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Abstract

The automotive industry is growing bigger each year. The central concern for any
automotive company is driver and passenger safety. Many automotive companies
have developed driver assistance systems, to help the driver and to ensure driver
safety. These systems include adaptive cruise control, lane departure warning, lane
change assistance, collision avoidance, night vision, automatic parking, traffic sign
recognition, and driver fatigue detection.

In this thesis, we aim to build a driver fatigue detection system that advances the
research in this area. Using vision in detecting driver fatigue is commonly the key
part for driver fatigue detection systems. We have decided to investigate different
direction. We examine the driver’s voice, heart rate, and driving performance to
assess fatigue level. The system consists of three main modules: the audio module,
the heart rate and other signals module, and the Bayesian network module.

The audio module analyzes an audio recording of a driver and tries to estimate the
level of fatigue for the driver. A Voice Activity Detection (VAD) module is used
to extract driver speech from the audio recording. Mel-Frequency Cepstrum Coef-
ficients, (MFCC) features are extracted from the speech signal, and then Support
Vector Machines (SVM) and Hidden Markov Models (HMM) classifiers are used
to detect driver fatigue. Both classifiers are tuned for best performance, and the
performance of both classifiers is reported and compared.

The heart rate and other signals module uses heart rate, steering wheel position,
and the positions of the accelerator, brake, and clutch pedals to detect the level of
fatigue. These signals’ sample rates are then adjusted to match, allowing simple
features to be extracted from the signals, and SVM and HMM classifiers are used to
detect fatigue level. The performance of both classifiers is reported and compared.

Bayesian networks’ abilities to capture dependencies and uncertainty make them
a sound choice to perform the data fusion. Prior information (Day/Night driving
and previous decision) is also incorporated into the network to improve the final
decision. The accuracies of the audio and heart rate and other signals modules are
used to calculate certain CPTs for the Bayesian network, while the rest of the CPTs
are calculated subjectively. The inference queries are calculated using the variable
elimination algorithm. For those time steps where the audio module decision is
absent, a window is defined and the last decision within this window is used as a
current decision. The performance of the system is assessed based on the average
accuracy per second.

A dataset was built to train and test the system. The experimental results show
that the system is very promising. The performance of the system was assessed
based on the average accuracy per second; the total accuracy of the system is 90.5%.
The system design can be easily improved by easily integrating more modules into
the Bayesian network.
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Chapter 1

Introduction

1.1 Motivations

The automotive industry is growing bigger each year. According to the Organisa-
tion Internationale des Constructeurs d’Automobiles (OICA), 84,141,209 cars and
commercial vehicles have been produced in 2012 alone [1]. The average increase
in automotive production over the past decade has been 4.1%. Such a vast mar-
ket drives the companies to regularly improve their products by spending more
on research and development (R&D). According to a Booz & Co. report in 2013,
Volkswagen automotive company spent more on R&D than any other company
worldwide [2]. The R&D spending by Volkswagen alone was 11.4 billion dollars
which is 4.6% of it total revenue.

Driver and passenger safety are among the primary concerns of any automotive
company. According to an article published in 2009, up to 75% of all roadway ac-
cidents are caused by driver error [3]. Many automotive companies have developed
driver assistance systems to help the driver in different driving tasks, and to ensure
driver safety. These systems include adaptive cruise control, lane departure warn-
ing, lane change assistance, collision avoidance, night vision, automatic parking,
traffic sign recognition, and driver drowsiness detection.

According to the U.S. National Highway Traffic Safety Administration in 2011,
2.5% of the vehicle drivers involved in fatal accidents were either drowsy, asleep,
fatigued, ill, or blacked out [4]. Another research article in 1999 showed that 15-20%
of the accidents are sleep-related [5]. These statistics and more have focused the
automotive companies’ attention to building driver drowsiness detection systems.

Most of the previous work used visual approaches to detect fatigue [6, 7, 8]. Per-
centage eye closure (PERCLOS), yawn frequency, head movement, gaze, and facial
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expressions were the main features used to determine fatigue level. Little attention
has been paid to monitoring fatigue using speech and other signals. In [9], a speech
recognition system was used to detect the level of fatigue, finding that some phones
experimentally show a predictable dependence on fatigue. In [10], different features
are extracted and used to train eight different classifiers. An ensemble classifier is
used to fuse the decisions from the eight classifiers. In [11], Mel-Frequency Cep-
strum Coefficients (MFCC) features are used along with Gaussian Mixture Models
to detect fatigue level.

Although the performance of the speech-based systems is acceptable, there are some
problems that need to be tackled before they can be employed in driver fatigue
detection. A Voice Activity Detector (VAD) must be used to extract the speech
signal from the audio signal. Voice activity detection is still an open problem, and
its performance depends on the nature of the problem. Also we need to think of a
way to decide the level of the fatigue in the absence of a speech signal. Finally, using
other sensors, and using the decision from different sub-systems, would allow for
improvement. In this thesis, we aim at developing a driver fatigue detection system
using speech, heart rate, steering wheel, and pedal positions. Decision fusion can be
used to fuse decisions from the different modules, and to improve the performance
of the overall system.

1.2 Objectives

Below are the main objectives of this thesis:

1. Building a practical and realistic dataset that can model both driver fatigue
and inattention. The drivers involved in the experiments need to be selected
such that they represent the real spectrum of drivers. We strove to design
an experiment such that the drivers would exhibit realistic fatigue and inat-
tention behaviours, while ensuring the safety of the drivers during the exper-
iment. Many sensors, including Kinect, infrared camera, microphone, heart
rate monitor, and steering wheel and pedal positions will be used to capture
the driver behaviour from different perspectives. This data needs to be care-
fully labeled and stored in a standard format. Finally, we aim to make the
dataset publicly available for other research groups.

2. Building an audio module that can analyze the driver’sa voice for fatigue. To
build such a module, we need also to build a voice activity detection (VAD)
module, to extract the driver’s voice from the audio signal. Voice Activity
Dection is still an open problem, and the performance of the VAD systems
varies according to the nature of the problem. In our dataset, the audio is
recorded in a quiet room, with the steering wheel and pedals as the only
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source of noise. We need to take advantage of such a setup to customize a
VAD module with high performance.
On the other hand, we aim to build a fatigue classification module that takes
its input from the VAD module and analyzes the voice signals for the presence
of the fatigue. Our goal is to achieve an accuracy above 80%. In order to reach
this goal, different classifiers will be used and tuned for maximum accuracy.

3. Building a module that can analyze the heart rate, steering wheel, and pedal
positions for driver fatigue. The signals from different sensors are from differ-
ent values, ranges, and sampling rates. We need to pre-process the data and
extract useful features. The goal is to try different classifiers to obtain high
accuracy.

4. The goal of using different sensors is to be able to improve the performance
of the whole system. Our goal is to fuse the decision from the audio module
and the heart rate and other signals module such that the performance of the
whole system improves.

5. We aim to build a system that can be extended and integrated with other
systems. Fusing different modules on the decision level allows integration
with the other systems while dealing with each system as a black box.

1.3 Challenges

Most of the datasets used by other research groups are not publicly available.
The only dataset that we successfully obtained for use is the dataset built by the
Robesafe research group [12, 6]. This dataset is very limited. Only three human
drivers were involved in the experiments, and the only sensor used to record the
driver behaviour was an infrared camera. According to our objectives, such a
dataset is not a good fit to our project. Hence, we decided to build our own
dataset.

Building our own dataset is the first challenge for this project. This dataset should
meet our objectives, and not be a duplicate of other datasets. Different driver
behaviours indicating fatigue or inattention need to be captured during the data
collection. Various sensors need to be used to capture driver behaviour. It is
essential to carefully set up the data collection experiments such that the safety of
the drivers is ensured, and the number of drivers, the duration of the experiment,
and the actions performed by the drivers are defined.

Noise is another challenge we are going to face. For the sound recording, the types
of noise includes microphone noise, steering wheel noise, pedal noise, and the noise
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of driver body movements while performing driving tasks. For the pedal position
noise, the source of noise could be the position of the clutch when the driving
simulator is set to be automatic. Such noise needs to be dealt with either in the
pre-processing, feature extraction, or classification stage.

Feature extraction is another important challenge, one which can be an art as much
as a scientific task. Trial and error is often useful in determining the best set of
features to be used. The performance of the system strongly depends on the type
of features used to represent the signals. These features need to be representative,
robust, and reliable. Signal noise can often be filtered using the right features.
On the other hand, the features need to be organized to suit the classifier. Some
classifiers like SVM need fixed length feature vectors, while others like HMM need
frame-based features.

The classifier is the heart of the system. When the classifier is chosen, all other
modules need to be designed to suit the classifier, which means choosing the right
classifier is critical. Trial and error is not the only way to determine which classifier
is best for the system. Being aware of the nature of the problem and the data, and
whether it is sequential or not, helps to choose the right classifier. Visualizing the
data helps in such a decision. It gives information about the data and whether it is
separable or not, linearly separable or not, whether the classes overlap or not, etc.
Such information helps the designer to choose an appropriate classifier.

Fusion is another challenge for this project. The fusion can be done on the features
level or the decisions level, each of which has its advantages and disadvantages.
Fusion on the features level can produce more accuracy, but the system becomes
very complex. Fusing the decisions opens a room for integrating more decisions
without modifying the system submodules. We have to choose the right method of
fusion to improve accuracy, and to open the doors for this project to be extended
in the future.

1.4 Thesis Overview

In chapter 2, the driver assistance systems are reviewed. The previous work is pre-
sented and criticized, with focus on the systems related to driver fatigue detection.
The drawbacks of each system are listed. The main concerns about each systems
are 1) whether the dataset is practical or not, 2) how does the system behave in
different conditions, and when does it fail to perform its function?. After revis-
iting the previous work, we propose a methodology to build a car driver fatigue
monitoring system, while trying to avoid the drawbacks of other systems.

4



Data collection is an important part of our system. We briefly describe the dataset
we want to build. We also present various sensors we are going to use to collect
the data, and how we are going to collect the data. There are classifiers that are
used throughout the thesis: SVM and HMM classifiers. Each classifier is visited,
and the ideas and mathematical models are presented.

In Chapter 3, the framework for our system is described in full detail. The chapter
starts with the proposed approach and the system architecture, followed by the
data collection. The third section presents the audio module including voice activ-
ity detection (VAD). The fourth section presents the heart rate and other signals
module. Finally, decision fusion using Bayesian networks is described in the last
section.

In the experimental results chapter (Chapter 4), the framework setup for each
experiment is presented. This includes programming language, toolkits, model
parameters settings, train and test datasets, and performance evaluation. For the
VAD module, feature extraction using MFCC features is described, and SVMmodel
training and testing are also presented. The performance of the classifier is reported
using different graphs.

For the audio module, data acquisition and feature extraction are described, and
SVM model training and tuning are presented. The performance of the SVM
classifier is reported to be low and unsatisfying. The reasons for such performance
are described, and as a result, an HMM classifier is used. HMM model training and
testing are presented. The training and testing are done using HTK toolkit. The
tuning of the HMM model for maximum accuracy is described and shown using
some plots.

Similar to the audio module, the framework for the heart rate and other signals
module is described. To adjust for different sampling rates for the signals, signals
are resampled. Features are extracted for both SVM and HMM classifiers, and The
tuning of the SVM classifier is described. The best performance for the SVM-based
module is reported to be very low. Such performance is analyzed and the HMM
classifier is used to improve such low performance. The performance of the HMM-
based module is shown in plots. The best accuracy for the HMM-based module is
reported.

The framework for the decision fusing using Bayesian network is described. This
framework is set up using MATLAB, and the inference is done using variable elim-
ination algorithm. Prior information is incorporated into the network to improve
the final decision. The total accuracy of the system is reported both with and
without the prior information. Finally, the best total accuracy of the system is
reported.
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In the last chapter, conclusions and future work are presented. The contributions
of this work are presented for each module. In the second section, proposed ways to
extend this work are presented, including improving the framework on the dataset
and methodology levels. Improving the dataset could be accomplished by involving
more human subjects, more fatigue levels, by using electroencephalography signals
for ground truth fatigue labeling, and using real vehicle along with the driving
simulator. The ways for improving the system includes using more features and
classifiers, fusing more decisions, and driver adaptation. The publications based on
this work are also listed.
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Chapter 2

Literature Review and
Background

2.1 Driver Assistance Systems

Driver and passenger safety are of prime concern to automotive companies. Accord-
ing to an article published in 2009, up to 75% of all roadway accidents are caused
by driver error [3]. Many automotive companies have developed driver assistance
systems to help the driver and to ensure driver safety. These systems include adap-
tive cruise control, lane departure warning, lane change assistance, night vision,
automatic parking, traffic sign recognition, and driver drowsiness detection. In the
following subsections, some of assistance systems are reviewed.

2.1.1 Adaptive Cruise Control

Adaptive cruise control (ACC) [13] tracks the speeds of the vehicle ahead using a
sensor (e.g. a radar) installed on the front of the vehicle. The system uses this
information to adjust speed so as to maintain a safe distance. Mitsubishi was the
first automotive company to bring an ACC system to the market in 1995. Now,
many automotive companies have models that support adaptive cruise control.

Hoedemaeker [14] has conducted a research on the usability of the ACC systems. It
was found that the ACC system is more useful for motorways than for rural roads;
low-speed drivers appreciate the ACC system more than high-speed drivers. The
author states that the car driver needs to know the ACC system behaviour and
limitations in order to engage and disengage the system appropriately.
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2.1.2 Lane Departure Warning and Lane Change Assis-
tance Systems

The lane departure warning system [15] is used to warn the vehicle whenever the
driver unintentionally crosses the lane lines. The system attempts to alert the driver
either by vibration, audio, or displaying a message on the dashboard. Sensors,
including cameras and lasers, are normally installed behind the windshield of the
vehicle. Information obtained from the sensors are used to decide whether the
vehicle crossed the line or not. Nissan was the first company to introduce this
system to the market in 2001; now it is common to find this system in luxury cars.

Many researchers have been tackling this problem for a long time. In 1995, Chen et.
al. [16] developed the AURORA system, which is a vision-based roadway departure
warning system. The system uses a downward-looking color video camera with
a wide angle lens, a digitizer, and portable Sun workstation. The system uses
template correlation to accurately detect lane markers. At each video frame, an
algorithm is run to detect the car position. Based on car position and velocity,
an alarm is triggered in case of lane departure. The system has been tested under
different weather, road, and lighting conditions, and the results were excellent.

Another group, at University of California at Berkeley, has developed Video-based
Lane Estimation and Tracking” (VioLET) system [17]. This system uses steerable
filters [18] for lane marker tracking. Steerable filters offer great robustness to differ-
ent shadow and lighting conditions, as well as computational simplicity which makes
the system implementation very fast. The system has been tested on different road
and weather conditions and the performance was robust and excellent.

Lane change assistance systems [15] help the driver to change lanes safely. The
system uses cameras installed at the rear bumper to scan the blind spots for the
driver. The system alerts the driver when attempting to change lane while another
vehicle is approaching in the blind spots. Many automotive companies provide
this system in some of their cars, including Audi, Volkswagen, BMW, Porsche, and
Mazda.

2.1.3 Traffic Sign Recognition

Traffic sign recognition is an intelligent system that can read traffic signs such as
speed limit, turn ahead, and others. Audi, BMW, Mercedes-Benz, Volvo, Volk-
swagen, and Opel all use this system in certain car models. In 2007, Escalera et.
al. [19] developed a traffic sign detection and recognition system. The traffic sign
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detection is done using the color and corners of the traffic signs, guided by a neu-
ral network. Different types of signs are recognized, such as speed limit, railway
crossing, left turn ahead, no left turn among other signs.

Marcin L. Eichner and Toby P. Breckon have developed a vision system to recognize
speed limit signs, cancellation signs, and even turn signs from a moving vehicle
[20]. The system is customized for UK signs, but the authors state that it can be
extended to work for other countaries. The sign detection is done using a RANdom
SAmple Consensus (RANSAC) algorithm [21], while neural networks are used for
signs recognition. The system has been successfully tested under different daylight
and weather conditions.

2.1.4 Driver Fatigue Detection

Driver fatigue detection is an intelligent system that can monitor driver fatigue.
Various sensors, such as a camera, microphone, and heart rate monitor, can be
used to assess the driver fatigue. The system advises the driver to take some rest
once drowsiness is detected. In the next section, previous work in driver fatigue
detection systems is reviewed.

2.2 Driver Fatigue Monitoring

The increasing number of traffic accidents caused by driver fatigue has brought
the attention of researchers and automotive companies to developing driver fatigue
monitoring systems. The U.S. National Highway Traffic Safety Administration has
listed driver fatigue as one of the primary causes of traffic accidents [4]. According
to their study in 2011, 2.5% of vehicle drivers involved in fatal accidents were either
drowsy, asleep, fatigued, ill, or blacked out [4]. Other reports confirm that 10-20%
of accidents are fatigue-related [22]. Another research article in 1999 found that
15-20% of accidents are sleep related [5]. Such statistics , among others, showed
the need for developing the fatigue monitoring systems.

Figure 2.1: Driver fatigue monitoring systems.

The general fatigue detection system is shown in Fig. 2.1. The car driver exhibits
certain fatigue behaviour/s, detected by sensors which could be intrusive or nonin-
trusive. The system uses sensors to record driver behaviour. An intelligent system
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is used to analyze the data obtained from the sensors, and pattern recognition and
machine intelligence techniques are used for the fatigue analysis. Finally, the fa-
tigue decision is reached and an action is taken, if the driver is fatigued, to alert
the driver.

There are different techniques to detect driver fatigue. The techniques based on
physiological phenomena like brain waves, heart rate, pulse rate, and respiration
are the most accurate [23]. These techniques are intrusive, needing electrodes to
be attached to the driver’s body. Such techniques are not practical for everyday
driving use.

Nonintrusive techniques are more practical: nothing needs to be attached to the
driver’s body. Most of the previous papers in detecting fatigue level have used
vision-based systems to detect the level of fatigue. Some attempts have been made
to detect fatigue through the driver’s voice. Heart rate and pedal positions have
also been used. In the following sub-sections, the main papers addressing the driver
fatigue detection are presented.

2.2.1 Vision-Based Systems

Vision-based fatigue detection systems use vision-based sensors (cameras) to record
apparent driver behaviour. Different types of cameras can be used, whether that
be an ordinary camera, an infrared camera, or even a Kinect. Visual features are
extracted and vision-based techniques are used to estimate driver fatigue level.

Smith et al. [24] in 2003 developed an intelligent system to detect driver fatigue. A
normal color camera is used for collecting the data. Three different visual features
were extracted: eye blinking, eye rotation, and gaze tracking. A finite state machine
is used to estimate the fatigue level. The main drawback of this system is using
a color camera, making the system unsuitable for night driving the time fatigue is
most likely to be a problem.

Bergasa et al. [6] in 2006 developed a driver fatigue monitoring system, in which
an infrared camera was used to record driver behaviour. Various visual features
were used including eye percentage closure (PERCLOS), eye closure duration, blink
frequency, nodding, face position, and fixed gaze. Fuzzy logic is used in order to
fuse these features and produce the fatigue decision. The main drawback of the
system is the limited dataset used in the training and testing. Only three drivers
were recorded in the dataset. The fatigue was also completely simulated and not
genuine. Also, the performance of the system degrades when the driver wears
sunglasses.
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Ji et al. [25, 26] developed a probabilistic framework to monitor human fatigue.
Two infrared cameras were used to record the dataset. Different visual features
were extracted, including yawning frequency, PERCLOS, gaze distribution, and
head tilt frequency. A Bayesian network framework was used to estimate the final
fatigue decision.

D’Orazio et al. [8] in 2007 developed a fatigue detection system. A normal color
camera was used for collecting the dataset. Two visual features were extracted:
eye blinking, and PERCLOS. A Gaussian mixture model was used to classify the
features and estimate driver fatigue. The main drawback of the system was their
use of a color camera, which would fail in night driving conditions.

2.2.2 Audio-Based Systems

Audio-based fatigue detection systems use a microphone to record the driver’s voice,
and the speech signal is analyzed using different techniques to estimate the level of
fatigue.

In [9], a speech recognition system was used to detect the level of fatigue, finding
that some phones experimentally showed a predictable dependence on fatigue. The
system showed that the sound ’p’ and ’t’ are highly correlated to the Sleep Onset
Latency (SOL), which is a standard measure for sleepiness level. The paper didn’t
mention the performance of the speech recognition system they used in their system,
and how it would affect the performance of their system.

In [10], a system for fatigue detection using speech signals was presented. Different
features were extracted from the speech signal, including fundamental frequency,
fundamental frequency peak process, intensity, Harmonics-to-Noise Ratio (HNR),
formant position and bandwidth , Linear Predictive Coding (LPC), 12 MFCCs, 12
Linear Frequency Cepstral Coefficients (LFCC), duration of voiced and unvoiced
speech segments, and long term average spectrum (LTAS). Eight different classifiers
were trained to estimate the level of fatigue. An ensemble classifier was used to
fuse the decisions from the eight classifiers. The recognition rate for this system
was 83.8%. The main drawback of the system is the dataset, only two participants
were involved in the data recording.

In [11], Mel-Frequency Cepstrum Coefficients (MFCC) features were used along
with Gaussian Mixture Models (GMM) to detect the fatigue level. Participants
were asked to repeat certain sentences at different times during the day. Elec-
troencephalography (EEG)-based measurements were used as the ground truth.
GMMs were used to extract certain features: voiced, unvoiced, and silent parts of
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the speech signals. The features were then correlated to EEG measurements. The
paper didn’t address how the speech signal can be extracted.

Although the performance of the speech-based systems is acceptable, there are
some problems that need to be tackled before they can be employed in driver
fatigue detection. A Voice Activity Detector (VAD) needs to be used to extract
the speech signal from the audio signal; Voice activity detection is still an open
problem, and its performance depends on the nature of the problem. Also, a way
needs to be found to decide the level of the fatigue in the absence of a speech signal.
Finally, using other sensors and using decisions from different modules could lead
to significant improvement.

2.3 Classification

2.3.1 Support Vector Machines

Supervised classification is a central task in machine learning. The problem is
to observe a number of labeled data points, and then learn a classifier that can
accurately assign labels to new data points. The main challenge for each classifier
is to be able to generalize to unseen conditions. Some classifiers tend to generalize
well, while others don’t. Support Vector Machines (SVMs) are well-known for
their ability to generalize, and they are very robust against overfitting[27]. SVMs
have been used extensively over the past decade because of their performance and
robustness. In this section, the basic theoretical fundamentals of Support Vector
Machines are introduced.

Figure 2.2: Two-class linearly separable classification problem.
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Consider a linearly separable two-class classification problem as shown in Fig. 2.2.
There are an infinite number of decision boundaries that can separate the two
classes, the best decision boundary is that which minimizes the generalization error.
The SVM classifier tries to minimizes the generalization error using a large-margin
decision boundary. This large-margin decision boundary is a linear separator that
is as far as possible from both class boundaries.

Figure 2.3: Large-margin decision boundary.

Let our data points be {x1, x2, ..., xn} and let the class label for data point xi be
yi ∈ {−1, 1}. As shown in Fig. 2.3, the linear separator equation is wTx + b = 0.
The distance from any point to the linear separator is:

y(wTx+ b)
||w||

where y ∈ {−1, 1} (2.1)

The optimization function for the maximum margin classifier can be written as
follows:

maxw,b
1
||w||
{miniyi(wTxi + b)} ∀i (2.2)

Such a minimization function can be simplified by fixing the minimum distance to
1 and minimizing ||w|| such that:

minw,b
1
2 ||w||

2

s.t. yi(wTxi + b) ≥ 1 ∀i (2.3)

Such an optimization problem is convex and quadratic [28]. It can be solved using
various optimization tools [29]. Only the points located at the boundaries yi(wTxi+
b) = 1 are necessary; these points are called support vectors.
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2.3.1.1 Dual Problem and Kernel Trick

The kernel trick is one of the important properties of the SVM classifiers. The
feature space can be mapped to a higher (and even an infinite) dimension feature
space without adding much computations. The idea is to reform the optimization
function such that all x′s can be replaced by a kernel function. Using a Lagrangian
multiplier [30], the optimization problem in Eq. 2.3 can be reformulated as follows:

maxaminw,bL(w, b, a) s.t. a ≥ 0
where L(w, b, a) = 1

2 ||w||
2 −∑i ai[yi(wTxi + b)− 1] (2.4)

The inner minimization is minw,bL(w, b, a):

minw,b
1
2 ||w||

2 −
∑
i

ai[yi(wTxi + b)− 1] (2.5)

Solving the above minimization by setting the derivatives to 0, we get:

w = ∑
i aiyixi

0 = ∑
i aiyi

(2.6)

Substituting back in Eq. 2.4 using the above equations and replacing each xTi xj by
k(xi, xj) we get:

L(a) =
∑
i

ai −
1
2
∑
n

∑
m

anamynymk(xn, xm) (2.7)

Using Eq. 2.4 and Eq. 2.7, we get the dual problem in which many a′
is are 0. The

data points at which ai 6= 0 are called the support vectors.

maxa L(a)
s.t.

∑
i aiyi = 0

ai ≥ 0
(2.8)

The classifier decision becomes:

y = sign

(∑
i

aiyik(xi, x) + b

)
(2.9)
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2.3.1.2 Soft Margin Classifier

Figure 2.4: Missclassified data points and their corresponding ξ distances drawn in
black lines.

In the previous derivations for the SVM classifier, the classes are considered linearly
separable. To allow for misclassified samples, a slack variable ξ is defined as shown
in Fig. 2.4. This slack variable reflects the order of the misclassified samples. The
optimization problem is formulated as follows:

minw,b,ξ C
∑
i ξi + 1

2 ||w||
2

s.t. yi(wTxi + b) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

(2.10)

In the above formula, constant C is the penalty constant. This constant controls
the tradeoff between the large margin and the slack variable penalty. Setting this
variable to a very large value, the problem becomes similar to the hard margin
classifier. The dual problem is formulated using Lagrangian as follows:

maxa,µminw,b,ξL(w, b, a, µ, ξ) s.t. a, µ ≥ 0
where L(w, b, a, µ, ξ) = C

∑
i ξi + 1

2 ||w||
2 −∑i ai[yi(wTxi + b)− 1 + ξi]−

∑
i µiξi
(2.11)

Solving the above optimization problem similarly to how in Eq. 2.4 was solved, the
dual problem becomes:
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L(a) =
∑
i

ai −
1
2
∑
n

∑
m

anamynymk(xn, xm) (2.12)

maxa L(a)
s.t.

∑
i aiyi = 0

C ≥ ai ≥ 0
(2.13)

The support vectors are the samples at which ai > 0. The classifier decision for the
soft margin is still the same as shown in Eq. 2.9.

2.3.2 HMM: Theory and Implementation

2.3.2.1 Modeling Speech Using HMMs

The speech process starts in the mind of some human when a message is composed
to be delivered to the intended listener(s). The ultimate goal of this process is to
recognize the message as intended by analyzing the message as observed. This is
illustrated by the famous noisy channel communication model shown in Fig.2.5.

Figure 2.5: Noisy channel communication model where “W” is the intended message
composed by the producer, and “O” is the message as observed by the receiver.

The distortion caused by the noisy channel typically leaves us with the ambiguous
problem of having multiple possible perceived sequences, from which we have to
recognize the intended message sequence. While building a fully rule-based recog-
nizer is almost impossible due to the randomized nature of the channel distortion,
the goal of a recognizer finding the intended sequence can practically be achieved
stochastically.

The maximum a posteriori probability (MAP) approach is one of the most widely-
used and mathematically well-founded methodologies in this regard. According to
this methodology, the elected message sequence Ŵ is selected to maximize the a

16



posteriori probability P (W |O) over all the possible (producible) messages, which
is formally expressed as:

Ŵ = arg
∀W

max {P (W |O)} = arg
∀W

max

{
P (O|W )P (W )

P (O)

}
= arg

∀W
max {P (O|W )P (W )}

(2.14)

Where P (O|W ) is called the likelihood probability which models the forward con-
ditional stochastic relation between intended/input classes/labels and their conse-
quent observations, and P (W ) is called the language model that gives the a priori
marginal probability of any possible sequence of classes. The a priori probability
of the observations P (O) can obviously be omitted from the maximization formula,
as it is independent of W .

2.3.2.2 Theory and Elements of HMM

HMM is a stochastic process with an underlying finite-state structure; each one
of these states is associated with a random function. Within a state, the signal
possesses some measurable, distinctive properties. Within a discrete period of time,
the process is assumed to be in some state, and an observation is generated by the
random function of that state. The underlying Markov chain changes to another
state based on the transition probability of the current state. The sequence of states
is hidden, only the sequence of observations produced by the random function of
each state can be seen.

Consider a recognizer system that at any instant in time may only be in one of
the state belonging to its state set. The system undergoes a change from one state
to another according to a set of probabilities associated with each state. These
transitions take place in regularly-spaced discrete periods of time. In other words,
a system transits from state Si at time t to a state Sj at time t+1, t = 1, 2, 3, · · ·N
(no. of observations) and i, j = 1, 2, · · · , L (no. of states/word).

Another important element to be decided is the type of probability density function
(PDF) for the observations per state. In the case of a discrete PDF, we have to
decide the number of observation symbols per state. In the case of a continuous
PDF, we have to decide the number of Gaussians per state. The observation sym-
bols correspond to the physical output of the system being modeled. Individual
symbols are denoted as ẑ1, ẑ2, · · · ẑK .

The rest of the elements which characterize the discrete observation HMM are:
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1. The initial state probability. This is the probability of being in state Si at
t = 1.

π = {πi = P (Si at t = 1)} (2.15)

2. The state transition probability. This is the probability of being in state Si
at time t, then transiting to state Sj at time t+ 1.

A = {aij = P (Sj at t+ 1|Si at t)} (2.16)

3. The observation symbol probability. This is the probability of observing sym-
bol ẑk while the model is in state i at time t.

B = {bi,k = P (ẑk|Si)} (2.17)

Considering the previous elements mentioned, a complete specification of an HMM
requires specifying two model parameters, Lg and K, the observation symbols, and
three sets of probability measures: A, B, and π. The compact notation to be used
to refer to a class HMM is λg(A,B, π). This notation is reduced to λg(A,B) in the
case of using the left to right (L-R) HMM topology.

2.3.2.3 HMM Topologies

By placing certain restrictions on the structure of the model, the model behaves
differently. A fully connected model, as shown in Fig. 2.6, is known as an ergodic
model.

Figure 2.6: Ergodic Hidden Markov Model
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For certain types of signals, other types of models have been shown to model that
signal’s properties better [31]. In the case of a time-variant signal, the L-R model
is such a model. The state sequence of this type of model is forced to start in the
leftmost state, and can only make transitions to the states to its right, or remain in
the current state, as time passes. The model must also end in the rightmost state.
This model has become the most popular form of HMM used in speech recognition
and character recognition. An example for L-R model is shown in Fig.2.7.

Figure 2.7: Left to right Hidden Markov Model

In the L-R HMM’s,

πi =

1 i = 1
0 i 6= 1

(2.18)

2.3.2.4 The Basic Problems of HMM’s

There are three basic problems that must be solved for the model to be useful in
our application. These are:

1. The evaluation problem:
Given a sequence λW , concatenation of class models λg, and a sequence of
observations O = {o1, o2, · · · oN}, what is the probability that the model
generates the observations P (O|λW )?

2. The training problem:
Given a sequence λW and a sequence of observationsO = {o1, o2, · · · oN}, what
should the model parameters be to maximize the probability of generating the
observations?

3. The decoding problem:
Given a set of models λg and a sequence of observations O = {o1, o2, · · · oN},
what is the most likely state sequence in these models that produces the
observations?
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The evaluation problem can be viewed as a way of scoring how well a given models
matches a given observation sequence. So it is very useful in the case in which we
are trying to choose among several competing models.

The decoding problem is one in which we attempt to uncover the hidden part of the
model, i.e., to find the best matching state sequence given an observation sequence.
In trying to find the best state sequence which is not the correct state sequence, we
need an optimality criterion to solve it. The choice of criterion is a strong function
of the intended use for the uncovered state sequence. The Viterbi decoder is used
for decoding.

The training problem is the most important of the three problems. If we could solve
this problem, we would have the means to automatically learn the parameters given
an observation sequence. The Baum-Welch algorithm is used for training the HMM
model [32].

2.4 Data Fusion

Any given standalone sensor may not always be able to gather all the required
information about the physical environment. Using multi-sensors is very important
in this regard. The data gathered by multiple sensors, if dealt with correctly, can
improve the performance of the system significantly. Data fusion is needed to deal
with multisensor data. Different sensors suffer from different types of noise. Such
noise can not always be dealt with using filtering and denoising techniques, and
thus data fusion techniques need to deal with such noise.

Hall and Llinas [33] defined data fusion: “data fusion techniques combine data
from multiple sensors and related information from associated databases, to achieve
improved accuracy and more specific inferences than could be achieved by the use
of a single sensor alone”. A more abstract definition was introduced by Federico
Castanedo [34]: “we can define data fusion as a combination of multiple sources
to obtain improved information”. So data fusion deals with different data sources
(sensors) and combines them on different levels to achieve better data quality and
better system accuracy.

2.4.1 Types of Data Fusion

Data fusion can be classified into three types: data fusion, feature fusion, and
decision fusion [35]. Fusion systems can be classified as shown in Fig. 2.8.
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Figure 2.8: Types of fusion systems.
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Data-In Data-Out Fusion This type of fusion is the lowest form of fusion. Both
the input and the output of this type is data. An example of this fusion is image
filtering when a filter is applied to an image for denoising, binarization, or any other
reason.

Data-In Feature-Out Fusion Here, the data from different sensors are com-
bined to extract some features. This type of fusion is well known by feature extrac-
tion. Combining data from different sensors should be done with caution. Data
values, ranges, mean, variance, and missing values should be taken into considera-
tion when extracting features from different data sources.

Feature-In Feature-Out Fusion In this type of fusion, both the input and the
output are features, and thus it is known as feature fusion. Sometimes it is difficult
when dealing with multi-sensor data to extract the features from the raw data
directly. Features from each sensor are extracted first, and these features are then
combined to extract the final features. Another example of this type is the data
reduction using feature selection or feature extraction [36].

Feature-In Decision-Out Fusion Here, the inputs are the features from differ-
ent sensors, and the output is the decision. It is also known as the classification
step. Neural networks, SVM, Hidden Markov Models, and many other classifiers
can be used for this type of fusion. In [10], eight different classifiers including
SVM, Decision Trees [37], and neural networks were trained using various kinds of
features.

Decision-In Decision-Out Fusion In this type of fusion, both the input and
the outputs are decisions. This is the most common type of data fusion, and
the most studied one [35], it is often named decision fusion. In this paradigm,
different sub-systems are designed such that each system deals with subsets of the
sensors. Each sub-system outputs a decision, and these decisions are then fused
using decision fusion to produce the final decision. Such technques sometimes offer
great flexibility in designing the whole system; each sub-system can be designed
independently. The integration of the sub-systems is quite easy because each sub-
system is looked at as a black-box. Adding sub-systems or taking out sub-systems
can be done without much work.

There are different techniques for decision fusion. Among the most famous tech-
niques are ensemble methods. Ensemble methods were proposed as a way for com-
bining multiple weak classifiers (rules of thumb) to obtain a single strong (highly

22



accurate) classifier. Ensemble methods[38] can be categorized into two classes de-
pending on their architecture: 1) Parallel Models and 2) Serial Models. In parallel
models, each classifier is trained independently, and the votes generated by all the
classifiers are fused together to obtain the final decision. In the serial models, clas-
sifiers are trained iteratively. The performance (e.g. the training error) of each
classifier impacts the training phase of its subsequent classifiers.

Another important way of performing decision fusion is using expert systems. Ex-
pert systems are computer programs that can take decisions like human experts
[39]. Expert systems can solve complex problems by knowledge-based reasoning.
The expert systems implementation consists of two modules: the knowledge base,
and the inference engine. The knowledge base is of a form IF .... THEN ..... . The
IF part is called the antecedent, while the THEN part is called the consequent.
An example of a knowledge base is “IF the car driver is yawning and it is 1:00
pm THEN he is fatigued”. The inference engine is used to produce a reasoning on
the knowledge base rule. For the previous example, it is not obvious whether the
driver is fatigued or not. Yawning is an indication that the driver is fatigued. But,
when it happens in the afternoon, it is not quite obvious to infer that the driver
is fatigued. Different types of logic can be used to implement the inference engine,
such as propositional logic, predicate logic, fuzzy logic [40], and probabilistic logic
(Bayesian networks). In the next section, Bayesian networks are presented, as we
are going to use a Bayesian network in our system.

2.4.2 Bayesian Networks

Bayesian networks are probabilistic models [41] that represent random variables and
their conditional dependencies using a directed acyclic graph (DAG). Each node in
the graph represents a random variable that can be either be discrete or continuous.
An arc represents the conditional dependency between the parent node and the
child node. Nodes that are not connected together are not directly dependent. The
graph is parametrized by the conditional probability tables (CPTs). These tables
specify the relation between each node and its parents.

2.4.2.1 Example for Bayesian Networks

Fig. 2.9 shows an example for using a Bayesian network to fuse decisions from two
modules: module 1, and module 2. The example is a Bayesian network designed
for driver fatigue detection, and the final decision is the driver fatigue. Modules
1 and 2 are conditionally dependent on the driver fatigue. The observed variables
are called the evidence, while the variables needing to be evaluated are called the
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Figure 2.9: Bayesian networks example.

query variables. In this example, Module 1 and 2 are the evidence, and the fatigue
variable is the query variable.

Suppose that module 1 reports that the driver is not fatigued, and module 2 reports
that the driver is fatigued. We need to fuse both decisions to estimate the final
fatigue decision. Using the conditional dependency, the probability of the fatigue
p1 = p(Fatigue|Module 1 = F,Module 2 = T ) can be calculated as follows:

p(Fatigue|M1 = F,M2 = T ) = k ∗ p(Fatigue) ∗ p(M1 = F |Fatigue) ∗ p(M2 = T |Fatigue)
= k ∗ 0.2 ∗ 0.1 ∗ 0.85

To calculate the value of the constant k, we need to evaluate the formula p2 = p(∼
Fatigue|Module 1 = F,Module 2 = T ). Given that the sum of both probabilities
p1 and p2 is 1, the constant k can be calculated.

Despite the fact that we calculated the final decision using the probability rules,
there are automatic algorithms that are used to implement the inference engine.
The most common algorithm is variable elimination [42]. Variable elimination elim-
inates the unobserved and non-query variables using summation. After eliminating
the variables, the variable elimination algorithm normalizes the result, as we did in
the previous example.
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Chapter 3

Proposed Approach

The goal of this thesis is to develop a car driver fatigue monitoring system that
is robust and efficient. Most previous work depended on the use of vision data as
their primary source for fatigue detection. Depending on one data type reduces
the system robustness under different conditions. Hence we decided to use different
types of data gathered by different sensors, and fuse them to automatically detect
driver fatigue. In order to do so, we need to build our own dataset. The available
datasets are very limited and do not provide the flexibility to implement our pro-
posed system. In the following sections, the system architecture is described, and
the data collection and the dataset description is presented. Each module in the
system is then described in detail.

3.1 System Architecture

The system architecture as shown in Fig. 3.1 is divided into four main parts: 1)
The first part is the vision module which takes the recorded videos and propagates
the inattention and fatigue decisions to the Bayesian Network. This part, as you
can see, is a black box; detailed information about this part can be found in [43].
2) The second part is the audio part. This takes the recorded sound as an input,
processes it through three modules to detect the level of fatigue, and propagates
the fatigue decision to the Bayesian Network for further analysis. 3) The third part
is the Heart Rate and Other Signals module. This uses the recorded heart rate
signal along with steering wheel, gas, clutch, and brake pedal signals and analyzes
them to decide the level of fatigue. The decision is then transferred to the Bayesian
Network for further analysis. 4) The last part is the Bayesian Network Decision
Fusion. This module takes the output decisions from the different parts, and fuses
them together in order to decide the final fatigue level.

In the following pages, a brief description for each module in Fig. 3.1 is presented.
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Figure 3.1: System Architecture

3.1.1 Audio Module

First, the recorded audio is processed by computer software. The audio samples,
along with the sampling rate are given to the VAD module for processing. The
VAD module is responsible for detecting the duration in which the driver is talking.
The VAD module first divides the audio signal into small contiguous audio pieces.
Feature extraction is applied to each piece to form the feature vectors,. The VAD
combines a reasonable number of contiguous feature vectors into one big feature
vector to form the frames. The classifier takes each frame as an input to decide the
presence or the absence of the speech.

After the VAD extracts the speech parts, the feature extraction module takes them
as an input to perform feature extraction. The feature extractor divides the speech
signal into small contiguous audio pieces. Features are then extracted from each
piece. The feature extractor module performs some statistical measures (ex. mean,
average, etc) on feature vectors in order to produce one big feature vector to rep-
resent the whole speech duration. The following modules can either use the frame-
based features or the one big feature vector.

Two different classifiers are used and compared: 1) Support Vector Machines
(SVMs), and 2) Hidden Markov Models. SVM needs a fixed length feature vector,
so using the one feature vector that represents the whole speech duration is the best
option. On the other hand, Hidden Markov Model is able to model the temporal
behaviour based on the frame-based feature vectors.

3.1.2 Heart Rate and Other Signals Module

The heart rate along with the other signals (steering wheel, gas, brake, and clutch
pedal position signals) are processed by computer software. Each signal has read-
ings and corresponding time stamps, and all readings from different signals need
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to be aligned. Because each signal has a different sampling rate, in the same time
frame there will be a different number of samples for different signals. We can apply
different feature extraction modules, and then we combine the extracted features
in one feature vector. The other solution is, we could simply convert the sampling
rate for each signal so that the final sampling rate for all signals is the same. We
can then apply feature extraction on the resampled signals.

For feature extraction, the output from the sampling module is processed in order
to obtain feature vectors for the classifier module. The feature extraction module
divides the signal into small contiguous pieces. Features are then extracted from
each piece. The feature extractor combines a reasonable number of contiguous
feature vectors into one big feature vector to form the frames. The feature vectors
are transferred to the classifier in order to decide the level of fatigue.

Two different classifiers are used and compared: 1) Support Vector Machines
(SVMs), and 2) Hidden Markov Models. SVM needs a fixed length feature vector,
in which case the feature extraction module is asked to combine a large number of
contiguous feature vectors. On the other hand, a Hidden Markov Model can deal
with the original feature vectors without the need to combine contiguous ones.

3.1.3 Decision Fusion Using Bayesian Networks

A Bayesian network is used to fuse different decisions by different modules in order
to determine the final decision level for both fatigue and inattention. The decision
from each module is defined as a random variable in the network, and the module
accuracies are used to fill in the conditional probability tables (CPTs). Driving
conditions are also defined and added to the network, and a subjective method is
used to fill in the CPTs. To infer the fatigue, different decisions are used as the
evidence along with the driving conditions. The variable elimination algorithm is
used to infer the final decisions for fatigue and inattention.

3.2 Dataset Description and Collection

The quality of the dataset is one of the primary factors that influences the perfor-
mance of the system. We could not find any available dataset online that can be
used to train and test our system, so we decided to build our own dataset. In the
following subsections, the dataset description and collection is presented:
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3.2.1 Dataset Description

The main goal is to collect as many signals as possible to be able to accurately
detect fatigue and inattention. The advantage of gathering the data using different
sensors is that the collective fatigue inference will be more accurate than using only
one sensor. The correlation between each signal and fatigue or inattention varies
under different environments. Using different sensors stabilizes such correlation and
hence keeps the system more robust.

Another aspect of the dataset is to keep it non-intrusive as much as possible. Drivers
don’t like attaching something to their head or their body while driving. Drivers
will eventually give up using intrusive-based systems even if they are proven to be
useful. Hence using intrusive systems is impractical.

Another important aspect of the dataset is to collect data from different age and
gender groups. Older drivers tend to drive more safely than young drivers. Surpris-
ingly, women drive more safely than men according to Quality Planning Company
QPC study[44]. According to the study, men are cited for reckless driving 3.41
times more than women. Men are also 3.09 more times than women to get a ticket
for being drunk while driving.

Finally, the dataset needs to be collected during different times and road driving
conditions. The dataset needs to capture drivers’ behaviour while they are awake
and fatigued. The dataset also needs to capture the drivers’ behaviour in different
road driving conditions (e.g., city driving and highway driving). The behaviour of
the driver in different lighting and driving conditions is used by intelligent systems
to indicate whether the driver is fatigued or not.

3.2.2 Data Collection

Our goal is to carry out experiments on several drivers to assess their level of inat-
tention and fatigue. The subjects will be asked to drive the simulator in situations
of inattention or fatigue. Several sensors will be used to obtain as much infor-
mation as possible about the driver’s behaviour. Building a practical dataset is a
very hard task; we tried as much as possible to build a practical dataset. The first
issue was whether to use real car or a driving simulator. It is really important to
collect the dataset in a real environment, however subjects are asked to simulate
inattention and fatigue which makes them susceptible to having accidents. For the
sake of driver safety, we decided to use a car driving simulator as shown in Fig. 3.2.
The device is simply a chair sitting behind a number of screens. The main driving
controllers (e.g., gear shift lever, gas, brake, and clutch pedals) are attached to the
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Figure 3.2: Car Driving Simulator

Figure 3.3: The types of sensors installed on the car driving simulator
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chair. Software is used to display the driving conditions (e.g., highway/city driving,
and day/night).

Various sensors are installed on the car driving simulator to record the driver’s
behaviour during the experiment. As shown in Fig. 3.3, a Kinect device is installed
to capture different types of images (e.g., depth image, and colored image). Such
images help track the driver’s motions, and also in automatically analyzing his/her
behaviour during the driving session. The Kinect device also records the audio
during the driving session. The video and the audio signals are transferred to the
computer through USB. Other software is used to store the audio and video signals
in digital format.

Another sensor is used to monitor the heart rate of the driver during the driving
session. There are steering wheels that are able to measure the heart rate without
the headache of attaching a device to the driver’s fingers; such steering wheels could
be used in real life to replace the classic pulse oximeter shown in Fig. 3.3. The
pulse oximeter records a new reading each second. The readings after the driving
session are transferred into the computer and saved in “MS Excel” format.

Finally, a third software package is used to record readings for the steering wheel,
gas, brake, and clutch pedal positions every millisecond. The position of these
controllers can be used to indicate the driver’s fatigue or inattention[45]. The
positions recorded during the driving session are then transferred into the computer
and saved in text format. This experiment has been approved by the Office of
Research Ethics at the University of Waterloo. All participants have signed a
consent allowing us to use the data we collected including their images and voices.

3.2.2.1 Experiment General Information

• Eight subjects (five men and three women) are selected to perform the exper-
iment.

• Two driving sessions of thirty mins:

– One in the morning when the driver is awake.

– One in the late evening after a working day when the driver is fatigued.

• For each session, there are two driving conditions:

– City driving condition with high traffic.
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– Highway driving with low traffic.

• Five minutes of free driving before the experiment to make the driver com-
fortable with the driving environment.

• Instructions will be provided to the driver while driving through a headset
and through one of the screens.

3.2.2.2 Driving Session

For each session, the driver is asked to perform certain actions to simulate either
fatigue or inattention. Each action is repeated twice for each session, and once for
each driving condition. The actions that are related to fatigue are only performed
during the evening session. The various tasks or actions are as listed below:

Actions that simulate inattention:

1. Phone call.

2. Text messaging.

3. Drinking.

4. Map search/ Road distraction.

5. Adjusting the radio.

6. Eye closing for a few seconds.

7. Yawning.

8. Nodding.

The first five tasks are related to inattention, while the last three tasks are related to
fatigue. More detailed information about different tasks can be viewed in Appendix
A.

31



Figure 3.4: Timeline for the morning session. The gray areas indicate “normal
driving”, while black areas indicate “loading map and normal driving”.

Figure 3.5: Timeline for the evening session. The gray areas indicate “normal
driving”, while black areas indicate “loading map and normal driving”.

We can see the timeline for sessions one and two in Figs. 3.4 and 3.5. The session
starts with loading the map and making the driver familiar with the environment.
The gray areas are basically normal driving, where the driver just follows the traffic
without performing any extra tasks. The numbers in the timeline from one to five
are related to the tasks or actions listed above. The normal driving during the
evening session is different than the morning session. The driver is asked to perform
the tasks related to fatigue (tasks six, seven, and eight) during these times. We can
see examples of the different tasks in Fig. 3.6.

3.3 Driver Fatigue Detection Using Speech

In order to analyze the audio signal for fatigue detection, we first have to deal with
the parts in which the driver is speaking. The reason behind using speech signal
only is that we want to train the classifier on patterns where the driver’s behaviour
is involved. The parts where the driver doesn’t talk are considered a type of noise,
they don’t indicate whether or not the driver is fatigued. Given that the speech
parts are much fewer compared to the non-speech parts, it is necessary to extract
the speech first. Otherwise the classifier will be trained by samples which are largely
noise.

After the VAD extracts the speech parts, the feature extraction module takes the
speech parts as an input to perform feature extraction. The feature extractor

32



(a) Drinking

(b) Phone call

(c) Road distraction

Figure 3.6: Example of different experiment tasks
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Figure 3.7: Audio Module

divides the speech signal into small contiguous audio pieces; features are then ex-
tracted from each piece. The feature extractor module performs some statistical
measures (e.g., mean, average, etc) on feature vectors in order to produce one big
feature vector that can represent the whole speech duration. The following modules
can either use the frame-based features or the one big feature vector.

Two different classifiers are used and compared for this module: 1) Support Vector
Machines (SVMs) and 2) Hidden Markov Models. SVM needs a fixed length feature
vector, in which case the feature extraction module is asked to combine a large num-
ber of contiguous feature vectors. On the other hand, the Hidden Markov Model
can deal with the original feature vectors without the need to combine contiguous
ones.

3.3.1 Voice Activity Detection

Voice Activity Detection (VAD) is still an unsolved problem affecting many applica-
tions including robust speech recognition [46]. In general, the VAD needs to model
different types of noise in order to be able to accurately detect the speech/non-
speech signals in different environments. In our case, the problem is different, we
only need to model types of noise that occur in the car cabin. These types of noise
include steering wheel sounds, pedals sounds, air sound, etc. The limited number
of noise types makes it easy to design a voice activity detector that is very accurate
and robust.
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Figure 3.8: Voice Activity Detection based on 20 milliseconds frames.

As shown in Fig. 3.8, the system classifies the signal into speech/non-speech based
on a small time frame (20ms). The audio signal is divided into small time frames
of 20ms and a moving step of 10ms. A hamming window is applied on each time
frame, then the MFCC features are extracted. An SVM classifier is used to classify
the extracted features into speech or non-speech.

In the training phase, the audio signal is also divided into small time frames of
20ms and a moving step of 10ms. MFCC features are extracted after applying the
hamming window. Each time frame in the dataset is manually labeled as either
speech or non-speech. One-fifth of the dataset is left out for testing, while the rest
is used for training. The feature vectors, along with the corresponding labels, are
used to train the SVM classifier. Different Kernel functions and different penalty
parameter (’C’) values are used to tune the SVM classifier.

Unfortunately, the results are not as good as we want; the accuracy of the previous
system is almost 75%. Detailed results regarding this system are discussed in
Chapter 4. In the meantime, we want to discuss the reasons for such a low accuracy.
We can understand that in a very small window (10ms), the human ear is not able
to accurately classify the frame into speech or non-speech. Even if the energy within
the small frame is high, one can’t decide for sure whether it is a human voice or a
noise. We have to look at a large window in order to be able to classify the current
frame accurately, and so do the SVM.

Another explanation of the bad results, as shown in Fig. 3.9, is that the features
are strongly overlapped. We can see that the ’Non-Speech’ class is distributed over
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Figure 3.9: First two principle Components of the 20 milliseconds based features

two main clusters. The upper left blue cluster represents the silent frames, while
the lower right blue cluster represents the noisy frames such as gas pedal sound or
steering wheel sound. The ’Speech’ class consists of one red cluster that is highly
overlapped with the noisy ’Non-Speech’ cluster. This is why this system produces
~75% accuracy using the best training setup for the SVM classifier.

As discussed, the main problem with using a small window is that it is very difficult
to distinguish between noise and actual speech. A good solution to this problem
is using a large window size. One way to do this is to combine contiguous frames
into one big feature vector. Such a solution will give us very large feature vectors,
which are not suitable to train an SVM classifier given that the number of samples
are limited. The other solution, as shown in Fig. 3.10, is to take some statisti-
cal measurements for the MFCC features over a large window. For example, we
could measure the average value for each MFCC feature over n contiguous frames.
The statistical measurements used are the mean, variance, median, maximum, and
minimum.

As shown in Fig. 3.11, the first and the second principle components of the new
features are plotted. We can clearly notice that the ’Speech’ class became more
separable from the ’Non-Speech’ class than it was in Fig. 3.9. The ’Speech’ class is
now distributed over different clusters representing different speech sounds. Using
a non-linear classifier can be used to classify this dataset easily. An SVM classifier
is used with various kernel functions, the best accuracy obtained is ~96%.
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Figure 3.10: Voice Activity Detection based on 1 second frames

Figure 3.11: First two principle Components of the 20 milliseconds based features
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Figure 3.12: Speech analysis for driver fatigue detection.

3.3.2 Speech Analysis For Driver Fatigue Using SVM

As discussed, the classifier is only activated when a speech signal is detected. The
first step is to extract all speech signals from the dataset and label each signal as
either fatigue or awake. The feature extraction module takes the speech signals
as an input to perform feature extraction. Finally the features, along with the
corresponding labels, are used to train a classifier.

Choosing the right features is essential; the accuracy can be severely harmed when
irrelevant features are chosen. The Mel-Frequency Cepstrum Coefficients (MFCC)
features have been widely used for speech modeling and analysis, and they have
been also used for drowsiness and fatigue detection [47, 48, 9]. The MFCC models
the human auditory system through modeling the short-term power spectrum of
a sound. To obtain the MFCC features, the speech is segmented into frames of
20ms and step of 10ms. A Hamming window is applied in order to reduce the
abrupt transitions at the beginning and at the end of each frame. Each frame is
converted to 12 MFCCs in addition to a normalized energy parameter. The first
and the second derivatives (∆’s and ∆∆’s) are computed, resulting in thirty nine
coefficients representing each frame.

The feature vectors, along with the corresponding labels, are used to train an SVM
classifier. Because an SVM cannot model temporal information, we have to come
up with features that can represent the temporal information. The easy way to do
this is by taking some statistical measurements on a number of contiguous MFCC
frames. The statistical measurements that we chose are the mean, variance, median,
maximum, and minimum for each coefficient. The final feature vectors have been
formalized as follows:
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Figure 3.13: First two principle Components of the features used to train the SVM
classifier.

F = [mean(m) variance(m) median(m) max(m) min(m)] (3.1)

Where F refers to the final feature vector, and m refers to the MFCC frames.
The m is a matrix, the number of MFCC coefficients represents the number of
columns while the number of frames in the speech signal represents the number of
rows. The final feature vectors are vectors of size MFCC Coefficients ∗ 5, where
5 represents the number of different measurements that we calculate (i.e. mean,
variance, ... etc).

The feature vectors F ’s are used to train an SVM classifier. Different kernel func-
tions are used (e.g., linear, polynomial, and exponential). The penalty term is
tuned to get the best accuracy. Although different tuning methods are used, the
best accuracy is still very low. As shown in Fig. 3.13, the first two principal com-
ponents are plotted. The figure shows that the two classes are strongly overlapped.
Although the PCA preserves the variance, not the separability of the two classes,
the figure gives us an explanation of the bad accuracy obtained by these features.
Using a statistical measurement to represent the temporal variations is not a good
solution to the problem. We have to look for a classifier that can capture such
variations in order to obtain a better accuracy.

3.3.3 Speech Analysis For Driver Fatigue Using HMM

Hidden Markov Models (HMMs) are stochastic models which provide a high level
of flexibility for modeling the structure of an observation sequence. They allow
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Figure 3.14: Speech analysis for driver fatigue detection using HMM system.

recognition of the hidden state sequence by the dependency of the observation
sequence on the hidden states and the topology of the state transitions. It is now
acknowledged that the use of HMM is fundamental in temporal pattern recognition.

We use the first order left-to-right model. A continuous HMM model is used to
model the observations in which the emission probability is modeled using Gaus-
sian Mixture Models (GMMs). The frame-based features are organized such that
each feature stream is labeled as either fatigue or awake. The HTK toolkit is used
for models training and recognition [49]. First, the emission probability is modeled
using single Gaussian distribution. The means and the covariances of the Gaussian
are initialized equally to the mean and the covariance of the data. The means,
variances, and transition probabilities are re-estimated using a Baum-Welch algo-
rithm. For better modeling of the emission probabilities, we increase the number of
Gaussians during the training by splitting each Gaussian into two. Increasing the
number of Gaussians is limited by the number of training data points; as a rule of
thumb, each Gaussian needs at least fifty data points to train with.

For the recognition, a Viterbi decoder is used along with the trained model to
classify a new stream of features as either awake or fatigue. Mean, variance, me-
dian, maximum, and minimum are used as statistical measures. The features are
organized as stated in Eq. 3.1.
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3.4 Driver Fatigue Detection Using Heart Rate
and Other Signals

Figure 3.15: Analyzing heart rate and other signals for fatigue detection using SVM
system.

In this part, the heart rate along with the steering wheel, gas, clutch, and brake
pedal positions are used to analyze the level of fatigue. We designed a separate
module for these signals because, unlike the speech signals, they are continuous
throughout the driving sessions. In the speech module, the VAD is used to activate
the HMM classifier whenever it detects a speech signal. Due to the continuity of
heart rate and control position signals, as shown in Fig. 3.15, the classifier is always
activated.
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Figure 3.16: Steering wheel, gas, brake, clutch positions and heart rate for a com-
plete driving sessions for one of the drivers.

As shown in Fig. 3.16, the values of most of the signals are discrete. This prop-
erty makes it mandatory to use appropriate classifiers that can model the features
correctly. The sampling rate is different for each signal. Different sampling rates
need careful design of feature extraction and classification steps. We choose not to
work with different sampling rates, and thus we resampled the signals down to a
common sampling rate of 1/second.

3.4.1 Using SVM for Driver Fatigue Detection

For feature extraction, we use the raw features, first and the second derivatives (∆’s
and ∆∆’s). SVM and HMM classifiers are used for classification. For SVM and
as we did in the audio module, some statistical measurements on a number of con-
tiguous features frames are computed. The feature vectors and the corresponding
labels are used to train an SVM classifier.
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Figure 3.17: First two principle Components of the MFCC based features.

Not surprisingly, the performance of the SVM-based system is almost the same
as the SVM-based system for the audio module. The reason is that the SVM
classifier can’t model temporal variations. Using features that can capture temporal
variations is sometimes useful (e.g., VAD module), finding such features could be
very difficult. The first and the second principle components for the features are
shown in Fig. 3.17. This is obvious that the first two principal components for the
two classes (Fatigue/No Fatigue) are strongly overlapped. It is an indication that
the features are also overlapped.
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3.4.2 Using HMM for Driver Fatigue Detection

Figure 3.18: Analyzing heart rate and other signals for fatigue detection using
HMM system.

Due to the discrete nature of the features, a discrete HMM classifier is used to
model the discrete features. For feature extraction, we use the raw features, first
and the second derivatives (∆’s and ∆∆’s). To use a discrete HMM classifier, the
feature vectors needs first to be quantized. The LBG clustering algorithm is used
to cluster the features. The number of clusters k is chosen such that the clusters’
centres are representative of the original features. The centres are numbered and
used to generate the codebook. The codebook is used to quantize the features.
Each feature is mapped to the nearest centre, and the cluster number is assigned
to the feature.

The quantized features are used along with their labels to train an HMM classifier.
The first order left-to-right model is used. The HTK toolkit is used for the training
and the testing. The number of hidden states are varied to achieve the best possible
accuracy.

3.5 Fatigue Inference Using Bayesian Networks

Final fatigue decision is predicted by fusing decisions from the audio module and
the heart rate and other signals module. The fusion is done on the decision level
in order to enable more decisions to be integrated without modifying the system
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submodules (see future work section in Chapter 5). Various methods have been
used for decision fusion. These methods include Bayesian networks, fuzzy logic,
and Neural Networks. Fuzzy logic and Neural Networks do not provide sufficient
capabilities to capture the uncertainties and dependencies that Bayesian networks
can [50]. In addition, a Bayesian network provides a way to incorporate prior
information when performing the inference.

3.5.1 Pre-processing

Table 3.1: Sample pre-processed output from second 160 to second 190 for one of
the drivers.

Second Audio Decision Heart rate and other signals decision
160 -1 0
161 -1 0
162 -1 0
163 -1 0
164 0 0
165 0 1
166 0 1
167 0 1
168 0 1
169 -1 1
170 -1 1
171 -1 1
172 -1 1
173 -1 1
174 -1 1
175 0 1
176 0 1
177 0 1
178 0 1
179 -1 1
180 -1 1

First, the outputs of the audio module and the heart rate and other signals module
need to be pre-processed. The final decision is estimated every second, and the
decisions from each module need to be changed accordingly. For the audio module,
fatigue decisions are available only in the presence of speech. The fatigue decisions
need to be organized such that every second the fatigue decision is available. The
output should take values of either 0 or 1, 0 meaning ’no fatigue’ while 1 means
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to fatigue is present. For those seconds where fatigue decisions are not available, a
’-1’ label is used. The ’-1’ label will not be used by the Bayesian network, it is just
an indication that no fatigue decision is available at this second.

For the heart rate and other signals module, the fatigue decision is always available.
It is also available each second as needed by the Bayesian network. The fatigue
decisions only need to be re-labeled to ’0’ or ’1’, where 0 refers to ’no fatigue’ and
1 refers to ’fatigue’. Fig. 3.1 shows a sample pre-processed output from second 160
to second 190 for one of the drivers.

3.5.2 Bayesian Network Design

Figure 3.19: Decision fusion of the voice and other signals modules using Bayesian
Network

Bayesian networks are probabilistic models that represent random variables and
their conditional dependencies using directed acyclic graph (DAG). Each node in
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the graph represents a random variable that can be either be discrete or continuous.
An arc represents the conditional dependency between the parent node and the child
node. The graph is parametrized by the conditional probability tables (CPTs).
These tables specify the relation between each node and its parents.

As shown in Fig. 3.19, there are five different nodes; Day/Night driving (DND),
Previous Decision (PD), Fatigue (F), Voice Module (VM), and Signals Module
(SM). Each node (circle) represents a binary random variable. The values of each
random variable is either 0 or 1. The arrows represent the causal dependencies
between two nodes. The node at the tail of the arrow is the parent node, and the
node at the head of the arrow is the child node.

The top part of network including the DND and PD nodes represents the prior
information. The bottom part of the network including the VM and SM nodes
represents the current decision information from different modules. The Fatigue
node represents the final estimated decision. DND and PD are the parent nodes
for the Fatigue node. The causal relation means that if the parent node behaves
in some way, the child node will behave accordingly. For example, if it is known
that the driver is driving at night, then fatigue is more probable than when driving
during the day. The same applies for the previous decision. If the previous decision
is found to be fatigue, the driver is more likely to be fatigued for the current decision.

Fatigue is the parent node for both VM and SM nodes. If it is found that the
driver is fatigued, the voice module should capture the driver fatigue behaviour and
produces its decision according to its accuracy. Also for the signals module, if the
driver is fatigued, the signals module should capture the driver fatigue behaviour
and the decision is then estimated based on the module accuracy. The nice property
of such a setup is that conditional probability tables for VM and SM are calculated
independently. Adding more modules can be easily integrated into the network by
adding their conditional probability tables, which can be calculated independent of
what other modules are attached to the network.

3.5.3 Inference

There are three conditional probability tables that model the upper part of the
graph; P (DND), P (PD), and P (F |DND,PD). These conditional probability
tables are obtained subjectively. For the lower part of the graph, two conditional
probability tables need to be estimated; P (VM |F ), and P (SM). The confusion
matrices for both modules are used to calculate the conditional probability tables.

The final fatigue level needs to be inferred from the network by the following query
P (F |DND,PD, VM, SM). This query is estimated each second, and the previous
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decision is observed used the last estimated query. A variable elimination algorithm
is used to evaluate the query [42]. Normally we would like all the random variables
to be observed, however this is not always the case. There are some cases where
some nodes are not observed. These cases are listed below:

1. At the first second, the previous decision node is not observed.

2. At the time where the audio decision is not available, the VM node is not
observed.

At the first second, we take the previous decision from the query such that
P (F |DND,VM,SM). Doing the same for the times where the audio decision
is not available will harm the accuracy, because the silent periods are much more
prevalent than the voiced periods. By taking out the audio decision from the query,
the audio decision becomes almost useless. So we define a window in which the last
audio decision is taken and used as a current decision. If no audio decision is found
within this window, then we infer the fatigue level by taking out the VM from the
query and the query becomes P (F |DND,PD, SM).
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Chapter 4

Experimental Results

To train and test the system, we built our own dataset. We used a driving simulator
device, sound recorder, and heart rate monitor for data collection. Eight people
were involved in the experiments. They were asked to record two 30-min driving
sessions; one in the early morning, and another in the late evening after a working
day. For each session, the person was asked to make two phone calls. Each person’s
voice and heart rate were recorded during the session. The steering wheel, gas,
brake, and clutch pedal positions were also recorded. The morning sessions were
used to model the awakeness, while the evening sessions were used to model fatigue.

The dataset was partitioned such that 80% was used for training and 20% was used
for testing. The ground truth was available each second. The system performance
of the whole system was measured by the total average accuracy. The total average
accuracy was calculated according to the following formula;

Total AverageAccuracy = Number of correct decisions

Total number of seconds
(4.1)

.

4.1 Voice Activity Detection

The audio signal for six drivers were used to train and test the voice activity detec-
tor. The audio files were stored in wav format. One-fifth of the data was randomly
selected for testing while the rest was used for training. MATLAB programming
language was used to implement the module. The audio signals were read by the
MATLAB program and stored in a matrix format. The data was then divided into
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Figure 4.1: The accuracy of the VAD module plotted against the window size in
seconds.

two matrices; one for training and another for testing. MFCC features were then
extracted for both train and test data. The training data was used to train an SVM
classifier using libsvm toolkit [51]. The trained SVM model was then used to esti-
mate the labels for the test data. The accuracy finally was obtained by calculating
the relative frequency of the correct labels to the total number of samples.

4.1.1 Tuning Window Size For The Features

As explained in chapter 3, the MFCC frames are not used directly to train the SVM
classifier. Each MFCC frame represents 20 milliseconds of an audio signal. MFCC
frame is calculated each 10 milliseconds. A moving window is used to extract the
final features used to train the SVM. Statistical measures (e.g., mean, variance,
maximum, etc) are obtained from the MFCC frames that are inside the moving
window. A step of 10 milliseconds is used, so a window of x seconds contains a
number of MFCC frames equal to x ∗ 100.

In Fig. 4.1, the accuracy is plotted against the window size. The window size is
varied from 0.1 seconds (10 MFCC frames) to 4 seconds (400 MFCC frames). The
accuracy is more like a log curve; it starts to increase rapidly at the beginning and
saturates at almost 1 second. The curve reaches its maximum at 3 seconds where
the accuracy is 0.996, then the accuracy drops to 0.995 at 4 seconds.
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Figure 4.2: The accuracy of the VAD module for different window sizes plotted
against the penalty constant (C) of the SVM classifier.

The reason for this behaviour is that when the window size is small, the information
within each window is not enough to predict whether it is a human, non-human,
or silence frame. As the window size increases, more information is fed into the
classifier, allowing it to easily differentiate between speech and non-speech signals.
The duration of the speech signal in our dataset is often less than 3 seconds. This
makes it useless or sometimes even harmful to increase the window size to more
than 3 seconds. We can actually see a slight decrease in accuracy after 3 seconds.
In Chapter 3, Figs. 3.9 and 3.11 visualize the first two principal components of
the features for window sizes of 0.01 and 1 seconds respectively. It is clear that 1
second-based features are easily separable compared to 0.01 second-based features.

4.1.2 Tuning The Penalty Constant For The SVMClassifier

Another important parameter to tune when training the SVM classifier is the
penalty constant (C). Small values for C mean that the classifier is optimized to
allow for misclassified samples; this choice is good when the classes are highly over-
lapped. Large values for the C constant mean that the classifier is optimized as a
hard margin SVM. This choice is good when the data are separable in the kernel
space.

In Fig. 4.2, the accuracy for different window sizes is plotted against the penalty
constant (C). Here the window size is in number of MFCC frames, so we can obtain
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the window size in seconds by dividing it by 100. The kernel used for the SVM is
the third order polynomial, which experimentally proved to be better than other
kernels for this problem. The accuracy for each window size is plotted in a different
color. All the accuracy curves take the log curve. The accuracy increases rapidly
at the beginning and then it saturates when the penalty constant is relatively high.
The Figure shows that a high penalty value is a good choice to get a high accuracy.
We can conclude that the samples in the kernel space are linearly separable.

4.2 Audio Module

The audio module takes a speech signal as an input, then decides whether or not the
driver is fatigued. This module receives its input from the voice activity detector.
One fifth of the speech signals are selected for testing, and the rest are kept for
training. For this module, two different classifiers are trained and compared in terms
of the accuracy. These classifiers are SVM and HMM. MATLAB programming
language is used to implement the SVM-based module, while the HTK toolkit [49]
is used to train the HMM-based module. Each classifier is tuned such that the best
accuracy is obtained. In the following subsections, the accuracy for each classifier
is presented.

4.2.1 SVM Classifier

The input to this module is a speech signal; the length of the speech signal is
unknown. The speech signal is acquired by the MATLAB program and stored into
two different matrices (training and testing). The MFCC features are extracted
from each speech signal. We used a window size of 20 milliseconds and a moving
step of 10 milliseconds. Because the length of the speech signal varies, the number of
MFCC frames per speech signal also varies. The SVM classifier needs a fixed length
feature vector. As discussed in Chapter 3, statistical measures are calculated from
the MFCC frames. We used the mean, variance, median, maximum and minimum
measures. After this step, the features become of fixed length. The features along
with their corresponding labels are used to train the SVM classifier. Each speech
signal is represented by one feature vector, and the accuracy of the SVM classifier
is obtained by the following formula:

Accuracy = #of correctly classified speech signals
Total number of speech signals

(4.2)

There were two main model parameters that needed to be tuned: the kernel and
the penalty constant (C). In Fig. 4.3, the accuracy of the audio module is plotted
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Figure 4.3: The accuracy of the audio module plotted against the penalty constant
for the SVM classifier.

against the penalty constant. The accuracy for the first, second, and third order
polynomial kernels are shown in the figure. We can see that the second order
polynomial kernel performs better than both the first and third polynomials. Such
behaviour suggests that the data is strongly overlapped such that the SVM classifier
couldn’t classify the two classes (Fatigue/No Fatigue) correctly. In the second order
polynomial kernel space, the samples become more separable. The best accuracy
obtained is 0.6, which is better than the rest of the kernels. In the third order
polynomial kernel, we suffer from overfitting, in which the test results become less
than the training results by a considerable amount.

The best accuracy obtained by the SVM classifier is still very low. Such results
explain the reasons for such poor performance as mentioned in Chapter 3. The
speech signal is a sequential signal, but the SVM classifier is not always suitable
to model sequential data. We need to find the right features that can capture the
temporal variations, but finding such features is not an easy task. We otherwise
can use a classifier (HMM) that can model sequential data.

4.2.2 HMM Classifier

The HTK toolkit [49] was used to implement the HMM classifier. First MFCC
features were extracted from each speech signals and stored in an HTK format. The
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training was done over three steps: model selection, initialization, and embedded re-
estimation. In model selection, the HMM paradigm was selected. In our design, the
first order left-to-right model was selected. The number of hidden states was tuned
for maximum accuracy. In initialization, the HTK toolkit was used to initialize
the model parameters using the Viterbi algorithm. In embedded re-estimation,
the Baum-Welch algorithm was used to re-estimate the parameters. As we use
continuous HMM, the number of Gaussian mixtures had to be determined. We
trained only one Gaussian mixture in the first few runs. We then split each Gaussian
into four, and then retrained the model parameters. We did another split at the
end, and ran the re-estimation algorithm for another few iterations.

Figure 4.4: Total average accuracy when varying the number of HMM states for
the audio module.

In the testing phase, the trained model was used to estimate the labels for each
speech signal in the test dataset. The accuracy was calculated similarly to the
accuracy for the SVM classifier in Eq. 4.2. As shown in Fig. 4.4, the average
accuracy is plotted against the number of hidden HMM states. The accuracy first
increases with increasing the number of hidden states, reaches the maximum at
fifteen states, and then starts to fall again at twenty hidden states due to overfitting.
We chose the number of hidden states to be fifteen. The best accuracy obtained
from the SVM classifier was 59.1%, while the best accuracy for the HMM based
system was 88.77%.
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Table 4.1: Feature extraction example. F(t), F(t-1), and F(t-2) represented the
raw features of three consecutive frames. The example shows how to calculate ∆
and ∆∆ features. The final feature frame for time t is the concatination of the
three colums F(t), ∆(t), and ∆∆(t).

F(t-2) F(t-1) F(t) ∆(t-1)=F(t-1)-F(t-2) ∆(t)=F(t)-F(t-1) ∆∆(t)=∆(t)-∆(t-1)

Steering Whell -388 -4 817 384 821 437
Gas 14823 14823 14823 0 0 0

Brakes 20284 20284 20024 0 -260 -260
Clutch 32767 32767 32767 0 0 0

Heart Rate 98 98 98 0 0 0

4.3 Heart Rate and Other Signals Module

The heart rate and the other signals module use the heart rate, steering wheel
position, and the gas, brake, and clutch pedal positions as inputs. The module
tries to analyze the input signals to infer whether or not the driver is fatigued. One
fifth of the signals are selected for testing and the rest are kept for training. Similar
to the audio module, two different classifiers are used and compared as well. The
input signals have different sampling rates. The sampling rate for the heart signals
is one second, while the sampling rate for the other signals is around 50ms. The
other signals are resampled to match the heart rate so the sampling rate for all
signals becomes 1 second. The decision for this module is calculated each second.
The accuracy is calculated according to the following formula:

Accuracy = Number of correct labels

Total number of seconds
(4.3)

4.3.1 SVM Classifier

The SVM-based module was implemented using MATLAB. Each second was rep-
resented by a frame containing raw signal values, ∆, and ∆∆ as shown in table
4.1. Because the SVM classifier needs a fixed length feature vectors, a moving
window was used to extract suitable features for the SVM classifier. The window
size was tuned for maximum accuracy as shown in Fig. 4.3. Some statistical mea-
sures (mean, variance, median, maximum, and minimum) were calculated from the
frames that are within the window. The features along with their corresponding
labels were used to train the SVM classifier. The accuracy was calculated according
to Eq. 4.3.
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Figure 4.5: The accuracy of the heart rate and other signals module plotted against
the window size.

The main parameter to model was the size of the moving window. In Fig. 4.5, the
accuracy for the heart rate and other signals module is plotted against the window
size. The window size is varied from 20 seconds to 200 seconds. The accuracy
first increases along with the window size. It reaches its maximum at 150 seconds,
where the maximum accuracy is 0.596. The accuracy decreases afterwards. The
reason behind such behaviour is that the information within an appropriate window
size reflects the driver’s fatigue better than other window sizes. Empirically, the
appropriate window size is 150 seconds.

4.3.2 HMM Classifier

Because the features take integer values, we preferred to use discrete HMM to
avoid the singular covariance matrix problem. In discrete HMMs, the features
are quantized using a codebook. The codebook is generated by clustering the
training dataset; we used the LBG algorithm to cluster the dataset [52]. The
discrete features along with the corresponding labels were used to train the discrete
HMM model. The HTK toolbox was used to train and test the module. The
features are the raw signal values, ∆, and ∆∆. Each frame represents only 1
second; we left modeling the temporal variation to the HMM to capture. We
chose the size of codebook to be 512. The number of hidden states was tuned for
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maximum accuracy. In the test phase, the output of the HMM is post-processed
to have a decision (Fatigue/No Fatigue) each second. The accuracy of the module
is calculated according to Eq. 4.2.

Figure 4.6: Total average accuracy when varying the number of HMM states for
the heart rate and other signals.

Fig. 4.6 shows the accuracy against the number of hidden HMM states for the
heart rate and other signals module. The accuracy tends to increase till it reaches
its maximum at 10, then it tends to decrease afterwards. Due to the fact that the
HMM problem is not a convex optimization problem, the HMM might be trapped
in local maxima. This is why we see sometimes on the graph an increase in the
accuracy while it should be decreasing and vice versa. The best accuracy obtained
from the SVM classifier is 0.596, while the best accuracy for the HMM-based system
is 0.755.

4.4 Bayesian Network

For fusing different decisions from different modules, we used a Bayesian network
to infer the final decision. Fig. 4.7 shows the Bayesian network design along with
the CPTs values. The CPTs for the lower part of the network were estimated
using the accuracy for each module. The CPTs for the upper part of the network
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were calculated subjectively. Variable elimination algorithm is used for inference
calculations [42]. We used MATLAB programming to implement this module.

Figure 4.7: The Bayesian network used to fuse different decisions and the corre-
sponding CPTs.
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Figure 4.8: Figure shows the improvement in the total average accuracy for the
final decision when taking the prior information into account. The window size is
in seconds.

The Day/Night and Previous Decision Variables are considered prior data. Because
the decision from the audio module is not always available, we use a window in which
we track the last decision from the audio module and use it as the current decision.
Because the voice signals are not distributed uniformly over the session, a wrong
audio decision may seriously harm the accuracy, as we see in Fig. 4.8. Fig. 4.8
shows the average accuracy of the whole system, calculated according to Eq. 4.1,
against the window size of the audio module. Without prior data, the accuracy
decreases when the window size increases. This is due to wrong decisions being
carried forward more often than correct decisions. By integrating prior data, the
final decision is no longer dominated by the audio decision. The system becomes
more stable and the best accuracy achieved is 90.5% at a window size of 100.
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Chapter 5

Conclusions and Future Work

In this chapter we are going to present the conclusions while focusing on the contri-
butions of this work. We are going to present some ideas for expanding this work in
the future. Some challenges and problems will be mentioned and how to overcome
them. Finally, the last section will present the publications based on this work.

5.1 Conclusions

In this thesis, a system for car driver fatigue monitoring has been presented. The
system combines audio, heart rate, steering wheel, and pedal positions to decide
the level of fatigue. The use of an HMM classifier has been experimentally proven
to be a good solution to the problem. Combining more than one decision has
improved the accuracy of the system by 3%. The next subsections briefly present
the conclusions and the contribution for each module in the system.

5.1.1 Dataset

Building the dataset was a very challenging task. Most of the datasets that have
been used by other research groups to build similar systems used either one sensor
(camera), few human subjects, or non-realistic fatigue simulation. The motivation
for building a new dataset that compensates for the gaps in other datasets was
obvious. The goal was to capture the driver distractions and fatigue levels.

A driving simulator device was used to simulate the driving conditions. Many sen-
sors were used to capture the driver’s behaviour and fatigue level. These sensors
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include Kinect, infrared camera, microphone array, heart rate monitor, steering
wheel position, and gas, brake, and clutch pedal positions. The dataset was col-
lected in different driving sessions where the drivers were fully awake/fatigued and
attentive/distracted. Ten human subjects were involved in the experiments. Five
distractions and two levels of fatigue were captured for each driver. The dataset
was manually annotated and stored in a computer format.

5.1.2 Fatigue Monitoring System

The goal for the fatigue monitoring system was to acquire different signals, analyze
them, and decide the driver fatigue level. The sensors used for this system were
microphone array, heart rate monitor, steering wheel position, gas, brake, and
clutch pedals positions. The system comprises three main modules: the audio
module, the heart rate and other signals module, and the decision fusion module.

5.1.2.1 The Audio Module

Although some research was conducted to analyze the level of fatigue based on
human voice, these systems weren’t customized for driver fatigue monitoring. For
the driver fatigue monitoring system, the audio module needs to extract the speech
signals from the audio signal, and it needs also to be combined with other sensors
to support the decision when the speech signal is absent. The audio module in
our system was designed to acquire the audio signal, extract the speech parts, and
decide the fatigue level from the speech signals. The main parts of this module
were the voice activity detector (VAD), and the classifier.

The VAD problem is still an open one. However, when the environment is known
and types of noise are limited, designing the VAD module is achievable. The types
of noise in our dataset were limited to the steering wheel noise, pedals noise, and
the human movements inside the room. The VAD module for our system was built
using MFCC features and SVM classifier. At each time step, a window of 3 seconds
was analyzed in order to accurately extract the speech signal. The final accuracy
for the VAD module was 99.5%.

The classification of the speech signal step was the last step in the audio module.
MFCC features were used in this step. At each time step a window of the MFCC
features was analyzed using an SVM classifier to decide the level of fatigue. The
experimental results showed that the performance of the SVM classifier was un-
satisfactory. In the best case, the accuracy of the SVM classifier was 60%. Such
accuracy drove us to model the speech signals using sequential modeling. Contin-
uous HMMs were used to model the speech signals, and we trained and tested the
data using the HTK toolkit. The HMM hidden states were tuned for best accuracy.
The best accuracy obtained was 88.77%.
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5.1.2.2 The Heart Rate and Other Signals Module

For this module, the heart rate monitor, steering wheel position, and gas, brake,
and clutch pedal positions were used to monitor the level of fatigue. Due to the
sampling rate for each signal being different, all signals were resampled to the same
sampling rate (1 sample/second). The performance was determined by calculating
the average accuracy per second. SVM was used to monitor the level of fatigue at
each time step. At each time step a large window of signal values was analyzed.
The SVM classifier was trained and tuned to obtain the best accuracy. The best
accuracy for the SVM-based system was as low as 59.1%.

The problem of the SVM classifier for the heart rate and other signals module
was similar to the problem of the SVM-based classifier for the audio module. The
SVM wasn’t able to capture the temporal variation in order to model the fatigue
correctly. We used an HMM classifier to overcome this problem. For this module,
the signal values are discrete, so the use of discrete HMMs was more appropriate.
The features were clustered into 512 clusters using the LBG clustering algorithm,
and were then quantized each to the nearest cluster. The HTK toolkit was used
to train and test the system. The number of hidden HMM states was tuned for
maximum accuracy. The accuracy was calculated used one fifth of the dataset, and
the best accuracy obtained was 75.5%.

5.1.2.3 Decision Fusion Using Bayesian Networks

The main contribution of this thesis is combining more than one decision from dif-
ferent modules to assess the final decision. For the first time, the decision from
an audio module was fused with other decisions in a car driver fatigue monitoring
system. Due to the capabilities of the Bayesian network for capturing the depen-
dencies and the uncertainty, we chose the Bayesian network to perform this fusion.
We also incorporated the prior information (Day/Night driving and previous de-
cision) to improve the final decision. The accuracies for the audio and heart rate
and other signals modules were used to calculate certain CPTs for the Bayesian
network. The rest of the CPTs were calculated subjectively.

The implementation of the Bayesian network was done using MATLAB. The in-
ference was calculated using the variable elimination algorithm. For the time steps
where the audio module decision was absent, a window was defined and the last
decision within this window was used as a current decision. The performance of the
system was assessed based on the average accuracy per second. The total accuracy
of the system was 90.5%.
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5.2 Future Work

Building the dataset was one of the important tasks for this thesis. This dataset
made it possible to explore the possibility of using the audio signal along with the
other signals in assessing the fatigue level. More experiments can be carried out to
explore the use of the other signals in the dataset, such as the vision. There are
some improvements that can be done for the dataset to make it more practical and
realistic. In the following subsections, future work is presented for both dataset
and system.

5.2.1 Dataset

When we built this dataset, we tried to avoid the drawbacks of other datasets we
have came across. Despite the effort that has been spent to build this dataset, there
are some improvements that need to be done to make it more practical and more
realistic. Below are some improvements.

1. More Subjects: ten people were involved in the experiments. Only one was
over thirty years old, while the rest were under thirty. The experience level of
the drivers wasn’t investigated in order to assess the fatigue level for drivers
with different experience. For these reasons, it is important to involve more
people in the experiments. The drivers need to be selected to represent all
different car drivers.

2. More Fatigue Levels: in the dataset, there are only two fatigue levels that
were captured during the driving sessions; fatigue and no fatigue. More levels
need to be added to add precision to the fatigue decision.

3. Using Electroencephalography Signals For Fatigue Levels: National Highway
Traffic Safety Administration (NHTSA) published a report on 2013 [53], stat-
ing that the peak fatigue time for most drivers is at night. However this
might not be the case for those drivers who sleep mainly during the day. In
our dataset, the drivers were asked to perform two driving sessions, one in
the early morning and another after twelve hours of working day. Although
drivers should be deprived of alertness after twelve hours of work, this is a
subjective way of measuring fatigue. Another way of accurately labeling the
level of fatigue is by using Electroencephalography signals as done by [11].
These signals are recording by attaching multiple electrodes to the brain.
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4. Using Real Vehicle: the data was recorded in a quiet room. The seat of the
driving simulator is fixed, and doesn’t simulate the motions of real driving.
Such aspects prevents the datasets from being practical and realistic. For
example, the audio signal was clean and the only noise that was recorded
were the steering wheel and pedal sounds. In real life, the street noise and
the voices of other people will be also recorded making it a challenging task
to extract the driver’s voice. The main reason behind recording the dataset
using a driving simulator device is the safety of the drivers. The drivers are
asked to perform certain tasks that might result in accidents if they were
driving real vehicles. Real vehicles can be used for safe tasks. The drivers
can be asked to pull over before performing certain tasks in order to ensure
their safety.

5.2.2 System

Our system comprises fusing two modules; audio module, and a heart rate and
other signals module. Only car driver fatigue is monitored. The system could be
extended as discussed below.

1. Features: for the audio module, although the MFCC features were proven to
be appropriate for speech recognition, they might not be the best features to
model fatigue. To assess such a claim, MFCC features need to be compared
to or combined with other features. In the literature, fundamental frequency,
energy, harmonics-to-noise ratio, formant position, formant bandwidth, dura-
tion of voiced-unvoiced segments, linear frequency cepstrum coefficients, and
long-term average spetrum features have been used to detect the level of fa-
tigue [54]. Feature selection algorithm can be used to select the best set of
features, where maximizing the accuracy can be its objective function.
For the heart rate and other signals module, many features could also be
tried to improve the accuracy. The use of raw values has been proven to be
ineffective when combined with the SVM classifier. Frequency based features
such as DFT, or wavelet transform [55] could be explored. The use of differ-
ent features can capture the temporal variations, making the use of the SVM
classifier very useful.

2. Classifiers: in this thesis, we explored two classifiers: SVM and HMM. SVM
was found to be very powerful in the VAD module, but it failed to capture
the temporal variation in both the audio and the heart rate and other signals
modules. On the other hand, HMM classifier was very successful in classifying
the data for both audio and other signals modules. This opens the door for
trying classifiers that can capture temporal variations. Conditional Random
Fields (CRF) are very powerful and have been commonly used lately in vari-
ous applications [56]. Restricted Boltzmann machines (RBM) classifier is also
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a potential classifier, and it has performed much better than classic HMMs
in some applications[57].

Figure 5.1: A proposed Bayesian network that fuses decisions from more modules.

3. Fusing More Decisions: the system could be extended such that more modules
are added to support the final fatigue decision. The inattention level could
also be integrated into the system. Fig. 5.1 shows a way to fuse decisions
from different modules using a Bayesian network. The available dataset can
be used without any modifications to build such system.
In Fig. 5.1, the driving condition variable is added to the prior information.
Driving condition is either city driving or highway driving. Nodding, yawn-
ing, and eye closure are three new modules that use vision information to
assess the level of fatigue. The drivers were asked to perform each of these
actions at the night driving sessions to simulate driver fatigue.
On the right side of the Bayesian network, an inattention variable is added.
Inattention can be monitored using different actions the drivers were asked
to perform, as discussed in the dataset description and collection section in
Chapter 3. The inattention decision module can be implemented using dif-
ferent vision techniques. One way to implement such a system is presented
in [43]. The fatigue and the inattention levels can together be used to alert
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the driver to potential risk.

Figure 5.2: Monitoring driver fatigue using driver adapted models.

4. Adaptation: the idea, as shown in Fig. 5.2, is to identify the driver use either
vision or audio information, then using the right models to assess the driver’s
fatigue level. Some preliminary experiments were conducted to train different
models for each driver. The results were better than using just one model for
all drivers. However, a driver identification system needs to be implemented
in order to build such a system. For example, many researchers have devel-
oped techniques for speaker adaptation [58, 59, 60]. The HTK toolkit often
supports speaker adaptation [49].

5.3 Publications

Abdullah Rashwan and Mohamed Kamel and Fakhri Karray, "Car Driver Fatigue
Monitoring Using Hidden Markov Models and Bayesian Networks", accepted in
2013 International Conference on Connected Vehicles & Expo (ICCVE 2013), Las
Vegas, USA: , 2013.
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Appendix A

Detailed Tasks Description

A.1 First Phone Call

Hostess: Pepi’s Pizza. How can I help you?

Subject: Hi. I’d like to order a pizza please.

Hostess: Okay. I’ll have to transfer your call to our take-out department. One
moment please.

Recorded Message: Thank you for calling Pepi’s Pizza. All of our operators are
busy. Please hold for the next available person.

Take-out Clerk: Thank you for waiting. Is this for take-out or delivery?

Subject: Delivery please.

Take-out Clerk: Can I have your name and address please?

Subject: My name is... My address is . . . .

Take-out Clerk: Thank you. Is that an apartment or a house?

Subject: It’s an apartment. Number ....

Take-out Clerk: Okay. And what would you like to order today?
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Subject: I’d like a large pepperoni pizza with extra cheese.

Take-out Clerk: Ok so large pizza isn’t it ?

Subject: Yes

Take-out Clerk: With pepperoni and extra cheese

Subject: That’s right.

Take-out Clerk: Ok fine. Is there anything else?

Subject: No, that would be all

Take-out Clerk: Anything to drink with that?

Subject: Nothing, thanks

Take-out Clerk: Alright, it’s 15 $. How would you like to pay?

Subject: Do you accept credit card?

Take-out Clerk: Credit card? Sure. You pizza should arrive in about thirty minutes.
Is that ok?

Subject: Absolutely, thank you very much.

Take-out Clerk: You’re welcome. Thanks for calling. Bye.

A.2 Second Phone Call

Subject: Hi, How are you?

Friend: I am good, I was trying to call you all the day, where were you?

Subject: I have been with my sister at Toronto the whole day, why?

Friend: There is a movie night event at the University, do you want to come?

Subject: Sure, I have to cancel first my meeting with Adam.

Friend: Okay, we will be waiting for you.

Subject: Great! See you then.

Friend: See you, Bye.

Subject: Bye.
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A.3 First Text Message

“Hey, what about eating some pizzas tonight? I just ordered one, I hope you don’t
mind”

A.4 Second Text Message

“I will be there in 30 mins”

A.5 Third Text Message

“I will be there in 30 mins”

A.6 Map research

Locating an intersection on Waterloo-Kitchener map.
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