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Abstract 

Performance levels expected from future-generation wireless networks and sensor systems 

are beyond the capabilities of current radio technologies. To realize information capacities 

much higher than those achievable through existing time and/or frequency coding techniques, 

an antenna system must exploit the spatial characteristics of the medium in an intelligent and 

adaptive manner. This means that such system needs to incorporate integrated multi-element 

antennas with controlled and adjustable performances. The antenna configuration should also 

be highly miniaturized and integrated with circuits around it in order to meet the rigorous 

requirements of size, weight, and cost.  

A solid understanding of the underlying physics of the antenna function is, and has always 

been, the key to a successful design. In a typical antenna design process, the designer starts 

with a simple conceptual model, based on a given volume/space to be occupied by the 

antenna. The design cycle is completed by the antenna performing its function over a range 

of frequencies in some complex scenarios, i.e., packaged into a compact device, handled in 

different operational environments, and possibly implanted inside a human/animal body. 

From the conceptual model to the actual working device, a large variety of design approaches 

and steps exist. These approaches may be viewed as simulation-driven steps, experimental-

based ones, or a hybrid of both. In any of these approaches, a typical design involves a large 

amount of parametric/optimization steps. It is no wonder, then, that due to the many 

uncertainties and ‘unknowns’ in the antenna problem, a final working design is usually an 

evolved version of an initial implementation that comes to fruition only after a considerable 

amount of effort and time spent on “unsuccessful” prototypes. In general, the circuit/filter 

community has enjoyed a better design experience than that of the antenna community. 

Designing a filter network to meet specific bandwidth and insertion loss is a fairly well-

defined procedure, from the conceptual stages to the actual realization.   

In view of the aforementioned, this work focuses on attempting to unveil some of the 

uncertainties associated with the general antenna design problem through adapting key 
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features from the circuit/filter theory. Some of the adapted features include a group delay 

method for the design of antennas with a pre-defined impedance bandwidth, inverter-based 

modeling for the synthesis of small-sized wideband antennas, and an Eigen-based technique 

to realize multi-band/multi-feed antennas, tunable antennas, and high sensitivity sensor 

antennas. By utilizing the proposed approaches in the context of this research, the design 

cycle for practical antennas should be significantly simplified along with various physical 

limitations clarified, all of which translates to reduced time, effort, and cost in product 

development. 

   



 

 v 

Acknowledgements 

 

It is not common that a graduate student gets to work on multiple academic and industrial 

projects in applications ranging from a few MHz to THz. I would like to express my sincere 

appreciation to my academic advisor, Prof. Safieddin Safavi-Naeini, for such an opportunity, 

and for his guidance and continuous support throughout the journey of this thesis.   

My sincere thanks go to Dr. Nagula Sangary, my industrial advisor. His remarkable care, 

and his willingness to share his experience on multiple aspects in life, made quite an impact 

on many of my decisions throughout the course of this thesis. 

Prof. S. Chaudhuri has been a great role model to me on multiple venues. I extend my 

appreciation to him for the many insights he has generously shared with me over the period 

of my graduate studies. 

Working with Prof. C. Kudsia on his book has been once-in-a-lifetime experience. I will 

always be thankful for his trust, care, and continuous advice. 

Special thanks go to Prof. O. Ramahi for serving on my thesis committee. Likewise, Prof. 

M. Yavuz's time and constructive comments as a thesis committee member were highly 

appreciated. 

I would like to express my extreme gratitude to prof. Jennifer Bernhard for serving as my 

external committee member and traveling to Waterloo despite her broken knee cap. Her 

commitment along with her constructive notes are highly appreciated. 

Many thanks go to the staff and my colleagues at the UWaterloo ECE and the Centre of 

Intelligent Antenna and Radio Systems (CIARS). They have immeasurably enriched my 

journey. To Phil and Fernando, thanks for all your help with my liquid-cooled GPU-packed 

"custom workstations". Chris and Annette, I think I had one of the "largest" folders for an 

ECE graduate student. Thank you for simplifying my paper work experience!   



 

 vi 

It was summer 2008 when I had a unique opportunity to work with Prof. M. Bakr of 

McMaster University on specialized optimization algorithms for RF & Microwave problems. 

His guidance made an "unparalleled" impact on my understanding of many optimization 

techniques and tools. 

A good portion of this thesis materialized during my visit to the Georgia Institute of 

Technology (September 2009 - April 2010). I would like to present my sincere gratitude to 

Prof. M. Tentzeris, who was my mentor during my stay in Atlanta on the NSERC CGS MS-

FSS program. Through his support, I got to enjoy the opportunity of working with many 

diverse groups. Thanks go as well to the staff and members of GTECH ECE, Georgia 

Electronic Design Centre (GEDC), Georgia Tech Research Institute (GTRI), Signature 

Technology Laboratory (STL), Microelectronics Research Centre (Mir), Nano Research 

Centre (NRC), and Packaging Research Centre (PRC). 

My visit to IMST GmbH was unforgettable. The many stimulating discussions I had with 

Prof. Cyril Luxey and Prof. Dirk Manteuffel helped shape my thoughts about this thesis.  

During my Master studies, CIARS was merely a dream in a proposal. It was thus quite 

exciting for me to witness the dream becoming a reality by the end of my PhD. During that 

waiting period, material characterization, fabrication, and measurements of many of the 

proof-of-concept prototypes in this thesis had to be carried out elsewhere. Special thanks to 

many friends and colleagues at GaTech STL/MiRC/NRC, NIST, SATIMO Atlanta, and 

Blackberry for their help. Special thanks also go to Mr. James Dietrich of the Canadian 

Microelectronics Centre for his help with the measurements of the inkjet-printed structures 

on flexible substrates. 

Realistically, I could have defended my PhD thesis sometime in 2010. A three-hour 

meeting with Dr. Yihong Qi at the Davis Centre cafeteria helped me decide to elevate my 

part-time industrial experience into a full-time one, and alter my graduation plans. A few 

months later, it was another meeting with him at St. Arthur's that marked embracing a start-

up opportunity. This adventure would not have been possible without the very much 



 

 vii 

appreciated trust and support of Dr. Qi and Mr. Perry Jarmuszewski. Special thanks to Dr. 

Wei Yu and his family for their sincerity throughout this ride.  

There are so many friends and colleagues who helped me directly or indirectly over the 

duration of my graduate school, whether in Canada, the US, Europe, China, or Egypt. The 

list is too long to write here. But these people know who they are, and that I thank every one 

of them from my heart. 

I have been blessed with great support from my family, despite my "addiction" to work and 

tendency to remain silent most of the time. A huge thank you to my parents and to my lovely 

sister, Mariam. To my in-laws, your support has been a great asset.  

This journey would have been completely different without the love and patience of my 

kind-hearted wife, Christen. I think she knew what was coming even before I left on the third 

day after our wedding to fix an urgent issue with my NSERC application! I am thankful for 

all she has done to help me focus on my research and career goals. 

To Gabriella and Raphael – there were times when, being away for work, I couldn't be the 

dad I wished I could be for you. But, there are those few times where I think you really 

enjoyed sitting on my lap, listening to nursery songs, looking at field distributions and 

radiation patterns, and trying to make a sense out of what you saw. You are a blessing from 

God. 

  

 

 

 

 

 



 

 viii 

 

 

 

 

 

 

 

 

Love is patient and kind; love does not envy or boast; it is not arrogant  or rude. 
It does not insist on its own way; it is not irritable or resentful; it does not 
rejoice at wrongdoing, but rejoices with the truth.  Love bears all things, 
believes all things, hopes all things, endures all things. Love never ends. 

The Bible 

 



 

 ix 

Table of Contents 
 

AUTHOR'S DECLARATION ............................................................................................................... ii 

Abstract ................................................................................................................................................. iii 

Acknowledgements ................................................................................................................................ v 

Table of Contents .................................................................................................................................. ix 

List of Figures ..................................................................................................................................... xiii 

List of Tables ........................................................................................................................................ xx 

Chapter 1 : Introduction ......................................................................................................................... 1 

1.1 Statement of the Problem and the Selected Tools ........................................................................ 3 

1.2 The Thesis at a Glance ................................................................................................................. 5 

Chapter 2 : Background .......................................................................................................................... 8 

2.1 Size Limitations ............................................................................................................................ 9 

2.1.1 Antenna Quality Factor ....................................................................................................... 10 

2.1.2 Q-BW Relations .................................................................................................................. 16 

2.1.3 Discussion ........................................................................................................................... 17 

2.2 Antenna Design Approaches ...................................................................................................... 19 

2.2.1 Theory of Characteristic Modes .......................................................................................... 19 

2.2.2 Modal Cavity-based Analysis .............................................................................................. 20 

2.2.3 Design Through Parametric Analysis and/or Optimization ................................................. 21 

2.3 Relevant Concepts for Antenna Realization ............................................................................... 29 

2.3.1 Fractal Antennas .................................................................................................................. 29 

2.3.2 Tunable Antennas ................................................................................................................ 30 

2.3.3 MIMO Antennas .................................................................................................................. 33 

2.3.4 Antennas for Medical Applications ..................................................................................... 36 

2.4 Discussion and Conclusions ....................................................................................................... 37 

Chapter 3 : Circuit-Based Techniques for the Calculation of the Antenna Quality Factor and Its 

Relation to the Impedance Bandwidth ................................................................................................. 39 

3.1 Simple Resonant Network .......................................................................................................... 39 

3.2 The General Notion of Impedance Bandwidth ........................................................................... 44 

3.2.1 First Definition .................................................................................................................... 45 



 

 x 

3.2.2 Alternate Definition ............................................................................................................. 46 

3.2.3 The Concept of Quality Factor ............................................................................................ 48 

3.3 The Quality Factor of a General Simple Network ...................................................................... 51 

3.4 Antenna Modeling Using Lossy Filter Analysis ........................................................................ 55 

3.4.1 The Insertion Loss Method .................................................................................................. 56 

3.4.2 Q Calculations Using the Reflective Group Delay .............................................................. 57 

3.4.3 Application to Antenna Problems........................................................................................ 63 

3.5 Discussion and Conclusions ....................................................................................................... 65 

Chapter 4 : Q-Bandwidth Relations for Mutually Coupled Antennas and the Associated Integrated-

Filtering Functionalities ....................................................................................................................... 68 

4.1 Introduction ................................................................................................................................ 68 

4.2 Q-BW Relations for Simple Antennas Re-visited ...................................................................... 69 

4.2.1 Maximizing the Bandwidth ................................................................................................. 72 

4.2.2 The Utilized Q-expressions ................................................................................................. 73 

4.2.3 Note on Utilization of Matching Circuits for BW Extension .............................................. 74 

4.3 Multiple-Coupled Radiators ....................................................................................................... 75 

4.3.1 Maximizing the Bandwidth ................................................................................................. 78 

4.3.2 Required Input Impedance .................................................................................................. 81 

4.3.3 The Golden Response .......................................................................................................... 85 

4.3.4 Design Steps ........................................................................................................................ 92 

4.3.5 Multiple-Coupled Lossy Resonators ................................................................................... 94 

4.4 Fano Limits Revisited................................................................................................................. 96 

4.5 Practical Examples ..................................................................................................................... 98 

4.5.1 Practical Considerations ...................................................................................................... 98 

4.5.2 Design of a Dual Mode Square Patch Antenna ................................................................. 100 

4.5.3 Design of a Stacked Patch Antenna ................................................................................... 106 

4.5.4 Design of on-Foam Coupled Antennas: Asymmetric Response ....................................... 109 

4.6 Discussion and Conclusions ..................................................................................................... 114 

Chapter 5 : Modal Analysis Techniques for the Calculation of Antenna Q and Input Impedance .... 115 

5.1 Review ...................................................................................................................................... 116 

5.2 Modal Expansion ...................................................................................................................... 116 

5.3 Quality Factor of a General Resonant Circuit .......................................................................... 123 



 

 xi 

5.4 Eigen Mode Solver ................................................................................................................... 126 

5.5 Adopted Antenna Modeling and Input Impedance Calculations .............................................. 129 

5.6 Effect of the Feeding Mechanism ............................................................................................. 134 

5.7 The Concept of Impedance Maps ............................................................................................. 138 

5.7.1 Dual-Band Single-Feed and Dual-Feed Dual-Band Antenna Designs .............................. 139 

5.7.2 Design of a Smartphone Antenna ...................................................................................... 147 

5.7.3 Tunable Capacitor-Loaded Antenna .................................................................................. 152 

5.8 Discussion and Conclusions ..................................................................................................... 157 

Chapter 6 : Multi-Objective Optimization Algorithm for Accelerated Antenna Design ................... 159 

6.1 A Brief History of Multi-dimensional Rational Functions ....................................................... 160 

6.2 Proposed Formulation of Multi-dimensional Cauchy Rational Functions ............................... 161 

6.2.1 Notations ........................................................................................................................... 161 

6.2.2 Rational Model Development Through Optimization ....................................................... 164 

6.3 The Proposed Design Through On-the-Fly Optimization ........................................................ 167 

6.3.1 A One-Dimensional Illustrative Example ......................................................................... 167 

6.3.2 A Three-variable Resonance Circuit ................................................................................. 170 

6.4 The Algorithm .......................................................................................................................... 177 

6.5 Examples .................................................................................................................................. 179 

6.5.1 Multi-Objective Four-Variable Patch Antenna ................................................................. 180 

6.5.2 A Five-Variable Yagi-Uda Antenna .................................................................................. 185 

6.5.3 Multi-Objective Six-Variable E-Slot Antenna .................................................................. 188 

6.6 Discussion and Conclusions ..................................................................................................... 191 

Chapter 7 : Select Applications of Next-Generation Flexible Wireless Devices ............................... 192 

7.1 Using Inkjet Printing ................................................................................................................ 193 

7.2 LCP Characterization ............................................................................................................... 197 

7.2.1 Ink Jetting on LCP ............................................................................................................. 198 

7.2.2 Antennas on LCP............................................................................................................... 200 

7.3 Paper as a Flexible Substrate .................................................................................................... 202 

7.3.1 Ink Characterization on Paper ........................................................................................... 203 

7.3.2 Application in UWB Antenna ........................................................................................... 206 

7.3.3 Application in Sensor Design ............................................................................................ 211 

Chapter 8 : Discussion, Contributions, and Future Work ................................................................... 223 



 

 xii 

Appendices ......................................................................................................................................... 227 

Appendix I: Q Calculations ............................................................................................................ 228 

Appendix II: Theory of Characteristic Modes ................................................................................ 233 

Appendix III: Cavity Model ........................................................................................................... 247 

Appendix IV: A Design Method for Diversity/MIMO Antennas .................................................. 254 

Appendix V: Compact Coupled Antenna Designs ......................................................................... 281 

Appendix VI: Basics of EM FEM Eigen Solvers ........................................................................... 305 

Bibliographies .................................................................................................................................... 309 

 



 

 xiii 

List of Figures 
 

FIG. 2.1 ANTENNA VISUALIZED IN ITS RADIAN SPHERE. ....................................................................... 10 

FIG. 2.2. ANTENNA Q CALCULATED WITH DIFFERENT METHODS [72]. ................................................ 15 

FIG. 2.3. SIMPLE ANTENNA LAYOUTS AND EVOLUTION TO A QUAD BAND ANTENNA. ......................... 22 

FIG. 2.4. CURRENTS ON A CELL PHONE ANTENNA AND ITS PCB. ......................................................... 23 

FIG. 2.5. SOME SMARTPHONE ANTENNAS. ............................................................................................ 24 

FIG. 2.6. PATCH ANTENNA LAYOUT. ..................................................................................................... 26 

FIG. 2.7. OPTIMIZATION CONVERGENCE OF THE GPS ANTENNA EXAMPLE USING SOME OF THE 

AVAILABLE COMMERCIAL ALGORITHMS. .............................................................................. 26 

FIG. 2.8. A CELL PHONE ANTENNA VERSUS A TUNED ONE WITH A SLOT IN THE PCB [100]. ................ 27 

FIG. 2.9. PERFORMANCE OF AN OPTIMIZED CELL PHONE ANTENNA VERSUS ONE WITH A SLOT IN THE 

PCB. ...................................................................................................................................... 27 

FIG. 2.10. A FRACTAL SIERPINSKI GASKET ALONG WITH ITS RESPONSE [101]. .................................... 30 

FIG. 2.11. SWITCHING TO ACHIEVE TUNABILITY [115]. ........................................................................ 31 

FIG. 2.12. EFFECT OF A TUNABLE CAPACITOR ON THE RETURN LOSS. .................................................. 31 

FIG. 2.13. TUNABLE ELEMENTS ON THE ANTENNA AND AT THE RF INPUT. .......................................... 32 

FIG. 2.14. A METHOD FOR REDUCING MUTUAL COUPLING BETWEEN ANTENNAS [122]. ...................... 34 

FIG. 2.15. TWO WIFI ANTENNAS ON A CELL BOARD. ............................................................................ 34 

FIG. 2.16. DECOUPLING OF THE WIFI ANTENNAS. ................................................................................ 35 

FIG. 2.17. PROPOSED DUAL-FED DIVERSITY ANTENNA. ........................................................................ 35 

FIG. 2.18. A HEARING AID DEVICE AND ITS MODEL FOR EM SIMULATIONS. ........................................ 37 

FIG. 3.1. A CIRCUIT REPRESENTATION OF GENERAL NETWORK IN TERMS OF THE “G” VALUES. .......... 56 

FIG. 3.2. TRANSFORMATION OF THE LOW-PASS PROTOTYPE TO A BAND-PASS ONE IN TERMS OF THE 

NORMALIZED FREQUENCY RESPONSE. .................................................................................. 57 

FIG. 3.3. LOW PASS “G” VALUE PROTOTYPE SUITABLE FOR MODELING A SIMPLE RESONANT NETWORK.

 .............................................................................................................................................. 59 

FIG. 3.4. REFLECTION COEFFICIENT FOR THE TWO NETWORKS. ASYMMETRY IN RESPONSE INCREASES 

FOR LOWER Q AND HIGHER VSWR. ...................................................................................... 63 

FIG. 3.5. THE EXTRACTED Q VALUES FOR EACH NETWORK. ................................................................ 63 



 

 xiv 

FIG. 3.6. STEPS FOR EXTRACTION OF THE RESPONSE OF A PATCH ANTENNA: FIRST, ROTATION, AND 

THEN USING THE “G” VALUES EXTRACTION TECHNIQUE. ..................................................... 64 

FIG. 4.1. WIDEBAND CIRCUIT MODEL FOR A DIPOLE ANTENNA AND ITS NARROWBAND 

SIMPLIFICATION. .................................................................................................................... 70 

FIG. 4.2. WIDEBAND CIRCUIT MODEL FOR A PATCH ANTENNA AND ITS NARROWBAND 

SIMPLIFICATION. .................................................................................................................... 70 

FIG. 4.3. TWO COUPLED RESONATORS MODEL. .................................................................................... 76 

FIG. 4.4. DIFFERENT MODELS FOR ADMITTANCE INVERTERS. .............................................................. 76 

FIG. 4.5. EFFECT OF THE CHOICE OF “D” ON THE RETURN LOSS. .......................................................... 80 

FIG. 4.6. MAXIMUM VALUE OF INPUT RESISTANCE VERSUS VSWR LEVEL ( 0 50Z = Ω ). ..................... 83 

FIG. 4.7. FREQUENCY VARIATION OF THE INPUT RESISTANCE FOR DIFFERENT QUALITY FACTORS (

0 50Z = Ω ). ............................................................................................................................ 83 

FIG. 4.8. INPUT REFLECTION CURVES FOR DIFFERENT QUALITY FACTORS ( 0 50Z = Ω ). ...................... 84 

FIG. 4.9. EFFECT OF THE CHOICE OF THE IMPEDANCE OF THE FIRST RESONATOR ON THE REALIZED 

BANDWIDTH. ......................................................................................................................... 84 

FIG. 4.10. INPUT RESISTANCE FOR THE THREE CASES UNDER STUDY. .................................................. 87 

FIG. 4.11. INFORMATION ABOUT THE QUALITY FACTORS EXTRACTED USING THE GROUP DELAY-

BASED Q EXPRESSION. ........................................................................................................... 88 

FIG. 4.12. VARIATION IN THE INPUT RESISTANCE WITH DIFFERENT FEED ANTENNA RESISTANCE. ...... 89 

FIG. 4.13. VARIATION IN THE INPUT RESISTANCE WITH DIFFERENT COUPLING COEFFICIENTS. ........... 90 

FIG. 4.14. IDEAL RESPONSE VERSUS REALIZED ONE FROM APPLICATION OF GOLDEN RESPONSE 

ITERATIONS. .......................................................................................................................... 91 

FIG. 4.15. Q-BW LIMITS VERSUS DIFFERENT VSWR VALUES. ............................................................. 94 

FIG. 4.16. RESULTING REFLECTION COEFFICIENT AT THE FEEDING PORT. ........................................... 95 

FIG. 4.17. PROBE INDUCTANCE IS ADDED FOR THE CIRCUIT WHEN MODELING PROBE-FED ANTENNAS.

 .............................................................................................................................................. 99 

FIG. 4.18. ACCOUNTING FOR PROBE INDUCTANCE BEFORE AND AFTER THE DESIGN PROCEDURE. ...... 99 

FIG. 4.19. SCHEMATIC FOR SQUARE PATCH ANTENNA WITH NOTCH AND SAMPLE PROTOTYPE. ........ 100 

FIG. 4.20. VARYING THE FEED LOCATION TO ACHIEVE THE DESIRED VALUE. .................................... 101 

FIG. 4.21. EFFECT OF ADDING A NOTCH TO A SIMPLE SQUARE PATCH. .............................................. 101 

FIG. 4.22. EFFECT OF INCREASING SIDE LENGTH OF PATCH. .............................................................. 102 



 

 xv 

FIG. 4.23. MEASURED, EM SIMULATION AND CIRCUIT MODEL-BASED RESPONSES. .......................... 103 

FIG. 4.24. RADIATION PATTERN AT 2GHZ. ......................................................................................... 104 

FIG. 4.25. REALIZED GAIN FOR SIMPLE AND NOTCHED PATCHES EVALUATED AT DIFFERENT ANGLES IN 

SPACE. ................................................................................................................................. 104 

FIG. 4.26. NORMALIZED REALIZED GAIN AND FIELD MAGNITUDES OF  SIMPLE AND NOTCHED 

PATCHES. ............................................................................................................................. 105 

FIG. 4.27. SCHEMATIC FOR TWO-PATCH STACKED ANTENNA. ............................................................ 107 

FIG. 4.28. EVOLUTION OF EQUIVALENT MODELS OF STACKED ANTENNA COMPARED WITH REALIZED 

EM SIMULATION RESPONSE. ............................................................................................... 107 

FIG. 4.29. REALIZED GAIN OF SINGLE AND PRESENTED STACKED ANTENNAS VERSUS FREQUENCY. . 108 

FIG. 4.30. REALIZED GAIN OF THE PRESENTED STACKED ANTENNA AT 1.95 AND 2.15 GHZ. ............ 109 

FIG. 4.31. SCHEMATIC FOR TWO COUPLED PATCHES AND THEIR PROTOTYPE ON FOAM. ................... 110 

FIG. 4.32. REALIZED GAIN AND DIRECTIVITY OF SINGLE AND COUPLED ANTENNAS. ....................... 112 

FIG. 4.33. MEASURED RESPONSE. ....................................................................................................... 112 

FIG. 4.34. DIRECTIVITY (LEFT) AND REALIZED GAIN (RIGHT) FUNCTIONS AT 1.72GHZ (BROADSIDE) 

AND 1.83GHZ (OFF-BROADSIDE). ....................................................................................... 113 

FIG. 4.35. REALIZED GAIN FUNCTION VERSUS FREQUENCY WHEN EVALUATED OFF-BROADSIDE. .... 113 

FIG. 5.1. ANTENNA EQUIVALENT CIRCUIT. ......................................................................................... 121 

FIG. 5.2. VARIATION OF THE REAL FREQUENCY WITH Q. ................................................................... 125 

FIG. 5.3. NORMALIZED ELECTRIC FIELD MAGNITUDE MAPS OF FIRST THREE MODES. ........................ 128 

FIG. 5.4. CONVERGENCE OF COMPLEX RESONANT FREQUENCY OF THE FIRST MODE. ........................ 129 

FIG. 5.5. SETUP FOR THE EIGEN PROBLEM. OUTER CAVITY BOUNDED WITH PEC WALLS. ................ 130 

FIG. 5.6. EQUIVALENT CIRCUIT FOR MULTIMODE RADIATOR. ............................................................ 132 

FIG. 5.7. IMPEDANCE PLOTS OF CIRCUIT MODEL WITH AND WITHOUT FEED PROBE. .......................... 134 

FIG. 5.8. TYPICAL CAD MODEL OF PROBE-FED PATCH ANTENNA DEMONSTRATED USING ITS MESHING 

CONFIGURATION AND THE RESULTING FIELD DISTRIBUTION OF ITS FIRST MODE AT 

RESONANCE. ........................................................................................................................ 135 

FIG. 5.9. REACTANCE VARIATION WITH MOVING FEED LOCATION IN THE X-DIRECTION. .................. 136 

FIG. 5.10. REACTANCE VARIATION WITH MOVING FEED LOCATION IN THE X-DIRECTION. ................ 136 

FIG. 5.11. REACTANCE VARIATION WITH MOVING THE FEED LOCATION IN THE Y-DIRECTION. ......... 137 

FIG. 5.12. RESISTANCE VARIATION WITH MOVING THE FEED LOCATION IN THE Y-DIRECTION. ......... 138 

FIG. 5.13. THE E-SLOT ANTENNA. ...................................................................................................... 139 



 

 xvi 

FIG. 5.14. SCREEN CAPTURE OF THE MODAL SOLUTION RESULTS. ..................................................... 140 

FIG. 5.15. ELECTRIC FIELD DISTRIBUTION OF THE FIRST FUNDAMENTAL MODE. ............................... 140 

FIG. 5.16. ELECTRIC FIELD DISTRIBUTION OF THE SECOND FUNDAMENTAL MODE. ........................... 141 

FIG. 5.17. SURFACE CURRENT DISTRIBUTION OF THE FIRST FUNDAMENTAL MODE. .......................... 141 

FIG. 5.18. SURFACE CURRENT DISTRIBUTION OF THE SECOND FUNDAMENTAL MODE. ...................... 142 

FIG. 5.19. THE RESULTING RESISTANCE MAP FOR THE FIRST MODE WITH A FEED LOCATION SUITABLE 

FOR DUAL FEED OPERATION. ............................................................................................... 143 

FIG. 5.20. THE RESULTING RESISTANCE MAP FOR THE SECOND MODE WITH A FEED LOCATION 

SUITABLE FOR DUAL FEED OPERATION. .............................................................................. 143 

FIG. 5.21. COMPARING THE NORMALIZED INPUT RESISTANCE FROM DRIVEN AND MODAL 

SIMULATIONS. ..................................................................................................................... 144 

FIG. 5.22. RESULTING RESPONSE OF THE DUAL-BAND DUAL-FEED ANTENNA. .................................. 144 

FIG. 5.23. THE RESULTING RESISTANCE MAP FOR THE FIRST MODE WITH A FEED LOCATION SUITABLE 

FOR SINGLE FEED OPERATION.............................................................................................. 146 

FIG. 5.24. THE RESULTING RESISTANCE MAP FOR THE SECOND MODE WITH A FEED LOCATION 

SUITABLE FOR SINGLE FEED OPERATION. ............................................................................ 146 

FIG. 5.25. COMPARING THE INPUT RETURN LOSS FROM THE CIRCUIT MODEL AND THE ACTUAL 

SIMULATION. ....................................................................................................................... 147 

FIG. 5.26. VISUALIZATION OF A SIMPLE SMARTPHONE ANTENNA. ..................................................... 148 

FIG. 5.27. SCREEN SNAPSHOT OF THE RESULTING MODAL DATA. ...................................................... 149 

FIG. 5.28. IMPEDANCE (RESISTANCE) MAP OF THE SMARTPHONE ANTENNA. ..................................... 149 

FIG. 5.29. INPUT REFLECTION COEFFICIENT OF THE ANTENNA USING A DRIVEN SIMULATION. .......... 150 

FIG. 5.30. THE RESISTANCE MAP AT (X,Y) = (45,-14). ........................................................................ 151 

FIG. 5.31. THE RESISTANCE MAP AT (X,Y) = (45,-2). .......................................................................... 151 

FIG. 5.32. INPUT RESISTANCE PLOTS GENERATED USING A DRIVEN SIMULATION WITH A PROBE 

LOCATED AT DIFFERENT LOCATIONS ACROSS THE Y-AXIS. ................................................. 152 

FIG. 5.33. SCATTERING PARAMETERS OF THE PROBE-FED PATCH ANTENNA. ..................................... 154 

FIG. 5.34. POSSIBLE MATCHING NETWORK. ........................................................................................ 154 

FIG. 5.35. RF VOLTAGES ACROSS THE TUNABLE CAPACITOR IN THE MATCHING NETWORK UNDER 

STUDY (COURTESY OF PEREGRINE SEMICONDUCTORS). ..................................................... 155 

FIG. 5.36. PROBE-FED PATCH ANTENNA LOADED WITH A TUNABLE CAPACITOR. .............................. 156 



 

 xvii 

FIG. 5.37. THE VARIATION IN THE INPUT REFLECTION COEFFICIENT OF THE ANTENNA FOR DIFFERENT 

CAPACITOR VALUES. ........................................................................................................... 156 

FIG. 6.1. A GENERAL FLOW CHART OF THE PROPOSED OPTIMIZATION ALGORITHM. .......................... 168 

FIG. 6.2. A LOCAL COMPARISON BETWEEN THE MODELS DEVELOPED USING CAUCHY RATIONAL 

FUNCTIONS AND THE EXACT RESPONSE. ............................................................................. 169 

FIG. 6.3. A WIDE RANGE COMPARISON BETWEEN THE MODELS DEVELOPED USING CAUCHY RATIONAL 

FUNCTIONS TO THE EXACT RESPONSE FOR THE ONE-DIMENSIONAL EXAMPLE. .................. 170 

FIG. 6.4. THE CONSTRAINTS ON THE THREE-VARIABLE RESONANCE CIRCUIT. ................................... 171 

FIG. 6.5. THE CONSTRAINTS IMPOSED ON DISCRETE FREQUENCIES OF THE THREE-VARIABLE 

RESONANCE CIRCUIT. .......................................................................................................... 172 

FIG. 6.6. THE CHANGE OF THE MIN-MAX COST FUNCTION WITH EACH ITERATION FOR THE THREE-

VARIABLE RESONANCE CIRCUIT. ......................................................................................... 173 

FIG. 6.7. THE RESULTS OF THE ABSOLUTE ERROR IN TOLERANCE ANALYSIS BETWEEN A THIRD-ORDER 

CAUCHY MODEL AND ACTUAL SIMULATION USING A TOLERANCE OF 10% FOR ALL 

PARAMETERS AT 2.0 GHZ. .................................................................................................. 174 

FIG. 6.8. THE RESULTS OF THE ABSOLUTE ERROR IN TOLERANCE ANALYSIS BETWEEN A THIRD-ORDER 

CAUCHY MODEL AND ACTUAL SIMULATION USING A TOLERANCE OF 20% FOR ALL 

PARAMETERS AT 2.0 GHZ. .................................................................................................. 175 

FIG. 6.9. THE CAUCHY COEFFICIENTS ARE OBTAINED FOR A SET OF DISCRETE FREQUENCIES. ......... 175 

FIG. 6.10. THE PADÉ APPROXIMATION IS APPLIED TO DETERMINE THE CAUCHY COEFFICIENTS FOR 

FREQUENCIES OTHER THAN THOSE CONSIDERED. ............................................................... 176 

FIG. 6.11. THE FLOWCHART OF THE ALGORITHM. .............................................................................. 178 

FIG. 6.12. THE OPTIMIZABLE DIMENSIONS OF THE PATCH ANTENNA. ................................................ 181 

FIG. 6.13. OPTIMIZATION CONVERGENCE OF THE GPS ANTENNA DESIGN USING THE PROPOSED 

ALGORITHM. ........................................................................................................................ 182 

FIG. 6.14. OPTIMIZATION CONVERGENCE OF THE GPS ANTENNA EXAMPLE USING SOME OF THE 

AVAILABLE COMMERCIAL ALGORITHMS. ............................................................................ 182 

FIG. 6.15. THE INITIAL AND OPTIMIZED VSWR OF THE GPS ANTENNA OBTAINED USING THE 

PROPOSED ALGORITHM. ...................................................................................................... 183 

FIG. 6.16. THE INITIAL AND OPTIMIZED AXIAL RATIO OF THE GPS ANTENNA OBTAINED USING THE 

PROPOSED ALGORITHM. ...................................................................................................... 184 



 

 xviii 

FIG. 6.17. THE INITIAL AND OPTIMIZED E Eθ ϕ∠ −∠  OF THE GPS ANTENNA OBTAINED USING THE 

PROPOSED ALGORITHM. ...................................................................................................... 184 

FIG. 6.18. THE SIMPLIFIED YAGI-UDA EXAMPLE. .............................................................................. 185 

FIG. 6.19. OPTIMIZATION CONVERGENCE OF THE YAGI-UDA EXAMPLE USING THE PROPOSED 

ALGORITHM. ........................................................................................................................ 186 

FIG. 6.20. THE INITIAL AND OPTIMIZED RESULTS OBTAINED USING THE PROPOSED ALGORITHM FOR 

THE YAGI-UDA EXAMPLE. ................................................................................................... 187 

FIG. 6.21. OPTIMIZATION CONVERGENCE OF THE YAGI-UDA EXAMPLE USING SOME OF THE 

COMMERCIALLY AVAILABLE ALGORITHMS. ....................................................................... 187 

FIG. 6.22. THE E-SLOT ANTENNA. ....................................................................................................... 188 

FIG. 6.23. OPTIMIZATION CONVERGENCE FOR THE E-SLOT ANTENNA OBTAINED USING THE PROPOSED 

ALGORITHM. ........................................................................................................................ 189 

FIG. 6.24. THE INITIAL AND OPTIMIZED RESULTS OF THE REFLECTION COEFFICIENT OF THE E-SLOT 

ANTENNA OBTAINED USING THE PROPOSED ALGORITHM. .................................................. 190 

FIG. 6.25. THE OPTIMIZED GAIN OF THE E-SLOT ANTENNA OBTAINED USING THE PROPOSED 

ALGORITHM. ........................................................................................................................ 190 

FIG. 7.1. THE DIMATIX DMP2800 TABLETOP INKJET PRINTER .......................................................... 195 

FIG. 7.2. DIFFERENT COMPONENTS OF THE DMP2800 PRINTER. ........................................................ 196 

FIG. 7.3. CONCEPTUAL DIAGRAM OF AN INKJET PRINTER. ................................................................. 196 

FIG. 7.4. DROP FORMULATION. ........................................................................................................... 196 

FIG. 7.5. TIMING DIAGRAM FOR THE FIRING VOLTAGE. ...................................................................... 197 

FIG. 7.6. DROP SIZE VERSUS FIRING VOLTAGE. .................................................................................. 197 

FIG. 7.7. LCP-ENABLED PACKAGING FOR MM-WAVE SYSTEMS. ........................................................ 199 

FIG. 7.8. REALIZED RESOLUTION, BEFORE CURING (LEFT) AND AFTER CURING (RIGHT). .................. 199 

FIG. 7.9. S-PARAMETERS OF A SAMPLE CPW LINE PRINTED ON LCP. ................................................ 200 

FIG. 7.10. PROBE MEASUREMENT OF A SAMPLE ANTENNA. ................................................................ 201 

FIG. 7.11. ACTUAL PROBE AND ITS CAD MODEL USED IN MEASUREMENTS. ..................................... 201 

FIG. 7.12. MODELED VS. REALIZED DATA OF THE INKJET PRINTED ANTENNA ON LCP. ..................... 201 

FIG. 7.13. GAIN AT 25GHZ (LEFT) AND 70GHZ (RIGHT). ................................................................... 202 

FIG. 7.14. CHARACTERIZATION OF THE PAPER MATERIAL THROUGH THE SPLIT-RING RESONATOR 

METHOD. .............................................................................................................................. 203 

FIG. 7.15. SILVER INK BEFORE (LEFT) AND AFTER (RIGHT) CURING. .................................................. 204 



 

 xix 

FIG. 7.16. PROFILING A SINGLE TRACE LINE. ...................................................................................... 204 

FIG. 7.17. PROFILING COUPLED TRACE LINES. .................................................................................... 204 

FIG. 7.18. AFM DATA FOR A SINGLE TRACE LINE. .............................................................................. 205 

FIG. 7.19. REALIZED PRINTING ACCURACY DOWN TO 50UM. ............................................................. 205 

FIG. 7.20. REALIZED CPW LINES OF LENGTHS UP TO 10CM (LEFT) AND A FLEX COUPLED LINE CIRCUIT 

(RIGHT). ............................................................................................................................... 205 

FIG. 7.21. TEST SETUP USED IN MEASUREMENTS. ............................................................................... 206 

FIG. 7.22. SCATTERING PARAMETER RESULTS FOR ONE OF THE TEST CPW LINES............................. 206 

FIG. 7.23. NUMERICAL MODEL FOR THE PRINTED ANTENNA ON PAPER. ............................................ 207 

FIG. 7.24. SIMULATED AND MEASURED PERFORMANCE OF THE ANTENNA. ....................................... 208 

FIG. 7.25. RESULTING GROUP DELAY OF THE ANTENNA. .................................................................... 208 

FIG. 7.26. MEASURED AND SIMULATED DIRECTIVITY OF THE ANTENNA. .......................................... 209 

FIG. 7.27. INKJET-PRINTED SWCNT FILMS WITH SILVER ELECTRODES. ............................................ 213 

FIG. 7.28. MEASURED DC RESISTANCE OF SWCNT IN AIR. ............................................................... 214 

FIG. 7.29.  MEASURED RF IMPEDANCE OF THE CNT TEST FIXTURE. .................................................. 215 

FIG. 7.30. THE RFID TAG WITH CNT. ................................................................................................ 216 

FIG. 7.31. THE CALCULATED POWER REFLECTION COEFFICIENT OF THE RFID TAG ANTENNA. ......... 216 

FIG. 7.32. TEXT FIXTURE FOR EXTRACTING THE EQUIVALENT CIRCUIT OF THE CNT SAMPLE. ......... 218 

FIG. 7.33. UNDER-THE-HOOD CONTROLLED FLOW TEST SETUP.......................................................... 219 

FIG. 7.34. SCATTERING PARAMETERS CHANGE UPON EXPOSURE TO AMMONIA. ................................ 219 

FIG. 7.35. EXTRACTED RESISTANCE BEFORE AND AFTER EXPOSURE. ................................................ 220 

FIG. 7.36. EXTRACTED CAPACITANCE BEFORE AND AFTER EXPOSURE. ............................................. 220 

FIG. 7.37. VARIATION IN THE EXTRACTED RESISTANCE WITH DIFFERENT LEVELS OF AMMONIA. ..... 221 

FIG. 7.38. THE PRINTED SENSOR REALIZATION. ................................................................................. 222 

FIG. 7.39. SCATTERING PARAMETERS OF THE ANTENNA BEFORE AND AFTER EXPOSURE TO AMMONIA.

 ............................................................................................................................................ 222 

 

 



 

 xx 

List of Tables 
 

TABLE 2.1. BANDWIDTH LIMITS OF TRAVELLING WAVE ANTENNAS ON A PORTABLE PLATFORM [75].

 .............................................................................................................................................. 16 

TABLE 3.1. SUMMARY OF RESULTS FOR ANTENNAS UNDER TEST. ..................................................... 64 

TABLE 4.1. DESIGN PARAMETERS REQUIRED FOR COVERING 1.7-2.1 GHZ WITH VSWR=3 .............. 85 

TABLE 4.2. THREE DIFFERENT FREQUENCY VARIATION CASES. ......................................................... 86 

TABLE 4.3. THREE DIFFERENT Q VARIATION CASES. .......................................................................... 87 

TABLE 4.4. THREE DIFFERENT CASES FOR VARIATION IN RESISTANCE. ............................................. 89 

TABLE 4.5. THREE DIFFERENT CASES FOR VARIATION IN THE COUPLING COEFFICIENT. ................... 90 

TABLE 4.6. Q-BW LIMITATIONS FROM PRIOR WORK COMPARED TO THIS WORK. ............................. 96 

TABLE 6.1. ALGORITHM RESULTS STARTING WITH 0.9initialp =  ....................................................... 169 

TABLE 6.2. SUMMARY OF RESULTS FOR THE GPS PATCH ANTENNA. ............................................... 183 

TABLE 6.3. SUMMARY OF RESULTS FOR THE YAGI-UDA ANTENNA. ................................................. 186 

TABLE 6.4. SUMMARY OF RESULTS FOR THE SLOT ANTENNA. .......................................................... 189 

TABLE 7.1. MEASURED RADIATION PATTERNS AT SELECT IN-BAND FREQUENCIES (SOLID FOR XZ-

PLANE AND DASHED FOR YZ-PLANE). .................................................................................. 210 



 

1 

 

Chapter 1: Introduction 

 

“The essence of science: ask an impertinent question, and you are on the way to a 

pertinent answer.” 

Jacob Bronowski 

 

Since its very first days, the wireless system has been composed of several key 

components, one of the most crucial of which is the antenna. An antenna is essentially a 

transducer that transforms electrical signals into waves propagating through space. It is 

also capable of transforming the electromagnetic waves flowing in space into electrical 

signals to be processed at the receiver. Numerous studies over the years have pontificated 

on the most suitable antenna for a given wireless system, with a large number of books 

summarizing a massive amount of work on the antenna theory from the early 1900s until 

now. A close look at most of the pioneering and fundamental work on antennas reveals 

some standard forms for antennas, such as dipoles, loops, printed microstrip patches, 

helical-based, parabolic-based, and waveguide antennas, all of which have been 

extensively studied. Models to predict their behavior are available, and many tools were 

developed to analyze their properties. Most of these antennas are useful in a standard type 

of applications, i.e., satellite communications, radars, and terrestrial communications 

towers. 

A common feature among these antennas is that most of them were developed for 

broadcast systems or military applications. However, recently, we have witnessed a 

significant increase of emerging wireless systems serving everyday individuals. Mobile 

handhelds, such as smartphones, smart sensors, or tablets, have become a daily necessity 

of life necessity for many around the world. In fact, the world’s wireless forum predicts 

that, by 2030, each individual will be served by more than 1,000 sensors and wireless 

systems. 



 

2 

 

In general, most of the new wireless devices share the feature of being “commercially” 

driven products. They target different classes of the community, and thus for each there 

are different marketing strategies. This reflect the capabilities and form-factors of each 

wireless device. With such a variety in packaging possibilities comes the challenge of 

antenna design. The antenna is no longer a simple dipole, loop, or patch antenna of 

uniform geometries; rather, it has become a flexible varying structure that has to conform 

to the package, support multi-frequency operation, satisfy many operational standards, 

and maintain satisfactory operation at all possible scenarios experienced by the wireless 

device.  

With multiple sets of stringent requirements along with a variety of non-canonical 

configurations, it became clear that the typical theoretical approach for antenna design is 

quite limited and would not satisfy the needs for rapid and accurate product development. 

This is why the use of an experimental-based approach, mostly relying on the cut-and-try 

designs, surged in the early days of portable wireless devices. This approach was further 

enhanced by massive advancements in computational powers, which allowed the designer 

to experiment on his personal computer, minimizing his attempts on the bench or at the 

lab. In fact, it has become a common design routine to start with a conceptual design and 

let the software optimization package try to get the antenna form to comply with the 

requirements. However, numerous limitations emerge from relying solely on software 

capabilities. The computational power is simply useless if the optimizer has no physics-

based assessment of the design problem, particularly when it comes to three-dimensional 

electromagnetic solvers targeting multi-objective antenna designs.  

The market for wireless personal devices has expanded significantly. Nowadays, products 

range from simple communication devices to medical applications, spanning through 

wireless sensor nodes and the Internet of Things. All indications are that the demand for 

custom antenna elements for each unique package will increase even further. The typical 

try-on-the-bench approach is a time-consuming and costly process, while relying solely 

on software optimization tools is not the ideal solution. Thus, well-defined synthesis 

techniques are needed to address the design problem. It is understood that such an 

approach cannot alleviate the need for optimization or replace fine on-the-bench tunings, 
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but it should be sufficiently effective in guiding the designer through the optimization and 

tuning processes. To this end, the primarily target of this research is to establish a general 

efficient antenna design strategy for next generation wireless devices. 

 

1.1 Statement of the Problem and the Selected Tools 

In its roots, each doctoral thesis seeks an answer to a given number of questions. Early in 

my PhD work, I was challenged with the following thought: “How can we systematically 

and efficiently design an antenna, especially one that is integrated in a package, can 

cover as many bands as possible, and can operate in stringent and varying operational 

conditions?” This question was the trigger for this thesis, in which I primarily seek a 

modern practical approach to the design of compact, integrated, and multi-frequency 

antennas. 

To advance the work presented in this thesis, access to a number of tools was needed.  

First, I had to re-visit some of the well-established electromagnetic and antenna theories 

available. This was necessary both to stand on the shoulders of giants, while at the same 

time not re-inventing the wheel. In addition, it served to define why many of the 

commonly available techniques are not suitable for addressing the problem at hand.   

Successful engineering design, in general, has always been a challenging task. However, 

one particular community, known for its robust mathematical models implemented in 

developing products that meet strict system requirements, is the filter design community. 

My second tool was therefore to study their techniques closely and to understand their 

approaches. By adapting some of the filter design ideas to the antenna problem, this 

thesis illustrates how some complex antenna designs can be systematically developed.  

Advancements in computational tools present a powerful paradigm towards better design 

approaches. In particular, the application of Electromagnetic (EM) field simulation 

packages to microwave engineering design has enabled unprecedented insight into a 

multitude of complex problems. These packages feature a diversified number of 

numerical techniques, each with a unique set of advantages. Interestingly, many of the 
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kernels of these tools are widely available as open source software. This means that they 

are freely available to the interested developer to edit and modify, without the need to 

start from the basic principles.  Additionally, many commercial software vendors make 

their tools available for academic use at a significantly reduced price. So, given the large 

number of available software tools, this work proposes new design methodologies that 

efficiently utilize the currently available EM solvers. 

Still, the development of a number of customized codes is a necessity. Some of these 

have already been developed in the context of this research to implement some of the 

proposed techniques. A custom tool was established to control several EM solvers and 

integrate the proposed methodologies therein. This is an invaluable tool that greatly 

enhanced the progress of this research. The list of EM solvers utilized includes: Matlab 

Antenna Toolbox (Method of Moments MOM open source code supporting 3-

dimensional configurations and generalized dielectric inclusions), Ansoft’s Designer 

(Circuit solver and Method of Moments MOM 2.5-dimensional solver supporting 2-D 

infinite dielectric inclusions), Ansoft’s HFSS (3-D Finite Element Method Solver FEM), 

COMSOL (2-D and 3-D Finite Element Method Solvers, with electro-static, magneto-

static modules, in addition to thermal and mechanical solvers), Sonnet EM (Method of 

Moments MOM 2.5-dimensional solver supporting 2-D infinite dielectric inclusions), 

CST’s Microwave Studio (3-D Finite Integration Solver), and SPEAG’s SEMCAD (3-D 

conformal Finite Difference Time Domain Solver).  

Finally, to verify the proposed concepts, many prototypes were developed. Understanding 

the fabrication procedures and their tolerances was a crucial step towards adequately 

modeling the proposed antenna designs. Some prototypes were produced using copper 

tape and foam substrates, while others used FR-4 PCBs. To address the need for low-cost 

"green" antennas, inkjet printing technology was utilized to produce some novel design 

concepts suitable for next-generation wireless systems. 
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1.2 The Thesis at a Glance 

The first section of this document briefly reviews some of the classical design methods of 

traditional antenna structures of relevance to this work. The design strategies towards 

converting these structures into working antennas are outlined. The purpose of presenting 

such strategies in Chapter 2 serves in listing the common approaches before presenting 

the proposed ones. Some fundamental concepts such as the antenna quality factor and its 

relation to the impedance bandwidth are discussed, with further details available in the 

associated appendices. In addition, state-of-the-art techniques in antenna design are 

briefed. In view of the current trends and future needs, Chapter 2 concludes with some 

specific features that should be incorporated in any newly developed design methodology 

for antenna design.  

Following a divide-and-conquer strategy, the proposed generalized design methodology 

is presented through a number of novel concepts. Chapter 3 starts by emphasizing some 

very basic circuit concepts and definitions, along with presenting the dominant 

approaches in the analysis of the antenna quality factor. This review serves a two-fold 

purpose. First, it clearly outlines some of the common definitions and their domain of 

application, and second, it allows for drawing an analogy that could translate the antenna 

design problem into a systematic procedure, like that encountered in filter design. Simple 

examples utilizing this analogy are presented.  

In Chapter 4, the simple analogy discussed in Chapter 3 is used to develop a theory for 

the design of multi-coupled antennas. Detailed steps are presented, along with a number 

of examples illustrating the usefulness of the proposed formulations. An observation is 

made about the possibility of integrating filtering functionalities into these types of 

antennas. The chapter concludes with a discussion on the need for extending the proposed 

technique to multi-band multi-feed antennas. This triggers the work in Chapter 5.   

In a different manner than that presented earlier, the antenna problem in Chapter 5 is 

tackled from a feed-less point of view. That is, the modal behavior of the antenna 

structure is studied, without the presence of any feed configuration. Modal analysis is one 

technique that is typically involved in the filter design process. However, in such a 
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process, the solution space is always assumed to be bounded with a metallic cavity, and 

thus no radiation effects are taken into account. In the antenna community, the 

application of modal analysis dates back to the late 1970s. Nevertheless, its application 

has remained quite limited, with severe approximations in accounting for the associated 

radiation mechanisms. Through some modifications to the aforementioned theory, and in 

light of the recent advances in computational capabilities, Chapter 5 demonstrates a 

number of novel concepts. Utilizing an efficient Eigen solver, the capability of accurately 

extracting the modal field distribution and the radiation quality factor of antennas is 

demonstrated. Through such capability, the concept of impedance maps is proposed. This 

is a very special concept that allows the designer to predict beforehand the impedance 

values at any location on a general antenna, without the need for parametric and 

optimization trials seeking an appropriate feed location. In addition, through the modal 

analysis, the designer will always have a priori information about the maximum 

attainable bandwidth, the operational frequency, and the radiation pattern of any antenna 

under study. Examples on utilizing the proposed concepts in the design of dual-feed 

antennas, single-feed with dual bands, reconfigurable/tunable antennas, and antennas for 

portable devices are illustrated. The chapter concludes that one promising technique for 

multi-band multi-feed antenna design is to focus on finding a suitable antenna with the 

appropriate resonant frequency and quality factor, irrespective of the feed configuration. 

A suitable feed location can then be easily found following the generation of the antenna 

impedance map at each band of interest. Hence, the remaining crucial question is how to 

find an antenna shape resulting in the required complex frequency behavior. This 

question motivated the work presented in Chapter 6. 

Developing an antenna shape to meet some system requirements is one of the most 

challenging design tasks. To search for such design, it is clear that the need for invoking 

an efficient optimization routine is inevitable. One should note that this optimization 

cycle is expected to be different from the traditional ones, given the presented 

advancements in the calculation of the antenna quality factor. An enhanced optimization 

cycle would then translate the return loss specifications into seeking structures with 

specific resonant frequencies and quality factors. This translation would provide the 



 

7 

 

optimizer with some physics-based knowledge of the structure investigated, which in turn 

should improve the convergence of the optimization cycle. Interestingly, various 

optimization routines are already implemented in commercial EM solvers. However, 

most of them require a significantly large number of simulations before a simple antenna 

design can be optimized. 

To this end, the work described in Chapter 6 proposes a novel physics-based optimization 

routine based on multi-dimensional Cauchy rational modeling. This newly developed 

routine proved quite suitable for antenna problems, with performance substantially 

surpassing many commercially available routines. Furthermore, the routine proved 

efficient in generating a surrogate model for the behavior of the optimized structure. 

Hence, this optimizer is quite capable of assessing the design sensitivities and tolerances, 

without need for further extensive simulations and studies.  

To demonstrate the relevance of the proposed design techniques to next-generation 

wireless devices (whether for personal handhelds, wireless sensor nodes, or Internet of 

Things applications), Chapter 7 discusses the application of inkjet printing technology to 

various wireless systems. The chapter lists some of the challenging aspects in order to 

realize fine and repeatable printing resolutions of silver nano-ink. Examples on LCP and 

paper substrates are demonstrated up to mm-Wave frequencies. Many of those are 

suitable as package-integrated flexible antennas. Novel gas sensor concepts integrating 

carbon nanotubes in antennas for remote sensing are also presented.  

Chapter 8 concludes the thesis, highlighting some of the key contributions and suggesting 

possible future work. Specifically, it is believed that the concept of impedance maps will 

truly facilitate the design of multi-band tunable LTE and MIMO systems. Moreover, the 

proposed approach for coupled antenna designs should be re-visited, focusing further 

studies on the filter-integrated functionality associated with such antennas. Other future 

research work could include further investigations on compact antenna array designs, as 

well as investigations into using inkjet printing to create commercial package-integrated 

low-cost flexible antennas.  
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Chapter 2: Background 

“What is now proved was once only imagined.”                                      

William Blake 

 

Antennas are key components in any wireless communication system. They are the 

devices that allow for the transfer of a signal to waves that can propagate through space 

and be received by another antenna. The transmitting and receiving functionalities of 

many of the basic antenna structures are fairly well understood [1]-[16]. For example, a 

dipole antenna is formed of a straight wire, fed at the center by a two-wire transmission 

line. To optimally perform its function, its length must be approximately half of the 

wavelength at the frequency of operation. Its gain pattern is known to be omni-

directional, with a relatively narrow impedance bandwidth. To overcome its gain 

limitations, the Yagi-Uda antenna [41]-[42] was introduced in the 1920s with more 

directivity and gain that can easily be 10 times that of a dipole. Later in the 1940s, log-

periodic wire antennas produced both high gain and wide bandwidth. These were 

paralleled by other types of antennas, such as the large reflectors, apertures, and 

waveguides [46]-[48]. 

Until the late 1970s, antenna design was based primarily on practical approaches using 

off-the-shelf canonical antennas. The antenna engineer would choose or modify one of 

these antennas based on the design requirements on impedance bandwidth, gain 

bandwidth, pattern beamwidth, and side-lobe levels. Such a design cycle typically 

required extensive testing and experimentation. It is no wonder, then, that most of the 

notable designs were funded by military-oriented research. Interestingly, with the current 

exploding needs for the production of commercially-driven devices, along with the 

remarkable growth in computing speeds and efficient computational techniques, the 

development of realistic antenna geometries through low-cost virtual antenna design has 

become a reality. 
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Incidentally, it is no wonder that the commercial mobile communications industry has 

been the catalyst for the recent explosive growth in antenna design needs. The last few 

years have seen an extensive use of antennas by the public for cellular communications, 

satellite-based Global Positioning Systems (GPS), wireless Local Area Networks (LAN), 

Bluetooth technology, Radio Frequency ID (RFID) devices, and many others [49]-[57]. 

However, future needs will be even greater when a multitude of antennas are integrated to 

form the backbone of the Internet of Things (IoT). For example, automobiles will be 

fitted with a plurality of antennas for all sorts of communication, security, and safety 

needs. Future RFID devices will most likely replace bar codes on all products, while 

concurrently allowing for instantaneous inventorying. For military applications, there is 

an increasing need for small and conformal multifunctional antennas that can satisfy a 

plethora of communications needs using as little space as possible. Wireless implants and 

body area networks are another massive realm where compact and efficient antenna 

designs are needed to improve health monitoring and allow for better medical 

assessments.  

To satisfy the needs of this futuristic world of antennas, one needs to set up a well-

defined synthesis strategy. Generally, the antenna design process can be divided into two 

major steps. The first tries to determine the lower limit on the volume of a general 

antenna in order to meet a given bandwidth (and/or gain) requirement. This may be found 

through studying the quality factor of the antenna. The second step tries to find a ptactical 

antenna realization that meets the required specifications while fitting within a specified 

volume. This volume is usually much larger than the lower limit found in the first part, 

and the ultimate goal is to keep it as close as possible to the lower limit.  

 

2.1 Size Limitations 

The first step in antenna design is to assess the volume needed to realize an antenna with 

the required specifications. These specifications may include impedance bandwidth, gain 

bandwidth, efficiency, constraints on polarization, etc. [13]. For portable devices, it is 

typically the impedance bandwidth that is most important [17]. Traditionally, the problem 
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is tackled first by determining the quality factor, through which the impedance bandwidth 

is calculated. A brief history is presented next to outline the procedure and its limitations.  

 

2.1.1 Antenna Quality Factor 

The radiation properties of antennas were first investigated in detail by Wheeler [58]- 

[59], who coined the term “radiation power factor.” Using circuit concepts for a capacitor 

and inductor acting as antenna, he showed that the radiation power factor for an electric 

or magnetic antenna is somewhat greater than [58]: 

 
2

3

1 4
3

V
Q

π
λ

>  (2.1) 

where V is the volume of the cylinder containing the antenna, and λ  is the wavelength.  

 

 

Fig. 2.1 Antenna visualized in its radian sphere. 

 

Later, a very comprehensive theory was presented by Chu [60], in which the minimum 

radiation quality factor Q of an antenna, which fits inside a sphere of a given radius, was 

derived. This approximate theory was later extended by Harrington [61] to include 

circularly polarized antennas. Collin [62] and later, Fante [63], published an extended 

theory based on a calculation of the evanescent energy stored around an antenna. A 

comprehensive review paper on this issue was published by Hansen [64]. He formulated 

the Chu-Harrington’s limit of Q as [64]: 
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This result conflicted with Collin’s work, which showed that [62]:  

 3 3
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In fact, this result has split theorists into two camps: those who support the theory of Chu, 

and those calling for its revision. In the late 1990s, McLean [65] reviewed the previously 

published theories. He calculated the radiation Q directly from the fields of the 01TM

spherical mode by analyzing a short wire, using a more direct technique than previous 

work. McLean showed that the result is exactly the same as that obtained using either an 

equivalent ladder-network analysis with no approximations [60] or the exact field based 

technique given by Collin [62] and Fante [63].  

To understand why different researchers arrived at different conclusions, we need to 

review some of their main assumptions. Strictly speaking, the radiation Q of a simple 

small antenna is not clearly defined, since, in general, such an antenna is not self-

resonant. In most cases, the Q of a system is defined in terms of the ratio of the maximum 

energy stored to the total energy lost per period. For an antenna, the following definition 

for radiation Q is generally utilized:  
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where eW  is the time-average, non-propagating, stored electric energy, mW  is the time-

average, non-propagating, stored magnetic energy, ω  is the radian frequency, and radP  is 

the radiated power. The basis for the given definition is that it is implicitly assumed that 

the antenna will be resonated with an appropriate lossless circuit element, resulting in a 

purely real input impedance at a specific frequency [60]. Thus, the definition of the 
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radiation Q of an antenna is similar to the definition of Q for a practical circuit element, 

which stores predominantly one form of energy while exhibiting some losses.  

In Chu’s theory [60], the antenna is enclosed by a sphere of radius a, the smallest 

possible sphere which completely encloses the antenna. The fields of the antenna external 

to the sphere are represented in terms of a weighted sum of spherical wave functions, the 

so-called “modes of free space”. It is implicit in Chu’s work that these modes exhibit 

power orthogonality; that is, they carry power independent of one another. From the 

spherical wave function expansion, the radiation Q is calculated in terms of time-average, 

non-propagating energy external to the sphere, and the radiated power. In this manner, 

the calculated radiation Q will be the minimum possible radiation Q for any antenna that 

fits in the sphere. Any energy stored within the sphere will only increase the Q.  

However, the calculation of this radiation Q is not straight-forward because the total 

time-average stored energy outside the sphere is infinite, just as it is for any propagating 

wave or combination of propagating waves and non-propagating fields. It is not possible 

to calculate the non-propagating stored energy simply by using the near-field electric and 

magnetic field components. Accordingly, Chu proposed a technique to separate the non-

propagating energy from the total energy. He derived an equivalent ladder network for 

each spherical waveguide mode using a technique based on the recurrence relations of the 

spherical Bessel functions and a continued fraction expansion. From the equivalent 

circuit, one needs to calculate the total non-propagating energy, and hence the radiation 

Q, by summing up the electric and magnetic energies stored in the inductances and 

capacitances. However, this is quite a tedious task to include all modes. Chu 

approximates the problem by deriving an equivalent RLC circuit and calculates the Q 

from this equivalent circuit, assuming it behaves as a lumped network over some limited 

range of frequency. From Chu’s calculations, it was shown that an antenna which excites 

only one mode, whether 01TE or 01TM  external to the sphere and stores no energy in the 

sphere, has the lowest possible radiation Q of any linearly polarized antenna.  

McLean [65] derived an exact expression for the radiation Q of an antenna exciting only 

one mode. He studied the fields of the 01TM  spherical mode with an even symmetry 
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about 0θ = . Such fields are obtained from an r-directed magnetic vector potential rA .  

This is equivalent to the fields of a short, linear electric current element. The quality 

factor can then be expressed as [65]: 
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which is identical to that of Collin [62] and, as stated earlier, opposes the expression 

presented by Chu-Harrington. Interestingly, McLean identified the inconsistency by 

pointing out an algebraic mistake in their expression, and modifying it to [65]: 
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Intuitively, a lower Q value may be approachable, simply by combining two orthogonal 

0nTM  and 0nTE  to produce circularly polarized fields. Harrington [61] confirmed that the 

lowest achievable radiation Q for a circularly polarized antenna is given by that 

corresponding to a combination of the 01TM  and 01TE  modes. Collin [62] and Fante [63] 

used some exact analyses to derive an expression for this Q.  In a much simpler manner, 

McLean derived it by using the electric vector potential in a dual way to deal with the 

01TM . To achieve circular polarization, the radiated power for each mode should be 

equal, making the total radiated power twice that of the 01TM mode acting alone. Hence, 

the radiation Q is given by [65]: 
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It should be noted that the Q of a circularly polarized antenna is only approximately half 

that of a linearly polarized antenna. This is because the 01TE  mode, while storing 

predominantly magnetic energy in the non-radiating fields, also stores some electric 

energy. The dual for the 01TM  is true as well. Appendix I probes further to elaborate on 

McLean’s formulations and those of Harrington-Chu. It is noteworthy to mention that 
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Thal demonstrated Q bounds for the combined TM+TE fundamental modes excited by 

surface currents over a sphere, stating [76]: 

                                                            ( )3
1Q

ka
=                                                    (2.8) 

In [66], [67] and [68] Dale and Craig Grimes re-formulated the Q theory using time 

domain analysis. Their Q for circularly polarized waves was then given by: 
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Computing the peak stored energy in the time domain, assuming that the antenna radiates 

only the lowest order mode, they came up with: 
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However, this expression was later pointed out by Collin to be erroneous [69].  

In [70] and [71], Geyi noted that the lower bound found by Collin and Maclean might be 

elusive to achieve in practice, since it does not take into account the energy stored in the 

near field of the antenna (inside the sphere). Later, another research group [72]-[73] 

duplicated the results of Geyi by numerically evaluating the Q using: 

 
{ }max 2 ,2total total

e m

rad

radW W W
Q

P
ω

−
=  (2.11) 

to produce the results in Fig. 2.2 [72]. 
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Fig. 2.2. Antenna Q calculated with different methods [72]. 

 

In 2005, Wang [74]-[75] addressed the problem from a different perspective. His 

reasoning was that antennas used on a platform can be classified into two basic types: 

resonant antennas and traveling wave antennas. A resonant antenna is characterized by a 

source distribution that can only be matched to free space by a resonance mechanism, 

which is inherently narrowband. The traveling wave antenna is characterized by a source 

distribution in the form of a directional modal wave or current which radiates its energy 

while traveling along the antenna. An empirical theory on fundamental bandwidth 

limitation due to size constraints has been developed [75] for small antennas on a 

platform based on existing electromagnetic theory and experimental observation, and is 

summarized in Table 2.1. Note that the data is given in terms of Lλ , which denotes the 

wavelength at the lowest frequency of the band of interest. For a lossless narrowband 

resonant antenna on a platform, the Chu theory is applied with proper inclusion of the 

platform/transceiver. It should be noted that, for a conformable disk-shaped travelling 

wave antenna on a platform, [75] states that there is no theoretical fundamental limitation 

on its octave bandwidth. The reduced practical bandwidth limitation is largely due to the 
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antenna’s radiation property (pattern and polarization), not impedance. The practical 

impedance bandwidth of such an antenna can be much larger than 20.  

 

Table 2.1. Bandwidth Limits of Travelling Wave Antennas on a Portable Platform [75]. 

 
 

The work of Gustafsson applies forward scattering techniques to evaluate antenna Q. The 

technique has its own merits compared to previous work, particularly when addressing 

non-spherical volumes, but suffers from some critical limitations due to its inherent 

assumptions [79]-[80]. 

In listing some of the most notable chronological advancements in the history of the 

evaluation of antenna Q, One may conclude that the key for an efficient design 

methodology is to find the Q definition which best facilitates the antenna design process. 

In addition, one has to find a useful translation between the antenna Q and its bandwidth. 

This is why a review of some of the available relations is presented next.  

2.1.2 Q-BW Relations 

The relation between the bandwidth and Q has a long history. In many cases, the relation 

is simply stated as [20], [23]: 

 0 1fQ
BW FBW

= =  (2.12) 

This simple relation has triggered numerous discussions over the last century. Wheeler 

commented on this relation in [58], arguing that there are limitations on the frequency 

bandwidth of impedance matching between a resonant circuit (antenna) and a generator 
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or load. The bandwidth of matching, within any specified tolerance of reflection, is 

proportional to the resonance bandwidth of the resonant circuit. He stressed that such 

expression, as in (2.12), is neither logical nor helpful in clear exposition [58]. From a 

circuit point of view, there is a limit on the maximum achievable bandwidth for a simple 

resonant antenna (i.e. one which exhibits no other resonances in the vicinity of the 

operational band of interest), even if using an infinite number of loss-free matching 

elements. For a specific VSWR level S , this maximum achievable bandwidth was 

calculated by Fano, and is given by [77] 
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On the other hand, Yaghjian and Best produced an approximate formulation for the 

relation between the antenna bandwidth and its Q yielding [78]  
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Due to their importance to the proposed antenna design techniques, the previously listed 

expressions, along with limitations of other available expressions, are addressed in detail 

in Chapter 3. 

 

2.1.3 Discussion 

Having outlined some of the historical formulations for the antenna quality factor, a few 

conclusions can be drawn. First, the calculation of the energy stored using a sphere 

around the antenna may not be of the best practical application towards the design of 

many modern antennas. More accurate relations, at the expense of increased complexity, 

are found by choosing more confined geometry such as the spheroidal coordinates [81], 

[82], and [83]. However, such calculations remain highly theoretical, do not yield a 

closed-form expression, and thus have not yet proven to be of a significant practical 

usage.  
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Second, for antennas placed on portable platforms, the choice of a proper geometry to 

perform the Q calculations remains quite an open question. It is well agreed, however, 

that such geometry should confine both the platform and the antenna (not the antenna 

only) for proper calculations of the stored energies. 

Third, the Q-analysis presented so far is applicable only to high-Q narrowband resonant 

antennas. In all of the aforementioned calculations, a single mode is assumed to radiate, 

or at best, two orthogonal ones. This implies isolated modes, which in turn implies 

narrower bandwidths and thus higher Q values. To be specific, the outlined analysis is 

usually sufficient only if Q is larger than 10. Otherwise, inaccurate conclusions might be 

deduced.  

Fourth, the problem is typically formulated as an antenna with an external matching 

network and with a single-feed connection to the driving circuitry. In general, this is 

adequate for many simple antenna designs. On the other hand, with the need for more 

compact wireless systems, multi-fed/multi-coupled antennas are considered to be one 

possible efficient solution. This means that further analysis is needed in order to correctly 

predict the required volume of these antennas. 

Apart from the abstract theoretical calculations and their various justifications,  

systematically designing an antenna, or multiple antennas, that can efficiently operate 

under a strict set of specifications and requirements has yet to be accomplished. This is 

why the concept of realizing systematically an efficient system of antennas will be the 

primary interest of this work. It is hoped that presenting some efficient design techniques 

will make antenna design for future systems a well-defined process. A by-product is to 

shed light onto the practically needed volumes, which could subsequently lead to the 

development of realistic theoretical limitations. 
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2.2  Antenna Design Approaches 

Interestingly, the calculation of antenna Q and its corresponding bandwidth for a given 

volume is merely an initial step in the design cycle of antennas. Finding an appropriate 

configuration to realize the antenna is a major challenge. In addition to locations of 

possible dielectric coverings, an antenna configuration typically compromises a unique 

metallization shape (and/or a dielectric one) as well as an optimal feeding location. There 

are numerous articles and books on various antenna realizations. In fact, the number of 

published papers on antenna designs have been consistently increasing over the past few 

years, with more than 1,000 papers published annually just on antenna designs for 

portable devices.  

Apart from the common brute force of on-the-bench trials or blind numerical 

optimization techniques, two methods stand out among several techniques for realizing 

an antenna. The first employs the theory of characteristic modes [86], while the other, 

which is more popular for its simplicity, relies on cavity modal solutions [87]. Both of 

these methods are briefly reviewed here. This should help in identifying their limitations 

and thus define an alternate direction for the proposed research. 

 

2.2.1 Theory of Characteristic Modes 

The theory of antenna characteristic modes can be traced back to Garbacz's modal 

expansion work in the 1960s [84]-[85]. His work was refined by Harrington and Mautz's 

[86] formulation to characterize the electromagnetic behavior of conducting bodies. The 

theory was later used to perform a systematic design of different types of antennas [89],  

[90], [109], and [110]. In its most basic definition, characteristic modes are real current 

modes that can be computed numerically for perfectly conducting bodies of arbitrary 

shape. Since these modes form a set of orthogonal functions, they can be used to expand 

the total current on the surface of the body. This means that they bring some physical 

insight into the radiating phenomena taking place in the antenna. The resonance 

frequency of modes, as well as their radiating behavior, can be determined from the 

information provided by the eigenvalues associated with the characteristic modes. In 
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addition, by studying the current distribution of the modes, a suitable feeding 

arrangement can be found in order to obtain the desired radiating behavior. 

In spite of being of a great theoretical appeal, the theory of characteristic modes has some 

practical limitations. In particular, encompassing dielectric materials significantly 

complicate the calculations. Another important limitation is its increased inaccuracy with 

problems involving lossy structures/low Q calculations. This is merely due to the inherent 

mathematical foundations of the theory (see Appendix II for details). The addition of loss 

simply complicates the nature of the characteristic functions (i.e., real currents on an 

antenna), possibly resulting in the loss of orthogonality relations for the associated far 

fields (theoretically, a choice may be made to keep such orthogonality relations by 

allowing the currents to exist in the complex domain). In short, the theory of 

characteristic modes has a set of incorporated approximations that facilitate developing 

some simple expressions for the resonance frequency and the Q factor. These 

assumptions are valid only if the antenna is loss-free with narrow bandwidth, i.e., for high 

Q narrow-band simple resonant antennas. Modifying the theory to become more suitable 

for a larger set of antenna problems is an ongoing research focus of many academic and 

R&D groups.  

 

2.2.2 Modal Cavity-based Analysis 

If the antenna takes the form of a conductive plate of an arbitrary shape, parallel to 

another conductive plane at a distance which is much smaller than the free space 

wavelength, then one very popular method used to study the resonance frequency, 

radiation resistance, and bandwidth of such antennas is the cavity-based model [87] (a 

theory that can also be applied to dielectric resonator antennas). This method, in its most 

basic form, considers the antenna as a cavity bounded on its perimeter by magnetic walls. 

The quality factor, resonance frequency, and the radiation resistance can be computed 

from the approximate field evaluations (see Appendix III for details). 

Although the method is quite limited, with several approximations, its simplicity made it 

quite popular [13]-[16]. It is typically the starting point of many designs and serves as a 
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good initial guess for the resonance frequency and radiation pattern in many antenna 

optimization problems. It should be emphasized, however, that this method is quite 

limited in its basic form beyond predicting the approximate resonance frequency of an 

antenna under study. Several attempts were taken to enhance its performance ([13]-[16], 

and references therein), but its theoretical/practical application is still quite limited. A 

quick survey among recent academic works indicates that there is little ongoing research 

to make the modal cavity-based analysis more useful.  

 

2.2.3 Design Through Parametric Analysis and/or Optimization 

So far, the available approaches for finding the volume needed to meet a required 

bandwidth specification were brief. It was emphasized that these approaches are highly 

theoretical and in many cases merely serve as a bound for design dimensions. In addition, 

some of the most successful theoretical approaches that should help in realizing an 

antenna configuration were discussed. Nevertheless, these methods are not valid for all 

design scenarios and have several limitations due to a number of inherent 

approximations.  

Practically speaking, in most system designs, the antenna is limited to some given 

footprint, which is typically dictated by cosmetic, mechanical, and compact packaging 

considerations. The designer is then required to realize an antenna in the given space. For 

example, in the smartphone industry, a basic cell-phone should cover as many 

communication bands as possible. These include GSM850 (824-894MHz), GSM900 

(880-960MHz), GSM 1800/DCS (1710-1880MHz), GSM 1900/PCS (1850-1990MHz), 

UMTS (1920-2170MHz), GPS (1565-1585MHz), WiFi/Bluetooth (2400-2490MHz), 

WLAN (2400-2500MHz, 5100-5900MHz), and the new TV bands (DVB-H Europe 470-

700MHz, US 1670-1675MHz, CMMB China 470-800 MHz). Each of these bands 

operates among a range of frequencies as listed, with specific voltage standing wave 

(VSWR) levels that typically vary, depending on the radio standard, from VSWR<2 to 

VSWR<6. Thus, the antenna designer has to come up with a realization that satisfies all 

of the included band requirements in the given volume. It should be emphasized that this 
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volume is typically dictated by non-electromagnetic factors, i.e., the cosmetic design of 

the portable device, with very little that can be done from the antenna perspective. 

Fig. 2.3 shows a pictorial of the typical volume given in a cell phone and some 

realizations to cover two of the GSM bands. 

 

Fig. 2.3. Simple antenna layouts and evolution to a quad band antenna. 

 

From this, the question arises as to how to come up with an antenna configuration in a 

given volume that meets the stated requirements. One simple answer is to try to find an 

appropriate structure that exhibits resonance in the required bands.  For example, the 

cavity model method should serve in rapidly reaching some initial design. However, in 

many cases, the antenna volume available is too small to easily – if ever – exhibit 

resonances with the required bandwidth. In some of these scenarios, one may utilize the 

antenna to couple to the platform of the portable device in order to excite board 

resonances, which would normally result in a design that meets the bandwidth 

specifications. Fig. 2.4 shows the currents in a situation where the antenna is used to 

excite the board resonance for operation in the GSM800. The antenna itself resonates at 

1900 to cover the higher GSM bands. Nevertheless, in many other cases, one has to find a 

way to widen the bandwidth of an antenna resonance, without relying too much on the 

platform board, in order to meet the specifications. 
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Fig. 2.4. Currents on a cell phone antenna and its PCB. 

 

It should be noted that getting the antenna to resonate in the middle of a specified band is 

not enough to get a working design that meets some impedance bandwidth requirements. 

This is because the resonance has to have a suitable quality factor to allow for covering a 

desired bandwidth. It is true that one may utilize matching networks to enhance the 

impedance bandwidth, but these also have limits on the achievable bandwidth [77]. In all 

cases, one needs to find an appropriate feeding location to alleviate the need for a 

matching network or at least minimize the number of required matching elements. Both 

of these issues (resonance with enough radiation bandwidth and optimum feeding 

locations) are not trivial problems and remain ambiguous for many. It is thus one purpose 

of this work to propose a systematic methodology for identifying each of them. 

 

A close look at the available literature of antenna designs for portable devices reveals 

more about the complexity of the problem [17]. Even with advanced computer resources, 

most designs require a considerable amount of time to finalize. Fig. 2.5 shows some 

realistic antenna shapes for dual/quad band antenna designs. For some bands, the design 

is not that complex. For example, a Bluetooth antenna, shown last in Fig. 2.5, is a simple 

strip on the board edge, which is relatively much easier to integrate in a cell board than 

with a quad band GSM/UMTS antenna.  
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Fig. 2.5. Some smartphone antennas. 

  



 

25 

 

These complex antenna shapes (Fig. 2.5) typically require invoking some sort of an 

optimization routine. Many of the routines are available integrated with several 

commercial solvers [32]-[36]. However, reaching a working design, even with few 

parameters, could be quite challenging. As an example, let us consider the design of a 

global positioning system (GPS) patch antenna. This antenna should meet the constraint 

VSWR ≤ 2 over the bandwidth 1575 20± MHz. In addition, the antenna has to be of 

circular polarization over this band (further details about this problem are found in 

Chapter 6). Fig. 2.6 illustrates a layout for the patch antenna. The design has four 

variables, the patch length, width, and the feed location among the two axes. For 

simplicity, let us assume that the patch is to be designed on rigid foam material with a 

thickness of 10.0 mm.  Three different commercial optimization routines were used to 

attempt the design of such an antenna: Sequential non-linear, quasi-Newton, and Pattern 

Search. All three are standard tools of several commercial electromagnetic softwares. A 

min-max cost function was defined for the given specifications. This cost function should 

be below zero if all requirements are met. The EM solvers were run, along with the 

optimization packages, and the results are shown in Fig. 2.7. 

It is clear that, even after 35 full wave simulations, none of the tools was capable of 

proposing a suitable design. In fact, the sequential non-linear was the first to come up 

with a working design, but only after 90 full wave simulations. One should mention that 

other optimizers, such as genetic algorithms or particle swarms, would provide a solution, 

but these would typically involve more than 200-300 full wave simulations before an 

acceptable design is found. This simple example shows how costly it can be to generate a 

simple design from running optimizations on EM simulations.  
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Fig. 2.6. Patch antenna layout. 

 

 

Fig. 2.7. Optimization convergence of the GPS antenna example using some of the available 

commercial algorithms. 

 

In addition to possible excessive optimization times, it is possible that the designer may try 

optimizing a structure that could never physically meet the required specifications. For example, 

Fig. 2.8 shows a simple cell phone quad antenna [100] for the GSM low and high bands. The 

antenna metallization is constrained to be on the cell board, with a height of 6mm. By doing so, 

no matter how the antenna metallization is shaped, a narrow bandwidth will always be the best 

that could be achieved. Interestingly, by carefully studying the field distribution and the 

characteristics of the problem, one would notice that a simple strip cut in the ground plane could 
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easily tune the performance to provide a design that meets the requirements (

 
Fig. 2.9). This example should emphasize the importance of identifying some sort of field 

measure to assess the potential of meeting the required bandwidth before blindly 

invoking expensive optimization routines. Chapter 6 will address these issues in detail. 

 

Fig. 2.8. A cell phone antenna versus a tuned one with a slot in the PCB [100]. 

 

 

Fig. 2.9. Performance of an optimized cell phone antenna versus one with a slot in the PCB. 
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2.3 Relevant Concepts for Antenna Realization 

Antenna design keeps growing with the increase in demand for wireless and sensor 

devices for security, health, and entertainment systems. Due to extreme variations in their 

form factors, along with various operational environments, the antenna design process is 

usually quite challenging. Often, the initial allocated volume for the antenna would never 

allow for full or even acceptable functionality. In the following sections, we discuss a 

number of the most relevant antenna technologies.   

 

2.3.1 Fractal Antennas 

Due to the many challenges with finding a design that meets some specifications over 

small space, several researchers focused on designs based on the mathematical concept of 

fractals in an attempt to generate responses with many close resonances [101]-[109]. 

These, in principle, should be able to cover many bands. So far, these designs offer 

limited advantages, if any, in comparison with traditional antenna designs [GS.1]. 

However, they might be quite useful if a tunable element is integrated therein. An 

example of a fractal Sierpinski gasket [101] is shown in Fig. 2.10, along with its 

response. Adding a tunable element to this antenna has the potential of creating wide-

band coverage. However, since such designs do not appear to present the best possible 

practical solution, they will not be considered in this thesis document. 
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Fig. 2.10. A fractal Sierpinski gasket along with its response [101]. 

 

2.3.2 Tunable Antennas 

Another possible technique in antenna design is to employ some tunable elements in its 

configuration [111]-[115]. In principle, this idea has several benefits. First, it should relax 

the need for meeting a wide bandwidth, as the antenna just needs to cover a small 

bandwidth at a time. This is due to the fact that the tunable element serves in shifting the 

small bandwidth along the large bandwidth it should cover. Second, tunable behavior 

should decrease problems associated with post-fabrication tolerances and thus be able to 

vary its response when needed. Third, for systems with time-varying environments (like a 

cell phone used in hand, in pocket, or on desk), the antenna would typically “see” 

different boundaries, resulting in strong response variations. Incorporation of a tunable 

element would possibly alleviate the need for a complex design that can handle these 

variations. Fig. 2.11 shows an antenna with multiple switches and its response when 

different combinations of the switches are active [115]. Removing all but one of the 
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switches and replacing it with a tunable capacitor would result in the response shown in 

Fig. 2.12. 

 

 

Fig. 2.11. Switching to achieve tunability [115]. 

 

 

Fig. 2.12. Effect of a tunable capacitor on the return loss. 

 

On the practical side, most recent industrial designs try to integrate the tunable elements 

solely in the matching network, with few cases also considering the addition to the 

antenna (see Fig. 2.13). The realization of tunable inductors is still in its infancy, while 

tunable capacitors have gone a long way. The top three adopted technologies are based 

on: CMOS (as those available from Peregrine), MEMS/MEMS-on-CMOS (as those 
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available from Cavendish Kinetics, WiSpry, EPCOS, DelfMEMS, Radant MEMS, and 

Omron), and BaSrTiO3 (as those available from AgileRF and Paratek, which became part 

of Blackberry). Each has its own wide deployment challenges, with the former being the 

most successful to date because of its mass production versatility and intermodulation 

measures.    

 

Fig. 2.13. Tunable elements on the antenna and at the RF input. 

 

Most of the published work in this area so far has discussed tunability achievements 

when using the tunable elements with various antenna designs. Very little work has been 

published on the optimum location to place the tunable element (on the antenna or by the 

matching network) to realize the best possible system performance. As seen in Fig. 2.12, 

changing the capacitance resulted in tuning the center frequency but degraded the return 

loss. The concept of brute-forcing multiple tunable elements on the antenna and at the RF 

input could prove costly in terms of the overall system performance, particularly if using 

a closed-loop system solution. This is in addition to the associated EMI/EMC challenges 

besides adding to fabrication issues and overall cost. It is thus desirable to study the 

conditions that would lead to the development of a design that supports tunability and 



 

33 

 

maintains a satisfactory system performance over the specific bands of interest. It is 

hoped that the work presented in this thesis will pave the way for such studies.  

 

2.3.3 MIMO Antennas 

In recent years, diversity, and multiple input multiple output (MIMO) antennas have 

gained significant attention [116]-[119]. Simply by adding more antennas on a platform, 

more functionality is possible. However, caution has to be exercised over the level of 

coupling between these antennas and its impact on the overall performance. In most 

cases, it is desirable to keep the coupling low, since highly coupled antennas could mean 

a higher transfer of energy between the antennas and thus less energy exchange with the 

outer world. This would result in reduced system efficiency (note that, in select practical 

systems, one may have to accept a higher level of coupling for overall better system 

capacity). Decreasing such coupling was subject to extensive research for many years. 

Metamaterials, electromagnetic band gaps (EBGs), and synthetic absorbers are among 

some techniques attempted [120]-[121]. In 2006, the work in [122] suggested connecting 

the antennas to minimize the coupling. This counter-intuitive (to many) idea was highly 

applauded by the antenna community, to the extent that it received the IEEE 2007 

Wheeler prize for best Transactions paper on antenna applications. However, the choice 

of the shape of the connecting link remained ambiguous and required a large number of 

optimization cycles in order to find the correct combination to suppress coupling. 
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Fig. 2.14. A method for reducing mutual coupling between antennas [122]. 

In [GS.9], a mathematical description of the properties needed by such a connection line 

was proposed. The method resulted in a significant reduction in simulation/optimization 

attempts. It simply provided a map that the designer can generate to assess the best 

possible reduction in coupling between two antennas in a given location. If the reduction 

is satisfactory, the formulation helps the designer systematically synthesize a 

network/line to connect the antennas and achieve the required reduction in coupling. 

Interestingly, this work was awarded a prize the IEEE 2008 Antennas and Propagation 

Symposium. Fig. 2.15 shows an example of two WiFi antennas on a smartphone board. 

The return loss and coupling are shown in Fig. 2.16. 

 

Fig. 2.15. Two WiFi antennas on a cell board. 
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Fig. 2.16. Decoupling of the WiFi antennas. 

 

The same concept proposed in [GS.9] was utilized to advance the design technique for 

multi-fed diversity antennas [GS.3]. Fig. 2.17 shows one of the proposed designs and the 

resulting reduced coupling between the ports. 

 

Fig. 2.17. Proposed dual-fed diversity antenna. 
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One should note, however, that solely observing the scattering parameters is not enough 

to ensure a proper MIMO design [95]. It is crucial to observe the realized modes (far field 

pattern) and typical channel conditions to optimize a design at hand. Appendix IV 

presents a summary of the proposed method and its application in de-coupling 4-patch 

antenna arrays. Future work is certainly needed to efficiently encapsulate the proposed 

technique in the design of compact arrays. 

 

2.3.4 Antennas for Medical Applications            

With increased demands placed on advanced medical devices, there is a growing need for 

wireless communication links that allow for connection between and among various 

implants and instruments/sensors attached to the human body. The first generation of 

medical wireless devices relied on establishing an inductive link between the implant and 

an external coil at a low carrier frequency [123]. To enable greater functionality, wider 

range, and higher speeds, it is necessary to migrate to higher frequencies and larger 

bandwidths. However, such increases would typically complicate the antenna design and 

the link budget. To successfully realize a working design, the antenna has to be designed 

taking into consideration the details of its location in and around the human body. For 

example, Fig. 2.18 shows a hearing aid device with an integrated antenna allowing for 

communication across the head, connecting the two ears wirelessly. This system was 

proposed in the context of this research [GS.4]-[GS.7]. Using a simple antenna design at 

400MHz, one would not be able to have enough signal power transmitted across the head. 

However, by careful design of the antenna, it is possible to launch the signal around the 

head, similar to terrestrial-guided communications around Earth, and thus it was possible 

to realize an efficient communication link.  
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Fig. 2.18. A hearing aid device and its model for EM simulations. 

 

2.4 Discussion and Conclusions 

In this chapter, some of the key challenges in the antenna design problem were 

highlighted, particularly those associated with antennas integrated in portable devices. 

The concept of the quality factor of antennas was reviewed through presenting some of 

the most notable formulations and their interpretations. The key for a useful quality factor 

definition is its applicability in defining the operational bandwidth for the antenna. With 

so many existing expressions, the problem is worth further study and will be re-visited in 

the next chapter.  

Antenna synthesis and realization is a vast area of research. Notable techniques in this 

area were presented and their most important shortcomings outlined. Whether the theory 

of characteristic modes, the cavity modal method, or design through optimization, it is 

clear that significant research is needed to advance antenna design methodologies for 

handheld/body-centric devices. This will be the primary task in this work. 

One cannot mention antenna design or synthesis without noting some of the practical 

advancements that try to overcome the current design limitations. Among these are the 

concepts of fractal antennas and tunable ones. The latter may present a highly appraisable 

solution in many antenna designs. However, to date, published work on tunable-enabled 

antennas mainly reported feasibility data without groundbreaking studies on where to 

optimally place the tunable components or how they will ultimately affect antenna 
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performance (non-linearity and passive intermodulation, total radiated power, total 

isotropic sensitivity, etc.).  

Diversity and MIMO communications represent a viable solution for the increased 

demand on higher data rates and wider network coverage. Since this research work 

primarily focuses on general antenna design, it was necessary to demonstrate the 

applicability of some of the proposed techniques in realizing diversity and MIMO 

antennas. A simplified theory for de-coupling of antennas was first introduced, followed 

by its application in designing some antenna systems. 

Furthermore, the proposed techniques were also demonstrated applicable for bio-

electromagnetic applications, where the modal theory was used to develop a working 

solution. In comparison to the proposed hearing aid wireless communication system, 

conventional design techniques could never realize a working solution. However, through 

appropriate studies of the electromagnetic field distributions, it was possible to use the 

head in a manner similar to terrestrial communications, i.e., to guide the electromagnetic 

wave around the head. This allowed establishing a very good signal level across the link 

and thus enabled the assembly of a working device. 

Having outlined some of the key limitations with the available theories and techniques for 

antenna design, and having demonstrated some of the complex antenna designs 

developed with the techniques proposed in this work, it is now time to probe further into 

the underlying details of this thesis.  
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Chapter 3: Circuit-Based Techniques for the Calculation of the 
Antenna Quality Factor and Its Relation to the Impedance 

Bandwidth 
 

“Intuition is the clear conception of the whole at once.” 

Johann Kaspar Lavater 

 

In this chapter, some of the well-established circuit-based notions are re-visited 

(particularly around the concept of quality factor), seeking their adaptation for utilization 

in antenna design. The circuit/filter society is known for its detailed mathematical models 

that guide the filter design process. Several books assemble information from numerous 

papers, technical reports, and hands-on knowledge, reflecting on well-defined design 

routines for many filtering functions [19], [20], [24], and [124]-[127]. On the other hand, 

the antenna design for portable devices seems less mature compared to the filter one. 

Perhaps one of the main reasons is the wider possibility for antenna shape compared to 

filter ones. However, another important reason is the fact that, in most analytical models 

for filters, loss is initially not taken into account. The analysis is then modified to account 

for a typically low loss level; otherwise, the filter will not adequately transfer/block the 

energy. On the contrary, it is desirable to have high radiation (loss) in antennas. This has 

mostly limited the adaptation of many filter design techniques to the antenna world.  

In this chapter, the adaptation is addressed through revisiting some of the basic relations 

used in the filter community and trying to identify how they can be adapted for use in 

antenna analysis and design.  

3.1 Simple Resonant Network 

 Let us start with an antenna that possesses simple resonant behavior. This resonant 

structure can be modeled either as a series resonant circuit or a parallel one, depending on 

the nature of its resonance mechanism. The antenna itself need not to be naturally 



 

40 

 

resonant, but may be brought to resonance through the addition of a simple reactive 

element. 

 Several researchers adopted this concept, as seen in [1], [60], and [130]. In order to 

understand their analysis, we review the behavior of a simple series resonator. Such a 

resonator has an input impedance of: 

 1
inZ R j L

j C
ω

ω
= + +  (3.1) 

and the complex power delivered to the resonator is: 

 

2
2*

2

1 1 1
2 2 2

1 1
2

in in in
in

VP VI Z I Z
Z

I R j L
j C

ω
ω

= = =

 
= + + 

 

 (3.2) 

The power dissipated by the resistor is: 

 21
2lossP R I=  (3.3) 

with the average magnetic energy stored in the inductor, L, being:  

 21
4mW I L=  (3.4) 

and the average magnetic energy stored in the capacitor, C, being: 

 2 2
2

1 1 1
4 4ceW V C I

Cω
= =  (3.5) 

where cV  is the average voltage across the capacitor. The complex power can then be 

written as: 

 ( )2in loss m eP P j W Wω= + −  (3.6) 
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Hence, the input impedance can be re-written as: 

 ( )
2 2

22
1
2

loss m ein
in

P j W WPZ
I I

ω+ −
= =  (3.7) 

Physically, resonance occurs when the average stored magnetic energy and electric 

energies are equal [1]. Thus, the input impedance at resonance is: 

 
2

2
1
2

los
in

sPZ R
I

= =  (3.8) 

and the resonance frequency is given from the equal energies condition, given by: 

 e mW W=  (3.9) 

yielding 

 0
1
LC

ω =  (3.10) 

The quality factor of the circuit is defined by [60] as: 

 

Average Stored Energy
Energy Loss/Second

e m

l

Q

W W
P

ω

ω

=

+
=

 (3.11) 

Thus, Q is a measure of the loss of a resonant circuit. At resonance, Q becomes: 

 0
0 0

0

2 2 1me

loss loss

W W LQ
P P R RC

ωω ω
ω

= = = =  (3.12) 

Now, if we consider the behavior of the input impedance near resonance, and let 

 0ω ω ω= + ∆  (3.13) 
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the input impedance can then be written as [20]: 

 
2

2

2
0

inZ R j L ω ωω
ω

 −
= +  

 
 (3.14) 

A key step in the manipulation is writing: 

 ( )( ) ( )( )22
0 00 2ω ω ω ω ω ω ω ω ω− = − + = ∆ −∆  (3.15) 

which, for small ω∆ , is approximated to give: 

 2
0

2 2ω ω ω ω− ≅ ∆  (3.16) 

Hence, we have: 

 
0

2
in

RQZ R j ω
ω
∆

≅ +  (3.17) 

This result is also achievable if we use the complex effective resonant frequency in the 

analysis of a lossless structure, such that: 

 0 0 1
2

j
Q

ω ω
 

→ + 
 

 (3.18) 

resulting in: 

 
( ) 0

0 0

0

2 2
2

    2

inZ j L j L j
Q

L j L
Q

ωω ω ω ω

ω ω

 
= − → − − 

 

= + ∆

 (3.19) 

If we observe the behavior of the input impedance, one can see that at the frequency 

where 2 22inZ R= , the average real power delivered to the circuit is half that delivered at 

resonance.  Thus, we can write: 



 

43 

 

 
2

2

0

2 2R jRQ Rω
ω
∆

+ =  (3.20) 

Hence, 

 
0

2 1Q ω
ω
∆

=  (3.21) 

Recalling that 0ω ω ω∆ = −  and re-writing it in terms of the band edge frequencies 1ω  

and 2ω ,  

 122BW ω ω ω= ∆ = −  (3.22) 

which results in a fractional bandwidth expression in terms of the half-power Q, such 

that: 

 
0

1BW FBW
Qω

= =  (3.23) 

An identical expression is achievable for the fractional bandwidth of a parallel resonant 

circuit, with Q defined as: 

 0
0

RQ RC
L

ω
ω

= =  (3.24) 

It is clear from the previous analysis that its accuracy depends on the approximation of 
2
0

2 2ω ω ω ω− ≅ ∆ . In addition, the whole concept of bandwidth defined earlier relies on 

relating the frequencies where the average real power delivered to the circuit/antenna is 

half that delivered at the resonance frequency. This is not the only possible definition for 

bandwidth, as discussed next. 
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3.2 The General Notion of Impedance Bandwidth 

Let us start again from the simple series RLC circuit. The input impedance can be written 

as: 

 ( ) ( ) 1
inZ R jX R j L

j C
ω ω ω

ω
= + = + +  (3.25) 

Let us for now define the points 1ω  and 2ω , at which the relation between the reactance 

( )X ω  and the resistance R can be written as [125]: 

 ( )1,2         1, 2,3,....RX n
n

ω = =  (3.26) 

with 

 1 0 2ω ω ω< <  (3.27) 

and the resonance radian frequency, 0ω , where ( )0 0X ω = , is given by: 

 0
1
LC

ω =  (3.28) 

Thus, we can write: 

 ( )1 1
1

1         1, 2,3,....RX L n
C n

ω ω
ω

= − = =  (3.29) 

which can be written as: 

 1 0 2

00

1 11      1, 2,3,....
24

n
nn LL RR

ω ω
ωω

  
  
  = + − =               

 (3.30) 

Also, above resonance, we can write: 
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 ( )2 2
2

1         1, 2,3,....RX L n
C n

ω ω
ω

= − = =  (3.31) 

That is: 

 

0
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24
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nn LL RR

ω ω
ωω

  
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 (3.32) 

From the equations of 1ω  and 2ω , we have: 

 1 0

0

2
1

nL
R

ω ω ω
ω

− =
 
 
 

 (3.33) 

and 

 2
1 2 0ωω ω=  (3.34) 

At this point, one may think about the physical significance of n  and the term 0
nL
R

ω .  

3.2.1 First Definition 

Now, if we define 1ω  and 2ω  as the frequencies where the power dissipated in the circuit 

is half the amount dissipated at the resonance frequency (similar to the previous section), 

then these points also represent the frequencies where the current has fallen into 1 2  of 

its maximum value at resonance 
0

Iω . That is:  

 ( ) ( )
1,2 01 2

2

0,

21 1 1 1
2 2 2 2

P P I R I Rω ωω ω  = = =  
 

 (3.35) 

and 
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2 01,

1
2

I Iω ω=  (3.36) 

On the other hand, one can write: 
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0

1,2

2
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I
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ω

ω

ω
=

=
 +  
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 (3.37) 

Comparing the last two expressions, one can note that we need 1n =  to have 

( ) ( )2 01,
1
2

P Pω ω= . That is to say, the bandwidth, defined as the frequency range where 

the power dissipated in the circuit is half the amount dissipated at the resonance 

frequency, is given by: 

 2 1 0
0

1BW
L

R

ω ω ω
ω

= − =
 
 
 

 (3.38) 

The physical significance of the term 0L
R
ω  will be discussed later in detail. However, it is 

noteworthy to mention here that, when it comes to  Q calculations [20], this bandwidth 

definition is the most adopted definition in circuit and filter theories. 

3.2.2 Alternate Definition 

Now, if we define 1ω  and 2ω  as the frequencies where the power absorbed by the 

network is half of the incident on it, we then need to evaluate the corresponding value for

n . This can be done by studying the total voltage incident at the terminals, which can be 

written as [20]: 

 0 0V V V+ −= +  (3.39) 



 

47 

 

and the total current is given as: 

 
0 0

0 0V VI
Z Z

+ −

= −  (3.40) 

At the terminals, we have: 

 0
0

0

0 0
L

V VVZ Z
I V V

+ −

+ −

+
= =

−
 (3.41) 

The ratio between the incident voltage and reflected one can be thus written as: 

 0

0

0

0

L

L

V Z Z
V Z Z

−

+

−
Γ = =

+
 (3.42) 

Hence, the total power incident on the network can be written as: 

 { } 0
0 0

0

2

*1 1Re
2 2inc

V
P V I

Z

+
+ += =  (3.43) 

and the total power delivered to the network is: 

 { } ( )20*

0

2
1 1Re 1
2 2del

V
P VI

Z

+

= = − Γ  (3.44) 

Thus, if the reflection coefficient is such that the delivered power is half that of the 

incident, then we can write: 

 ( ) ( )
( )

1,2 0
1,2

1,2 0

1
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L

L

Z Z
Z Z

ω
ω

ω
−

Γ = =
+

 (3.45) 

The above analysis is valid if the source impedance is matched to the impedance at the 

terminals. Thus, we can write: 
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 (3.46) 

which means that n  should be equal to 1 2  in order to have the power absorbed by the 

network at 1,2ω  equal to half of the power incident on it. That is to say that the 

bandwidth, defined as the frequency range where the power absorbed by the network is 

half of that incident on it, is given by: 

 2 1 0
0

2BW
L

R

ω ω ω
ω

= − =
 
 
 

 (3.47) 

In most cases, specifications on the antenna impedance bandwidth are given in terms of 

the level of the absorbed power relative to the amount of power incident on the antenna 

terminals, and not relative to the power absorbed at a specific frequency. Hence, in 

contrast to the most adopted definition in circuit theory for Q calculations [20], this 

definition is considered a representative one for antennas (if the antenna can be 

adequately modeled by an RLC circuit) since the value of the factor “n” can be easily 

changed depending on the desired level of absorbed power. The exact relation between 

such bandwidth to the Q is discussed next. 

 

3.2.3 The Concept of Quality Factor 

Having discussed two possible impedance bandwidth definitions, let us study their 

relation to the term Q. The quality factor Q is traditionally defined as the ratio between 

the stored energy in the system to the rate of energy loss [60]. Thus, one can write: 
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 (3.48) 

where 0ω  denotes the radian frequency of interest, eW   denotes the stored electric energy, 

mW  denotes the stored magnetic energy, and lP  denotes the power loss. For a simple 

series RLC circuit, and in view of the definition of the quality factor, one can write at 

resonance: 

 0
0
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0 0

212
2 4

1
2

e m

l loss
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I L

W W W LQ
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ωω ω ω

 
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One could also define the quality factor of a single circuit element from its stored energy 

as: 

 ,
0,

Single m
L

l
C

eW
Q

P
ω=  (3.50) 

For example, in a circuit, where we have a network of series RC and an inductor of 

infinite quality factor used to bring the circuit to resonance, one may write the quality 

factor of the capacitor only as: 
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These definitions will reflect on the subsequent relations, as shown later. Now if we look 

at the impedance seen at the input (load) terminals, we have: 

 1
in tot L CZ R jX R jX jX R j L

j C
ω

ω
= + = + − = + +  (3.52) 
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The derivative of the reactive part at the frequency of interest (resonance frequency) can 

be written as: 

 
0 0 0

2
0

1 2t Lto C
d d dX X X L L

d d d Cω ω ωω ω ω ω
= − = + =  (3.53) 

Comparing the last expression with the one for the total Q, one can re-write the circuit 

total quality factor as: 
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or  

 
0 0 0

0 0 0
,

Tota
L

l
L C C

d d dQ X X X
R d R d R dω ω ω

ω ω ω
ω ω ω

    
= = =              

 (3.55) 

Also, if we are interested only in the energy stored in one of the two elements, assuming 

that the other element is ideal (of no associated losses), one can write: 
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or 
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 (3.57) 

These various Q expressions should always produce the same bandwidth information 

about a network under study. However, in most antenna-related problems, the designer 

has immediate knowledge of the antenna behavior at its terminals, i.e., totR  and totX , 

whether through numerical simulations or measurements. Deriving the antenna circuit 

model LX  or CX  usually requires an extra calculation step.  Hence, the expression in 
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(3.54) is considered the most appropriate one for a general antenna problem operating at 

its fundamental resonance or below. 

 

3.3 The Quality Factor of a General Simple Network  

So far, the basic bandwidth-Q relations for simple resonant antennas, adequately modeled 

with an RLC circuit, were discussed. In many situations, the antenna can be modeled as a 

simple series RL or parallel RC network. Adding a series C for the former, or a parallel L 

for the later should bring the antenna to resonance, which can be analyzed using the 

aforementioned relations. However, it is also possible to use other combinations to tune 

the antenna. Such possibilities were addressed in [78]. Interestingly, the formulations in 

[78] are currently widely utilized in the antenna community. So, it is important to 

understand their underlying derivations and the associated approximations. 

Let us consider a general network composed of electromagnetically linear materials 

and fed by a transmission line, or a “feed line” that carries just one propagating mode at 

the time-harmonic frequency j te ω  [78]. Note that this feed line is assumed to be 

composed of perfect conductors separated by a linear, homogeneous, isotropic medium. 

The propagating mode in the feed line can be characterized at a reference plane 0S  

(which separates the resonator from its supply) by a complex voltage ( )V ω , complex 

current ( )I ω , and complex input impedance ( )Z ω , defined as: 

 ( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( )0

V a b
Z R jX Z

I a b
ω ω ω

ω ω ω
ω ω ω

+
= + = =

−
 (3.58) 

The reflection coefficient, Γ , of the antenna may be defined as: 

 ( ) ( ) ( )
( )R

c
L

cZ Z
S

Z Z
ω

ω ω
ω

−
Γ = =

+
 (3.59) 
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with cZ as the characteristic impedance of the line. Assuming the network is tuned at a 

frequency 0ω  with a series reactance ( )sX ω  comprised of either a positive series 

inductance sL  or a positive series capacitance sC , where sL  and sC  are independent of 

frequency, this makes the total reactance 

 ( ) ( ) ( )t sX X Xω ω ω= +  (3.60) 

with 
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 <
=  − >
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 (3.61) 

which is equal to zero at 0ω ω= , that is: 

 ( ) ( ) ( )0 0 0 0t sX X Xω ω ω= + =  (3.62) 

The derivative of the tuned impedance with respect to the radian frequency can be written 

as: 
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( ) ( )
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 (3.63) 

That is:  

 ( ) ( ) ( )0
0 0

0

' 't

X
X X

ω
ω ω

ω
= +  (3.64) 

The total power accepted can be expressed as: 
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where ( ) ( )
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The matched voltage standing wave ratio VSWR bandwidth for a resonator tuned at a 

frequency 0ω  is defined as the difference between two frequencies on either side of 0ω ,  

at which the VSWR equals a constant sVSWR  or, equivalently, at which the magnitude of 

the reflection coefficient is such that: 

 ( ) ( )
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1
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s
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+
 (3.66) 

Hence, 
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 (3.67) 

which for a characteristic impedance of a feed line equal to ( ) ( )0 0t tZ Rω ω= becomes: 
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0
2 2
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2 2
t t t
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ω ω ω
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Traditionally, both ( )RLS ω  and its derivative with respect to the radian frequency are 

zero at 0ω . This means that ( )RLS ω  has a minimum at 0ω , for all values of the 
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frequency at which the resonator is tuned to ( )( )0 0tX ω =  and matched to a feed line

( )0c tZ R ω= . Thus, the matched VSWR bandwidth, ω ω+ −−  is determined by:  
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Hence,  
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yielding 
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 (3.71) 

Expanding in a Taylor series around 0ω , and neglecting the third-order terms (which is 

justified if 
0

1ω
ω

±∆
<< ), then one can write [78]: 

 ( ) ( ) ( )2 2
0

2
0' 4

1t tZ Rαω ω ω
α±∆ ≈

−
 (3.72) 

That is: 

 ( )
( )

0

0

2
1 '

t

t

R
Z

ωαω
α ω±∆ ≈

−
 (3.73) 

Hence, defining Q-factor such that: 
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 0Q ω
ω ω+ −

=
−

 (3.74) 

We then have [78]:  
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 (3.75) 

This loaded Q-factor is defined for the tuned network when the network impedance is the 

same as the feed impedance, which is the same as for the critically coupled scenario. At 

half-power VSWR,  

 ( )
( )
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0 00
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'
2

22
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u
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L
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t

t

Z
Q Q

R R
Z

ω ωω
ω ω
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= = =  (3.76) 

It should be emphasized at this point that such an expression for the quality factor is only 

valid for a simple network (i.e., one with simple and apart resonances). In addition, due to 

the inherent approximations in the derivations, it is only valid for narrow band networks 

with band edge frequencies related to the center frequency through their algebraic 

mean. Still, it is noteworthy to observe that this expression is currently the most utilized 

among the antenna community. 

 

3.4 Antenna Modeling Using Lossy Filter Analysis 

Those who deal with filter design techniques appreciate the systematic procedure in the 

design cycle. On the other hand, many would refer to the antenna design as “Black 

Magic”. It is thus important if some of the widely used typical filter design procedures 

are adapted to the antenna design cycle. One significant challenge is that, in filters, the 

design target is to maximize/minimize power transfer between two ports, with minimum 

energy loss. This could be viewed as a contrast to the antenna problem, where there is 

usually one port defined for the antenna and all the energy should be lost to space in 
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radiation. Nevertheless, for reasons that will be clarified later, let us study the insertion 

loss method as a starting point for attempting the adaptation. 

3.4.1 The Insertion Loss Method 

In the insertion loss method [20], a response is defined by its insertion loss, or power loss, 

ratio: 

 
( ) 2

Power Available from Source
Power Delivered to Load

1
1

inc
LR

load RL

PP
P S ω

=
−

= =  (3.77) 

For an equal ripple response, a general Chebyshev polynomial of order N can be used, 

such that [20]:  

 221LR
c

NP k T ω
ω
 

= +  
 

 (3.78) 

with  N
c

T ω
ω
 
 
 

 oscillating between 1±  for 1
c

ω
ω

≤ , and 2k  determining the ripple level. 

For a cutoff frequency of 1cω = , we have: 

 ( )2 21LR NP k T ω= +  (3.79) 

 

Fig. 3.1. A circuit representation of general network in terms of the “g” values. 
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Fig. 3.2. Transformation of the low-pass prototype to a band-pass one in terms of the normalized 

frequency response. 

 

Hence, for a required insertion performance, one needs to specify the order and ripple of 

the circuit. This circuit is commonly known as the low-pass filter prototype [20], and the 

values forming its ladder equivalent network (Fig. 3.1) can be easily calculated. These are 

commonly available as tabulated “g” values in several microwaves and filter text books 

[20]-[22]. The transformation (Fig. 3.2) into a different circuit behavior, as a high pass, 

band stop, or band pass, is readily available by a series of impedance and frequency 

scaling transformations. Although the Chebyshev polynomials are used here, other forms 

of polynomials can be used to realize different in-band and out-of-band characteristics. 

Regardless of the required response, one can easily generate (or find tabulated in filter 

books) the associated “g” values needed to represent the circuit’s response. This useful 

property will be used to search for generalized Q-BW relations, as discussed next. 

 

3.4.2 Q Calculations Using the Reflective Group Delay 

The reflective group delay response ( )d ωΓ  of a network response ( )RLS ω  can be 

defined as [20]:  
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 ( )d
ϕω
ω
∂

Γ = −
∂

 (3.80) 

where ϕ  is the phase of ( )RLS ω  and ω  is the angular frequency. For a band pass circuit, 

the group delay of ( )RLS ω  can be calculated directly from the low-pass prototype. Note 

that the term ‘group delay’ is typically associated with the transmission group delay. 

However, in this work, the reflective group delay is adopted in all calculations. 

Additionally, the calculation from the low-pass prototype enables the reflective group 

delay to be expressed directly in terms of the normalized “g” values and bandwidth of the 

band pass circuit. In this case:  

 ( )d
ϕω

ω
∂ ∂Ω

Γ = −
∂Ω ∂

 (3.81) 

where ϕ  is the phase of ( )RLS ω  of the low-pass prototype and Ω  is the angular 

frequency of the low-pass prototype. For the standard low-pass to band-pass 

transformation [20], we have: 

 0 0

02 1

ω ωω
ω ω ω ω

 
Ω→ − −  

 (3.82) 

where 0ω  is the center frequency of the band-pass filter, 1ω  is the lower frequency edge 

of the band-pass filter, and 2ω  is the upper frequency edge of the band-pass filter. For a 

low-pass prototype, the center frequency is 0 rad/s with the cut off frequency of unity. 

Using this transformation, the center frequency of the band pass prototype is fixed to 1 

rad/s with a bandwidth of 1 rad/s, (i.e. 0 1 2ω ωω= ). The group delay can then be given 

as: 
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 (3.83) 
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Now, 
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 (3.84) 

Thus,  
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ω ω
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 (3.85) 

Hence, 
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 (3.86) 

For a low-pass prototype given in terms of the “g” values (Fig. 3.3), we have: 
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 (3.87) 

 

Fig. 3.3. Low pass “g” value prototype suitable for modeling a simple resonant network. 

 

Thus, it is possible to express the group delay as: 
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 (3.88) 

A typical circuit-based low-pass to band-pass transformation implies that: 

 0 0

02 1

ω ωω
ω ω ω ω

 
Ω→ − −  

 (3.89) 

However, an important step towards adapting the circuit formulations towards 

representative expressions for the antenna behavior is to add a term to reflect an arbitrary 

level of possible associated losses (whether ohmic or radiative ones). To this end, the 

following transformation is employed [143]:  
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That is: 
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 (3.91) 

So, for a perfect match at 0ω , we need: 



 

61 

 

 
( ) ( )1 0

2 22 2

1

0 0 1 2 0 0 1 2

2 2 2 02

1 1 0
u u

g g g g g g
Q g g Q g g

ω ω
ω ω ω ω

          − − =           − − − +        
 (3.92) 

which has four numerical solutions, as follows: 
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 (3.93) 

For an antenna system, the second port is left open. Thus we get 2g →∞ , with only one 

physical solution: 

 1 0 1
0

2
u

g g
Q
ωω ω− =  (3.94) 

which simply means that the bandwidth can be easily defined in terms of the center 

frequency, Q, and the “g” values determining the return loss level of the bandwidth. For 

half -power bandwidth, the “g” values are [20]: 

 0

1 2
1g

g
=

=
 (3.95) 

and the fractional bandwidth becomes: 

 2

0

1 2

u

FBW
Q

ω ω
ω
−

= =  (3.96) 

which is an identical result to that found earlier in (3.47). However, this approach not 

only accurately determines the exact band edge locations (which is not possible through 

the work in [78], but it can also be extended to the design of multiple-coupled antennas. 

This extension is discussed in detail in the next chapter. For now, as a simple example for 

illustration purposes, Fig. 3.4 shows the reflection coefficient responses of two different 

RLC parallel networks. The first has 50Ohm, 10nH and 1pFR L C= = = , with exact 
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0 0.5exactQ RCω= = , and the second has 50Ohm, 2nH and 5pFR L C= = = , with exact 

2.5exactQ = . Fig. 3.5 shows the extracted Q factors for the second network. 

, ,  and B H G
u u uQ Q Q  are derived from [78], [139], and the proposed “g” value method, 

respectively. Note that manipulating the outlined proposed method yields:  

 ( ) ( )
( )0

0
2

0
0 1

RG
u

RL

L
d

S
Q

S
ω

ω ω
ω

= Γ
−

 (3.97) 

This means that the ( )G
uQ ω  shown in Fig. 3.5 is only correct at 0ω  (natural 

resonance/anti-resonance of the circuit). Extension of the plot to estimate Q versus 

frequency for non-resonant circuits (which is typical for electrically small antennas) 

would add an extra step similar to that in [78], i.e., bring the antenna at each frequency to 

resonance. Note that ( )RLS ω  and ( )d ωΓ  are readily available from any numerical solver 

used for antenna/circuit simulations. Also note that the Q extraction procedure is 

numerically much easier when the network is not perfectly matched, which is preferred 

for quick extraction procedures during design cycles.   

It should be noted that both the extracted Any VWSRFBW  values based on [78] and those 

based on the proposed analysis are identical. However, the proposed expression 

accurately defines the position of the band edge frequencies, which is not possible if 

using [78] or [139]. For example, the extracted half-power fractional bandwidth for the 

aforementioned network with 0.5exactQ =  is 4. Its extracted band-edge frequencies are 

1 0.376GHzf =   and 2 6.742GHzf = , which are within the numerical error compared to 

the simulated ones. On the other hand, the formulation in [78] will result in a negative 

value for 1f , which is a non-physical solution. Realistically, (3.47) should present as 

accurate results as (3.97). Nevertheless, the latter is potentially favorable, since it is easily 

extended to predict the behavior of multiple coupled resonances, as demonstrated in 

Chapter 4.  

 



 

63 

 

 

Fig. 3.4. Reflection coefficient for the two networks. Asymmetry in response increases for lower 

Q and higher VSWR. 

 

 

Fig. 3.5. The extracted Q values for each network. 

 

3.4.3 Application to Antenna Problems 

The proposed procedure was applied to a set of canonical antenna problems, i.e., simple 

dipole and patch antennas. In order to avoid any possible uncertainties about the 

numerical accuracy of the simulations, different commercial solvers were used: Ansoft’s 

Designer (MOM code) [31], Ansoft’s HFSS (FEM) [32], and Schmid & Partner 

SPEAG’s SEMCAD (FDTD) [36]. A portion of the results is listed in Table 3.1. The 
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procedure of extraction is summarized as follows. Upon simulation of the antenna, the 

reflection coefficient is plotted on a smith chart. Typically, the plot needs to be rotated on 

the admittance (impedance) chart to resemble the simple parallel (series) RLC circuit. 

Fig. 3.6 shows a typical plot for a patch antenna. Once this rotation is completed (which 

is effectively de-embedding of the feed inductor in patch antennas), the extraction 

procedure proceeds as described earlier, using (3.97), to extract the resonant frequency 

and the unloaded Q. Once extracted, it is possible to rapidly predict the simulated 

response, taking into consideration the de-embedded reactive element.  

 

 

Fig. 3.6. Steps for extraction of the response of a patch antenna: First, rotation, and then using the 

“g” values extraction technique. 

 

Table 3.1. Summary of Results for Antennas Under Test. 

Structure F0 Qu (G) F1, F2 (G) F1, F2 (Sim.) 

Printed Dipole in Designer VSWR<1.5 

(78.74WX3031.5Lmil in air ) 

1.947 4.959 1.870 

2.031 

1.871 

2.033 

Patch Antenna in HFSS VSWR<5.828 

(2290LX2500WX118.11Hmil no substrate) 

2.374 22.405 2.2704 

2.4823 

2.273 

2.485 

Dipole in SEMCAD  VSWR<2 

(1.8RX169Lmm) 

0.810 4.457 0.7414 

0.8952 

0.738 

0.899 
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3.5 Discussion and Conclusions 

This chapter discussed some of the very basic notions in defining the bandwidth of a 

simple circuit in terms of its quality factor. As various expressions exist, the adoption of 

any of them would largely depend on which form yields a simple and accurate design 

approach. One may draw a number of important observations. For example, the B=1/Q 

relation for (reflection) half-power bandwidth, where Q is given by:  

 ( )
0

0

2
dQ X

R d ω

ω ω
ω

 =  
 

 (3.98) 

with X  denoting the antenna reactance at its physical terminals and R  denoting the 

antenna resistance, is very useful for small non-resonant antennas. Typically, a small non-

resonant antenna is modeled by a simple inductive or capacitive reactance, depending on 

its configuration, along with an associated quality factor. In many antenna designs, the 

aforementioned relations are quite adequate. On the other hand, at self-resonance, X  will 

have both inductive and capacitive components associated with the magnetic and electric 

stored energies. In such a scenario, the Q-BW relation becomes B=2/Q, where Q is given 

as stated above, and X  is still the antenna reactance at its physical terminals. Of course, 

one may alter the expression of Q to have a B=1/Q for self-resonant antennas. These 

variations should be noted in the attempt to find a practical systematic antenna design 

process.  

Another definition with B=1/Q, not B=2/Q, also exists for resonant circuits, given that Q 

is still defined as stated earlier. This definition is common in many microwave circuit 

books. Actually, a half-power bandwidth designates the frequencies where the power 

dissipated in the resonant network is half the amount dissipated at the resonance 

frequency. This differs from the definition where the (reflection) half-power bandwidth 

designates the frequencies where the accepted power by the resonant network is half that 

of the incident power at these frequencies. From a designer’s perspective, the best 

definition is that which facilitates the design process to meet the system specifications. 
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So, all of the aforementioned definitions should be kept in mind for proper choice in 

developing a design routine.  

In most of the published work on Q-BW relations, the bandwidth is defined as the 

difference between two specific frequency points, as discussed earlier, with the center 

frequency related to them through their algebraic mean. This is an acceptable 

approximation for most antenna designs. However, in situations where the antenna has a 

very low quality factor (i.e., wide bandwidth), this approximation has a large error 

margin. In fact, the exact relation for a simple series or parallel RLC networks shows that 

the center frequency is related to the band edge frequencies through their geometric 

mean. This is an important difference for low Q structures, since it significantly affects 

the design process. As an example, consider the design of a moderate to wide-bandwidth 

biomedical implant antenna. The Q of such an antenna is typically low due to the in-body 

losses. Its associated numerical simulation for the overall band, in the presence of a 

human model, could be quite costly. This becomes even more significant during 

optimization seeking a design that meets specifications. However, by utilizing the 

appropriate Q-BW relations along with the proper center frequency definitions, it is 

possible to focus the whole optimization process around this center frequency when 

trying to realize the required quality factor. This results in a significant reduction in the 

computational efforts as well as a noticeable acceleration in the design cycle. 

Apart from seeking Q-BW relations for networks operating at some form of simple 

resonance, there are situations where the design of a single antenna to meet a required 

bandwidth is physically impossible. Interestingly, bringing multiple resonant antennas in 

close proximity can realize an antenna system meeting this bandwidth specification. 

Antennas used in smartphones are one important example for such a system. However, 

there is no unified theory on the design of multiple coupled antennas. The previous 

formulations cannot be simply applied ‘as is’. Recently, there have been a number of 

publications on the Q-BW relations for multi-coupled antennas such as those in [140], 

[141], and [142]. These relations are useful for approximate analysis, with error margins 

of more than 40% [141] in addition to not presenting a systematic design methodology.  
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In sum, a new procedure is demonstrated for extracting the unloaded Q of antennas. 

Unlike commonly used methods, the proposed technique accurately predicts the 

asymmetric response in the reflection coefficient of canonical antenna problems. Portions 

of the verifications using different commercial solvers were presented. The proposed 

technique is extremely useful when designing different classes of antennas. It should be 

emphasized that the analysis is not limited to naturally resonant structures and can be 

extended to study the Q and BW of electrically small antennas. Its extension to multi-

resonant models (discussed in detail in the following chapter) provides a promising 

systematic method for the analysis and design of multi-band/wideband antennas. 
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Chapter 4: Q-Bandwidth Relations for Mutually Coupled 
Antennas and the Associated Integrated-Filtering Functionalities 

“Science progresses best when observations force us to alter our preconceptions.” 

Vera Rubin 

 

In this chapter, the idea proposed and discussed in Chapter 3 is extended to present a 

systematic approach for realization of multi-coupled radiators. This procedure can be 

adopted easily either when using an electromagnetic simulator or building antennas on 

the bench. Not only does the presented analysis define some useful upper bounds on the 

achievable performances, it also significantly accelerates the development cycle and 

alleviates the need for an exhaustive set of parametric trials or optimization cycles. In 

addition, this design methodology allows us to synthesize antennas with asymmetric and 

symmetric transmission zeros in the frequency plane, enabling us to realize a large set of 

complex filter-integrated antennas.  

 

4.1 Introduction 

Circuit-inspired wide-band antenna designs rely basically on bringing two resonances 

together to achieve wide-band operation, along with an increase in gain in some cases. It 

is notable that this concept was widely studied in the antenna community and was applied 

in different topologies, i.e., stacked or side coupled patches [145]-[148], or using stacked 

dielectric resonator antennas [146]. A close look at the most referenced design procedures 

applied so far reveals several complexities in their implementation. These complexities 

are simply due to the broad range of uncertainty that a design cycle will feature [145], or 

the need for a numerical procedure at each parametric design step to extract the 

associated design parameters by curve fitting [146]. It is also noted that, recently, a large 

number of researchers decided to abandon these circuit-based procedures and move into 
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developing optimization routines that automatically invoke a number of parametric 

studies searching for a design that meets the specifications [147]-[148].   

Instead of following these approaches, an alternative design approach based on 

accumulated knowledge of the design variables is proposed in the context of this thesis. 

Here, the theory of designing multiple-coupled antennas is tackled as follows. First, the 

network model for coupled antennas is theoretically studied. Such a study allows us to 

define the required resonance frequency, quality factor, and coupling coefficients to cover 

a desired bandwidth. That is, a “Golden Response” is generated for what the design 

response should be. Interestingly, this theoretical analysis also reveals methods of 

extracting the associated design parameters. This means that not only the required 

parameters are known, but it is also possible to extract, without curve fitting, the 

associated parameters through the design process. This is invaluable in guiding the 

process to converge quite rapidly to the ideal design. Next, the steps of the design are 

listed in a recipe format and demonstrated by a numerical example for illustration. 

Finally, following the proposed procedure, a number of realistic coupled radiators are 

designed to create antennas with wide-band operation.  

 

4.2 Q-BW Relations for Simple Antennas Re-visited 

In most typical antenna design scenarios, it is sufficient to model the antenna 

performance over a wideband as a network of series RLC or parallel RLC ones.  The 

following two figures show a network model for a simple dipole, and one for a simple 

patch antenna. It should be noted that the capacitance dcC  accounts for the DC 

capacitance, while probeL  should account for the probe inductance of the patch. Over the 

band of interest, such model may be simplified to a single RLC network.  
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Fig. 4.1. Wideband circuit model for a dipole antenna and its narrowband simplification. 

 

                    

Fig. 4.2. Wideband circuit model for a patch antenna and its narrowband simplification. 

 

In antenna design, one of the very important parameters is the voltage standing wave ratio 

(VSWR) bandwidth of the antenna. This bandwidth can be quickly predicted from the 

simple antenna model. Actually, if we study the input impedance of the antenna, one can 

see that in the series case it is possible to write: 

 ( ) 1 r
in

r

ffZ f R jQ
f f

  
= + −     

 (4.1) 

while in the parallel case, it becomes: 

 ( )
1

in
r

r

RZ f
ffjQ

f f

=
  
+ −  

  

 (4.2) 

where 1
2rf LCπ

=  in both cases, while Q is given by: 
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which, for the series case, is given by: 

 0LQ
R
ω

=  (4.4) 

while for the parallel case, Q is given by:  

 0
0

CQ CR
G
ω ω= =  (4.5) 

Now, assuming that the antenna is fed by a transmission line of characteristic impedance 

0Z , then:  
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 (4.6) 

Defining the impedance bandwidth such that ( )VSWR f S≤ , with 

( ) ( )21VSWR f VSWR f S= = , where 1f  and 2f  are the band-edge frequencies, then one 

may write the fractional bandwidth as: 

 2 1

r

f fFBW
f
−

=  (4.7) 

By some simple manipulations using the earlier equations, it is possible to write: 

 ( )( )11 KS S K
FBW

Q S
− −

=  (4.8) 
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where 0ZK
R

=  for the series-resonance case and 
0

RK
Z

=  for the parallel-resonance case. 

Typically, the antenna is designed such that 0R Z=  at the resonant frequency. Thus, one 

should get: 

 1 1SFBW
Q S

−
=  (4.9) 

which may be considered as another version of (3.94).  

 

4.2.1 Maximizing the Bandwidth 

Given that one usually wants to maximize the bandwidth realized by an antenna design in 

a given volume, it is thus better not to design the antenna with 0R Z= at the resonant 

frequency. Instead, if the ( )( )11 KS S K
FBW

Q S
− −

=  expression is used to find the 

optimal value for K  where FBW  is maximized, one will find: 

 1 1
2OptK S

S
 = + 
 

 (4.10) 

Thus, the maximum possible bandwidth for an optimum antenna design, adequately 

modeled by a series or parallel lumped circuit, is given by: 

 
21 1
2max

SFBW
Q S

−
=  (4.11) 

It can be easily shown that the band edge frequencies in these models are related to the 

resonant frequency through: 

 2
1 2 rf f f=  (4.12) 

One important observation is that the result in (4.9) matches that of (3.94), which was 

developed using the “g” value technique. However, this is not the largest possible 
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bandwidth for a given antenna/resonant circuit. As can be seen from (4.11), by properly 

designing the circuit/antenna resistance in terms of the system resistance, it is possible to 

enlarge the achievable bandwidth without adding any matching circuitry [148]. This will 

be crucial when considering the extension of the “g” value method to multi-coupled 

scenarios.  

So, for a general simple antenna design with single resonance, the design cycle to achieve 

maximum impedance bandwidth may be summarized as follows: 

1) Define the desired band edge frequencies. 

2) Define the required VSWR level. 

3) Use Equation (4.12) to determine the corresponding resonant center frequency. 

4) Use Equation (4.11) to determine the corresponding Q of the antenna. 

5) Design the antenna to resonate at the resonant frequency, with the specified Q and 

required input resistance deduced from (4.10). 

 

4.2.2 The Utilized Q-expressions 

In the outlined recipe listed above, one needs to assess the Q of the antenna under study, 

seeking to realize the desired Q. Chapter 3 summarized some of the useful expressions 

for this purpose. One approximate method to determine the Q of the antenna from the 

input impedance is by using [78]:  

 

( ) ( )

( ) ( ) ( )

0
0

0 0

2
2 0

0 0
0

2

             ' '

BQ
R

X
R X

ωω
ω

ω
ω ω

ω

=

 
⋅ + +    

  

 (4.13) 

Another expression, which was derived in the course of this work, was presented in the 

previous chapter. It is more suitable for extremely low Q and for cases where the probe 

inductance or DC capacitance of patches should be included, and is given by [GS.8]:  

 ( ) ( ) ( )
( )0

0
2

0
0 0 1

R
d

L

L
G

R

S
Q

S
ω

ω ω ω
ω

= Γ
−

 (4.14) 
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It is noteworthy to mention that the aforementioned design routine can be modified to 

account for the probe inductance associated with feeding printed antennas. The same can 

be said if another feeding technique is used, such as proximity feeding or aperture 

coupled feeding. However, the focus here is on establishing some simple theory for 

further utilization in the multi-coupled design.  

 

4.2.3 Note on Utilization of Matching Circuits for BW Extension 

In the simplified antenna design process outlined earlier, the most challenging step for the 

antenna designer is to realize, in a given space, an antenna with the required Q to cover 

the required VSWR bandwidth. Sometimes, with space limitations, such a design is not 

physically achievable. One way to overcome these limitations is to implement a matching 

network seeking wider impedance bandwidths. Theoretically, an infinite order matching 

network of ideal lumped inductors and capacitors would be able to further extend the 

maximum bandwidth in (4.11) to a certain extent. This was studied by Fano in [77] and is 

given by: 

 1
1ln
1

FANOFBW
SQ
S

π
=

+ 
 − 

 (4.15) 

In reality, there is no such thing as ideal lumped elements. Also, in terms of cost and 

space, adding a large number of inductors and capacitors is not practical. In addition, it 

was shown in [138] and [150] that the Fano bandwidth can be approached quickly with 

only limited number of matching elements. On the other hand, one may argue that such a 

limit can be overcome by using lossy matching networks [151]-[152]. However, the price 

paid is the significant reduction in the radiated power by the antenna, and thus reduction 

in the overall system efficiency. Still, the idea is worth some investigation. In principle, if 

the lossy matching network is implemented in the antenna itself so that the required loss 

is realized by antenna radiation, then one can possibly widen the antenna VSWR 

bandwidth, along with maintaining high radiation efficiency. This idea is investigated 

next. 
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4.3 Multiple-Coupled Radiators 

As discussed in the previous section, radiation from an antenna may be modeled as a type 

of power loss from a resonator. Having studied the performance of a single resonator, it is 

desirable to extend the study to having more resonators. In Chapter 3, the possibility of 

dealing with the multi-coupled antenna problem through analogy with multi-coupled 

filter formulations was noted. However, in section 4.2.1, it was noted that merely using 

the “g” values derived in the circuit community using Chebyshev polynomials will not 

result in the maximum possible bandwidth for a given antenna Q. To this end, this section 

attempts mimicking the “g” value method, after applying some modifications, to realize 

the maximum possible bandwidth in multi-coupled antenna designs.  

First, let us start with two coupled lossy resonators. The effect of adding more 

resonators/antennas will be studied later in the chapter. So, if we have a network 

composed of two coupled resonators, as shown in Fig. 4.3, then it is possible to write the 

input impedance as: 

 ( )
1

1

2

2
2 2

1

1
1 1

1 1

inZ
Jj C

R j L j C
R j L

ω
ω

ω ω
ω

=
+ + +

+ +

 (4.16) 

One should note that the capacitance, inductance, and resistance are related in such model 

where: 

 01
1

01 1

QC
Rω

=  (4.17) 

and 

 2
0 11

1
1L
Cω

=  (4.18) 
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with 01,2
1,2 1,2

1
L C

ω =  and 01,2Q  defining the quality factor of the corresponding 

resonator. Thus, one can re-write the input impedance as: 

 ( )
01

01
01 2

1 02
2

02

2

0

1

1

1

inZ f
ffjQ

f f J R
R ffjQ

f f

=
 

+ − 
  +

 
+ − 

 

 (4.19) 

 

 

Fig. 4.3. Two coupled resonators model. 

 

                   

 

Fig. 4.4. Different models for admittance inverters. 

 

It should be noted that the J  (admittance inverter) used in this analysis should be treated 

with care. The concept of admittance inverters is widely used in filter/coupled circuit 
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design [20] and has been quite useful in circuit designs of fractional impedance 

bandwidths up to 30%. In principle, the values realized from the J  inverter model 

basically rely on the synthesized structure and its frequency dependency. However, 

modeling using the J  inverter brings valuable insight into the basic network behavior 

and limitations. Afterwards, it is then a matter of searching for a physical structure that 

can realize the required admittance inverter. 

Typically, when designing an antenna system, it is desirable to maximize the realizable 

bandwidth in a given volume. Since bandwidth is inversely related to the radiation quality 

factor of the antenna, as discussed in Chapter 3, then one may intuitively argue that it is 

better to have both resonators/radiators with the lowest possible Q in order to realize the 

maximum possible bandwidth. The analysis is this section addresses the case for 

synchronized resonances. However, the methodology is applicable to the general case as 

described by (4.19). It is thus possible to write: 

 ( )
0

0
0

1
0

0

0

1

1

1

inZ f
ffjQ

f f D
R ffjQ

f f

=
 

+ − 
  +

 
+ − 

 

 (4.20) 

where 

 2
2D J R=  (4.21) 

The reflection coefficient seen at the feed port can be expressed as: 

 ( ) ( )
( )

0

0

in

in

Z f Z
f

Z f Z
−

Γ =
+

 (4.22) 

This reflection coefficient is what commonly defines the impedance bandwidth of a 

circuit/antenna. At the band-edge frequencies 1RLf  and 2RLf , the reflection coefficient 
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( )fΓ  should be equal to the target return loss level, RL , and hence is consequently 

related to the VSWR level S  by: 

 
1
2

1
2

0

01
2

1 1
1 1

in RL
RL

RL
RL

i
R

n RL
L

Z f Z
VSWR Sf RL
VSWR S

Z f Z

 
  −
   − − Γ  = = = =

  + +     +
 
 

 (4.23) 

The impedance bandwidth is thus given by: 

 2 1RLRLBW f f= −  (4.24) 

For identical resonators, the fractional bandwidth, relative to the synchronized resonance 

frequency, is stated as: 

 2

0

1RLRLf fFBW
f
−

=  (4.25) 

 

4.3.1 Maximizing the Bandwidth 

In section 4.2.1, the maximum possible bandwidth for a simple antenna without any 

matching elements was discussed. In a similar fashion, this section presents some 

limitations on the maximum possible bandwidth using two coupled identical 

(synchronized) resonators/antennas. Using (4.23), one may write: 
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0
1,2 0

0
0 1,2
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0 1,2
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0
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1 1,2 0
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Z
f fjQ

f f D
R f fjQ

f f
RL

Z
f fjQ

f f D
R f fjQ

f f

−
 

+ −  
  +

 
+ −  

  =
+

 
+ −  

  +
 

+ −  
 

 (4.26) 

Defining 1,2 0

0 1,2

RL

RL

f fX
f f

= − , and 0

1

ZK
R

= , it is then possible to write: 

 
( )( ) ( )

( )( ) ( )

2
0 0

22
0 0

22 2
0 0

2

0 0

1 2

1 2

Z D K K Q X Q X KQ X
RL

Z D K K Q X Q X KQ X

− − + + −
=

+ + − + +
 (4.27) 

On the other hand, at 0f f= , one can write: 

 
2

0

0

21
1

K Z D RL
K Z D

 − −
= + + 

 (4.28) 

which simplifies to: 

 0

0

1 KS
Z S

D
S K

Z

−
=  −


 (4.29) 

It can be readily seen that these two values for D  correspond to different values of the 

coupling coefficient, J . In fact, the choice of D  would result in one of the responses 

shown in Fig. 4.5. 
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Fig. 4.5. Effect of the choice of “D” on the return loss. 

 

So, to realize the maximum bandwidth, it is desirable to have:  

 
0

S KD
Z
−

=  (4.30) 

Now, solving (4.27) in X  yields: 

 
( )2 2

0

3 4S KS K S S K
X

SKQ

− − +
= ±  (4.31) 

Recalling that 1,2 0

0 1,2

RL

RL

f fX
f f

 
= −  
 

, where 2 1RL RLf f> , it is possible to write: 

 
( )2 2

1
3 2 2 2 2 2 20 0

0

3 4

2 3 4 4

1
RL

S KS K S S K
f

SKQ f KS K S S SK S K Q

 − − + 
 

=
− − − + 

−
+

 (4.32) 

and 

 
( )2 2

2
3 2 2 2 2 2 20 0

0

3 41
2 3 4 4

RL

S KS K S S K
f

SKQ f KS K S S SK S K Q

 − − + 
  + − − + + 

=  (4.33) 
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Hence, the bandwidth expression can be written as: 

 
( )2 2

2 1
0 0

3 4
RL RL

S KS K S S K

SKQ
B f

f
W f

− − +
= − =  (4.34) 

To maximize this bandwidth, for a given antenna Q and required VSWR, one needs to 

differentiate with respect to K . Hence, solving for K , we have: 

 0
2

1

2
3 1

Z SK
R S

= =
+

 (4.35) 

That is:  

 
2

1 0
3 1

2
SR Z

S
+

=  (4.36) 

and  

 ( )
( )

2
2

2 2
0 0

3 1

3 1

S SS KJ R
Z Z S

−−
= =

+
 (4.37) 

Thus, the maximum achievable bandwidth is given by: 

 
( )( )2 2

max
0 0

-1 9 -1

2

S S
BW

SQ f
=  (4.38) 

One should note that the presented analysis implies that the band-edge frequencies are 

related to the center frequency through: 

 0 1 2RL RLf f f=  (4.39) 

4.3.2 Required Input Impedance 

Having presented the maximum possible bandwidth for two coupled resonators, it is 

important to study the input resistance corresponding to such a bandwidth. Using the 

analysis in section 4.3.1, the input impedance can be written as: 
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 ( )
( ) ( )

( ) ( )

2 20 0 0
0

2

0 0 0

2
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00
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1 2
in

Z Z D Z DQ j Q Q Q
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Z f
Z D Q Q
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ζ ζ ζ ζ

ζ ζ
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 + − + 
 

 (4.40) 

where 0

0

ff
f f

ζ = − . Extracting the real part of the input impedance yields:  

 ( )
( )

( ) ( )

2
0

2

0 0

2 20
00

1

1 2
in

Z Z D Q
K KR f
Z D Q Q
K

ζ

ζ ζ

 + + 
 =

 + − + 
 

 (4.41) 

The maxima of ( )inR f  are at two frequency points ( )1 2,m mf f , which are given by: 

 

1
24 4 4 4 2 2 2

0 0 0 0 0

1
24 4 2 2 4 4 4 2 2 21,2 2 0 0 0 0 0 0 00

0
4 4 4 4 2 2 4 4 4
0 0 0 0 0

2 9 4 3
1

8 24 16 9 3 62
4 9 45 12 9

m

Q S Q Q Q S Q

f Q Q S Q Q S Q Q S QQ Q
Q S Q S Q S Q S Q

 − + + − −
 
 

  − − + − + − +
  
  − − + + − − +  

=


(4.42) 

The values of these maxima are identical at 1,2mf  and are independent of the quality 

factor. Interestingly, they can be asymptotically written as (for 0 50Z = Ω ): 

 4 3
2

2
4 3 1 0( )R S C S C S C S C S C= + + + +  (4.43) 

where the coefficients are given as 4 2.046,  C = 3 19.34,  C = − 2 69.59,  C = 1 79.28,C = −  

and 0 87C = .  

Utilizing the network in Fig. 4.3, the variation of the maximum value of input resistance 

versus the VSWR level, the frequency variation of the input resistance for different 

quality factors, and the input reflection curves for different quality factors are shown, 

respectively, in Fig. 4.6, Fig. 4.7, and Fig. 4.8. 
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Fig. 4.6. Maximum value of input resistance versus VSWR level ( 0 50Z = Ω ). 

 

 

Fig. 4.7. Frequency variation of the input resistance for different quality factors ( 0 50Z = Ω ). 
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Fig. 4.8. Input reflection curves for different quality factors ( 0 50Z = Ω ). 

 

Fig. 4.9 shows the effect of using 1 233R =  (optimum value for maximum bandwidth if 

0 50Z = Ω  and 3VSWR = ) and 1 50R =  (after adjusting the corresponding coupling in 

Fig. 4.9). It is clear that the choice of 1R  could result in a large difference in the achieved 

bandwidth. 

 

Fig. 4.9. Effect of the choice of the impedance of the first resonator on the realized bandwidth. 
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4.3.3 The Golden Response  

Before defining a procedure for the coupled antenna design, let us study a simple 

numerical example that clarifies some properties of the coupled antenna model used in 

this work. Let us say that we want to design an antenna connected to a 50 Ohm feed line 

and covering the band frequencies of 1.7-2.1GHz with VSWR=3. Using the 

aforementioned formulations presented so far in section 4.3, one would ideally need a set 

of design parameters as listed in Table 4.1. 

Table 4.1. Design Parameters Required for Covering 1.7-2.1 GHz with VSWR=3 
Quantity Value 

0f  [ ]1.8894 GHz  

0Q  19.9165  

1R  [ ]233.33 Ohm  

D  0.0557 [Ohm] 
 

 

In order to illustrate how the antenna/network response will vary with different scenarios, 

let us plot the input resistance for the three distinct cases of Table 4.2 
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Table 4.2. Three Different Frequency Variation Cases. 
Case 1 Case 2 Case 3 

01 1.8f = , 02 2.0f =  01 2.0f = , 02 1.8f =  01 1.889f = , 02 1.889f =  

01 16Q = , 02 25Q =  01 16Q = , 02 25Q =  01 16Q = , 02 25Q =  

1 250R = , 2 250R =  1 250R = , 2 250R =  1 250R = , 2 250R =  

0.09D =  0.09D =  0.09D =  

 

In Fig. 4.10, one can quickly deduce some properties of the input resistance response. For 

example, if 01 02f f< , the value of input resistance at the first peak is larger than that at 

the second one. It is also noted that if 01 02f f= , both peaks become equal in their values. 

Additionally, these peaks are related so that 0 1 2D P D P Df f f= , where 1P Df  is the first 

peak, 2P Df  is the second peak, and 0Df  is the apparent synchronized frequency of the 

system.  

Such a simple model suggests that if one is designing/optimizing an antenna, and even if 

the Q, resistance, and coupling values are not tuned to the correct ones, it might be useful 

to start by adjusting the resonators to realize the “Frequency Golden Response”, where 

the antennas have their resonance frequencies synchronized to the desired center 

frequency. Note that the term "Golden Response" is common in filter terminology, 

denoting the "target response" in a design process [24] [144]. 
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Fig. 4.10. Input resistance for the three cases under study. 

 

Now if we assume that the resonance frequencies are synchronized, let us investigate the 

effect of having the antennas with different Q values. Again, we may use the three cases 

from Table 4.3 to illustrate the problem. 

 

Table 4.3. Three Different Q Variation Cases. 
Case 1 Case 2 Case 3 

01 1.889f = , 02 1.889f =  01 1.889f = , 02 1.889f =  01 1.889f = , 02 1.889f =  

01 16Q = , 02 25Q =  01 25Q = , 02 16Q =  01 19.91Q = , 02 19.91Q =  

1 250R = , 2 250R =  1 250R = , 2 250R =  1 250R = , 2 250R =  

0.09D =  0.09D =  0.09D =  

 

 

In these three cases, the quality factors of the antennas may be different or equal. To 

extract information about these quality factors, the group delay technique presented in 

Chapter 3 is used.  In Fig. 4.11, one can quickly identify which quality factor is higher 

than the other, and how they both need to be adjusted to realize the desired response. This 

means that the designer/optimizer should seek the “Quality Factor Golden Response”, 

where the antennas quality factors are synchronized to the desired value. In reality, 
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adjusting the quality factors involves changing the antenna dimensions, which in turn will 

affect the resonance frequencies. Thus, the adjustment of the resonance frequency and Q 

takes the form of an iterative procedure. However, it should be emphasized that this 

procedure is quite useful and generally results in rapid convergence.  

 

 

Fig. 4.11. Information about the quality factors extracted using the group delay-based Q 

expression. 

 

Now, assuming that the resonance frequencies and quality factors are synchronized, let us 

investigate the effect of changing the resistance of the first resonator. Three different 

cases will be studied (Table 4.4). Fig. 4.12 illustrates how the input resistance plot varies 

with the actual input resistance of the first antenna. The value of the desired resistance at 

the peaks is known, using (4.43), so the designer/optimizer should seek to realize the 

“Resistance Golden Response”. It should be noted that these values will slightly vary, 

depending on the coupling coefficient. However, this can form a part of a rapidly 

converging iterative procedure. 
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Table 4.4. Three Different Cases for Variation in Resistance. 
Case 1 Case 2 Case 3 

01 1.889f = , 02 1.889f =  01 1.889f = , 02 1.889f =  01 1.889f = , 02 1.889f =  

01 19.91Q = , 02 19.91Q =  01 19.91Q = , 02 19.91Q =  01 19.91Q = , 02 19.91Q =  

1 100R = , 2 233R =  1 300R = , 2 233R =  1 233R = , 2 233R =  

0.09D =  0.09D =  0.09D =  

 

 

 

Fig. 4.12. Variation in the input resistance with different feed antenna resistance. 
 

 

Now, assuming that the resonance frequencies, quality factors, and resistance of the first 

resonator are synchronized, let us investigate the effect of changing the coupling 

coefficient. Three coupling values are studied (Table 4.5): ideally coupled, over-coupled, 

and under-coupled cases. As observed from Fig. 4.13, the location of the maxima of the 

input resistance plot depends on the coupling coefficient. If the resonance frequency, 

quality factor and resistance of the first resonator are tuned to the desired values, one 

should expect that the desired location of the maxima will correspond to those from 

(4.42). It should be noted that, in a practical scenario, changing the coupling coefficient 

requires changing the separation between resonators, which may affect their resonance 

frequency and quality factor. However, following the “Golden Response” approach in an 
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iterative manner between the frequency, quality factor, first antenna resistance, and the 

coupling coefficient should result in very fast converging design cycle. 

 
Table 4.5. Three Different Cases for Variation in the Coupling Coefficient. 
Case 1 Case 2 Case 3 

01 1.889f = , 02 1.889f =  01 1.889f = , 02 1.889f =  01 1.889f = , 02 1.889f =  

01 19.91Q = , 02 19.91Q =  01 19.91Q = , 02 19.91Q =  01 19.91Q = , 02 19.91Q =  

1 233R = , 2 233R =  1 233R = , 2 233R =  1 233R = , 2 233R =  

0.02D =  0.09D =  0.0557D =  

 

 

 

Fig. 4.13. Variation in the input resistance with different coupling coefficients. 

 

Case 3 of the last scenario is essentially what should be realized (Table 4.5) in order to 

meet the specifications of covering 1.7-2.1GHz with VSWR=3. The reflection coefficient 

seen at the input, with a 50 Ohm feed line, is plotted in Fig. 4.14 for the ideal case from 

Table 4.1, along with that realized after implementing the aforementioned rapidly-

converging iterative steps. 
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Fig. 4.14. Ideal response versus realized one from application of Golden Response iterations. 
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4.3.4 Design Steps 

Having outlined some of the key formulations utilizing the proposed coupled antenna 

model and discussed the application of the concept of Golden Responses towards a rapid 

design methodology, the design cycle procedure can be summarized as follows [GS.11]:  

1) Specify the required band edge frequencies 1RLf  and 2RLf . The bandwidth is given 

as 2 1RL RLBW f f= − . 

2) Specify the required VSWR level S . 

3) Use the following equation to determine the corresponding resonance center 

frequency: 0 1 2RL RLf f f= . 

4) Use the following equation to determine the corresponding quality factor, Q, of 

the antenna: 
( )( )

0
0

2 2-1 9 -1

2

S SfQ
BW S

= . 

5) Use the following equation to determine the corresponding resistance, 1R , of the 

antenna connected to the feeding line at 0f :  
2

1 0
3 1

2
SR Z

S
+

= .  

6) Design the antenna to resonate at the resonance frequency, with the required Q 

and required input resistance. Using GQ  or BQ  (>10) should significantly 

facilitate the design procedure. 

7) Now add the second antenna. A good initial design is starting with identical 

dimensions for the first antenna. The required coupling is then defined from:

( )
( )

2
2

2 2
0

3 1

3 1
D J R

S S

Z S
= =

+

−
.  

 

One should note that, when adding the second antenna, there will be mutual loading 

effects between the two antennas. Depending on the topology, this may result in a shift in 

the apparent resonance frequency, Q, and input resistance of each of the antennas. 

However, utilizing the Golden Response should facilitate the design procedure. This 

means that once the second antenna loads the first one, observing the impedance behavior 
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rapidly informs us how the frequency, Q and resistance have changed. This guides the 

designer to quickly adjust the antennas in an iterative manner to match the Golden 

Response.  A possible practical route is to: 

8) Use the “Frequency Golden Response” to synchronize the antenna frequencies to 

the desired value. 

9) Use the “Quality Factor Golden Response” to tune the Qs to their desired values. 

10)  Use the “Resistance Golden Response” to tune the resistance of the first antenna 

to its desired value. For probe-fed antennas, this is simply implemented by 

changing the feed location. 

11)  Use the “Coupling Golden Response” to adjust the location of the maxima of the 

input resistance. 

 

It is again emphasized that, in practical designs, steps 8-11 are implemented in an 

iterative manner. Nevertheless, following this design routine in the specific outlined order 

should yield a very fast converging design cycle.  
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4.3.5 Multiple-Coupled Lossy Resonators 

By generalizing the analysis outlined earlier, it is possible to study the bandwidth limits 

associated with any number of coupled lossy resonators. Extending the aforementioned 

manipulations for N-identical coupled resonators, the resulting maximum achievable 

bandwidth may be written as: 

 ( )( )
1

2
0

10

1 1 8 1 1
2

N N

n

BW Q n S
f S =

  = + − −   
∏  (4.44) 

Fig. 4.15 illustrates the Q-BW limits for different VSWR values when using different 

numbers of coupled resonators. In Fig. 4.16, the resulting reflection coefficient at the feed 

port, meeting a VSWR limit of 3, is plotted for different numbers of coupled identical 

antenna models. Note that each antenna resonator model used in this plot has a Q of 10. 

 

 

Fig. 4.15. Q-BW limits versus different VSWR values. 

 

The results in (4.44) indicate that, by adding more resonators/radiators, one may extend 

the realizable impedance bandwidth for a given VSWR level. On an abstract level, there 

seems to be no limitation on the number of resonators to be used. However, physically, 

the more resonators used and the wider the bandwidth, the harder it is to realize a 

physical structure with the required coupling coefficients. In addition, for antenna 
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problems, there are usually other system requirements than the VSWR level, such as gain 

bandwidth, pattern, and polarization of the radiated field. In fact, with this proposed 

technique for the realization of wide-band multiple-coupled antenna designs, it is the 

radiated field behavior that sets the operational limits on the resulting performance.  

 

 

Fig. 4.16. Resulting reflection coefficient at the feeding port. 
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4.4 Fano Limits Revisited 

Lopez [150] and Hansen [138] studied the Fano limits [77] on broadband matching. In 

[150] Lopez presented a summary listing the Q-BW relations for some of the important 

cases. It should be noted that although the cases in [150] assume ideal lumped elements, 

in reality, these elements suffer from associated losses and thus degrade the efficiency of 

the system. Table 4.6 reproduces Table I of [150] with the addition of the results 

produced in this work.  

Table 4.6. Q-BW Limitations from Prior Work Compared to This Work. 
Impedance Matching Circuit Q FBW⋅  Q-FBW 

VSWR=2 

Q-FBW 

VSWR=3 

Single-Tuned Mid-band 

Match (non-Fano) 

1S
S
−

 
0.707  1.155  

Single-Tuned Edge-band 

matching (Lopez-Fano, 1n = ) 

2 1
2

S
S
−

 
0.750  1.333  

Double-Tuned Matching  

(Lopez-Fano, 2n = ) 

2 1S −  1.732  2.828  

Two Coupled Antennas  

(This work, 2n = ) 
( )( )2 2-1 9 -1

2

S S

S
 

2.562  4.216  

Infinite-Tuned Matching  

(Fano-Bode, n = ∞ ) 1ln
1

S
S

π
+ 

 − 

 
2.860  4.532  

Three Coupled Antennas  

(This work, 3n = ) ( )( )
1

3 3
2

1

1 1 8 1 1
2 n

n S
S =

  + − −   
∏

 

4.790  7.665  

 

 

One may draw a number of interesting conclusions from Table 4.6.  For example, using 

three coupled antennas can easily result in more than a 50% increase in bandwidth 

compared to using a simple single antenna with an infinite number of ideal matching 

elements. In fact, the two coupled antennas can realize an impedance bandwidth close to 
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that when using infinite ideal matching elements. Table 4.6 also highlights the fact that, 

by using two coupled antennas, one can easily achieve a four-fold increase in bandwidth 

compared to traditional single-tuned mid-band match. Such enlargements in the 

achievable bandwidths without utilizing any matching networks emphasize the 

importance and the potentials of circuit-based systematic design techniques for antennas. 
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4.5 Practical Examples 

In this section, the presented procedure to design various common classes of antennas is 

applied. As will be demonstrated, the proposed approach will typically result in quite a 

fast design cycle. This is illustrated through the design of several commonly utilized 

configurations. Although the method is general and can easily handle fully 3D 

configurations (such as the dielectric resonator antennas and the 3D conformal 

metallization), the examples listed herein will focus on the planar technology. This is 

mainly due to its popularity and the ease of fabrication of the proof-of-concept 

prototypes. Two substrate materials are chosen for the designs: Rigid foam and FR4. The 

former is selected where maximum efficiency is required, while the latter is chosen since 

it is the most common material used in microwave circuits. Each of these two materials 

will result in different radiation and loss characteristics. However, it will be shown that 

the design method remains applicable, irrespective of the choice of the substrate material.  

One interesting characteristic of coupled antennas is the excitation of odd mode 

distributions. With the presence of a slight amount of loss, these modes severely degrade 

the radiation efficiency, resulting in significant reduction in the radiated power. This is in 

addition to the fact that they typically alter the direction of the main radiation lobe 

completely. This feature could be quite useful in the design of asymmetric and symmetric 

radiation patterns with respect to the operating frequency, and thus will be elaborated 

further in the presented design examples. 

 

4.5.1 Practical Considerations 

The Golden Response plots discussed earlier were generated assuming simple 

two/multiple coupled resonators. This means that the effect of the feeding probe for patch 

antennas was not present in any of these models. Ignoring the probe inductance may alter 

the results substantially from those predicted by the simple model. On the other hand, 

merely adding it after applying the previous design routine will result in a design that 

deviates from meeting the VSWR bandwidth. Several research groups studied the 

calculation of the associated inductance with a feeding probe [6] [196] [268]. This allows 
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estimation of the value of inductance for a given substrate thickness.  Thus, if the value is 

incorporated in the model before the actual design process starts, then a different Golden 

Response is generated, with proper embedding of the effect of the inductor on the design 

process. Fig. 4.18 shows the effect of a 2nH probe on the response of a simple coupled 

resonant circuit. When such an inductance is incorporated in the model before defining 

the resonator/radiator parameters, another set of different parameters is achieved, with a 

Golden Response that minimizes the feeding effect and hence yields better design results. 

 

 

Fig. 4.17. Probe inductance is added for the circuit when modeling probe-fed antennas. 

 

 

Fig. 4.18. Accounting for probe inductance before and after the design procedure. 
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4.5.2 Design of a Dual Mode Square Patch Antenna 

A square/circular patch antenna can easily excite two orthogonal modes by perturbing 

one of the patch corners [153]-[158]. Several researchers tried to place the design of the 

patch into simplified systematic forms [159]-[161]. Here, the proposed procedure is 

applied to realize a wide-band dual-polarized antenna.  

 

   

Fig. 4.19. Schematic for square patch antenna with notch and sample prototype. 

 

Let us choose a 62 mil FR4 substrate for the design and start with a simple 35X35mm 

square patch, feeding it at 10mm from the edge along its axis. The patch impedance at 

2GHz will be 56.43+j10.46, with a probe inductance of nearly 0.83nH and approximate 

Q of 32.5. Given the low value of inductance, the simple coupled model will be used and 

the inductance model added to it at the end of the procedure. For matching with a return 

loss of 10dB, the input impedance at 2 GHz needs to be adjusted to 157.36 Ohm. By 

varying the feed location from the edge through 10 to 8 to 1 mm, we can find the desired 

feed location (Fig. 4.20). 
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Fig. 4.20. Varying the feed location to achieve the desired value. 

 
 

Now a 6 mm square notch is added to the corner of the patch, a shift in the resonance 

frequency is noticed, as seen in Fig. 4.21. It is clear that the synchronized resonance 

frequency of the two modes is slightly perturbed from the desired one.   

 

 

Fig. 4.21. Effect of adding a notch to a simple square patch. 
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This shift can be adjusted by extending the side length to 35.6mm instead of 35mm.  Fig. 

4.22 clearly shows the resulting shift due to this increase in length.  

 

 

Fig. 4.22. Effect of increasing side length of patch. 

 
 

After a very quick iterative routine following the proposed procedure, the final design is 

35.8X35.8mm, with a notch of 6.6mm and a probe at 1mm.  Fig. 4.23 shows the final 

result of the EM simulation with the plots expected from the circuit model (with and 

without) the probe inductance. 
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Fig. 4.23. Measured, EM simulation and circuit model-based responses. 

 

The three-dimensional radiation gain pattern is plotted at 2GHz in Fig. 4.24. In order to 

compare the radiation from the notched patch (N) to the simple one (S), the realized gain 

pattern (Fig. 4.25) is evaluated for each of the patches at three distinct sets of angles: 

{ }0 00 , 0φ θ= = , { }0 00 , 30φ θ= = and { }0 00 , 60φ θ= = . The realized gain pattern is 

defined as the ratio of the antenna’s radiation intensity in a given direction in watts per 

steradian to the total power incident at the antenna’s ports in watts. 

 ( ) ( ),
Realized Gain , 4

inc

U
P
θ φ

θ φ π=  (4.45) 

Note that the term “realized gain pattern” is used instead of the term “gain pattern” to 

include the mismatch at the antenna ports. This allows us to compare different antennas 

relative to fixed available power by the source at the input of the antenna. This will also 

be useful in looking at their filtering characteristics in subsequent sections. 
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Fig. 4.24. Radiation pattern at 2GHz. 

 

 

Fig. 4.25. Realized gain for simple and notched patches evaluated at different angles in space. 

 

Now, let us compare the polarization of the field produced by a notched patch to a simple 

one. In Fig. 4.26, the gain values are normalized to 0dB and the E field values are 

normalized to the maximum of Ex (or Ey). It is clear that the polarization characteristics 
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of the notched patch differ significantly from its simple square one. Still, for many 

applications, the notched antenna is considered a suitable candidate antenna.  

 

 

Fig. 4.26. Normalized realized gain and field magnitudes of  simple and notched patches. 
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4.5.3 Design of a Stacked Patch Antenna 

There has been a noticeable interest in the stacked antenna topology, whether by stacking 

metallic patches [162]-[174] or by stacking dielectric resonators [146] [176] to achieve 

wider bandwidth and higher gain. Various design procedures are available in the 

literature. Some of them are based on general guidelines [159]-[161], some involve 

parameter extraction and curve fitting [146], and some apply extensive EM simulations in 

parallel with optimization routines to realize the desired response [147]-[148].  

To illustrate the implementation of the proposed procedure, let us postulate that we need 

to synthesize a stacked antenna (using patches) to cover 200MHz bandwidth between 1.9-

2.1GHz at a VSWR of 3. Starting with a simple patch of 34X20mm, such patch resonates 

at 2GHz with 0 36.3Q =  on 62mil FR4. From Table 4.6, these parameters mean that this 

single patch should maximally cover [ ]0 01.333 73.46 MHzf Q = , without using any 

external matching elements. If the substrate thickness is doubled (i.e., a 124 mil FR4 is 

used instead), the quality factor will be 0 27.9Q = , which in turn can cover 

[ ]95.5795 MHz  at maximum. However, if we have two patches, of the same 0 36.3Q = , 

then it is possible to cover up to [ ]232.31 MHz . Hence, the stacking technique may be 

utilized to realize such a wide bandwidth in a small footprint.  

Using the design procedure outlined earlier, the dimensions of the patch can be rapidly 

adjusted.  One needs to start with the simple patch first. The location of the feed probe 

should be adjusted so that the input resistance is around 233. This is achieved by locating 

a 1.3mm probe at 3.5 mm from the radiating edge. It is important to mention that these 

values are achieved by using a 62mil FR4 cover, which will back the metallization for the 

other patch on top. 

Next, another patch is placed on top of the upper substrate. Since the substrate height is 

fixed, the patch length and its relative location should be adjusted to realize the desired 

resonance and coupling factors. Following the Golden Responses, one would quickly 

reach an acceptable realization (Fig. 4.27), with a lower patch dimension of 33.6X20mm 
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fed by a probe at 2.5mm from its radiation edge, and an upper patch of 36.7X20mm 

shifted by 4.3mm from the radiating edge of the lower patch.  

 

Fig. 4.27. Schematic for two-patch stacked antenna. 

 
 

Fig. 4.28 shows the reflection coefficient at the feed port for a single patch (S), a dual 

patch model (D), and a dual patch model with its probe inductance (D + probe), in 

addition to the full wave EM simulation of the realized stacked antenna.  

 

Fig. 4.28. Evolution of equivalent models of stacked antenna compared with realized EM 

simulation response. 

 

It should be emphasized that realizing a wider bandwidth with coupled antennas usually 

results in variations of the pattern characteristics from the simple antenna case.  In order 
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to investigate the pattern properties of the stacked antenna, the realized gain function is 

evaluated at the normal to the antenna plane, { }0 00 , 0φ θ= = . The variation of this 

function versus frequency is plotted in Fig. 4.29, along with that of a single patch 

antenna. It is clear that there is a sharp reduction in radiation in the normal-to-patch 

direction around the higher band-edge frequencies. For clarification, the realized gain 

function is evaluated (Fig. 4.30) at two different frequencies, 1.95GHz, and 2.15GHz, 

over two cuts in space (the two normal planes to the antenna plane 00φ = and 090φ =  ). It 

is noted that there is a significant reduction in radiation efficiency at the 2.15GHz 

compared to the 1.95GHz one. Although the radiation efficiency degrades rapidly near 

the higher band edge, there is still a significant increase in the gain bandwidth compared 

to the case of a single patch antenna. 

 

 

Fig. 4.29. Realized gain of single and presented stacked antennas versus frequency. 
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Fig. 4.30. Realized gain of the presented stacked antenna at 1.95 and 2.15 GHz. 

 

4.5.4 Design of on-Foam Coupled Antennas: Asymmetric Response 

In order to clearly assess the potential bandwidth increase when dividing a given area into 

a number of coupled patches, one option - instead of using a single patch - is to study a 

structure made of multiple copper plates backed on high quality rigid foam. Thus, all 

losses in the system will mainly be due to radiation, with very little conductor loss and 

negligible substrate losses. A simple 80X10mm patch separated by 8mm from the ground 

plane will have a resonant frequency at around 1.7GHz, with Q of 39.5. The patch will 

theoretically cover a maximum bandwidth of around 57.5 MHz if used on its own. If 

another patch with the same Q is added, the system can potentially cover up to 181.5 

MHz for VSWR=3. It should be noted that adding a single matching network to the 

single patch would maximally cover up to 125.3 MHz. On a practical side, if another 

patch is added (of dimensions 76X10mm) to the simple patch and separated by 5 mm and 

2 mm from the non-radiating and radiating edges, respectively, then it is possible to cover 

VSWR=3 bandwidth of about 143MHz. This is slightly less than the theoretical 

maximum limit of 181.4 MHz; however, it is an expected decrease due to the large probe 

inductance involved (about 4.5 nH). On the other hand, if a large patch of the same foot 
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print as the coupled patches, i.e., of size 80X25mm, is used, the patch will resonate at 

1.643GHz, with a Q of 24.3. This has a maximum bandwidth of 90.1MHz. It is clear, 

then, that using more than one resonator in a given area could potentially cover more 

bandwidth than one larger antenna in the same area. Furthermore, it should be noted that 

the major difference between this example and the previous ones (including those in the 

relevant appendices) is the utilization of a foam substrate. Thus, the resulting quality 

factor is purely that of the radiation effect. It is to be noted that the choice of rectangular 

metallic patches merely serves in demonstrating the capabilities of the proposed method. 

An antenna designer may elect to chose other configurations (loop/triangular/slot 

structures, etc…) while maintaining the applicability of the design technique.  

 

      

Fig. 4.31. Schematic for two coupled patches and their prototype on foam. 

 

The simulated realized gain is plotted in Fig. 4.32, while the measured response is shown 

in Fig. 4.33. There is only a slight difference from simulation to measurement, which is 

largely attributed to the method of assembling the metallization on foam. The metal strips 

are cut, and a Kapton adhesive layer is placed on them to keep their relative orientation 

intact. Next, the adhesive metallic layer is placed on the foam (Fig. 4.31). The 

metallization adhesive layer, in addition to the Kapton one, introduces some variation in 

the effective dielectric constant and loss tangent, thus affecting the coupling coefficient 

and subsequently shifting the resulting response slightly from the simulated one.   
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In order to evaluate the realized gain, two identical antennas are placed facing each other 

at a separation of 20cm, and 21S  (in their broadside) is measured. Fig. 4.33 shows the 

measured scattering parameters for one of these antennas. It is noted that a sharp 

reduction in broadside radiation occurs out of the VSWR=3 band. However, observing 

the gain function over space (Fig. 4.34), one can see that the radiation mode at the higher 

band edge shifts from an even mode to an odd mode. With no loss in the system, the odd 

mode will significantly contribute to radiation in the end-fire direction. Actually, the 

realized maximum gain at 1.83GHz is 1.8dBi, while at 1.72 it is 8.75dBi. Fig. 4.35 shows 

the realized gain function versus frequency when evaluated at different angles off 

broadside.  This realized gain plot reveals some important features. Specifically, outside 

the VSWR=3 bandwidth, the spatial radiated power significantly degrades over space. 

This suggests the potential use of such antennas in incorporating some useful filtering 

functionality. Moreover, the broadside radiation of this class of antennas experiences an 

interesting asymmetric sharp reduction in the radiated power. Interestingly, this feature 

can be easily extended to the realization of symmetric sharp reductions on the edges of 

the impedance bandwidth, as demonstrated in Appendix VI. Generally speaking, these 

filter-integrated antennas have the potential of significantly simplifying the front-end 

circuitry. Further studies on the control of these transmission zeros and the potential 

effect on the system signal to noise ratio might be an interesting topic for future work. 
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Fig. 4.32. Realized Gain and Directivity of single and coupled antennas. 

  

                       

Fig. 4.33. Measured response. 
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Fig. 4.34. Directivity (left) and realized gain (right) functions at 1.72GHz (broadside) and 

1.83GHz (off-broadside). 

 

 

Fig. 4.35. Realized gain function versus frequency when evaluated off-broadside. 
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4.6 Discussion and Conclusions  

The simple filter-antenna analogy, discussed in Chapter 3, was used to develop a new 

theory for the design of multi-coupled antennas. This is a general design theory that 

significantly simplifies the antenna design process, especially when wider bandwidths are 

needed in a compact volume. Detailed steps were presented, along with a number of 

examples illustrating the usefulness of the proposed formulations. An observation was 

made about the possibility of integrating filtering functionalities into these types of 

antennas. In other words, it is possible to realize antennas with patterns featuring 

symmetric or asymmetric transmission zeros in the frequency plane (see Appendix VI for 

more examples). This is an interesting capability which is worth further studies to assess 

its potential (particularly for interference mitigation applications) and possibility for 

casting it into a generalized design strategy for filter-integrated antennas.  

Despite of its merits, it is important to observe that the presented design technique is 

limited when a multi-band multi-feed antenna is desired. Hence, it is seeking a general 

technique to facilitate the design of multi-band multi-feed antennas that triggered the 

work discussed next.  
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Chapter 5: Modal Analysis Techniques for the Calculation of 
Antenna Q and Input Impedance 

 

“You have to work hard to find the easy way” 

H. A. Wheeler 

 

Modal analysis among the circuit and filter communities is widely spread. A close look at 

the design steps of many of the available modern filters reveals the utilization of modal 

techniques as a key design component [24]. Notably, modal analysis of antennas has long 

been known in the antenna community. Lo and Richards contributed significantly to the 

advancement of this theory in the late 1970s and early 1980s [180]. However, their 

approach was limited in its accuracy due to the utilization of some theoretical predictions 

of the complex resonant frequencies of the antennas they studied. These predictions 

imposed significant limitations on the antennas’ structures that could be analyzed, along 

with limitations on the achievable Q values. To date, modal analysis in antenna design 

has not evolved at the same rate it did in circuit/filter applications. 

In this chapter, the modal theory of antennas is re-visited, believing that it brings 

invaluable information towards facilitating the design of multi-feed multi-band antennas. 

First, some subtle changes are proposed to enhance the applicability of this theory.  Next, 

using some efficient computational techniques, the proposed formulations are shown to 

predict, to a very high accuracy, the input impedance of any antenna under study. This 

greatly simplifies the antenna problem and focuses design efforts on finding the 

appropriate complex resonance frequency to cover a required band. Finding the 

appropriate feed location is then a matter of extracting the corresponding impedance map 

for this antenna through simple field manipulations.  
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5.1 Review 

There exists a plurality of work on antenna analysis using modal expansion techniques. 

The work of Harrington and Mautz is one example [86], and the work of Shen and 

MacPhie is another [88]. Remarkably, the analysis and design of printed antennas is 

widely documented in numerous research papers and assembled in several books [177]-

[199]. In its simplest form, a planar printed antenna is modeled as a transmission line 

model with its radiating edges treated as slots. A more rigorous analysis came in 1977 by 

Professor Lo [180] who treated the planar printed antenna as a cavity. His work was 

amended by multiple refinements to the modal approach for antenna design [188]-[192] 

However, the research following his approach essentially diminished since the early 

1990s with rare subsequent occurrences in publications. This is primarily due to the 

limited accuracy of the approach when dealing with practical antenna designs. The 

limited accuracy was mainly attributed to the approximate calculation of the complex 

resonant frequency. This means that if such a frequency were calculated to a higher 

accuracy, then the technique would result in much better results. This will be the main 

focus of this chapter. 

 

5.2 Modal Expansion 

Although the transmission-line model is easy to use, it suffers from numerous 

disadvantages [185]. For instance, it is only useful for patches of rectangular shape, the 

fringe factor must be empirically determined, it ignores field variations along the 

radiating edge, and it is not adaptable to inclusion of the feed. These disadvantages are 

diminished in the modal expansion analysis technique, whereby the patch is viewed as a 

thin cavity with magnetic walls. In this technique, the field between the patch and the 

ground plane is expanded in terms of a series of cavity resonant modes or Eigen 

functions, along with its eigenvalues or resonant frequencies associated with each mode. 

The effect of radiation and other losses is represented in terms of either an artificially 

increased substrate loss tangent [185] or by the more elegant method of an impedance 

boundary condition at the walls [180] [182]. In fact, the later method results in a much 

more accurate formulation for the input impedance and resonant frequency for 
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rectangular, circular, and other simple geometrical patches, at only a modest increase in 

mathematical complexity. However, it remains quite limited when irregular geometries 

are considered. To summarize, the traditional cavity model analysis implies that: 

1. The E field has only a component normal to the surface of radiator.  

2. The field is independent of the normal direction to the surface of patch, at all 

frequencies under consideration. 

3. The electric current has no component normal to the edge, at any point on the 

edge. This means that the tangential H component should be negligible. 

 

These implications will be dealt with in what follows, in view of the practical and typical 

values in current antenna designs. If we consider a rectangular patch of width “ a ” and 

length “b ” over a ground plane with a substrate of thickness “ h ” and a dielectric 

constant “ rε ”, with the patch axis “ z ” directed, then as long as the substrate is 

electrically thin, the electric field will be z -directed and the interior modes will be   

 “ mnTM ” to “ z ”, so that one can write: 

 ( ) ( ), ,z m mn
m n

nE x y A e x y=∑∑  (5.1) 

where mnA  are the mode amplitude coefficients and mne  are the z -directed ortho-

normalized electric field mode vectors. For the basic scenario where magnetic walls 

surround the cavity sides (i.e., non-radiating cavity), one can write [182]-[185]:  

 ( ) xcos, cosmn
mn yk

abh
e x y x k y

ε
χ

=  (5.2) 

with 
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1, 0 and 0
2,       0 or 0

2, 0 and 0
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m n
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m n
χ

 = =


= = =
 ≠ ≠

 (5.3) 

and 

 2 2 22
mn x ymnk k kµεω = +=  (5.4) 

where, for a non-radiating cavity, x
nk
a
π

= and y
mk
b
π

= . The magnetic field ortho-

normalized mode vectors are found from Maxwell’s equations as: 

 { }1 ˆcos sinˆ sin cosy x y x x
mn

mn yk x k y yk k x k yxk
abj h
χ

ω εµ
= −⋅h  (5.5) 

It is important to note that the boundary condition 0mnn × =h  is satisfied only if the 

cavity is non-radiating. When the cavity is allowed to radiate, the eigenvalues become 

complex, corresponding to complex resonant frequencies. This means that the magnetic 

field mode vectors no longer have a zero tangential component on the cavity side walls, 

which simply translates to limited accuracy for the analysis in its current form. 

Nevertheless, it is useful to probe further with the mathematical analysis and study the 

effect of underlying approximations. 

If a z-directed current probe with constant current 0I  of small rectangular cross section 

( ),x yd d  is placed at ( )0 0,x y , then the coefficients of the electric mode vectors are found 

from [3]:  

 2
*

2 mn
mn

mn
j kA J e dv

k k
µε

= ⋅
− ∫ ∫ ∫  (5.6) 

which reduces to: 
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where the probe feed effect (assuming a cylindrical probe) is included using: 
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   =  (5.8) 

One should note that: 

 mn mnk ω µε=   (5.9) 

with mnω  representing the complex resonant frequency of the thmn  mode. 

It is worth noting that the relation for the coefficients 2
*

2 mn
mn

mn
j kA J e dv

k k
µε

= ⋅
− ∫ ∫ ∫  is 

based on the orthogonal property of the mode vectors. However, the introduction of the 

radiation condition means that these mode vectors are no longer orthogonal in the strict 

sense. This requires care when dealing with thick substrates, and assuming validity of the 

coefficients.  

Using (5.1) - (5.7), one can write: 
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This permits writing the voltage at the feed as: 
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 (5.11) 

Now, assuming a uniform feed current, the input impedance can be written as: 

 
( )

0

0 02
2

2   ,

in
in

mn
mn

m n mn

VZ
I

Djh k x y
k k

µ ϕ
ε

=

= −
−∑∑

 (5.12) 

This form of the impedance expression suggests an equivalent circuit as that shown in 

Fig. 5.1. The (0, 0) term with 00k  represents the static capacitance term. The (0, 1) term 

represents the dominant RF mode. The  ,m n  term represents the other RF modes of 

interest. All other higher order modes have negligible losses and sum to form a net 

inductance 
m

L . Thus, one can write: 
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where  
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ε
=  (5.14) 
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Fig. 5.1. Antenna equivalent circuit. 

 

Now, noting that: 

 ( ), mn
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it is then possible to write: 
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For a high Q equivalent circuit, it is possible to write [182]-[185]:  
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Thus, in order to find the circuit representation, one needs to find mnω  and rad
mnQ . It should 

be noted that if the antenna is lossy, rad
mnQ  should be replaced by total

mnQ , denoting the total 

loss mechanism in the antenna.  

 

At this stage, a number of parameters should be identified to evaluate (5.17) to (5.19). 

These are: 

1. mnω  

2. rad
mnQ  

3. ( )0 0,mne x y  

 

Several techniques addressed the evaluation of these parameters [182]-[193]. Among 

them is treating the radiating walls of the patch by an impedance boundary condition 

leading to a complex transcendental eigenvalues equation. One widely adopted form was 

produced in [182] which besides being an approximate formula and only valid for thin 

substrates, requires some form of iterative solution. In addition, the analysis becomes 

excessively complex for thick substrates, or for complex structure printed antennas. 

Nevertheless, once the complex Eigen frequency (or wave vector) for a mode is found, its 

corresponding quality factor is then approximated by [3], [182]-[185]:  

 { }
{ }

Re
2 Im

mnrad
mn

mn

k
Q

k
=  (5.20) 

To summarize, the most utilized form for the calculation of the radiation quality factor 

adopts three main approximations. First, radiation is accounted for through some 

approximate impedance boundary condition. This might be acceptable for simple patches 

of a high Q. However, it is quite difficult to produce satisfactory results for realistic 

antennas with low Q and/or multiple slots. Second, the complex Eigen frequency is found 

using formulations based on assuming orthogonal source mode vectors.  This assumption 
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implies deteriorated accuracy with more radiation from the antenna. Third, the Q 

expression in (5.20) is itself an approximate one and results in an additional error for low 

quality factor values. Hence, seeking a more accurate and generally applicable approach 

lets us investigate the problem from a slightly different point of view. 

 

5.3 Quality Factor of a General Resonant Circuit 

Let us first study the approximation in (5.20) by considering a lossy transmission line 

terminated in short circuit at both ends.  The condition of free oscillation is given by: 

 0 tanh 0Z γ =  (5.21) 

where 

 0
' '
' '

R sLZ
G sC
+

=
+

 (5.22) 

and 

 ( )( )' ' ' 'R sL G sCγ = + +  (5.23) 

where 'R , 'G , 'L , and 'C  are the resistance, conductance, inductance and capacitance 

per unit length, respectively. Hence, for natural oscillation we need: 

 jmγ π= ±  (5.24) 

That is: 
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 (5.25) 

yielding a solution in the form: 
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In a similar fashion, if the problem is simplified to a parallel RLC  circuit, where R ( )G , 

L  and C  denote the total resistance (conductance), inductance, and capacitance, 

respectively, one can then write: 
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which can be re-written as: 
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These two simple examples show that for circuits adequately modeled by a lossy 

transmission line, or a series/parallel RLC tank, the Eigen solution can be used to extract 

0ω  and 0Q  , respectively, through: 

 2
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r iω ω ω= +  (5.29) 

and  
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Noting that for high Q, the resonance frequency can be well approximated by: 

 0
0

0

1
2res j

Q
ωω ω= +  (5.31) 

Fig. 5.2 illustrates the variation of the apparent resonance frequency with Q. It shows 

that, for an error less than 1% in the estimation of the real part of the complex resonance 

frequency using (5.31), Q should then have a value of more than 4. A typical antenna 

would most probably have a larger Q value. However, in several emerging applications 

(such as the wireless implant devices), the Q can be much lower.  

 

 

Fig. 5.2. Variation of the real frequency with Q. 

 

Now, assuming that the modal expansion is valid for any antenna Q, and seeking a 

generalized expression for the input impedance, it is of a higher accuracy and generalized 

applicability, than those in (5.18) - (5.20), to write: 
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with 0
rad
mnQ  replaced by 0

total
mnQ  for a lossy antenna. Thus,  
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At this point, there are still two major approximations with the modal theory that need to 

be studied: the use of the impedance boundary condition, and the effect of radiation on 

the orthogonality condition and all of the associated formulations. 

 

5.4 Eigen Mode Solver 

As discussed earlier, in order to realize an RLC equivalent network for an antenna, we 

need to have accurate knowledge of the value of the complex modal resonance frequency 

mnω . Using approximate impedance boundary conditions is limited in its application to 

antennas with simple configurations and high Q values. Moreover, modern antenna 

designs typically feature structures with several slots, along with relatively low Q values. 
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This severely limits the utilization of the concept of impedance boundary conditions for 

such a problem.  

One possible alternate method, given the advancements in the computational powers and 

techniques, is to utilize a generalized EM Eigen solver. Several numerical Eigen solvers 

found their way recently into leading commercial EM software, targeting applications in 

acoustics, photonics, and RF filters.  A brief list of EM-based commercial Eigen solvers 

would include MAFIA (using Finite Integration), HFSS from Ansoft (using finite 

elements), and the EM Solver Module of COMSOL Multiphysics (using finite elements). 

The EM finite elements approach for the Eigen frequency search is a variational 

technique in which a minimization process automatically seeks out the characteristic 

solution (see Appendix VI). This is usually done in a numerical process that truncates the 

space around the modeled structure in a perfect metallization. However, driven by needs 

for better radar cross section analysis, the technique was substantially improved, allowing 

for the incorporation of perfectly absorbing materials for truncation of the solution space 

and thus adequately simulating the space bounds of the antenna. This yields a different 

and more general approach compared to the earlier method in [3] and [182]-[185],  where 

the interior region of the antenna is mathematically decoupled from the exterior region 

through the use of an equivalent aperture admittance as the boundary condition. It can be 

readily seen that the earlier approach is limited by the accuracy of the equivalent aperture 

admittance. However, using a numerical Eigen solver, this limitation does not exist 

anymore, since the solver domain is only truncated at the absorbing boundaries. This 

allows for the calculation of complex Eigen frequencies of any general antenna. To date, 

very little published research utilizes these capabilities. In fact, just recently, Stuart [203]-

[204] adopted the concept of Eigen mode analysis using COMSOL to study the Q of 

small 3D antennas.   

It is noteworthy to mention at this point that Eigen solvers are also available in some 

Method of Moments (MOM) codes. For example, the open source Matlab Antenna 

toolbox [30] features such a capability. However, the MOM Eigen solvers suffer from 

severe complexities when finite dielectrics are included in the analysis. This results in a 
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significant decrease in both the computational speed and the resulting accuracy, 

especially when compared to those achieved by the FEM Eigen solvers.  

As an example to illustrate some of the features of EM Eigen solvers, let us consider a 

patch antenna with dimensions 35mmL =  and 25mmW = , on a foam substrate, and a 

height of 200milH = , placed on an infinite ground plane. Such a patch can be easily 

studied using a 3D Eigen mode solver like those available from COMSOL or Ansoft 

(which became part of ANSYS). Fig. 5.3 shows the magnitude of the electric field for the 

first three resonant modes of the patch. The solution set for each mode contains the 

complex resonant frequency in addition to the electric and magnetic field vectors. This 

information is sufficient to construct the RLC model for a resonant antenna, as discussed 

in the next section. Fig. 5.4 illustrates how the complex resonant frequency calculation 

converges during different simulation steps.  

 

 

Fig. 5.3. Normalized electric field magnitude maps of first three modes. 
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Fig. 5.4. Convergence of complex resonant frequency of the first mode. 

 

5.5 Adopted Antenna Modeling and Input Impedance Calculations 

Let us consider a randomly shaped antenna having an axis aligned with the z-axis and 

placed on top of a PCB with relative permittivity rε . Let us also assume that the antenna 

will be probe-fed. So the target here is evaluate the input impedance at some arbitrary 

feed locations without having to undergo multiple full-wave driven simulations (to find 

the best feed location from an impedance point of view). The setup for a numerical Eigen 

problem would take the form shown in Fig. 5.5, but without any feed-specific model. The 

Eigen fields would then occupy all the space surrounding the antenna (reflecting all 

possible fringing fields). To utilize the modal data in calculating the input impedance, one 

needs to evaluate: 
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Fig. 5.5. Setup for the Eigen problem. Outer cavity bounded with PEC walls. 

 

The electric field between the top antenna metalization and the ground plane may then be 

expanded using the Eigen field functions as [2] [3]: 

 ( ) ( )2 2

,1, , , ,
,

p
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p
p

p p p

J
E x y z j x y z

k k
ψ

ωµ ψ
ψ ψ

=
−∑  (5.39) 

where  

 *, ppJ J dvψ ψ= ∫  (5.40) 

and 

 *,p p pp dvψ ψ ψ ψ= ∫  (5.41) 

Note that the modal field for mode p  is given by ( ), ,zp pE x y zψ=  and v  denotes the 

volume surrounding the antenna and enclosed by the PML cover. Also, note that in (5.38) 

and all of the subsequent formulations, the surface and volume integrals are written in a 

compact format for simplicity.  In terms of the complex resonance frequency, the electric 

field at the source location may be re-written as: 
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As discussed in section 5.4, the complex resonant frequency and the normalized field 

distribution are direct outcomes of any FEM Eigen mode solver. Thus, the field 

normalization process can be easily carried out as a post-processing numerical integration 

step. Hence, one can write: 
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The input impedance can then be re-written in an expandable form of a parallel RLC 

circuit as: 
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where dcC  denotes the dc capacitance of the patch (DC mode), and  
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with 
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Fig. 5.6. Equivalent circuit for multimode radiator. 

 

 

The generalized equivalent circuit for a multimode radiator can then be developed, as in 

Fig. 5.6. It should be noted that an additional inductance is added to account for the 

inductance associated with probe feeding. dcC  is the dc capacitance, where its associated 

loss is typically ignored when using low-loss substrate materials. The P P PR L C  circuit 

represents the fundamental antenna mode, with p p pR L C  representing the higher order 

modes taken into consideration. The term 'L  is associated with an approximation for the 

effect of the higher order modes that are not considered in detailed analysis.  

As discussed, the forms in (5.42) and (5.44) are easier to evaluate and more accurate than 

that in (5.13). However, it is important to mention that both were developed assuming 

orthogonal mode expansions, a condition which is not strictly satisfied when treating the 

antenna as a lossy cavity (due to radiation and/or material losses). Notably, most 

published research does not seem to mind the effect of such approximation on the 

published data (mainly using impedance boundary condition at the patch edges). For 
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example, Chow and Luk derived a CAD formula for rectangular patch antennas on thick 

substrates where the error in the calculated antenna impedance is less than 3% [201].  

It is important to note that the accuracy of the Eigen analysis is further mystified when 

trying to assess the validity of modal expansion technique using numerical PML 

boundaries. Observing Fig. 5.5, one would notice that the problem space is bounded by 

PEC walls defining a metal cavity. The PMLs are placed inside the cavity to encompass 

the space around the antenna. From an Eigen point of view, this can be classified as 

modal analysis of an inhomogeneous cavity. For the orthogonality condition to remain 

valid, this metal cavity needs to remain lossless. Here the choice of PML boundaries 

makes a significant impact on the orthogonality of the Eigen modes, since the most 

prevalent formulations include that of [207] which involves lossy PML, and that in [208] 

which is a lossless form. The former is easier to implement numerically, while the latter 

is preferable from a formulation point of view. Regardless of the nature of the PML, as 

will be shown later, the Eigen-based method remained useful for presenting first-order 

designs of many different types of antennas, despite the lack of strict orthogonality 

among the Eigen modes.  
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5.6  Effect of the Feeding Mechanism 

Before being able to construct the impedance response (following Fig. 5.6), one first 

needs to account for the feeding mechanism. Proximity coupling and aperture feeding are 

among the possible schemes [6] [7] [8] [191] [195] [196] [268]. In this section, the probe-

feeding mechanism is chosen as an example for discussion. For most typical probe-fed 

antennas, the probe can be modeled with an inductance, probeL .There are several papers 

on the modeling of such an inductance. The work in [200] summarizes different 

techniques for the calculations and presents an interesting discussion on their accuracy.  

 

 

Fig. 5.7. Impedance plots of circuit model with and without feed probe. 

 

Fig. 5.7 shows a pictorial that illustrates a typical circuit resonance with and without a 

feed probe. The reactance plot clearly shows the effect of the probe reactance on a 

parallel resonant circuit model, with no effect (as expected) on the resistance plot. The 

values shown are for 1nH, 1pF, 100patch patch patchL C R= = = Ω , and a common probe 

inductance of 2nHprobeL = . This means that care should be exercised when developing 

impedance models for the antennas, since the feed inductance can severely affect the 

realizable impedance bandwidth.  
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Apart from the circuit-model manipulations, and to clearly assess the effect of the probe 

inductance on the input impedance of antennas, let us study the variation of patch antenna 

impedance when varying the probe location. Fig. 5.8 shows a typical rectangular patch 

configuration, with its typical mesh layout and fundamental mode field configuration. 

The substrate is chosen to be foam with 1rε =  and no associated losses. The substrate 

height is allowed to vary in discrete values: 20milH = , 100milH = , and 200milH = . 

For illustration purposes, the patch is chosen as a fixed rectangular metallic strip with 

dimensions of length 25mmL =  (y-dimension) and width 35mmW = (x-dimension). 

This means that the fundamental mode is directed longitudinally along the patch's width. 

The effect of a probe feeding a patch antenna at different feed locations 

( ) ( ), ,locf l cf ox y X Y=  is studied in Fig. 5.9 - Fig. 5.12. (Origin of the co-ordinate system 

is located at the center of the patch). 

 

 

 

Fig. 5.8. Typical CAD model of probe-fed patch antenna demonstrated using its meshing 

configuration and the resulting field distribution of its first mode at resonance.  

 

Fig. 5.9 illustrates the variation of the input reactance that occurs from varying the feed 

location across the x-direction for different substrate heights. The reactance remains 

fairly constant for each fixed height. On the other hand, Fig. 5.10 shows that the input 
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resistance varies, as predicted, from (5.46) and is not affected by the associated probe 

inductance.  

 

 

Fig. 5.9. Reactance variation with moving feed location in the x-direction. 

 

 

Fig. 5.10. Reactance variation with moving feed location in the x-direction. 

 

Fig. 5.11 and Fig. 5.12 show how the antenna reactance and resistance, respectively, vary 

across the y-direction. Varying the probe location across the y-direction adds some 

complexity to the analysis, such that simple probe models are not valid anymore [200]. 
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This is mainly due to the fact that most of the analysis on probe inductance assumes 

symmetric placement across the axis of a patch antenna or a parallel plate waveguide [2]. 

In reality, when the probe is closer to one edge than the other, it will suffer from some 

unbalanced currents, possibly explained by applying the image theorem at the probe 

location. Thus, in realistic antenna design with several slots and complex shapes, the 

exact calculation of the probe inductance at a random feed location is quite a tedious task. 

A similar challenge arises when dealing with proximity or aperture feeding mechanisms 

(i.e., how to extract a transformer model to properly represent the proximity/aperture 

scheme for an arbitrary shaped 3D antenna). Such cases require further investigation. 

However, as illustrated next, the method is quite efficient in facilitating the design 

process of many practical antennas. 

 

 

 

Fig. 5.11. Reactance variation with moving the feed location in the y-direction. 
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Fig. 5.12. Resistance variation with moving the feed location in the y-direction. 

 

 

 

5.7 The Concept of Impedance Maps 

A close look at (5.43) - (5.49) suggests the possibility of creating a map of the input 

impedance at each point of an antenna surface when fed by a probe. As discussed in the 

previous section, the probe inductance may significantly affect the input reactance. In 

addition, there is no accurate formulation to predict its associated inductance when 

feeding through an arbitrary off-axis location. However, the input resistance remains 

nearly unaffected. The ability of creating such maps is of great importance. Traditional 

techniques involve a large number of parametric trials and optimization cycles until a 

desired feed resistance is found. With the proposed concept, it is shown that seeking a 

location with specific input resistance is reduced to a single Eigen mode simulation and 

some simple field processing procedures.  

 To illustrate the proposed concept of impedance maps, two examples are 

presented [GS.10]. First, an E-Slot antenna [158] [202] is analyzed through the modal 

solver. By analyzing its first two fundamental modes, it is possible to create the 

associated resistance maps. These are then used to find proper feed locations to have 
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dual-feed dual-band antenna, as well as a single-feed dual-band antenna. Second, a very 

simple 3D conformal antenna, suitable for operation in a portable device at the GSM low 

band, is presented. The concept of impedance maps is then demonstrated by facilitating 

the determination of an appropriate feeding location. 

 

5.7.1 Dual-Band Single-Feed and Dual-Feed Dual-Band Antenna Designs 

An E-Slot antenna [158] [202]is widely known in the antenna community. It is simply a 

patch antenna with two slots forming the shape of the letter “E”. It is usually used to 

realize two close resonances and thus meet a wider bandwidth requirement, which is not 

achievable with a simple patch of the same dimensions. Also, it is sometimes used to 

create two resonances apart, to meet some dual band requirement. The latter application 

will be studied here. Let us arbitrarily choose the following values for the parameters 

shown in Fig. 5.13: 1 265,  105,  15.3,  6.3,  47,sL W W W L= = = = =  and 3mmH =  on a 

foam substrate. An Eigen mode simulation is applied seeking the first two fundamental 

modes of such patch. Fig. 5.14  shows a screen capture of the Eigen solver report solved 

in HFSS, and processed in Matlab, with Fig. 5.15 - Fig. 5.18 illustrating the resulting 

modal electric field and surface current distributions of both modes. 

 

 

Fig. 5.13. The E-Slot antenna. 
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Fig. 5.14. Screen capture of the modal solution results. 

 

 

 

Fig. 5.15. Electric field distribution of the first fundamental mode. 
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Fig. 5.16. Electric field distribution of the second fundamental mode. 

 

 
Fig. 5.17. Surface current distribution of the first fundamental mode. 
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Fig. 5.18. Surface current distribution of the second fundamental mode. 

 

Now, using the resulting information from the Eigen solver and processing it using  

(5.44) - (5.49), one can plot the resistance values at any location on the patch surface, 

without the need for excessive parametric procedures. Fig. 5.19 and Fig. 5.20 show the 

resulting maps for each of the modes, respectively. For comparison, Fig. 5.21 compares 

the normalized input resistance across the center line of the E-patch at 2.05GHz (when 

generated using an actual feeding probe through driven simulations) versus that predicted 

from the map. A very good correlation is observed. As noted in Fig. 5.19 and Fig. 5.20, 

there are a number of separate feed locations that can each excite one of the modes, while 

slightly perturbing the other. By placing two physical feed probes at the locations 

highlighted in Fig. 5.19 and Fig. 5.20, one realizes a dual-band dual-feed antenna with its 

response verified through a single driven numerical simulation, as shown in Fig. 5.22.  
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Fig. 5.19. The resulting resistance map for the first mode with a feed location suitable for dual 

feed operation. 

 
Fig. 5.20. The resulting resistance map for the second mode with a feed location suitable for dual 

feed operation. 
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Fig. 5.21. Comparing the normalized input resistance from driven and modal simulations. 

 

 
Fig. 5.22. Resulting response of the dual-band dual-feed antenna. 

 

Using the same maps, one can easily find a feed location to excite both modes of interest, 

simultaneously. Fig. 5.23 and Fig. 5.24 highlight one possible location.  Using (5.44) and 

the modal analysis information, it is possible to predict the return loss plot of such single-

feed dual band antenna. Fig. 5.25 compares the resulting return loss plot from using 

(5.44) with that from a single driven simulation with an actual feed placed at the location 

shown in Fig. 5.23. It is noteworthy to observe that the deviation seen in Fig. 5.25 may be 
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attributed to two important factors. First, only the first two modes were utilized in (5.44). 

Adding more modes should increase the accuracy of the model, at the expense of more 

computational complexity. Second, placing the feed probe near the corner of the patch 

implies some inaccuracy in the utilized probe formulation (as discussed in section 5.6).  
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Fig. 5.23. The resulting resistance map for the first mode with a feed location suitable for single 

feed operation. 

 
Fig. 5.24. The resulting resistance map for the second mode with a feed location suitable for 

single feed operation. 
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Fig. 5.25. Comparing the input return loss from the circuit model and the actual simulation.  

 

 

5.7.2 Design of a Smartphone Antenna 

The previous example featured a planar antenna. To verify the usefulness and the 

generality of the proposed modal analysis approach, this example discusses the design of 

a conformal 3D cell phone antenna covering the GSM900 band. The design flow can be 

listed as follows: 

1. Simple estimations using the Q-BW relations discussion in Chapter 4 indicate 

that we need a Q of around 11 to cover GSM900 band with VSWR of 3.  
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2. For a smartphone board of 45X90mm, one may use a simple strip wrapped 

around the edge of the board, as shown in Fig. 5.26. The wrapped strip has an 

overall height of 4mm and is connected to the board through a short strip 

connection. The exact dimensions are determined from an Eigen mode 

simulation that searches for the required complex frequency to meet the 

bandwidth requirements. After some parametric trials, it is possible to have a 

design with modal data, as shown in Fig. 5.27. Here, the first fundamental 

radiating mode of the antenna is numbered as Mode 2. Its quality factor is 

around 9.6, which ensures meeting the required impedance bandwidth. It is 

worth mentioning that Mode 1 in Fig. 5.27 denotes a non-radiating numerical 

artifact mode associated with the perfect matching layers that terminate the 

space around the cell board. 

3. Once a satisfactory Q is realized at the desired resonance frequency, the field 

data associated with the simulated structure is processed and the impedance 

(resistance) maps are generated (see Fig. 5.28). Studying these maps, one can 

rapidly find a suitable location for the feeding probe. Fig. 5.29 shows the 

resulting return loss from a numerical driven simulation of the cell antenna. It 

can be seen that the required bandwidth was successfully covered.  

 

 

Fig. 5.26. Visualization of a simple smartphone antenna. 
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Fig. 5.27. Screen snapshot of the resulting modal data. 

 

 

Fig. 5.28. Impedance (resistance) map of the smartphone antenna. 
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Fig. 5.29. Input reflection coefficient of the antenna using a driven simulation. 

 

To further demonstrate the accuracy of the generated maps, Fig. 5.30 and Fig. 5.31 show 

the predicted input resistance at two arbitrary locations. Next, an actual feed probe is used 

in a number of driven simulations. The probe location is fixed across the x-axis, and is 

allowed to vary across the y-dimension. The resulting input resistance is shown in Fig. 

5.32. Comparing Fig. 5.30, Fig. 5.31, and Fig. 5.32, there is a maximum of 5% deviation 

between the results from the maps and those from the driven simulations. This is an 

acceptable accuracy, considering that the resistance maps were generated for only the 

first fundamental radiating mode. Including a few more additional modes should enhance 

the accuracy at the expense of more computational efforts.  
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Fig. 5.30. The resistance map at (x,y) = (45,-14). 

 

 

Fig. 5.31. The resistance map at (x,y) = (45,-2). 
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Fig. 5.32. Input resistance plots generated using a driven simulation with a probe located at 

different locations across the y-axis. 

 

 

5.7.3 Tunable Capacitor-Loaded Antenna 

Let us consider a probe-fed patch antenna design of 60X40mm, on a 3mm foam layer 

over a large ground plane. The dominant radiation mode of the antenna resonates at 

2.16GHz. Let us further assume that the antenna shape has to be fixed, while meeting a 

VSWR=2:1 or better from 1.9GHz to 2.1GHz. A look at the antenna scattering 

parameters using a probe 5 mm off-center of the patch's long edge, and using the 

aforementioned Q calculations, it becomes clear that no RLC matching network exists to 

enable meeting the requisite bandwidth. One alternative is to use a tunable matching 

network. One realization for this network is shown in Fig. 5.34, where 
1

22 nHL      , 

1
1 pFC      , and 

2
C  varies from 1 pF     to 4 pF    . Variable capacitors are widely 

available in various technologies, such as MEMS, BST or Silicon. Unfortunately, there is 

no such thing as ideal components, and all inductors and capacitors will have an 

associated Q value. When dealing with portable devices, one is typically bounded by 

surface mount devices (SMDs) to keep the circuit footprint as small as possible. The 
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inductor Q of the 0402 family is typically less than 15, with slightly better numbers for 

the capacitors [205]. The Q numbers are even worse for smaller families as the 0201. 

Currently, higher Q values are possible, but with a significant markup on price [205]. 

Thus, when considering the component losses in the matching network, and assuming a Q 

of 20 for the inductors and Q of 25 for the capacitors, the overall system efficiency 

(match+antenna) would range from 70% to 80% across 1.9GHz to 2.1GHz instead of the 

near 100% efficiency for a metal-based naturally-matched resonant patch antenna on a 

foam substrate.  

Another critical issue associated with matching networks is the ability to withstand high 

peak RF voltages when the load is in a high VSWR scenario. For example, let us consider 

feeding the aforementioned antenna when matched with the circuit in Fig. 5.34, using a 

34dBm signal. Let us also assume using a silicon-based solution, as that from Peregrine 

Semiconductors. The peak RF voltage rating of such a tunable capacitor is typically much 

less than 30V. Interestingly, a quick calculation of the RF voltages across 
2

C  for different 

load conditions reveals that the capacitor may in fact suffer from much higher voltages 

(Fig. 5.35, courtesy of Peregrine Semiconductors). This is quite a serious issue that limits 

the practical application of the tunable capacitor concept in many applications. 
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Fig. 5.33. Scattering parameters of the probe-fed patch antenna. 

 

 

Fig. 5.34. Possible matching network. 
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Fig. 5.35. RF voltages across the tunable capacitor in the matching network under study (courtesy 

of Peregrine Semiconductors). 

 

Let us now consider an alternate solution by connecting the tunable capacitor directly to 

the antenna metallization. This topology is widely adopted in reconfigurable antenna 

solutions [206]. Here, the Eigen mode analysis discussed earlier can be applied to find the 

optimum location and value of the tunable element, in order to cover the desired range of 

frequencies. A capacitor Q of 25 was used in all numerical simulations. It was found that 

placing the capacitor 10mm off-center across the long edge of the patch antenna would 

suffice. It is important to note that placing the capacitor directly at the edge would result 

in a wider tuning range at the expense of lower antenna efficiency. Fig. 5.36 shows a 

pictorial of the probe-fed antenna when loaded with a tunable capacitor at 10mm off-

center (probe placed 15mm apart from capacitor). Fig. 5.37 demonstrates the tuning range 

of the antenna. A full-wave simulation reveals that the antenna has an overall efficiency 

of 90% or higher for all tuning states. In addition, the peak RF voltage remains below 

17V in all cases. This example shows the versatility of the Eigen mode method in 

tackling tunable-based designs. It also demonstrates that loading the antenna with the 

tunable element has some system advantages compared to relying on a tunable matching 

network.  
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Fig. 5.36. Probe-fed patch antenna loaded with a tunable capacitor. 

 

 

Fig. 5.37. The variation in the input reflection coefficient of the antenna for different capacitor 

values. 
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5.8 Discussion and Conclusions 

In this chapter, the modal theory of antennas was re-visited. Through some basic analysis, 

a number of limitations with the commonly used formulations were highlighted. Some 

subtle changes were proposed to increase the range of validity and improve the accuracy 

of the relevant formulations. Through these formulations, the designer will always have 

relevant information about the maximum attainable bandwidth, the operational frequency, 

and the radiation pattern of any antenna at hand.  

In addition, the concept of impedance maps was proposed and was demonstrated as an 

efficient design tool through a number of design examples. This is a special concept that 

allows the designer to predict beforehand the impedance values at any location on a 

general antenna, without need for parametric and optimization trials seeking an 

appropriate feed location. Notably, the presented implementation steps are quite general 

and can be easily used towards the design of multi-band multi-feed antennas. In fact, the 

proposed method have been succeffuly implemented in designing several in-market 

antennas, ranging from indoor distributed antennas to handheld devices with full metal 

ring bezels.  

Notably, there is a major challenge with the outlined design procedure. Specifically, there 

is still no systematic approach to find an antenna structure with the required complex 

frequency needed to meet the design specifications. To search for such a design, an 

efficient optimization strategy is needed. One should note that this optimization cycle is 

expected to be different from the traditional ones, given the presented advancements in 

the calculation of the antenna quality factor. An enhanced optimization cycle would then 

translate the return loss specifications into seeking structures with specific resonant 

frequencies and quality factors.  This translation would provide the optimizer with some 

physics-based knowledge of the structure investigated, which in turn should improve the 

convergence of the optimization cycle. Interestingly, various optimization routines are 

already implemented in commercial EM solvers. However, most of them require a 

significantly large number of simulations before a simple antenna design can be 

optimized. Thus, it is not of an apparent benefit if one attempts modifying these relatively 

slow converging algorithms to accommodate the proposed design procedure. Hence, 
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there is quite an urgent need for the development of an efficient optimizer suitable for the 

antenna problems. This precise motivation led to the work presented in the next chapter. 
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Chapter 6: Multi-Objective Optimization Algorithm for 
Accelerated Antenna Design 

“Making the simple complex is easy. Making the complex simple, awesomely simple, 

now THAT is genius.” 

Charles Mingus 

 

In the previous chapter, it was concluded that a new fast optimization strategy is needed 

for the practical application of the proposed modal-based design techniques. Several 

interesting optimization techniques have been developed thus far, some of which have 

already become standard features in many commercial electromagnetic simulators [209]. 

Among these are the classical quasi-Newton techniques [210], genetic-based algorithms 

[93] [211], particle swarm [213]-[215], evolutionary programming [216]-[218], and space 

mapping [219]-[223]. Many of these algorithms are also integrated with neural networks 

[224]-[225] seeking an efficient design approach. Still, it has been observed that most 

available commercial solvers relying on these optimization routines require numerous 

simulations before a solution is achieved. In addition, when dealing with several design 

parameters or in multi-objective designs, the typical number of required simulations is 

excessively high, with many routines even failing to approach a satisfactory solution. 

Realistically speaking, in most practical design scenarios, parametric analysis and 

optimization cannot be alleviated. To this end, one motivation for this work is to apply a 

new antenna design approach that requires fewer calls to the EM simulator and thus 

results in a faster design cycle. In addition to achieving a feasible design, it is also 

desirable to assess its sensitivity to fabrication/assembly tolerances without the need for 

further EM simulations. This motivates research for models that accurately describe the 

behavior of the designed antenna.  

The proposed optimization approach can be classified as an optimization-on-the-fly 

procedure that does not require any priori simulations or knowledge [226]-[228]. It 
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simply relies on constructing a multi-dimensional rational Cauchy model [229]-[231] that 

is then optimized to predict a design parameter set.  The cycle terminates if the set results 

in a design that meets the required specifications; otherwise, the cycle continues, using 

the new developed parameter set (along with sets from previous iterations) to build a 

better rational Cauchy model, which is then used in the new optimization cycle.  

This chapter is divided as follows. First, a review of the utilized multi-dimensional 

rational Cauchy modeling technique is presented in section 6.1. Next, the proposed 

design through optimization methodology is discussed in sections 6.2 through 6.4. The 

flow chart of the algorithm and its different steps is discussed in detail in section 6.5. 

Select examples are then presented in section 6.6 to demonstrate the algorithm’s 

functionality. 

6.1 A Brief History of Multi-dimensional Rational Functions 

One commonly utilized approach to model the frequency response of electromagnetic 

structures is the Cauchy interpolation technique [229]-[231]. In this approach, the 

frequency response is modeled using a rational function of two polynomials. For a long 

time, this approach was only limited to modeling the frequency response for a given set 

of parameters. In the 1970s, however, the Cauchy mathematical approach was extended 

to model multi-dimensional systems for control applications [231]. Later, in the last 

decade, this multi-dimensional approach was also adapted for EM problems [232]-[236], 

where rational polynomials are functions of both the frequency and other design 

parameters. However, modeling a moderate scale EM problem using this approach would 

typically require numerous full wave EM simulations. In addition, one remaining 

challenge is how to obtain the coefficients of these polynomials to model resonant 

structures [236]. This added a considerable amount of complexity to the problem. 

It is noteworthy to observe that most of the previous work that addressed multi-

dimensional modeling aimed at utilizing the developed models in optimization. A few 

points can be observed with this approach. First, a large number of sample points is 

typically needed [232]-[236]. For example, the lowest possible number of points reported 

uses 125 points for modeling a simple resonant three-variable problem [232]. Recently, 
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this number was improved to 64 points [237] with each of these points representing a full 

wave EM simulation. This is still considered a costly process, given that if the design 

invoked 5 parameters instead of 3, the number of required simulations would be around 

1024. Large numbers of points exceeding 1000 was also reported in [234]-[236]. Another 

issue with this type of modeling is that it assumes a given domain for the parameters. 

Enlarging this domain would significantly complicate the process, as more points may be 

needed, especially if resonances occur in this domain. On the other hand, shrinking the 

domain would result in limited modeling scope, in spite of the considerable number of 

simulations needed to build it.  

Thus, to realize an antenna that should incorporate multiple bands and fit into various 

miniaturized packages, the model-then-optimize approach, in its current form, is quite 

costly.  It would most likely provide similar (if not inferior) performance to currently 

available optimization routines used in antenna design. Still, one should emphasize that 

the model-then-optimize approach has the advantage of providing a parameterized model 

that can be used in tolerance, statistical and yield analyses.  

 

6.2 Proposed Formulation of Multi-dimensional Cauchy Rational Functions 

6.2.1 Notations 

Let us consider a general electromagnetic response, ( )1 2, ,.... nR p p p , which is a function 

of n  parameters, 1 2, ,....,  np p p .  These parameters may include frequency, dimensions of 

different discontinuities, and material properties. Such a response may then be modeled 

by a multidimensional rational function in the form: 

 ( ) ( )
( )

1 2
1 2

1 2

, ,....,
, ,....,

, ,....,
n

n
n

N p p p
R p p p

D p p p
=  (6.1) 

where ( )1 2, ,...., nN p p p  and ( )1 2, ,...., nD p p p  are  polynomial functions of the design 

parameters. The order of these polynomials is typically determined according to the 
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nature of the problem. In the most general form, the numerator or denominator of order 

M  with N  parameters can be written in the form: 

 
1

0

MN

i
i

ia a p
=

 + 
 

∑  (6.2) 

with the number of terms in this polynomial given by: 

 
1 1

1#  of Terms 1
jM

j i

N i
i= =

 + − = +   
  

∑ ∏  (6.3) 

For example, a third-order multi-dimensional polynomial in N parameters can be written 

as: 
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 (6.4) 

Each of the polynomial terms is associated with a coefficient. To solve for these 

coefficients, one would typically need a number of sample points equal to the number of 

unknown coefficients in both the numerator and denominator. A system of equations may 

then be constructed and solved.   

In order to clearly illustrate the approach used in this work, let us first describe the typical 

steps in solving this system. Without loss of generality, for a single variable system one 

can write: 

 ( ) ( )
( )

0

0

n

i
i

i

i

i
m

ia pN
R

D b p

=

=

= =
∑

∑
p

p
p

 (6.5) 
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Setting 0 1b = , we have 1n m+ +  coefficients to solve for. Using 1n m+ +  distinct p  

values, the corresponding function values are: 

 ( )         0,1,....,iR i n mξ = +  (6.6) 

Thus, it is possible to write: 
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 (6.7) 

which takes the form =Ax b , with A  given by: 
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 
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 

 (6.8) 

Extending this matrix formulation to the multi-dimensional case is a straightforward but 

lengthy procedure. Solving it, however, presents some notable challenges. In [235], the 

problem formulation is changed to 0=Ax  rather than =Ax b , to utilize the total least 

squares method instead of the least squares method. This approach produced good results 

in low-dimensional problems but suffers from spurious solutions that did not correspond 

to a physical model [235]. In [232], the multidimensional problem was divided into a 

number of one-dimensional problems that are solved recursively. However, this approach 

requires a large number of sample points to reach a satisfactory model. Other techniques 

are found in [236], but these approaches were not proven suitable for rapidly varying 

responses such as those associated with antenna structures.  
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6.2.2 Rational Model Development Through Optimization 

Here, the problem is tackled differently from those in [232]- [236] by casting it into a 

linear programming form [237]. Assume there are sN  data samples available, given by 

( )i iRR = p , 1, 2,... si N= . The thi sample is given in a multidimensional Cauchy model by: 

 ˆ i
i

i

T

TR =
a x
b y

 (6.9) 

where [ ]0 1
T

Nna a a=a   and [ ]0 1
T

Dnb b b=b   are the optimizable coefficient 

vectors. The proposed Cauchy model is thus not affected if the numerator and the 

denominator are scaled by the same factor.  The vectors ix  and iy  are, in general, 

parameter- and frequency-dependent vectors. The coefficient vectors a  and b  should 

minimize the error between the actual output data points and the Cauchy model. The 

corresponding optimization problem can be written as: 

 ( ){ },
min max iia

T

b

T
iii

R −a xpb y  (6.10) 

Typically, in any numerical solver or in a realistic measurement experiment, there exists a 

tolerance margin for the accuracy of the simulated/measured response. Including this 

tolerance margin, iε  of the thi  data sample is likely to enhance the robustness of the 

algorithm.  The modified optimization algorithm is thus modified to: 

 ( ) ( ){ },
min max max

i i

T T
i i i ib i ia i R

R R
ε∆ ≤

  + ∆ −   
b y a xp p  (6.11) 

where iR∆  is the expected error in the thi sample with i iR ε<∆ .  One problem with this 

type of formulation is that it allows for the spurious solution 0TT
i i= =a x b y . This 

solution, observed also in [235], results in a non-physical situation. In a linear 

programming problem, this situation can be avoided by adding a set of suitable linear 

constraints.   
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For example, and without loss of generality, when modeling the scattering parameters 

response of passive structures such as antennas, one can write: 

 ( ) ( ){ },
min max max

i i

T T
i i i ib i ia i S

S S
ε∆ ≤

  + ∆ −   
b y a xp p  (6.12) 

To ensure that the numerator is never zero, a set of linear constraints is added: 

 1     1, 2,.....,T
i si N≥ =b y  (6.13) 

Note that the coefficients of the numerator and the denominator are scalable. Any 

positive number can thus be used in (6.13).  The second set of linear constraints:  

 0     1, 2,.....,T
i si N≥ =a x  (6.14) 

ensures that the response is larger than or equal to zero.  For a passive structure, the 

scattering parameters are between 0 and 1. Thus, the third set of linear constraints is 

added: 

      1, 2,.....,T T
i i si N≥ =b y a x  (6.15) 

The integration of the aforementioned linear constraints is numerically a standard 

procedure in convex optimization problems. However, in its current form, the objective 

function in (6.11) is a non-linear function. Classical linear programming techniques allow 

for dealing with this problem by introducing an auxiliary variable t, as follows [238]-

[239]:  

 

( ) ( )

, ,
                         min

Subject to: 

max ,  1, 2,.....,
i i

T T
i i i

a

i

b t

i i sR

t

R R t i N
ε∆ ≤

 + ∆ − ≤ = b y a xp p

 (6.16) 

where the set of constraints can be expanded by adding constraints associated with the 

physical limitations of the system, as discussed earlier. The current nonlinear constraints 

can now be made linear by expanding it into the two linear constraints: 
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 ( ) ( ){ }max
i i

T T
i i i ii iR

R R t
ε∆ ≤

 + ∆ − ≤ b y a xp p  (6.17) 

and  

 ( ) ( ){ }min
i i

i
T T

i i iR i iR R t
ε∆ ≤

−  + ∆ − ≤ b y a xp p  (6.18) 

where either (6.17) or (6.18) is active for the current sample with 1, 2,....., si N= .   

For a positive valued response, these two sets of linear constraints can be rewritten as: 

 ( )      1, 2,.....,T T
i i ii i sR t i Nε + − ≤ = b y a xp  (6.19) 

and  

 ( )      1, 2,.....,T T
i i i ii sR t i Nε − + + ≤ = b y a xp  (6.20) 

Now, integrating all previous steps, the following linear convex programming problem 

for the S  parameters is achieved: 
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 (6.21) 

This type of a linear program can be solved by the simplex method [238]-[239] which 

supplies the global solution of the problem. Linear constraints can be added or removed 

from (6.21) to model other types of responses.  It is worth mentioning that there are 

several available efficient optimization packages for solving these types of linear 

programming problems, including MOSEK [240], TOMLAB [241], and MATLAB [30]. 
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6.3 The Proposed Design Through On-the-Fly Optimization 

Having illustrated the proposed approach in treating the multi-dimensional Cauchy 

modeling, let us consider the proposed design through on-the-fly optimization. The 

approach proposed in this work is to construct a parameterized Cauchy model while 

simultaneously applying optimization. This approach still maintains the capability of 

performing tolerance, yield, and statistical analyses, along with its capability in finding a 

feasible solution for the design problem in a relatively low number of iterations. The 

following two simple examples illustrate some of the fundamental concepts of the 

proposed approach. This is followed by detailed description of the algorithm used therein. 

6.3.1 A One-Dimensional Illustrative Example 

Assume that one needs to find the value of the variable p , denoted by *p , such that the 

function ( )* 0.5R p = . For simplicity, the function ( )R p  is assumed to represent some 

unknown system behavior that is best described as ( ) ( )cosR p p= . Typically, this 

( )cos p  behavior is not known beforehand to the designer. Now, from a designer’s 

perspective, very few test values of the variable p  should be needed to find the value, 

which realizes a system response ( )* 0.5R p = .  Hence, the algorithm will take the form 

of Fig. 6.1. The designer has to supply some initial guess for the value of the parameter 

p , along with some bounds that would typically reflect some physical/fabrication limits, 

in addition to the required response. In this example, the solution is assumed to exist 

within the domain [ ]0,p π∈ . Also, an initial guess for p  is chosen randomly as 

0.9initialp = . 
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Fig. 6.1. A general flow chart of the proposed optimization algorithm. 

 

The proposed algorithm runs as follows. First, the algorithm uses the user input, initialp ,  

to call a numerical solver or control a physical experiment. The resulting response 

( )initialR p  is used along with the initial value initialp   to build the first iteration Cauchy 

rational model with a pre-defined order.  As discussed earlier, this problem can be cast as 

a convex linear programming to find the best fit for the rational Cauchy function, given 

the available sample points. The second step in the algorithm is to find a better value for

p . The Cauchy model is optimized to seek the parameter optp  that satisfies the specified 

objective. The obtained design is then verified through a call to the numerical/EM solver 

to obtain the corresponding new response. Next, a new Cauchy rational model is 

constructed using all available sample points. The cycle goes on until the desired 

response is achieved. Table 6.1 illustrates the steps for 0.9initialp = , while Fig. 6.2 shows 

how the resulting models behave as a function of the parameter p .  
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Fig. 6.2. A local comparison between the models developed using Cauchy rational functions and 

the exact response. 

 

Table 6.1. Algorithm Results Starting with 0.9initialp =  
Iteration Parameter Value ( )p  Response Value ( )R p  Absolute Error 

1 0.9 0.6216 0.1216 

2 1.08 0.4713 0.0287 

3 1.0443 0.5025 0.0025 

4 1.0472 0.5000 62 10−×  

 

The resulting second-order Cauchy model after 4 iterations can then be written as:  

 ( )
0

2

2.9

1.00 0.3918 0.16121.088
1.00 - 0.1612  +0.0613initial

Estimate p

p pR p
p p=

− −
=  (6.22) 

It should be emphasized that each iteration corresponds to a single call to the 

numerical/EM solver or to a single physical experiment. Changing the initial point to 

0.1initialp =  in this example results in comparable accuracy but a slightly different model: 

 ( )
0

2

2.1

1.00 0.3361 - 0.19071.021
1.00 - 0.2488 0.1421initial

Estimate p

p pR p
p p=

−
=

+
 (6.23) 

Changing the order to 1 results in a simpler model, but with limited range of accuracy: 
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 ( )
0.9

1.00 0.65121.1788
1.00 0.2394initial

Estimate p

pR p
p=

−
=

−
 (6.24) 

Fig. 6.3 shows a wide range comparison between the Cauchy models of different orders 

and the exact response.  As expected, the models match well within the region of the 

sample points obtained during optimization. Obvious deviation is noted outside this 

region, as the Cauchy model was not given any sample points therein. 

 

Fig. 6.3. A wide range comparison between the models developed using Cauchy rational 

functions to the exact response for the one-dimensional example. 

 

6.3.2 A Three-variable Resonance Circuit 

As discussed earlier in this work, many resonant-based responses can be approximated by 

a combination of parallel or series resonance networks. So, let us consider an RLC 

parallel network. The input impedance of such a network is written as: 

 ( ) 1, , , 1 1inZ L C R
j C

R j L

ω
ω

ω

=
+ +

 (6.25) 

The input reflection coefficient seen at the ports of the network can then be written as: 

 ( ) ( )
( )

0

0

, , ,
, , ,

, , ,
in

in

Z L C R Z
S L C R

Z L C R Z
ω

ω
ω

−
=

+
 (6.26) 
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where 0Z  is the characteristic impedance of the feed line. After some simple 

manipulations, one can write: 

 

( ) 2

4 2 2 2 2 2 2 2
0 0

2 2 2 2 2 2 2 2 2 2
0 0 0

4 2 2 2 2 2 2 2
0 0

2 2 2 2 2 2 2 2 2 2
0 0 0

, , ,

2

2
          

2

2

S L C R

Z L C R Z LCR
L R Z L R Z L Z R
Z L C R Z LCR
L R Z L R Z L Z R

ω

ω ω

ω ω ω
ω ω

ω ω ω

=

 − +
  − + + 
 − +
  + + + 

 (6.27) 

In order to accurately model the behavior of this network, a polynomial with the highest 

powers of both the numerator and denominator should be generated. That is, in principle, 

one needs a Cauchy rational function of order 10 to capture all of the details of this 

function. However, in a realistic design situation, one typically tries to find the values of 

components, or physical dimensions, which realize a desired response at select frequency 

points. For example, Fig. 6.4 shows a typical desired frequency response where the 

reflection coefficient at the input ports meets specific constraints.  

 

Fig. 6.4. The constraints on the three-variable resonance circuit. 

 

This simple observation should allow the designer to select a few discrete frequencies and 

include the constraints at each of these frequencies in the convex linear programming 

algorithm. Thus, the problem simplifies to: 
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( ) 2

4 2 2 2 2 2 2 2 2 2 2
0 0

2 2 2 2 2 2 2
0 0 0

4 2 2 2 2 2 2 2 2 2 2
0 0

2 2 2 2 2 2 2
0 0 0

, ,

2

2
     

2

2

N f

f f f

f f

f f f

f f

N N N

N N

N N N

N N

S L C R

Z L C R Z LCR L R

Z L R Z L Z R

Z L C R Z LCR L R

Z L R Z L Z R

ω ω

ω ω ω

ω ω

ω ω ω

ω ω

=
=

 − +
 
 − + + 

− +

+ + +

 
 
 
 

 (6.28) 

Thus, at each frequency, the problem is simplified to constructing a rational Cauchy 

model of order 6 to capture all details of the behavior of this function. In this example, 

one now needs to solve for 168 coefficients. However, as illustrated earlier, for design 

purposes, it is not necessary to model the full functional behavior. For example, if multi-

dimensional rational functions of order 3 are used, then there are only 40 coefficients to 

identify. Here, 13 distinct frequency points are specified, with the response constrained to 

be below a certain value for the 11 middle ones and higher than a certain value at the 

edge frequencies, as shown in Fig. 6.5. A suitable linear programming problem is then set 

up as discussed earlier.  

 

 

Fig. 6.5. The constraints imposed on discrete frequencies of the three-variable resonance circuit. 

 

Following the previously outlined algorithm, and utilizing a min-max objective function, 

a third-order rational model provides a maximum cost of 43 10−− ×  deviation at the 
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selected frequencies, after only 13 calls to the circuit simulator, each with R , C  , and L  

values as the input parameters.  The responses at the thirteen selected frequency points 

are the corresponding output of the simulator. The same accuracy can be achieved with 

16 iterations, if we use six-order rational functions, as shown in Fig. 6.6.  

 

Fig. 6.6. The change of the min-max cost function with each iteration for the three-variable 

resonance circuit. 

 

It is important to notice the significant acceleration in the achieved results as compared to 

the “build complete model then optimize” approach [232]-[237]. For example, following 

[232] and assuming 5 points per dimension along with third-order rational functions, one 

would need at least 54 1024=  calls to the circuit solver.  Optimization would then be 

carried out exploiting this model to reach the same results that the proposed algorithm 

reached in only 13 calls.  

To assess the potential of the third order model to be used for sensitivity and tolerance 

analysis, Fig. 6.7 shows the absolute error between the exact model and the input 

reflection coefficient ( ), ,S L C R  calculated from the third-order multi-dimensional 

model ( ) 2
, ,S L C R at 2.0 GHz. To perform this calculation, the design parameters are 

allowed to vary within 10%±  from their nominal value, that is [ ]1.8,2.2  nHL∈ , 
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[ ]2.7,3.3  pFC∈ , and [ ]45,55  R∈ Ω . Each dimension is uniformly divided into 10 

points, creating a grid of 1,000 points. Figure 6.7 shows a histogram of the resulting error 

calculated at each of the grid points. It is clear that the maximum error is below 35 10−× .  

 

Fig. 6.7. The results of the absolute error in tolerance analysis between a third-order Cauchy 

model and actual simulation using a tolerance of 10% for all parameters at 2.0 GHz. 

 

If the variables are allowed to vary by 20%±  from their nominal value, keeping a 

uniform grid of 1,000 points, then the resulting errors can be illustrated as shown in Fig. 

6.8. 
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Fig. 6.8. The results of the absolute error in tolerance analysis between a third-order Cauchy 

model and actual simulation using a tolerance of 20% for all parameters at 2.0 GHz. 

 

So far, the multi-dimensional rational models of a number of parameters at each selected 

frequency were generated. Fig. 6.9 illustrates such a situation. It is often desirable, 

however, to reduce the number of selected frequency points.  This speeds up the overall 

simulation/measurement time and reduces its associated costs. To that end, the Padé 

approximation is employed on each of the resulting coefficients to generate frequency-

dependent coefficients, as illustrated in Fig. 6.10. Using these frequency-dependent 

coefficients of the multi-dimensional rational model allows us to interpolate and 

extrapolate rapidly for frequencies other than those selected during the design process. 

 

Fig. 6.9. The Cauchy coefficients are obtained for a set of discrete frequencies. 
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Fig. 6.10. The Padé approximation is applied to determine the Cauchy coefficients for frequencies 

other than those considered. 
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6.4 The Algorithm 

The algorithm explained in the previous two introductory examples can be summarized in 

the following steps: 

1. Initialization: The iteration counter is set to 0k = .  The starting point 0p is determined 

by the user. The extraction set is initialized with ( ) { }0
0Φ = p , with the best available 

solution initialized with 0
* =p p .  Note that the set ( )kΦ  contains the samples used to 

construct the Cauchy model in the thk  iteration.  

2. The EM simulator is called (or alternatively measurements are carried out) to 

determine 0( )R p . 

3. The Cauchy model of the thk  iteration ( ) ( )k
CMR p  is built using the points in the set 

( )kΦ  by solving a linear program similar to (6.21). Note that a partial set of the points 

in the set ( )kΦ  may be used in (6.21) depending on how close the points are to the 

current iterate *p .  As mentioned earlier, constraints could be added to or removed 

from (6.21) to fit the considered physical response. 

4. The current Cauchy model, ( ) ( )k
CMR p , is optimized to obtain the new design 1k+p . A 

trust region approach [222] is integrated to limit the search for the new design to a 

region where the Cauchy model is trusted. 

5. The response at the new point, ( )1kR +p , is calculated using EM simulation or 

measurements. 

6. If the new design offers a better objective function, i.e., ( ) ( )1
*

jU U+ <p p , then the 

best available solution *p  is set to 1k+p . Note that U  is the objective function to be 

minimized during the design process.  It may be a least squares or a min-max cost 

function, depending on the application. 
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7. If the termination condition is satisfied, the algorithm is terminated and *p , along 

with the coefficients of the current Cauchy model, ( ) ( )k
CMR p , are reported. The utilized 

termination condition may include several unsuccessful iterations, or that the iteration 

counter k  exceeded a certain maximum value.  

8. The extraction set is augmented with the new point, i.e., ( ) ( )1
1  k

k k+
+Φ = Φ p .  The 

algorithm starts a new iteration from Step 3. 

 

 

Fig. 6.11. The flowchart of the algorithm. 
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6.5 Examples 

The proposed algorithm was applied to a number of practical antenna designs [GS.12]. 

The relation between the response and the different parameters in these designs is not 

known. However, as discussed earlier, by selecting an appropriate order for the multi-

dimensional rational polynomials, it is possible to accelerate the design process. In all 

examples, the order of the Cauchy model is fixed to 3. With this order, it is possible to 

generate a locally accurate model that can be used for optimization, sensitivity, and 

tolerance analyses. The stopping criterion for the algorithm is when the required 

specifications are strictly met. The min-max objective function employed is defined by: 

 
( )

{ }1 1 1max ,.....,
f f f

sign Actual Const sign Actual Const
N N N

U

R R R R R R

=

  − −   

p
 (6.29) 

where 
f

Actual
NR  is the actual response at the frequency sample fN , with 

f

Const
NR  denoting the 

response constraint at this frequency. 
f

sign
NR  indicates whether the constraint is an upper or 

lower constraint. When all specifications are met, the value of the objective function in 

(6.29) should be less than zero.  

As discussed earlier and summarized in Fig. 6.1, the designer needs to specify the design 

specifications, the initial guess for the solution, and bounds on the design parameters 

reflecting typical fabrication limitations or size constraints. These are specified in the in-

house control code developed in the context of this work. Next, the processing core of 

this code applies the algorithm, as discussed earlier in section VI. During processing, the 

code needs to access an EM solver to reach a valid design. Several powerful EM solvers 

are available on the market. Here, the code allows the user to choose from a set of 

solvers, which usually depends on the nature of the problem. After specifying a solver, 

the code automatically accesses the EM solver, sets up the design, performs a simulation, 

retrieves the results, and uses them in the processing cycle (Fig. 6.11). In addition to in-

house solvers, commercial EM solvers currently integrated with the developed code 

include Ansoft’s Designer (Circuit and Method of Moments MOM solvers) [31], 

Ansoft’s HFSS (Finite Element Method Solver FEM) [32], COMSOL (Finite Element 
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Method Solver, with electro-static, magneto-static modules, in addition to thermal and 

mechanical solvers) [33], Sonnet EM (Method of Moments Solver) [34], CST’s 

Microwave Studio (Finite Integration Solver, tailored to run on our parallel graphical 

processing unit GPU cluster) [35], and SPEAG’s SEMCAD (Finite Difference Time 

Domain Solver, running on our GPU cluster) [36]. 

To demonstrate the algorithm, a number of antenna designs are presented in this section. 

They illustrate the behavior of the algorithm when designing to meet single as well as 

multiple objectives. Since all of these examples are equally produced by any of the listed 

EM Solvers, the focus will be on the code capabilities in reaching a feasible design, and 

not on methods for setting up the problem in the corresponding solvers. In addition, the 

examples are attempted on some commonly available optimizers in the aforementioned 

solvers. This should highlight the potential speed-up in convergence when using the 

proposed algorithm compared to available ones. It is worth mentioning that genetic 

algorithms, evolutionary programming, and particle swarms are not listed here, due 

mainly to the excessively large number of EM calls they need to reach a feasible design. 

Therefore, only optimizations using quasi-Newton, sequential non-linear, and pattern 

search algorithms will be listed.  

6.5.1 Multi-Objective Four-Variable Patch Antenna 

Here, the proposed algorithm is applied to the design of a global positioning system 

(GPS) patch antenna. The patch is designed on a rigid foam material with a thickness of 

10.0 mm. The patch should meet the constraint VSWR ≤ 2 over the bandwidth 1575 20±

MHz. In addition, the patch has to be of circular polarization over this band. The 

following two additional responses are considered: 

 magE

E E
R

E E
θ ϕ

θ ϕ

−
=

+
 (6.30) 

and  

 angER E Eθ ϕ= ∠ −∠  (6.31) 
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The far field is given by ˆ ˆE Eθ ϕθ ϕ= +E  . To achieve practical circular polarization [13] at 

a given frequency, magER  should be less than 0.1, with 0 090 15angER = ±  . Six uniformly 

distributed in-band frequency points are considered.  

 

 

Fig. 6.12. The optimizable dimensions of the patch antenna. 

 

The patch is shown in Fig. 6.12, with the feeding probe located anywhere on the patch. In 

searching for optimal design of * * * * *        p p f fL W x y =  p , the following practical bounds 

are utilized: 

 

50.0 mm 100.0 mm

50.0 mm 110.0 mm

5.0 mm 30.0 mm

5.0 mm 30.0 mm

p

p

f

f

L
W

x
y

≤ ≤

≤ ≤

≤ ≤

≤ ≤

 (6.32) 
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Fig. 6.13. Optimization convergence of the GPS antenna design using the proposed algorithm. 

 

 

Fig. 6.14. Optimization convergence of the GPS antenna example using some of the available 

commercial algorithms. 
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Fig. 6.15. The initial and optimized VSWR of the GPS antenna obtained using the proposed 

algorithm. 

 

Table 6.2 shows a summary of results with the convergence shown in Fig. 6.13. The 

algorithm converged to a feasible design after 18 EM simulations.  The results obtained 

when applying other commercially available algorithms are shown in Fig. 6.14. The 

optimization cycle using the commercial routines was terminated after 35 EM simulations 

without reaching a feasible design. Fig. 6.15 to Fig. 6.17 show the results of the initial 

and optimized responses of the GPS antenna obtained using the proposed algorithm.  

 

Table 6.2. Summary of Results for the GPS Patch Antenna. 
Initial Set in mm Optimal Set in mm # of Iter. Cost 

[ ]100.0  100.0  27.0  27.0  [ ]75.4  86.28  13.55  27.21  18 -0.0414 
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Fig. 6.16. The initial and optimized axial ratio of the GPS antenna obtained using the proposed 

algorithm. 

 

 

Fig. 6.17. The initial and optimized E Eθ ϕ∠ −∠  of the GPS antenna obtained using the proposed 

algorithm. 
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6.5.2 A Five-Variable Yagi-Uda Antenna 

A Yagi-Uda Antenna [13] is a directional antenna system consisting of an array of a 

dipole and additional closely coupled parasitic elements (usually a reflector and one or 

more directors). The design of this antenna has attracted several researchers [243]. Here, 

the proposed algorithm is utilized in designing such an antenna to meet the specifications 

VSWR ≤ 2.0 over the bandwidth 1.5 GHz  to 2.5 GHz . For demonstration purposes, the 

number of directors is limited to one only. In addition, the out-of-band behavior of the 

antenna is not restricted.  The diameters of the dipoles are set to 2.1 mm , with the 

dipoles arranged as shown in Fig. 6.18.  Thus, this translates into a five-dimensional 

problem with five design variables: the height of the feed dipole FH  , the height of the 

reflector RH , the height of the director DH , the distance between the reflector and the 

feed dipole RL , and the distance between the director and the feed dipole DL . Ten 

uniformly distributed in-band frequency points are utilized.  

 

 

Fig. 6.18. The simplified Yagi-Uda example. 

 

In searching for the optimal design of the parameters * * * * * *          mmF D D R RH L H L H =  p , 

the following practical parameter ranges are imposed: 

http://en.wikipedia.org/wiki/Directional_antenna
http://en.wikipedia.org/wiki/Dipole_antenna
http://en.wikipedia.org/wiki/Parasitic_element
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25.0 mm 55.0 mm
5.0 mm 30.0 mm
10.0 mm 30.0 mm
20.0 mm 45.0 mm
50.0 85.0

F

D

D

R

R

H
L
H
L

H

≤ ≤
≤ ≤
≤ ≤
≤ ≤

≤ ≤

 (6.33) 

Table 6.3 shows a summary of the results using the proposed algorithm. After 25 EM 

simulations, a solution that meets the required specifications is found. The convergence 

of the algorithm is shown in Fig. 6.19, with the initial and optimized results shown in Fig. 

6.20. For comparison purposes, commercial optimization tools are utilized as well. The 

optimization cycle was halted after performing 40 EM simulations without reaching a 

solution, as shown in Fig. 6.21.  

 

 

Fig. 6.19. Optimization convergence of the Yagi-Uda example using the proposed algorithm. 

 

Table 6.3. Summary of Results for the Yagi-Uda Antenna. 
Initial Set in mm Optimal Set in mm # of Iter. Cost 

[ ]53.0  28.0  43.0  82.0  [ ]41.71  9.92  23.7  45  64.44  25 -0.028 
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Fig. 6.20. The initial and optimized results obtained using the proposed algorithm for the Yagi-

Uda example. 

 

 

Fig. 6.21. Optimization convergence of the Yagi-Uda example using some of the commercially 

available algorithms. 



 

188 

 

6.5.3 Multi-Objective Six-Variable E-Slot Antenna 

In the previous two examples, the number of iterations increased with the number of 

parameters involved. However, this is not a characteristic of the proposed algorithm, and 

largely depends on the nature of the problem.  To illustrate, let us consider the design of 

an E-shaped slot antenna. Slot antennas [268] are widely utilized for their high gain and 

larger bandwidth capabilities as compared to traditional patch antennas. Here, the 

proposed algorithm is applied to the design of an E-slot antenna [158] [202]. This is a 

multi-objective problem, where the desired specifications are VSWR ≤ 2.0 and gain ≥ 8.0 

dB over the frequency band 1.8 GHz - 2.4 GHz.  Choosing a foam substrate of 15.0 mm, 

the E-slot patch has six different variables (see Fig. 6.22), given by 
* * * * * * *

1 2           mms fL W L W W x =  p . The following limits are imposed: 

 
1

2

30.0 mm 70.0 mm
30.0 mm 100.0 mm
20.0 mm 70.0 mm
4.0 mm 20.0 mm
4.0 mm 20.0 mm
15.0 mm 65.0 mm

s

f

L
W
L

W
W

x

≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤
≤ ≤

 (6.34) 

 

Fig. 6.22. The E-slot antenna. 
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Table 6.4. Summary of Results for the Slot Antenna. 
Initial Set in mm Optimal Set in mm 

[ ]65.0  95.0  60.0  18.0  18.0  60.0  [ ]57.04  92.77  40.57  12.81  14.46  46.09  
 

# of Iterations Cost 

17 -0.007 

 

Table 6.4 shows a summary of the results using the proposed algorithm, along with its 

convergence shown in Fig. 6.23. The required specifications are met after 17 EM 

simulations. The optimized impedance bandwidth and the gain bandwidth are shown in 

Fig. 6.24 and Fig. 6.25, respectively. 

 

 

Fig. 6.23. Optimization convergence for the E-slot antenna obtained using the proposed 

algorithm. 
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Fig. 6.24. The initial and optimized results of the reflection coefficient of the E-slot antenna 

obtained using the proposed algorithm. 

 

 

Fig. 6.25. The optimized gain of the E-slot antenna obtained using the proposed algorithm. 
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6.6 Discussion and Conclusions 

A novel on-the-fly optimization algorithm for the optimization of antenna structures was 

presented.  In each iteration, the proposed approach utilizes a surrogate model that 

exploits a multi-dimensional rational approximation.  This approximation is constructed 

using the available samples obtained during optimization with no prior knowledge or in-

advance simulations.  The algorithm was successfully utilized in the design of several 

antenna structures with single or multiple objective functions.  The convergence of this 

approach was shown to be superior, for the considered structures, to other commercially 

available optimizers.   

With the presented new optimization algorithm at hand, along with the proposed modal-

based design techniques (Chapter 5) and the multi-coupled design techniques (Chapter 4), 

we now have a systematic practical design methodology employing a physics-based 

optimization approach for realizing multi-band multi-feed antennas. For example, the 

presented optimization scheme can be applied to the examples in 5.7.1 and 5.7.2 to 

rapidly realize the desired Q at the target frequency of operation. Additionally, it can be 

shown that the presented technique can be efficiently applied to the design of multi-

coupled antennas, such as those discussed in section 4.5. 

  



 

192 

 

Chapter 7: Select Applications of Next-Generation Flexible 
Wireless Devices 

“For a successful technology, reality must take precedence over public relations, for 

Nature cannot be fooled.”                                      

Richard Feynman 

 

RF technologies are increasingly used as a means of short-range, high-bandwidth 

communications utilizing very low power levels where transmitted signals are spread 

over a significantly large portion of the radio spectrum. Interestingly, numerous recent 

applications of radios target sensor data collection, precision localization, and tracking 

applications. The term IoT, has become a buzz word in the engineering community, 

announcing the rise of the Internet of Things. Such new trends necessitate the deployment 

of a large number of antennas to meet system requirements. To this end, it is important to 

keep the cost per antenna as low as possible to maintain an adequate operational cost for 

the respective systems. 

A quick look at some of the common techniques for the fabrication of antennas reveals 

that photolithography has been the most dominant technology. However, this method 

involves multiple steps such as etching, masking, and electroplating, rendering it a time-

consuming, labor-intensive, and expensive process. In addition, since the solvent used in 

the etching process is corrosive, the choice of substrates is limited, and the 

photolithography process generates high volumes of hazardous waste that are 

environmentally detrimental. Considering these negative aspects, an alternative technique 

is clearly needed.  

In addition to demonstrating a green technology for realizing antennas up to mm-Waves, 

the work shown in this chapter demonstrates how the antenna design techniques 

presented throughout this thesis work can be made useful in providing designs for next-

generation wireless systems.   
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7.1 Using Inkjet Printing 

In this work, we propose the utilization of inkjet printing of conductive inks on flexible 

substrates to realize low-cost, environment-friendly antennas, with operational ranges 

from UHF to mm-Waves [GS.13]- [GS.21].  

It is widely known that one of the most common methods of digital printing is through 

inkjet printers, almost ubiquitous in home or office applications. Notably, inkjet printing 

has been recently enhanced with the capability of printing new functional materials, such 

as conductive and carbon nanotube CNT-based inks, leading to an increased deployment 

in printed electronics, such as flexible displays, RFIDs, sensors, solar panels, fuel cells, 

batteries, and, most recently, in antennas [244] [245] [246] [249]. 

Inkjet printing for RF applications is a challenging endeavor, where precise control of the 

achieved conductivity and surface roughness are required. In general, there are two 

critical factors that affect the print quality: the ink properties, and the settings of the 

printing system itself. The most notable ink properties to observe are viscosity, surface 

tension, and dispersion stability (printing with high contact angle, high viscosity, and 

high-tension ink produces smaller sized dot patterns). The most crucial settings of the 

printing parameters include the volume of the jetted ink, the traveling velocity of the 

ejected droplet, the gap distance between each droplet, the printing frequency, the 

temperature of the jetted ink, the temperature of the substrate, and the sintering/curing 

mechanism performed on the printed structures. 

Prior to this work, a number of researchers studied inkjet printing for high frequency 

applications. However, most successful research was limited to UHF frequencies [244] 

[245] [246]Extension to higher frequencies required greater control of the tolerances of 

the printed structures, without sacrificing the RF conductivity. This is a challenging task 

that requires adequate control of various parameters. 

In general, it is important to ensure jetting of an adequate drop formation. This is 

controlled through the jetting voltage and duty cycle. For example, an excessively high 

jetting voltage results in a large droplet velocity, resulting further in a drop splash into the 

substrate, which then leads to poor quality. In contrast, if the jetting voltage is too low, 
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proper ejection of droplets may be obstructed. Hence, it is important to appropriately 

control the jetting parameters such as jetting voltage, pulse width, and rise time in order 

to get a proper droplet formation.  

Secondly, it is important to ensure jetting at the desired location. This is controlled by the 

relative distance between the jetting device and the substrate, and the printing speed. 

Additionally, it is important to be able to control the surface conditions of the substrate, 

particularly the substrate temperature, to ensure that the droplet remains in its desired 

location without excessive spreading. 

It is thus noticeable that proper inkjet printing is not a universal problem, since the proper 

jetting parameters depend on the material properties and interactions between the material 

and the jetting device. Hence, a special study for each set of conductive ink and substrate 

material is required. In this work, two substrates were used: Liquid Crystal Polymers 

(LCP), and photographic paper. Reasons for the selection will be made clear later in this 

chapter. 

Modern inkjet printers are capable of jetting miniature liquid droplets down to several pL. 

In this work, we have utilized the DMP2800 inkjet printer, which is a tabletop printer 

available from Dimatix, Inc. (www. dimatix.com), shown in Fig. 7.1 and Fig. 7.2. The 

DMC-11601 cartridges were used throughout printing. Each cartridge has 16 nozzles 

capable of jetting 1pL drops. Thus, it is theoretically possible to realize printed feature 

sizes of 10 micrometers when all parameters are properly set. To ensure good RF 

properties, an in-house recipe was developed considering all of the aforementioned 

parameters. In all prints, the utilized Dimatix 1pL cartridges were kept at a distance of 0.5 

mm from the surface of target substrate on a DMP-2800 printer. The printer head was 

adjusted to achieve a print resolution of 2540 dpi, which ensures good RF conductivity up 

to several gigahertz. Next, the printer cartridges are filled with conductive silver ink. 

Several vendors supply this ink, including AnaPro, CimaNanoTech, InkTec, 

NanoMasTech, and SunJetTech. In this work, we use CCI-300 from Cabot Corporation 

(www.cabot-corp.com). To avoid the jetting of air bubbles instead of ink droplets, the 

cartridges are sonicated for 10 minutes after filling for degassing. The conductive ink was 
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then jetted at a temperature of 40 C, while the substrate was maintained at 60 C. Next, 

each printed structure was cured in a thermal oven for 2-3 h at 120-200 C, depending on 

the used substrate. This is a crucial step to increase the resulting conductivity. For most 

RF applications, several layers are needed to increase conductivity. To this end, multiple 

layers were printed with 10-minute thermal treatment intervals in-between (up to eight 

layers were tested for maximum conductivity). 

Generally, the best results were achieved when controlling the drop speeds at 7-9 

meters/second with jetting at a rate of 13Kcycle/s. Fig. 7.3 and Fig. 7.4 show the typical 

drop formulation. Fig. 7.5 shows the typical firing voltage diagram, while Fig. 7.6 shows 

the effect on the applied voltage on the droplet mass for the utilized ink. It is important to 

ensure, at a given drop velocity and elevation of the nozzle from the substrate, that the 

droplet will hit the substrate without having a tail drop and without significant spreading. 

Proper drop placement was enhanced by keeping the substrate temperature at 60 C 

throughout printing. As fewer nozzles are used, better print quality is achievable (Fig. 

7.8) at the expense of a slower printing time. However, this can be mitigated through 

selective printing, where more nozzles are used away from critical gaps and narrow lines. 

 

Fig. 7.1. The Dimatix DMP2800 tabletop inkjet printer 
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Fig. 7.2. Different components of the DMP2800 printer. 

 

 

Fig. 7.3. Conceptual diagram of an inkjet printer. 

 

 

Fig. 7.4. Drop formulation. 
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Fig. 7.5. Timing diagram for the firing voltage. 

 

 

Fig. 7.6. Drop size versus firing voltage. 

 

7.2 LCP Characterization 

 

It is widely spread that fabrication of mm-Wave antennas and microwave circuits using 

the typical deposit/pattern/etch scheme is a challenging and costly process due to the 

strict limitations on permissible tolerances. This fabrication technique becomes even 

more challenging when dealing with flexible substrate materials, such as liquid crystal 

polymers. These materials have lately received considerable attention as a high frequency 

circuit substrate as well as a packaging material. This is mainly due to its impressive 

electrical characteristics, nearly constant relative permittivity at 3.2 and stable loss 

tangent below 0.005 up to 110GHz [247]-[248]. Thermal expansion characteristics of 

LCPs are equally desirable since their controllable coefficient of thermal expansion 
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(CTE) can be engineered to match various materials such as copper or silicon [248]. 

From an environmental perspective, LCPs are recyclable, impervious to most chemicals, 

and can withstand relatively high temperatures (up to 350°C). Thus, Liquid Crystal 

Polymers are potentially useful in the conformal packaging of many antenna systems and 

circuits, particularly in the evolving mm-Wave indoor communication, sensing, and 

imaging applications at 60, 77, and 94 GHz, respectively. 

7.2.1 Ink Jetting on LCP 

The inkjet printing recipe outlined earlier was tailored for printing silver nano-particles 

unto LCP substrates for eventual production of LCP-enabled mm-wave packages akin to 

that shown in Fig. 7.7. Fig. 7.8 demonstrates the capability of realizing feature sizes as 

small as 20-50 microns. A nominal thickness of 3 microns was measured using a Wyko 

profilometer with noticeable variations around the edges. A four-point probe was used to 

characterize the resistivity of the printed silver. The measured conductivity ranged from
63 10X  S/m - 67 10X S/m, which is around an order of magnitude less than the bulk 

conductivity of silver. A number of coplanar waveguide lines were printed on 4mil LCP. 

The response of a 2.5mm line featuring a 300um center conductor and 150um gap is 

shown in Fig. 7.9. Note that the system reference impedance is changed to 90 Ohms 

instead of 50 Ohms to accommodate the chosen line dimensions, since the ratio of the 

center conductor width to the gap separation of a 50 Ohm CPW line is quite large. 

Nevertheless, the results demonstrate acceptable losses, clearing the way for the 

realization of inkjet-printed mm-Wave low-cost antennas and wireless-enabled packages. 
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Fig. 7.7. LCP-enabled packaging for mm-Wave systems.  

 

   

 

Fig. 7.8. Realized resolution, before curing (left) and after curing (right). 



 

200 

 

 

Fig. 7.9. S-parameters of a sample CPW line printed on LCP. 

 

 

7.2.2 Antennas on LCP 

Here, we demonstrate the first reported inkjet-printed antenna on LCPs for mm-Wave 

applications. This is a proof-of-concept simple dual band antenna design that could serve 

as a sensor in the 24/60/70GHz bands. The antenna is a variation of the planar monopole 

antenna. By controlling the size of the side ground plane as well as the length of the 

center conductor along with the width to gap ratio, one can quickly optimize (using the 

techniques in Chapter 6) the antenna to cover the aforementioned bands. The antenna was 

numerically modeled as a thin conductor 5 um thick, with 1um surface roughness and 

conductivity of 63 10  S/mX . The antenna model was fed in a GSG probe-mimicking 

scheme (Fig. 7.11). The probe-based measurements of this antenna were quite 

challenging (Fig. 7.10). The antenna was placed on top of a custom assembled fixture to 

ensure that the radiation mechanism was not affected. The result is summarized in Fig. 

7.12, and Fig. 7.13 shows the simulated gain. Simulated efficiency is above 80%, even 

for the low conductivity value. 
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Fig. 7.10. Probe measurement of a sample antenna. 

 

Fig. 7.11. Actual probe and its CAD model used in measurements. 

 

 
Fig. 7.12. Modeled vs. realized data of the inkjet printed antenna on LCP. 
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Fig. 7.13. Gain at 25GHz (left) and 70GHz (right). 

 

 

 

7.3 Paper as a Flexible Substrate 

One interesting issue that was encountered in obtaining LCP substrates was the lack of 

un-cladded supply. Vendors only had copper cladded samples, which required a full 

etching process before being able to print on them. Although this problem would most 

likely be alleviated once more interest in bare LCPs rises, it remains a barrier to quick 

proof-of-concept designs. On the other hand, paper – as a substrate/superstrate – 

possesses a number of intriguing attributes that makes it amenable for low-cost “green” 

electronics. It is cellulose in nature and is thus considered a renewable resource. 

Additionally, it can be easily processed in a reel-to-reel fashion, enabling low-cost 

manufacturing solutions. Driven by the fact that it is challenging and cost-inefficient to 

apply photolithography techniques to paper, inkjet printing of conductive particles 

provides a promising solution. Previously, characterizing paper as a substrate was 

achieved up to only 1GHz [246]. In this work, the properties of paper substrates were 

studied up to 60GHz through the use of the cavity/waveguide and split-post dielectric 

resonator techniques [250]-[251]. Several cavities covering the band from 1 to 60 GHz 

were utilized. Each blank paper sample was cured first in a thermal oven for 2 h at 120 to 

mimic the curing process of the printed ink. The results for the extracted relative 
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permittivity of the 10-mil-thick cured paper are shown in Fig. 7.14. The measured 

dielectric loss tangent values were bounded between 0.06 and 0.07 for the whole 

frequency range. 

 

Fig. 7.14. Characterization of the paper material through the split-ring resonator method. 

 

7.3.1 Ink Characterization on Paper 

The conductivity of the printed conductive ink was studied through the use of the 

Signatone Four Point Probe (www.signatone.com). To ensure good RF conductivity, the 

in-house recipe discussed earlier was utilized. The resulting ink thickness, measured 

using the Wyko profilometer (www.veeco.com), was around 3 micrometers, with 

consistent measured dc conductivity in the range of 69 10X  S/m - 71.1 10X S/m. Fig. 7.15 

shows the SEM image of silver ink before and after curing. Fig. 7.16 and Fig. 7.17 show 

the resulting profile of select sample structures, while Fig. 7.18 shows the AFM data of 

one of the lines. A resolution of 50um can be consistently realized across different 

samples (Fig. 7.19). Select printed structures are shown in Fig. 7.20. The test setup used 

in measuring some of these structures is shown in Fig. 7.21. The resulting scattering 

parameters of one of the CPW lines are shown in Fig. 7.22 (measurements up to 40GHz). 
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Fig. 7.15. Silver ink before (left) and after (right) curing. 

 

 

Fig. 7.16. Profiling a single trace line. 

 

Fig. 7.17. Profiling coupled trace lines. 
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Fig. 7.18. AFM data for a single trace line. 

 

 

 

Fig. 7.19. Realized printing accuracy down to 50um. 

 

        

Fig. 7.20. Realized CPW lines of lengths up to 10cm (left) and a flex coupled line circuit (right). 
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Fig. 7.21. Test setup used in measurements. 

 

 
Fig. 7.22. Scattering parameter results for one of the test CPW lines. 

 

7.3.2 Application in UWB Antenna  

To investigate the applicability of inkjet-printed paper-based technology for the 

realization of high frequency structures, a planar UWB monopole [252]-[253] was 

developed as a proof-of-concept. The design was modeled through full-wave finite-

difference time-domain (FDTD) simulations using a commercially available solver from 

SPEAG (www.semcad.com). This type of antenna can be quickly realized using the 

concepts in Chapter 6. Numerical simulations incorporated the actual ink thickness, along 

with the frequency-dependent permittivity of the paper substrate. The antenna was 

printed on a paper sheet following the previously outlined guidelines. The paper sample 

was cut to a square slice of 58X58 mm to form the overall antenna. A computer-aided 

design (CAD) model is shown in Fig. 7.23. Note that a model for a long piece of a 

http://www.semcad.com/
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coaxial cable was utilized in simulations to mimic the setup used in measurements. This 

helps in modeling the common-mode currents flowing on the feeding cable, and typically 

results in better correlation between the measured and simulated pattern/gain values. It is 

noteworthy to observe that such an antenna is fully conformal. The Agilent PNA-X 

network analyzer (N5245A) was used for the scattering parameters measurements. Fig. 

7.24 shows good agreement between the simulated versus the measured responses at the 

input port of the antenna up to 16 GHz. The resulting group delay is plotted in Fig. 7.25. 

For proper UWB operation, it is important to keep the variation in the group delay value 

as low as possible so as not to distort the transmitted/ received signals. This proof-of-

concept prototype shows an acceptable variation in the group delay up to a maximum of 

0.6 ns. The radiation pattern was measured using Satimo’s Stargate 64 Antenna Chamber 

measurement system. NIST Calibrated SH8000 Horn Antenna was used for the 

calibration of the measured radiation pattern at the selected in band frequencies (3, 4.5, 6, 

7.5, 9, and 10.5 GHz). The prototype antenna was placed in the yz plane, as outlined in 

Fig. 7.26. The measured radiation pattern at different elevation angles is shown in Table 

7.1. The resulting pattern is almost uniform (omnidirectional) for the selected in-band 

frequencies, which is ideal for many UWB applications, and the antenna efficiency was 

better than 80% throughout the entire band.  

 

 

Fig. 7.23. Numerical model for the printed antenna on paper. 
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Fig. 7.24. Simulated and measured performance of the antenna. 

 

 

Fig. 7.25. Resulting group delay of the antenna. 
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Fig. 7.26. Measured and simulated directivity of the antenna. 
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Table 7.1. Measured Radiation Patterns at Select in-Band Frequencies (solid for xz-plane and 

dashed for yz-plane). 
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7.3.3 Application in Sensor Design 

One important consequence of being able of producing ink-jetted structures operating at 

high frequencies is paving the road to the realization of a plurality of non-traditional 

wireless system applications.  Among these is utilizing silver nano-ink along with carbon 

nanotubes CNTs to develop a high sensitivity low-cost gas sensor.  

Carbon nanotubes have been researched extensively for gas sensing applications due to 

their unique electrical, chemical, and structural properties [254]-[255]. Single-walled 

carbon nanotubes (SWNTs) have been predominantly used due to their superior electrical 

conductivity and higher sensitivity relative to multiwalled carbon nanotubes [256]. In 

addition, SWNTs can be functionalized enhancing their gas detection sensitivity (see 

[257] for details about functionalized SWNTs). In this kind of work, SWNTs are grown 

on special substrates through a cost expensive process in clean rooms [258] [260] [261]. 

In practice, remote operation of gas sensors is needed, which places stringent 

requirements on the sensitivity, selectivity, and range of the designed sensor. Also, for 

rapid deployment in buildings, highways, bridges and other infrastructure, it is desirable 

to have low-cost sensors that can be powered from thin-film batteries or by power 

scavenging, and incorporate integration of the sensor and the RF communication device 

on the same substrate. 

Hence, in contrast to prior solutions, this work incorporates SWNTs through ink-jet 

printing.  The proposed process involves a thin film of SWNT ink-jetted on paper to 

characterize its behavior at frequencies from DC to few GHz. The adopted sensor concept 

then relies on incorporating the thin film as a load into a nano-silver printed antenna. 

Upon exposure to gas, the SWNT thin film load will change its RF properties and thus 

the return loss/scattering properties of the antenna will reflect the change. Through proper 

choice of the antenna structure, the concept realizes a remote-sensor with much higher 

sensitivity than previously recorded (see, for example, [258], [260] and [261]). To 

characterize the gas sensitivity, the loaded antenna is measured in a closed system 

environment (Sealed Glass Chamber) to quantify the sensitivity for low concentrations of 

different gases, such as ammonia gas, which is usually associated with explosives. The 

proposed antenna-based wireless gas sensor can be utilized in several remote sensing 
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applications, given its small form factor, light weight, and mininal (or no) power 

requirements.  

 

7.3.3.1 RFID-Based Gas Sensor 

There has been significant research into passive RFID-enabled sensor solutions, and 

some passive RFID prototypes for sensing applications have been proposed [262]-[263]. 

However, the sensing capabilities are usually realized by adding a discrete sensor or a 

special coating to the RFID tag, resulting in difficulties in low-profile integration as well 

as low sensing sensitivity. Therefore, there is a growing demand for low-cost RFID-based 

high sensitivity sensors. 

In this work, a battery-free conformal CNT-based RFID-enabled sensor node for gas 

sensing applications is designed.  This RFID tag was designed for the European UHF 

RFID band centered at 868 MHz. The printed CNT particles are Single-Walled Carbon 

Nanotubes (SWCNT) from Carbon Solutions, which were dispersed in-house in 

dimethylformamide (DMF) solution and sonicated to meet the viscosity requirement for 

the inkjet printer.  

It was previously shown that CNT composites are compatible with inkjet printing. 

However, instabilities in both the resistance and the reactance dependence on frequency 

above several MHz were observed, which limited the CNT applications [264]. Thus, to 

enable the CNT-enabled sensor to be integrated with RFlD antenna at UHF band, a 

special recipe is needed. For this purpose, two types of SWCNT, namely, P2-SWCNT 

and P3- SWCNT, were tested. P2-SWCNT is developed from purified as-prepared single-

walled carbon nano-tubes AP-SWCNT by air oxidation and catalyst removing. P3-

SWCNT is developed from AP-SWNT purified with nitric acid. Compared with P2-

SWCNT, P3-SWCNT has much higher functionality and is easier to disperse. In 

experiments, P2-SWCNT started to aggregate at a concentration lower than 0.1 mg/ml, 

while P3-SWCNT could go up to 0.4mg/ml and still show good dispersion. Therefore, 

P3-SWCNT was selected for the latter steps. The sample SWCNT powder was dispersed 

in DimethylFormamide (DMF), which is a polar aprotic solvent. The diluted solution was 
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purified by sonication for 12 hours to prevent aggregations of large particle residue and 

thus to prevent nozzle clogging during the printing process.  

To characterize the DC and RF performance of the printed CNTs, silver electrodes were 

printed first, followed by a sintering process. The electrode finger is 2mm by 10mm with 

a gap of 0.8mm. Then, the 3mm by 2mm SWCNT film was printed. The 0.6mm 

overlapping zone on each silver arm ensures good contact between the SWCNT film and 

the electrodes. Four test fixtures with 10, 15, 20 and 25 SWCNT layers were made to 

investigate the electrical properties. Fig. 7.27 shows the fabricated samples. The color 

depth of the SWCNT film is due to the different layers. 

 

  Fig. 7.27. Inkjet-printed SWCNT films with silver electrodes. 
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Fig. 7.28. Measured DC resistance of SWCNT in air. 

 

The electrical resistance of the device was measured by probing the end of the two 

electrodes. The DC resistance in air is shown in Fig. 7.28. It is observed that the 

resistance decreases when the number of SWCNT layers increases.  

A network vector analyzer (Rohde & Schwarz ZV A8) was used to characterize the 

SWCNT film electrical performance at UHF band before and after the gas reaction. A GS 

probe was placed on the silver electrodes for the impedance measurements. The whole 

setup was kept in a 20L Tedlar bag as the gas chamber.  The gas sensor of SWCNT 

composite shows a stable impedance response up to 1 GHz, as shown in Fig. 7.29. For 

example, at 868MHz, the printed 25-layer sensor exhibits a resistance of 51.6 Ohm and a 

reactance of -j6.1 Ohm in air. After being exposed to ammonia, the resistance was 

increased to 97.1 Ohm and the reactance was shifted to -j 18.8 Ohm.  
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Fig. 7.29.  Measured RF impedance of the CNT test fixture. 

 

In a typical passive RFID system, the RFID reader sends an interrogating RF signal to the 

RFID tag, consisting of an antenna and an IC chip as a load. The IC responds to the 

reader by varying its input impedance, thus modulating the backscattered signal. The 

modulation scheme often used in RFID applications is amplitude shift keying (ASK), in 

which the IC impedance switches between a matched state and a mismatched one. The 

power reflection coefficient of the RFID antenna can be calculated as a measure to 

evaluate the reflected wave strength. A similar mechanism can be used to realize RFID-

enabled sensor modules, where the CNT film functions as a tunable load (instead of the 

IC), with a value determined by the existence of the target gas. The RFID reader monitors 

the backscattered power level. When the power level changes, this indicates there is 

variation in the load impedance and the sensor detects the existence of gas. 

Based on this concept, a bow-tie meander line dipole tag antenna was designed and 

fabricated on a 100um thickness flexible paper substrate using ink-jetting of silver nano-

particles. The sensing portion is realized through ink-jetting of the CNT material. The 

size and number of layers were chosen to achieve the best match to the antenna. The 

RFID prototype structure is shown in Fig. 7.30, along with dimensions. Note that a 

bowtie shape was chosen, as it facilitates broadband operation. The gaps in the bowtie 

arms are to reduce the amount of ink used, without significant impact on the design. 
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Fig. 7.30. The RFID tag with CNT. 

 

In air, the SWCNT film exhibited an impedance of 51.6-j6.1 Ohm, which results in a 

power reflection at -18 dB. When NH3 is present, SWCNT film's impedance was shifted 

to 97.1-j 18.8 Ohm. The mismatch at the antenna port increased the power reflection to -

7.6dB. That is, there would be 10.8dB increase at the received backscattered power level 

measured by an RFID reader (Fig. 7.31). By detecting the backscattered power difference 

on the reader's side, the sensing function can be fulfilled. 

 

Fig. 7.31. The calculated power reflection coefficient of the RFID tag antenna. 

 

 

7.3.3.2 High-Q Gas Sensor 

The presented sensor design suffers from a few drawbacks. The utilized CNT is not 

functionalized. A considerable concentration of ammonia gas is thus needed to achieve 

the presented results (household ammonia was used in all measurements). In addition, the 
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low-Q of the antenna design employing an amplitude-based sensing algorithm is not 

useful in many practical scenarios. Thus, an alternate design is needed that has superior 

sensitivity to very low concentrations of ammonia. To that end, a new wireless sensor 

utilizing functionalized CNTs along with a high-Q antenna is proposed. The underlying 

concept is to utilize frequency variations for better sensing resolution.  

Like their counterparts utilizing amplitude variations, prior sensor designs relying on 

variations in the frequency spectrum of the sensor were very limited in their performance.  

For example, Chopra [258] discuss the design of a patch antenna coated with a mixture of 

CNTs (in powder form) and a conductive epoxy for ammonia detection. When the CNT 

coating is exposed to ammonia, it changes the effective permittivity of the antenna and 

shifts its resonant frequency. The resonant frequency shift relative to the unexposed film 

determines the presence of the gas. Only 5 MHz shift has been detected even with a high 

ammonia concentration (1000 ppm). This small shift can lead to false alarms in a wireless 

configuration, and even antenna manufacturing tolerances can cause such small shifts. 

The authors in [260] employ a composite of multiwalled CNTs and SiO2 as a superstrate 

layer on a planar LC resonator, and use the change in effective dielectric constant, caused 

by surface interaction, to detect the gas. The effective permittivity is calculated from the 

resonator parameters. Due to size and cost limitations of fabrication on silicon, this sensor 

suffers from low sensitivity too, and the shift in dielectric properties can be masked by 

measurement errors.  

The class of sensors relying on frequency shift is most useful for remote wireless sensing 

because frequency shift is easier to detect than amplitude shift, even in adverse signal-to 

noise conditions. Here, we report the first of such RF sensors, comprising a thin-film 

functionalized CNT layer for the detection of ammonia, integrated with a silver ink-jetted 

planar antenna on photographic paper substrate.  

Chemical functionalization is a method to enhance both processibility and sensing 

performance of SWNTs. First, it allows the unique properties of SWNTs to be coupled to 

other materials, such as conducting polymers, metals and metal oxides, to create hybrid 

sensing materials with enhanced sensitivity, selectivity, and faster response time. Second, 
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it can improve dissolution and dispersion of SWNTs in various solvents, including water, 

which enables cost-effective methods to fabricate sensors by simple dispensing or 

printing techniques. Commercially available single-walled CNTs functionalized with a 

conductive polymer, polyaminobenzene sulfonic acid (PABS), are used here to enhance 

the sensitivity to ammonia.  

To design a sensor-based antenna, one needs a suitable model for the CNT layer to 

embed in numerical simulations. Accordingly, a characterization fixture is utilized, as 

shown in Fig. 7.32. A Short/Open/Load calibration is done at the terminals of the test 

fixtures, before extracting the equivalent R(f)C(f) model for the CNT sample. The 

extracted model is then utilized in numerical Eigen simulations (as described in Chapter 

5) to design a sensor antenna at a desired working frequency. Intuitively, once the CNT 

layer changes its properties due to exposure to a certain gas, the loading conditions will 

change, as will the resonant frequency of the antenna. In order to achieve maximum 

sensitivity, a patch antenna topology was chosen due to its moderately high Q (and thus 

narrow bandwidth characteristics), along with being easy to match to 50 Ohm systems.   

      

Fig. 7.32. Text fixture for extracting the equivalent circuit of the CNT sample. 

 

Fig. 7.33 shows the test setup for characterizing the change in the RC properties of the 

CNT layer when exposed to certain amounts of ammonia. Scattering parameter 

measurements at the fixture terminals were conducted using an ammonia gas permeation 

tube in a vacuum hood and a programmable network analyzer. The concentration of 

ammonia was controlled electronically using the permeation tube and an auxiliary source 

of nitrogen. The test fixture (and later the antenna) was clamped under the hood, and 

ammonia, mixed with the appropriate quantity of nitrogen, was released over the surface 
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of the sensor. Fig. 7.34 shows the variation in the scattering parameters of the test fixture 

upon exposure to 100ppm ammonia.  

 

 

Fig. 7.33. Under-the-hood controlled flow test setup. 

 

Fig. 7.34. Scattering parameters change upon exposure to ammonia. 

 

The extracted resistance and capacitance of the CNT layers in the test fixture when 

exposed to 100ppm ammonia are plotted in Fig. 7.35 and Fig. 7.36, respectively. The 

variation of the extracted resistance is shown with different exposure levels in Fig. 7.37. 
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Note that the nitrogen flow shown in Fig. 7.37 is used to purge all ammonia gas before 

applying a different concentration.  

 

Fig. 7.35. Extracted resistance before and after exposure. 

 

Fig. 7.36. Extracted capacitance before and after exposure. 

  

 

The setup shown in Fig. 7.33 is then used to test the sample sensor antenna. A few 

topologies were then tested, including the one shown in Fig. 7.38. This design is of 

particular interest, since the antenna has an overall efficiency of not less than 30% at any 

of its resonant frequencies up to 20GHz. In principal, CNTs are highly conductive only in 
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the form of a single tube or a bunch of tubes with aligned domains.  On the other hand, a 

CNT printed layer is a lossy surface coating, which affects the efficiency of the antenna. 

One can minimize the loss by aligning all single-walled CNTs in the direction of the 

electric field, but that is a cumbersome and expensive operation. In this work, with the 

goal of low-cost ink-jet printing in mind, a solution of CNTs is deposited on the paper 

substrate, producing a mesh of randomly oriented CNTs. To minimize the loss resulting 

from lower conductivity with such a matrix, the antenna and the sensor locations should 

be carefully integrated. In the presented design, only a small portion of a stub connected 

to the antenna (not the main radiation portion) is coated with CNTs, and the rest, 

including the patch, is fabricated using deposition of highly conductive silver 

nanoparticles. By doing so, the efficiency of the antenna remains acceptable as a proof-

of-concept, along with having the frequency shift of the antenna resonance frequency 

maximized by the change in impedance of the CNT load upon interaction with ammonia. 

In fact, a remarkable shift of more than 300MHz when exposed to 100ppm ammonia can 

be observed in Fig. 7.39. This shows how sensitive this sensor can be, which makes it 

quite useful in low-cost remote sensing applications. On a system level, an active reader 

with a phase detection capability can be used to interrogate the passive sensor-antenna 

and easily detect slight phase changes due to exposure to ammonia. 

 

 

Fig. 7.37. Variation in the extracted resistance with different levels of ammonia. 
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Fig. 7.38. The printed sensor realization. 

 

 

Fig. 7.39. Scattering parameters of the antenna before and after exposure to ammonia. 
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Chapter 8: Discussion, Contributions, and Future Work 

“The journey of a thousand miles begins with a step.”                                      

Lao Tzu 

 

So far, this research work presented a number of ideas seeking an efficient approach for 

the design of package-conformal integrated antennas. This work features three main 

topics: model-based antenna design techniques, optimization techniques for 

electromagnetic applications, and low-cost realization of next generation sensors and 

antennas. To demonstrate the validity and applicability of the proposed techniques, a 

number of antenna designs were developed for a set of real-world novel applications. The 

most significant contributions of this research may be listed as follows: 

• A new circuit-based extraction technique for the quality factor is presented in Chapter 

3. This expression is general and particularly quite useful in situations where the 

antenna Q is small. This led to the work in Chapter 4, where a new circuit-based 

approach for the design of multi-coupled antennas is presented. This is a general 

technique that significantly simplifies the antenna design process, especially when 

wider bandwidths are needed in a compact volume. The approach is demonstrated 

through the realization of a large variety of antennas, which were fabricated, 

assembled and measured, proving the validity of their underlying design principles. 

• A new circuit-theoretic physics-based strategy for the design of modern antennas is 

proposed in Chapter 5. It is based on focusing the design efforts on meeting a given 

resonance frequency and a specific quality factor, which in turn means an antenna 

capable of meeting specific impedance bandwidth requirements. Finding the optimum 

feed location is then a matter of utilizing the impedance maps. This is a useful design 

approach, in particular when designing antennas with multiple-feed locations or to 
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cover multiple-bands. Utilizing the modal approach, the idea of using a tunable 

element, whether as part of the antenna or its matching network, has been studied. 

The merits of using a tunable capacitor as part of the antenna (compared to being part 

of the matching network) are demonstrated. In addition, the presented Eigen-based 

technique can be utilized along with that presented in Appendix IV to achieve a 

systematic methodology for the reduction of mutual coupling between closely 

separated antennas, whether placed on large platforms or integrated in compact 

portable devices. The same methodology proved efficient in realizing antennas with 

multiple de-coupled feeds, thus creating high efficiency antennas for diversity and 

MIMO applications. 

• A new optimization technique is presented and discussed in Chapter 6. This is a 

special algorithm that results in a surrogate analytical model for the optimized 

antenna. This model can then be used in assessing the sensitivities and tolerances of 

all the design variables of the developed antenna. For the designs investigated so far, 

the algorithm proved much faster in its convergence than other commercially 

available optimization routines. 

• Ink jet printing of high frequency structures has been demonstrated for the first time. 

Prior to the work, the maximum demonstrated frequency for any printed structure was 

less than 5GHz. A UWB antenna ink jetted on paper-based substrates covering up to 

10GHz was demonstrated. Select CPW lines and antennas on paper-substrates were 

then demonstrated up to 40GHz. The techniques were applied to LCP substrates, 

where ink jetted antennas were realized up to 80 GHz. 

• Antenna-based gas sensors were studied and a new ultra-sensitive gas sensor 

employing carbon nano-tubes and ink jetted silver was demonstrated. Controlled lab 

tests using pre-defined levels of ammonia proved the extreme sensitivity of the 

proposed sensor. One should note that the applications of sensor-loaded antennas are 

quite diversified and not limited to inkjet printing technologies or to gas sensing.  
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It is important to emphasize that the primary purpose of this research is to develop 

systematic techniques for the design of package-conformal integrated antennas and 

sensors for next-generation wireless devices. As noted from the work presented in this 

document, several stages have been already implemented towards this target.  Here, the 

itemized proposed plan for possible future work is outlined.  

• The analysis in Chapters 3 and 4 will be revisited. The filter community is rich in its 

various filter configurations that can deliver different in-band and out-of-band 

behaviors. Such extensive variety is not available in the antenna community. 

However, as noted in Chapter 4 and Appendix V, it is possible to realize antennas 

with patterns featuring symmetric or asymmetric transmission zeros in the frequency 

plane. This is an interesting capability that is worth further studies to assess its 

potential and possibly cast it into a unified design strategy. Additionally, following 

the presented analogy between filters and antennas, it is worth investigating if there is 

a possibility of defining some guidelines in the design procedures to have full control 

on the group delay properties of the transmitted/received signals. Future studies in 

this area will investigate the potential of using dielectric resonator antennas for the 

filter-integrated antenna designs. 

• The integration of some adaptive features into the antenna design will be studied 

further. It is hoped that the concept of impedance maps will provide insight into the 

optimum location for the placement of some variable capacitors (and their values) or 

switches, within the antenna for multi-band operation. It is also hoped that this 

concept will shed some light onto the optimal feed configuration for the antenna to 

operate efficiently under varying boundary conditions, i.e., antenna in pocket, in 

hand, or on desk. Although in most tested cases, the difference between the Eigen-

based method and the actual driven antenna model was acceptable, a theoretical study 

is needed to assess the impact of the boundary conditions and material losses on the 

orthogonality of the Eigen modes under all Q and material combinations to fully 

assess the method's limitations.  
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• The presented technique in de-coupling closely separated antennas will be 

investigated further from a system point of view (impact on capacity and throughput). 

In addition, at this point, it is not quite clear how the proposed technique will affect 

the theoretical achievable directivity and gain values of the array designs. Further 

studies are thus required. 

• Although the presented optimization algorithm is quite fast and robust, there is 

certainly space for improving its convergence. One particular possibility is 

embedding the concept of space mapping into the proposed algorithm. This will allow 

fast creation of some coarse grid of inexpensive simulations, which will then be 

refined by accurate simulations/experiments. Such hybrid algorithm could benefit 

from the robustness of the presented algorithm and the fast convergence of space 

mapping, without suffering from the delicate parameter extraction procedures that are 

typically involved in the space-mapping algorithms. 

• The proposed antenna and system design approaches were applied to a wireless 

medical hearing aid system and have been proven successful. Interestingly, there are 

numerous other applications where the medical systems are starved for novel 

solutions. Such devices typically involve an inductive link for the wireless 

functionality, which implies limited data capacity and range of coverage. To increase 

both of these parameters, improved versions of the wireless link are required. 

Hopefully, this will be one of the outcomes of the projected research work.   

• Further investigations into high frequency applications of low-cost printed electronics 

are long overdue. Integrated antennas in a package, flexible sensors, and mm-wave ID 

systems are just a few of the next-generation wireless devices awaiting development.  
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Appendix I: Q Calculations 

 

This appendix should serve in presenting a quick summary for some of the formulations 

involved in Q calculations. Let us consider a short electric dipole antenna placed along 

the origin of the rectangular coordinate system and aligned across the z-axis. Such an 

antenna would radiate a 01TM  spherical mode with an even symmetry about 0θ = . The 

associated fields can be obtained from an r-directed magnetic vector potential rA . Thus, 

for the root mean square values of the field components, one can write: 

 cos 1jkr
r

jA e
kr

θ −  = − − 
 

 (I.1) 

 2

1sin jkr jH e
r krφ θ −  = − + 

 
 (I.2) 

 2 3

1 1sin jkr jk jE e
j r r krθ θ
ωε

−  = − − + 
 

 (I.3) 

 2 3

2 1cos jkr
r

jE e
r kr

θ
ωε

−  = + 
 

 (I.4) 

The electric and magnetic energy densities can thus be calculated as: 
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 (I.5) 

and 
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The electric energy density associated with the traveling wave, which is the energy 

calculated from the field components producing the radiated power, can be derived as 

follows: 

 sin
jkr

rad eH
rφ θ
−

= −  (I.7) 

 sin
jkr

rad eE
rθ η θ
−

= −  (I.8) 

 
2 2

2
2 sin

2
rad rad
ew E

rθ
ε η θ= =  (I.9) 

By defining the non-propagating electric energy density 'ew as the difference between the 

total electric energy density and the propagating electric energy density, we have: 

 4 3 6 4 3
2

6
2 1 1 1 1' sin 4cos

2
rad
ee ew w w

kr k r kr k r
η θ θ
ω
    = − = − + + +        

 (I.10) 

The total non-propagating electric energy 'eW is then found from: 
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π π
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∫ ∫ ∫
 (I.11) 

The total radiated power may be determined by integrating the real part of the Poynting 

vector over a spherical surface of any radius: 
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=
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 (I.12) 

Hence, the quality factor can be expressed as: 

 3 3

2 ' 1 1e

rad a
WQ

P k ka
ω

= = +  (I.13) 

This is the result that McLean deduced, which is identical to that derived by Collin. This 

expression for Q opposed the long-term expression presented by Chu-Harrington. In fact, 

McLean identified the inconsistency by pointing out an algebraic mistake in their 

expression and modifying it to: 

 ( ) ( )
2 2

3 33 3 2 2 2 2

1 2 1 1
1 1

a
aa a

kQ
kk k k aa k

+
= = +

+ +
 (I.14) 

These expressions can also be produced by using Chu’s equivalent ladder network for the 

first mode, where the total electric energy stored in the circuit is: 

 21 1 1'
2 2e CW C V

kaω
= =  (I.15) 

and the power dissipated in the resistor is: 

 
2

2
2

2 21r r
k aP I R

k a
= =

+
 (I.16) 

 

Fig. I.1. Equivalent circuit for the 01TM spherical mode. 
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Therefore, the Q is: 

 3 3

2 ' 1 1e

r

WQ
P k ka a
ω

= = +  (I.17) 

Intuitively, it was shown by Harrington that the lowest achievable radiation Q for a 

circularly polarized antenna is given by that corresponding to a combination of the 01TM  

and 01TE  modes. This Q can be derived by using the electric vector potential in a dual 

manner to dealing with the 01TM . That is: 

 cos 1jkr
r

jF e
kr

θ −  = − − 
 

 (I.18) 
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1sin jkr jE e
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 (I.19) 
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θ
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By combining both of the 01TM  and 01TE  modes through proper excitation, one can 

obtain circular polarization in the far-field. For example, by using a complex amplitude of 

jη  for Eφ , a circular polarization is achieved. In this case, the total electric energy 

density is:  
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 

 (I.22) 

and the total non-propagating electric energy is then: 



 

232 

 

 3 3

4 2 1'
3eW

ka k a
πη
ω

 = + 
 

 (I.23) 

The radiated power for each mode is equal and therefore, the total radiated power is twice 

that of the 01TM mode acting alone. Hence, the radiation Q is given by 

 3 3

2 ' 1 1 2
2

e
cir

r a
WQ
P k ka
ω  = = + 

 
 (I.24) 

It should be noted that the Q of a circularly polarized antenna is only approximately half 

that of a linearly polarized antenna. This is because the 01TE  mode, while storing 

predominantly magnetic energy in the non-radiating fields, also stores some electric 

energy. The dual for the 01TM  exists as well. 
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Appendix II: Theory of Characteristic Modes 

 

This appendix summarizes some of the formulations involved in the theory of 

characteristic modes. Parts of the analysis in this section were developed to clarify some 

of assumptions used in this theory. Consulting with the referenced articles (see Chapter 2) 

in parallel with this appendix should give the reader a better understanding of the 

underlying principles.  

 

Foundations 

An impressed external electric field exE  on a conducting body with surface S, induces on 

the conducting surface a current sJ  which generates a scattered field sE . A given 

distribution of charges and currents localized in some region of space can generate and 

radiate electromagnetic waves, which propagate to a far distance from the source. The 

following equations 

 BE
t

∂
∇× = −

∂
 (II.1) 

and 

 0B∇⋅ =  (II.2) 

imply the existence of the magnetic and electric potentials, ( , )A r t  and ( ),e r tϕ , such that 

the fields E and B can be obtained through: 

 e
AE
t

ϕ ∂
= −∇ −

∂
 (II.3) 

 B A= ∇×  (II.4) 

Solution of the Maxwell’s wave equations for the potentials yields: 
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 ( ) ( ) ( )' , '
V

A r J r G r r dVµ= ∫  (II.5) 

and 

 ( ) ( )( ) ( )1 ' ' , 'e
V

r J r G r r dV
j

ϕ
ωε

= − ∇ ⋅∫  (II.6) 

where r  is the field observation point, 'r  the source point, V the localized volume in 

which the charge ( )'rρ  and current ( )'J r  densities are non-zero and '∇  the divergence 

with respect to 'r , and ( )
'

, '
4 '

jk r reG r r
r rπ

− −

=
−

 is the Green’s function for the Helmholtz 

equation. 

Hence, by substitution in Maxwell equations, one gets: 

 ( ) ( ) ( )21 ' ' ' , '
V

E J J r k G r r dV
jωε

 = ⋅ ∇ ∇ + ∫  (II.7) 

Thus, for the generated field, it is possible to write: 

 ( ) ( ) ( )21 ' ' ' , 's s
s

V

E J J r k G r r dV
jωε

 = ⋅ ∇ ∇ + ∫  (II.8) 

On the surface of a perfectly conducting body, according to boundary conditions, the 

tangential component of the electric field vanishes: 

 ( )
tan

0ex sE E+ =  (II.9) 

One may also write: 

 ( ) ttan an 0ex
sL J E− =  (II.10) 

and if we denote tanL  by Z , then: 
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 ( ) tan 0s
exZ J E− =  (II.11) 

where Z can be expressed as: 

 Z R jX= +  (II.12) 

with 

 ( )*1
2

R Z Z= +  (II.13) 

and 

 ( )*1
2

X Z Z
j

= −  (II.14) 

The theory of characteristic modes focuses on the operator Z for its representation and 

description of the system, thus providing the solution sJ  to an external field applied to 

the system. The characteristic modes can be viewed as natural and inherent system 

responses. To understand these modes, the following Eigen value problem is formulated: 

 ( ) ( ), ,s n n s nZ J M Jν=  (II.15) 

where nν  represents the Eigen values and ,s nJ  represents the Eigen functions. The weight 

operator M  is to be chosen. If 0M = , we then have a trivial solution. On the other hand, 

if M R= , we obtain real and orthogonal Eigen functions. Thus, we have: 

 ( )( ) ( ), ,s n n s nR jX J R Jν+ =  (II.16) 

That is: 
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where 1n njν λ= +  

The total current induced on the surface can be written as a superposition of the 

characteristic modes: 

 ,s
m

m s mJ Jα=∑  (II.18) 

where mα  are coefficients to be determined.  

Note that R  and X  are Hermitian operators, meaning they are symmetric and real. Such 

properties yield real Eigen functions and eigenvectors for ( ) ( ), ,s n n s nX J R Jλ= . Also, 

note that the choice of M R=  should produce orthogonal functions. If we consider 

( ), ,s n nJ λ  and ( ), , ms mJ λ  two distinctive solutions to ( ) ( ), ,s n n s nX J R Jλ= , with mnλ λ≠ , 

and X being Hermitian, then: 

 ( ) ( ), , , ,, ,s m s n s m s nJ X J X J J=  (II.19) 

 ( ) ( ), , , ,, ,s m n s n m s m s nJ R J R J Jλ λ=  (II.20) 

with 
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=
 (II.21) 

Using the same procedure, we have: 
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 ( ), ,, 0s m s nJ X J =  (II.22) 

Combining, we get: 

 ( ), ,, 0s m s nJ Z J =  (II.23) 

Now back to:  

 ,s
m

m s mJ Jα=∑  (II.24) 

and using:  

 ( ) tan 0s
exZ J E− =  (II.25) 

By making use of the linearity of operator, then: 

 ( ) t, an 0ex

m
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Applying the inner product yields: 
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Knowing that ( ), ,, 0s m s nJ Z J = , then: 

 ( ), tan, ,, ,s n s n
e

n s
x

nJ Z J J Eα =  (II.28) 

and since ( ) ( ), ,s n n s nX J R Jλ= , then: 
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yielding 
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Back to ,s
m

m s mJ Jα=∑ ,  
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where t n, a, ex
s mJ E   is defined as the modal excitation coefficient. 

Normalization of the Eigen functions ,s mJ  yields ( ), ,, 1s m s mJ R J = , thus: 
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Interpretations Using the Poynting Theorem 

Recalling the Poynting Theorem, it is possible to write: 
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V
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 (II.33) 

where S is a closed surface enclosing the volume, V , ' ''jε ε ε= −  and ' ''jµ µ µ= −  are 

the complex permittivity and permeability in consideration of the dielectric loss effects. 

The Poynting theorem states that the power delivered by the sources is equal to the sum 

of the power radiated through the surface, the power dissipated to heat in the volume, and 

the reactive energy stored in the volume and the flow of reactive energy per unit in time. 

Applying the above theorem in the absence of magnetic source in free space to the Eigen 

currents ,s nJ  and ,s mJ , then: 

 ( ) ( )* * * *
, ,,s m s n m n m

V
mn n

S

J Z J E H dS j H H E E dVω µ ε= × ⋅ + ⋅ − ⋅∫ ∫
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Using orthogonality ( )*
, ,, 0s m s nJ Z J = ,  

 ( ) ( )* * * 2 1m n m m n nm nn n
S V

E H dS j H H E E dV j Pω µ ε λ δ× ⋅ + ⋅ − ⋅ = +∫ ∫

 (II.35) 
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1        for m = n
0        for m nmnδ

 ≠

 (II.36) 

In the far-field region, the following relation between the magnetic and electric fields is 

valid, where r  denotes the unit radial vector and µη
ε

=  

 n nE H rη= ×  (II.37) 

Using the far-field conditions in: 

 ( ) ( )* * * 2 1m n m m n nm nn n
S V

E H dS j H H E E dV j Pω µ ε λ δ× ⋅ + ⋅ − ⋅ = +∫ ∫

 (II.38) 

it is possible to write: 
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Now, if we apply the conjugate, then: 
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Summing and inter-changing m with n produces: 

 *1
n mnm

S
nE E dS Pδ

η
⋅ =∫  (II.41) 

One may also show that: 

 *
m

S
n mn nH H ds Pη δ⋅ =∫  (II.42) 
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The last two equations show that the characteristic electric and magnetic far-fields are 

orthogonal, which in turn implies orthogonality of the characteristic patterns. Now, if we 

subtract the following equation from its conjugate, 

 ( ) ( )* * * 2 1m n m m n nm nn n
S V

E H dS j H H E E dV j Pω µ ε λ δ× ⋅ + ⋅ − ⋅ = +∫ ∫

 (II.43) 

 we have: 

 ( )* * 2n nm m n nm n
V

H H E E dV Pω µ ε λ δ⋅ − ⋅ =∫  (II.44) 

Furthemore, when m n= , it is possible to write: 

 ( )2 2 2 n nn n
V

H E dV Pω µ ε λ− =∫  (II.45) 

So, when:  

 ( ) ( )2 2
n n

V V

H dV E dVµ ε<∫ ∫  (II.46) 

this means that the stored electric energy on the volume V dominates over the stored 

magnetic energy. Hence, the associated modes are defined as capacitive modes. This, in 

turn, leads to 0nλ < . Also, when:  

 ( ) ( )2 2
n n

V V

H dV E dVµ ε>∫ ∫  (II.47) 

this means that the stored magnetic energy on the volume V dominates over the stored 

electric energy. Hence, the associated modes are defined as inductive modes. This, in 

turn, leads to 0nλ > . Now, when: 

 ( ) ( )2 2
n n

V V

H dV E dVµ ε=∫ ∫  (II.48) 
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the stored magnetic energy on the volume V is equal to the stored electric energy and the 

associated modes are defined as resonant modes. This, in turn, leads to 0nλ = . 

 

Back to the basic equation relating the currents to the fields, we have: 

 ( ) ( )* * * *
, ,,s m s n m n m

V
mn n

S

J Z J E H dS j H H E E dVω µ ε= × ⋅ + ⋅ − ⋅∫ ∫
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Through orthogonality, it is possible to write: 
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yielding 

 ( ) ( ) ( ), , ,
*

,1 , 2 4n s n s n n m n e nj J R J P j W Wλ ω+ = + −  (II.51) 

where ,m nW  and ,e nW  are the modal time averages of the stored magnetic and electric 

field energies, respectively. Simplifying: 

 ( ) ( ), ,1 2 2 4n n n m n e nj P P j W Wλ ω+ = + −  (II.52) 

Thus, 

 , ,2 m n e n
n

n

W W
P

λ ω
−

=  (II.53) 

Hence, at , ,m n e nW W= , we have ( ) 0nλ ω = , defining the Eigen frequency and the 

corresponding eigenvectors. Recalling that ( ) ( ), ,s n n s nX J R Jλ= , then: 

 ( )
0

, 0s nX J
ω ω=

=  (II.54) 
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Steps for the Calculations 

The application of the theory of characteristic modes involves some typical steps. In the 

first one, the antenna geometry model is typically designed and simulated in a method of 

moments MoM based electromagnetic software at a frequency of interest. Plane waves 

are used for excitation to exclude the effect of the source location on the expected results. 

In the second step, the impedance matrix generated by the EM solver is extracted and 

processed through a generalized eigenvalues solver. The third step features the 

computation of characteristic modes and interpretation of the results.  

Evaluation of radiation properties requires a number of frequencies in a range of interest. 

For each single frequency, the previous steps, in the listed order, are performed. Using 

the numerical results, the resonance frequencies can be identified. A much more 

complicated task is the evaluation of the radiation quality factor. Hence, one needs to 

establish a relation between the frequencies of interest and the eigenvalues. 
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Radiation Quality Factor 

The radiation quality factor radQ  of a system is defined to be 2π  times the ratio of the 

maximum energy stored to the total energy lost per period. A generally accepted 

definition of the radiation quality factor for antennas can be expressed as follows: 

 
( )max ,

2 m
rad

r

e

ad

Q
W W
P

ω=  (II.55) 

with mW  and eW  being the time averages of the stored magnetic and electric field 

energies,  respectively, with ω  denoting the radian frequency, radP  is the radiated power, 

and s jα ω= +  defining the complex frequency. Assuming the nth mode is generated by 

an actual source (and not through mode convergence or scattering), and fed through a 

transmission line, then: 
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n
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=
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 (II.56) 

Thus,  

 ( ) ( ) ( ), ,n nnZ s R jXα ω α ω= +  (II.57) 

where  
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,2 4
,
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α ω

+ +
=  (II.58) 

and 
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−
=  (II.59) 

 



 

245 

 

For  0α →  , and ( )I s I≈  

 ( ) 2

2 n
n

PR
I

ω =  (II.60) 

 ( )
( ), ,

2

4 m n
n

e nW W
X

I

ω
ω

−
=  (II.61) 

 ( ) ( ),

2

,4 mn n e nW WX
I

ω
ω

−∂
=

∂
 (II.62) 

which can be re-arranged as: 
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 (II.63) 
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, 8
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I X XW
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 (II.64) 

So using 
( )max ,

2 m
rad

r

e
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Q
W W
P

ω= , we have 
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However, recalling that ( ) ( ), ,s n n s nX J R Jλ= , one may write 

 

1
2

n n
n n

rad
n

R R
Q

R

λω λ
ω

∂ ± ∂ =  (II.67) 

which is usually simplified assuming ( )n nR Rω = , to give 

 1
2

n
rad nQ λω λ

ω
∂ ± ∂ 

=  (II.68) 

At resonance, 0nλ → , thus 

 1
2

n

n
radQ

ω ω

λω
ω =

∂ 
 ∂ 

=  (II.69) 

It is important to note that this result was achieved through two critical approximations (

0α →  and ( )I s I≈ ). This yields the resulting expressions only useful for high Q 

structures. In addition, computationally speaking, the problem is further complicated 

when considering lossy dielectric materials, which are typically needed in most antenna 

designs. Using the aforementioned formulations, finding the mode configuration is 

perhaps the most useful feature of the theory of characteristic modes. However, to 

evaluate the input impedance, or the bandwidth for low Q antennas (Q<10), it is 

necessary to enhance this theory, or propose an alternate one. Chapter 5 of this work 

discusses one possible more accurate and more general to implement method. 
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Appendix III: Cavity Model 

 

Most antenna books cover various aspects of the cavity model for antennas. For 

convenience, this appendix should highlight some of the underlying concepts and their 

associated approximations. The reader should consult with any book on antenna theory, 

particularly chapters on microstrip antennas, for further details. A very important fact to 

bear in mind is that although the subject has been thoroughly studied from the late 1970s, 

there is still ongoing research seeking possible improvements to the theory. For example, 

a quick search among the most recent IEEE publications (2005-2008) will yield a 

considerable number of attempts to better model the associated probe model. There is 

certainly a lot to improve in this theory; in fact, the work presented in Chapter 5 can be 

viewed as a generalization of the theory. 

 

Foundations 

Many radiating structures take the form of a plate of arbitrary shaper, parallel to a 

reflector plane at a distance which is much smaller than the free space wavelength. In 

such a scenario, the antenna is often modeled as a cavity bounded on its perimeter by 

magnetic walls. The quality factor, resonance frequency, and the radiation resistance can 

be computed from the approximate fields. With no feed present, the microstrip source 

(consider a rectangular metallic plate in xy-plane with width W in x-direction, length L in 

y-direction on a substrate of height H) can be thought of as a cavity bounded by magnetic 

sidewalls and supporting quasi-discrete modes, which are mnTM  to z. Note that m is 

associated with the y direction, while n denotes variation in the x direction. 

 

Let us look at the mode 10TM , obtained when L is around half of the guided wavelength. 

In general, the electric field is assumed to be parallel to the z direction and independent of 

z.  This field can be expressed as the sum of fields associated with each mode: 
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 z mn mn
m n

E A e=∑∑  (III.1) 

where mnA  are the mode coefficients and the mne  are the ortho-normalized mode vectors 

given by: 

 ˆ cos cosmn
mn x ye z k x k y

LWH
χ
ε

=  (III.2) 

Similarly, 

 ( )1 ˆ ˆcos sin sin cosmn
mn y x y x x yh xk k x k y yk k x k y

j LWH
χ

ωµ ε
= −  (III.3) 

where 

 ( )
( )

0 0 2        0, 0

2                    0, 0
m n

mn

m n

m n

χ χ

χ

= = ≠ ≠

= ≠ ≠
 (III.4) 

and 

 2 2 2 2
x yk k kω µε= = +  (III.5) 

 

Impedance Boundary Model  

Carver, in his classical 1979 paper, imposed an impedance boundary condition on each of 

the four walls (Lo proposed the same idea in the same year). This leads to transcendental 

equations for the Eigen values, xk  and yk  

 2 2

2tan x x
x

x x

kk W
k

α
α

=
−

 (III.6) 

and 

 2 2

2
tan y y

y
y y

k
k L

k
α
α

=
−

 (III.7) 
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with  

 0

0

2
x x x

R Hj Y F
W

πα
λ

=  (III.8) 

and 

 0

0

2
y y y

R Hj Y F
L

πα
λ

=  (III.9) 

where xY  is the wall admittance for x=0, x=W, yY  is the wall admittance for y=0, y=L, 

and the factors xF  and yF  are approximately unity. The approximation is based on the 

wall conductance of a TEM parallel plate waveguide radiating into half space. In fact, the 

wall susceptance of a uniform microstrip line gives the following equations for the wall 

admittance, 

 Y G jB= +  (III.10) 

with  

 
0

1
120

WG
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=  (III.11) 

and 
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with  
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2 2
r r

e
H
W

ε εε
−+ −  = + +  

 (III.13) 

Note that the susceptance can be compared with that from Bahl (1979). 
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   + +

=    − +  
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Derneryd (1979) added two more expressions for the metallic and substrate losses, as 

follows: 

 ( ) 1.52
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24
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W f
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π π µ
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=  (III.15) 

and 
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Approximate Boundary Model  

A rough approximation is typically made assuming that the radiating walls at 0y =  and 

y L=  are perfect magnetic walls, resulting in 0, 0y yY α= =  and the first dominant mode 

corresponding to 10TM  with yk
L
π

= , and the approximate resonant frequency is given by 

 
2r

r

cf
L ε

=  (III.17) 

 

Substrate Loss Effect 

If the substrate loss is taken into account, the complex resonance formulated by Carver is 

obtained as: 

 
[ ]

' '
0.5

1 /
2 1 tan

r i
r

cf jf
L j

π
ε δ

−∆
+ =

−
 (III.18) 

where ∆  is a complex root of the transcendental equation. The complex Eigen value is 

then given by: 

 yk
L

π −∆
=  (III.19) 
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Input Impedance 

It is important to realize that the input resistance depends on the feed point location 

( )0 0,x y . The input impedance was calculated using a modal expansion method (Carver, 

1979). For a patch fed by a probe or a microstrip line, we have: 

 

2 20 0
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 (III.20) 

where 2
mnω  is the complex resonance frequency for the mnTM  mode, which is accurately 

approximated by: 
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One should note that the factor mnG  can be accurately approximated by: 
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 (III.22) 

where xd  and yd  are the width of the feed in both the x and y directions, respectively.  

For coaxially fed patches, x yd d d= = , where d  is the probe diameter. For a filamentary 

probe, 1mnG = , and the series for eZ  does not converge for the reactance. One can note 

that the major part of radiation reactance in the series of eZ  is mainly influenced by the 

higher order modes, which can be considered evanescent modes. The input impedance 

calculated is satisfactory for most high Q antennas with a simple geometrical shape. For 

antennas with low Q, slots, or coupled antennas, the traditional cavity model theory 
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yields poor estimations of the associated input impedance. Further details are presented in 

Chapter 5 of this work, with a proposed remedy for general antenna configurations. 
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Appendix IV: A Design Method for Diversity/MIMO Antennas 

 

This appendix describes a synthesis technique for reduction of the mutual coupling 

between closely separated antennas. This design method is shown to be quite useful in 

realizing pattern/polarization selective multi-fed printed antennas. The method starts with 

choosing a suitable printed element, after which the addition of another element, with its 

feed, introduces significant mutual coupling. The reduction of the coupling is then 

addressed, yielding a multi-fed antenna system with selective radiation properties. 

A paper illustrating the underlying concepts of the presented technique was presented at 

the IEEE 2008 Antennas and Propagation Symposium, and was awarded the Honorable 

Mention Best Student Paper Award. The presentation has garnered much attention and 

initiated a series of correspondences with several IEEE AP professors and students. 

Among the many positive responses, Fig. IV.1 shows a capture of a correspondence with 

Professor C. Luxey, professor at the University of Nice Sophia-Antipolis, associate editor 

of several transactions (including the IEEE Antennas and propagation), 2007 IEEE 

Wheeler prize holder, and member of the European Antenna Centre of Excellence 

administrative committee. 

 

 

Fig. IV.1 An excerpt of Professor Luxey’s comments on the proposed work. 

Introduction 

Deployment of smart antenna systems is beneficial for advanced communication systems 

that require a miniaturized handheld package, higher data rate, good coverage, and higher 

capacity. A smart antenna system is one in which the quality of communication system is 

enhanced by incorporating appropriate signal processing schemes into a set of 
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transmit/receive antennas. However, in order to minimize the total volume of the 

package, the antennas will have to be placed in close proximity to each other. This 

introduces significant mutual coupling that usually deteriorates system performance 

and/or complicates the associated signal processing. To address the need for compact 

antenna array systems, a synthesis method for significantly reducing the mutual coupling 

between the array elements is presented. In this work, the synthesis method is used to 

design a diversity antenna system composed of two patch antennas. Measurements of the 

mutual coupling are presented, along with simulated patterns for different excitations. It 

should be emphasized that the proposed synthesis method is general and can be applied to 

guide the design procedure of many related problems. 

 

Limitations of Available Solutions 

In order to design a switched beam antenna, the designer has to choose a suitable 

radiating element. This radiator will serve as the building block of the antenna system. 

For illustration purposes, a simple rectangular patch is chosen. The patch dimensions are 

chosen to achieve operation at a frequency band around 5.9GHz. In order to realize 

pattern diversity, or simply realize different beams, the antenna is designed to operate at 

its second resonance, making it richer in pattern variations.  

By bringing two of the patches close together (each separately fed), we have realized a 

simple array system. However, one problem with the array is the inherently high mutual 

coupling between the feed ports, resulting in degraded radiation performance. For 

example, 2mm separation at 5.9GHz typically yields [ ]21 5 dBS ≈ − or worse. Figure IV.2 

shows some antenna configurations and their typical coupling performance.  
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Fig. IV.2. Various antennas and their coupling behavior. 

 

Minimizing coupling in arrays has been widely addressed in the literature. Extensive 

work was done using either electromagnetic band gap structures or relying on hybrid 

power dividers. Figure IV.3 illustrates a design employing the later approach. Here, a few 

problems can be quickly noted. For instance, care has to be exercised in matching the 

hybrid, which typically results in limited bandwidth. Furthermore, this hybrid would 

require a large spacing, which is typically not feasible for portable devices. One should 

note that this method does not really de-couple the antennas but de-couples their ports. 
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Using electromagnetic band gaps is another proposed technique, but suffers from its size 

requirements and the bandwidth limit of the EBG cells. 

 

 

Fig. IV.3. De-coupling using hybrids. 

 

 

Fig. IV.4. De-coupling using EBGs. 
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Proposed Method 

The proposed method to minimize the coupling is to consider the antenna array as a 

multi-port circuit, as shown in Figs. IV.5 and IV.6, where each antenna is represented by 

a generalized scattering matrix. In a conventional array of two antennas, a 3-port 

scattering matrix may be used, where port 1 represents the feed, port 2 represents power 

radiated (in free space, surface wave and leaky wave are also included), and port 3 is used 

to represent the mutual coupling between the antennas. In order to reduce coupling, an 

additional path may be introduced (represented by port 4 in Fig. IV.5). Through proper 

design of an additional coupling path, it is possible to minimize the mutual coupling 

significantly. However, it is usually desired to only de-couple the feed ports of the 

antennas. Thus, the four-port model for each antenna can be reduced to a two-port model 

(Fig. IV.6). In the two-port circuit model, radiation is treated as loss in the network, with 

the target being a synthesis of a circuit/printed structure connecting both antennas and 

countering the mutual coupling between the feed ports. 

 

 

Fig. IV.5. Four-port circuit model for two coupled antennas. 
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Fig. IV.6. Two-port circuit model for two coupled antennas. 

 

For a two-port model, the governing system of equations may be expressed as: 
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 (IV.1) 

which can be re-written as: 
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where [ ] 1

2 2connS −

×
 is the scattering matrix representing a physical network connecting ports 

“2” in each of the networks. Finding the reduced two-port network out of this general 

network can then be achieved from: 
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which may be written as: 
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with a desired overall matrix [ ]0S , such that:  
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where 
011

AS (
011

BS ) denotes the scattering parameters at the physical input port of patch 

antenna A (B) when patch B (A) is not present.  It is clear, then, that we need to 

synthesize the connection matrix [ ]2 2connS
×

 to achieve the desired overall matrix through: 
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for a passive, lossless, symmetrical connection network, the connection matrix itself can 

be written as: 
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So, by varying 11
connS  and 

11
connje ϕ , one can easily construct the Return and Insertion Loss 

Maps, which are used to speculate the return and insertion loss levels at the antenna ports 

using: 
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Figure IV.7 shows a return loss map for two closely coupled antennas, such as those 

shown in Fig. IV.1, while Fig. IV.8 shows the insertion loss map for the same antennas. 

These maps present two important pieces of information. First, the best return loss we can 

achieve is around 25dB, while it is 21dB for the insertion loss. Second, putting both maps 

together, it is clear that a connection matrix where 11 1connS = , and 11 045connϕ ≅ , will result 

in a good de-coupled scenario with the return loss at 25 dB and the insertion loss at 

around 18dB. In general, this technique is quite useful in: 

1. Rapidly defining the best possible location for antenna de-coupling. 

2. Rapidly defining the best possible connection matrix, thus defining a hard limit on 
the expected performance. 

3. Allowing the study of the feasibility of realization of such connection matrix. 

4. Reducing significantly the number of simulations and optimization cycles needed 
to design a de-coupled system. 

 

 

Fig. IV.7. Return loss map. 
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Fig. IV.8. Insertion loss map. 

 

Figsures IV.9 and IV.10 show two very simple implementations of a connection matrix. 

In Fig. IV.9, the connection is established by connecting the two patches with two printed 

strips. The target was to null coupling at a single frequency. Another design is shown in 

Fig. IV.10, where coupling was minimized by adding simple stubs to the patches. The 

design target was to keep the coupling below 10dB for wider range of frequencies. It is 

noted that these examples show mutual decoupling in the H-plane. E-plane decoupling 

examples were presented in our 2007 RWS paper. 

 

 

Fig. IV.9. Mutual de-coupling achieved by connecting the two patches. 
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Fig. IV.10. Mutual de-coupling achieved adding a meander stub to each patch. 

 

Another design for wider band operation is shown in Fig. IV.11, where coupling is 

minimized by adding two stepped impedance lines, which are widely known and are 

commonly used as low-pass filters. However, instead of designing them following the 

traditional filter polynomials, they are synthesized based on the connection matrix 

presented in order to counter the coupling mechanism between the patches. Thus, the 

structure in Fig. IV.11 has two modified rectangular patches connected with stepped 

impedance lines, forming a squared-like structure of side length 3.2 cm over a ground 

plane of 4.8X4.8cm on a 118 mil FR4. With measurements agreeing reasonably with 

simulations, the resulting mutual coupling is approximately -20dB around the measured 

center frequency at 6 GHz, with a return loss of VSWR<2 covering 5.719-6.309GHz with 

a bandwidth of 9.81%.  
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Fig. IV.11. Measured and simulated results for the proposed compact diversity antenna. 

 

Eigen Analysis Verifications 

Eigen analysis is a mathematical approach where a physical problem is solved assuming 

no sources. The solution shows the characteristics of the structure, independent of any 

source/load terminations at the feed ports (presenting a homogenous solution). By 

applying Eigen analysis (discussed in Chapter 5 of this work) to the structure in Fig. 

IV.11, the Eigen modes can be easily plotted (modes 5 to 10 are plotted in Fig. IV.12 

showing the Eigen electric field distribution). The first 13 resonant frequencies (in GHz) 

are 2.3192, 3.4072, 3.4423, 3.9936, 4.5722, 4.7022, 5.3302, 5.8773, 5.9024, 6.6344, 7.2 

066, 7.3357 and 7.4171. The Eigen plots serve to ensure that the physical connection 

links introduced to the patches do not contribute to the radiation mechanism. As 

illustrated earlier, their main function is to counter the mutual coupling at the feed ports 

without altering the resonant/radiation mode distribution. 
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Fig. IV.12. Eigen electric field distribution of modes 5 to 10.  Note that modes 8 and 9 are those 

of the coupled patch antennas around 5.8GHz. 
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Diversity in Far Field 

The optimized antenna is fed with two coaxial feed ports. The excitation mechanism can 

be switched type in nature, thus allowing the activation of one or both ports, with fixed 

amplitude and phase. Alternatively, one may consider operating the antenna in the 

adaptive array mode, where the amplitude and phases are allowed to vary. By inspecting 

the three-dimensional gain pattern of the antenna, we easily observe its ability in creating 

a sum/difference pattern, which makes it quite a simple antenna for deployment in 

switched-beam smart antenna systems.  

 

 

 

 

Fig. IV.13. Gain [dB] for different sets of excitations ( ) ( ){ } ( ) ( ){ }0 0 0 01 0 , 0 0 , 1 0 , 1 0     and 

( ) ( ){ }0 01 0 , 1 180  . 
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Fig. IV.14. LHCP/RHCP gains for different excitations ( ) ( ){ } ( ) ( ){ }0 0 0 01 0 , 0 0 , 1 0 , 1 0     and 

( ) ( ){ }0 01 0 , 1 180  . 
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De-coupling Using Lumped Elements 

During the IEEE 2008 APS presentation, I commented on the fact that the coupling maps 

for many antennas indicate that we can simply use a single inductor or capacitor to 

decouple two highly coupled antennas. This comment brought so much attention, and 

several researchers inquired about sample designs. I was also asked if we had a design 

with more than two elements. Here, I elaborate further on possible designs through a 

number of simulation studies. Let us now assume we have two patches closely placed 

(Fig. IV.15). Each patch is 64mmX50mm on a 3mm FR4 substrate. The edge-to-edge 

separation is 3 mm, the ground plane is 120mmX150mm, and the coupling is about -6dB. 

Figure IV.16 shows considerable coupling between the antennas. If the ports are put on 

the outer sides at the center of the patch edges (Fig. IV.17), the results will look similar to 

those shown in Fig. IV.18. 

 

 

 

Fig. IV.15. Two closely separated patches. 
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Fig. IV.16. Coupling between the two patches. 

 

 

 

Fig. IV.17. Patches with auxiliary ports. 
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Fig. IV.18. Results for the four-port simulation. 

 

 

Fig. IV.19. Return and insertion loss maps for auxiliary ports at center of patches. 

 

Applying the proposed algorithm, it is possible to generate the return and insertion loss 

maps shown in Fig. IV.19. Now, if we change the location of the ports to 25mm from the 

edge, we have a new map.  Figure IV.20 shows the return and insertion loss maps at 

1.114GHz. One may observe that a possible solution is at 0.5 and -180 degrees, with S11 

of -20.17dB and S12 of -16.53dB. 



 

271 

 

 

 

Fig. IV.20. Return and insertion loss maps for auxiliary ports at 25mm from edge of patches. 

 

 

Fig. IV.21. Return and insertion loss maps at 1.05GHz. 

 

The map at 1.05GHz is shown in Fig.IV.21. This should help in assessing potential de-

coupling on a considerable bandwidth. With ports from inside, we have a scenario as 

shown in Fig. IV.22, with its maps shown in Fig. IV.23. 
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Fig. IV.22. Using the auxiliary ports at the near edges. 

 

 

Fig. IV.23. Return and insertion loss maps for inside ports. 

 

The maps in Fig. IV.23 show that, at 1.104GHz, a suitable solution exists at 0.9 and -100 

degrees, where S11 is -36.42 dB and S21 is -28.23 dB.  One may thus easily synthesize a 

network close to the required connection matrix, as shown in Fig. IV.24, with its 

predicted results shown in Fig. IV.25. 

 



 

273 

 

 

Fig. IV.24. Synthesizing a connection matrix. 

 

 

Fig. IV.25. Results for direct synthesis of the connection matrix.  

 

One should note that the previous result was obtained by direct synthesis. That is, the 

return/insertion loss maps were used to find the best solution at a given frequency. For 

wider band de-coupling, different maps should be developed at each frequency of 

interest. Figure IV.26 shows a possible wide band de-coupling design. 
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Fig. IV.26. Results for wide-band decoupling.  

 

To verify the predictions for the de-coupling behavior, a full wave numerical simulation 

is conducted using a commercially available solver, HFSS, by using the network 

developed in Fig. IV.24, with its layout in HFSS shown in Fig. IV.27. The results shown 

in Fig. IV.28 correlate well with those found from using a circuit simulator utilizing the 

impedance maps (as shown in Fig. IV.25). The resulting pattern for odd and even 

excitations is shown in Fig. IV.29. 

  

 

Fig. IV.27. Modeling LC network in full wave simulators. 
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Fig. IV.28. The resulting de-coupling network. 

 

 

Fig. IV.29. Resulting pattern for odd and even excitations at the antenna physical ports. 

 

Studying the return and insertion loss maps further, one will observe that there is no 

physical solution at 25mm from the edge using a single capacitor or inductor. However, if 

a capacitor is placed at the outer sides of the patches, we can see in Fig. IV.30 that a 4pF 

capacitor can do the job. The resulting odd and even mode patterns are shown in Fig. 

IV.31. 
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Fig. IV.30. Using a single capacitor at the patch’s outer sides to decouple the patches. 

 

 

 

Fig. IV.31. Odd and even pattern results when using a single capacitor at each patch. 
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Array of Four Decoupled Patches 

The same proposed technique can be easily applied to a four-patch antenna system as 

shown below, with its corresponding results summarized in Figs. IV33-35. 

 

 

Fig. IV.32. A four-patch antenna system. 

 

 

Fig. IV.33. Resulting coupling between the four patches. 
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Fig. IV.34. Field distribution at excitation using {1,-1,-1,1}. 

 

 

 

Fig. IV.35. The resulting gain when exciting using {1,-1,-1,1} (top left) and {1,-1,1,-1} (top 

right), and exciting at a quadrature phase difference between the four ports. 
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Multiple Antennas for Portable Devices 

The proposed concept was also utilized in designing a number of antennas for portable 

devices. Figures IV.36-39 show designs for GSM1800/1900/UMTS as well as WLAN 

5GHz on a smartphone-sized board. 

 

Fig. IV.36. Antennas for GSM1800/1900/UMTS. 

 

 

Fig. IV.37. Response of the GSM1800/1900/UMTS antennas. 
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Fig. IV.38. Antennas for WLAN applications. 

 

 

Fig. IV.39. Response of the WLAN antennas. 
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Appendix V: Compact Coupled Antenna Designs 

 

This appendix presents more examples applying the proposed technique in Chapter 4, 

further illustrating the simplicity of the technique and its wide range of applicability. The 

examples should serve in discussing some of the filtering functionalities associated with 

these antennas. 

Design of Coupled PIFAs 

A miniaturized antenna design useful for the wireless local area network WLAN 

frequencies at 2.4GHz is demonstrated. Strictly speaking, there are 14 channels 

designated in the 2.4 GHz range spaced 5 MHz apart (with the exception of a 12 MHz 

spacing between the last two channels). Countries apply their own regulations to the 

permissible channels, number of allowed simultaneous users, and maximum power levels 

within these frequency ranges. However, it is typical to assume a WLAN antenna should 

operate at 2.4-2.485 GHz, with a -6dB return loss. 

The topology chosen for this design will be based on edge-coupled patch antennas 

[Chapter 4: 43-47]. If a single simple patch is chosen and a shortening wall is added to 

one of its radiating sides (for miniaturization), then we have realized what is commonly 

referred to as a Planar Inverted F-Antenna (PIFA-like) structure (Fig. V.1). At 2.45GHz, 

a PIFA with dimensions 15.8X8mm, on 62mil FR4, has a Q of about 45, potentially 

covering up to approximately 73MHz. It is important to note that this relatively low Q 

(for such a small antenna) is because of the high loss in the FR4 substrate; if the substrate 

were loss-free, the antenna Q would have been around 400. Now, if the patch is cut in 

half (sized 15.8X4mm) and fed with a probe at 2.25mm, it will resonate at 2.42GHz with 

an input resistance of about 81 Ohm and Q of about 48. Such Q means that, at most, the 

patch can cover 68MHz of bandwidth. In theory, using two coupled patches of the 

smaller patch (Q of 48) can match up to 215MHz (for return loss -6dB).  Following the 

presented design procedure in Chapter 4, one can realize two simple coupled patches at 

2.45GHz, where the driving patch is 15.6mmX4mm and the auxiliary is 15.5X4mm. The 

separation between the patches is 2.9mm. The shortening via posts is located at 1mm 

from the edges, with a diameter of 1.3mm. The main patch is driven through a probe with 
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an equivalent inductance of 0.9nH. Figsures V.1-3 show the schematics for the single 

patch, coupled patches, and the fabricated prototype, respectively. 

 

 

Fig. V.1. Simple PIFA antenna, with a feed probe and shortening via. 

 
 

 

Fig. V.2. Conceptual coupled PIFA. 
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Fig. V.3. Prototype of a coupled PIFA. 
 

The realized gain is plotted in Fig. V.4, along with the reflection coefficient at the feed 

port of both the single and coupled PIFAs. It is clear that the coupled patch modes result 

in a non-radiating mode near the upper band edge, thus limiting the actual realized gain 

bandwidth. However, compared to the simple PIFA, the coupled-PIFA design has around 

2dB higher realized gain over the frequency band of interest, maintaining a 6dB return 

loss bandwidth.   

The realized gain function of the coupled PIFA system is evaluated at 2.45GHz and 

2.56GHz in two cut planes normal to the antenna plane ( 00φ = and 090φ = ). It can be 

observed from Fig. V.5 that there is significant reduction in the radiation efficiency at the 

2.56GHz frequency. The 3D normalized gain plot is also given for these two frequencies 

in Fig. V.6. 

 

Fig. V.4. Realized gain and bandwidth of the simple and dual coupled PIFAs. 
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Fig. V.5. Realized gain at 2.45GHz and 2.56GHz. 

 

Fig. V.6. A 3D plot of the normalized gain patterns at 2.45GHz and 2.56GHz. 

 

It is also possible to design another version of this antenna without physically connecting 

the patches. For example, one solution is possible when the driving patch is sized 

15.5X4mm, with a secondary patch of 15.35X4mm at a separation of 0.9mm. The layout 

and the performance of such antenna are shown in Figs. V.7 and V.8, respectively. 
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Fig. V.7. Two coupled PIFAs without the connection strip line. 

 

 

 

Fig. V.8. Realized gain and return loss of the PIFAs. 
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Design of Tri-coupled Patches 

As noted in Chapter 4, the proposed technique is valid even for more than two coupled 

antennas. To illustrate, let us extend the dual-coupled patch system into a tri-coupled one. 

On a 62mil FR4, a patch of dimensions 34.85X8mm has a resonance at 2GHz with Q of 

about 41.7. According to the proposed limits, utilizing three coupled patches with the 

same Q can result in impedance bandwidth of about 368MHz. The model for this coupled 

system is shown below, with its response. All three resonators are identical 

[ ]( )0 0 02 GHz ,  41.7,  447.091f Q R= = = Ω , while the coupling inverters are chosen such 

that 21 0.0153 and  0.0094J J= = .  

 

 

Fig. V.9. Tri-coupled antenna model. 

 

Fig. V.10. Ideal response of the tri-coupled antenna. 

In order to realize this antenna, one needs to design one element at a time. The addition of 

a second element would result in perturbing the performance of the first element, which 
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can be re-tuned to realize the desired response. For example, starting with the first 

element, the following circuit model (Fig. V.11), with 

[ ]( )0 0 02 GHz ,  41.7,  447.091f Q R= = = Ω   should be used. Observing its response, an 

EM simulation can be rapidly used to realize a patch with very similar impedance plot. 

The high correlation shown in Fig. V.12 is for a patch with 34.85X8mm and a probe 

diameter of 1.3mm at 6.2mm from the radiating edge. 

 

 

Fig. V.11. Circuit model for the first element in the tri-coupled antenna. 

 

 

Fig. V.12. Full wave simulation and circuit model results. 
 

To proceed, the two-coupled resonant antenna circuit model is studied. When placing the 

second patch on a 62mil FR4 layer on top of the first patch, it is expected that the first 

antenna will be slightly affected, which in turn requires slight re-tuning. Figure V.13 

shows the circuit model [ ]( )0 0 0 12 ,  41.7,  447.091  and 0.0152853f GHz Q R J= = = Ω =  
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and the realized system, having a lower patch of 33.5X8mm and an upper patch of 

35.3X8mm shifted from the edge of the lower patch by 6.4mm.  

 

 

Fig. V.13. Circuit model for two-coupled antennas. 

.  

 

Fig. V.14. Circuit and EM simulation impedance response for a stacked two-patch system. 

 

Now, the third element in the antenna should be realized. According to the circuit model, 

one needs to have the three resonators with [ ]( )0 0 02 GHz ,  41.7,  447.091f Q R= = = Ω , 

along with a coupling of 21 0.0153 and  0.0094J J= = . If we were to utilize another 

62mil FR4, we would quickly notice that the realization of the lower coupling 2 J  could 

be very problematic. One way is to add further layers, but this simply adds to the volume 

and cost of the system. An alternate practical solution is to shift the third resonator from 
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being exactly along the axis of the second resonator, thus allowing for smaller a coupling 

and keeping the footprint considerably small. The final structure is shown in the 

following figure, with its response. Note that the return loss plots include both the ideal 

circuit with the probe effect and that corresponding to changing the coupling to keep the 

return loss below the VSWR limit (i.e., by making 2 0.009J = ). The realized system (Fig. 

V.15) has a lower patch of 33.5X8mm and an upper patch of 35.2X8mm, shifted from the 

edge of the lower patch by 6.4mm. The third patch is 38X7mm, shifted by 12mm from 

the radiating edge of the lower patch and 9.5 from its center axis. It can be noted that by 

shifting the third patch, its Q has changed; however, by lowering its thickness, one can 

shift it slightly back (Fig. V.16). Adjustments are determined by the strictness of the 

design specifications (Fig. V.17).  

 

 

Fig. V.15. Realized three-patch coupled antenna. 
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Fig. V.16. Circuit and EM impedance response of the three-patch system. 

 

 

Fig. V.17. Circuit and EM input reflection response of the three-patch system. 

 

The realized gain of such system, at ( ) ( )o o, 0 ,0θ φ = ,  is compared in Fig. V.18  to one in 

which a patch antenna is placed on top of the three 62mil FR4 layers The patch has the 

same width as the three-patch system (17mm) and a length of 35mm to resonate around 

2GHz. Such a single patch has a Q of 22.5 and thus can potentially have bandwidth of 

118.5MHz for VSWR=3. One distinct advantage in the three-patch system is its sharp 
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reduction in the realized gain (radiation efficiency) in the upper band.  Figure V.19 shows 

the realized gain at 1.9GHz, 2.1GHz and 2.3GHz. Although matched at 2.1GHz, one can 

observe a sharp reduction in the realized gain of the tri-coupled antenna. This is mainly 

due to the excited odd mode, which significantly lowers the radiation efficiency of the 

antenna.  

 

Fig. V.18. Realized gain for the single- and three-coupled patches. 

 

Fig. V.19. Realized gain pattern at 1.9GHz, 2.1GHz and 2.3GHz. 
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This tri-coupled patch antenna example illustrated the possibility of matching an antenna 

with a Q-FBW exceeding the Fano limit. However, this increase comes with significant 

variations in the realized pattern characteristics. Nevertheless, given its compact size, 

such an antenna would be capable of achieving stable pattern characteristics over a 

significantly wide bandwidth. In addition, its reduced radiation efficiency in the upper 

band suggests some associated filter-integrated characteristics which could be very useful 

in system level design aspects (i.e., relaxation of the front-end filter specifications and 

improvement of system SNR). 

 

 

 

 



Design of VSWR=1.925 on-Foam Coupled Antennas: Asymmetric Response 

Often, a question is raised about the robustness of a technique in handling different return 

loss requirements. To address this issue, a design with a -10dB impedance bandwidth, 

VSWR=1.925, is presented and a driving patch antenna with dimensions 80X10mm is used. 

A second patch is placed with dimensions of 76.4X10mm at 1.8mm and 15mm from the 

radiating and non-radiating edges of the first patch, respectively. A single patch of 80X10mm 

will have a Q of 39.5, yielding a VSWR=1.925 bandwidth of 30.2MHz. On the other hand, 

the antenna system with two coupled patches is capable of covering 104.6MHz at most. With 

the large thickness, the presence of the probe affects this theoretical limit. Including the 

probe effect, the actual maximum value for the system is approximately 90MHz. It is worth 

noting that if the coupled patch is replaced with an ideal matching circuit at the input of the 

driving patch, the maximum theoretical possible impedance bandwidth is 72.8MHz. It is also 

useful to compare the performance of this system to a single large patch consuming the same 

area as the coupled patches. A large patch of 80X35mm resonates at around 1.624 and has a 

Q of about 20; thus, it can cover up to a maximum of 57MHz. Adding an ideal single stage 

matching network at its input would widen its impedance bandwidth to 133.2MHz. It is clear 

that if no matching networks are used and if all antenna solutions were to occupy the same 

area, then dividing the antenna system into two coupled patches will result in a much larger 

bandwidth. Fig. V.20 shows the realized gain and directivity functions evaluated at 

broadside. The realized gain function is plotted over space in Fig. V.21 at both 1.75 GHz (in 

band) and 1.8GHz (odd mode frequency). Additionally, the realized gain function is 

evaluated versus frequency at some spatial angles to assess the filtering functionalities 

associated with this antenna design (Fig. V.22). 

 

 .  
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Fig. V.20. Realized gain function evaluated at broadside. 

 

 

Fig. V.21. Realized gain function at 1.75GHz (broadside) and 1.8GHz (off-broadside). 
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Fig. V.22. Evaluated realized gain function at broadside and off-broadside. 
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Design of VSWR=3 on Foam Coupled Antennas: Symmetric Response 

As noted, all of the earlier plots had an asymmetric type of response in their broadside 

radiation near the upper frequency band. Realizing an asymmetric response near the lower 

frequency band would simply require altering the dimensions of the auxiliary patch. 

However, it is sometimes desirable to have a symmetric response instead. In these situations, 

adding a third coupled patch can help in realizing the symmetric response. Let us first look at 

the response of three coupled patches.  Here, the driving patch is 80X10mm. One of the 

coupled patches is located on one side of the driving patch, while the other coupled patch is 

on the other side, where the first coupled patch is 76.4X10mm shifted 1.8mm and 15mm 

from the radiating and non-radiating edges of the driving patch, respectively. The second 

coupled patch is 76X10mm and located shifted 7mm from the non-radiating edge of the 

driving patch (Fig. V.23). The response of the antenna is shown in Fig. V.24. 

 

 

Fig. V.23.Draft schematic for three coupled patches. 
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Fig. V.24. Realized gain for in-plane three coupled patches. 

 

On the other hand, a symmetric pattern can be realized by keeping the driving patch and the 

first coupled patch unchanged and replacing the third patch with another one of 82X15mm 

shifted 3.5mm from the non-radiating edge of the driving patch (Fig. V.25). The results for 

this antenna are shown in Figs. V.26-V.29. 



 

298 

 

 

Fig. V.25. Layout for in-plane three coupled patches. 

 

Fig. V.26. Realized gain function and directivity function evaluated in the broadside. 
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Fig. V.27. Realized gain function evaluated in the broadside and off-broadside. 

 

 

Fig. V.28. Realized gain function at 1.7GHz, 1.76GHz, and 1.81GHz. 
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Fig. V.29. Sample prototype and its measured response. 

Design of a 1.7-2.1GHz Antenna for Smartphones 

As a final example, the proposed design procedure is utilized to develop a cell phone antenna 

operating between 1.7-21GHz. For prototyping, the utilized board is 90mmX50mm, the 

metallization forming the coupled strips is shortened to the cell ground in a PIFA-like 

topology, and the height of the strips over the metal is 3mm backed by a rigid foam layer. A 

schematic for the design is shown in Fig. V.30. The simulated reflection coefficient at the 

ports is shown in Fig. V.31. Various plots for the realized gain at different frequencies, in and 

out of band, are shown in Figs. 32-39. 
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Fig. V.30. High-band smartphone antenna. 

 

 

Fig. V.31. Simulated response. 
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Fig. V.32. Realized gain at 1.5GHz and 1.55GHz. 

 

Fig. V.33. Realized gain at 1.6GHz and 1.65GHz. 

 

Fig. V.34. Realized gain at 1.7GHz and 1.75GHz. 
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Fig. V.35. Realized gain at 1.8GHz and 1.85GHz. 

 

Fig. V.36. Realized gain at 1.9GHz and 1.95GHz. 

 

Fig. V.37. Realized gain at 2.0GHz and 2.05GHz. 
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Fig. V.38. Realized gain at 2.1GHz and 2.15GHz. 

 

Fig. V.39. Realized gain at 2.2GHz and 2.25GHz. 

 

 



Appendix VI: Basics of EM FEM Eigen Solvers 

 

Let us consider the vector wave equation: 
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E x E y E z  E . One can rewrite (VI.1), applying Galerkin's method as: 
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where ˆˆ ˆ
y zx

T x T y T z  T . Recalling that: 
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Then, 
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From the divergence theorem, one can write: 
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and 
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Thus, 
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Considering the problem space at hand being bounded by a perfect electric conductor (i.e., 

forming a cavity), then the field and the testing function will vanish at the cavity surface. 

This implies that: 
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Fig. V.1. A first order tetrahedron element. 

 

From a numerical point of view, one can discretize the cavity into a number of multiple-order 

tetrahedral elements. For simplicity, choosing a first-order tetrahedron with four nodes and 

six edges, one can write the electrical field in a single tetrahedron as: 
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The vector tangential edge elements are given by: 

  m m ti tj tj ti
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where "m " represents the edge number, and "i "/" j " are the edge nodes, "
m

L " is the length 

of the edge and "
ti

 "/"
tj

 " are the simplex coordinates associated with the nodes "i "/" j ". 

The simplex coordinates for the nodes are given as:  

 i
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One can then write: 

      2
ˆˆ ˆ

36
m
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L
A B y C z x A B x C z y A B x C y z

V
           

W (VI.13) 

where 
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 (VI.14) 

and 

 
6

ti ti ti ti
ti

a b x c y d z

V


  
  (VI.15) 

Given that 
m̂
t is the unit vector along the direction of the edge element, 

m
W  satisfies: 

 
1                           edge m

ˆ
0                      other edgesm m

t
  

W  (VI.16) 

Now, integrating over one tetrahedron, one can write: 

      
6 6

2
0

1 1

1
n n

m mv v
m m r m m

r

e dv k e dv
  

      W W W W  (VI.17) 

which can be re-written in a matrix form as: 

 2
0element element

S e k T e                       (VI.18) 

Assembling all the elements over the cavity volume, one can write: 

 2
0

e k e                     S T  (VI.19) 

where 2
0

k  is the Eigen wave vector being solved for.  
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