebilo et al. 2006). In contrast, δ15N-NH4
+ values from Plant A, which experiences less NH4

+ 

loss via volatilization and nitrification, were much lower (3.0‰ to 7.8‰). NH4
+ concentration and 
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stable isotopic values can quickly change when added to rivers via effluent due to volatilization, 

nitrification and biotic uptake (Murray 2008), although it can also persist far downstream. Sebilo et 

al. (Sebilo et al. 2006) showed elevated NH4
+ with no significant change in isotopic signature 120 km 

downstream of a WWTP on the Seine River, France. Thus, the use of NH4
+ as a tracer of WWTP 

effluent is not advised.  

In contrast, there is often sufficient NO3
- in rivers upstream of WWTPs for isotopic analysis. River 

water collected immediately upstream of WWTP B concurrently with summer effluent sampling had 

a δ15N-NO3
- value of 6.5‰, much lower than WWTP B (24.2‰ to 26.6‰), but similar to values from 

WWTP C (6.0‰ to 11.5‰). Reported riverine dissolved δ15N- NO3
- values vary widely (-1.4‰ to 

12.5‰, Table 4.1). Only summer δ15N-NO3
- values at WWTP B were outside this range (24.1‰ to 

26.6‰). Stable isotopic analysis of NO3
- does not appear to be a universal tracer of WWTP effluent 

in most rivers, perhaps because N sources and cycling processes are isotopically similar between 

rivers and effluents. However, stable isotopes of NO3
- could be useful in some cases, depending on 

upstream NO3
- sources and N cycling processes within the WWTP.  

N2O isotopic values can be distinct between river and effluent. Riverine N2O upstream of WWTP 

B had higher δ18O-N2O values than effluent samples (Figure 4.3). River samples were also generally 

higher in δ15N- N2O; the exception was WWTP A in summer. Two previous studies have 

characterized N2O isotopic values in rivers. In both cases, δ18O-N2O was high (Bang Nara River, 

Thailand (Boontanon et al. 2000): δ 18O: 36.6‰ to 63.8‰; Tama River, Japan (Toyoda et al. 2009): 

17‰ to 53‰, with the low values found immediately downstream of a nitrifying WWTP). High δ18O-

N2O values (> 30‰) in rivers are likely produced from denitrification and/or N2O consumption 

(Snider et al. 2009), which is expected to dominate riverine N2O production (Beaulieu et al. 2011, 

Rosamond et al. 2012). Townsend-Small et al. (Townsend-Small et al. 2011) have recently reported 

high δ18O-N2O values from a denitrifying WWTP (Figure 4.3). Therefore, δ15N-N2O and δ18O-N2O 

can be useful tracers of WWTP effluent, particularly from WWTPs that do not denitrify. 

Riverine CH4 collected upstream of WWTP B had lower δ13C-CH4 values (-54.5‰ to -51.3‰) than 

effluent from all three WWTPs studied here, with the exception of one effluent sample (Figure 4.4). 

Our riverine samples are within the range (-58‰ to -36‰) reported in North American freshwater 

estuaries (Sansone et al. 1999). δ13C-CH4 values generally increase as oxidation within WWTPs 

increases (Figure 4.4). Currently, there are no published δ13C-CH4 values from denitrifying WWTPs, 

but they likely produce low δ13C-CH4 values as oxidation potential is low. The small amount of data 
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available suggests that δ13C-CH4 could be used as a tracer of effluent from non-denitrifying WWTPs. 

As with N2O, CH4 is a short-term effluent tracer, as it degasses downstream of effluent release, unless 

the receiving body is undersaturated. During degassing, N2O and CH4 approach isotopic equilibrium 

with the atmosphere. The distance downstream over which these gases retain isotopic values distinct 

from equilibrium depends on initial concentration and stable isotopic value, and the gas exchange 

coefficient. 
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Table 4.1: Concentrations, fluxes and stable isotopic values of NO3
-
, NH4

+
, N2O and CH4 from

 
various WWTP types and from rivers. NN = 

no nitrification, PN = partial nitrification, FN = full nitrification, D = denitrification. 

 

WWTP 

Type 

N2O 

emission 

from plant (g 

/capita/yr) 

N2O 

emissions 

from effluent 

(g /capita/yr) 

CH4 

emission 

from plant 

(g /capita/yr) 

CH4 

emissions 

from 

effluent (g 

/capita/yr) δ
15N-NH4

+ δ
15N-NO3

- δ
15N-N2O δ

18O-N2O δ
13C-CH4 Reference 

2o, NN1 (A) 2.0 1.1 2.9 to 7.8 
4.2 

-11.1 to 

5.5 

11.4 to 

23.5 -52.8 to -42.1 
This Study 

2o, NN 
6.5 to 14.7 

(Sebilo et 

al. 2006) 

2o, PN2 (B) 1.1 0.7 

10.5 to 

16.0 
7.6 to 26.6 

-24.1 to -

13.9 

18.1 to 

22.0 -47.4 to -35.8 
This Study 

2o, PN 13.6 5.6 

(Kuuppo et 

al. 2006) 

2o, PN 23 to 28 

(Ahn et al. 

2010) 

          

(Tallec et 

al. 2006) 

2o, PN 5 to 26 

(Ahn et al. 

2010) 

2o, 

processes 

not 

specified 3.2 39 

(Czepiel et 

al. 1993, 

Czepiel et 

al. 1995) 
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3o, FN3 4 to 7 

(Anisfeld et 

al. 2007) 

3o, FN (C) 1.8 0.03 
6.0 to 11.5 

-27.3 to 

0.0 9.8 to 28.7 -34.1 to -30.1 
This Study 

3o, FN 

(settling 

tank) 0.1 0.2 0.3 0.1 8.1 -4.4 49.8 

(Toyoda et 

al. 2011) 

3o , FN 13 to 97         

(Ahn et al. 

2010) 

3o , FN 1.8         

(Ahn et al. 

2010) 

2o, D4 0.43 to 1.89 

(Kimochi et 

al. 1998) 

2o, D 18.2         

(Tallec et 

al. 2006) 

3o, D 
10 to 15 

 

(Anisfeld et 

al. 2007) 

3o, D 5.8 to 1580 

(Itokawa et 

al. 1996) 

3o, D 38 

(Savage 

and 

Elmgren 

2004) 

3o, D 
14 to 18 

 

(Anisfeld et 

al. 2007) 
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3o, D 75.8 

-42.1 to 

7.9 19.9 to 51.0 

(Townsend

-Small et 

al. 2011) 

3o , D 0.28 to 1.2 

(Ahn et al. 

2010) 

3o , D 9.8 to 33 

(Ahn et al. 

2010) 

3o , D 33 to 92 

(Ahn et al. 

2010) 

3o , D 6.8 

(Ahn et al. 

2010) 

3o , D 5.4 

(Ahn et al. 

2010) 

3o , D 140 

(Ahn et al. 

2010) 

3o , D 4.1 

(Ahn et al. 

2010) 

Naugatuck 

and 

Quinnipiac 

R, Conn 

4 to 12.5 
(Anisfeld et 

al. 2007) 

River Neva 

outflow, 

Russia 

1 to 4 
(Kuuppo et 

al. 2006) 

Seine R. - 

upstream of 

WWTP 11 

7 to 8 
(Sebilo et 

al. 2006) 
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Seine R. - 

downstrea

m of 

WWTP 15 to 30 

(Sebilo et 

al. 2006) 

Mississippi 

R., 

Missouri 

R., Ohio R., 

Yazoo R. 

-1.4 to 

12.3 

(Chang et 

al. 2002) 

Seventh 

order river, 

Ontario – 

upstream of 

WWTP B 

6.5 This Study 

1NN = no nitrification.  

2PN = partial nitrification. 

3FN = full nitrification. 

4D = denitrification
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Table 4.2: Properties of the three WWTPs studied and their influent and effluent quality. Top values are for summer months (April - 

October), bottom for winter (November - March). All data from WWTP annual reports (2006). 

 Influent   Effluent    

 

Population 

served 

Average 

effluent 

flow 

(m3 d-1) 

Maximum 

effluent 

flow 

(m3 d-1) 

cBOD51 

(mg/L) 

NH4
+-N 

(mg/L) 

TKN2 

(mg/L) 

cBOD5 

(mg/L) 

NH4
+-N 

(mg/L) 

NO3
--N 

(mg/L) 

TKN 

(mg/L) 

WWTP A 

 

 

 

284683 66181 103000 136 25.8 38.8 7 24.1 0.9 28.0 

   (195) (38.4) (49.6) (20) (38.7) (20.7) (42.4) 

   141 24.3 38.8 7 19.2 1.9 22.1 

   (200) (35.7) (50.3) (14) (31.4) (31.8) (35.4) 

WWTP B 167658 40782 61742 192 31.3 48.2 4 5.7 5.2 8.2 

    (290) (39.6) (60) (6) (17) (17.4) (17.1) 

    158 25.3 47.2 4 3.3 18.3 5.7 

    (250) (36.3) (71.1) (6) (8.8) (25.6) (10.4) 

WWTP C 118443 55928 81809 141 17.1 25.3 2 0.3 20.2 1.4 

    (149) (18.9) (29.1) (2) (0.37) (21.0) (2.9) 

    146 15.9 28.1 2 0.4 20.3 1.5 

    (147) (17.4) (30.3) (2) (0.54) (21.7) (2.5) 
1CBOD = Five-day carbonaceous biological oxygen demand (American Public Health Association 1995). 

2TKN = Total Kjendahl Nitrogen (NH4
+ + NH3 + organic N)
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Table 4.3: Calculated isotopic fractionation (ε) for nitrification and denitrification in summer 

and winter effluent at three WWTPs. Mean values per season are shown with standard 

deviation in brackets. N/d: no data. 

   
Nitrification (NH4

+ 
� N2O) Denitrification (NO3

- � N2O) 

  

δ
15N-

N2O 
δ

15N-NH4
+ ε

15N δ
15N-NO3

- ε
15N  

WWTP A 

(non-

nitrifying) 

Summer 
4.4 

(1.1) 
6.4 (1.6) 2.0 (0.7) n/d1 n/d 

Winter 
-6.8 

(4.8) 
3.8 (0.5) 10.6 (7.6) 4.2 (0.02) 10.9 (7.7) 

WWTP B 

(partially 

nitrifying) 

Summer -16.0 

(1.7) 
15.2 (1.4) 30.8 (4.3) 25.3 (1.2) 40.3 (4.7) 

Winter 
-21.6 

(2.9) 
11.5 (1.0) 32.7 (5.2) 8.9 (1.5) 30.2 (6.6) 

WWTP C 

(fully 

nitrifying 

Summer 
-9.6 

(5.9) 
n/d n/d 7.2 (1.1) 16.7 (10.5) 

Winter 
-21.5 

(4.0) 
n/d n/d 8.2 (0.4) 29.5 (5.7) 

1No data.  
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Figure 4.1: Pathways in the nitrogen cycle involving N2O. Nitrification (NH4
+
 oxidation to NO2

-
 

and ultimately to NO3
-
), denitrification (NO3

-
 reduction to N2O and N2), hydroxylamine 

oxidation and nitrifier-denitrification (reduction of NO2
-
 by nitrifiers) are shown.  
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Figure 4.2: Chemistry of dissolved species at the three WWTPs. Temperature and DO are 

shown for WWTPs A (panel A), B (panel B) and C (panel C). WWTP A has high NH4
+
 and low 
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NO3
-
 concentrations (panel D), WWTP B has both NH4

+
 and NO3

- 
(panel E), and WWTP C has 

high NO3
-
 and low NH4

+
 (panel F). Concentrations of NH4

+
 at WWTP C (0.03 mg N/L to 0.12 

mg-N/L), and NO3- at WWTPs A (0.01 mg-N/L to 0.22 mg N/L) too low for isotopic analysis are 

not shown. Error is smaller than data point size. N2O concentrations were highest at WWTP A 

(panel G), moderate at WWTP B (panel H) and lowest at WWTP C (panel I). 
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Figure 4.3: N2O isotope cross plot showing N2O from effluents and from WWTPs. Data from 

non-nitrifying WWTPs are in white, partially-nitrifying WWTPs in grey, nitrifying WWTPs in 

black and denitrifying WWTPs in white. The average value for tropospheric N2O is shown with 

a black x (Kaiser et al. 2003). For this study, summer samples have upwards-pointing triangles 

and winter samples have downwards-pointing triangles. The average value for dissolved N2O at 

a site upstream of WWTP B (Site 9) is shown with a star, plus or minus one standard deviation.  
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Figure 4.4: CH4 concentration and isotopes in WWTPs and effluent. Upward pointing triangles 

represent summer samples and downward pointing triangles represent winter samples. N2O 

from WWTP A (white triangles), WWTP B (grey triangles) and WWTP C (black triangles) are 

shown. The black star represents the average of 17 samples collected at a site upstream of 

WWTP A; error bars represent standard deviation. Tropospheric CH4 is represented by the 

black x (Whiticar 1999). 
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Figure 4.5: Discharge at WWTP B in summer versus Cl
-
 (black circles) and TIN (white circles). 

Discharge values are approximated from daily WWTP flow data (Grand River Conservation 

Authority, unpublished data). 

  



 

 98 

Chapter 5: Stable isotopic fractionations of N2O produced via 

denitrification in Grand River sediment 

Abstract 

Stable isotopic ratios of N2O (δ15N, δ18O) may help determine microbial production pathways and/or 

the fraction N2O produced per mole final product in complex natural systems. While N2O from 

nitrification and denitrification typically have distinct stable isotopic values in soils and the ocean, 

overlap exists, particularly in δ18O. Variation and overlap can be caused by changes in microbial 

community, changing isotopic values of substrate (NH4
+, NO3

-), N2O consumption, and exchange of 

O atoms between N species (NO2
-, NO) and H2O during denitrification. While the isotopic 

fractionation of N2O produced during denitrification has been well studied in soils, no work has been 

published on river sediment, even though impacted rivers produce a significant portion of global 

anthropogenic N2O and microbial communities could be quite distinct from soils. Therefore, 

laboratory incubations were conducted to measure the isotopic fractionation of N2O production via 

denitrification on sediment from the Grand River, southern Ontario, Canada. Sediment was collected 

from two sites, upstream and downstream of urban wastewater treatment plant (WWTP) discharge, in 

spring, summer and fall 2009. Each sediment sample was subjected to a high NO3
- addition (1300 mg 

N/L) and a lower NO3
- addition (775 mg N/L). Water with high δ18O values was also added to 

quantify O exchange with water. Isotopic fractionation values were similar to previous soil studies 

and had a large range. Surprisingly, N2O production rates were 10 times higher when NO3
- 

concentration less than doubled. No seasonal or site-based patterns in isotopic fractionation were 

significant. However, isotopic fractionations for 15N and 18O were positively correlated to each other 

and negatively correlated to N2O production rate. Although N2 concentration was not quantified, this 

suggests that low N2O production rates were caused not by low total denitrification rate, but by N2O 

consumption to N2, resulting in isotopic enrichment of residual N2O. Changes in N2O production rate 

and isotopic fractionations over 4 hour incubations suggest that N2O:(N2O+N2) ratios did not achieve 

steady state immediately, likely due to NO2
- limitation of N2O reductase and/or a lag in N2O reductase 

activity relative to other enzymes in the denitrification pathway. O exchange with water did not show 

any trend with N2O production rate, suggesting that O exchange does not occur during N2O reduction 

to N2 in these incubations. 15N isotopic fractionation values in incubations were similar to those 

estimated from field data except for night-time samples from the sewage-impacted site. Isotopic 

fractionation estimated with field data may not be accurate due to differences between isotopic values 

of water column and sediment NO3
-, upstream effects and differences between field and laboratory 
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microbial community and NO3
- availability. These experiments show that quantifying stable isotopic 

ratios of N2O in denitrification incubations is helpful in determining changes to the N2O:N2 ratio due 

to changes in N2O reductase activity without quantifying N2 concentrations.  

5.1 Introduction 

5.1.1 Use of Stable Isotopes for Determining N2O Production Processes 

Nitrous oxide (N2O) is a greenhouse gas produced by two microbial pathways: nitrification (oxidation 

of ammonia to nitrate) and denitrification (reduction of nitrate to nitrous oxide and finally N2). N2O 

also appears to be produced in low quantities (< 2% of N2 produced) as a detoxification pathway by 

anammox bacteria although the mechanism is not known (Kampschreur et al. 2008, Kartal et al. 

2007). Anammox bacteria tend to be outcompeted by denitrifying bacteria when NO3
- and organic C 

concentrations are high (Kartal 2008) and therefore will be ignored in this study.  

Because N2O is a greenhouse gas, there is significant interest in understanding production 

pathways of N2O. This is aided by the different conditions necessary for the two main production 

pathways. Nitrification requires oxic to suboxic conditions and denitrification requires hypoxic or 

anoxic conditions. Previous work on pure microbial cultures and in soil microbial communities has 

shown that the stable isotopic fractionation (ε ) of N2O production (ε 
15N, ε 

18O) are quite different for 

nitrification (ε 
15N : -55‰ to -15‰, δ18O: 20‰ to 30‰) and denitrification (ε 15N: -39‰ to -10‰, ε 

18O: -42‰ to 43‰) (Snider 2011). This is a large range with overlap in ε values. ε values have not 

been quantified in river sediments, which could include much different microbial communities than 

soil. Pure culture studies have shown significant differences in ε within and between microbial 

species (Snider 2011). 

N2O from nitrification can be difficult to measure because (a) sufficient quantities for stable 

isotopic analysis can be difficult to capture because of low N2O:NO3
- production rates (Snider et al. 

2012), and (b) it can be difficult to eliminate anoxic microsites in soils and sediments and therefore 

difficult to eliminate N2O production by denitrification (including nitrifier-denitrification). The first 

problem can be circumvented by long incubation times in nitrification incubations (Snider et al. 2012) 

but O2 can be depleted when respiration rates are high; flushing incubation bottles replenishes O2 but 

also removes N2O. The second problem is usually approached by running parallel incubations; in one, 

both nitrification and denitrification may occur. In the other, acetylene (C2H2) is added, which inhibits 

nitrifier N2O production but not denitrifier N2O production (Ryden et al. 1979). However, C2H2 

addition does not block N2O produced by heterotrophic nitrifiers (de Boer and Kowalchuk 2001) and 
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underestimates N2O production from denitrification by promoting NO loss to NO2 (which is not a 

denitrification product and not measured) (Bollman and Conrad 1997).  

For these reasons, stable isotopic fractionations for denitrification only are examined in this study. 

In contrast to nitrification, denitrification typically produces higher N2O:(N2O:N2) ratios than 

N2O:NO3
- ratios observed for nitrification (Klemedtsson et al. 1988) and incubations can easily be 

kept anoxic by adding a small amount of sediment, river water and nitrate substrate to a bottle with a 

large helium headspace. 

Microbial community composition, and perhaps stable isotopic fractionation, could change with 

site and season because community composition depends on temperature, nutrient levels and other 

factors. N2O production in the Grand River is low during the winter months (Chapter 6). Therefore, 

the stable isotopic signature of N2O produced by denitrification was examined using river sediments 

from two sites collected in May, July and October 2009. 

5.1.2 N2O Production in Bacterial Cells and Stable Isotopic Fractionations 

Stable isotopic fractionation of N2O from the denitrification pathway is defined as:  

ε = (ε = (ε = (ε = (RN2O/RNO3- - 1)        Equation 5.1 

where R is the ratio of 15N/14N for ε15N or 18O/16O for ε 
18O. 

However, this equation simplifies the denitrification process, which occurs stepwise (NO3
- → NO2

- → 

NO → N2O → N2, Figure 5.1). Each step requires one enzyme, and is a potential site for stable 

isotope fractionation. Denitrification occurs in many types of organisms (bacteria, archaea and fungi) 

but the pathway is best understood in gram-negative bacteria. It is unclear if fractionation upon 

uptake of NO3
- into cells occurs. NO3

- uptake from the environment into the periplasm appears to 

require porins, which are passive transporters. Mutant bacteria with few or no porins take up NO3
- 

slowly (Song and Niederweis 2012, Yoon et al. 2002) and have no Nir activity (Yoon et al. 2002) but 

the specific porins required and mechanism are not known. It is not known if porins impart any 

isotopic fractionation during transport. Once in the periplasm, NO3
- is transported to the cytoplasm 

across the inner membrane (Figure 5.1), where NO3
- reduction occurs. Transportation requires two 

proteins, NarK1 and NarK2; the first is a symporter using secondary active transport requiring an 

electrochemical gradient (i.e. an electrochemical gradient created by pumping H+ across the 

membrane) (Wood et al. 2002). It is not known if the symporter imparts an isotopic fractionation. In 

the cytoplasm, NO3
- is reduced to NO2

- with a nitrate reductase (Nar) enzyme. NO2
- is then 

transported back into the periplasm, and the rest of the denitrification chain occurs here (Figure 5.1). 
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Note that uncharged gases (NO, N2O, N2) can freely diffuse through either cell membrane. The 

isotopic effect of diffusion of gases through a membrane in water is likely less than through air (e.g. 

ε
15N = 3.2‰ and ε18O = 6.5‰ for N2O at steady state) due to interactions between polar water 

molecules and gases (Zeebe and Wolf-Gladrow 2001).  

Alternatively, denitrifiers can take up NO2
- from the environment. NO2

- may not require active 

transport from the cytoplasm into the periplasm if HNO2 diffuses passively through the membrane 

(Moir and Wood 2001). NO2
- uptake is much more rapid than any of the enzyme-mediated 

denitrification steps within the cell, suggesting that observed ε values are a result of enzyme-

catalyzed reactions, not uptake (Bryan et al. 1983). 

Several enzymes used in the denitrification process are activated and inhibited by high 

concentration of substrates (Table 5.1). Transcription of genes for and production of all denitrification 

enzymes (Nar, Nir, Nor, Nos) is regulated by the dissimilatory nitrate respiration regulator (DNR), 

which is activated when O2 is low and NO3
- or NO2

- is present (Arai 2011). Nitric oxide reductase 

(Nor) appears to be inhibited by high NO3
- (Firestone, Firestone, & Tiedje, 1980). N2O reductase 

(Nos) inhibitors are the best studied because of the potential to reduce N2O production from 

denitrification by full N2O reduction to N2 (Weier, Doran, Power, & Walters, 1993). Nos is inhibited 

by NO3
-, but this effect is not strong at circumneutral pH (Firestone, Smith, Firestone, & Tiedje, 

1979). Nos is also inhibited by low pH (Geywitzhetz et al. 1993) and high concentrations of sulfide 

and metals (Manconi et al. 2006). The enzyme is much more strongly inhibited by NO2
- (Firestone et 

al. 1979), which can accumulate at redox boundaries. Additionally, while all other denitrification 

enzymes appear to be continually present in denitrifier cells, Nos is synthesized only during anoxic 

conditions when NO3
- substrate is present (Firestone and Tiedje 1979). Therefore Nos activation lags 

behind other denitrification enzymes, especially when conditions change rapidly to promote 

denitrification (e.g. the onset of anoxia, the addition of NO3
- substrate to anoxic incubations) 

(Firestone et al., 1980).  

Isotopic fractionations for both 18O and 15N may occur at each enzyme in the denitrification 

pathway (Figure 5.1). Previous laboratory incubations of pure microbial cultures and soil cultures 

have measured non-zero ε values for the NO3
- � N2O pathway (see above) indicating that isotopic 

fractionation occurs at Nar, Nir and/or Nor. Laboratory studies have also quantified ε values for N2O 

� N2 (ε
 15N: -27‰ to -1‰; ε 18O including any O exchange: -42‰ to -5‰, ε 18O: ε 15N ~ 3) (Snider 

et al. 2009), meaning that isotopic fractionation occurs on the Nos enzyme.  

Individual ε 
18O values for each enzyme values are labeled in Figure 5.1 (ε1, ε2 etc.); each enzyme 

may also impart an isotopic fractionation for 15N (not shown for clarity). The net isotopic 
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fractionation for 18O (εnet
18O) is the sum of ε1 through ε4. Measuring ε18O is somewhat complicated by 

the recent discovery of oxygen exchange between water and N intermediate species (most likely NO2
- 

and NO) (Kool et al. 2007, Kool et al. 2009, Snider et al. 2013); O exchange can overprint εnet
18O 

values unless incubations are performed with water sources with distinct δ18O-H2O values. It is 

unclear if oxygen exchange imparts any isotopic fractionation (Snider et al. 2013); this is labeled εH2O 

on Figure 5.1.  

5.1.3 Effects of N2O:N2 on Isotopic fractionations 

The amount of Nos activity relative to total denitrification can be quantified in the ratio of N2O and 

N2 produced by cells. If all NO3
- denitrified is converted to N2, N2O:N2 is zero and Nos activity is 

100%. N2O:N2 has been measured in soil and culture incubations and ranges widely, from 0.02 to 5 

(Senbayram et al. 2012, Silvennoinen et al. 2008, Silvennoinen et al. 2008, Weier et al. 1993). Higher 

ratios are typically seen with high NO3
- addition (Senbayram et al. 2012) but the opposite has also 

been found (Weier et al. 1993). Boreal river and estuary sediments at ambient (low) NO3
- 

concentrations had low N2O:N2 ratios (< 0.04) (Silvennoinen et al. 2008, Silvennoinen et al. 2008). 

Lower N2O:N2 ratios indicate more Nos activity. This should increase the δ15N-N2O and δ18O-N2O 

values as Nos imparts isotopic fractionation (resulting in lower δ15N values in N2). Since Nos can be 

inhibited by substrates (NO3
-, NO2

-), high-NO3
- additions can be used in incubations to produce large 

amounts of N2O (simplifying stable isotope analysis) and to assess isotopic fractionation when Nos 

activity is low. 

5.1.4 O Isotope exchange between Water and Nitrite in Denitrification 

Previous work has shown that measured net ε18O values can be significantly influenced by O 

exchange between water and intermediate N compounds during denitrification (Figure 5.1). This is 

because (a) O atoms in water exchange with O in some intermediate N compounds (likely NO2
- 

and/or NO) either abiotically (inside or outside a cell) or during attachment to enzymes in the cell, 

and (b) O isotopes in natural water typically have much lower stable isotopic ratios (~ -10‰ in the 

Grand River) than N species in the denitrification chain. Rates of abiotic O exchange between NO2
- 

and water are fast, especially at Cl- concentration (Kool et al. 2007) and high NO2
- concentration and 

low pH (Casciotti et al. 2007). Biological O exchange occurs during reduction of NO2
- to NO because 

the reaction is reversible and O exchange has been noted in denitrifiers reducing NO to N2O (Kool et 

al. 2007). Direct evidence of O exchange during NO3
- reduction to NO2

- is lacking, though O 

exchange has been observed at some point along the reduction path between NO3
- and N2O (Kool et 

al. 2007). 
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The fraction of O in N2O coming from water (henceforth termed “fraction O exchange”) must be 

quantified in order to understand the ε net
18O for any system. Snider et al. (2009) devised a method to 

determine the fraction O exchange in soil incubations by adding 18O-enriched water. They found 65% 

to 91% O exchange in temperate upland and wetland soils. High values for fraction O exchange could 

artificially decrease the calculated value of ε net
18O, especially if some O exchange occurs after some 

isotopic fractionation (e.g. ε1, ε2), erasing it partially or totally. For this reason, a negative linear 

relationship (r2 > 0.9) was found between O exchange and εnet
18O (Snider et al. 2009).  

5.2 Methods 

5.2.1 Sediment Collection and Processing 

Sediment was collected from two sites on the Grand River, southern Ontario, Canada (Figure 5.2) in 

spring, summer and autumn 2009. The Grand River watershed is the largest Canadian watershed 

draining into Lake Erie, has a high and rapidly growing population, and is heavily modified by human 

activities. Eighty percent of the watershed land is under agricultural use, and significant nutrient loads 

enter via wastewater treatment plants (WWTPs) from the cities of Waterloo, Kitchener and 

Cambridge, in the middle section of the river (Cooke 2006). The river has impaired water quality and 

ecological function because of its high population and nutrient discharge from agriculture and 

WWTPs. Water quality varies greatly longitudinally; thus, two sites with very different water quality 

were chosen for sediment collection. The river is well buffered by carbonate minerals, and pH ranges 

from 7.3 to 9.0 (n = 1538, data from 23 sites on the river in all seasons). 

The first site, Bridgeport (Site 9), is located immediately upstream of the urban area and receives 

water from primarily agricultural areas. Here, NO3
- is higher in winter (October to April: 3.5 ± 1.8 mg 

N/L (mean± standard deviation), n = 99) and lower in summer (May to September: 1.8 ± 1.0, n = 

177). Because of in-river photosynthesis, dissolved oxygen (DO) in summer has a moderate diel 

cycle, but DO is always higher than 4 mg/L.  

In contrast, Blair (Site 11) is located 5 km downstream of the largest WWTP in the watershed. It 

receives significant dissolved organic carbon, NH4
+, NO3

-, and phosphorus from effluent. Macrophyte 

biomass is very large in summer, resulting in very large diel DO cycles; DO can drop below 1 mg/L 

at night when photosynthesis ceases (Rosamond et al. 2011). N2O in summer is always much above 

saturation but, when hypoxia occurs, can increase to more than 9000% saturation (Rosamond et al. 

2011). NO3
- concentrations are moderate year-round (3.0 ± 1.3 mg N/L, n = 247). 
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River sediments were collected from both sites to a depth of 10 centimeters, in order to capture the 

oxic and anoxic sediment zones. At the same time, river water was collected from each site, and kept 

refrigerated until needed. Water from each site was subsampled for NO3
- and NH4

+ analysis. 

Sediments were returned to the laboratory and were sieved to 2 mm using a brass soil sieve to 

remove large pebbles. 

5.2.2 Physical and Geochemical Characterization of Sediments and River Water 

Sediment sub-samples were weighed wet and oven-dried to measure sediment saturation capacity. 

Sediment organic matter was quantified by loss on ignition (LOI) at 550º C for four hours. 

NH4
+ and NO3

- concentrations were analysed in (a) river water collected at the same time as 

sediment, (b) water stored with saturated sediment (a mix of pore water and river water) and (c) 

sorbed to sediment. NO3
- was extracted from sediments with deionized (DI) water and NH4

+ was 

extracted with 2M potassium chloride (KCl). NH4
+ was analyzed by UV colorimetry and NO3

- by ion 

chromatography in all instances. All water samples were filtered before analysis. Precision was 0.005 

mg N/L for NH4
+ and 0.07 mg N/L for NO3

- analysis. 

At the completion of each experiment, incubation water was filtered for δ18Ο-H2O. δ18Ο−Η2Ο was 

analyzed as described in section 5.4.3. 

5.2.3 Preparation and Measurement of δδδδ18181818ΟΟΟΟ-H2O in Incubations 

In each experiment, DI water was added to saturated sediment to (a) prevent desiccation, (b) facilitate 

full mixing of sediment on the orbital shaker by decreasing viscosity, and (c) allow for the addition of 
18O-enriched water to quantify O exchange between H2O and N compounds during denitrification.  

18O-enriched water was prepared by diluting 1.6 atom% water (Bio-Rad Laboratories, Hercules, 

CA) with Nanopure DI water (δ18Ο: ~ -10.8‰) to between ~20‰ and ~120‰. Due to limited supply, 

later incubations were less 18O-enriched.  

Because sediments were already saturated with river water, δ18Ο-H2O from each incubation was 

analyzed via a modified CO2 equilibrium method on a GV Instruments isotope ratio mass 

spectrometer. Precision was 0.2‰.  

5.2.4 Incubation Set-Up and Design 

Laboratory incubations were designed to test the effects of site (Bridgeport and Blair), season 

(spring, summer and fall) and NO3
- level (high and lower) on isotopic fractionations of N2O 

production via denitrification in sediments. This resulted in 6 incubations per site, labeled BR-A 
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through BR-F for Bridgeport and BL-A through BL-F for Blair (Table 5.2). Each incubation included 

six jars per site: duplicates of three δ18Ο-H2O values (ambient, medium and high). High- and low-

NO3
- additions from the same season were conducted on the same batch of sediment, within a period 

of one or two days to prevent drastic changes in microbial community structure. Sediment was 

refrigerated wet between incubations.  

Incubation chambers consisted of 500 mL borosilicate jars (Wheaton GL 45, Wheaton Science 

Products Inc., Millville, N.J.). Jars were capped with halo-butyl rubber, 43 mm, 2-leg lycophilization 

stoppers (Wheaton Science Products Inc., Millville, N.J.). A 43 mm silicon septum (Chromatographic 

Specialties, Brockville, ON) was added on top, and both were secured using an open-topped screw 

cap (Wheaton Science Products Inc., Millville, N.J.). Snider et al. (Snider et al. 2009) previously 

determined that this set-up is gas-tight and that none of the materials produced N2O. 50 g wet 

sediment was added to the chambers, with 20 mL of water, then stoppered and flushed with ultra-high 

purity helium (UHP He) for 10 minutes at ~600 mL/minute to establish anoxia. Jars were placed on 

an orbital shaker (200 rpm) in the dark for 10 to 12 hours before the start of the incubation such that 

sediments were continually suspended. The preincubation was designed to remove background NO3
- 

and N2O Present in the sediment. It also encouraged development of an anaerobic microbial 

community. 

After preincubation, potassium nitrate (KNO3) was added to each jar at 1.3 mg N/g-seddw (~1300 

mg N/L pore water) and 0.8 mg N/g-seddw (~775 mg N/L pore water) levels. High concentrations 

were chosen in order to produce sufficient N2O for isotopic analyses, after Snider (2011). The KNO3 

used has a δ15N value of 13.8 ± 0.3‰ and a δ18Ο value of 28.0 ± 0.8‰. Jars were recapped, purged 

with He and left on the orbital shaker for ~1 hour before analysis. To sample the jars, 60 mL UHP He 

was added to the headspace of each jar and 60 mL headspace removed and stored in evacuated (10-1 

torr) 50 mL glass serum bottles (Wheaton Science Products Inc., Millville, N.J.) with pre-baked 20 

mm butyl-blue rubber stoppers (Bellco Glass, Inc., Vineland, N.J.) and aluminum crimp seals 

(Chromatographic Specialties, Brockville, ON). This gas was later analyzed for N2O concentration 

and isotopic ratios (δ15N and δ18Ο). After each sampling event, jars were purged with UHP He for 10 

minutes and returned to the shaker. This promoted mixing of NO3
- and gases through the sediment 

and reduced the likelihood of significant N2O consumption caused by local NO3
- loss. 

Denitrification incubations were sampled four times over 4 -5 hours to minimize NO3
- pool 

reduction (and isotopic enrichment) and to avoid N2O reduction. Flushing between sampling also 

avoided N2O build-up and possible N2O reduction. 
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5.2.5 N2O Concentration and Isotopic Analysis 

N2O concentration was analyzed with an electron capture detector (ECD) on a Varian CP 3800 gas 

chromatograph (Varian Canada, Inc.) designed for greenhouse gas analysis. A calibration curve was 

created daily using commercial certified standards (0.1, 1.0, 10.0 and 100.0 ppm N2O v/v; Matheson 

Tri-Gas, Inc.; Praxair Canada, Inc.) Detection limit (0.1 ppm) was much lower than any incubation 

samples. Precision (standard deviation of multiple standards) was 6% or less. 

Stable isotopic ratios of N2O (δ15N and δ18Ο) were analyzed on a continuous flow-isotope mass 

spectrometer (CF-IRMS) in line with a TraceGas gas chromatograph pre-concentrator system (GV 

instruments, Thermo Electron Corp., Manchester, UK). Samples and working standards were injected 

through a septum port and CO2 and H2O were removed with chemical traps (magnesium perchlorate 

and Ascarite) and a Nafion membrane (Perma Pure LLC, Toms River, NJ). N2O was concentrated by 

cyrofocusing in liquid N2. It was then passed through a 30 m GC column to separate any remaining 

CO2 and N2O. N2O was then introduced to the IRMS, where mass/charge ratios of 44 (14N14N16O), 45 

(15N14N16O) and 46 (14N14N18O) were compared to reference tanks of commercial N2O (99.5 – 99.9% 

purity, Praxair Canada, Inc.). 

15N/14N and 18O/16O ratios in N2O samples were reported in delta (δ) notation in parts per thousand 

(permil, ‰): 

δ = (Rsample/Rstandard – 1)       Equation 5.2 

where R is the ratio of the heavy to light isotope (e.g. 15N/14N). All data are reported relative to 

international standards AIR for 15N and VSMOW for 18O, unless otherwise stated.  

Monitoring tanks and working standards (δ15N: 2.78‰; δ18O: 39.96‰) were calibrated against 

local tropospheric N2O because there is no internationally recognized reference material for N2O 

isotopic analysis. Tropospheric N2O was assigned a value of δ15N = 6.72‰ and δ18O = 44.62‰ 

(Kaiser et al. 2003). Kaiser et al. (2003) found that tropospheric N2O isotopic composition varied 

little in the northern hemisphere. Precisions (standard deviation of working standards) for δ15N-N2O 

and δ18Ο-N2O were typically 0.2‰ and 0.4‰ respectively. N and O isotopic ratios were corrected for 

rare isotopologues that contribute to mass 45 (14N14N17O) and mass 46 (15N14N17O and 15N15N16O). 

Corrections were also applied for machine drift and the relationship between peak size and apparent 

isotope ratios.  
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5.2.6 Comparison to Field Data 

Stable isotopic fractionation during N2O production from denitrification in the field was estimated by 

analyzing dissolved NO3
- and N2O from the river for concentration and stable isotopic ratios of N and 

O.  

Water samples were collected approximately every 1.5 hours over a 28-hour period in June 2007 at 

Bridgeport and Blair (Figure 5.2). Water was collected for NO3
- concentration and stable isotopic 

analysis in 125 mL and 1 HDPE bottles respectively. Samples were kept cold and filtered to 0.45 µm 

upon returning to the laboratory. Water for N2O concentration analysis was collected in 50 mL glass 

serum bottles, capped with pre-baked red rubber stoppers (BD Vacutainer, Franklin Lakes, NJ). N2O 

isotope samples were collected in 500 mL borosilicate jars capped with black rubber lycophilization 

stoppers, described above. Both bottle types were capped underwater with a needle to eliminate gas 

bubbles. N2O samples were preserved with 2 mL saturated mercuric chloride (HgCl2) solution per 

litre water. 

NO3
- and N2O concentrations and N2O isotopic ratios were measured as above. NO3

- isotopic ratios 

were measured via the silver nitrate method (Silva et al. 2000). AgNO3 was analysed with a breakseal 

method (Spoelstra et al. 2001). An elemental analyzer IRMS was used for δ15N-NO3
- analysis and a 

VG PRISM mass spectrometer was used for δ18O-NO3
-. Precision was 0.5‰ and 0.6‰ and δ15N and 

δ18Ο values, respectively. 

Samples for N2O concentration were prepared by removing 5 mL of sample while injecting 10 mL 

of He, and equilibrating the headspace using a rotary shaker. A 5 mL subsample of headspace was 

analyzed on the Varian 3800 CP GC, as above. Concentrations were calculated using Henry’s Law 

after Lide and Frederikse (Lide and Frederikse 1995). Gas for dissolved N2O isotope analyses were 

pre-concentrated using a purge and trap method (Thuss 2008) and analyzed on the CF-ICMS, as 

above.  

In a previous study, the SIDNO model was used to calculate N2O isotopic ratios of N2O production 

from dissolved N2O isotope ratios, taking into account gas exchange (Thuss 2008). The model 

assumes steady state N2O production. Additionally, an isotope mass balance was used to remove 

effluent N2O (which has a different isotopic ratio than that produced in the river, Chapter 4) using 

effluent N2O concentrations and stable isotope values in order to estimate the ε15N and ε18O of in-situ 

N2O production (Thuss 2008) for night (sunset to sunrise) and day (sunrise to sunset). These ε15N and 

ε18O values are used in this study. 
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5.3 Results 

5.3.1 Sediment Parameters 

Sediment collected at Bridgeport and Blair had low organic carbon content (1.7 to 5.6%). Organic 

carbon did not vary with season and was not significantly different by site (t-test: p = 0.680; 

SigmaPlot 12.0, Systat Software Inc., Chicago IL) (Table 5.3). NO3
- and NH4

+ in sediment were 

below detection. 

5.3.2 Net N2O Production Rates 

There was net N2O production in all incubations (range: 0.8 nmol/h/g dry-weight sediment (g-seddw) 

to 90.8 nmol/h/g-seddw), Table 5.4, Figure 5.3. Net N2O production rates from high-NO3
- treatments 

were always higher than from low-NO3
- treatments. N2O production was typically higher from Blair 

sediments than from Bridgeport sediments, although this difference was small in spring with high 

NO3
- addition (Treatment A). Seasonal trends were different between the two field sites. At 

Bridgeport under high NO3
- addition, there were no seasonal trends. However, under low NO3

- 

addition, N2O was highest in summer and indistinguishable in spring and autumn (Table 5.4). At 

Blair, there were no seasonal differences in N2O production under low NO3
- additions but summer 

N2O production was higher than spring and autumn in high NO3
- incubations (Table 5.4). 

5.3.3 Stable Isotopic Abundances of N2O Produced in Incubations 

δ
15N-N2O values ranged widely in experiments from -16.1‰ to 4.7‰ (Figure 5.3).However, values 

were slightly more constrained by site (BR: -13.1‰ to 4.7‰, BL: -16.1‰ to 0.9‰). This wide range 

is partially due to changes in δ15N-N2O over the course of the incubations. In high-NO3
- incubations 

(A, C and E), the first sampling had high δ15N-N2O values. Thereafter δ15N-N2O values were 

consistently low and stable in most bottles. In contrast, in low-NO3
- incubations (B, D and F), δ15N-

N2O increased over the course of the incubation. All δ15N-N2O values were much lower than that of 

the NO3
- substrate (13.8‰). 

δ
18O-N2O values varied widely (41.5‰ to 129.5‰) depending on the δ18O-H2O value in each 

incubation jar. All incubations, except BL-D, had no change in δ18O-N2O after sampling time 1, even 

when δ15N-N2O increased over time. 
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5.4 Discussion 

5.4.1 N2O Production Rates 

N2O production rates were higher than in similar denitrification incubations conducted with forest and 

agricultural soil by Snider et al. (2009) (mean production rate: 1.5 nmol N2O/h/g-seddw to 38.6 nmol 

N2O/h/g-seddw). The high production rates, high NO3
- and low NH4

+ in the jars, and anoxic conditions 

indicate that N2O was likely produced by denitrification. 

The first sampling (at ~1 hour) of three spring incubations (BR-A, BL-A, BL-B) showed lower 

production rates than subsequent samplings. Production rates did not change in any incubation over 

the last 3 samplings. This suggests that a quasi-steady state was achieved after 2 hours or less. 

N2O production rates were almost always higher in Blair sediments than Bridgeport when season 

and NO3
- addition were the same. The exceptions were Incubation D (summer, low NO3

- addition), 

and Incubation E (autumn, high NO3
- addition) in which similar rates were observed between the two 

sites. Higher production rates with Blair sediment may indicate that more NO3
- was reduced because 

the denitrifier biomass is larger than at Bridgeport and/or because organic carbon was more labile. 

Additionally, the Blair community may have produced more N2O per unit NO3
- reduced than that at 

Bridgeport. This could be due to Nos inhibition or a lower proportion of Nos genes in this 

community. About one-third of denitrifying bacteria that have been DNA-sequenced lack genes for 

N2O reductase (Nos) and therefore cannot reduce N2O to N2 (Philippot et al. 2011). Incubation 

experiments show that some, not all, soil communities reduced excess N2O produced by these 

bacteria (Philippot et al. 2011). It is currently unknown how these organisms are distributed in the 

environment, and how prevalent Nos-deficient microbes are in river sediments.  

A 60% increase in NO3
- addition between low and high-NO3

- incubations resulted in an order of 

magnitude increase in N2O production, at both sites and all seasons. The only exception was in 

incubations BR-C and BR-D (summer), in which N2O production only tripled between low and high 

NO3
- additions. N2O production was not limited by NO3

- substrate ability and differences between 

incubations were likely due to N2O consumption. However, this may not apply directly to field 

studies because NO3
- concentrations were very high in order to produce measureable quantities of 

N2O. See Section 5.4.4 for further discussion. 

5.4.2 ε15N: comparisons to literature values 

In most incubations, δ15N-N2O values were consistent within error over the whole incubation or after 

the first sampling (~1 hour), suggesting that a quasi-steady state had been reached. However, BR-E 
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(Bridgeport, Autumn, high NO3
-) did not achieve steady δ15N-N2O values until the last two 

samplings. Conversely, at Bridgeport and Blair in Incubations D and F (Summer and Autumn, low 

NO3
-), δ15N-N2O values increased over the incubation period, by between 1 and 6‰. Thus, when 

calculating average δ15N-N2O and isotopic fractionations, the first sampling was removed from low-

NO3
- BR incubations (BR-B, BR-D and BR-F). The second sample was also removed from BR-E and 

one very high δ15N-N2O value was removed from BR-F. 

Isotopic fractionations for 15N for high-NO3
- incubations (A, C and E) (-27.1‰ to -21.3‰, Table 

5.4) and were similar to those found by Snider et al. (Snider et al. 2009) (-29‰ to -20‰), and were 

confined to a smaller range than previous literature values (-39‰ to -10‰ (Snider et al. 2009)). This 

is a narrow range of ε15N values, considering that differences in temperature, NO3
- and organic C 

between sites and seasons may drive changes in microbial community.  

However, ε15N values were more positive and had a larger range in low-NO3
- incubations (-23.8‰ 

to -12.4‰) than in high-NO3
- incubations (-27.1‰ to -21.3‰), indicating less fractionation and/or the 

occurrence of one or more N2O isotopic enrichment process.  

5.4.3 εnet
18O and Oxygen Exchange: Comparison to Literature Values 

In all incubations, δ18O-N2O increased as δ18Ο-H2O increased (Figure 5.3). This indicates that some O 

in N2O was contributed by water molecules, not NO3
-. The percentage oxygen exchange was 

quantified using methods from Snider et al. (2009). First, δ18Ο-N2O and δ18Ο-H2O were both made 

relative to the 18O/16O ratio of the NO3
- substrate (not the international standard) using equation 5.3. 

This eliminates an independent variable and allows separation of the influence of NO3
- and H2O on 

O-N2O. 

δδδδ18181818ΟΟΟΟx (rel. NO3
-
) = Rx/RNO3– 1       Equation 5.3 

Where x is N2O or H2O, and R = 18O/16O 

When δ18Ο-H2O (rel. NO3
-) is plotted on the x-axis versus δ18Ο-N2O (rel. NO3

-), a positive linear 

trend is evident (Figure 5.4, range in r2: 0.91 to 1.00). In all incubations, the regression line slope was 

between, but not equal to, zero and 1. This indicates that all δ18Ο-N2O values were derived from a 

mix of oxygen from NO3
- and from water, i.e. that O exchange between N species and H2O occurs. 

The slope of the regression is the mean fraction O exchange and the y-intercept is the net ε18O value 

(ε net
18O), or ε18O value that would be expressed if oxygen exchange were zero. This method of 

calculating O-exchange gives a minimum value because εH2O (Figure 5.1) is assumed to be zero 

(Snider et al. 2013). 
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If no O-exchange occurs, ε net
18O is equal to ε 

18O, and the slope of the regression lines shown in 

Figure 5.4 is zero. In this case, δ18Ο-N2O will be higher than δ18Ο-NO3
- because all isotopic 

fractionations shown Figure 5.1 are positive (Snider et al. 2013). Using this method, εnet
18O is 

“corrected” to remove the effects of O exchange. However, the two are not entirely independent 

because of the interaction between the multiple steps of denitrification. As O exchange increases, 

εnet
18O should decrease because O from N species are replaced by O from H2O (Snider et al. 2009), 

unless fractionations occurring after O-exchange (e.g. ε4) are large contributors to εnet
18O.  

O-exchange varied between incubations (range: 60% to 83%, Table 5.4) but no differences 

between sites, seasons or NO3
- additions were observed. The range observed was similar to that in 

forest, wetland and agricultural soils (range: 64% to 94%) (Snider et al. 2009, Snider 2011). 

Interestingly, Snider et al. (2009) found a low but narrow range of high O-exchange (64% to 70%) in 

wetland soils, which could have microbial communities more similar to river sediment than upland 

forest soils because they are more frequently saturated. This might suggest that there is greater 

variability in microbial community in fresh sediment from the Grand River than there is in wetland 

sediments that have been dried and used in incubations after room temperature storage (Snider et al. 

2009). 

The εnet
18O in incubations ranged from 48.6‰ to 67.0‰ (Table 5.4). These values are higher than 

most reported by Snider et al. (Snider et al., 2009) (range: 17‰ to 43‰) and higher than those 

reported for Pseudomonas aureofaciens, which exhibits little O-exchange (ε18O = 40‰, (Casciotti et 

al. 2002)). There were no trends with site or season, but εnet
18O was larger at each site at the low NO3

- 

treatment. This suggests that ε4 (N2O � N2), which occurs after O exchange may be a significant 

portion of εnet
18O. 

Controls on O exchange and εnet
18O are still largely unknown. O exchange is known to differ 

greatly between microbial species (Kool et al. 2007) but environmental controls are not understood. 

Snider et al. (Snider et al. 2009) showed that O-exchange and εnet
18O can vary between soils, but this 

study shows that N2O reduction may also have a large effect on εnet
18O values.  

5.4.4 Relationship between Isotopic Effects and N2O Reductase Inhibition 

Little difference is seen in ε15N and εnet
18O between the Bridgeport and Blair sites and between 

seasons. However, ε15N and εnet
18O both show negative relationships with N2O production rate 

(Figure 5.5). ε15N and εnet
18O show a positive linear relationship a slope of 1.1 (r2 = 0.5, p < 0.0001) 

(Figure 5.6). In contrast, O exchange did not show any relationship with production rate, ε15N or 

εnet
18O. 
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There are several possible explanations for the low N2O production rates and high ε values at the 

end of some incubations, particularly in low-NO3
- treatments. First, δ15N-NO3

- and δ18O-NO3
- values 

could have increased over the course of the incubation due to preferential use of isotopically lighter 

NO3
- during denitrification. If ε15N and ε net

18O were constant, this would have result in higher 

isotopic ratios in N2O. However, about 30% of the NO3
- pool must have been consumed in order for 

NO3
- isotopes to change measurably (based on a typical ε15N of -15‰, Table 5.4). N2 was not 

quantified in these experiments, but liberal losses to N2 can be estimated with an N2O:(N2O+N2) ratio 

of 1:100. This yields an estimated 2% to 8% total loss in NO3
- over the course of the experiments, 

which would not result in any measurable change in the isotopic ratios of the NO3
- pool. 

Secondly, gross N2O production rates could be higher in higher-NO3
- incubations and 

N2O:(N2O+N2) ratios could be consistent between NO3
- treatment types. To account for different ε15N 

and ε18O between high and low NO3
- incubations, isotopic fractionation would have to be rate 

dependent. While the isotopic fractionation factor of N2O reduction can change with reaction rate 

(Vieten et al. 2007), this has not been observed in N2O production by denitrification, possibly because 

it is difficult to measure. It also seems unlikely that denitrification would be NO3
- limited at 0.8 mg 

N/g-seddw NO3
- addition but not at 1.3 mg N/g-seddw NO3

- addition, especially as laboratory 

incubations have observed maximum denitrification rates at 25 µg N/g soil (Limmer and Steele 

1982). If NO3
- were limiting denitrification, ten-fold increase in N2O production is difficult to explain, 

as NO3
- concentrations varied by less than a factor of two. For these reasons, simple changes in 

denitrification rate are unlikely to explain all the differences between high and low NO3
- additions 

and, as a result, the N2O:(N2O+N2) ratio must have been different between the two treatments. 

One way the N2O:(N2O+N2) ratio can change is by the inhibition of N2O reductase (Nos) in some 

jars, resulting in higher net N2O production and lower ε15N and ε net
18O values in high-NO3

- 

incubations. In lower- NO3
- treatments, Nos may not have been inhibited, and thus some N2O would 

be consumed. When N2O is reduced, an isotopic fractionation (ε4) discriminates against both 15N and 
18O, explaining the higher ε15N and ε net

18O measured at lower NO3
- concentration. However, NO3

- 

concentrations of 0.02 mg N/g-soil have been shown to inhibit Nos at circumneutral pH (Firestone 

and Tiedje 1979). Our incubations had higher NO3
- (0.8 mg N/g-seddw to 1.3 mg N/g-seddw), making it 

unlikely that either treatment would exhibit Nos inhibition. However, Firestone et al. (1979) found 

much lower NO2
- concentrations (0.004 mg N/g-soil) effectively inhibited N2O reductase in the same 

soils. NO2
- was not measured in this study, but is it possible that NO2

- accumulated in incubation jars 

if nitrate reduction occurred faster than nitrite reduction. NO2
- accumulation could have occurred 

faster in higher-NO3
- treatments because of high availability of NO3

-. Previous work has shown that in 
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batch reactors, NO2
- can accumulate on the onset of denitrification, and higher initial NO3

- 

concentrations result in bigger NO2
- peaks (Sun et al. 2009); however, this was tested on lower NO3

- 

concentrations (30 to 65 mg N/L) than this study (775 to 1300 mg N/L). Presumably, NO2
- produced 

in some cells must enter the environment to inhibit Nos in more cells but the mechanism for this is 

not known.  

Lastly, lower N2O production rates and high ε values may be explained by the well-documented lag 

in N2O reductase (Nos) activation after production of other enzymes used in denitrification (Figure 

5.7). Several studies have reported decreased N2O production over time during denitrification in soils 

and microbial cultures. Firestone and Tiedje (1979) were the first to describe and explain the pattern 

in anoxic denitrification incubations on agricultural soils. They added 13NO3
- and monitored N2O and 

N2 over 48 hours, using C2H2 to block N2O reduction in some replicates. They found that the 

N2O:(N2O+N2) ratio produced during denitrification was low, between 25% and 66% for the first 1-3 

hours of incubations, which was attributed to “pre-existing conditions of soil” (Firestone and Tiedje 

1979). Between 16 to 33 hours, N2O production was steady, with N2O:(N2O+N2) ratios between 0.46 

and 0.48. In the last stage, after 33 hours, N2O:N2 dropped again to 0% (i.e. entirely N2) to 20%. 

When chloramphenicol (which inhibits the production of new proteins) was added, N2O:(N2O+N2) 

ratios remained high (0.83) throughout the experiment (33 hours). This suggests that little to no Nos 

was present in cells on the onset of the experiment, but was synthesized during denitrification, with a 

large increase in activation around 33 hours. NO3
- concentrations remained consistent (0.02 mg N/g-

soil) throughout the entire incubation process. If this model explains the differences between low and 

high-NO3
- incubations in this study, Nos lag time must increase with NO3

- (or possibly NO2
-) substrate 

concentration. This was not observed over the 5 hour incubation run time; N2O production rate did 

not change significantly after the first time step in any incubation. To our knowledge, a positive 

relationship between Nos lag time and NO3
- concentration has not been reported in the literature; 

incubation experiments with longer run times are needed to determine if this relationship exists.  

To test if it is possible that N2O reduction is the only mechanism responsible for the differences in 

N2O concentration, ε15N and ε18O between NO3
- treatments, the isotopic fractionation for N2O 

reduction (ε4 in Figure 5.1) was calculated using the Rayleigh distillation equation, assuming initial 

N2O production and N2O isotopic values are identical between high- and low-NO3
- incubations. For 

each site and season, the N2O concentration and stable isotopic values from the high-NO3
- incubation 

were used as the “initial” values (no N2O reduction) and the values from the low-NO3
- incubation 

were used as the “final” values (some N2O reduction). The Rayleigh equation was designed for a 

closed system with a finite pool of reactant (here, N2O) that is not replenished during the reaction. 
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Thus, it is an oversimplification of the incubation experiments, where N2O production and 

consumption occur simultaneously. However, if the calculated ε4 values are very different than 

published values from pure cultures and soil experiments, the hypothesis can be discounted, and 

differences between incubations cannot be attributed only to N2O consumption. The Rayleigh 

equation, rearranged to solve for ε, is: 

d = SUe ��Cf
SU	( ::C)

         Equation 5.4 

were ε is shown in permil, R is the 15N/14N or 18O/16O ratio of N2O in the low-NO3
- incubation, R0 is 

the 15N/14N or 18O/16O ratio in the high-NO3
- incubation, P is the N2O production rate in the low-NO3

- 

incubation, and P0 is the N2O production rate in the high-NO3
- incubation. 18O/16O ratios were 

calculated using εnet
18O to remove the effect of O exchange. Calculated values for ε4

15N ranged from -

8.1‰ to -2.5‰, on the high end of values reported in the literature for N2O reduction (-27‰ to -1‰ 

(Snider et al. 2009). Estimated ε4
18O values ranged from -6.7‰ to -4.0‰, which is on the high end of 

the range of literature values (-42‰ to -5‰) but these values may be low due to O exchange (Snider 

et al. 2009). The ε4
18O :ε4

15N ratio is well-constrained in literature to 2.4‰ to 3‰ (Snider et al. 2009, 

Vieten et al. 2007) while values calculated here are lower (0.1‰ to 2.2‰). This may be because the 

effect of O exchange (which brings ε18O values closer to that of H2O, in this case more negative) has 

been removed in this study, but not in previous studies. Thus, there is no isotopic evidence to discount 

the theory that differences in N2O production and isotopic values between high and low NO3
- 

incubations can be attributed only to N2O reduction. However, other possibilities are discussed below. 

Of the four possible explanations for the changes in N2O production rate, ε15N and ε18O between 

high- and low-NO3
- incubations, it appears that two can be discounted. Changes could not be caused 

by NO3
- enrichment due to the very large NO3

- pool and relatively low N2O production. It is unlikely 

that the differences are solely due to increased denitrification rates (with constant N2O:(N2O+N2) 

ratio) due to very high NO3
- concentrations and the 3 to 10-fold increase in N2O production when 

NO3
- is only doubled. Thus, it appears that the N2O:(N2O+N2) ratio must change between incubations. 

This may be because high NO3
- or NO2

- inhibits N2O reductase in the high-NO3
- incubations and less 

so in the low-NO3
- incubations. Alternatively or concurrently, Nos lag time may be longer in the 

high-NO3
- incubations, allowing more N2O accumulation over the 5-hour experiment run time. In 

either case, the isotopic fractionation associated with Nos is likely responsible for the increase in 

εnet
15N and εnet

18O in the low-NO3
- incubations. 
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Given that complete inhibition of Nos has been shown to occur in soil incubations with much lower 

NO3
- additions than used here (0.02 mg N/g moist soil, (Firestone and Tiedje 1979) compared to 0.8 

to 1.3 mg N/g-seddw used here), it is surprising that Nos is not deactivated in both incubation types. 

Differences in the N2O:(N2O+N2) ratio between incubations may call into question the usefulness of 

laboratory sediment incubations in mimicking river conditions. The high NO3
- concentration in 

incubations is necessary to prevent increased δ15N-NO3
- and δ18O-NO3

- values caused by NO3
- 

consumption (in order to easily measure ε15N and ε18O) but this likely results in a very different 

N2O:(N2O+N2) and therefore net ε15N and ε18O than in river sediments.  

Interestingly, the fraction of O exchange did not change with net N2O production. This is probably 

because the ε15N and ε18O changes observed with net N2O production are related to N2O reduction but 

O exchange occurs earlier in the denitrification chain, on NO2
- (Casciotti et al. 2007) and/or NO 

(Kool et al. 2007). 

 

5.4.5 Comparison between Field Estimations and Incubation Isotopic Fractionations 

Isotopic fractionations within the Grand River at Bridgeport and Blair were estimated using isotopic 

ratios of NO3
- and N2O collected in the water column. Isotopic ratios of N2O production were 

calculated using SIDNO, assuming steady state (Thuss 2008). Because N2O and NO3
- isotopic ratios 

change on a diel scale, particularly at Blair (Thuss 2008) average night-time (sunrise to sunset) and 

day-time NO3- and N2O isotopic values were used for calculating ε15N and ε 
18O using Equation 5.1. 

These estimates are not ideal for several reasons. First, it was not possible to quantify the isotope 

ratios of NO3
- in sediment, which might be significantly different than in the water column, due to 

NO3
- diffusion, production and consumption. Second, instantaneous N2O and NO3

- measurements 

represent a combination of upstream sources, not the N2O produced at one discrete spot in the river. 

Lastly, it was also not possible to quantify oxygen exchange in river samples because river water has 

a consistent δ18O-H2O value. Therefore, εnet
18O was estimated using the average O exchange fraction 

for each site, as determined by incubations, and an average δ18Ο-H2O value for the Grand River (-

10‰). δ18O-H2O changes between sites and seasonal changes were small (< 1‰) and were ignored. 

Field isotopic fractionations for N2O production are shown in Figure 5.6. Because of the large diel 

range in δ15N-N2O and δ18O-N2O at Blair but only a small change in NO3
- stable isotopic ratios (Thuss 

2008), day and night estimations are very different at that site. At both sites, estimated ε net
18O are 

within the large range determined by incubations. Bridgeport has relatively high ε15N values but 

moderate ε18O values (Figure 5.6), suggesting that differences in N2O reduction alone cannot explain 
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the differences in N2O isotopic ratios between Bridgeport and Blair. One possibility is that ε net
18O is 

poorly estimated because in-river O exchange rates are not known. Alternatively, differences in the 

microbial community between Bridgeport and Blair may explain why field ε15N values are so 

different but ε net
18 values are similar between the sites. Microbial communities in sediment 

incubations may also be very different than those contributing to N2O in the river. Denitrification in 

biofilms can be significant sources of N2O (Nielsen et al. 1990, Schreiber et al. 2009) but biofilms 

were not included in this study. Lower N2O production rates at Bridgeport might be explained by (a) 

lower net denitrification rates than Blair, due to lack of water column hypoxia, lower NO3
- during the 

growing seasons, and/or differences in organic C concentration and lability (not measured), and/or (b) 

lower N2O:(N2O+N2). Because the river never approaches hypoxia at Bridgeport, denitrification rates 

are likely relatively constant (as seen in the modest diel N2O concentration cycle) and N2O reductase 

(Nos) is not expected to be in disequilibrium with other denitrification enzymes. Nos may not be 

inhibited by the presence of NO2
-, which has not been observed in the water column at this site. 

However, NO2
- in sediment pore water has not been quantified.  

At Blair, estimated field ε15N values are slightly lower than those from low-NO3
- incubations 

during the day (Figure 5.6). However, at night, estimated ε15N values are about 15‰ lower than any 

incubation conducted. ε18O values are also low. Water column hypoxia occurs at Blair in summer at 

night, and occurred during this sampling event (minimum: 0.7 mg/L). Hypoxia likely acts similarly to 

a large addition of NO3
- to an anoxic incubation bottle by promoting the onset of denitrification at 

high rates, and N2O reductase activity lags behind NO3
-, NO2

- and NO reductases (Figure 5.7). This 

would help explain the increase in concentration of N2O and decrease in δ15N-N2O and δ18Ο-N2O 

observed between day and night at Blair (Thuss 2008). The diel N2O curve at Blair on June 26-27, 

2007 was unusual compared to other locations in the Grand River because N2O concentration peaked 

~4 hours before dawn (Figure 5.8). As N2O concentrations dropped between 2:00 AM and dawn, 

δ
15N-N2O declined but δ18O-N2O increased. Denitrification rates likely did not decrease in this period, 

as substrate (NO3
-, DOC) was still plentiful and the inhibitor (DO) was low. If the N2O:(N2O+N2) 

ratio decreased due to an Nos activity increase, δ15N-N2O and δ18O-N2O should both have increased, 

which was not observed. Other possible explanations could be changes in the substrate (δ18O-NO3
-), 

upstream effects and/or differences between water column pore water NO3
- isotopic ratios.  

5.4.6 Usefulness of Stable Isotope Analysis in Denitrification Incubations 

Seminal work conducted by Mary Firestone and others in the 1970s and 1980s showed that N2O 

production and N2O:N2 ratios in soils by denitrification was influenced by time and concentrations of 

NO2
-, NO3

- and O2 (Firestone and Tiedje 1979, Firestone et al. 1979, Firestone et al. 1980). They 
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hypothesized that a lag in the production of N2O reductase results in a peak and then decrease of N2O, 

even when NO3
- is plentiful (Firestone et al. 1980). However, accurately measuring N2 in these 

incubations was necessary, and only indirect evidence could be provided for N2O production 

pathways. Stable isotopic analysis of N2O in denitrification incubations gives insight into N2O 

production pathways instead of net N2O rates only. For instance, Snider (Snider 2011) shows a large 

difference in δ15N-N2O produced by nitrification versus denitrification and ascribes values to the 

intermediate denitrification ε18O values (ε 1, ε 2, ε3 etc.) and to oxygen exchange. In this study, high 

ε
15N and ε net

18O values at low N2O production rates indicate that more N2O consumption must be 

occurring in low-NO3
- incubations than in high-NO3

- incubations. N2O reductase may be inhibited by 

NO3
- or NO2

- or may have a longer activation time when substrate is more plentiful. Thus, stable 

isotopic analysis of N2O can indicate changes to the N2O:(N2O+N2) ratio caused by N2O reduction, 

which results in net N2O production decreases, and ε15N and ε net
18O increases. Advances in laser 

spectrometry likely will make N2O stable isotopic analysis cheaper and easier than N2 concentration 

measurement, which is easily contaminated with air (Groffman et al. 2006). Thus, stable isotopic 

analysis of N2O can provide important information about N2O production pathways in incubations, 

and can suggest information about the N2O:(N2O+N2) ratio, while making N2 analysis unnecessary. 

5.5 Conclusions 

Denitrification incubations with Grand River sediment always produced N2O. Overall, more N2O was 

produced in sediment from Blair (urbanized, downstream of a large WWTP) than at Bridgeport 

(upstream of urban sources of N pollution). Surprisingly, increasing NO3
- addition from 0.8 to 1.3 g 

N/g-seddw resulted in an order of magnitude increase in N2O production, except in summer at 

Bridgeport. Lower N2O production resulted in higher ε15N and ε net
18O values but the fraction of O 

exchange did not change. High net N2O production and low, steady ε values likely indicate that little 

N2O consumption occurs because N2O reductase (Nos) was inhibited, possibly by high NO3
- or NO2

- 

and/or by a lag in activity relative to other reductases in the denitrification pathway. To separate the 

effects of NO3
-, NO2

-, and incubation time on Nos, further experiments quantifying NO2
- and using 

longer run times must be conducted. 

Stable isotope fractionation (ε) values measured in incubations were within the range of previous 

literature results. They were also similar to those estimated from field data, except for low ε15N and 

ε18O field estimates at night at Blair, where N2O production is very high. This could indicate that the 

N2O:(N2O+N2) ratio is higher at night than in the day at Blair. This suggests that researchers should 

expect that ε15N and ε18O are not consistent throughout large, complex rivers due to changes in redox 
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conditions and substrate that control Nos activity. ε15N and ε18O from rivers are difficult to predict 

and must be measured if N2O isotopic values are studied. 

Additionally, the in-river microbial community may isotopically fractionate more than the captured 

community in incubations. Other possibilities are that instantaneous river water column sampling 

does not accurately reflect isotopic values of NO3
- and N2O in sediment, due to upstream effects, 

sediment NO3
- sources that are not well represented in the water column, etc. While denitrification 

incubations may represent disequilibrated systems with no diffusion and therefore may not be ideal 

models of river sediment behavior, isotopic analysis of incubations yields valuable insight into the 

balance of N2O production consumption (i.e. the N2O:(N2O+N2) ratio) that may not be obvious by 

examining N2O concentration only. 
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Table 5.1: Controls on the enzyme activation and inhibition used in each step of denitrification. 

See Figure 5.1 for the location of enzymes in gram-negative denitrifying bacteria. Transporter 

proteins are also shown, which do not have activating or inhibiting conditions. 

Step Protein used 
Conditions for 
activation 

Conditions for 
inhibition 

NO3
- uptake (outside 

cell to periplasm) 

Unknown porin (Song and 
Niederweis 2012, Steen et al. 
2013) NA NA 

NO3
- transport 

(periplasm to 
cytoplasm) 

NarK1 and NarK2 (Wood et al. 
2002) NA NA 

NO3
-
�NO2

- 
Dissimilatory nitrate reductase 
(Nar) 

Low O2 (Arai 
2011, Moir and 
Wood 2001) 

Oxic conditions; 
N2O (Moir and 
Wood 2001) 

NO2
-
�NO Nitrite reductase (Nir) 

Low O2 (Arai 
2011) 

Oxic conditions 
(Moir and Wood 
2001) 

NO�N2O Nitric oxide reductase (Nor) 
Low O2 (Arai 
2011) 

Oxic conditions 
(Moir and Wood 
2001); high NO3

- 
(Firestone et al. 
1979) 

N2O�N2 Nitrous oxide reductase (Nos) 

Low O2 (Arai 
2011), onset of 
denitrification  

Oxic conditions 
(Moir and Wood 
2001); moderate 
NO3

-; low NO2
- 

(Firestone and 
Tiedje 1979) 

 

  



 

 120 

Table 5.2: Experimental set-up of denitrification experiments. 

Season Site 
NO3

- 
Addition 

Treatment 
Name 

δ
18O-H2O (number of 

replicates) 

Spring 

Bridgeport 

High BR-A 

Low (2) 
Medium (2) 

High (2) 

Low BR-B 

Low (2) 
Medium (2) 

High (2) 

Blair 

High BL-A 

Low (2) 
Medium (2) 

High (2) 

Low BL-B 

Low (2) 
Medium (2) 

High (2) 

Summer 

Bridgeport 

High BR-C 

Low (2) 
Medium (2) 

High (2) 

Low BR-D 

Low (2) 
Medium (2) 

High (2) 

Blair 

High BL-C 

Low (2) 
Medium (2) 

High (2) 

Low BL-D 

Low (2) 
Medium (2) 

High (2) 

Autumn 

Bridgeport 

High BR-E 

Low (2) 
Medium (2) 

High (2) 

Low BR-F 

Low (2) 
Medium (2) 

High (2) 

Blair 

High BL-E 

Low (2) 
Medium (2) 

High (2) 

Low BL-F 

Low (2) 
Medium (2) 

High (2) 
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Table 5.3: Physical and chemical properties of sediments used in denitrification experiments. 

BD = below detection. 

 Bridgeport Blair 
 Spring Summer Autumn Spring Summer Autumn 
Sediment 
Saturation 
Capacity 
(g H2O/g-
seddw) 0.46 0.41 1.00 0.43 0.57 0.74 
Sediment 
Organic 
Content 
(%) 2.2 1.7 5.4 2.1 2.6 3.9 
NH4

+ (µg 
N/g-
seddw) BD BD BD BD BD BD 
NO3

- (µg 
N/g/seddw) BD BD BD BD BD BD 
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Table 5.4: Summary of N2O production rates, N2O isotopic values, isotopic effects and 

percentage oxygen exchange in denitrification incubations. 

Treatment 

Mean N2O 
Production 

Rate 
(nmol 

N2O/h/g-
seddw)  
[1σ, n] 

Mean 
δ

15N-N2O 
(‰) 

[1σ, n] 

Mean N 
isotopic 

fractionation 
(ε) (‰) 
[1σ, n] 

Percent 
H2

18O 
incorporation 

into N2
18O 

(%) 
[1σ, n] 

Mean net O 
isotopic 

fractionation 
(εnet) (‰) 

[1σ, n] 
BR-A 32 -10.4 -23.8 74 56.3 

Spring, high NO3
- [8.2, 24] [1.0, 24] [1.0, 24] [4, 24] [1.3, 20] 

BR-B 2.8 -2.9  -16.5 74  67.0 

Spring, low NO3
- [1.1, 24] [1.9, 12] [1.9, 12] [5, 12] [1.6, 12] 

BR-C 32 -12.4 -25.9 80  44.2  
Summer, high NO3

- [3.4, 24] [0.6, 24] [0.6, 24] [9, 24] [2.3, 24] 
BR-D 10 -3.1 -21.5 71 52.4 

Summer, low NO3
- [2.3, 24] [2.7, 24] [1.0, 18] [15, 18] [4.0, 18] 

BR-E 43 -6.9 -21.3 77 48.6 

Autumn, high NO3
-  [32, 24] [1.9, 10] [1.4, 7] [28, 7] [8.0, 7] 

BR-F 2.9 1.2 -12.4 79 60.0 

Autumn, low NO3
- [1.1, 24] [2.9, 13] [2.9, 13]  [7, 12] [2.1, 12] 

           
BL-A 31 -13.6 -27.1 74  51.1 

Spring, high NO3
- [12, 24] [1.3, 24]  [1.3, 24] [3, 24] [1.1, 24] 

BL-B 9.1 -10.6 -23.8 83 58.1 

Spring, low NO3
- [4.7, 24] [1.7, 24] [1.3, 18] [5, 18] [1.5, 19] 

BL-C 65 -10.9 -24.3 60 50.0 

Summer, high NO3
- [5.3, 24] [1.0, 24] [1.0, 24] [9, 24] [2.2, 24] 

BL-D 9.0 -3.1 -16.6 67  63.1 

Summer, low NO3
- [1.6, 26] [2.7, 24] [2.6, 23] [15, 23] [3.8, 23] 

BL-E 45 -11.6  -25.7 71 54.2 

Autumn, high NO3
- [15, 24] [1.9, 23] [1.6, 20] [17, 20] [4.3, 20] 

BL-F 7.8 -4.5 -18.1 75 66.4 

Autumn, low NO3
- [0.9, 24] [1.6, 23] [1.6, 2.0] [8, 20] [2.3, 20] 
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Figure 5.1: Denitrification in gram-negative bacteria. Transporters (active or passive) are 

represented by ovals, and enzymes by grey boxes. Non-charged gases NO, N2O and N2 can 

freely diffuse through the cell’s outer membrane by NO3
-
 and NO2

-
 must be transported across 

it. Nar: nitrate reductase; Nir: nitrite reductase; Nor: nitric oxide reductase; Nos: nitrous oxide 

reductase. Isotopic fractionations for 
18

O only are shown for brevity. The net isotopic 

fractionation (ε net
18

O) is the sum of ε 1 through ε 4. O exchange with H2O may occur with NO2
-
 

or NO, inside or outside the cell, but is only shown with NO2
-
 for brevity. The possible 

fractionation resulting from O exchange is shown as εH2O. Figure adapted from Figure 3 

(Averill 1996) and Figure 1 (Steen et al. 2013). 
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Figure 5.2: Map of the Grand River, Ontario, Canada, showing the sites were sediments were 

collected for incubations. Bridgeport is upstream of the central urban area, and Blair is 5 km 

downstream of the largest WWTP. Blair regularly experiences night-time hypoxia and high 

night-time N2O fluxes in summer (see Chapter 2). 
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Figure 5.3: N2O production rate (grey bars), δ
15

N-N2O (rel. AIR) (black triangles) and δ
18

O-

N2O (rel. VSMOW) (white, grey and black circles) versus time for denitrification incubations of 

Grand River sediment collected at Bridgeport and Blair. Error bars represent standard 

deviation (n = 6 for N2O production and δ
15

N, n = 2 for δδδδ18181818ΟΟΟΟ). White circles represent low δδδδ18181818ΟΟΟΟ-
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H2O addition; grey circles represent medium δδδδ18181818ΟΟΟΟ-H2O addition, and black circles represent 

high δδδδ18181818ΟΟΟΟ-H2O addition. Spring (panels 1 to 4), summer (panels 5 to 8) and summer (panels 9 to 

12) incubations are shown. 
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Figure 5.4: The relationship between δ
18

O-H2O and δ
18

O-N2O in denitrification incubations, indicating that O exchange occurs. 

Horizontal lines represent no O exchange. Angled dashed lines represent 100% O exchange. The slope of the best-fit line is the fraction O 

exchange and the y-intercept is the εεεεnet
18

O (with O exchange removed). Spring (panels 1 through 4), summer (panels 5 to 8) and autumn 

(panels 9 to 12) are shown. High-NO3
- 
incubations (1.3 mg N/g-seddw) are shown on the left and lower-NO3

- 
incubations (0.8 mg N/L) are 

shown on the right. εεεεnet
18

O values and fraction O exchange are summarized in Table 5.4.  
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Figure 5.5: Net N2O production rate versus ε
15

N (top) and εεεεnet
18

O (bottom) in incubations. 

Spring: grey; summer: black; autumn: white. Circles and triangles: high NO3
-
 additions; 

squares and stars: low NO3
- 
additions. 
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Figure 5.6: Denitrification isotopic fractionations (ε
15

N and ε net
18

O) for all incubations and for 

estimated field values from Bridgeport and Blair. Day and night isotopic fractionation values 

are shown because of diel changes in the isotopic ratios of NO3
- 
and N2O in the Grand River. 

The linear relationship (all incubation points) has a slope of 1.1 (r
2
 = 0.51).  
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Figure 5.7: Conceptual model showing a possible mechanism for lower N2O yield and higher 

ε
15

N and εεεεnet
18

O values in low-NO3
- 
incubations. Denitrification enzymes and concentrations of N 

compounds are known to vary over time on the onset of conditions favouring denitrification (i.e. 

anoxia, NO3
-
 supply).The lag in N2O reductase (Nos) results in an initial peak, then decline, of 

N2O. The temporal locations of high- and low-NO3
- 
incubations discussed in this study are 

shown in boxes. A positive relationship between Nos lag time and NO3
- 
substrate concentration 

has not been demonstrated but is required to validate this model. 
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Figure 5.8: Diel changes in DO, N2O concentration, δ
15

N-N2O and δ
18

O-N2O at Blair on June 

26-27, 2009. The vertical line indicates dawn (5:45 AM, EDT). Note that N2O concentrations 

peak around the onset of minimum DO concentration.



 

 

 

 

Chapter 6: NO3
- Inputs, Losses and Stable Isotopic Values in the 

Grand River, Ontario 

Abstract 

Nitrate (NO3
-) can contaminate drinking water and impact riverine ecological health. Though rivers in 

agricultural catchments are susceptible to high NO3
-, watershed NO3

- dynamics are variable and 

difficult to predict. NO3
- concentrations and δ15N values were measured at 23 sites along the entire 

Grand River in early summer, later summer and spring. Using flow and surface area information for 

each reach, a NO3
- mass balance was created. Denitrification was estimated by multiplying areal N2O 

flux with a range of values representing N2O:(N2O+N2) ratios produced during denitrification. The 

river was divided into four sections based on land use and geomorphology (Upper Agricultural, 

Urban, Groundwater Recharge and Lower Agricultural). The river almost always gained NO3
- in each 

reach. However, areal NO3
- gains were lowest in the Upper Agricultural section. Denitrification and 

other NO3
- losses were low relative to other fluxes but were highest in the Urban and Lower 

Agricultural sections. Estimated δ15N-NO3
- values of NO3

- added to the river were generally consistent 

with previously measured δ15N-NO3
- values for inputs to the Grand River, such as tributaries in the 

Upper Agricultural section, WWTP effluent in the Urban section, and groundwater in the 

Groundwater Recharge section. Estimated NO3
- inputs were much lower than watershed-scale NO3

- 

leaching, indicating that 68% to 83% of NO3
- loss occurs in smaller streams, wetlands and riparian 

zones in this watershed and never enters the Grand River. 5% to 19% of watershed NO3
- was lost in 

the river, and 13% was exported to Lake Erie. Denitrification and other NO3
- losses reduce NO3

- 

concentration in the Grand by < 2 mg N/L at most sites and times. This study underestimates annual 

NO3
- export to Lake Erie (because storms and snowmelt were not included), indicating that the Grand 

River denitrifies an even smaller percentage of incoming NO3
- than estimated. Low denitrification 

rates are surprising, given that the Grand River has ideal conditions for high denitrification rates (high 

NO3
-, high dissolved organic carbon, low dissolved oxygen and high sediment surface-to-volume 

ratio). Low in-river denitrification rates and undesirable side effects of hypoxia in rivers suggest that 

effective NO3
- reduction on the watershed scale involves reducing NO3

- application to the watershed 

(via agricultural best management practices) and creating denitrification hotspots on the landscape 

such as wetlands and riparian zones. 
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6.1 Introduction 

Nitrate (NO3
-) is often the most common form of inorganic, biologically reactive nitrogen in 

freshwaters (Burgin and Hamilton 2007). It is an important macronutrient, and can limits primary 

productivity in freshwater environments, particularly in high-phosphate systems (Davidson and 

Seitzinger 2006). Excess NO3
- can contribute to eutrophication of freshwaters, which can cause algal 

blooms, hypoxia (dissolved oxygen (DO) < 2 mg/L), fish kills and reduced biodiversity (Cameron et 

al. 2013). 

The Grand River watershed, southern Ontario, Canada is dominated by agriculture and has several 

large urban wastewater treatment plants (WWTPs). The river has moderate to high nitrate (NO3
-) 

concentrations (below detection to ~10 mg N/L). NO3
- concentration generally increases downstream, 

and NO3
- can approach or exceed drinking water limits (10 mg N/L, (Health Canada 2012)) especially 

in the Upper Agricultural area, which has been attributed to N leaching from agriculture (Cooke 

2006). 

High riverine NO3
- (and NH4

+) can affect communities that rely on the Grand River for drinking 

water, such as Brantford (population: 90 000). Additionally, The Grand River is the largest Canadian 

river entering Lake Erie, which has impacted water quality, including algal blooms resulting in 

hypoxia and fish kills (Vanderploeg et al. 2009). The Saint Lawrence River and estuary, downstream 

of Lake Erie, also experience eutrophication, and hypoxia-related fish kills (Ouellet et al. 2010). 

There is therefore much interest in the assimilative capacity of nutrients of the Grand River. Large 

WWTPs in the watershed are currently scheduled to upgrade from ammonium (NH4
+) to NO3

- 

effluent release in 2018 (Ouellet et al. 2010). Simulations run on the Grand River Simulation Model 

(GRSM) have indicated that NO3
- concentrations will increase dramatically in winter after this change 

(Ouellet et al. 2010). 

Currently, it is unclear how NO3
- sources to the Grand River (agricultural fertilizers and manure, 

WWTP effluent, etc.) change spatially and temporally. NO3
- use and production in the river is also not 

well-understood. NO3
- is likely being continually assimilated and released by organisms in river, but 

net changes in river NO3
- resulting from biological cycling are unknown. Similarly, denitrification 

(sequential anoxic reduction of NO3
- to N2O and N2) occurs, indicated by high N2O fluxes during 

hypoxia events in the Grand River (Chapters 2 and 3), but the rates and spatial distribution are 



 

142 

 

 

unknown. Denitrification occurs continually at relatively low rates in oxic water systems, likely in 

anoxic sediments (Chapters 3 and 5). Net nitrate loss (attributed to denitrification) and gain can occur 

in reservoirs in the Grand River, but this depends on season and reservoir management (B. De Baets, 

personal communication). 

Denitrification rates in rivers can be difficult to measure because they are spatially and temporally 

variable (Baulch et al. 2010), requiring good sampling coverage, and because N2 is difficult to 

measure without atmospheric contamination. In small streams, 15N tracers can be added, and any 15N2 

or 15N2O produced attributed to denitrification (Mulholland et al. 2004, Mulholland et al. 2008). This 

is impractical for large rivers. Instead, previous studies in large rivers have used N mass balances in 

rivers, measuring concentrations of NO3
- and N2, and attributing all N2 above atmospheric saturation 

to denitrification (Pribyl et al. 2005). This approach tends to produce large errors because rivers are 

seldom at atmospheric equilibrium, particularly as water temperatures change on a diel scale. This 

problem is addressed by a denitrification model measuring the ratio of dissolved N2 to dissolved 

argon (Ar) in the river, which corrects for temperature-based disequilibrium with biologically-inert Ar 

(Laursen and Seitzinger 2002). The model requires very precise sampling to avoid contamination 

with air and a specialized membrane-inlet mass spectrometer (MIMS). It was unsuccessfully 

attempted at two sites in the Grand River in 2007 and 2008. Ar and N2 concentrations increased with 

temperature instead of decreasing, suggesting that external Ar sources (e.g. groundwater) were more 

significant than temperature effects. N2-Ar sampling can also be compromised by N2 losses via 

biological N2 fixation, and N2 production by other biological reactions such as anammox.  

Other approaches include measuring natural abundance δ15N-NO3
- in rivers and calculating NO3

- 

loss when the isotopic fractionation factor is known using the Rayleigh equation (Johannsen et al. 

2008). However, this approach cannot detect low denitrification rates. For example, if the initial δ15N-

NO3
- value is 10‰ and a typical isotope fractionation factor (α) of 0.985, losing 10% of the original 

pool of NO3
- results in a change in δ15N-NO3

- of 1.6‰, which may well be within natural variability 

of NO3
- sources to the river. The Rayleigh equation describes systems that are closed to substrate (i.e. 

no NO3
- is added as denitrification occurs) and in which products (N2O, N2) are instantaneously 

removed; these conditions are unlikely in rivers dominated by multiple non-point sources of NO3
-. 

This approach also ignores completed denitrification in sediments, in which no NO3
- remains for 

measurement (Mayer et al. 2002). 
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One by-product of denitrification unused by the methods above is nitrous oxide (N2O). N2O is an 

obligate intermediate in denitrification and is relatively easy to measure with an electron capture 

detector on a gas chromatograph. Assuming steady state N2O production, N2O flux to the atmosphere 

equals N2O production rate. N2O flux rates can be converted to denitrification rates by estimating an 

N2O:N2 ratio for denitrification production. This ratio has been shown to vary with redox conditions 

(Silvennoinen et al. 2008), NO3
- and nitrite (NO2

-) concentration (Firestone et al. 1980, Silvennoinen 

et al. 2008) and temperature (Silvennoinen et al. 2008), as discussed in Chapter 5. However, a range 

of ratios can be used to estimate likely minimum and maximum denitrification rates.  

A benefit of using N2O to estimate denitrification is that N2O is almost exclusively produced by 

denitrification (as nitrification yields of N2O are low), while N2 is produced by other biological 

reactions such as anammox (anaerobic ammonia oxidation) and is used by N2 fixing organisms (e.g. 

cyanobacteria, heterotrophic bacteria and fungi). Likewise, NO3
- loss in rivers could be due to 

biological reactions such as assimilation and dissimilatory nitrate reduction to ammonia (DNRA). 

N2O is also produced by hydroxylamine oxidation during nitrification (oxidation of NH4
+ to NO3

-) 

(see Section 1.21). However, N2O production by this pathway in rivers is typically low for a variety 

of reasons. NH4
+ concentrations are low in rivers (Stief et al. 2003) because of rapid biological 

uptake, which has much higher rates than nitrification (Webster et al. 2003). Little N2O is produced 

per mole NH4
+ nitrified under oxic conditions (Klemedtsson et al. 1988). N2O is produced at higher 

rates by “nitrifier-denitrification”, or NO2
- reduction by nitrifiers in anoxic conditions (see Section 

1.2.4); this is considered part of denitrification in this study. Therefore, N2O production in the Grand 

River is entirely attributed to denitrification in this study.  

Denitrification rates in rivers are not well-quantified, even though there is much interest in using 

rivers (as well as wetlands, riparian zones, groundwater, etc.) to naturally attenuate NO3
- before it 

enters coastal areas (Groffman et al. 2006). Similarly, it is difficult to quantify N inputs on the 

watershed scale. A common approach is NANI (Net Anthropogenic Nitrogen Inputs), in which 

anthropogenic N inputs to a watershed are tallied. There is a linear relationship between NANI 

(normalized to watershed surface area) and N export (normalized to surface area) in temperate 

watersheds (r2 = 0.60, n = 154, (Howarth et al. 2012)), which is used to estimate watershed N export 

from watersheds. NANI includes N from fertilizers, manure, N fixation by crops, atmospheric N 

deposition and net movement of N in human and animal feed to or from the watersheds. The last two 



 

144 

 

 

parameters can be difficult to measure. Predictability can be increased slightly by including discharge 

(Q) and splitting data at a NANI value of 1070 kg N/km2/yr. However, this this method does not 

address in-stream N processing or examine N export on a seasonal and spatial scale within a 

watershed. 

Additionally, the amount of N entering large rivers from watersheds is not well understood because 

the amount of N lost or stored in soils, wetlands, groundwater and tributaries is not well quantified. 

This value can be estimated with mechanistic watershed models (e.g. SWAT, RiverStrahler), but 

these require significant input data. For instance, mandatory inputs for SWAT are a digital elevation 

model, a land cover/crop database, soil layers, a tillage database, sub-basin parameters, and land 

management scenarios (Arnold et al. 2011). Mandatory inputs for RiverStrahler are physical 

parameters (slope, length of rivers and tributaries; area of ponds and reservoirs, and total watershed 

area) and meteorological data (rainfall, evapotranspiration, snow and air temperature) (Sferratore et 

al. 2005). However, a NO3
- isotope mass balance using river NO3

- masses and δ15N-NO3
- values and 

denitrification estimates from N2O fluxes can predict the amount of N entering the river for 

comparison with watershed N application with minimal inputs. This approach can shed light on the 

efficiency of the watershed versus the main stem river for removing NO3
- as well as address NO3

- 

exports from the watershed compared to watershed NO3
- loading. 

Thus, the purpose of this study is to create a NO3
- mass balance for the entire Grand River. 

Denitrification will be estimated using N2O fluxes as described above, and sources and sinks of NO3
- 

in the river will be investigated. Because mass balances only examine net fluxes to and from the river, 

a companion NO3
- isotope mass balance was also created. This is useful, as δ15N-NO3

- values can be 

distinct for different NO3
- sources (e.g. synthetic fertilizer vs. manure or sewage). When NO3

- is lost 

from a reach, the apparent isotopic fractionation between NO3
- in the reach and the net loss can be 

calculated. This can help determine the method of loss, as no isotopic fractionation is known to occur 

with biological assimilation of NO3
- but denitrification has a strong isotopic fractionation. Similarly, 

the isotopic ratios of net NO3
- gain can be calculated; this can be compared to isotopically 

characterized sources of NO3
- to the river (e.g. tributaries, groundwater, WWTP effluent) to determine 

important sources of NO3
- to river. 

The last purpose of this study is to tally estimated NO3
- sources to the river (WWTP effluent, N 

leaching from agricultural fertilizers, manure and crop residue) and compare to NO3
- losses from and 



 

145 

 

 

gain to the Grand River. This could provide valuable information on relative rates of NO3
- loss in the 

main river channel versus in smaller tributaries, wetlands and riparian zones in the watershed, thus 

helping focus N management policy.  

6.2 Methods 

6.2.1 Site Descriptions 

The Grand River is a 300 km-long, seventh-order river in southern Ontario, with an average annual 

discharge of 56 m3/s to Lake Erie (Aquaresource 2009). The watershed substrate is mostly calcite-rich 

glacial till and glaciolacustrine clay. In some areas, limestone bedrock is exposed. About 70% of the 

7000 km2 watershed is used for agriculture. Corn, soybeans and alfalfa are the most common crops 

(2006 Canada Census data clipped to the Grand River Watershed, Grand River Conservation 

Authority, personal communication). Over half of the 975 000 watershed residents live in cities with 

wastewater treatment plants (WWTPs). 

For this study, the entire river from headwaters to mouth was sampled. Twenty-three sampling sites 

along the river (Figure 6.1) were chosen to correspond to Provincial Water Quality Monitoring 

Network (PWQMN) sites (Sites 3, 5, 6, 8, 9, 10, 11, 13, 20 and 22), Grand River Conservation 

Authority water quality monitoring sites (Sites 6, 9, 11, 13, 16, 20, 23) or flow gauged sites (Sites 1, 

3, 6, 8, 9, 20, 22), or are influenced by points of interest such as dams (Sites 6, 12 and 21), WWTPs 

(Sites 10, 11, 12, 15 and 17) and tributaries (Sites 9, 12, 15 and 18) (Table 6.1). The sites can be 

grouped based on geomorphology and land use as follows: 

Upper Agricultural Section (Sites 1 to 9): 

This section is characterized by compacted glacial diamict and hummocky topography (Karrow and 

Morgan 2004). Regional groundwater input is minimal due to the low permeability of the diamict 

though local groundwater inputs in sandy and gravelly areas exist (Cooke 2006). Land use is 

primarily agricultural. Small WWTPs on the Grand River are found in the towns of Dundalk 

(population: 2000), Grand Valley (population: 2700), Fergus (population: 19 000), Elora (population: 

4 500) and Conestogo (population: 1300). Nitrogen sources are expected to be primarily from 

agricultural sources (fertilizer and manure) and septic beds. Site 6 is located immediately downstream 

of the bottom-draw Shand Dam on Bellwood Lake reservoir. The Conestogo River, a sixth-order 

major tributary of the Grand River, enters the Grand between Sites 8 and 9.  
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Urban Section (Sites 10 to 12) 

This section is dominated by the Kitchener-Waterloo-Cambridge urban area (combined population: 

450 000). Another large city, Guelph (population: 127 000) is upstream on the Speed River, which 

joins the Grand River between Sites 11 and 12. N sources are expected to be almost entirely from 

WWTPs and urban runoff. Groundwater input is minimal due to the compacted clay diamict and 

urban impervious surfaces (Cooke 2006). Site 10 is downstream of the Waterloo WWTP, and Sites 11 

is downstream of the Kitchener WWTP, and Site 12 is downstream of the Preston WWTP (Table 

6.1). This reach is known for summer night-time hypoxia (Chapter 2) due to high macrophyte 

biomass and respiration, particularly at Site 11 (Jamieson 2010). Site 12 was sampled in the Park Hill 

reservoir. 

Groundwater Recharge Section (Sites 13 to 16):  

This section experiences significant groundwater input due to the porous sands and gravels of the 

Paris Moraine (Westberg 2012). Land use is mostly agricultural. Site 13 is downstream of the 

Hespeler WWTP (Table 6.1). Paris (population: 12 000) is upstream of Site 15 and has a small 

WWTP. Expected N sources are agricultural runoff and groundwater and septic beds. The Nith River, 

which has an agriculture-dominated subwatershed, enters the Grand River upstream of Site 15. 

Nighttime hypoxia has not been observed (minimum measured: 3.7 mg/L, n = 236) in any sampling 

from May 2006 to December 2012. 

Lower Agricultural Section (Sites 17 to 23): 

This section is characterized by glaciolactustine clays and flat topography. Agriculture dominates 

the landscape. The low permeability of the clay suggests that groundwater input is minimal. The city 

of Brantford’s WWTP discharges upstream of Site 17. The Caledonia WWTP is upstream of Site 19 

and the Cayuga WWTP is upstream of Site 22. The Fairchild Creek confluence is upstream of Site 18. 

Site 22 is in the Dunnville reservoir and is deep and slow moving (Cooke 2006). 

6.2.2 Sampling Protocol 

Three sampling sessions were conducted: June 14, 2007; September 5, 2007 and April 24, 2009. The 

sessions were chosen to represent the early summer growing season, the late summer with low flow 

and high production, and the high flow, early growing season where epilithion but little macrophyte 

growth had occurred.  
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Each site was sampled multiple times to capture diel variability. Every site was sampled before 

sunrise and close to solar noon. Additionally, several sites (Sites 1, 4, 8, 12, 16, 20 and 23) were 

sampled between these two times, around 10:30 AM. 

At each sampling time, water temperature was measured with a multiprobe (YSI 556 MPS) or 

thermometer. All sample bottles were filled at wrist-depth (~ 10 cm), in moving water. 125 mL 

opaque HDPE bottles were filled with water for later pH and specific conductivity analysis. 300 mL 

glass BOD bottles with ground glass stoppers were used to collect water for dissolved oxygen 

concentration and fixed with Winkler reagents (American Public Health Association 1995). 1 L 

HDPE Nalgene bottles were used for NO3
- concentration and isotope analyses. 125 mL glass serum 

bottles were used for N2O concentration analysis and 500 mL borosilicate glass jars were used for 

N2O isotope analysis. Both N2O bottles were capped with stoppers underwater using a needle to 

remove any air bubbles and were preserved in the field with 2 mL saturated mercuric chloride 

solution per litre sample. All samples were kept cool and dark until analysis. 

6.2.3 Chemical Analyses 

Conductivity and pH and conductivity were measured in the laboratory with a multiprobe (YSI 556 

MPS). Dissolved oxygen concentration was determined using Winkler titration (standard deviation of 

multiple potassium biiodate standards, hereafter called “precision”: 0.2 mg/L, detection limit: 0.2 

mg/L) (American Public Health Association 1995). NO3
- concentration and isotope samples were 

filtered to 0.45 µm. NO3
- concentrations were run on a Dionex ICS-90 ion chromatograph (precision: 

0.07 mg N/L, detection limit: 0.05 mg N/L). N2O concentration samples were prepared with a 

headspace overpressurization method (after (Lide and Frederikse 1995)). Headspace was then 

extracted with a syringe and run on a Varian 3800 CP gas chromatograph with an electron capture 

detector designed for greenhouse gas analysis. Precision was 6% or less.  

6.2.4 Isotopic Analyses of NO3
- and N2O 

NO3
- isotope samples were run with three methods: silver nitrate (AgNO3) burning, chemical 

denitrification and biological denitrification. Due to sample collection size and budget limits, many 

samples were only run by one or two methods. When available, δ15N-NO3
- values from multiple 

methods and time points (i.e. pre-dawn and solar noon) were averaged for each site for each sampling 

occasion. Linear correlations existed between δ15N determined by AgNO3 and chemical denitrifier 
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methods (r2 = 0.60, n = 4, Figure 6.2) and between chemical and biological denitrifier methods (r2 = 

0.82, n =16, Figure 6.2). Correlations similar for δ18O-NO3
- (r2 = 0.98 and 0.86, respectively). 

However, the methods are different in their handling of NO2
-, which typically has a δ18O value near 

water due to rapid chemical oxygen exchange (Casciotti et al. 2007). The measureable presence of 

NO2
- was noted but not quantified at some locations in the Grand River, particularly at Site 11 at 

night in summer when dissolved oxygen is > 2 mg/L. Because δ18O-NO3
- values may be influenced 

by NO2
-, δ15N-NO3

- , not δ18O-NO3
-, was used in the isotope mass balance. 

For the AgNO3 method, NO3
- was concentrated using an anion exchange resin (BioRad AG 1-X8, 

100-100 mesh, chloride form), then reacted with silver chloride (AgCl) to from AgNO3, then freeze-

dried (Silva et al. 2000). The resulting AgNO3 was analyzed using a breakseal method (Spoelstra et 

al. 2001) and a VG PRISM mass spectrometer at the Environmental Isotope Lab, University of 

Waterloo. Precision of δ15N-NO3
- values was 0.3‰. 

The chemical denitrification method reduces NO3
- to NO2

- using cadmium, which is then converted 

to N2O using sodium azide (McIlven and Altabet 2005). Resulting N2O was then run on a continuous 

flow-isotope mass spectrometer (CF-IRMS) in line with a TraceGas gas chromatograph pre-

concentrator system (GV instruments, Thermo Electron Corp., Manchester, UK). NO2
- present in the 

original sample is included in this analysis. Precision of δ15N-NO3
- values was 0.3‰. 

NO3
- isotope samples run by biological denitrification filtered to 0.2 µm to remove microbes, 

frozen in 30 mL plastic bottles, and analyzed at University of California Davis Stable Isotope Facility, 

where samples were consumed by denitrifying bacteria with no N2O reductase (Sigman et al. 2001). 

The resulting N2O was then analysed on a ThermoFinnigan GasBench + PreCon trace gas 

concentration system interfaced to a ThermoScientific Delta V Plus isotope-ratio mass spectrometer 

(Bremen, Germany) at the Environmental Isotope Lab, University of Waterloo. Precision was 0.3‰ 

(John Spoelstra, personal communication). 

Dissolved N2O samples were collected with a purge and trap system (Thuss 2008), and analyzed 

with the CF-IRMS described above. 15N/14N and 18O/16O ratios in N2O samples were reported in delta 

(δ) notation in parts per thousand (permil, ‰): 

δ = (Rsample/Rstandard – 1)       Equation 6.1 
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where R is the ratio of the heavy to light isotope (e.g. 15N/14N). All data are reported relative to 

international standards for N (atmospheric N2: AIR: 15N/14N = 0.0036765 (Coplen et al. 2002)) and O 

(Vienna Standard Mean Ocean Water, or VSMOW; 18O/16O = 0.0020052 (Coplen et al. 2002)).  

6.2.5 Grand River NO3
- Isotope Mass Balance 

In order to estimate NO3
- loading to the Grand River, and δ15N-NO3

- of NO3
- inputs and losses to the 

river, an isotope mass balance of the Grand River was created for each sampling date. In the isotope 

mass balance, the river was divided into 23 reaches, each of which was represented by one sampling 

station. Each reach was represented as a box in a 23-box model, where upstream NO3
- and any NO3

- 

gain or loss was combined and fully mixed. Each mixed pool then underwent denitrification and the 

remainder became the flux to downstream box (Figure 6.3).  

Reaches of the river were divided as in Chapter 3, except that one more reach was added to the end 

(23) by splitting Reach 22 into equal portions. This allowed the most downstream portion of the river, 

exporting to Lake Erie, to be modeled. Each reach is represented by a sampling point of the same 

number (Figure 6.1, Table 6.1). Reach surface areas and depths were estimated by field work 

(Reaches 1 to 6), the Grand River Simulation Model (Anderson 2012) (Reaches 7 to 18), and the 

Waterbody Segment GIS layer of Natural Resource and Values Information System (Ontario Ministry 

of Natural Resources) (reaches 19 to 23) (Table 6.1). Depth data were estimated similarly, except for 

Reaches 19 to 23, where appropriate GIS data did not exist. There, an exponential discharge-depth 

relationship for each sampling day was used (r2 = 0.5 to 0.7, Figure 6.4).  

6.2.5.1 Estimation of Denitrification Rates 

To construct a NO3
- model, denitrification rates were estimated for each reach by assuming a constant 

N2O:(N2+N2O) ratio for denitrification and using average daily N2O emission (Chapter 3). N2O 

production is assumed to occur on a daily scale at steady state; thus N2O production rate equals N2O 

emission rate. Literature values for N2O:(N2O+N2) produced in denitrification vary dramatically from 

0.001 to 0.833 with a mean value of 0.11 (Table 6.2). However, very high values (> 0.10) have only 

been noted in soil experiments, not natural systems; the mean value of river sediment experiments is 

0.01 (Table 6.2). The IPCC assumes a ratio of 1:400 (0.0025) for N2O from denitrification in rivers, 

which is used here as the low-end estimate. For the high-end estimate, a 1:11 (0.0909) ratio is used, 

similar to the mean literature value, including soils. 
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Denitrification rates were estimated for each section as: 

DEN = N2O emission*R       Equation 6.2 

Where DEN is the rate of denitrification (mg N/m2/h), N2O emission is the rate of emission of N2O 

to the atmosphere (mg N/m2/h), and R is the ratio of N2O to (N2O + N2) produced during 

denitrification (0.0025 and 0.0909 for the low and high estimates, respectively). Note that a positive 

value for DEN indicates the removal of NO3
- from the reach via denitrification. 

Daily average N2O emission was rarely negative (Reach 2 in June; Reaches 2 and 3 in September). 

When N2O emissions were negative, DEN could not be estimated and was set to zero. 

6.2.5.2 NO3
- Mass Balance 

A mass balance was used to solve for residual gain or loss of NO3
- in each reach as: 

GAIN or LOSS = EXP – UPS + DEN      Equation 6.3 

where EXP is the NO3
- export from the reach (measured reach NO3

- concentration multiplied by reach 

discharge, divided by reach surface area), UPS is the NO3
- export from the reach above, and DEN is 

the rate of denitrification in the reach. The residual is termed GAIN when positive (indicating a net 

gain of NO3
- to the reach) and LOSS when negative (indicating a net loss of NO3

- from the reach, not 

including denitrification). All are in units of mg N/m2/h. UPS is set to zero for Reach 1, the 

uppermost reach of the river.  

6.2.5.3 Isotopic Mass Balance 

An isotope mass balance of NO3
- was completed as a check on the NO3

- mass balance, and to provide 

information about the sources of NO3
- added to the river and NO3

- removal processes in the river. 

Because δ18O-NO3
- in the Grand River has been shown to change not only due to addition and 

processing (removal) of NO3
-, but also by O exchange between water and NO2

- (Snider 2011), only 

δ
15N-NO3

- was used in the mass balance. 

δ
15N-NO3

- values for EXP (δEXP) and UPS (δUPS) are the measured values for the reach in 

question and the reach above, respectively. δ15N values of the net gain or loss of NO3
- (δGAIN and 

δLOSS) were solved using the Rayleigh distillation equation. The Rayleigh equation was determined 

for open systems in which the product (here, N2O + N2) does not react with the substrate (NO3
-) and 

in which the substrate pool is finite and closed (not replenished during the reaction). The first 
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assumption is valid. However, in this model, the combined pool of UPS and GAIN (or LOSS) 

undergo denitrification and the remaining NO3
- is exported (EXP) Figure 6.3. A literature review 

shows a range of fractionation factor (α) values for complete denitrification (NO3
- 
� N2) between 

0.980 and 0.998 (Table 6.3); a moderate value 0.985 is used here. Fractionation factors obtained from 

sediment incubations (Chapter 5) were not used here because they only represent partial 

denitrification (NO3
-
�N2O). The Rayleigh equation applied to the box model is as follows: 

δWgh	 = i�\hc×\hc	�	�jklJ×jklJ\hc�jklJ m × B(n	�)     Equation 6.4 

where UPS and GAIN are as described in Equation 6.3, δEXP is the δ15N-NO3
- value for EXP, δUPS 

is the δ15N-NO3
- value for UPS, f is the fraction remaining after denitrification, and α is the isotopic 

fractionation factor for denitrification. The equation is identical when there is a net loss of NO3
- (not 

including denitrification losses) to the reach, but GAIN and δGAIN are replaced by LOSS and 

δLOSS, respectively. 

The fraction remaining after denitrification is: 

B = 3o:/(H:8 + p4q�)       Equation 6.5 

To find δGAIN, Equation 6.4 is rearranged to: 

rp4q�	 = i(H:8 + p4q�) × r3o:
Bns� − (rH:8 × H:8)m /p4q�   Equation 6.6 

δLOSS is computed identically, with the GAIN term replaced by LOSS. 

δDEN, or the δ15N value of the N2O + N2 products of denitrification, is calculated using an isotope 

mass balance: 

�tWJ	 = 	 (�\hc × \hc	 + 	�jklJ × jklJ	–�Wgh × Wgh)/tWJ  Equation 6.7 

where GAIN and δGAIN are replaced by LOSS and δLOSS if applicable.  

6.2.6 Watershed-Scale NO3
- Mass Balance 

NO3
- mass fluxes were summed from each section to give total fluxes for the Grand River. These 

values were then time-weighted to give annual average values for DEN and RES. For time-weighted 

averages, June was assigned 2.5 months (May through July 15), September was assigned 2.5 months 

(July 16 through Sept) and April was assigned 7 months (October through April) based on a visual 
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inspection of annual discharge and NO3
- concentration data at West Montrose in the year 2007 (Figure 

6.5). Discharge-weighted averages were not used because discharge was often low in fall, winter and 

spring 2007 while NO3
- concentrations were high and were best represented by April NO3

- values. 

Note that this approach underestimates annual NO3
- export from the Grand River because sampling 

did not capture high-flow events when NO3
- concentration was high (e.g. snowmelt, Figure 6.5).  

Instantaneous standing stock of NO3
- in the river was calculated by summing NO3

- concentration 

and water volume of each reach: 

8����A�v	8��!G = 	∑ 
A × 84� × wA��Ax�      Equation 6.8 

where Ci is the daily average NO3
- concentration of reach i, and SAi and Di are surface area and depth 

of reach i, from Table 6.1.  

6.2.7 NO3
- Loading to Watershed 

GAIN fluxes, integrated over the whole river, were compared to (a) NO3
- loading from WWTP 

effluent (from WWTP annual reports), (b) NO3
- loading from septic beds and (c) NO3

- loading from 

agricultural fertilizer use and manure from livestock in the watershed, from empirical equations 

published by the IPCC Fourth Assessment Report (IPCC 2007). Note that agricultural NO3
- loading 

values are for the whole watershed, while GAIN and DEN values are calculated from the Grand River 

main channel only. The IPCC ignores NO3
- in dry and wet atmospheric deposition. 

6.2.7.1 NO3
- Leaching from Septic Beds 

NO3
- leaching from septic beds was estimated by assuming all people not serviced by a WWTP had a 

septic bed. This results in a population of 141 000 people on septic beds in the watershed (total 

population: 950 000; total using WWTPs: 809 000, compiled WWTP annual reports; Mark Anderson, 

personal communication). A literature survey of N leaching per capita results in a range from 0.04 kg 

N/capita/year to 5.6 kg N/capita/year (Table 6.4). This range includes studies measuring NO3
- only, 

dissolved inorganic nitrogen (DIN), total dissolved nitrogen (TDN) and total nitrogen (TN). A mean 

value of 2.5 kg N/capita/year was used in this study.  

6.2.7.2 NO3
- Leached from Fertilizers and Crop Residue 

NO3
- to the watershed via fertilizer and crop residue is calculated as (IPCC 2007): 
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���	234
� 	= 	 (78� 	+ 	9�� 	+ 	9:�: 	+ 	9
� +	98�;) × 9>?@234
�  Equation 6.9 

Where FSN is synthetic fertilizer N applied to soils (kg N/yr), FON is manure, compost and sewage 

sludge applied to soils (kg N/yr), FPRP is urine and dung from grazing animals applied to pasture land 

(kg N/yr), FCR is N in crop residues returned to soils (kg N/yr), FSOM is N mineralization from soil 

organic matter due to changes in land use or management (kg N/yr) and FracLEACH is the fraction of 

all N added to soils that is lost through leaching and runoff (IPCC 2007). FracLEACH has a default 

value of 0.3, which is used here (IPCC 2007). 

FSN + FON was calculated using area under cultivation of specific crops (corn, wheat, soybeans, 

alfalfa, hay, and beans) provided by Canada Census 2006 data clipped to the Grand River Watershed 

(Zoe Green, GRCA, personal communication) and by fertilizer recommendations given by Ontario 

Ministry of Agriculture and Food (Ontario Ministry of Agriculture and Food 2011). FPRP was 

estimated from total area of pastureland (distinct from hay crops) in the watershed (GRCA, personal 

communication) and a value of 41.48 kg N/ha/yr applied as manure from grazing animals (Huffman 

et al. 2008). Land use change, and therefore FSOM, were assumed to be zero. 

FCR was estimated as a sum of residues for specific crops (T, i.e. corn, wheat, soybeans, alfalfa, hay, 

and beans) grown in the Grand River watershed (IPCC 2007): 

FCR =	∑ {
���(I) × (4���(I) − 4���	# ���	(I) × 
B) × 7��!����z(I) × [�4p × �4p ×I
L� − 7��!����z(I) +�{p(I) × �I|}      Equation 6.10 

Where Crop(T) is the dry-mass yield for crop T (kg/ha), Area(T) is the total annual area harvested of 

crop T (ha/y), Area burnt(T) is the area of crop T burnt (ha/y, set to zero for this watershed as burning 

residue is not common in Southern Ontario), FracRenew(T) is the fraction of total area renewed annually 

(for annual crops: 1), RAG(T) is the ratio of above-ground dry residue to harvested yield for crop T 

(IPCC 2007), NAG(T) is the N content of above-ground crop residues (kg N/kg dry matter), FracRemove(T) 

is the fraction residue removed (kg N/kg crop N, assumed to be zero in the absence of information), 

RBG(T) is the ratio of below-ground residue to harvested crop yield (kg N/kg dry mass, IPCC literature 

values used), NBG(T) is the N content of below-ground residues for crop T (kg N/kg dry mass). Crop 

types and areas were provided by the Grand River Information Network (Grand River Conservation 

Authority 2008).  
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6.2.7.3 NO3
- Leached from Manure Management Systems 

NO3
- leached from livestock manure management systems is estimated as (IPCC 2007): 

���	234
� = ∑�(I) × ��~(I) ×;8(I,8) × 7��!234
�;8(I,8)   Equation 6.11 

where N(T) is the number of livestock in each species (T), Nex(T) is the annual average N excretion 

per head of species (T) (kg N/yr), MS(S,T) is the fraction of total annual nitrogen excretion that is 

managed in manure management systems per species and livestock type (S), FracLEACHMS is the 

fraction of managed manure N losses in categories T and S.  

Equation 6.11 was modified slightly because MS(T,S) for the Grand River watershed is unknown. 

Therefore, any manure that is not directly deposited on pastures (FPRP, Equation 6.9) is assumed to be 

included in MS(T,S). To avoid counting manure on pastures twice, FPRP×FracLEACH was removed from 

Equation 6.11: 

���	234
� = ∑(�(I) × ��~(I) ×;8(I,8) − 7:�:) × 7��!234
�;8(I,8)  Equation 6.12 

NO3
-
LEACH was calculated for multiple livestock species (cattle, poultry, pigs and horses). N(T) data 

was provided by 2006 census data clipped to the watershed (GRCA, personal communication). Nex(T) 

values were taken from Table 10.19 (IPCC 2007) in excretion/100 kg livestock biomass, which was 

multiplied by average livestock masses from a variety of sources (Dairy Farmers of Ontario 2013, 

Dougherty and Young 2005, Farm Animal Shelters 2013, Kaberia et al. 2003, National Research 

Council Canada 1982, Ontario Cattlemen's Association 2012, Ontario Sheep Marketing Agency 2013, 

Richards 2011, Sendel 2010, Stevenson 2007, Wezyk et al. 2013). There is no default value for 

FracLEACHMS(T,S), but a range of 1% to 20% is given (IPCC 2007); in the absence of other information, 

a moderate value of 10% is used in this study. Other sources of NO3
- to the watershed, such as 

atmospheric N deposition, were ignored. 

6.2.8 Checks on Isotopic Mass Balances 

To ascertain if the NO3
- isotope mass balance for the Grand River yielded reasonable results, 

calculated δGAIN for net gains to the river section, and δLOSS for net losses were compared to 

published data from the literature and measured values for inputs and outputs to the Grand River. It is 

very likely that NO3
- gains (e.g. NO3

- input from tributaries, WWTPs, septic beds, and/or groundwater, 

and NO3
- produced by in-river nitrification and/or mineralization) and NO3

- losses (e.g. biological 
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assimilation, denitrification not accounted for in DEN) occur in every reach. Therefore, δGAIN and 

δLOSS represents multiple NO3
- sources and losses but can still provide some information, especially 

if one source or loss dominates a reach. δGAIN values were compared to tributary and groundwater 

δ
15N-NO3

- values collected in the Grand River watershed.  

To remove the effect of changing δ15N-NO3
- values in the river, δLOSS values were converted to an 

isotopic fractionation (ε) between δ15N-NO3
- measured in each reach (δEXP) and δLOSS, with the 

following equation: 

�2�88 = (r2�88�CCC + �)/(r3o:�CCC + �)       Equation 6.13 

where εLOSS is reported in ‰. Isotopic fractionations were then compared to reported values for 

denitrification and biological assimilation. 

6.2.9 Error Propagation 

Error was propagated for each component of the mass balance. Machine precisions were used for 

NO3
- concentration, δ15N-NO3

-, and N2O concentration. Uncertainty on discharge was unknown and a 

value of 10% was chosen. Uncertainty was assumed to be zero for surface area, reach length and 

depth measurements. 

For addition and subtraction (e.g. GAIN = EXP – UPS – DEN), error was calculated as (Luna 

2013): 

3���� = 	�∑ �A�Ax�         Equation 6.14 

Where ei is the error on term i. 

For multiplication and division (e.g. EXP = NO3
- concentration × discharge/reach surface area), 

error is calculated as (Luna 2013): 

3����/��� � = 	�∑ (�A/�A)�Ax�       Equation 6.15 

Where vi is the measured value for term i. 
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6.2.10 Statistical Analyses  

To determine if denitrification rate, net NO3
- gain or loss to each reach, δGAIN and εLOSS varied 

significantly by season (June, September and April) or by Section (1 through 4), one-way ANOVA 

tests were conducted using SigmaPlot 12.0 (Systat Software Inc., Chicago, IL). When data were not 

normally distributed, Kruskal-Wallis one-way ANOVA tests were used. P values < 0.05 were 

considered significant. 

6.3 Results 

6.3.1 In-River Denitrification Rates (DEN) 

Measured NO3
- concentration and δ15N-NO3

- values are shown in Figure 6.6. Denitrification rate 

estimates varied widely depending on the N2O: (N2 + N2O) ratio used. Areal rates using the 1:11 ratio 

will be shown first with the rate using the 1:400 ratio following in brackets. Denitrification rates were 

moderate in June, ranging from 0 to 13.4 mg N/m2/h (0 to 487.8 mg N/m2/h); high in September, 

ranging from 0 to 20.7 mg N/m2/h (0 to 224.4 mg N/m2/h); and low in April, ranging from 0.02 to 0.1 

mg N/m2/h (0.2 to 11.4 0.1 mg N/m2/h) (Figure 6.7). Because almost all sampling events had positive 

daily N2O emissions (66/69), denitrification rate was almost always greater than zero. The only 

exceptions were Reach 2 in June and September and Reach 3 in September; where NO3
- was low and 

N2O was undersaturated. Negative emissions likely occurred because changes in water temperature 

were rapid over the diel scale, causing changes in N2O solubility, rather than N2O consumption 

resulting in net negative N2O production. 

Denitrification rates were typically low in the Upper Agricultural section (0 to 1.0 mg N/m2/h (0 to 

38.1 mg N/m2/h)), high in the Urban section (0.4 to 13.4 mg N/m2/h (3.5 to 487.7 mg N/m2/h) and 

moderate in the Groundwater Recharge Section (0.2 to 2.0 mg N/m2/h (1.3 to 72.9 mg N/m2/h) and 4 

Lower Agricultural Section (0.4 to 3.4 mg N/m2/h (4.4 to 101.0 mg N/m2/h). Denitrification rates had 

no relationship with NO3
- concentration but peaked when NO3

- was moderate (Figure 6.8) 

6.3.2 Net NO3
- Gain and Loss (GAIN and LOSS) 

GAIN and LOSS values ranged from -35.8 (LOSS) to 235.7 (GAIN) mg N/m2/h (-0.3 to 511.8 mg 

N/m2/h) in June; -27.9 to 19.1 mg N/m2/h (-18.5 to 303.7 mg N/m2/h) in September, and -57.5 to 

729.8 mg N/m2/h (-36.4 to 743.1 mg N/m2/h) in April. GAIN values were much larger using the 
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1:400 N2O:(N2+N2O) ratio because they had to balance out larger denitrification rates. This is 

especially noticeable in September when N2O fluxes (and thus DEN) were highest. GAIN values 

were highest in April and lowest in September. 

Net GAIN values occurred throughout the river but net LOSS values predominantly occurred in the 

Groundwater Recharge and Lower Agricultural sections of the river (with the exception of Sites 4 and 

8 in the Upper Agricultural section in September).  

6.3.3 Whole Watershed Mass Balance 

The annual average export of NO3
- from the river to Lake Erie was 5.6 Gg N/year. Denitrification and 

LOSS summed to 2.0 (8.1) Gg N/year and net inputs (GAIN) summed to 7.5 (13.7) Gg N/year 

(Figure 6.9). The net inputs were compared to whole-watershed inputs of WWTPs (from annual 

reports, 1.5 Gg N/year), septic beds (0.4 Gg N/yr), fertilizer leaching and crop residues (using 

Equations 6.9 and 6.10, 36.9 Gg N/year), and leaching from livestock manure (using Equation 6.11, 

4.7 Gg N/yr). Thus, total watershed NO3
- inputs were 43.4 Gg N/year, resulting in an estimated NO3

- 

loss and/or storage of 37.1 Gg/yr between the watershed and the mouth of Grand River, only 2.0 (8.1) 

Gg N/yr of which occurred in the Grand River itself. The annual average standing stock of NO3
- in 

the river was estimated as 0.137 Gg N. This results in an estimated average annual residence time for 

NO3
- in the river (NO3

- standing stock divided by the sum of export to Lake Erie, DEN and LOSS) 

was 6.6 (3.6) days; this is similar to the residence time of water in the river (~3 days not including 

reservoirs, Mark Anderson, personal communication). 

6.3.4 δGAIN and δLOSS 

NO3
- concentrations and δ15N-NO3

- measured in tributaries, WWTP effluent and groundwater in the 

Grand River watershed are shown in Figure 6.10. δGAIN and δLOSS estimates had a wide range. The 

two denitrification rate assumptions (1:11 and 1:400) resulted in different flux values and isotopic 

values of GAIN and LOSS. Therefore, both values will be shown here, with the 1:11 value first and 

the 1:400 value following in parentheses.  

δGAIN ranged from -8.5‰ to 19.2 ‰ (-23.7‰ to 39.0‰) (Figure 6.11). δLOSS ranged from -

279.2‰ to 13.4‰ (-0.8‰ to 13.7‰) (Figure 6.12). Very low δLOSS values (< -50‰) occurred in 

Reach 20 in September. 
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δGAIN (1:10) values were significantly linearly related to distance in the Upper Agricultural 

section in June (r2 = 0.56, p = 0.037, n = 8) and September (r2 = 0.86, p = 0.014, n =7) but not April. 

Values using the 1:400 ratio were similar (June: r2 = 0.51, p = 0.047, n = 8; September: r2 = 0.73, p = 

0.004, n = 9; April: not significant). No significant correlations between δGAIN and distance are 

found in the other three sections.  

6.3.5 ε15N for LOSS 

ε
15N values for δEXP (measured) � δLOSS ranged from -287.2‰ to 6.4‰ (-8.7‰ to 6.5‰). There 

were fewer values for the 1:400 estimate and the range in values was much smaller. Values were 

lowest (most negative) in June, moderate in September and highest in April, which had several 

positive values. There were insufficient data to determine spatial trends though ε15N values did 

decrease in the Groundwater Recharge section in June and September (Reaches 17 and 15, 

respectively). 

6.4 Discussion 

6.4.1 Grand River Denitrification Rates Compared to Literature Values 

Estimated denitrification rates for rivers in the literature vary widely, from 1 to 100 mg N/m2/h (Table 

6.5). Estimates of denitrification in the Grand River using the 1:11 N2O:(N2O+N2) ratio fall in the low 

end of this range (0 to 13.4 mg N/m2/h). However, denitrification estimates using the 1:400 ratio are 

often higher than the published range (0 to 487.7 mg N/m2/h), especially in September when flow was 

low and N2O fluxes were high. The Grand River has near-ideal conditions for denitrification – warm 

summer temperatures, moderate to high NO3
- concentrations (especially in the Urban, Groundwater 

Recharge and Lower Agricultural sections), periods of hypoxia in the Urban section and abundant 

biofilm (Hood 2012). This suggests that denitrification rates should fall in the moderate to high end of 

the published range. The mean N2O:(N2O+N2) ratio in river sediments is 0.01 (Table 6.2); this value 

is intermediate between the values used here and may give more accurate denitrification estimates in 

the absence of direct measurement. Using this ratio yields denitrification rates in the Grand River of 1 

to 121.9 mg N/m2/h, encompassing the literature range. However, N2O:(N2O+N2) ratios in river 

sediment also change over time (Chapter 5) and with temperature and DO, NO3
- and NO2

- 

concentration (Firestone et al. 1979, Firestone et al. 1980, Silvennoinen et al. 2008, Silvennoinen et 

al. 2008). Denitrification rates in rivers are difficult to measure, resulting in scant published data. It is 
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possible that the published range of denitrification rates does not adequately capture the global range 

of rates and more studies are needed over a large variety of rivers of varying climate, redox 

conditions, NO3
- concentration, etc. It is unclear how to average the ratio over space and time in a 

complex river system, but the reasonable denitrification rate estimates obtained with a 1:100 

N2O:(N2O+N2) ratio suggest that this type of sampling (multiple sites over whole river, two or three 

times a day for three seasons) can provide a good first estimate of N cycling rates. 

6.4.2 Comparing GAIN and LOSS with Estimated N Uptake Rates 

To determine if unaccounted for NO3
- losses in some reaches (LOSS) could be attributed to biological 

N assimilation, assimilation rates were estimated. Macrophyte biomass has been estimated in some 

stretches of the Grand River (Hood 2012), but epilithion biomass has not, although it likely makes up 

a significant portion of the primary producing community in the river (Cejudo et al., in submission). 

N assimilation is related to net primary production (NPP), the difference between gross primary 

production and respiration by primary producers. N assimilation was estimated using the following 

equation, modified from Sundback et al. (2004) and Alsterberg et al. (2012):  

p����	�	���A�A���A�� = p::×(�::p::)
:� /(
:�)     Equation 6.16 

where GPP is gross primary productivity (estimated using the PoRGy model and DO concentration 

and δ18O-DO in the Grand River (Venkiteswaran et al. in submission)) in moles O2/m
2/h. The 

NPP/GPP ratio is estimated at 0.8 (Alsterberg et al. 2012, Sundback et al. 2004). PQ is the 

photosynthetic quotient, or number of moles O2 produced per moles CO2 fixed (typically 1.25 in 

freshwater (Falkowski and Raven 2007)), and C:N is the ratio of C to N atoms in biomass. A C:N 

ratio of 9.26 (molar) was used here, based on measurements of epilithion in the Grand River (Cejudo 

et al. in submission). GPP estimates were available from Sites 1, 4, 8, 16, 20 and 23 for all three 

sampling events (June, September and April) discussed here. Note that the variability in GPP:NPP 

ratios in aquatic systems (Howarth et al. 1996) adds uncertainty to this estimate. 

Estimates of N assimilation ranged from 1.1 to 51.0 mg N/m2/h (Table 6.6). This range is larger 

than that for LOSS values from these reaches (-3.1 to -0.3 mg N/m2/h). Thus it is possible that net 

loss of N from reaches is due to N assimilation.  

There were no significant linear relationships between GAIN and LOSS and N assimilation using 

either the 1:11 or 1:400 ratios. This suggests that GAIN and LOSS are likely driven by N point 
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sources (e.g. tributaries, WWTPs) and hot spots (e.g. groundwater, denitrification) rather than N 

assimilation. 

6.4.3 Comparing δ15N-NO3
- of GAIN with Known Tributary, Groundwater and WWTP 

Values 

The estimated δ15N-NO3
- values of net NO3

- gain (GAIN) from each reach were compared to three 

possible sources: tributaries, WWTP effluent, and groundwater. Mean values are reported plus or 

minus standard deviation. Tributaries were represented by the Conestogo River, Boomer Creek, Cox 

Creek and Swan Creek, collected in October 2012 (δ15N-NO3
-: 10.3 ± 1.9‰, n = 22, T.F. Cummings, 

unpublished data). WWTP effluent from the Kitchener WWTP (δ15N-NH4
+: 5.1±1.7, n=11; δ15N-NO3

-

: 4.2±0.0, n=2) and Waterloo WWTP (δ15N-NH4
+: 12.7± 2.1‰, n=9; δ15N-NO3

-: 14.4 ±8.3‰, n=9) 

was characterized in more detail in Chapter 4. Groundwater was characterized in the Groundwater 

Recharge section downstream of Site 13 and includes domestic wells, seeps into the Grand River, and 

groundwater from 1 m below the river bed in summer (mean δ15N-NO3
-: 8.0 ± 6.2‰, n = 25 

(Westberg 2012)). Additionally, the literature range for δ15N of NH4
+ and NO3

- fertilizers was used 

because these were not measured directly in this study (range of one standard deviation: -2.0 to 6.0, 

(Xue et al. 2009)). Thus, the mean plus one standard deviation of all three sources is pooled to a total 

range of -2.0‰ to 22.7‰. However, inputs with very high δ15N-NO3
- values (>15‰) have low 

concentration (< 5 mg N/L) (Figure 6.10). Therefore, δGAIN values are likely to be similar to high-

concentration inputs (NO3
- > 5 mg N/L, δ15N range: 2.4‰ to 11.4‰). 

In general, most δGAIN values fell within the expected range for tributaries, groundwater and 

WWTP effluent. Very low (< -2‰) and very high (> 23‰) δGAIN values occur when GAIN values 

are low (< 2 mg N/m2/h) but change in δ15N-NO3
- over the reach is high, due to very large propagated 

error. The only very low value occurs in Reach 19 in September (-8.5‰, 1:10 ratio, GAIN = 0.5 mg 

N/m2/h). High values occur in Reach 15 in September (26.0‰, 1:400, GAIN = 0.6 mg N/m2/h) and 

Reach 17 in September (38.9‰, 1:400, GAIN = 1.4 mg N/m2/h). 

Similarly, δGAIN values were not significantly different by section using 1:11 values (one way 

ANOVA: f = 0.09, p = 0.97). Using the 1:400 ratio, δGAIN in the Upper Agricultural section was 

significantly lower than in the Lower Agricultural section (non-normal data, Kruskal-Wallis 

ANOVA, p < 0.05). This suggests that the net incoming NO3
-was less processed prior to entering the 

river in the Upper Agricultural section. 
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Annual average values for δGAIN again show that the majority of the reaches have δGAIN values 

consistent with expected source values. The annual average is heavily weighted to April values 

because GAIN fluxes were higher and because it represented the largest portion of the year. Very 

high or low (> 23 or < -3) δGAIN values occur in Sections 3 and 4 only, where GAIN values are 

small. This indicates that these reaches have lower areal NO3
- inputs and more losses than the other 

sections.  

6.4.4 Comparing ε15N (River NO3
- 
���� LOSS) with Denitrification and Assimilation ε15N  

Net loss of NO3
- from river reaches that is not accounted for by N2O could result from (a) 

denitrification with a lower N2O:(N2O+N2) than expected, (b) biological assimilation, or (c) other 

biological processes such as dissimilatory NO3
- reduction to ammonia (DNRA) or anammox. NO3

- 

sorption to clay colloids in sediment is minimal (Brady and Weil 2002) and therefore will be ignored. 

The isotopic fractionation (ε15N) helps distinguish the first two loss mechanisms. ε15N for 

denitrification is expected to range from -20‰ to -1.5‰ in rivers (Table 6.3). ε15N for denitrification 

when NO3
- is not limiting is likely very negative (-30‰ to -20‰  (Snider et al. 2009, Chapter 5)). 

NO3
- limitation (e.g. by NO3

- diffusion into sediment from the water column) typically results in ε15N 

values dominated by diffusion effects (~ -4‰). Therefore, a moderate value of -15‰ was used here. 

Biological assimilation appears to have a slightly negative or zero ε15N (see Section 1.3.5); a value of 

0‰ is used here. 

Most calculated εLOSS values (including propagated error) fall with the expected range of -15‰ to 

0‰ in June and September (Figure 6.12). The exception at Reach 20 in September (-287.2‰) occurs 

when LOSS is very close to zero (0.3 mg N/m2/h) due to large propagated error. Because propagated 

uncertainty is large, it is not often possible to distinguish between the denitrification and assimilation 

end members, or apportion LOSS between the two, especially in the Groundwater Recharge and 

Lower Agricultural sections of the river, where uncertainty can be > 10‰. This suggests that εLOSS 

is not sufficiently sensitive to separate assimilation and denitrification. In order to estimate these 

rates, direct measurement may be required. 

6.4.5 Seasonality of NO3
- Inputs and Losses in the Grand River 

Significant seasonal differences were found in denitrification rates. Using the 1:11 ratio, June DEN 

rates were significantly higher than September and April denitrification rates (one-way Kruskal 
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Wallis ANOVA, p= 0.011). Using the 1:400 ratio, April DEN rates were significantly lower than both 

June and September rates (Kruskal-Wallis ANOVA, p < 0.001). Total denitrification (sum of all 

reaches) was highest in June (1.4 mg N/m2/h (53.9 mg N/m2/h)), followed by September (0.9 mg 

N/m2/h (33.9 mg N/m2/h) and April (0.5 mg N/m2/h (18.2 mg N/m2/h). Low denitrification rates in 

April are expected due to low temperature, even when NO3
- concentrations are high. However, high 

June rates are unexpected, as DO was slightly lower in September (range: 0.8 to 15.1 mg/L) than June 

(range: 1.3 to 15.5 mg/L) and water temperatures were higher (September range: 17.2° C to 28.0° C; 

June range: 12.7° C to 27.8° C), both of which promote denitrification. Nitrate concentrations were 

similarly moderate in both September (range: BD to 3.7 mg N/L) and June (0.2 to 3.2 mg N/L). This 

could indicate that N2O:(N2O+N2) ratios for denitrification were lower in September, and thus 

denitrification may have been underestimated. Denitrification rates could also have been influenced 

by the quantity and lability of organic carbon in sediments but this was not quantified. Total organic 

C in sediments did not change significantly by season at Sites 9 and 11 (Chapter 5). 

Seasonal patterns in net gain or loss of NO3
- were different using the 1:11 and 1:400 ratios. Using 

the 1:11 ratio, GAIN values were significantly higher in April than in September (one-way Kruskal-

Wallis ANOVA, p = 0.025) though not significantly different than in June. NO3
- inputs are expected 

to increase in winter and early spring, when shallow groundwater discharge is high and biological 

removal of NO3
- (via assimilation, denitrification, etc.) is minimal. Measured NO3

- concentrations are 

also highest in winter and early spring in the Grand River. However, no significant changes in GAIN 

or LOSS (1:400 ratio) occur between seasons. This is because the 1:400 ratio predicts much higher 

denitrification rates and GAIN rates are therefore all higher (and more similar) to compensate. 

The stable isotopic ratios of net NO3
- gain to the river (δGAIN) were not always significantly 

different by season (1:11: one way ANOVA, f = 0.57, p = 0.57; 1:400: Kruskal-Wallis ANOVA: 

April has a lower median δGAIN value than September, p < 0.05). Lower δGAIN values in April may 

suggest that incoming NO3
- is less biologically processed (e.g. by denitrification, NH4

+ nitrification) 

and less chemically processed (e.g. NH4
+ volatilization and subsequent biological nitrification) due to 

lower temperatures reducing biological rates and lower pH inhibiting volatilization. Lower δGAIN 

values may also indicate more NO3
- input from inorganic fertilizers, which have low δ15N-NO3

- values 

(-2.0‰ to 6.0‰ (Xue et al. 2009)) as they are produced from atmospheric N2 (0‰). 
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Using lower denitrification rate estimates (i.e. the 1:11 N2O:(N2O+N2) ratio) results in more 

reaches with net NO3
- loss after denitrification. There were so few εLOSS values using the 1:400 ratio 

that seasons could not be statistically compared. εLOSS (1:11) values were not significantly different 

by season (Kruskal-Wallis ANOVA, p = 0.191). 

6.4.6 Spatial changes in NO3
- Inputs and Losses in the Grand River 

NO3
- inputs and losses in the Grand River show spatial patterns as well as seasonal changes. NO3

- 

concentrations in the headwaters are very low (< 0.1 mg N/L). Areal NO3
- additions (GAIN) were low 

throughout the Upper Agricultural section until the site downstream of the large Bellwood Lake 

reservoir (Site 6). The reservoir can act as a NO3
- source or sink, depending on the complex 

interaction of reservoir management and seasonal effects (B.J. De Baets, unpublished data). GAIN 

fluxes are high in the headwater sites (Reaches 1 through 5) of the Upper Agricultural section in 

April, likely due to high flows from groundwater and tributaries in spring. Downstream sites 

(Reaches 7 to 9) have higher NO3
- inputs, likely due to non-point agricultural sources of NO3

- as well 

as the confluences of the Conestogo River and Laurel Creek, upstream of the urban centre (Site 9). 

WWTPs in this reach are small. Effluent NO3
- and NH4

+ loads represent a small portion (< 0.05) of 

incoming NO3
- in most cases (Table 6.7). The exception, Reach 2 in September, had very low GAIN. 

It is downstream of the Dundalk WWTP, which releases effluent from a sewage lagoon only a few 

times a year, likely not during sampling. Denitrification rates in the Upper Agricultural section were 

significantly lower than those in the Urban and Lower Agricultural sections, but not the Groundwater 

Recharge section (Kruskal-Wallis one-way ANOVA, p < 0.001 for both 1:11 and 1:400 estimates). 

Low denitrification rates were likely due the oxic water column, which reduces anoxic sediment 

habitat for denitrifiers, and low NO3
- concentrations. δGAIN values typically suggest tributary, 

groundwater or WWTP effluent sources. Net NO3
- loss is rare in this section, and occurs mostly in 

September. ε15N values are -5‰ and higher, suggesting that net NO3
- removal was heavily influenced 

by biological NO3
- assimilation, with some denitrification. ε15N values did not vary significantly 

between sections of the river (Kruskal-Wallis ANOVA, p = 0.222). 

Net NO3
- inputs (GAIN) were very high in the Urban section of the Grand River. No reaches have 

net NO3
- losses (LOSS) in addition to denitrification in any season. WWTP effluent contributes < 1% 

to 16% of net NO3
- gain to reaches in this reach (Table 6.7). This is a surprisingly low fraction, and 

more work is needed on other sources (urban runoff, NO3
- from the Speed River) to determine urban 
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NO3
- sources. It is possible that overestimating denitrification losses results in overestimating NO3

- 

gain to the reach; this may have occurred because low DO concentrations and relatively high NO2
- 

concentrations in this reach (up to 0.5 mg N/L, unpublished data) promote high N2O:(N2O+N2) ratios 

in denitrification. Denitrification rates were significantly higher in the Urban section than in the 

Upper Agricultural and Groundwater Recharge sections but not the Lower Agricultural section 

(Kruskal-Wallis one-way ANOVA, p < 0.001). Denitrification rates were especially high in Reaches 

11 (downstream of Kitchener WWTP) and 12 (downstream of Preston WWTP), where hypoxic 

conditions at night in summer promote denitrification and high N2O production. δGAIN values were 

within the δ15N range of sources used. Reach 10 in June had high δGAIN values (18.2‰ (14.7‰)), 

which may be influenced by high δ15N-NO3
- values in effluent from the upstream Waterloo WWTP 

(range in summer: 24.2‰ to 26.6‰, n = 3, Chapter 4). Reach 11 in September, on the other hand, had 

low δGAIN values (0.9‰ (3.8‰)), possibly because NH4
+ was only partially nitrified to NO3

- in the 

river by Reach 11, allowing partial expression of the ε15N for nitrification (-20‰ to -3‰ (Snider et al. 

2009)) to be expressed.  

The Groundwater Recharge section had a large range of both net GAIN and LOSS values that were 

not significantly different than any other sections (Kruskal-Wallis one-way ANOVA, p > 0.05). There 

was a large increase in NO3
- in the reach downstream of the Nith River (Reach 15) in all seasons. The 

Nith River has a heavily agricultural subcatchment and typically has high NO3
- concentrations (Cooke 

2006). WWTP effluent makes up 7% or less of GAIN downstream of the Galt and Paris WWTPs 

(Reaches 13 and 15) (Table 6.7), suggesting that other sources (agriculture, septic beds) are 

significant. Areal denitrification rates were higher than in the Upper Agricultural section (p < 0.001) 

but not significantly different than in the Urban and Lower Agricultural sections (p > 0.005). 

Groundwater flux is highly spatially variable in this area, and its chemistry varies widely in both DO 

and NO3
- (Westberg 2012), making large changes in the NO3

- budget between sites possible. ALL 

δGAIN and εLOSS values were consistent with expected ranges. 

Lastly, the Lower Agricultural section had the most instances of net NO3
- losses (LOSS). GAIN 

and LOSS values were significantly lower than in the Urban section but not the Upper Agricultural or 

Groundwater Recharge sections (p < 0.001 and > 0.05, respectively). The reach immediately 

downstream of the Brantford WWTP (Reach 17) consistently had net NO3
- loss even though the 

Brantford WWTP contributed 0.26 mg N/m2/h as effluent NO3
- + NH4

+ (Table 6.7). The clay plain is 
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relatively impervious to groundwater inputs (Aquaresource 2009), suggesting that NO3
- additions 

come from tributaries, WWTPs, and other rural sources such as tile drains and septic beds. δGAIN 

and εLOSS values are as expected although large uncertainty makes source apportionment 

impossible, except for one anomalous εLOSS value which occurs when LOSS is very close to zero.  

6.4.7 Conceptual Model for NO3
- Gain and Loss in the Grand River 

The data above suggest that GAIN, LOSS and their isotopic values should change in a predictable 

fashion based on river section. The differences in the sections are clearly shown when GAIN and 

LOSS is plotted against δGAIN or εLOSS (Figure 6.13). Most points plot within expected ranges 

(black boxes), especially when error bars are included. The Upper Agricultural section is dominated 

by low to moderate GAIN rates; well-constrained, moderate δGAIN values and no LOSS values. The 

Urban section has high GAIN values, highly variable δGAIN values due to large fluxes in from 

WWTP effluent and no LOSS values. The Groundwater Recharge section may show either net NO3
- 

gain or loss and has variable δGAIN and εLOSS values. Lastly, the Lower Agricultural section shows 

both high net GAIN values and the most net LOSS values. This method makes it clear that almost all 

reaches have a net gain in NO3
- . It also indicates where denitrification may be higher than expected 

from N2O fluxes (indicating that using a 1:11 or 1:400 N2O:(N2O+N2) ratio is inadequate), i.e. where 

εLOSS is similar to expected values for denitrification. Lastly, it can indicate where biotic 

assimilation may be a significant NO3
- sink, i.e. where ε15N ~ 0‰. Annual average values are not 

shown in Figure 6.13 as they are similar to April. 

6.4.8 Losses in the Grand River Relative to Inputs 

Annually, denitrification removes 3% (56%) of NO3
-entering the Grand River (Figure 6.9). 

Unaccounted-for NO3
- losses (LOSS) (N assimilation, denitrification accounted for by N2O 

emissions) remove a further 23% (4%). Figure 6.14 shows concentrations of NO3
- in the Grand River 

if no denitrification and LOSS occurred but NO3
- inputs to the river stayed the same. These 

hypothetical values are < 2 mg N/L higher than measured values at the most downstream site (Site 

23) when the 1:11 denitrification rate is used. However, the values are very large, often greater than 

the drinking water limit for NO3
- (10 mg N/L) when the 1:400 ratio is used. Even though 

denitrification and LOSS remove a modest amount of NO3
- in the Grand River (26% to 59% of net 
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NO3
- entering), this can be enough to prevent NO3

- concentrations from exceeding the drinking water 

limit, especially in summer when denitrification rates are high. 

 The modest estimated denitrification values are surprising, considering that the Grand River 

seems ideal for high denitrification rates: biofilm biomass is high (Hood 2012), NO3
- concentrations 

are moderate to high, DO can be low, DOC is high (~7 mg/L) and there is high sediment area-to-

volume ratio because the river is shallow. This may be due to the river’s short water residence time, 

low sediment organic content (see Chapter 5) and cold annual average water temperature. 

Denitrification estimates are uncertain because of uncertainty in the N2O:(N2O+N2) ratio. However, a 

1:11 N2O:(N2O+N2) ratio is relatively high for river denitrification (Table 6.2), suggesting it is a 

reasonable minimum estimate of denitrification. The N2O:(N2O+N2) ratio is understood to increase 

immediately upon the onset of conditions favourable to denitrification (e.g. hypoxia) due to a lag in 

the activity of N2O reductase relative to other enzymes involved in denitrification (Codispoti 2010, 

Firestone and Tiedje 1979). The increase in the ratio is temporary. Additionally, NO2
- has been shown 

to be an effective inhibitor of N2O reductase (Firestone et al. 1979), even at low concentrations. Thus, 

denitrification may be overestimated in Reach 11 in June and September, where night-time hypoxia is 

common and night-time water column NO2
- concentrations of up to 0.5 mg/L have been measured 

(unpublished data). On the other hand, denitrification may be underestimated in other reaches of the 

river if the 1:11 N2O:(N2O+N2) ratio is too high. This is especially likely in low-NO3
-, well-

oxygenated reaches in the Upper Agricultural section, where NO3
- must diffuse into sediments from 

the water column in order to be denitrified. 

Much more NO3
- is added to the watershed than enters the river. Only 13% of total watershed NO3

- 

inputs are exported to Lake Erie, less than the average for temperature watersheds estimating using 

NANI (25%, (Howarth et al. 2012). This is typical of rivers with low discharge and short residence 

time (Howarth et al. 2012). NANI was not calculated for the Grand River because atmospheric NO3
- 

deposition and N import and export data were not available. However, the sum of fertilizer, manure, 

septic bed and WWTP DIN loading in the watershed (including all inputs, not just those that leach 

into freshwaters), is 25 290 kg N/km2/y. This is a high value relative to published values from Europe 

and the USA (Howarth et al. 2012), suggesting that N losses (e.g. export of crops from the watershed) 

may be underestimated. TN export from the river was not calculated, but NO3
- export was only 3% of 

total N inputs. This is likely because NH4
+ and organic N are not included in export calculations and 
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because annual NO3
- export is underestimated because no high-discharge events were included in 

sampling. 

Because NO3
- export was underestimated, the proportion of NO3

- entering the river that is 

denitrified is even lower than predicted in the model. More research is needed to determine if 

denitrification rates in the Grand River are low, and if this is typical of other high-NO3
-, low-DO 

rivers. 

High N2O production, and likely denitrification, occur in the Grand River when DO < 1.4 mg/L 

(Venkiteswaran et al, in submission) and when temperatures are high (> 25 °C). DO- and 

temperature-limited denitrification presents difficulties for river managers. Highest NO3
- 

concentrations occur in winter when denitrification rates are low due to low temperature and high 

DO. Population and economic predictions for the Grand River watershed suggest increased urban 

populations (Schultz 2005) and therefore increased WWTP inputs to the river. Additionally, 

intensification of agriculture, including high density livestock production, is predicted in Canada 

(Council of Canadian Academies 2013). These activities may well result in increased NO3
- load to the 

river, but denitrification rates likely will not increase significantly unless hypoxia increases. Hypoxia 

may increase if community respiration rates increase with increased nutrient loading and gas 

exchange is not rapid enough to reaerate the water column (Venkiteswaran et al. 2008). Hypoxia in 

rivers is considered extremely undesirable by river managers (Conley et al. 2009, Shields and Knight 

2012) because it severely inhibits ecological function, and can result in fish kills and decreased 

biodiversity. Thus, the Grand River is unlikely to increase its denitrification capacity and still 

maintain a healthy, oxic ecosystem. If NO3
- inputs continue to increase in the watershed, the 

proportion of inputs that the river can remove may decrease over time. 

The annual watershed-scale box model presented here suggests that most NO3
- entering the 

watershed (83% (68%)) is lost by denitrification, assimilation and other biological processes and/or 

stored in soil and groundwater before it enters the river. Therefore, reducing NO3
- loading to the 

watershed and increasing denitrification potential in the watershed before NO3
- enters the river are 

sensible courses of action. NO3
- source reduction techniques include WWTP upgrades (especially in-

plant denitrification) and agricultural best management practices (BMPs) such as conservation tilling, 

reduced N fertilizer applications, raised tile outlets, etc. (Makarewicz et al. 2009, Passeport et al. 

2013). Best management practices (BMPs) that encourage landscape denitrification include 
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restoration and maintenance of riparian zones (Ranalli and Macalady 2010), creation of storm water 

retention ponds (Bettez and Groffman 2012, Rosenzweig et al. 2011), and restoring wetlands on the 

landscape (Batson et al. 2012). These practices have complex results that are difficult to predict 

(Passeport et al. 2013, Ranalli and Macalady 2010). BMPs can also have environmental trade-offs 

such as anoxia, toxic methylmercury production, and greenhouse gas (CO2, CH4 and N2O) production 

(Passeport et al. 2013). 

6.4.9 Sources of Uncertainty and Recommendations 

There are many possible sources of uncertainty in this study, and most are difficult to quantify. First, 

sampling only three times over the annual cycle likely does not fully capture seasonal variability. 

Peaks in discharge and NO3
- concentration at some sites during snowmelt were not captured by the 

spring (April) sampling event (Figure 6.5). Storm events with high discharge are also missed; these 

can have high NO3
- concentrations, though not consistently (T.F. Cummings, unpublished data). 

Therefore, average annual NO3
- concentrations, standing stock and export to Lake Erie are severely 

underestimated because of poor winter and storm coverage. Interannual changes in the river are also 

not addressed in this study. 

Denitrification rates are poorly estimated in this study. Direct measurement by N2:Ar (after 

(Laursen and Seitzinger 2002)) failed. Other techniques such as whole-river 15N tracer addition are 

best suited to small streams where mixing is rapid and reasonable amounts of tracers are needed 

(Mulholland et al. 2008). 15N tracer additions are also labour-intensive. Better understanding of 

constraints on N2O:(N2O+N2) ratios would also help constrain estimates of denitrification. Some N2O 

likely enters the river from groundwater, although only a few measurements have been made near 

Site 13 (range: 37.3 nmol/L to 281.1 nmol/L, n = 5) (Encalada Romero 2008). N2O concentrations in 

tributaries of the Grand River can be high, especially from small, agricultural creeks (Rempel 2008) 

but further study is needed to quantify N2O loads to the Grand River. 

Spatial coverage of the river could also be improved in future studies by increasing the number of 

sampling sites. For instance, sites could include only one large tributary, WWTP, dam or other 

influence on the river. Additionally, discharge was estimated at some sites (especially in the Lower 

Agricultural section) by adding gauged tributary flow to river flow. This results in underestimation of 

flow because groundwater and ungauged tributaries are not included. Better in-field measurements 

that change to reflect changing water level would increase certainty of flux measurements.  



 

169 

 

 

Stable isotopic measurements of NO3
- in this study could also be improved. Due to a laboratory 

switch in methods during through the sampling period, δ15N-NO3
- was measured with three different 

methods (AgNO3, chemical denitrification and biological denitrification). The methods do not always 

have strong linear correlations (Figure 6.2) and may bias measurements. It is unknown if the AgNO3 

method incorporates any sample NO2
- in the δ15N-NO3

- measurement but the other two methods do. 

Additionally, samples from both pre-dawn and solar noon were used for isotope analysis. Typically 

δ
15N- NO3

- does not change much on the diel scale in the Grand River except at a site immediately 

downstream of the Kitchener WWTP (Site 11, (Thuss 2008)). However, to improve consistency of 

the isotope mass balance results, one method of preparing δ15N-NO3
- should be used, with either 

samples from approximately the same time of day, or an average of pre-dawn and solar noon samples. 

The whole-watershed annual box model also contains many potential sources of uncertainty. The 

IPCC estimates for NO3
- leached from agricultural sources (fertilizers, crop residues and manure) 

could not be independently verified in this study. Additionally, local values of emission factors and 

fraction leached were not known, and global averages were used. Some inputs to the equations, such 

as percentage crop residue removed, and average mass of livestock species were estimated due to lack 

of direct measurements. It is likely that these relationships do not hold in this watershed, and/or that 

the factors used are not appropriate for the area. Research on the accuracy of these equations is scarce 

but the few published studies agree that the IPCC overestimates NO3
- leaching from N fertilizer 

application, crop residue and manure management (Brown et al. 2001, Delgado et al. 2010, Silgram et 

al. 2001). The whole-watershed model could not differentiate between NO3
- losses (e.g. assimilation, 

denitrification) and NO3
- storage (e.g. in soil, organic matter and groundwater) in the watershed. This 

is an important distinction, as NO3
- storage may become a legacy problem in future while NO3

- loss is 

permanent. More research is needed to quantify NO3
- storage in the watershed and determine NO3

- 

residence time for each reservoir in the watershed. 

The high uncertainty of several inputs results in large propagated uncertainty in this NO3
- isotope 

box model, especially for δGAIN and δLOSS in downstream reaches. However, the model is useful 

in that it provides a first estimate of net NO3
- gains and losses throughout the Grand River and does 

not require a large number of inputs, unlike mechanistic river water quality models (e.g. SWAT, 

RiverStrahler). The estimated NO3
- stable isotopic ratios of net NO3

- gains and losses to the river 

provide a check on the model – values very different than expected indicate a problem with the model 
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and/or with the assumed NO3
- inputs and losses. The model provides the first estimate of a “big 

picture” N cycle for the Grand River watershed, allowing comparison of watershed NO3
- loading, 

NO3
- mass entering the river, NO3

- mass lost in the river, and NO3
- mass exported to Lake Erie, on the 

seasonal and annual scale. 

6.5 Conclusions 

NO3
- concentration and areal mass flux in the Grand River increased with distance downstream year-

round, with very few exceptions. NO3
- removal in the river overall was low. The river’s four distinct 

sections characterized by land use and geomorphology receive and remove NO3
- differently. High 

flows and NO3
-concentrations in April dominated annual average fluxes. 

Denitrification is estimated to remove 3% to 56% of annual NO3
- gain to the river. Total net NO3

- 

losses, including assimilation and other biological NO3
- removal, are slightly higher (26% to 59%). 

Areal denitrification rates were highest in the Urban and Lower Agricultural sections and most net 

NO3
- loss occurs in the Lower Agricultural section. NO3

- is added throughout the entire river, but areal 

inputs are high in the Urban, Groundwater Recharge and Lower Agricultural sections. Estimated 

inputs to the entire watershed, including WWTPs, septic beds and agricultural N runoff (from crop 

residue, fertilizer and manure) are high (43.1 Gg N/year) but only a fraction (7.5 (12.9) Gg N/year) 

enter the river itself as NO3
-. Thus, 68% to 83% of watershed NO3

- loading to freshwater is removed 

before entering the river, 5% to 19% is lost in the Grand River, and 13% is exported to Lake Erie. 

Promoting NO3
- loss is important for ecosystem health (both for the Grand River and waterbodies 

downstream) and for drinking water quality (NO3
- limit: 10 mg N/L). NO3

- concentrations are highest 

in the Grand River in winter and snowmelt but in-river NO3
- removal (by assimilation and 

denitrification) is low in winter due to low temperatures and high DO. This research suggests that 

promoting NO3
- loss (denitrification, assimilation, etc.) in the Grand River itself will have a small 

effect on in-river NO3
- concentrations and N export to Lake Erie. Therefore, focus should be placed 

on reducing NO3
- use in the watershed (e.g. by reducing and correctly timing agricultural fertilizer 

application, and upgrading WWTPs to denitrify sewage within the plant). NO3
- removal efforts should 

focus on denitrification hotspots (wetlands, riparian zones) throughout the watershed. Additionally, 

NO3
- removal mechanisms that are effective at low surface temperature, such as denitrification in 

groundwater, can also be considered.  
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Table 6.1: Reaches of the Grand River used in the NO3
- 
isotope mass balance. Surface area and 

depth of each station were determined by field work (white boxes), the GRSM (light grey boxes) 

and the Waterbody Segment GIS layer (Ontario Ministry of Natural Resources) (dark grey 

boxes). Missing depth values (black box) were estimated used exponential discharge vs. depth 

relationships (Figure 6.4). Important point sources (tributaries, WWTPs, dams) are also noted. 

Reach Number 
Distance from sampling 
point to headwaters (km) 

Depth 
(m) surface area (m2) 

2.93 0.17 34112.5 

2 21.43 0.20 150177.5 

3 33.18 0.50 233073.5 

4 40.45 0.45 178823.3 

5 53.11 0.50 534419.6 

6 71.01 0.45 5397190 

7 83.91 0.45 546846.9 

8 98.05 0.52 1024904 

9 119.24 0.45 721351 

10 135 0.60 1364206 

11 145.82 0.52 605830.4 

12 153.07 1.90 349824.1 

13 164.13 0.71 885836.9 

14 175.45 0.59 925347.9 

15 181.76 0.62 633333.4 

16 187.89 1.12 1357354 

17 216.64 1.84 1723444 

18 232.29 2.13 808803.5 

19 250.6 4.03 2871105 

20 253.6 4.12 1176707 

21 263.05 4.12 3222960 

22 288.12 4.13 2665846 

23 295.66 4.14 2665846 

Grand Valley WWTP  44.86 

Shand Dam 69.68   
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Fergus WWTP 75.38 

Elora WWTP 80.84 
Canagagigue Creek 
Confluence 99.85 

Conestogo Confluence 106.78 

Waterloo WWTP  119.47 

Kitchener WWTP  140.29 

Speed River Confluence 147.46 

Galt WWTP 155.93 

Nith Confluence 176.04 

Paris WWTP 179.3 
Fairchild Creek 
Confluence 228.28 

Caledonia WWTP  246.34 

Cayuga WWTP 264.42 

Dunnville WWTP  289.01 
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Table 6.2: N2O:(N2O+N2) ratios produced during denitrification in laboratory experiments. WHC = water holding capacity. WFPS = 

water-filled pore space. ND = no data. 

 

Medium Moisture 
Oxygen 

concentration 

Temperature 
conditions  

(°C) N2O:(N2O+N2) Notes Citation 

Soil 1 mL water/g soil 0 room temp. 0.46 3-5 h 

(Firestone and 
Tiedje 1979) 

Soil 1 mL water/g soil 0 room temp. 0.48 7-12 h 

Soil 1 mL water/g soil 0 room temp. 0.48 18-23 h 

Soil 1 mL water/g soil 0 room temp. 0.48 26-29 h 

Soil 1 mL water/g soil 0 room temp. 0.2 33-37 h 

Soil 1 mL water/g soil 0 room temp. 0.91 3-4 h 

Soil 1 mL water/g soil 0 room temp. 0.82 5-10 h 

Soil 1 mL water/g soil 0 room temp. 0.26 22-25 h 

Soil ND 0 ND 0.31 

(Firestone et al. 
1980) 

Soil ND 0.016 atm ND 0.47 

Soil ND 0.163 atm ND 0.59 

Soil ND ND ND 0.02 0 ppm NO2
- 

Soil ND ND ND 0.15 0.5 ppm NO2
- 

Soil ND ND ND 0.31 2 ppm NO2
- 

Soil ND ND ND 0.86 20 ppm NO2
-- 

Soil ND ND ND 0.01 0 ppm NO3
- 

Soil ND ND ND 0.06 0.5 ppm NO3
- 

Soil ND ND ND 0.11 2 ppm NO3
- 

Soil ND ND ND 0.19 20 ppm NO3
- 

Soil ND ND ND 0.06 pH 4.9 
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Soil ND ND ND 0.04 pH 6.5 

Soil ND ND ND 0.71 pH 4.9+10 ppm NO3
- 

Soil ND ND ND 0.14 pH 6.5+10 ppm NO3
- 

Soil ND ND ND 0.13 0.1-1.7 h 

Soil ND ND ND 0.36 2-4 h 

Soil ND ND ND 0.57 5-12 h 

Soil ND ND ND 0.008 23-28 h 

Soil ND ND ND 0 33-51 h 

Soil 60% WHC  ND ND 0.222 9-15 days 

(Klemedtsson et al. 
1988) 

Soil 80% WHC ND ND 0.200 0-2 days 

Soil 80% WHC ND ND 0.083 3-6 days 

Soil 80% WHC ND ND 0.054 9-15 days 

Soil 90% WHC soil ND ND 0.667 0-2 days 

Soil 90% WHC soil ND ND 0.212 3-6 days 

Soil 90% WHC soil ND ND 0.039 9-15 days 

Soil 100% WHC soil ND ND 0.477 0-2 days 

Soil 110% WHC soil ND ND 0.014 3-6 days 

Sandy Soil 60% WFPS ND ND 0.833 
(Weier et al. 1993) 

Sandy Soil 90% WFPS ND ND 0.002 

River sediment Saturated ND ND 0.010 0.14 mg N/L NO3
-  

(Silvennoinen et al. 
2008) 

River sediment Saturated ND ND 0.027 0.42 mg N/L NO3
- 

River sediment Saturated ND ND 0.038 1.4 mg N/L NO3
- 

River sediment Saturated ND ND 0.033 4.2 mg N/L NO3
- 

River sediment Saturated < 0.2 mg/L 5 0.017 

(Silvennoinen et al. 
2008) 

River sediment Saturated < 0.2 mg/L 10 0.005 

River sediment Saturated < 0.2 mg/L 15 0.002 

River sediment Saturated < 0.2 mg/L 20 0.001 
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River sediment Saturated 5 mg/L 5 0.008 

River sediment Saturated 5 mg/L 10 0.001 

River sediment Saturated 5 mg/L 15 0.003 

River sediment Saturated 5 mg/L 20 0.002 

River sediment Saturated 10 mg/L 5 0.011 

River sediment Saturated 10 mg/L 10 0.003 

River sediment Saturated 10 mg/L 15 0.002 

River sediment Saturated 10 mg/L 20 0.001 

Mean (± standard deviation), all samples   0.22 ± 0.27   

Mean (± standard deviation), river samples   0.01 ± 0.01   
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Table 6.3: ε
15

N values for denitrification in rivers and river-groundwater systems. Both 

laboratory sediment incubations and in-stream measurements are included. R = Rayleigh 

equation (using δ
15

N-NO3
-
), D = difference between δ

15
N-NO3

- 
and δ

15
N-N2. 

Field Site Method ε
15N (‰) Citation 

Morgan Creek, MD In-stream, D -10 (Böhlke and Denver 1995) 

South Platte River, 
CO 

In-stream, D -20 to -10 (McMahon and Böhlke 
1996) 

Agricultural 
streams, QC 

In-stream, R -10.0 (Kellman and Hillaire-
Marcel 1998) 

Seine River 
sediment (diffusion-

limited) 

Laboratory incubation, R -3.6 to -1.5 (Sebilo et al. 2003) 

Seine River (not 
diffusion-limited) 

 

Laboratory incubation, R -18 (Sebilo et al. 2003) 

Agricultural creeks, 
NY 

In-stream, R -4 (Burns et al. 2009) 

Beijiang River, 
China 

In-stream, R -14.8 (Chen et al. 2009) 
 

Seine River In-stream, R -3 (Curie et al. 2009) 

Khura R., Trang R., 
Thailand 

In-stream, R -16.3 to -6.6 (Miyajima et al. 2009) 

Rainforest stream, 
Ecuador 

In-stream, R -3.9 to -1.5 (Schwarz et al. 2011) 

R. Wensum, UK In-stream, R -11.1 to -5.1 (Wexler et al. 2011, 
Wexler et al. 2012) 

Ichetucknee River, 
FL 

In-stream, R -3.1 (Cohen et al. 2012) 
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Table 6.4: N leaching rates from septic beds. Note that various N compounds are measured: 

NO3
-
, dissolved inorganic nitrogen (DIN), total dissolved nitrogen (TDN) and total nitrogen 

(TN). 

Site Compound 

measured 

Minimum 

leaching rate 

(kg 

N/capita/yr) 

Mean leaching 

rate (kg 

N/capita/yr) 

Maximum 

leaching rate 

(kg 

N/capita/yr) 

Citation 

Literature 

review 

NO3
-  5.6  (Ontario 

Ministry of the 

Environment 

1996) 

Rhode Island DIN  2.3  (Gold et al. 

1990) 

Virginia DIN 2.4  2.9 (Reay 2004) 

Long Island, 

NY 

TDN  2.3  (Koppelman 

1978) 

Massachusetts TDN 1.6  2.7 (Weiskel and 

Howes 1991) 

Chesapeake 

Bay area 

TDN 2.4  3.4 (Maizel et al. 

1997) 

Sandy soil TDN  1.41  (Humphrey et 

al. 2012) 

Sandy loam 

soil 

TDN  0.33  (Humphrey et 

al. 2012) 

Sandy clay 

loam soil 

TDN  0.04  (Humphrey et 

al. 2012) 
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Literature 

average 

TN  4.5  (Hoffman and 

Canace 2004) 

Mean (all 

values) 

  4.5   
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Table 6.5. Denitrification rates from rivers worldwide. Only field measurements are included. 

 

Site 

Minimum 
Denitrification 

Rate (mg 
N/m2/d) 

Mean 
Denitrification 

Rate (mg N/m2/d) 

Maximum 
Denitrification 

Rate (mg 
N/m2/d) Method Citation 

Chiangjiang R., China 39.5 
 

80.4 
N2:Ar open 

channel 
(Yan et al. 2004) 

Connecticut R., USA 2.8 
 

N2:Ar open 
channel 

(Smith et al. 2008) 

Delaware River, USA 1.6 
 

4.8 N2 flux (Seitzinger and Kroeze 1998) 

Potomac River, USA 2.9 
 

3.3 N2 flux (Seitzinger and Kroeze 1998) 

San Francisco Creek, USA 0.4 
 

C2H2 (Duff et al. 1984) 

Sangamon R., USA 0.1 13.6 15.0 C2H2 (Royer et al. 2004) 

Seine R., France 7.0 
 

42.0 
N mass 
balance 

(Chesterikoff et al. 1992) 

South Platte R., USA 221.8 
 

N2 open 
channel 

(McCutcheon 1989) 

South Platte R., USA 67.5 
 

Open channel (Pribyl et al. 2005) 

South Platte R., USA 87.9 
 

N mass 
balance 

(Pribyl et al. 2005) 

South Platte R., USA 2.0 
 

100.0 
N mass 
balance 

(Sjodin et al. 1997) 

Sugar Creek., USA 
 

3.8 
 

N2:Ar (Laursen and Seitzinger 2002) 

Sugar Creek, USA 
 

1.7 
 

15N addition (Böhlke et al. 2004) 

Swale River, UK 
 

3.5 
 

C2H2 (Pattinson et al. 1998) 

Walker Branch, USA 0.2 
 

15N addition (Mulholland et al. 2004) 

Wiske R., UK 
 

11.9 
 

C2H2 (Pattinson et al. 1998) 
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Table 6.6: Areal N assimilation rates (ASM) estimates from the Grand River using community productivity rates from the PoRGy model 

(Venkiteswaran et al. in submission) and Equation 6.16. Net NO3
- 
gains to each reach (GAIN) are also shown. Negative values for GAIN 

indicate a net NO3
- 
loss (LOSS). GAIN and ASM rates are in mg N/m

2
/h. Only sites with three samplings per day were modeled with 

PoRGy. ND = no data (no acceptable PoRGy runs).  

June September April 

Reach 
GAIN 
(1:11) 

GAIN 
(1:400)  ASM 

GAIN 
(1:11) 

GAIN 
(1:400)  ASM 

GAIN 
(1:11) 

GAIN 
(1:400)  ASM 

1 2.5 15.6 
6.6 

0.0 0.4 ND 55.1 61.2 
1.1 

4 1.0 10.5 
12.8 

-0.6 10.2 
7.7 

43.1 49.9 
3.4 

8 4.4 40.8 
25.6 

-1.2 17.5 
33.2 

50.8 59.0 
22.3 

12 238.8 427.2 
22.3 

190.1 225.5 
ND 

729.8 743.1 ND 

16 19.7 63.2 
25.4 

8.4 16.8 
20.6 

91.6 103.3 
18.2 

20 -0.3 30.0 
18.2 

-3.1 17.9 
ND 

101.1 123.6 
17.3 

23 4.1 50.9 
49.0 

2.2 82.0 
51.1 

99.9 127.3 ND 
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Table 6.7: Annual average WWTP effluent NO3
- 
and NH4

+
 loads to the Grand River (Environment Canada 2010) as a fraction of net NO3

- 

gain (GAIN). Negative values in the GAIN columns are net losses (LOSS). Effluent loads and RES in mg N/m
2
/h. (A) 1:11 ratio, (b) 1:400) 

ratio. Only WWTPs with available data are shown. ND = no data. 

A. 1:11 ratio June September April 

Reach 
WWTP 
Name 

Effluent 
NO3

- 
Load 

Effluent 
NH4

+ 
load GAIN 

NO3
-

/GAIN 

(NO3
- + 

NH4
+) 

/GAIN GAIN 
NO3

- 
/GAIN 

NO3
- + 

NH4
+)/ 

GAIN GAIN 
NO3

- 
/GAIN 

NO3
- + 

NH4
+) 

/GAIN 

2 Dundalk ND 0.01 -0.30 ND -0.04 0.00 ND 3.66 3.42 ND 0.00 

7 
Fergus, 
Elora ND 0.02 9.08 ND 0.00 9.18 ND 0.00 27.32 ND 0.00 

10 Waterloo 0.19 0.36 16.94 0.01 0.03 22.39 0.01 0.02 31.66 0.01 0.02 

11 Kitchener 0.15 1.83 37.60 0.00 0.05 85.41 0.00 0.02 12.21 0.01 0.16 

12 Preston 0.45 0.00 238.76 0.00 0.00 190.11 0.00 0.00 729.82 0.00 0.00 

13 Galt 0.60 0.01 33.76 0.02 0.02 9.35 0.06 0.07 -57.48 -0.01 -0.01 

15 Paris ND 0.01 50.63 ND 0.00 -3.34 ND 0.00 157.01 ND 0.00 
17 Brantford 0.15 0.11 -6.30 -0.02 -0.04 -17.40 -0.01 -0.01 -51.31 0.00 -0.01 

B. 1:400 ratio June September April 

Reach WWTP Name 

Effluent 
NO3

- 
Load GAIN 

NO3
-

/GAIN 

(NO3
- + 

NH4
+) 

/GAIN GAIN 
NO3

-

/GAIN 

(NO3
- + 

NH4
+) 

/GAIN GAIN 
NO3

-

/GAIN 

(NO3
- 

+ 
NH4

+) 
/GAIN 

NO3
- + 

NH4
+) 

/RES 

2 Dundalk ND 0.01 -0.30 ND -0.04 0.00 ND 3.66 4.19 ND 0.00 
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7 Fergus/Elora ND 0.02 16.97 ND 0.00 15.48 ND 0.00 34.20 ND 0.00 

10 Waterloo 0.19 0.36 95.05 0.00 0.01 59.97 0.00 0.01 71.67 0.00 0.01 

11 Kitchener 0.15 1.83 511.84 0.00 0.00 303.66 0.00 0.01 37.00 0.00 0.05 

12 Preston 0.45 0.00 427.20 0.00 0.00 225.51 0.00 0.00 743.06 0.00 0.00 

13 Galt 0.60 0.01 104.61 0.01 0.01 26.11 0.02 0.02 -36.37 -0.02 -0.02 

15 Paris ND 0.01 92.83 ND 0.00 3.68 ND 0.00 167.96 ND 0.00 

17 Brantford 0.15 0.11 44.44 0.00 0.01 2.96 0.05 0.09 -35.95 0.00 -0.01 
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Figure 6.1: Map showing 23 sampling sites (circles) on the Grand River. Wastewater treatment 

plants (WWTPs) (triangles) and dams (black squares) are also shown. Image courtesy of Jason 

Venkiteswaran. 
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Figure 6.2: Relationships between δ
15

N-NO3
- 
measured with the AgNO3 method and the 

chemical denitrification methods (top) and the chemical denitrification and bacterial 

denitrification methods (bottom), using Grand River samples only. The 1:1 line is shown in 

black. Error bars represent standard deviation of multiple standards. 
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Figure 6.3: Box model schematic of one reach represented by a sampling. For each box, NO3
- 

added or removed via tributaries, groundwater, assimilation etc. and fully mixed with upstream 

NO3
-
. The combined NO3

- 
pool is then denitrified. Grey text indicates the solved-for flux. 
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Figure 6.4: Discharge-depth relationships for June (top), September (middle) and April 

(bottom). Discharge data is from GRCA and National Water Survey field gauges. Depth is from 

field measurement during sampling events (sites 1-9) and from the Grand River Simulation 

Model (Mark Anderson, personal communication). All data are fit with exponential growth 

curves. R
2
 values are 0.68 (June), 0.49 (September) and 0.73 (April).  
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Figure 6.5: Daily average discharge (Water Survey of Canada 2010) and NO3
- 
concentration at 

West Montrose (Site 8) in 2007. The vertical bars separate time periods represented by (A) 

April sampling, (B) June sampling, and (C) September sampling. Stars indicate sampling 

events. 
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Figure 6.6: NO3
- 
concentration (Panel A) and δ

15
N-NO3

-
 (Panel B) in the Grand River in June 

2007, September 2007 and April 2007. NO3
- 
concentrations are the mean of pre-dawn and solar 

noon samplings. These values are used as the EXP component for each river section. Vertical 

lines separate the river into four sections described in Section 1.2.1: From upstream to 

downstream, Upper Agricultural, Urban, Groundwater Recharge, and Lower Agricultural. 
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Figure 6.7: NO3
- 
fluxes per section in the Grand River in June 2007 (A and B), September 2007 

(C and D) and April 2009 (E and F). Note different y axes between sampling events. DEN = 

denitrification, LOSS = negative residual (loss per section not associated with denitrification), 

EXP = export to next section, GAIN = positive residual (gain per section), and UPS = flux from 

upstream. EXP is shown in light colours, and is divided into upstream sources (UPS) and inputs 

to the reach (RES). Losses are shown in dark colours (DEN and LOSS). Adding all fluxes gives 

a hypothetic NO3
- 
export if no losses occurred. All fluxes are normalized to surface area. 
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Figure 6.8. Denitrification rates versus NO3
- 
concentration in the Grand River. Panel A: DEN 

estimated using a 1:11 N2O:(N2O+N2) ratio; Panel B: DEN estimated using a 1:400 

N2O:(N2O+N2) ratio. 
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Figure 6.9: NO3
-
 mass balance for the entire Grand River watershed, on an annual scale, 

assuming steady state. Grey text indicates solved-for variables. All fluxes are in Gg N/year. 

Numbers in brackets represent estimates using a 1:400 N2O:(N2O+N2) ratio. Fluxes entering 

and leaving the Grand River were annual averages of the Grand River mass balance described 

above. WWTP inputs were obtained from annual reports. NO3
- 
from septic beds was estimated 

with values from Table 6.3. NO3
- 
from fertilizers, crops and manure were estimated using 

Equations 6.8 to 6.10. Note that the location of removal or storage of NO3
-
 from watershed 

sources is not known.  
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Figure 6.10: Concentration and δ
15

N-NO3
- 
values for NO3

- 
inputs to the Grand River. 

Groundwater data are from the Groundwater Recharge section (between Sites 12 and 14) 

(Westberg 2012). Tributary data are from the Upper Agricultural area (between Sites 8 and 9) 

and include Conestogo River, Boomer Creek, Cox Creek and Swan Creek (T.F. Cummings, 

unpublished data). WWTP data are from Chapter 4. The range of δ
15

N-NO3
- 
of high-NO3

- 

samples (> 5 mg N/L) is 2.4‰ to 11.4‰. 

 



 

197 

 

 Distance from Headwaters

0 50 100 150 200 250 300

δ
1

5
N

-N
O

3

- 
(‰

)

-20

0

20

40 GAIN 1:11

GAIN 1:400

Distance from Headwaters

0 50 100 150 200 250 300

δ
1
5
N

-N
O

3

- 
(‰

)

-40

-20

0

20

40

GAIN 1:11

GAIN 1:400

A. June

B. September

 



 

198 

 

 Distance from Headwaters

0 50 100 150 200 250 300

δ
1

5
N

-N
O

3

- 
(‰

)

-40

-20

0

20

GAIN 1:11

GAIN 1:400

Distance from Headwaters

0 50 100 150 200 250 300

δ
1

5
N

-N
O

3

- 
(‰

)

-40

-20

0

20

40

GAIN 1:11

GAIN 1:400

C. April

D. Annual Average

 



 

199 

 

 

Figure 6.11: Estimated δ
15

N-NO3
- 
of net NO3

- 
gain (δGAIN) in the Grand River. Black boxes 

show the range of δ
15

N-NO3
- 
of high-NO3

- 
inputs (tributaries, WWTP effluent and groundwater 

> 5 mg N/L: 2.4‰ to 11.4‰). Error bars represent propagated uncertainty. Annual averages 

are shown in panel D.  
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Figure 6.12: Isotope effects (ε) between measured NO3
- 
and δδδδLOSS. The grey boxes represent 

expected values for assimilation by biomass (~0‰) and for denitrification (~15‰).  
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Figure 6.13. Net NO3
- 
gain or loss rates (GAIN, LOSS) versus δ

15
N-NO3

- 
(δGAIN or εLOSS) by 

river section. June (A and B), September (C and D) and April (E and F) are shown. Annual 

averages are similar to April. Black boxes constrain δGAIN values to a range of 2.4‰ to 11.4‰ 

(Figure 6.10) and δLOSS values to -15‰ to 0‰ (expected range for denitrification and N 

assimilation). Horizontal lines divide GAIN and LOSS. Vertical lines divide expected δGAIN 

and δLOSS values. 
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Figure 6.14. Modelled NO3
-
 concentrations in the Grand River if denitrification and other net 

NO3
- 
losses (LOSS) did not occur. June (A), September (B), April (C) and Annual Average (D) 

concentrations are shown. 
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Chapter 7: N2O- NO3
- Relationships in Streams and Rivers, Ontario, 

and Worldwide 

Abstract 

Previous work (Chapters 2 and 3) showed that N2O emissions from the Grand River are very high 

during hypoxic events. However, predictability of N2O emissions under oxic conditions was poor. 

Therefore, we examined N2O-NO3
- relationships in 24 streams and rivers in southern Ontario when 

dissolved oxygen (DO) was always high (> 3 mg/L). Similar to the Grand River, there was a weak but 

significant relationship between instantaneous NO3
- concentrations and N2O emissions. Regression 

trees predicted N2O emissions better than linear regressions. Using all available data on both the 

annual and instantaneous scale, NO3
- was a weak but significant predictor of N2O emissions. 

However, N2O emissions spiked at moderate NO3
- concentration when temperature was high and DO 

was low. The data fit a Probability Triangle conceptual model, which posits that the range of possible 

N2O emissions rises with NO3
- concentrations. Interestingly, no strong linear relationship between 

NO3
- and N2O emission was noted, even at low NO3

-, where NO3
- limitation of N2O production would 

be expected. The paucity of data from streams and rivers with very high NO3
- concentrations (> 5 mg 

N/L) may be responsible for the lower variation in N2O emissions seen in the literature. Alternatively, 

N2O emissions may be lower at high NO3
- because these streams are likely to be oxic (or NO3

- would 

be removed via denitrification). The weak to non-existent N2O-NO3
- relationship in streams and rivers 

indicates that new techniques for modelling N2O emissions are necessary. Since N2O emissions 

during hypoxia are very high, quantifying hypoxia on the annual scale is the first step to quantifying 

N2O emissions. Hypoxia may be estimated in some systems using ecosystem metabolism models. 

Local DO, NO3
- and water temperature data can be used to create local non-linear relationships with 

regression trees. Caution should be applied as local N2O-NO3
--DO-temperature relationships may 

change over time due to changes in microbial community, substrate availability, etc. Climate change 

may alter microbial habitat and local species composition as well as geochemical parameters. 

7.1 Introduction 

Nitrous oxide (N2O) is a potent greenhouse (~300 times more warming potential than CO2 over 100 

years (Zafiriou 1990) and the primary stratospheric ozone destroyer (Ravishankara et al. 2009). The 

global N2O budget is not well-understood (Syakila and Kroeze 2011), but the United Nations 
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Intergovernmental Panel on Climate Change (IPCC 2007) estimates that 17.7 Tg N/yr N2O is released 

to the atmosphere, 6.7 Tg N/yr of which is anthropogenic. Forty-two percent of anthropogenic N2O 

(2.8 Tg N/yr) is produced by microbial metabolism of agricultural nitrogen fertilizers in soils, via 

metabolism of NO3
- (via denitrification) and NH4

+ (via nitrification) (Forster et al. 2007). Leached 

agricultural and sewage N enters rivers, estuaries and coastal zones, where another 25% of 

anthropogenic N2O (1.7 Tg N/yr) is produced (Forster et al. 2007).  

N2O is currently responsible for about 5% of climate forcing (Zafiriou 1990). However, it may 

become more significant in the future. While many strategies for CO2 emission reduction are being 

studied (Farrelly et al. 2013) and may be implemented, N2O emissions are difficult to mitigate. World 

population is expected to plateau at 9.2 billion people by 2075 (United Nations Department of 

Economic and Social Affairs 2004). This, along with increased meat consumption in developing 

countries (Rosegrant et al. 2001) suggests that global food production, agricultural intensity, N 

fertilizer application and manure production will increase. N2O emissions may increase because of 

increased substrate availability, but also because climate change-induced aquatic hypoxia and higher 

temperatures promote denitrification (Veraart et al. 2011). Few N2O mitigation strategies have been 

proposed, probably because (a) agricultural and aquatic N2O emissions are typically diffuse, non-

point sources and very difficult to treat on the landscape scale and (b) microbial reactions that 

produce N2O may be desired (even actively promoted) because they reduce toxic substances (NH4
+, 

via nitrification) and reduce biologically reactive nitrogen (NO3
-, via denitrification) which can result 

in eutrophication. Additionally, both NH4
+ and NO3

- are drinking water contaminants.  

Despite these challenges, some mitigation strategies have been proposed (e.g. (Desloover et al. 

2012, Rees et al. 2013)). These typically take advantage of the fact that (a) N2O emissions, like 

denitrification rates, can be high in “hotspots” such as wetlands, stormwater retention ponds, manure 

lagoons, and other areas with high NO3
- and low dissolved oxygen (DO) ((Davidson and Seitzinger 

2006) ) and (b) emission rates depend not only on heterogeneous denitrification (or nitrification) 

rates, but on the fraction of N2O produced per total product (denitrification: N2O:(N2O+N2), 

nitrification: N2O:(NO3
-+N2O)), which changes due to temperature, redox conditions and substrate 

(NO3
-, NO2

- and organic carbon) availability (Chapters 5 and 6). Unfortunately, N2O:(N2O+N2) ratios 

tend to be lowest when NO3
- and NO2

- are scarce (Firestone et al. 1979) and DO is low (Silvennoinen 

et al. 2008). Thus, mitigation strategies for N2O emissions are not very useful for high-NO3
- systems 
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or oxic ecosystems, even as agricultural and sewage NO3
- and NH4

+ increase on the landscape. If the 

production and use of N fertilizers increase in the future and N2O mitigation remains insignificant, 

N2O may become a more important climate forcer in the future. 

Quantifying N2O emissions and understanding controls and predictors of N2O production are 

crucial. Currently, global N2O emissions are estimated by self-reporting from countries that have 

signed the United Nations Framework Convention on Climate Change (UN FCCC) and must report 

annual N2O emissions. Canada and many other countries use default equations provided by the IPCC, 

which assume N2O emissions linearly increase with N leached from agriculture or released from 

wastewater treatment plants (WWTPs) as effluent (IPCC 2007): 

���	��A��A�� = �234
� × 37
	�      Equation 7.1 

���	��A��A�� = �377 × 37377      Equation 7.2  

Where N2O emissions are in kg N/yr, NLEACH is the amount of inorganic N (NO3
-, NH4

+) leached 

from agricultural sources (see Chapter 6) in kg N/yr, NEFF is the amount of inorganic N (NO3
-, NH4

+) 

released from WWTP effluent per year in kg N/yr, EF5-R is emission factor for agriculture (default 

value: 0.0025) and EFEFF is the emission factor from effluent (default value: 0.0075) (IPCC 2007). 

These equations assume that increased N loads to rivers necessarily increase annual N2O emissions. 

Previous work has focused on appropriate values for EF5-R, which was lowered from 0.0075 in 

2006 based on to field studies in streams and rivers that indicated it was too high (Clough et al. 2006, 

Reay et al. 2005). Since then, a large study of 27 streams in the United States indicated that the higher 

value was correct (Beaulieu et al. 2011). Many of these studies examined instantaneous N2O 

emissions and NO3
- concentrations, although the IPCC equations represent annual totals. In contrast, 

there is no significant linear relationship between N2O concentration or emission and NO3
- in the 

Grand River on an instantaneous or annual scale (Chapters 2 and 3). Negative exponential 

relationships between DO and N2O emission were significant (r2 = 0.54, p < 0.001, n = 689, Chapter 

3) using data collected over two years at 23 sites in the Grand River. 

Because DO-N2O relationships appear to be related but not linearly related (Chapter 3), a 

regression tree approach was used on an expanded dataset of Grand River data (Venkiteswaran et al. 

in submission). Regression trees are statistical tools allowing the identification of structure in datasets 

without requiring assumptions about the type or nature of the structure. They do not require linear 
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relationships in the data and allow for interactions between variables. Essentially, the data are divided 

into two groups so each group is as different as possible. Then each group is divided again into two 

groups until no improvement can be made. Using all Grand River all river data, N2O fluxes were 

significantly higher when DO was low (< 1.4 mg/L) than when DO was high. Low-DO samples were 

further subdivided by temperature > 24 ̊C (mean N2O emissions: 2862 and 1474 µmol/m2/d, 

respectively). High-DO samples were subdivided again by DO < 3.7 mg/L (mean N2O emissions: 497 

and 63 µmol/m2/d respectively). However, this relationship was driven by very low-DO and high-

N2O samples in the urbanized section of the Grand River. When only non-urban sites were used, 

temperature and NO3
- were important predictors of N2O

 (r2 = 0.44, n = 406) (Venkiteswaran et al. in 

submission). The low predictability of N2O in these areas likely results from a complex interplay of 

limits to microbial N2O production rates, changes in the N2O:(N2O+N2) ratio, N2O emission rate, 

NO3
- uptake and production rate, etc. However, the limited number of sites (19) and samples (406) 

used in the “non-urban” sections of the river indicates that the N2O:NO3
- (and N2O:DO and 

N2O:temperature) relationship bears further investigation in non-hypoxic river systems. Additionally, 

NO3
- concentrations were relatively low (< 3 mg N/L) in almost all of these sampling events; this may 

affect N2O predictability if NO3
- is limiting. 

Therefore, the purpose of this study is threefold. The first purpose is to examine N2O:NO3
- 

relationships in oxic streams and rivers using (a) 24 streams and rivers in Southern Ontario, across a 

variety of trophic levels, NO3
- concentrations and temperatures and (b) the river and stream literature. 

The second purpose is to present a conceptual model of likely N2O emission rates over a range of 

NO3
- concentrations, including other geochemical constraints (temperature, DO) when possible, based 

on the global literature. The last purpose is to make recommendations for N2O emissions sampling 

protocols. A strong linear relationship between N2O and NO3
- globally is unlikely, given the 

variability previously seen in the Grand River (Chapters 2 and 3). However, this study aims to 

constrain the range of potential N2O emissions based on NO3
- concentration in rivers and determine 

how physical (e.g. temperature) and geochemical (e.g. DO) factors aid or hinder prediction of N2O 

flux with NO3
- concentration. N2O:NO3

- relationships will be examined using regression tree analysis, 

and on an instantaneous and annual scale, where data are available.  
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7.2 Methods 

7.2.1 Site Descriptions 

Twenty-four streams and rivers from fourth to sixth Strahler order were chosen in four Southern 

Ontario watersheds to represent a wide range of NO3
- concentrations (Figure 7.1). All sites had oxic 

water columns (DO> 3 mg/L). Most sites were active or inactive Provincial Water Quality 

Monitoring Network Stations, meaning that historical water quality data was available. Sites were 

located in five watersheds or watershed areas, discussed below. 

7.2.1.1 Conestogo-Speed Subwatersheds 

The Conestogo-Speed (CS) area encompasses subwatersheds in the central portion of the Grand River 

watershed. Land use in the Grand River Watershed is primarily agricultural (71%), followed by 

wetlands (12%) and urban (8%) (SOLRIS and CAADMIN GIS layers, Ontario Ministry of Natural 

Resources, 2003 and 2008 respectively). These subwatersheds are underlain primarily by calcite-rich 

diamict with some glacial outwash gravel near stream and riverbeds (Surficial Geology of Southern 

Ontario GIS layer, Ontario Ministry of Northern Development and Mines, 2010). Sites in this section 

are Laurel Creek at Bridgeport Rd (CS-1, Strahler order: 4), Conestogo River at St. Jacobs (CS-2, 

Strahler order: 6), Canagagigue Creek (CS-3, Strahler order: 5), Irvine Creek (CS-4, Strahler order: 5) 

and the Speed River (CS-5, Strahler order: 5) (Table 7.1).  

7.2.1.2 Nith-Whitemans Subwatersheds 

The Nith-Whitemans (NW) area includes subwatersheds of the southern Grand River watershed. The 

subwatersheds are underlain primarily by calcitic glaciolacustrine clays and some diamict (Surficial 

Geology of Southern Ontario GIS layer, Ontario Ministry of Northern Development and Mines, 

2010). Sites in this area are the Nith R. (NW-1, Strahler order: 5), Horner Creek (NW-2, Strahler 

order: 5), Whitemans Creek (NW-3, Strahler order: 6) and Fairchild Creek (NW-5, Strahler order: 5) 

(Table 7.1). 

7.2.1.3 Maitland River Watershed 

Land use in the Maitland River (ML) watershed is primarily agricultural (79%), followed by wetland 

(11%) and forest (6%) (SOLRIS and CAADMIN GIS layers, Ontario Ministry of Natural Resources, 

2003 and 2008 respectively). The watershed is underlain by calcitic glacial gravels, sands and diamict 
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(Surficial Geology of Southern Ontario GIS layer, Ontario Ministry of Northern Development and 

Mines, 2010). Sites are the Middle Maitland R. (ML-1, Strahler order: 6), Beauchamps Drain (ML-2, 

Strahler order: 4), South Maitland R. (ML-3, Strahler order: 6), Blyth Brook (ML-4, Strahler order: 4) 

and Maitland R. (ML-4, Strahler order: 5).  

7.2.1.4 Saugeen River Watershed 

The Saugeen River watershed is less agricultural than the previous watersheds (67% land use), with 

more wetland (17%) and forest (9%) (SOLRIS and CAADMIN GIS layers, Ontario Ministry of 

Natural Resources, 2003 and 2008 respectively). The watershed is underlain by calcite-rich glacial 

gravels and diamicts (Surficial Geology of Southern Ontario GIS layer, Ontario Ministry of Northern 

Development and Mines, 2010). Sampling sites in this area are the South Saugeen R. (SA-1, Strahler 

order: 5), the Beatty Saugeen R. (SA-2, Strahler order: 5), the Upper Main Saugeen R. (SA-3, 

Strahler order: 6), the Saugeen R. (SA-4, Strahler order: 7) and the Chepstow Mill Pond Stream (SA-

5, Strahler order: 3). 

7.2.1.5 Upper Thames Watershed 

Lastly, the Upper Thames River watershed is highly agricultural (77% land use), with high urban 

(10%) and forest (6%) land use (SOLRIS and CAADMIN GIS layers, Ontario Ministry of Natural 

Resources, 2003 and 2008 respectively). The watershed is underlain primarily by calcitic diamict and 

has some glacial gravels and sands (Surficial Geology of Southern Ontario GIS layer, Ontario 

Ministry of Northern Development and Mines, 2010). Sampling sites are the Avon R. (UT-1, Strahler 

order: 4), Trout Creek (UT-2, Strahler order: 5), Middle Thames R. (UT-3, Strahler order: 6), South 

Thames R. (UT-4, Strahler order: 5) and Trout Creek (UT-5, Strahler order: 4). 

7.2.2 Physical Characterization of Streams 

Sampling sites were characterized for depth, width, and stream velocity on August 6, 2009. Stream 

depth and width were measured with measuring tapes. Water velocity was measured with Swoffer 

3000 Current Velocity Meters (Swoffer Instruments, Seattle, WA). Water velocity was measured at 

60% of total depth, measured from the top, to capture average velocity. Velocities were then averaged 

across multiple sections. Discharge was calculated as: 

� = ∑ �A × �A�A ×zA        Equation 7.3 
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Where Q is discharge in m3/s, Vi is velocity (m/s) in section i, di is depth (m) in section i, wi is the 

width of each section (m), and n is the total number of sections. 

Gas exchange coefficient (k) was estimated from depth and velocity measurements (Jha et al. 

2004): 

G�� = C. �C��X� × �C.� × 8	C.��� × �C.X     Equation 7.4 

Where kO2 is the gas exchange coefficient for oxygen (day-1), V is velocity (m/s), S is slope of 

streambed (unitless, measured in Google Maps), and d is depth (m). To convert kO2 to kN2O, Schmidt 

numbers, which are unitless descriptors of fluid flow, were first calculated for both O2 and N2O 

(Wanninkhof 1992) : 

8! = 4 − {× I + 
 × I� −w× I�      Equation 7.5 

Where Sc is the Schmidt number, A, B, C and D are constants for each gas (Wanninkhof 1992), 

and T is water temperature in ̊C. 

This gas exchange coefficient for N2O was determined as (Wanninkhof 1992): 

G��� = G�� × (8!���8!�� )	C.
       Equation 7.6 

Where kN2O is the gas exchange coefficient for N2O (day-1), kO2 is as described in Equation 7.4, and 

ScN2O and ScO2 are the Schmidt numbers for N2O and O2, respectively (unitless). The -0.5 exponent is 

an empirically derived value for rough water (Wanninkhof 1992). 

7.2.3 Water Chemistry Sampling Protocol 

Water samples were collected at each site twice a day: once, before sunrise and once at or after 

solar noon. All sample bottles were filled at wrist-depth (~ 10 cm), in moving water. The sampling 

times were chosen to capture as much of the diel range in DO and other geochemical variables as 

possible. Water temperature was measured with a multiprobe (YSI 556 MPS) or thermometer. Water 

samples for pH and specific conductivity were collected in 125 mL dark HDPE plastic bottles and 

stored on ice until laboratory analysis. DO samples were collected in 300 mL glass BOD bottles (cite) 

and fixed with Winkler reagents (American Public Health Association 1995). 1 L HDPE Nalgene 

bottles were used for total phosphorous (TP) samples. NO3
- concentration and isotope samples were 

also collected in 1 L HDPE Nalgene bottles. 125 mL glass serum bottles were used for N2O 



 

217 

 

 

concentration analysis and 500 mL borosilicate glass jars were used for N2O isotope analysis. Both 

N2O bottles were capped with stoppers underwater using a needle to remove any air bubbles and were 

preserved in the field with 2 mL saturated mercuric chloride solution per litre of sample. All samples 

were kept cool and dark until analysis. All water chemistry samples were measured at both sampling 

times (pre-dawn and afternoon) except TP (afternoon only) and NO3
- isotopic analyses (pre-dawn 

only). 

7.2.4 Chemical and Isotopic Analyses 

Conductivity and pH and conductivity were measured in the laboratory with a YSI 556 MPS 

multiprobe. Dissolved oxygen concentration was determined using Winkler titration (standard 

deviation of multiple potassium biiodate standards: 0.2 mg/L, detection limit: 0.2 mg/L) (American 

Public Health Association 1995). TP samples were unfiltered and analyzed by molybdate colorimetry 

(Cary Bio UV-Visible Spectrophotometer, Aigilent Technologies, Mississauga, ON). Precision and 

detection limit were both 5 µg P/L. NH4
+ concentration was determined by the salicylate and 

nitroprusside colorimetric method (American Public Health Association 1995) on a Technicon Auto 

spectrophotometric analyzer (wavelength: 660 nm). Precision and detection limit were 0.005 mg N/L 

and detection limit of 0.01 mg N/L respectively. NO3
- concentration and isotope samples were filtered 

to 0.45 µm. NO3
- concentrations were run on a Dionex ICS-90 ion chromatograph (precision: 0.07 mg 

N/L, detection limit: 0.05 mg N/L). Stable isotopic composition of NO3
- (δ15N-NO3

- and δ18O-NO3
-) 

was determined using a modified version of the chemical denitrification method (McIlven and Altabet 

2005), in which NO3
- is reduced to N2O using cadmium and sodium azide. The N2O was then 

analyzed on a continuous flow-isotope mass spectrometer (CF-IRMS) in line with a TraceGas gas 

chromatograph pre-concentrator system (GV instruments, Thermo Electron Corp., Manchester, UK). 

Standard deviation of multiple standards was 0.3‰ for δ15N-NO3
- and 0.5‰ for δ18O-NO3

-. 

N2O concentration samples were prepared with a headspace overpressurization method. Headspace 

was then extracted with a syringe and run on a Varian 3800CP gas chromatograph with an electron 

capture detector designed for greenhouse gas analysis. Precision was 6% or less. N2O isotopic 

composition (δ15N-N2O and δ18O-N2O) were determined as above. 
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7.2.5 N2O emission measurements 

N2O emissions to the atmosphere were calculated using the thin boundary layer equation 

(Wanninkhof 1992): 

���	��A��A�� = G��� × � × (
� − 
�)     Equation 7.7 

Where N2O emission is in µmol/m2/d, kN2O was determined as in Equation 7.6 (d-1), d is depth (m), 

Cm is measured concentration of N2O (µmol/m3) and Cs is N2O concentration at atmospheric 

equilibrium (µmol/m3), assuming an atmospheric N2O concentration of 320 ppb (European 

Environment Agency 2013). 

7.2.6 Statistical Analyses  

Differences in geochemistry by region were assessed by one-way ANOVA tests. When data were not 

normally distributed, Kruskal-Wallis one-way ANOVA tests on ranks were used. Linear relationships 

between N2O emissions and possible predictive factors (temperature, pH, DO, NO3
-, NH4

+, total 

dissolved nitrogen (TDN), dissolved organic carbon (DOC) and TP) were also assessed. When slopes 

between variables were determined, linear II (Deming’s) regressions were used, which take into 

account different uncertainties in the variables. Data was transformed if constant variance was not 

achieved. When multiple transformations were run, the transformation with the lowest p value with 

constant variance was chosen. Both linear and ANOVA tests were performed in SigmaPlot 12.0 

(Systat Software Inc., Chicago) and in both, p values < 0.05 were considered significant. 

To group bivariate data by watershed, standard ellipses were determined in R, which contain about 

40% of the data (Jackson et al. 2011). The long and short semi-axes of the ellipses are one standard 

deviation of the bivariate data. 

To understand the relationship between N2O fluxes and independent variables, regression tree 

analysis of N2O fluxes was performed. Analysis was performed with the mvpart package in R 

(Therneau and Atkinson 2012). Regression trees are used for regression analyses where no obvious 

linear relationship between dependent and independent variables is present. They are non-parametric, 

and create “thresholds” or “breakthrough points” by splitting the dataset using the independent 

variable (e.g. NO3
- or DO concentration) in order to effectively maximize the between-groups sum-

of-squares (De'ath and Fabricius 2000). The total variance in the dependent variable (N2O flux) 

explained is reported as the R2 (1 minus the resubstitution error). A 10-fold cross-validation was 
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applied, and each tree was pruned such that the smallest tree whose cross-validated relative error 

(CVRE) is less than 1 standard error of the minimum CVRE was kept (Breiman et al. 1984). 

Independent variables entered into regression tree model were: temperature, NO3
-, DO, TP, TDN, 

NH4
+, DON, DOC, TSS and Strahler order. See Venkiteswaran et al. (in submission) for more details. 

7.3 Results 

7.3.1 Descriptive Geochemistry of Field Sites 

Water temperature ranged from 14.5 °C to 23.7 °C between all sites and conductivity had a large 

range (401 to 1367 µS). pH had a narrow range of 7.7 to 8.8 due to extensive carbonate mineral 

buffering. There were no statistical differences in temperature, conductivity or pH with region though 

highest conductivity values occurred in the Upper Thames region (Figure 7.2A). 

DO ranged from 3.8 to 14.2 mg/L (39% to 145% saturation). DO values were both lowest and 

highest in the Maitland watershed (pre-dawn and afternoon samples, respectively). DO had a weakly 

positive linear relationship with temperature (r2 = 0.251, p < 0.001, n = 24) (Figure 7.2B). NO3
- 

concentrations ranged from below detection (BD, < 0.07 mg N/L) to 6.5 mg N/L while NH4
+ ranged 

from 0.001 mg N/L to 0.028 mg N/L (Figure 7.3A). Total phosphorus (TP) ranged from 48 µg/L to 

368 µg/L (Figure 7.3B). The TP concentrations result in a range of trophic status from mesotrophic to 

eutrophic (Dodds et al. 1998) (Table 7.1). 

δ
15N-NO3

- values ranged from 5.1‰ to 22.7‰ and δ18O-NO3
- values ranged from -2.1‰ to 6.5‰ 

(Figure 7.4A). There was a weak linear relationship between the two with a slope (δ18O/δ15N) of 

0.353 (r2 = 0.436, p < 0.001, n = 12). 

N2O concentrations ranged from 9.3 nmol/L to 53.0 nmol/L (100% to 620% saturation) and CH4 

concentrations ranged from 60 nmol/L to 1741 nmol/L (2200% to 60700% saturation) (Figure 7.4B). 

7.3.2 N2O flux and NO3
- in streams 

Gas exchange coefficients for N2O (kN2O) ranged from 0.09 to 0.67 day-1. Daily average N2O 

emissions ranged from 0.02 to 43 nmol/m2/d. N2O emissions and NO3
- concentrations appeared to 

clump by watershed (Figure 7.5A). To assess if NO3
—N2O ratios are significantly different by 

watershed, standard ellipses were calculated showing the mean and one standard deviation of data 

from each region (Figure 7.5B). Some overlap between ellipses is evident. One-way ANOVA tests 
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showed that NO3
- concentrations were significantly different by region (except for Conestogo-Speed, 

Maitland and Saugeen, which were not different from each other) (p values < 0.001 to 0.031). N2O 

emission data were not normally distributed but most regions were significantly different (p< 0.05), 

however, Maitland was not significantly different than Conestogo-Speed or Upper Thames. 

NO3
- concentration and N2O flux by region were compared to land-use in the subwatersheds. Land 

use for the whole watershed was used, rather than land use upstream of each site, due to a scarcity of 

data (SOLRIS and CAADMIN GIS layers, Ontario Ministry of Natural Resources, 2010). Highest 

NO3
- concentrations were found in the Upper Thames, which had the lowest wetland fraction of all 

catchments, while highest N2O emissions occurred in the Maitland watershed, where agricultural land 

use was highest (Figure 7.6).  

7.3.3 Linear Correlations between N2O and predictive factors (NO3
-, DO, temperature 

etc.) 

Of the predictor variables tested (temperature, DO, NO3
-, NH4

+, total dissolved nitrogen (TDN), TP) 

only NO3
- and TDN had significant relationships with N2O emissions (p < 0.001, Table 7.2). Both had 

moderate r2 values (0.31 and 0.37, respectively). 

7.3.4 Regression Tree Analysis  

The regression tree analysis shows that there is a NO3
- concentration threshold of 2.7 mg N/L, above 

and below which, N2O emissions are significantly different (r2 = 0.35) (Figure 7.7). Mean N2O 

emission rate when NO3
-< 2.7 mg N/L is 0.87 ± 1.0 nmol/m2/h and is 2.8 ± 1.4 nmol/m2/h when NO3

-

≥ 2.7 mg N/L. No other inputs (temperature, DO, NH4
+, TDN, DOC or TP) were significantly 

correlated to N2O emissions. 

7.4 Discussion 

7.4.1  Sources of N2O in Small, Oxic Streams 

This study was not designed to determine the main pathways of N2O production in small streams. 

However, the positive relationship between NO3
- and N2O suggests that N2O is primarily produced by 

denitrification. For that reason, we might expect that N2O concentration increases as δ15N-NO3
- 

increases, as high δ15N-NO3
- may indicate denitrification. However, N2O peaks at relatively low δ15N-

NO3
- values (~6‰ to 9‰) (Figure 7.8) at three points in the Maitland and Saugeen watersheds. These 
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sites also have low NO3
- concentration (Figure 7.8). The Maitland watershed has the highest fraction 

agricultural land of any watershed – this appears to correlate to high N2O but not high NO3
- (Figure 

7.6). The Saugeen site with high N2O and low δ15N-NO3
- was sampled immediately downstream of a 

mill pond, were N2O was likely produced in fine sediment. 

Even when the three peak N2O samples are removed, there is no significant positive linear 

relationship between δ15N-NO3
- and N2O concentration (p = 0.287). 

7.4.2 Relationships between NO3
- and N2O in Small, Oxic Streams 

The data presented above agree generally with the conclusions of a regression tree analysis on a 

larger Grand River dataset (Venkiteswaran et al. in submission) – in non-hypoxic rivers, DO does not 

predict N2O fluxes. In the Grand River dataset, temperature is the first regression tree “branch” (i.e. 

the most important predictor of N2O emission) in non-urban sites, followed by NO3
- (4.9 mg N/L). 

Temperature is not significant in this study, probably because only summer samples were collected 

and temperature has a relatively narrow range of 9 ̊ C. In both studies, NH4
+ did not correlate with 

N2O emissions, suggesting that nitrification of NH4
+ was not an important source of N2O relative to 

denitrification. 

In both datasets, predictability (i.e. r2 value) is improved by using regression trees over linear 

regressions (this study: r2 = 0.35 vs. 0.31; Grand River non-urban: r2 = 0.13 vs. 0.35) which indicates 

that thresholds or breakthroughs give a better representation of N2O dynamics in streams and rivers 

than do linear relationships. These results may indicate that N2O production is NO3
- limited when 

NO3
- < 2.7 mg N/L. It is clear from previous work on the Grand River (Chapters 2 and 3) that N2O 

production can be very high when NO3
- concentration is < 2.7 mg N/L, but generally only when DO is 

low. High N2O:NO3
- ratios during hypoxia might be explained by two factors. First, when the water 

column is oxic, denitrification occurs lower in the sediment, in the anoxic zones or in anoxic 

microsites. NO3
- diffusion into the sediment may limit denitrification and higher NO3

- concentrations 

in the water column results in a higher diffusional gradient between water column and sediment and 

therefore higher NO3
- fluxes to the sediment. When the water column is hypoxic, the sediment oxic 

layer is shallower and the diffusion distance between the water column and anoxic sediment is 

shorter. The second factor is the N2O:(N2O+N2) ratio produced during denitrification. The 

N2O:(N2O+N2) ratio is generally high on the onset of hypoxia due to a lag in N2O reductase activity 

(Codispoti 2010). Thus, high N2O emissions can occur even when NO3
- (and denitrification rate) is 
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relatively low. Additionally, N2O:(N2O+N2) ratios typically stay relatively elevated in hypoxic 

conditions even after N2O reductase is activated, unless NO3
- is low and N2O reduction is favoured 

(e.g. (Silvennoinen et al. 2008)). More work on characterizing the N2O:(N2O+N2) ratio under 

different and changing conditions (redox, NO3
-, temperature, etc.) is needed to fully understand how 

much this ratio affects NO3
- thresholds for N2O emissions in oxic rivers. 

While regression trees improve explanatory power of N2O emissions over linear regressions, they 

can still only explain less than 40% of variability in N2O emissions in these systems. This speaks to 

the difficulty in predicting N2O emissions, which are likely controlled by a complex interplay of 

upstream redox conditions, sediment conditions, organic carbon availability, and/or denitrifying 

community. The difference in NO3
- concentration threshold between this study (2.7 mg N/L) and the 

Grand River (4.9 mg N/L, Venkiteswaran et al., in submission) indicates that NO3
- controls on N2O 

production are not well understood in these systems. The difference may relate to winter data in the 

Grand Rive study (typically: higher NO3
- and lower N2O than in summer; S.L. Schiff, unpublished). 

However, more research is needed to understand differences in NO3
- thresholds for N2O production in 

different systems. 

7.4.3 Comparison to N2O:NO3
- Relationships in Global Streams and Rivers 

7.4.3.1 The Probability Triangle Concept 

Previous work (Chapters 2 and 3) and this study show that N2O:NO3
- relationships in rivers and 

streams are unlikely to be linear, especially when the water column is hypoxic. Predictability is poor. 

Thus, the linear model described the IPCC (IPCC 2007) must be replaced by a new conceptual model. 

One possible model is the Probability Triangle (Figure 7.9). This maps out possible N2O emission 

rates with NO3
- concentrations. Assuming steady state production of N2O, emissions are equal to N2O 

production rates in this diagram. Below a certain (undefined) NO3
- concentration, N2O emissions are 

expected to be limited by water column NO3
- concentration, and thus linearly increase with NO3

-. 

Above this threshold is the Probability Triangle. The triangle’s upper slope is defined as the 

maximum N2O production rate possible based on NO3
- diffusion from the water column into the 

sediment. The bottom line of the triangle is equal to N2O emission limited by NO3
- concentration. Of 

course, complete reduction of NO3
- to N2O in aquatic systems is unlikely; this triangle represents 

maximum possible values. The location of N2O emissions within the triangle can be narrowed by 
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considering other predictive factors for N2O emissions: dissolved oxygen and temperature (Chapter 3; 

Venkiteswaran et al., in submission). Hypoxia (DO<2 mg/L) and high temperature will place N2O 

emissions toward the top of the triangle (Chapters 2 and 3, Venkiteswaran et al., in submission). 

7.4.3.2 The Global Dataset and the Probability Triangle 

To assess the ability of the Probability Triangle conceptual model to predict N2O emission ranges 

from NO3
- concentrations, a literature review of annual average and instantaneous N2O emissions and 

NO3
- concentrations was conducted, to which data from this study and all Grand River data collected 

and analysed (2006 to 2012) were added. When possible, temperature and DO values were also 

collected. IPCC estimates for N2O flux from NO3
- loading is done on an annual scale, and where 

possible, annual average values were used. However, more studies collect NO3
- and N2O data for only 

part of the year, and instantaneous data are also shown. These instantaneous data may be most useful 

for understanding N2O production under geochemical conditions and for determining N2O hotspots, 

while annual data may elucidate long-term trends. Studies include streams and rivers in a variety of 

climates (temperate to tropical) and watershed land uses (non-agricultural, agricultural and urban). 

Fifteen studies reporting annual NO3
- concentrations and N2O emissions from 36 unique rivers and 

streams are reported here, along with the Grand River (n = 41, Figure 7.10). While data is relatively 

scarce, N2O emissions at the same NO3
- concentration range by between four and ten times. N2O 

variability increases with NO3
- concentration, as predicted in the Probability Triangle concept, but 

this is driven by one Japanese stream exiting a rice paddy (Hasegawa et al. 2000) with very high NO3
- 

and N2O concentrations. When this point is removed, N2O variability is highest at moderate NO3
-

concentrations (1 – 2 mg N/L), driven by high N2O emissions from Mexican agricultural canals 

which have periods of hypoxia (Harrison and Matson 2003). N2O emission data could not be 

transformed to fulfill the constant variance assumption of the linear regression model and thus linear 

regressions should be interpreted with caution. Using both N2O emission and logged N2O emission, r2 

was low but relationships were significant (r2 = 0.186, p = 0.006 and r2 = 0.162 and p = 0.006, 

respectively, n = 41).  

More work is needed on the global scale to add more rivers with high NO3
- concentrations to 

determine if N2O emission variability is very high in these conditions. Additionally, more work is 

needed to quantify other geochemical parameters that could improve predictive power on the annual 

scale, such as temperature, DO and TP.  
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Instantaneous N2O emission and NO3
- concentration data from twelve studies of rivers and streams 

worldwide were graphed along with Grand River data (divided into four sections based on land use 

and geomorphology; see Chapter 6) and data from this study (total: n = 1297) (Figure 7.11). A 

LOESS (locally weighted scatterplot smoothing) fit was applied to assess local means. There is a 

much larger range of NO3
- concentration in this dataset (maximum: 21.2 mg N/L) than in the annual 

data. N2O emissions also had a larger range, almost 2 orders of magnitude. Variability in N2O 

emissions peaked around 2 mg N/L NO3
- and again at around 8 mg N/L NO3

-. It is likely that N2O 

variability would also be high between 2 mg N/L and 8 mg N/L but insufficient data exists. The high 

N2O variability at high NO3
- concentration is mostly driven by agricultural streams in New Zealand 

(Wilcock and Sorrell 2008). Similar to the annual dataset, constant variance could not be obtained and 

r2 values were low but significant (linear: r2 = 0.02, p < 0.001; logged N2O: r2 = 0.07, p < 0.001, n = 

1297). 

 Other predictive factors (temperature, DO) could add predictive ability to NO3
-. This was tested 

with a multiple linear regression. Only data points with all three predictive variables were used (n = 

951). Data were from the Grand River, the Neuse River watershed, North Carolina (Stow et al. 2005) 

and the Xin’an Tang River, China (Xia et al. 2013). Constant variance requirements were not met, 

and r2 values were low whether or not N2O emissions were log-transformed but results were 

significant (r2 = 0.197 and r2 = 0.194, respectively; both p < 0.001).  

Relationships between DO, temperature, NO3
- and N2O emissions were visually examined by 

sorting data by temperature (Figure 7.12) and DO (Figure 7.13). This allows the inclusion of data 

points that include only temperature or DO. Temperature data were given for the Neuse River 

watershed, North Carolina (Stow et al. 2005), the LII River in New Zealand (Clough et al. 2007), the 

72 streams of the LINX II experiment in the United States (Beaulieu et al. 2011), and the Xin’an 

Tang R., China (Xia et al. 2013) as well as the Grand River data and this study. Highest N2O 

emissions always occur at high temperatures (> 20 ̊C). However, not all low emissions occur at low 

temperatures. The highest temperature category (> 24 C̊) has N2O emissions ranging from -1 

µmol/m2/d to 3749 µmol/m2/d. This suggests that temperature alone is not an accurate predictor of 

N2O emissions. 

DO concentrations were given in the Neuse watershed (Stow et al. 2005) and the Xin’an Tang R. 

(Xia et al. 2013) as well as in the Grand River and in this study (Figure 7.12). Highest N2O emissions 
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occur when DO is lowest (< 2 mg/L). Unlike temperature, low DO (< 2 mg N/L) occurs with a 

narrower and higher N2O emission range (52 to 3549 µmol/m2/d). 

Thus, the current global dataset on N2O emissions and NO3
- concentrations in rivers and streams do 

not refute the Probability Triangle conceptual. Interestingly, there appears to be no region where low 

NO3
- limits N2O emissions, even though NO3

- concentrations ranged from below detection to 21 mg 

N/L. This could be because N2O (but not NO3
-) enters streams from groundwater, or because N2O 

production is limited by NO3
- in sediment, which may not be in equilibrium with NO3

- in the sediment 

column. High N2O emissions (i.e. the upper portion of the triangle) are most likely to occur when DO 

is low (< 2 mg/L) and temperatures are high (> 20 mg/L) regardless of NO3
- concentration. This is 

likely because the rate of denitrification and/or N2O:(N2O+N2) ratios are highest in these conditions. 

Lower N2O fluxes are harder to predict because they can occur at any temperature but do occur at 

high DO (> 2 mg/L). 

This conceptual model can be further refined by future studies in other streams and rivers 

worldwide. Tropical rivers are particularly underrepresented, as are rivers with high NO3
- 

concentrations (> 4 mg/L). Agricultural streams with high NO3
- and moderate N2O emissions are 

included (Wilcock and Sorrell 2008) but streams or rivers with high NO3
- and very high N2O have yet 

to be reported. This may be merely because such systems are rare or understudied. However, it is also 

possible that very high N2O emissions are incompatible with high-NO3
- systems. These emissions 

occur via denitrification in hypoxic systems, but high denitrification could also significantly lower 

NO3
- concentrations. For example, hypereutrophic canals with extensive night-time hypoxia in 

Mexico removed all NO3
- present (~ 1mg/L) before night-time was over (Harrison et al. 2005). If this 

is the case, the Probability Triangle can be modified to include a decreasing slope at high NO3
- 

concentration (Figure 7.14). 

The model could also be refined by improving the comparability and quality of the global dataset. 

N2O emissions measured in different ways (e.g. modeled k, chambers, SF6 addition, etc.) may 

produce different results because they measure k on different time scales (Howarth et al. 2013, Jha et 

al. 2001, Jha et al. 2004, Raymond and Cole 2001). Additionally, many studies do not include night-

time sampling, even though N2O can be much higher than in daytime, even when no hypoxia exists 

(Chapter 2, (Harrison et al. 2005)). 
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Lastly, the model includes the confounding variable of stream depth because it compares N2O 

emissions per surface area to NO3
- mass per volume. Since depth can vary dramatically, especially 

between streams and rivers, normalizing N2O emissions to volume would be wise. This also allows 

more direct comparison to the IPCC equations, which deal only with masses of NO3
- and N2O on an 

annual scale. However, most published studies do not include depth measurements and depth 

measurements were not collected for most Grand River samples. 

7.4.4 Implications for IPCC Methodology and River Management 

It is clear from the data shown above that there is, at best, a very weak (r2 = 0.186) relationship 

between annual average NO3
- concentrations and N2O emissions from rivers and streams. The paucity 

of global datasets including dissolved oxygen and temperature make it impossible to determine if 

trends seen on the instantaneous scale in the Grand River (Venkiteswaran et al. in submission) and in 

southern Ontario streams and rivers (this study) occur on the annual and global scales. However, 

instantaneous N2O emissions do not correlate with NO3
- concentrations (r2 < 0.10) when all available 

instantaneous data is used.  

Thus, a new method of estimating annual N2O emissions from rivers is needed. Figures 7.12 and 

7.13 suggest that warmer, low-oxygen rivers with moderate NO3
- concentrations are more likely to 

emit more N2O to the atmosphere. It also appears that N2O emission variability is very high, even at 

low NO3
- concentrations, but peaks at moderate NO3

- concentrations. It is therefore of primary 

importance to determine the extent of hypoxia in rivers on an annual scale, as this relates best to N2O 

emissions (Chapter 3). Hypoxia is also an important indicator of ecosystem health, so hypoxia data 

may be collected by local ecosystem managers and could be used for greenhouse gas inventories. DO 

concentrations can be modeled in river systems if the gas exchange coefficient, ecosystem respiration 

and primary productivity can be measured (Venkiteswaran et al. 2007). Regression tree analyses have 

been shown to increase predictability of N2O emissions from rivers using DO, NO3
- and temperature 

(Venkiteswaran et al. in submission, this study). NO3
- thresholds identified by regression trees appear 

to change by region (this study: NO3
- = 2.7 mg N/L; non-urban Grand River sites: NO3

- = 4.9 mg/L). 

This suggests that as much data as possible should be used in trees so branches are not skewed by 

outliers. Further analysis of more streams and rivers worldwide will indicate how much NO3
—DO-

temperature relationships change by region.  
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N2O-NO3
- relationships may also change over long time periods. Climate change predictions for 

warmer water temperatures, more hypoxia and higher denitrification rates (Veraart et al. 2011, 

Whitehead et al. 2009) will probably lead to increases in N2O production. Higher temperatures alone 

may reduce N2O predictability (Figure 7.12) but hypoxia may increase predictability (Figure 7.13). It 

is currently unknown if or how these two factors will interact in N2O production rates. Recent 

changes in dissolved organic carbon (DOC) quantity and quality in many rivers, lakes and streams 

(Evans et al. 2005) may affect food sources for heterotrophic denitrifiers. Additionally, climate 

change could result in changes to habitat ranges of many species (Van der Putten et al. 2010), 

including denitrifying organisms. This is especially important for denitrifiers who lack N2O reductase 

and therefore process 100% of NO3
- substrate into N2O (Philippot et al. 2011). Additionally, the 

newly discovered N2O fixation pathway in cyanobacteria (Farías et al. 2013) could also be influenced 

by climate. Therefore, it is unknown if, but unlikely that, relationships between N2O emission and 

predictors (temperature, DO, NO3
-) will remain constant over time. Careful N2O sampling, taking 

potential hotspots (hypoxic and warm areas) into account, will be necessary to fully understand the 

N2O budget. 

7.5 Conclusions 

A survey of 24 streams and rivers in southern Ontario was conducted to examine NO3
-:N2O 

relationships on the instantaneous scale in oxic systems. The linear relationship between NO3
- and 

N2O was weak (r2 =0.31) but a non-linear regression tree analysis improved predictability (r2 = 0.37). 

No other predictive factors that significantly improved fit were found. This dataset was compared to 

the global published dataset, including an extensive dataset from the Grand River, of NO3
- 

concentrations and N2O emissions from streams and rivers, on both the annual and instantaneous 

scale. In both cases, N2O emissions are highest and most variable at moderate NO3
- concentrations. 

This relationship can be examined further on the instantaneous scale, where some simultaneous 

temperature and DO data exists. The linear relationship between NO3
- and N2O emission is very weak 

(r2 < 0.10) on the instantaneous scale. Highest N2O emissions occur at high temperature and low DO. 

However, low DO (< 2 mg/L) occurs with relatively high N2O emissions (> 50 µmol/m2/d) while high 

temperature occurs with large range of N2O emissions (> -1 µmol/m2/d). This suggests that high 

temperature alone is not enough to drive N2O emissions very high, but low DO resulting from high 

community respiration rates can drive high N2O production rates. 
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The data were compared to a conceptual model, the Probability Triangle, which posits that N2O 

variability increases with NO3
- concentration except at very low NO3

- concentrations, where NO3
- 

limits N2O production. Interestingly, the low threshold is not obvious in the global dataset, suggesting 

that low NO3
- concentrations in sediments may be poorly coupled to NO3

- in the water column. 

Additionally, N2O variability appears to peak at moderate NO3
- concentrations (~2 mg N/L). This 

may be an artifact of data scarcity. Alternatively, it could be that high NO3
- concentrations occur in 

areas poorly suited to denitrification, resulting in low N2O emissions. Further research on more rivers 

and streams worldwide is needed to determine these relationships.  

NO3
- and N2O emissions are, at best, very weakly linearly related in rivers and streams. This 

indicates that a new approach is needed to estimate N2O emissions from these systems. One 

possibility is to quantify hypoxia (DO < 2 mg/L) on an annual scale, possibly with the aid of DO 

models such as PoRGy (Venkiteswaran et al. 2007) and then conduct regression tree analysis with 

other variables (NO3
-, temperature). Hypoxia is also a concern for river ecosystem health; it is 

therefore recommended that greenhouse gas inventories pool data with ecosystem managers. 

However, greenhouse gas inventories must continually monitor and measure N2O emissions, NO3
-, 

DO and temperature, as N2O-NO3
- relationships are likely influenced by changes in organic carbon 

quantity and quality, hypoxia, and other factors affecting the denitrifying community.  
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Table 7.1: Site names and physical and trophic characteristics. E = eutrophic, M = mesotrophic, 

based on TP concentrations after (Dodds et al. 1998). PWQMN = Provincial Water Quality 

Monitoring Network Site. I = inactive site, A = active site. 

Site Code Site Name 
Latitude and 
Longitude 

Stream 
Order Trophic Status 

PWQMN 
Site? 

CS-1 Laurel Creek 
43.4823783886 N 
80.4833468575 W 4 M Y, I 

CS-2 Conestogo 
43.54114301370 N 
80.55331623260 W 6 M Y, I 

CS-3 
Canagagigue 

Creek 
43.5847483887 N, 
80.5346244826 N 5 E Y, A 

CS-4 Irvine Creek 
43.6954463888 N 
80.4478219825 W 5 M Y, A 

CS-5 Speed R. 
43.6399308888 N 
80.2701321073 W 5 E Y, A 

 

NW-1 Nith R. 
43.3754790135 N 
80.6788787327 W 5 E Y, A 

NW-2 Horner Creek 
43.162061 N 
80.540942 W 5 E Y, I 

NW-3 Whitemans Creek 
43.126078 N 
80.383606 W 6 E Y, A 

NW-4 Fairchild Creek 
43.2308733884 N 
80.2424814823 W 5 E Y, I 

 

MA-1 
Middle Maitland 

River 
43.7242838889 N 
81.2457202332 W 6 E Y, I 

MA-2 Beauchamps Drain 
43.7044357638 N 
81.2487102333 W 4 E Y, A 

MA-3 
South Maitland 

River 
43.6846218888 N 
81.5409024835 W 6 E Y, A 

MA-4 Blyth Brook 
43.7488695139 N 
81.4459168584 W 4 M Y, A 

MA-5 Maitland River 
43.895497639 N 
81.3534972334 W 5 M Y, A 

 

SA-1 South Saugeen R. 
44.098272 N 
80.984956 W 5 E Y, I 

SA-2 Beatty Saugeen 
44.1309828892 N 
80.96736535800 W 5 M Y, A 

SA-3 

Upper Main 
Saugeen R. at 

Hanover 
44.15136451430 N 
81.03917298310 W 6 E Y, I 

SA-4 Saugeen R. 
44.132764 N, 
81.144136 W 7 M Y 
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SA-5 Mill Pond Stream 
44.154219 N, 
81.274658 W 3 M N 

 

UT-1 Avon R. 
43.36606 N 
81.01867 W 4 E Y, A 

UT-2 Trout Creek 
43.251367 N 
80.984211 W 5 E Y, A 

UT-3 Middle Thames R. 
43.059458 N 
80.994814 W 6 M N 

UT-4 South Thames R. 
43.01864 N  
80.92691 W 5 E Y, A 

UT-5 Reynolds Creek 
42.969158 N 
80.949758 W 4 E Y, I 

 

 

 

Table 7.2: Results of linear regressions on survey sites, N2O emissions versus temperature, DO, 

NH4
+
, NO3

-
, total dissolved nitrogen (TDN) and total phosphorus (TP). Where noted, data were 

transformed to improve fit and/or produce constant variance. Bolded values are significant (p< 

0.005). 

Dependent 
Variable N2O transformation 

Dependent 
variable 
transformation r2 p 

Temperature log(N2Oemission+10) None 0.003 0.704 

DO None None 0.035 0.203 

NO3
- log(N2Oemission+10) None 0.31 <0.001 

NH4
+ log(N2Oemission+10) log(NH4

+) 0.037 0.192 

TDN log(N2Oemission+10) None 0.37 <0.001 

TP log(N2Oemission+10) None 0.09 0.146 
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Figure 7.1: Map of southern Ontario showing the 24 stream and river sites. See Table 7.1 for 

site descriptions and names. Grey lines indicate watershed boundaries. 
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Figure 7.2: pH, specific conductivity (panel A), water temperature and dissolved oxygen (DO) 

(panel B) at the 24 sites surveyed, grouped by watershed.  
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Figure 7.3: NO3
-
, NH4

+
 and total phosphorus (TP) concentrations at the 24 sites surveyed, 

grouped by watershed. 
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Figure 7.4: δ
15

N-NO3
-
, δ

18
O-NO3

-
 values (panel A) and N2O and CH4 concentrations (panel B) in 

the 24 sites surveyed, grouped by watershed. 



 

235 

 

 

 

Figure 7.5: NO3
-
 concentration and N2O emissions at the 24 surveyed sites, by watershed area. 

A: Data, B: standard ellipses. 
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Figure 7.6: Watershed land use versus NO3
-
 concentrations (A) and N2O emissions (B). CS and 

NW are in the same watershed and have the same fraction land use, but values in CS are 

increased by 0.5% for clarity.  
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Figure 7.7: Regression tree for the 24 surveyed sites. Inputs were temperature, DO, NO3
-
, TDN, 

DOC, TP and total suspended solids (TSS). A NO3
- 
concentration threshold of 2.7 mg N/L 

provided the most predictive power with the least number of inputs. r
2 
= 0.35. When NO3

-
 

concentration is < 2.7 mg N/L, the average N2O emission is 0.87 µmol/m
2
/d (n = 33). When NO3

- 

concentration is ≥ 2.7 mg N/L, the average N2O emission is 2.8 µmol/m
2
/d (n =15). 
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Figure 7.8: δ
15

N-NO3
-
 versus NO3

- 
concentration (panel A) and

 
N2O concentration (panel B) at 

24 field sites, by watershed area. Only one sample per day is shown (when δ
15

N-NO3
- 
samples 

were collected). 
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Figure 7.9: Conceptual diagram for the Probability Triangle, showing increasing variability in 

N2O emissions with increasing NO3
- 
concentration. Below a NO3

-
 concentration threshold, N2O 

emissions are expected to be linearly related to NO3
-
 because NO3

-
 is limiting. Based on previous 

work (Chapters 2 and 3, Venkiteswaran et al. in submission), high N2O emissions (dark grey 

area) are expected to occur when temperature is high and DO is low; low emissions during low 

temperature and high DO. 
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Figure 7.10: Global dataset of annual average NO3
- 
concentration and annual average N2O emissions in streams and rivers. Data are from 

the Grand River (Chapter 3), S. Ontario streams (Baulch et al. 2011); Mexican agricultural canals (Harrison and Matson 2003); a 

Japanese agricultural stream (Hasegawa et al. 2000); Midwestern American streams (Beaulieu et al. 2008); the Amazon R. (Richey et al. 

1988); the Potomac R. (Richey et al. 1988); the Hudson R. (Cole and Caraco 2001); the Tamar R., UK (Law et al. 1992); the Humber R. 

(Law et al. 1992); the Colne R. (Robinson et al. 1998); the South Platte R., CO (Robinson et al. 1998); three eutrophic Chinese rivers 

(Yang et al. 2011); the Temmesjoki R, Finland (Silvennoinen et al. 2008) ; and seven UK rivers (Dong et al. 2004). The horizontal line 

represents zero N2O emissions. 
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Figure 7.11: Global dataset of instantaneous NO3
-
 concentrations and annual average N2O emissions in streams and rivers, organized by 

site. Data are from the Grand River (Chapter 3), southern Ontario streams and rivers (this study), New Zealand streams (Wilcock and 

Sorrell 2008); the San Joaquin R, California (Hinshaw and Dahlgren 2013), 72 American streams from the LINXII experiment (Beaulieu 

et al. 2011); the Ashburton R., NZ (Clough et al. 2011); the LII R., NZ (Clough et al. 2007); the Ohio R. (Beaulieu et al. 2010); New 

Zealand rivers (Clough et al. 2006); the Adyar R., India (Nirmal Rajkumar et al. 2008); the Changjiang R., China (Yan et al. 2012); the 

Xin’an Tang R., China (Xia et al. 2013), UK rivers (Garcia-Ruiz et al. 1999) and the Neuse R. watershed (Stow et al. 2005). The thick 

black line represents the loess (locally weighted scatterplot smoothing) line of best fit for all data. The horizontal line represents zero N2O 

emissions.
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Figure 7.12: Global dataset of instantaneous NO3
-
 concentrations and annual average N2O emissions in streams and rivers, organized by 

water temperature. Data are from the Grand River (Chapter 3), southern Ontario streams and rivers (this study), the Neuse River 

watershed, North Carolina (Stow et al. 2005); the LII agricultural river in New Zealand (Clough et al. 2007); 72 pristine, agricultural and 

urban streams from the United States (Beaulieu et al. 2011) and the Xin’an River in China (Xia et al. 2013). Studies with no water 

temperature data reported were omitted. The horizontal line represents zero N2O emissions. 
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Figure 7.13: Global dataset of instantaneous NO3
-
 concentrations and annual average N2O emissions in streams and rivers, organized by 

DO concentration. Data are from the Grand River (Chapter 3), southern Ontario streams and rivers (this study), (Stow et al. 2005, Xia et 

al. 2013). Studies with no DO data reported were omitted. The horizontal line represents zero N2O emissions.
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Figure 7.14: Alternative conceptual diagram of the Probability Triangle, where the range of 

N2O emissions decreases above moderate NO3
- 
concentrations, on the assumption that hypoxia 

will result in low NO3
-
 due to rapid denitrification (e.g. (Harrison et al. 2005)). More research is 

needed in high-NO3
-
 streams and rivers to see if this model best fits available data. 
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Chapter 8: Conclusions and Recommendations  

8.1 Major Findings of this Research 

The overall goal of this research was to increase understanding of N cycling in rivers, particularly 

controls on production and emission of the greenhouse gas N2O. Six research chapters identify and 

address specific unknowns in the N cycle. They are described below with the most important results 

of each chapter. 

The objective of Chapter 2 was to determine if diel N and DO cycles were coupled in the Grand 

River watershed, and, if so, how this changes by site, trophic status and season. Previous work had 

shown that DO has a diel cycle throughout the Grand River in spring and summer due to diel changes 

in photosynthesis and respiration rates by macrophytes and epilithion (Jamieson 2010). In other 

rivers, N2O concentration had been shown to peak in daytime in low-N streams (Laursen and 

Seitzinger 2004) and peak at night in hypereutrophic systems with night-time hypoxia (Harrison et al. 

2005) but it was unclear if and to what extent N2O and DO cycles are coupled in the Grand River. 

Diel cycles of both N2O and DO existed at all sites and sampling times (May, June, July, September). 

In low-nutrient sites with modest diel DO cycles on the Eramosa and Speed Rivers, N2O peaked 

during daytime when DO was high. At all other sites, N2O peaked at nighttime when DO was low. 

Diel N2O concentration range was highest in summer and lower in spring and fall. The diel range in 

N2O concentration was strongly negatively correlated with night-time minimum DO concentrations 

(r2 = 0.97) and, contrary to IPCC N2O estimates, did not correlate well with NO3
-. Diel N2O ranges 

were highest downstream of large wastewater treatment plants (WWTPs). 

The relationship between NO3
-, DO and N2O is further examined in Chapter 3. The objective of this 

chapter was to quantify N2O emissions from the entire length of the Grand River over two years, with 

good spatial and temporal coverage, and then to compare instantaneous and annual N2O emission 

rates to NO3
- and DO concentrations. Annual emissions were lower than or similar to emissions 

estimated with IPCC equations, but changed dramatically between years while IPCC estimates did 

not. Instantaneous emissions were significantly correlated to DO (r2 = 0.21), not NO3
- (r2 = 0.07). 

Previous studies focused on picking an appropriate EF5 value to linearly relate NO3
- and N2O 

emissions (Beaulieu et al. 2010, Beaulieu et al. 2011). However, this study is the first to show that the 

linear paradigm itself is not supported by field measurements. 
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N2O emissions from rivers, as calculated by the IPCC, include N2O produced by the microbial 

processing of inorganic N (NO3
-, NH4

+) from agricultural runoff and from human sewage effluent. 

The IPCC also tallies direct N2O and CH4 emissions from WWTPs. However, it was unknown if N2O 

and CH4 were dissolved in effluent upon its release to rivers and how significant this potential 

greenhouse gas source was. Two recent studies report stable isotopic ratios of N2O and CH4 in 

WWTPs (Townsend-Small et al. 2011, Toyoda et al. 2011), but do not compare these values to in-

river values. The objectives of Chapter 4 were to quantify N2O and CH4 dissolved in effluent from 

three WWTP in the Grand River watershed, and to determine if δ15N-N2O, δ18O-N2O and δ13C-CH4 

values were distinct from upstream river sources and could be used as isotopic tracers of effluent. 

Three WWTPs with distinct processing methods were examined: a non-nitrifying plant releasing DIN 

as NH4
+; a partially-nitrifying plant releasing a mix of NH4

+ and NO3
-; and a fully nitrifying plant 

releasing almost entirely NO3
-. N2O and CH4 were supersaturated in all effluent at all times over the 

24-hour cycle, in both summer and winter. CH4 emissions from effluent (0.3 to 0.9 g CH4/capita/yr) 

were much lower than direct CH4 emissions from WWTPs (39 g CH4/capita/yr) (Czepiel et al. 1993). 

However, N2O emissions from effluent (1.1 to 2.0 g N2O/capita/yr) were on the low end of emissions 

from WWTPs (0.1 to 1583) (Table 4.1). This suggests that the current IPCC estimate for N2O 

emissions from wastewater (0.2 Tg N/yr) (IPCC 2007) would increase if N2O dissolved in effluent 

were taken into account. However, this is a small portion of total anthropogenic N2O emission (6.7 Tg 

N/yr) (IPCC 2007). Stable isotopic ratios of N2O and CH4 were distinct from river sources, 

suggesting they may be used as effluent tracers until they are degassed. 

Stable isotopic ratios of N2O can not only trace effluent in the Grand River, but potentially can 

trace N2O production and consumption processes in the Grand River (Thuss 2008). In order to 

understand N2O production pathways, isotopic fractionations (ε15N and ε18O) for N2O production by 

denitrification must be known. However, ε15N and ε18O values have been measured in pure culture 

experiments (Toyoda et al. 2005) and in soil incubations (Mariotti et al. 1982, Snider et al. 2009, 

Snider et al. 2013) but not in river sediment incubations. The objective of Chapter 5 was to measure 

ε
15N and ε18O of N2O produced by denitrification in river sediment at two sites in the Grand River 

(above and below the urban area) in spring, summer and fall. A second objective is to measure the 

fraction of O in N2O that came from water, instead of NO3
-. ε15N values ranged from -27.1‰ to -

12.4‰, similar to the literature range of -39‰ to -10‰ (Snider et al. 2009). Net ε18O values (not 
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including O exchange with H2O) ranged from 48.6‰ to 67.0‰, higher than values from soil 

incubations (Snider et al. 2009). The fraction O exchange ranged from 60% to 83%, similar to 

previous soil incubations (65% to 91%) (Snider et al. 2009). Surprisingly, ε15N and net ε18O were 

strongly negatively correlated with net N2O production rate. This relationship is explained by N2O 

reduction by N2O reductase (Nos), which imparts a positive ε15N and ε18O on the remaining N2O. Nos 

activity is suppressed in the high- NO3
- incubations relative to the low-NO3

- incubations either 

because (a) high NO3
- or NO2

- inhibits Nos (though NO3
- is very high in both incubation types), and/or 

(b) the lag time in Nos activity is related to NO3
- concentration, and is higher in the high-NO3

- 

incubations. The latter has not been documented in the literature. Quantifying isotopic fractionations 

yields information on the N2O:(N2O+N2) ratio while avoiding the difficulty of measuring N2 directly. 

N2O production rates can also be used to estimate denitrification rates, if an appropriate 

N2O:(N2O+N2) ratio can be determined. The objective of Chapter 6 was to create an annual NO3
- 

isotope mass balance of the Grand River and estimate the relative importance of in-river 

denitrification as a NO3
- removal mechanism. NO3

- mass in the river, as well as inputs and outputs, 

were tallied and N2O was used as a denitrification rate proxy. Watershed NO3
- inputs and the portion 

of the watershed’s annual NO3
- load removed by the river were also estimated. Denitrification rates in 

the Grand River were almost always lower than NO3
- inputs, resulting in relatively steady increases in 

dissolved NO3
- mass downstream. The calculated stable isotopic ratios of incoming NO3

- typically 

matched values measured in tributaries, WWTP effluent and groundwater. NO3
- lost from the river 

(not accounted for by denitrification) typically fell in stable isotopic range for denitrification and 

biotic assimilation. On the watershed scale, denitrification in the Grand River accounts only for 5% to 

19% of total annual watershed NO3
- loading. 69% to 82% of watershed NO3

- loading is lost or stored 

on the landscape and never enters the Grand River while 13% of total watershed NO3
- loading is 

exported to Lake Erie annually. 

While the previous chapters provide insight into N2O dynamics in the Grand River, it is unclear 

how N2O emissions are related to NO3
-, DO and temperature in other streams and rivers, particularly 

where hypoxia does not occur. The first objective of Chapter 7 was to examine these relationships in 

24 streams and rivers in southern Ontario which do no experience hypoxia, and determine if 

N2O:NO3
- relationships exist, as observed in other oxic systems (Baulch et al. 2011). The second 

objective was to use all available literature N2O, DO, temperature and NO3
- data from rivers and 
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streams and develop a conceptual model showing possible N2O emission rates with NO3
- 

concentration. N2O emissions and NO3
- concentration in southern Ontario streams had a weak, 

nonparametric relationship (r2 = 0.27) using the regression tree method (Venkiteswaran et al. in 

submission). The global dataset was used to create the Probability Triangle concept, which posits that 

N2O emissions should linearly increase with NO3
- concentration at low NO3

- concentration. When 

NO3
- is too high to limit N2O production, possible N2O emission rates increase with NO3

- 

concentration, creating a triangle. The top of the triangle coincides with high-temperature, low-DO 

conditions where N2O is likely high due to both high denitrification rate and high N2O:(N2O+N2) 

ratio. Annual and instantaneous global data fit in Probability Triangle, but there is very little data 

from high-NO3
- systems that have high N2O emissions. This may be because such systems have not 

been studied, or because most high-NO3
- systems are probably oxic (decreasing denitrification rates) 

and thus are unlikely to have high N2O emissions. It is therefore possible that N2O emission 

variability decreases above a certain NO3
- concentration; further study of high-NO3

- streams and rivers 

is needed.  

8.2 Recommendations for Further Research 

The data in this thesis highlight questions to be addressed in future research. In Chapters 2 and 3, it is 

posited that N2O fluxes are high in low-oxygen conditions because the sediment anoxic zone 

increases, which increases habitat of facultative denitrifiers and reduces the travel time for NO3
- 

diffusion from the water column to the anoxic zone (Figure 8.1). When the sediment oxic boundary 

moves upward, NO3
- can be present from previous nitrification. However, this conceptual model has 

not been tested in situ in rivers. Testing this model would require measuring DO and NO3
- 

microprofiles in situ, using microelectrode sensors. This can be expensive and labour-intensive but 

could yield valuable insights into diel cycling in natural systems. Currently, there are no published 

studies examining NO3
- microprofiles in river sediment, although NO2

- has been observed 

accumulating at the sediment oxic boundary in a river in Japan (Nakamura et al. 2004).  

Another possible approach is to conduct N and DO sediment microprofiles in the laboratory. Only 

two previous studies exist, and provide some insight: in one, sediment cores from an agricultural 

creek were incubated in light and dark conditions (Laursen and Carlton 1999). DO and NO3
- 

microprofiles were determined with microelectrodes. DO concentrations were higher at the sediment 

surface under light conditions. However, DO penetration depth ranged from 2 to 4 mm and did not 
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always change between light and dark conditions (Laursen and Carlton 1999). NO3
- concentration 

peaked at around 2 mm depth due to sediment nitrification, and NO3
- peaks were higher in lighted 

conditions. There was no indication of a shift in denitrification habitat between light and dark 

incubations. Stream water NO3
- concentrations were not reported but NO3

- concentrations in the cores 

peaked at around 0.04 mg N/L (Laursen and Carlton 1999). A similar study used sediment from an 

estuary with a water column NO3
- concentration of < 0.007 mg N/L (Porubsky et al. 2008). 15N-

labelled NO3
- was added, allowing measurement of NO3

- assimilation and dissimilation rates. 

Combined rates of denitrification and dissimilatory nitrate reduction to ammonium were ~6 times 

higher in dark incubations than light incubations but the sediment profiles showing the location of 

different N cycling processes were not shown (Porubsky et al. 2008).  

These studies provide insight into N cycling in sediments but probably do not represent Grand 

River diel cycling because (a) water column DO and therefore sediment DO penetration depth depend 

on community respiration, which in the Grand River, is largely influenced by macrophytes and 

biofilm (Chen 2013), while sediment studies only consider benthic processes, and (b) ambient NO3
- 

concentrations in the Grand River are higher than in those studies by at least an order of magnitude. 

Therefore, future work should test the conceptual model presented here to explain diel changes in 

N2O production and denitrification rate by performing similar laboratory experiments in higher-NO3
- 

systems, if field studies are impractical. Hypoxia (and high-oxygen conditions) may have to be 

artificially induced in laboratory studies if sediments are too high in oxygen because sediment 

respiration rates are lower than community respiration rates (including respiration by submerged 

macrophytes and water column algae). 

In Chapter 4, WWTP effluent N2O and CH4 concentrations and stable isotopic ratios were 

quantified. N2O emissions from the three WWTPs in the Grand River watershed were modest (range: 

1.1 to 2.0 g N2O/capita/y), but similar to direct N2O emissions from WWTPs (0.1 to 1580 g 

N2O/capita/y). Only one other study has estimated N2O emissions from effluent (0.2 g 

N2O/capita/year, (Toyoda et al. 2011)); more research is needed to determine how representative 

these values are. This will help determine if IPCC estimates of N2O emissions from WWTPs 

(currently 0.2 Tg N/yr, (IPCC 2007)) need to be updated. Similarly, there are very few published 

stable isotopic ratios of N2O and CH4 in effluent (Townsend-Small et al. 2011, Toyoda et al. 2011) 

but the reported range is very large, especially for N2O. More data from a variety of WWTP types 
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(i.e. primary through tertiary treatment; non-nitrifying, nitrifying and denitrifying capabilities) is 

needed to understand if stable isotopic ratios of N2O and CH4 are predictable by WWTP type, and if 

they are always different than upstream sources and can be used as tracers. 

Chapter 5 showed that N2O isotopic ratios are highly dependent on net N2O production rate in 

laboratory incubations. Two conceptual models were proposed, both of which suggest that N2O 

reduction is responsible for the relationship. The stable isotopic effect of N2O reductase itself has 

been measured in laboratory experiments, as summarized by Snider et al. (2009). However, the stable 

isotopic effect of the other enzymes used in denitrification has not been measured. Quantifying ε15N 

and ε18O for each enzyme (nitrate reductase, nitrite reductase, nitric oxide reductase) could help our 

understanding of N2O isotope dynamics and indicate which, if any, reaction is limiting, as the isotopic 

fractionation of the limiting step is likely to influence the net fractionation observed for NO3
- 

reduction to N2. Additionally, it is unclear why N2O reductase (Nos) activity changes between 

incubations. Further research is needed to determine if Nos is inhibited by high NO3
- or high NO2

- in 

these incubations and/or if the N2O reductase lag time is related to NO3
- concentration. NO3

- inhibition 

seems unlikely to influence only high-NO3
- incubations, as the lower NO3

- additions were still very 

high (775 mg N/L). NO2
- limitation is much more plausible and NO2

- should be quantified in future 

incubations of this type. Future incubations could also measure N2O and/or Nos activity throughout 

incubations to quantify lag time and use a long runtime (> 5 hours), as shifts in Nos activity were not 

captured in this experiment. This could provide valuable insight into how N2O pulses occur at the 

onset of anoxia (Codispoti 2010). 

Chapter 6 provides some insight into NO3
- sources and sinks on a watershed scale. Much has been 

published on various N cycling processes in watersheds but there is very little published work on 

watershed-scale budgets. This is probably because of the difficulty of estimating N sources and 

process rates on a watershed scale. In Canada and other developed countries, NH4
+ and NO3

- export 

from WWTPs is typically easy to quantify using WWTP reports. However, N loading from 

agriculture is spatially heterogeneous (depending on crop type, fertilizer application and soil 

properties) and temporally heterogeneous (depending in rain events, crop rotation, season, etc.). The 

IPCC provides equations to estimate the amount of agricultural N loading (see Chapter 6). However, 

there is very little data to support these values. Three studies report lower N loading values than IPCC 

estimates from a variety of agricultural environments (Brown et al. 2001, Delgado et al. 2010, 
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Silgram et al. 2001). Additionally, denitrification rates in soil and in streams and rivers are extremely 

variable spatially and temporally, which has greatly hindered global denitrification estimates 

(Davidson and Seitzinger 2006). Watershed-scale mechanistic N models such as RiverStrahler (Billen 

and Garnier 1997) or SWAT (Krysanova et al. 1998) may provide insight into N cycling, but care 

must be taken to calibrate the models with real data and to acknowledge that mechanistic models can 

match real data with incorrect inputs (Oreskes et al. 1994). To fully understand the role of rivers and 

streams in denitrifying N inputs from catchments, more measurements of in-river denitrification rates 

and watershed-scale N transport are needed. 

Chapter 6 also indicates than several other N cycling processes in rivers require further research. 

Denitrification rates in rivers are very difficult to quantify (Seitzinger et al. 2006); this study takes a 

novel approach by using N2O emissions as a proxy for denitrification rate. N2O appears to be 

produced almost entirely from denitrification in the Grand River (Thuss 2008). However, it is likely 

that the N2O:(N2O+N2) ratio produced is highly variable with temperature and concentration of DO, 

NO2
- and NO3

-, as has been shown in other river systems (Silvennoinen et al. 2008, Silvennoinen et al. 

2008). Silvennoinen et al. (2008a, 2008b) report a N2O:(N2O+N2) range of 0.001 to 0.038 for boreal 

river sediments. Ratios decreased with increased temperature and DO concentration. This could 

indicate that denitrification rates were overestimated in winter in this study and were overestimated 

during hypoxia events. Further research is needed to fully understand controls on the N2O:(N2O+N2) 

ratio in denitrification. Lastly, N assimilation was not measured in this study but it may be a 

significant portion of the river’s N budget. 15N labeling experiments on estuary sediments indicated 

that 83% to 150% of NO3
- loss was due to N assimilation (Porubsky et al. 2008). NH4

+ and NO3
- 

uptake rates were measured in 11 American streams in the LINX experiment, and were always an 

order of magnitude higher than nitrification rates (denitrification was not measured) (Webster et al. 

2003). The NO3
- uptake rate was ~10 times greater than denitrification rates in a forested stream in 

Tennessee at ambient NO3
- concentration (not stated) (Mulholland et al. 2004). N assimilation rates 

are a large part of the N cycle in streams and rivers; more measurements are needed in the Grand 

River and in other rivers worldwide. More research is also needed into understanding why N uptake 

and removal rates appear to be much higher in small streams than in large rivers. This could be 

because smaller streams have higher N reaction rates due to more benthic area, as postulated for 

watersheds in the Gulf of Mexico (Alexander et al. 2000). 
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Chapter 7 examined nonparametric relationships between N2O emission, temperature and 

concentration of DO and NO3
- in 24 streams and rivers in Southern Ontario, as well as the global 

published dataset. Highest NO3
- concentrations occurred in streams with the lowest proportion of 

wetlands in their watershed, and highest N2O emissions occurred when percentage agricultural land 

was highest. The opposite trend – positive relationships between NO3
- export and percentage wetland 

in the catchment was reported in non-agricultural boreal forest streams, perhaps because wetlands, not 

agriculture, are the primary source of NO3
- in these systems (Sarkkola et al. 2012). No studies have 

reported trends in NO3
- or N2O and agricultural land use. However, a negative relationship between 

dissolved organic matter concentration and percentage agriculture in watersheds in Europe has been 

shown (Mattsson et al. 2008). Further research is needed to determine if land use is a useful predictor 

of stream NO3
- and/or N2O concentration. This observation should be refined to include only land 

upstream of the study sites (instead of land-use from the whole river catchment). If a strong 

relationship exists between land use and NO3
- or N2O, estimates of N leaching and/or N2O emission 

from agricultural streams and rivers can be improved. 

Chapter 7 also highlighted the paucity of N2O emission and NO3
- concentration data from rivers 

and streams worldwide. Of the 1450 data points used in the study, 1133 were collected by this study 

in Southern Ontario. Few studies reporting NO3
- and N2O emissions also reported temperature or DO 

concentration, which are useful in predicting N2O emissions (Chapter 3). In addition, most research 

has focused on relatively low-NO3
- systems (< 4 mg N/L). The paucity of N2O emission data from 

streams with higher NO3
- (> 4 mg/L) makes it difficult to interpret the data in terms of the conceptual 

model Presented in this chapter. It is possible that N2O emission variability decreases at high NO3
- , 

where oxic conditions persist. Alternatively, it is also possible that high-NO3
- systems with sufficient 

hypoxia to produce high N2O may exist but have not been studied. Further research should focus on 

high NO3
- systems, as well as on low-DO systems, where N2O can be high but the controls on N2O 

are still not fully understood. 

8.3 Recommendations for River Management 

River managers (e.g. conservation authorities, water authorities, government environmental 

ministries) typically focus on geochemical parameters relating to ecosystem health and drinking water 

regulations, such as pH, conductivity, temperature, biological oxygen demand, DO, NO3
- and NH4

+. 

They also typically sample occasionally (e.g. the Ontario Provincial Water Quality Monitoring 
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Network, 10 samples/yr). The link between agricultural land use and NO3
- loading and export for 

rivers is known (Hong et al. 2013, Tesoriero et al. 2013) but site-specific variation is high (Davidson 

and Seitzinger 2006). In the heavily agricultural Grand River watershed, annual watershed N loads 

from WWTP effluent (1.5 Tg N/year) are much smaller than N loads from agriculture (41.2 Tg 

N/year) (Chapter 6). This suggests that upgrading WWTPs to reduce N in effluent is less useful than 

reducing N loading from agriculture. Several beneficial management practices (BMPs) have been 

suggested to reduce agricultural N loading (e.g. conservation tillage, proper N fertilizer application 

rates and timing, and erosion control (Lemke et al. 2011)). However, it is still unclear if BMPs 

consistently reduce nutrients to the landscape, and on what timescale (Lemke et al. 2011). BMP 

implementation requires will and funding from farmers, politicians and other stakeholders. Because 

highest NO3
- concentrations occur in watersheds with lowest percentage wetland (Chapter 7), focus 

on wetland creation and restoration may reduce river NO3
- concentrations. This may reduce NO3

- 

toxicity in aquatic ecosystems, help achieve drinking water quality targets, and reduce export of NO3
- 

to N-limited systems such as marine coasts. However, managing the river for NO3
- may not be useful 

for reducing eutrophication in non-N limited systems. Management for phosphorus could help reduce 

eutrophication; further research is needed to address major sources of labile P to the watershed. 

Chapter 6 also shows that the Grand River receives only 17% to 32% of total annual N loading 

from the watershed (agricultural, sewage and septic beds). The remaining 68% to 83% of watershed 

NO3
- is lost before entering the river, presumably in smaller streams, groundwater, wetlands, riparian 

zones, etc. or stored in soil or groundwater. Of the NO3
- entering the Grand River, 26% to 59% is lost 

via denitrification, assimilation or storage. Because the river denitrifies a small portion of total 

watershed NO3
- loading (0.5% to 19%), NO3

- management should focus on the watershed scale. 

Watershed managers can likely increase NO3
- removal by investing in riparian zone restoration and 

wetland protection and creation. Removing large amounts of NO3
- before water enters the main 

branch of the river also helps reduce river eutrophication. Additionally, areas that remove NO3
- by 

assimilation and denitrification, such as constructed wetlands, also remove P by assimilation and 

sedimentation (Mietto and Borin 2013), which is more useful than NO3
- removal in P-limited 

ecosystems. N assimilation is a temporary N sink (i.e. some or all N will later be released during N 

mineralization); organic and mineralized N can also be flushed downstream when vegetation senesces 

in autumn. This essentially exports N pollution rather than removing it. In contrast, denitrification and 

anammox produce non-biologically reactive N (N2) and should be encouraged. This requires hypoxia 
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or anoxia, either in microsites in otherwise oxic environments, or in larger environments, such as 

anoxic sediments. While anoxic sediments may promote denitrification and anammox, anoxic water 

columns are harmful to aerobic life forms (benthic invertebrates, fish, etc.) and should be prevented. 

This can be achieved by promoting decreases in water velocity to increase sedimentation of fine 

material (e.g. wetlands, river pools) and by removing nutrients on the landscape, so river ecosystems 

are nutrient-limited and community respiration in the water column is low. The relationship between 

N2O:(N2O+N2) ratios and oxygen level is not clear, but full anoxia and low NO3
- should promote low 

N2O production as N2O reduction occurs when DO is very low and NO3
- and NO2

- are low (Firestone 

et al. 1980).  

8.4 Recommendations for Greenhouse Gas Inventories  

The most dramatic finding of this thesis is the poor to non-existent relationship between N2O and 

NO3
- on the instantaneous and annual scale, contrary to the IPCC estimates of N2O emissions from 

rivers. Accurate greenhouse gas (GHG) inventories are necessary for (a) a complete understanding of 

GHG budgets, (b) practical and realistic mitigation strategies, and (c) any future GHG cap-and-trade, 

credits or taxation system on the local, regional, national or international scale. Based on the 

regression tree analysis performed in Chapter 7 and in the Grand River (Venkiteswaran et al., in 

submission), the following decision scheme is recommended for greenhouse gas inventories including 

emissions from rivers and streams: 

(1) Identify and quantify hypoxia in rivers and streams, as these conditions produce very high N2O 

emissions relative to their area (Chapter 3). A method for anoxia quantification has not been 

published for rivers, but one has been published for lakes (Nurnberg 1995) and could be 

adapted. The anoxic factor is quantified as: 

�� = (��������	��	������	 × ������	��������	����)/��  Equation 8.1 

where AF is the anoxia factor in days per year, and AO is the total lake (or river) surface 

area	(Nurnberg 1995). Hypoxia and anoxia in river water columns appears to be relatively rare 

and related to releases of WWTP effluent or high-DOC water from forest flooding (Kerr et al. 

2013). However, very little data exists on river surface sediment anoxia and the condition may 

be more widespread than currently understood. Good collection of DO data is the first step to 

quantifying N2O emissions from rivers. 
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(2) Devise an N2O sampling plan taking diel N2O variability (Chapter 2) and seasonal, annual and 

spatial variability (Chapter 3) into account. Highest N2O emissions from the Grand River occur 

during summer at night, downstream of a large WWTP where hypoxia occurs. N2O emissions 

were higher in a drier, warmer year than in a cooler and wetter one. During N2O sampling, 

temperature, DO, NO3
- and NH4

+ should also be measured so that predictive factors (if any) of 

N2O emissions can be determined. Gas exchange coefficients can have a large impact on N2O 

emission estimation, especially when N2O concentrations are near saturation. Gas exchange 

coefficients can be estimated based on water depth and velocity (Jha et al. 2004) or modeled, 

e.g. with PoRGy (Venkiteswaran et al. 2007). Note that not all gas exchange measurement 

methods provide identical results (Beaulieu et al. 2012, Raymond and Cole 2001); this may 

bear further investigation on a local level. Local relationships between water depth, velocity, 

and/or discharge and the gas exchange coefficient can be determined. River sampling of N2O 

could be combined with river monitoring programs (e.g. Ontario’s Provincial Water Quality 

Monitoring Network), which routinely sample parameters of interest such as pH, temperature, 

DO, NO3
- and NH4

+. 

(3) Determine any relationships, parametric or nonparametric, between N2O emissions and 

predictive factors (DO, temperature, NO3
-, NH4

+). If hypoxic sites exist, splitting data into 

hypoxic and non-hypoxic groups may help sort them. Regression tree analysis does this 

automatically with any input parameter if provides the best fit. Acknowledge that any 

relationships found may not be stable over time due to changes in microbial community; 

quantity and lability of organic carbon; concentration of atrazine and other pesticides (Laursen 

and Carlton 1999) may change these relationships. 
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Figure 8.1: Conceptual diagram of diel changes in N2O production in river sediment in 

summer. Font sizes correspond to concentrations, and arrow thicknesses correspond to rates. 

During the day, primary producers increase DO concentrations in the water column, resulting 

in a relatively deep sediment oxic layer (left panel). NO3
- 
from the water column must diffuse

 

across this layer, limiting N2O production via denitrification. At night, DO concentration 

decreases, the sediment oxic layer thins, and NO3
- 
diffusion into the sediment anoxic layer is 

rapid.
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Appendix A: N2O Isotopomers in the Grand River 

A.1 Introduction 

N2O is an asymmetrical molecule (Figure A.1). The δ15N ratio of the central N atom (termed the α 

atom) and the terminal N atom (β atom) can now be measured with good precision. The difference 

between the δ15N values is termed “site preference” (SP): 

8: = r�
�n − r�
��         Equation A.0.1 

Previous work using pure cultures has shown that N2O SP is very different for N2O produced by 

bacterial nitrification via the hydroxylamine pathway (SP ~ 33‰) than by bacterial denitrification (SP 

~ 0‰) (Sutka et al. 2006) (Table A.1). This is presumably because of the different enzymes used in 

the two pathways. Nitrifier denitrification (i.e. NO2
- reduction to N2O and N2 by nitrifying bacteria) 

produces SP values like denitrification (Sutka et al. 2006). SP ratios were consistent even when δ15N-

N2O (bulk) and δ18O-N2O values changed (e.g. when different substrates were used) (Sutka et al. 

2006). Though only a few laboratories worldwide have the capability to measure N2O SP, it has 

gained favour as a method of distinguishing N2O production processes because it is supposedly 

independent of substrate δ15N values (e.g. (Kato et al. 2013, Well et al. 2006)). 

However, there are several factors that can complicate the interpretation of SP values. First, several 

processes do not fit squarely into the paradigm (Table A.1): Nitrosomonas europaea cultures can 

have SP values ~14‰ during hydroxylamine oxidation (Sutka et al. 2003). Fungal denitrifiers have 

SP values ~30‰, similar to ammonia oxidizers (Sutka et al. 2008), as do pure cultures of the 

denitrifying bacteria Pseudomonas fluorescens (Toyoda et al. 2005). Only one study has examined 

soil denitrifier communities, which yielded a range of SP values intermediate between bacterial 

denitrification and nitrification (Table A.1). Lastly, N2O reduction to N2 increases SP with an isotopic 

fractionation of about 5‰ to 6‰ in soil bacterial cultures (Ostrom et al. 2007). A recent review has 

highlighted some of these problems and recommended caution when using SP for N2O source 

apportionment (Decock and Six 2013). 

The purpose of this study is to determine if changes in N2O production pathway are observable in 

N2O SP values over a 24-hour cycle at Blair (Site 11) in the Grand River, and if this helps determine 

processes responsible for the diel cycling of N2O seen at this site. N2O concentration is typically very 
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high at Site 11 in summer at night (Chapter 2) and moderate during the day. It is possible that (a) N2O 

production is dominated by denitrification pathways at all times of day and rate increases at night, or 

(b) some daytime N2O is produced by nitrification (Thuss 2008). 

A.2 Methods 

N2O, dissolved oxygen (DO), nitrate (NO3
-) and ammonium (NH4

+) were collected at Site 11 in the 

Grand River (see Chapter 1, Table 1.2) on July 7 and 8, 2010 using methods described in Chapter 2. 

Samples were collected approximately every 1.5 hours. Additionally, effluent was collected from the 

Kitchener Wastewater Treatment Plant (WWTP) (as described in Chapter 4) three times over the 

course of the sampling. All chemical analyses except N2O SP measurements were completed as in 

Chapter 2 and Chapter 4 (N2O isotope collection and measurement). 

N2O was cryogenically trapped in vials for N2O isotope analysis. After bulk N2O isotope analysis at 

the University of Waterloo, samples were shipped to the Yoshida laboratory at the Tokyo Institute of 

Technology, Yokohama, Japan, where they were analysed using a MAT252 isotope-ratio monitoring 

mass spectrometer with an on-line cryogenic N2O concentration system and gas chromatograph. For 

N2O SP analysis, an electron impact ion source was used to fragment N2O to NO+, containing the 

central (α) N of the N2O; the δ15N-NO+ ratio was then measured. 

A.3 Results 

DO, NO3
-, NH4

+ and N2O concentration; bulk δ15N-N2O, N2O SP, and δ18O-N2O are shown in Table 

A1. DO and N2O concentrations are shown in Figure A.2 and N2O isotopic ratios and SP are shown in 

Figure A.3 

A.4 Discussion 

Surprisingly, N2O SP values are very high with the exception of one point (range: -7.4‰ to 36.7‰). 

It is unlikely that all N2O over the diel cycle at Site 11 is produced by hydroxylamine oxidation, 

which requires oxygen and NH4
+. Additionally, δ15N-N2O (bulk) values are higher than expected for 

hydroxylamine oxidation. It is more likely that the high N2O SP values represent N2O reduction, 

which is likely high in the Grand River (see Chapter 5). Figure A3 shows δ15N-N2O (bulk) vs. N2O 

SP, and shows expected areas for N2O produced by hydroxylamine oxidation, denitrification, and 

N2O reduction. Based on pure culture studies, N2O reduction should result in an SP:δ15N ratio of 1.1 



 

263 

 

 

and an SP:δ18O-N2O ratio of 0.45 (Ostrom et al. 2007) but data from this study do not follow these 

ratios (Figure A.4). This could indicated that the δ15N ratio of source NO3
- changes over the diel cycle 

(as observed by (Thuss 2008)) and/or that mixed microbial populations in Grand River sediment have 

different ε15N and SP values than pure cultured bacteria. Given that multiple processes can increase 

N2O SP (nitrification, fungal denitrification, some bacterial denitrification, N2O reduction), a 

relatively high N2O SP in the Grand River is not unexpected. Unfortunately, the multiple processes 

resulting in high SP values make source apportionment impossible in this environment.  

N2O from the Kitchener WWTP appeared in or near the expected range of isotopic ratios and SP 

for nitrifier-denitrification, which is consistent with findings in Chapter 4. 
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Table A.1: N2O site preference (SP) values for microbial metabolic processes from the 

literature. 

Reaction Organism(s) N2O SP Reference Notes 

Hydroxylamine 
Oxidation 

Methylococcus capsulatus 

Bath 30.8 ± 5.9‰ (Sutka et al. 2003) 
Nitrosomonas europaea 14.9 ± 3.7‰ 

Nitrosomonas europaea 33.5 ± 1.2‰ 

(Sutka et al. 2006) 
Nitrosospira multiformis 32.5 ± 0.6‰ 

Methylosinus trichosporium 35.6 ± 1.4‰ 

 
Archaeal NH4

+ 
oxidation 

Archaeal enrichment culture 
CN25 30.3 ±1.2‰ (Santoro et al. 2011) 

Nitrifier 
denitrification 

Nitrosomonas europaea -0.8 ± 5.8‰ (Sutka et al. 2003) 

Nitrosospira multiformis 0.1 ± 1.7‰ (Sutka et al. 2006) 

Bacterial 
denitrification 

Pseudomonas fluorescens  23.3 ±4.2‰ 
(Toyoda et al. 2005) 

Paracoccus denitrificans 5.1 ± 1.8‰ 

Pseudomonas chlororaphis −0.6 ± 1.9‰ 
(Sutka et al. 2006) 

Pseudomonas aureofaciens −0.5 ± 1.9‰ 
Fungal 
denitrification Fusarium oxysporum 37.1 ± 2.5‰ 

(Sutka et al. 2008) 
Fungal 
denitrification Cylindrocarpon tonkinense 36.9 ± 2.8‰ 

Community 
denitrification Sand and silt loam soils 3.1‰ to 8.9‰ 

(Well and Flessa 
2009) 

N2O reduction 
inhibited with 
C2H2 

N2O Reduction 
Pseudomonas stutzeri -5.0‰ 

(Ostrom et al. 2007) 
Pseudomonas denitrificans -6.8‰ 
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Table A.2: DO, NO3
-
, NH4

+
, N2O, δ

15
N-N2O, N2O SP and δ

18
O-N2O at Site 11, July 7-8, 2010. 

Sample Date and Time 
DO 

(mg/L) 
NO3

- (mg 
N/L) 

NH4
+ (mg 

N/L) 
N2O 

(nmol/L) δ
15N-N2O (‰) 

N2O SP 
(‰) δ

18O-N2O (‰) 
BL 20-1 07/07/2010 19:20 8.8 3.31 0.078 65 
BL 20-2 07/07/2010 21:40 5.5 3.29 0.100 130 -4.7 19.5 38.3 
BL 20-3 07/07/2010 23:45 2.9 3.25 0.128 158 -6.6 21.6 38.0 
BL 20-4 08/07/2010 1:50 1.9 3.02 0.193 135 -11.7 18.4 35.4 
BL 20-5 08/07/2010 3:45 1.5 2.90 0.211 93 -12.8 34.7 15.5 
BL 20-6 08/07/2010 5:50 1.6 2.66 0.362 58 
BL 20-7 08/07/2010 7:45 2.4 2.77 0.210 39 -7.8 21.9 41.9 
BL 20-8 08/07/2010 9:45 5.5 2.98 0.088 32 -5.9 20.2 42.8 
BL 20-9 08/07/2010 11:45 9.1 3.01 0.073 42 -4.6 19.4 41.4 
BL 20-10 08/07/2010 13:10 10.7 3.10 0.040 34 -2.8 17.8 40.8 
BL 20-11 08/07/2010 15:50 11.5 3.16 0.142 32 -3.6 36.7 
BL 20-12 08/07/2010 17:45 11.5 3.10 0.132 32 -2.5 -7.4 37.9 
BL 20-13 08/07/2010 19:45 8.7 3.29 0.126 31 -3.3 37.5 
BL 20-14 08/07/2010 21:50 5.0 3.28 0.196 38 -3.0 20.6 38.4 
BL 20-15 08/07/2010 23:45 3.0 2.76 0.233 71 -5.4 21.8 39.7 

KTP 20-1 07/07/10 12:30 4.5 BD 24.48 274 -10.2 -5.9 18.5 
KTP 20-2 07/07/10 12:30 1.6 BD 24.40 18 -11.5 -0.9 17.8 

KTP 20-3 07/0710 12:25 4.7 BD 23.72 17 -10.4 14.6 13.8 
KTP 20-3 07/0710 12:25 4.7 BD 23.72 17 -8.7 3.3 24.5 
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Figure A.0.1: The N2O molecule with central (α) and terminal (β) N atoms labeled. 
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Figure A.2: DO and N2O concentrations at Site 11 (Panel A) and NO3
- 
and NH4

+
 (Panel B) over 

the diel sampling event. 
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Figure A.3: δ
15

N-N2O, N2O SP and δ
18

O-N2O at Site 11 over the diel sampling event. 
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Figure A.4: δ
15

N-N2O and δ
18

O-N2O cross-plotted with N2O SP for Site 11 diel samples and 

samples from Kitchener WWTP (KTP) effluent. Black boxes indicate expected ranges for SP 

and isotope ratios for denitrification based on the literature (Snider 2011) and ε
15

N and εεεε18
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values from Grand River sediment (Chapter 5). Arrows show the expected slope for N2O 

reduction (Ostrom et al. 2007). Grey boxes represent expected ranges for SP and isotope ratios 

for nitrification based on the literature. 
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