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Abstract 

There is increasing recognition among travelers, transportation professionals, and decision makers of 

the importance of the reliability of transportation facilities. An important step towards improving 

system reliability is developing methods that can be used in practice to predict freeway travel times 

for the near future (e.g. 5 – 15 minutes). Reliable and accurate predictions of future travel times can 

be used by travelers to make better decisions and by system operators to engage in pre-active rather 

than reactive system management.   

Recent advances in wireless communications and the proliferation of personal devices that 

communicate wirelessly using the Bluetooth protocol have resulted in the development of a Bluetooth 

traffic monitoring system. This system is becoming increasingly popular for collecting vehicle travel 

time data in real-time, mainly because it has the following advantages over other technologies: (1) 

measuring travel time directly; (2) anonymous detection; (3) weatherproof; and (4) cost-effectiveness. 

The data collected from Bluetooth detectors are similar to data collected from Automatic Vehicle 

Identification (AVI) systems using dedicated transponders (e.g. such as electronic toll tags), and 

therefore using these data for travel time prediction faces some of the same challenges as using AVI 

measurements, namely: (1) determining the optimal spacing between detectors; (2) dynamic outlier 

detection and travel time estimation must be able to respond quickly to rapid travel time changes; and 

(3) a time lag exists between the time when vehicles enter the segment and the time that their travel 

time can be measured (i.e. when the vehicle exits the monitored segment). 

In this thesis, a generalized model was proposed to determine the optimal average spacing of 

Bluetooth detector deployments on urban freeways as a function of the length of the route for which 

travel times are to be estimated; a traffic flow filtering model was proposed to be applied as an 

enhancement to existing data-driven outlier detection algorithms as a mechanism to improve outlier 

detection performance; a short-term prediction model combining outlier filtering algorithm with 

Kalman filter was proposed for predicting near future freeway travel times using Bluetooth data with 

special attention to the time lag problem.  

The results of this thesis indicate that the optimal detector spacing ranges from 2km for routes of 

4km in length to 5km for routes of 20km in length; the proposed filtering model is able to solve the 

problem of tracking sudden changes in travel times and enhance the performance of the data-driven 

outlier detection algorithms; the proposed short-term prediction model significantly improves the 
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accuracy of travel time prediction for 5, 10 and 15 minutes prediction horizon under both free flow 

and non-free flow traffic states. The mean absolute relative errors (MARE) are improved by 8.8% to 

30.6% under free flow traffic conditions, and 7.5% to 49.9% under non-free flow traffic conditions. 

The 90th percentile errors and standard deviation of the prediction errors are also improved. 
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Chapter 1 

Introduction 

Ever increasing traffic demands makes the issue of traffic congestion a common concern for most 

urban areas throughout the world. A study entitled “The Cost of Urban Congestion in Canada” 

released by Transport Canada in 2006, indicates that the cost of recurrent urban congestion in Canada 

is between $2.3 billion and $3.7 billion per year (in 2002 dollar values). The report states that this is 

only a conservative estimate of the total cost of congestion as there isn’t sufficient data to quantify the 

costs associated with non-recurrent congestion, air pollution, noise and stress. A more recent study 

reported by the Organization for Economic Co-operation and Development (OECD, 2010) estimates 

that traffic congestion in the Toronto area costs $3.3 billion in lost productivity annually.  

Solutions to alleviating traffic congestion mainly focus on two aspects: (1) reducing traffic demand 

through demand management strategies, such as parking restrictions, road pricing, policy approaches 

to encourage more usage of public transport and so on; and (2) improving the transportation systems 

to increase capacity. Increasing road capacity by construction of new highways and expansion of 

existing highways is extremely costly and is often not feasible in urban centers with limited land 

resources. Consequently, advanced technologies and measures used to maximize the efficiency of the 

existing transportation systems become more and more attractive to traffic managers.  

Those transportation management and control measures which use advanced technologies to 

improve transportation safety, mobility and enhance productivity are known collectively as Intelligent 

Transportation Systems (ITS). These technologies involve various sensing technologies, computer 

technologies, wire line and wireless communication technologies, electronic technologies, 

information processing technologies and so on, which enable the systems to sense, memorize, 

communicate, think (process information) and adapt (feedback information), and that is why we call 

it  “intelligent”. 

Traffic monitoring technology is an integral part of ITS, because it provides important information 

about the operation of transportation systems and this information is essential for performance 

analysis, problem detection, management strategy implementation and traffic planning. Many 

monitoring technologies (or traffic sensors) have been developed for acquiring (directly or indirectly) 

traffic conditions, e.g. loop detectors, CCTV cameras, electronic toll tags, license plate recognition, 
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dedicated probes vehicles, cell phone probes, Bluetooth detectors, connected vehicles (a system still 

under development) (RITA ITS website,2013) and so on.  

Data from different traffic monitoring systems have different forms and different characteristics, 

and these data have to be interpreted and transformed into valuable information that can be utilized by 

travelers and traffic managers. Travel time as a fundamental measure in transportation provides 

travelers and traffic managers with direct impression of traffic conditions, and it is used by travelers 

to plan trips (i.e. departure time, mode, and route), and used by traffic managers to manage 

transportation facilities and plan improvements. Automatic vehicle identification (AVI) systems (e.g. 

electronic toll tags, license plate recognition and Bluetooth detectors) can measure travel times 

directly and therefore the travel time data collected from AVI systems is expected more accurate than 

the travel times deduced from fixed-location detectors (e.g. loop detectors) (Haas et al., 2001).  

Bluetooth traffic monitoring, as one of the AVI systems, is a relatively new technology, and it has 

gained popularity in the field of dynamic traffic data collection, mainly because it has the following 

advantages over other technologies: (a) measures travel time directly; (b) anonymous detection; (c) 

insensitive to weather conditions; (d) not installed in the road surface; (e) deployed and maintained 

easily, quickly and cost-effectively. 

The Bluetooth technology has been implemented for monitoring traffic conditions in some places, 

e.g. the TranStar traffic monitoring center (Houston, USA) implemented this new low-cost traffic 

monitoring system in 2011 to obtain real-time traffic information, and this information is used for 

providing travelers with traffic information in various formats, including color-coded speed map on 

the Houston TranStar Website, travel time messages on roadside message signs, and traffic conditions 

reported through radio and television media (Houston TranStar Website, 2012). In 2012, a Bluetooth 

traffic monitoring system was deployed in the City of Calgary, Canada for monitoring real time 

traffic conditions and warning passengers and commuters about delays. The travel time data are also 

archived and used for planning purposes (City of Calgary Website, 2012). 

However, most of these implementations provide only travel time estimation rather than travel time 

prediction.  Travel time prediction has far greater value but also has many challenges that need to be 

addressed. The traffic information that is being disseminated in these implementations consists of 

some aggregation of individual vehicle travel times recently measured by the traffic monitoring 

system. That is to say, the information provided to motorists represents the traffic conditions from the 
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recent past, not the conditions that motorists will experience if they enter the road segment in the near 

future. 

Therefore, the main goal in this research is to develop and evaluate methods to predict near-future 

travel times for freeways using data obtained from Bluetooth detectors. 

1.1 Travel Time Estimation and Prediction 

1.1.1 Definition of Travel Time 

Travel time is an important system performance measure in the field of transportation. The actual 

travel time that an individual traveler takes to traverse a road segment is influenced by many factors 

such as traffic volume, weather conditions, behavior of drivers and vehicle characteristics. It is 

impossible to estimate or predict this stochastic process for all travelers exactly, consequently, the 

expected travel time is defined as the mean travel time during a specific time period.  

Two types of travel time are defined in practice: arrival travel time (ATT) and departure travel time 

(DTT). ATT refers to the travel time measured after the vehicles have travelled through the entire 

road segment, while DTT is the estimated/predicted travel times that vehicles will experience if they 

enter the road segment now or at some specified future time. A time-space diagram (Figure 1.1) 

illustrates the definitions of ATT and DTT.  

Figure 1.1 illustrates trajectories of several vehicles ( ݆, ݆ ൅ 1, ݆ ൅ 2,… ሻ  when they traverse a 

hypothetical road segment between two Bluetooth detectors ݅ and ݅ െ 1. The time taken for vehicle j 

to traverse the road segment ݅ is denoted as 	ݐݐ௜,௝ and is equal to	ݐ௜,௝ െ  ௜ିଵ,௝ areݐ ௜,௝ andݐ ௜ିଵ,௝, whereݐ

the times at which vehicle ݆ was detected at Bluetooth detectors ݅ and ݅ െ 1 respectively. 

The average arrival travel time (ATTതതതതത) for ݊஺ vehicles traversing road segment ݅	 during time period 

݇ can be defined as follows: 

തതതതതത௜,௞ܶܶܣ ൌ
1
݊஺
෍ ௜,௝ݐݐ	

௡ಲ

௝ୀଵ

, ௜,௝ݐ ∈ ݇																																																																																																																	ሺ1.1ሻ	

Where, ݊஺ is the number of vehicles passing the downstream boundary of the road segment	i during 

time period	݇. For example, in Figure 1.1, ݊஺ is equal to 2, which refers to vehicles	݆ and ݆ ൅ 1.  

The average departure travel time (DTTതതതതതത) for ݊஽  vehicles traversing road segment ݅	 during time 

period ݇ can be defined as follows: 
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തതതതതത௜,௞ܶܶܦ ൌ
1
݊஽

෍	ݐݐ௜,௝

௡ವ

௝ୀଵ

, ௜ିଵ,௝ݐ ∈ ݇																																																																																																												ሺ1.2ሻ	

Where, ݊஽ is the number of vehicles passing the upstream boundary of the road segment	݅ during 

time period	݇. For example, in Figure 1.1, ݊஽  is equal to 3, which refers to vehicles 	݆ ൅ 1, ݆ ൅ 2 

and	݆ ൅ 3. 

 

Figure 1.1: Illustration of travel time concepts based on a time-space diagram 

The definitions (Equation 1.1 and Equation 1.2) imply that both ܶܶܣതതതതതത௜,௞  and ܶܶܦതതതതതത௜,௞  cannot be 

computed until all ݊஺ or ݊஽ vehicles have traversed the road segment. ܶܶܣതതതതതത௜,௞ can be computed in real 

time as the required data are available (i.e. vehicles	݆ and j ൅ 1 have completely traversed the entire 

road segment before the present time). However, ܶܶܦതതതതതത௜,௞ cannot be computed in real time because the 

travel times experienced by some of the vehicles which enter the road segment during time period ݇ 

may not be available yet as these vehicles have not yet travelled the entire road segment.  

ATT can be of value for off-line analysis, but for real-time applications, such as posting travel time 

on variable message sign (VMS), the travel time of interest is the travel time that vehicles entering the 

segment during the given time interval will experience. Thus for these applications, DTT should be 

considered as the true travel time. 

Average ATTk
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1.1.2 Concept of Travel Time Estimation and Prediction 

Travel time estimation helps travelers and traffic managers to understand the current traffic conditions, 

and travel time prediction provides travelers and traffic managers with travel time information for 

vehicles that will traverse a road segment in the future. Figure 1.2 illustrates the concepts of travel 

time estimation and travel time prediction.  

 

Figure 1.2: Concept of travel time estimation and prediction 

Travel time estimation is a process of calculating (mean) travel time based on the “known” traffic 

conditions. Generally, the “known” conditions are various measures obtained from traffic monitoring 

systems. Data from different traffic monitoring systems have different forms and different 

characteristics, thus the method used to estimate travel time varies from system to system. This 

process of calculating the mean travel time based on the observed traffic data is a process of 

measuring travel times. Measuring travel times experienced by a sample of vehicles traversing a 

segment of roadway provides an estimate of the mean travel time experienced by the population of 

vehicles (i.e. entire traffic stream). However, by necessity this travel time is for the (recent) past and 

may not be a good estimate of future conditions. It is of far greater value to predict travel times in the 

future so that travelers and transport system managers can make informed decisions. 

Travel time prediction is a process of estimating the travel time for the future and therefore a time 

period when traffic conditions are “unknown”. Generally, the models of travel time prediction aim to 
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use previous “known” traffic condition information to forecast the traffic conditions (might not be the 

direct travel time) in the future. It is necessary to define how far into the future we are attempting to 

make the prediction, because different knowledge is required for short term prediction than long term 

prediction. The prediction horizon is defined as the length of time from present to a time in the future 

for which travel time is predicted.  

Travel time prediction models are categorized into real-time travel time prediction, short term 

travel time prediction and long term travel time prediction based on the length of the prediction 

horizon (Van Lint, 2004). In real-time travel time prediction models, the prediction horizon is 0, but it 

is different from travel time estimation, because traffic conditions are unknown at the time when 

travel time is estimated (illustrated in Figure 1.3). In short-term travel time prediction models, the 

prediction horizon is greater than 0 but less than or equal to 60 minutes. The prediction horizon of 

long term travel time prediction models is typically longer than 60 minutes. In this research, we 

mainly focus on short-term travel time prediction for which the prediction horizon is in a range of 5 

minutes to 15 minutes. 

1.1.3 Control Strategy for Dynamic Travel Time Estimation and Prediction 

Control strategy as one part of the dynamic travel time estimation and prediction models is very 

important, as it ensures the theoretical models can be applied in practice. Typically, the real time 

traffic data is transmitted via a high speed link to a database server at the transportation centre, and 

the database can be accessed by different users for different applications. For dynamic travel time 

estimation and prediction, especially a prediction model based on time-series traffic data, it is usually 

controlled by a rolling scheme on time scales. Figure 1.4 illustrates a typical control strategy for 

dynamic travel time estimation and prediction. 

As illustrated in Figure 1.4, the rolling horizon is defined as the length of time in the past during 

which the traffic conditions observed affect the next prediction value. The rolling step is a time 

interval generated by dividing the rolling horizon into several parts, so that the average value for each 

part can be used for the time series model. The prediction horizon, as mentioned previously, is 

defined as the length of time from present to a time in the future for which travel time is predicted. 

The prediction step is defined as a time interval at which the prediction is updated.  
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Figure 1.3: Difference between real-time travel time prediction and travel time estimation 

 

 

 

In Figure 1.4, the rolling step, prediction step and prediction horizon are set to be equal, but in 

practice it is not necessary. The rolling step and prediction step can be set equal to the prediction 

horizon or set to be a value smaller than the prediction horizon (Ishak et al., 2002), which is 

determined according to the application requirements. 

1.1.4 Travel Time Variability and Prediction Model Reliability 

The time taken by vehicles to traverse a road segment is not constant, and it varies from hour to hour 

and from day to day. Well known factors that influence this variability in travel time include: 
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Figure 1.4: A typical control strategy for dynamic travel time prediction (Ishak et al., 2002) 
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inadequate roadway capacity and traffic demand fluctuations, traffic incidents, work zones, weather, 

special events and traffic control devices (U.S. DOT, 2005).  

 

 

Data shown in Figure 1.5 are collected from Bluetooth detectors deployed along a 3.1 km section 

of suburban freeway (Highway 401 in Region of Waterloo, Canada). The variability of travel time 

caused by factors of weather conditions and demand fluctuations are shown in Figure 1.5 (a) and (b) 

respectively. From Figure 1.5 (a) we can see that in condition of bad weather, the travel time taken by 

vehicles to traverse a road segment is different from the travel time taken by vehicles to traverse the 

same road segment in normal weather condition, and the travel times that vehicles experienced during 

poor weather varies significantly with time of day. For the case shown in Figure 1.5 (b), we can see 

that travelers experienced more serious traffic congestion at Friday (pm peak) compared to other days 

in this week, and the main reason is that Friday pm peak has high traffic demand on this road segment 

than the same time period of other days.  

It is the variability of travel time that makes travel time prediction challenging. Consequently, a 

reliable travel time prediction model is required. In the contest of this research, reliable is defined as 

accurate, robust and transferable. An accurate travel time prediction model is one that provides errors 

between the predicted travel times and “true” travel times that are less than some threshold. A robust 

travel time prediction model is one that performs acceptably over a range of traffic states (e.g. 
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Figure 1.5: Travel time variability (Waterloo traffic website 2013) 
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recurrent congestion and non-recurrent congestion). A transferable travel time prediction model is one 

that can be applied to any similar roadway and obtain accurate and robust results. (Izadpanah, 2007(a)) 

1.2 Methods of Collecting Real-time Travel Time Data 

Three types of methods used in real-time travel time collection (direct/indirect) are introduced in this 

section: loop detectors, probe vehicles, and Bluetooth detectors. Loop detector is the traditional traffic 

monitoring technology and it is the most widely-used technology during the past several decades. 

Most of the previous travel time prediction models were developed based on data from loop detectors. 

Probe vehicle is another widely-used traffic monitoring technology, and it can be seen as the earliest 

wide-area wireless traffic monitoring technology. Bluetooth detector is one of the newest wireless 

traffic monitoring technologies, and data from Bluetooth detectors are the emphasis of this research. 

1.2.1 Loop Detectors 

Loop detectors are installed in the road surface (Figure 1.6(a)), and used for detecting the presence or 

passage of vehicles traveling along the roadway. The loop is a continuous run of wire with a magnetic 

field in the loop area. “When a vehicle passes over the wire loop or is stopped within the area 

enclosed by the loop, it reduces the loop inductance, which unbalances the tuned circuit of which the 

loop is a part. The increase in oscillator frequency is detected by the electronics unit and interpreted 

as a detected vehicle by the controller.” (U.S. DOT, 2003) (Figure 1.6(b))  

 

Two types of traffic measures are used to estimate and predict travel times based on loop detectors 

data, namely spot speed and road section density. Spot speed is the traffic stream speed at a point or 

over a short roadway segment at a fixed location. The traditional method for estimating spot speeds 

(a) (b) 

Figure 1.6: Loop detectors (U.S. DOT, 2003) 
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from single loop detectors is based on the assumption of a constant average effective vehicle length 

(Petty et al., 1998). And some studies made efforts to improve the speed estimation accuracy (Lin et 

al., 2004). Compared to the single loop detectors, double loop detectors can directly measure the spot 

speeds. For example, as the two loop detectors are very close to each other, the time mean speed 

between the two loop detectors can be seen as the spot speed at the location where the loop station 

(double loop detectors) is installed. In most cases, the data from loop detectors are aggregated over a 

defined polling period (typically 20 or 30 seconds), therefore the speed data from loop detectors are 

not individual vehicle speeds but the average speed of vehicles passing each loop station for each 

polling period. 

Section density for a specific road segment during a defined time interval can be estimated based 

on the cumulative vehicle counts at the upstream and downstream loop detectors, and travel time can 

be calculated from the densities and interval volumes based on traffic flow theory. 

1.2.2 Probe Vehicles 

Probe vehicles are equipped with on-board electronics (such as a location and a communication 

device) acting as moving traffic detectors, participating in the traffic flow and are capable of 

determining experienced traffic conditions. The probe vehicle keeps track of its own geographic 

position by the equipped location device and transmits its traffic experiences (i.e. vehicle trajectory) 

via the communication device to traffic center. Continuous vehicle trajectories from sample vehicles 

are used to calculate the travel time taken by vehicles to traverse a specific road section.  

Dedicated probe vehicles can be seen as the earliest wide-area wireless traffic monitoring 

technology, which might be the vehicles dispatched to the traffic stream for the purposes of data 

collection or those are already in the traffic network for other purpose (e.g. taxis, public transit buses 

or winter road maintenance vehicles) but can be used to collect traffic data. 

The advantages of dedicated probe vehicles technology are: (1) the data collection process can be 

implemented in a large area; and (2) the real-time data can be automatically transmitted to traffic 

center for purpose of traffic control and management. The most evident disadvantage of dedicated 

probe vehicles technology is when using commercial fleets as probe vehicles the data may be biased 

towards specific driving styles, and when using test probe vehicles the data obtained may be limited 

as the number of probe vehicle is not sufficiently large. 
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In recent years, the anonymous cell phone tracking systems are used to extract traffic information. 

They are essentially probe vehicles in which drivers or passengers carry cell phones, and the cell 

phone can be anonymously tracked by wireless carriers with existing technologies. Taking advantage 

of the widespread using of cell phone communication system around the world, traffic data can be 

obtained at wide area scale without extensive instrumentations and at a low cost.  

A new emerging technology called connected vehicles (i.e. vehicles equipped with wireless 

communication systems that will be able to communicate with roadside infrastructure and with each 

other) is expected to provide opportunities to collect traffic information in real-time. The connected 

vehicle technology (Figure 1.7) allows exchanging messages between vehicle’s on-board equipment 

(OBE) and road side equipment (RSE), and therefore it has the potential to provide real-time traffic 

data if the connected vehicles are taken as probes in the traffic streams. However, the probe data 

collected by connected vehicles only provide partial vehicle trajectories rather than continuous 

vehicle trajectories covering the whole length of the road segment. (RITA ITS website 2013) 

 

Figure 1.7: Connected vehicle environment (Pekilis, 2009) 
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1.2.3 Bluetooth Detectors 

Traffic monitoring through Bluetooth detectors is a type of automatic vehicle identification (AVI) 

systems. The principles of Bluetooth traffic monitoring are similar as the technologies of radio 

frequency identification (RFID) and license plate recognition in traffic monitoring systems.  

Bluetooth is a low powered, short range wireless communication technology with high 

transmission speed. Bluetooth was developed in the 1990s to replace wires for wired connection on 

electronic devices such as headsets for mobile phones. The prevalence of in-vehicle devices equipped 

with Bluetooth wireless communication technologies resulted in the development of this new 

technology for collecting traffic data, and this technology has become very popular in recent years. 

The Bluetooth protocol uses a unique electronic identifier, called Machine Access Control address 

(i.e. MAC address) in each device so that electronic devices can be identified during data 

communications. It is these MAC addresses that are used as the basis for obtaining traffic information. 

MAC addresses in Bluetooth traffic monitoring systems are not directly associated with any specific 

user account or any specific vehicle. Consequently, using Bluetooth detectors alone, it is not possible 

to identify the attributes of a vehicle (e.g. year, make, color, license plate number) or the identity of a 

person. From this point of view, the Bluetooth traffic monitoring systems are anonymous. However, it 

is possible to re-identify a device at different points in the network and on different days. 

 The operational concept of collecting traffic data through Bluetooth detectors is illustrated in 

Figure 1.8. 

 

Figure 1.8: Operation Concept of Bluetooth Traffic Monitoring Systems (Haghani et al. 2010) 
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From Figure 1.8, we can see that when a vehicle containing a detectable Bluetooth device passes 

within the communication range (around 100m) of Bluetooth detectors (Haghani et al. 2010), it can 

be observed. If the vehicle is observed at two consecutive Bluetooth detectors, then travel time and 

the average speed for this vehicle over the road segment between these two detectors can be obtained. 

Obtaining similar data from more vehicles represents a statistical sample of the population of vehicles 

and provides an opportunity to estimate traffic conditions on this road segment. Experiments 

conducted by the University of Maryland (2008) have indicated that “approximately one in twenty 

vehicles contain a Bluetooth device that can be detected” indicating that a substantial fraction of the 

traffic stream can be monitored. In 2009, Ontario introduced a law prohibiting the use of hand-held 

devices while driving which resulted in an increase in the use of hands-free Bluetooth technology. 

(Ministry of Transportation Ontario website 2013) 

The main advantages of the Bluetooth traffic monitoring system include: 

 measures travel time over an entire road section; 

 anonymous detection;  

 monitoring traffic conditions for both travelling directions; 

 insensitive to weather conditions; 

 not installed in the road surface; 

 deployed and maintained easily, quickly and cost-effectively. 

Similar to data collected from other AVI systems (e.g. electronic toll tags, license plate recognition 

etc.), the travel time data collected by Bluetooth detectors typically contain outliers. These outliers 

represent measured travel times which are not representative of the traffic stream for which travel 

time measurements are desired. Outliers can arise from a number of sources including: (1) vehicles 

making an enroute stop or taking a detour between two consecutive Bluetooth detectors; (2) 

Bluetooth devices which are not within an automobile (e.g. the device may be in a public transit 

vehicle, on a pedestrian, cyclist, etc.); (3) vehicles in special purpose lanes; (4) vehicles on parallel 

roadways; (5) vehicles on off-ramps.  The likelihood of the occurrence of outliers from a given source 

is a function of the roadway type (e.g. freeway vs. arterial), location of the Bluetooth detectors, traffic 

patterns, road network topology between the upstream and downstream Bluetooth detectors, etc. 

These outliers must be identified and removed before computing the mean travel time. 

The data collected from Bluetooth detectors are transmitted wirelessly to a central server where the 

data processing (e.g. the matching, outlier detection, aggregation, and prediction) takes place, and the 
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information is used for traffic management applications (e.g. traveller information system or pre-

active roadway management).  

Based on communications with hardware system vendors, the approximate cost for deploying 

Bluetooth detectors is in the range of $5,000 to $10,000 per detector, depending on location, 

availability of power and communications, etc. In addition, for detectors equipped with wireless 

modems, there is a monthly fee for the wireless data transmission of approximately $25-$50. 

1.3 Problem Statement 

There is increasing recognition among travelers, transportation professionals, and decision makers of 

the importance of the reliability of freeway transportation facilities. An important step towards 

improving system reliability is developing methods that can be used in practice to predict freeway 

travel times for the near future. Reliable and accurate predictions of future travel times can be used by 

travelers to make better decisions and by system operators to engage in pre-active rather than reactive 

system management. 

Over the past few decades, a considerable amount of work has been done on the subject of travel 

time prediction. However, most of this work has used data obtained from traditional traffic 

monitoring systems (e.g. loop detectors). Bluetooth traffic monitoring technologies provide the 

opportunity to collect wide area real-time travel time data with low cost, something that is not feasible 

with the traditional traffic monitoring technologies, but the data collected by Bluetooth detectors are 

different from the data collected by conventional sensors (e.g. loop detectors), and therefore new 

methods are required for predicting freeway travel times based on Bluetooth data. Although the core 

of the proposed prediction can be applied to any data source, the details of the prediction methods 

would likely change for different types of data.  

As discussed previously, the travel time data collected by Bluetooth detectors typically contain 

outliers, and these outliers have to be identified before computing the mean travel time. Therefore, a 

dynamic filter is needed to remove those outliers. The challenge of detecting the outliers in real-time 

is distinguishing outliers from rapid changes in the underlying travel time. Existing real-time filtering 

algorithms (SwRI 1998; Mouskos et al. 1998; Dion and Rakha 2006) have limitations on responding 

to rapid fluctuations of traffic conditions, and consequently do not perform reliably when travel times 

are changing rapidly.  
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The travel time of an individual vehicle measured by Bluetooth detectors can only be obtained after 

the vehicle has passed through the entire road segment. Consequently there is a time lag that exists 

between the time when vehicles enter the segment and the time that their travel time can be measured. 

This is a commonly accepted limitation of AVI data, and is one of the challenges of using this type of 

traffic data for real-time travel time estimation/prediction (Waller et al. 2007, Chen and Chien 2001). 

This challenge becomes increasingly more difficult when the travel time between two successive AVI 

detectors becomes large (either because the AVI detectors are spaced far apart and/or because traffic 

is congested). A practical solution was suggested to divide the long freeway route into shorter 

segments to reduce the magnitude of the time lag and therefore increase the probability that the 

measured travel time from AVI systems can be used as a reliable estimate of true travel time. 

However, to-date, no study has quantitatively analyzed the optimal spacing between AVI detectors 

with respect to maximizing the accuracy of the real-time travel time estimations or predictions. 

Historical data have long been considered as an important input to travel time prediction models 

because there is an expectation that time series of traffic state data collected from different days at the 

same site in the same situation have similar time-varying traffic patterns (Chen et al. 2012). The most 

common method of selecting historical data for travel time prediction is aggregating travel times from 

past consecutive days, while distinguishing between work days and weekends/holidays. This method 

is attractive because it is intuitive, simple to implement and easy to understand. However, this method 

can only provide a primary pattern, and the large variation in travel times within each day caused by 

variations in demand and on capacity.  

In summary, the prediction of mean travel time on the basis of Bluetooth travel time data requires: 

(1) the Bluetooth detectors used to collect real-time travel time data are properly deployed (i.e. 

determining the optimal spacing between detectors); (2) a reliable real-time outlier detection 

algorithm; (3) an improved method of selecting historical data for travel time prediction; and (4) a 

method that is able to address the data gaps caused by the time lag inherent in the Bluetooth 

measurements. This research is focused on addressing the above four issues.  

1.4 Research Goal and Objectives 

The main goal of this research is to develop and evaluate a method which can be used for reliable 

prediction of near future travel times on freeways using data collected from Bluetooth detectors. An 

immediate application of the travel time predictions based on Bluetooth data is the posting of travel 
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times on overhead variable message signs or portable message signs for use in construction zones.  

Other potential applications include the use of these data for pro-active freeway traffic control, 

including variable speed limits, variable speed advisories, ramp metering, etc. It is anticipated that the 

required accuracy of the travel time predictions may vary depending on the application.  However, 

there is currently no standard metric quantifying the accuracy of the predictions and there is no 

objective threshold to define acceptable versus unacceptable accuracy.  Consequently, within this 

thesis, the objective is to develop a travel time prediction method that performs better than existing 

methods as measured by the mean absolute relative error and the 90th percentile error. The 90th 

percentile error is particularly important as we wish to avoid large travel time predictions errors, even 

if they are relatively infrequent (and may have very little impact on the mean error). 

To achieve this goal the proposed research has the following objectives: 

1. Determine the optimal spacing between Bluetooth detectors with respect to maximizing the 

accuracy of real-time travel time estimations and predictions.   

2. Develop a dynamic filtering algorithm to address the problems of reliable estimation of travel 

times using Bluetooth data. 

3. Improve the method of selecting historical data for travel time prediction. 

4. Develop a model for predicting near future freeway travel times using Bluetooth data with 

special attention to the time lag exists between the time when vehicles enter the segment and 

the time that their travel time can be measured (i.e. when the vehicle exits the monitored 

segment). 

5. Calibrate and validate the proposed prediction model.  

6. Demonstrate the performance of the proposed model by comparing the application results of 

the proposed model to that obtained from existing methods. 

The proposed prediction method is a dynamic adaptive traffic control system, and the framework of 

this system is shown in Figure 1.9. Based on this system framework, the dynamic outlier detection 

and travel time prediction are combined together, and these two models are operated recursively. A 

feedback control mechanism is used to update previous estimations before each prediction once new 

measurements are available.  
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Figure 1.9: Proposed System Framework 

1.5 Thesis Outline 

The remainder of this dissertation is organized as follows:  

Chapter 2 provides a review of the efforts that researchers have made to develop travel time 

estimation and travel time prediction models.  

Chapter 3 examines, quantitatively, the difference between Bluetooth measured travel time and true 

travel time using field data collected from Bluetooth detectors, and analyzes the impacts that spacing 

between Bluetooth detectors has on the real-time estimation errors based on simulation data. A 

generalization model is developed which can be used to find the optimal average spacing between 

Bluetooth detectors as a function of the freeway route length.  
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Chapter 4 evaluates the existing dynamic travel time outlier filters and proposes an enhanced filter 

based on traffic flow theory. Also this chapter demonstrates the performance of the proposed filtering 

model by incorporating the model into two existing data driven outlier filtering algorithms and 

applying the enhanced algorithms to a dataset of freeway travel times collected from Bluetooth 

detectors. 

Chapter 5 compares the performances of two methods of selecting historical data - simple 

aggregation (SA) and K nearest neighbor technique (KNN), and recommended to use the KNN as a 

method of selecting historical data in the proposed prediction model (described in Chapter 6). Then, 

off-line calibration of the parameters associated with KNN method is performed in this chapter using 

freeway travel time data collected from Bluetooth detectors.  

Chapter 6 describes the proposed short-term travel time prediction model, then calibrates and 

validates the proposed model using freeway travel time data collected from Bluetooth detectors 

through statistical test and sensitivity analysis.  

Chapter 7 shows application results of the proposed model to datasets collected from different 

freeway segments, and demonstrates the performance of the proposed model through performance 

comparisons between the proposed model and two benchmark models.   

Chapter 8 summarizes the conclusions and contributions of this study, and provides 

recommendations for future research.   
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Chapter 2 

Review of Travel Time Estimation and Prediction Methods 

In this chapter, a review of methodologies for travel time estimation and prediction corresponding to 

the three traffic monitoring technologies mentioned in the previous chapter is provided. Although the 

objective of this research is travel time prediction, the accurate estimation of travel time is 

foundational, and the study of travel time estimation provides insight into the mechanism of travel 

time generation and variation over time which is crucial to developing models for travel time 

prediction. 

2.1 Travel Time Estimation 

Generally, the travel time estimation methods described in the literature differ as a function of the 

input data used by the method. Loop detectors detect the presence or passage of vehicles traveling 

along the roadway, and the measured spot speed is usually used to estimate travel time; probe 

vehicles provide continuous vehicle trajectories for sample vehicles, and the trajectory data are used 

to derive the travel time for a specific road segment; and Bluetooth detectors provide directly 

measured travel time of sample vehicles for the entire road segment, but the observed travel time data 

typically contain outliers which have to be removed before computing the average travel time for the 

population vehicles. 

The following section describes travel time estimation methods associated with these three 

different input data: (1) spot speed algorithms; (2) vehicle trajectory algorithms; and (3) travel time 

outlier filtering algorithms. 

2.1.1 Spot Speed Algorithms 

Spot speed algorithms are a family of travel time estimation algorithms that rely on the speed 

measures obtained at a fixed location (e.g. detected by loop detectors). There are four basic 

algorithms used to estimate travel time using spot speed data (Zhang, 2006), namely: (a) average spot 

speed algorithm; (b) average link speed algorithm; (c) half distance algorithm; (d) and minimum 

speed algorithm. Those are described in the following with symbols referred to Figure 2.1. 
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Figure 2.1: System illustration for spot speed algorithms 

(a) Average spot speed algorithm 

ෝݐݐ ௜ᇲ,௞ ൌ
ᇱ௜ܮ
௜ܸ
																																																																																																																																																											ሺ2.1ሻ 

ᇱ௜ܮ : length of link ݅, which is usually defined as the distance from a middle point between the 

upstream detector (݅ െ 1) and the current detector (݅) to the middle point between the current 

detector (݅) and the next downstream detector (݅ ൅ 1);  

ෝݐݐ ௜ᇲ,௞: estimated travel time over link	݅ during time interval ݇; 

௜ܸ,௞: speed at current loop detector ݅ during time interval ݇. 

(b) Average Link Speed Algorithm 
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൫ ௜ܸିଵ,௞ ൅ ௜ܸ,௞൯/2
																																																																																																																																		ሺ2.2ሻ 

݅ ௜: length of link ݅ between loop detectorܮ െ 1 to ݅; 

݅ ෝ௜,௞: estimated travel time over link ݅ between loop detectorݐݐ െ 1 to ݅; 

௜ܸିଵ,௞: speed at loop detector ݅ െ 1; 
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௜ܸ: speed at loop detector ݅. 

(c) Half Distance Algorithm 

ෝ௜,௞ݐݐ ൌ
1
2
ቆ

௜ܮ
௜ܸିଵ,௞

൅
௜ܮ
௜ܸ,௞
ቇ																																																																																																																																		ሺ2.3ሻ 

(d) Minimum Speed Algorithm 

ෝ௜,௞ݐݐ ൌ
௜ܮ
௠ܸ௜௡,௞

																																																																																																																																																						ሺ2.4ሻ 

௠ܸ௜௡: minimum speed among ௜ܸିଵ,௞ and ௜ܸିଵ,௞. 

These algorithms are relative simple and easy to understand, as they make the assumption that the 

spot speed measured at a loop station represents the speed of vehicle travel over a fixed section of 

roadway. Attempts have been made to improve upon these basic algorithms.  

The Vehicle Trajectories Algorithm (Coifman, 2002) assumes that loop detectors are able to 

measure and report the speeds and arrival times of individual vehicles and vehicle trajectories can be 

developed based on the assumptions about shockwave speeds. Travel time can be estimated by 

constructing an estimated vehicle trajectory (Figure 2.2). The performance of Coifman’s travel time 

estimation method was evaluated using data from I-880 in California. Actual travel times were 

obtained from dedicated probe vehicles. It was concluded that the proposed method is relatively good 

as long as the road segment is not partially covered by a queue. However, Coifman’s method requires 

that loop detectors are able to provide the speeds and arrival times of individual vehicles, something 

not possible with conventional loop detector systems. 

The Iterative Travel Time Algorithm proposed by Cortes et. al. (2001) combines the simple 

Average Speed Algorithm and Vehicle Trajectory Algorithm. It is based on the assumption that the 

travel time experienced by vehicles on section ܮ௜  at time interval	݇	is a linear combination of the 

speeds measured by loop stations ݅ and ݅ െ 1 (Equation 2.5). 

ෝ௜,௞ݐݐ ൌ
௜ܮ

ߙ ௜ܸିଵ,௞ି௧௧෡ ೔	ೖ ൅ ሺ1 െ ሻߙ ௜ܸ,௞
																																																																																																																 ሺ2.5ሻ 

Where, ߙ is a weighting factor that must be calibrated; ݐݐෝ௜,௞ is the estimated travel time from loop 

station ݅ െ 1 to ݅ during polling interval	݇; ௜ܸିଵ,௞ି௧௧෡ ೔	ೖis the average speed reported by loop station 



 

 22 

݅ െ 1  during interval 	݇ െ ෝ௜,௞ݐݐ ; ௜ܸ,௞ is the average speed reported by loop station ݅  during polling 

interval	݇.  

 

Figure 2.2: Coifman's travel time estimation method based on estimated trajectory 

The unknown travel time appears on both sides of the equation meaning that this equation can only 

be solved iteratively. This algorithm was evaluated using only simulated data. The reported mean 

absolute percent error in the estimate of link travel times is in the range of 7% while they suggested 

that the corresponding mean absolute percentage error for the Average Speed Algorithm is in the 

range of 20-25%. 

Besides the spot speeds algorithms, the Section Density Algorithm (Oh et. al., 2002) is another type 

of travel time estimation method using data from loop detectors. It estimates travel time based on the 

relationship among traffic volume, density and speed. The key of this algorithm is the calculation of 

section densities from cumulative vehicle counts and then the estimation of travel time from the 

section densities and interval volumes.  

2.1.2 Vehicle Trajectory Algorithms 

Traditional probe vehicles (e.g. vehicles dispatched to the traffic stream for the purposes of data 

collection or those already in the traffic network for other purposes, such as taxis, public transit buses 
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or fleet vehicle, but can be used as traffic data collection tools) can provide continuous vehicle 

trajectories which can be used to estimate travel times.  

The basic definition of travel time (defined in Section 1.1.1) can be used to explain the common 

method using probe vehicle data to estimate travel times. The mean travel time of segment	ܮ௜ (Figure 

1.1) during a time period k  can be calculated by averaging travel times of individual vehicles 

traversing the road segment (only including the vehicles that either arrive at the downstream 

boundary or departure from the upstream boundary within time period ݇ ). The travel time of 

individual vehicles traversing a road segment can be calculated by subtracting the time stamp 

associated with the vehicle passing the upstream boundary from the time stamp of the same vehicle 

passing the downstream boundary. The time stamps of individual vehicles passing the upstream 

boundary and downstream boundary may be provided by probe vehicle data directly or may be 

estimated indirectly based on the nearest data records.  

Once the vehicle trajectory data are transformed to travel times of individual vehicles traversing a 

roadway segment, the population mean of travel time for the traffic stream during a specific time 

interval can be estimated using the sample mean of travel times collected from probe vehicles.  

Travel times data transformed from data collected using cell phone probes require some kind of 

filter to remove the outliers, and the filtering algorithms are described in the following section. The 

data obtained from connected vehicles technology will only provide partial vehicle trajectories rather 

than continuous vehicle trajectories covering the whole length of the road segment because of privacy 

concerns, and therefore the common probe vehicle data analysis methods cannot be directly applied to 

connected vehicles data. The characteristic of data collected from connected vehicles and specific 

methods of travel time estimation using connected vehicles data can be found in the literature 

(Wunderlich, et al. 2007).     

2.1.3 Travel Time Outlier Filtering Algorithms 

Travel time of individual vehicles traversing a roadway segment can be obtained directly using AVI 

systems, and these travel times typically contain outliers. The outlier of sample travel times from 

individual vehicles can arise from a number of sources including: (1) vehicles making an enroute stop 

or taking a detour within a roadway segment; (2) probe devices (e.g. Bluetooth enabled devices, cell 

phone probes) which are not within an automobile (e.g. the device may be in a public transit vehicle, 
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on a pedestrian, cyclist, etc.); (3) vehicles in special purpose lanes; (4) vehicle on parallel roadways; 

(5) vehicles on off-ramps.  

Existing filtering algorithms (Traffax 2009; Robinson and Polak 2006; Dion and Rakha 2006; 

Clark et al. 2002; SwRI 1998; Mouskos et al. 1998; Fowkes 1983) developed based on measurements 

from AVI systems using electronic toll tags or license plate recognition can be applied to data 

collected from Bluetooth detectors; however only a few of these algorithms are suitable for real-time 

detection which is the focus of this research.   

TranStar system in Houston (TranStar, 2001), TransGuide system in San Antonio (SwRI, 1998), 

and the TRANSMIT system in the New York/New Jersey metropolitan area (Mouskos et al., 1998) 

collect  data in real-time using in-vehicle toll tags and use three different data filtering algorithms to 

estimate travel time dynamically.  

The TransGuide and TranStar Algorithms are generally similar, and use a rolling average algorithm 

that automatically filters out the travel times that exceed a user defined threshold. Equation 2.6 

defines the set of valid travel times ܵ௧௧೔,ೖ that are observed between two AVI detectors ݅ and ݅ െ 1 

during time interval	݇, and Equation 2.7 defines the method used to calculate the average travel time 

during time interval ݇ ෝ௜,௞ݐݐ)  ) based on the valid observations identified by Equation 2.6. In the 

TransGuide system, the length of the time interval ݇  (i.e. rolling-average window) was set to 2 

minutes and the threshold parameter (ߜ) was set to 0.2, so that any observed travel times that differed 

from the average travel time calculated in the previous interval (݇ െ 1) by more than 20 percent 

would be considered as invalid. 

ܵ௧௧೔,ೖ ൌ ൛ݐ௜,௝ െ ௞ݐ௜ିଵ,௝หݐ െ ௞ିଵݐ ൏ ௜,௝ݐ ൑ ௜,௟௢௪௘௥,௞ݐݐ	݀݊ܽ	௞ݐ ൑ݐ௜,௝ െ ௜ିଵ,௝ݐ ൑  ሺ2.6ሻ																		௜,௨௣௣௘௥,௞ൟݐݐ

ෝ௜,௞ݐݐ ൌ
∑ ൫ݐ௜,௝ െ ௜ିଵ,௝൯ݐ
௡ೡ,ೖ
௝ୀଵ

݊௩,௞
																																																																																																																															ሺ2.7ሻ 

In the above equations, ݐ௜,௝ and ݐ௜ିଵ,௝ are the time at which vehicle ݆ was detected at AVI detectors 

݅ and ݅ െ 1 respectively; ݐ௞ is the end time of time interval ݇; ݐݐ௜,௟௢௪௘௥,௞ ൌ 	 ௜,௞ିଵሺ1ݐݐ െ  ሻ and is theߜ

lower bound of the validity window at time interval ݇; ݐݐ௜,௨௣௣௘௥,௞ ൌ ௜,௞ିଵሺ1ݐݐ ൅   and is the upper	ሻߜ

bound of the validity window at time interval ݇;	݊௩,௞ is the number of valid observations identified at 

interval ݇. 
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The TRANSMIT system uses a fixed 15-minute observation interval which contains up to a 

maximum of 200 observations as a sample of individual link travel time. This sample is used to 

estimate average travel time for this link during this time interval. There isn’t any filtering before this 

process, but historical data from the same 15-minute interval in the previous week or weekend day 

would be used to smooth the estimated travel times. The smoothing process consists of an exponential 

smoothing algorithm (Equation 2.8), in which the factor α was set at 0.1. 

௜,௞ݏݐݐ ൌ ߙ ∙ ᇱ௜,௞ݏݐݐ ൅ ሺ1 െ ሻߙ ∙  ሺ2.8ሻ																																																																																																									௜,௞ିଵݏݐݐ

Where, ݏݐݐᇱ௜,௞ represents the historical smoothed travel time over section	݅	of roadway during time 

interval	݇, while ݏݐݐ௜,௞ and ݏݐݐ௜,௞ିଵ	represent smoothed travel times over section	݅ of roadway during 

current interval ݇ and previous interval	݇ െ 1 respectively. The historical average travel time ݏݐݐᇱ௜,௞ 

would be updated by current estimated travel time ݏݐݐ௜,௞ continually. 

Dion and Rakha (2006) investigated the above three existing real-time filtering algorithms. They 

identified the limitations of these algorithms and proposed a low-pass adaptive filtering algorithm to 

address the problems of reliable estimation of travel times in real-time using AVI data.  

The algorithm developed by Dion and Rakha (referred to as D&R) is a low-pass adaptive filtering 

algorithm which identifies valid observations within a dynamically varying validity window. The set 

of the valid data is defined in the same way as the TransGuide algorithm (Equation 2.6), and 

boundaries of the validity window are determined using a user-defined number of standard deviations 

ሺ݊ఙሻ above and below the expected smoothed average travel time (Equations 2.9 and 2.10), where the 

expected smoothed average travel time ݏݐݐ௜,௞ and the smoothed travel time variance	ߪଶ௧௧௦೔,ೖ	 between 

detectors ݅ and ݅ െ 1 during time interval ݇ can be computed using Equations 2.11 and 2.12. In these 

calculations, the travel times are assumed to follow a lognormal distribution and therefore the validity 

window boundaries are not symmetrically distributed about the mean.  

௜,௟௢௪௘௥,௞ݐݐ ൌ ݁ቂ௟௡൫௧௧௦೔,ೖ൯ି௡഑,ೖ∙ቀఙ೟೟ೞ೔,ೖ	ቁቃ																																																																																																														ሺ2.9ሻ 

௜,௨௣௣௘௥,௞ݐݐ ൌ ݁ቂ௟௡൫௧௧௦೔,ೖ൯ା௡഑,ೖ∙ቀఙ೟೟ೞ೔,ೖ	ቁቃ																																																																																																											ሺ2.10ሻ 

௜,௞ݏݐݐ ൌ ቊ
݁ൣሺఈೖሻ∙௟௡൫௧௧೔,ೖషభ൯ାሺଵିఈೖሻ∙௟௡൫௧௧௦೔,ೖషభ൯൧	 ݂݅	݊௩,௞ିଵ ൐ 0
௜,௞ିଵݏݐݐ 																																								 ݂݅	݊௩,௞ିଵ ൌ 0

																																																														ሺ2.11ሻ 
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	ଶ௧௧௦೔,ೖߪ ൌ ቊ
௞ߙ ∙ ൫ߪଶ௧௧೔,ೖషభ	൯ ൅ ሺ1 െ ௞ሻߙ ∙ ൫ߪଶ௧௧௦೔,ೖషభ	൯				 ݂݅	݊௩,௞ିଵ ൐ 1							

																																																																																							ଶ௧௧௦೔,ೖషభߪ 	݂݅	݊௩,௞ିଵ ൌ ሼ0,1	ሽ
																																	ሺ2.12ሻ 

The	α୩ in Equations 2.11 and 2.12 is a smoothing factor varying between 0 and 1 to determine the 

level of confidence that should be placed on the data ݐݐ௜,௞ିଵ (or ߪଶ௧௧೔,ೖషభ	) observed in the previous 

interval and the smoothed estimation ݏݐݐ௜,௞ିଵ  (or 	ߪଶ௧௧௦೔,ೖషభ	 ) of the previous interval when the 

expected smoothed average travel time ݏݐݐ௜,௞  (or smoothed travel variance ߪଶ௧௧௦೔,ೖ	) of the current 

interval is estimated. The value of	α௞ depends on the number of valid observations ൫݊௩,௞ିଵ൯ identified 

in the previous interval and a calibrated sensitivity parameter ߚ (Equation 2.13).  

௞ߙ ൌ 1 െ ሺ1 െ  ሺ2.13ሻ																																																																																																																																		ሻ௡ೡ,ೖషభߚ

The D&R algorithm described up to this point is referred to as D&R algorithm 1 (D&R1) in the 

remainder of this thesis. On the basis of the D&R1, two modifications were made by Dion and Rakha 

to increase the algorithm’s responsiveness to abrupt changes in travel times and deal with the problem 

caused by low level of sampling rates. These modifications are: (1) “allow the algorithm to consider 

as valid the third of three consecutive points outside the validity window, provided that all three 

observations are either above or below the validity window” (Dion and Rakha 2006); and (2) 

“dynamically adjusts the size of the validity window based on the number of preceding sampling 

intervals without AVI observations” (Dion and Rakha 2006).  

To implement the first modification, Equation 2.13 is substituted by Equation 2.14, and the travel 

time standard deviation is calculated by Equation 2.15. 

α୩ ൌ ൜
1 െ ሺ1 െ 																		ሻ௡ೡ,ೖషభߚ ௔݊	ݎ݋݂ ൏ 3	ܽ݊݀	݊௕ ൏ 3
ሺ0.5,1ݔܽ݉ െ ሺ1 െ ሻ௡ೡ,ೖషభሻߚ ௔݊	ݎ݋݂ ൒ ௕݊	ݎ݋	3 ൒ 3			

																																																										 ሺ2.14ሻ 

	ଶ௧௧೔,ೖߪ ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ
௩,௞ିଵ݊	ݎ݋݂																																																																									0	 ൌ 0	ܽ݊݀	݊௔ ൏ 3	ܽ݊݀	݊௕ ൏ 3

ቂ݈݊൫ݐ௜,௝ െ ௜ିଵ,௝൯௞ݐ െ ݈݊൫ݏݐݐ௜,௞൯ቃ
ଶ

݊௩,௞ିଵ
௩,௞ିଵ݊	ݎ݋݂													 ൌ 1	ܽ݊݀	݊௔ ൏ 3	ܽ݊݀	݊௕ ൏ 3

∑ ቂ݈݊൫ݐ௜,௝ െ ௜ିଵ,௝൯௞ݐ െ ݈݊൫ݏݐݐ௜,௞൯ቃ
ଶ௡ೡషభ,ೖ

௝ୀଵ

݊௩,௞ିଵ െ 1
௩,௞ିଵ݊	ݎ݋݂		 ൒ 2	ܽ݊݀	݊௔ ൏ 3	ܽ݊݀	݊௕ ൏ 3

0.01 ∙ ൫ݐݐ௜,௞൯																																																				݂ݎ݋		݊௔ ൒ ௕݊	ݎ݋	3 ൒ 3																													

ሺ2.15ሻ 

Where, ݊௔  and		݊௕  are counters for the number of consecutive observations above or below the 

validity window.  
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To implement the second modification, Equation 2.16 is defined to provide a model that 

dynamically adjusts the size of the validity window based on the number of consecutive intervals 

without AVI observations.  

݊ఙ,௞ ൌ ߣ ൅ ሾ1ߣ െ ሺ1 െ  ሺ2.16ሻ																																																																																																																			ఙሻ௡బ,ೖሿߚ

Where, ݊଴,௞ represents the number of consecutive intervals without AVI observations; λ represents 

a minimum number of standard deviations to be considered in the process of calculating lower bound 

and upper bound of validity window; and ߚఙ is a sensitivity parameter. The D&R algorithm including 

the modifications described by Equations 2.14 through 2.16 is referred to in the remainder of this 

thesis as D&R2. 

Dion and Rakha applied the proposed algorithm to datasets collected by the San Antonio AVI 

system, and concluded that the algorithm can respond to abrupt changes in traffic conditions and 

function at a relatively low level of market penetration (less than 1 percent of the traffic volume). 

They also note that the parameters, such as ߚ and ߚఙ need to be calibrated under local conditions.  

2.2 Travel Time Prediction 

The travel time prediction methods typically are not governed by the type of data collection 

technology used, and their purpose is to find the relationship between given inputs (i.e. speed, flow, 

travel time of previous time intervals, etc.) and output (i.e. travel time of the predicted time intervals), 

and then predict travel time according to the relationship. Several commonly used travel time 

prediction models are introduced as follows. 

2.2.1 Naïve Models 

The instantaneous method is one of the naïve models, which assumes that the traffic condition 

remains consistent during a short period and the predicted traffic condition for the next time interval 

is equal to the traffic condition of the previous time interval. 

The historical average method is also a type of naïve model, which assumes that the traffic 

conditions which will be experienced in the next time interval can be estimated as the average of the 

historical conditions observed for the same time of day over previous days. 

The naive models are all relatively simple and easy to understand, but they typically don’t have a 

high degree of prediction accuracy (Van Hinsbergen et al., 2007). 
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2.2.2 Linear Regression Models 

Liner regression based prediction models assume that the future traffic condition can be predicted 

based on a linear combination of historical and current traffic conditions. These models have the 

advantage that they are intuitive, have known statistical properties, and are computationally easy to 

apply in real-time. 

Nevertheless, these models suffer from two main limitations (Zhang et al., 2003; Rice et al., 2004; 

Nikovski et al., 2005): 

 The assumption of a linear relationship between the independent and dependent variables is 

frequently violated. 

 The parameters that indicate how much each covariate contributes to the outcome must be 

calibrated off-line. The values of these parameters may be functions of a variety of factors 

including weather, traffic conditions elsewhere on the network, the duration of the prediction 

horizon, etc. 

2.2.3 Nearest Neighbors Models 

The Nearest neighbors (NN) model is a nonparametric regression model, which aims to find some 

day or days in the past that is (are) most similar to the present day in some appropriate sense. When 

historical day(s) have been identified that are sufficiently similar to the conditions observed so far on 

the current day, then the conditions observed after the current time on these historical days are used to 

predict the future conditions for today (Smith et al., 2002; Wild, 1997; Myung et al. 2011). The key of 

the NN model is finding a suitable measurement to represent the similarity (normally termed the 

“distance”) between the traffic conditions of the present day and conditions in the past days. The 

effectiveness of this method is heavily influenced by the quality of the historical database. It is not 

possible to predict future travel times accurately if similar traffic conditions are not present in the 

historical database (Smith et al., 2002).  

2.2.4 Time Series Models 

Time series models are based on the concept that the data are not generated independently, rather 

their dispersion varies in time, and they are often governed by a trend and sometimes have cyclic 

components. As observed traffic data are usually arranged by time, many studies predicted travel 

times using time series models. However, the time series models require the process to be stationary 
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(i.e. the mean does not change over time), and usually the seasonality needs to be modeled (i.e. 

SARIMA). In practice, the traffic processes are not stationary, therefore, the traditional time series 

models are unable to capture rapid fluctuations in the traffic stream, and typically are confounded by 

non-recurrent congestion. Modified time series models may overcome this limitation and provide a 

high accuracy prediction, but the low computation speed makes them unsuitable for dynamic traffic 

prediction (Lee et al., 1999; Chrobok et al., 2004; Yang et al., 2005; Guin, 2006; Suarez et al., 2009; 

Wang et al., 2010). 

2.2.5 Kalman Filter-based Models 

The Kalman filter-based model is widely used in engineering applications. The Kalman filter is a 

recursive estimator that estimates the state of a linear dynamic system from a series of noisy 

measurements. As it has the ability to estimate the current or predict the future state of the system, the 

Kalman filter has been used in traffic estimation and prediction in many studies. The new (corrected) 

estimations are added into the dataset dynamically to be used for prediction, which makes the 

predictor reflect the traffic fluctuation quickly and that gives it significant advantage over many other 

methods in dynamic traffic system prediction.  

The Kalman filter is a feedback control process. A priori state estimate x୩ for step k is made given 

the knowledge of the process. Then, a posterior state estimate based on new measurements is 

incorporated into the priori estimate to improve the estimated value. The priori estimate can be 

considered as prediction, while the posterior estimate can be considered as correction. Equation 2.17 

and Equation 2.18 demonstrate the main concept of the Kalman filter being used to address the 

problem of travel time prediction (Welch and Bishop, 2006). 

A priori state prediction process: 

௞ݔ ൌ ߮௞ݔ௞ିଵ ൅ ௞ݑ௞ߟ ൅ ߱௞ିଵ																																																																																																																						ሺ2.17ሻ 

Where, 

 ௞ : The state vector (i.e. travel time, section density, average speed etc.) at time interval k thatݔ

is to be predicted 

߮௞ : Transition parameter (matrix) at time interval ݇ which is externally determined 

߱௞ିଵ : Noise term that has a normal distribution with zero mean and a variance of ܳ௞ିଵ 
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݇ ௞ : Optional control input from the state at the previous time intervalݑ െ 1 to the state at the 

current time interval ݇ 

 ௞ which isݔ ௞ to the stateݑ ௞ : Transition parameter (matrix) relates the optional control inputߟ

externally determined 

A posterior correction process: 

௞ݖ ൌ ௞ݔ௞ߠ ൅  ሺ2.18ሻ																																																																																																																																															௞ߜ

Where, 

 ݇ ௞ : The measurement of target vector (i.e. travel time) on time intervalݖ

 ௞ݖ ௞ to measurementݔ ௞ : Parameter (matrix) relates the stateߠ

 ௞ : Measurement error that has a normal distribution with zero mean and a variance of ܴ௞ߜ

In the application, the parameter ߮௞ describes the relationship between the state variable ݔ௞ in two 

time periods ݇ and ݇ ൅ 1. Different methods are used to describe this relationship.  

A well-known limitation of using Kalman filter is that the noise terms in both the state prediction 

process and the measurement correction process are assumed to be known. Typically, the noise terms 

are estimated through analysis of empirical data or simulation data and assumed constant. However, 

in the real-world problem, the stochastic noises always change with time. Myers and Tapley (1976) 

proposed a covariance matching method to adaptively estimate the unknown noises for both state and 

measurement process. The main concept of this method is described in the following with symbols 

defined in Equations 2.17 and 2.18: 

Estimation of measurement noise: 

The measurement noise ߜ௞ cannot be determined because the “true” state ݔ௞ is unknown. But an 

intuitive approximation of the measurement noise is given by Equation 2.19: 

	௝ߜ ൌ ௝ݖ െ  ሺ2.19ሻ																																																																																																																																																		௝ݔ௝ߠ

Where, ߜ௝ is defined as the measurement noise sample based on the last ݈ఋ observations (݆ ൌ 	݇ െ

݈ఋ ൅ 1,…	, ݇). If the noise samples ߜ௝ are assumed to be representative of	ߜ௞, and they are considered 

independent and identically distributed, an unbiased estimate for	ߜ௞  is taken as the sample mean, 

where, ܰ is the number of noise samples, Equation 2.20: 



 

 31 

௞ߜ ൌ
1
ܰ
෍	ߜ௝

ே

௝ୀଵ

																																																																																																																																																		ሺ2.20ሻ 

The estimate for covariance of ߜ௞ (ܥመఋೖ) is given by Equation 2.21: 

መఋೖܥ ൌ
1

ܰ െ 1
෍൫	ߜ௝	 െ ௞൯ߜ

ே

௝ୀଵ

∙ ൫	ߜ௝	 െ ௞൯ߜ
்
																																																																																																		ሺ2.21ሻ 

Based on Equation 2.20 and 2.21, the expected value of ܥመఋೖ is: 

መఋೖ൯ܥ൫ܧ ൌ
1
ܰ
෍ߠ௝	

ே

௝ୀଵ
௝ܲ
	௝ߠି

் ൅ ܴ௞																																																																																																																		ሺ2.22ሻ 

Where, ௝ܲ
ି ൌ ൫ܧ ௝݁

ି
௝݁
ି்൯  is defined as the a priori estimate error covariance at time interval 

݆;	 ௝݁
ି ൌ ௝ݔ െ ො௝ݔ

ି is defined as the a priori estimate error; ݔො௝
ି is defined as the a priori state estimate at 

time interval ݆ given knowledge of the state prior to time interval ݆. 

Then after substitution of Equation 2.21, the unbiased estimate of ܴ௞ is given by Equation 2.23: 

ܴ௞ ൌ
1

ܰ െ 1
෍൜൫	ߜ௝	 െ ௞൯ߜ ∙ ൫	ߜ௝	 െ ௞൯ߜ

்
െ ൬

ܰ െ 1
ܰ

൰ߠ௝	 ௝ܲ
	௝ߠି

்ൠ

ே

௝ୀଵ

																																																							ሺ2.23ሻ 

Estimation of state noise: 

Similar to estimation of measurement noise, an intuitive approximation of the state noise is given 

by Equation 2.24: 

௝߱ ൌ ௞ݔ െ ߮௝ݔ௝ିଵ െ  ሺ2.24ሻ																																																																																																																														௝ݑ௝ߟ

Where, ௝߱  is defined as the state noise sample based on the last ݈ఠ  observations (݆ ൌ 	݇ െ ݈ఠ ൅

1,…	, ݇). If the noise samples ௝߱ are assumed to be representative of	߱௞, and they are considered 

independent and identically distributed, an unbiased estimate for	߱௞  is taken as the sample mean, 

where, ܰ is the number of noise samples, Equation 2.25: 

߱௞ ൌ
1
ܰ
෍	 ௝߱

ே

௝ୀଵ

																																																																																																																																																ሺ2.25ሻ 

The estimate for covariance of ߱௞ (ܥመఠೖ
) is given by Equation 2.26: 



 

 32 

መఠೖܥ
ൌ

1
ܰ െ 1

෍൫ ௝߱	 െ ߱௞൯

ே

௝ୀଵ

∙ ൫ ௝߱	 െ ߱௞൯
்
																																																																																															ሺ2.26ሻ 

Based on Equation 2.24 and 2.17, the expected value of ܥመఠೖ
 is: 

መఠೖܥ൫ܧ
൯ ൌ

1
ܰ
෍ቀ߮௝	 ௝ܲିଵ	 	߮௝

் ൅ ௝ܲ	ቁ

ே

௝ୀଵ

൅ ܳ௞																																																																																																ሺ2.27ሻ 

Where, ௝ܲ	 ൌ ൫ܧ ௝݁ ௝݁
்൯  is defined as the posterior estimate error covariance at time interval ݆ . 

௝݁ ൌ ௝ݔ െ  ො௝ is defined as the posterior state estimate atݔ ;ො௝ is defined as the posterior estimate errorݔ

time interval ݆ given measurement	ݖ௝. 

Then after substitution of Equation 2.26, the unbiased estimate of ܳ௞ is given by Equation 2.28: 

ܳ௞ ൌ
1

ܰ െ 1
෍൜൫ ௝߱	 െ ߱௞൯ ∙ ൫ ௝߱	 െ ߱௞൯

்
െ ൬

ܰ െ 1
ܰ

൰ ቀ߮௝	 ௝ܲିଵ	 	߮௝
் ൅ ௝ܲ	ቁൠ

ே

௝ୀଵ

																																			ሺ2.28ሻ 

This method was applied to simulation data of a typical near-earth satellite orbit determination 

problem by Myers and Tapley (1976). The overall results indicated that the adaptive Kalman filter 

performs better than the Kalman filter with constant noise terms. 

The key to solving the problem addressed by the Kalman filter is to obtain the Kalman gain ሺܭ௞ሻ 

for each interval k (Equation 2.29) so as to minimizing the posterior estimate error.  

ො௞ݔ ൌ ො௞ݔ
ି ൅ ௞ݖ௞ሺܭ െ ො௞ݔ௞ܪ

ିሻ																																																																																																																											ሺ2.29ሻ 

The basic operation of the Kalman filter is a cycle consisting of time update (“Predict”) and 

measurement update (“Correction”) processes. The operation process and equations of Kalman filter 

are shown in Figure 2.3. A detailed derivation of the associated equations can be found in the 

literature (Welch and Bishop, 2006). 

Specific to travel time prediction, a Kalman filtering-based prediction model was proposed by 

Chien and Kuchipudi (2003) for predicting travel times with data collected from electronic toll tags. 

The proposed model was tested using either historical aggregated data or real-time data, and results 

indicated that the model based on real-time data suffers from the problem of data unavailability, while 

the model based on historical aggregated data cannot provide accurate results under congestion 

situations. Barceló et.al. (2010) proposed a Kalman filter approach for travel time prediction using 
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data collected from Bluetooth detectors. The model was developed using real-time data combined 

with historical data, and tested by applying the predicted model to a dataset collected from a 40-km-

long section of motorway with one detector deployed at each end of this motorway section. The test 

results show high quality of the model performance (e.g. mean absolute relative error is 0.0354, 

correlation coefficient (ܴଶ ) between the two series, i.e. predicted and measured travel times, is 

0.9863), however the test results and the method that was used to evaluate the performance suggest 

that the unavailability of the real-time Bluetooth data wasn’t considered in their proposed prediction 

model. 

 

Figure 2.3: The complete Kalman filter equations and operation process (Welch and Bishop, 

2006) 

2.2.6 Artificial Neural Networks Models 

Artificial Neural network (ANN) models are widely used to predict traffic conditions because they 

are able to model non-linear and dynamic processes well. However, ANN typically requires a large 

amount of training data and determining the optimum architecture is complicated. Many extensions 

on the basic concept of ANN have been tried to improve the prediction accuracy and reduce 

computational effort with some success. However, compared to other prediction methods, the main 

limitation of ANN is the difficulty associated with interpreting the calibration coefficients. It is this 

lack of physical interpretation of these coefficients that has resulted in the use of the term “black box” 

to refer to ANN models (Tan et al., 2004; Jiang et al, 2005; van Lint et al., 2005; Bucur et al., 2010). 
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2.2.7 Bayesian Combination Models 

Bayesian combination models allow different models to be combined without the use of the 

prediction error in previous time interval (as is done with the Kalman Filter). This is advantageous as 

it overcomes the limitation associated with the real-time application of the Kalman Filter model 

which is the data (required for computing the prediction error) won’t be available immediately at the 

end of the current time interval. The Bayesian approach determines the weighting factors for 

combining models through estimating the probability that a model is correct, and essentially, it is a 

way to estimate the best-fit likelihood of a model to a certain data set D, which is used to calibrate the 

models. The key in using the Bayesian combination model is choosing appropriately the data set D 

with which to calibrate the models (Fei et al, 2011, van Hinsbergen et al., 2008). 

2.2.8 Traffic Theory-based Models 

The prediction models described above all belong to the category of data driven models which do not 

consider various factors relating to traffic characteristics and travel behaviors. There have been some 

prediction methods based on the traffic theory, such as the traffic simulation models and the 

shockwave analysis.  

Traffic Simulation Models 

Traffic simulation models can be broadly classified into three types: macroscopic, microscopic, and 

mesoscopic. A macroscopic simulation model expresses the average behavior of the vehicles on a 

road network, and variables such as mean speed, density and flow are simulated. The macroscopic 

models were considered as a rough simulation method which cannot accurately represent system 

behavior (Chang, 1999), so few macroscopic simulation models have been applied for prediction 

purposes. Traditionally, macroscopic models have been used primarily for representing travel 

behavior within the context of regional planning level models. However, recently, Kurzhanskiy and 

Varaiya (2010) proposed a dynamic traffic model used to actively manage traffic based on 

macroscopic simulation. A microscopic simulation model simulates individual cars and the 

interactions between these cars. Micro-simulation models are computational intensive and typically 

run much slower than real time, which makes them unsuitable for real-time applications. Mesoscopic 

simulation models lie between macroscopic and microscopic models. Computation load is reduced 

from the level associated with microscopic models by reducing the detail with which vehicle behavior 

is modeled. 
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Although there are several limitations associated with using simulation models to predict traffic 

conditions, some researchers (van Hinsbergen et al., 2007) have concluded that apart from traffic 

simulation models only a few methods are able to be used for network wide predictions. 

Shockwave Analysis 

Shockwave analysis as part of the traffic flow theory is defined as boundaries in time-space domain 

that represent discontinuity in flow and /or density (May, 1990). In other words, a shockwave is the 

boundary between two different states of traffic flow and/or density. Figure 2.4 illustrates a roadway 

section with no entrance or exit. One lane is closed due to an incident. Assuming the capacity of this 

road section is reduced by one third, and the demand exceeds the capacity of the two remaining lanes, 

then a queue begins to form and grow upstream. 

 

Figure 2.4: Illustration of shockwave occurrence in traffic stream 

Vehicles approaching the incident zone will join in the queue, and in doing so, will travel from 

uncongested state A (ߤ஺ represents speed of state A in Figure 2.4) to congested state B (ߤ஻ represents 

speed of state B in Figure 2.4). The boundary between State A and State B is the shockwave, which 

propagates upstream with speed	ݓ஺஻. The equation to calculate 	ݓ஺஻ is given by: 
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Where ஺ܸ and ஻ܸ are average speed of vehicles in state A and B, ܦ஺ and ܦ஻ are average densities in 

state A and B. ∆ܨ and ∆ܦ are change of flow rate and change of density between Sate A and State B 

respectively. 

If the existence and speed of shockwaves can be determined by some methods, then future traffic 

states can be estimated and travel times can be estimated simultaneously.  

2.3 Summary 

To sum up, the accurate travel time estimation in real-time is a prerequisite for providing accurate and 

reliable short-term travel time prediction. Specific to the real-time travel time estimation based on 

Bluetooth data, detecting travel time outliers dynamically is challenging, especially when traffic 

conditions are changing quickly. Developing a reliable travel time outlier filter which is able to 

provide accurate travel time estimation under different traffic conditions (e.g. stable and non-stable 

traffic states, recurrent and non-recurrent traffic congestion) is necessary, and it is one of the 

objectives in this research. Another challenge of short-term travel time prediction using Bluetooth 

data is dealing with the unavailability of real-time data, because the Bluetooth data can only be 

obtained after the vehicles have finished their entire trips. Kalman filter technique is attractive in the 

field of short-term travel time prediction, because the real-time estimations are updated continuously 

whenever new measurements are available, which enables the predictor to quickly respond to traffic 

fluctuations. Therefore, the prediction model proposed in this research is on the basis of Kalman filter 

theory. 
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Chapter 3 

Determining the Optimal Spacing of Bluetooth Detectors1 

The travel time of an individual vehicle measured by Bluetooth detectors can only be obtained after 

the vehicle has traversed the monitored road segment and has been detected at the downstream 

Bluetooth detector. Consequently there is a time lag that exists between the time when vehicles enter 

the segment and the time that their travel time can be measured. This is a commonly accepted 

limitation of AVI data, and is one of the challenges of using this type of traffic data for real-time 

travel time estimation/prediction (Waller et al. 2006; Chen and Chien 2001). This time lag produces 

errors in estimated travel times, particularly when traffic conditions are changing. This error becomes 

large when the travel time between two successive Bluetooth detectors becomes large (either because 

the Bluetooth detectors are spaced far apart and/or because traffic is congested). Long freeway routes 

can be divided into shorter segments by placing additional Bluetooth detectors. However to-date, no 

study has quantitatively analyzed the optimal spacing between Bluetooth detectors with respect to 

maximizing the accuracy of real-time travel time estimations.  

Some studies explored the optimal placement of traffic detectors (Ban et al. 2009; Edara et al.2008; 

Oh and Choi 2004), but most of them have focused on point detectors (e.g. Loop detector), rather than 

the point-to-point detectors (i.e. AVI detectors). A discrete optimization approach for locating AVI 

detector was proposed by Sherali et al. (2006), but this approach was developed to maximize the 

benefit (i.e. a factor that quantifies the quality of information, e.g. variability, obtained from the 

measured travel times) of measuring travel times on the entire transportation network given 

constraints (i.e. maximum number of available detectors), rather than optimize the accuracy of travel 

time estimation/prediction in real-time. 

Specific to Bluetooth detectors, Haghani et al. (2010) suggested the detectors must be deployed on 

highway segments that are at least 1 mile long (1.6 km) to achieve the best performance. But this 

recommendation is based on ensuring measurement errors associated with uncertainty of the vehicle 

location at the time of detection (typically the detection zone diameter is around 100m) do not exceed 

a given threshold. This study did not examine the optimal detector spacing.  

                                                      
1 The content of this Chapter are contained in a paper submitted for publication in the ASCE Journal of 

Transportation Engineering. 
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Edara et al. (2008) note that the placement of detectors for maximizing the accuracy of travel time 

estimations/predictions will vary by location based on specific conditions, and it’s not necessary to 

place the detectors so they are evenly spaced. A study that focused on the AVI detectors spacing 

(Sherali et al. 2006) indicated that detectors should be placed at locations where the roadway 

geometry changes (e.g. an entering ramp, an exit ramp, or a change in the number of lanes) to better 

capture the variation of traffic conditions. We concur with the findings from Haghani et al. (2010); 

Edara et al. (2008) and Sherali et al. (2006); however, in this chapter we are focused on the average 

spacing between two consecutive Bluetooth detectors rather than on the specific locations where the 

detectors are to be placed. 

The remainder of this chapter is organized as follows. It begins with a practical investigation of the 

difference between measured travel time from Bluetooth detectors and the travel time ground truth in 

real-time applications. Then, the impacts that the detector spacing have on the real-time estimation 

errors are analyzed. A proposed model is presented to generalize the analysis results, and the optimal 

average spacing of Bluetooth detectors as a function of route length is recommended for real-time 

applications. Conclusions and recommendations are provided in the last section. 

3.1 Difference between Bluetooth Measurements & Travel Time Ground Truth 

Travel time of an individual vehicle can only be measured by Bluetooth detectors after the vehicle has 

passed through the entire road segment (i.e. has arrived at the downstream detector). We call this 

travel time the arrival travel time (ATT). However, for real-time applications, such as posting travel 

time on a variable message sign (VMS), we are actually interested in disseminating the travel time 

that vehicles will experience at the time they enter the road segment, and this travel time is called 

departure travel time (DTT). Definitions of ATT and DTT can be found in Section 1.1.1. 

3.1.1 Field Data Collected by Bluetooth Detectors 

To examine the practical difference between ATT (i.e. measured travel time) and DTT (i.e. true travel 

time2 ) quantitatively, freeway travel times measured by Bluetooth detectors are used in this study. 

The field data were collected from a freeway segment (Queen Elizabeth Way from Royal Windsor 

Drive to Highway 427, Ontario, Canada) with a length of 18.6 km (Figure 3.1). The data set used in 

this study was collected during a time period from August 21, 2009 to August 26, 2009.  

                                                      
2 We denote DTT as the true travel time to distinguish it from the estimated travel time (ATT). DTT are still 
subject to measurement errors, sampling errors and outliers. 
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Figure 3.1: Map of the study freeway segment 

Sample travel time data for the study road segment are obtained by processing the raw data using 

BluSTATs software, which is provided by Traffax Inc. (2009). The outliers are also estimated by the 

BluSTATs software based on the following filtering algorithm (BluSTATs 2009):  

For each record,  

1. Calculate the 25th (ρ25) and 75th (ρ75) percentile of the 30 closest data points to the focus record.  

2. Calculate the Inter-quartile Range (IQR) as the difference between the 25th and 75th percentile 

(IQR=ρ75−ρ25). Calculate a lower bound as LB=ρ25−2IQR. Calculate an upper bound as 

UB=ρ75+2IQR. These bounds approximate a three standard deviation boundary.  

3. If the focus record falls below the lower bound, or above the upper bound, mark the focus record as 

an outlier. 

3.1.2 Results of Comparison between ATT and DTT 

The average ATT and average DTT during 5 minutes time interval are estimated (not including the 

outliers) using Equation 1.1 and 1.2. Comparison between the average ATT and the average DTT for 

each day (August 21, 2009 to August 26, 2009) is shown in Figure 3.2, in which we can see that the 

measured travel time lags behind the true travel time, and this phenomenon is more obvious when the 

travel time becomes large. Due to this time lag, directly using the average ATT (i.e. measured travel 

time) as an estimate of the average DTT (i.e. true travel time) will result in large errors, especially 

when traffic conditions are changing rapidly (e.g. Figure 3.2 (f)). 
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Figure 3.2: Comparisons between average ATT and average DTT 

If ATT is directly used as an estimate of DTT, the absolute relative error (ARE) for time interval k 

can be calculated by Equation 3.1: 

௞ܧܴܣ ൌ
|஺்்ೖି஽்்ೖ|

஽்்ೖ
																																																																																																																																									ሺ3.1ሻ  

The mean absolute relative error (MARE) is computed as 
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Where, K is the total number of the time intervals within the study period. 

Table 3.1 shows the results of mean absolute relative error (MARE), 95% confidence interval (95% 

CI) of the MARE, 90th percentile of the ARE (90th P ARE), and standard deviation of the ARE (Std. 

ARE) calculated based on data from the 6 days (24 hours within each day), and these measures of 

performance are computed in two different ways: 

 Based on all the intervals (i.e. all traffic states). 

 Based only on the intervals for which traffic is in congested state (where "congested" is 
defined as the average travel speed ൏ 80 km/h). 

Table 3.1: Errors of using ATT as an estimate of DTT 

All states Congested states

MARE 5.7% 15.2% 

95% CI of MARE (5.4%, 6.0%) (13.7%, 16.7%)

90th P ARE 13.1% 28.0% 

Std. ARE 6.2% 10.1% 

The results shown in Table 3.1 indicate that the measured travel time (ATT) is statistically different 

from the true travel time (DTT), and the errors become larger when traffic is in congestion states. A 

detailed illustration of the comparison on the basis of data collected from 6:00 AM to 12:00 noon on 

August 26 is shown in Figure 3.3.  

Figure 3.3 shows that the time to identify a traffic state based on the measured travel time lags 

behind the time when this traffic state really happens, and this lag time is approximately equal to the 

measured travel time. For example, vehicles that enter the segment between 7:10 and 7:15 AM 

require an average 32 minutes to traverse the segment. However, the travel time of those vehicles 

cannot be measured until they arrive at the downstream detector, i.e. a time lag of approximate 35 

minutes. The absolute relative errors are computed for the period from 6:00 AM to 12:00 AM (as 

shown in Figure 3.3), and the MARE on the basis of 72 time intervals within this time period is 

16.57%, the 90th percentile ARE is 27.45%, and the maximum ARE is 48.39%. This result indicates 

that the error caused by using measured travel time as an estimate of true travel time during a time 

period when traffic conditions are changing substantially is very large. Moreover, due to this time lag, 

the pattern of travel time variation is changed (as shown in Figure 3.3), and this will further influence 
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the accuracy of travel time prediction, because many prediction models (especially short-term 

prediction) rely on the identified traffic pattern in real-time. 

 

Figure 3.3: Detailed illustration of comparison between average ATT and average DTT (August 

26, 2009) 

It is quite obvious that the error caused by the time lag relates to the length of freeway segment, 

and the above analysis is based on a dataset collected from a freeway segment with a length of 18.6 

km, which seems too long to satisfy the requirements of real-time travel time estimation/prediction. 

Previous studies have suggested dividing the long route into shorter segments to reduce the affects of 

the time lag that exists in AVI measurements. However, no study has quantitatively analyzed the 

impacts of detectors spacing on real-time travel time estimation errors, and that will be discussed in 

the following section. 

3.2 Impacts of Detectors Spacing on Real-time Travel Time Estimation Errors 

The analysis requires travel time data from a freeway route with the following characters: (1) 

Bluetooth detectors are deployed with an average spacing approximately 1.5 km; (2) individual 

vehicle travel times are available between each possible pair of detectors (not just adjacent pairs); (3) 

the route experiences recurrent and non-recurrent congestion; (4) the sample size is sufficiently large 

such that sampling errors are not significant. However, field data satisfying that requirements were 
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not available at the time of this study. Consequently, the data for analyzing the impacts of the spacing 

between the detectors on real-time estimation errors were generated using a simulation model.  

3.2.1 Simulation Data 

The simulation network used in this study was originally created for evaluating an automatic 

incident detection algorithm that made use of AVI data (Hellinga and Knapp 2000). The network is 

modeled after eight interchanges along a 12 km freeway route of Highway 401 in Toronto, Canada. 

As illustrated in Figure 3.4 (a), the eastbound and westbound freeway directions are both divided into 

10 segments approximately 1.2 km in length with AVI roadside detectors at both ends of each 

segment. 

 

(a) Simulation network (Hellinga and Knapp 2000) 

 

(b) Average travel time data from the simulation model 

Figure 3.4: Simulation network and simulated data 

The network was simulated using the Integration traffic simulation model. The origin destination 

traffic demand was constructed to replicate the buildup of the AM peak from 5:30 AM to 10:30 AM. 

A total of 101,142 vehicle trips were simulated during this 5 hour time period. The network 
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experiences severe recurring congestion at several locations. The effects of non-recurring congestion 

were captured by simulating incidents in which the incident’s location, duration, time of day of 

occurrence and severity (capacity reduction) were varied. For each simulation run, the travel time 

between each pair of AVI detectors was recorded for each vehicle. Figure 3.4 (b) shows the travel 

time over the 12 km freeway route as a function of trip start time averaged across all the traffic 

conditions simulated. The figure illustrates the average temporal variation in the route travel times.  

3.2.2 Impact Analysis 

To analyze the impacts of the spacing between detectors, we assume the 12 km freeway route is 

divided into a different number of segments. On the basis of the original network that was divided 

into 10 segments, the freeway route also can be divided into 5, 4, 3, and 2 segments respectively by 

combining different segments together, and the entire route can be treated as a single segment. There 

are different ways of dividing the entire route into shorter segments corresponds to 6 different average 

segment lengths. The simulation data include the travel time of vehicles traversing each freeway 

segment, and the time when vehicles enter or depart from this segment. Therefore, the average ATT 

and average DTT of vehicles traversing each freeway segment ݈  during time period ݇  can be 

calculated by Equations 3.3 and 3.4 as follows: 

തതതതതത௟,௞ܶܶܣ ൌ 	
1
݊஺
෍ ௟,௝ݐݐ	

௡ಲ

௝ୀଵ

, ௟,௝ݐ ∈ ݇																																																																																																																ሺ3.3ሻ 

തതതതതത௟,௞ܶܶܦ ൌ
1
݊஽

෍	ݐݐ௟,௝

௡ವ

௝ୀଵ

, ௟ିଵ,௝ݐ ∈ ݇																																																																																																												ሺ3.4ሻ 

Where,	tt୪,୨ which is equal to ݐ௟,௝ െ  ௟ିଵ,௝ is the time taken for vehicle j to traverse the road segmentݐ

 ௟,௝ is the timeݐ ݈, and	௟ିଵ,௝ is the time at which vehicle j passed the upstream boundary of segmentݐ ,݈

at which vehicle ݆ passed the downstream boundary of the segment	l;	݊஺ is the number of vehicles 

passing the downstream boundary of road segment 	l  during time period 	݇ ; ݊஽  is the number of 

vehicles passing the upstream boundary of road segment	݈ during time period	݇. 

For each individual freeway segment	݈, the measured/estimated travel time by Bluetooth detectors 

is the average ATT (calculated by Equation 3.3), and the true travel time is the average DTT 

(calculated by Equation 3.4). The errors (MARE, 90th P ARE) between the estimated travel time and 

the true travel time are calculated for each of the 6 different average segment lengths, and the results 



 

 45 

are shown in Figure 3.5 (a). These results indicate that the estimation errors caused by the time lag 

that exists in the AVI measurements increase approximately linearly with increases of the spacing 

between detectors. Although the mean errors for all the different average segment lengths considered 

(1.2 km to 12 km) are all lower than 10%, the 90th percentile errors vary substantially from 4.2% to 

21.2% with the increase of the average segment length.  

 

Figure 3.5: Illustration of the analysis results based on the simulation data 

It is not appropriate to consider only the average prediction error (i.e. MARE), as in practice it is 

also necessary to consider the distribution of these errors since large errors, which may occur 
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infrequently, may also be unacceptable. With this consideration, the mean prediction error is not a 

good measure for determining the optimal average spacing between Bluetooth detectors. 

Consequently, a maximum limitation of the spacing between detectors (5 km) is suggested on the 

basis of a criterion of 90th percentile error < 10%. Combining this maximum limitation with the 

minimum limitation proposed in literature (Haghani et al. 2010), an optimal range of the spacing 

between Bluetooth detectors is expected to be 2-5 km.  

This optimal detector spacing (i.e. 2-5 km) is on the premise that only a single freeway segment is 

analyzed. In practice, the average travel time of vehicles traversing the entire freeway route ݅ during 

time period ݇ is often estimated by adding all the average ATT of the freeway segments together as 

shown by Equation 3.5: 

തതതതതത௜,௞ܶܶܣ ൌ෍ܶܶܣതതതതതത௟,௞

ே೔

௟ୀଵ

																																																																																																																																										ሺ3.5ሻ 

Where, ௜ܰ is the number of freeway segments that the entire freeway route ݅ is divided into. 

The “true” travel time taken for vehicles to traverse the entire freeway route is equal to the average 

DTT calculated by Equation 3.4 when the entire freeway route is considered as 1 segment. Therefore, 

the errors between the estimated travel times (i.e. travel time calculated by Equation 3.5) and the “true” 

travel times for the entire route are calculated as a function of average segment length and the results 

are shown in Figure 3.5 (b).  

The results of Figure 3.5 (b) show that the estimation errors are no longer monotonically growing 

with increase of the average length of freeway segment. An inflection point can be found, and it is 

more obvious for 90th percentile ARE. This inflection point represents an optimal spacing between 

detectors (e.g. 4 km) when the objective is to provide real time travel time estimation for the entire 

freeway route (e.g.12 km). The inflection point arises because errors are introduced when travel times 

from multiple segments are aggregated.  

An example of the variation of ATT over the average segment length from one scenario of the 

simulation data is shown in Figure 3.6.  Figure 3.6 (a) shows comparisons between DTT (black line) 

and two cases for ATT.  The blue line (ATT 12 km) represents ATT if the entire route is considered 

as one segment.  The yellow line (ATT 6km) represents ATT if the route travel time is obtained as the 

sum of the ATT times from 2 segments with average segment length about 6 km.  Figure 3.6 (b) 
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shows comparisons between DTT (black line) and two additional cases, namely ATT computed as the 

sum across 5 segments (ATT 2.4km) and across 10 segments (ATT 1.2km with the average segment 

length about 2.4 km and 1.2 km respectively.   

 

(a) 

 

(b) 

Figure 3.6: ATT varies with average length of segment 
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From the results shown in Figure 3.6 (a), we can see that when the entire route (12 km) is divided into 

two segments (average length is 6 km), the errors between DTT and ATT are reduced. However, 

when placing the detectors very close together (as shown in Figure 3.6 (b), the error between DTT 

and ATT becomes lager when congestion is dissipating (e.g. from 8:30 – 9:30 am).  

The reason that errors increase when detector spacing is very small can be illustrated using an 

example shown in Figures 3.7-3.9. Figures 3.7-3.9 are time space diagrams illustrating a hypothetical 

freeway route that is considered as one segment, two segments, and four segments respectively. 

jଵ,	jଶ …jଵ଴ are hypothetical vehicle trajectories, and vehicles experienced non-recurrent congestion 

because of an incident on this freeway route. For time period k, the true travel time (DTT) is the time 

experienced by vehicle j଼ (the only vehicle to enter the freeway route in time period k). This vehicle 

joined the tail of the queue when congestion was beginning to dissipate.  The travel time measured in 

time interval k (ATT) is the time experienced by vehicle jଶ. The error between the true travel time 

(DTT) and the measured travel time (ATT) is denoted as Error 1 and is illustrated in the Figure.  

 

Figure 3.7: A time space diagram used to illustrate errors between DTT and ATT (one segment) 

In Figures 3.8 and 3.9, the entire freeway route is divided into two and four segments respectively. 

The measured route travel time (ATT) is a summation of the measured travel time for each segment. 

In the same way, the errors (i.e. Error 2 and Error 3) between ATT and DTT are illustrated, and it can 

be seen that the error becomes larger as the number of segments within the route increase. This 
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example indicates that when congestion is dissipating, increasing the number of detectors along a 

route may not decrease the error between ATT and DTT.  

 

Figure 3.8: A time space diagram used to illustrate errors between DTT and ATT (two 

segments) 

 

Figure 3.9: A time space diagram used to illustrate errors between DTT and ATT (four 

segments) 
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Using the “trajectory method” (Coifman 2000; Izadpanah et al. 2011) instead of the simple 

summation method (Equation 3.5) for aggregating the travel times from multiple segments may 

reduce the estimation errors, however doing so in real time will require predicting travel times for 

different prediction horizons, and the estimation errors still exist because of the prediction errors. 

Thus, the estimation errors caused in the process of travel time aggregation cannot be avoided. Of 

course, the optimal spacing indicated in Figure 3.5 (b) (i.e. 4 km) varies with different lengths of the 

entire freeway route. Consequently the results shown in Figure 3.5 (b) are not general results and 

therefore are not applicable if the freeway route is not 12 km in length. 

In order to generalize the result and provide guidance for deployment of Bluetooth detectors for 

real-time applications, the ratio of the estimation errors (i.e. the error shown in Figure 3.5 (a) divided 

by the corresponding error shown in Figure 3.5 (b)) is computed, and the change of this ratio over the 

number of segments is shown in Figure 3.5 (c). The results of Figure 3.5 (c) indicate that the ratio of 

the estimation errors increases linearly with increase of the number of segments, and it can be seen 

that the 90th percentile error is already doubled when the number of segments increases to 3.  

There is a practical need for guidance on the optimal average spacing between Bluetooth detectors 

as a function of the route length. In order to obtain such a guidance based on the results obtained 

previously, a generalized model is proposed and presented in the next section. 

3.3 Generalization Model for Determining the Optimal Average Detectors 

Spacing 

3.3.1 Proposed Generalization Model 

The variation of the estimation errors over the average segment length (shown in Figure 3.5 (a)) and 

the variation of the ratio of the estimation errors over the number of segments (shown in Figure 3.5 

(c)) are all approximately linear. Therefore, we can model these two relationships using linear 

functions as follows: 

Model 1: 

ܧ ൌ ܣ ∙ ௔ܮ ൅  ሺ3.6ሻ																																																																																																																																																			ܤ

Where, ܧ is the 90th percentile estimation error of a single segment (i.e. absolute relative error, %); 

௔ܮ	  is the average length (km) of freeway segment (ܮ௔ ൌ  is the total length of the entire ܮ ;(ܰ/ܮ
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freeway route (km); ܰ is the number of freeway segments that the entire freeway route is divided into. 

  .are coefficients of the linear function ܤ and ܣ

Model 2: 

ܴ ൌ ܥ ∙ ሺܰ െ 1ሻ ൅ ሺܦ ൅ 1ሻ																																																																																																																													ሺ3.7ሻ  

Where,	ܴ is the ratio of the estimation error if travel times from single segments are aggregated; ܥ 

and ܦ are coefficients of the linear function. 

Then, the estimation error when travel times from multiple segments are aggregated (ܧᇱ) is equal to 

the product of ܧ and ܴ, which can be substituted by parameters defined in Equation 3.6 and 3.7 as 

follows: 

ᇱܧ ൌ ܧ ∙ ܴ ൌ ሾܣ ∙ ܰ/ܮ ൅ ܥሿሾܤ ∙ ሺܰ െ 1ሻ ൅ ሺܦ ൅ 1ሻሿ																																																																																ሺ3.8ሻ 

The coefficients ܣ	 ܤ , ܥ ,  and ܦ  from the regression functions are obtained based on previously 

estimated 90th percentile errors. We use the 90th percentile error instead of the mean ARE because 

we wish to avoid large errors.  

The regression results are shown in Table 3.2. For Model 1 the results show that the intercept, ܤ = 

0.024, is statistically significant. This might be considered to be counterintuitive as we might expect 

that as the segment length approaches zero, the error resulting from the use of ATT as an estimate for 

DTT should also approach zero. However, when the segment length becomes very short, 

measurement error (i.e. resulting from the uncertainty of the vehicle location at the time of detection) 

becomes more significant relative to the true travel time and therefore ܧ does not approach zero.  

For Model 2a, the regression results indicate that the intercept (i.e.	ܦ ൌ 0.0733) is not statistically 

significant at the 95% level (p-value is greater than 0.05), and therefore the intercept was set equal to 

zero and the model recalibrated Model 2b).  

The regression statistics shown in Table 3.2 indicate that these two models (Model 1 and Model 2b) 

explain over 99% of the variation in the dependant variable and all coefficients have logical values 

and are statistically significant. The goodness of fit plots for Model 1 and Model 2b are shown in 

Figure 3.6 (a) and (b). 
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Table 3.2: Summary of the regression results 

Model 1 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

B 0.0240 0.0010 25.1417 0.0000 0.0213 0.0266 

A 0.0156 0.0002 97.5353 0.0000 0.0152 0.0161 

Model 2a 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

D 0.0733  0.0575  1.2750  0.2713  -0.0863  0.2328  

C 0.4088  0.0134  30.5930 0.0000  0.3717  0.4459  

Model 2b 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

C 0.4213 0.0096 43.9277 0.0000 0.3966 0.4460 

Regression Statistics 
Model 1 Model 2a Model 2b 

R2  0.9996 0.9957 0.9974 
Standard Error 0.0014 0.0953 0.1010 

Observations 6 6 6 

  

 

Figure 3.10: Goodness of fit for the regression models 

3.3.2 Generalization Results 

The values of the coefficients	ܤ ,ܣ and ܥ are applied to Equation 3.8. The estimation error ܧᇱ as a 

function of average segment length for different freeway route lengths is shown in Figure 3.7. The 

results of Figure 3.7 indicate that the optimal spacing between detectors varies with the length of the 
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freeway route. The optimal average spacing between detectors can be computed by taking the 

derivative of Equation 3.8, setting it equal to zero, and solving for ܰ. Given that ܰ must be an integer; 

we obtain the optimal number of segments as:  

௢ܰ௣௧ ൌ

ە
ۖ
۔

ۖ
ۓ

ଵܰ ൌ ݎ݁݃݁ݐ݊݅ ቌඨ
ሺ1ܣ െ ሻܥ

ܥܤ
∙ ቍ	ܮ ; ᇱሺܧ	݂݅ ଵܰሻ ൑ ᇱሺܧ	 ଶܰሻ

ଶܰ ൌ ଵܰ ൅ 1																																					; ᇱሺܧ	݂݅ ଵܰሻ ൐ ᇱሺܧ	 ଶܰሻ

																																																				ሺ3.9ሻ 

 

Figure 3.11: Estimation error ࡱᇱ as a function of average segment length for different freeway 

route lengths 

Using the coefficients in Table 3.2, i.e.	A ൌ 0.0156, B ൌ 0.024, C ൌ 0.4213, the optimal number 
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Table 3.3: Recommended average Bluetooth detectors spacing as a function of route length 

Length of the 
freeway route 

Optimal number of 
segments 

Optimal average 
detectors spacing 

Optimal number of 
detectors 

 ௔_௢௣௧ (km) ஽ܰ_௢௣௧ܮ ௢ܰ௣௧ (km) ܮ
2 1 2 2 
4 2 2 3 
6 2 3 3 
8 3 2.7 4 

10 3 3.3 4 
12 3 4 4 
14 4 3.5 5 
16 4 4 5 
18 4 4.5 5 
20 4 5 5 

3.4 Summary 

In this chapter, the travel time estimation errors caused by the time lag that exists in Bluetooth 

measurements are investigated. The difference between Bluetooth measured travel time (ATT) and 

true travel time (DTT) is quantified using field data collected from a freeway segment with a length 

of 18.6 km. The results show that the Bluetooth measured travel time lags behind the true travel time, 

and this problem is more severe when the travel time between two successive Bluetooth detectors 

becomes large. The real-time estimation error caused by using ATT directly as an estimate of DTT is 

not negligibly small (e.g. MARE = 5.7%, 90th percentile ARE = 13.1%), especially when traffic is in 

congestion state (e.g. MARE = 15.2%, 90th percentile ARE = 28.0%). Moreover, the temporal 

variation pattern of ATT is different from DTT which further degrades the accuracy of travel time 

prediction.  

The impacts of the detector spacing on the real-time estimation errors are analyzed using simulated 

data for a 12 km long urban freeway that experiences substantially recurrent and non-recurrent traffic 

congestion. Using the idea that in practice, we wish to avoid large estimation errors, we find the 

optimal detector spacing by limiting the 90th percentile estimation error rather than the mean 

estimation error. The results suggest that a maximum spacing between detectors of 5 km in order to 

maintain the 90th percentile error < 10%.  

The analysis results are generalized into a proposed model which can be used to find the optimal 

average spacing between Bluetooth detectors as a function of the freeway route length (i.e. route for 
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which travel time is to be posted). The proposed model is applicable for urban freeways which 

experience moderate to severe recurrent and non-recurrent congestion.  
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Chapter 4 

Real-time Travel Time Estimation – Dynamic Outlier Filtering3 

Similar to other AVI technologies (e.g. electronic toll tags, license plate recognition, etc.), the travel 

time data collected by Bluetooth detectors typically contain outliers as shown in Figure 4.1. The 

individual observations must be filtered in order to remove the outliers. 

 

Figure 4.1: Sample of travel time data collected by Bluetooth detectors (from an 18.6 km long 

freeway segment on QEW, Ontario, Canada) 

These outliers represent measured travel times which are not representative of the traffic stream for 

which travel time measurements are desired. Outlier observations can arise from a number of sources 

including: (1) vehicles making an enroute stop or taking a detour between two consecutive Bluetooth 

detectors; (2) Bluetooth devices which are not within an automobile (e.g. the device may be in a 

public transit vehicle, on a pedestrian, cyclist, etc.); (3) vehicles in special purpose lanes; (4) vehicles 

on parallel roadways; (5) vehicles on off-ramps. 

Existing filtering algorithms (Traffax Inc 2009; Dion and Rakha 2006; Robinson and Polak 2006; 

Clark et al. 2002; SwRI 1998; Mouskos et al. 1998; Fowkes 1983) developed based on measurements 

from AVI systems can be applied to data collected by Bluetooth detectors; however only a few of 

these algorithms are suitable for real-time detection which is the focus of this thesis. Dion and Rakha 
                                                      
3 The content of this Chapter are contained in a paper that has been accepted for presentation at the 2014 TRB 
Annual Meeting. 
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(2006) investigated three existing real-time filtering algorithms (i.e. TransGuide, TranStar and 

Transmit). They identified the limitations of these algorithms and proposed a low-pass adaptive 

filtering algorithm to address the problems of reliable estimation of travel times in real-time using 

AVI data. Dion and Rakha noted that the main challenge of detecting outliers in real-time is 

distinguishing outliers from sudden changes in actual travel times, especially when the AVI systems 

have limited sampling rates.  

The existing real-time outlier detection methods are data driven algorithms which do not explicitly 

consider the characteristics of traffic flow. Consequently, when travel times change rapidly, for 

example congestion forms as a result of an incident, these algorithms frequently fail to detect the 

sudden changes in travel times. This chapter presents a traffic flow theory based extension that can be 

used to enhance the performance of existing data driven outlier detection algorithms. The proposed 

method can be applied to different basic filtering algorithms as an extension to solve the problem of 

distinguishing outliers from sudden changes in actual travel times. 

The remainder of this chapter is organized as follows. It starts with a description of two existing 

real-time filtering algorithms - TransGuide algorithm and Dion & Rakha’s (D&R) algorithm. Then, 

these algorithms are evaluated through application to a data set of observed freeway travel times 

obtained from Bluetooth detectors deployed in the Region of Waterloo, Canada. Problems with the 

existing algorithms are discussed and a filtering model extension based on traffic flow theory is 

presented. Evaluation of the proposed filtering model extension is then performed by incorporating 

the proposed extension into the TransGuide and D&R algorithms respectively. A summary of this 

chapter is provided in the last section. 

4.1 Evaluation of the Existing Filtering Algorithms 

As described in section 2.1.3, the TransGuide and D&R algorithms (D&R1 and D&R2) are all 

designed for real-time estimation and forecasting of roadway travel times using AVI data. The 

outliers are removed before computing the average travel time, and the estimated/predicted travel 

times are updated in a fixed time period. The main differences between these three algorithms relate 

to their ability to respond to sudden changes in travel times under low sampling conditions. In general, 

the D&R algorithms provide more smoothed travel time estimates due to the utilization of 

exponential smoothing. This was considered as an advantage of the D&R algorithm over the 

benchmark algorithms in the reference (Dion and Rakha, 2006), however no quantitative 
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evidence/basis was given for this conclusion, and therefore there was no evidence that the more 

smoothed the travel time estimates, the more accurate the travel time estimates.  

The TransGuide and D&R24 algorithms were applied to a set of freeway travel times collected by 

Bluetooth detectors deployed along a 3.1 km section of suburban freeway (Highway 401 eastbound 

indicated in Figure 4.2) in the Region of Waterloo, Canada.  

 

 

This section of freeway (shown in Figure 4.2) consists of 3 lanes in each direction and has an 

AADT of approximately 145,000. Travel time data were collected over a period of approximate 12 

month (February 2012 through February 2013) for both directions. On average, there are approximate 

13,700 travel time observations per day (or 48 observations per 5 minute period) representing a 

sampling rate of approximately 9%. The variation of the sample size by time of day is shown in 

Figure 4.3.  

The purpose of this chapter is to examine the performance of outlier detection under rapid changes 

in travel times. Consequently, the entire data set was screened to identify days which experienced 

significant recurrent and/or non-recurrent congestion. Travel time data of 10 days were selected from 

the dataset of eastbound direction (i.e. 401 from H8 to H24), and the travel time observations from 

the 10 days can be found in Appendix A. For the purpose of illustrating their performance, the 

TransGuide and D&R2 algorithms were applied to these data and the results are presented in this 

Chapter for two representative days (Oct.5th and Nov.5th, 2012).  

                                                      
4 The D&R1 algorithm was not applied because it is an earlier and less robust version of the D&R2 algorithm. 

Highway 401 
at Highway 8 

Highway 401 
at Highway 24 

Figure 4.2: Map of the study area 
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4.1.1 TransGuide Algorithm 

Figures 4.4-4.7 illustrate the applications of the TransGuide algorithm to two different days (24 

hour periods), Oct. 5th and Nov. 5th in 2012 based on different parameters (i.e. k = 2 minutes or 5 

minutes and travel time threshold δ = 20% or 50%). 

It can be seen clearly from the results in Figures 4.4-4.7, that the algorithm performs poorly when a 

travel time threshold (δ) = 20% is used. When the threshold parameter is increased to 50%, the results 

are improved for the data collected on Oct.5th (Figure 4.4 (b) and Figure 4.5 (b)), but a large amount 

of the valid data are incorrectly labelled as outliers and excluded from the validity window at the 

beginning of the traffic congestion (14:00 -14:30) if the rolling-average interval is 5-minutes (Figure 

4.5 (b)). This occurs because the change of travel time between consecutive intervals will increase 

with the length of time interval increase, and when this change is larger than 50% of the travel time 

estimated in previous interval, it cannot be detected by TransGuide algorithm with δ = 50%. This 

suggests that more frequently updating the estimation may be able to avoid this kind of problem 

however it only applies to data with a higher sampling rate.  
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Figure 4.4: Applications of TransGuide algorithm on data collected by Bluetooth detectors (2-

min interval, Oct. 05 2012) 
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Figure 4.5: Applications of TransGuide algorithm on data collected by Bluetooth detectors (5-

min interval, Oct. 05 2012) 
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Figure 4.6: Applications of TransGuide algorithm on data collected by Bluetooth detectors (2-

min interval, Nov. 05 2012) 
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Figure 4.7: Applications of TransGuide algorithm on data collected by Bluetooth detectors (5-

min interval, Nov. 05 2012) 
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Similar performance issues occur in the application to the data collected at Nov.5th (Figure 4.6 and 

4.7). On this occasion the TransGuide algorithm isn’t able to track the sudden changes in travel times 

for both the 2-min and 5-min interval durations even when the threshold parameter is set to 50%. This 

is because the change of actual travel time between two consecutive intervals exceeds the 50% 

threshold during the period around 17:50, and further increasing the threshold parameter is not a 

practical solution because it would also result an increased number of outliers incorrectly labelled as 

valid data. These results illustrate that the TransGuide algorithm is not able to perform reliably when 

travel times change rapidly. 

4.1.2 D&R Algorithm 

The D&R2 algorithm was applied to the same set of data and the results (using parameter values of 

ߣ ൌ 3, ߚ ൌ 0.2, ఙߚ ൌ 0.2) are shown in Figures 4.8-4.9. From these results we can observe that the 

D&R2 algorithm performs much better than the TransGuide algorithm in the aspect of tracking 

sudden changes of travel times, and the overall performance of D&R2 algorithm is better than 

TransGuide. However, further investigation shows that the underlying problem has not been entirely 

solved.  

Consider Figure 4.10-4.12 which illustrates the application of the D&R2 algorithm to the Oct. 5th 

data using 2-min and 5-min interval, and the Nov. 5th data using 5-min interval. The case of Nov.5th 

data using 2-min interval is not illustrated here because no serious issues arise for the D&R2 

algorithm for those data. From Figures 4.10 (a), 4.11 (a) and 4.12 (a), we can see that the validity 

window becomes extremely large at some intervals, and this is mainly because three consecutive data 

points are observed above the validity window, and then the sample variance is set to 0.01(ݐݐ௜,௞ିଵ) 

according to Equation 2.15. With this large sample variance, the validity window is expanded so as to 

track the sudden changes of traffic conditions. However, when the validity window is expanded to be 

unrealistically large (as in the illustrated cases), the outlier detection algorithm treats almost all 

observations as valid, and frequently incorrectly labels outliers as valid data. An example of invalid 

observations being included in the validity window, and therefore labeled as valid data, can be 

observed in Figure 4.10 (b).  
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Figure 4.8: Applications of D&R2 algorithm on data collected by Bluetooth detectors (Oct. 05 

2012) 
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Figure 4.9: Applications of D&R2 algorithm on data collected by Bluetooth detectors (Nov. 05 

2012) 
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Figure 4.10: Illustrations of D&R2 algorithm details (2-min interval, Oct. 05 2012) 
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Figure 4.11: Illustrations of D&R2 algorithm details (5-min interval, Oct. 05 2012) 

14:10‐14:15 49.84

14:35‐14:40 233.46

0

50

100

150

200

250

0

50

100

150

200

250

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Tr
av
e
l T
im

e
 (
m
in
u
te
s)

Time of day

(a) Oct.05, 2012 ‐ D&R (5‐min interval) 

Valid Observations
Invalid Observations
Estimated Travel Times
Validity Window
Validity Window

zoom in

0

5

10

15

20

25

0

5

10

15

20

25

14:00 14:30 15:00

Tr
av
e
l T
im

e
 (
m
in
u
te
s)

Time of day

(d) Oct.05, 2012 ‐ D&R (5‐min interval) 

False Identification



 

 69 

 

 

Figure 4.12: Illustrations of D&R2 algorithm details (5-min interval, Nov. 05 2012) 
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Another problem, shown in Figures 4.10 (b), 4.11 (b) and 4.12 (b), is that a large amount of valid 

observations lie outside of the validity window during some specific time intervals and are therefore 

incorrectly labeled as outliers. The reason is that D&R2 algorithm assumes the expected average 

travel times and standard deviations of observed travel times from consecutive intervals remain 

constant. However, in reality the difference of these two values between consecutive intervals is 

substantial when traffic conditions are changing. Although this problem is addressed in D&R2 by the 

“three consecutive points” criteria, the adjustments to the validity window take effect in the next 

interval, meaning that the observations incorrectly labeled as outliers in the current interval remain 

incorrectly labeled.  

The results suggest that though the D&R2 algorithm provides better performance than the 

TransGuide algorithm, the algorithm still suffers performance limitations when travel times change 

rapidly. It is likely that performance could be improved by calibrating the various parameters; 

however doing so is not trivial, in large part because there is no objective way to quantitatively 

evaluate the performance of the filtering model using field data as the truth is not known. 

Consequently, this limits the robustness and transferability of the model and undermines confidence 

in the use of the model for real-time applications, particularly for those periods when travel times are 

changing rapidly – the periods of most importance for traffic control and traveler information. 

Accordingly, a simple, robust and transferable method that can be used to solve the problem of 

existing filtering algorithms in terms of tracking sudden changes in travel times is required. We 

propose to use a model based on traffic flow theory to better explain different traffic situations.  

4.2 Proposed Traffic Flow Filtering Model 

The proposed method can be applied as an extension to an existing data driven filtering model (e.g. 

TransGuide algorithm and D&R1) to enhance the model’s ability to track sudden changes in travel 

times. This extension is developed on the basis of traffic flow theory rather than purely responding to 

observed data characteristics. The proposed model uses the concept of shockwaves to impose a 

boundary of the validity window as illustrated in Figure 4.13. 

In a free flow traffic state (i.e. state A shown in Figure 4.13 (a)), if the free flow speed is known, 

then the minimum travel time over this road section can be estimated (ݐݐ௜,௠௜௡ ൌ /௜ܮ ௙ܸ  ). When 

congestion occurs, as is shown in Figure 4.13 (b), a congested traffic state (i.e. state B) is formed in 

which vehicles travel with speed ஻ܸ. The travel time over section ݅  would be computed as ݐݐ௜	 ൌ
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/௜஺ܮ ஺ܸ ൅ /௜஻ܮ ஻ܸ in which ܮ௜஺	and ܮ௜஻	are the length of the highway section traversed by the vehicle 

when operating in traffic state A and B, respectively. Of course, in practice, ܮ௜஺	 and ܮ௜஻	 are unknown. 

Traffic state B will propagate upstream with speed w (i.e. shockwave speed) until the entire road 

section is congested (shown in Figure 4.13 (c)). In this case, vehicles would travel at a speed that 

equals 	 ஻ܸ  over the entire section. If the speed of the most congested state ( ௠ܸ௜௡ ) is able to be 

calibrated without considering the special case that the entire road section is closed, then the 

maximum travel time over this road section can be estimated as ݐݐ௜,௠௔௫ ൌ /௜ܮ ௠ܸ௜௡. 

 

 
 

Based on the above analysis of travel behaviors, the boundaries of the validity window determined 

based on a data driven model can be updated as follows: 
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In addition, the change of travel time over a short time period is restricted by the speed of 

shockwave propagation. As illustrated in Figure 4.13 (d), travel time increases from ݐݐ௜,௞ିଵ to ݐݐ௜,௞ as 

a result of the shockwave propagating upstream and increasing the proportion of the link occupied by 

state B. Therefore the increase of travel time during a time period ∆ݐ is a function of the speeds in 

traffic states A and B (V୅	and	V୆) and the speed of shockwave propagation (ݓ஺஻). Travel time during 

interval k (ݐݐ௜,௞) can be approximately estimated by Equation 4.3. 

௜,௞ݐݐ ൌ ௜,௞ିଵݐݐ ൅ ቆ
|஺஻ݓ| ∙ ݐ∆

஻ܸ
െ
|஺஻ݓ| ∙ ݐ∆

஺ܸ
				ቇ																																																																																												ሺ4.3ሻ 

In practice, A and B might be any two different traffic states, for which estimating accurate values 

for ஺ܸ, ஻ܸ,ܨ஺,ܨ஻  is difficult. However, if state A and state B are assumed as two extreme traffic 

situations (i.e. free flow state and the most serious congested traffic state as they are defined in Figure 

4.13 (a) and (c)), the maximum shockwave speed can be calculated, and consequently the maximum 

change of travel times between two consecutive intervals can be estimated.  

Based on the above assumption, the speeds ஺ܸ and ஻ܸ  in Equation 4.3 are substituted by ௙ܸ  and 

௠ܸ௜௡  respectively, and shockwave speed ݓ஺஻  is substituted by the maximum shockwave speed ݓ 

which can be estimated on the basis of a simple triangle traffic flow model (Figure 4.13 (e)).  

Then, the maximum change of travel times between interval ݇ െ 1  and k ௜,௞ିଵݐݐ∆)  ) can be 

computed as follows: 

௜,௞ିଵݐݐ∆ ൌ
൫ ௙ܸെ ௠ܸ௜௡൯ ∙ |ݓ|

௠ܸ௜௡ ௙ܸ
∙  ሺ4.4ሻ																																																																																																																				ݐ∆	

With this maximum change of travel times between interval ݇ െ 1 and interval	݇, the upper bound 

and lower bound of travel time within interval ݇ can be further updated as follows: 

ന௜,௟௢௪௘௥,௞ݐݐ ൌ ݉݅݊ ቀݐݐഥ௜,௟௢௪௘௥,௞,݉ܽݔ൫ݐݐ௜,௞ିଵ െ ,௜,௞ିଵݐݐ∆ 																																																											௜,௠௜௡൯ቁݐݐ ሺ4.5ሻ 

ന௜,௨௣௣௘௥,௞ݐݐ ൌ ݔܽ݉ ቀݐݐഥ௜,௨௣௣௘௥,௞,݉݅݊	൫ݐݐ௜,௞ିଵ ൅ ,௜,௞ିଵݐݐ∆  ሺ4.6ሻ																																																									௜,௠௔௫൯ቁݐݐ

To sum up, this valid range is designed to be incorporated into a basic validity window 

,௜,௟௢௪௘௥,௞ݐݐ)  ௜,௨௣௣௘௥,௞) that is determined on the basis of a data driven model. This basic validityݐݐ

window can be determined by TransGuide, D&R1 or any other existing outlier detection algorithm 

which is unable to track the sudden changes in travel times.  
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The challenge for implementing the proposed method is to estimate the traffic states (i.e. free flow 

and congestion). Free flow speed	 ௙ܸ, roadway capacity	ܨ௖	 and jam density ܦ௝ can be estimated based 

on historical data. However, the value of 	 ௠ܸ௜௡ varies depending on the level of traffic congestion, 

making it difficult to select an appropriate fixed value. We propose a method for the real-time 

calibration of ௠ܸ௜௡ (Figure 4.14). 
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As a first step, the method checks if the absolute number and relative fraction of travel time 

observations in the current period fall outside of the current validity window. This is achieved 

through the condition:  

if (݊௔,௞ ൐ ௡ and ݊௔,௞/݊௢,௞ߠ ൐ ௣) or (݊௕,௞ߠ ൐ ௡ and ݊௕,௞/݊௢,௞ߠ ൐  ௣)                                         (4.7)ߠ

where, ݊௔,௞ and ݊௕,௞ are computed using Equations 4.8 and 4.9 ( ௝߬,௞,௔ ൌ 1 if the measured travel 

time ݐݐ௞ is identified as an outlier which is above the upper bound of the validity window, otherwise 

௝߬,௞,௔ ൌ 0;  ௝߬,௞,௕ ൌ 1 if the measured travel time ݐݐ௞ is identified as an outlier which is below the 

lower bound of the validity window, otherwise ௝߬,௞,௕ ൌ 0 ), which are the number of invalid 

observations above and below the upper bound and lower bound of the validity window in time 

interval ݇ respectively; ݊௢,௞	 is the total number of observations within interval	k; ௟ܸ௜௠௜௧  is a limit 

value of ௠ܸ௜௡ as we don’t consider the special situation that the entire road section is closed. Real-

time calibration of ௠ܸ௜௡ is triggered when the condition in Equation 4.7 is true. 

݊௔,௞ ൌ෍ ௝߬,௞,௔

௡ೖ

௝ୀଵ

																																																																																																																																																ሺ4.8ሻ	 

݊௕,௞ ൌ෍ ௝߬,௞,௕

௡ೖ

௝ୀଵ

																																																																																																																																																	ሺ4.9ሻ 

 Once the real-time calibration is triggered, an initial value of ௠ܸ௜௡  is given, and ∆ݐݐ௜,௞ିଵ  is 

calculated based on Equation 4.4. Then ݐݐഥ௜,௟௢௪௘௥,௞ and ݐݐഥ௜,௨௣௣௘௥,௞ are updated using Equations 4.5 and 

4.6, respectively. Valid observations are identified based on ݐݐന௜,௟௢௪௘௥,௞  and ݐݐന௜,௨௣௣௘௥,௞  , and the 

condition defined in Equation 4.7 is used again to determine whether or not the current value of ௠ܸ௜௡ 

is appropriate. If the condition is true, then the value of ௠ܸ௜௡ is reduced, otherwise end the calibration 

process, and keep the current value of ௠ܸ௜௡. Another condition of  ௠ܸ௜௡ ൒ ௟ܸ௜௠௜௧ is used to limit the 

value given to	 ௠ܸ௜௡.  

The values of parameters (	ߠ௡, ߠ௣ and ௟ܸ௜௠௜௧) relate to the traffic and road conditions in a specific 

road section, such as traffic flow, road geometry (e.g. whether or not the studied section is close to an 

on-ramp or off-ramp), and the area of the road section (e.g. urban or rural). Therefore they can be 

estimated off-line based on the historical data, and be updated periodically (e.g. monthly or yearly) 

depending on the specific situation. 
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One way to determine the values of the parameters is to do a statistical analysis using historical 

data. We can select a sample dataset from historical data for which the existing filtering algorithm has 

satisfactory performance. For example, consider the application of the TransGuide algorithm to data 

collected on Oct 5th with parameters ݇=2 minutes and 50%=ߜ (as illustrated in Figure 4.5 (b)). The 

cumulative relative frequency of the number of outliers within each interval (݊௢,௞ െ ݊௩,௞) and the 

fraction of the total observations labeled as outliers within each interval (൫݊௢,௞ െ ݊௩,௞൯/݊௢,௞ ) are 

computed using 2-minute and 5-minute intervals as shown in Figure 4.15.  

 

 

 

 

Figure 4.15: Using historical data to select parameter values for proposed model 
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The results from Figures 6a and 6b  indicate that for an interval duration of 2 minutes, less than 1 

percent of the intervals had more than 3 outliers, and less than 1 percent of the intervals had more 

than 12.4% of the total travel times observed in the interval labelled as outliers. For an interval 

duration of 5 minutes, less than 1 percent of the intervals had more than 5 outliers, and less than 1 

percent of the intervals had more than 10.1% of the total travel times labelled as outliers. We assume 

that there is little possibility that the number of outliers (݊௔,௞ or ݊௕,௞) and the fraction of observations 

labelled as outliers (݊௔,௞/݊௢,௞or ݊௕,௞/݊௢,௞ሻ will exceed the 99th percentile values obtained from the 

historical data for this roadway segment, and therefore the recommended values of ߠ௡and ߠ௣ are ߠ௡= 

 ௣= 10.1% for 5-min interval. Of course, in practice, theߠ ,௡= 5ߠ ௣= 12.4% for 2-min interval, andߠ ,3

sample dataset should include results from more than 1 day. 

The value of  ௟ܸ௜௠௜௧, a minimum speed of vehicles	along the road section of interest can be found 

from the historical data or this value can be selected on the basis of engineering judgment. In the 

following test,	 ௟ܸ௜௠௜௧ is set to 5 km/h. 

4.3 Test and Validation of the Proposed Method 

The proposed method is incorporated into the TransGuide and D&R1 algorithms but not the D&R2 

algorithm because the proposed extension is designed as an alternative to the modifications made in 

D&R2 algorithm. The modified algorithms are noted as TransGuide-M and D&R-M in the following 

descriptions. Applications of TransGuide-M and D&R-M are performed using the same data that 

were used to test the original TransGuide and D&R algorithms previously.  

The following parameter values were selected for the proposed model: free flow speed is set to 110 

km/h, road capacity is assumed as 2200 vehicles/h/lane, and jam density is assumed as 125 

vehicles/km/lane. ߠ௡and ߠ௣ are set equal to 3 and 12.4% for 2-min interval, and 5 and 10.1% for 5-

min interval.	 ௟ܸ௜௠௜௧ is set to 5 km/h, and ∆ܸ is set to 10km/h. 

For application of the TransGuide-M algorithm, a threshold of 50% is used as it can be seen clearly 

from Figure 1 that the 20% threshold is not suitable for our data set. The results, illustrated in Figure 

4.16 and 4.17 for the two days of data, show that the deficiency in the original TransGuide algorithm 

in terms of tracking sudden changes of traffic conditions is solved (especially for Nov.5th shown in 

Figure 4.17).  



 

 77 

 

 

Figure 4.17: Applications of the proposed extension combined with TransGuide (Oct. 05 2012) 

 

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Tr
av
e
l T
im

e
 (
m
in
u
te
s)

Time of day

(a) Oct.05, 2012 ‐ TransGuide‐M (2‐min interval)

Valid Observations
Invalid Observations
Estimated Travel Times
Validity Window

0

2

4

6

8

10

12

14

16

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Tr
av
e
l T
im

e
 (
m
in
u
te
s)

Time of day

(b) Oct.05, 2012 ‐ TransGuide‐M (5‐min interval)



 

 78 

 

 

Figure 4.18: Applications of the proposed extension combined with TransGuide (Nov. 05 2012) 
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deficiencies in performance of the original TransGuide algorithm have been overcome using the 

proposed extension indicating that the proposed extension makes the TransGuide algorithm much 

more robust. It can be observed that the modified algorithm still mislabels some of the travel time 

observations; however, the proportion of incorrectly labelled observations appears to be sufficiently 

small that there is no substantive impact on the accuracy of estimated mean travel times.  

 

 

Figure 4.19: Comparisons between original TransGuide and modified TransGuide algorithms 

based on data collected from Oct. 05 2012 (5-min interval) 
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Figure 4.19: Comparisons between original TransGuide and modified TransGuide algorithms 

based on data collected from Nov. 05 2012 (2-min interval) 
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Figure 4.20: Comparisons between original TransGuide and modified TransGuide algorithms 

based on data collected from Nov. 05 2012 (5-min interval) 
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Figure 4.21: Applications of the proposed extension combined with D&R1 (Oct. 05 2012) 
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Figure 4.22: Applications of the proposed extension combined with D&R1 (Nov. 05 2012) 
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Figure 4.23: Comparisons between D&R2 and modified D&R algorithms based on data 

collected from Oct. 05 2012 (2-min interval) 
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Figure 4.24: Comparisons between D&R2 and modified D&R algorithms based on data 

collected from Oct. 05 2012 (5-min interval) 
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Figure 4.25: Comparisons between D&R2 and modified D&R algorithms based on data 

collected from Nov. 05 2012 (5-min interval) 
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The results indicate that using the proposed extension instead of the extension developed by Dion 

and Rakha (i.e. D&R2), can increase the responsiveness of the filtering model to rapid changes of 

travel times, and at the same time avoid the problem of an unrealistically large validity window. The 

problem of large amount of valid data being excluded from the validity window for some specific 

intervals is solved as well, due to the utilization of real-time calibration and correction. 

4.4 Summary 

In this chapter, a traffic flow theory based travel time outlier filter enhancement is proposed as an 

extension to existing data driven outlier detection algorithms.   

The proposed method improves the performance of existing data driven outlier detection 

algorithms for periods when travel times are changing rapidly, as when congestion is forming or 

dissipating. The parameters in the proposed method can be determined based on historical data and 

the model incorporates self-calibration to increase robustness and transferability of the model.  

The proposed model is suitable for off-line and real-time applications in which outliers are to be 

identified from individual measured travel times. The performance of the proposed method was 

illustrated by incorporating the model into the TransGuide and D&R1 algorithms and applying the 

models to Bluetooth data collected over a 3.1 km section of suburban freeway.   

The improved performance of the proposed model is demonstrated through depiction of the data 

labeling results (i.e. valid versus outlier). A quantitative assessment of the improvement in 

performance was not possible using field data because the truth (i.e. which observations are actually 

outliers) is not known.  

The proposed filtering method is used as one component of the short-term travel time prediction 

framework developed in this study, and it is discussed in Chapter 6. 
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Chapter 5 

Selecting Historical Data for Short-term Travel Time Prediction 

Irrespective of the nature of the model, almost all the prediction models described in the literature 

have incorporated historical data in some manner to improve the accuracy of prediction results.  

Rice and Van Zwet (2004) developed a linear regression model with varying parameters combining 

current traffic situation with historical data. Chien and Kuchipudi (2003) performed travel time 

prediction on the basis of Kalman filter techniques using real-time data combining with aggregated 

historical data from automatic vehicle identification (AVI) systems. Guin (2006) proposed an 

ARIMA time series model to predict future travel times using historical travel time data, and he 

concluded that the current traffic data are able to provide good travel time prediction for the near 

future, while historical data being used in a time series model provide more accurate predictions for 

the longer term. A Bayesian inference-based dynamic linear model was proposed by Fei et al. (2011) 

to predict short-term freeway travel times, where the median of historical travel times was employed 

to recognize the primary travel time patterns. Based on an expert system which assigns weights to 

historical and real-time traffic information dynamically according to “expert” knowledge, Lee et al. 

(2009) found that the combined model that assimilates historical and current information has better 

performance than the two separate models in terms of the accuracy of prediction results.  

Historical data have long been considered as an important input to travel time prediction models 

because the time series of traffic states (e.g. travel time, traffic flow) collected from different days at 

the same site in the same situation have similar time-varying traffic patterns (Chen et al., 2012).  

5.1 Methods of Selecting Historical Data 

5.1.1 Simple Aggregation (SA) 

Most commonly, the traffic pattern from historical data is estimated by aggregating travel times from 

past consecutive days, and the patterns for work days and weekends/holidays are separately estimated. 

According to the number of the days being aggregated, weekly/monthly aggregated historical data are 

usually used.  

This method of aggregating travel times from past consecutive days is attractive because it is 

intuitive, simple to implement and easy to understand. However, this method can only provide a 
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primary pattern, and the large day-to-day variations in travel times caused by variations in capacity 

(supply) and demand cannot be captured. In the prediction models that combine current information 

with historical information, the day-to-day variation in travel times is expected to be captured by 

current data observed in previous time interval(s), however, the real-time travel time observations 

usually suffer from the problems of missing data, data unavailability or sampling error caused by low 

sample rate, and these problems usually occur when travel time change substantially. Therefore, to 

better capture the day-to-day variation in travel times, it’s necessary to obtain meaningful travel time 

patterns from historical data by selecting only those historical travel time data that are most similar to 

the conditions of the current day.  

5.1.2 Nearest Neighbor (KNN) 

K Nearest Neighbors (KNN) technique is one way to find a sub-set, which contains only those data 

that are most similar to the conditions observed so far on the current day from the entire set of 

historical data. Traffic predictions based on KNN were investigated in previous studies (Smith et al., 

2002; Wild, 1997), where the KNN is used to find K days (K is an optimal number of days in the 

selected sub-set to minimize the prediction error) in the past that are most similar to the present day in 

some appropriate sense. Once the historical days have been identified, then the conditions observed 

after the current time during these historical days are used to predict the future conditions for today. 

The prediction based on KNN is actually a non-parametric regression method, in which the 

effectiveness of this method is heavily influenced by the quality of the historical database. If the 

similar traffic conditions are not present in the historical database it’s difficult to predict future traffic 

conditions accurately (Smith et al., 2002).  

The key in using the KNN technique is finding a suitable measurement to represent the similarity 

(normally termed the “distance”) between the traffic conditions of the present day and conditions in 

the past days. Traffic conditions are represented by sequences of traffic state values, and each value 

represents an average level of the traffic states over a road segment during a time interval, so the 

traffic condition is actually a type of time series data (e.g. travel time, traffic flow, average speed, 

etc.). A general method used to measure this “distance” in previous studies (Smith et al., 2002; Clark, 

2003; Rice et al., 2004; Chen et al., 2012) is to compute the Euclidean distance between two time 

series. For example, we have a discrete time series of travel times, 	ܽ ൌ ൛ݐݐෝ௞ିேೖାଵ, … , ,ෝ௞ିଵݐݐ  ෝ௞ൟݐݐ

measured today, and each measurement in the time series is obtained at a constant time interval - say 

every 5 minutes. ௞ܰ is the number of the data points contained in the time series. The same discrete 
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time series exists in each of the historical days ݄ௗ ൌ ቄ൫ݐݐෝ௞ିேೖାଵ൯ௗ, … , ሺݐݐ
ෝ௞ିଵሻௗ, ሺݐݐෝ௞ሻௗቅ , where 

݀ ൌ ሼ1,2, … , ܦ ሽ andܦ  is the total number of days in the historical data. The Euclidean distance 

,ௗሺܽݐݏ݅ܦ 	݄ௗሻ between time series ܽ	 and 	݄ௗ can be computed by Equation 5.1: 

,ௗሺܽݐݏ݅ܦ 	݄ௗሻ ൌ ඩ෍ሾݐݐෝ௞ି௡ାଵ െ	ሺݐݐෝ௞ି௡ାଵሻௗሿଶ
ேೖ

௡ୀଵ

																																																																																						ሺ5.1ሻ 

By using this distance measurement (Equation 5.1), we can identify the degree of similarity 

between the time series of today with each of the historical time series and select the K most similar 

ones.  

5.2 Performance Comparison between SA and KNN 

Aggregation of historical data based on a subset selected using KNN method is expected to provide 

better estimation of traffic pattern than the simple aggregation of historical data from past consecutive 

days. To verify this assumption, two naïve models based on the subsets of historical data selected 

using different methods (i.e. SA & KNN) were applied to predict travel times.  

The naïve models used in the tests are described as follows:  

Naïve 1: 

ෝ௞ାଵݐݐ ൌ ෝ௞ݐݐ ൅   ሺ5.2ሻ																																																																																																																																										ഥ௞ݐݐ∆

Where,	ݐݐෝ௞ represents travel time of today within time interval	݇; 	ݐݐෝ௞ାଵ is the predicted travel time 

for time interval ݇ ൅  ഥ௞ represents the average of change in travel time observed at time intervalݐݐ∆ ;1

݇ in historical data. The value of ∆ݐݐഥ௞ is computed differently for the SA and KNN methods. 

For the SA (Simple aggregation) methods, ∆ݐݐഥ௞ is designated as ∆ݐݐഥ௞ିௌ஺ and is computed as:  

ഥ௞ିௌ஺ݐݐ∆ ൌ
∑ ሺݐݐෝ௞ାଵ െ ෝ௞ሻௗݐݐ
஽ೞ
ௗୀଵ

௦ܦ
																																																																																																																			 ሺ5.3ሻ 

Where	ሺݐݐෝ௞ାଵ െ  .݀ ෝ௞ሻௗ is the trend of travel time in historical dayݐݐ

For the example in Figure 5.1, ∆ݐݐഥ௞ିௌ஺ is computed as ሾሺ10.6 െ 6.1ሻ 	൅ 	ሺ11.7 െ 8.5ሻሿ/2	 ൌ

	ሺ4.5 ൅ 3.2ሻ/2 ൌ 3.85. For the KNN method, ∆ݐݐഥ௞ is designated as  ∆ݐݐഥ௞ି௄ேே		and is computed as: 



 

 91 

ഥ௞ି௄ேேݐݐ∆ ൌ
∑ ሺݐݐෝ௞ାଵ െ ௗݐݏ݅ܦ/ෝ௞ሻௗݐݐ
஽ೞ
ௗୀଵ

∑ ௗݐݏ݅ܦ/1
஽ೞ
ௗୀଵ

																																																																																																			ሺ5.4ሻ 

Where, ݐݏ݅ܦௗ  represents the dissimilarity error (i.e. “distance”) between the time series of 

observations from the current day and the time series from historical day ݀; ܦ௦ is the total number of 

historical days selected in the sub-set. If for the example data in Figure 5.1, ݐݏ݅ܦௗଵ ൌ 2.5  and 

ௗଶݐݏ݅ܦ ൌ 1.3 then,	∆ݐݐഥ௞ି௄ேே ൌ
ሾሺଵ଴.଺ି଺.ଵሻ/ଵ.ଷାሺଵଵ.଻ି଼.ହሻ/ଶ.ହሿ

ሺଵ/ଵ.ଷାଵ/ଶ.ହሻ
ൌ 	 ሺ3.45 ൅ 1.28ሻ/1.17 ൌ 4.04. 

  

Naïve 2: 

ෝ௞ାଵݐݐ ൌ ෝ௞ݐݐ ൈ ܴ௧௧ഥೖ																																																																																																																																												ሺ5.5ሻ 

Where, ܴ௧௧ഥೖ represents a trend of travel time observed at time interval ݇ in historical data as well, 

but it is a ratio of the travel time between two consecutive intervals.  

For the SA method: 

ܴ௧௧ഥೖ_ௌ஺ ൌ
∑ ሺݐݐෝ௞ାଵ/ݐݐෝ௞ሻௗ
஽ೞ
ௗୀଵ

௦ܦ
																																																																																																																								ሺ5.6ሻ 

For the KNN method: 

ܴ௧௧ഥೖ_௄ேே ൌ
∑ ሺݐݐෝ௞ାଵ/ݐݐෝ௞ሻௗ/ݐݏ݅ܦௗ
஽ೞ
ௗୀଵ

∑ ௗݐݏ݅ܦ/1
஽ೞ
ௗୀଵ

																																																																																																									ሺ5.7ሻ 

k-2 k-1 k k+1 

Travel time (ݐݐෝ ) 

(minutes) 

Time 

8.5 

7.0 

6.1 

11.7 
10.6 

Current day 
Historical day     d1 
Historical day     d2 

Figure 5.1: An example for illustrating the calculation of the average change in travel time 
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The above two naïve models follow the logic that the trend of travel time in the corresponding 

interval of selected historical data is a good indicator of the trend of travel time for the current day 

over the next time interval. The average difference and average ratio of travel times between the 

current time interval and the previous time interval are used to represent the trend of travel time in the 

two naïve models respectively. 

The accuracy of the prediction is quantified in terms of the difference between the predicted travel 

time and the observed travel time, and is measured by the following two error indices: 

The Mean Absolute Relative Error (MARE): 

௠,௧ܧܴܣܯ ൌ
1
ܦ
෍ܧܴܣ௠,ௗ,௧

஽

ௗୀଵ

																																																																																																																											 ሺ5.8ሻ 

௠,ௗ,௧ܧܴܣ ൌ
ห ොܽ௠,ௗ,௧ െ ܽௗ,௧ห

ܽௗ,௧
																																																																																																																														 ሺ5.9ሻ 

Where:	ܧܴܣ௠,ௗ,௧  is the absolute relative error using method ݉ to select the historical data, i.e. 

݉=SA or ݉=KNN, on current day ݀ and prediction horizon ;ݐ	ܧܴܣܯ௠,௧ is the mean absolute relative 

error when selecting historical data using method ݉ for prediction horizon ݐ; ොܽ௠,ௗ,௧ is the travel time 

predicted by method ݉ for day ݀ for time horizon ݐ; and ܽௗ,௧ is the actual travel time observed on day 

݀ at time corresponding to the predicted travel time; and ܦ is the total number of days compared. 

The Mean Absolute Error (MAE): 

௠,௧ܧܣܯ ൌ
1
ܦ
෍ܧܣ௠,ௗ,௧

஽

ௗୀଵ

																																																																																																																														ሺ5.10ሻ 

௠,ௗ,௧ܧܣ ൌ ห ොܽ௠,ௗ,௧ െ ܽௗ,௧	ห																																																																																																																														ሺ5.11ሻ 

Where: ܧܣ௠,ௗ,௧  is the absolute error using method ݉ to select the historical data for prediction 

horizon ݐ	 ; ௠,௧ܧܣܯ	  is the mean absolute error using method ݉  to select the historical data for 

prediction horizon	ݐ. 

Data used to do the following comparisons are nine years of travel time data (non-holiday 

weekdays) from 2001 to 2009 for a section of the A-12 motorway (24.5 km) in the Netherlands. The 

travel times are 15-minute average time determined using 15-minute aggregate loop detector data and 

the "trajectory" method. For the purposes of short-term travel time prediction, it would be 
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advantageous to use travel times aggregated over a shorter time horizon (e.g. 1-minute or 5-minutes). 

However, for the purpose of evaluating the methods of selecting historical data, the 15-minute 

aggregated data are sufficient.  

We elect to carry out the travel time prediction for the afternoon peak hour (5:00 pm to 6:00 pm) of 

the total 255 non-holiday weekdays in 2009. Variation of the mean, 90th percentile and 10th 

percentile of the total 255 days are shown in Figure 5.2, and the cumulative distribution of travel time 

during peak hour is shown in Figure 5.3. The 255 days are considered as the “current” day 

respectively during the following tests, and approximately one year data (i.e. 260 days) before the 

“current” day are considered as the historical database. Travel time predictions are made for 15 

minutes, 30 minutes, 45 minutes and 1 hour into the future (i.e. 5:15pm, 5:30pm, 5:45pm and 

6:00pm).  

 

Figure 5.2: Variation of the travel times on A-12 from 12 noon to 9 pm in 2009 

Travel time prediction is more challenging when conditions exhibit large variations. Moreover the 

true benefit of the KNN method for selecting an appropriate subset of historical data is expected to 

occur on those days when something unusual happens (e.g. non-recurrent congestion), because it is 

during these time periods of non-recurrent congestion that travel time predictions are most valuable. It 

isn’t expected that the KNN method will perform much better than the simple average (SA) method 

in terms of selecting historical data for normal traffic conditions, such as free flow speed, or even a 

recurrent congestion. 
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Figure 5.3: Cumulative distribution of travel time during peak hour 

Tests are conducted based on travel time predictions during PM peak hours because these periods 

experience relative large day-to-day variations in the travel times, and therefore pose a greater 

challenge. Moreover the true benefit of the KNN method being used to select the similar historical 

data is expected on those days when something unusual happens,  

Two options regarding the number of the days selected for the historical sub-set are tested, namely 

one single day and 5 days. For the simple average method, the one single day is the same weekday in 

previous week (i.e. if today is Tuesday, then the day from the Tuesday in the previous week is 

selected), and the 5 days are the previous 5 consecutive non-holiday weekday days (i.e. weekly 

average). For the KNN method, the single most similar day and the 5 most similar days identified by 

KNN method are selected respectively. The distance measurement (i.e. Equation 5.1) is computed 

over the period from 2 pm to 5 pm (i.e. twelve 15-minutes observations). 

Table 5.1 provides the comparison results of travel time prediction accuracy by the two naïve 

models based on historical data selected by SA method and KNN method. The table is divided into 

two main sections. The top provide travel time prediction in terms of absolute relative error and the 

bottom in terms of absolute error. Each row labeled as “percent of improvement” (shaded) indicates 

the prediction accuracy improvement achieved by using KNN rather than SA to select the historical 

data. Positive values indicate KNN provides better performance.  
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Table 5.1: Results of comparisons between predictions based on SA and KNN methods 

Prediction 
methods 

# of 
days in 

the 
selected 
sub-set  

Methods of 
selecting 

historical data 

Absolute relative error (ARE) 
MARE 90th percentile ARE 

Prediction horizon (min) Prediction horizon (min) 

15 30 45 60 15 30 45 60 

Naïve 1 

1 

SA 14.5% 17.6% 22.8% 26.1% 37.1% 43.9% 57.1% 59.5%
KNN 9.8% 11.6% 13.2% 17.3% 24.8% 30.3% 33.9% 41.2%

Percent of 
improvement5 

32.5% 33.7% 42.0% 33.9% 33.1% 31.0% 40.7% 30.8%

5 

SA 10.5% 11.8% 15.8% 18.5% 22.4% 25.4% 36.6% 43.6%

KNN 7.7% 9.6% 12.1% 13.7% 20.9% 23.4% 31.1% 32.3%

Percent of 
improvement 

26.8% 18.6% 23.7% 26.3% 6.9% 7.8% 15.0% 26.0%

Naïve 2 

1 

SA 11.6% 14.6% 18.7% 21.2% 28.6% 37.2% 46.7% 48.2%
KNN 9.7% 11.8% 13.0% 16.7% 24.7% 30.9% 32.4% 40.4%

Percent of 
improvement 

16.0% 19.7% 30.5% 21.2% 13.4% 17.0 % 30.6% 16.3%

5 

SA 9.3% 11.0% 14.6% 16.9% 21.4% 24.3% 33.4% 39.9%

KNN 7.6% 9.5% 11.8% 13.3% 20.5% 22.7% 31.1% 32.0%

Percent of 
improvement 

18.6% 13.2% 19.0% 21.2% 3.9% 6.3% 7.1% 19.7%

Prediction 
methods 

# of 
days in 

the 
selected 
sub-set  

Methods of 
selecting 

historical data 

Absolute error (AE) 
MAE 90th percentile AE 

Prediction horizon (min) Prediction horizon (min) 

15 30 45 60 15 30 45 60 

Naïve 1 

1 

SA 3.1 3.6 4.5 5.1 8.2 9.7 12.2 14.4 
KNN 2.4 2.7 2.9 3.8 6.8 6.7 7.6 9.9 

Percent of 
improvement 

22.6% 23.7% 35.7% 25.6% 17.5% 31.3% 37.3% 31.2%

5 

SA 2.3 2.5 3.3 3.9 5.6 5.7 8.2 9.3 

KNN 1.9 2.2 2.7 3.1 4.9 5.4 7.0 7.9 

Percent of 
improvement 

18.0% 15.4% 19.8% 21.0% 12.4% 4.3% 15.4% 14.8%

Naïve 2 

1 

SA 2.7  3.2  3.9  4.3  6.6  7.8  11.1 10.5 
KNN 2.4  2.8  2.9  3.6  6.3  6.8  7.6  9.7  

Percent of 
improvement 

10.5% 11.1% 26.4% 16.2% 3.2% 12.4% 31.4% 7.5% 

5 

SA 2.2  2.5  3.2  3.7  5.2  5.6  7.7  9.6  

KNN 1.9  2.1  2.6  2.9  5.0  5.2  6.7  7.6  

Percent of 
improvement 

14.0% 13.8% 18.2% 19.5% 2.7% 7.3% 13.1% 20.4%

Figure 5.4 illustrates the difference of the prediction errors (mean error and 90th percentile error) 

when the historical data are selected from different number of days (i.e. single day vs. 5 days).   

Figure 5.5 illustrates the difference of the prediction errors (mean error and 90th percentile error) 

when the predictions are made on the basis of different models (i.e. Naïve 1 model vs. Naïve 2 model). 
                                                      
5 Percent of improvement = ሺSA െ KNNሻ/SA ൈ 100% 
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Figure 5.4: Difference of the prediction errors when historical data are selected from different 

number of days 
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Figure 5.5: Difference of the prediction errors when the predictions are made on the basis of 

different prediction models 
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The following conclusions can be made on the basis of the results shown in Table 5.1, Figure 5.4 

and Figure 5.5. 

1. Historical data selected by KNN provide better prediction accuracy than historical data 

selected by SA, no matter what form of the prediction model (i.e. Naïve 1 or Naïve 2) is used. 

2. The use of data from multiple historical days (5 days may not be an optimal number) provides 

better travel time prediction accuracy than data from a single historical day. 

3. Naïve 2 model (i.e. trend represented by ratio) is superior to Naïve 1 model (i.e. trend 

represented by difference) when only a single day historical data are selected and simple 

average method is used. However, this superior performance becomes less obvious when 

multiple days are selected, especially when the historical data are selected using the KNN 

method rather than the simple average method.  

The paired sample z-test is used to test whether or not the improvements in the MARE and MAE 

provided by the KNN method as compared to the simple average method are statistically significant, 

and whether or not the prediction results of Naïve 1 model are statistically different from the 

prediction results of Naïve 2 model when the KNN method is used to select 5 days historical data.   

Notation: 

݀௜ : paired ARE/AE difference 
݀௜ ൌ ௌ஺,௜ܧܴܣ െ ௌ஺,௜ܧܣ	ݎ݋	௄ேே,௜ܧܴܣ െ  ௄ேே,௜ܧܣ

Or ݀௜ ൌ ேଵ,௜ܧܴܣ െ ேଵ,௜ܧܣ	ݎ݋	ேଶ,௜ܧܴܣ െ  ேଶ,௜ܧܣ
 

݀̅ : mean of the sample paired differences ݀̅ ൌ
∑ ௗ೔
೙
೔సభ

௡
  

݊ : sample size  

 : ௗߪ
standard deviation of the population paired 
differences 

typically ߪௗ=ܵௗ in practice 

ܵௗ : 
standard deviation of the sample paired 
differences ܵௗ ൌ ට ଵ

௡ିଵ
∑ ൫݀௜ െ ݀̅൯

ଶ௡
௜ୀଵ   

The mean of the paired ARE	or	AE differences (݀̅) and the confidence interval (ܫܥ) on a selected 

significant level ߙ ൌ 0.05 (Equation 5.12) are computed for each prediction horizon. The statistical 

significance test for the improvement provided by the KNN method is shown in Table 5.2 and the 

Statistical significance test between the prediction results of Naïve 1 model and the prediction results 

of Naïve 2 model is shown in Table 5.3.  

ܫܥ ൌ ቀ݀̅ െ ఈݖ
ఙ೏
√௡
					 , ݀̅ െ ఈݖ

ఙ೏
√௡
ቁ																																																																																																																	 ሺ5.12ሻ  
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Table 5.2: Statistical significance test for the improvement provided by the KNN method 

Prediction 
methods 

Statistic 
values 

Mean absolute relative error Mean absolute error 

Prediction horizon (minutes) Prediction horizon (minutes)
15 30 45 60 15 30 45 60 

Naïve 1 

݀̅ 2.8% 2.2% 3.8% 4.9% 0.4  0.4  0.7 0.8 
݊ 255 255 255 255 255 255 255 255
ܵௗ 9.5% 9.4% 13.6% 15.9% 1.7  1.9  2.8 3.1 

௟௢௪௘௥ 1.6% 1.1%ܫܥ 2.1% 2.9% 0.2  0.2  0.3 0.4 
௨௣௣௘௥ 4.0% 3.4%ܫܥ 5.4% 6.8% 0.6  0.6  1.0 1.2 

Naïve 2 

݀̅̅ 1.7% 1.5% 2.8% 3.6% 0.3  0.3  0.6 0.7 
݊ 255 255 255 255 255 255 255 255
ܵௗ 7.2% 8.8% 12.9% 15.1% 1.6  2.2  3.3 3.6 

௟௢௪௘௥ 0.9% 0.4%ܫܥ 1.2% 1.7% 0.1  0.1  0.2 0.3 
௨௣௣௘௥ 2.6% 2.5%ܫܥ 4.4% 5.4% 0.5  0.6  1.0 1.2 

For the results shown in Table 5.2, if the lower bound of the confidence interval is greater than zero 

then the KNN method is statistically superior to the simple average method (SA). The tests are 

performed only for the predictions based on the historical dataset consisting of data from 5 days, 

because using 5 days rather than just a single day provides better travel time prediction accuracy.  

As results shown in Table 5.2, at the 95% confidence level, the KNN method is superior to the SA 

method for all the four prediction horizons (i.e. 15, 30, 45 and 60 munities), and the superiority of the 

KNN method is more obvious for longer prediction horizons.  

Table 5.3: Statistical significance test between the prediction results of Naïve 1 model and the 

prediction results of Naïve 2 model (KNN method, 5 days)  

Statistic 
values 

Mean absolute relative error Mean absolute error 

Prediction horizon (minutes) Prediction horizon (minutes) 
15 30 45 60 60 30 45 60 

݀̅ 0.07% 0.10% 0.26% 0.36% 0.02 0.03 0.08 0.11 
݊ 255 255 255 255 255 255 255 255 
ܵௗ 0.58% 0.87% 1.79% 2.17% 0.19 0.34 0.79 0.90 

௟௢௪௘௥ 0.00% 0.00%ܫܥ 0.04% 0.09% -0.01 -0.01 -0.02 0.00 
௨௣௣௘௥ 0.15% 0.21%ܫܥ 0.48% 0.62% 0.04 0.07 0.17 0.22 

For the results shown in Table 5.3, if the lower bound of the confidence interval is greater than zero 

then the Naïve 2 model is statistically superior to the Naïve 1 model. The tests are performed only for 

the predictions based on the historical data which are selected using KNN method, and the historical 
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dataset consisting of data from 5 days, because it has been proved that the KNN method is 

significantly superior to the SA method, and using 5 days rather than just a single day provides better 

travel time prediction accuracy.  

As shown by the results in Table 5.3, at the 95% confidence level, the difference of the prediction 

accuracy between the Naïve 1 model and the Naïve 2 model is only statistically significant when the 

prediction horizon is longer than 30 minutes, and the prediction accuracy is quantified using MARE. 

This result indicates that the Naïve 2 model is not statistically superior to the Naïve 1 model when the 

historical data are selected using KNN method and the historical dataset consists of data from 5 days, 

especially for the case that prediction horizon is equal to or shorter than 30 minutes. 

Based on the above results, we come to the conclusion that selecting historical data using KNN 

provides more accurate prediction results as compared to using SA. However, three parameters must 

be determined before KNN method is applied, namely (1) size of the historical database; (2) length of 

the time window; and (3) number of days of data selected for aggregation (i.e. value of K). For 

example, in the above tests, the size of historical database is one year data (i.e. 260 weekdays), the 

length of the time window is 3 hours (i.e. time series from 2:00 pm to 5:00 pm), and the value of K is 

5. The accuracy of the prediction results is a function of these three parameters, and the 

computational efficiency of the KNN method relates to these parameters as well. Therefore, off-line 

calibration of the parameters associated with KNN method for maximizing the prediction accuracy 

and computational efficiency is performed and results are discussed in the following section. 

5.3 Calibration of Parameters Associated with KNN Method 

Data used to do the following calibration are the same data described at Chapter 4. A set of data from 

the eastbound direction that consisting of data from 10 days (shown in Appendix A) were used as 

“current” days, and the rest of the data are considered as historical data in the following calibration. 

Travel times are aggregated in 5 minutes interval. Naïve 1 model (as described in the previous 

section) is used to predict travel time in future 5 and 15 minutes. Mean absolute relative error 

(MARE), 90th percentile of the absolute relative error, and standard deviation of the travel time 

prediction errors are calculated for each test scenario. These measures of performance are calculated 

in two different ways: 

 Based on all intervals. 
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 Based only on the intervals for which traffic is in a congested state ("congested" defined as the 

case when the average travel speed is equal to or less than 80 km/h) 

A list of the tested values associated with each parameter is shown in Table 5.4. A total of 160 

scenarios can be derived based on the combination of the parameters. For each scenario, prediction in 

future 5 minutes and 15 minutes are performed respectively.  

Table 5.4: List of the tested parameter values 

Parameters Tested values 

Size of the database 30 days, 60 days, 90 days, and 210 days 

Length of time window 10 min, 30 min, 60 min, and 90 min 

Value of K 1,2,….,10 

Figure 5.6 and 5.7 show the prediction accuracy results for 5 and 15 minute prediction horizons 

based on historical database of 210 days, with different lengths of time window and different values 

of K.  

From Figure 5.6, we can observe that the prediction results of using 10 minutes time window are 

notably worse than the prediction results of using a longer length of time window (e.g. 30 min, 60 

min or 90 min). When using a time window of 10 minutes, the distance calculation (Equation 5.1) is 

based on only two points and therefore isn’t able to represent the trend of the data series. The results 

of using 30, 60 and 90 minutes time window are not notably different from each other for 5 minutes 

prediction horizon.  

Figure 5.7 doesn’t show results of using 10 minutes time window, because using a time series that 

is shorter than the prediction horizon (15 minutes) is not practical. The prediction results shown in 

Figure 5.7 from different lengths of time window are not notably different except when K=1. 

However, the prediction results of K=1 is not practical, as the KNN method aims to find a sub-set of 

the entire set of historical data in which the K>1, and the K is an optimal number that minimize the 

prediction error.  

Based on the above results, we recommend using a 60 minute time window and K>1.  The results 

show that as K increases, the results are improved, but these improvements increase at a decrease rate. 

The optimal value of K should be determined considering the size of database as well. 
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(b) MARE for congested intervals 

(c) 90th percentile error for all intervals (d) 90th percentile error for congested intervals

(e) Standard deviation of prediction error for 
all intervals 

(f) Standard deviation of prediction error for 
congested intervals 

(a) MARE for all intervals 

Figure 5.6: Travel time prediction accuracy as a function of K and length of time window 

(5-min prediction) 
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Figure 5.8 and 5.9 show the results of prediction in future 5 minutes and 15 minutes based on 60 

minutes time window, with different sizes of database and different values of K. It can be observed 

from the results that the size of the historical database does not appear to have a strong influence on 

(a) MARE for all intervals (b) MARE for congested intervals 

(c) 90th percentile error for all intervals (d) 90th percentile error for congested intervals

(e) Standard deviation of prediction error for all 
intervals 

(f) Standard deviation of prediction error for 
congested intervals 

Figure 5.7: Travel time prediction accuracy as a function of K and length of time window 

(15-min prediction) 
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prediction accuracy. That is to say, using a database containing historical data from previous 30 days 

(K>1) is able to provide similar prediction accuracy to that using a larger size of database (i.e. 

containing historical data from 90-210 days). Similar to the previous results, with increase of K the 

prediction results are improved but the improvements increase at a decrease rate. Therefore, we 

recommend using a size of database ൒ 1 month and K=4 in practical applications.  

 

(a) MARE for all intervals (b) MARE for congested intervals 

(c) 90th percentile error for all intervals (d) 90th percentile error for congested intervals 

(e) Standard deviation of prediction error 
for all intervals

(f) Standard deviation of prediction error for 
congested intervals 

Figure 5.8: Travel time prediction accuracy as a function of K and size of the database 

(5-min prediction) 
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(a) MARE for all intervals (b) MARE for congested intervals 

(c) 90th percentile error for all intervals (d) 90th percentile error for congested intervals 

(e) Standard deviation of prediction error for 
all intervals 

(f) Standard deviation of prediction error for 
congested intervals 

Figure 5.9: Travel time prediction accuracy as a function of K and size of the database 

(15-min prediction) 
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5.4 Summary 

In this chapter, two methods (SA and KNN) of selecting historical data for short-term travel time 

prediction are compared, and the results show that the historical data selected by KNN provide 

significantly better estimation of travel time pattern (trend) than historical data selected by SA. 

Consequently, it is decided to use KNN method to select historical data for travel time prediction on 

the basis of the proposed prediction framework (discussed in Chapter 6).  

Parameters associated with KNN method (e.g. the size of the historical database	൒ 1 month, length 

of the time window = 60 minutes, and number of data selected for aggregation i.e. K = 4) are 

calibrated using field data collected by Bluetooth detectors, and these values of the parameters are 

used to test the performance of the proposed travel time prediction method in Chapter 6. 
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Chapter 6 

Short-term Travel Time Prediction - Kalman Filter Based Prediction 

Model 

A considerable amount of work has been done on travel time prediction in the past few decades. The 

most common prediction methods are described in Section 2.2. These methods have their respective 

advantages and accuracy under different traffic conditions. Kalman filter-based model is attractive in 

short-term travel time prediction because the real-time estimations are updated continuously 

whenever new measurements are available, which enables the predictor to quickly respond to traffic 

fluctuations. 

Most of the studies described in Section 2.2 have been developed to use data collected from 

conventional detectors (i.e. Loop detectors), but the focus of this study is on data collected from 

Bluetooth detectors. Although the core of the proposed prediction can be applied to any data source, 

the details of the prediction methods would likely change for different types of data. 

The data collected from Bluetooth detectors are similar to data collected from Automatic Vehicle 

Identification (AVI) systems using dedicated transponders (e.g. such as electronic toll tags), and 

therefore using these data for travel time prediction faces some of the same challenges as using AVI 

measurements, namely: (1) dynamic outlier detection and travel time estimation must be able to 

respond quickly to rapid travel time changes; and (2) a time lag exists between the time when vehicles 

enter the segment and the time that their travel time can be measured (i.e. when the vehicle exits the 

monitored segment).   

This chapter describes a proposed model for predicting near future freeway travel times using 

Bluetooth data with special attention to the above two challenges. The model combines a dynamic 

outlier filtering algorithm (described in chapter 4) with Kalman filtering and uses historical data to 

make up for the limitation of real-time Bluetooth measurements. 

6.1 An Alternative Approach of Estimating Mean Travel Time 

In many previous studies (Haghani et al. 2010; Dion and Rakh 2006; SwRI 1998; Mouskos et al. 

1998), the mean travel time is computed on the basis of valid observations using Equation 6.1, in 

which the time instant that a vehicle is observed at downstream detector (i.e. end time) is used as the 

time label for carrying out the travel time aggregation. 
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ܶܣ ௜ܶ,௞ ൌ
∑ ൫ݐ௜,௝ െ ௜ିଵ,௝൯ݐ ∙ ௝߬,௞
௡ೖ
௝ୀଵ

∑ ௝߬,௞
௡ೖ
௝ୀଵ

௜,௝ݐ			 ∈ ݇																																																																																																	ሺ6.1ሻ 

Where: ݐ௜,௝  and ݐ௜ିଵ,௝  are the time instants when vehicle ݆  was detected at the downstream 

Bluetooth detectors ݅  and the upstream detector ݅ െ 1 respectively; ௝߬,௞ ൌ 0 if the measured travel 

time ݐ௜,௝ െ ௜ିଵ,௝ݐ  is identified as an outlier, otherwise ௝߬,௞ ൌ 1; ݊௞  is the total number of measured 

travel times in period ݇. 

An alternative approach is defined in Equation 6.2. The only difference between Equation 6.1 and 

Equation 6.2 is that in Equation 6.1 the time instant of a vehicle observed at downstream detector (ݐ௜,௝) 

is attributed to interval ݇ however in Equation 6.2 the time instant of a vehicle observed at upstream 

detector (ݐ௜ିଵ,௝) is attributed to interval ݇.   

ܶܦ ௜ܶ,௞ ൌ
∑ ൫ݐ௜,௝ െ ௜ିଵ,௝൯ݐ ∙ ௝߬,௞
௡ೖ
௝ୀଵ

∑ ௝߬,௞
௡ೖ
௝ୀଵ

௜ିଵ,௝ݐ			 ∈ ݇																																																																																												ሺ6.2ሻ 

Equation 6.1 (ATT, arrival travel time) and Equation 6.2 (DTT, departure travel time) provide 

different estimates of the mean travel time. For real-time applications, such as posting travel time on 

variable message signs (VMS), the travel time of interest is the travel time that vehicles entering the 

segment during the given time interval will experience. Thus for these applications, DTT should be 

considered as the true travel time.  

As discussed in Section 3.1.2, ATT estimated using Equation 6.1 lags behind the true travel time 

(DTT) which is the time that vehicles will experience before/when they enter the roadway section. 

The results from Section 3.1.2 have indicated that the errors caused by using ATT directly as an 

estimate of DTT will be unacceptably large in practical applications when traffic conditions vary. 

In practice, it is easier to estimate ATT than DTT. However, many previous studies have ignored 

the distinction between ATT and DTT and in some cases have specifically considered ATT as “true” 

travel times when the prediction results are evaluated (Barcelo et al. 2010). This error is likely to 

result in reported performance that is artificially inflated and better than would actually be achieved.  

It is possible to use Equation 6.2 to compute DTT in real-time, however if the time when prediction 

is made is the end time of interval ݇ (ݐ௞ሻ, then the measured travel time (ݐ௜,௝ െ  ௜ିଵ,௝) is only availableݐ

for those vehicles which entered the section during a time period satisfying Equation 6.3. 
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௞ݐ െ ∆݇ ൑ ሺ௜ିଵሻ,௝ݐ ൑ ௞ݐ െ ൫ݐ௜,௝ െ  ሺ6.3ሻ																																																																																																			ሺ௜ିଵሻ,௝൯ݐ

When the freeway section between detectors ݅ and ݅ െ 1 is relatively long, the section is congested 

or ∆݇ is relatively short, then no vehicles satisfy Equation 6.3 and no travel times are available at time 

ܶܦ	௞ to computeݐ ௜ܶ,௞. 

In summary, the prediction of mean travel time on the basis of AVI travel time data requires: (1) a 

reliable real-time outlier detection algorithm; (2) a method for addressing data gaps caused by the 

time lag inherent in the travel time measurements. The next section describes a proposed approach for 

addressing these two needs. 

6.2 Proposed Travel Time Prediction Method 

The proposed model is based on Kalman filter theory and therefore involves both prediction and 

estimation. The proposed model consists of 4 steps: (1) Prior estimation; (2) Outlier detection; (3) 

Posterior estimation; (4) Traffic pattern recognition. These steps are described in the following 

sections. 

6.2.1 Step 1: Prior Estimation (Prediction) 

The variation in travel time over time is a function of the traffic state (i.e. uncongested or congested) 

and therefore different state functions are defined for these two traffic states. To meet the requirement 

of Kalman filter, the system is modeled with linear relationships between two consecutive states.  

ෝ௜,௞ݐݐ
ି
ൌ ቊ

ෝ௜,௞ିଵݐݐ ൅ ߱௜,௞ିଵ ෝ௜,௞ିଵݐݐ ൏ ௧௧ߠ
ෝ௜,௞ିଵݐݐ ൅ ߙ ∙ ෝ௜,௞ିଵݐݐ∆ ൅ ሺ1 െ ሻߙ ∙ ഥ௜,௞ݐݐ∆ ൅ ߱௜,௞ିଵ ෝ௜,௞ିଵݐݐ ൒ ௧௧ߠ

																																							ሺ6.4ሻ 

Where, 

ෝ௜,௞ݐݐ
ି

 : The mean travel time between detectors ݅ and ݅ െ 1 at time interval ݇ that is to be 

predicted 

݅ ෝ௜,௞ିଵ : The mean travel time between detectorsݐݐ  and ݅ െ 1  at time interval ݇ െ 1  that is 

estimated 

݅ ෝ௜,௞ିଵ : The real-time change in mean travel time (trend) between detectorsݐݐ∆  and ݅ െ 1 , 

ෝ௞ିଵݐݐ∆ ൌ ሺݐݐෝ௞ିଵ െ  ෝ௞ିଶሻݐݐ

݅ ഥ௜,௞ : Change in mean travel time (trend) between detectorsݐݐ∆  and ݅ െ 1  in a historical 

dataset with similar traffic pattern to current traffic state; this historical dataset is 
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selected using the nearest neighbor (KNN) method. 

 ௧௧ : A threshold of travel time used to distinguish congestion traffic state from free flowߠ

traffic state 

-A weight factor to determine the level of confidence that should be placed on the real : ߙ

time trend ∆ݐݐෝ௜,௞ିଵ and the historical trend ∆ݐݐഥ௜,௞ 

߱௜,௞ିଵ : Noise term that has a normal distribution with zero mean and a variance of ܳ௞ିଵ. A 

covariance matching method (Myers and Tapley 1976) is used to adaptively estimate 

the unknown noise for state process. 

The predicted mean travel time at interval ݇ is a prior estimation based on the state function (i.e. 

Equation 6.4) without considering the noise term. When traffic is operating in a free flow state (i.e. 

ෝ௜,௞ିଵݐݐ ൏ ௧௧ߠ ), then the prior estimation (i.e. predicted travel time) at interval ݇  is equal to the 

estimated travel time from the previous interval. When traffic is congested (i.e. ݐݐෝ௜,௞ିଵ ൒  ௧௧), theߠ

prior estimation at interval ݇ is a linear combination of the estimated travel time from the previous 

interval and the historical and real-time travel time trend. The trend of travel time is represented by 

the difference rather than the ratio of the travel times between two consecutive intervals, because the 

results obtained at Chapter 5 indicated that using the ratio of travel times instead of the difference of 

travel times does not significantly improve the prediction results when data from multiple days are 

aggregated, and the trend represented by difference of travel times is easier to implement in the 

Kalman filter model.  ߠ௧௧  is a user-defined threshold parameter that can be determined based on 

previous experience and/or engineering judgment and is specific to a given freeway segment. ߙ is a 

dynamically adjusted weight factor that is determined using Equation 6.5, which is a modified 

equation based on Equation 2.13 developed by Dion and Rakha.  

ߙ ൌ 0.5 ∗ ሺ1 െ ሺ1 െ  ሺ6.5ሻ																																																																																																																						ሻ௡ೡ,ೖషభሻߚ

The value of	ߙ	depends on the number of valid travel time observations in the previous interval 

(݊௩,௞ିଵ), ߚ is a sensitivity parameter that determines how quickly ߙ responds to the number of valid 

observations. Figure 6.1 shows the variation of ߙ over the number of valid observations and the value 

of parameter ߚ.  

Equation 2.13 in Dion and Rakha’s model is used to determine the level of confidence that should 

be placed on the observed data in the previous interval and the smoothed estimation of the previous 

interval when the expected smoothed average travel time of the current interval is estimated. However, 
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the weight factor	ߙ in Equation 6.5 is used to determine the level of confidence that should be placed 

on current trend of travel time and historical trend of travel time when the travel time is predicted in 

the proposed model. In order to use the historical data to make up the limitation of real-time data, A 

limit value of ߙ (i.e. 0.5) is set to make sure that at least 50% of the weight will be placed on the 

historical aggregated data. Sensitivity analysis of this factor is conducted when the method is 

validated. 

 

Figure 6.1: Variation of α over the number of valid observations and parameter β 

The state function (Equation 6.4) can be transformed into the general form of the Kalman filter as 

follows. Define ݔ௞
ଵ ൌ ௞ݔ ,௞ݐݐ

ଶ ൌ ௞ݐݐ െ ௞ݑ ௞ିଵ andݐݐ ൌ  ഥ௞, in which the notation ݅ that represents aݐݐ∆

specific road section is omitted here and in the following description, then ݔ௞
ଵ  and ݔ௞

ଶ  can be 

expressed as functions of ݔ௞ିଵ
ଵ ௞ିଵݔ	,

ଶ  :௞ and noise term ߱௞ିଵݑ,

௞ݔ
ଵ ൌ ௞ିଵݔ																								

ଵ ൅ ߙ ∙ ௞ିଵݔ
ଶ ൅ ሺ1 െ ሻߙ ∙ ௞ݑ ൅ ߱௞ିଵ																																																																				ሺ6.6ሻ 

௞ݔ
ଶ ൌ ௞ݔ

ଵ െ ௞ିଵݔ
ଵ ൌ ߙ														 ∙ ௞ିଵݔ

ଶ ൅ ሺ1 െ ሻߙ ∙ ௞ݑ ൅ ߱௞ିଵ																																																																				ሺ6.7ሻ 

The state vector x୩ can be expressed by Equation 6.8: 

௞ݔ ൌ ቈ
௞ݔ
ଵ

௞ݔ
ଶ቉ ൌ ቂ1 ߙ

0 ߙ
ቃ ∙ ቈ

௞ିଵݔ
ଵ

௞ିଵݔ
ଶ ቉ ൅ ቂ1 െ ߙ

1 െ ߙ
ቃ ∙ ௞ݑ ൅ ߱௞ିଵ																																																																															ሺ6.8ሻ 

Where: ߙ ൌ 0	and	ݑ௞ ൌ 0 if ݔ௞ିଵ
ଵ ൏  ௞ isݑ is determined using Equation 6.2, and ߙ ௧௧; otherwiseߠ

determined using historical data selected by nearest neighbor method. 

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20

V
al
u
e
 o
f 
α

Number of valid observations

β=0

0.2

0.4
0.60.8

0.99



 

 112 

6.2.2 Step 2: Outlier Detection and Travel Time Measurement 

The set of valid travel times (ܵ௧௧೔,ೖሻ that are observed between two detectors ݅ and ݅ െ 1 during time 

interval	݇ is defined in Equation 6.9, in which the valid observations during interval ݇ are the travel 

times experienced by vehicles that pass through the upstream boundary of the road section (i.e. 

detector ݅ െ 1) during interval ݇. Equation 6.10 defines the method used to calculate the average 

travel time during time interval ݇ based on the valid observations identified by Equation 6.9.  

ܵ௧௧೔,ೖ ൌ ൛ݐ௜,௝ െ ௞ݐ௜ିଵ,௝หݐ െ ௞ିଵݐ ൏ ௜ିଵ,௝ݐ ൑ ௜,௟௢௪௘௥,௞ݐݐ	݀݊ܽ	௞ݐ ൑ݐ௜,௝ െ ௜ିଵ,௝ݐ

൑  ሺ6.9ሻ																			௜,௨௣௣௘௥,௞ൟݐݐ

෥௜,௞ݐݐ ൌ ൞

ෝ௜,௞ݐݐ
ି

݂݅	݊௩,௞ ൏ ௡ೡߠ

	
∑ ൫ݐ௜,௝ െ ௜ିଵ,௝൯ݐ
௡ೡ,ೖ
௝ୀଵ

݊௩,௞
݂݅	݊௩,௞ ൒ ௡ೡߠ

																																																																																											ሺ6.10ሻ 

In the above equations, ݐ௜,௝ and ݐ௜ିଵ,௝ are the time at which vehicle ݆ was detected at AVI detectors 

݅ and ݅ െ 1 respectively; ݐ௞ is the end time of time interval ݇; ݐݐ௜,௟௢௪௘௥,௞ and ݐݐ௜,௨௣௣௘௥,௞ are the lower 

bound and upper bound of the validity window at time interval ݇ respectively; ݐݐ෥௜,௞ is the measured 

average travel time during interval ݇;	݊௩,௞ is the number of valid observations identified at interval ݇; 

௡ೡߠ  is a threshold to determine the minimum number of valid observations required to update the 

priori estimations using measurements. The threshold ߠ௡ೡ  is set equal to 1% of the total traffic volume. 

An initial validity window is determined using Equations (6.11) and (6.12) following the method 

developed by Dion and Rakha (3): 

௜,௟௢௪௘௥,௞ݐݐ ൌ ݁ൣ௟௡൫௧௧෡ ೔,ೖ
ష൯ି	௡ೞ೟೏∙ఙ೔,ೖషభ൧																																																																																																														ሺ6.11ሻ 

௜,௨௣௣௘௥,௞ݐݐ ൌ ݁ൣ௟௡൫௧௧෡ ೔,ೖ
ష൯ା	௡ೞ೟೏∙ఙ೔,ೖషభ൧																																																																																																													ሺ6.12ሻ 

Where, ݐݐෝ௜,௞
ି

 is the predicted travel time at time interval	݇; ߪ௜,௞ିଵ	 is the sample standard deviation 

calculated on the basis of all valid observations in the previous interval ݇ െ 1; 	݊௦௧ௗ is a parameter 

representing the number of standard deviations. The sample variance in a specific interval ݇  is 

calculated using Equation 6.13.  
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௜,௞ଶߪ ൌ

ە
ۖ
۔

ۖ
ۓ ௜,௞ିଵଶߪ ݂݅	݊௩,௞ ൏ ௩,௞݊	ݎ݋	௡ೡߠ ൑ 1		

	 	

∑ ቂ݈݊൫ݐ௜,௝ െ ௜ିଵ,௝൯௞ݐ െ ݈݊൫ݐݐෝ௜,௞
ି
൯ቃ
ଶ௡ೡ,ೖ

௝ୀଵ

݊௩,௞ െ 1
݂݅		݊௩,௞ ൒ ݊௩,௞	ܽ݊݀	௡ೡߠ ൐ 1

																												ሺ6.13ሻ 

If the number of valid observations is less than the threshold ߠ௡ೡ or not greater than 1, the sample 

variance is equal to the sample variance computed for the previous interval, otherwise the sample 

variance is calculated using the variance equation. Following the method used by Dion and Rakha 

(2006), the variance is computed using the predicted average travel time (ݐݐෝ௜,௞
ି

) rather than the 

current average travel time (ݐݐ෥௜,௞). 

The initial validity window is determined using a method similar to that used by Dion and Rakha 

(2006), in which the travel times of individual vehicles are assumed to follow a lognormal 

distribution and the validity window is estimated using a number of standard deviations above and 

below the predicted mean travel time. The parameter nୱ୲ୢ is set to 3, implying that 99.7% of the data 

lie within the validity window. 

The initial validity window is only effective when the traffic state is relative stable, so an extension 

of the initial validity window based on traffic flow theory was developed in order to increase the 

responsiveness of the filtering algorithm to rapid changes in the underlying travel time. Details about 

the extension can be found in Chapter 4. 

6.2.3 Step 3: Posterior Estimation (Correction) 

The measurement function is defined with Equation 6.14 to relate the state to the measurement. 

෥௜,௞ݐݐ ൌ ෝ௜,௞ݐݐ
ି
൅  ሺ6.14ሻ																																																																																																																																									௞	௜ߜ

Where, 

 ݇ ෥௜,௞ : The mean travel time at time intervalݐݐ

 ௜,௞ : Measurement error that has a normal distribution with zero mean and a variance of ܴ௞ߜ

The measurement function (Equation 6.14) can be transformed into the general form of Kalman 

filter (notation ݅ is omitted in the following description) by defining ݖ௞ ൌ ൤
෥௞ݐݐ

෥௞ݐݐ െ ෥௞ିଵݐݐ
൨, and then the 

measurement vector ݖ௞ can be expressed by Equation 6.15: 

௞ݖ ൌ ቈ
௞ݔ
ଵ

௞ݔ
ଶ቉ ൅  ሺ6.15ሻ																																																																																																																																																	௞ߜ
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The measurement in this study is a mean travel time calculated on the basis of the valid 

observations within each interval. This is a sample mean that is used to estimate the population mean, 

and therefore according to the central limit theorem, the measurement can be assumed to be 

approximately normally distributed. Figure 6.2 shows the mean travel time distribution based on the 

field travel time observations collected by Bluetooth detectors (the same dataset used in Section 4.1). 

Mean travel times (5-min interval) from over 200 days are investigated.  From the results shown in 

Figure 6.2, we can see that the mean travel time can be assumed approximately normally distributed. 

 

Figure 6.2: Distribution of the mean travel time based on field travel time observations 

The difference between the sample mean and the population mean is considered as the 

measurement noise in this study, and this measurement noise is assumed to be normally distributed 

with zero mean and a variance of ܴ௞ . The variance ܴ௞  is quantified based on the sample mean 

variance using Equation 6.16. 

ܴ௞ ൌ ൥
௧௧෡ߪ ೔,ೖ

ଶ ௧௧෡ߪ ೔,ೖ൫ߪ௧௧෡ ೔,ೖ ൅ ௧௧෡ߪ ೔,ೖషభ൯

௧௧෡ߪ ೔,ೖ൫ߪ௧௧෡ ೔,ೖ ൅ ௧௧෡ߪ ೔,ೖషభ൯ ൫ߪ௧௧෡ ೔,ೖ ൅ ௧௧෡ߪ ೔,ೖషభ൯
ଶ ൩																																																																							ሺ6.16ሻ	 

Where, ߪ௧௧෡ ೔,ೖ is the sample mean variance of valid travel time observed at time interval k, ߪ௧௧෡ ೔,ೖ
ଶ ൌ

 .௜,௞ଶ/݊௩,௞ߪ

Once new measurements are available, previous estimations are updated based on the Kalman gain 

 :௞ܭ

ො௞ݔ ൌ ො௞ݔ
ି ൅ ௞ݖ௞ሺܭ െ ො௞ݔ

ିሻ																																																																																																																												ሺ6.17ሻ 
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The posterior estimation of travel time can be directly used as travel time ground truth for off-line 

analysis (e.g. evaluation of the prediction results), because individual travel times are 

aggregated/estimated as average departure travel time (DTT) which is the “true” travel time 

corresponding to the predicted travel time.  

6.2.4 Step 4: Traffic Pattern Recognition 

The K nearest neighbors (KNN) technique is used in the proposed method to find a sub-set of 

historical travel times, which contains only those data that are most similar to the conditions observed 

so far on the current day from the entire set of historical data. The similarity (normally termed the 

“distance”) between the traffic conditions of the present day and conditions in the past days is 

measured by computing the Euclidean distance between two time series (Equation 6.18). Where, 

ܽ ൌ ൛ݐݐෝ௞ିேೖାଵ, … , ,ෝ௞ିଵݐݐ  ෝ௞ൟ is a discrete time series of travel times estimated today (notation ݅ isݐݐ

omitted here and in the following description); each estimation of the travel time in the time series is 

obtained at a constant time interval - say every 5 minutes; 	 ௞ܰ  is the number of the data points 

contained in the time series; the same discrete time series exists in each of the historical days 

݄ௗ ൌ ቄ൫ݐݐෝ௞ିேೖାଵ൯ௗ, … , ሺݐݐ
ෝ௞ିଵሻௗ, ሺݐݐෝ௞ሻௗቅ, where ݀ ൌ ሼ1,2, … ,  is the total number of days in ܦ ሽ andܦ

the historical data.  

,ௗሺܽݐݏ݅ܦ 	݄ௗሻ ൌ ඩ෍ሾݐݐෝ௞ି௡ାଵ െ	ሺݐݐෝ௞ି௡ାଵሻௗሿଶ
ேೖ

௡ୀଵ

																																																																																				ሺ6.18ሻ 

Consequently, a sub-set which contains only those data that are most similar to the conditions 

observed so far on the current day can be identified. Once the sub-set of the historical data is 

identified, a weighted average of the change in travel time (trend) in the historical data is computed 

using Equation 6.19. 

ഥ௞ݐݐ∆ ൌ
∑ ሺݐݐෝ௞ െ ௗݐݏ݅ܦ/ෝ௞ିଵሻௗݐݐ
஽ೞ
ௗୀଵ

∑ ௗݐݏ݅ܦ/1
஽ೞ
ௗୀଵ

																																																																																																												ሺ6.19ሻ 

Where, 	ሺݐݐෝ௞ െ ෝ௞ିଵሻௗݐݐ  is the trend of travel time in historical day ݀ ௗݐݏ݅ܦ ;  represents the 

dissimilarity error (i.e. “distance”) between current time series and the time series in historical day ݀; 

 .௦ is the total number of historical days selected in the sub-setܦ
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The operation process of the proposed model is illustrated in Figure 6.2, in which we can see that 

the proposed 4 steps are recursively applied.  

 

 

The proposed model is designed to be able to predict travel time ݊௦ steps into the future (݊௦ ൌ

1,2, …݊). For example, the data are aggregated in a pre-determined length of time interval (∆݇). If 

݊௦ ൌ 1 , then the prediction horizon is ∆݇ ; if ݊௦ ൌ ݊ , then the prediction horizon is ݊∆݇ . The 

prediction step (defined as a time interval at which the prediction is updated) is equal to the length of 

data aggregation interval (∆݇), that is to say the prediction is updated every 5 minutes if the pre-

determined length of time interval is 5 minutes.  

(3) Identify valid observations based on 
validity window determined by 
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(7) Compute Kalman gain 
 

(8) Update estimate with measurement 
 

(9) Update the error covariance 

Step 3. Posterior estimation 
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Step 2. Outlier detection 
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series and the corresponding time 
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dataset 

(11) Compute trend of travel time ∆ݐݐഥ௜,௞ in 
historical dataset with similar traffic 
pattern

Step 4. Traffic pattern recognition 

Step 1. Prior estimation 

Figure 6.3: Operation process of the proposed model 
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Every time the prediction is updated, previous estimations have to be updated first. This is the 

feedback control in the proposed model. The proposed model aggregates travel times as DTT 

(Equation 6.10). If measured travel times are not available at the present time as a result of the lag 

effect, then the prediction is made based on the state function (Equation 6.4) with more weight (ߙ) 

being given to historical data trend. The measurements are set equal to predictions when there are too 

few (less than ߠ௡ೡ) valid observations in specific time intervals (Equation 6.10), and consequently the 

posterior estimations are equal to predictions in these intervals. As time goes on, these priori 

estimations will be updated when new measurements are available. 

6.3 Validation and Calibration 

The proposed model was applied to the dataset described in Chapter 4. A set of data from the 

eastbound direction was used to test the proposed model. Data from 5 days were selected as “current” 

days, and the rest of the data are considered as historical data in the following tests. The selected 5 

days (Jun. 15th 2012, Sep. 20th 2012, Oct. 5th 2012, Oct. 19th 2012 and Nov. 5th 2012) experienced 

varying levels of traffic congestion, but most congestion on this segment is non-recurrent. Sample of 

travel time observations collected from these 5 days can be found in Appendix A, in which we can 

see that a number of outliers must be removed, and the sample variance becomes large when traffic is 

congested. 

Travel times are aggregated in 5 minutes intervals, and mean travel times are predicted for 5, 10, 

and 15 minutes into the future. A time series of travel time with length of 1 hour is used in the process 

of traffic pattern recognition, and the most similar 4 days are selected from the entire historical 

dataset. These parameters were selected through off-line calibration (Chapter 5). On the basis of 

engineering judgment, ߠ௧௧ is set equal to the travel time corresponding to an average travel speed of 

80km/h. ߠ௡ೡ  is set equal to 5 observations in a 5 minute interval, which is approximately equal to 1% 

of the total traffic volume. 

The value of the use of the trend terms in the proposed model was determined by comparing the 

performance of the proposed model (Model_P) to a benchmark model (noted as Model_B) which 

uses the same state function for predictions in both free flow and congestion states (i.e. Equation 

6.20).  The sensitivity of the performance of the proposed model to parameter ߚ was determined for 

the values {0.99 ,0.8 ,0.6 ,0.4 ,0.2 ,0} =ߚ. 

ෝ௜,௞ݐݐ
ି
ൌ ෝ௜,௞ିଵݐݐ ൅ ߱௜,௞ିଵ																																																																																																																																ሺ6.20ሻ 
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The prediction models (Model_B and Model_P) are evaluated using three measures of performance 

(MOPs): (1) mean absolute relative error (MARE); (2) 90th percentile of the absolute relative error 

(90th P ARE); and (3) standard deviation of the absolute relative error (Std. ARE). The travel time 

ground truth is the posterior estimation of travel time from the proposed Kalman filter-based model, 

because valid individual travel times are aggregated/estimated as average departure travel time (DTT), 

which is the “true” travel time in real-time applications. Each MOP is calculated in three different 

ways: 

 Based only on the intervals for which traffic is in a free flow state ("free flow" defined as the 

case when the average travel speed is greater than 80 km/h). 

 Based only on the intervals for which traffic is in a transition state (“transition” defined as the 

case when the average travel speed is equal to or less than 80 km/h and congestion is forming 

or dissipating; the period when congestion is forming or dissipating is determined through 

observation on the basis of the true travel times, see Appendix B). 

 Based only on the intervals for which traffic is in a congested state ("congested" defined as the 

case when the average travel speed is less than 80 km/h and the level of congestion is 

remaining relatively stable; the period when traffic is in a congested state is determined 

through observation on the basis of the true travel times, see Appendix B). 

The statistical significance of differences in the ARE between different models is tested using the 

paired-z test. The Model_B is compared to 6 tested models (noted as Model-P*) with different values 

of ߚ. Percentage of improvement (i.e. ሺModel_B െ Model_P∗ሻ/Model_B) is computed for MARE, 

90th P ARE and Std. ARE and noted as ∆M, ∆P and ∆S respectively in the following descriptions. 

Positive values for  ∆M, ∆P or ∆S imply that the tested model provides better performance than the 

benchmark model. The test results for 5 minutes, 10 minutes and 15 minutes predictions are shown in 

Table 6.1, 6.2 and 6.3 respectively,  and the percentage of improvements on MARE are shaded if the 

difference is statistically significant at the 95% level of confidence.  

From the results in Table 6.1, 6.2 and 6.3, the following observations can be made: 

1. For 5 minutes prediction, there is no statistically significant difference between the prediction 

results of the proposed model and the prediction results of the benchmark model for all the tested 

traffic states (free flow, transition and congestion). 

2. For 10 and 15 minutes predictions, the differences of the mean errors for predictions at free flow 

and congestion states between the proposed model and the benchmark model are not statistically 



 

 119 

significant. However, the proposed model significantly improves the prediction accuracy when 

traffic is in a transition state for both 10 and 15 minutes prediction. 

3. The proposed model improves the 90th percentile error and the standard deviation of the 

prediction errors at transition state as well, and the improvements are more obvious as the 

prediction horizon increases. 

4. The prediction errors of the proposed models (for all the tested prediction horizons) at transition 

state decrease with the value of parameter ߚ increases, and the improvements of the proposed 

model over benchmark model on MAREs for prediction in future 10 minutes are statistically 

significant only when ߚ ൐ 0. 

The above observations from 1 to 3 validate that the trend terms added in the proposed model 

effectively improve the accuracy of prediction results when traffic is in a transition state. The 4th 

observation indicates that the trend term from real-time data combined with that from historical data 

is able to improve the accuracy of prediction, and the value of ߚ should be greater than 0. Variation of 

the percentage of the improvements on MAREs (i.e.	∆M) with different values of parameter 	ߚ is 

shown in Figure 6.3, and the results show that the improvements on MAREs (i.e.	∆M) based on 

different values of parameter ߚ  do not change much as long as ߚ ൐ 0 , therefore the value of 

parameter	ߚ is selected to be 0.2 when the proposed model is applied in Chapter 7. 

Table 6.1: Results of model validation (5-min) 

5-min Model-B
Model-P 

β=0 β=0.2 β=0.4 β=0.6 β=0.8 β=0.99

Free Flow 

MARE 0.025 0.026 0.026 0.026 0.026 0.026 0.026
90th P ARE 0.057 0.057 0.057 0.057 0.057 0.057 0.057

Std. ARE 0.030 0.030 0.030 0.030 0.030 0.030 0.029
∆M  -0.009 -0.008 -0.008 -0.008 -0.008 -0.008
∆P 0.001 0.001 0.001 0.001 0.001 0.001
∆S  -0.007 0.001 0.001 0.001 0.001 0.002

Transition 

MARE 0.187  0.175 0.164 0.164 0.164  0.164  0.162 
90th P ARE 0.415  0.371 0.316 0.316 0.316  0.316  0.316 

Std. ARE 0.189  0.170 0.160 0.159 0.159  0.159  0.158 
∆M  0.067 0.122 0.124 0.124  0.125  0.133 
∆P 0.106 0.238 0.239 0.239  0.239  0.238 
∆S  0.099 0.150 0.155 0.157  0.157  0.163 

Congestion 

MARE 0.137  0.142 0.156 0.158 0.165  0.157  0.159 
90th P ARE 0.256  0.297 0.302 0.308 0.351  0.302  0.324 

Std. ARE 0.137  0.144 0.145 0.146 0.158  0.144  0.146 
∆M  -0.040 -0.142 -0.157 -0.203  -0.149  -0.164 
∆P -0.159 -0.180 -0.205 -0.372  -0.180  -0.266 
∆S  -0.045 -0.057 -0.063 -0.152  -0.051  -0.065 
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Table 6.2: Results of model validation (10-min) 

10-min Model-B
Model-P 

β=0 β=0.2 β=0.4 β=0.6 β=0.8 β=0.99

Free Flow 

MARE 0.024 0.024 0.024 0.024 0.024 0.024 0.024
90th P ARE 0.048 0.047 0.047 0.047 0.047 0.047 0.047

Std. ARE 0.034 0.034 0.034 0.034 0.034 0.034 0.034
∆M  0.001 0.001 0.001 0.001 0.001 0.001
∆P 0.011 0.011 0.011 0.011 0.011 0.011
∆S  0.003 0.003 0.003 0.003 0.003 0.004

Transition 

MARE 0.275  0.246 0.238  0.237 0.237  0.237  0.236 
90th P ARE 0.592  0.547 0.537  0.533 0.533  0.533  0.525 

Std. ARE 0.250  0.227 0.213  0.211 0.210  0.209  0.208 
∆M    0.106 0.135  0.138 0.140  0.140  0.144 
∆P   0.076 0.092  0.100 0.100  0.100  0.114 
∆S    0.092 0.147  0.157 0.159  0.162  0.167 

Congestion 

MARE 0.129  0.133 0.140  0.142 0.144  0.142  0.143 
90th P ARE 0.251  0.271 0.278  0.280 0.283  0.280  0.276 

Std. ARE 0.135  0.139 0.137  0.138 0.144  0.138  0.138 
∆M  -0.026 -0.085 -0.094 -0.117  -0.097  -0.106 
∆P -0.080 -0.110 -0.117 -0.130  -0.117  -0.098 
∆S  -0.026 -0.014 -0.019 -0.067  -0.020  -0.021 

 

Table 6.3: Results of model validation (15-min) 

15-min Model-B
Model-P 

β=0 β=0.2 β=0.4 β=0.6 β=0.8 β=0.99

Free Flow 

MARE 0.023 0.023 0.023 0.023 0.023 0.023 0.023
90th P ARE 0.046 0.045 0.045 0.045 0.045 0.045 0.045

Std. ARE 0.034 0.034 0.034 0.034 0.034 0.034 0.034
∆M  -0.001 0.002 0.002 0.002 0.002 0.002
∆P 0.010 0.015 0.015 0.015 0.015 0.015
∆S  0.000 0.001 0.001 0.001 0.001 0.002

Transition 

MARE 0.368  0.326 0.309  0.308 0.307  0.307  0.306 
90th P ARE 0.719  0.621 0.603  0.603 0.603  0.603  0.605 

Std. ARE 0.290  0.271 0.266  0.263 0.261  0.260  0.259 
∆M  0.116 0.161  0.164 0.166  0.167  0.169 
∆P   0.136 0.161  0.162 0.162  0.162  0.159 
∆S    0.064 0.082  0.093 0.099  0.101  0.104 

Congestion 

MARE 0.132  0.134 0.143  0.144 0.145  0.144  0.145 
90th P ARE 0.303  0.297 0.301  0.301 0.301  0.301  0.301 

Std. ARE 0.140  0.141 0.139  0.139 0.141  0.139  0.139 
∆M  -0.020 -0.085 -0.091 -0.099  -0.092  -0.101 
∆P 0.021 0.006  0.006 0.005  0.006  0.005 
∆S  -0.008 0.003  0.002 -0.011  0.002  0.004 
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Figure 6.4: Variation of ∆ۻ with different values of parameter ࢼ 

6.4 Summary 

This chapter proposes a short-term prediction model for predicting freeway travel times using data 

collected by Bluetooth detectors. The proposed model, which is a combination of dynamic outlier 

filtering algorithm and Kalman filter, focuses on two challenges of using AVI measurements for 

travel time prediction: (1) dynamic outlier detection must be able to respond to rapid traffic 

fluctuations, and (2) the time lag that exists in AVI measurements.  

The proposed model is calibrated and validated using a dataset of freeway travel times collected by 

Bluetooth detectors. On the basis of the calibration and validation results, the following conclusions 

are made: 

1. The use of the travel time trend terms (from real-time data and historical data) has a significant 

effect on improving the prediction accuracy of the proposed model for predictions 10 or more 

minutes into the future when traffic is in a transition state. For other conditions, the 

performance improvement resulting from the inclusion of these terms was not statistically 

significant.  

2. The performance of the proposed model is relatively insensitive to the value of the parameter 

ߚ as long as ߚ ൐ 0. On the basis of the sensitivity analysis, it is recommended to use a value 

of 0.2=ߚ.  
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Chapter 7 

Model Application and Evaluation 

The objective of this chapter is to evaluate the performance of the proposed prediction model by 

comparing the prediction results of the proposed model to the prediction results from two benchmark 

models - TransGuide and D&R (described in Section 2.1.3). To achieve this objective the proposed 

prediction model and the two benchmark models were applied to data associated with 2 field datasets, 

namely: (1) 401-H8/H24 (eastbound); and (2) 401-H24/H8 (westbound). Description of the study area 

can be found in Section 4.1. Detailed flow charts for implementation of the proposed method can be 

found in Appendix D. 

The three prediction models were applied to the two datasets for travel time predictions in future 5, 

10 and 15 minutes. For each dataset, data from 5 days were selected as “current” days (see Appendix 

A), and the rest of the data are considered as historical data. The selected 5 days from each dataset 

experienced varying levels of traffic congestion, but most congestion on this freeway segment (for 

both directions) is non-recurrent.  

Parameters associated with the two benchmark models are selected using the same values (i.e. δ= 

50% for TransGuide model, 	ߣ ൌ 3, ߚ ൌ 0.2, ఙߚ ൌ 0.2 for D&R model) that are used in Chapter 4.  

The prediction models were evaluated using the same measures of performance (MOPs) that are 

used in Section 6.3, i.e. (1) mean absolute relative error (MARE); (2) 90th percentile of the absolute 

relative error (90th P ARE); and (3) standard deviation of the absolute relative error (Std. ARE). Each 

MOP is calculated in two different ways: 

 Based only on the intervals for which traffic is in a free flow state (“free flow” defined as the 

case when the average travel speed is greater than 80 km/h). 

 Based on only on the intervals for which traffic is in non-free flow state (“non-free flow” 

defined as the case when the average travel speed is equal to or less than 80 km/h). 

The average travel speed is equal to the distance divided by the estimated mean travel time. 
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7.1 Application to Data from 401-H8/H24 (eastbound) 

The dataset of 401-H8/H24 (eastbound) is the same dataset that was used to calibrate and validate the 

proposed model in Section 6.3. The following comparisons between the proposed model and the 

benchmark models are based on the prediction results of the proposed model with parameter	ߚ ൌ 0.2. 

TransGuide model and D&R model were also applied to this dataset for travel time predictions in 

future 5, 10 and 15 minutes. Comparisons between the proposed model and the benchmark models 

(TransGuide and D&R) are conducted on the basis of the MOPs described previously. ∆M, ∆P and ∆S 

are computed for each comparison between the proposed model and one of the benchmark models, 

and the differences of the absolute relative error (ARE) between two compared models are tested 

using paired-z test. The results are shown in Table 7.1 and the percentage of improvements on MARE 

are shaded if the difference is statistically significant at the 95% level of confidence. 

Table 7.1: Results of comparisons between proposed model and benchmark models (401 East) 

5-min 
Free Flow Non-Free Flow 

Proposed TransGuide D&R Proposed TransGuide D&R 
MARE 0.026 0.031 0.028 0.161 0.193 0.180 

90th P ARE 0.057 0.065 0.060 0.340 0.510 0.399 
Std. ARE 0.030 0.035 0.030 0.166 0.219 0.195 
∆M  0.177 0.088  0.167 0.104 
∆P 0.116 0.046  0.333 0.149 
∆S  0.161 0.000  0.242 0.148 

10-min 
Free Flow Non-Free Flow 

Proposed TransGuide D&R Proposed TransGuide D&R 
MARE 0.024 0.028  0.026  0.187 0.231  0.226  

90th P ARE 0.047 0.058  0.053  0.418 0.603  0.549  
Std. ARE 0.034 0.037  0.034  0.185 0.244  0.249  
∆M  0.154  0.092   0.190  0.174  
∆P 0.191  0.104   0.307  0.238  
∆S  0.088  0.000   0.241  0.257  

15-min 
Free Flow Non-Free Flow 

Proposed TransGuide D&R Proposed TransGuide D&R 
MARE 0.023 0.028 0.026 0.220 0.271 0.276 

90th P ARE 0.045 0.056 0.051 0.493 0.674 0.686 
Std. ARE 0.034 0.038 0.036 0.228 0.272 0.298 
∆M  0.167 0.118  0.186 0.202 
∆P 0.199 0.121  0.268 0.281 
∆S  0.095 0.055  0.160 0.235 

The results in Table 7.1 show that comparing to the benchmark models, the proposed model 

significantly improves prediction accuracy for both free flow and non-free flow states through all the 

tested prediction horizons (5, 10 and 15 minutes). The percentage of improvements on MARE varies 

from 8.8% to 17.7% under free flow conditions, and from 10.4% to 20.2% under non-free flow 
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conditions. Furthermore, the 90th percentile errors and standard deviations of errors also show 

improvements. 

An example of the prediction results (prediction in future 5 minutes) for data collected from one 

day (Nov. 5th, 2012) are illustrated in Figure 7.1. Predictions were performed for a period from 2:00 

am – 12 midnight for each day (as shown in Figure 7.1 (a)). The two hours of data prior to the current 

period were used to identify the similar traffic pattern in historical dataset. 

 
(a) Overall illustration 

 
(b) Detailed illustrations 

Figure 7.1: Illustrations of the prediction results (for data collected at Nov. 5th, 2012) 

The results in Figure 7.1 (a) show that in some cases the TransGuide model (i.e. results represented 

by orange line) was not able to track the sudden changes in travel times (e.g. predictions in time 
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period from 17:50 pm-19:10 pm), resulting in large prediction errors. This problem was solved when 

both D&R model and the proposed model were applied. 

Figure 7.1 (b) shows the difference between the prediction results from the proposed model (red 

line) and from the D&R model (green line) for the time of day when severe non-recurrent congestion 

occurred. From the results of Figure 7.1 (b) we can observe that the proposed model responds to 

change of travel time more quickly than the D&R model, and therefore provides more accurate 

prediction results when traffic congestion is forming or dissipating. In particular, the proposed model 

performs better than the D&R model when congestion is dissipating.  

7.2 Application to Data from 401-H24/H8 (westbound) 

The data of 401 from H24 to H8 are collected from westbound of the study freeway segment. Similar 

to the eastbound dataset, data from 5 days were selected as “current” days (see Appendix A for days 

Jul. 27th 2012, Jan. 6th 2013, Jan. 28th 2013, Feb. 19th 2013 and Feb. 24th 2013), and the rest of the data 

are considered as historical data. Three prediction models (i.e. proposed model, TransGuide model 

and D&R model) were applied to this dataset for travel time predictions in future 5, 10 and 15 

minutes. Comparisons between the proposed model and the benchmark models (TransGuide and 

D&R) are conducted using the same way as that was used in section 7.1 (shown in Table 7.2).  

The results in Table 7.2 show that comparing to the benchmark models, the proposed model 

improves prediction accuracy for both free flow and non-free flow states through all the tested 

prediction horizons (5, 10 and 15 minutes). These improvements are statistically significant for all 

comparisons except one. The overall results show that the percentage of improvements of MARE 

varies from 14.3% to 30.6% under free flow conditions, and from 7.5% to 49.9% under non-free flow 

conditions. Furthermore, the 90th percentile errors and standard deviations of errors show 

improvements as well. 
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Table 7.2: Results of comparisons between proposed model and benchmark models (401 West) 

5-min 
Free Flow Non-Free Flow 

Proposed TransGuide D&R Proposed TransGuide D&R 
MARE 0.036  0.045  0.043  0.180  0.219  0.193  

90th P ARE 0.087  0.093  0.086  0.405  0.571  0.501  
Std. ARE 0.036  0.045  0.042  0.168  0.278  0.269  
∆M  0.274  0.199   0.217  0.075  
∆P 0.073  -0.010   0.410  0.239  
∆S  0.265  0.174   0.653  0.597  

10-min 
Free Flow Non-Free Flow 

Proposed TransGuide D&R Proposed TransGuide D&R 
MARE 0.032  0.042  0.038  0.190  0.284  0.226  

90th P ARE 0.070  0.090  0.077  0.466  0.715  0.560  
Std. ARE 0.031  0.044  0.041  0.201  0.369  0.348  
∆M  0.306  0.164   0.499  0.195  
∆P 0.301  0.115   0.535  0.201  
∆S  0.421  0.305   0.839  0.734  

15-min 
Free Flow Non-Free Flow 

Proposed TransGuide D&R Proposed TransGuide D&R 
MARE 0.032  0.038  0.036  0.215  0.271  0.262  

90th P ARE 0.072  0.081  0.076  0.529  0.687  0.580  
Std. ARE 0.034  0.042  0.042  0.249  0.420  0.420  
∆M  0.188  0.143   0.257  0.217  
∆P 0.131  0.060   0.299  0.097  
∆S  0.237  0.212   0.689  0.687  

 

An example of the prediction results (prediction in future 5 minutes) for data collected from one 

day (July. 27th, 2012) are illustrated in Figure 7.2.  
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(a) Overall illustration 

 
(b) Detailed illustrations 

Figure 7.2: Illustrations of the prediction results (for data collected at July. 27th, 2012) 

The results in Figure 7.2 (a) show that the sudden changes in travel times during time period from 

17:35 pm-19:15: pm was detected by all the three tested prediction models, however the predicted 

travel times lag behind the true travel times within this time period. This phenomenon can be seen 

more clearly from Figure 7.2 (b), and the results also show that the proposed model responds to 

change of travel time more quickly than the TransGuide model and D&R model, especially for time 

period when congestion is dissipating. The performance of the proposed model when congestion is 

forming is notably better than TransGuide model, but only marginally better than the D&R model. 
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It should be noted that the proposed model performs well for data collected from the westbound 

direction even through the model was calibrated using eastbound data.  This suggests that the model 

is robust to different traffic conditions.  

7.3 Results Discussion 

 Combining the results from eastbound and westbound, the variations of the prediction errors of the 

proposed model with true travel times are shown in Figure 7.3.  

 

Figure 7.3: Variation of the prediction errors with true travel time 

 The results in Figure 7.3 indicate that when the true travel time (for either 5, 10 or 15 minutes into 

future) is less than 5 minutes (which is approximately three times the free speed travel time), then the 

prediction errors tend to relatively consistent. However, as the true travel time increases, the 

prediction error also tends to increase, and there is a bias to under-estimating the true travel time. The 

prediction results (5-min prediction horizon) of the proposed model to the 10 tested days are shown in 
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Appendix C. These results indicate that despite the improved performance of the proposed model 

relative to the benchmark methods, the proposed model still has difficulties tracking rapid increases in 

travel time associated with non-recurrent congestion.  

Detailed illustrations of the proposed algorithm being applied to datasets from two representative 

days (Nov. 5th, 2012 and July. 27th, 2012) for the time of day when severe non-recurrent congestion 

occurred are shown in Figure 7.5 and 7.6. Figures 7.5 (a) and 7.6 (a) illustrate the prediction results 

and the associated historical trend value, and Figures 7.5 (b) and 7.6 (b) illustrate the number of valid 

observations in real-time and the value of α determined using Equation 6.5. 

Based on the results shown in Figure 7.5 and 7.6, the following observations are made: 

1. Use of historical data does help for improving the prediction accuracy when congestion is 

dissipating, but it does very little to improve the prediction accuracy for congestion forming as a 

result of an incident. 

2. The average of historical trend data results in only very small changes in any given time period, 

consequently the use of historical data cannot significantly improve the accuracy of prediction 

for non-recurrent congestion, especially for congestion forming. It’s not clear yet about how 

much it helps for recurrent congestion. 

3. When the real-time data are not available for a time period that serious traffic congestion occurs 

(e.g. 17:55pm – 18:45pm in Figure 7.5 (b)), the α behave as expected (α ൌ 0ሻ, i.e. the predicted 

travel time is a combination of the estimated travel time in previous interval and historical trend 

value. However, the value of α determined based on the number of valid observations does not 

change smoothly as expected – it is almost binary, which is mainly because the α  is very 

sensitive to the change of the number of valid observations, and the change of the number of 

valid observations is not smooth.    
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(a) 

 

(b) 

Figure 7.4: Illustration of the algorithm details (for data collected from eastbound at Nov. 5th, 

2012) 
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(a) 

 

(b) 

Figure 7.5: Illustration of the algorithm details (for data collected from westbound at July. 27th, 

2012) 
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To sum up, the large prediction error of the proposed model is mainly caused by the lag effects of 

AVI measurements. The use of the historical trend data in the proposed model is intended to address 

this lag effect; however it is hypothesized that this approach is most effective for recurrent congestion 

rather than non-recurrent congestion. Unfortunately, the existing data set does not contain significant 

recurrent congestion and therefore the extent to which performance improvements under recurrent 

conditions can be attributed to the use of historical trend data could not be quantified. Further 

investigation on improving the prediction accuracy of non-recurrent congestion should focus on using 

information that does not suffer from the lag effect (e.g. the variation of the number of detections). 

7.4 Summary 

In this chapter, the performance of the proposed model is evaluated. The prediction results from the 

proposed model were compared to the prediction results from two benchmark models (TransGuide 

and D&R). In addition, an investigation on the proposed algorithm details was provided. On the basis 

of these evaluations the following conclusions are made: 

1. The proposed model is superior to two benchmark models (TransGuide and D&R) for both 

congested and uncongested traffic conditions. Performance improvements (in terms of the 

reduction in the MARE) vary from 8.8% to 30.6% under free flow conditions, and from 7.5% 

to 49.9% under non-free flow conditions.  

2. The proposed model also shows improvements (reductions) in the 90th percentile errors and 

standard deviations of errors for all traffic conditions.  

3. The proposed model still has difficulties tracking rapid increases in travel time associated with 

non-recurrent congestion, which is mainly caused by the lag effects of AVI measurements. 

The evaluations described in this chapter are for a suburban freeway section which does not contain 

any intermediate junctions, and does not experience significant recurrent congestion. The method is 

applicable to sections with intermediate junctions, so method evaluations for freeway section which 

contain intermediate junctions are recommended. Also, it is recommended that the proposed model be 

evaluated on another freeway section which does experience substantive recurrent congestion.  

Further efforts to improve the accuracy of travel time predictions made on the basis of Bluetooth 

data should focus on improving performance for non-recurrent events when congestion is forming. 

Potential approaches could include: (1) using other attributes of data that can be collected by 

Bluetooth detectors, such as the number of detections; and/or (2) considering the spatial interactions 
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along a roadway such that the effect of queues spilling back into the road segment of interest can be 

captured. 
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Chapter 8 

Conclusions and Recommendations 

Pre-active traffic management used to maximize the efficiency of the existing transportation systems, 

as one of the solutions to alleviate the growing problem of traffic congestion, become more and more 

attractive to traffic managers. The prerequisite of implementing pre-active traffic management is 

dynamically estimating/predicting roadway conditions using traffic data collected in-real-time. 

Bluetooth traffic monitoring technologies provide the opportunity to collect wide area real-time 

travel time data with low cost, something that is not feasible with the traditional traffic monitoring 

technologies (e.g. Loop detectors). However, as with other AVI technologies (e.g. electronic toll tags, 

license plate recognition, etc.), using the Bluetooth data (i.e. travel time measurements) for travel time 

prediction requires: (1) determining the optimal spacing between detectors; (2) a reliable real-time 

outlier detection algorithm; and (3) a method for addressing data gaps caused by the time lag inherent 

in the travel time measurements.  

In this dissertation, we developed methods to address the above problems for providing reliable 

travel time prediction in real-time using Bluetooth data. This chapter highlights the main 

contributions of this thesis research and presents directions for future work. 

8.1 Major Contributions 

The major contribution of this research concerns the practical solutions to the critical problems of 

reliable travel time prediction using Bluetooth data. 

 The specific contributions made in this dissertation are as follows: 

1. Quantified the difference between Bluetooth measured travel time (ATT) and true travel time 

(DTT), and demonstrated that the real-time estimation error caused by using ATT directly as an 

estimate of DTT is not negligibly small, especially when traffic is in congestion state. Moreover, 

evidence was provided to show that the temporal variation pattern of ATT is different from DTT 

which further degrades the accuracy of travel time prediction. 

2. Quantified the impact that Bluetooth detector spacing has on the real-time estimation errors, and 

developed a generalized regression model that can be used to determine the optimal average 
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spacing of Bluetooth detector deployments on urban freeways as a function of the length of the 

route for which travel times are to be estimated. 

3. Implemented and evaluated two existing real-time travel time outlier filtering algorithms 

(TransGuide and D&R), and identified that both of these two algorithms are not able to perform 

reliably when travel times change rapidly.  

4. Developed and validated a traffic flow theory based travel time outlier filter enhancement, which 

can be used as an extension to existing data driven outlier detection algorithms. The proposed 

method improves the performance of existing data driven outlier detection algorithms for periods 

when travel times are changing rapidly, as when congestion is forming or dissipating. The 

proposed method doesn’t require off-line calibration of parameters and therefore is simple and 

easy to implement. 

5. Validated that the historical data selected by K nearest neighbor (KNN) method provide 

estimates of the travel time pattern (trend) that are statistically significantly better than historical 

data selected by simple aggregation (SA) method. A method for calibrating the KNN method 

using field Bluetooth data was developed and demonstrated.  

6. Developed a model for predicting near future freeway travel times using Bluetooth data with 

special attention to the time lag that exists in the Bluetooth measurements. Calibrated and 

validated the proposed model, and showed with evidence that the use of the travel time trend 

terms (from real-time data and historical data) has a significant effect on improving the 

prediction accuracy of the proposed model for predictions 10 or more minutes into the future 

when traffic is in a transition state. On the basis of a sensitivity analysis, it was found that the 

performance of the proposed model is relatively insensitive to the value of the parameter ߚ as 

long as ߚ ൐ 0, therefore it is recommended to use a value of 0.2=ߚ. 

7. Demonstrated the performance of the proposed model by comparing the prediction results 

between the proposed model and two benchmark models. The models were applied to two 

datasets of freeway travel times collected by Bluetooth detectors. The comparison results 

indicate that the proposed model significantly improves the accuracy of travel time prediction for 

5, 10 and 15 minutes prediction horizon under both free flow and non-free flow traffic states. 

The 90th percentile errors and standard deviation of the prediction errors are also improved. 
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8.2 Future Research 

For improving and complementing this research, the following problems are identified for future 

research: 

1. In this research, the generalized model used to determine the optimal detector spacing was 

developed based on the simulation data because the field data were not available. It is 

recommended to test and validate the proposed model using field data if it is available. 

2. The proposed traffic flow theory based travel time outlier filtering model was tested and 

validated using data from a 3.1km freeway segment with sampling rate of approximately 9%. It 

is recommended that the proposed model be tested on data from different road sections (e.g. 

road sections with different lengths and/or with different sampling rate) to verify its 

transferability. 

3. The dataset used to test and evaluate the proposed short-term travel time prediction model does 

not contain periods of significant recurrent congestion, therefore it is recommended that the 

proposed model be tested and evaluated on freeway sections which experience substantive 

recurrent congestion, in order to verify the hypothesis that the problem of tracking rapid 

changes of travel time from free flow to congestion (i.e. congestion forming) can be improved 

by using the historical trend data. 

4. Further efforts to improve performance for non-recurrent events when congestion is forming 

should focus on: (1) using other attributes of data that does not suffer from the lag effect, such 

as the number of detections; and/or (2) considering the spatial interactions along a roadway 

such that the effect of queues spilling back into the road segment of interest can be captured. 
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Appendix A 

Travel time observations of the tested datasets 
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Appendix B 

Determination of the traffic states for the tested datasets 
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Appendix C 

The application results of the proposed model 

 

Results of the proposed model applied to data collected at Nov. 11 2012 (eastbound) 
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Results of the proposed model applied to data collected at Oct. 19 2012 (eastbound) 

 

Results of the proposed model applied to data collected at Oct. 05 2012 (eastbound) 
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Results of the proposed model applied to data collected at Sep. 20 2012 (eastbound) 

 

Results of the proposed model applied to data collected at Jun. 15 2012 (eastbound) 
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Results of the proposed model applied to data collected at Jul. 27 2012 (westbound) 

 

Results of the proposed model applied to data collected at Jan. 06 2013 (westbound) 
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Results of the proposed model applied to data collected at Jan. 28 2013 (westbound) 

 

Results of the proposed model applied to data collected at Feb. 19 2013 (westbound) 
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Results of the proposed model applied to data collected at Feb. 24 2013 (westbound) 
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Appendix D 

Flow charts for method implementation 

General flow chart 

 

Prediction Horizon 

Outlier Filtering 

Matched Travel 
Times (Valid data) 

Travel Time Aggregation 

Measured Average 
Travel Time and Travel 

Time Variance 

Posterior Estimation 
(Correction) 

Prior Estimation 

(Prediction)Rolling Horizon 

Traffic Pattern 

Recognition 

Estimated Average 
Travel Time 

Aggregated Historical 
Travel Times 

Matched Travel Times 
(Raw data) 

 Input 

 Transmitted Data 

 Process 

Output 

 Output 

Predicted Average 
Travel Time 

Trend of Travel 
Time Variation 

Travel Time PredictionFalse 



 

 162 

Sub flow chart for outlier filtering 

 

 

No

Outlier Filtering 

NoY

If ௠ܸ௜௡ ൒

Matched Travel Times 
(Raw data) 

Identify valid observations based on a 
validity window determined by 

	ഥ௜,௨௣௣௘௥,௞ andݐݐ  ഥ௜,௟௢௪௘௥,௞Identify validݐݐ

If (݊௔,௞ ൐ ௡ and ݊௔,௞/݊௢,௞ߠ ൐  ௣) orߠ

Yes 

Initialize	 ௠ܸ௜௡, where ௠ܸ௜௡ ൐

Calculate ∆ݐݐ௜,௞ିଵ Calculating ∆ݐݐ௜,௞ିଵ  

Identify valid observations based on 
ന௜,௨௣௣௘௥,௞ andݐݐ  ന௜,௟௢௪௘௥,௞Identifyingݐݐ

If (݊௔,௞ ൐ ௡ and ݊௔,௞/݊௢,௞ߠ ൐  ௣) orߠ

NoN

Matched Travel 
Times (Valid data)

Yes

௠ܸ௜௡ ൌ ௠ܸ௜௡ െ ∆ܸ 

Yes



 

 163 

Sub flow chart for travel time aggregation 
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Sub flow chart for travel time prediction 
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