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Abstract 

As the largest carbon reservoir in ecosystems, soil accounts for more than twice as much 

carbon storage as that of vegetation biomass or the atmosphere. The goal of this study is 

to examine spatial patterns of soil organic carbon (SOC) in Canadian forest area at an 

eco-region scale and to explore its relationship with different ecological variables. In this 

study, the first Canadian forest soil database published in 1997 by the Canada Forest 

Service was analyzed along with other long-term eco-climatic data (1961 to 1991) 

including precipitation, air temperature, Normalized Difference Vegetation Index (NDVI), 

slope, aspect, and elevation. Additionally, an eco-region framework established by the 

Environment Canada was adopted in this study for SOC distribution assessment. 

Exploratory spatial data analysis techniques, with an emphasis on spatial autocorrelation 

analysis, were employed to explore how forest SOC was spatially distributed in Canada.  

Correlation analysis and spatial regression analysis were applied to determine the most 

dominant ecological factors influencing SOC distribution in different eco-regions. At the 

national scale, a spatial error model was built up to adjust for spatial effects and to 

estimate SOC patterns based on ecological and ecosystem property factors.  Using the 

significant variables derived in the spatial error model, a predictive SOC map in 

Canadian forest area was generated. 

Findings from this study suggest that high SOC clusters tend to occur in coastal areas, 

while low SOC clusters occur in western boreal eco-region. In Canadian forest area, SOC 

patterns are strongly related to precipitation regimes. Although overall SOC distribution 

is influenced by both climatic and topographic variables, distribution patterns are shown 

to differ significantly among eco-regions, thus verifying the eco-region classification 

framework for SOC zonation mapping in Canada. 
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Chapter 1. Introduction 

Soil is an essential resource on our planet. It has three major ecological functions: 

(1) it provides a foundation layer with water and a variety of nutrients to support the 

growth of rooted plants; (2) it maintains an important function in transferring energy 

between land and the atmosphere; and, (3) soil plays an important role in global organic 

carbon fluxes by storing organic matter (Grunwald, 2006; Plaster, 1992). As the largest 

organic carbon reservoir in ecosystems, soil accounts for more than twice as much carbon 

storage as vegetation biomass or the atmosphere (Galbraith et al., 2003; Liu et al., 2011). 

Globally, about 30% of soil organic carbon (SOC) is estimated to be preserved in tundra 

and boreal ecosystems (Lee et al., 2010; Siltane, 1997). 

In forest ecosystems, three major reservoirs contribute to the carbon exchange 

cycle, namely vegetation, soil, and the atmosphere. Soil carbon fluxes generally consist 

of two processes, growth and decay. In the carbon-growth sub-cycle, forest absorbs 

carbon through photosynthesis processes (Fonseca et al., 2011; Trofymow et al., 2008). 

Around 50 percent of the carbon is then transferred back to the atmosphere by vegetation 

respiration (Malhi, 2002). For the remaining vegetation-absorbed carbon, some stocks are 

stored in vegetation in the form of photosynthate (Fonseca et al., 2011), whereas some 

stocks are transferred into the soil through litterfall accumulation and root systems (Malhi, 

2002). In the carbon-decay sub-cycle, soil releases carbon into the atmosphere via soil 

respiration and SOC decomposition (Janzen, 2004). In this integrated carbon cycle, the 

amount of SOC is calculated as the difference between organic carbon inputs and releases. 

Consequently, due to effective vegetation-soil interactions and decades of accumulation, 

considerable organic carbon has been stored in forest soils (Conen et al., 2004; Simmons 

et al., 1996). 

The dynamics of such large quantities of organic carbon stored in forest soil not 

only influence soil fertility and forest productivity (Jobbágy & Jackson, 2000), but also 

partly account for changes in atmospheric carbon concentration (Fonseca et al., 2011; Ju 

& Chen, 2005; Mishra et al., 2010; Powers & Schlesinger, 2002). Many studies have 

pointed out that SOC distribution is temperature-sensitive and small fluctuations in SOC 

could greatly affect atmospheric carbon concentration (Jenkinson et al., 1991; Shakiba & 
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Matkan, 2005; Tewksbury & Van Miegroet, 2007). Previous evidence suggests that the 

average global surface temperature has increased about 0.6 ˚C in past three decades 

(Bhatti et al., 2006). Thus, global warming could release carbon stocks from forest soils 

by altering SOC decomposition rates (Jenkinson et al., 1991).  

As a result, policy making and forest resource management necessitates having a 

solid understanding of SOC distribution and the variables that influence observed spatial 

patterns (Powers & Schlesinger, 2002). Moreover, the amount of SOC is influenced by 

historic land use changes, human disruptions, temporal accumulation or loss, 

environmental impacts, and many other factors (Conen et al., 2004; Grunwald, 2006; 

Yuan et al., 2013). Recent studies have used geostatistical techniques and spatial 

regression analysis to incorporate environmental information into SOC mapping, rather 

than simply replying on ground soil surveys and measurements (Mishra et al., 2010; 

Zhang et al., 2011). Numerous studies have been conducted to improve the modelling of 

SOC-environment relationships (Kurz & Apps, 1999; Liu et al., 2011; Mishra et al., 2010; 

Powers & Schlesinger, 2002). These studies are based on two main assumptions. First, 

specific soil properties (e.g., SOC distribution) vary in space and through time across 

ecosystems, because different ecological conditions have varying impacts on pedogenic 

processes (Chen, et al., 2003; Grunwald, 2006; Tsui et al., 2004). This indicates that a 

SOC model established in one ecosystem could be inadequate for capturing SOC 

dynamics in other ecosystems (Powers & Schlesinger, 2002). Second, ecological factors 

contribute to SOC-environment relationships unequally and to varying levels in different 

environments (Powers & Schlesinger, 2002).  

In Canada, about 4,690,000 km2 (47% of total area) are covered by intact forest 

(Lee et al., 2010). This forest-dominant landscape indicates that Canada is one of the vital 

carbon reservoirs in the world. Consequently, many efforts have been made to estimate 

Canadian SOC distribution and to model SOC-environment relationships. However, most 

Canadian SOC studies have been conducted at the local scale with limited SOC 

distribution and SOC-environment modelling conducted at a national or regional scale of 

analysis. This thesis adopts a Canadian eco-climatic region (eco-region for short) 

framework to compare spatial distribution patterns of SOC in different eco-regions and to 
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examine relationships between SOC and environmental variables in Canadian forest areas. 

Exploratory spatial data analysis (ESDA) techniques, particularly spatial autocorrelation 

analysis, are employed to explore how forest SOC is spatially distributed in Canada.  

Correlation analysis and spatial regression analysis are applied to determine the most 

dominant ecological factors influencing SOC distribution. At the national scale, a spatial 

error model is used to adjust for spatial effects and to estimate SOC patterns based on 

ecological and ecosystem property factors.  A predictive SOC map is produced based on 

the significant variables identified in the spatial error mode. 

1.1. Research Goal & Objectives 

This study was conducted to address four key research questions: (1) How is 

forest SOC spatially distributed in Canadian forests? (2) How can the relationships 

between SOC and ecological variables, including climatic conditions and terrain 

attributes be quantified? (3) In Canada, do these relationships vary across different eco-

regions and is this a sufficient classification scheme for soil zonation mapping?  (4) What 

are the dominant ecological factors influencing Canadian forest SOC distribution? 

The main research goal of this study is to examine spatial patterns of SOC 

distribution in Canadian forest regions at the eco-region scale and to explore relationships 

between SOC and various ecological variables. More specifically, the objectives of this 

study include: 

(1) To explore the spatial distribution of SOC levels in Canadian forests in seven 

eco-regions: the Subarctic, Boreal, Cool Temperate, Subarctic Cordilleran, Cordilleran, 

Interior Cordilleran, and Pacific Cordilleran, 

(2) To assess the influence of ecological factors on forest SOC stock in growing 

seasons at regional scales of analysis, including precipitation, maximum/mean/minimum 

air temperatures, Normalized Difference Vegetation Index (NDVI), slope, aspect, and 

elevation, and 

(3) To assess how SOC-environment relationships vary geographically with 

respect to ecosystem properties and ecological factors. 
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1.2. Thesis Structure 

This thesis consists of seven chapters as follows: 

Chapter 1 – Introduction: provides a brief introduction to the important role that forest 

soils have in global carbon fluxes. 

Chapter 2 – Literature Review: reviews soil surveys of Canada and the theoretical 

background on modeling relationships between SOC and ecological factors. 

Chapter 3 – Study Area: provides a brief description of ecological conditions within the 

study area at an eco-region scale of analysis. 

Chapter 4 – Data: describes available datasets used in this study. 

Chapter 5 – Methodology: details the study’s exploratory analysis workflow, focusing on 

the Exploratory Spatial Data Analysis (ESDA) approach and spatial regression modelling. 

Chapter 6 – Results: elaborates on empirical findings of this study, including results from 

the ESDA analysis and spatial regression models. A predictive SOC distribution map is 

presented. 

Chapter 7 – Discussion and conclusion: analyzes and interprets the implications of key 

findings of this research. Recommendations and improvements on future studies are also 

discussed.  
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Chapter 2. Literature Review of Current SOC Studies 

2.1. Soil Surveys of Canada 

Field-soil-survey development in Canada generally consists of three phases: early 

government-driven soil surveys (from the 1920s to 1974), mature government-driven soil 

surveys (from 1975 to 1995), and increasing private-sector-driven soil surveys (from 

1996 to present) (Anderson & Scott Smith, 2011; McKeague & Stobbe, 1978). Before 

1995, field soil surveys in Canada were mainly undertaken by federal pedologists and 

associated university professors. In recent years, however, increasing demands for 

detailed soil information in a diversity of applications have promoted the growth of 

private sector soil surveys, which are usually site- and motivation-specific (Anderson & 

Scott Smith, 2011). 

2.1.1. Soil Surveys of Canada: Phase I - 1920s to 1974 

After the completion of the first field soil survey in Ontario in 1914, Canadian soil 

surveys made substantial progress in the following decades. In order to maintain 

consistency among national field soil surveys, standard soil classification schemes and 

survey-related principles and instructions were established in the first National Soil 

Survey Committee (NSSC) meeting in 1945 (Anderson & Scott Smith, 2011; Coen, 1987; 

McKeague & Stobbe, 1978). Afterwards, NSSC meetings were held every three years in 

the following three decades, and NSSC was renamed as the Canada Soil Survey 

Committee (CSSC) in the early 1970s. Also, the soil cartographer group had been 

enlarged during the 1950s to assist with national soil mapping (McKeague & Stobbe, 

1978). According to Canadian pedologists, the 1970s should be considered as a pivotal 

period for Canadian soil surveys development (McKeague & Stobbe, 1978). Over the last 

50 years, the evolution of techniques employed in field soil surveys from hand-drawn to 

aerial-photographs led to more efficient and accurate field soil surveys (McKeague & 

Stobbe, 1978). As a result, once unattainable areas such as mountainous and northern 

areas became accessible and assessable (McKeague & Stobbe, 1978). Advances in 

transportation also sped up field soil survey development.  
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McKeague and Stobbe (1978) traced and reported the approximate number of 

published Canadian soil maps in the period from 1920 to 1974. As shown in Table 2.1, 

about 200 soil maps were completed and published across Canadian provinces until the 

mid-1970s. In early years, only a small number of soil maps (approximate 28) were 

generated due to external limitations such as lack of accessibility and transportation.  At 

the national scale, significant increases in published soil maps were observed since 1960.  

Table 2.1 Quantities of published soil maps in Canadian provinces (1920-1974) 
Province 1920-

1929 
1930-
1939 

1940-
1949 

1950-
1959 

1960-
1969 

1970-
1974 

British Columbia  1 2 3 4 7 
Alberta 3 5 5 5 12 8 
Saskatchewan 8 2 5 2 4 2 
Manitoba  1 4 6 5 7 
Ontario 3 3 6 14 15 2 
Quebec  2 15 9 15 2 
New Brunswick   2 2 1  
Nova Scotia   2 5 8 1 
Prince Edward Island   1  1 1 
Newfoundland      1 
Yukon and Northwest 
Territories 

   1 3 2 

Total 14 14 42 47 68 33 
Source: McKeague & Stobbe (1978) 

2.1.2. Soil Surveys of Canada: Phase II - 1975 to 1995 

The introduction of geospatial soil-environment modelling in the mid-1970s and 

geo-databases in the late-1970s led to more efficient soil data storage and information 

delivery (Grunwald, 2006). According to McKeague and Stobbe (1978), around 35% of 

Canada’s total area had been investigated by 1975. Moreover, researchers’ perception of 

soil science also positively led to the maturing of field soil surveys in Canada. The use of 

soil information in a variety of studies such as land use regulation and environmental 

impacts evaluation gradually became the focus of the 8th CSSC meeting in 1970 and the 

following epoch of soil survey development (Anderson & Scott Smith, 2011).  Field soil 

surveys continued and were led by governmental pedologists during this period, which 

became the peak time for such activities (Anderson & Scott Smith, 2011; Schut, et al., 
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2011). For example, notable progress was achieved in British Columbia soil surveys from 

the 1960s to mid-1980s, resulting in an almost complete provincial landmass coverage 

(Anderson & Scott Smith, 2011). Also, funds were provided to Saskatchewan to support 

soil investigation in provincial forest areas in 1968, leading to increased capabilities for 

soil mapping and forest soils assessment (Anderson & Scott Smith, 2011). 

2.1.2.1. Comparison of Existing Soil Carbon Databases 

Increasing demand for detailed soil information consequently led to the 

establishment of the Canada Soil Information System (CanSIS) to organize and deliver 

soil data to its users. Specifically, three versions of a Soil Landscapes of Canada (SLC) 

map series (at 1:100000 scale) were produced, updated, and released via CanSIS since the 

1980s (Geng et al., 2010; Schut, et al., 2011). The system’s success lay in: (1) assembling 

and publishing existing soil surveys and maps at various spatial scales; and (2) 

standardizing the map-related attribute structures (Anderson & Scott Smith, 2011). 

Although the generalized SLC maps enable national-wide soil evaluations, they may be 

inefficient for more intensive and in-depth soil studies (Siltane, 1997). Meanwhile, a 

global soil carbon database was established by Zinke et al. based on an eco-region 

classification scheme (Siltane, 1997; Zinke et al., 1984). However, only 117 soil profile 

records were contained in the Zinke database, and uneven distribution of soil samples 

limited the capability of providing a full SOC description for all eco-regions (Kurz & 

Apps, 1999; Siltane, 1997). Thus, in order to better estimate the terrestrial soil carbon 

distribution, the Canada Forest Service (CFS) was developed by assembling more 

extensive historical SOC data (1,462 records in total).  

Figure 2.1 below shows the differences between Zinke’s database (solid bar) and 

the CFS database (shaded bar) in describing Canadian forest SOC distribution (Kurz & 

Apps, 1999). In each eco-region, obvious differences between the two databases can be 

observed from Figure 2.1.  Due to a lack of sufficient samples, Zinke’s database may 

give rise to biases when representing SOC distribution in the real world. SOC stock may 

be under- or over-estimated in small eco-regions such as the Pacific Cordilleran and 

Subarctic Cordilleran eco-regions. Thus, the CFS database is considered to be an 
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improved data source for large-scale Canadian SOC studies due to its extensive sampling 

coverage. 

 
Figure 2.1 Comparison of Canadian SOC between Zinke's database and CFS database 

Source: Zinke et al. (1984) 

2.1.3. Soil Surveys of Canada: Phase III – 1996 to Present 

Nevertheless, government-driven field soil surveys have decreased from 1995 to 

the present. Anderson and Scott Smith (2011) indicated that only Newfoundland and 

Manitoba still currently maintain their soil surveys. Administrative changes and 

retirement of experienced field surveyors are two major limiting factors that hinder 

acquisition of soil information (Anderson & Scott Smith, 2011). The key emphasis in 

work has currently switched from data collection to maintaining and refining the existing 

soil database.  In contrast, private sector-driven field soil surveys have increased over the 

years. However, private surveys are usually undertaken at local scales or for specific 

projects, and not made available to public users. Insufficient availability of updated soil 

data is still a major challenge, especially when assessing nation-wide soil properties. 
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2.2. Methodology Evolutions in Estimating SOC Distribution 

Existing SOC estimation approaches can be categorized into two groups, (a) the 

Measure and Multiply Approach (MMA) and (b) the Soil Landscape Modeling (SLM) 

approach (including geostatistical analysis and spatial regression analysis techniques used 

in this study) (Grunwald, 2006; Mishra et al., 2010; Schimel & Potter, 1995; Thompson 

& Kolka, 2005; Zhang et al., 2011). In early years, SOC estimations were mainly 

conducted at regional scales by calculating the average SOC stock within certain areas 

based on soil survey maps (Thompson & Kolka, 2005). MMA techniques, which have 

been widely employed, divide the study area into several strata. For each stratum, the 

SOC stock can be extrapolated by multiplying the average of observations by the 

stratum’s total area (Mishra et al., 2010; Schimel & Potter, 1995). For example, 

Schlesinger (1977) selected eleven ecosystems to estimate the total SOC stock in the 

world. In his work, the average SOC stock was calculated within each ecosystem and 

multiplied by each ecosystem’s total area. In doing so, Schlesinger (1977) concluded that 

the worldwide estimated SOC stock in the top one meter range was approximately 1,515 

Pg. This number is in agreement with results obtained by Eswaran (1993) and Batjes 

(1996) who used similar MMA approach and obtained the results of 1,576 Pg and 1462-

1548 Pg, respectively. 

Although MMA is easy to implement, its accuracy is limited due to the lack of 

spatial variation considerations (Meersmans et al., 2008; Mishra et al., 2010). Uncertainty 

is substantial when using estimates at local scales of analysis (Meersmans et al., 2008). It 

is inaccurate to estimate an entire region’s SOC stock based on a small quantity of 

samples and assuming that SOC distribution is homogenous at continental scales (Mishra 

et al., 2010; Thompson & Kolka, 2005). According to previous studies, SOC estimation 

is sensitive to sampling design and sampling density (Galbraith et al., 2003; Mishra et al., 

2010; Thompson & Kolka, 2005). This suggests that estimation errors at un-sampled 

locations could likely be due to spatial variability of SOC (Eswaran 1995; Zhang et al., 

2011). On the other hand, environment-induced variations, such as climatic conditions 

and terrain attributes, also influence SOC stock at national and regional scales (Hontoria 
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et al., 1999; Zhang et al., 2011). Thus, more reliable approaches are required to improve 

the accuracy of SOC estimation at various spatial scales of analysis. 

Compared to MMA, SLM is a more-effective approach for SOC estimation, since 

it  models a statistical relationship between the SOC (dependent variable) and a set of 

environmental determinants (independent variables), based on samples collected across 

the study area (Grunwald, 2006; Mishra et al., 2010; Thompson & Kolka, 2005).  Once 

the relationship is developed, it is able to estimate SOC stock at un-sampled locations, 

although at various levels of certainty (Mishra et al., 2010). According to Grunwald 

(2006), the first factorial-based model was developed by Jenny in the 1940s. Jenny’s 

model is: 

S = f (c, o, r, p, t)                                                         (2.1) 

where s is the specific soil properties, f is the quantitative model, c is the climatic 

conditions, o is the soil organisms, r is the terrain attributes, p is the parent materials, and 

t is the time. This factorial-based model has been widely applied by researchers in SOC 

distribution studies (Grunwald, 2006; Webster, 1994). It succeeds in describing the 

combined impacts of environmental determinants on pedogenic processes, as well as 

providing a baseline for assessing soil-environment interactions. Two principles should 

be taken into consideration when applying Jenny’s model: 

(1) In soil-environment modelling, it is very difficult to include all the independent 

variables mentioned in Jenny’s model because not all the variables can be measured 

quantitatively, especially categorical variables such as parent materials (Grunwald, 

2006). In addition, incorporating categorical variables would limit the performance of 

regression models due to the added complexity.  

(2) The magnitude of each independent variable is restricted to specific study areas 

(Bergstrom et al., 2001). For example, Wang et al (2002) found that slope had no 

obvious impacts on forest SOC distribution in northeastern Puerto Rico. Conversely, 

slope is identified as one of the statistically significant environmental determinants 

that influence forest SOC distribution in southern Taiwan (Tsui et al., 2004). Results 

from the Pearson correlation analysis showed that slope is negatively related to forest 
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SOC collected from different depths (0-5 cm and 5-15 cm), with correlation 

coefficients of -0.4 and -0.36, respectively. 

The selection of quantitative models (f) also influences SOC estimation results. 

Traditionally, non-spatial statistical approaches, such as Pearson correlation and multiple 

linear regression (MLR) analyses were widely accepted (Meersmans et al., 2008; Mishra 

et al., 2010; Thompson & Kolka, 2005; Zhang et al., 2011). MLR models are 

implemented based on three hypotheses: (1) SOC samples are independent of each other; 

(2) regression residuals are independent of each other; and (3) the SOC- environment 

relationship remains the same across the study area (Lichstein, 2002; Mishra et al., 2010). 

However, early soil scientists proposed that an autocorrelated variable would violate the 

aforementioned hypotheses (Grunwald, 2006; Webster, 1994). This viewpoint is 

consistent with Tobler’s First Law of Geography stating that adjacent objects are more 

related to each other (Tobler, 1970). This has also been supported by previous research 

showing that SOC is strongly auto-correlated in space, because similar soil properties, as 

well as soil-environment relationships, are usually observed in proximal geographic areas 

(e.g., Legendre & Fortin, 1989; Trangmar et al, 1985; Wang et al., 2002). Leung (2000) 

argued that, in reality, the relationships between SOC and pertinent environmental 

determinants vary spatially; thus the regression coefficient for each determinant should 

not be assumed to be constant across the entire study area. Consequently, such a “global” 

statistical approach is not capable of capturing spatial variations and spatial dependence 

in SOC distribution at local scales (Wang et al., 2002; Zhang et al., 2011). For large-scale 

studies, MLR models are mainly used to represent the relationship between dependent 

and independent variables. 

In recent years, quantitative models employed in the SLM approach have adopted 

advanced statistical algorithms to address the aforementioned limitations. Primary 

techniques include geostatistical analysis and spatial regression models, which are 

described in the following sections. Thus, SOC distribution can be estimated and 

predicted on the basis of spatial dependency and environmental correlations (Goovaerts, 

1999).  
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2.2.1. Geostatistical Analysis 

Geostatistical techniques were introduced in soil studies in the mid-1960s 

(Grunwald, 2006). SOC values at unsampled locations are estimated using interpolation 

methods, such as Inversed Distance Weighting (IDW) and Kriging, based on a set of 

collected SOC samples within a user-defined neighbourhood radius. Thus, continuous 

SOC distribution throughout the study area is estimated from discretely collected samples 

(Liu et al., 2011).  In the Kriging method, spatial dependence is examined by the semi-

variogram γ, which calculates the variance between each pair of samples (Bergstrom et al., 

2001; Grunwald, 2006; Liu et al., 2011; Wang et al., 2002): 

       (2.2) 

where γ is the semi-variogram, h represents each lag distance, Z(xi) is the sample’s value 

at location xi, and N is the number of data pairs. The semi-variogram is illustrated in 

Figure 2.2: range is the smallest distance at which SOC samples are not spatially 

correlated with each other, C0 is the nugget which is caused by measurement errors and 

micro-scale (distances that are shorter than sampling intervals) variations (Cressie, 1988), 

and partial sill is the variance caused by environmental factors (Qiu et al., 2011). 

 
Figure 2.2 Illustration of semi-variogram parameters 

Source: Qiu et al. (2011) 

Ettema and Wardle (2002) went a step further to explore different semi-

variograms and the corresponding surface patterns of soil properties (e.g., SOC and soil 

biota distribution). As shown in Figure 2.3: (a) in this situation, strong local variations 

are observed, and surface patterns are spotty, reflecting spatial clusters at local scales; (b) 

represents large-scale variations, showing smoother surface patterns; and (c) represents a 
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combined situation, indicating that variations are observed at different spatial scales. 

Thus, Ettema and Wardle (2002) provide deeper insight into the interpretation of spatial 

patterns using geostatistical techniques. 

 
Figure 2.3 Semi-variogram and corresponding surface patterns of soil properties 

Source: Ettema and Wardle (2002) 

McGrath and Zhang (2003) employed a semi-variogram to examine the spatial 

pattern of SOC distribution in Ireland grassland. Results revealed that SOC distribution 

showed strong local variations, with a relatively high nugget and sill ratio (45%). Chuai 

et al. (2012) used a Kriging method (with 12 neighbours) to generate a SOC stock map in 

Jiangsu Province, China. Interpolation results showed that surface SOC stock varied from 

3.25 kg/ m3 to 32.43 km/m3, which was a narrower range than that of the raw field 

collected samples. They explained that this was an expected result because spatial 

interpolation techniques remove outliers and make the spatial patterns of SOC 

distribution relatively smooth (Chuai et al., 2012).  

A similar study has been conducted by Wang et al. (2002), who employed 

geostatistical techniques to investigate the spatial distribution of SOC in Puerto Rico’s 

Luquillo Experimental Forest area (LEF, approximately 110 km2) and to explore spatial 

relationships between SOC and  a set of ecological variables, which include soil moisture 

(SM), elevation, slope, and aspect. They found that SOC stock shows a relatively large 
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range of spatial dependence (approximately 3 km), indicating that SOC is not randomly 

distributed in LEF and that the spatial distribution of SOC is likely controlled by both 

climatic conditions and terrain attributes within proximal areas (Wang et al., 2002). In 

addition, Pearson correlation analysis was applied to provide a baseline for evaluating 

relationships between SOC and ecological variables. Results revealed that SOC is 

positively related to SM and elevation across the entire study area, with the correlation 

coefficients of 0.86 and 0.57, respectively. However, no detailed information on how 

these relationships vary in space was provided. Wang et al. (2002) went one step further 

to examine SOC-SM relationship, by using a cross-correlation approach. Results 

suggested that the strength of the positive correlation between SOC and SM decreased 

with increasing separation distances. As shown in Figure 2.4, when the separation 

distance exceeded a certain range (approximately 5,000 m for SM), a negative correlation 

was observed between SOC and SM. 

 
Figure 2.4 Spatial correlation between SOC and soil moisture 

Source: Wang et al. (2002) 

 

2.2.2. Spatial Regression Models 

Statistically, a set of spatial autocorrelated dependent variables can lead to 

clustered regression residuals (Collins et al., 2006). Voss et al. (2006) explained that if 

independent variables fail to account for the spatial autocorrelation in the dependent 

variable, the autocorrelated component will remain in the regression model’s error terms, 
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with higher or lower errors tending to cluster together. Since the phenomenon of spatial 

dependence intrinsically breaks the assumptions of non-spatial regression models, spatial 

autocorrelation test statistics (e.g., Moran’s I test) are usually applied prior to any 

statistical analysis to test for spatial dependence. Using the Moran’s I test, spatial patterns 

(e.g., the magnitude of spatial autocorrelation and the distribution of spatial clusters) of 

the targeted objects are identified. If a high magnitude of spatial autocorrelation is 

detected, spatial regression models should be employed for further statistical analysis. For 

example, Huo et al. (2011, 2012) used the Moran’s I test statistic to examine the spatial 

distribution of heavy metals in Beijing agricultural soils. They found that heavy metals 

show positive and relatively strong spatial autocorrelation in space. 

In general, spatial dependence is incorporated into regression models in two ways: 

(1) a spatial lag effect on the dependent variable; and (2) an error term, which refers to 

spatially correlated residuals (Anselin, 2009; Ward & Gleditsch, 2007). Accordingly, 

spatial lag models and spatial error models are designed to adjust for the effects of spatial 

dependence. The former add a spatially lagged component to regression models, while 

the latter ones assume that a regression model’s errors are spatially correlated (Dormann 

et al., 2007; Ward & Gleditsch, 2007). When the influences on a dependent variable at 

location i, yi, are dominated by its neighbours, yn, spatial lag models should be applied 

(Ward & Gleditsh, 2007). Otherwise, when the influences on the dependent variable are 

caused by omitted independent variables, spatial error models is the appropriate model 

specification (Dormann et al., 2007).  

Consequently, both spatial regression models are superior to traditional regression 

models in that they allow researchers to take spatial dependence into account. However, 

although spatial regression models have been widely applied in social science studies 

(e.g., crime mapping and disease diffusion), these statistical methods, or models, are 

seldom employed in current ecological studies (Dormann et al., 2007). This leads to a gap 

in the literature that has been identified for this study for analyzing SOC-environment 

interactions using spatial statistics and modelling techniques. 

 An alternative method to account for spatially correlated residuals is the use of a 

Geographic Weighted Regression (GWR) model. It is a function based on a pre-defined 
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spatial kernel and is used to capture local variations in SOC-environment relationships. 

Only the samples within the spatial kernel are involved in statistical calculations (Zhang 

et al., 2011). The further a sample observation is located away from the given center 

point, the less weight will be assigned to it (Foody, 2004). Thus, instead of assuming the 

SOC distribution follows the same spatial pattern within the entire study area, the 

calculated regression coefficients for different environmental determinants vary in space 

because of different weights (Mishra et al., 2010). For example, Mishra et al. (2010) 

applied a GWR model to estimate SOC distribution at the regional scale in the 

Midwestern United States. A spherical semivariogram model was used to determine the 

appropriate radius of the spatial kernel. Results revealed that the GWR model was 

capable of reducing smoothing issues caused by interpolation. Thus, Mishra et al. (2010) 

concluded that GWR could improve the overall estimation accuracy and generate more-

reliable results. Similar conclusions have been found in other studies, such as by Zhang et 

al. (2011) and Scull (2010).  

2.3. Useful Ecological Factors in Soil-Environment Relationship Modelling 

In general, key environmental determinants in modelling relationships between 

SOC and the environment at regional scales can be classified into two groups: climatic 

regime variables and terrain attributes (Jobbágy & Jackson, 2000; Mishra et al., 2010; 

Scull, 2010; Zhang et al., 2011). In the following two sections, the impact of each 

environmental determinant on forest SOC distribution is discussed. 

2.3.1. Climate Factors 

Shakiba and Matkan (2005) stated that specific soil properties, such as SOC 

distribution, are relatively sensitive to different climatic conditions. Similar conclusions 

were drawn by Birkeland (1974), namely that most soil types and soil morphology are 

observed only in specific climatic regions. In his publication, Birkeland (1974) compared 

the American soil classification map with accumulated precipitation and averaged 

temperature maps in summer and winter months, and concluded that American soil 

zonation generally followed climatic gradients. Therefore, at national and regional scales, 

the most notable impacts on SOC distribution are considered to be climate variables 
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(Birkeland, 1974). Many researchers have provided the supportive viewpoint that abiotic 

factors (e.g., climatic conditions and terrain attributes) are more dominant than the 

amount and magnitude of organic carbon inputs (e.g., litterfall, fine root turnover, soil 

microbial residues, and animal residues) in terms of influencing SOC distribution in 

forest ecosystems and at synoptic scales (Kirschbaum, 1995; Simmons, 1996).  

In general, the impact of temperature on northern forest SOC distribution is two-

fold (Jenkinson et al., 1991). On one hand, air temperature changes alter forest SOC stock 

indirectly by influencing vegetation growth and regeneration (Bhatti et al., 2006; 

Jenkinson et al., 1991). Increasing temperatures extend the length of growing seasons, 

and thus enlarge the potential quantity of litterfall accumulation (Bhatti et al., 2006; 

Jenkinson et al., 1991; Kirschbaum, 1995).  

On the other hand, air temperature changes directly alter northern forest SOC 

stock by influencing soil temperatures. Oechel and Vourlitis (1995) argued that high-

latitude soils in northern forest ecosystems, including boreal forest soils and transitional 

forest-tundra soils, are more influenced by temperature than low-latitude forest soils. 

They explained that soils in northern forest ecosystems are usually characterized as cold 

and wet. The increases in global air temperature caused by climate change could 

potentially give rise to higher soil temperatures, and thus shift the balance between soil 

respiration and SOC accumulation, as well as increase the rate of SOC decomposition 

(Oechel & Vourlitis, 1995). A similar viewpoint was supported by Jobbágy and Jackson 

(2000), who suggested that temperature influences SOC distribution mainly through 

accelerating or decelerating the organisms’ decomposition processes. 

To date, the influence of temperature on SOC distribution remain controversial. 

Kirschbaum (1995) and Tewksbury and Van Miegroet (2007) suggest that increasing 

temperatures result in a higher SOC decomposition rate, and thus lead to reduced SOC 

stock. A divergent result was suggested by Gifford (1992) that temperatures generate 

very weak impacts on changes in SOC stock. Thornley and Cannell (2001) also pointed 

out that no obvious evidence has been found to support a negative correlation between 

temperature and SOC because of this contradictory mechanism in forest ecosystems: 

increasing temperatures tend to increase the amount of litterfall inputs and accelerate 
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SOC decomposition rates. Thus, conclusions have been made that the impacts of 

temperature on SOC distribution are difficult to simulate, and vary according to different 

study areas.  

In comparison to temperature effects, the impact of precipitation on SOC 

distribution is usually observed to be dominant and positive. First, a large amount of 

precipitation results in high levels of soil moisture, which tend to reduce SOC 

decomposition rates by slowing and restricting oxygen diffusion processes (Deluca & 

Boisvenue, 2012). In addition, an adequate amount of precipitation promotes forest 

growth, and thus increases potential carbon inputs into the soil (Bhatti et al., 2006). 

Therefore, soils in humid eco-regions usually accumulate more organic carbon (Buringh, 

1984; Davidson et al., 2000). 

2.3.2. Terrain Factors 

Previous studies have suggested that primary terrain attributes (e.g., elevation, 

slope, aspect, drainage capacity, and vegetation biomass) have notable influences on SOC 

distribution (Birkeland, 1974; Grunwald, 2006). For example, Terra et al. (2004) and Bou 

Kheir et al. (2010) pointed out that quantifying SOC-environment relationships is quite 

sensitive to study areas characteristics. They suggested that different topography features 

could result in unique spatial patterns of terrestrial carbon distribution. In SOC-landscape 

modelling, topography is considered to be the most dominant influence on pedogenic 

processes, due to the dependence of both micro-climatic regimes and other terrain 

attributes on elevation gradients (Birkeland, 1974; Tewksbury & Van Miegroet, 2007). 

For example, mountainous areas usually experience colder temperatures compared to flat 

areas, resulting in a shorter growing season (Colpitts et al., 1995).  

Elevation gradients also create different slope and aspect conditions, which 

greatly contribute to spatial variations in SOC distribution by changing the movement of 

underground waterflow (Birkeland, 1974; Colpitts et al., 1995). In steep slope areas, 

waterflow velocities are relatively higher than those in flat areas, resulting in rapid 

nutrient loss from soils. Therefore, downslope soils tend to receive and hold more organic 

matter than upslope soils due to higher levels of water-saturation (Colpitts et al., 1995), 
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indicating a negative impact of slope position on SOC distribution. A similar relationship 

between SOC distribution and slope was supported by Terra et al. (2004), who reported a 

negative correlation between SOC and slope in central Alabama. Rather than affecting 

waterflow velocity, the aspect of slopes influences SOC distribution by controlling the 

direction of waterflow, and thus determining the location of organic matter accumulation 

(Colpitts et al, 1995; Tsui et al., 2004). Another useful terrain attribute is soil drainage 

capacity, which has similar effects on SOC distribution as slope. In rapid- and well-

drained areas, soils are usually observed as loose and penetrable, and thus organic matter 

can easily run off with underground waterflow (Clopitts et al., 1995). This phenomenon 

is widely observed in various ecosystems (e.g., Ju & Chen, 2005; Meersmans et al., 2008). 

For example, Meersman et al (2008) found a negative relationship between SOC stock 

and drainage capacity in Flanders, Belgium. 

In addition, forest soil properties are influenced by vegetation cover and 

composition (Tsui et al., 2004).  As previously discussed, vegetation cover influences 

SOC input and distribution through litterfall accumulation. A study by Chen et al. (2003) 

found that organic carbon distribution is positively related to forest age. This viewpoint 

was supported by Luyssaert et al. (2008), which found that old-growth forest is more 

capable of SOC sequestration than young-growth forest. Figure 2.5 shows the 

distribution of forest age in Canada from 1973 to 1998. Young-growth forests (mainly 

due to forest fires) are commonly found in mid-western Canada, whereas old-growth 

forests are predominant in western and eastern Canada (Luyssaert et al., 2008). This 

distribution is consistent with the CFS database records, which show high SOC stock in 

coastal regions. 

2.4. Chapter Summary 

To date, Canadian SOC studies mainly focus on carbon estimations made at local 

scales of analysis (e.g., Bhatti et al., 2002; Chen et al., 2003; and Kurz & Apps, 1999). 

Little effort has been made to simulate and evaluate the SOC-environment relationships 

in Canadian forest areas regional scales of analysis. More specifically, there is a lack of 

accurate and updated national soil survey data available for current Canadian forest SOC 

estimations. 
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Figure 2.5 The distribution of forest age for the previous decades from 1973 to 1998 
Source: Chen et al. (2003) 

A geostatistical analysis and spatial regression modelling approach can be used to 

incorporate spatial effects for predicting patterns of SOC distribution and for modelling 

SOC-environment relationships. Although spatial regression models have been widely 

accepted by researchers, the use of such models still remains uncertain because it is 

difficult to determine whether the correlated residuals are caused by local variations or by 

the omitted environmental determinants (Jetz et al., 2005). Thus, an assumption is made 

that spatial regression models provide better performance when a set of independent 

variables that are capable of fully describing SOC-environment relationships is available 

for use. Moreover, the SOC-environment relationships are difficult to estimate, because 

the ecological influences on SOC distribution are manifold and complex. Organic carbon 

accumulation and decomposition processes occur simultaneously in ecosystems 

(Grunwald, 2006), which are difficult to quantify in statistical models. Based on the 

aforementioned discussion, useful attributes in soil-environment modelling are 

summarized in Table 2.2. 
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Table 2.2 Useful criteria in modelling the SOC-environment relationships 
Criteria  Description Sample Research Papers 
Terrain 
Attributes 

Parent 
Material 

Foundational materials in 
pedogenic processes that 
provide a basis for soil 
generation. 

Grunwald, 2006. 

 
Land Cover 
Land Use 

The coverage of land surfaces.  
Historical changes of land cover 
and land use influence soil 
generation, resulting in different 
soil properties. 

Conen et al., 2004; 
 Grunwald, 2006;  
Yuan et al., 2013. 
 

Topography Primary terrain attributes, 
including slope, aspect, 
elevation, and drainage 
capacity. 

Birkeland, 1974; 
Tsui et al., 2004. 

Vegetation 
Biomass 

Vegetation provides carbon 
inputs into soils. 

Chen et al., 2003; 
Tsui et al., 2004. 

Climate 
Conditions 

Temperature  Major environmental 
determinants in SOC-
environment relationships 
which influence SOC 
distribution by changing 
decomposition rates and 
litterfall accumulation. 

Jenkinson et al., 1991;  
Jobbágy & Jackson, 2000. 

Precipitation  Birkeland, 1974; 
Deluca & Boisvenue, 2012. 

Other Soil Properties Internal determinants in SOC-
environment relationships, 
including Potential of Hydrogen 
(PH) values, soil nitrogen, and 
different soil types. 

Islam & Weil, 2000. 
Riha et al., 1986. 

Human Disturbances Human-induced impacts on 
SOC distribution, include forest 
clearance and forest fires. 

Grunwald, 2006;  
Rashid, 1987. 

Time The impacts on SOC 
distribution caused by the 
changes of environmental 
determinants. 

Grunwald, 2006. 

Sampling Considerations The model parameters that 
affect the performance of 
statistical analysis, including 
sampling design, density of 
observations, and the total 
number of observations. 

Gallardo, 2003; 
Grunwald, 2006; 
Yuan et al., 2013. 
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Chapter 3. Study Area 

The study area for this thesis is mapped in Figure 3.1, focusing on forest covered 

areas in Canada, while excluding tundra areas, grassland, and main waterbodies.  Rowe 

(1972) provides a description of Canadian forest areas, focusing on a general 

identification of vegetation categories and their areal distribution. In his work, each forest 

region is delineated as one geographic zone that shares similarities in both ecological 

conditions and dominant vegetation species compositions. Figure 3.2 below shows the 

distribution of Canadian forests based on statistics undertaken by the Canada Forest 

Service in the 1970s. In Canada, eight forest regions are identified on a macro-scale level, 

including:  the Boreal region, Subalpine, Montane, Coast, Columbia, Deciduous, Great 

Lakes-St. Lawrence, and Acadian (Rowe, 1972). The Boreal region is notably the largest 

constituent of Canadian forest areas.  

As shown in Figure 3.1, seven eco-climate regions are delineated: the Subarctic, 

Boreal, Cool Temperate, Subarctic Cordilleran, Cordilleran, Interior Cordilleran, and 

Pacific Cordilleran. The treeline (represented by a black dashed line) or altitude above 

which less trees grow is located in the subarctic eco-region is also visible in Figure 3.1.  

MacDonald and Gajewski (1992) stress that the tree line is not a specific curve that 

explicitly separates the forest and non-forest areas. Instead, it represents a transitional 

zone consisting of forest and other northern surface features (e.g., tundra). Due to lack of 

sufficient soil samples, the moderate temperate eco-region (containing only two soil 

samples and located in the most southern part of Canada), is excluded from the study. 

Since vegetation growth is restricted by climatic conditions, Rowe (1972) suggested that 

the distribution of forest regions follows the patterns of macro-scale eco-climatic 

gradients quite closely. Comparing the distribution of Canadian forest regions (Figure 3.2) 

to the eco-climatic zones (Figure 3.1), we can observe great a high degree of similarity 

between the spatial distribution of different forest types and eco-climatic zonation across 

Canada. According to the Ecoregions Working Groups (1989), each broad eco-region is 

distinguished and defined based on its ecological responses (e.g., vegetation types, soils 

types, hydrological conditions, and biota) to different climatic regimes. Detailed 

descriptions of ecological conditions for each eco-region are summarized in Table 3.1. 
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Figure 3.1 Study area 

 
Figure 3.2 The distribution of Canadian forest regions 

Source: Rowe (1972) 
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Table 3.1 Descriptions of the ecological conditions for each eco-region 
Eco-region Ecological Description 

Eco-region 2 
Subarctic 

 

The transitional forest-tundra belt area distributed in high-latitude 
continent, with a tree line traverse the central eco-region. Beyond the 
tree line, vegetation growth is limited mainly due to the cold and dry 
climatic conditions (Timoney et al., 1992). Generally, the terrain is 
relatively flat, and is covered by coniferous forest (e.g., spruce) 
The growing season is cooler and shorter, and usually lasts for five 
months. The average volume of precipitation in growing season is about 
500 mm, with more rainfall distributed in the coastal areas (the Eastern 
Subarctic) and less in the inland areas. 

Eco-region 3 
Boreal 

 

The largest and continuous climatic belt stretching from Alberta to 
central Quebec and Nova Scotia, thus experiences more variability of 
ecological conditions. The western boundary of this eco-region is 
relatively sharped by the increasing elevation in British Columbia’s 
(B.C.) mountainous areas. Thus, the Western Boreal experiences a 
cooler and drier growing season, contrary to the eastern parts whose 
growing season is longer, warmer, and rainy. 
The Boreal eco-region is also dominated by coniferous forests, and most 
SOC distribution is found in northern Ontario and eastern Quebec (Ju & 
Chen, 2005; Lee et al., 2010). 

Eco-region 4 
Cool Temperate 

 

This eco-region is characterized by mixed forests, including both 
coniferous and deciduous forests.  
Compared to those of high-latitude eco-regions, the Cool Temperate 
eco-region’s growing season is much warmer and longer, with daily 
mean temperature above 0 °C generally extend from late March to 
November. Additionally, most rainfall is received from mid-summer to 
early-fall. 

Eco-region  7 
Subarctic 

Cordilleran 

 

The alpine and sub-alpine areas sparsely covered by coniferous forests 
in high-latitudes. The highest elevation exceeds 2,200 m.  
This eco-region undergoes a cold climate, with the mean annual 
temperatures around -5 °C to -10 °C. Inadequate precipitation is another 
main characteristic of this eco-region, with a range of 250 mm to 450 
mm on an annual base. 

Eco-region  8 
Cordilleran 

 

The north-to-south climatic belt composed of mountainous topography. 
Thus, aspect along the elevation gradient is considered as an important 
factor controls soil moisture and forest growth. Coniferous forest is the 
dominant vegetation type.  
Growing season in the northern part is generally cold and short, while 
the southern parts are warmer and receives more rainfall. 
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Eco-region  9 
Interior 

Cordilleran 

 

This eco-region is observed in southern B.C., with a mixed forest group. 
Mountains and valleys form the primary topography.  
The growing season is characterized as warm and semi-arid because it is 
located at the lee-side of the coastal mountains which prevents maritime 
moisture transferring into inland. The monthly precipitation ranges from 
30mm to 50 mm. 

Eco-region  10 
Pacific 

Cordilleran 

 

A long and narrow climatic belt occupies the coastal areas. The growing 
season is cold and dry in the northern part of the eco-region; however, 
heavy rainfall is distributed throughout the southern parts, with monthly 
precipitation ranging from 150 mm to 350 mm. 
Soils in this eco-region are wet and relatively rich of nutrients and 
organic matters due to the accumulation of forest litterfall.  

  

In summary, the boundaries of the Canadian forest, as well as the eco-region 

framework, have been selected to delineate the study area. This is based on two reasons. 

First, the Canadian forest is one of the largest carbon reservoirs in the global carbon cycle, 

and thus plays a significant role in global carbon regulations. Second, carbon regulations 

require deeper insight and understanding of SOC-environment interactions, yet few 

efforts have been made to explore the spatial relationships between Canadian forest SOC 

distribution and pertinent environmental determinants at regional scales. Therefore, the 

Canadian forest regions were adopted as the study area boundaries, while the seven eco-

region boundaries were employed to provide a zonation framework for assessing SOC 

distribution. 
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Chapter 4. Data 

4.1. SOC Data 

As discussed in Section 2.1.2.1, after comparing the three nation-wide soil 

databases, the CFS database was employed in this study. As the first forest SOC database 

in Canada, CFS assembled and compiled data from field surveys undertaken before 1991, 

making it a useful mechanism for preserving historical SOC data. The development of the 

CFS database began in 1991. In addition to provincial- and federal-led field surveys, soil 

profiles obtained by private research groups and individual research papers were also 

included in the database. To ensure high-quality soil carbon data compilation, private 

research was strictly reviewed with two major criteria: (1) the study area was adequately 

described; and (2) a standard methodology framework for soil data analysis was 

established (Siltane, 1997). For example, in one of the referenced sources, Strong and La 

Roi (1985) collected soil samples from the Boreal forests in central Alberta. Detailed 

description of study area, field work processes, and laboratory procedures on soil nutrient 

content calculation were provided. As a result, 1,462 records from 170 referenced sources 

across all eco-regions and administration provinces in Canada were selected and added to 

the database (Siltane, 1997). After omitting records from tundra areas and only focusing 

on forest regions, the remaining 1,317 records are used in this study. 

A map showing the distribution of original SOC sample points is presented in 

Figure 4.1.  Most SOC samples were collected from the southern regions of Canadian 

forest ecosystems with the number of samples gradually deceasing in concentration 

towards northern regions. No samples were collected in mid-Quebec and northern 

Ontario that are highlighted by red ellipses in Figure 4.1. The absence of data collected in 

these two areas is due to the unavailability of field surveys in these areas during the study 

period from 1961 to 1991. 

It is important to note that a number of constraints exist with the use of this 

dataset. Siltane (1997) pointed out in the database documentation that soil carbon 

information from peat land and agricultural areas were excluded from the database 

because of different pedogenic processes and rapid soil properties changes.  Also, due to 
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the lack of available field surveys, soil carbon data for northern Ontario and mid-Quebec 

were excluded from the database (Siltane, 1997). Consequently, soil carbon data were 

derived from relatively undisturbed forest- and tundra-environments. For each soil profile 

record, the SOC stock (measured in kg per square meters) was measured to a depth of one 

meter of mineral soil. The corresponding drainage capacity levels from 1 to 6 defined by 

Agricultural Canada for each record was also coded in the database, with 1 representing 

rapid drainage and 6 for very poor drainage (Siltane, 1997). 

 
Figure 4.1 The spatial distribution of 1317 CFS soil samples collected in Canadian forest 

areas before 1991. Areas without soil samples are labelled in red. 
Source: Canada Forest Service (CFS) soil database 

4.2. Climate Data 

Long term climate data in growing seasons (April to October) from 1961 to 1991 

were collected in the study. This time period was selected based on two reasons: (1) the 

forest soil database consists of extensive historical data before 1991; and (2) the number 

of soil surveys in Canada considerably increased in the 1960s and reached a peak in the 

1970s and 1980s, meaning that most soil data was collected within this time period. Daily 

10 km Gridded Climate datasets for Canada provided by the National Land and Water 

Information Service, Agricultural Canada, were selected due to their large landmass 
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coverage (up to 60 degrees north). Climate data from 7,514 weather stations were 

recorded and implemented in the ANUsplin model using a thin plate smoothing spline 

surface fitting method (Agricultural Canada, 2008). The climate dataset consists of daily 

maximum and minimum air temperatures (°C) and daily precipitation (mm), enabling the 

temperature-sensitivity of SOC distribution to be examined. 

In order to obtain complete landmass coverage, seasonal climate records beyond 

the 60 degrees north line (in .xlsx format) were collected from Environment Canada. Due 

to data availability, climate data from 34 weather stations across three Northern provinces, 

the Yukon, the Northwest Territories, and Nunavut were selected and added to the dataset. 

4.3. Terrain Data 

The 16-day Normalized Difference Vegetation Index (NDVI) datasets employed 

in the study were acquired from the Global Inventory Modeling and Mapping Studies 

(GIMMS). NDVI, which is a vegetation index calculated from the red and near-infrared 

bands, has been widely used to assess vegetation status and biomass (Zhou et al., 2007). 

The geometric- and atmospheric-calibrated GIMMS NDVI products were obtained from 

the Advanced Very High Resolution Radiometer (AVHRR) satellite instrument at 8 km 

spatial resolution (Tucker et al., 2004). GIMMS NDVI products for a period of 25 years, 

from 1981 to 2006, are available for public use. To maintain consistency between climate 

and NDVI datasets, 16-days GIMMS NDVI datasets from1981 to 1991 were selected. 

In addition, other primary topographic attributes – elevation, slope, and aspect – 

were derived from a digital elevation model (DEM) product (Canada3D) provided by the 

Canadian Forest Service. Ground elevation with a full landmass coverage from 41˚-83˚ N 

and from 52˚-148˚ W were obtained at 30 arc-seconds (approximately 926 m) spatial 

resolution (National Resource Canada, 2001). As discussed in Section 3, Rowe’s forest 

boundaries provided by the Canada Forest Service and eco-region boundaries from 

Environment Canada were employed to delineate the boundary of the study area.  

Since the main objective of the present study is to explore spatial relationships 

between SOC and ecological variables (climatic conditions and terrain attributes), soil 

properties such as parent material, soil pH values, bulk density, and other soil 
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compositions (e.g., the percentage of clay and silt) are not considered. The soil properties, 

as well as other factors such as land cover and land use changes and forest harvest and 

clearance, were also not considered due to data availability. The original data sources for 

the present study are listed in Table 4.1. Specifically, the variables used in soil-

environment modelling are shown in Table 4.2 below. 

Table 4.1 The original data sources 
Data Date Data 

Type 
Temporal 
Scale 

Spatial 
Scale 

Source 

Carbon Density (kg/m2) < 1991 Point N/A N/A Canada Forest 
Service 

AVHRR NDVI 1981 to 
1991 
(Apr. to 
Oct.)  

Grid 
Raster 

15 Days 8 km *  8 
km  

Global Land 
Cover Facility 

Climate 
Data 
below 
60 ˚N 

Max. and Min. 
Temperature 
(˚C) 

1961 to 
1991 
(Apr. to 
Oct.)  

Grid 
Raster 

Daily 10 km * 
10 km 

Agricultural 
Canada 

Precipitation 
(mm) 

Climate 
Data 
beyond 
60 ˚N 

Max. and Min. 
Temperature 
(˚C) 

1961 to 
1991  
(Apr. to 
Oct.) 
 

Point Monthly N/A Environment 
Canada 

Precipitation 
(mm) 

Elevation (m) 2001 Grid 
Raster 

N/A 926 m * 
926 m 

GeoGratis 

Eco-Climate Region 1989 Polygon N/A N/A Environment 
Canada 
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Table 4.2 Dependent and independent variables for statistical modelling of the SOC-
environmennt relationships 
Dependent Variable Description 
SOC (kg/m2) SOC stock measured to a depth of 1 meter mineral soils 
Independent Variables Description 
Precipitation (mm) Average total precipitation in growing seasons (April to 

October) from 1961 to 1991 
Maximum Temperature (°C) Average maximum temperature in growing seasons from 1961 

to 1991 
Average Temperature (°C) Average mean temperature in growing seasons from 1961 to 

1991 
Minimum Temperature (°C) Average minimum temperature in growing seasons from 1961 

to 1991 
Elevation (m) A DEM model containing ground elevation information 
Slope Terrain relief derived from the DEM model 
Aspect Aspect information derived from the DEM model 
NDVI 16-day average NDVI data from 1981 to 1991 representing the 

mean vegetation biomass  
  



31 
 

Chapter 5. Methodology 

With the aim of examining spatial patterns of SOC distribution in Canada’s forest 

areas and modelling relationships between SOC distribution and environmental 

determinants, an exploratory-based methodology that includes geostatistical analysis, 

Exploratory Spatial Data Analysis (ESDA), and spatial regression analysis was conducted 

for this study. The exploratory-based methodology scheme is illustrated in Figure 5.1. 

Specifically, descriptive statistics were first applied to describe and summarize the SOC 

samples collected from the Canada Forest Service (CFS) database. Pearson correlation 

analysis was applied to provide a first insight into the strength of associations between 

SOC and ecological variables. In addition, Ordinary Kriging was employed for spatial 

visualization by generating a continuous SOC distribution map for Canadian forest areas.  

Then, global and local spatial autocorrelation statistics were applied to explore 

spatial dependency of Canadian forest soil distribution. In this study, the Moran’s I test 

statistic was selected because it is the most popular statistic of spatial autocorrelation 

(Cliff & Ord, 1981; Huo et al., 2012) and is easily accessible in GIS software (e.g., 

ArcGIS and Geoda).  The spatial cluster patterns derived from Moran’s I tests verified the 

significant spatial effects occurring among SOC samples and verified the use of a spatial 

regression modelling approach. In this study, the Lagrange Multiplier diagnostics test was 

applied for model specification due to its ability of testing for omitted significant 

environmental determinants or a missing spatially lagged dependent variable. Ultimately, 

a predictive SOC map was produced to assist with evaluating the model’s performance.  

5.1. Data Preprocessing 

5.1.1. Climate Datasets 

Based on the previous discussion in Section 2.3.1, the ecological responses of 

SOC distribution to the various temperatures still remain controversial. This study chose 

the average maximum, mean, and minimum temperatures over growing seasons (April to 

October) from 1961 to 1991 to examine temperature sensitivity of SOC distribution. In 

addition, the average precipitation accumulation in the same period was selected as one 
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of the environmental determinants. Since the climate datasets were obtained from 

different sources in different formats, a workflow (shown in Figure 5.2) showing the 

development of the final climate datasets for the study area. 

The daily climate data obtained from Agriculture Canada covers the majority of 

Canada’s forest area, with a full coverage below the 60° N latitudinal line. A python 

script (See Appendix I) was written to automatically calculate the average climate data. 

First, the average maximum/mean/minimum air temperatures for each year’s growing 

seasons were calculated. Then, the daily precipitation data was summed for growing 

seasons. In summary, the mean seasonal temperatures and precipitation values were 

calculated over the period of 1961 to 1991. 

 
Figure 5.1 The exploratory-based workflow proposed by this study, mainly consisting of 
data preprocessing, descriptive statistics of SOC samples in Canadian forest areas, spatial 

autocorrelation analysis, and spatial regression modelling. 
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Figure 5.2 The process of finalizing climate data: merging the interpolated climate values 

beyond the 60° N latitude with the ones below the 60° N latitude 

The initial climate datasets obtained from Environment Canada account for the 

landmass beyond 60° N latitude. However, these datasets are stored in point format, with 

a total of 34 available points.  Thus, an interpolation approach was applied to estimate 

spatially continuous climate-distribution maps in northern Canada. To increase the 

accuracy of the interpolation results, the climate values around the 60° N latitudinal line 

was extracted from Agriculture Canada’s datasets, and then merged with the point data 

extracted from Environment Canada’s datasets. Figure 5.3 helps to illustrate this process 

(the “Merge” step in Figure 5.2), using the average maximum air temperature for 

growing seasons as an example. In doing so, the final point data on which interpolation 

analysis could be performed were obtained and used to generate climate maps beyond the 

60° N latitudinal line.  
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The next step was to estimate unknown climate values for the areas beyond the 60° 

N latitudinal line. In this study, the performance of IDW and Ordinary Kriging 

approaches was compared, because they are the most widely used approaches (Azpurua 

& Ramos, 2010). For IDW approach, the neighbourhood effects on any unknown value 

decrease with increasing distance (Childs, 2004). In addition, theoretical background of 

the Ordinary Kriging approach is explained in Section 5.1.2. To assess the performance 

of IDW and Ordinary Kriging, the criterion of the minimum Root-Mean-Square Error 

(RMSE) was adopted, namely that the lower the RMSE is, the more improved 

interpolated results are obtained (Johnston et al., 2001). In this study, Ordinary Kriging 

was selected due to the lower estimation errors (see Appendix II).The final climate dataset 

for the entire study area was generated by using a Mosaic tool to merge the climate-

distribution maps from above and below the 60° N latitudinal line. 

 
Figure 5.3 Merging the average maximum temperature in the growing season (April to 

October) around the 60° N latitude with the one beyond the 60° N latitude 
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5.1.2. Geostatistical Analysis of Canadian Forest SOC 

According to Goovaerts (1997), all kriging approaches are derived from the basic 

equation: 

   (5.1) 

where uα is the location, λα (u) is the weights assigned to the observations within a user-

defined neighbourhood radius, m(uα) is the mean value within the radius, n(u) is the 

number of observations within the radius, Z(uα) is the sample’s value at location uα, and 

Z*(u) is the estimated sample’s value. The present study adopted the Ordinary Kriging 

approach because it minimizes biases by standardizing the sum of weights to equal to one 

(Goovaerts, 1997). In addition, Ordinary Kriging assumes the mean value is constant 

within the radius of each estimated sample, indicated as m(u) equals to m(uα) (Goovaerts, 

1997). Thus, the equation for Ordinary Kriging is transformed into: 

     (5.2) 

In practice, many researchers have suggested that Ordinary Kriging is the most 

appropriate interpolation method when no strongly global trend exists in the samples 

(Childs, 2004; Lefohn et al., 2005; Negreiros et al., 2010). The global trend refers to any 

directional distribution, such as the impact of prevailing wind on air pollution (Johnston 

et al., 2001). Johnston et al. (2001) stressed the necessity of detrending data in a 

geostatistical analysis:  

(1) If the global trend exists, the assumption of Ordinary Kriging that the mean value is 

constant within the neighbourhood radius of each estimation will likely be violated. 

(2) After removing the global trend, the local-scale variance in the original data can be 

more effectively examined. 

In an ArcGIS software environment, the global trend is detected through Trend 

Analysis, by creating a three-dimension plot. The X and Y axes represent longitude and 

latitude respectively, while the Z axis records the sample’s value at each location 

(example shown in Figure 5.4 (b)). Since samples are projected onto each plane, the 
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global trend can be examined with a user-defined direction (Johnston et al., 2001). In 

addition, Ordinary Kriging requires a normalized distribution of samples (Johnston et al., 

2001). Thus, a log-transformation is usually applied to skewed datasets. Finally, before 

the interpolated distribution-map is created, the data is back-transformed to its original 

scale; also, the trend will be added back to the data (Johnston et al., 2001). Figure 5.4 (a) 

shows the sub-workflow of performing Ordinary Kriging, with solid lines that represent 

detailed steps of this study. Figure 5.4 (b) shows an example of the trend in the north-

south and east-west directions. Since the trend lines are relatively flat, it was concluded 

that no significant trend was observed in the SOC samples of this study. Finally, the 

accuracy of Ordinary Kriging was assessed by the leave-one-out cross validation1 

approach. 

 
Figure 5.4 (a) The sub-workflow of performing Ordinary Kriging, and (b) trend analysis 

of the SOC samples in north-south and east-west directions. 

                                                        
1 Leave-one-out cross validation is a three-step procedure: (1) excluding one sample and estimating its 
value by the remaining samples, (2) repeating the first step for all the samples, and (3) comparing the 
measured and estimated values (Johnston et al., 2001). 
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In summary, the average NDVI over growing seasons from 1961 to 1991 was 

calculated. Two primary terrain attributes, slope and aspect, were calculated from the 

DEM. All datasets, including climate, NDVI, and elevation, were re-sampled to 10 km 

resolution in order to have comparable cell size. In addition, slope and aspect were 

calculated based on the re-sampled elevation data. Finally, corresponding environmental 

data for each soil sample was extracted.  

5.2. Exploratory Spatial Data Analysis of SOC Distribution 

The exploratory analysis on Canadian forest SOC distribution started with a two-

step Exploratory Data Analysis (EDA) approach, descriptive statistics and the Pearson 

correlation analysis. However, one major limitation of EDA is that no spatial information 

is taken into account. For spatially referenced data, spatial arrangement is of essential 

importance because geographic proximity tends to results in spatial dependency 

(Chakraborty, 2011). This phenomenon can be explained by Tobler’s First Law of 

Geography which states that adjacent objects are more related to each other than distant 

objects (Chakraborty, 2011). To this end, Exploratory Spatial Data Analysis (ESDA) is 

designed as an extension of conventional EDA to examine the intrinsic characteristics of 

spatially referenced data. Main functions include the visualization of data properties, 

detection of spatial dependency, and identification of spatial clusters (Anselin, 1999; 

Haining et al., 1998; Oliveau & Guilmoto, 2005). In this study, a two-step ESDA scheme 

was subsequently applied to fully explore any spatial information underlying in the SOC 

distribution at national and eco-region scales, including (1) optimal modelling scale 

calculation, (2) global and local autocorrelation analysis. 

5.2.1. Global Spatial Autocorrelation Analysis 

The basis of exploring spatial patterns is the detection of spatial autocorrelation. 

Rooted in Tobler’s First Law of Geography, global spatial autocorrelation is defined as 

the similarity among one sample and its neighbours (Valcu & Kempenaers, 2010). In this 

study, the global Moran’s I test was applied to examine whether the null hypothesis of 

spatially independent SOC samples should be accepted or not and to measure the degree 

of spatial dependency among SOC samples (Ord & Getis, 1995). Based on the samples’ 
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locations and values (Wulder et al., 2007), the global Moran’s I test measures the strength 

of correlation between a target object and its neighbours based on the equation below 

(Cliff & Ord, 1981; Huo et al., 2011): 

            (5.3) 

where xi is the observation at location i,  is the mean of x, wij is the distance-based 

weight between xi and xj, and n is the number of observations. If global spatial 

autocorrelation among the target objects does not equal to zero, the null hypothesis of 

spatial randomness is rejected and spatial statistical approaches can be adopted. A 

positive global Moran’s I value suggests the comparability among proximal observations, 

meaning that similar observations are clustered together, while a negative value indicates 

a spatially dispersed pattern (e.g., a checkerboard pattern) (Oliveau & Guilmoto, 2005).  

In addition, a Moran’s I scatterplot is usually employed to assist in illustrating global 

spatial autocorrelation: the original observations’ values are recorded on the X axis, the Y 

axis records the weighted average of neighbouring values of each corresponding 

observation, and the slope of the regression line corresponds to the global Moran’s I 

value (Anselin, 2003). Typically, the Moran’s I scatterplot contains four quadrants to 

visually assess the different types of spatial association between each sample and its 

neighbours (Anselin, 1996). The samples in the right upper and left lower quadrants 

represent potential spatial clusters, while the samples in the right lower and left upper 

quadrants represent potential spatial outliers (Anselin, 1996). 

5.2.1.1. Scale Effects of Spatial Autocorrelation 

Since the Moran’s I test statistic is measured based on different user-defined 

neighbourhoods to assess the similarity between one sample and its neighbours (Knegt et 

al., 2010), one critical question relates to how to select “neighbours”. For spatially 

referenced point data, “neighbours” are usually identified by a distance-based approach. 

For each point, surrounding samples located within a certain distance threshold will be 

considered as “neighbours”. However, this user-defined distance threshold selection may 
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be subjective. Thus, in order to minimize human subjectivity, this study adopted the 

Incremental Spatial Autocorrelation approach to calculate the optimal distance threshold. 

Incremental Spatial Autocorrelation is a new tool included in the ArcGIS software, 

which automatically calculates global Moran’s I at a series of incremental distances2 

(ESRI, 2013b). This entails calculating a Z-score3 associated with each global Moran’s I 

value at each distance increment to quantify the strength of spatial dependency. 

According to ESRI (2013c) and Mitchell (2005), a high positive Z-score (i.e. larger than 

1.96, p = 0.05) indicates a significant cluster pattern, while a high negative Z-score (i.e. 

less than -1.96, p = 0.05) indicates a dispersed pattern. Thus, statistically significant and 

positive peak Z-scores signify the spatial scales at which the ecological responses of 

targeted objects to cluster-patterns are most notable (ESRI, 2013b).  In particular, the 

peak Z-scores associated with larger distances indicate general distribution trends (e.g., 

decreasing SOC stock from coasts to interior continental regions), while the peaks 

associated with smaller distances could preserve local variations. Thus, this study used 

the distance where the first peak Z-score occurs as the optimal distance of the proposed 

spatial analysis.  

In addition, when data contains outliers (i.e. samples that are spatially isolated), 

the optimal distance may be over-estimated, because ensuring each outlier to have at least 

one neighbour likely causes some samples to have excessive neighbours (ESRI, 2013a). 

In this study, the Nearest Neighbour Distance (NND) of each soil sample was calculated. 

Any sample with a NND three times larger than its standard deviation (SD) was 

considered as outliers and should be removed (ESRI, 2013a). This process is illustrated in 

Figure 5.5. In this study, the optimal model scales were calculated at both national and 

eco-region scales of analysis. 

                                                        
2 For a set of samples, the average nearest neighbor distance is usually used as the distance increment. The 
ArcGIS software allows a maximum of 30 iterations of distance increment. Since the distance where the 
first peak Z-score occurs was selected as the optimal distance, this study chose 30 iteration of distance 
ncrement to ensure the occurrence of the first peak Z-score. 
 
3 A Z-score is defined as:  𝑍(𝐼) = !!![!]

!"#[!]
  

where I is the observed Moran’s I value, E[I] is the expected value which assumes a random distribution of 
samples and is equals to !!

!!!
, N is the number of samples, and Var[I] is the variance (ESRI, 2013c). 
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Figure 5.5 Determining the optimal modelling scale 

5.2.2. Local Spatial Autocorrelation Analysis 

The global Moran’s I test measures the overall degree of spatial autocorrelation 

and returns a single value applied to the entire study area to indicate an overall spatial 

clustered or dispersed pattern (Anselin, 1995; Wulder et al., 2007). However, local 

variations remain unacknowledged from the results of a global Moran’s I test (Anselin, 

1995; Oliveau & Guilmoto, 2005; Wulder et al, 2007). Miller (2004) suggested that 

attention should be paid when analyzing the spatial patterns of proximal objects, since 

localized interactions among target objects could result in a complex ecological process. 

Thus, Local Indicators of Spatial Association (LISA) test statistics are often used to make 

up for this shortcoming of the global Moran’s I test statistic. LISA assesses the null 
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hypothesis of spatial randomness by measuring the spatial association of each observation 

to its neighbours4 (Anselin, 1995; Unwin & Unwin, 1998). If spatial patterns (cluster or 

disperse) are found around particular samples, the null hypothesis of spatial randomness 

should be rejected. Similar with global Moran’s I test, the optimal distance threshold 

derived from Section 5.2.1.1 was used to define “neighbours” when applying LISA test 

statistics.  

The local spatial autocorrelation analysis highlights four types of local spatial 

patterns: the High-High (HH), Low-Low (LL), High-Low (HL), and Low-High (LF) 

patterns. The HH and LL patterns are known as spatial clusters within which the 

observations have positive Moran’s I values and share similar spatial information, with 

high values located around high values and low values around low values respectively 

(Zhang et al., 2008). The HL and LH patterns are considered as spatial outliers, whose 

values are significantly different from their neighbours (Zhang et al., 2008). All the four 

types of spatial patterns provide unique insights into the spatial distribution of objects of 

interest, thus making spatial autocorrelation a fundamental step in spatial regression 

analysis. 

In this study, the global and local spatial autocorrelation is measured at both the 

national and eco-region scales, with the Subarctic Cordilleran eco-region excluded. 

According to ESRI (2013c) and Mitchell (2005), the optimal number of samples used to 

calculate the Moran’s I index should not be less than 30; otherwise the results may not be 

reliable. This is because any potential outliers would likely affect the identification of 

spatial patterns. Thus, this eco-region was excluded, since it contained a small sample of 

only 14 observations. 

5.3. Spatial Regression Analysis of Modelling SOC-environment Relationships 

The next step of this study involves investigating whether the detected spatial 

patterns of targeted objects are generated by specific processes (Goodchild et al., 1992). 

To achieve this goal, the relationships between SOC and ecological variables at the 

national and eco-region scales were tested based on traditional Ordinary Least Squares 

                                                        
4 The sum of local Moran’s I is proportional to the global Moran’s I (Anselin, 1995). 
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(OLS) regression models. As a non-spatial approach, OLS models are calculated based 

on the variables’ absolute values, without considering the effects of spatial 

autocorrelation. Haining (1993) highlight that the spatial arrangement of locations where 

these values are recorded is also an important aspect of spatial association detection 

because it measures to what degree alike (or unalike) values of two variables are 

clustered together. Statistically, this combined effect of locations and values is known as 

spatial autocorrelation. Disregarding such effects can lead to biased regression 

coefficients and inaccurate estimation errors (Baller et al., 2001; Collins et al., 2006; 

Dormann et al., 2007). In addition, Chakraborty (2011) and Knegt et al. (2010) point out 

that if the spatial autocorrelation in the dependent variable cannot be completely 

explained by the estimated regression model, spatial autocorrelation will be detected 

among the regression residuals. Thus, the assumption of independent residuals is violated. 

Consequently, it is necessary to measure the strength of residual spatial autocorrelation to 

assess the performance of OLS models. For this purpose, the global Moran’s I test 

statistic was applied on OLS residuals. Significant Moran’s I values indicate model 

misspecification and suggest spatial regression models as alternatives.  

Spatial autocorrelation is added to regression models as an independent variable 

to account for potential spatial effects (Chakraborty, 2011). As a result, a location-based 

component can be introduced into traditional OLS regression models in the form of a 

spatially lagged term or a spatial error term, thus developing the spatial lag model and 

spatial error model respectively (Anselin, 2001; Baller et al., 2001; Haining, 1993; 

Kelejian & Robinson, 1993). Although both models are capable of adjusting for the 

influences of spatial dependence, they are designed to simulate different situations in 

nature (Ward & Gleditsch, 2007). The spatial lag model is considered to be more 

appropriate when: (1) the existence of interactions among dependent variable, y , is 

pronounced (Anselin, 2001), (2) the impacts of nearby dependent variables on yi are 

greater than those of independent variables, xn,i, at location i (Ward & Gleditsch, 2007). 

In contrast, the spatial error model takes unobservable factors into consideration, 

suggesting that omitted variables showing certain spatial patterns should account for most 

of the spatial dependence of estimation errors (Ward & Gleditsch, 2007). Thus, the 

spatial error model is frequently used to adjust for immeasurable spatial dependence and 
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to generate unbiased regression coefficients (Anselin, 2001; Ismail, 2006). However, due 

to the lack of solid understandings of ecological activities in forest soils (e.g., the debate 

about temperature effects are previously in Section 2.3.1.), it is usually difficult to assert 

which model is the most appropriate. Thus, the Lagrange Multiplier (LM) test illustrated 

in Figure 5.6 (a) should be first applied to assist with model selection (Anselin, 1988b; 

Velandia et al., 2008). 

 

Figure 5.6 (a) Sub-workflow of model selection, and (b) Illustration of spatial processes 
described by the two spatial regression models 

Source: Anselin (2005); Baller et al. (2001) 

 
5.3.1. Lagrange Multiplier Diagnostics 

The theoretical background of Lagrange Multiplier (LM) diagnostics for spatial 

dependence has been provided by many (e.g., Anselin, 1988a; Born & Breitung, 2011; 

Engle, 1984; Fazekas & Lauridsen, 1999; Haining, 1993; Velandia et al., 2008). 

According to Anselin (2009), spatial dependence is incorporated into regression models 
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in two ways: (1) a spatially lagged dependent variable, and (2) an error term. Thus, the 

traditional OLS function: 

y = α + βX + u      (5.4) 

could be re-written as: 

y = α + ρWy + βX + ɛ      
                           ɛ = λWɛ + u       (5.5) 

where y is the dependent variable, X is a set of independent variables, α is the intercept, ρ, 

β, and λ are the parameters, W is the spatial weights, Wy is the spatially lagged 

component of y, Wɛ is the spatial autocorrelated error terms, and u is the independent and 

identically distributed (i.i.d.) errors. 

LM diagnostics5,6 are empirical tests with the null hypothesis of λ = 0 or ρ = 0, 

where λ is the parameter for an autocorrelated spatial error term and ρ is the parameter for 

an autocorrelated spatially lagged term (Anselin, 1988a): 

(1) When the null hypothesis, λ = 0 and ρ = 0, is accepted, a traditional OLS regression 

model is the appropriate model specification.  

(2) If λ = 0 and ρ ≠ 0 is true, a spatial error model should be applied.  

(3) If λ ≠ 0 and ρ = 0 is true, a spatial lag model should be applied.  

A robust version of LM diagnostics is also available to test the statistically 

significance of a spatial error, or, lag model. The robust LM diagnostics test against the 

interactions of the dependent variable under the condition that a spatially autocorrelated 

error term is inclusive (Velandia et al., 2008). Similarly, the robust LM diagnostics test 

the significance of a spatial error model by containing a spatially lagged component of 

the dependent variable (Velandia et al., 2008). Thus, spatial misspecifications will be 

minimized. In particular, five test statistics are provided in results of LM diagnostics, 
                                                        
5 The equation for test against the spatial error is given by Burridge:  LMλ = (!!!")!

!!!"(!!!!!!)
 

where u is the OLS residuals, W is the spatial weights matrix, σ2 is the residual covariance matrix, and tr() 
is the function that sums up the elements on the main diagonal (Anselin, 1988a; Born & Breitung, 2011). 
 
6 The equation for test against the spatial lag by Anselin is: LMρ = 

!!!"#
( !!!" !!!!!! !!!!!!!!!!"#$

 
where M equals to I – X(X’X)-1X’, β is the OLS estimator, and the others are as above (Anselin, 1988a; Born 
& Breitung, 2011). 
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namely the Moran’s I test on OLS residuals, LM tests for a missing autocorrelated error 

term (LM-error) or spatially lagged dependent variable (LM-lag), and two robust versions 

(Robust LM-error and Robust LM-lag). The rule of deciding the model specification was 

provided by Anselin (2001) and Gallo et al. (2003). If LM-error test is more significant 

than LM-lag test and Robust LM-error is also statistically significant, while Robust LM-

lag is not, the spatial error model should be used, and vice versa.  

In this study, LM diagnostics were selected due to its capability of testing how 

spatial effects are associated with the targeted relationship. In general, spatial lag model 

specification simulates a “diffusion” process, indicating that nearby ecological activities 

would influence the target object under examination. While a spatial error model partly 

accounts for the unobservable factors and is effective when important determinants are 

omitted due to data availability. The two regression functions are explained in the 

following two sections. 

5.3.2. Spatial Lag Regression Analysis 

Spatial lag models simulate the situation when the dependent variable at one 

location promotes similar values in its surroundings (Anselin, 2001). The spatially lagged 

component of the dependent variable at each location is defined as a weighted average 

value within a neighbourhood radius which is distance-based and is calculated from 

Section 5.2.1.1. The equation of a spatial lag model is given as: 

y = α + ρWy + βX + u       (5.6) 

where y and X are dependent and independent variables respectively, α is the intercept, 

Wy is the spatially lagged component of y, W is the spatial weights, u is the error term 

which is i.i.d., and ρ, β are parameters. The equation can be reduced as: 

y = (I - ρW)-1 α + (I - ρW)-1 βX + (I - ρW)-1 u      (5.7) 

where I is the unit matrix. In this case, we consider that the spatially lagged components 

of y are caused by the “spill over” effects of a set of independent variable x (Baller et al., 

2001). Haining (1993) explain that rather than limited at location i, the impact of an 

independent variable, xi, could propagate to its nearby locations. For example, along an 
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elevation gradient, soils at lower positions tend to accumulate more organic matter due to 

soil erosions and waterflow movements (Birkeland, 1974). In addition, the spatial lagged 

component of y shows correlation with the independent error term (Anselin, 2001). The 

diffusion processes are delineated in Figure 5.6 (b). 

5.3.3. Spatial Error Regression Analysis 

The spatial error model assumes that the spatial dependence occurs in the error 

terms, because given a regression model, the error term is the only part that produces 

uncertainties into an estimated yi. Since Pace and LeSage (2010) suggested that the latent 

variables that are unobservable and unmeasurable would give rise to uncertainties in 

modelling the targeted relationships, and thus an autocorrelated error component is added 

to the spatial error model to account for the effects of unobservable factors on the 

dependent variable. The equation of spatial a spatial error model is given below: 

   y = α + βX + ɛ                     (5.8) 

   ɛ = λWɛ + u        

where y and X are dependent and independent variables respectively, α is the intercept, β 

and λ are parameters, Wɛ is the spatial autocorrelated error terms, and u is the i.i.d. errors. 

In summary, ecological phenomena always show certain spatial structures (e.g., 

local-scale spatial clusters, large-scale gradients) due to interdependent activities between 

organisms and similar generating processes (Ettema & Wardle, 2002; Legendre & Fortin, 

1989), thus providing a justification for the use of spatial regression models in this thesis. 

By employing spatial regression models, certain questions can be answered: (1) in what 

ways is the targeted spatial relationship promoted, (2) how spatial dependence is 

associated with the targeted relationship (e.g., spatial lags or spatial errors), and (3) 

whether the unobservable factors notably influence the targeted relationship or not. 

Moreover, to compare the performance of spatial regression models to that of an 

OLS model, the present study adopted the Akaike Information Criterion (AIC)7 instead of 

the coefficient of determination (R2). The R2 indicates the degree to which the variances 
                                                        
7 AIC = -2L + 2K, where L is the maximized logarithmic likelihood, and K is the number of variables 
(Haining, 1993; Anselin, 1988b). 
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in SOC distribution can be explained by a set of selected environmental determinants. In 

an OLS model, the sum of the predicted errors equals to zero; however, a spatial 

regression model does not (Wang, 2006). Thus, for the spatial regression models, the 

statistics of coefficient of determination is defined as a “pseudo R2”. Although it also 

represents to what degree a spatial model is fitted, it is not comparable with the R2 

statistic of an OLS model (Anselin, 2005; Wang, 2006). In this case, the AIC is a more 

effective method to assess the model’s performance by taking both the model’s 

maximized logarithmic likelihood and the number of independent variables into 

consideration (Burnham & Anderson, 2004). Gagne and Dayton (2002) interpret the AIC 

as the loss of information when true values are replaced by the estimated values derived 

from maximum likelihood mechanism. Thus, the model with a minimum AIC value is 

considered to be optimal when the same datasets are used. 

5.4. Predictive SOC Map 

The last part of this study will employ a multi-criteria analysis to produce a 

predictive map of SOC in Canadian forest areas. At a national scale, a spatial error model 

informs four significant environment determinants (p < 0.1) that influence pedogenic 

processes in Canadian forest areas: seasonal accumulated precipitation, average minimum 

temperature, elevation, and slope. Thus, they were selected as useful criteria, and were 

weighted by corresponding regression coefficients derived from the spatial error model. 

In this study, the Analytic Hierarchy Process (AHP) scheme was employed to 

calculate the weights for each environmental determinant. The AHP divides criteria into 

several hierarchical levels, with the lower level as one criterion in the higher level (Chen 

et al., 2009). Within each level, the importance of each criterion is rated on a pair-wise 

comparison basis (Saaty, 1977). Since the present study only has one hierarchical level 

with four criteria, the weights calculation is based on the pair-wise comparison between 

the variables’ regression coefficients. In doing so, the final predictive SOC map can be 

created from a three-step procedure: (1) multiplying each environmental determinant (the 

resampled raster data generated in the data preprocessing step) with its corresponding 

weight, (2) summing up the weighted environmental determinants on a pixel by pixel 

basis, and (3) standardizing the pseudo SOC-stock range as zero to one. 
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In summary, the final predictive map is not used to rigorously represent the real 

amount of SOC stock across the Canadian forest area. The main intention is to map the 

forest SOC distribution gradient under certain climatic conditions and terrain attributes on 

a national scale. By comparing the predictive SOC distribution map with the interpolated 

one, how the spatial patterns of SOC distribution differ between the two SOC maps could 

be visualized.  
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Chapter 6. Results 

In order to explore how forest SOC is distributed in Canada under different 

ecological regimes, this study applied the methods described in Chapter 5 based on a set 

of Canada Forest Service (CFS) soil samples. Other long-term ecological datasets 

collected during growing seasons (April to October) from 1961 to 1991 were analyzed to 

investigate ecological influences on the spatial distribution of SOC in Canadian forest 

areas based on an eco-region zonation framework. This chapter describes the primary 

results from this study, beginning with a description of ecological conditions 

characteristic of Canadian forest ecosystems, followed by the results of the SOC spatial 

analysis. The results of EDA, including descriptive and graphical statistics of SOC 

samples and environmental determinants, are provided in Section 6.2. The ESDA results 

are then described in Section 6.3. Section 6.4 discusses the SOC-environment 

relationships on the national and eco-region scales. Finally, a predictive map is presented 

in Section 6.5 that shows the SOC distribution in response to statistically significant 

environmental determinants. 

6.1. Ecological Background of Canada’s Forest Area 

Forest is a major ecosystem in Canada with a distribution ranging from British 

Columbia to Canada’s east coast (Rowe, 1972). Prominent climatic gradients are 

observed within this large geographic coverage. Figure 6.1 below shows the overall 

climatic conditions of Canada’s forest ecosystems in the growing season. As shown in 

Figure 6.1 (a), (b), and (c), all three measures of temperature, namely the seasonal 

average maximum, mean, and minimum, generally show a north-to-south distribution in 

the entire study area, suggesting marked eco-climate regions with temperature gradually 

increasing with decreasing latitude. In Canadian forest areas, the average maximum 

temperature in the growing season (April to October) from 1961 to 1991 approximately 

range from 0.85 to 22.26 ˚C, and the average minimum temperature range from -5.77 ˚C 

to 10.21 ˚C. Higher maximum and minimum temperatures of approximate 22 ˚C and 10 

˚C (represented by red) are observed in Southern Ontario, indicating a longer and warmer 

growing season. Comparing the three temperature values, interesting spatial patterns are 



50 
 

observed in Canada’s west coast, namely smaller temperature variations due to buffering 

influences of the Pacific Ocean. In the growing season, relatively low maximum 

temperatures and higher minimum temperatures of about 13.5 ˚C and 9 ˚C are observed 

in this area. Moreover, since temperatures usually decrease with increasing elevation, B.C. 

mountainous areas in western Canada have complex temperature spatial patterns due to 

high local relief, as labelled in Figure 6.1 (a), (b), and (c). 

 
Figure 6.1 Average climatic conditions of Canadian forest areas in the growing season 
(April to October) from 1961 to 1991: (a), (b), and (c) represent the seasonal average 
maximum, mean, and minimum temperature, respectively; (d) represents the seasonal 
accumulated precipitation. B.C. mountainous areas with complex temperature patterns 

and insufficient amount of rainfall are labelled in (a), (b), (c), and (d), respectively.  
Source: Monthly average climate data from Environment Canada; Daily 10 km gridded 

climate data from Agricultural Canada 

In contrast, the spatial pattern of precipitation is highly variable across the entire 

study area. The amount of precipitation is high along the west and east coasts, but 

gradually decreases towards to the central Great Plains areas. Northern regions 

experience a much drier or arid climate. In particular, the moist airflow from the Pacific 
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Ocean is forced to rise due to physical barriers imposed by coastal mountains, thus 

resulting in more precipitation falling on west-facing slopes as elevation increases. The 

maximum amount of seasonal accumulated precipitation (approximately 1,550 mm) is 

observed along Canada’s west coast. The central regions of British Columbia are located 

between two main mountain ranges, the Coast Mountains in the west and Rocky 

Mountains in the east. Not surprisingly, an inadequate moisture supply, which is 

highlighted by an ellipse in Figure 6.1 (d), is evident in central regions of British 

Columbia due to the interference of mountain ranges. 

Figure 6.2 below maps the overall terrain attributes of Canadian forest areas. As 

previously mentioned, western Canada exhibits a complex topography due to the 

combination of mountain ranges and plateaus. Higher elevation areas are shown in red in 

Figure 6.2 (a), while lower elevation is coloured blue. Rapid changes in elevation result 

in relatively steeper slopes, which are highlighted in red in Figure 6.2 (c). Obvious east- 

and west-facing slopes, which are highlighted by black dashed lines, are visible in Figure 

6.2 (b). Terrain fluctuations are also shown in other areas, with small local relief in 

central Canada (e.g., Saskatchewan and Ontario) and uplands in eastern Quebec.  

In addition, it is observed that the distribution of vegetation biomass closely 

follows temperature spatial patterns. The highest vegetation biomass (the largest NDVI 

values are approximately around 0.7) is measured in Southern Ontario and the east coast 

due to the longer growing season and adequate precipitation. As mentioned in Section 3, 

a treeline can be observed in the northern forest ecosystem. Around the tree line, the 

growth of vegetation is quite limited by adverse climatic conditions, such as low moisture 

and temperature (MacDonald & Gajewski, 1992). Thus, as shown in Figure 6.2 (d), low 

vegetation growth and biomass (represented by the purple color) is observed and mapped 

in northern forest ecosystem areas even during the growing season. Little vegetation 

biomass (e.g., NDVI values around or below 0.4) is measured in arid mountainous areas 

due to decreasing temperatures and the presence of snow-cover on mountainous peaks. 
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Figure 6.2 Terrain attributes of Canadian forest areas: (a), (b), and (c) show elevation, 
aspect, and slope, respectively; (d) shows the seasonal (April to October, 1961-1991) 

average NDVI. The east- and west-facing slopes in western mountainous areas are 
labelled in (b). 

Source: Elevation data from GeoGratis; AVHRR NDVI data from Global Land Cover 
Facility (GLCF). 

6.2. Non-Spatial Analysis of Canadian Forest SOC 

In this subsection, soil samples are analyzed based on a non-spatial EDA 

approach in order to develop a basic understanding of forest SOC relationships. Results 

are divided into two parts. First, the graphical statistics are provided: (1) to visualise the 

mean SOC stock in each eco-region; and (2) to assess the influence of drainage capacity 

on the mean SOC stock. In addition, SOC information and pertinent ecological conditions 

within the entire study area and each eco-region are assessed. Second, the results of 

Pearson correlation analysis are summarized to quantify the association between SOC 

and each environmental variable identified in this study. 
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6.2.1. Statistical Description of Canadian Forest SOC and Ecological Variables 

The mean organic carbon stock (kg/m2) in the top one meter forest soils of each 

Canadian eco-region is mapped in Figure 6.3. Calculated from the historical soil profiles 

(the CFS soil data collected before 1991), B.C. coastal areas (the Pacific Cordilleran eco-

region) holds the maximum SOC stock of about 28 kg/m2. In the northern woodlands (the 

Subarctic Cordilleran and the Subarctic eco-region), SOC stock is also relatively high 

ranging from 12 kg/m2 to 17 kg/m2. In mountainous areas, the Cordilleran and Interior 

Cordilleran eco-regions also have lower SOC stock of approximately 10 kg/m2. Moderate 

SOC stock is observed in Southern Ontario (the Cool Temperate eco-region), which has a 

warmer and moister climate located at southern latitudes. Moreover, the lowest mean 

SOC stock of about 9.7 kg/m2 was surprisingly observed in the largest eco-region area: 

the Boreal eco-region. Figure 6.4 below plots the mean SOC stock against six drainage 

capacity levels. According to Siltane (1997), the six levels coded from 1 to 6 are defined 

as: rapidly, well, moderately well, imperfectly, poorly, and very poorly drained soils. 

Naturally, little organic carbon is held by forest soils with good or high drainage 

conditions, because organic matter easily runs off with fast-moving water flow. 

 

Figure 6.3 Mean SOC stocks (1961-1991) of each eco-region in Canadian forest areas  
Source: Canada Forest Service (CFS) soil database 
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Figure 6.4 Mean SOC stocks (1961-1991) of six drainage capacity levels in Canadian 
forest areas 

Source: Canada Forest Service (CFS) soil database 

The statistical description of SOC and environmental determinants in the study 

area is summarized in Table 6.1. In Canadian forest areas, SOC stock ranges from 0.8 

kg/m2 to 57.8 kg/m2.  Compared to the maximum SOC stock (57.8 kg/m2), the mean 

(11.12 kg/m2) and median (9 kg/m2) values are relatively small. The standard deviation of 

SOC stock was 7.73 kg/m2, suggesting that only a small number of samples have very 

high SOC stock. In the growing season, the amount of precipitation greatly varies across 

the entire study area, ranging from 138.66 mm to 1216.80 mm with a standard deviation 

of 160.33 mm. Some soil samples were collected from the areas with very low vegetation 

biomass (NDVI = 0.15), such as mountainous areas and the forest-tundra zone. Moreover, 

all soil samples were collected from low-relief areas, with the maximum percent of slope8 

as 5.64 (equals to 3.23 degree). Summary statistics of the SOC stock and ecological 

conditions in each eco-region are shown in Table 6.2 to Table 6.8, and are further 

described in the remainder of this section. 

                                                        
8 The percent of slope is also known as percent rise. It equals to the rise (vertical distance) divided by the 
run (horizontal distance). 
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As shown in Table 6.2, the maximum SOC level in Canadian forest regions is 

observed in the Pacific Cordilleran eco-region. The overall SOC stock is quite high with a 

range of 8.5 kg/m2 to 57.8 kg/m2. Both maximum precipitation (1,216.80 mm) and 

vegetation biomass (0.73) are also observed in this eco-region. This result is consistent 

with previous literature, which suggests that humid soils tend to hold more organic 

carbon because the decomposition rate of organic matter is limited under good water-

saturation conditions (Bhatti et al., 2006; Buringh, 1984; Davidson et al., 2000; Deluca, 

& Boisvenue, 2012). 

Table 6.1 Descriptive statistics of SOC stock and pertinent ecological variables within the 
entire study area (n=1317) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 0.80 57.80 11.12 9.00 7.73 
Max. Temp. (°C) 1.49 19.69 14.38 15.06 2.85 
Mean. Temp.  (°C) -2.12 14.54 8.75 9.33 2.53 
Min. Temp.  (°C) -5.73 9.55 3.20 3.26 2.41 
Precipitation (mm) 138.66 1216.80 443.34 431.11 160.33 
Elevation (m) 6.00 2690.00 627.53 439.00 507.10 
Slope (percent) 0.01 5.64 0.68 0.33 0.83 
Aspect 0 359.21 169.44 158.91 105.42 
NDVI 0.15 0.73 0.52 0.55 0.12 
 
Table 6.2 Descriptive statistics of SOC stock and pertinent ecological variables in the 
Pacific Cordilleran eco-region (n=62) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 8.50 57.80 27.98 24.50 15.02 
Max. Temp. (°C) 8.44 17.98 14.37 14.56 2.34 
Mean. Temp.  (°C) 3.54 13.11 9.91 10.49 2.50 
Min. Temp.  (°C) -1.36 8.25 5.46 6.71 2.87 
Precipitation (mm) 257.77 1216.80 795.43 794.34 314.32 
Elevation (m) 16.00 2311.00 601.35 479.00 443.67 
Slope (percent) 0.12 5.27 1.69 1.51 1.11 
Aspect 0 341.47 162.93 172.67 99.55 
NDVI 0.20 0.73 0.54 0.59 0.15 
 

The statistics of SOC samples from the two northern eco-regions, the Subarctic 

and Subarctic Cordilleran, are shown in Table 6.3 and Table 6.4, respectively. Since the 

two eco-regions are located at high latitudes, the climate is characterized as being cold 
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and dry. Precipitation amounts in the Subarctic and Subarctic Cordilleran eco-regions are 

450.65 mm and 216.19 mm; and the maximum temperatures are 10.05 °C and 9.35 °C, 

respectively. The overall vegetation biomass is consequently limited by the dry and cold 

climatic conditions. Compared to other eco-regions, much lower NDVI values are 

observed, with a mean of 0.38 for the Subarctic eco-region and 0.33 for the Subarctic 

Cordilleran. In terms of SOC stock, both of the two eco-regions tend to hold relatively 

larger amounts of SOC than other eco-regions, with mean values of 12.18 kg/m2 for the 

Subarctic eco-region and 15.86 kg/m2 for Subarctic Cordilleran.  

Table 6.3 Descriptive statistics of SOC stock and pertinent ecological variables in the 
Subarctic eco-region (n=129) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 1.9 43.5 12.18 10.7 7.72 
Max. Temp. (°C) 6.81 14.27 10.05 10.18 1.42 
Mean. Temp.  (°C) 1.98 8.21 5.27 5.49 1.21 
Min. Temp.  (°C) -2.90 2.27 0.50 0.78 1.16 
Precipitation (mm) 181.44 654.72 450.65 464.35 150.49 
Elevation (m) 10.00 763.00 355.67 367.00 171.76 
Slope (percent) 0.01 3.59 0.32 0.23 0.39 
Aspect 0 356.87 182.66 180.55 103.74 
NDVI 0.21 0.58 0.38 0.38 0.07 
 
Table 6.4 Descriptive statistics of SOC stock and pertinent ecological variables in the 
Subarctic Cordilleran eco-region (n=14) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 5.5 37.3 15.86 14.2 8.27 
Max. Temp. (°C) 1.48 13.99 9.35 12.45 5.13 
Mean. Temp.  (°C) -2.12 7.09 3.64 5.86 3.74 
Min. Temp.  (°C) -5.73 0.18 -2.07 -0.66 2.36 
Precipitation (mm) 138.66 288.09 216.19 227.3 49.21 
Elevation (m) 176 1626 902.57 824.5 430.58 
Slope (percent) 0.18 3.10 1.13 0.97 0.74 
Aspect 10.45 354.95 136.27 97.55 103.87 
NDVI 0.24 0.41 0.33 0.33 0.04 
 

As shown in Table 6.5 and Table 6.6, although the Boreal and Cool Temperate 

eco-regions have similar topographic features (e.g., both are characterized by relatively 

flat land surfaces and moderate vegetation biomass), different SOC levels are observed. 

The lowest SOC stock is measured in soil samples from the Boreal eco-region, while a 
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moderate amount of SOC is measured from the Cool Temperate eco-region. Such 

differences are likely due to different climatic regimes. Namely, the Boreal eco-region 

tends to experience a relatively drier climate than the Cool Temperate eco-region. For 

example, the minimum and mean precipitation of the Boreal eco-region are 192.77 mm 

and 425.4 mm, while the values of the Cool Temperate eco-region are 480.18 and 593.88, 

respectively.  

Table 6.5 Descriptive statistics of SOC stock and pertinent ecological variables in the 
Boreal eco-region (n=649) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 0.8 31.5 9.28 8.5 4.90 
Max. Temp. (°C) 9.29 18.69 15.48 15.92 1.76 
Mean. Temp.  (°C) 4.62 12.54 9.71 9.92 1.48 
Min. Temp.  (°C) -0.59 7.49 3.94 3.87 1.38 
Precipitation (mm) 192.77 787.79 425.4 378.04 117.04 
Elevation (m) 6.00 926.00 372.86 346.00 173.15 
Slope (percent) 0.01 1.78 0.29 0.17 0.32 
Aspect 0 359.21 171.9 158.91 108.19 
NDVI 0.25 0.72 0.56 0.57 0.07 
 
Table 6.6 Descriptive statistics of SOC stock and pertinent ecological variables in the 
Cool Temperate eco-region (n=86) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 2.90 38.40 12.32 10.60 6.98 
Max. Temp. (°C) 16.41 19.69 18.13 18.09 1.11 
Mean. Temp.  (°C) 10.60 14.54 12.70 12.46 1.04 
Min. Temp.  (°C) 4.80 9.55 7.27 7.41 1.14 
Precipitation (mm) 480.18 725.5 593.88 597.74 71.67 
Elevation (m) 15.00 466.00 176.35 181.5 112.35 
Slope (percent) 0.01 1.15 0.27 0.24 0.21 
Aspect 0 343.66 192.46 199.7 95.85 
NDVI 0.45 0.72 0.63 0.66 0.07 
 

Last, the descriptive statistics of SOC samples collected from mountainous areas 

are provided in Table 6.7 and Table 6.8. Compared to other eco-regions, the SOC stock in 

the Cordilleran and Interior Cordilleran eco-regions are comparatively lower, but still 

within an average range (e.g., an overall mean value of 11.12 kg/m2 in Table 6.1). In 

general, the amount of precipitation is lower (e.g., the mean values of Cordilleran and 

Interior Cordilleran eco-regions are 406.22 mm and 306.88 mm, respectively), but is 
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evenly distributed across the two eco-regions (indicated by the lower standard deviations, 

99.09 and 60.67, respectively). Low vegetation biomass in soil sample sites is measured 

in the Cordilleran eco-region, perhaps due to less litterfall input. 

Table 6.7 Descriptive statistics of SOC stock and pertinent ecological variables in the 
Cordilleran eco-region (n=306) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 1.00 47.00 10.84 9.00 6.65 
Max. Temp. (°C) 7.54 17.07 12.89 13.38 2.50 
Mean. Temp.  (°C) 3.05 10.49 7.09 7.20 1.99 
Min. Temp.  (°C) -2.01 3.91 1.28 1.30 1.66 
Precipitation (mm) 195.04 618.73 406.72 433.59 99.09 
Elevation (m) 591.00 2690.00 1273.00 1117.5 0.49 
Slope (percent) 0.05 5.64 1.36 1.08 0.99 
Aspect 1.71 358.42 149.29 128.2 100.25 
NDVI 0.14 0.63 0.46 0.50 0.14 
 
Table 6.8 Descriptive statistics of SOC stock and pertinent ecological variables in the 
Interior Cordilleran eco-region (n=71) 

Parameter  Minimum Maximum Mean Median Standard deviation 
SOC (kg/m2) 2.00 30.7 10.02 8.10 6.28 
Max. Temp. (°C) 8.45 18.39 15.07 15.48 2.05 
Mean. Temp.  (°C) 4.03 11.47 8.68 8.96 1.52 
Min. Temp.  (°C) -1.22 4.84 2.29 2.23 1.13 
Precipitation (mm) 226.29 573.92 306.88 289.20 60.67 
Elevation (m) 696.00 1989.00 1182.5 1044.00 334.55 
Slope (percent) 0.16 4.63 1.47 1.23 0.96 
Aspect 0 352.75 194.05 232.26 107.91 
NDVI 0.19 0.63 0.55 0.57 0.07 
 

6.2.2. Correlation between SOC and Ecological Variables 

The results of Pearson correlation analysis between the SOC and environmental 

determinants at three significance levels of 1%, 5%, and 10%, are shown in Table 6.9, 

with significant correlations highlighted in green. In general, without considering spatial 

effects, a statistically significant association between SOC and precipitation was found at 

both the national and eco-region levels. The relationship between SOC and temperature 

in some eco-regions was significant, but generally quite weak. More detailed 

interpretation of Pearson correlation results are summarized in Table 6.10. 
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Table 6.9 Results of Pearson correlation analysis between SOC and select environmental 
and climatic factors 

Eco-region Max. 
Temp 

Mean 
Temp 

Min. 
Temp 

Prep. Elev. Slope 
(Percept) 

Aspect NDVI 

The Entire 
Study Area 
Sig. 

-0.102*** 
 
0.000 

-0.015 
 
0.585 

0.089 
*** 
0.001 

0.436 
*** 
0.000 

0.042 
 
0.130 

0.222 
*** 
0.000 

0.018 
 
0.519 

-0.026 
 
0.340 

Boreal 
Sig. 

-0.115** 
0.003 

-0.054 
0.173 

0.031 
0.423 

0.292 
*** 
0.000 

-0.098** 
0.012 

0.087** 
0.026 

-0.036 
0.363 

0.000 
0.997 

Cool 
Temperate 
Sig. 

0.136 
 
0.211 

0.061 
 
0.578 

-0.022 
 
0.842 

0.265** 
 
0.014 

0.146 
 
0.179 

0.310*** 
 
0.004 

0.150 
 
0.168 

0.255 
** 
0.018 

Subarctic 
Sig. 

0.024 
0.786 

0.001 
0.992 

-0.028 
0.757 

0.014 
0.877 

0.115 
0.196 

0.170* 
0.055 

-0.073 
0.411 

0.231 
*** 
0.008 

Subarctic 
Cordilleran 
Sig. 

0.050 
 
0.865 

0.053 
 
0.857 

0.059 
 
0.840 

-0.235 
 
0.418 

-0.264 
 
0.361 

0.179 
 
0.541 

-0.175 
 
0.551 

0.253 
 
0.383 

Cordilleran 
Sig. 

-0.172*** 
0.002 

-0.15*** 
0.009 

-0.097* 
0.091 

0.102 
0.075 

0.164*** 
0.004 

0.150 
*** 
0.008 

0.066 
0.252 

-0.168 
*** 
0.003 

Interior 
Cordilleran 
Sig. 

-0.166 
 
0.166 

-0.148 
 
0.218 

-0.098 
 
0.416 

0.318**
* 
0.007 

0.337*** 
 
0.004 

0.149 
 
0.213 

0.135 
 
0.261 

-0.172 
 
0.151 

Pacific 
Cordilleran 
Sig. 

0.158 
 
0.220 

0.300** 
 
0.018 

0.393 
*** 
0.002 

0.545 
*** 
0.000 

-0.177 
 
0.168 

-0.029 
 
0.824 

0.225* 
 
0.079 

0.288 
** 
0.023 

p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
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Table 6.10 Interpretation of the Pearson correlation coefficients between Canadian forest 
SOC and ecological variables in each eco-region 

Eco-region Interpreting the Pearson Correlation Results 
The Entire 
Study Area  

At the national scale, SOC stock and precipitation resulted in the strongest 
relationship. Other significant determinants are: slope, maximum 
temperature, and minimum temperature. The negative influence of 
maximum temperature on SOC can be explained by a temperature-
induced rapid decomposition rate. Increasing air (soil) temperatures 
would potentially stimulate soil biota activates, thereby accelerating SOC 
decomposition rate. Thus, a negative association is observed. However, a 
positive, but weak, correlation was found between SOC and minimum 
temperature (0.089). This is likely due to the possibility that increasing 
minimum temperature potentially lengthens the growing season, and thus 
plants produce more biomass and increase the amount of organic-carbon 
inputs into forest soils 

Boreal 

 

Referring to Figure 6.2, the vegetation biomass is evenly distributed 
across the Boreal eco-region. Precipitation dominates the SOC 
distribution in this eco-region. In addition, quite weak correlations were 
found between terrain attributes (i.e. slope) and SOC distribution. 

Cool 
Temperate 

 

Precipitation and vegetation biomass were significantly related to SOC 
distribution in this eco-region. In addition, a relatively strong correlation 
was detected between SOC and slope.  
 

Subarctic 

 

This eco-region is the transitional forest-tundra zone. From the Pearson 
correlation results, vegetation biomass was highly related to SOC 
distribution. This is a reasonable result, since SOC sequestration benefits 
from root exudates and litterfall accumulation 

Subarctic 
Cordilleran 

 

No significant relationships between SOC and environmental factors was 
found. This is probably due to the small sample size collected within this 
eco-region (n=14), thus typical trend or relationships may be neglected. 

Cordilleran 

 

Terrain attributes tend to have more significant relationships with SOC 
distribution. A negative correlation was found between the maximum 
temperature and SOC distribution, likely due to carbon loss caused by 
temperature-induced decomposition. 

Interior 
Cordilleran 

 

Similar with the Cordilleran eco-region, elevation was strongly related to 
SOC in the Interior Cordilleran eco-region, with a correlation coefficient 
of 0.337. Precipitation also showed a strong association with SOC 
distribution in this semi-arid eco-region. 

Pacific 
Cordilleran 

   

Factors significantly associated with SOC include mean and minimum 
temperatures, precipitation, and NDVI. Precipitation was strongly 
associated with SOC, likely due to the ability of high soil-moisture 
content soils to preserve SOC accumulation. 
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6.3. Spatial Analysis of Canadian Forest SOC 

This section presents the results of a spatial analysis of SOC distribution in 

Canadian forest areas.  First, a continuous SOC distribution map is derived from original 

soil samples (n=1,317) for data visualization. Then, spatial patterns of SOC levels are 

presented based on a spatial autocorrelation analysis. 

6.3.1. Geostatistical Estimation of Canadian Forest SOC 

A fitted semi-variogram of SOC levels in the entire study area is shown in Figure 

6.5. Recall the different types of semi-variogram presented earlier in Figure 2.3, our 

model indicates the presence of local variations and a relatively uneven SOC distribution. 

In Canadian forest areas, SOC was not randomly distributed, and hot spots of SOC 

should be observed. From Figure 6.5, it can be observed that the nugget effect is 0.211, 

total sill is 0.391, and range is about 1,000 km. Thus, the high nugget-to-sill ratio of 54% 

indicates that strong local-scale variations exist in the SOC distribution. In addition, the 

large range shown in the semi-variogram suggests that SOC is spatially autocorrelated 

within a neighbourhood radius of 1,000 km. Similar results were found in other large-

scale SOC studies. For example, Mishra et al. (2010) found that SOC in the mid-western 

United States was spatially autocorrelated in a range of about 657 km. While McGrath 

and Zhang (2003) found that the spatial autocorrelation of SOC in grassland, Ireland, 

existed in a range of about 120 km.  

By applying Ordinary Kriging, a spatially continuous SOC distribution map was 

estimated from the original SOC samples and shown in Figure 6.6. As expected, a west-

to-central gradient of decreasing SOC stock and an increasing trend from central to 

eastern regions are observed. SOC and precipitation spatial patterns were quite similar, 

which is consistent with the previous Pearson correlation results (r = 0.436). Consistent 

with the strong local-scale variations of SOC distribution detected from the semi-

variogram in Figure 6.5, some spotty or disperse patterns were observed in central and 

western forest ecosystems. Moreover, from the interpolated map below (Figure 6.6), 

forest SOC stock ranges from 3.66 kg/m2 to 35.89 kg/m2, which is a shrinking range than 

previously shown in Table 6.1.  In order to assess the accuracy of Ordinary Kriging 
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interpolation results, the leave-one-out cross validation approach was applied. Figure 6.7 

shows the plot of the measured SOC stocks (x-axis) against the interpolated SOC values 

(y-axis). The Pearson correlation coefficient was 0.76, indicating that the interpolated 

SOC values are in relatively good agreement with the measured SOC stocks. 

 
Figure 6.5 The Semi-variogram model of Canadian forest SOC distribution using 
Ordinary Kriging based on 1317 samples collected from Canada Forest Service 

 

 
Figure 6.6 10 km gridded  SOC data (before 1991) for Canadian forest areas using 

Ordinary Kriging based on 1317 soil samples collected from Canada Forest Service. 
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Figure 6.7 Leave-one-out cross validation of the Ordinary Kriging interpolation 

6.3.2. Spatial patterns of Canada’s Forest SOC Distribution 

Based on the methodology for measuring spatial patterns outlined in Section 

5.2.1.1, the optimal neighbourhood-sizes for testing for spatial dependence and for 

performing the spatial regression analysis at the national and eco-region scales were 

calculated and presented in Table 6.11. Since soil samples were not evenly distributed, 

potential outliers may exist in areas with low sampling densities. Ensuring each outlier to 

have at least one neighbour causes some samples to have excessive neighbours, thus 

over-estimating the optimal-neighbourhood-sizes. This study applied a three-step 

“standard deviation (SD)” assessing scheme: (1) calculating each sample’s nearest 

neighbour distance, (2) calculating the SD of this set of distances, and (3) excluding the 

samples with a distance three times larger than the SD. Thus, potential outliers that may 

bias the optimal distance measurement were identified and removed before the 

calculation (refer to Table 6.11).  

Then, the optimal neighbourhood-sizes were measured based on Incremental 

Spatial Autocorrelation analysis, which calculates global Moran’s I and associated Z-

score at a series of distance increments. Since the distances associated with the peak Z-
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scores indicate the spatial scales at which ecological responses of targeted objects to 

cluster-patterns are most notable (ESRI, 2013b), the first peak Z-score distance was 

selected as the optimal distance in order to preserve more local information. At the 

national scale, the first peak Z-score occurred at a distance of about 313,805 m. Thus, this 

distance was considered as the optimal-neighbourhood-size at which ecological activities 

were believed to promote a most intensive cluster-pattern. In addition, the optimal 

distances determined for each eco-region are summarized in Table 6.11. As mentioned in 

Section 5.2.2., in this study, the Subarctic Cordilleran eco-region was excluded due to the 

small sample size. 

Table 6.11 Optimal distance for spatial analysis 
Eco-region Number of 

Samples 
Standard 
Deviation 

Outliers Average Nearest 
Neighbour (m) 

First Peak Z-Score 
Distance (m) 

The entire 
study area 

1,317 22,678.25 53 16,392.04 313,805.45 

Subarctic  129 38,757.55 5 33,741.42 148,467.05 
Boreal  649 22,504.70 21 18,371.85 260,811.32 
Cool 
Temperate 

86 21,150.86 6 17,706.42 114,605.65 

Cordilleran 306 21,076.25 15 13,633.76 72,983.24 
Interior 
Cordilleran 

71 14,473.06 4 10,810.77 57,580.51 

Pacific 
Cordilleran 

62 23,451.71 1 11,746.60 94,840.38 

 

6.3.2.1. Global Spatial Autocorrelation 

In this study, the Moran’s I test statistic was applied to measure the strength of 

spatial dependence of SOC distribution at the national and eco-region scales. The 

corresponding Moran’s I scatterplots are shown in Figure 6.8 and Figure 6.9 respectively. 

The standard SOC stock is recorded on the x-axis and the spatially lagged SOC stock is 

recorded on the y-axis. As shown in Figure 6.8, the global Moran’s I index of SOC at the 

national scale is about 0.289, which is relatively low yet statistically significant (p < 0.01). 

The positive global Moran’s I index indicates that forest SOC is not randomly distributed. 
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This suggests that spatial clusters of SOC may be found across the study area, with 

similar values clustering close together.  

 
Figure 6.8 Global Moran's I scatterplot for SOC stock in Canadian forest areas at the 

national scale 
To explore how SOC is distributed in different climatic zones, the global Moran’s 

I scatterplots of each eco-region are shown in Figure 6.9. All Moran’s I values are 

positive, suggesting that similar SOC values are spatially clustered together at the eco-

region scale. The maximum global Moran’s I (0.391) is observed in the Subarctic eco-

region, while the minimum global Moran’s I (0.069) is found in the Cordilleran eco-

region. This suggests that although the global Moran’s I index in the Cordilleran eco-

region is significant, very weak spatial dependence, or spatial pattern, is detected.  

6.3.2.2. Local Spatial Autocorrelation 

Although global Moran’s I test statistic quantifies the strength of SOC spatial 

autocorrelation, the types of spatial arrangement of SOC distribution (e.g., locations of 

significant hot spots) in Canadian forest areas still remains unknown. To further explore 

spatial patterns of SOC distribution on both national and eco-region scales, corresponding 

Local Spatial Autocorrelation (LISA) maps were produced based on the local Moran’s I 

test statistics. Specific spatial clusters, as well as a set of outliers, are identified from this 

analysis. In the LISA maps below, potential High-High clusters wherein high SOC values 

are surrounded by high values are represented in red, and Low-Low clusters wherein low 
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values are surrounded by low values are labelled in dark blue. In addition, potential 

outliers (High-Low and Low-High) are colored in pink and light blue, respectively.  

 
 

Figure 6.9 Global Moran's I scatterplots for Canadian forest SOC in six eco-regions: the 
Subarctic, Boreal, Cool Temperate, Cordilleran, Interior Cordilleran, and Pacific 

Cordilleran 
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Beginning with the SOC distribution at the national scale, from Figure 6.10, we 

found that the SOC outliers are distributed throughout HH and LL clusters across the 

entire study. This results in the strong nugget effect that was previously observed. For 

example, due to local variations, any sample of relatively higher SOC stock (e.g., caused 

by poor drainage system) is considered to be an outlier within a LL cluster. In addition, 

multiple HH clusters are identified at the national scale, including along the southwest 

coast. This finding is consistent with the descriptive statistics, confirming that the B.C. 

forest coastal areas are rich in terms of organic carbon storage. In addition, a small HH 

cluster is observed in the south-east of Canadian forest ecosystems in Quebec, where the 

growing season is warmer and longer. Another significant HH cluster is found at the 

border of Yukon and Northwest Territories, namely the Peel Watershed. The cold 

temperatures in the growing season promote low decomposition rates by limiting 

microbial activities in the soils. In addition, relatively higher soil moisture preserves a 

considerable amount of SOC accumulation. When comparing the location of HH clusters 

to a map of forest age distribution (Figure 2.5), all three HH clusters are located in old-

growth forest areas (represented by the green-blue color gradient in Figure 2.5). This 

result supports previous literature that suggests old growth temperate forests accumulate 

high carbon stock in soils (e.g., Chen et al., 2003; Luyssaert et al., 2008). 

Most SOC LL clusters were situated in central forests ecosystems, suggesting that 

soils in these regions have comparatively low carbon stock compared to the rest of the 

study area. Compared to the eco-region classification map and climatic conditions map 

(Figure 3.1 and Figure 6.1, respectively), this LL cluster encompasses the Western 

Boreal eco-region, which has a drier and warmer climate compared to other eco-region 

classifications, which may not encourage SOC sequestration. This eco-region also 

consists of forest groups of various growth stages with forest age ranging from 10 years 

to 70 years, with a majority within the range of 10 years to 30 years (Figure 2.5). All of 

these attributes potentially explain why lower SOC levels are observed in this region.   
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Figure 6.10 LISA cluster map of SOC distribution at the national scale 

The LISA maps of SOC samples in each eco-region are shown in Figure 6.11 to 

Figure 6.15. The Subarctic Cordilleran eco-region was excluded due to a sample size 

(n=14) that was too small for spatial autocorrelation calculation, as well as the 

Cordilleran eco-region due to the weak global Moran’s I (0.069).  

The LISA map SOC distribution in the Subarctic eco-region is shown in Figure 

6.11. Few outliers exist in this eco-region as shown in Figure 6.11. Soil samples with 

higher organic carbon stock (highlighted by a red ellipse) are clustered in the northwest 

part of the Subarctic eco-region. Specifically, it is located in Peel Plateau and Peel Plain 

region. Soils in this area are usually cold and wet (likely affected by snowmelt during the 

growing season), and thus accumulate a considerable amount of organic matter, as 

evident in a HH cluster (Meikle & Waterreu, 2008). Another small HH cluster occurs 

along the east coast, mainly located in Melville Lake estuary (Newfoundland and 

Labrador), where the climate is humid and moist. This area is also one of the hot spots 

where ongoing soil organic matter research is being undertaken (e.g., the Earth Science 

Laboratory of Memorial University). Comparing this map to the terrain attributes (Figure 
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6.2), we find that the detected LL cluster is also located in central Quebec with little 

vegetation cover and biomass, which may also play a role in influencing SOC distribution 

in the Subarctic eco-region. 

 
Figure 6.11 LISA cluster map of SOC distribution in the Subarctic eco-region, with Peel 

Watershed area labelled. 

 

As shown in Figure 6.12, LL patterns mainly observed in the west Boreal and HH 

patterns in the east Boreal. This typical spatial pattern is quite consistent with the 

precipitation regime and forest age distribution characteristic of this region. In general, 

multiple hot spot clusters are observed in this eco-region. From Figure 6.12, the 

distribution of LL clusters in western Boreal (e.g. Alberta, Saskatchewan, and Manitoba) 

was not homogeneous with many HL outliers also prevalent. As previously discussed, 

this may be partly due to the strong local variations in SOC stock. On one hand, western 

Boreal areas experience a relatively mixed forest age distribution. This is likely due to the 

disturbance such as forest fire caused by seasonal high-temperature and human 

interference. Thus, different amounts of litterfall inputs potentially result in variations in 

SOC levels. On the other hand, differences in other terrain attributes, such as drainage 

capacity, soil types, and soil nutrients, also partly account for the variations observed in 

SOC distribution in western boreal forest ecosystems. 



70 
 

 

Figure 6.12 LISA cluster map of SOC distribution in the Boreal eco-region 
 

Unlike the Boreal and Subarctic eco-regions previously discussed, the SOC 

distribution pattern in the Cool Temperate eco-region is mainly characterized by a single 

HH cluster and LL cluster. Comparing Figure 6.13 to Figure 6.1 (the climatic condition 

map), soil samples with high organic-carbon stock are clustered in the St. Lawrence 

watershed that receives the highest level of precipitation. The LL cluster is observed 

around Prince Edward Island (PEI).  As shown in Figure 6.14 and Figure 6.15, the 

cluster patterns of the Interior Cordilleran and Pacific Cordilleran eco-regions are not 

apparent. A small LL cluster is observed in the lower part (elevation is about 800 to 900 

m) of the Interior Plateau (Figure 6.14), where the climate is dry and the vegetation does 

not effectively contribute to carbon accumulation in soils. For the Pacific Cordilleran eco-

region, although the overall SOC stock is high, a LL cluster is observed in the northern 

region (Figure 6.15). This is likely caused by insufficient rainfall input and less 

vegetation biomass. Another LL cluster is identified at the Lower Fraser Basin in 

southern B.C. Province.  
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Figure 6.13 LISA cluster map of SOC distribution in the Cool Temperate eco-region 

 

 
Figure 6.14 LISA cluster map of SOC distribution in the Interior Cordilleran eco-region 
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Figure 6.15 LISA cluster map of SOC distribution in the Pacific Cordilleran eco-region 

 

6.4. Spatial Soil-Environment Modelling 

Results from the exploratory analysis of Canadian forest SOC presented in 

Section 6.2 provides evidence of significant associations between SOC and various 

ecological variables; however, no causality is implied. Spatial regression models were 

thus developed to explore the relationships between SOC and environmental 

determinants. Specifically, two questions are addressed. First, what are the dominant 

environmental determinants that influence Canadian forest SOC distribution? Second, 

how do these SOC-environment relationships vary spatially across Canadian forest areas?  

In order to answer these questions, traditional OLS models are tested at two 

spatial scales of analysis, namely national and eco-region scales. The models are based on 

six independent variables: precipitation, temperature, NDVI, elevation, slope, and aspect. 

As previously discussed, environmental determinants that are important in one ecosystem 

may not be equally important in another area (Powers & Schlesinger, 2002). For example, 
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Chuai et al. (2012) found a positive SOC-elevation relationship in woody areas in Jiangsu 

Province (China); however, no association between SOC (measured to a depth of 50 cm 

of mineral soil) and elevation in the Great Smoky Mountains National Park (U.S.) was 

found by Tewksbury and Miegroet (2007).  Thus, an eco-region classification framework 

was adopted in this study to assess the SOC-environment relationships at a local level and 

to explore dominant ecological variables within each eco-region. 

In order to avoid statistical problems such as unstable parameters and unreliable 

significance tests, spatial dependency in OLS regression models were tested. Significant 

autocorrelation in OLS residuals violates the assumption of independence and indicates 

potentially biased regression coefficients and estimation errors. In this study, from the 

spatial autocorrelation results presented in Section 6.3, significant spatial dependency in 

SOC distribution at the national and eco-region scales was noted. If the spatial 

autocorrelation in the dependent variable (e.g., SOC stock) cannot be adequately 

explained by independent variables (e.g., environmental determinants), autocorrelation 

will be detected among the regression residuals, and thus lead to potential 

misspecification in the modelling of SOC-environment relationships (Chakraborty, 2011; 

Collins et al., 2006).  

In this study, the strength of spatial autocorrelation of OLS models’ residuals was 

measured based on the Moran’s I test statistic. Any statistically significant Moran’s I 

value indicates the inappropriate use of using a non-spatial OLS model, suggesting that it 

is necessary to take spatial effects into consideration. In this study, the selection of spatial 

models is determined based on the Lagrange Multiplier diagnostic (refer to Section 5.3 

for details): a statistically significant LM-lag test suggests the inclusion of a spatial 

lagged dependent variable, while a statistically significant LM-error test suggests adding 

an autocorrelated error term. When both tests are statistically significant, robust versions 

are tested for model specification. In the following subsections, the results of model 

specification and testing at the national and eco-region scales are presented.  
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6.4.1. Soil-Environmental Modelling at a National Scale 

OLS regression models were applied at the national scale based on six 

independent variables: precipitation, temperature, elevation, slope, aspect, and NDVI. 

The SOC data (the dependent variable) compiled by Canada Forest Service (CFS) is a set 

of historical soil records collected before 1991. Table 6.12 below shows the results of the 

initial estimation of three OLS models. Regression model (1), (2), and (3) differ in terms 

of the type of temperature readings included in the model specification, based on 

maximum, mean, and minimum temperature. For the three estimated OLS models, the R2 

values were approximately 0.24, indicating that about 24% of variation in SOC 

distribution was explained by the initial OLS models. With the exception of NDVI (e.g., 

p = 0.708 from OLS model (3)) and aspect (e.g., p = 0.253 from OLS model (3)), all 

other four independent variables were statistically significant at a 10% level. Compared 

to other independent variables, precipitation (p = 0.000) was shown to have the most 

significant influence on SOC distribution at the national scale. 

To evaluate the performance of three OLS models, the strength of residual spatial 

autocorrelation was measured based on the Moran’s I test statistic. As shown in Table 

6.13, all three Moran’s I tests were positive and highly significant (p < 0.01), indicating 

that spatial clustering existed in the regression residuals. Thus, spatial regression models 

were tested to explore whether taking spatial information into consideration would 

improve the estimation of relationships between SOC and ecological variables.  

As discussed in Section 5.3, Lagrange Multiplier diagnostics were applied to 

assist the optimal model specification. The results of Lagrange Multiplier tests are shown 

in Table 6.13. Since both standard LM-lag and LM-error tests were highly significant (p 

= 0.001), robust versions were tested for model specification. As shown in Table 6.13, 

the robust LM-error tests (p = 0.000) were slightly more significant than the robust LM-

lag tests (p = 0.001). Therefore, a spatial error model specification was selected. 
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Table 6.12 OLS and spatial error models of SOC-environmental relationships in 
Canadian forest areas at the national scale (n = 1317). Model (1) includes maximum 
temperature as one of the independent variables, while model (2) and (3) includes mean 
and minimum temperature, respectively.  

Independent 
Variables 

OLS 
Model (1) 

Spatial 
Error 
Model (1) 

OLS 
Model (2) 

Spatial 
Error 
Model (2) 

OLS 
Model (3) 

Spatial 
Error 
Model (3) 

Intercept  
Sig. 

4.794*** 
0.000 

-1.675 
0.557 

3.375*** 
0.006 

-1.951 
0.438 

2.312* 
0.092 

-0.001 
0.999 

Precipitation 
(cm) Sig. 

0.203*** 
0.000 

0.240*** 
0.000 

0.212*** 
0.000 

0.236*** 
0.000 

0.217*** 
0.000 

0.219*** 
0.000 

Max. Temp. 
(˚C) Sig. 

-0.304*** 
0.006 

0.213 
0.192 

-- -- -- -- 

Mean Temp. 
(˚C) Sig. 

-- -- -0.226* 
0.099 

0.413** 
0.046 

-- -- 

Min. Temp. 
(˚C) Sig. 

-- -- -- -- -0.300** 
0.019 

0.581** 
0.011 

Elevation 
(km) Sig. 

-0.853* 
0.072 

0.821 
0.319 

-0.990* 
0.054 

1.254 
0.151 

-1.094* 
0.041 

1.681* 
0.067 

Slope (%) 
Sig. 

1.972*** 
0.000 

0.574** 
0.063 

1.998*** 
0.000    

0.575* 
0.062 

2.033*** 
0.000 

0.570* 
0.065 

Aspect (˚) 
Sig. 

-0.002 
0.278 

0.0001 
0.973 

-0.001 
0.265 

0.0001 
0.925 

-0.002 
0.253 

0.0002 
0.885 

NDVI 
Sig. 

2.353 
0.402 

-2.621 
0.362 

1.110 
0.680 

-3.267 
0.237 

-0.907 
0.708 

-2.611 
0.303 

Spatial Error 
Term (λ) 
Sig. 

-- 0.793*** 
 
0.000 

-- 0.805*** 
 
0.000 

-- 0.810*** 
 
0.000 

R2  
(Pseudo R2) 

0.238 (0.344) 0.237 (0.346) 0.235 (0.347) 

Log 
Likelihood 

-4383.48 -4298.36 -4384.49 -4297.35 -4385.89 -4296.241 

AIC 8780.96 8610.72 8782.99 8608.71 8785.78 8606.48 
p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
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Table 6.13 Lagrange Multiplier diagnostic tests for the SOC-environment relationships at 
the national scale based on six ecological determinants. Model (1), (2), and (3) represent 
the inclusion of maximum, mean, and minimum temperature, respectively.  

Dependence Test  
 

 Value 
Model (1) Model (2) Model (3) 

Moran’s I (Residual) 
Sig. 

0.129 
0.000 

0.133 
0.000 

0.134 
0.000 

LM-lag 
Sig. 

358.725  
0.000 

370.806  
0.000 

382.745 
0.000 

Robust LM-lag 
Sig. 

12.832  
0.000 

11.338  
0.001 

11.244 
0.001 

LM-error 
Sig. 

576.000  
0.000 

605.507  
0.000 

618.851 
0.000 

Robust LM-error 
Sig. 

230.107  
0.000 

246.038 
0.000 

247.350 
0.000 

 

A spatial error model specification suggests that cluster patterns in Canadian 

forest SOC distribution are likely due to the omission of other spatially autocorrelated 

variables that potentially influence SOC distribution, such as soil pH and nitrogen content, 

which could not be accounted in this study due to data availability. Thus, the correlated 

error term (λ) is added to the regression model as an independent variable to partly 

account for the effects of unobservable and unmeasurable factors. The results of initial 

spatial error models are presented in Table 6.12.   

Compared to initial OLS models, general improvements in model fit (e.g., lower 

AIC values and higher log likelihood values) are observed. Similar to the results of the 

traditional OLS models, precipitation (p = 0.000) was the most significant environmental 

determinant influencing SOC. The spatial error term (λ) was also statistically significant 

(p = 0.000), further supporting the notion that important unobservable or unmeasurable 

variables are missing from the model specification. As shown in Table 6.12, initial 

estimation of spatial error models suggested that aspect of slope (e.g., p = 0.885 from 

spatial error model (3)) and NDVI (e.g., p = 0.303 from spatial error model (3)) had a 

weaker relationship with SOC distribution. In addition, compared to maximum and mean 

temperature (p = 0.192, p = 0.046), the minimum temperature regime (p = 0.011) had a 

more significant relationship with SOC distribution in Canadian forest areas. In order to 

improve the performance of spatial error models, independent variables that were less 
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significant (p > 0.1) were removed from the model specification. Table 6.14 shows the 

results of the modified spatial error models. 

The re-estimated spatial error model (a) includes two independent variables, 

namely precipitation and slope. While spatial error model (b) also takes elevation and 

minimum temperature into account. Comparing the two models, the AIC values remained 

almost the same, suggesting minimal improvement in the model goodness of fit. In 

addition, compared to the initial spatial error model (3) (in Table 6.12), a general increase 

in significance of independent variables were observed in the re-estimated spatial error 

model (b) (p < 0.05). This indicated that the most optimal model fit was achieved by a 

spatial error model (b). As shown in spatial error model (b) (Table 6.14), all 

environmental determinants and the error term were positively related to the SOC 

distribution, and precipitation was proven to be the most important variable (p = 0.000). 

Thus, it can be concluded that four dominant ecological variables influence Canadian 

forest SOC distribution at the national scale, namely precipitation, minimum temperature, 

elevation, and slope. 

Table 6.14 Re-estimated spatial error models of SOC-environmental relationships in 
Canadian forest areas at the national scale (n = 1317). Spatial error model (a) includes 
two independent variables: precipitation and slope. While spatial error model (b) takes 
minimum temperature and elevation into account. 

Independent Variables Spatial Error Model (a) Spatial Error model (b) 
Intercept  
Sig. 

0.942 
0.441 

-1.299 
0.425 

Precipitation (cm)  
Sig. 

0.229*** 
0.000 

0.221*** 
0.000 

Min. Temperature (˚C)  
Sig 

-- 0.500** 
0.021 

Elevation (km)  
Sig. 

-- 1.877** 
0.036 

Slope (%) 
Sig. 

0.626** 
0.032 

0.570* 
0.065 

Spatial Error Term (λ) 
Sig. 

0.779*** 
0.000 

0.810*** 
0.000 

Pseudo R2 0.342 0.347 
Log Likelihood -4299.498 -4296.780 
AIC 8605.000 8603.560 
p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
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6.4.2. Soil-Environmental Modelling at an Eco-Region Scale 

After identifying dominant ecological variables influencing SOC levels at the 

national scale, the next stage of this study is to explore relationships at the local scale. In 

this section, the SOC-environment relationships and dominant ecological variables are 

examined within each eco-region in Canada, namely the Boreal, Subarctic, Cool 

Temperate, Cordilleran, Interior Cordilleran, and Pacific Cordilleran. Details about model 

specifications at the eco-region scale are further discussed. 

6.4.2.1. Local-scale Regression Analysis of the Boreal Eco-region 

The Boreal eco-region is the largest eco-climatic zone in Canada, stretching from 

Alberta to central Quebec and Nova Scotia. Different climate regimes are observed 

within this east-to-west running belt. Alberta, Saskatchewan, and Manitoba mainly 

experience a cooler and drier growing season, while the growing seasons of Ontario and 

Quebec are usually longer, warmer, and rainy. To start estimating the relationships 

between SOC and ecological variables, three initial OLS models were fitted based on all 

six independent variables (see Appendix III). The global Moran’ I test statistic on OLS 

residuals were shown to be highly autocorrelated (p = 0.000), thus suggesting the 

necessity of considering spatial effects in the model.  

Results from Lagrange Multiplier diagnostic tests suggested that a spatial lag 

model should be used to estimate the SOC-environment relationship in the Boreal eco-

region. As shown in Table 6.15, both standard LM-lag and LM-error tests were highly 

significant at the p = 0.000 level. Thus, the robust versions should be considered to guide 

the model specification process. Since the robust LM-error tests (e.g., p = 0.157 from 

Model (1)) were less significant at the p = 0.1 level, a spatial lag model was shown to be 

the appropriate approach. This indicates that neighbourhood effects of SOC stock were 

more important than the ones caused by unobserved variables. This implies that the 

ecological influences on SOC stock in one area are more likely to “spill-over” to its 

neighbours. Thus, spatial lag models were tested based on a full set of six independent 

variables to explore the SOC-environment relationships in the Boreal eco-region (see 

Appendix III). However, initial estimation of spatial lag models suggested that NDVI, 
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aspect, elevation, and temperature were not significantly related to SOC distribution at 

the p = 0.1 level. Thus, the spatial lag model was re-estimated to exclude these 

insignificant variables to improve model specification. Results of this spatial lag model 

are shown in Table 6.16 below. 

In the Boreal eco-region, a positive association between precipitation and SOC 

stock was observed (coefficient β = 0.058). This is an expected result because this eco-

region experiences an obvious increase of rainfall supply from west to east. In humid 

areas such as eastern Boreal region, SOC decomposition rates are potentially lowered 

because sufficient precipitation ensures high levels of water-saturation in soils and thus 

limits oxygen diffusion processes. In addition, the positive relationship between SOC and 

slope (coefficient β = 1.055) indicates that higher SOC stock tend to be observed in areas 

with relatively steeper slopes. In general, soils in lower slope positions along a slope 

gradient tend to hold higher level of soil moisture and SOC stock because of sediment 

movement. However, due to data availability, slope position information for each sample 

is missing from the CFS database, making it difficult to further assess the influence of 

slope attributes on SOC distribution in this study.  

Table 6.15 Lagrange Multiplier diagnostics for SOC-environment relationships in the 
Boreal eco-region based on six ecological variables as determinants. Model (1), (2), and 
(3) represent the inclusion of maximum, mean, and minimum temperature, respectively. 
Dependence Test  
 

Value 
Model (1) Model (2) Model (3) 

Moran’s I 
(Residual)  Sig. 

0.053 
0.000 

0.054 
0.000 

0.054 
0.000 

LM-lag 
Sig. 

35.793 
0.000 

36.684 
0.000 

38.179 
0.000 

Robust LM-lag 
Sig. 

8.942  
0.003 

9.424 
0.002 

10.765 
0.001 

LM-error 
Sig. 

28.851 
0.000 

29.615  
0.000 

30.425 
0.000 

Robust LM-error 
Sig. 

2.000 
0.157 

2.355 
0.124 

3.011 
0.083 
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Table 6.16 Spatial lag model of SOC-environmental relationships in the Boreal eco-
region (n = 628).  

Independent Variables Spatial Lag Model 
Intercept  
Sig. 

1.892** 
0.022 

Precipitation (cm)  
Sig. 

0. 058*** 
0.001 

Slope (%) 
Sig. 

1.055* 
0.061 

Spatial lag Term (ρ) 
Sig. 

0.496*** 
0.000 

Pseudo R2 0.132 
Log Likelihood -1890.940 
AIC 3789.880 
p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
 
6.4.2.2. Regression Analysis of the Cordilleran and Pacific Cordilleran Eco-region 

Next, the relationships between SOC and ecological variables in the Cordilleran 

and Pacific Cordilleran eco-regions were examined. First, initial OLS models were 

estimated based on the full set of six independent variables (see Appendix IV and V, 

respectively). Then, in order to evaluate the performance of initial OLS models, the 

strength of residual spatial autocorrelation was measured based on the Moran’s I test 

statistic, and results were shown in Table 6.17. As shown in Table 6.17, all six Moran’s I 

values were not statistically significant (p > 0.1), suggesting that spatial dependence 

among OLS residuals is insignificant. Thus, non-spatial OLS regression models were 

applied to estimate the SOC-environment relationships in these two eco-regions.  After 

excluding insignificant independent variables (p > 0.1), important environmental 

determinants used to estimate the SOC-environment relationships in these two eco-

regions are presented in Table 6.18.  

In the Pacific Cordilleran eco-region, the significant independent variable was 

shown to be precipitation (p < 0.01), indicating that SOC stock was not significantly 

sensitive to temperature regimes and terrain attributes (e.g., elevation, slope, and NDVI). 

A positive association between precipitation and SOC stock was observed (coefficient β 

= 0.26). The R2 was about 0.297, indicating that approximately 29.7% of the variation in 

SOC stock was explained by the precipitation regime. The Cordilleran eco-region is a 
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north-to-south climatic belt which occupies most areas of B.C. Province and a small part 

of the southern Yukon Territory. Unlike the climatic regime in the Pacific Cordilleran 

eco-region, growing season in the Cordilleran eco-region is usually cold and short in this 

mountainous area. As shown in Table 6.18, precipitation is no longer statistically 

significant at the 10% level. Instead, SOC stock is negatively influenced by the maximum 

temperature (coefficient β = - 0.458, p = 0.002). The R2 of 0.03 was quite low, indicating 

that the maximum temperature regime could only explain 3% of the variation in SOC 

stock in the Cordilleran eco-region. Nevertheless, maximum temperature is the most 

significant ecological variable (p = 0.002) among the six independent variables. 

Table 6.17 The Moran’s I test statistic of the initial OLS  residuals in the Cordilleran and 
Pacific Cordilleran eco-regions. Model (1) includes maximum temperature as an 
independent variable, while model (2) and (3) includes mean and minimum temperature, 
respectively.  

Dependence Test  
 

Moran’s I Values 
Model (1) Model (2) Model (3) 

Pacific Cordilleran (n=61) 
Sig. 

-0.079 
0.698 

-0.077 
0.728 

-0.075 
0.752 

Cordilleran (n=291)  
Sig. 

0.029 
0.168 

0.031 
0.147 

0.030 
0.155 

 

Table 6.18 OLS models of SOC-environmental relationships in the Cordilleran and 
Pacific Cordilleran eco-regions. 

Eco-region Independent Variable Regression 
Coefficient 

R2  AIC Log 
Likelihood 

Pacific 
Cordilleran 
(n=61)     

Precipitation (cm) 
Sig. 

0.260 
0.000 

0.297 493.005 -244.502 

Cordilleran 
(n=291)   

Max. Temperature (˚C)  
Sig. 

-0.458 
0.002 

0.030 
 

2021.35 -1008.68 
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6.4.2.3. Local-scale Regression Analysis of the Subarctic, Cool Temperate, and Interior 

Cordilleran Eco-regions 

Finally, initial OLS models of the remaining three eco-regions, the Subarctic, 

Cool Temperate, and Interior Cordilleran, were estimated based on the full set of six 

independent variables. For each of the three eco-regions, the strength of OLS model’s 

residuals were measured based on the Moran’s I test statistics. Results from spatial 

autocorrelation tests on OLS residuals in the three eco-regions suggested that OLS 

residuals were spatially autocorrelated. Thus, it is necessary to take spatial effects into 

consideration in order to improve the model fit. However, for each of the three eco-

regions, none of the Lagrange Multiplier tests was statistically significant, making it 

difficult to identify an appropriate model specification (e.g., spatial lag model or spatial 

error model). Table 6.19 shows the results of Lagrange Multiplier diagnostics of the 

Subarctic eco-region. Although the standard LM-lag and LM-error tests were proven to 

be significant at the p = 0.000 level, the less significant robust tests (e.g., robust LM-lag p 

= 0.089 from Model (1)) indicated that applying either a spatial lag or error models 

specification would be inappropriate in the Subarctic eco-region. As shown in Table 6.20 

and Table 6.21, similar results were observed in the Cool Temperate and Interior 

Cordilleran eco-regions, respectively. Thus, OLS regression models were tested for the 

three eco-regions. 

Table 6.19 Lagrange Multiplier diagnostics for SOC-environment relationships in the 
Subarctic eco-region based on six ecological variables as determinants. Model (1), (2), 
and (3) represent the inclusion of maximum, mean, and minimum temperature, 
respectively. 

Dependence Test  
 

Value 
Model (1) Model (2) Model (3) 

Moran’s I 
(Residual)  Sig. 

0.336 
0.000 

0.332 
0.000 

0.331 
0.000 

LM-lag 
Sig. 

41.319 
0.000 

40.605 
0.000 

40.125 
0.000 

Robust LM-lag 
Sig. 

2.897  
0.089 

2.949  
0.086 

2.634 
0.105 

LM-error 
Sig. 

38.460 
0.000 

37.682  
0.000 

37.491 
0.000 

Robust LM-error 
Sig. 

0.038  
0.845 

0.027 
0.870 

0.001 
0.974 
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Table 6.20 Lagrange Multiplier diagnostics for SOC-environment relationships in the 
Cool Temperate eco-region based on six ecological variables as determinants. Model (1), 
(2), and (3) represent the inclusion of maximum, mean, and minimum temperature, 
respectively.  

Dependence Test  
 

Value 
Model (1) Model (2) Model (3) 

Moran’s I 
(Residual)  Sig. 

0.051 
0.052 

0.077 
0.012 

0.101 
0.002 

LM-lag 
Sig. 

2.201 
0.138 

3.200 
0.074 

4.821 
0.028 

Robust LM-lag 
Sig. 

3.617  
0.057 

2.345 
0.126 

2.432 
0.119 

LM-error 
Sig. 

0.757 
0.384 

1.771  
0.183 

3.001 
0.083 

Robust LM-error 
Sig. 

2.173 
0.140 

0.916 
0.338 

0.619 
0.431 

 

Table 6.21 Lagrange Multiplier diagnostics for SOC-environment relationships in the 
Interior Cordilleran eco-region based on six ecological variables as determinants. Model 
(1), (2), and (3) represent the inclusion of maximum, mean, and minimum temperature, 
respectively. 

Dependence Test  
 

Value 
Model (1) Model (2) Model (3) 

Moran’s I 
(Residual)  Sig. 

0.125 
0.015 

0.122 
0.019 

0.120 
0.020 

LM-lag 
Sig. 

2.810 
0.094 

2.597 
0.107 

2.520 
0.112 

Robust LM-lag 
Sig. 

1.231  
0.267 

1.021 
0.312 

0.969 
0.325 

LM-error 
Sig. 

2.051 
0.152 

1.95  
0.164 

1.884 
0.170 

Robust LM-error 
Sig. 

0.472 
0.492 

0.358 
0.549 

0.333 
0.564 

For each of the three eco-regions, the Subarctic, Cool Temperate, and Interior 

Cordilleran, less significant independent variables (p > 0.1) were excluded in order to 

improve model fit. Results of the re-estimated OLS models are shown in Table 6.22 and 

Table 6.23, respectively. Compared to other independent variables, NDVI was shown to 

be the dominant ecological factor in northern woodlands (p = 0.008). In this area, 

vegetation density is relatively sparser than other eco-climate zones, mainly due to the 

cold and dry climate regime limiting vegetation growth. Thus, the importance of 

vegetation biomass in SOC-environment relationship estimation is evident in this area. 
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The positive association (β = 24.945) between NDVI and SOC indicates that litterfall 

inputs and root exudates potentially play a role in increasing SOC accumulation. In the 

Interior Cordilleran eco-region, SOC stock was significantly related to elevation (p = 

0.004), but elevation only accounts for about 11.4% variation of SOC distribution in the 

Interior Plateau. The regression coefficient (β = 6.323) associated with elevation 

indicated a positive influence of elevation on SOC stock.  

The Cool Temperate eco-region is mainly located in southern Ontario and 

southern Quebec. Comparing the three re-estimated OLS models in the Cool Temperate 

eco-region, about 20% of SOC stock variation was explained by the three environmental 

determinants, namely precipitation, temperature, and slope. All three environmental 

determinants were shown to positively influence SOC stock. Considering the temperature 

sensitivity of SOC distribution, all types of temperature measures were proven to be 

significant at the p = 0.1 level, especially maximum temperature (p = 0.000). One 

possible explanation is that increasing temperature potentially lengthens the growing 

season in the Cool Temperate eco-region. Forest growth adds carbon input (e.g., litterfall) 

into soils and is more responsive to temperature rise than SOC decomposition in the Cool 

Temperate eco-region, thus encouraging SOC accumulation. 

Table 6.22 OLS models of SOC-environmental relationships in the Subarctic and Interior 
Cordilleran eco-regions. 
Eco-region Independent Variable Regression 

Coefficient 
R2  AIC Log 

Likelihood 
Subarctic 
(n=124)     

NDVI 
Sig. 

24.945 
0.008 

0.054 889.266 -442.633 

Interior 
Cordilleran 
(n = 67) 

Elevation 
Sig. 

6.323 
0.004 

0.114 456.816 -226.408 
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Table 6.23 OLS models of SOC-environmental relationships in the Cool Temperate eco-
region (n = 80). Model (1), (2), and (3) represent the inclusion of maximum, mean, and 
minimum temperature, respectively. 

Independent Variables Model (1) Model (2) Model (3) 
Intercept  
Sig. 

-49.940*** 
0.006 

-37.798** 
0.017 

-17.124 
0.124 

Precipitation (cm)  
Sig. 

0.229*** 
0.000 

0.368*** 
0.003 

0.300** 
0.015 

Max. Temperature (˚C)  
Sig 

2.103** 
0.005 

-- -- 

Mean. Temperature (˚C)  
Sig 

-- 2.049** 
0.014 

-- 

Min. Temperature (˚C)  
Sig 

-- -- 1.262* 
0.096 

Slope (%) 
Sig. 

6.837** 
0.047 

8.057** 
0.019 

8.954** 
0.011 

R2 0.212 0.195 0.162 
Log Likelihood -278.334 -279.268 -281.013 
AIC 564.669 566.535 570.026 
p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
 
 
6.5. Predictive SOC Distribution Map 

At the national scale, spatial regression results informed four dominant ecological 

variables that influence Canadian forest SOC distribution, namely precipitation, 

minimum temperature, elevation, and slope. Using a pair-wise comparisons scheme, the 

weights of four dominant ecological variables were calculated using the AHP approach 

based on corresponding regression coefficients derived from the spatial error model 

estimated at the national scale (see Appendix VI). Accordingly, a predictive SOC 

distribution map in the period 1961-1991 was created from a three-step procedure: (1) 

assigning weights to each criteria, (2) summing up the weighted criteria on a pixel by 

pixel basis, and (3) standardizing the pseudo SOC stock range as zero to one. Since it is 

difficult to obtain absolute SOC stock from the modelled SOC distribution map based on 

four ecological variables, the range of modelled SOC stock was standardized as zero to 

one to map the forest SOC distribution gradient on a national scale. In order to make the 

modelled SOC distribution map comparable with the interpolated SOC map, the latter 

was also standardized to a range from zero to one. In this way, it was possible to examine 

the differences in spatial patterns between the modelled and interpolated SOC distribution 
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maps. Figure 6.16 shows the final predictive SOC distribution map estimated by spatial 

error model parameters.  

 
Figure 6.16 (a) Predictive SOC distribution (1961-1991) estimating from spatial error 
model parameters at the national scale: precipitation, minimum temperature, elevation, 
and slope. (b) Interpolated SOC distribution (1961-1991) using Ordinary Kriging based 
on the CFS SOC dataset. For each map, the SOC stock is standardized as zero to one: 

dividing the differnece between the raw SOC stock and the minimum value by the range 
of raw SOC stock 

To assess the SOC-environment relationship estimation at the national scale, 

differences in the pseudo SOC stock between the predictive SOC map estimated from 

spatial error model parameters, precipitation, minimum temperature, elevation, and slope, 

and the interpolated SOC map using Ordinary Kriging are shown in Figure 6.17. An 

image differencing method was used by subtracting the interpolated SOC stock map from 

the previous predictive SOC map. It should be noted that the values shown in the legend 

do not have absolute meaning, since they are calculated from pseudo SOC stock.  
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Compared to the standardized interpolated SOC distribution map, it was found 

that the general trend of SOC distribution was captured by the four dominant ecological 

variables. In general, SOC stock in B.C. coastal areas was shown to be relatively accurate, 

since differences were close to zero. However, big differences in SOC stock were 

identified in the Subarctic Cordilleran eco-region (Yukon Territory), southern Ontario, 

and Prince Edward Island. Missing important ecological variables are considered to be a 

likely source of model estimation error. For example, SOC sequestration ability in Prince 

Edward Island may be limited due to forest clearance or land use practices that were not 

factored into the model. 

 
Figure 6.17 Spatial distribution of differences between the predictive SOC stock 

estimated from spatial error model parameters at the national scale and the interpolated 
SOC stock using Ordinary Kriging 

6.6. Chapter Summary 

In summary, this chapter presents the results of descriptive statistics of SOC stock 

in Canadian forest areas, describes the spatial patterns of SOC distribution at the national 

and eco-region scales, and examines the spatial relationships between SOC and six 

ecological variables. Results of descriptive statistics showed that most SOC stock was 

around 9 kg/m2. Specifically, the highest SOC stock was observed in B.C. forest coastal 

areas. Soils in the Subarctic and Subarctic Cordilleran eco-regions, which mainly cover 

the woodland around the 60° N latitude mark, also contained a relatively large amount of 
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organic-carbon stock. Although the Boreal eco-region is the largest eco-climatic zone 

covered with intensive forests, the lowest SOC stock was observed in this region. This is 

likely because the drier climatic conditions and younger growth forests in the western 

Boreal region (e.g., Alberta and Saskatchewan) limit SOC sequestration ability. 

In addition, a spatially continuous SOC distribution map was estimated by 

applying Ordinary Kriging. Results showed that, at the national scale, Canadian forest 

SOC stock generally diminished from the east and west coasts towards the interior 

continental regions. In particular, results from the fitted semi-variogram indicated that, 

although SOC was spatially autocorrelated within a large range of 1,000 km, strong local-

scale variations likely caused by terrain attributes (e.g., drainage capacity and soil texture) 

existed in Canadian forest areas. 

To further explore how SOC was distributed, the spatial autocorrelation of SOC 

samples was measured at both national and eco-region scales based on the Moran’s I test 

statistics. Results showed that, SOC was not randomly distributed at the national scale, 

with similar values tending to spatially cluster together (Moran’s I = 0.289). Specifically, 

within a range of 313,805 m determined from Incremental Spatial Autocorrelation 

analysis, the ecological activities were considered to promote the most notable cluster-

pattern of SOC distribution. Thus, this distance was used as the optimal scale for further 

spatial analysis at the national scale. The global Moran’s I test statistic on SOC samples 

within the six eco-regions (the Subarctic, Boreal, Cool Temperate, Cordilleran, Interior 

Cordilleran, and Pacific Cordilleran) showed that all six Moran’s I values were 

significantly positive, thus verifying the presence of spatial dependency of SOC 

distribution at the eco-region scale. Moreover, the strength of SOC spatial dependence 

varies across different eco-climatic zones. For example, SOC in the Subarctic eco-region 

(woodland around 60° N latitude) tends to be highly spatially autocorrelated (Moran’s I = 

0.391). However, in the Cordilleran eco-region (B.C. mountainous areas), the strength of 

SOC spatial autocorrelation was quite weak (Moran’s I = 0.069). 

Results from local spatial autocorrelation analysis allowed us to identify the 

locations of potential hot spots and outliers in SOC distribution. At the national scale, 

multiple high-high (HH) and low-low (LL) clusters were identified. Results suggest that 
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these cluster patterns of SOC distribution were quite similar with that of precipitation and 

forest age. The HH clusters were mainly distributed in areas covered by old-growth 

forests and with sufficient rainfall supply. In contrast, LL clusters were observed in areas 

covered by younger growth forests. At the eco-region scale, unique patterns of SOC 

distribution were detected, indicating that SOC stock was significantly influenced by 

micro-scale level climatic conditions and terrain attributes, such as rainfall supply and 

forest age.  

Thus, based on the results of the spatial autocorrelation analysis, we confirmed 

that: (1) the SOC distribution in Canadian forests was not randomly distributed at the 

national and eco-region scales, (2) the spatial patterns of SOC distribution were quite 

eco-region unique, supporting the significant contribution of micro-scale ecological 

effects on pedogenic processes, and (3) the spatial patterns, or spatial information, were 

important factors in exploring and interpreting SOC-environment relationships. However, 

most previous SOC studies were conducted based on traditional OLS models. Thus, 

potential model misspecification in SOC-environment relationships estimation may be 

caused due to neglecting spatial effects. 

With this in mind, Lagrange Multiplier diagnostics were applied to test the 

suitability of using a spatial regression model (a spatial lag model or spatial error model) 

as an alternative to estimate SOC-environment relationships. This study suggests that at 

the national scale, a spatial error model was tested to be the most appropriate model 

specification. Results showed that the correlated error term was highly significant (p = 

0.000), indicating the importance of the unobservable and unmeasurable ecological 

effects on SOC distribution. In addition, SOC distribution was determined by both 

climatic regimes and terrain attributes, with precipitation as the most dominant ecological 

factor. Compared to maximum and mean temperature, SOC distribution was shown to be 

more sensitive to the minimum temperature regime at the national scale than compared to 

maximum or mean temperature measurements.  

When examining the ecological effects on SOC distribution in each eco-region, 

there were some noteworthy findings. This study suggests that in the B.C. coastal areas 

and mountainous areas, traditional OLS models were suitable for estimating SOC based 
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on the selected six environmental variables. As expected, in B.C. coastal areas, 

precipitation was the most dominant variable, while terrain attributes had less influence 

on the variability of SOC distribution. In B.C. mountainous areas, a negative relationship 

found between SOC and maximum temperature indicated that increasing temperature 

may release carbon from forest soils in B.C. mountainous areas.  

Moreover, weak associations between SOC and temperature regimes were found 

in the Boreal eco-region (stretching from central Alberta to Nova Scotia). Compared to 

other eco-climatic zones, neighbourhood effects were shown to be highly significant in 

the Boreal eco-region. Other important environmental determinants were precipitation 

and slope. In particular, this study suggested that neither the OLS models nor the spatial 

regression models were the most appropriate model specification when estimating the 

SOC-environment relationships of the Subarctic, Cool Temperate, and Interior 

Cordilleran eco-regions. Thus, further discussion is required to test alternative model 

specifications.  

In summary, precipitation was considered to be the most significant ecological 

variable at both the national and eco-region scales, with the only exception of B.C. 

mountainous area and northern woodlands. Thus, it was suggested that precipitation has 

the strongest influence on SOC distribution in Canadian forest areas. However, the 

relationships between SOC distribution and ecological variables were not constant across 

different eco-regions. In some areas, SOC stock was influenced by both climatic regimes 

and terrain attributes, such as the Boreal eco-region and south Ontario. In other areas, 

SOC distribution is more sensitive to a specific ecological variable. For example, SOC 

distribution in B.C. coastal areas was more influenced by precipitation. Finally, a 

predictive SOC distribution map was estimated from spatial error model parameters at the 

national scale. Although spatial patterns of modelled SOC did not necessarily coincide 

with the interpolated results in some areas (e.g., Yukon Territory and Prince Edward 

Island), the general distribution of SOC at the national scale was captured by the four 

dominant ecological variables: precipitation, minimum temperature, elevation, and slope. 
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Chapter 7. Discussion and Conclusions 

In this study, an exploratory-based method was proposed to examine the spatial 

patterns of Canadian forest SOC distribution and to explore the spatial relationships 

between SOC and ecological variables at the national and eco-region scales. In this 

chapter, key empirical findings are discussed by answering the four research questions 

defined at the beginning of this study. First, how is forest SOC spatially distributed in 

Canadian forests? Second, how can the relationships between SOC and ecological 

variables, including climatic conditions and terrain attributes be quantified? Third, in 

Canada, do these relationships vary across different eco-regions and is this a suitable 

regionalization scheme for studying SOC patterns?  Finally, what are the dominant 

factors in Canadian forest SOC distribution modelling? This chapter will also discuss 

limitations of the research and future work. 

7.1. Summary of Key Findings 

7.1.1. The Spatial Patterns of SOC Distribution in Canadian Forests 

In order to explore the spatial patterns of SOC distribution in Canadian forest 

areas, descriptive statistics and spatial analysis techniques, including Ordinary Kriging 

and spatial pattern analysis, were applied on the Canada Forest Service (CFS) soil 

samples at the national and eco-region scales. First, results suggested that Canadian forest 

SOC stock varied across different eco-regions. The coastal areas and northern woodlands 

contain higher SOC stock, while lower SOC stock was found in Central Canada. From 

the estimated SOC distribution map, the pattern of SOC distribution can be summarized 

as – diminishing from the east and west coasts to inland, with strong local variations 

existing across the entire study area. In addition, this SOC distribution pattern was in 

good agreement with the precipitation regime in Canadian forests. Similar findings were 

described by Brady and Weil (2010) that in forest ecosystems, climatic regime 

contributes to pedogenic processes over broad geographic areas and promotes a general 

trend of SOC distribution, whereas terrain attributes (e.g., drainage capacity) should be 

responsible for local variations in SOC distribution. 
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More specifically, the range of estimated SOC stock was smaller than that 

obtained from the original CFS soil samples. This issue has been discussed by many 

researchers. For example, Raty and Gilbert (1998) and Rezaee et al. (2011) point out that 

when using Ordinary Kriging to estimate unknown values, the maximum value usually 

tends to be underestimated, while the minimum value is often overestimated, because 

Ordinary Kriging calculates the unknown value based on the mean value within a user-

defined neighbourhood around each estimation. Nevertheless, Ordinary Kriging is still 

considered to be an optimal interpolation approach when no external factors are taken 

into account (e.g., ecological influences) since it maintains much of the local variance 

(Goovaerts, 1997).  

Second, Canadian forest SOC was not randomly distributed. Premo (2004) 

indicated that local spatial autocorrelation statistics are capable of examining spatial 

patterns of ecological phenomena by identifying potential hot spots. In this study, several 

High-High SOC clusters were found in areas with sufficient rainfall supply and litterfall 

inputs.  In particular, the Incremental Spatial Autocorrelation approach (refer to Section 

5.2.1.1. for details) was applied to calculate the optimal neighbourhood size, within 

which the most intensive cluster-patterns of SOC distribution was determined. Results 

show that, compared to other eco-regions, large neighbourhood sizes were identified in 

the Subarctic and Boreal eco-regions (148,467.05 and 260,811.32 m, respectively). Since 

the CFS soil database is a collection of historical field surveys and individual research, no 

specific sampling method is considered and applied. As a result, sampling densities vary 

across different eco-regions. In particular, less soil samples were collected in northern 

woodlands, and no soil samples were collected from mid-Quebec and northern Ontario. 

Thus, although potential outliers were removed in the optimal distance calculation, the 

optimal neighbourhood sizes of the Subarctic and Boreal eco-region are probably biased 

due to the relatively sparse sampling density.  

Third, according to spatial autocorrelation analytical results, the eco-region 

framework was proved to be a suitable classification scheme for SOC distribution 

patterns in Canada. For example, at the national scale, multiple HH clusters of high SOC 

levels were found in east and west coasts, which typically have a humid climate, while 
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LL clusters of low SOC levels were mainly concentrated in central continental regions, 

such as the Great Plains which is characterized as warm and arid, or semi-arid. This 

finding is consist with the conclusion made by Brady and Weil (2010) that low SOC 

stock is usually found in warm and dry environments. This type of spatial pattern is 

similar with the precipitation regime, suggesting a positive relationship between SOC 

levels and precipitation in Canadian forests, which is consistent with previous research. 

For example, Deluca and Boisvenue (2012) find that a sufficient rainfall supply maintains 

a good water-saturation in soils, which tends to limit SOC decomposition rates. Similarly, 

Buringh (1984) concludes that soils in humid eco-regions usually accumulate more 

organic-carbon.  

In B.C. mountainous areas, the lowest global Moran’s I (0.069) indicates that 

local variations in SOC distribution exist. This is partly due to complex geographic 

conditions and topography in mountainous areas. Ehrlich et al. (1977) found that high 

variability in soil clay content in B.C. mountainous areas were due to sediment movement. 

This movement is often caused by human interference (e.g., transportation) and soil 

erosion processes. Thus, the complex soil composition leads to variation in SOC 

distribution, causing the weak spatial autocorrelation (Moran’ I = 0.069) observed in this 

study. 

Observed SOC spatial patterns also closely correspond to forest age distribution. 

Results from Section 6.3.2.2 show that high SOC levels concentrate in areas covered by 

old-growth forests (e.g., B.C. coast areas). As previously mentioned, western Boreal eco-

region forests (e.g., central Alberta, northern Saskatchewan and Manitoba) tend to be 

much younger than forests in Eastern regions. According to Chen et al. (2003), forests in 

the B.C. coast and east Quebec are generally around more than 100-years old with few 

disturbances detected, whereas young forests with average ages between 10- to 40-year 

old are identified in western Boreal areas. Such regrowth forests are largely from fire 

disturbance and human inference, providing less carbon inputs into soils (Chen et al., 

2003), leading to poor regional SOC sequestration ability, and leading to observed low-

low (LL) SOC clusters in this analysis. For example, clearance of original forests in PEI 

was widely observed due to agricultural practices (Meikle & Waterreu, 2008). Compared 
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to other areas in the Cool Temperate eco-region, soils in PEI retain less SOC stock due to 

insufficient litterfall inputs. A similar situation is found in the Lower Fraser Basin area. 

Goldin and Lavkulich (1990) pointed out that the loss of old-growth forests caused by 

agricultural activities should account for an approximate 20% decrease in SOC stock 

from 1943 to 1976 in the southern Fraser Basin. 

In contrast, Boyle et al. (1997) and Harmon et al. (1990) suggest that old-growth 

forests ensure a large quantity of litterfall inputs to forest soils, and removing old-growth 

forests reduces the amount of above-ground woody debris and organic detritus, leading to 

lower forest SOC levels.  However, it should be noted that some research studies have 

argued that a forest’s carbon sequestration ability weakens with increasing age (e.g., 

Chen et a., 2003; Yuan et al., 2013), indicating that young forests have a better ability to 

absorb atmospheric carbon than that of old-growth forests due to higher photosynthetic 

efficiency (Murty et al., 1996). This argument could mislead forest SOC managers that 

substituting old-growth forests with young forests could reduce atmospheric carbon 

concentration (Harmon et al., 1990). Harmon et al. (1990) point out that the amount of 

carbon stored in forest eco-systems is of greater importance than that absorbed from the 

atmosphere. For younger forests, Net Primary Productivity (NPP)9 is mainly stored as 

standing biomass, while for old-growth forests, a similar or larger amount of carbon 

(compared to that of NPP) is transformed to soils as organic detritus (Boyle et al., 1997; 

Long, 1982). Thus, the difference in carbon allocation makes soils in old-growth forests a 

better terrestrial carbon reservoir. A similar viewpoint was expressed by Luyssaert et al. 

(2008) that old-growth forests continue to accumulate SOC reserves. Black et al., (2008) 

also point out that original old-growth forests can accumulate large amounts of SOC that 

cannot be achieved by young-growth forests. This literature lends support to the results 

derived from the spatial autocorrelation analysis, which observed a positive association 

between SOC stock and forest age.  

These findings consequently support the importance of protecting old-growth 

forests for SOC management. In high SOC-concentration areas, potential practices 

                                                        
9 Net Primary Productivity (NPP) refers to the difference between the amount of carbon absorbed through 
photosynthesis processes and that of consumed by vegetation respiration (Chen et al., 2003). 
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include protecting old-growth forests from pest disasters, reducing excessive cutting, and 

avoiding other human disturbances. In other areas, especially in Low-Low SOC clusters, 

sustainable forest management practices should be considered. Batjes (1996) indicated 

that land use changes, such as the transition from intact forests to agricultural land, 

greatly influence oxygen diffusion processes in surface soil layers. Thus, reducing forest-

cutting intensity and leaving residues on-site are widely considered as efficient ways to 

preserve SOC stocks after forest harvest (Apps et al., 2006; Gershenson & Barsimantov, 

2011).  

7.1.2. Assessing Relationships between SOC and Ecological Variables 

To date, few studies have been conducted to assess the effects of ecological 

variables on SOC distribution at the regional scale (Yuan et al., 2013). Moreover, only 

traditional linear regression models (e.g., OLS models) have been considered due to their 

simplicity (Mishra et al., 2010). However, an OLS model may not be an appropriate 

modelling approach when variables are spatially dependent or when high spatial 

autocorrelation is measured in OLS residuals. Although spatial regression models have 

been applied widely in the social sciences, this approach has seldom been applied in 

ecological literature or environmental studies (Dormann et al., 2007). Thus, in this study 

a spatial regression approach was adopted for modelling the SOC-environment 

relationship. In particular, the relationship between Canadian forest SOC distribution and 

six ecological predictor variables was modelled at the national and eco-region scales. 

Results suggest that a spatial error model is considered to be more appropriate 

than the spatial lag model specification when estimating the relationship between SOC 

distribution and ecological variables at the national scale. Although ecological effects on 

SOC stock at one sample site tend to diffuse outward to its neighbours and promote the 

similarity in surrounding SOC distribution, the magnitude of this “spill over” effects 

(LM-lag value = 11.244 and p = 0.001) is less significant than that of the “omitted 

variables” effects (LM-error value = 247.350 and p = 0.000). Thus, it is concluded that 

apart from the six selected independent variables, other ecological factors may also 

influence the SOC distribution patterns at the national scale, but may have been missing 

from the model specification. 
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Regression analysis at the local scale suggested that in B.C. coastal and 

mountainous areas, OLS models are able to effectively describe the SOC-environment 

relationships based on the six independent variables. In B.C. mountainous areas, 

maximum temperature is tested to be negatively related to SOC stock. One potential 

explanation is that increasing maximum air temperature results in an increase in the soil 

temperatures, which tend to accelerate the SOC decomposition rate. According to 

Birkeland (1974) and Tewksbury and Van Miegroet (2007), micro-climatic regimes are 

quite dependent on elevation gradients. In B.C. mountainous areas, the temperature 

regime is influenced by the complex local topography. Any change in maximum air 

temperature will influence soil temperatures and eventually alter SOC decomposition 

rates. In B.C. coastal areas, precipitation is the primary ecological factor that promotes 

the overall high SOC stock. Due to a sufficient rainfall supply, moist soils in B.C. coastal 

areas limit SOC decomposition rates, and thus ensure a large amount of organic carbon 

accumulation.  In addition, a spatial lag model was determined to be the most appropriate 

regression specification in the Boreal eco-region. The ecological activities occur at one 

sample site significantly influence SOC stock in the surrounding neighbourhood.  

Moreover, in the Subarctic, Cool Temperate, and Interior Cordilleran eco-regions, 

the autocorrelated residuals indicate that SOC distribution patterns were not fully 

accounted for in the OLS model estimation.  However, results from the Lagrange 

Multiplier diagnostic suggested that neither a spatial lag model, nor a spatial error model 

were suitable. To explain this phenomenon, the causes of autocorrelated residuals should 

be discussed first. Cliff and Ord (1970) summarize three possible reasons that would lead 

to the interdependence among an OLS model’s residuals: (1) significant independent 

variables are excluded, (2) an autoregressive component is omitted from the regression 

model, and (3) the targeted relationship cannot be simulated by linear regression models.  

In this study, it is suggested that the autocorrelated residuals in the three eco-

regions are caused by omitted independent variables or the misuse of linear regression 

models. An autoregressive component can be introduced into the spatial regression 

models in two ways: a spatially lagged dependent variable and a spatially correlated error 

term. However, results from Lagrange Multiplier diagnostic tests reject including either 
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type of autoregressive component. Although a spatially correlated error term can partly 

compensate for the impacts of omitted variables, it cannot substitute potentially 

significant environmental determinants. Since the ecological influences on SOC 

distribution are quite complicated to simulate in reality, the six selected independent 

variables in this study may not be able to explain the spatial patterns of SOC distribution 

in the three eco-regions. 

7.1.2.1. Dominant Variables at the National Scale 

In this study, a combined influential effect of climatic regimes and terrain 

attributes on SOC distribution is observed in Canadian forest areas. From the regression 

results, it is suggested that the influences of climatic regimes are more significant, 

relative to terrain attributes, such as elevation. As expected, precipitation was the most 

dominant ecological variable (p = 0.000) and positively related to SOC distribution. 

Minimum temperature proved to be another dominant variable (p = 0.021) influencing 

SOC distribution at the national scale. In the literature, temperature effects on SOC stock 

are controversial with no universal agreement. Some researchers have suggested that the 

association between temperature and SOC stock is quite weak (i.e. Gifford, 1992), 

whereas others have argued that the SOC stock decreases consistently with increasing 

temperatures (Kirschbaum, 1995; Tewksbury & Van Miegroet, 2007). In this study, 

compared to the maximum and mean temperature, minimum temperature was proved to 

have a significant and positive effect on SOC distribution in Canadian forest areas. 

Recalling that SOC stock is the difference between organic-carbon inputs and carbon 

decomposition, any changes in the two processes will alter SOC stock. At the national 

scale, the increasing minimum temperature tends to result in a longer growing season in 

the mid- and high-latitude forest ecosystems. Thus, it is concluded that, although 

increasing temperatures tend to accelerate the SOC decomposition rate in Canadian forest 

ecosystems, the amount of carbon loss is offset by the increasing vegetation biomass and 

litterfall accumulation.  

Results from the spatial error model showed that the most significant terrain 

variable was elevation (p = 0.036), while slope (p = 0.065) was tested to be less important. 

A positive correlation was found between SOC distribution and elevation. One potential 
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explanation would be that soil temperature is usually low in high elevation areas, thus 

maintaining a good environment for SOC accumulation. Tewksbury and Van Miegroet 

(2007) point out that soil temperature decreases with increasing elevation. Thus, it is 

assumed that organic carbon decomposition rates tend to be slower at high elevation areas 

due to lower soil temperatures. Consequently, higher SOC stock is observed in high 

altitudes. 

Finally, the highly significant error term, λ (sig. level = 0.000), suggested that 

other ecological factors that were not considered in this analysis, including unobservable 

and immeasurable factors, should likely partly account for the variation in SOC 

distribution. In reality, the regional-scale interactions between SOC and its surroundings 

are quite complex to model.  In particular, many researchers have suggested that there is a 

lack of research into quantifying SOC distribution and modelling SOC-environment 

relationships (Parry & Charman, 2013; Wang et al., 2013). In this study, many 

topographic variables were unavailable (e.g., forest ages, soil ph, and nitrogen content), 

which could have improved the model specification. Thus, the effects of ecological 

activities on the SOC distribution in Canada’s forest ecosystems are potentially 

underrepresented. Although using a spatial error model partly moderates the influences of 

omitted variables, the low pseudo R2 of 0.347 indicated that 65.3% of variation in SOC 

distribution pattern remains unexplained. 

7.1.2.2. Dominant Variables at the Eco-Region Scale 

The dominant ecological variables that influence SOC distribution vary across 

different eco-regions. We suggest that the SOC distribution in the boreal eco-region is 

influenced by the combination of precipitation regime and slope. While the pedogenic 

processes in the Pacific Cordilleran and Cordilleran eco-regions are more dominated by 

climatic conditions. For example, precipitation was tested to be a significant ecological 

variable in the Pacific Cordilleran eco-region. This was an expected result because this 

eco-region is located in coastal areas in B.C. province.  This effect results with from high 

humidity and rainfall conditions due to local climate and the influence of the Pacific 

Ocean. Thus, compared to other ecological factors, precipitation was the most dominant 

factor that influences pedogenic processes in this region. 
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In the Subarctic, Cool Temperate, and Interior Cordilleran eco-regions, results 

from the re-estimated OLS models were discussed (refer to Section 6.4.2.3.). In the 

Subarctic and Interior Cordilleran eco-regions, SOC distribution was more related to 

terrain and land cover attributes: NDVI and elevation, respectively. The Subarctic eco-

region is a typical area with a tree line traversing the central region. Due to the adverse 

climate conditions, vegetation density is very low in this region. Thus, the carbon 

dynamics between soils and vegetation become increasingly important. The Interior 

Cordilleran eco-region is located between the Coast Mountains and the Columbia and 

Rocky Mountains. Along the altitudinal gradient, temperature decreases with increasing 

elevation and potentially lowers SOC decomposition rates. In addition, Sprout et al. 

(1978) suggested that compared to higher elevation areas, many lower parts of the 

Interior Plateau were covered by coarse materials, which contain less SOC stock (e.g., 

gravelly and sandy soils) deposited by melt-water. Thus, a positive association between 

elevation and SOC stock was identified in this study. 

In general, more organic carbon would be accumulated in the areas covered by 

vegetation through carbon-sequestration processes. In southern Ontario and along the east 

coast, SOC distribution was influenced by both climate regimes and terrain attributes. 

Positive associations were observed between SOC stock and temperature. One potential 

reason is that temperature increases potentially lengthen the growing season of the forest 

ecosystems. Thus, the loss of SOC through carbon decomposition and soil respiration is 

offset by the increasing amount of litterfall inputs and root exudates.  

From the regression analysis at the local scale, different responses of SOC to 

various climatic regimes were observed. This indicates that ecological factors influence 

pedogenic processes differently among ecosystems at the regional scale, and thus verifies 

the eco-region classification framework for SOC zonation mapping in Canada. Since the 

eco-regions are integrated homogeneous geographic areas which share similar climatic 

conditions, vegetation types, wildlife groups, and pedogenic processes (Ecoregions 

Working Group, 1989), an assumption is made that the eco-region classification 

framework is capable to greatly distinguish the major differences in ecological effects on 

SOC distribution. Thus, it was selected as the regionalization scheme to test SOC-
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environment relationships at the local scale. Regression results showed typical spatial 

variability in dominant ecological variables that influence SOC distribution across 

different geographic areas. For example, vegetation was identified to promote SOC 

accumulation in northern woodlands, whereas precipitation was tested to positively 

influence SOC stock in B.C. coast areas. Therefore, it is concluded that the eco-region 

classification framework is a sufficient alternative in SOC studies in Canadian forest 

areas. 

Finally, three reasons should account for the differences between the modelled 

SOC map and the interpolated result. First, the selection of a spatial error model indicates 

that unobservable and immeasurable ecological variables should explain part of the 

variation in SOC distribution in Canadian forest areas. Given the complexity in the real 

world, four variables are not sufficient to fully describe the ecological effects on SOC 

distribution. In addition, lacking important environmental determinants is another reason 

that leads to inappropriate model specification in the Cool Temperate eco-region. Thus, 

the effect of “omitted variables” should be considered to be a potential reason for the mis-

estimation of SOC stock in southern Ontario. Second, based on the regression analysis 

results, it was obvious that a dominant environmental/climatic factor at the regional scale 

may not be as important at the local scale.  Thus, the role of microclimate variation may 

potentially contribute to model mis-estimation in B.C. mountainous areas. Third, in the 

Subarctic Cordilleran eco-region, an insufficient number of soil samples and observations 

distributed throughout the study area is considered to be a primary source of error in the 

analysis. Since the Subarctic Cordilleran eco-region only contained 14 samples, it was 

excluded from the spatial pattern analysis and no significant environmental determinants 

were identified. 

7.2. Limitations and Recommendations 

7.2.1. Data Quality Issues 

The CFS soil database is a compilation of historic data that was used for this study.  

Although it includes intensive SOC observations across Canada, it nevertheless lacks 

comprehensive coverage of the continent and the data collection is based on a pre-
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determined sampling design, since the secondary dataset was contributed by other 

organizations. As a result, there is a higher certainty in spatial analysis results in areas 

with more available SOC samples, while certainty in modelling estimates is lower in 

areas with fewer observation points. Thus, the calculated optimal-neighbourhood-sizes of 

each eco-region are likely biased in areas with a low sampling density (refer to Section 

6.3.2.) 

The impact of sampling design on SOC distribution has been emphasized by 

previous research. For example, Yuan et al. (2013) emphasized the importance of 

sampling design from the perspective of preserving more local-scale SOC variations. 

They argue that regional-scale SOC studies would greatly benefit from an accurate 

representation of local information, thus it is better to include extensive and intensive 

SOC samples to ensure more reliable results. Similarly, Gallardo (2003) point out that an 

insufficient number of soil samples increases the difficulty of characterizing spatial 

variations in soil properties, including SOC and other soil nutrients. However, although 

increasing sampling density is recommended by many researchers to ensure reliable 

spatial analysis, no consensus is reached among soil scientists with regard to the 

minimum, or optimal, sampling density at regional scales of analysis (Yuan et al., 2013). 

Thus, more efforts are required to assess the influence of sampling design on regional-

scale SOC distribution analysis. 

7.2.2. Issues of Low Spatial Resolution 

Another limitation of this study is the low spatial resolution datasets on which the 

analysis of SOC levels and climate variables was based. Since the climate and terrain 

datasets that were acquired had different spatial resolutions, the datasets were resampled 

to 10 km resolution in order to have comparable cell size. However, when data of higher 

spatial resolution is resampled to a lower spatial resolution, loss of unique local 

information inevitably occurs. This was especially true for datasets of terrain variables, 

such as elevation and slope.   For a given remote sensing image, the extracted value (e.g., 

slope and aspect) at a sample site is actually a product of averaging effects of 

corresponding and neighbouring pixels. Resampling may introduce bias into correlation 

analyses of SOC and ecological variable relationships. 
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In this study, the low spatial resolution may partly account for the weak 

association observed between SOC distribution and terrain attributes (e.g., slope and 

aspect).  The extracted slope measure at one sample site may not be reliable after being 

resampled to a coarse resolution. Ju and Chen (2005) also find similar issues related to 

spatial resolution and resampling of datasets in their research, which explores the 

Canadian forest and wetland SOC distribution based on a set of topography variables 

derived from remote sensing images. Ju and Chen (2005) conclude that the remote 

sensing images with a cell size of 1 km actually average the effects of local topography 

features, and thus potential errors and biases are introduced into the statistical modelling 

and analysis of SOC-environment relationships. In addition, Ju and Chen (2005) 

recommend that it is better to use remote sensing data with higher spatial resolution for 

regional-scale SOC studies in order to explore local variability and underlying processes. 

7.2.3. Issues of Data Availability 

In this study, an additional factor that potentially limits the performance of spatial 

analysis approaches is the lack of updated soil data and data related to other ecological 

variables that influence SOC. The CFS soil database has three primary limitations in this 

study. First, the CFS soil database consists of soil profiles collected before the year 1991 

and lacks recent data.  Thus, the database does not accurately reflect current SOC 

conditions in Canadian forest ecosystems. Second, the acquisition time of soil samples 

varies across different sample sites, generally ranging from 1961 to 1991, but is not 

consistent in terms of temporal sampling, availability, and collection methods. However, 

this long range of 31 years of soil data enables comparison with long-term climate 

datasets over the same time period and provides a general impression of climate and SOC 

relationships at regional scales. In general, a 31-year range for SOC distribution analysis 

at the national scale is considered to be acceptable, because the estimated average-

turnover-time10 for SOC to a depth of one meter is approximately 32 years (Manabe, 

1983; Raich & Schlesinger, 1992; Trumbore, 1997). However, it should also be noted 

                                                        
10 Turnover time of SOC refers to the period required for organic-carbon inputs to completely decompose 
and transferr back to the atmosphere (Six & Jastrow, 2002). Generally, the turnover periods expand with 
increasing depth of soil layers (Trumbore, 1997). 
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that SOC from different soil layers have different turnover times and this regional 

analysis is not able to explore local-scale variability and processes.  

Trumbore (1997) states that organic-carbon at the soil surface can easily 

decompose with an average turnover time of less than one year. This indicates a rapid 

dynamic-cycle between SOC and vegetation biomass (e.g., litterfall and root exudates). 

With increasing depth of soil layers, SOC turnover periods could potentially expand to 

years, decades, or even centuries. Thus, by setting the study period as 31-years in 

duration, potential dynamics within a shorter period between SOC and vegetation in the 

soil surface are neglected, or offset, during this long period. This could partly attribute to 

the weak association between SOC distribution and NDVI observed in this study. A 

similar finding was reported by Batjes (1996): over a longer period of time, SOC 

distribution was more influenced by climatic conditions; however, within in a shorter 

period, effects from variations in vegetation biomass were more notable. Therefore, 

although a 31-year period allows general relationships between Canadian forest SOC 

distribution and ecological variables to be assessed over the long run, future research 

could involve data collected over shorter time periods to explore shorter-term variability 

in order to better understand SOC-ecological relationships. 

This study is constrained by the availability of soil data, especially since the 

datasets analysed were secondary in nature and not from primary data collection. Other 

SOC studies have also discussed problems associated with data availability for SOC 

distribution analysis. For example, four major concerns of SOC studies at the global and 

regional scales are summarized by Batjes (1996), including: (1) lack of updated, 

completed, and reliable soil databases, (2) local-scale spatial variations in SOC 

distribution are difficult to be qualitatively and quantitatively measured and calculated, (3) 

the interactions between SOC and ecological variables are too complicated to simulate, 

and (4) the absence of data related to other local-scale soil properties (e.g., carbon to 

nitrogen ratio, clay content, and bulk density11). Another factor discussed by Eswaran 

                                                        
11 Bulk density (g/cm3) is the ratio between the dry weight of soil and its volume. Batjes (1996) stated that 
bulk density is an important indicator of the structural condition of soils, and is influenced by many factors, 
such as soil moisture, soil texture, and organic matter particles. 
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(1993) suggests that the frequent changes of vegetation types and land uses introduce 

uncertainties into large-scale SOC studies. As discussed previously in Section 2.1.3, in 

this study, the emphasis of Canadian field soil surveys in recent years has been switched 

to a private-driven mechanism. Consequently, problems include: (1) no standard 

sampling design applied to the private-driven field surveys, and (2) data are usually not 

freely available for public uses. Thus, a lack of updated and comprehensive soil data is 

considered to be a primary limitation of this study.  

It is also important to note that CFS soil profiles are often referred to as 

aggregated data. During the period from 1961 to 1991, SOC stock for each sample site 

was recorded once, rather than measured repeatedly. Thus, temporal changes in SOC 

distribution in response to climate fluctuations are potentially underrepresented. With 

multi-temporal soil datasets, it is possible to examine how SOC distribution varies with 

temperature changes. Thus, potential responses of SOC stock to global warming in 

different climatic zones can be studied. In addition, multi-temporal data (1) allow us to 

evaluate the performance of estimated models in regard to future SOC distribution 

prediction, and (2) provide actual field observations for model validation. Previous 

research has found that time lags 12  generally exist between the process of SOC 

sequestration and ecological activities (e.g., vegetation growth and air temperature 

changes) (Meyer et al., 2012; Trumbore, 1997; Zheng et al., 1993). For example, 

Gaudinski et al. (2000) find an approximate 7 year of lag between root carbon inputs and 

carbon decomposition. Thus, with multi-temporal soil data, it is possible for us to identify 

the time lags between SOC sequestration and ecological activities, thus enabling SOC 

distribution and ecological conditions to be more accurately estimated. In this study, by 

using the aggregated CFS SOC data, only a general relationship between the SOC 

distribution and temperature regime is estimated. In Canadian forests, temporal responses 

                                                        
12 Specifically, the time lag between SOC and vegetation refers to the period during which carbon is 
absorbed by vegetation through photosynthesis and transferred to soil layers through root exudates (Meyer 
et al., 2012; Trumbore, 1997). 
 
The time lag between SOC and air temperature refers to the lag between air temperature and soil 
temperature. For instance, Zheng et al. (1993) adopted an approximate two-week time lag to estimate the 
averaged soil temperature from the given air temperature data.  
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of SOC stock to ecological activities still remain unknown. This study could be improved 

if multi-temporal soil data were made available. 

As previously discussed, topographic factors such as forest age, soil pH values, 

soil temperature, soil moisture, nitrogen content, and other soil properties were not 

considered in this study due to data availability. For example, soil texture is a key factor 

that influences SOC accumulation. Brady and Weil (2010) found that fine-textured soils 

usually hold more organic-carbon stocks due to relatively poor aeration conditions. 

Therefore, decomposition is limited in fine-textured soils. In addition, fine-textured soils 

have a better ability to hold moisture and soil nutrients, which promote vegetation-growth 

(Brady & Weil, 2010; Plaster, 1992). More vegetation biomass is consequently produced 

and added into soils, thus encouraging SOC accumulation. Another important factor that 

is missing in this study is bulk density13, which differs with different soil types and soil 

textures (Birkeland, 1974). In general, the amount of SOC increases with decreasing bulk 

densities. Plaster (1992) explained that although the smallest space (poor aeration 

conditions) is found between fine-textured soil particles, fine-textured soil has the largest 

total pore-space. Therefore, a lower bulk density characteristic of fine-textured soils tend 

to contain a larger amount of organic material, and it is often used as a key variable when 

estimating SOC stocks. 

Potentially missing independent variables may limit the performance of regression 

models and the predictive-map that was generated. Results could be improved by taking 

these factors into consideration. For example, data quality may have resulted in 

descriptive statistics showing a negative correlation between SOC distribution and 

drainage capacity, likely due to the fact that soil nutrients may be depleted with 

waterflow in well-drained areas. However, drainage capacity data at each sample site was 

categorical in nature, ranked from “poor condition” to “rapid condition”. Although the 

regression model analysis was executed based on “dummy coding”, allowing categorical 

variables to be incorporated into a regression model by creating a set of new binary 

variables to represent the different categorical levels (e.g. coded as 1 or 0) (Walter et al., 

                                                        
13 Bulk density is a fundamental soil property that is expressed as the dry-weight of soil per unit volume 
(Plaster, 1992). 
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1987), the complexity of regression models is greatly increased when multiple categorical 

levels are added into the estimated models. Thus, with more available ecological 

variables included, the interactions between SOC and ecological activities could be better 

represented based on quantitative data, rather than categorical indices. 

In summary, the performance of the exploratory-based methods and spatial 

regression analyses would be improved with more availability of ecological data and 

multi-temporal soil data. Future in-depth studies on modeling the SOC-environment 

relationships focus on exploring local-scale dynamics between SOC distribution and 

ecological factors in the Subarctic, Cool Temperate, and Interior Cordilleran eco-regions. 

7.3. Conclusion and Significance 

In general, this study is valuable in four aspects. First, it contributes to the current 

literature by exploring the SOC distribution patterns in Canadian forest ecosystems and 

examining dominant ecological variables among different eco-climate zones. Since 

previous research has mainly focused on estimating the amount of available SOC stock, 

few studies have explored how SOC is spatially distributed across Canada and what 

ecological factors have dominant roles in shaping regional SOC distribution patterns. By 

developing an exploratory-based method, conclusions can be drawn that in Canadian 

forest ecosystems, the SOC distribution reveals distinct spatial patterns, with coastal areas 

containing higher SOC stock, while western boreal eco-region forests has lower SOC 

stock. Such spatial patterns are closely tied with both climatic regimes and terrain 

attributes, such as elevation and slope. 

Second, this study verifies the effectiveness of using the climatic eco-region 

framework for SOC distribution classification and analysis. Empirical findings from this 

study suggest that in B.C. coastal and mountainous areas, SOC distribution is mainly 

influenced by micro-scale climate, namely temperature and precipitation. While in the 

northern forest ecosystems, a more notable dynamic between SOC stock and vegetation 

biomass is identified. In addition, a combined influence of climate and topography on the 

SOC distribution was observed in the Boreal eco-region and southern Ontario. In 

particular, the positive association between SOC and precipitation is identified on both 
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the national and eco-region scales, indicating the significance of precipitation regimes in 

influencing Canadian forest SOC distribution. 

Third, this study provides insight into temperature sensitivity of SOC levels in 

Canadian forests. In mid- and high-latitude forest ecosystems, SOC stock tends to be 

more susceptible to minimum temperature variations. It is suggested that increasing 

minimum temperature actually helps promote SOC accumulation in Canadian forest 

regions. When minimum temperatures increase, the loss of organic-carbon from 

decomposition is offset by an increasing amount of litterfall accumulation and root 

exudates. However, the SOC stock responds differently to temperature changes at local 

scales. For example, the SOC stock decreases with increasing maximum temperature in 

B.C. mountainous areas.  

Finally, the findings of this study are relevant to forest SOC management and 

practice. Inappropriate land use changes could potentially accelerate the SOC 

decomposition rate, which results in carbon release to the atmosphere. By modelling and 

identifying areas of high SOC stock, better land management practices for reducing soil 

disturbances can be identified. Studying regional SOC distribution patterns and SOC-

environment dynamics consequently assists soil resource management in two ways: (1) 

determining influencing factors that are important for modelling SOC distribution, and (2) 

making effective forest management policies, which may include the protection of old-

growth forest, logging management practices, and land use regulation.  

In conclusion, soil is an important and fundamental element in the terrestrial 

carbon cycle. Small changes in SOC stock has the potential to greatly affect atmospheric 

carbon, which could moderate or intensify global warming. However, such SOC-

ecological relationships are too complicated to simulate. This study builds upon previous 

research and attempts to incorporate a spatial dimension to exploring SOC levels and 

their relationships to ecological and terrain variables in Canadian forests.  This includes 

identifying clusters of SOC distribution and estimating spatial effects in the SOC-

environment relationship. With more available data and improved data quality, the 

relationships between SOC and pertinent ecological variables can be better described, 

providing valuable information to better inform SOC management practices.  
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Appendix I. The Python Script for the Average Climate Data Calculation 

### Importing ArcGIS Function 
import os, sys, arcpy, string, arcgisscripting 
from arcpy import env 
from arcpy.sa import * 
 
gp=arcgisscripting.create(10.0) 
gp.CheckOutExtension("spatial") 
gp.OverwriteOutput = True 
 
### Setting the Workspace 
gp.Workspace="F:/Data_Temp1/Document/Climate_Metadata/growing/Prep/output" 
 
### Reading the Raster Data  
tifs=gp.ListRasters("","tif") 
n = len(tifs) 
 
### Creating the FOR Loop to calculate the average climate values 
a0 = Raster(tifs[0]) 
i = 1 
loop = 1 
while (i < n): 
 a1 = Raster(tifs[i]) 
 output = a0 + a1 
 loop = loop + 1 
 a0 = output 
 i = i+1 
 
### Exporting the Calculated Raster data  
output = a0/loop 
output.save("F:/Data_Temp1/Document/Climate_Metadata/growing/Prep/prep_gr") 
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Appendix II. Accuracy Assessment of Ordinary Kriging and IDW Approaches Using 
Different Neighbourhood bands (Interpolated climate maps in the areas beyond the 60 ˚N 
Latitude). 

Max. Temperature Max. 
Neighbours 

Min. 
Neighbours 

RMSE 

Ordinary Kriging 5 2 0.9078 
 8 4 0.8580 
 10 8 0.9810 
 12 8 0.9731 
IDW 5 2 0.9306 
 8 4 0.9397 
 10 8 0.9938 
 12 8 0.9946 
Min. Temperature Max. 

Neighbours 
Min. 
Neighbours 

RMSE 

Ordinary Kriging 5 2 0.6150 
 8 4 0.5893 
 10 8 0.5926 
 12 8 0.6201 
IDW 5 2 0.6562 
 8 4 0.6680 
 10 8 0.6948 
 12 8 0.6874 
Precipitation Max. 

Neighbours 
Min. 
Neighbours 

RMSE 

Ordinary Kriging 5 2 19.8572 
 8 4 17.7153 
 10 8 18.4524 
 12 8 18.1708 
IDW 5 2 19.5303 
 8 4 18.9616 
 10 8 19.3719 
 12 8 19.3339 
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Appendix III. Initial estimation of full OLS and spatial error models of SOC-
environmental relationships in the Boreal eco-region (n = 628). Model (1) includes 
maximum temperature as one of the independent variables, while model (2) and (3) 
includes mean and minimum temperature, respectively. 

Independent 
Variables 

OLS 
Model (1) 

Spatial 
Lag 
Model (1) 

OLS 
Model (2) 

Spatial 
Lag 
Model (2) 

OLS 
Model (3) 

Spatial 
Lag 
Model (3) 

Intercept  
Sig. 

7.843*** 
0.000 

4.634** 
0.022 

6.714*** 
0.000 

3.928** 
0.027 

5.471*** 
0.001 

3.092* 
0.068 

Precipitation 
(cm) Sig. 

0.116*** 
0.000 

0. 061*** 
0.001 

0.122*** 
0.000 

0.065*** 
0.001 

0.127*** 
0.000 

0.068*** 
0.001 

Max. Temp. 
(˚C) Sig. 

-0.257** 
0.057 

-0.161 
0.226 

-- -- -- -- 

Mean Temp. 
(˚C) Sig. 

-- -- -0.279* 
0.069 

-0.180 
0.236 

-- -- 

Min. Temp. 
(˚C) Sig. 

-- -- -- -- -0.251 
0.122 

-0.168 
0.294 

Elevation 
(km) Sig. 

-0.833 
0.478 

-0.111 
0.923 

-1.124 
0.334 

-0.290 
0.799 

-1.414 
0.228 

-0.474 
0.679 

Slope 
Sig. 

1.260** 
0.045 

0.917 
0.134 

1.326** 
0.033   

0.951 
0.116 

1.444** 
0.018 

1.018* 
0.087 

Aspect 
Sig. 

-0.002 
0.158 

-0.002 
0.212 

-0.002 
0.161 

-0.002 
0.214 

-0.002 
0.164 

-0.002 
0.217 

NDVI 
Sig. 

1.452 
0.678 

0.601 
0.860 

0.903 
0.790 

0.314 
0.924 

-0.231 
0.164 

-0.357 
0.908 

Spatial lag 
Term (ρ) 
Sig. 

-- 0.464*** 
 
0.000 

-- 0.466*** 
 
0.000 

-- 0.471*** 
 
0.000 

R2  
(Pseudo R2) 

0.101 0.136 0.101 0.136 0.100 0.136 

Log 
Likelihood 

-1898.850 -1888.980 -1899.020 -1889.010 -1899.480 -1889.160 

AIC 3811.700 3793.970 3843.310 3794.020 3812.950 3794.330 
p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
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Appendix IV. Initial estimation of OLS models of SOC-environmental relationships in 
the Pacific Cordilleran eco-region (n = 61). Model (1) includes maximum temperature as 
one of the independent variables, while model (2) and (3) includes mean and minimum 
temperature, respectively. 

Independent 
Variables 

OLS Model (1) OLS Model (2) OLS Model (3) 

Intercept  
Sig. 

-15.821 
0.375 

-13.141 
0.346 

-6.132 
0.595 

Precipitation (cm) 
Sig. 

0.268*** 
0.001 

0.239*** 
0.002 

0.195** 
0.016 

Max. Temp. (˚C) 
Sig. 

1.193 
0.325 

-- -- 

Mean Temp. (˚C) 
Sig. 

-- 1.626 
0.180 

-- 

Min. Temp. (˚C) 
Sig. 

-- -- 1.896 
0.103 

Elevation (km)  
Sig. 

5.247 
0.444 

6.765 
0.334 

8.209 
0.249 

Slope 
Sig. 

0.184 
0.926 

0.242 
0.901  

0.390 
0.839 

Aspect 
Sig. 

0.015 
0.487 

0.016 
0.447 

0.018 
0.403 

NDVI 
Sig. 

-0.837 
0.969 

-1.948 
0.923 

-0.187 
0.992 

R2  0.325 0.336 0.347 
Log Likelihood -239.712 -239.239 -238.744 
AIC 493.425 492.478 491.489 
p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
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Appendix V. Initial estimation of OLS models of SOC-environmental relationships in 
the Cordilleran eco-region (n = 291). Model (1) includes maximum temperature as one of 
the independent variables, while model (2) and (3) includes mean and minimum 
temperature, respectively. 

Independent 
Variables 

OLS Model (1) OLS Model (2) OLS Model (3) 

Intercept  
Sig. 

10.015** 
0.038 

9.131** 
0.023 

11.594** 
0.014 

Precipitation (cm) 
Sig. 

0.333 
0.474 

0.362 
0.416 

0.112 
0.831 

Max. Temp. (˚C) 
Sig. 

-0.095 
0.786 

-- -- 

Mean Temp. (˚C) 
Sig. 

-- 0.106 
0.816 

-- 

Min. Temp. (˚C) 
Sig. 

-- -- 0.459 
0.362 

Elevation (km)  
Sig. 

0.727 
0.609 

0.741 
0.603 

0.842 
0.555 

Slope 
Sig. 

0.486 
0.279 

0.513 
0.256  

0.546 
0.226 

Aspect 
Sig. 

0.001 
0.738 

-0.001 
0.727 

-0.001 
0.746 

NDVI 
Sig. 

-2.421 
0.742 

-5.189 
0.487 

-8.323 
0.239 

R2  0.040 0.041 0.043 
Log Likelihood -1006.950 -1006.960 -1006.56 
AIC 2027.890 2053.980 2027.120 
p < 0.1 (*),  p <0.05 (**),  and p < 0.01 (***). 
 

Appendix VI. Weights for Climate and Terrain Dominant Variables at the National Scale 

Environmental 
Determinant 

Regression 
Coefficient 

Weight 

Precipitation (cm) 0.221 0.070 
Min. Temperature (°C) 0.500 0.158 
Elevation (km) 1.877 0.592 
Slope (percent) 0.570 0.180 
 


