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Abstract

Many information sources can be viewed as collections of objects and descriptions about
objects. The relationship between objects is often characterized by a set of constraints that
semantically encode background knowledge of some domain. The most straightforward and
fundamental way to access information in these repositories is to search for objects that
satisfy certain selection criteria. This work considers a description logics (DL) based repre-
sentation of such information sources and object queries, which allows for automated rea-
soning over the constraints accompanying objects. Formally, a knowledge base K = (T ,A)
captures constraints in the terminology (a TBox) T , and objects with their descriptions in
the assertions (an ABox) A, using some DL dialect L. In such a setting, object descrip-
tions are L-concepts and object identifiers correspond to individual names occurring in K.
Correspondingly, object queries are the well known problem of instance retrieval in the
underlying DL knowledge base K, which returns the identifiers of qualifying objects.

This work generalizes instance retrieval over knowledge bases to provide users with
answers in which both identifiers and descriptions of qualifying objects are given. The
proposed query paradigm, called assertion retrieval, is favoured over instance retrieval
since it provides more informative answers to users. A more compelling reason is related to
performance: assertion retrieval enables a transfer of basic relational database techniques,
such as caching and query rewriting, in the context of an assertion retrieval algebra.

The main contributions of this work are two-fold: one concerns optimizing the funda-
mental reasoning task that underlies assertion retrieval, namely, instance checking, and the
other establishes a query compilation framework based on the assertion retrieval algebra.
The former is necessary because an assertion retrieval query can entail a large volume of
instance checking requests in the form of K |= a : C, where a is an individual name and
C is a L-concept. This work thus proposes a novel absorption technique, ABox absorp-
tion, to improve instance checking. ABox absorption handles knowledge bases that have
an expressive underlying dialect L, for instance, that requires disjunctive knowledge. It
works particularly well when knowledge bases contain a large number of concrete domain
concepts for object descriptions.

This work further presents a query compilation framework based on the assertion re-
trieval algebra to make assertion retrieval more practical. In the framework, a suite of
rewriting rules is provided to generate a variety of query plans, with a focus on plans that
avoid reasoning w.r.t. the background knowledge bases when sufficient cached results of
earlier requests exist. ABox absorption and the query compilation framework have been
implemented in a prototypical system, dubbed CARE Assertion Retrieval Engine (CARE).
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CARE also defines a simple yet effective cost model to search for the best plan generated
by query rewriting. Empirical studies of CARE have shown that the proposed techniques
in this work make assertion retrieval a practical application over a variety of domains.
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Chapter 1

Introduction

But every error is due to extraneous factors (such as
emotion and education); reason itself does not err.

— Kurt Gödel, November 29, 1972

A long-standing view of the structure of data in information management systems has
been the relational schema; however, the Web provides a universal medium for exchanging
information structured in diverse ways. Relational databases emphasize efficient access
to structured data via some query language, supported by various query optimization
techniques. The sharing of information on the Web relies on the textual structure of
information, thus, adopting the information retrieval paradigm. In both scenarios, the
two aspects of utmost importance are the structure used to represent information and the
query language adopted to access information.

In the Web setting, information access is more challenging, largely due to the diversity
of information structures and the absence of powerful query languages, as opposed to the
mature relational technology. However, querying information remains the focal interest of
users. Figure 1.1 illustrates a typical scenario in which Web users query specific information
over some information repository. The following discussions revolve around this scenario
and show how this dissertation work fits this general framework and why it is different
from existing systems, such as relational databases.

In the scenario depicted in Figure 1.1, assuming an enterprise with some information
repository (E1), a user browses some web page of this enterprise, for example, an HTML
or XML page displaying company products, and may issue some requests during browsing,
such as searching for specific products, which is transmitted to the enterprise web server(s)
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<query>

SELECT ?x ?cn ?p

WHERE {
?x type Digital SLR .

?x name ?cn .

?x release ?d . FILTER (?d > 20100101) .

?x price ?p . FILTER (?p < 1000)

}
</query>

<answer>

<ul>

<li>cam 109</li>

<li>Canon EOS 700D</li>

<li>980</li>

</ul>

</answer>

E1E3

browse pose

return

reference

display

E2

E4

Figure 1.1: An application scenario.
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in the form of a query (E2) that has been embedded in this page. The query, once sent to
the server, is evaluated over the enterprise information repository (E1) by a query engine
(E3). The computed answers to this query (E4) are ultimately rendered properly on some
web page and presented to users.

Consider the case of an online site specialized in photography equipment. Following
Figure 1.1, a web user browses an HTML/XML web page (E1) that lists all the camera
products available for purchase. In particular, the user initiates a search event, which
activates an embedded query on the web page that encodes the following information:

Return the camera names and prices of digital SLR cameras that are

released after January 1, 2010 and sold for less than $1000. (1.1)

In this situation, fulfilling the user’s request requires the application system to address
several important issues, such as how a user query is posed and how query answers are com-
puted. These problems are characterized by understanding the four highlighted artefacts,
E1-E4, in Figure 1.1, which are elaborated subsequently.

Information Repository (E1)

A typical realization of E1 is a relational database, in which an enterprise stores all its
information in well-structured relations. For the Web, linked data [Heath and Bizer, 2011]
has emerged as the mainstream approach to sharing information, particularly for the Se-
mantic Web. The rational behind linked data is to use a standard mechanism for referring
to things and connecting them. The mechanism for this purpose has been established
by the Resource Description Framework (RDF), which is one of the NoSQL endeavours
to the new generation of non-relational databases. More importantly, RDF is so far the
only NoSQL solution that embraces the linked data technology. As can been seen in Sec-
tion 2.1, RDF allows data to be represented as triples, each having a subject, predicate
and object. Such a representation is simple and straightforward but is well suited to the
Web architecture.

RDF data models also address a fundamental aspect of data: the semantics. In rela-
tional databases, the so-called closed world assumption (CWA) is adopted. Under CWA,
data is considered to be complete and definite. For instance, the enterprise in Figure 1.1,
were it to use relational databases, would consider any camera products not explicitly in
its databases to be non existent. In lieu of CWA, RDF models use the open world assump-
tion (OWA) for incomplete information. In this case, the enterprise information repository
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admits missing camera products and acknowledges the existences of such products. This
subject will be revisited with a detailed discussion in Chapter 2.

RDF models can be enriched by more expressive languages (see Section 2.1.1) to rep-
resent domain knowledge, prominently the Web Ontology Language (OWL) [Hitzler et al.,
2012]. An information repository represented by OWL is often called an OWL ontology,
which uses a commonly-shared vocabulary with well-grounded semantics to model a do-
main in an object-oriented manner. In Figure 1.1, E1 can be an ontology maintained by
the enterprise, which captures background knowledge of cameras and facts about partic-
ular camera objects available for purchase through various partner resellers. Similar to a
relational database, the knowledge in an ontology can be either intensional (the schema)
or extensional (the data); for instance, the ontology can state that

all mirrorless cameras are digital SLR cameras (1.2)

as part of its schema and that

the camera product cam101 is a mirrorless camera (1.3)

as part of its data. In this dissertation, the term ontology is used interchangeably with the
term knowledge base.

This work considers application systems that operate on information repositories rep-
resented as OWL ontologies. Note that ontologies are formalized by the OWL language.
The full OWL is so expressive that inferences over OWL may be undecidable. In practice,
however, we believe many application systems can choose a fairly expressive sublanguage
of the full OWL for data modelling. Particularly, a class of languages that has the ability
to express indefinite knowledge, i.e., non-deterministic domain knowledge, is investigated
in this work.

Query (E2)

E2 in Figure 1.1 denotes the vehicle that an application uses to access information stored
in the repository: queries. There exist a variety of query languages, depending on the
information sources to be queried over. In relational systems, the de-facto query language
is SQL, which has its root in first-order logic (FOL). For RDF repositories, a similar
language to SQL has been widely used: the SPARQL query language (see Section 2.3.1).
E2 in Figure 1.1 is a SPARQL query that formulates the user query expressed by the English
sentence in (1.1). The query itself is easy to understand, possibly with the exception of the
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predicate type, which, in this case, denotes class membership, i.e., any object that must
be a Digital_SLR camera. In this application, the only complication is that this SPARQL
query is embedded in a web page. Yet this is no departure from standard web applications
that use relational systems, since there could be an embedded SQL query that is sent to
the web server by the browser.

Since E1 is assumed to be an ontology, of which the modelling subscribes to an object-
oriented view of some application domain, it is natural to view E1 as an information
repository about objects. In a typical enterprise information system, employees, events,
and projects, among others, are often viewed as objects. In Figure 1.1, for instance, the
online site maintains camera products as objects. Thus, the query (1.1) looks for some
objects (products) that satisfy the given conditions. Such queries are considered to be
object queries in that their purpose is to retrieve objects that satisfy certain conditions.

Object queries can have comparatively simple forms, which can be easily understood
and formulated by users, thus, many online sites support object queries as the main mech-
anism for querying. Since the query (1.1) requires the query answers to include camera
names and prices, there is a need for a projection-style operation. This work then con-
siders, roughly, a subset of the SPARQL query language to generalize object queries. As
introduced in Chapter 3, this subset of SPARQL queries, called assertion queries, can be
used to retrieve not only objects but descriptions about objects. The semantics of assertion
queries differs from that of the corresponding SPARQL queries in that assertion queries
can compute genuine nested relational values and handle the so-called non-distinguished
variable (or existential variables). We will revisit the differences between assertion queries
and SPARQL queries in Section 3.3, when sufficient background is introduced.

Query Processor (E3)

Query optimization, though transparent to end users, is essential for ensuring query per-
formance. In relational DBMSs, query processing usually consists of multiple phases to
translate a SQL query into a query plan that takes advantage of the underlying physical
design for efficient query evaluation, as depicted in Figure 1.2. A SQL query in relational

query
query

optimizer
query
plan

plan
interpreter

query
answers

Figure 1.2: An overview of query evaluation in relational databases.

DBMSs is often translated into at least one query plan, because there is always a primary
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or secondary index associated with every relation referenced in the query. For SPARQL
queries, the performance issues have been dealt with mainly over RDF datasets, using
relational-style techniques, for example, DB2 [Bornea et al., 2013], Oracle [Kolovski et al.,
2010], and other research prototypes [Neumann and Weikum, 2010]. For ontologies that
exploit more expressive languages, query optimization has only been cursorily studied.
This dissertation work focuses on query answering over ontologies, in which inferences are
necessary. One of the objectives of this work is to establish an optimization framework that
takes advantage of existing relational query processing techniques, which can be applied to
answering assertion queries over ontologies with expressive underlying description logics.

Query answering over knowledge bases has some peculiar features, compared to query
evaluation in relational DBMSs. In databases, a schema is used to ensure the consistency
of data, or to obtain query plans, but is usually not considered during query execution (i.e.,
the plan interpretation phase in Figure 1.2). In contrast, a schema will be exploited during
the whole process of query evaluation over knowledge bases. Recall that the ontology E1
permits missing or indefinite information, the query processor has to reason about schema
bearing ontological knowledge to correctly answer a query. Given the query (1.1) and the
statement (1.2) in the schema of E1, when evaluating the query over E1, a query processor
must include all mirrorless cameras as part of the answers despite the query only asking
for digital SLR cameras.

Inferences over an OWL ontology with expressive underlying logics are computationally
intensive, hence, query answering over a knowledge base is more challenging than that over
relational databases. A query processor for answering object queries over knowledge bases
must have an ability to minimize or even avoid reasoning with ontological knowledge. In
addition, when inferences are inevitable, it must be able to improve query answering. This
can be achieved by devising new optimization techniques and adapting relational query
optimization techniques, as further discussed in Chapters 4 and 5.

Query Answer (E4)

For a SQL query, the returned answers are in the from of relations. SPARQL queries
return answers in RDF triples, which can also be thought of as relations. E4 in Figure 1.1
depicts a possible query answer to the query in E2. Recall that the query (1.1) requests
the query answers be a combination of the identifiers and descriptions about objects. The
query answer is described by a HTML/XML code snippet, which consists of the object
identifier of a returned object and a list of descriptions of this object. Abstracting the
descriptions away, a query answer in this application is of the form (Oid: Val), in which
the first component denotes the identifier of an object and the second component is a
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projection upon the information content that users are interested in. The representation
(Oid: Val) in an OWL ontology is called an assertion, thus, this class of object queries is
called assertion queries.

Figure 1.1 elaborates a fairly general application for query answering over some infor-
mation repository. In the context of this work, users can pose embedded SPARQL(-style)
queries over OWL ontologies to retrieve objects and specify the details to be returned
along with objects. The query answering mechanism is similar to conventional database
technology in that a user query is translated into a chosen query plan for execution, except
that query optimization is defined in this new context. Needless to say, the most difficult
part in this application scenario is query performance. More specifically, the theme of the
research is regarding the optimization of answering assertion queries over an OWL ontology
(E1 and E3).

Finally, recall that relational DBMSs use parametrized SQL queries to save resources
and enhance performance. The rational is to apply query optimization techniques to a
class of queries instead of individual queries. Assertion queries also lend themselves nicely
to parameterization; for instance, the query (1.1) can be parameterized for the price of
cameras: the value “1000” can be replaced by a parameter. The substituted query, which
now represents a class of queries, can be run by the query processor for query optimization.

1.1 Contributions

This dissertation concentrates on the introduction of a general form of object queries,
called assertion queries, over OWL ontologies. A detailed list of the contributions follows,
together with an illustration of the contributions in Figure 1.3.

1. Chapter 3 proposes assertion queries over knowledge bases in which it becomes pos-
sible for a user to control the format and content of additional facts about qualifying
objects returned in response. By choosing a presentation of object data in the form
of a description logics knowledge base, we provide a way to resolve the problem of
incorporating ontological domain knowledge for object queries.

Assertion queries are also a generalization of the well-known instance queries over
description logics knowledge bases. Assertion queries are SPARQL-like, but its formal
semantics has the capability to compute query results that resemble nested relational
values and to deal with existential variables. Details about these particular features
of assertion queries can be found in Section 3.3.
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2. Chapter 4 presents an important technology for answering assertion queries, called
ABox absorption. Since instance checking underlies assertion queries, ABox absorp-
tion is designed for scalable instance checking for the DL dialect SHIQ(D).

ABox absorption is a non-trivial generalization of binary absorption. It operates with
the assumption that a description logics knowledge base is consistent. In particular,
ABox absorption allows instance checking tasks in the DL dialect SHIQ(D) to be
mapped to concept subsumption tasks in the dialect SHOIQ(D), where a reasoner
can usefully avoid reasoning about irrelevant ABox individuals and concrete facts.
Since many existing optimizations for query answering cannot handle disjunctions,
ABox absorption is particularly effective when disjunctions are necessary.

3. Chapter 5 presents the query compilation phase that underlies answering assertion
queries, which exploits a plan language defined in Chapter 3. A particular note is
that Chapter 5 shows how a combination of a knowledge base and a set of cached
query results enables a transfer of basic database paradigms, for example, index
scanning, view based query rewriting, among others. Cached query results, analogous
to materialized views in relational databases, contain all the requested information
about the qualifying objects. Cached query results can be leveraged to generate
query plans that are more computationally favourable than the default plan.

Chapter 5 also shows that, under some circumstances, it is possible to obtain query
plans that avoid reasoning with respect to the background knowledge base. In this
case, a query plan consists of operators that can be implemented without referencing
any knowledge base, which, together with the use of cached query results, can result in
a significant improvement over the query performance. Note that the aforementioned
problem has not yet been addressed in the conventional view based query rewriting.

4. This dissertation also presents our implementation for answering assertion queries
over knowledge bases, called CARE Assertion Retrieval Engine (Section 4.4). CARE
is a Java-based system that implements the aforementioned ABox absorption and
query optimization framework for assertion queries, including query rewriting and
cost-based plan selection. The core component of CARE is a description logics rea-
soner for the DL dialect SHI(D). We also report the results of a number of empirical
studies that validate the efficacy of the proposed ABox absorption algorithm in Sec-
tion 4.4 and the benefit of query optimization in Section 5.4.
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Assertion Queries
(Chapter 3)

ABox Absorption
(Chapter 4)

Query Compilation
(Chapter 5)

supports uses

Figure 1.3: Contributions of the Dissertation.

1.2 Organization

This dissertation is organized as follows. Chapter 2 reviews the background work and
related research. In Chapter 3, we define a user query language for assertion retrieval,
in particular, projection descriptions that are specified by users to obtain details about
objects are introduced. A list of procedures for computing projections is given in this
chapter, followed by an introduction to the query plan language to be used in subsequent
query compilation. Since instance checking underlies query answering in assertion retrieval,
Chapter 4 focuses on the novel algorithm, ABox absorption, which maps instance checking
tasks to concept satisfaction problems. A procedure for ABox absorption is also given in
this chapter. In addition, Section 4.4 introduces an implementation for assertion retrieval,
CARE, and presents the experimental results regarding the effectiveness of ABox absorp-
tion. Chapter 5 then follows to discuss query compilation of assertion queries. Specifically,
this chapter elaborates a sequence of rewriting rules for plan generation and presents the
implementation details of a cost-based plan selection strategy in CARE. The next and final
chapter, Chapter 6, concludes this dissertation and proposes a list of problems to work on
in the future.
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Chapter 2

Background and Related Work

This work concerns query answering over knowledge bases, which, as an emerging topic,
has raised a number of studies from different perspectives. A knowledge base is a special
kind of database; however, there are some distinctive characteristics associated with query
answering over knowledge bases. In relational databases a schema consists of various
constraints, expressed in the form of integrity constraints. A schema is generally used to
ensure such dependencies are satisfied in databases, while it is used only during query
compilation but not during query answering. However, the schema in knowledge bases is
always used in query answering, because knowledge may be implicit in knowledge bases and
reasoning is therefore indispensable. The involvement of reasoning makes query answering
and query optimization more challenging over KBs than in relational databases; in addition,
the computational properties of query answering over KBs may not be as favourable as in
relational databases.

There is another subtlety for query answering over knowledge bases. Recall that a
logical theory T is complete if for every sentence φ in its language either T |= φ or T |=
¬φ. Therefore, T is incomplete if there is a sentence φ in its language that both T 6|= φ
and T 6|= ¬φ hold. Considering a database as a logical theory T, it is defined using a
finite specification in the form of a table. Typically, such a specification is assumed to be
complete. To interpret missing facts from its representation table, the so-called close-world
assumption (CWA) [Abiteboul et al., 1995] is adopted, which is in spirit to negation as
failure. Negative information, by completeness, is thus logically valid in relational database.

The Web, being inherently open and incomplete, adopts the open-world assumption
(OWA), which, in contrast to CWA, does not assume negative information a priori. The
choice between CWA and OWA can have a dramatic impact on query answering over data
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repositories. Example 1 shows a case in which CWA and OWA affect the consistency of a
repository and the query answers.

Example 1. Consider the following axioms in the data repository of some company selling
cameras:

Every product is either a digital compact camera or a digital SLR camera. (2.1)

Consider CWA applied to relations and some object p in the repository that is explicitly
declared to be a product. Because p is not declared to be either a digital compact camera
or a digital SLR camera, the data repository would assume both (2.2) and (2.3) hold,
which, however, makes the repository inconsistent because of (2.1).

p is not a digital compact camera. (2.2)

p is not a digital SLR camera. (2.3)

Under OWA, neither (2.2) nor (2.3) are assumed. Clearly, the two assumptions may result
in different answers to the same query. Consider a user query that finds all products that
are not digital SLR cameras. Then, p would be included in the query answers under CWA,
but not so under OWA.

The remainder of this chapter discusses several widely used approaches to Web data
representation in Section 2.1, followed by an introduction to description logics (DL) in Sec-
tion 2.2, which serves as the theoretic foundations of this work. Section 2.3 addresses query
answering over knowledge bases; in particular, it reviews the state-of-the-art approaches
to scalable conjunctive query answering over knowledge bases.

2.1 The Resource Description Framework

The Resource Description Framework (RDF) is generally used to represent information
about Web resources (essentially objects), such as document titles, authors, among oth-
ers, as well as about certain properties and values. RDF describes resources using state-
ments that can be compactly encoded as triples (subject, predicate, object). All three
components in a triple are identified by an Internationalized Resource Identifier (IRI),
which is a sequence of characters from the universal character set. In particular, URLs
are a subset of IRIs. In the dissertation, qualified names (QNames) may be used to
substitute full IRI references; for example, the QName dbuw:object is a shorthand for
http://db-tom.cs.uwaterloo.ca/object, in which the prefix dbuw: is assigned to the
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namespace http://db-tom.cs.uwaterloo.ca/, followed by the local name object. In
addition to the prefix dbuw: specifically introduced for examples in this dissertation and
the : prefix for indicating anonymous resources (called blank nodes in RDF datasets),
the following conventional prefixes are used:

rdf: for the URI http://www.w3.org/1999/02/22-rdf-syntax-ns#,

rdfs: for the URI http://www.w3.org/2000/01/rdf-schema#,

owl: for the URI http://www.w3.org/2002/07/owl#, and

xsd: for the URI http://www.w3.org/2001/XMLSchema#.

Because RDF has triples as its underlying structure for expressions, any RDF expres-
sions, as a collection of triples, can be described as an RDF graph, in which subjects and
objects are nodes and predicates are edges. In normative RDF, there are restrictions im-
posed on what can be a subject, a predicate or an object. Formally, a RDF graph can be
defined as follows:

Definition 1. RDF Graph . Let I,B,L denote disjoint infinite sets of IRIs, blank nodes,
and literals, respectively. An RDF graph, G, is a set of RDF triples, i.e., G = {(s,p,o) |
(s,p,o) ∈ (I ∪B)× L× (I ∪B ∪ L)}.

Figure 2.1 shows a simple RDF graph, in which rdf:type is a predefined predicate in
the RDF vocabulary that classifies objects into different types or classes, which means “an
instance of,” i.e., ISA relationship; for instance, the resource identified by dbuw:Weddell is
an instance of the class dbuw:Prof. Also observe that :addr is the so-called blank nodes,
which denotes some anonymous resources. Note that RDF per se provides no mechanism
for defining application-specific classes or properties [Manola and Miller, 2004].

RDF stores triples in a specific XML language, RDF/XML. It should be noted that
XML models can serve the purpose of querying documents because they are flexible for
transmitting structured information. The flexibility of representation, however, also leads
to flexible queries. In contrast, RDF represents every statement in a triple and the actual
RDF/XML representation is not relevant, so, the information content of statements is the
concern of RDF, not the structural information; for example, the order of resources does
not matter in RDF/XML due to the URI attached to them. As a consequence, querying
RDF graph models is more straightforward than querying XML data models.
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dbuw:Weddell

dbuw:Prof

rdf:type

dbuw:Wu
dbuw:supervise

:addr

dbuw:livesIn

dbuw:Ontario

dbuw:prov

"N2L 3G1"^^xsd:string

dbuw:pcode

dbuw:Waterloo
dbuw:city

Figure 2.1: An example RDF graph.

2.1.1 Extensions to RDF

RDF has its own disadvantages and limitations. As discussed above, users may want to
add application-specific classes while RDF provides no such facilities. In short, the ex-
pressiveness limits the usability of RDF. Consequently, the RDF Schema (RDFS) supplies
such a mechanism by defining a set of RDF resources with special meanings, identified
by the rdfs: prefix. RDFS thus does not add to the RDF vocabulary, but it interprets
some built-in terms that must be processed by RDF applications to deal with RDFS. For
example, RDFS allows for the addition of the following triple in the RDF graph in Fig-
ure 2.1 (dbuw:Prof rdf:type rdfs:Class), explicitly stating that dbuw:Prof is a class.
RDFS also allows users to specify subclasses, subproperties, domain and range of proper-
ties, and so on. Readers can refer to [Brickley and Guha, 2004] for a complete list of RDFS
features. While RDF data sets are always consistent because of the inability to specify
contradictions, RDFS does allow contradictory (inconsistent) facts.

Although RDF Schema adds to RDF a list of features for enriching expressiveness,
additional capabilities are useful and necessary as part of the development of the Semantic
Web, for example, cardinality constraints on properties and the ability to describe new
classes in terms of existing ones, among others. Further development of RDF/S becomes
the targets of today’s ontology languages, prominently OWL [Hitzler et al., 2012].

The Semantic Web, envisioned as an evolution of the existing World Wide Web and an
infrastructure for knowledge exchange, gives rise to the popularity of ontologies. Formally
an ontology, defined in [Gruber, 1993], is an “explicit specification of a conceptualization,”
designed for sharing resources and reusing components. OWL 2 is a declarative language for
expressing ontologies. Specifically, an OWL ontology includes a terminology (vocabulary)
describing domain knowledge and assertional knowledge that describes domain objects.
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OWL 2 has a concrete syntax for ontology storage and exchange, based on RDF/XML.
In this section only a fraction of the OWL 2 syntactic features is discussed. A thorough
study about the syntax and semantics of OWL 2 is beyond the scope of this work, and
interested readers can consult additional references, for example [Hitzler et al., 2012]. As
an extension to RDF/S, OWL 2 also identifies all resources with an IRI.

In OWL 2, resources are called entities, associated with IRIs. Entities are the funda-
mental units in building an ontology. Entities fall into the following categories: classes
(including datatypes), properties, and individuals. Classes represent sets of individuals;
properties represent relationships in the domain; and individuals represent actual objects
in the domain. Datatypes are analogous to classes, which refer to sets of data values.
Similar to RDF, OWL 2 ontologies also have, in addition to entities, literals in different
datatypes.

Individuals in OWL ontologies refer to objects in the domain. Analogous to blank
nodes in RDF, OWL 2 also allows for anonymous nodes that are intended to be used
only within an ontology. Properties are differentiated by the types of participants: object
properties represent relationships between a pair of individuals, data properties represent
relationships between an individual and a literal, and the built-in annotation properties
are used to provide annotations.

Classes are application-specific, except for two OWL built-in classes owl:Thing and
owl:Nothing with a predefined semantics such that the former represents the set of all in-
dividuals and the latter represents the empty set. Given a set of defined classes, composite
classes can be built using general propositional operations, such as intersection, union, and
complement. Imposing restriction on properties also constructs new classes. For instance,
ObjectSomeValuesFrom(dbuw:supervise dbuw:Person) defines a class in which every in-
stance supervises some person, given that dbuw:supervise is defined to be an object prop-
erty and dbuw:Person a class; DataHasValue(dbuw:pcode "N2L 3G1"^^xsd:string) de-
fines the class of instances (e.g., addresses) that have the postal code N2L 3G1. Datatype
restrictions in DataRange allow one to limit the values of a datatype, which can be used
to express more classes. The following class, for instance, is the set of instances in which
each object has an age of at least 18:

DataAllValuesFrom(dbuw:age

DatatypeRestriction(xsd:integer xsd:minInclusive "18"^^xsd:integer))

Entities are subsequently used to define axioms, which are the core of an ontology to
express terminological knowledge (class axioms), declarations about properties (property

15



axioms), and factual knowledge (assertion axiom) in the underlying domain. In particular,
properties can be made complex by property axioms, for example, inverse and transitive.

Following the previous example, using OWL 2 class expression axioms, it is possible
to state that the class dbuw:Prof is a subclass of the class in which instances supervise
some person and that all adults in Ontario are exactly the set of persons with an age of at
least 18. In addition, factual knowledge about actual objects can also be stated as axioms,
for example, dbuw:Weddell is a professor, an adult in Ontario and is different from the
object dbuw:Wu. In addition, it is assumed every object has at most one age, i.e., the
property dbuw:age is declared to be functional by a property axiom. These statements are
represented in OWL 2 syntax in Figure 2.2.

SubClassOf(dbuw:Prof ObjectSomeValuesFrom(dbuw:supervise dbuw:Person))

EquivalentClasses(dbuw:Adults DataAllValuesFrom(dbuw:age

DatatypeRestriction(xsd:integer xsd:minInclusive "18"^^xsd:integer)))

ClassAssertion(dbuw:Weddell dbuw:Prof)

ClassAssertion(dbuw:Weddell dbuw:Adults)

DifferentIndividuals(dbuw:Weddell dbuw:Wu)

FunctionalDataProperty(dbuw:age )

Figure 2.2: Example OWL 2 axioms.

The expressiveness of OWL 2 can be observed through the examples, especially when
compared to RDF/S. System modelling often requires a large number of complicated con-
straints to be imposed in real applications, and OWL 2 offers the appropriate mechanism
for ontology engineers to do so. The expressiveness of OWL 2 inevitably makes reasoning
over OWL ontology computationally expensive. The next section discusses the compu-
tational properties of OWL 2 and some of its sublanguages, called OWL 2 profiles, that
trade expressiveness for tractability. Finally, it should be noted that there are types of
statements that cannot be expressed in OWL 2. As an example, OWL 2 does not pro-
vide constructs to compare functional data properties (regarded as attributes or features).
Therefore, an attempt to model the statement “products that have current prices lower
than the manufacturer suggested prices” would fail in OWL 2.
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OWL 2 Profiles

To consider the computational complexity of OWL ontologies, there are several options
in terms of measures. Particularly, one measure is to consider the complexity of the class
axioms in the ontology, this is the taxonomic (schema) complexity measure [Motik et al.,
2012]. When queries are posed over ontologies, data complexity measured with respect to
the size of the assertion axioms in the ontology is of particular interest. OWL 2 corresponds
to the description logic SROIQ(D) (see Section 2.2) in terms of model-theoretic semantics,
and taxonomic complexity of OWL 2 is N2EXPTIME-complete. However, when the
semantics of OWL 2 ontologies is defined as an extension of RDF semantics, taxonomic
complexity of OWL 2 is undecidable. Data complexity of OWL 2 is known to be decidable
in model-theoretic semantics, yet it is undecidable in RDF semantics.

Some domain applications, however, do not take advantage of the expressive power of
the full OWL 2. For these applications using the full OWL 2 becomes awkward because of
the undesirable computational properties. To deal with such issues, OWL 2 profiles [Motik
et al., 2012], which are sublanguages of the full OWL 2, are introduced to trade some
expressive power for the efficiency of reasoning. Three profiles of OWL 2 are available in
OWL 2 for different application scenarios: OWL 2 EL, OWL 2 QL and OWL 2 RL.

OWL 2 EL has its name from the well-known description logic family EL (cf. Defi-
nition 6), of which both taxonomic and data complexity are in PTime-complete. This
profile disallows the use of some class constructs that are inherently difficult to deal with,
including negations, disjunctions, universal and cardinality restrictions, inverse properties,
among others. As an example, the axioms in Figure 2.2 can be fully supported in this
profile. The intended use of OWL 2 EL profiles is when a large volume of classes and
properties are present in the ontology.

The second profile, OWL 2 QL, is designed for querying, i.e., when massive instance
data (actual objects) are used in an ontology. In these scenarios data is stored in rela-
tional databases and query answering is the central reasoning task; furthermore, analo-
gous to evaluating SQL over conventional relational databases, OWL 2 QL enables ef-
ficient query answering, of which data complexity is AC0 and taxonomic complexity is
NLogSpace-complete. This profile is based on the DL-Lite family of description log-
ics (cf. Definition 7), and possesses essential features needed to express UML and ER
diagrams. Particularly, functional properties and existential restrictions over some class
are not supported in this profile, which means the example in Figure 2.2 is beyond the
expressiveness of OWL 2 QL. Indeed, this profile imposes more restrictions than OWL 2
EL on the expressiveness in order to achieve the query performance comparable to that of
relational databases.
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The last profile, OWL 2 RL, considers applications that require scalable reasoning
as well as sufficient expressiveness. Reasoning with this profile can be realized by rule-
based implementation, which has nice computational properties, i.e., PTime-complete
for both taxonomic and data complexity. OWL 2 RL limits the positions where OWL 2
syntactic artifacts can appear, thus restricting the expressiveness. For instance, existential
restrictions cannot occur on the right-hand side of class axioms, which renders the first
axiom in Figure 2.2 inexpressible in this profile.

To formally discuss the profile OWL 2 QL , the theoretic underpinnings, i.e., the family
of DL-Lite of description logics, will be elaborated in later sections. As DLs play a funda-
mental role in OWL 2 and its profiles, the next section addresses the syntax and semantics
of relevant description logics, as well as core reasoning tasks.

2.2 Description Logics

Description logics (DLs) represent a family of logic fragments, of which most are decidable
sub-logic of first-order logic (FOL) [Baader et al., 2003, Chapter 1]. Instead of introducing
the syntax and semantics of the full OWL 2, several dialects of DLs with diverse expressive-
ness and computational properties are introduced. First, a list of DL concept constructs
are introduced in Definition 3; in particular, datatypes, i.e., the concrete domains [Baader
et al., 2003; Lutz, 2003], is given in Definition 2. Next, the semantics of these constructs
are defined. Finally, several DL dialects that are referred to in this work are defined.

Definition 2. Concrete Domain . A concrete domain is a pair (∆D,ΦD), where ∆D is a
set of concrete values and ΦD is a set of predicate names. A predicate name P is associated
with an arity n and an n-ary predicate, interpreted as PD ⊆ ∆n

D.

The concrete domain discussed in this work is the string domain, where ∆D = D is the
set of all finite strings and ΦD consists of the following predicates:

• unary predicates =s with interpretation, for each s ∈ D, (=s)
D = {s′ ∈ D | s′ = s};

• binary predicate < with interpretation (<)D = {(s, s′) | {s, s′} ⊆ D and s < s′}.

The predicates that can be defined in a concrete domain are not limited to = and <,
and it is legitimate to, for example, define < as unary predicates <s, = a binary predicate
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as well. However, the above two predicates suffice to define the concrete domain concepts
used in this work, with appropriate syntactic abbreviations introduced later.

Definition 3. Concept Constructs. Let {A,A1, . . .}, {R,R1, . . .}, {f, f1, . . . , fn, g, g1,
. . . , gn} and {a, a1, a2, . . .} denote countably infinite and disjoint sets of concept names NC,
role names NR, concrete features NF and individual names NI, respectively.

A role is defined as:

S ::= R (atomic role)

| R− (inverse role)

and the inverse of a role S is defined as follows to avoid considering roles such as S−−:

S− =

{
R− if S = R

R if S = R−.

A role constraint CR is defined over some roles, which can be one of the following:

CR ::= S1 v S2 (role inclusion)

| Trans(S) (transitive role)

A role hierarchy, denoted R, is a finite set of role constraints in the form of S1 v S2 or
Trans(R). Note that S1 v S2 implies S−1 v S−2 . Let v∗ R be the transitive-reflexive closure
of v over the set R∪{S−1 v S−2 | S1 v S2 ∈ R}. When the role hierarchy is clear from the
context, we write v∗ instead. Two roles are considered equivalent w.r.t. the role hierarchy
R, denoted S1 ≡R S2, if S1 v∗ R S2 and S2 v∗ R S1. Furthermore, because a role S is
transitive iff S− is transitive, we define Trans(S) ∈ R iff if there is R ≡R S, Trans(R) ∈ R
or Trans(R−) ∈ R. A role S is called simple w.r.t. R if Trans(S ′) 6∈ R for all S ′ v∗ R S.

A concept is defined as follows:

C,D ::= > (top)

| ⊥ (bottom)

| A (atomic concept)

| ¬C (negation)

| C uD (conjunction)

| ∃S.C (existential quantification)
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| ∃g1, . . . , gn.P (domain concept)

| ∃≤nS.C for some simple S (at-most qualified number restriction)

| {a} (nominal)

where n is a non-negative integer, and P is a predicate of arity n. Finally, a constraint C
is defined as follows:

C ::= C v D (concept inclusion)

| ai : C (concept assertion)

| S(ai, aj) (role assertion)

| CR (role constraint).

A knowledge base K is a pair (T ,A), where T = {C v D} ∪ {CR} and A = {ai :
C} ∪ {S(ai, aj)}.

Several syntactic abbreviations are used in this work. Specifically, an equivalence C ≡ D
is used in place of both (C v D) and (D v C), a disjunction CtD in place of ¬(¬Cu¬D),
and a universal quantification ∀S.C in place of ¬∃S.(¬C). Note that only simple roles are
allowed in at-most qualified number restrictions to yield a decidable dialect [Horrocks et al.,
1999]. In addition, some special cases of at-most qualified number restrictions deserve
attention. At-least qualified number restrictions ∃≥nS.C are considered syntactic variants
of ¬(∃≤n−1S.C), and at-most number restrictions, if used in any logic, is synonymous to
∃≤nS.>. ∀S.C (resp. ∃S.C) are considered to be shorthand for the concept ∃≤0S.¬C (resp.
∃≥1S.C).

Domain concepts may also be written in a more straightforward way. Particularly, a
feature equality g = s, for a constant string s, simplifies ∃g.(=s), a feature linear order
g1 < g2 simplifies ∃g1, g2. <, and a concept in the form of g1 ≤ s is an abbreviation for
(g1 = s) t ((g1 < g2) u (g2 = s)). Also, we might use (t1 op t2) to generalize concrete
domain concepts such that t1 and t2 are either a concrete feature or a finite string and
op ∈ {<,=}. Section 2.1.1 notes that OWL 2 does not provide facilities for comparing
functional data properties (corresponding to concrete features in Definition 3), yet such a
class construct, i.e., domain concept, is available in Definition 3.

The TBox and ABox of a knowledge base express intensional and extensional knowledge,
respectively. A TBox T is called primitive iff it consists entirely of axioms of the form
A ≡ C with A ∈ NC, each A ∈ NC appears in at most one left hand side of an axiom,
and T is acyclic. Acyclicity is defined as follows: A1 ∈ NC directly uses A2 ∈ NC if
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A1 ≡ C ∈ T and A2 occurs in C; “uses” is the transitive closure of “directly uses”. Then
T is acyclic if there is no A ∈ NC that uses itself. A ∈ NC is defined in T if T contains
A v C or A ≡ C.

Definition 4. Semantics . The semantics of the constructs in Definition 3 is defined in
the standard Tarski-style. An interpretation I is a 2-tuple (4 ] ∆D, (·)I) in which 4 is
a non-empty abstract domain of objects, ∆D is a concrete domain of objects and (·)I is
an interpretation function. The interpretation function ·I maps each concept name A to
a set (A)I ⊆ 4, each role name R to a relation (R)I ⊆ (4 ×4), each concrete feature
g to a total function gI : 4 → ∆D, and each individual a to a domain element o ∈ 4.
The interpretation is extended to inverse roles as follows: (R−)I = {(o2, o1) ∈ 4 × 4 |
(o1, o2) ∈ RI}.

The interpretation function is extended to all concepts in the following way:

(>)I = 4
(⊥)I = ∅
(¬C)I = 4 \ (C)I

(C uD)I = (C)I ∩ (D)I

(∃S.C)I = {o1 ∈ 4 | ∃o2 ∈ (C)I : (o1, o2) ∈ (S)I}
(∃g1, . . . , gn.P )I = {o ∈ 4 | ∃s1, . . . , sn ∈ ∆D : gi

I(o) = si, for 1 ≤ i ≤ n

and (s1, . . . , sn) ∈ PD}
(∃≤nS.C)I = {o1 ∈ 4 | #{o2 ∈ (C)I | (o1, o2) ∈ (S)I} ≤ n}
({a})I = {(a)I}

where #X denotes the cardinality of a set X. The satisfaction relation for a constraint C
is defined in the usual way:

I |= C v D iff (C)I ⊆ (D)I

I |= ai : C iff (ai)
I ∈ (C)I

I |= S(ai, aj) iff ((ai)
I , (aj)

I) ∈ (S)I

I |= S1 v S2 iff (S1)I ⊆ (S2)I

I |= Trans(S) iff (o1, o3) ∈ (S)I whenever (o1, o2) ∈ (S)I and (o2, o3) ∈ (S)I

for oi ∈ 4, i ∈ {1, 2, 3}

The satisfaction relation also extends to a knowledge base K such that I |= K iff K
satisfies all the constraints in K. In this case, the interpretation I is called a model of K
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(and of the appropriate T and A). We write K |= C if all interpretations that satisfy K
also satisfy the constraint C.

Now we are ready to introduce several DL dialects. The naming convention for DLs
uses the following name constituents:

(ALC | S) [H] [O] [I] [Q] [(D)]

These name constituents are explained below:

• ALC, an abbreviation for attributive language with complements, allows concepts
formed by the first six concept constructs in Definition 3, with the limitation that an
existential quantification must be over atomic roles (i.e., ∃R.C).

• S is ALC with the role constraint Trans(S).

• H denotes the role constraint S1 v S2.

• O denotes nominals.

• I denotes inverse roles.

• Q denotes at-most qualified number restrictions.

• (D) denotes concrete domains.

A variety of DL dialects can then be named by concatenating the name constituents, for
example, ALCI, SHI(D), among others. Particularly, concrete domains in Definition 2 are
useful for describing objects that involve concrete qualities, such as the price of a product
and the name of a person. With all the concept constructs introduced in Definitions 2 and
3, the expressive dialect SHOIQ(D) is obtained.

In addition to ALC family dialects, two more DL dialects are given below: one is called
EL [Baader, 2003] and the other represents an important family of DLs,the DL-Lite family,
for data management. Before delving into the details of these dialects, the notion of unique
name assumption is defined below.

Definition 5. Unique Name Assumption (UNA). UNA fixes distinct individual
names a to be distinct elements of 4, i.e., (ai)

I 6= (aj)
I if i 6= j.
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The choice of adopting UNA impacts the computational properties of some DLs. OWL
does not require UNA because there are axioms in OWL that can be used to explic-
itly state whether two individuals are the same or not, i.e. the SameIndividual and
DifferentIndividuals axioms.

Definition 6. The DL dialect EL. An EL concept is formed by the concept constructs
top, atomic concept, conjunction, and existential quantification, with the limitation that
an existential quantification must be over atomic roles (i.e., ∃R.C).

Definition 7. DL-LiteHhorn . The concept constructs of DL-LiteHhorn include bottom, atomic
concept, negation, and existential restriction. Concept inclusions are limited to Cb

1 v Cb
2

and Cb
1 v ¬Cb

2, where Cb
i can be concepts built from bottom, atomic concept, or existential

restriction; role constraints are restricted to the form of S1 v S2; concept assertions are
limited to ai : A or ai : ¬A; role assertions are allowed in the form of S(ai, aj) or ¬S(ai, aj).

The logic DL-LiteHhorn is the theoretic underpinning of the profile OWL 2 QL [Artale
et al., 2009] discussed in Section 2.1.1. Although the DL-Lite family in general adopts
UNA, the complexity of DL-LiteHhorn is independent of UNA, i.e., the data complexity of
DL-LiteHhorn remains AC0 for query answering. It should be noted that role constraints in
Definition 3 can be supported in any DL-Lite logic, without affecting the complexity results.
So, DL-LiteHhorn, together with role constraints can accommodate almost all constructs in
the OWL 2 QL profile. A missing feature in DL-LiteHhorn is the use of ai ≈ aj with the
interpretation (ai)

I = (aj)
I . This construct is useful only if UNA is not adopted, as in

OWL. It, however, affects data complexity; for instance, data complexity increases from
AC0 to LogSpace-complete [Artale et al., 2009]. The change in complexity resulting
from individual equality is consequential for efficient query answering, as can be seen in
Section 2.3.3.

Note that keys, which are constructs used to identify objects uniquely, are not express-
ible in any DL dialects defined previously, yet OWL 2 allows the use of keys. To introduce
keys in knowledge bases, the DLF family [Toman and Weddell, 2005] has been studied by
viewing keys as a generalization of functional dependencies. The DLF dialects focus on
certain database features, especially functional dependencies; for example, the logic CFD
[Khizder et al., 2000] in DLF , short for “Classic Functional Dependency,” is a dialect
capable of describing object relational database schemas with uniqueness constraints and
runs in PTime for subsumption tests. Since these dialects are beyond the scope of this
work, interested readers can refer to the relevant literature.
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Knowledge acquisition is usually obtained via reasoning. The next definitions [Baader
et al., 2003, Chap. 2] consider some reasoning tasks that may be frequently referred to
throughout this work.

Definition 8. Satisfiability (Consistency). A knowledge base K is satisfiable (or
consistent) if there is a model of K.

Definition 9. Subsumption Checking . A concept C is subsumed by a concept D with
respect to K, denoted K |= C v D, if CI ⊆ DI holds for every model of K.

Consistency of a KB is the minimal requirement for reasoning with a KB. Analogously,
an ABox A is called consistent with respect to K, if there is a model of K that is also a
model of A. Many other reasoning tasks can be reduced to KB consistency. For instance,
the subsumption check of C v D amounts to checking the consistency of the new KB
K′ = K ∪ {a0 : (C u ¬D)}, where a0 is a fresh individual name that does not occur in K.
Therefore, C v D w.r.t. K holds iff K′ is not consistent.

The notion of satisfiability can be extended to a concept C such that C is satisfiable
with respect to K, denoted K |= C, if there is an interpretation I of K such that CI 6= ∅.
The satisfiability of C is also reducible to the consistency of K because a concept C is
unsatisfiable if K |= C v ⊥.

Definition 10. Instance Checking . An instance checking problem, denoted K |= (a :
C), is to decide if a concept assertion in the form of (a : C) is entailed by K, i.e., it holds
iff every model of K is also a model of (a : C), i.e., (a)I ∈ (C)I for every model I of K.

A central problem studied in this work is the instance retrieval reasoning problem
(or simply instance queries): for a concept C, retrieve all individuals a in K such that
K |= (a : C). Instance retrieval can be reduced to instance checking and one instance
retrieval task often requires more than one instance checking; indeed, one such task, for
a näıve implementation, will issue the same number of instance checking requests as that
of individuals occurring in K. Such an implementation for instance retrieval is also called
linear instance retrieval [Haarslev and Möller, 2008].

Instance checking is also reducible to the consistency of K, i.e., K |= (a : C) holds iff
K′ = (T ∪ {A v ¬C),A∪ {a1 : A}} is inconsistent, where A is a fresh atomic concept and
a1 a fresh individual name. Conversely, the consistency of K can be reduced to instance
checking as well, i.e., K is consistent iff K 6|= (a1 : A) for A a fresh atomic concept and a1

a fresh individual name.
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Tableau Algorithm

A core reasoning task of DL reasoners, as shown in the previous section, is to decide the
consistency (satisfiability) of a knowledge base K. The algorithm adopted by DL reasoners
to reason about the (in)consistency of K is the tableau algorithm [Baader et al., 2003].
The basic idea of this algorithm is to prove consistency by demonstrating the existence of
a model I of K. It works on a completion graph (usually a labeled graph), where a node
x of the graph is labelled with a set of concepts L(x) and an edge is labelled with a set of
roles S, e.g., L(〈xi, xj〉) = {S} for two nodes xi and xj. Initially, a node xi is created for
every individual ai in K = {T ,A}. For any constraint ai : C ∈ A and S(ai, aj) ∈ A, the
algorithm defines L(xi) = {C, {ai}}, L(xj) = {{aj}}, and L(〈xi, xj〉) = {S}, respectively.
Then, the completion graph is expanded by applications of expansion rules in Table 2.3,
until the graph is complete. A completion graph is not, but closely resembles, a model of K;
for instance, a model can be infinite (though finitely representable), while a corresponding
completion graph is not.

A completion graph is called complete when either a clash is encountered or no more
tableau rules are applicable. In the latter case, the completion graph is clash-free, and
a model of K is guaranteed to exist. For the DL dialect ALCI(D), a completion graph
contains a clash if, for some node x,

1. ⊥ ∈ L(x), or

2. for some A ∈ NC, {A,¬A} ⊆ L(x), or

3. for some f ∈ NF, f < f ∈ L(x), or

4. for some f ∈ NF, {s, s′} ⊆ D, {f = s, f = s′} ⊆ L(x) and s 6= s′.

Figure 2.3 defines a set of tableau rules for the DL ALCI(D). For some more expressive
logic, additional expansion rules are necessary. Particularly, the t-rule is non-deterministic
in the sense that a tableau has to nondeterministically choose C1 or C2. A choice, e.g.,
C1, leads to a replication of the original completion graph, which is expanded further. If
a clash is found in the replication, the tableau algorithm must backtrack to the original
graph, and select C2 to proceed.

The ∃-rule is a generating rule in that fresh nodes are introduced in completion graphs
after applying this rule. It is possible that a sequence of nodes and edges of a completion
graph repeats itself; therefore, blocking is defined to ensure termination of the algorithm
so that a tableau will not generate an infinite number of nodes, for instance, a tableau
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u-rule
Conditions: C1 u C2 ∈ L(x) and {C1, C2} * L(x)
Actions: L(x) = L(x) ∪ {C1, C2}
t-rule
Conditions: C1 t C2 ∈ L(x) and {C1, C2} ∩ L(x) = ∅
Actions: L(x) = L(x) ∪ { C} for some C ∈ {C1, C2}
∃-rule
Conditions: ∃S.C ∈ L(x) and there is no individual c s.t. S ∈ L(〈a, c〉) and C ∈ L(c)
Actions: create a new node b with L(〈a, b〉) = {S} and L(b) = {C}
∀-rule
Conditions: ∀S.C ∈ L(x) and there is an individual b s.t. S ∈ L(〈a, b〉) and C /∈ L(b)
Actions: L(b) = L(b) ∪ {C}
v-rule
Conditions: C1 v C2 ∈ K and {¬C1, C2} ∩ L(x) = ∅
Actions: L(x) = L(x) ∪ { C} for some C ∈ {¬C1, C2}

Figure 2.3: Tableau rules for the DL dialect ALCI(D).

algorithm will not apply generating rules to nodes that are blocked. A number of blocking
techniques have been developed, for instance, the one presented in [Horrocks and Sattler,
2002] suffices for ALCI(D).

The v-rule deals with concept inclusions (a.k.a. axioms) by converting it into a disjunc-
tion and acts as the t-rule. Obviously, applications of the v-rule degrade the reasoning
performance because every axiom causes a disjunction to be added to every node in the
completion graph. Given an axiom in K and a completion graph of n nodes for checking
the consistency of K, there could be as many as 2n replications of the completion graph.

It has been known for some time in the case of of the v-rule that lazy unfolding is an
important optimization technique in model building algorithms [Baader et al., 1994]. It is
also imperative for a large TBox, i.e., a set of axioms, to be manipulated by an absorption
procedure to maximize the benefits of lazy unfolding in such algorithms, thereby reducing
the combinatorial effects of disjunction in underlying tableaux procedures [Horrocks, 1998],
such as the previously shown 2n case. Absorption aims at transforming general axioms into
ones that can be exploited by lazy unfolding. The basic absorption allows a rewriting of
axioms into the form of A1 v C and the form of ¬A2 v C, where both A1 and A2 are
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atomic concepts. These absorbed axioms are thus examples of unary absorption in that
the left-hand side has only a single atomic concept. Hudek and Weddell [2006] extends the
above absorption to rewrite axioms into the form of A1uA2 v C, called binary absorption.
Furthermore, axioms of the form ∃R.> v C could be absorbed by role absorption [Tsarkov
and Horrocks, 2004]. To our knowledge, [Motik et al., 2009; Wu and Haarslev, 2008] are
among the first to provide an absorption framework, instead of using any single absorption
techniques presented above. In this work binary absorption is employed to absorb ABox
data into TBox axioms, as further discussed in Chapter 4.

2.3 Query Answering over Knowledge Bases

Similar to databases, knowledge bases allow users to pose queries and to maintain the
contents. Typically, knowledge can be updated or revised. In the former case old facts are
replaced by new facts to reflect present situations, and the latter concerns the elimination
of inconsistency when old facts conflict with new facts. Knowledge updates or revisions
are nevertheless beyond the scope of this work. Instead, query answering over knowledge
bases is our focus.

To answer queries over knowledge bases, a query must be expressed by some language.
In relational databases, the standard surface query language is SQL. Similarly, there is
a query language acting as SQL over RDF (and its extensions) data sets: the SPARQL
query language. Section 2.3.1 gives a short introduction to this query language.

Since SQL queries are applications (with extensions) of relational algebra, a form of
first-order queries, it is more convenient to use first-order queries to express these queries
in the form of φ(x), where φ is a well-formed formula in first-order logic. Rather than
dealing with full first-order queries, research in the area of query answering has primarily
concentrated on conjunctive queries, a subset of first-order queries. Section 2.3.2 defines
conjunctive queries and presents the state-of-the-art techniques for answering conjunctive
queries over knowledge bases.

2.3.1 The SPARQL Query Language

The SPARQL query language [Prud’hommeaux and Seaborne, 2008] is the standard struc-
tural query language over RDF data. From a database perspective, SPARQL corresponds
to SQL over relational databases. SPARQL queries are usually evaluated on the basic
building blocks. Once an output pattern is computed, the solution modifiers in the queries
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modify the results, for instance, projection, order, limit, among others. Figure 2.4 show
an example SPARQL query, which is duplicated from the query in Figure 1.1.

SELECT ?x ?cn ?p

WHERE {
?x type Digital SLR .

?x name ?cn .

?x release ?d . FILTER (?d > 20100101) .

?x price ?p . FILTER (?p < 1000)

}

Figure 2.4: An example SPARQL query.

This section does not attempt to outline the complete details of SPARQL, which are
available in [Prud’hommeaux and Seaborne, 2008; Pérez et al., 2009]. As mentioned earlier,
SPARQL query evaluation is based on obtaining results from basic graph patterns (BGPs).
Additional operations can then be performed on BGPs to obtain more expressive patterns,
for example, AND, UNION, and OPTIONAL. This section gives an informal discussion on
evaluating BGPs.

Definition 11. Basic Graph Pattern . Let I, L, and V denote sets of IRIs, literals,
and variables, respectively. A SPARQL graph pattern expression is defined as follows:

• a tuple t ∈ (I ∪ L ∪V) × (I ∪V) × (I ∪ L ∪V) is a triple graph pattern, where V
denotes the set of variables, and

• for a graph pattern e and a SPARQL boolean condition c, (e FILTER c) is also a
graph pattern.

A basic graph pattern is then a set of triple graph patterns, each of which can optionally
have FILTER operations.

Intuitively, the example query in Figure 2.4 finds digital SLR cameras that have a price
less than 1000 and that are released after a given date. For data captured by RDF triples
in the form of (subject, predicate, object), particular choices for predicate in OWL 2 have
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added consequences: existing triples that include such choices can mandate the inference
of additional triples. In OWL 2, this flexibility is an option determined by choosing an
appropriate entailment regime [Glimm and Ogbuji, 2013]. Different entailment regimes
allow for different uses of semantic entailment relations and can lead to different query
answers.

Assume the following axiom exists in the underling ontology:

∃manuBy.(manu name = “manu1”) v Digital SLR.

This axiom states that any instance that is manufactured by the manufacturer with the
name manu1 is a Digital SLR camera. Now suppose the two facts are also present in the
underlying ontology:

manuBy(a1,m1),

m1 : manu name = “manu1”.

Under the simple entailment regime (or the RDF entailment regime), the instance a1 is
not considered to be a digital SLR camera, thus not an answer to the query in Figure 2.4.
However, the instance a1 is considered to be an instance of the class Digital SLR, under
the OWL 2 Direct Semantics entailment regime. In the latter entailment regime, the graph
to be queried over must correspond to an OWL 2 DL ontology and the solutions to a BGP
corresponds to an OWL 2 DL ontology that is entailed by the queried ontology under the
OWL 2 Direct Semantics.

Dealing with blank nodes in SPARQL is subtle, because SPARQL treats blank nodes
differently from the standard semantics [Mallea et al., 2011]. Formally, blanks nodes should
behave as existential variables, which represent the existence of some anonymous resources;
however, SPARQL [Prud’hommeaux and Seaborne, 2008] considers blank nodes to be con-
stants within the scope of the graph in which they occur. Practically, a blank node in
a solution is not related to the original data so that it cannot be referenced in a further
query. While blank nodes are used in BGPs, they act as variables, not as references to the
original blank nodes in the RDF graphs; therefore, blank nodes in queries can be replaced
by variables. It is also worth noting that the combined complexity of query answering
in full SPARQL is PSpace-complete [Pérez et al., 2009], while the data complexity is
LogSpace. SPARQL queries are very expressive, which, under bag semantics, is essen-
tially equivalent to relational algebra [Angles and Gutierrez, 2008].

To investigate query answering over knowledge bases, a subset of FOL queries is usually
studied, i.e., conjunctive queries, because FOL queries are too expressive to be managed:
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query answering in FOL amounts to validity checking, which leads to undecidability. The
next section discusses conjunctive queries, together with state-of-the-art techniques of ef-
ficient query answering in knowledge bases.

2.3.2 Conjunctive Queries

As discussed earlier, instance retrieval aims to find all individuals in a K that satisfy
some query concept C. Formally, the answer to an instance retrieval query C(x) for some
variable x is {ai | K |= C(ai)}. Also, an instance query, being the basic type of queries,
is called membership atom queries [Dolby et al., 2008]. Another type of atom query,
different from membership queries, asks about the relationship between individuals, i.e.,
S(x, y), {x, y} ⊆ V , where V is a set of variables disjoint with the individual names in
K. Other than variables, individual names are also permitted in atom queries. In our
earlier discussion, we have shown that a näıve algorithm for answering atom queries can
be implemented by checking all individuals in K, yet it is impractical for KBs with a large
volume of individuals. In practice, many optimizations have to be implemented for efficient
query answering.

More complex queries can be formulated based on atom queries. By convention, con-
junctive queries, a fragment of SQL that is as expressive as select-project-join (SPJ) queries,
are favoured as the query language for query answering in KBs.

Definition 12. Conjunctive Query (CQ). A conjunctive query Q(x) = {x |
∧
∃yi.φi},

where every φi is an atom (membership/relationship) query, or x = y, where x are all free
(distinguished) variables occurring in φi, and y are existential (non-distinguished) variables.

The special conjunctive query, Q(x) = {x | C(x)}, expresses instance queries, and
Q() = {C(ai)} is a boolean CQ for instance checking (cf. Definition 10). Considering
the inherent incompleteness of knowledge bases, given a knowledge base K and a query
Q(~x), different query answers can be characterized. For instance, one can consider answers
that are true in some interpretation of K; one can also consider the answers true in every
interpretation of K. The former is usually called possible answers, and the latter certain
answers. These query answers are formally defined below.

Definition 13. Possible and Certain Answers. Given a knowledge base K and a
query Q(x) of n free variables, the possible answers and the certain answers, denoted
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PossAns(K, Q(x)) and CertAns(K, Q(x)), are defined as follows, respectively:

{a | K ∪Q(a) is consistent or K is inconsistent}
{a | K |= Q(a)}

where a denotes a n-tuple by a substitution that maps variables in x to constants in K.

Possible answers can be understood as the answers that are “possibly” true, because
they are true in some interpretation(s), i.e., possible answers are the union of all answers,
while certain answers are the ones that are “certainly” true, i.e., certain answers are the
intersection of all answers. Under CWA, say, for a complete database D, because every
n-tuple a of constants of the domain of D has either D |= Q(a) or D |= ¬Q(a), the possible
and certain answers coincide, i.e., PossAns(K, Q(x)) = CertAns(K, Q(x)). Because an
inconsistent knowledge base can infer all facts, query answering over inconsistent KBs is
meaningless. Hence, a knowledge base must be checked for consistency prior to query
answering.

Data complexity of conjunctive query answering in databases is AC0 [Abiteboul et al.,
1995], while it increases to coNP-complete over expressive DL knowledge bases, such
as ALC and its extensions [Hustadt et al., 2005; Ortiz et al., 2008]. Conjunctive query
answering, in terms of data complexity, is as hard as instance retrieval in expressive DLs;
however, when combined complexity is considered conjunctive query answering is harder
than instance retrieval if inverse roles I are involved [Lutz, 2008].

Relational databases scale to large data repositories with favourable performance be-
cause of the low complexity, yet constraints are ignored during query answering. On the
contrary, query answering in KBs, even ignoring constraints, still has difficulty in scaling
to large data sets. Recent studies on ontology based data access (OBDA) [Poggi et al.,
2008; Dolby et al., 2008; Calvanese et al., 2009; Heymans et al., 2008; Kontchakov et al.,
2011] reconcile the complexity issue and the expressiveness in information systems. The
next section then gives an overview of the state-of-the-art in OBDA.

2.3.3 Ontology Based Data Access

Ontology based data access presumes that a set of ad-hoc data sources needs to be accessed
by a conceptual representation in terms of an ontology (i.e., a KB) [Poggi et al., 2008]. In
such a setting, intensional knowledge (i.e., the TBox of a KB) conceptually abstracts the
real data (extensional knowledge, the ABox of a KB), which is managed by technology such
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as the relational database. Because the real data contains values, the matching problem
between the values and objects in KBs arises in OBDA. Possible solutions to the mismatch
problem include approaches presented in [Poggi et al., 2008; Calvanese et al., 2009].

A corpus of literature has been devoted to scalable reasoning over large KBs, for which
scalability becomes the primary objective. Some research focuses on efficiently manipulat-
ing ABox assertions through relational databases, leaving TBox constraints to DL reasoners
[Zhou et al., 2006]. This approach mainly concerns novel algorithms and systems to achieve
better performance on query answering in large and expressive KBs. However, the data
complexity of answering conjunctive queries in expressive KBs cannot be overlooked. An-
other approach takes into consideration the expressiveness of KBs, and rewrites queries in
a form that can be evaluated using relational technology. The following discussions focus
on the second approach and considers

The DL-Lite Approach

The DL-Lite family [Artale et al., 2009; Calvanese et al., 2009] consists of a suite of light
logics in the sense that, for most DL-Lite logics, query answering is AC0 for data complex-
ity and taxonomic complexity is tractable. The original motivation was to identify DLs
that are capable of characterizing conceptual modelling paradigms, such as UML and ER
diagrams, while enjoying tractable reasoning and low data complexity for query answering.
The family of DL-Lite is also the basis of OWL 2 QL profile (cf. Deinition 7).

An important property of DL-Lite dialects is first-order rewritability (FO-rewritability)
[Artale et al., 2009]. FO-rewritability, intuitively, is a property of a language to rewrite
a user query Q into another query Q′ with a given TBox T such that evaluating Q′ over
A returns the certain answers to Q over K = (T ,A) for every A consistent with T . If
FO-rewritability is preserved by some logic, then it is guaranteed that query answering
in that logic is in AC0 for data complexity, permitting query answering to be delegated
to the relational technology. FO-rewritability is compromised in some expressive dialects,
for instance, when the DL-Lite logic allows individual equality to be asserted, as discussed
right after Definition 7, the FO-rewritability property is forfeited in the logic.

Query answering in DL-Lite logics proceeds in the following way [Calvanese et al.,
2009]. In the query reformulation phase, a conjunctive query Q is rewritten into a first
order query Q′. The rewriting starts with atoms of each CQ, using positive inclusions (i.e.,
inclusions that do not have negations on the right-hand side) in the TBox as rules. The
final rewritten query Q′ is a union of CQs (essentially a set of CQs). In the next step, Q′

is evaluated directly over the ABox data viewed as a relational database. In this phase,
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the TBox information is no longer used and query evaluation is the same as in relational
databases. Not surprisingly, because the size of Q′ does not depend on the size of the
ABox data, query answering of Q′ is AC0 in data complexity, as long as FO-rewritability
is preserved. In summary, the DL-Lite approach is to reduce query answering in KBs
to query evaluation in relational databases by limiting the expressiveness of the logic to
retain FO-rewritability. Again, if the logic breaks this property, such as dropping UNA
and allowing for individual equality, or just allowing for role transitivity, then the DL-Lite
approach would not work.

The Combined Approach

The DL-Lite approach rewrites a query with respect to a suitably tailored DL into another
query that can be evaluated exclusively over the data. There are a few observations
regarding the DL-Lite approach: the rewriting process does not modify the data; the
generated union of CQs is arbitrary in size (exponential blowup of query size [Kontchakov
et al., 2011]); the DLs must preserve FO-rewritability. In contrast, the combined approach
[Kontchakov et al., 2010, 2011] pursues scalable query answering in a different manner.
It is called combined because both data completion and query rewriting are used in this
approach. Intuitively, data completion extends an ABox to the canonical model of K,
which is further encoded as a finite structure.

The combined approach first manipulates the source data stored in an ABox, and a new
query is formulated based on the original query and the modified source data. Initially, this
approach constructs the canonical model for a DL KB in DL-Litehorn [Kontchakov et al.,
2011]. The canonical model is obtained by exhaustively applying the concept inclusion
constraints in the TBox to the ABox data, irrespective of any particular query. Essentially,
marked nulls are introduced in the canonical model, which is preprocessed and stored in the
databases. The canonical model may be infinite; however, it can be encoded in a finite FOL
structure called the generating model. Roughly, the canonical model can be considered as
the unraveling model of the generating model. The generating model may produce bogus
answers; hence, to purge these answers, Q over the original KB is reformulated into another
query Q′ polynomial in the size of Q. The answers to Q′ over the generating model are
exactly the certain answers to Q over the initial K.

Two advantages over the DL-Lite approach can be observed in the combined approach.
First, the size of the rewritten query is bounded and much smaller than that of the refor-
mulated queries in the DL-Lite approach, which allows for efficient execution by relational
DBMSs. In addition, the logic used in describing a TBox does not have to retain FO-
rewritability to ensure data complexity in AC0 for query answering. Kontchakov et al.
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[2011] suggest that logics with query answering in PTime-complete can take advantage
of this combined approach.

The Datalog Approach

Datalog is a database query language that captures recursions based on logic programming
paradigm [Abiteboul et al., 1995]. In Datalog programs, both assertions (a.k.a. facts) and
rules are represented as (universally quantified) Horn clauses (a disjunction of literals of
which at most one is positive); for example, a rule about reachability is represented as
follows:

reachable(z, x) :− reachable(z, y), reachable(y, x).

The semantics of a Datalog program is determined by a minimal model. The idea for
choosing a minimal model is closely related to CWA: the intended model consists of the
facts we know must be true in all models and should not contain more ground facts than
necessary for satisfying the program. It is easy to see that negations and disjunctions are
difficult to deal with under this semantics. Indeed, Datalog programs cannot express nega-
tions, i.e., the difference operator in relational algebra, because of the Horn restrictions for
datalog programs. However, Datalog supports recursive queries, which cannot be handled
by relational algebra.

Recent research has proposed a family of Datalog variants, called Datalog±, that adds
the capabilities for existential restrictions, the equality predicate, and ⊥ (i.e., the constant
false) [Cal et al., 2010]. This Datalog± family is studied for tractable query answering
w.r.t. data complexity. In particular, the guarded Datalog±, in which there is an atom
in the rule body that contains all universally quantified variables, ensures decidability and
is tractable in the data complexity. Another even more restricted, guarded variant is the
linear Datalog±, in which query answering has the FO-rewritability: only a singleton body
atom is allowed. More variants, including guarded and sticky variants, are discussed in
[Cal et al., 2010].

In the context of ontological query answering, researchers have considered query rewrit-
ing on boolean conjunctive queries [Gottlob et al., 2011] in Datalog programs. The rewrit-
ing of a boolean CQ is computed by exhaustively expanding the query body atoms using
the applicable constraints. Each application of a constraint results in a new query in a
backward-chaining fashion, with the use of unification of atoms; this process is repeated
until no new queries are generated. For every newly generated query, it is checked in the
factorization step to find if its size can be reduced through unification of atoms. The set
of all generated queries is the perfect rewriting of the original query w.r.t. the ontology
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represented by the Datalog program. Note that this approach yields exponentially large
CQs. In [Gottlob and Schwentick, 2012], it is shown that, however, a polynomially sized
non-recursive Datalog can be obtained, which can in turn be efficiently translated into SQL
statements to be evaluated directly by relational DBMSs.

Comparing Current OBDA Approaches

The previously discussed approaches are the representative OBDA methods, sharing a few
commonalities and differing in several other aspects. Specifically, the reformulation (and
the query answering) process is abstracted in Figure 2.5. A knowledge base consists of a
TBox T (or Datalog constraints) that provides vocabulary for describing the data and an
ABox A that is assumed to be stored in relational DBMSs, or, w.l.o.g, is obtained by some
mapping M that ports data from other data sources, such as a legacy database D.

D = (S, {Ri})

K = (T ,A) Q

M

D′ = (S′, {R′i}) Q′

CertAns(K, Q)

q1f

evaluation

q2

Figure 2.5: Approaches to OBDA. S, S′ (Ri, R
′
i) denote the schemata (relation names) in

relational databases D and D′ resp., f some function for KB manipulation, qi some function
for query reformulation, M some mapping, and Q, Q′ queries.

These approaches reformulate the original CQ Q into another (CQ or non-CQ) query
Q′. The fundamental idea for all the aforementioned approaches is the reduction of query
answering over knowledge bases to query evaluation in relational DBMSs: the certain
answers to Q over K are exactly the answers to Q′ over D′. Table 2.1 describes the
differences between the OBDA approaches.

Note that the Datalog approach are similar to the DL-Lite approach regarding the
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Features The DL-Lite Approach∗ The Combined Approach

logic data complexity AC0 data complexity PTime-complete

T used to rewrite Q not used to rewrite Q

f the identity function uses T to modify A by introducing
marked nulls

qi uses certain inclusions from T to
rewrite Q, i.e., q1

uses modified A to rewrite Q, i.e., q2

D′ D′ = A D′ is the generating model polyno-
mial in size of K

Q′ union of CQs, may be exponential in
size of Q

not CQs (e.g., with disjunctions and
negations), polynomial in size of Q

Table 2.1: Comparing characteristics of the approaches to OBDA.

features in Table 2.1, except that in the Datalog approach the input query is a boolean
CQ and the languages considered are specific variants in the Datalog± family.

An important observation for all the aforementioned OBDA approaches is that the di-
alects used in all these approaches cannot support any non-Horn extensions, for instance,
that include disjunctions. For large knowledge bases with non-Horn features, new ap-
proaches to query answering need to be developed.

2.4 Query Optimization

Query processing in relational database systems is sophisticated, and, in general, consists of
two phases: compilation and execution. The first phase is analogous to compiling program
source code into object code and the second phase is analogous to executing the object
code generated in the first phase. Specifically for database systems, query compilation
translates query specification into executable code that involves predefined operations.
The compilation phase can be further divided into several steps: lexical and syntactic
analyses that parse the user queries in some representation forms such as parse trees,
query rewriting that converts parse trees into an initial algebraic expression and likely other
equivalent expressions, and code generation that turns the previous algebraic expressions
into executable query plans. The algebraic expressions generated in query compilation
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are called logical query plans, while the corresponding code generated in the latter step
forms physical query plans and can be executed directly by database systems. The process
that translates a parse tree into final physical plans is called query optimization, and the
program that fulfills these tasks in database systems is a query optimizer [Markl, 2009;
Molina et al., 1999].

Query compilation, particularly query optimization, has been a core research problem
since the inception of the relational model. The goal of a query optimizer is to derive
“good” physical query plans for execution based on certain performance measures. First,
a query optimizer needs to define a space of candidate query plans; subsequently, the
optimizer requires a cost estimation technique such that relevant measures, such as IO
cost, memory usage, query response time and so on, are reflected in the cost of executing
each plan. Finally, the query optimizer must use an efficient algorithm to enumerate
plans in the search space based on the estimated cost. It is clear that a query can have
many equivalent logical plans (e.g., by commuting join orders), and each logical plan can
be implemented by different physical operators, resulting in multiple physical plans; for
instance, a variety of join algorithms, such as nested loops join and sort-merge join, can be
adopted to implement a join operation. Relevant techniques can be found in the literature,
e.g., [Chaudhuri, 1998].

Selinger et al. [1979] proposed the classical query optimizer in System R, which has been
used successfully in commercial database systems including IBM DB2 and Oracle. The
query optimizer of System R first determines the cheapest base table access paths, then it
tries all possible ways of joining the base access paths to get two-table plans. The query
optimizer repeats for all other table joins and associate each query plan a cost expressed as
a combination of measures like intermediate result sizes, among others. To prune the search
space of plans, dynamic programming is employed to retain plans with the lowest cost. An
additional feature of System R query optimization is to keep also interesting plans that may
be exploited later to achieve a final plan with possibly lower cost; for instance, a plan that
has a particular sort for an intermediate result set. In contrast to the bottom-up approach
in System R, Graefe and McKenna [1993] proposed an alternative top-down approach to
query optimization in the Volcano system, which has been implemented in DBMSs such
as Microsoft’s SQL Server. Volcano uses the goal-directed dynamic programming search
to find query plans; particularly, it does not generate all promising/interesting plans as
in System R, instead, it only derives plans that actually participate in larger plans. In
short, the top-down approach maintains only feasible execution plans, so, a top-down
optimizer may stop at any time while obtaining an executable plan; in contrast, a bottom-
up optimizer may not produce any feasible plans even after exceeding resource limits.

For both top-down and bottom-up approaches to query optimization, the repertoire
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of rewriting rules is essential for generating and expanding plans. Query rewriting takes
place in many forms; for instance, it can rewrite predicates to enable index-based access,
remove redundant predicates and joins, and un-nest subqueries for simplification. More
interestingly, if there are materialized views (essentially named queries with results) in the
databases, query rewriting can exploit views to answer queries. View-based query rewriting
has been a central problem for information integration from heterogeneous data sources.
More generally, query folding [Qian, 1996], i.e., answering queries using a given set of
resources, is a generalization of view-based query rewriting.

FO Queries

Assertion
Queries

Conjunctive
Queries

(1)

(4)
(3)

(2)

Figure 2.6: View-based query rewriting.

View-based query rewriting has been extensively studied in the literature, e.g., [Halevy,
2001]. Query containment, which decides if the results of one query is a subset of the
results of another, is the fundamental task for view-based query rewriting. Figure 2.6
shows the different types of queries used to define views in view-based query rewriting. In
the relational setting, research has focused on views defined by conjunctive queries for view-
based query rewriting, while, in this work, Chapter 5 shows how cached assertion queries
can be leveraged for view-based query rewriting. Conjunctive queries in the area (2) in
Figure 2.6 denote queries that have free variables, which are not expressible in assertion
queries; while assertion queries in (4) are those that support left-outer join operations.
The intersection area (3) then denotes queries that are one-variable conjunctive queries,
for example, instance queries. In general, arbitrary first order queries can be used to define
views, i.e., (1). Because Chapter 5 considers only views that are defined by assertion
queries, this work is incomparable to view-based query rewriting studied in relational
databases.
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2.4.1 Query Optimization in DL Knowledge Bases

Traditionally, an instance checking task of the form K |= a : C is reduced to consistency
checking of K ∪ {a : ¬C}. Consistency is verified by computing a pre-completion that
contains no contradictions (a.k.a. clashes) via an exhaustive application of non-generating
expansion rules. Recall that a completion graph is obtained by applying all expansion rules
according to the tableau algorithm, a pre-completion is simply a unfinished completion
graph. A pre-completion captures some of the relevant information regarding a w.r.t. K.
For DLs without disjunctions, only one pre-completion will be obtained; however, a pre-
completion has to be guessed non-deterministically for DLs that involve disjunctions. A
similar idea, called the model merging technique, was presented in [Horrocks, 1997] for more
expressive DLs. The model merging strategy uses pre-completion obtained by conjunction
and disjunction rules, and has been further refined to pseudo model merging [Haarslev and
Möller, 2008], which appeared to be indispensable for answering queries over large ABoxes.

Notably, the pseudo model merging technique separates consistency checking of A from
instance checking by avoiding exploring other instances occurring in A. Specifically, given
a consistent A, a pseudo model of an instance a captures the deterministic information
relevant to a in one model of A computed by the tableaux algorithm, which exhibits the
interaction between other instances and a. Observing that an instance usually belongs to a
small number of concepts, pseudo models are often used to exclude obvious non-instances of
a given concept. The experimental evaluation of [Haarslev and Möller, 2008] demonstrated
the usefulness of pseudo model merging; however, it is a sound but incomplete optimization.

Although it is always possible to evaluate an instance query C(x) by performing a se-
quence of instance checks K |= a : C for each individual a occurring in K, reasoning engines
usually try to reduce the number of such checks by using precomputed results or by “bulk
processing” of a range of instance checks. An example of the latter is so-called binary
retrieval [Haarslev and Möller, 2008], which is used to determine non-answers via a single
(possibly large) satisfiability check. Another approach to avoiding checking individuals
sequentially is through summarization and refinement [Dolby et al., 2007], in which query
evaluation is performed over a summary of the original data (ABox), and iterative refine-
ment based on inconsistency justification is used to purge spurious answers. Observe that
the aforementioned optimizations concern how to reduce the number of instance checking
tasks, not how to improve the instance checking problem itself. An approach to optimizing
instance checking was introduced in [Wandelt and Möller, 2012]. In this case, an ABox is
partitioned into small islands such that an instance checking problem that involves only
atomic concepts is routed to the island “owned” by an individual.

There has also been a body of research on query optimization in RDF/RDFS datasets.
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For instance, Neumann and Weikum [2010] presents a RDF data management system,
RDF3X, that leverages conventional relational-style query optimization for query answer-
ing. In fact, commercial database engines, such as DB2 [Bornea et al., 2013] and Oracle
[Kolovski et al., 2010], also support RDF data management with native relational query
optimization. When ontologies, rather than RDF/RDFS datasets, are involved in query
answering, sophisticated inferences are necessary. In these cases, more straightforward
optimizations are in spirit to indexing in relational technology for scalability; prominent
examples include [Haarslev and Möller, 2008; Kollia and Glimm, 2012]. Typically, indexes
are created for instances belonging to certain concepts such that answering queries that
involve these concepts is efficient. In general, an instance is indexed by its most specific
concepts. The concepts used in indices can range from only atomic concepts to arbitrary
concepts, depending on the application. For binary relations, i.e., roles, indexing can sup-
port queries on role predecessors, successors or both [Kollia and Glimm, 2012]. In fact,
pseudo model merging can be viewed as a way of manipulating a set of aforementioned
indices to efficiently compute instance queries.
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Chapter 3

User Queries and Query Plans

Recall from the introductory comments in Chapter 1 that object queries qualify a subset
of objects of interest to users. In knowledge bases object queries are typified by instance
retrieval (see Definition 10), which returns objects with object identifiers. These query
answers are insufficient because object identifiers are usually not informative, as they do
not capture the information content about objects, while users are often interested in
knowing particular properties of the qualifying objects, such as the price of a product.

A more general kind of object queries can retrieve qualifying objects and depict objects
with additional information about these objects. Such a paradigm addresses two drawbacks
of instance retrieval, i.e., the inability to express the explicit object characteristics of interest
and the inability to retrieve objects that implicitly satisfy query predicates by means of
schema-based reasoning. This chapter proposes a new query paradigm, assertion retrieval,
as a more preferred for object retrieval. The subsequent sections introduce the syntax and
semantics of user queries, i.e., assertion queries, in Section 3.1, details about the projection
operator that are indispensable for formulating a user query in Section 3.2, the comparison
between assertion queries and SPARQL queries and conjunctive queries in Section 3.3, the
procedures for computing projections with the correctness proof in Section 3.4, and the
algebraic operators that can be used to express query plans in Section 3.5.

3.1 Assertion Queries

An assertion query (abbreviated as AQ) is now formulated by a pair (C,Pd) in which C is
a query concept in some DL L serving the same role as in instance retrieval, and in which
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Pd, a projection description, defines a subset LPd of the L-concepts. The query answers to
an assertion query is of the form a : Ca, where a is the identifier and the concept Ca in L
is “the most informative” concept about a that can be expressed in a subset of L-concepts
defined by the projection description.

For example, the query (Student, age?) extends the retrieval of student instances by
adding the projection description age? requesting more information about the age of all
qualifying students. The answers to such queries are assertions of the form a : Ca such
that K |= a : (C u Ca), where Ca is the most specific concept in LPd for which the above
logical consequence holds. For example, an answer could be, ignoring the intricacies of
computing LPd for now, a1: (age = 26) for the student identified by a1. A projection
description generalizes the effect of the relational projection operation by providing a more
general way of controlling both the information content and the format of query results
[Pound et al., 2009, 2010].

There are two compelling reasons for considering assertion retrieval over simple instance
retrieval. The first is a practical reason that relates to usability: since it becomes possible to
include relevant facts about objects in additional to their identifiers, the results of querying
can be more informative and relevant to a user browsing a knowledge base. The second is
a more technical reason that relates to performance: by caching the computation of earlier
assertion retrieval queries, it becomes possible to explore view-based query rewriting (see
Section 5.1) in the context of object queries over web data.

3.2 The Projection Description

Recall that a user query (C,Pd) consists of a query concept C paired with a projection
description Pd. In particular, an instance query C over K can be formulated as query
(C,>?) (effectively retrieving no further information about qualifying individuals in K).
The syntax for Pd and the sublanguage of concepts in some DL dialect L that are induced
by a Pd are defined as follows. Note that given a finite set S of L concepts, when S =
{D1, ..., Dn}, uS is written to denote > if S is empty and the concept D1 u · · · u Dn

otherwise.

Definition 14. Projection Description and Induced Concepts . Let f ∈ NF, R ∈
NR and C ∈ NC be a concrete feature, role and concept, respectively. A projection
description Pd is defined by the grammar:

Pd ::= C? | f? | Pd1 u Pd2 | ∃R.Pd
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We define the sets LPd and LTUP
Pd , the L concepts generated by Pd and L tuple concepts

generated by Pd, respectively, as follows:

LPd = {uS | S ⊆fin LTUP
Pd }, where ⊆fin denotes finite subsets, and

LTUP
Pd =


{C,>} if Pd = C?;
{f = k | k ∈ D} ∪ {>} if Pd = f?;
{C1 u C2 | C1 ∈ LTUP

Pd1
, C2 ∈ LTUP

Pd2
} if Pd = Pd1 u Pd2; and

{∃R.C | C ∈ LPd1} if Pd = ∃R.Pd1.

Although no restrictions are imposed on L, i.e., the DL dialect from which the LPd and
LTUP
Pd concepts are induced, the syntax of Pd requires that L be at least as expressive as
EL(D). The two induced sets of concepts LPd and LTUP

Pd in Definition 14 are correlated in
that the latter is a proper subset of the former (modulo semantic equivalence). In addition,
LPd has the following property:

Lemma 3.2.1. For any given Pd, any pair of concepts {D1, D2} ⊆ LPd and 6|= D1uD2 v ⊥
(i.e., D1 uD2 is a satisfiable concept), there is D3 ∈ LPd such that |= D3 ≡ D1 uD2.

Proof. We prove this claim by structural induction on Pd.

• When Pd = C?, LPd = {C,>, C u >}, so it is easy to see the claim holds, e.g., by
allowing D3 to be either C or >.

• When Pd = f?, because K |= D1 u D2 6v ⊥, it is impossible for both f = k1 and
f = k2 to occur in D1 uD2, where k1 6= k2 (otherwise D1 uD2 is unsatisfiable). So,
if f = k occurs in D1 uD2, then D3 = (f = k), otherwise D3 = >.

• When Pd = Pd1 u Pd2, by induction hypotheses, there is Di
3 ∈ LPdi such that

|= Di
3 ≡ D1uD2 for any consistent pair {D1, D2} ⊆ LPdi , i ∈ {1, 2}. By Definition 14,

let D3 be D1
3 u D2

3, then D3 ∈ LPd and |= D3 ≡ D1 u D2 for any consistent pair
{D1, D2} ⊆ LPd.

• When Pd = ∃R.Pd1, any concept D ∈ LPd can be represented as
d
∃R.C (or >),

where C ∈ LPd1 . For any consistent pair {D1, D2} ⊆ LPd, clearly, D1 uD2 can also
be represented as

d
∃R.C, where each ∃R.C occurs either in D1 or D2 and C ∈ LPd1 .

Hence, D3 ≡ D1 uD2 ∈ LPd.
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Intuitively, Lemmas 3.2.1 states that satisfiable concepts in the induced set of concepts
LPd are closed under conjunction, up to semantic equivalence. The closure property will
be used later to facilitate efficient computation of LPd. There is another useful property
for computing LPd, when Pd = Pd1 u Pd2. First, the relationship of semantic subset is
defined to consider sets of concepts by semantic equivalence.

Definition 15. Semantic Subset . For any two sets of concepts S1 and S2, S1 is a
semantic subset of S2, denoted S1 ↪→ S2, if for every satisfiable concept C1 ∈ S1 there is
C2 ∈ S2 such that |= C1 ≡ C2.

It is easy to see that ↪→ is transitive. Given Definition 15, it is possible to consider only
satisfiable concepts in a set of concepts and establish connections between such sets.

Lemma 3.2.2. For Pd = Pd1 u Pd2, let S denote the set of concepts {C1 u C2 | Ci ∈
LPdi , i ∈ {1, 2}}, then LPd ↪→ S and S ↪→ LPd.

Proof. The direction S ↪→ LPd follows from Lemmas 3.2.1. Because LPdi , i ∈ {1, 2} are
subsets of LPd up to semantic equivalence, since > ∈ LPd′ for any Pd′.

For the other direction, let C ∈ LPd and C is satisfiable. By Definition 14, C ≡d
Dj, Dj ∈ LTUP

Pd . Again, the definition of LTUP
Pd implies C ≡

d
D1
j u

d
D2
j , where Di

j ∈
LTUP
Pdi

, i ∈ {1, 2}. Since LTUP
Pdi
⊆ LPd, i ∈ {1, 2}, together with Lemmas 3.2.1, it follows that

C ≡ C1 u C2, where Ci ∈ LPdi , i ∈ {1, 2}. This shows C ∈ S.

For a given Pd, any concept occurring in LPd satisfies a syntactic format conforming
to Pd independently of any knowledge base K. However, not all syntactically “correct”
concepts, i.e., all concepts in LPd, should qualify as answers. Concepts that merit consid-
eration are those satisfying certain properties, and we define such promising concepts to
be the most informative concepts in a set with respect to a given K. Given a knowledge
base K and set of concepts S, the most informative concepts in S with respect to K are
thus defined below:

Definition 16. Most Informative Concepts. Let S and K be a set of concepts and
knowledge base, respectively. We write bScK to denote {C ∈ S | ¬∃D ∈ S : (K |= D v
C,K 6|= C v D)}.

The reduction bScK of S, the set of syntactically desirable concepts, retains represen-
tative concepts in this set via the use of semantic equivalence w.r.t. K. Note that the
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reduction can retain more than one concept because of equivalence. A further reduction
of these concept, i.e., bbScKc∅, can then retain the most informative concepts w.r.t. ∅.

Lemma 3.2.3. Let K be an L knowledge base for some DL dialect L that is at least as
expressive as EL(D), Pd a projection description and C a concept. Then the following hold
for the set S of concepts defined by {D ∈ LPd | K |= C v D}:

1. bScK is non-empty;

2. K |= C1 ≡ C2, for any {C1, C2} ⊆ bScK; and

3. bbScKc∅ is non-empty,

Proof. Lemma 3.2.3 (1). Observe that the definition of S ensures that S is non-empty
because > ∈ S by the definition of LPd. Assume that bScK is empty. By Definition 16,
for every concept C ∈ S there exists D ∈ S such that K |= D v C and K 6|= C v D.
Given the finiteness of S, we assume there are n concepts D1, · · · , Dn in S. For D1, there
is another concept, say, D2, in S such that K |= D2 v D1 and K 6|= D1 v D2. By doing so
for every concept in S, we can order all the concepts in S such that K |= Di+1 v Di and
K 6|= Di v Di+1 for 1 ≤ i ≤ n− 1. Finally, for Dn we must also find another concept Dm

(1 ≤ m < n) such that K |= Dm v Dn and K 6|= Dn v Dm; however, it can be inferred
that K |= Dn v Dm because m < n, which contradicts the assumption. Therefore, bScK
must be non-empty.

Lemma 3.2.3 (2). We prove this conclusion by structural induction on Pd. Let S =
{D ∈ LPd | K |= C ′ v D} for the user query (C ′, Pd).

• Case “C?”. LPd = {C,>, C u >}. Assume K |= C ′ v C (otherwise bScK = {>}),
then bScK = {C,C u >}. Clearly, K |= C ≡ (C u >).

• Case “f?”. Similar to the above case.

• Case “Pd1 u Pd2”. By the induction hypothesis the second conclusion holds in both
cases of Pd1 and Pd2. That is, bS1cK and bS2cK for Pd1 and Pd2 resp. contain
only equivalent concepts w.r.t. K. It can be shown that any concept C in bScK
are composed of minimal subconcepts from bS1cK and bS2cK, otherwise C cannot
be a minimal concept in bScK. Suppose w.l.o.g. that for any two concepts (C1 =
AS1 u AS2) ∈ bScK and (C2 = BS1 u BS2) ∈ bScK, with {AS1 , BS1} ⊆ bS1cK and
{AS2 , BS2} ⊆ bS2cK. Note that C1 (and C2) can be a conjunction of more than
two concepts by the definition of LPdPd, then in such cases we always rearrange
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the conjunctions to have two equivalent concepts renamed as AS1 and AS2 , where
AS1 (resp. AS2) only includes concepts in bS1cK (resp. bS2cK). By the induction
hypothesis, K |= AS1 ≡ BS1 and K |= AS2 ≡ BS2 , which implies K |= C1 ≡ C2.

• Case “∃R.Pd1”. By the induction hypothesis the second conclusion holds in the
case of Pd1. The conclusion that any concept C in bScK are composed of minimal
subconcepts from bS1cK still holds because A v B implies ∃R.A v ∃R.B. Con-
sequently, suppose w.l.o.g. that for any two concepts (C1 = ∃R.AS1) ∈ bScK and
(C2 = ∃R.BS1) ∈ bScK, it follows that {AS1 , BS1} ⊆ bS1cK. By the induction hy-
pothesis, K |= AS1 ≡ BS1 , which implies K |= C1 ≡ C2.

Lemma 3.2.3 (3). Analogous to the proof of Lemma 3.2.3 (1), it is easy to show that
bbScKc∅ is also non-empty.

Lemma 3.2.3 (1) and (2) ensure that at least one least subsuming concept of C exists
in LPd and, when there is more than one, that any pair are semantically equivalent with
respect to a given K. Note that such L restriction of some DL dialect L is essential to
ensure Lemma 3.2.3 (1); for example, a more general L restriction that excludes concept
negation from ALCI(D) may not have this property [Baader et al., 2007]. In addition,
although LPd is infinite in general, for any fixed and finite terminology K and query concept
C, the language LPd restricted to the symbols used in K and C is necessarily finite. We
elaborate on issue of finiteness when attempting to use LPd in finding query plans (see
Section 5.2). Lemma 3.2.3 (3) ensures that, among the least subsuming concepts of C
in LPd with respect to K, there is at least one least subsuming concept that is the most
informative when no knowledge of K is presumed.

Since in general only one concept in the set bbScKc∅ is needed, bbSccK is written to
denote the minimum concept from the set of concepts bbScKc∅ according to an arbitrary
total ordering of all concepts in the DL fragment L.

Example 2. Let K = {Sophomore v year = 2} and Pd = (Sophomore?u year?), and let
S = {C ∈ LPd | K |= Sophomore v C}. Then

1. bScK = {Sophomore u (year = 2), Sophomore u >},

2. bbScKc∅ = {Sophomore u (year = 2)} and

3. bbSccK = Sophomore u (year = 2).
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The induced concepts of Pd and the most informative concept can be used to define the
semantics of an assertion query. The syntax of a user query, together with its semantics,
now follow.

Definition 17. Query Syntax and Semantics . Let K be an L knowledge base for
some DL fragment L that is at least as expressive as EL(D), a user query Q over K is a
pair (C,Pd), where C is a L-concept and Pd is a projection description. Let Eval(Q,K)
denote the set of concept assertions computed by Q, then Eval(Q,K) = {a : bb{D | D ∈
LPd,K |= a : D}ccK | K |= a : C, a occurs in K}.

Definition 17 shows that a user query in assertion retrieval is reduced to instance check-
ing in any DL fragment L that has the expressivity of EL(D) and above. Therefore, any
existing DL reasoner that supports EL(D) and more expressive languages can be used
to answer such a user query. Conversely, instance retrieval reduces to a special case of
assertion retrieval.

3.3 Comparing Query Languages

Assertion queries extends the well-known instance queries in DL knowledge bases, how-
ever, the relation between AQ and other popular query languages, such as SPARQL and
conjunctive queries, is nebulous to this end. This section illustrates the specific properties
that are unavailable in SPARQL or CQ yet are specific to AQ.

AQ

SP
A

R
Q

L
C
Q

(1)

(2)
(3)

(4)

(5)

Figure 3.1: The relationship between the semantics of SPARQL queries, conjunctive queries
(CQ), and assertion queries (AQ).
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Figure 3.1 depicts the differences existing in the semantics of the three query languages.
In particular, the five identified areas are elaborated in the subsequent discussions. Exam-
ple 3 first illustrates the computing of nested relations according to the semantics of each
query language.

Example 3. Consider the following knowledge base K = (T ,A), where T and A are
defined as follows:

T = { AZProduct v ∃soldBy.(name = “AZ”) }
A = { p1 : price = 50 p2 : price = 60 p3 : price = 70 p4 : price = 80 u AZProduct

r1 : Reseller u name = “FS” r2 : Reseller u name = “BB” r3 : Reseller

soldBy(p1, r1) soldBy(p1, r2) soldBy(p2, r3) }

Suppose a user request is to return all objects that have a price less than 100 with the
prices and the names of the resellers. The concrete queries for this user request in the
three query languages are irrelevant, since only the semantics is compared, i.e., the query
results. It is easy to see the following objects are returned, together with the requested
information represented w.l.o.g. by DL concepts:

p1 :price = 50 u ∃soldBy .(name = “FS”)

u ∃soldBy .(name = “BB”)

p2 :price = 60 u ∃soldBy .>
p3 :price = 70 u >
p4 :price = 50 u ∃soldBy .(name = “AZ”),

in which the concept > serves the purpose of null.

Recall that Figure 3.1 identifies five types of queries that have specific semantics for
computing query answers that are not available in the others. To give example queries for
these areas, the four query answers given in Example 3 are investigated.

For p1, the description forms a nested relational view of the resellers. An AQ query
that formulates the user request in Example 3 can compute exactly the same answer, so
are an corresponding SPARQL/CQ query, though the nested relation is often flattened in
SPARQL/CQ, e.g., by repeating the object identifier and price information for the second
reseller.

The second and third answers, p2 and p3, can be computed by AQ. Indeed, the reseller
information given in these two query answers are different: p2 has a reseller, whose name
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is unknown, while p3 does not have any reseller. However, SPARQL cannot distinguish the
two cases regarding resellers, and, in general, SPARQL would compute p2 : price = 60u>
for p2 as well. Because CQ does not have left-outer join operators, it does not compute the
reseller information either p2 or p3. Therefore, this is an example query for the area (1) in
Figure 3.1, i.e., AQ computes query answers that are unavailable in either SPARQL or CQ.
In addition, it also follows that SPARQL and AQ can exploit left-outer join to compute
answers that similar to p3, while CQ cannot obtain these answers. So, similar queries that
relies on left-outer joins correspond to the area (2) in Figure 3.1.

The last query answer, p4, has its reseller information derived from the TBox: the
reseller for p4 is derived from the axiom in the TBox, and this reseller is an anonymous
instance, with its name, AZ, given by the axiom as well. This is a binding of the query
variable to an existential object. AQ and CQ are able to obtain the reseller’s name for
p4, yet SPARQL would fail because binding query variables to existential instances is
not supported in the current implementation. So, any queries that relies on bindings to
existential instances correspond to the area (4) in Figure 3.1.

There are two more areas in Figure 3.1 that have been discussed, i.e., (3) and (5).
Clearly, all instance queries reside in area (3). Area (5) indicates the queries that cannot
be expressed by AQ. Since assertion queries are free of variables, hence, any SPARQL
or conjunctive queries that uses more than one free variables fall in this category. For
instance, consider the query that asks for arbitrary pairs of products.

To summarize, CQ, a subset of FOL queries, and SPARQL queries are more expressive
than AQ. SPARQL queries are the most expressive among the three, for instance, variables
in SPARQL queries can bind to class or role names. However, the semantics of SPARQL
queries does not support existential variables, which bind to any domain element that are
inferred to exist. Note that blank nodes (and variables) in SPARQL queries can only bind
to explicitly given resources, e.g., given blank nodes or resources with an IRI. CQ, on the
other hand, does not have left-outer join operators and thus is unable to compute some
query answers, such as p2 and p3 in Example 3. Assertion queries, as a form of object
queries, are easy to formulate and support both existential bindings and left-outer joins.

3.4 Computing Projection

This section provides the procedures for computing queries in the form of (C,Pd), as
presented in [Pound et al., 2009]. Ultimately, computing a user query Q = (C,Pd) involves
computing the projection part (i.e., Pd) by the query semantics given in Definition 17. Note
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that Pd can be of the form ∃R.Pd1, thus computing such queries require the notion of a
general role path Rp, introduced as follows.

Definition 18. General Role Path . Let S and D be roles and L-concepts for some DL
fragment L. A general role path Rp is defined by the grammar:

Rp ::= Id | Rp.S | Rp.D

The expression ∃Rp.D denotes the concept D when Rp = “ Id ”, the concept ∃Rp1.∃R.D
when Rp = “Rp1.R”, and the concept ∃Rp1.(D1 uD) when Rp = “Rp1.D1”.

With the use of a role path Rp and knowledge base K, a top-level procedure is given
by Algorithm 1. We overload the procedure name, i.e., Proj(Pd,K, Rp, a : C), to denote
the set of concepts obtained by it.

Algorithm 1: Proj(Pd,K, Rp, a : C)

1 switch Pd do
2 case C1? return ProjConcept(C1,K, Rp, a : C) case f? return

ProjFeature(f,K, Rp, a : C) case Pd1 u Pd2 return
ProjJoin(Pd1, Pd2,K, Rp, a : C) case ∃R.Pd1 return
ProjRole(Pd1, R,K, Rp, a : C)

A straightforward coding for the procedures invoked by Proj to handle each of the
four cases may lead to an unacceptably large number of tests on logical consequence.
While these performance issues are unavoidable in the worst case, it is possible to improve
the performance of projection computation for many situations. The subsequent sections
explain how each case in Algorithm 1 is computed and optimized.

3.4.1 Procedures ProjConcepts and ProjFeature

A straightforward implementation of ProjConcept is described in Algorithm 2.

ProjFeature may be implemented analogously, shown in Algorithm 3. Observe that
the function GetAllConstants(C,K) returns the collection of all constants occurring
in the knowledge bases. This function, however, can practically return constants only in
the range of the feature f .

Algorithm 4 uses binary search over the set of sorted constants to efficiently compute
a value for some feature. It proceeds by a progressive refinement of intervals over the
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Algorithm 2: ProjConcept(C1,K, Rp, a : C)

1 result← ∅
2 if K ∪ {a : C} |= {a : ∃Rp.C1} then
3 result← result ∪ {C1}
4 return result

Algorithm 3: ProjFeature(f,K, Rp, a : C)

1 result← ∅
2 constants← Sort(GetAllConstants(C, K))
3 low ← 0
4 high← Size(constants)− 1
5 result← result ∪ IterativeSearch(f,K, Rp, a, C, low, high, constants)
6 return Reduce(result,K, Rp)

concrete domain, narrowing by binary search on intervals to the required set of concepts
of the form (f = k).

Algorithm 4: IterativeSearch(f,K, Rp, a : C, low, high, constants)

1 result← ∅
2 mid← b(low + high)/2c
3 C1 ← (f ≥ constants.Get(low)) u (f ≤ constants.Get(high))
4 if K ∪ {a : C} |= a : ∃Rp.C1 then
5 if low = high then
6 result← (f = constants.Get(low))
7 else
8 result← result ∪ IterativeSearch(f,K, Rp, a : C, low,mid, constants)
9 result← result∪IterativeSearch(f,K, Rp, a : C,mid+1, high, constants)

10 return result
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3.4.2 Procedure ProjJoin

A näıvely coded ProjJoin procedure for the Pd1uPd2 case is problematic since it requires
a number of logical consequence tests equal to the product of the number of descriptions
computed by Pd1 and Pd2. This circumstance quickly becomes intolerable for iterated uses
of this procedure, e.g., for projection descriptions of the form f1 u · · · u fn which abstract
relational-like projections that produce descriptions of tuples.

Algorithm 5: ProjJoin(Pd1, Pd2,K, Rp, a : C)

1 result← ∅
2 foreach C1 ∈ Proj(Pd1,K, Rp, a : C) do
3 foreach C2 ∈ Proj(Pd2,K, Rp.C1, a : C) do
4 result← result ∪ {(C1 u C2)}

5 return result

Algorithm 5 follows a nested loops strategy in which concepts computed by an outer
loop may be used to further qualify concepts computed by an inner loop. A simple way
to accomplish this is to use the general role path that enables sideways communication of
outer loop concepts. There are additional opportunities for improving the performance of
Algorithm 5. For one, the procedure might explore alternative permutations of projection
descriptions with the form Pd1 u · · · u Pdn that might result in a more efficient nesting
order.

3.4.3 Procedure ProjRole

The näıve implementation of this procedure involves quantifying over all subsets of concepts
computed by the evaluation of the nested projection description. However, for a given
knowledge base K, role path Rp and concept C, consider the following:

• It is less likely that K ∪ {a : C} |= {a : ∃Rp.(uS)}, for concept sets S with larger
numbers of elements; and

• For any pair of concept sets S1 and S2, if K ∪ {a : C} 6|= {a : ∃Rp.(uS1)}, then
K ∪ {a : C} 6|= {a : ∃Rp.(u (S1 ∪ S2))}.
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These observations motivate the implementation of ProjRole given by Algorithm 6 that
uses a queue to conduct a breadth-first-search of subsets. Note that, to avoid considering
more than one permutation of a candidate, the procedure assumes a total lexicographic
order “≺” over all concepts.

The algorithm works particularly well in cases where the argument projection descrip-
tion parameter Pd has the form f?uPd , e.g., computes relational-like tuples. In this case,
the number of entailment checks performed directly by the algorithm is quadratic in the
size of S1.

Algorithm 6: ProjRole(Pd,R,K, Rp, a : C)

1 S1 ← Project(Pd,K, Rp.R, a : C)
2 if S1 = ∅ then
3 if K ∪ {a : C} |= {a : ∃(Rp.R).>} then
4 return {∃(Rp.R).>}
5 return ∅
6 result← ∅
7 queue← ∅
8 foreach C ′ ∈ S1 do
9 queue.Enqueue({C ′})

10 while queue.NotEmpty() do
11 S2 ← queue.Dequeue()
12 notgrown← true
13 foreach C ′ ∈ S1 where ∀C ′′ ∈ S2 : C ′′ ≺ C ′ do
14 if K ∪ {a : C} |= {a : ∃(Rp.R).(C ′ u (uS2))} then
15 queue.Enqueue({C ′} ∪ S2)
16 notgrown← false

17 if notgrown then
18 result← result ∪ {∃R.(uS2)}

19 return Reduce(result,K, Rp)
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3.4.4 Procedure Reduce

The procedure Reduce ensures the most informative concepts, as defined in Definition
16, are selected from the set of concepts before returning results from previous procedures.
An implementation of this procedure is given by Algorithm 7.

Algorithm 7: Reduce(S,K, Rp)

1 result← ∅
2 foreach C ′ ∈ S do
3 minimal← true
4 foreach C ′′ ∈ S − {C ′} do
5 if K |= ∃Rp.C ′′ v ∃Rp.C ′ and K 6|= ∃Rp.C ′ v ∃Rp.C ′′ then
6 minimal← false
7 break

8 if minimal then
9 result← result ∪ {C ′}

10 if K = ∅ then
11 return result
12 else
13 return Reduce(result, ∅, Rp)

3.4.5 Correctness

Recall that bbSccK is not presumed a singleton set, which means that a total ordering
of all concepts in the corresponding DL dialect L is needed. The procedures invoked in
Algorithm 1 assume a simple lexicographical order on all concepts. In particular, relevant
symbols adhere to the following order:

¬ ≺ ∃≤n ≺ u ≺ f = k ≺ A ≺ >,

where f is a concrete feature, k a constant, and A ∈ NC. Also, when Proj(Pd,K, Rp, a :
C) = ∅,

d
Proj(Pd,K, Rp, a : C)=>.
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Theorem 3.4.1. For any query Q = (C,Pd), Eval(Q,K) = {a :
d

Proj(Pd,K, Rp, a :
C) | K |= a : C} w.r.t. the given lexicographical ordering on concepts, where Proj(·) is
given by Algorithm 1.

Proof. To prove the correctness of Algorithm 1, first observe that it suffices to prove each
of the four procedures used in computing each case of Pd shown in Algorithm 1. Recall
the query semantics given in Definition 17, it is sufficient to show, for each algorithm
computing a case of Pd,

d
Proj(Pd,K, Rp, a : C) = bb{D | D ∈ LPd,K |= a : D}ccK,

where K |= a : C. To ease the presentation, in the following proofs use SPd to denote the
set {D | D ∈ LPd,K |= a : D}.

Since Algorithm 7 is used by other algorithms, it is proven first. The purpose of this
algorithm is to simulate bbSccK for some set of concepts S, which includes two reductions:
one w.r.t. K and the other w.r.t. ∅. The loop in Line 2 iterates all concepts in S, and, for
each concept C ′, another loop in Line 4 tests, for all other concepts in S, if the condition in
Line 5 is met. This is exactly the condition in Definition 16 for finding the most informative
concepts. If the condition is met, then C ′ is not one of the most informative concept (thus
C ′ is not one of the answers). If the condition is not satisfied, then C ′ is indeed an answer.
It is easy to see that both loops terminate because of the flag variable minimal and the
finiteness of S. The second reduction just calls the algorithm itself, except that ∅ is used
instead of K. After computing the most informative concepts, the algorithm terminates
because of Line 11. After the second reduction, result = bbSccK.

Algorithm 2. By Definition 14, when Pd = C1?, LPd = {C1,>, C1u>}. If the condition
in Line 2 is satisfied (note Rp = Id), then C1 ∈ LPd and K |= a : C1. So, C1 is returned.
On the other hand, SPd = {C1, C1 u >}. In this case, although C1 ≡ C1 u >, the concept
C1u> will not be selected due to the lexicographical ordering imposed and it is dismissed;
therefore, bbSPdccK = C1. If the condition in Line 2 is not satisfied, then result = ∅, and >
is returned. On the other hand, because K 6|= a : C1, S = {>} and bbSPdccK = >. Hence,
this algorithm is correct w.r.t. the aforementioned ordering.

Algorithm 3. First, low and high store the lowest and highest indices of all the con-
stants, respectively. Note that the list of constants is necessarily finite, considering a given
knowledge base, and it is sorted. Then, an iterative search procedure, Algorithms 4, is
invoked to find all valid results. In Algorithms 4, the index of constant located in the
middle of the list is computed. Line 4 then checks if the potential answers are within the
range of the low and high constants. If the condition is true, then the search proceeds
in a binary fashion. Because of this straightforward binary search, the recursive calls to
this procedure will terminate when the high index equals the low one. Now consider the
case Rp = Id . If the condition in Line 4 is satisfied, only one answer is returned, say
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f = k, since otherwise K is inconsistent. Hence, f = k is returned (Algorithm 7 does not
change the result for a singleton set). If the condition in Line 4 is not met, > is returned.
Hence, for the case Rp = Id , the proof is analogous to Algorithm 2. The case Rp 6= Id is
considered in Algorithm 6.

Algorithm 5. This procedure is a straightforward application of Lemma 3.2.2. Observe
that the reduction step is not needed for the results in this procedure, because Lemma 3.2.2
ensures the results are the concepts that would be retained after reductions. In addition,
the order of the selected answers is preserved by induction on Pd1 and Pd2.

Algorithm 6. This procedure first computes computes LTUP
Pd for the sub projection

description Pd, and stores the results in S1, which follows from Definition 14. When S1

is empty, the procedure checks if “∃(Rp.R).>” is an answer. The proof for this part is
analogous to that of Algorithm 2, assuming the given lexicographical order. When S1 is
non-empty, each concept in this set is made a singleton set and stored in queue, i.e., Line 9.
The rest of this procedure attempts to add more concepts to the singleton sets to make
them more specific. Specifically, the loop guard at Line 13 ensures that a concept that is
ordered after every concept in the set S2 is processed, thus ensuring the termination of this
loop (otherwise S2 can keep adding the same concept in itself and Line 14 remains true).
Line 14 guarantees that the concept C ′ is added to S2 only if it still satisfies the condition
C while making S2 more specific. The outer while loop will eventually terminate because
the termination of the inner for loop will not set the flag notgrown, thus stopping the
augmentation of the queue. When notgrown is true, S2 is saturated and no more concept
can make it more specific, and it is an answer. It is easy to see the procedure computes
all combination of concepts in S1 in a power set fashion, i.e., the queue contains all sets of
size 1, of size 2, and so on. So, the procedure computes a subset of L∃(Rp.R).Pd, in which
each concept is the most specific w.r.t. the given ordering for a particular permutation
of concepts in S1, e.g., when the answer set has ∃(Rp.R).(C1 u C2), it would not contain
∃(Rp.R).C1 or ∃(Rp.R).C2. The results are reduced subsequently, i.e., it computes exactly
the set of concepts for bbSPdccK. Since this set is not necessarily singleton, a conjunction
of its elements would equal bbSPdccK.

3.5 A Query Plan Language

When evaluating queries over relational databases, a relational DBMS performs query
optimization to enhance efficiency, as discussed in Section 5.1. Typically, a DBMS will use
relational algebra to generate and rewrite query plans in order to find an efficient plan for
query execution. The same strategy is adopted for query evaluation over knowledge bases.
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This section defines a query algebra for manipulating sets of concept assertions that
functions as the query plan language. This algebra can be used to describe a variety
of query plans that can vary widely in the cost of their evaluation for evaluating a user
query Q in Definition 17. These query plans, or algebraic expressions, are considered to
be transparent to end users, who can only pose user queries. To distinguish a user query
from a query plan, the latter (an algebraic expression) is denoted Q. Thus, computing a
user query Q is reduced to evaluating some query plan Q. Since evaluating a query plan Q

may require additional resources, such as the underlying knowledge base K and/or a set
of cached query results (see Definition 21) SI, the evaluation of Q is denoted JQKSIK . The
goal of query optimization is to find an efficient query plan Q for a user query Q such that
Eval(Q,K) = JQKSIK .

It is important that the set of assertions to be manipulated by algebraic operations be
organized in some way for efficient data access. For this purpose, an implicit ordering can
be imposed on a set of assertions, and such an ordered set can be arranged by a special
data structure called description indices. In the following, Section 3.5.1 defines how an
ordering is used in description indices, which are in turn exploited by algebraic operators
defined in Section 3.5.2.

3.5.1 Description Index

A description index is a search tree in which nodes correspond to concepts and in which
search order is defined by an ordering description (or Od for short) [Pound et al., 2008]. In
this work, description trees are extended to support efficient search for concept assertions;
the following ordering descriptions are considered:

Definition 19. Ordering Description . Let C be an L concept for some DL dialect L,
C∗ a concept obtained from C by replacing all f occurring in C by f ∗, R by R∗, and A
by A∗, where f ∈ NF, R ∈ NR and A ∈ NC. An ordering description Od is defined by the
following grammar:

Od ::= Un | Ind | f : Od1 | [C](Od1, Od2),

where an instance of each production is called null, identifier, feature, and partition order-
ing, respectively. Given two concept assertions a1 : C1 and a2 : C2, the former precedes the
latter w.r.t. the ordering description Od, denoted ≺Od (a1 : C1, a2 : C2), if at least one of
the following conditions hold:

• Od = Ind and a1 ≺ a2, where ≺ denotes the usual lexicographical order;
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• Od = f : Od1 and |= C1 u C∗2 v (f < f ∗);

• Od = f : Od1, |= C1 u C∗2 v (f = f ∗), and ≺Od1 (a1 : C1, a2 : C2);

• Od = [C](Od1, Od2), |= C1 v C, and 6|= C2 v C;

• Od = [C](Od1, Od2), |= C1 v C, |= C2 v C, and ≺Od1 (a1 : C1, a2 : C2);

• Od = [C](Od1, Od2), 6|= C1 v C, 6|= C2 v C, and ≺Od2 (a1 : C1, a2 : C2).

Two concept assertions a1 : C1 and a2 : C2 are incomparable w.r.t. Od if neither
≺Od (a1 : C1, a2 : C2) nor ≺Od (a2 : C2, a1 : C1) hold.

Properties of description indices presented in [Pound et al., 2008] are still valid for the
above definition, while the notion of descriptive sufficiency deserves extra attention, as
defined below:

Definition 20. Descriptive Sufficiency . A concept assertion a : C is sufficiently
descriptive w.r.t. Od, denoted SD(a : C,Od), if any one of the following conditions hold:

• Od = Un;

• Od = Ind;

• Od = f : Od1, |= C v (f = s) for some s ∈ D, and SD(a : C,Od1).

Intuitively, descriptive sufficiency shows the “completeness” of a concept assertion w.r.t.
the given Od. Such information is particularly useful for searching over a set of concept
assertions. The use of descriptive sufficiency will be revisited in Chapter 5.

For description indices arranged w.r.t certain ordering description, searching for par-
ticular concept assertion(s) can be very efficient. The following examples are given to
illustrate the uses of Od:

Example 4. Feature and Identifier Ordering A collection of products with price
information is indexed by a description index; the concept assertions are additionally in-
dexed by the ordering description price : Ind, i.e., with a major sort on price and a minor
sort on individual names (identifiers). Figure 3.2 illustrate such a description index with
five products. Clearly, an in-order traversal of this description index returns the products
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product2:price = 299 u . . .

product4:price = 199 u . . .

product3:price =59 u . . . product5:price = 199 u . . .

product1:price = 399 u . . .

Figure 3.2: A description index with Od = price : Ind.

in a non-descending order of product prices; in addition, when the major sort of Price fails,
the minor sort on individual names is effective.

In Example 4, a query on the major sort feature (price) can be computed efficiently over
the description index. However, such good performance is only possible for one-dimension
search, i.e., the major sort feature. In reality, multidimensional queries are not uncommon,
which often require some spatial data structure; for instance, web users may want to
search products by price and rating ranges. Such requests can also be accommodated by
a description index with partition ordering, as shown in Example 5.

Example 5. Partition Ordering. A collection of products with price and user rat-
ing information is indexed by a description index with the ordering description [price >
100]([rating > 80%](price : Un, Ind),Un). The ordering description can be understood as
follows. First, partition products into two groups by checking if the product price is over
100. The more expensive products (group 1) is further partitioned into two smaller ones
(groups 1.1 and 1.2) by checking if the user rating of a product is over 80%, and the well-
rated products (group 1.1) are sorted by price, while the rest (group 1.2) are sorted by
product identifiers. For the less expensive products (group 2), products need not to be
sorted. A more intuitive explanation is given in Figure 3.3, which abstracts the index as a
tree and partitions as parts of the tree.

Starting from the left-most partition in Figure 3.3, the shaded parts correspond to the
collections of products in group 2, group 1.2, group 1.1, respectively. Indeed, partition
ordering can be used by description indices to achieve the behaviour of k-d trees and to
facilitate multidimensional search. Ordering description is even more flexible for this pur-
pose; for instance, the index in Example 5 does not alternate between the two dimensions
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Figure 3.3: A description index with a partition ordering.

as a k-d tree would.

3.5.2 The Algebra

Six algebraic operators have been defined in the query algebra, as shown in Table 3.1.
Before introducing the semantics of these algebraic operators, a cached query result is
formally defined as follows:

Definition 21. Cached Query Result . A cached query result, Si = Q :: Od, is the
set of concept assertions obtained by evaluating the user query Q = (Ci, Pdi) over some
knowledge base K, i.e., Eval(Q,K), which are stored in a description index with respect
to some ordering Od.

As the name suggests, a cached query result stores the set of concept assertions obtained
by evaluating a user query and the materialized results are indexed by a description index
to facilitate search. When clear from the context, a cached query result is also called
a cached query. Relating to relational databases, a cached query can be thought of as
a materialized view. However, most current DL reasoners do not support result caching
[Weithöner et al., 2006], hence, these DL systems cannot benefit from cached results even
though a user query is repetitively posed.
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Query plans can exploit cached query results to facilitate efficient search over a set of
concept assertions. Definition 21 permits the existence of any number of cached query
results often organized in data structures designed to support user queries. This is analo-
gous to relational systems, where multiple specialized indices are defined to support queries.
Cached query results are essential in enhancing the performance of actual implementations
because they enable query evaluation to reduce or even avoid general DL reasoning, as
discussed in Section 5.2.

With the notion of cached query results in Definition 21, the assertion retrieval algebra
can now be defined.

Definition 22. Algebraic Operators . An algebraic operator Q is defined as follows:

Q := C | PK | Si(Q) | σKC (Q) | πKPd(Q) | Q ./ Q.

A query plan is then formed by a sequence of algebraic operations, i.e., an algebraic
expression. The semantics of each operator is given in Table 3.1. Note that each operator
maps sets of assertions to a set of assertions. In particular, the set of assertions obtained
by an evaluation of a query plan Q is denoted JQKSIK , where SI is a set of supplied cached
query results and K some knowledge base.

The constant operator C is a leaf operator, defined to be a set of concept assertions
in which the concept part is the supplied C. Without loss of generality, the result can be
compactly represented by a single generalized assertion of the form {? : C} where ? stands
for an arbitrary individual in K.

The primary operator PK, an alternative to the user query (>,>?), is also a leaf
operator that obtains all the instance names in the underlyingK, without sorting assertions.
As discussed in Chapter 1, no standard design is implemented in knowledge bases, so, not
every user query has a default query plan as in the relational setting. The operator PK

circumvents the standard design problem by providing a mechanism to return a concept
assertion for every individual that appears in the knowledge base. In terms of physical
design, the set of assertions computed by PK can be supported by any data structure,
particularly, a description index (see Section 3.5.1).

The cache scan Si(Q) links the algebra to the underlying cached query results. While
not mandated by the definitions, the subquery Q of a given Si(Q) operator is also expected
to be related to the specification of the underlying cached query result Si to facilitate
efficient search. Also note the run-time optimization of compactly representing the results
of a constant operator can lead to improved efficiency when executing Si(C).
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Operator Q Semantics JQKSIK
C {? : C | ? stands for any arbitrary individual}

PK {a : > | a appears in K}

Si(Q)
{a : C | (a : C) ∈ Si, ∃(a : D) ∈ Q, {a : C} |= a : D} ∪
{a : C | (a : C) ∈ Si, {a : C} |= a : D, {? : D} = Q}

σKC (Q)
{a : D | ∃(a : D) ∈ Q,K ∪ {a : D} |= a : C} ∪
{a : D | K ∪ {a : D} |= a : C, {? : D} = Q}

πKPd(Q)
{a : bb{D | K ∪ {a : C} |= a : D,D ∈ LPd}ccK | ∃(a : C) ∈ Q} ∪
{? : bb{D | K |= C v D,D ∈ LPd}ccK, {? : D} = Q}

Q1 ./ Q2

{a : D1 uD2 | ∃(a : Di) ∈ Qi, i = 1, 2} ∪
{a : D1 uD2 | {? : D1} = Q1,∃(a : D2) ∈ Q2} ∪
{a : D1 uD2 | ∃(a : D1) ∈ Q1, {? : D2} = Q2} ∪
{? : D1 uD2 | {? : D1} = Q1, {? : D2} = Q2}

Table 3.1: Algebraic operators and the semantics.

The selection operator σKC (Q) and the projection operator πKPd(Q) are similar to the
corresponding relational algebraic operators, except that general DL reasoning may be
necessary. The join operator Q1 ./ Q2 is, from the perspective of relational algebra, more a
natural join of two set of concept assertion, by merging the concept descriptions of common
instances (identified by names) occurring in the result sets of both sub-operators.

Definition 23. Pure and Impure Operators. An algebraic operator Q is either pure
or impure: C is impure, PK and Si(Q) are pure, σKC (Q) and πKPd(Q) are pure if Q is pure,
and Q1 ./ Q2 are pure if both Q1 and Q2 are pure.

Intuitively, for a consistent knowledge base K, a pure operator only generates consistent
concept assertions, while an impure one could potentially generate concept assertions that
are inconsistent. This property is captured by the following lemma:

Lemma 3.5.1. For any consistent K and any pure Q, if a : D ∈ JQKSIK , then K ∪ {a : D}
is also consistent.

Proof. The proof is by structural induction on Q.
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• When Q = PK, if a : D ∈ JQKSIK , then D = > and K ∪ {a : >} must be consistent
assuming the consistency of K.

• When Q = Si(Q
′), if a : D ∈ JQKSIK , then a : D ∈ Si, which implies K |= a : D by

Definition 17. So, K ∪ {a : D} must be consistent.

• When Q = σKC (Q′) and Q′ is also pure, if a : D ∈ JQKSIK , then if a : D ∈ JQ′KSIK , which,
by induction hypothesis on pure Q′, shows that K ∪ {a : D} is consistent.

• When Q = πKPd(Q
′) and Q′ is also pure. If a : D ∈ JQKSIK , then there is a : D′ ∈ JQ′KSIK

such that K ∪ {a : D′} |= a : D. By induction hypothesis, K ∪ {a : D′} must
be consistent because Q′ is pure, so K ∪ {a : D} is also consistent, as otherwise
K ∪ {a : D′} ∪ {a : D} is inconsistent.

• When Q = Q1 ./ Q2 and Q1, Q2 are both pure. If a : D ∈ JQKSIK , where D ≡ D1 u D2

and a : Di ∈ JQiKSIK , i ∈ {1, 2}. It is easy to see that K ∪ {a : D} is consistent by
induction hypotheses on two pure queries Q1 and Q2.

Given the assertion retrieval algebra, a user query can always be translated into an
algebraic expression that serves as starting point for the subsequent query optimization
discussed in Chapter 5. This property is stated formally in Theorem 3.5.2.

Theorem 3.5.2. A user query (C,Pd) can always be expressed by the algebraic expression

πKPd(σ
K
C (PK)) (3.1)

Proof. Let Q = (C,Pd) and Q = πKPd(σ
K
C (PK)), we show that Eval(Q,K) = JQKSIK . Ob-

serve that JPKKSIK = {a : > | a appears in K}, hence JσKC (PK)KSIK = {a : > | K |= a :
C and a appears in K} by the semantics defined in Table 3.1. In addition,

JπKPd(σ
K
C (PK))KSIK = {a : bb{D | D ∈ LPd,K |= a : D}ccK | K |= a : C

and a appears in K} (3.2)

by the semantics of the projection operator. It then follows by Definition 17 that JQKSIK
computes the same set of concept assertions as Eval(Q,K) does.
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This chapter presents a query language for assertion retrieval, which generalizes instance
retrieval to allow for projection descriptions. The semantics of assertion queries are based
on instance checking, a basic reasoning task that instance retrieval also relies on. Hence,
to answer assertion queries efficiently, optimization techniques for instance checking are
necessary. As shown in Section 2.4.1, most of the existing query optimization techniques
over DL knowledge bases concentrate on instance queries. In this work, we propose a novel
optimization for instance checking in Chapter 4, which can be used to address the efficiency
of answering assertion queries.

The intrinsic complexity of instance checking renders assertion retrieval impractical,
despite the novel optimization developed in this work. This is because an assertion query
with a non-trivial projection description could entail a large volume of instance checking
requests, as can be seen from the procedures given in Section 3.4. A solution can be
obtained from relational databases, that is, cost-based query optimization can be used to
improve assertion retrieval. The query plan language introduced in Section 3.5 is designed
for this purpose. Similar to relational algebra in the relational model, the plan language
can be used to rewrite a user query into a non-empty set of algebraic expressions for
cost-based query optimization. Chapter 5 elaborates how this query plan language is
exploited to optimize query answering for assertion queries, with the use of description
indices introduced in this chapter.
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Chapter 4

ABox Absorption

A fundamental task over DL knowledge bases is to determine if they are consistent. As
mentioned earlier, instance checking (see Definition 10) is pivotal for query answering.
Usually, instance checking is assumed to include consistency checking of K. However,
typical workloads for a reasoning service will include far more instance checking tasks than
knowledge base consistency tasks. In practice, most of the knowledge bases that queries
are issued against are indeed consistent. Thus, the resulting “separation of concerns” can
therefore enable technology that is considerably more efficient for such workloads.

This chapter introduces a novel adaptation of binary absorption [Hudek and Weddell,
2006] for DL knowledge bases and demonstrate that the technique is efficacious for instance
checking. In particular, this technique is useful for situations that require a large number
of instance checking tasks, such as instance queries and assertion queries, and that non-
Horn DL T that precludes the possibility of computing pre-completion from A (e.g., when
disjunction is used in T ) [Wu et al., 2012b,a]. This novel technique can substantially
improve performance for instance checking over consistent knowledge bases because it
allows for a tableaux algorithm to only explore a (potentially much smaller) subset of A,
achieved by the so-called guarded reasoning to be elaborated in this chapter.

To consider performance issues for instance checking in the new optimization, we first
consider how one can map instance checking problems to concept satisfaction problems in
which consistency is assumed, and then revisit absorption in this new setting. In particular,
this chapter presents an absorption algorithm, ABox absorption, that is an adaptation of
binary absorption, reported in [Hudek and Weddell, 2006].

Binary absorption combines two key ideas. The first makes it possible to avoid gener-
ating (at least some of the) disjunctions for axioms of the form (A1 u A2) v C, where the
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Ai denote primitive concepts and C a general concept. The second is an idea relating to
role absorptions shown in [Tsarkov and Horrocks, 2004]. To illustrate, binary absorption
makes it possible to completely absorb the axiom

A1 u (∃R−1 .A2) u (∃R2.(A3 t A4)) v A5.

In this case, the absorption would consist of a set of axioms with a single atomic concept
on the left-hand side

{A2 v ∀R1.A6, A3 v A7, A4 v A7, A7 v ∀R−2 .A8}

and a second set of axioms with a conjunction of two primitive concepts on the left-hand
side

{(A1 u A6) v A9, (A9 u A8) v A5},

in which A6, A7, A8 and A9 are fresh atomic concepts introduced by the binary absorption
procedure. Hereon, an instance of the latter set is referred to as a binary absorption. A
key insight is that it is not necessary for both concepts occurring in the left-hand-side of
such a dependency to be atomic. In particular, binary absorption raises the possibility of
reducing instance checking problems to concept subsumption problems via the introduction
of nominals in such axioms, but without suffering the consequent overhead that doing so
would almost certainly entail without binary absorption.

Note that there are other reasons that binary absorption is useful, beyond the well-
documented advantages of reducing the need for internalization of general terminological
axioms. In particular, it works very well for the parts of a terminology that are Horn-like,
as illustrated by the above example.

The approach for ABox absorption proceeds in a series of steps illustrated in Figure 4.1.
An input SHIQ(D) knowledge base K is first separated into its constraints T (a TBox)
and assertions A (an ABox). A normalized TBox T norm is then obtained from T , and
a series of subsequent TBoxes, T iK, are derived from T norm and the ABox A, ultimately
obtaining an absorbed SHOIQ(D) TBox T 3

K . It should be pointed out that T 0
K can already

be absorbed by the proposed absorption algorithm. Consequently, computing T 1
K and T 2

K
in the shaded box in Figure 4.1 is not mandatory. However, as discussed in Section 4.1.2,
T 0
K can be further optimized without too much efforts such that the resulting T 1

K and T 2
K

can again improve query performance, which has been corroborated by empirical studies
presented in Section 4.4.

There are two labeled arcs in Figure 4.1 that indicate where additional processing might
be useful. In particular, the arc labeled “1” is where a process called nominal absorption
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can be applied that would allow our method to be used for SHOIQ(D) knowledge bases
that admit a limited use of nominals [Sirin et al., 2006]. The arc labeled “2” is where an
intermediate process might be included to reduce the number of reasoning tasks required
when computing T 2

K using T 1
K . The techniques suitable for these two arcs are not considered

in this work and are left as future work.

This chapter is organized as follows: Section 4.1 elaborates the mapping from instance
checking problems to subsumption checking problems, which discusses the processes to
obtain T iK, 0 ≤ i ≤ 2 from any SHIQ(D) knowledge base K, as shown in Figure 4.1. Fur-
thermore, the main theoretic result on the soundness and completeness of such a mapping
procedure is given and proven in Section 4.1.3. Section 4.2 extends the original binary
absorption to support ABox absorption, particularly, to account for nominals that are in-
troduced in Section 4.1. Section 4.3 defines a procedure for general binary absorption that
is capable of absorbing any mapped knowledge base, e.g., T iK, 0 ≤ i ≤ 2, into the final T 3

K .

K

T

1

A

T norm T 0
K T 1

K 2 T 2
K T 3

K

Figure 4.1: Obtaining an ABox absorption.

4.1 Obtaining an ABox Absorption

Given a SHIQ(D) knowledge base K = (T ,A), an ABox absorption proceeds as follows.
First, guards are added to ABox assertions in A. All ABox assertion are then in turn
converted into TBox axioms via the use of nominals. Axioms in T are responsible for in-
troducing guards that can be used to activate appropriate ABox individuals and assertions
during reasoning. These processes result in T 0

K , as presented in Section 4.1.1. A further
optimization can be applied to T 0

K to relax typing constraints in the form of L1 v ∀S.L2,
which is discussed in Section 4.1.2. Finally, with guards in place, an instance checking
problem can be mapped to a subsumption checking problem, as shown in Section 4.1.3.
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4.1.1 Computing T 0
K

In this section we convert an SHIQ(D) knowledge base K to a TBox by representing indi-
viduals by nominals (i.e., in a controlled fragment of SHOIQ(D)). Though not necessary,
a SHOIQ(D) concept C is alternatively defined as follows to ease the presentation of the
optimization proposed in this section:

C ::= Cd | C u C | C t C | {a} | ¬{a} | ∃≤nS.C | ∃≥nS.C

Cd ::= Cb | f < g | f = k

Cb ::= L | >
L ::= A | ¬A

where k is a finite string. Recall that a complex role S may occur only in concept descrip-
tions of the form ∃≤0S.C1 or of the form ∃≥1S.C1 (see Section 2.2).

We assume w.l.o.g. that all axioms are in the form of C1 v C2. To make this approach
fully functional, it is necessary (without loss of generality) that K only uses qualified
at-most number restrictions of the form L1 v ∃≤nR.L2, where L1 and L2 are atomic
concepts or their negations (i.e., literals L). For any SHIQ(D) knowledge baseK = (T ,A),
Definition 24 establishes a normalized version of T , i.e., T norm:

Definition 24. Normalized SHIQ(D) Terminologies. A SHIQ(D) constraint C is
normalized if it has one of the forms Cb v ∃≤nS.Cb, CL v CR, S1 v S2, or Trans(S), where
CL and CR are defined by the following grammar:

CL ::= Cd | CL u CL | CL t CL | ∃≤nS.CL

CR ::= Cd | CR u CR | CR t CR | ∃≥nS.CR

A SHIQ(D) terminology T is normalized if each constraint C in T is normalized.

It is a straightforward process to obtain an equisatisfiable normalized terminology from
an arbitrary SHIQ(D) terminology T . In particular, we write T norm to denote such a ter-
minology,

⋃
C∈T Cnorm, where Cnorm is obtained by an exhaustive top-to-bottom application
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of the following rules:

(Cb v ∃≤nS.Cb)
norm = {Cb v ∃≤nS.Cb}

(CL v CR)norm = {CL v CR}
(S1 v S2)norm = {S1 v S2}

(Trans(S))norm = {Trans(S)}
(Cb v C1 u C2)norm = (Cb v A′ u C1)norm ∪ (A′ v C2)norm

(Cb v C1 t C2)norm = (Cb v A′ t C1)norm ∪ (A′ v C2)norm

(Cb v ∃≤nS.C)norm = {Cb v ∃≤nS.¬A′} ∪ (A′ v NNF(¬C))norm

(Cb v ∃≥nS.C)norm = {Cb v ∃≥nS.A′} ∪ (A′ v C)norm

(C1 v C2)norm = (¬A′ v NNF(¬C1))norm ∪ (A′ v NNF(C2))norm

Note that A′ is always a fresh atomic concept and NNF(C) denotes concept C in nega-
tion normal form, i.e., negations only occurs before atomic concepts. The normalization
procedure is linearly bounded by the size of T .

Lemma 4.1.1. Let T be an arbitrary SHIQ(D) terminology. Then: (1) If I |= T norm for
some I, then I |= T ; and (2) If I |= T for some I, then there is some interpretation I ′
over the same domain such that I and I ′ agree on the interpretation of all symbols in T
and I ′ |= T norm.

Proof. (1) The proof is by induction on the normalization rules. The claim holds vacuously
for the first four rules. For the fifth rule, because I |= Cb v A′ u C1 and I |= A′ v C2 by
the induction hypotheses, it then follows that I |= Cb v C1 u C2. The sixth rule can be
proven analogously. For the seventh rule, we have I |= A′ v NNF(¬C) by the induction
hypotheses. Assume I |= Cb v ∃≥n+1S.C, then it follows that I |= Cb v ∃≥n+1S.¬A′,
which contradicts the given fact that I |= Cb v ∃≤nS.¬A′. The eighth rule can be proven
analogously. The last is trivial by observing that I |= ¬A′ v NNF(¬C1) holds by induction
hypotheses, which means I |= C1 v A′.

(2) The proof is, again, by induction on the normalization rules and it holds vacuously
for the first four rules. For the fifth and sixth rules, we can extend I to I ′ by setting
(A′)I

′
= (C2)I

′
. Similarly, for the seventh and eighth rules we set (¬A′)I′ = (C)I

′
and

(A′)I
′
= (C)I

′
, respectively. For the last rule, we define (A′)I

′
= (C2)I

′
.

Once the TBox of a SHIQ(D) knowledge base K is normalized, it is never modified
in the subsequent processes that compute T iK, i ≥ 0. This is in contrast to the ABox of K,
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which is replaced by a TBox as in Definition 25.

Definition 25. ABox Conversion . Let K = (T ,A) be a SHIQ(D) knowledge base.
A TBox T A is defined for A:

T A = {{a} uG v A | a : A ∈ A}
∪ {{a} uGf v (f op k) | a : (f op k) ∈ A}
∪ T AG ∪ T AL ,

T AG = {{a} uG v ∃S.>, {b} uG v ∃S−.> | S(a, b) ∈ A},
T AL = {{a} uGS v ∃S.({b} uG), {b} uGS− v ∃S−.({a} uG) | S(a, b) ∈ A}.

Note that all the axioms resulting from ABox assertions are guarded by auxiliary atomic
concepts of the form G, GS, and Gf . Intuitively, these concepts, when coupled with an
appropriate absorption, allow a reasoner to ignore parts of the original ABox: all the
nominals for which G is not set. Similarly, for any instance, a reasoner examines only
the relevant concrete domain concepts that have the guard Gf set and explores only the
relevant instances that have the guard GS or GS− set.

In Definition 25, the set of axioms T AG is required to deal with global typing constraints
in the form of > v ∀S.C, which are also considered to be domain and range constraints.
Because a global typing constraint of the form > v ∀S.C can be absorbed into the axiom
∃S−.> v C, the axioms in T AG effectively enable the domain and range constraints to be
deposited for the corresponding role assertions.

The separation of T AL from T A is for presenting further optimization on universal
restrictions introduced in Section 4.1.2. Now, the original ABox has been converted into a
TBox T A, in which guards are used to guide a reasoning algorithm. The normalized TBox
T norm can then be used to establish how guards can be introduced. In this process, a set
of extra axioms may be generated, as shown in Definition 26.

Definition 26. TBox Augmentation . Let K = (T ,A) be a knowledge base. A TBox
T T is defined for the TBox of K:

T T ={ L1 v GS, L2 v GS− | L1 v ∃≤nS.L2 ∈ T norm, n ≥ 0}
∪ {(t1 op t2) v Gf | f appears in t1 or in t2, and (t1 op t2) in T norm}
∪ {GS2 v GS1 ,GS−2

v GS−1
| S1 v S2}

∪ {> v GS uGS− | S appears in T norm and S is complex}
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Observe that, for L1 v ∀S.L2 ∈ T , the following two axioms are introduced due to
∀S.L2 ≡ ∃≤0S.¬L2: L1 v GS,¬L2 v GS− . T 0

K can now be given as follows:

T 0
K = T norm ∪ T T ∪ T A.

An example now follows to illustrate how ABox conversion and TBox augmentation work
together to obtain T 0

K .

Example 6. Computing T 0
K Consider a knowledge base univK = (univT , univA) defined

as follows:

univT = { Dept v ∀headOf −.Prof,Chair v Prof }
univA = { p : Chair, headOf −(dept, p) }.

It is easy to see that (univT )norm = univT follows from Definition 24. Also, by Definitions
25 and 26, we obtain the following terminologies:

T univA = {{p} uG v Chair, {dept} uG v ∃headOf −.>, {p} uG v ∃headOf .>}
∪ T univA

S

T univA
S = {{dept} uGheadOf− v ∃headOf −.({p} uG),

{p} uGheadOf v ∃headOf .({dept} uG)}
T univT = {Dept v GheadOf− ,¬Prof v GheadOf }
T 0

univK
= univT ∪ T univT ∪ T univA

4.1.2 Optimizing Local Universal Restrictions

This section shows how typing constraints that are also local universal restrictions of the
form L1 v ∀S.L2 can be leveraged to further optimize ABox absorption [Wu et al., 2013],
which differs from the way that global typing constraints are dealt with in Definition 25.
In Definition 25, the set T AL is introduced for each assertion S(a, b) occurring in A, and
consists of the following binary absorptions:

{a} uGS v ∃S.({b} uG) and {b} uGS− v ∃S−.({a} uG).
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Intuitively, a tableau algorithm starts by generating the successor, the nominal on the
right-hand side, after lazy unfolding. Other axioms are subsequently unfolded since the
newly introduced nominal includes a guard, for example, the guard G for nominal {b}.
We show how, under some circumstances, one can exploit local universal restrictions to
eliminate guards for nominals on the right-hand side of such axioms, possibly replacing the
above axioms with the pair

{a} uGS v ∃S.{b} and {b} uGS− v ∃S−.{a},
and thereby avoiding subsequent unfolding. Again, Figure 4.1 illustrates this process. In
particular: T 1

K attempts such eliminations with simple syntactic checks and T 2
K uses T 1

K for
more general subsumption checks to do the same. Details now follow.

Computing T 1
K

Although computing T 1
K requires syntactic checks in the original ABox assertions, it is

not necessary to keep the ABox A after computing T 0
K . Considering Figure 4.1, when

computing T 1
K , the original ABox A has already been “discarded”. However, since there is

a one-to-one correspondence between the original ABox A and T A (a part of T 0
K), probing

original ABox assertions can be achieved by probing appropriate axioms in T A instead, as
given by Definition 25. In particular, for a concept assertion of the form a : A and a role
assertion of the form S(a, b), the following holds:

a : A ∈ A iff ({a} uG v A) ∈ T A, (4.1)

S(a, b) ∈ A iff {{a} uGS v ∃S.({b} uG), {b} uGS− v ∃S−.({a} uG)} ⊆ T A. (4.2)

For clarity of presentation, a function, dubbed Map(·), is introduced that maps a concept
or role assertion into the set of TBox axioms given by Definition 25. Therefore, (4.1) and
(4.2) are equivalent to the following:

a : A ∈ A iff Map(a : A) ⊆ T A,
S(a, b) ∈ A iff Map(S(a, b)) ⊆ T A.

T 1
K is given as follows:

(T 0
K\T AL ) ∪ T ∀→ ∪ T ∀→d ∪ T ∀← ∪ T ∀←d,

where each of the terminologies is defined as follows:

T ∀→ = {{a} uGS v ∃S.{b} |Map(S(a, b)) ∈ T A, Trans(S) 6∈ T norm, and

for each L1 v ∃≤nS.L2 ∈ T norm, n = 0 and

(Map(a : L1) ∪Map(b : NNF(¬L2))) ∩ T A 6= ∅}
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T ∀→d = {{a} uGS v ∃S.({b} uG) |Map(S(a, b)) ∈ T A, and

for some L1 v ∃≤nS.L2 ∈ T norm, n > 0 or

(Map(a : L1) ∪Map(b : NNF(¬L2))) ∩ T A = ∅}
T ∀← = {{b} uGS− v ∃S−.{a} |Map(S(a, b)) ∈ T A, Trans(S) 6∈ T norm, and

for each L1 v ∃≤nS.L2 ∈ T norm, n = 0 and

(Map(a : NNF(¬L1)) ∪Map(b : L2)) ∩ T A 6= ∅}
T ∀←d = {{b} uGS− v ∃S−.({a} uG) |Map(S(a, b)) ∈ T A, and

for some L1 v ∃≤nS.L2 ∈ T norm, n > 0 or

(Map(a : NNF(¬L1)) ∪Map(b : L2)) ∩ T A = ∅}

Intuitively, T 1
K includes all components computed in T 0

K , except T AL . Because T AL
consists of axioms obtained by ABox conversion of role assertions, while such axioms are
exactly the ones to be optimized, i.e., it is possible for some guards to be removed. The
axioms in T AL can be categorized into two classes: one contains axioms obtained from the
ABox conversion step by looking at a role assertion, say, S(a, b), in a forward manner, the
other in a backward manner for the same role assertion, i.e., S−(b, a). The first perspective
enables syntactic checks to remove the guard for the nominal {b}. If so, a guard-free version
(w.r.t. {b}) of the corresponding axiom in T AL is added to T ∀→, otherwise, the original
axiom in T AL is retained in T ∀→d. The same idea applies to the backward perspective, which
generates two sets T ∀← and T ∀←d.

The syntactic checks in computing T 1
K indeed take advantage of the initial assumption of

K consistency. For example, the syntactic checks in computing T ∀→ examines if (Map(a :
L1) ∪ Map(b : NNF(¬L2))) ∩ T A 6= ∅, instead of the more straightforward Map(b :
NNF(¬L2)) ∩ T A 6= ∅. In the former condition, if (a : L1) has syntactically occurred in a
consistent K, (b : NNF(¬L2)) must hold because of the constraint ∃≤0S.L2, hence, there is
no need to check if b : NNF(L2) syntactically appears in K. Therefore, the first condition
is more general than the second and is more likely to be satisfied by a consistent K.

Computing T 2
K

Recall that no reasoning is required in computing T 1
K . Instead, syntactic checks for concept

assertions of the form a : L1 or b : L2 are performed through a mapping function over T 0
K .

If these concept assertions are found, then it is guaranteed that S(a, b), together with
the axioms resulting from these concept assertions, is consistent with any local universal
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restrictions of the form L1 v ∀S.L2. Although such checks are far from complete, T 1
K can

now be used to perform subsumption checks to find additional cases where local universal
restrictions are satisfied by role assertions, that is, T 1

K can be used to compute T 2
K .

The purpose of computing T 2
K is then simple: those axioms in T ∀→d or T ∀←d obtained in

computing T 1
K , i.e., ones that do not meet the syntactic checking conditions for removing

guards, are further examined. The difference is that T 2
K will employ semantic checks

instead of syntactic checks. Hence, T 2
K is given by (T 1

K\T sub) ∪ T add, where T add and T sub
are defined as follows:

T sub = { {a} uGS v ∃S.({b} uG) | Trans(S) 6∈ T norm,

for each L1 v ∃≤nS.L2 ∈ T norm : n = 0 and

(T 1
K |= {a} uG v L1 or T 1

K |= {b} uG v ¬L2),

and {a} uGS v ∃S.({b} uG) ∈ T ∀→d}
∪ { {b} uGS− v ∃S−.({a} uG) | Trans(S−) 6∈ T norm,

for each L1 v ∃≤nS.L2 ∈ T norm : n = 0 and

(T 1
K |= {a} uG v ¬L1 or T 1

K |= {b} uG v L2),

and {b} uGS− v ∃S−.({a} uG) ∈ T ∀←d }
T add = {{a} uGS v ∃S.{b} | {a} uGS v ∃S.({b} uG) ∈ T sub}

Intuitively, T sub collects all the axioms that pass the semantic checks and T add consists of
the guard-free version of the axioms in T sub.

Example 7. Computing T 1
K and T 2

K Consider the knowledge base univK defined in Ex-
ample 6 and T 0

univK
computed for univK. To compute T 1

K , the syntactic check (Map(dept :
Dept) ∪Map(p : Prof)) ⊆ T univA is performed for the forward direction and the syntactic
check (Map(p : ¬Prof) ∪Map(dept : ¬Dept)) ⊆ T univA for the backward direction. How-
ever, neither of the checks succeed. Thus, T 1

K is computed as follows for this knowledge
base:

T ∀→ = T ∀← = ∅
T ∀→d = {{dept} uGheadOf− v ∃headOf −.({p} uG)}
T ∀←d = {{p} uGheadOf v ∃headOf .({dept} uG)}
T 1

univK
= (T 0

univK
\T univA

S ) ∪ T ∀→d ∪ T ∀←d

T 1
univK

in this particular case is not effective for removing guards, but it is used to
compute T 2

univK
by checking if the typing constraint Dept v ∀headOf −.Prof is satisfied by
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the role assertion headOf −(dept, p). Since T 1
univK

|= {p}uG v Prof, T 2
univK

can be obtained:

T sub = {{dept} uGheadOf− v ∃headOf −.({p} uG)}
T add = {{dept} uGheadOf− v ∃headOf −.{p}}
T 2

univK
= (T 1

univK
\T sub) ∪ T add

4.1.3 Instance Checking as Subsumption Checking

The main results are given in this section, which shows that an instance checking problem
over a SHIQ(D) knowledge base K can be mapped to a subsumption checking problem
over the SHOIQ(D) TBox T iK, for 0 ≤ i ≤ 2. Such subsumption checks require the notion
of a derivative concept, which serve the purpose of introducing guards appropriately for
any query concept. The formal definition follows:

Definition 27. Derivative Concept . The derivative concept DC of a general SHIQ(D)
concept C is defined as follows:

DC =


> if C = Cb;d

Gfi if C = (t1 op t2) and fi appears in t1 or t2;

DC1 uDC2 if C = C1 u C2 or C = C1 t C2;

GS u ∀S.(DC1 uG) if C = ∃≥nS.C1 or C = ∃≤nS.C1.

Theorem 4.1.2. For any consistent SHIQ(D) knowledge base K, concept C, individual
a, and 0 ≤ i ≤ 2:

K |= a : C iff T iK |= {a} uD v C, where D = G uDC .

Proof. Cases i = 0 and i = 1 are implicitly included in the case i = 2, so, it is sufficient
to prove the latter case. The only-if direction is equivalent to the following claim: if
T 2
K 6|= {a} u D v C, then K 6|= a : C. Assume that there is an interpretation I0 that

satisfies T 2
K such that ({a})I0 ⊆ (D)I0 but ({a})I0∩(C)I0 = ∅ and an interpretation I1 that

satisfies K in which all at-least restrictions are fulfilled by anonymous objects. Hence, we
do not need to consider at-least restrictions, no matter how expressed, in the construction
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below. Without loss of generality, we assume both I0 and I1 are tree-shaped outside of the
ABox (converted ABox). Our proof proceeds by building an interpretation J such that J
satisfies K and (a)J 6∈ (C)J .

The construction of the interpretation J for K ∪ {a : ¬C} follows. Let ΓI0 be the set
of objects o ∈ ∆I0 such that either o ∈ ({a})I0 and ({a})I0 ⊆ (G)I0 or o is an anonymous
object in ∆I0 rooted by such an object. Similarly let ΓI1 be the set of objects o ∈ ∆I1

such that either o ∈ ({a})I1 and ({a})I0 ∩ (G)I0 = ∅ or o is an anonymous object in ∆I1

rooted by such an object. We stipulate the following protocols for constructing J :

1. ∆J = ΓI0 ∪ ΓI1 ;

2. (a)J ∈ ({a})I0 for (a)J ∈ ΓI0 and (a)J = (a)I1 for (a)J ∈ ΓI1 ;

3. o ∈ AJ if o ∈ AI0 and o ∈ ΓI0 or if o ∈ AI1 and o ∈ ΓI1 for an atomic concept A
(similarly for concrete domain concepts of the form (t1 op t2));

4. (o1, o2) ∈ (S)J if

(a) (o1, o2) ∈ SI0 and {o1, o2} ⊆ ΓI0 , or (o1, o2) ∈ SI1 and {o1, o2} ⊆ ΓI1 ; or

(b) o1 ∈ ({a})I0 ∩ (G)I0 , o2 ∈ ({b})I1 , and S(a, b) ∈ A; or

(c) o1 ∈ ({a})I1 , o2 ∈ ({b})I0 ∩ (G)I0 , and S(a, b) ∈ A; or

(d) (o1, o2) ∈ S ′J and S ′ v∗ R S; or

(e) (o1, o3) ∈ SJ , (o3, o2) ∈ SJ , and Trans(S) ∈ K.

The construction of J is now complete. Before proving the main result, Lemma 4.1.3
establishes a useful property for transitive roles:

Lemma 4.1.3. For {o1, o2} ⊆ ∆J , if (o1, o2) ∈ (S)J and Trans(S) ∈ K, then either
{o1, o2} ⊆ ΓI0 or {o1, o2} ⊆ ΓI1

Proof. The proof proceeds by induction on all cases for interpretation of roles (i.e., the 4th
point) in defining J . Case 4a is trivial; cases 4b and 4c are not applicable when Trans(S) ∈
K as otherwise by the definition of T T it holds that o1 ∈ (GS)I0 and thus the contradiction
o2 ∈ (G)I0 . Case 4d is trivial by the induction hypothesis if Trans(S1) ∈ K. Considering
Trans(S1) 6∈ K, we show this case is not applicable. Suppose o1 ∈ ({a})I0 ∩ (G)I0 and
o2 ∈ ({b})I1 (or vice versa), then this is only possible through cases 4b or 4c. While a similar
contradiction can be drawn as in case 4b or 4c because of GS v GS1 , i.e., o1 ∈ (GS1)

I0 and
thus the contradiction o2 ∈ (G)I0 . Case 4e follows from the induction hypotheses because
either {o1, o2, o

′} ⊆ ΓI0 or {o1, o2, o
′} ⊆ ΓI1 hold.
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Now we show J satisfies K and (a)J 6∈ (C)J . For the first claim, i.e., J |= K,
it suffices to consider only the S edges crossing the two interpretations. The edges in
protocol 4a satisfy all axioms in K as the remainder of the interpretation J is copied from
one of the two interpretations that satisfy K. Now we consider the two cases as defined in
protocols 4b and 4c. Note that none of these edges need to fulfill at-least qualified number
restrictions, which are already fulfilled (potentially redundantly) by anonymous objects
whenever possible. Furthermore, role hierarchy and transitive roles are satisfied by cases
4d and 4e, respectively. Therefore, only at-most qualified number restrictions (including
universal restrictions) need to be considered for 4b – 4e.

For cases 4b and 4c, consider an axiom expressing an at-most restriction in the form of
L1 v ∃≤nS.L2 ∈ T . There are two possibilities: in one case, we can conclude o1 6∈ (L1)I0

as otherwise o1 ∈ (GS)I0 by the definition of T T and thus o2 ∈ (G)I0 by the rules for
construction of T 2

K , which contradicts our assumption that ({b})I0 ∩ (G)I0 = ∅, hence this
at-most restriction is satisfied vacuously; in the other case, we cannot derive a contradiction
because G was removed by our optimization shown in Sect. 4.1.2, then it must be the case
that the axiom L1 v ∃≤0S.L2 ∈ T , i.e., L1 v ∀S.¬L2, has been satisfied by the role
assertion S(a, b). For 4e, Lemma 4.1.3 stipulates that in case (4d) either {o1, o2, o

′} ⊆ ΓI0

or {o1, o2, o
′} ⊆ ΓI1 hold; hence any universal restriction of the form L1 v ∀S.L2 (recall

that concepts of the form ∃≤nS.L2 are disallowed for complex S when n 6= 0) must be
satisfied by (o1, o2) because it is already satisfied by (o1, o2) in I0 (I1, respectively). Edges
from case 4d are trivial extension to all of the above. Hence all inclusion axioms in K are
satisfied by J .

To show (a)J 6∈ (C)J , one should note that a is in the initial query, hence, (a)J ∈ ΓI0

and (a)J ∈ (G)I0 . In addition, we have ({a})I0 ⊆ (D)I0 and ({a})I0 ∩ (C)I0 = ∅ as our
assumption. We show that (a)J 6∈ (C)J holds using structural induction, considering the
query concept C to be in NNF. The induction hypothesis is that, for any a, if ({a})I0 ⊆
(D′)I0 and ({a})I0 ∩ (C′)I0 = ∅ then (a)J 6∈ (C ′)J , where C ′ is a subexpression in C and
D′ = G uDC′ .

• C = A or C = (t1 op t2), then (a)J 6∈ (C)J holds trivially by protocol 3: (a)J ∈ ΓI0

and (a)J 6∈ CI0 (due to our assumption that ({a})I0 ∩ (C)I0 = ∅).

• C = ∃S.C ′. By way of contradiction, we assume (a)J ∈ (∃S.C ′)J , which means there
is an individual b such that (b)J ∈ (C ′)J and ((a)J , (b)J ) ∈ (S)J .

1. If (b)J ∈ ΓI0 , then (b)J ∈ ({b})I0 , (({a})I0 , ({b})J ) ∈ (S)I0 . By our initial
assumption, ({a})I0 ⊆ (G uDC)I0 , where DC = GS u ∀S.DC′ , hence, we have
({b})I0 ⊆ (DC′)

I0 , which, together with ({b})I0 ⊆ (G)I0 , implies that ({b})I0 ⊆
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(D′)I0 . However, by the induction hypothesis and (b)J ∈ (C ′)J , either ({b})I0 6⊆
(D′)I0 or ({b})I0 ⊆ (C′)I0 , so the latter must hold. The latter, nevertheless,
contradicts our original assumption that ({a})I0 ∩ (C)I0 = ∅, with C = ∃S.C ′.

2. If (b)J ∈ ΓI1 , then ({b})I0∩(G)I0 = ∅. By our initial assumption, ({a})I0 ⊆ (Gu
DC)I0 , where DC = GS u ∀S.DC′ , hence, ({a})I0 ⊆ (G uGS)I0 . Since S(a, b) ∈
A, by Definition 25 it is easy to see that ({b})I0 ⊆ (G)I0 : a contradiction.

• C = ∀S.C ′. Observe that ∀S.C ′ is a shorthand for ∃≤0S.¬C ′, so D∀S.C′ = D∃S.C′ . As-
sume, by way of contradiction, that (a)J ∈ (∀S.C ′)J . Because ({a})I0 6⊆ (∀S.C ′)I0 ,
there is a nominal {b} such that (({a})I0 , ({b})I0) ∈ (S)I0 and ({b})I0 6⊆ (C ′)I0 .
Thus, we have ({b}) ∈ ΓI0 by definition and (({a})J , ({b})J ) ∈ (S)J by protocol 4a.
Since (a)J ∈ (∀S.C ′)J , it must be that (b)J ∈ (C ′)J . However, ({a})I0 ⊆ (D)I0

implies that ({a})I0 ⊆ (∀S.DC′)
I0 , which means ({b})I0 ⊆ (DC′)

I0 , hence, by the
induction hypothesis, (b)J 6∈ (C ′)J : a contradiction.

• C = ∃≤nS.C ′. The proof follows immediately from the cases C = ∀S.¬C ′ if n = 0.
Otherwise, by assuming (a)J ∈ (∃≤nS.C ′)J , the case analyses are similar to that of
the case C = ∃S.C ′.

• C = ¬A. Because ({a})I0 ∩ CI0 = ∅, we have ({a})I0 ⊆ (A)I0 , which by protocol 3,
together with (a)J ∈ ({a})I0 and (a)J ∈ ΓI0 , implies that (a)J ∈ AJ , i.e., (a)J 6∈
(C)J .

• C = C1uC2. Assume, by way of contradiction, that (a)J ∈ (C)J , then (a)J ∈ (C1)J

and (a)J ∈ (C2)J . By the induction hypothesis and (a)J ∈ (C1)J , we have either
({a})I0 6⊆ (D1)I0 or ({a})I0 ⊆ (C1)I0 . By ({a})I0 ⊆ (G)I0 , ({a})I0 ⊆ (DC)I0 and
DC v DC1 , we have ({a})I0 ⊆ (G u DC1)

I0 , i.e., ({a})I0 ⊆ (D1)I0 , so it must be
the case that ({a})I0 ⊆ (C1)I0 . For the same reason, ({a})I0 ⊆ (C2)I0 . Hence,
({a})I0 ⊆ (C1 u C2)I0 , which contradicts the initial assumption ({a})I0 ⊆ (C)I0 .

The if direction, equivalent to the claim that if K 6|= a : C then T 2
K 6|= {a} u D v C,

holds by observing that if K ∪ {a : ¬C} is satisfiable then the satisfying interpretation I
can be extended to (G)I = (Gf )

I = (GS)I = ∆I and ({a})I = {aI} for all individuals
a, concrete features f , and roles S. This extended interpretation then satisfies T 2

K and
({a})I ⊆ (D)I ∩ (¬C)I .

The main idea of the proof of Theorem 4.1.2 is illustrated in Figure 4.2, and it is dubbed
a donut theorem. The donut theorem ensures that a tinbit (a wordplay of tiny bit), which
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is dynamically generated by guarded reasoning, can be combined with a donut derived
from an interpretation I1 of the original knowledge base K to obtain an interpretation J
satisfying all constraints and assertions in K and for which a occurs in the interpretation
of concept ¬C. Although the purpose of the donut theorem is to derive J from a tinbit
and a donut, a tinbit can be used to derive an interpretation for the original T iK, i.e., I0

in Figure 4.2. Note that the assumption of knowledge base consistency and of internal
support for binary absorption are crucial in this setting, e.g., to ensure that tinbits for any
instance checking problem are indeed tiny bits of (a description of) J .

I0

(tinbit)

I1

(donut)

J

⇒

⇒
+ ⇒

Figure 4.2: A donut theorem: ensuring interpretations.

In SHIQ(D), which on its own cannot equate nominals, there is no need to rely ex-
plicitly on the unique name assumption (see Definition 5). However, explicit equalities
and inequalities can be enabled in a ABox and be processed similarly to Definition 25,
e.g., a ≈ b to {a} u G v {b} u G and vice versa and so on. This is sufficient for the
construction of the interpretation J in the proof of Theorem 4.1.2 to go through. Note
that the interpretations of nominals for which G is not set in I0 are irrelevant for con-
structing the interpretation J even though there could be axioms of the form > v C that
are applicable to such constants (one could even augment all such axioms with guards to
avoid this effect). Therefore, those nominals can be ignored completely during reasoning
and, thus, nodes corresponding to the nominals can be generated lazily on demand, driven
by the guards G and GS.
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4.2 On Generalized Binary Absorption

A guard G is effective only if it is “observed” simultaneously with a nominal concept.
Recall that binary absorption was originally defined for axioms of the form A1 u A2 v C,
where {A1, A2} ⊆ NC. To accommodate nominals introduced in the process presented
in the previous section, this section properly extends binary absorption to ensure that
guarded nominals are reasoned about only if a guard is seen. Nevertheless, using other
absorption algorithms is unable to retain the effects of guards. Consequently, Section 4.2.2
expands on an extension to binary absorption that functions on the converted knowledge
base TK. To define such an extension, the notion of witnesses needs to be introduced prior
to absorption, as shown in the next section.

4.2.1 On Witnesses

Recall that tableau algorithms for checking the satisfaction of a concept C operate by
manipulating a completion graph (see Section 2.2), which encodes a partial description of
(eventual) interpretations I for which (C)I will be non-empty. Such a graph will almost
always abstract details on class membership for hypothetical elements of ∆I and on de-
tails relating to the interpretation of roles. To talk formally about absorption and lazy
evaluation, it is necessary to codify the idea of a completion graph. This has been done in
[Horrocks and Tobies, 2000b] by introducing the notion of a witness, of an interpretation
that stems from a witness, and of what it means for a witness to be admissible with respect
to a given terminology.

Definition 28. Witness . Let C be an SHOIQ(D) concept.1 A witness W =
(∆W , ·W ,LW) for C consists of a non-empty set ∆W , a function ·W that maps NR to
subsets of ∆W ×∆W , and a function LW that maps ∆W to sets of SHOIQ(D) concepts
such that:

(W1) there is some x ∈ ∆W with C ∈ LW(x),

(W2) there is an interpretation I that stems from W , and

(W3) for each I that stems from W , x ∈ (C)I if C ∈ LW(x).

1The definition of witness can be abstracted for any DLs that have ALCIO as a sublanguage and that
satisfy some criteria on the interpretations stated in [Horrocks and Tobies, 2000b].
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An interpretation I = (∆I , (·)I) is said to stem from W if ∆I = ∆W , (·)I |NR = ·W ,
for each A ∈ NC, A ∈ LW(x) implies x ∈ (A)I and ¬A ∈ LW(x) implies x /∈ (A)I , for
each a ∈ NI, {a} ∈ LW(x) implies x ∈ ({a})I and ¬{a} ∈ LW(x) implies x /∈ ({a})I , for
each (f op k), (f op k) ∈ LW(x) implies x ∈ ((f op k))I and ¬(f op k) ∈ LW(x) implies
x /∈ ((f op k))I .

A witness W is called admissible with respect to a TBox T if there is an interpretation
I that stems from W with I |= T .

The properties satisfied by a witness are presented in the following lemmas, originally
shown in [Horrocks and Tobies, 2000b].

Lemma 4.2.1. Let L be a DL. A concept C ∈ L is satisfiable w.r.t. a TBox T iff it has a
witness that is admissible w.r.t. T .

Lemma 4.2.2. Let L, C, T and W be a DL, a concept in L, a TBox for L and a witness
for C, respectively. Then W is admissible w.r.t. T if, for each x ∈ ∆W :

C1 v C2 ∈ T implies ¬C1 t C2 ∈ LW(x),
C1

.
= C2 ∈ T implies ¬C1 t C2 ∈ LW(x) and

C1
.
= C2 ∈ T implies C1 t ¬C2 ∈ LW(x).

A generalization of an absorption developed in [Horrocks and Tobies, 2000a,b] has been
given in [Hudek and Weddell, 2006], dubbed binary absorption. We further extend binary
absorption to accommodate nominals.

4.2.2 On Binary Absorption

Definition 29. Binary Absorption . Let K={T ,A} be a KB. A binary absorption of
T is a pair of TBoxes (Tu, Tg) such that T ≡ Tu ∪ Tg and Tu contains axioms of the form
A1 v C, ¬A1 v C, ∃S.> v C (resp. ∃S−.> v C), and the form (A1 u A2) v C and
({a} u A) v C, where {A,A1, A2} ⊆ NC and a ∈ NI.

A binary absorption (Tu, Tg) of T is called correct if it satisfies the following condition:
For each witness W and x ∈ ∆W , if all conditions in Figure 4.3 are satisfied, then W is
admissible w.r.t. T . A witness that satisfies the above property will be called unfolded.

The distinguishing feature of this extension of binary absorption is the addition of the first
four implications in Figure 4.3. Binary absorption itself allows additional axioms in Tu to
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{a} ∈ LW(x) and {a} ∈ LW(y) implies x = y
{{a}, A} ⊆ LW(x), and ({a} u A) v C ∈ Tu implies C ∈ LW(x)

(x, y) ∈ (S)I and ∃S.> v C ∈ Tu implies C ∈ LW(x)
(x, y) ∈ (S)I and ∃S−.> v C ∈ Tu implies C ∈ LW(y)

{A1, A2} ⊆ LW(x) and (A1 u A2) v C ∈ Tu implies C ∈ LW(x)
A ∈ LW(x) and A v C ∈ Tu implies C ∈ LW(x)

¬A ∈ LW(x) and ¬A v C ∈ Tu implies C ∈ LW(x)
C1 v C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x)
C1

.
= C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x)

C1
.
= C2 ∈ Tg implies C1 t ¬C2 ∈ LW(x)

Figure 4.3: Absorption witness conditions.

be dealt with in a deterministic manner. ABox absorption, treating assertions as axioms,
extends binary absorption to handle nominals and to absorb domain and range constraints
in a manner that resembles role absorption introduced in [Tsarkov and Horrocks, 2004].

Lemmas 4.2.3, 4.2.4 and 4.2.5 originally presented in [Horrocks and Tobies, 2000b] hold
without modification. Lemma 4.2.6 shows that the generalized binary absorption is also a
correct absorption.

Lemma 4.2.3. Let (Tu, Tg) be a correct binary absorption of T . For any C ∈ L, C has a
witness that is admissible w.r.t. T iff C has an unfolded witness.

Lemma 4.2.4. Let T be a primitive TBox and Tu defined as

{A v C,¬A v ¬C | A .
= C ∈ T }.

Then (Tu, ∅) is a correct absorption of T .

Lemma 4.2.5. Let (Tu, Tg) be a correct absorption of a TBox T .

1. If T ′ is an arbitrary TBox, then (Tu, Tg ∪ T ′) is a correct absorption of T ∪ T ′.

2. If T ′ is a TBox that consists entirely of axioms of the form A v C, where A ∈ NC
and A is not defined in Tu, then (Tu ∪ T ′, Tg) is a correct absorption of T ∪ T ′.
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Lemma 4.2.6. Let (Tu, Tg) be a correct absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms of the form (A1 u A2) v C and ({a} u A3) v D, where
{A1, A2, A3} ⊆ NC and where none of A1, A2, A3 are defined in Tu, a ∈ NI, then (Tu∪T ′, Tg)
is a correct absorption of T ∪ T ′.

Proof. We only show the proof for axioms of the form (A1 u A2) v C, and the proof of
axioms of the form ({a} u A3) v D follows, viewing {a} as a primitive concept.

Observe that Tu ∪ Tg ∪ T ′ ≡ T ∪ T ′ holds trivially. Let C ∈ L be a concept and W
be an unfolded witness for C w.r.t. the absorption (Tu ∪ T ′, Tg). From W , define a new
witness W ′ for C by setting ∆W

′
= ∆W , ·W ′ = ·W , and defining LW ′ to be the function

that, for every x ∈ ∆W
′
, maps x to the set

LW(x) ∪ {¬A1,¬A2 | (A1 u A2) v C ′ ∈ T ′, {A1, A2} ∩ LW(x) = ∅}
∪ {¬A1 | (A1 u A2) v C ′ ∈ T ′, A1 /∈ LW(x), A2 ∈ LW(x)}
∪ {¬A2 | (A1 u A2) v C ′ ∈ T ′, A1 ∈ LW(x), A2 /∈ LW(x)}.

It is easy to see that W ′ is also unfolded w.r.t. the absorption (Tu ∪ T ′, Tg). This implies
that W ′ is also unfolded w.r.t. the (smaller) absorption (Tu, Tg). Since (Tu, Tg) is a correct
absorption of T , there exists an interpretation I stemming from W ′ such that I |= T . We
show that I |= T ′ also holds. Assume I 6|= T ′. Then there is an axiom (A1uA2) v C1 ∈ T ′
and an x ∈ ∆I such that x ∈ ((A1 u A2))I but x /∈ (C1)I . By construction of W ′,
x ∈ ((A1 u A2))I implies {A1, A2} ⊆ LW

′
(x) because otherwise {¬A1,¬A2} ∩ LW

′
(x) 6= ∅

would hold in contradiction to (W3). Then, since W ′ is unfolded, C1 ∈ LW
′
(x), which,

again, by (W3), implies x ∈ (C1)I , a contradiction.

Hence, we have shown that there exists an interpretation I stemming from W ′ such
that I |= Tu ∪ T ′ ∪ Tg. By construction of W ′, any interpretation stemming from W ′ also
stems from W , hence W is admissible w.r.t. T ∪ T ′.

4.3 A Procedure for ABox Absorption

This section presents a procedure for ABox absorption that works on T iK, 0 ≤ i ≤ 2,
obtained from an initial SHIQ(D) knowledge base as shown in Section 4.1, extending
binary absorptions with the following notable features, which

• maximally absorbs a TBox computed from any SHIQ(D) K (see Section 4.1), and

• retains all guarding constraints by prioritizing binary absorptions, and
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• allows a DL reasoner to reason with restricted uses of nominals without incurring
extra computational overhead, and

• makes it possible to absorb domain and range constraints in such a way that guards
for domain and range restrictions become unnecessary.

The procedure is given in Section 4.3.1, which also serves as a general framework for
absorption. Its correctness proof follows in Section 4.3.2.

4.3.1 The Procedure

The algorithm is given a TBox T , that consists of arbitrary axioms. It proceeds by con-
structing five TBoxes Tg, Tprim, Tuinc,, Tbinc, and Trinc such that: T ≡ Tg ∪ Tprim ∪ Tuinc ∪
Tbinc∪Trinc, Tprim is primitive, Tuinc consists of axioms of the form A1 v C, Tbinc consists of
axioms of the form A1uA2 v C and {a}uA v C and none of the above primitive concept
are defined in Tprim, and Trinc consists of axioms of the form ∃S.> v C (or ∃S−.> v C).
Here, Tuinc contains unary inclusion dependencies, Tbinc contains binary inclusion depen-
dencies and Trinc contains domain and range inclusion dependencies.

In the first phase, the procedure moves as many axioms as possible from T into Tprim.
The procedure initializes Tprim = ∅ and processes each axiom X ∈ T as follows.

1. If X is of the form A
.
= C, A is not defined in Tprim, and Tprim ∪ {X} is primitive,

then move X to Tprim.

2. If X is of the form A
.
= C, then remove X from T and replace it with axioms A v C

and ¬A v ¬C.
3. Otherwise, leave X in T .

In the second phase, the procedure processes axioms in T , either by simplifying them or by
placing absorbed components in Tuinc, Tbinc or Trinc. Tg contains components that cannot
be absorbed. We let G = {C1, . . . , Cn} represent the axiom > v (C1 t . . . t Cn). Axioms
are automatically converted to (out of) set notation. Recall that ∀S.C (resp. ∀S−.C) is
considered a shorthand for ∃≤0S.¬C (resp. ∃≤0S−.¬C).

1. If T is empty, then return the binary absorption

({A v C,¬A v ¬C | A .
= C ∈ Tprim} ∪ Tuinc ∪ Tbinc ∪ Trinc, Tg).

Otherwise, remove an axiom G from T .
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2. Simplify G.

(a) If there is some ¬C ∈ G such that C is not an atomic concept, then add
(G ∪ NNF(¬C) \ {¬C} to T , where the function NNF(·) converts concepts to
negation normal form. Return to Step 1.

(b) If there is some C ∈ G such that C is of the form (C1 u C2), then add both
(G ∪ {C1}) \ {C} and (G ∪ {C2}) \ {C} to T . Return to Step 1.

(c) If there is some C ∈ G such that C is of the form C1tC2, then apply associativity
by adding (G ∪ {C1, C2}) \ {C1 t C2} to T . Return to Step 1.

3. Partially absorb G.

(a) If {¬{a},¬A} ⊂ G, and A is a guard, then do the following. If an axiom of the
form ({a} u A) v A′ is in Tbinc, add G ∪ {¬A′} \ {¬{a},¬A} to T . Otherwise,
introduce a new concept A′ ∈ NC, add (G ∪ {¬A′}) \ {¬{a},¬A} to T , and
({a} u A) v A′ to Tbinc. Return to Step 1.

(b) If {¬A1,¬A2} ⊂ G, (A1 u A2) v A′ ∈ Tbinc, then add G ∪ {¬A′} \ {¬A1,¬A2}
to T . Return to Step 1.

(c) If {¬A1,¬A2} ⊂ G, and neither A1 nor A2 are defined in Tprim, then do the
following. If an axiom of the form (A1 u A2) v A′ is in Tbinc, add G ∪ {¬A′} \
{¬A1,¬A2} to T . Otherwise, introduce a new concept A′ ∈ NC, add (G ∪
{¬A′}) \ {¬A1,¬A2} to T , and (A1 u A2) v A′ to Tbinc. Return to Step 1.

(d) If {∀S.C} = G (resp. {∀S−.C} = G), then do the following. Add ∃S−.> v C
(resp. ∃S.> v C) to Trinc. Return to Step 1.

(e) If ∀S.¬A (resp.∀S−.¬A) ∈ G, then do the following. Introduce a new internal
primitive concept A′ and add both A v ∀S−.A′ (resp. A v ∀S.A′) and (G ∪
{¬A′}) \ {∀S.¬A} (resp. \{∀S−.¬A}) to T . Return to Step 1.

4. Unfold G. If, for some A ∈ G (resp. ¬A ∈ G), there is an axiom A
.
= C in Tprim,

then substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ¬C), and add G to T . Return
to Step 1.

5. Absorb G. If ¬A ∈ G and A is not defined in Tprim, add A v C to Tuinc where C is
the disjunction of G \ {¬A}. Return to Step 1.

6. If none of the above are possible (G cannot be absorbed), add G to Tg. Return to
Step 1. 2
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In the above procedure, Step 3a is prioritized to ensure the pairing of a nominal and
a guard for the purpose of guarded reasoning, which in addition guarantees that nominals
never occur on the right-hand side of an axiom. Step 3b is performed before Step 3c to
reduce nondeterminism of binary absorption and to minimize the number of fresh concepts
to be introduced. In practice other heuristics may be applied for such purposes, for in-
stance, a total ordering can be imposed on all concept names such that binary absorption
absorbs axioms in specific ways.

4.3.2 Correctness

Termination of the procedure can be established by a counting argument. We now prove
the correctness of the algorithm using induction. Lemmas 4.3.1 and 4.3.2 prove, in combi-
nation, that Steps 3a, 3b and 3c of the algorithm are correct. Lemmas 4.3.3 and 4.3.4 prove
the correctness of Step 3d and Lemmas 4.3.5 and 4.3.6 prove the correctness of Step 3e,
respectively. Note that Lemmas 4.3.2, 4.3.4, 4.3.5, and 4.3.6 are obtained directly from
[Hudek and Weddell, 2006] without modification.

Lemma 4.3.1. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, and A a
primitive concept not used in C or T . If T1 is of the form

T1 = T ∪ {(C1 u C2 u C3) v C4},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = T ∪ {(C1 u C2) v A, (A u C3) v C4}.

Lemma 4.3.2 proves that instead of introducing a new primitive concept every time
Steps 3a, 3b and 3c of the algorithm are executed, a previously introduced atomic concept
can be reused. H is written to denote an arbitrary axiom.

Lemma 4.3.2. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a primitive
concept not used in C or T , and A1, A2, primitive concepts introduced by Steps 3a, 3b and
3c of our algorithm modified such that a new primitive is always introduced. If T1 is of the
form

T1 = T ∪ {(C1 u C2) v A1, (C1 u C2) v A2},
then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = {H where A is substituted for A1 and A2 | H ∈ T }
∪ {(C1 u C2) v A}
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Lemma 4.3.3. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, and S a
role. If T1 is of the form

T1 = T ∪ {> v ∀S.C1},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {∃S−.> v C1}.

Proof. First we prove the only-if direction. Assume C is satisfiable with respect to T1.
For an interpretation I ∈ Int(L) such that I |= T1 and (C)I 6= ∅, we extend I to an
interpretation I ′ such that I ′ |= T2 and (C)I 6= ∅. First set I ′ = I. For each x ∈ (∆)I , we
add x to (∀S.C1)I

′
. Then, I ′ |= T2 and (C)I 6= ∅.

Now we prove the if direction. Assume C is satisfiable with respect to T2. For each
interpretation I ∈ Int(L) such that I |= T2 and (C)I 6= ∅, it is also the case that I |= T1.
The proof is by contradiction. Assume I 6|= T1. It must be the case that axiom > v ∀S.C1

does not hold. Then for some x ∈ (∆)I , there is y ∈ (∆)I such that (x, y) ∈ SI and
y /∈ (C1)I . However, from axiom ∃S−.> v C1 and the fact that (y, x) ∈ (S−)

I
, it follows

that y ∈ ((∃S−.>))I , thus, y ∈ (C1)I : a contradiction.

Lemma 4.3.4. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, S a role
and S− an inverse role of S. If T1 is of the form

T1 = T ∪ {> v ∀S−.C1},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {∃S.> v C1}.

The proof of this lemma is similar to that of Lemma 4.3.3.

Lemma 4.3.5. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a primitive
concept not used in C or T , and S a role. If T1 is of the form

T1 = T ∪ {∃S.C1 v C2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 v ∀S−.A,A v C2}.
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Lemma 4.3.6. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a primitive
concept not used in C or T , and S a role. If T1 is of the form

T1 = T ∪ {∃S−.C1 v C2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 v ∀S.A,A v C2}.

Theorem 4.3.7. For any TBox T , the ABox absorption algorithm computes a correct
absorption of T .

Proof. The proof is by induction on iterations of our algorithm. We abbreviate the pair
({A v C,¬A v ¬C | A .

= C ∈ Tprim} ∪ Tuinc ∪ Tbinc ∪ Trinc, Tg ∪ T ) as T and claim
that this pair is always a correct binary absorption. Initially, Tuinc, Tbinc, Trinc and Tg are
empty, primitive axioms are in Tprim, and the remaining axioms are in T . By Lemma 4.2.3,
Lemma 4.2.4, Lemma 4.2.5, and Lemma 4.2.6, T is a correct absorption at the start of
our algorithm. Assume we just finish iteration i and now perform iteration i + 1. By our
induction hypothesis, T is a correct binary absorption after iteration i. We have a number
of possible cases below.

• If we perform Step 3a, Step 3b or Step 3c then iteration i+1 is finished. Therefore, a
newly introduced primitive concept only appears on the right hand side of an axiom
once and Lemma 4.3.1 and Lemma 4.3.2 apply. We conclude that T is a correct
binary absorption.

• If we perform Step 3d, then iteration i+1 is finished and by Lemma 4.3.3 and Lemma
4.3.4, T is a correct binary absorption.

• If we perform Step 3e, then iteration i + 1 is finished and by Lemma 4.3.5 and
Lemma 4.3.6, T is a correct binary absorption.

• If we perform any of Steps 1, 2, 4, 5, or 6, then T is a correct binary absorption at
the end of iteration i+ 1. This is because these steps use only equivalence preserving
operations.

After the final iteration of our algorithm, T is a correct binary absorption by induction.
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Once T 2
K is generated, it can be supplied to the above absorption procedure to produce

the final TBox T 3
K . By the correctness of the absorption procedure (Theorem 4.3.7), it

follows that Theorem 4.1.2 is also applicable to T 3
K .

Example 8. Computing T 3
K Applying the ABox absorption procedure given in this sec-

tion to T 2
univK

(see Example 7) then obtains the final absorbed terminology T 3
univK

consisting
of the following axioms:

Unary Absorptions Binary Absorptions General Axioms

Dept v ∀headOf −.Prof {p} uG v Chair > v Prof tGheadOf

Chair v Prof {dept} uG v ∃headOf −.>
Dept v GheadOf− {p} uG v ∃headOf .>

{p} uGheadOf v ∃headOf .({dept} uG)

{dept} uGheadOf− v ∃headOf −.{p}

Note that the general axiom > v Prof t GheadOf could be absorbed by a unary ab-
sorption, for example, ¬Prof v GheadOf , if negations on the left-hand side of an axiom are
allowed.

4.4 An Empirical Evaluation

The empirical studies use an assertion retrieval engine, called CARE Assertion Retrieval
Engine (CARE). CARE has an underlying DL reasoner that implements a standard tableau
algorithm for SHI(D) knowledge bases. The DL reasoner features a limited number of
optimizations, including ABox absorption, optimized double blocking in [Horrocks and
Sattler, 2002], and dependency-directed backtracking in [Baader et al., 2003]. Moreover,
the reasoner is also capable of reasoning with restricted (“safe” use of) nominals, where
nominals appear only in binary axioms introduced in ABox absorption steps. At present,
string is the only supported data type in the reasoner and a transitive closure algorithm is
used to find clashes among concrete concepts [Nuutila, 1995]. The source code of the CARE
system and the knowledge bases used in the empirical studies are publicly available.2

2http://code.google.com/p/care-engine/
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4.4.1 Datasets and Queries

The experimental results in this chapter are mostly about query execution time. All times,
given in seconds, were averaged out over five independent runs. A time out of 2000 seconds
is set for the experiments, which were run on a single core of a 2.6GHz AMD Opteron 6282
SE processor on a Ubuntu 12.04 Linux server, with the Java heap set to 4GB. Some state-
of-the-art DL reasoners will be used in comparing query execution time with CARE. In this
situation, the latest release (at the time of writing) of these reasoner are used. Specifically,
queries are posed via OWL API 3 for FaCT++ 1.6.23, Pellet 2.3.14 and HermiT 1.3.75,
and via JRacer API for Racer 2.06 using the nRQL query language.

The DPC Datasets

A suite of datasets (KBs) about digital cameras has been built and used in the experiments.
The KBs consist of digital camera model specifications extracted from DPreview.com and
pricing information from Google Product Search. The ABox (data) of each KB contains a
set of camera models described by a substantial number (around 70) of concrete feature
concepts, in addition to other concepts. Every camera model has n (0 ≤ n ≤ 10) products
for sale through various sellers. The TBox (schema), being the same for all KBs, consists of
34 axioms, with the expressivity of ALC(D). Table 4.1 describes these the KBs, including
the number of camera models (CMs), individuals (Inds), concept assertions (CAs) and role
assertions (RAs) in each KB. Observe that DPC1 contains all the available digital cameras
on DPreview.com, assuming there is only one product available for sale through each seller
for a particular model. DPC2 correspondingly assumes there are two products for sale
through each seller.

Queries for DPC datasets are shown in Table 4.2, which were designed to vary in
query forms and selectivity. The answer set size of each query over every DPC KB is also
given in Table 4.3. Specifically, Q1 is a selective query that retrieves a specific subclass
of SLR cameras, which may be answered without assuming any hierarchy information.
Q2, contrary to Q1, is less selective and must be answered using class hierarchy. Q3 is a
selective query involving concrete facts. Q4 negates the concrete fact in Q3 to make it a
range query. Q5, though in the form of an atomic concept (Available Digital Camera),

3http://code.google.com/p/factplusplus/
4http://clarkparsia.com/pellet/
5http://www.hermit-reasoner.com/
6http://www.racer-systems.com/
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CMs Inds CAs RAs

HP 577 8774 4926 12101

Oly 1198 18354 10161 25705

DPC1 1895 28017 15445 39453

DPC2 1895 40595 15445 64510

Table 4.1: Descriptions of the DPC datasets.

Q1 Digital SLR mirrorless

Q2 Compact Camera

Q3 Digital SLR u (user review = 5.00)

Q4 Digital SLR u (¬(user review = 5.00))

Q5 Available Digital Camera

Q6 ∃hasManu.((manu name = “Kodak”) t (∃locatedIn.Europe Country)))

Q7 (∃hasInstance−.(Lens mount = “Nikon F mount”)) u
(∃hasSale.∃hasSeller.(seller name = “Walmart”))

Table 4.2: Sample queries posed over the DPC datasets.

it in fact uses an existential restriction as follows:

Available Digital Camera ≡ ∃hasSale.(¬(inventory status = “outOfStock”)).

Q6 has a disjunction occurring in the scope of an existential restriction. Q7 consists of
a conjunction, of which the first (second) conjunct is a one-level (two-level) existential
restriction involving concrete facts.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

HP 0 530 2 37 3737 8 0
Oly 1 1067 4 110 7906 183 3

DPC1 11 1673 7 181 12095 183 3
DPC2 11 1673 7 181 24190 183 6

Table 4.3: The answer set size of each query over the DPC KBs.
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FIs Inds CAs RAs

USDA5 1205 1214 1214 12

USDA10 2994 3019 3019 583

USDA15 5259 5299 5299 649

USDA20 7295 7352 7353 1247

USDA25 8176 8250 8250 1535

Table 4.4: Descriptions of the USDA datasets.

The USDA Datasets

The USDA datasets, based on the the USDA Database [Service, 2012], provide composition
data for 8176 food items. All food items are categorized into one of the 25 food groups,
and each item may contain up to 146 food nutrient components (features). Each USDA
KB includes a number of food groups, and each food item is modelled as an instance of its
food group. Note that not all features are applicable for every food item. In the datasets,
a small number of food items also have manufacturer information. The KBs are named
such that the positive integer n implies the number of food groups included in the KBs.

The expressiveness of these KBs is ALC(D) and all KBs have the same set of axioms,
which contains about 30 axioms. Most of the axioms are simple concept inclusions, while
there are three equivalence axioms. Although the USDA KBs also have a multitude of
concrete domain concepts for each instance, it differs from the DPC KBs in the size of role
assertions. Table 4.4 lists information of the ABox part for each KB, including the number
of food items, individuals, concept assertions, and role assertions, respectively.

The USDA KBs have smaller ABox than the DPC ones, particularly, role assertions
are infrequent in the USDA KBs. For the USDA KBs, a set of eight queries were posed,
as listed in Table 4.5. Specifically, Q1 retrieves instances of a specific food group which is
included in every KB. Q2 uses an negation, while Q3 exploits concrete domain concepts.
Q4 uses both a negation and a concrete domain concept. Q5 is more challenging as it
involves a disjunctions and a negation. Q6 and Q7 both exploit existential restrictions, as
well as a negated concrete domain concept. Note that Q8, though in the form of an atomic
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concept, is different from Q1 because it is defined by complex concepts as follows:

ExcellentFoodDVProtein ≡ ExcellentFoodDVProteinForMale

t ExcellentFoodDVProteinForFemale

ExcellentFoodDVProteinForMale ≡ ¬(Protein-in-g < 42)

ExcellentFoodDVProteinForFemale ≡ ¬(Protein-in-g < 34.5)

Thus, Q8 involves indefinite knowledge and concrete domain facts, while Q1 is a truly
atomic concept. Finally, the answer set size of each query over every KB is also given in
Table 4.6.

Q1 Spices and Herbs

Q2 ¬Manufacturer

Q3 FOOD u (Total lipid fat = 0.00)

Q4 Spices and Herbs u ¬(Calcium Ca < 2000)

Q5 (Dairy and Egg Products t Soups Sauces and Gravies) u ¬(V itamin C < 30)

Q6 ∃producedBy.(¬(manu name = “Kraft Foods Inc.”))

Q7 ∃producedBy−.(¬(Energy < 100))

Q8 ExcellentFoodDV Protein

Table 4.5: Sample queries posed over the USDA KBs.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

USDA5 61 1205 37 2 4 10 9 21
USDA10 61 2994 68 2 8 562 23 25
USDA15 61 5259 240 2 8 628 26 46
USDA20 61 7295 293 2 8 1224 44 85
USDA25 61 8176 299 2 8 1503 61 103

Table 4.6: The answer set size of each query over the USDA KBs.

LUBM Benchmark

The LUBM benchmark [Guo et al., 2005] consists of a TBox roughly in the DL dialect
SHI(D), without using disjunctions. The ABox of LUBM can be generated on demand,
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and the size of a LUBM ABox is identified by the number of universities. In these ex-
periments, only one university of LUBM, denoted LUBM0, is used, which has about 20k
concept assertions and 82k role assertions.

4.4.2 Comparing Guarding Strategies

Definition 25 effectively develops two types of guarding strategies, one being partial guard-
ing (PG) and the other full guarding (FG). Intuitively, the PG strategy guards all in-
dividuals so that only individuals relevant to the individuals appearing in a query will
be explored by reasoners. The FG strategy, in addition to PG, further guards concrete
features so that only query-relevant feature concepts participate in reasoning. A näıve
tableau-based implementation (the baseline approach), however, tends to explore all ABox
individuals for each reasoning request, which is dubbed no guarding (NG).

The first experiments evaluated all queries over the HP KB under three different guard-
ing strategies. The execution times of query answering under each strategy are given in
Figure 4.4. CARE timed out after 2000 seconds under the NG strategy for all queries,
because the baseline approach explores the whole ABox for each instance checking in the
form of K |= a : C (note that CARE implements a “linear” instance retrieval for a given
query concept). By adopting the PG method, CARE managed to answer all queries. Al-
though most of the queries can be answered around 150 seconds, the query answering time
for Q7 is close to the limit, requiring more than 1500 seconds. When the full guarding
strategy is employed, the query response times for all queries have been substantially re-
duced to around 20 seconds, i.e., at least one order of magnitude faster for answering these
queries than under the PG strategy. Thus, this set of experiments suggest the efficacy and
the potential of the proposed guarding strategies. It should be noted that full guarding is
extremely helpful for the knowledge base HP due to the sheer number of features available
in the KB.

It has been demonstrated that ABox absorption can significantly improve instance
checking over a no guarding strategy, i.e., the baseline approach that can be implemented
by a tableau reasoner. However, most state-of-the-art reasoners develop a variety of opti-
mization techniques at the level of answering instance queries (cf. Section 2.4.1). It might
be argued that the effectiveness of guarding may be limited for highly optimized reasoners.
To verify if ABox absorption offers additional benefits, the subsequent experiments were
carried out to show CARE, which has a straightforward implementation of ABox absorp-
tion and no other instance-level optimizations, can indeed outperform highly optimized
reasoners.
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Figure 4.4: Comparing three guarding strategies in CARE over the HP dataset. NG, PG,
and FG denote no guarding, partial guarding, and full guarding, respectively.

4.4.3 Comparing CARE with DL Reasoners

For highly optimized reasoners, numerous optimization techniques have been developed for
answering instance queries. We juxtaposed the state-of-the-art reasoners with CARE in
this section. The purpose is not to merely compare the performance of reasoners, but to
validate the efficacy of ABox absorption for instance checking.

The experiments could have been performed for instance checking, however, OWL API
does not provide a means to check instance checking problems; instead, instance queries
were used in the experiments for comparison. It should be noted that most state-of-the-
art DL reasoners have implemented many interesting optimizations for instance queries,
while CARE has only implemented ABox absorption. We are also aware that some DL
reasoners, such as Racer, Pellet, and HermiT, have more advanced optimizations for ground
conjunctive query answering. Although some of the test queries may be converted into
certain ground conjunctive queries that could be answered more efficiently by exploiting
those particular optimizations, we did not consider such possibilities in these experiments
because the purpose is to compare optimizations for instance queries (instance checking).
Note that instance queries were posed as simple nRQL queries for Racer.

In the subsequent sections, we will investigate the preprocessing overhead of the DL rea-
soners over the aforementioned KBs, the query performance for different types of instance
queries, and the effects of concrete domain concepts.

Preprocessing Overhead

Because existing optimized reasoners usually compute certain useful information prior to
query answering, either in the KB loading phase or when explicitly requested, the times
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CARE FaCT++ Pellet HermiT Racer
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(a) The DPC KBs.
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101
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(b) The USDA KBs.

Figure 4.5: Preprocessing times of the reasoners. Times are shown in logarithmic scale.

used for such preprocessing (and knowledge base loading) were compared separately from
the actual query response times.

Figures 4.5a and 4.5b depict the average preprocessing times of each reasoner over the
DPC and USDA KBs, respectively. It can be seen, in Figure 4.5a, that the system with
the cheapest preprocessing was CARE, which spent no more 10 seconds in preprocessing,
typically for loading the KBs, while Racer had the most expensive preprocessing phase,
which was two orders of magnitude slower compared to CARE. The remaining reasoners
had a more moderate preprocessing phase, which lasted 15-50 seconds. Similar to the
results reported for the DPC KBs, CARE has the cheapest preprocessing overhead in
Figure 4.5b, while FaCT++, Pellet, and HermiT are one order of magnitude slower. Racer
required intensive preprocessing, which was two orders of magnitude slower than CARE.
For the largest KB in this series, i.e., USDA25, Racer even needed more than 1800 seconds
to preprocess it.
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Query Performance

The next set of experiments was performed over the DPC and USDA knowledge bases.
The details of these KBs and the test queries have been given in Section 4.4.1. Figure 4.6
and Figure 4.7 depict the query performance of all reasoners, with times presented in
logarithmic scale, over the DPC and USDA KBs, respectively.

For the DPC KBs, as shown in Figure 4.6, Racer and Pellet had the best performance
over all four KBs for Q1. Both of these two reasoners answered Q1 within 10 seconds, and
Racer was more efficient. Given the amount of time for preprocessing, it is not surprising to
observe Racer’s performance. CARE, though four times slower than Racer and Pellet, was
still faster than FaCT++ and HermiT over almost all KBs. Similar observations can be
made for Q2 and Q3, of which both are positive instance queries. Note that HermiT already
timed out after 2000 seconds for these positive queries. We conjecture that HermiT does
not efficiently handle the large number of concrete domain concepts involved in reasoning.
Q4 is a query that involves a negation of a concrete domain concept. In this case, CARE
showed better query performance than all other reasoners when the size of KBs increase.
Pellet, however, failed to retain quick query response times for this query. Indeed, Pellet
was one order of magnitude slower than CARE, Racer and FaCT++. Recall that Q5 is
defined by a complex concept which uses an existential restriction about a negative concrete
domain concept. Pellet, HermiT, and Racer failed to answer this query for almost all the
KBs within 2000 seconds. FaCT++ and CARE, on the other hand, continued to produce
answers within a reasonable amount of time. In addition, CARE only took approximately
one-third of the time as FaCT++ did. Q6 explicitly uses a disjunction. HermiT again did
not manage to answer Q6 over any of the KBs. Racer succeeded in answering Q6 in the
HP knowledge base only and timed out after 2000 seconds for the rest of the KBs. This is
likely because Q6 contains a disjunction and the precomputed information in Racer does
not aid in nondeterministic reasoning. CARE still performed better than FaCT++ as the
KBs scale. Q7, the last query, only uses existential restrictions and inverse roles. Because
no disjunctions are involved, Pellet restored its good performance. HermiT continued
to time out, and the execution times of FaCT++ and Racer were comparable. CARE
outperformed Racer and FaCT++, although it was about four times slower than Pellet.

Similar observations can be made for query performance over the USDA KBs, as shown
in Figure 4.7. For Q1 and Q2, only CARE and Racer were able to answer the queries within
15 seconds for all KBs. Racer was the most efficient in both cases since its precomputed in-
dices facilitate answering queries about atomic concepts. FaCT++ and Pellet managed to
answer the two queries with a few hundred seconds, however, the performance of both rea-
soners decreased dramatically as the size of KB increased. HermiT had poor performance
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(a) Query 1.
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(c) Query 3.
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(d) Query 4.

Figure 4.6: Comparing DL reasoners with CARE over the DPC KBs. Times are given in
logarithmic scale.
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(e) Query 5.
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(g) Query 7.

Figure 4.6: Comparing DL reasoners with CARE over the DPC KBs. Times are given in
logarithmic scale.

in answering Q1 and timed out for most KBs when answering Q2. Q3 involves a concrete
domain concept, which rendered Racer unable to answer the query within a reasonable
period. It was likely due to a lack of precomputed information about concrete domain
concepts in Racer. Instead, CARE was the most efficient reasoner in this case, which an-
swered Q3 for all KBs with no more than 20 seconds. Interestingly, Pellet answered Q3
quite effectively in the smallest KB, but failed to retain the benefits while KBs increased in
size. HermiT, however, did not answer Q3 within 2000 seconds even for USAD5. Similar
observation can be made for Q4, because Q4 is structurally similar to Q3. It is easy to see
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that the results of Q3 and Q4 demonstrate the effects and advantages of full guarding in
CARE. Similarly, CARE remained to be the most efficient for Q5. However, Pellet timed
out for three KBS while answering Q5, because Q5 uses a disjunction. In the next query,
Q6, the performance of Racer ad FaCT++ were comparable, while CARE was more effi-
cient than them for larger KBs. Pellet, due to negations involved in Q6, did not perform
well. For Q7, Racer became the most efficient, and answered Q7 within 10 seconds over
all KBs. CARE still had very good performance and was one order of magnitude faster
than FaCT++ and Pellet, except for USDA5. Q8 is a complexly defined concept that
involves disjunctions and concrete domain concepts. CARE had the best performance,
which answered Q8 within a few seconds, while the rest of the reasoners needed far more
time. Note that HermiT was able to answer Q8 in some cases despite the disjunction and
concrete domain concept.

It can be seen that CARE and FaCT++ delivered the most consistent, good perfor-
mance over these KBs, while CARE was generally two-folds faster than FaCT++ as the
datasets scale. HermiT seemed to be unsuitable for instance queries over a large number
of concrete domain concepts. Pellet and Racer were most efficient for positive queries,
but occasionally showed unacceptable performance for non-positive queries, e.g., queries
involving negations or disjunctions. Furthermore, Racer heavily relied on preprocessing
to achieve good performance. Given that CARE is not as optimized as any of the other
reasoners, the results are significant.

Query Performance and Concrete Features

It can be argued that ABox absorption is efficient over the DPC and USDA KBs because a
large number of concrete feature concepts are involved in query answering. In this section,
a series of experiments on a series of synthetic knowledge bases without any concrete
features were performed. The synthesized seed KB has two axioms and a number of ABox
assertions replicated from the following pattern:

TBox: (∃R−.> u ∃S1.>) v B, E v (B t C)

ABox: R(am, bi), S1(am, ci), S1(bm, ei), S2(cm, ej),

R−(dm, ck), S1(em, di), C(cm)E(em).

It is easy to see the DL dialect underlying these synthetic KBs is ALCI. Initially,
m = 1000 in the seed KB (syn1), which generates 5k instances, 6k role assertions and
2k concept assertions. Also observe that the second individuals in all role assertions were
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Figure 4.7: Comparing DL reasoners with CARE over the USDA KBs. Times are given in
logarithmic scale.
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(e) Query 5.
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Figure 4.7: Comparing DL reasoners with CARE over the USDA KBs. Times are given in
logarithmic scale.
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Figure 4.8: Comparing query performance of CARE under partial guarding with other
reasoners over the synthesized datasets.

randomly selected, e.g., 1 ≤ i ≤ m. All other synthetical KBs were generated by repeating
the seed KB k times, thus, named synk.

Because these KBs contain no concrete facts, only partial guarding (PG) was adopted
during reasoning. Figure 4.8 demonstrated that partial guarding (PG) alone can result in
significant performance gains for state-of-the-art reasoners, in which the test queries are
positive and very simple.

The results in Figure 4.8 are remarkable in that these highly optimized DL reasoners
were, in most cases, at least one order of magnitude slower in answering simple instance
queries (i.e., Q1 and Q2), compared to CARE. A study of the seed knowledge base can
reveal that the ABox individuals form a number of relatively isolated conglomerates. The
ABox absorption algorithm makes it possible for CARE to reason about individuals occur-
ring in the same conglomerate while ignoring the rest of ABox. We conjecture that other
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reasoners had to include a large number of irrelevant individuals for reasoning, which re-
sulted in inefficient query answering for simple queries such as B. In addition, the two
queries take advantage of disjunctive knowledge in the TBox, which prevents reasoners
from precomputing deterministic information to facilitate query answering. This set of ex-
periments implies that ABox absorption is an essential optimization technique for instance
checking over expressive DL knowledge bases.

The empirical studies in Section 4.4.3 demonstrated the efficacy of ABox absorption,
i.e., guarded reasoning for instance checking. The comparison between CARE and other
highly optimized DL reasoners suggests that ABox absorption is indispensable for scalable
instance query answering, despite all the optimizations that have been designed for instance
queries. Although reasoners often compute and cache some deterministic knowledge that
can facilitate subsequent query answering, they lack efficient algorithms for querying non-
deterministic knowledge, as shown by the performance of Pellet and Racer. ABox absorp-
tion has been shown extremely useful for reasoning with concrete domain concepts. We
believe that, for example, HermiT can benefit from full guarding for circumstance where
concrete domain concepts are prevalent in the ABox data. Even for reasoners with decent
performance, such as FaCT++ and Pellet, ABox absorption can further optimize query
answering for concrete domain concepts, e.g., Q3 and Q4, since it appeared that existing
DL reasoners were more optimized for atomic concepts than for concrete domain concepts.
Indeed, the nature of Web data makes it impossible to address efficient query answering
under expressive constraints without concerning concrete domain concepts. Finally, since
ABox absorption is complementary to all known query answering optimizations, exist-
ing reasoners can incorporate ABox absorption without incurring significant overhead in
preprocessing (see Figures 4.5a and 4.5b). Similarly, the performance of CARE can be
enhanced by adding optimizations implemented in other DL reasoners.

4.4.4 Optimizing Typing Constraints

Experiments in this section demonstrate the efficacy of the additional optimization ap-
plied to typing constraints of the form L1 v ∀S.L2, in addition to the ordinary ABox
absorption. The first set of experiments were performed on DPC1 using the queries listed
in Figure 4.2. The second set of experiments were performed over the LUBM bench-
mark. Specifically, twelve queries out of the LUBM sample queries7 were used (Q2 and
Q9 were excluded since they are not expressible as instance queries) were tested over
LUBM0. Since the experiments focus on instance checking, the selection conditions for

7http://swat.cse.lehigh.edu/projects/lubm/queries-sparql.txt
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each of the twelve queries were reified, e.g., Q4 was rewritten as the instance query
Professor u ∃worksFor.A′, for some fresh atomic concept A′, and a new concept asser-
tion (http://www.Department0.University0.edu : A′) was added to the original ABox.

The results are listed in Figure 4.9 in which the execution time of CARE with optimized
typing constraints (abbreviated as OPT) is compared with the execution time of CARE
with the earlier version lacking this optimization (abbreviated as BASE). The percentage
of improvement of the OPT method is also indicated above the bars.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

10

20

30

46% 6% 14% 0%
0%

5%

2%

DPC1

w/o opt. (BASE) w/ opt. (OPT)

Q1 Q3 Q4 Q5 Q6 Q7 Q8 Q10 Q11 Q12 Q13 Q14
0

50

100

150

200

91% 43% 64% 85%
78%

84% 76% 90% 62% 65% 53% 79%

LUBM0

Figure 4.9: Performance gains in percentage when typing constraints are optimized.

For DPC1, the preprocessing times were about 7 seconds and 17 seconds for the BASE
method and the OPT method, respectively. In the latter case, about 16% of the role
assertions were optimized for one typing constraint (out of four); the remaining three
typing constraints are for the same role. This limited use of typing constraints clearly
makes the OPT method less beneficial to DPC1. Nevertheless, the evaluation of some
instance queries has been improved. While four queries only witness a speedup of no more
than 5% with OPT, there were queries that have been improved by over 40% (Q1). The
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limited gains are not surprising in view of the proportion of role assertions optimized.

For LUBM0, preprocessing cost 5 and 16 seconds with BASE and OPT, respectively.
With the OPT method, about 23% of the role assertions were optimized for six typing
constraints. Observe that, for each of the instance query, there is a dramatic improvement
ranging from 43% to 91% with OPT. The results suggest that LUBM0 is more sensi-
tive to typing constraints than DPC1, and that our method is most useful for ontologies
that include a larger number of typing constraints, and where role assertion optimization
nevertheless remains likely.

Another observation is that, for these knowledge bases, syntactic lookups in computing
T 1
K were not efficacious, that is, both T ∀→ and T ∀← were empty (see Section 4.1.2). This

explains why computing T 3
K for both DPC1 and LUBM0 required more time than doing

so with the BASE version. In particular, a large number of subsumption checks were
performed during the computation of T 2

K by the OPT method. Recall that the arc labelled
“2” in Figure 4.1 indicates that some intermediate steps can be introduced to obtain T 2

K in
a way that can significantly reduce the number of such subsumption checks at load time.

This chapter presents a novel optimization, ABox absorption, for instance checking.
This technique assumes the consistency of a knowledge base K and relies on binary ab-
sorption and a safe use of nominals to convert an ABox into a set of TBox axioms that
contain guards (fresh concept names) to specify if the axioms can be fired by a tableau
algorithm during expansion. This chapter also shows how to further advance this optimiza-
tion by dropping guards partially for role assertions that satisfy all relevant local universal
restrictions. The direct consequence of Abox absorption is the so-called guarded reason-
ing, which allows a tableau algorithm to explore only relevant individuals, instead of the
whole ABox, for any given query concept. The experimental results of CARE on ABox
absorption demonstrate the efficacy of this optimization and the usefulness of this method
to support answering assertion queries.
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Chapter 5

Query Compilation

This chapter shows how to compile a user query into an efficient query plan for query
execution. In relational DBMSs, due to the large number of base relations to be considered,
a query optimizer does not attempt to enumerate all possible query plans to find the
optimal plan due to computational constraints; instead, the goal of the query compilation
phase is to produce a promising query plan that is beneficial for query execution. For
instance, consider the user query (f = 1, g?) over a knowledge base K, which retrieves
K objects that satisfy f = 1 and return the description of g for the qualifying objects.
Recall that Theorem 3.5.2 establishes a default plan for this user query, i.e., πKg?(σ

K
f=1(PK)).

The default plan is expensive in the sense that reasoning w.r.t., K is used frequently for
instance checking. However, this chapter shows that it is possible to obtain a range of
more preferable query plans than the default plan by exploiting cached query results. For
instance, consider a cached query result S1 = (f < 10, g?) :: f : Ind, which stores explicitly
the results of a user query that retrieves the descriptions of g for K objects satisfying
f < 10 and sorts the results by the values of f and the object identifiers. Given S1, it is
possible to obtain the following plan for the previous user query: S1(f = 1), where S1 is
used for searching and K is not referenced in this plan.

In database terminology, a logical query plan, which refers to the algebraic expressions
obtained by the application of a set of rewriting rules or heuristics, is distinguished from
a physical query plan, which specifies actual algorithms for implementing operators in the
algebraic expressions. In our context, these two notions coincide, i.e., no distinctions are
assumed between logical and physical plans.

Query compilation consists of several phases to translate a user query into a query
plan. DB2, for instance, implements the well-known Query Graph Model [Haas et al.,

107



1989] that comprises sophisticated query analysis steps. Figure 5.1 depicts the overall
query processing phases. The input to the compiler is a user query in the form of (C,Pd).
After parsing and validation, the input query is fed into the plan generator, which applies
a sequence of query rewriting rules to the user query. Because many query plans can be
generated during this phase, there is also a component in this phase that searches among
the plan space for the most promising query plan and outputs it. The final query plan is
then executed by a plan interpreter and query answers are returned to users.

Cached Query 
Results  

(description 
indicies)

User 
Query

Query 
Result

Plan 
Generator

Plan
InterpreterKB

Query 
Compilation

inference
DL

Reasoner
Query
Plan

Figure 5.1: An overview of query processing for assertion retrieval.

This chapter is organized as follows. Section 5.1 defines a set of query rewriting rules
that can be used to generate a variety of query plans for a user query (C,Pd). Section 5.2
addresses how to obtain a query plan in which the operators do not require any knowledge
bases for reasoning. Finally, Section 5.3 elaborates the query compilation process, including
the implementation of plan operators (Section 5.3.1) and the strategy of selecting the most
promising plan in the plan space (Section 5.3.2).
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5.1 Query Rewriting

Cached query results play an essential role in optimizing query answering performance,
as seen in Section 5.1.1, where a suite of rewriting rules to translate a user query into
equivalent algebraic forms is given that assume the availability of the required cached
query results. This work does not consider which query results need to be materialized
or how updates are handled, instead, any cached query results that participate in a query
plan are assumed to be generated a priori.

Although not required, an input query of the form (C,Pd) can be parsed into a tree
to ensure its syntactical correctness. The semantic correctness of a user query needs
to be checked as well; for example, if the concept description C in (C,Pd) is seman-
tically equivalent to ⊥, the query is unsatisfiable and should retrieve no objects. The
semantic correctness also applies to the projection descriptions. For instance, the query
(Book,∃hasAuthor.publisher?) is syntactically correct, yet the feature publisher is likely
not a valid attribute of authors in the underlying K.

5.1.1 Queries as Algebraic Expressions

Recall that a valid user query can always be translated into an algebraic expression shown
in (3.1). With the default query plan, various query plans can be obtained by applying a
set of rewriting rules, as presented in [Pound et al., 2011]. Analogous to query optimization
in relational databases, a set of relational-style rewriting rules (transformational laws) is
first given in Figure 5.2. For clarity of presentation, the proofs of the lemmas and rewriting
rules are given in Appendix A.

A cached query result corresponds to a materialized view in relational terms. The
use of cached query results in query plans is analogous to view-based query rewriting in
relational databases. The fundamental idea is to produce query plans that involve cached
query results. A similar rewriting rule is given by Lemma 5.1.1. However, this lemma only
concerns under what conditions a set of given cached query results can be used to replace
the algebraic operator PK.

Lemma 5.1.1 (Cache Introduction). Let (C,Pd) be a user query. The expression

πKPd(σ
K
C ((S1(C1) ./ · · · ./ Sn(Cn)))) (5.9)

is equivalent to (3.1), provided that (i) Si = (Di, Pdi) :: Odi, (ii) K |= C v (D1 u ...uDn),
and (iii) Ci = bb{D | D ∈ LPdi ,K |= C v D}ccK, for all 1 ≤ i ≤ n.
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Q1 ./ Q2 ↔ Q2 ./ Q1 (5.1)

Q1 ./ (Q2 ./ Q3)↔ (Q1 ./ Q2) ./ Q3 (5.2)

S1(σKC (Q))→ σKC (S1(Q)) (5.3)

σKC1
(σKC2

(Q))↔ σKC2
(σKC1

(Q)) (5.4)

σKC1
(σKC2

(Q))↔ σKC1uC2
(Q) (5.5)

σKC1
(Q)↔ σKC2

(Q), if K |= C1 ≡ C2 (5.6)

πKPd1(π
K
Pd2

(Q))↔ πKPd1(Q) (5.7)

π∅Pd1(π
∅
Pd2

(Q))↔ π∅Pd1(Q), if LPd1 ⊆ LPd2 (5.8)

Figure 5.2: A list of relational-style rewriting rules.

Proof. See Appendix A.

Because PK can potentially computes a very large set of objects, i.e., all the objects inK,
which is the input for the subsequent, computationally expensive selection and projection
operations. With the use of cached query results in Lemma 5.1.1, the size of the input
to the selection operation is smaller, and it is possible to apply other rewriting rules (as
discussed later in this section) to the cached query results to obtain query plans that reduce
or avoid the use of reasoning w.r.t. K. Note, again, the availability, the usability, and the
maintenance of cached query results are not addressed in this work.

The introduction of cache scans in place of the primary operation, as in Lemma 5.1.1,
may be necessary in some situations, for example, when K is not accessible or it contains
a large number of individuals. Note that (5.9) permits a multi-way join instead of binary
joins, because, to this end, the order of joins does not matter. However, the join order may
affect subsequent rewriting. There are various ways to determine a suitable join order of
cache scans, and one will be discussed in Section 5.3. The next rule, (5.10), demonstrates
the possibility to remove a selection operator.

Lemma 5.1.2 (Removing Redundant Selections). The selection operation σKC (·) can be
removed from (5.9) to obtain the expression

πKPd((S1(C1) ./ · · · ./ Sn(Cn))) (5.10)

if K |= (C1 u . . . u Cn) v C.
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Proof. See Appendix A.

Lemma 5.1.3 below allows one to nest cache scans such that a join of two cache scans
can be pushed inside one cache scan. For this rewriting rule, the order to join two cache
scans impacts the final plan (see Example 9 for an illustration). Note the condition on Pd,
the projection description to be introduced for the newly nested cache scan. In particular,
Pd = >? always satisfies the condition. This rule is particularly useful if Sj(Cj) produces
complicated concept assertions, for example, (a : D1 u · · · uDm) for some individual a and
a large integer m. In this case, πKPd(Sj(Cj)) would produce concept assertions of the form
(a : >), which makes the outmost projection much easier to compute.

Lemma 5.1.3 (Nested Searches). An expression of the form

πKPd′(Si(Ci) ./ Sj(Cj))

is equivalent to
πKPd′(Si(Ci ./ π

K
Pd(Sj(Cj))))

where Pd is such that LPd ⊆ LPdi (the projection description used to define Si) and Pd′

is an arbitrary projection.

Proof. See Appendix A.

5.2 K-free Rewriting

There are a variety of cases in which the operators in the algebra can be evaluated without
general DLs reasoning. This section allows us to determine whether a particular algebraic
operator does not refer to the knowledge base K. This goal amounts to finding conditions
under which: OPK(Q) = OP∅(Q) for an operator OP in the algebra and every knowledge
base K (where OP∅ denotes evaluating the operator with respect to the empty knowledge
base). Intuitively this means that the concept assertions in the answers to Qi contain
sufficient amount of explicit information about an individual; the goal is to ultimately
obtain this information using some cached query results rather than via general reasoning
in K. In assertion retrieval algebra, this degenerates to optimizing the operators σKC (Q)
and πKPd(Q) such that K can be substituted by ∅. The leaf operator PK always requires an
underlying K to obtain all the instance names; therefore, it can be substituted by one or
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more cached query results to obtain a K-free query plan. Such a translation is useful when
the entire K is unavailable.

Definition 30. Representative Language . A language of representative concepts for
an algebraic query Q. denoted LQ, is defined as follows:

LQ =



{C} if Q = “C”;

{>} if Q = “PK”;

LPdi if Q = “Si(Q1)”;

LQ1 if Q = “σKC (Q1)”;

LPd if Q = “πKPd(Q1)”; and

{C uD | C ∈ LQ1 , D ∈ LQ2} if Q = “Q1 ./ Q2”.

The following corollary derives from Lemma 3.2.1, which establishes a useful property
for the representative language LQ of any pure Q. It is easy to see that Corollary 5.2.1 also
holds if LQ is replaced by Lfin

Q .

Corollary 5.2.1. For any pure Q, any pair of concepts {D1, D2} ⊆ LQ and |= D1uD2 6v ⊥
(i.e., D1 uD2 is a satisfiable concept), there is D3 ∈ LQ such that |= D3 ≡ D1 uD2.

Proof. Considering any pure query plan Q, the claim holds vacuously for Q = PK. The claim
derives directly from Lemma 3.2.1 when Q = Si(Q1) and Q = πKPd(Q1). When Q = σKC (Q1),
the claim holds by induction hypothesis because Q1 is also pure. Now we elaborate the
last case, i.e, Q = Q1 ./ Q2. Assuming any pair {D1, D2} ⊆ LQ, let D1 = D1

1 u D2
1

and D2 = D1
2 u D2

2, where D1
i ∈ LQ1 and D2

i ∈ LQ2 , i ∈ {1, 2}. Note that D1 u D2 is
satisfiable, so any subconcepts in D1 and D2 must be satisfiable. By induction hypotheses
on the two pure query plans Q1 and Q2, it follows that there are D1

3 ∈ LQ1 such that
|= D1

3 ≡ D1
1 u D1

2 and D2
3 ∈ LQ2 such that |= D2

3 ≡ D2
1 u D2

2. Therefore, D1
3 u D2

3 ∈ LQ;
moreover, |= D1

3 uD2
3 ≡ D1

1 uD1
2 uD2

1 uD2
2 ≡ D1 uD2.

Given the definition of the representative language of a query plan Q, we can establish
the following correspondence for testing K-free rewriting. Recall that the semantic subset
relation ↪→ is given in Definition 15.

Theorem 5.2.2. Let (C,Pd) be a user query, (Ci, Pdi) queries that define cached query
results Si, and Q a query plan equivalent to (C,Pd). Then, for every pure subquery Q′ of
Q, the following holds:
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1. JσKC (Q′)KSIK = Jσ∅C(Q′)KSI∅ iff {C} ↪→ LQ′;

2. JπKPd(Q′)KSIK = Jπ∅Pd(Q
′)KSI∅ iff LπKPd(Q′) ↪→ LQ′.

Proof. See Appendix A.

The above theorem becomes an effective rewriting rule when finite approximations of
the languages LQ are defined. The precondition for the rewriting defined in Theorem 5.2.2
can then be tested using finitely many subsumption tests in the underlying description
logic.

Definition 31. Finite Approximation . Let (C,Pd) be a user query and Si = (Ci, Pdi)
cached query results. The set of admissible concrete domain values (strings), SD, is defined
to be the set of values k such that (f = k), for some feature f , is a subexpression in the
user query or Si. Lfin

Q is a finite approximation of LQ if for any concept D that appears
in Lfin

Q , whenever f = k′ is a subconcept of D, it holds that k′ ∈ {∗} ∪ SD, where ∗ is an
arbitrary concrete domain value (string) and ∗ 6∈ SD.

Lemma 5.2.3. Lfin
Q is finite; LQ1 ↪→ LQ2 iff Lfin

Q1
↪→ Lfin

Q2
.

Proof. See Appendix A.

Example 9 illustrates how a user query can be transformed via applications of the query
rewriting rules presented in this section.

Example 9. Query Rewriting Consider a knowledge base K about cameras and three
cached query results computed w.r.t. it. The definitions of these cached query results are
given below.

S1 = (>, user review?) :: user review : Ind

S2 = (release date < 20111001, release date?) :: release date : Ind

S3 = (>, resolutions?) :: Un

Suppose now the following user query is issued:

((user review = 4.50) u (release date = 20110105), resolutions?) (5.11)

Specifically, (5.11) retrieves all objects released on a specific date with a fixed user review
rating. Let C1, C2 denote (user review = 4.50) and (release date = 20110105), respectively.
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Figure 5.3 lists a number of query plans that can be obtained by applying the appropriate
query rewriting rules.

Plan 5.3a is the default plan obtained by (3.1). Plan 5.3b applies (5.9) to the default
plan using the three cached query results defined above. Note that in this query plan
the join order is not assumed. By removing the selection operation, i.e., applying the
rewriting rule (5.10), plan 5.3c is obtained. Next, nested searches can be enabled, as
Lemma 5.1.3 states. Plan 5.3d indeed assumes the following join order for the three cache
scans: πK>?(·) ./ (S1(C1) ./ S2(C2)). Of course, a different order can be assumed, but
the subsequent plans will be different. In particular, the join order assumed by plan 5.3d
has a benefit that other orders do not have, as discussed later. Plan 5.3e differs from
plan 5.3d only in the use of K. In fact, plan 5.3e is a K-free query plan, the focal interest
of Section 5.2. Plan 5.3f is obtained by two observations from the previous plan 5.3e.
First, the projection description in π∅resolutions?(·) is the same as the one used for defining
S3. In this case, the projection operation can be dismissed. Second, the join order chosen
by plan 5.3d permits the simplification of the first join in plan 5.3e: > is included in the
concept of every concept assertion produced by π∅>?(·), so, the operation π∅>?(·) ./ > can
be simplified as π∅>?(·).

5.2.1 Determining K-free Rewritings

Lemma 5.2.3 restricts the constants to those occurring in the queries, making it possible
to determine K-free query rewriting. In the case of rewriting σKC (Q′) into σ∅C(Q′), it suffices
to show {C} ↪→ Lfin

Q′ . However, when Lfin
Q′ = LPd for some Pd, deciding the relationship

↪→ seems infeasible due to the size of LPd. It is possible to use C to eliminate obviously
unqualified concepts in LPd; for example, any concept D ∈ LTUP

Pd that fails to satisfy
|= C v D can be eliminated because |= C v D1 uD2 requires |= C v D1 and |= C v D2.
For queries in the form of πKPd(Q

′), deciding K-free rewriting is more challenging. To show
LPd ↪→ Lfin

Q′ , computing the left-hand side LPd can be reduced to computing LTUP
Pd by

observing the following fact:

Proposition 5.2.4. LTUP
Pd ↪→ S iff LPd ↪→ S, where S = LQ or S = Lfin

Q for any pure Q.

Proof. The if direction is straightforward because LTUP
Pd ↪→ LPd.

The only if direction is to show that, given LTUP
Pd ↪→ S, LPd ↪→ S. By Definition 14,

for any satisfiable D ∈ LPd, it follows that D =
d
Di where Di ∈ LTUP

Pd , 1 ≤ i ≤ n.
Considering n ≥ 2 (when n = 0 and n = 1 the claim holds vacuously), by the assumption
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πKresolutions?(·) σKC1uC2
(·) PK

(a)

πKresolutions?(·) σKC1uC2
(·) ./

S1(C1)

S2(C2)

S3(>)

(b)

πKresolutions?(·) ./

S1(C1)

S2(C2)

S3(>)

(c)

πKresolutions?(·) S3(·) ./
>

πK>?(·) ./
S1(C1)

S2(C2)

(d)

π∅resolutions?(·) S3(·) ./
>

π∅>?(·) ./
S1(C1)

S2(C2)

(e)

S3(·) π∅>?(·) ./
S1(C1)

S2(C2)

(f)

Figure 5.3: Different query plans obtained by applying query rewriting rules to (5.11).
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LTUP
Pd ↪→ S, for each satisfiable Di, there is Ei ∈ S such that |= Di ≡ Ei. Consequently,
|= D ≡

d
Ei, 1 ≤ i ≤ n; furthermore, it follows from Corollary 5.2.1 that there exists

E ∈ S such that |= E ≡
d
Ei, 1 ≤ i ≤ n, when S is either LQ or Lfin

Q for any pure Q. Hence,
|= D ≡ E for some E ∈ S, where S = LQ or S = Lfin

Q for any pure Q.

A similar property can be established for determining LPd ↪→ Lfin
Q′ when Pd = Pd1uPd2:

Proposition 5.2.5. For any Pd = Pd1 u Pd2, LPd ↪→ S iff LPd1 ↪→ S and LPd2 ↪→ S,
where S = LQ or S = Lfin

Q for any pure Q.

Proof. It suffices to prove that, by Lemma 5.2.4, LTUP
Pd ↪→ S iff LTUP

Pd1
↪→ S and LTUP

Pd2
↪→

S for S = LQ or S = Lfin
Q . The only if direction is easy to show. Observe that, by

Definition 14, LTUP
Pd1

↪→ LTUP
Pd because > ∈ LTUP

Pd2
and ∀C ∈ LTUP

Pd1
, C u > ∈ LTUP

Pd . For the
same argument, LTUP

Pd2
↪→ LTUP

Pd .

The if direction. Assume for any Ci ∈ LTUP
Pdi

, there is Di ∈ S such that |= Ci ≡ Di, i ∈
{1, 2}. Because S = LQ or S = Lfin

Q for any pure Q, by Corollary 5.2.1, there is D ∈ S
such that |= D ≡ D1 uD2. That is, for any (C1 u C2) ∈ LTUP

Pd , there is such a D ∈ S and
|= D ≡ C1 u C2.

The following proposition derives from Proposition 5.2.5 and the definition of LQ1./Q2 :

Proposition 5.2.6. Let LQ1 = LPd1 and LQ2 = LPd2, then LPd ↪→ LQ1./Q2, where Pd =
Pd1 u Pd2.

Given the above discussions, it is tempting to establish an efficient procedure via Def-
inition 14 to determine K-free rewriting. However, Lemma 5.2.7 simply excludes the pos-
sibility of such an efficient procedure using Definition 14.

Lemma 5.2.7. The procedure in Definition 14 is non-elementary.

Proof. Consider the case {C} ↪→ LPd, where Pd = ∃R1. . . .∃Ri.(f1? u · · · u fj?). To
determine if the relationship ↪→ holds, we need to compute LPd. By Definition 14, we first
compute LTUP

fk
for 1 ≤ k ≤ j, and it is easy to see the size of LTUP

fk
is some constant, say

c, using finite approximation. Again, LTUP
(f1?u···ufj?) is obtained by a “cross product” fashion

of LTUP
fk

, which leads to a exponential blowup of size: cj. Note the unusual requirement
of computing LTUP

∃R.Pd1 : LPdi , instead of LTUP
Pdi

, needs to be computed. Thus, the size of

L∃Ri.(f1?u···ufj?) is further augmented by the power-set expansion of LTUP
(f1?u···ufj?), i.e., 2c

j
.

Since each Rk, 1 ≤ k ≤ i requires a power-set expansion, the size of LPd is i-EXPTIME.
Because i is not bounded and, for each concept D ∈ LPd, a logical equivalence check
|= C ≡ D is required, determining K-free writing is thus non-elementary.
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In the following, an approximation procedure is outlined, in which determining LPd1 ↪→
LPd2 is reduced to structural comparison between Pd1 and Pd2. Observe that the procedure
focuses on the representative language of the form LPd, since other cases (see Definition 30)
can be approximated by LPd, such as the one shown by Proposition 5.2.6.

Definition 32. Decomposition Tree . Let Pd be a projection description, the decompo-
sition tree of Pd, denoted Deco(Pd), is a triple (N,E, n), where N is a set of nodes, E a
set of labelled edges in the form of (n, L, n′), where L is some label, and n the root of this
tree. Deco(Pd) is defined inductively as follow:

Deco(C?) = ({n, n′}, {(n,C, n′)}, n)

Deco(f?) = ({n, n′}, {(n, f = ∗, n′)}, n)

Deco(Pd1 u Pd2) = ((N1 ∪N2)\{n2}, (E1 ∪ E2 ∪ {(n1, L, n
′) | (n2, L, n

′) ∈ E ′2})\E ′2, n1)

where Deco(Pdi) = (Ni, Ei, ni), i ∈ {1, 2} and E ′2 = {(n2, L, n
′) | (n2, L, n

′) ∈ E2}
Deco(∃S.Pd1) = (N1 ∪ {n}, E1 ∪ {(n, S, n1)}, n) where Deco(Pd1) = (N1, E1, n1)

With the definition of a decomposition tree, it is now possible to compare two projection
descriptions, e.g., Pd1 with Pd2. The purpose of such a comparison is to find out if Pd1 is
less general than Pd2, or, Pd1 is structurally included in Pd2, as defined below:

Definition 33. Structural Inclusion . A projection Pd is structurally included in some
decomposition tree DecoTree, denoted Stru(Pd,DecoTree), if any one of the follow-
ing conditions holds, where DecoTree = (N,E, n):

Pd = C?, |= C ≡ D, and there is n′ ∈ N such that (n,D, n′) ∈ E; or

Pd = C?, C = (f = k), and there is n′ ∈ N such that (n, f = ∗, n′) ∈ E; or

Pd = C?, C = C1 u C2,Stru(C1?,DecoTree), and Stru(C2?,DecoTree); or

Pd = C?, C = ∃S.C1, there is n′ ∈ N such that (n, S, n′) ∈ E,
and Stru(C1?, (N,E, n′)); or

Pd = f? and there is n′ ∈ N such that (n, f = ∗, n′) ∈ E; or

Pd = Pd1 u Pd2,Stru(Pd1,DecoTree), and Stru(Pd2,DecoTree); or

Pd = ∃S.Pd1, there is n′ ∈ N such that (n, S, n′) ∈ E, and Stru(Pd1, (N,E, n
′))
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Note that {C} ↪→ LPd in Theorem 5.2.2 can be reduced to LC? ↪→ LPd, hence it
suffices to consider LPd1 ↪→ LPd2 for the K-free rewriting conditions in Theorem 5.2.2. To
determine if LPd1 ↪→ LPd2 holds, it is clearly more practical to approximate this task as
structural inclusion tests:

Lemma 5.2.8. LPd1 ↪→ LPd2 if Stru(Pd1,Deco(Pd2)).

Proof. The proof proceeds by induction on Pd1, assuming Deco(Pd2) = (N,E, n). (1)
Pd1 = C?. If Stru(Pd1,Deco(Pd2)), then (a) |= C ≡ D and there is n′ ∈ N such
that (n,D, n′) ∈ E. By Definition 32, (n,D, n′) ∈ E implies Pd2 = D?. Because |=
C ≡ D, it follows that LPd1 ↪→ LPd2 . (b) C = (f = k) and there is n′ ∈ N such that
(n, f = ∗, n′) ∈ E. Again, by Definition 32, Pd2 = f?, which implies LPd1 ↪→ LPd2
based on finite approximation (see Definition 31). (c) C = C1 u C2. This case reduces
to the case Pd = Pd1 u Pd2 by observing that {C} ↪→ LQ iff LC? ↪→ LQ (since the
concept > additionally introduced by LC? is trivially included in LQ for every pure Q) (d)
C = ∃S.C1, there is n′ ∈ N such that (n, S, n′) ∈ E, and Stru(C1?, (N,E, n′)). In this
case, Pd2 = ∃S.Pd3 and LC1? ↪→ LPd3 by inductive hypotheses. By definition of LPd, it
follows L∃S.C1? ↪→ L∃S.Pd3 . (2) Pd = f?. This case is similar to Pd = (f = k)?. (3)
Pd = Pd1uPd2. This follows directly from Proposition 5.2.5 and inductive hypotheses on
Pd1 and Pd2. (4) Pd = ∃S.Pd1. This case is similar to Pd1 = C?, where C = ∃S.C1.

The approximation procedure in Lemma 5.2.8 is sound and incomplete. The incom-
pleteness is largely due to C?, in which C can be an arbitrary concept. For instance,
L(AuB)? ↪→ L(At¬B)?uB? holds, yet it fails to hold by the approximation procedure. How-
ever, in practice user queries are more likely to be concerned with definite answers, which
means disjunctions rarely occur in Pd.

5.3 Query Generation and Selection in CARE

Section 5.1 elaborates the rewriting rules that translate a given user query Q into various
query plans that consist of a sequence of algebraic operators. To efficiently evaluate a
query plan, a query engine must select the appropriate implementation of all the algebraic
operators that participate in the query plan. This section discusses the implementation
details on query generation and selection in the CARE assertion retrieval engine (see
Section 4.4).

Recall that, similar to query compilation in relational databases, an algebraic operator
can have multiple implementation (algorithms); for instance, the join operator in relational
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DBMSs may be implemented as a nested loops join, a sort-merge join, or a hash join. Thus,
a query plan may have more than one implementation that can be used for evaluation.
Moreover, a user query can have at least one query plan due to query rewriting presented in
the previous sections. With all the possibilities to answer a user query, a query engine must
select a query plan that is likely to perform better than the rest. Such a phase is called query
planning in this work. To elaborate query planning, Section 5.3.1 discusses how algebraic
operators presented in Section 3.5.2 are implemented in CARE. Section 5.3.2 describes a
straightforward strategy that derives from [Selinger et al., 1979] to select promising query
plans in a plan space.

5.3.1 Implementing Operators in CARE

To execute a query plan, a straightforward way is to execute these operations in order and
to store the results of each operation until it is needed by a subsequent operation, i.e., the
materialization approach. Alternatively, multiple operations can be executed at once in
such a way that no intermediate results are stored. In this pipelining approach, a single
result (i.e., a concept assertion of the form a : C) produced by an operation is immediately
passed to another operator. The latter approach is more appropriate in this work than the
former since computing all the results of a single operator is potentially expensive. One
disadvantage of pipelining operations is the inability to sort the results, however, it allows
users to retrieve a certain number of answers and terminate the query answering process,
in addition to saving memory for materializing results.

Pipelining algebraic operations can be achieved through an iterator that consists of a
suite of primitive procedures, for example, GetFirst and GetNext in [Toman and Weddell,
2011], Open, GetNext and Close in [Molina et al., 1999]. In this work, two primitive
functions are used: Open and GetNext. The former initiates the process of getting an
answer, including, for example, setting the data structures required for later operations.
The latter function returns the next result and adjusts the data structures and signals that
indicates whether no more results are available, among others. In this work, an iterator is
considered to have exhausted the resources once it returns null.

Pipelining a constant operation C is straightforward since this operation only produces
one result (? : C). For the primary operation PK, Open maintains a list of concept asser-
tions, one for each individual occurring in K, and initializes the current cursor position to
the beginning of the list. Then, GetNext returns the concept assertion which the cursor
currently points to. Once the cursor goes beyond the range of the indices of the list, it
issues a signal that there are no more results to be returned. The σKC (Q) and πKPd(Q) oper-
ations can be pipelined easily as well. In the case of selections, an iterator simply fetches
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one answer, say a : D, from JQKSIK and then decides if K ∪ {a : D} |= a : C. If so, the
iterator returns it, otherwise, it fetches the next answer from Q. The projection case is
similar, except that Algorithm 1 is used to compute an answer. The following discussions
concentrate on how to pipeline a cache scan and a join operation.

Pipelining a Cache Scan

Recall that a cache scan Si(Q) exploits some cached query result, Si, that is supported by
a description index. Presumably, searching over a description index is efficient because the
search condition generated by the iterator over Q is considered to be selective. In some
circumstances, however, it may be preferable to perform a linear scan of a description index,
for example, when the search condition is not selective. In this section, two approaches
for iterating over a description index are discussed: one is search-based and the other is
traversal-based.

Recall that a cache scan is defined by the plan Si(Q), where the cached query result Si is
defined by the user query (D,Pd) : Od. Note that a cached query result is always given an
ordering description for efficient search. Because searching is performed over a description
index, a cache scan invokes two iterators: one that iterates over Q and the other iterates
over a description index. To ease the presentation, a description index is denoted T .

Search-based Iteration To search over a description index, the iterator that searches
over a description index is implemented by Algorithms 8 and 9. Note that the search
condition is given as a concept assertion a : C. A node in a description index contains
the stored concept assertion (data), the links to the left and right children. The iterator
maintains two sub-iterators (leftIt and rightIt), one over each subtree. The main idea here
is to search over the left and right subtrees for a qualified answer and store them (possibly
null) in an array of size three (triple). Also, if the root qualifies as an answer, it is stored
in the array as well. Example 10 follows to illustrate the idea. Observe that it is possible
to avoid searching part of a description index by comparing the concept assertion stored
in the node (root.data) with the search condition (a : C), as shown in Example 10. Such
comparison is performed by a helper function, Compare(·), which follows Definition 19
to determine the ordering between two concept assertions w.r.t. the Od for defining Si.
Specifically, it returns -1 if ≺Od (a : C, root.data), 1 if ≺Od (root.data, a : C), and 0
otherwise.

Once the array has solicited three answers, Algorithm 10 is used to choose the right
one of the three that is to be returned as the final answer. Here, the definition of a right
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answer is dependent on the ordering constraint on the results. There are two options for
specifying the ordering constraints: the results are to be ordered by the individual names
(Ind) or by the null ordering (Un), in addition to satisfying the stipulated order, Od, in the
definition of Si. The first ordering requirement is useful if the results are to be pipelined
into a join operation that adopts the sort-merge join. The function to determine the right
answer is DetermineOrder(·), located on line 1 in Algorithm 10. The implementation
of this function is left abstract because it is straightforward: the function returns the least
indexed item in the array if the ordering requirement is Un, while it returns the smallest
item in the array w.r.t. Ind otherwise. Once the right answer is decided, Algorithm 10
advances the appropriate sub-iterator to obtain the next answer. When all elements in the
triple array are null, no more answers are available.

Algorithm 8: Open(T, root, a : C) (Search-based)

1 triple← null
2 leftIt← null
3 rightIt← null
4 T.root← root

Example 10. Search-based Iteration of a Cache Scan Consider a description index
underlying some cached query results S1 that consists of seven concept assertions stored
w.r.t. Od = age : Un, as depicted in Figure 5.4. Suppose there is a cache scan S1(age = 20),

p6:age = 20

p3 : age = 20

p5 : age = 19 p2 : age = 20

p4 : age = 21

p2 : age = 21 p1 : age = 25

Figure 5.4: The description index used in Example 10.

i.e., searching over S1 for all objects with age 20. Also, it is necessary that the qualified
objects be returned in the order of their identifiers, i.e., Ind. Recall that the constant
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Algorithm 9: GetNext() (Search-based)

1 root← T.root
2 if root = null then return null
3 dir ← Compare(a : C, root.data,Od)
4 switch dir do
5 case −1
6 leftIt← Open(T, root.rightChild, a : C))
7 return leftIt.GetNext();

8 case 1
9 rightIt← Open(T, root.leftChild, a : C))

10 return rightIt.GetNext();

11 case 0
12 if root.data |= a : C then triple[1]← root

leftIt← Open(T, root.leftChild, a : C)
13 triple[0]← this.leftIt.GetNext()
14 rightIt← Open(T, root.rightChild, a : C)
15 triple[2]← this.rightIt.GetNext()
16 return ChooseNext(triple, this, a : C)

operator in this cache scan returns a single, generalized concept assertion ? : (age = 20).
In the subsequent discussions, the term “search concept” in fact refers to this concept
assertion. The search-based iteration idea works as follows.

First, the main iterator checks the root p6. Because this node satisfies the search
concept, it is a valid answer and is stored in a triple t1, i.e, t1[1] = p6, where the positions
0, 1, and 2 in a triple are reserved for the left, root, and right answers, respectively. To
this end, it is not known if the subtrees of this node will return any other valid results. So,
two iterators are created, one for each subtree.

Second, the newly created left iterator of p6 checks the node p3. Again, this node is a
valid answer and is stored in another triple t2, i.e., t2[1] = p3. Also, two more iterators must
be created for this subtree. It is easy to check that the left sub-iterator returns no result
since p5 is not an answer, while the right iterator return the only answer p2 from the triple
t3 = (null, p2, null). This answer, p2, is from the right sub-iterator of p3, so, t2[2] = p2 and
finally, t2 = (null, p3, p2). Here, if no comparison is done, i.e., DetermineOrder(·) is not
defined, then p3 would be returned as the first answer, which violates the requirement to
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Algorithm 10: ChooseNext(triple, itr)

1 index← DetermineOrder(triple, od)
2 ans← null
3 switch index do
4 case 0
5 ans← triple[0]
6 triple[0]← itr.leftIt.GetNext()

7 case 1
8 ans← triple[1]
9 triple[1]← null

10 case 2
11 ans← triple[2]
12 triple[2]← itr.rightIt.GetNext()

13 return ans.data

return answers in the order of object identifiers. Hence, DetermineOrder(·) in this case
must determine that p2 is returned and t2 is updated: t2 = (null, p3, null). Consequently,
t1 is updated: t1[0] = p2, because p2 is from the left sub-iterator of p6.

Third, the right sub-iterator of p6 checks the node p4 and finds out the search concept
is ordered before the concept assertion in this node. Hence, the iterator avoids searching
the right subtree of p4. Since the left subtree of p4 returns no valid answers, this iterator
returns no answers, which means t1[2] = null.

Hence, t1 = (p2, p6, null). Furthermore, DetermineOrder(·) decides that p2 is the
first answer to be returned, i.e., ans = (p2) and t1 = (null, p6, null). However, recall the
left subtree of p6 produces the triple t2 = (null, p3, null), which now advances to the next
valid answer p3 and returns it to t1, so, in the next call to GetNext(·), t1 = (p3, p6, null)
and t2 = null. Again, DetermineOrder(·) decides that p3 in t1 should be returned
before p6. Thus, the final answers are ans = (p2, p3, p6) in the required order.

Traversal-based Iteration If the majority of nodes in a description index are to be
returned as answers, it is more efficient to just traverse the index tree and then qualify
the answers than searching over the tree, because the overhead of creating iterators for left
and right subtrees is not negligible. In this work, a right threaded binary search tree is
assumed for efficient transversal. In this right-threaded binary search tree, the right child
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of a node is either a real child node or a pointer, called a thread, to its in-order successor.
In addition to the protocols defined previously for a description index, there is a boolean
flag for each node to distinguish its right child node from a thread, denoted threading. To
maintain the order defined in a cached query result, an iterator traverses the description
index in an in-order fashion.

Algorithm 11: Open(T, root, a : C) (Traversal-based)

1 cur ← root
2 least← false
3 T.root← root

Algorithm 12: GetNext() (Traversal-based)

1 if least = false then
2 if cur 6= null then
3 while cur.leftChild 6= null do
4 cur ← cur.leftChild

5 least← true
6 return cur.data;

7 else
8 if cur.threading = false then
9 cur ← cur.rightChild

10 while cur.leftChild 6= null do
11 cur ← cur.leftChild

12 else cur ← cur.rightChild if cur.data |= a : C then return cur.data else
return null

Algorithm 11 sets the current position of an iterator to the root of the description index
and the flag for finding the least element (i.e., the first element in an in-order traversal)
to false. Algorithm 12 is indeed a combination of GetFirst() and GetNext(). It returns
the least element in the first iteration and traverses the description index, from the last
returned position, in subsequent iterations.

Implementing Cache Scans The iterator functions for a cache scan can be defined
based on an iterator for description indices. Algorithm 13 first opens an iterator over Q
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and produces a search condition. It then opens an iterator over the underlying description
index. Algorithm 14 is also straightforward: it searches over the description index for the
current search condition until none are returned, then, it advances the iterator for the next
search condition and repeats the search.

There is, however, a caveat for cache scans of the form Si(C), i.e., the sub-iterator is
over a constant operator. In this case, the sub-iterator only generates a single specialized
concept assertion in the form of (? : C). Note that both Algorithms 9 and 12 take as an
argument a genuine concept assertion. In this case, (? : C) needs to be translated into
(a : C), where a : D is the concept assertion occurring in the node being searched over.

Algorithm 13: Open(Si, Q) (Cache Scans)

1 subIt← Open(Q)
2 ca← subIt.GetNext()
3 T ← Si.GetDescriptionIndex()
4 indexIt← Open(T, T.root, ca)

Algorithm 14: GetNext() (Cache Scans)

1 if ca = null then return null ans← indexIt.GetNext(T, T.root, ca)
2 if ans = null then
3 ca← subIt.GetNext()
4 if ca = null then return null else
5 indexIt← Open(T, T.root, ca)
6 return GetNext();

Notice that Lines 4 and 5 in Algorithm 13 and 14, respectively, needs to choose the
proper iteration method over a description index. As briefly discussed earlier, when the
search condition is selective, it is advantageous to use search-based iteration. Beyond se-
lectivity, other factors may also affect the choice between these two methods. In what
follows, heuristics for selecting a more promising iteration method in CARE are summa-
rized. Consider a cache scan S1(C), where the cached query result S1 is defined by the
query (C1, Pd1) : Od1.

First, the descriptive sufficiency (see Definition 20) of concept assertions w.r.t. Od1

in a cached query result affects the search performance. For a node in which the concept
assertion is insufficiently descriptive, searching over that node has to generate two sub-
iterators, one for each subtree. If there are a large number of such nodes in a description
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index, the search performance will be severely degraded. Hence, for a description index
of which the proportion of nodes with insufficiently descriptive concept assertions is above
some threshold, it is more favourable to apply traversal-based iterations.

Second, the selectivity of the search condition and the concept assertions in the de-
scription index is an important factor in deciding a proper iteration method. Considering
C = (f < k), the selectivity of this constant operator depends on the range of all the values
occurring in the description index. Statistical information about the concept assertions in
a description index needs to be taken into consideration when deciding which iteration
method is more efficient.

Third, Od1 is also a factor for deciding a proper iteration method. Particularly, if
Od1 = f : Od2 and the search condition is not about the same feature, e.g., (g = k), then
traversal-based iterations are preferred because the search condition is incompatible with
the major sort of Od1.

Last but not least, if the search condition is trivially true, then all concept assertions in
a description index qualify as answers, for example, when the constant operator C = > or
it holds that |= C1 v C. In this case, it is more efficient to use traversal-based iterations.

Pipelining a Join

A join operation Q1 ./ Q2 is analogous to a natural join in relational algebra, viewing
individual names in concept assertions as the common attribute. There are several ways to
implement a join operation and this section presents two common iterative join methods:
nested loops join and sort-merge join.

Algorithm 15: Open(Q1, Q2) (Join)

1 leftIt← Open(Q1)
2 rightIt← Open(Q2)
3 ca1 ← leftIt.GetNext()

Algorithm 15 opens two iterators, one for each sub query plans, and fetches one result
from the left sub query plan. Note that both nested loops and sort-merge joins use this
algorithm for Open(·), though sir-merge join assumes that both sub iterators return results
in order (w.r.t. Ind). Algorithm 16 shows how to process a join operation using nested
loops, while Algorithm 17 is for sort-merge join. Observe that both algorithms assume
that a concept assertion consists of two components: the individual name (ind) and the
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Algorithm 16: GetNext() (Nested loops)

1 if ca1 = null then return null ca2 ← rightIt.GetNext()
2 if ca2 = null then
3 ca1 ← leftIt.GetNext()
4 if ca1 = null then return null rightIt← Open(Q2)
5 ca2 ← rightIt.GetNext()

6 if ca1.ind = ca2.ind then
7 a← ca1.ind
8 C1 ← ca1.cp
9 C2 ← ca2.cp

10 return a : C1 u C2

11 else return null

Algorithm 17: GetNext() (Sort-merge)

1 if ca1 = null then return null ca2 ← rightIt.GetNext()
2 while ca1 6= null and ca2 6= null do
3 cmp← Compare(ca1, ca2, Ind)
4 switch cmp do
5 case −1
6 ca1 ← leftIt.GetNext()

7 case 1
8 ca2 ← rightIt.GetNext()

9 case 0
10 a← ca1.ind
11 C1 ← ca1.cp
12 C2 ← ca2.cp
13 return a : C1 u C2

14 else return null

concept description (cp). Finally, joining constant operators should follow what is described
by the semantics (see Table 3.1). The only modification in Algorithms 16 and 17 is to let
Compare(·) return 0 whenever one of the concept assertion is of the form (? : C).
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5.3.2 Plan Selection in CARE

A user query can derive several query plans that differ in complexity of query answering by
applying query rewriting rules. These plans form a plan space in which a query optimizer
needs to choose the most promising plan using certain heuristics. Similar to cost-based
plan selection in relational databases, the heuristics used during plan selection are based
on cost estimation, which assigns a cost to each query plan in the plan space. In addition,
a search algorithm is required to search through the plan space. This section presents a
simple yet effective cost model implemented in CARE and the search algorithm used for
query planning, which derives from [Selinger et al., 1979].

Cost Estimation

Cost estimation of resources has been extensively used in relational DBMSs to guide the
search for query plans. Since this work concerns in memory data, the resources to be
considered exclude IO cost, communication cost, among others. In particular, the resources
are mainly about CPU time. It is clear that query optimization is only as accurate as the
cost estimates, thus, this section addresses how statistical data can be collected, how
to determine the statistical summary of the output data of an operation, and the cost
estimates of executing an operation.

Concept Selectivity The selectivity of concepts is of paramount importance, as they are
used as selection conditions in a selection operator, search conditions in cache scans, among
others. Considering any ALCI(D) concept, the selectivity depends on the selectivity of
the concept names, role names, and features occurring in it, as well as the propagation of
selectivity through connectives. Note that selectivity is estimated w.r.t. some K. When
the context is clear, the knowledge base is omitted. The selectivity estimate now follows.

One of the differences between databases and knowledge bases is the structure of data.
For a DL knowledge base, the ABox data is not structured as columns. However, features
are analogous to attributes in relations. In many large information systems, histograms
are often used to collect information on the distribution of the data in some column.
Analogously, histograms can be used to record the data of a particular feature. A coarse-
grained approach can simply record the range of values for this feature. Let sizeOf(f)
denote the number of values that a feature f takes on in the ABox. In addition, not
every individual will use the feature f , so, sizeOf(f = ∗) is used to denote the number of
individuals that mentions f .
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For each concept name A occurring in a knowledge base, the number of individuals that
are explicitly declared to belong to A can be collected. Intuitively, the size of a concept
A can indicate how selective A is over the ABox data. The size of a named role S can
be estimated similarly. The number of told role assertions S(a, b) in a knowledge base
indicates the number of individuals associated with this role. A more refined estimate can
combine the aforementioned estimate for concepts such that the size of S can be stored
in a histogram to estimate how frequently S is associated with a particular concept A, as
well as the promiscuity of S. When estimating the size of A and S, it only makes sense
to record the explicitly told information, e.g., an individual that is told to be A, because
otherwise a significant number of general reasoning requested are needed, which makes
cost estimation infeasible. Let sizeOf(A) and sizeOf(S) denote the estimated size of a
primitive concept and role, respectively.

It is possible to calculate the selectivity of a general ALCI(D) concept C by the fol-
lowing definition:

Definition 34. Concept Selectivity . The selectivity of a ALCI(D) concept C, denoted
sel(C) ∈ [0, 1], is computed as follows:

sel(A) = sizeOf(A)/sizeOf(>)

sel(f = k) = (sizeOf(f = ∗)/sizeOf(>))× 1/sizeOf(f)

sel(f < k) = cr

sel(C1 u C2) = sel(C1)× sel(C2)

sel(∃S.C1) = (sizeOf(R)/sizeOf(>))× sel(C1)

sel(¬C1) = 1− sel(C1)

where cr ≤ 1 is a constant that determines the selectivity of a range query.

Note that the selectivity of ∃S.C1 is calculated based on two factors: how frequently S
is associated with other individuals and what is the likelihood of the associated individuals
to be an instance of C1.

Operator Size Estimation When an operator is evaluated, the size of output data is
a crucial aspect of execution time. For some cached query result Si, sizeOf(Si) denotes
the number of concept assertions stored in it.

Definition 35. Operator Size . The size of an algebraic operator Q, denoted sizeOf(Q),
can be estimated as follows:

sizeOf(C) = 1
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sizeOf(PK) = sizeOf(>)

sizeOf(Si(Q1)) = sel(C)× sizeOf(Si) if Q1 = C, or cs × sizeOf(Q1) otherwise

sizeOf(σKC (Q1)) = sel(C)× sizeOf(Q1)

sizeOf(πKPd(Q1)) = sizeOf(Q1)

sizeOf(Q1 ./ Q2) = min(sizeOf(Q1), sizeOf(Q2))

where cs < 1 is a constant that estimates roughly, given a concept assertion a : D produced
by the subquery Q1, the likelihood to find a concept assertion in Si.

Note that cs is guaranteed to be less than 100% because the individual a is assumed to
match at most one concept assertion in Si. Also note that refinement can be done for size
estimation, for example, sel(C) over Si should be different from that over the original K,
because the cached query may significantly affect the original selectivity of C. The size of
a join operation also needs to be estimated more carefully: when either Q1 or Q2 (but not
both) are a constant operator, the function min(·) should really be max(·).

Cost of Executing a Query Plan The cost associated with the execution of an al-
gebraic plan Q is dependent on the size of the output data of the subqueries and the
characteristics of the query plan itself. Therefore, it is reasonable to define a constant c for
each of the six types of operations. Then, the cost of a query plan Q, denoted cost(Q), can
be simply defined to be the product of c and the size of the subquery. Although the actual
values of these constants do not matter, these values should reflect the cost of evaluating
that particular type of operation. For instance, evaluating σKC (Q) (πKPd(Q), respectively)
is, in practice, more expensive than evaluating σ∅C(Q) (π∅Pd(Q), respectively), because the
former require general reasoning w.r.t. some knowledge base K. Note that this does not
imply reasoning about tautologies is easy: the complexity of deciding |= C for a ALC
concept C is already PSpace-complete. Also, the primary operator, PK, provides the
default access to individuals in K, but it usually does not presume any inference for a
consistent K: the individuals are usually indexed during the knowledge base load phase.

What is more interesting is the cost of projection descriptions in projection operations.
Recall the procedures in Section 3.4: computing projections requires a significant number
of instance checking, which inevitably incurs a high computational overhead. To estimate
the cost of executing a projection operation more reasonably, it is necessary to estimate
the complexity involved in a projection description. For example, computing πKf?uA?(Q) is
likely more costly than computing πK>?(Q). Appropriate measures can be made to account
for the complexity of Pd. A straightforward approach is to measure the size of Pd and
assign a constant for each base case of Pd, e.g., f?, >?, or A?.
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Join Order

Section 5.1 discusses several query rewriting techniques; in particular, rules that transform
algebraic operators that require reasoning w.r.t. K into ones that do not are most inter-
esting, because of the high complexity associated with general DL reasoning. However,
in general, transformations do not necessarily result in cost-effective query plans, hence, a
search algorithm must be able to avoid query plans that can incur higher cost for query
execution.

Since the plan space is large, it is necessary to limit the plan space for efficient plan
selection. In particular, join operations are among the first to be addressed. Because join
operations are commutative and associative, they can be arranged in a number of ways, each
representing a query plan. Consider the join of four query plans, Qi, 1 ≤ i ≤ 4. Figure 5.5
lists three possible join orders, which are logically equivalent. If a query optimizer wants to
generate all possible join orders and compute the cost of each order, it is computationally
intensive when the number of joins is large. In relational systems, linear join sequences,
e.g., 5.5a and 5.5c, are more often used than bushy ones [Chaudhuri, 1998], e.g., 5.5b. The
following discussions thus focus on left deep join trees.

./

./

./

Q1 Q2

Q3

Q4

(a) left deep

./

./

Q1 Q2

./

Q3 Q4

(b) bushy

./

Q4 ./

Q3 ./

Q1 Q2

(c) right deep

Figure 5.5: Different types of join trees.

The join optimization step is in resemblance to the exemplary System R optimization
technique. Recall that System R enumerate joins in a bottom-up fashion [Selinger et al.,
1979]. Specifically, it employs dynamic programming to obtain an optimal plan for k joins:
it first finds the optimal plans for k − 1 joins and then join those plans with the k-th
relation. For the base case, i.e., k = 1, simply return the operator itself.

For example, to find the join orders for the four subqueries in Figure 5.5, it suffices
to consider the best plans for the following joins: {Q1, Q2, Q3} ./ Q4, {Q1, Q2, Q4} ./ Q3,
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{Q1, Q3, Q4} ./ Q2, and {Q2, Q3, Q4} ./ Q1. Observe that a naive approach that enumerates all
permutations of k joins produces O

(
n!
)

query plans, while the above dynamic programming
approach reduces the number of plans to O

(
n2n−1

)
[Chaudhuri, 1998].

Plan Space and Searching

Since most of the rewriting rules presented in Section 5.1 are equivalent transformations,
they can result in a large number of equivalent plans. In addition, some operators can
have more than one implementation. All these observations imply that the plan space for
a user query is immense. Due to the limited resources allowed for query optimization, it
is thus impossible to consider every query plan in the plan space. As stated earlier in this
section, only left deep plans for join operations are considered.

To exploit the estimated cost of a query plan, dynamic programming can be used as the
search algorithm over the plan space. Given a user query (C,Pd), a set of cached query
results Cache, and a knowledge base K, the goal of the search algorithm is to find a query
plan that has the lowest cost based on the cost model defined above. Also, applyRule(·)
denotes a function that maps the argument plan to another plan via applications of rewrit-
ing rules given in Section 5.1; joinOrder(S) denotes the dynamic programming approach
described above to find the best join order for a set of operators.

1 Generate the default plan Q = πKPd(σ
K
C (PK)). Let

Qs = {πKPd(σKC (Q′)) | Q′ = joinOrder(Idxi), Idxi ⊆ Cache,

and applyRule(Q) = πKPd(σ
K
C (Q′))}.

Compute cost(Qi) for each Qi ∈ Qs ∪ {Q}. Plan = {Q1} if cost(Qi) is the lowest or
Qi is an interesting plan, where Qi = πKPd(σ

K
C (Q1)).

2 Let Qs = {πKPd(Q′) | applyRule(πKPd(σ
K
C (Q1))) = πKPd(Q

′), Q1 ∈ Plan}. Compute
cost(Qi) for each Qi ∈ Qs. Plan = {Q2} if cost(Qi) is the lowest or Qi is an interesting
query plan, where Qi = πKPd(Q

2).

3 Let Qs = {Q3 | applyRule(πKPd(Q
2)) = Q3, Q2 ∈ Plan}. Compute cost(Qi) for each

Qi ∈ Qs. Output Qi where cost(Qi) is the lowest.

Figure 5.6: A procedure for plan selection.
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Figure 5.6 lists the steps to produce the most promising plan w.r.t. a given cost model.
The general idea is as follows. First, the default query plan is generated, which serves as
the seed plan in the plan space. The plan selection algorithm proceeds in a bottom-up
fashion. Because the default plan consists of three operators, the algorithm starts from
the bottom operator, namely, the primary operator PK. At this stage, the objective is to
introduce cache query results such that the primary operator can be substituted by a set of
cache scans (see Lemma 5.1.1). Also, if there are any rewriting rules applicable, then more
query plans can be obtained. For all the plans generated during this stage, the algorithm
computes the cost of each plan and only keeps the plan with the cheapest cost, as well as
the plans that have a relatively high cost but are considered interesting.

The idea of interesting plans is similar to the interesting order presented in [Selinger
et al., 1979], which has later been generalized as physical properties in [Graefe and DeWitt,
1987]. Specifically, such plans (more rigorously, operators) have certain features that can
impact the cost of subsequent operations. One type of interesting plan is the cache scans
that can benefit a subsequent selection operation. For instance, a set of cache scans may
result in the removal of a selection operation (Lemma 5.1.2). In these cases, the joins of
cache scans may appear to be expensive operations; however, if the cost of a subsequent
selection operation can be significantly reduced, a final plan using these cache scans may
result in a lower cost. Another class of interesting cache scans may benefit subsequent
projection operations. For instance, the Pd that defines the cached query result in a
cache scan may be the same as a subsequent projection operation. In this situation, the
subsequent projection operations can be completely removed. More generally, a set of
cache scans may lead to K-free reasoning of a selection or projection operation. A more
thorough discussion has been given in Section 5.2.

Back to the plan selection algorithm, stage 1 produces several operators that can replace
PK. Stage 2 then works on σKC (·) in the same way as in stage 1: for each operator produced
in the previous stage, the algorithm forms a substitute plan, applies the rewriting rules,
computes the cost of all plans, and keeps the cheapest and interesting plans for the next
stage. Note that interesting plans are propagated through stages and may be discarded
once they become uninteresting in some stage. Stage 3 follows the same pattern, except
that the final output is a single query plan, which is considered to be the most promising
plan and is passed to a plan interpreter for execution.

On Parameterized User Queries

When a user issues a query, the query processor compiles the query by producing a query
plan that can be executed over the knowledge base. The query optimization process is
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nevertheless expensive. Recall Chapter 1 mentions that a user query in the form of (C,Pd)
can involve parameters to speedup query optimization. Unlike SQL queries, in which the
predicates are features, an object query over a knowledge base can include an arbitrary
concept in certain DL dialect. Therefore we only consider a user query in which the values
of a feature can be parameterized.

A parameterized query usually represents a class of queries that are similar to one
another. This generalization simplifies query optimization because one could use the same
physical plan to execute all the queries in this class and query optimization needs to be
performed only once for the whole class. Specifically, a user can submit a query with
values of features missing, that is, the values are not provided until runtime. For instance,
the concept part of the query presented in (1.1) can be characterized by the following
parameterized query

(Digital SLR u ∃dealerPrice.(price < ?) u (releaseDate > ?), Pd)

where “?” stands for parameters and will be initialized during plan execution phase.

To pick the most promising plan for a parameterized query, the system can optimize
the user query with choosing values for the parameters and use the chosen plan for all
subsequent queries in this class. The suggested values for parameters can be chosen based
on a statistical summary of query logs and the knowledge base, query optimization will
use the suggested value to generate a plan. More complicated strategies can also be used,
such as those used in commercial DBMSs. For instance, Goldstein et al. [2006] shows
how MS SQL Server can produce a dynamic query plan that embeds more than one plan
options within the plan. During plan execution, the set of options can lead to a particular
plan option, depending on the constants being provided. This approach has the advantage
of applying a universal plan to a class of queries and thus avoiding the bias towards a
particular set of values for the parameters. The tradeoff here is the computational cost to
produce such a dynamic plan.

5.4 An Empirical Evaluation

An empirical evaluation was carried out using CARE (see Section 4.4). The evaluation
was over the DPC knowledge bases described in Section 4.4.1, i.e., DPC1 and DPC2. In
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addition, three cached query results were selected from the cache store, as given below:

S1 = (Digital SLR, user review?) :: user review : Ind

S2 = (Digital Camera, release date? u x-dim? u y-dim?) :: release date : Ind

S3 = (>, ∃hasManu.(manu name? u ∃locatedIn.Europe Country?)) :: Ind

Four user queries were tested for query optimization, as given in Table 5.1. Also, the
most cost-effective query plan selected by CARE for each test query is given in Table 5.1
(the query plans selected over DPC2 were the same as over DPC1). Recall that, for any

Q1 (Digital SLR u (user review = 4.00),>?)

Q1 π∅>?(S1(user review = 4.00))

Q2 (Digital Camera u ¬(release date < 20100101), release date?)

Q2 π∅release date?(σ
K
Compact Camerau¬(release date<20100101)(S2(>)))

Q3 (∃hasManu.∃locatedIn.Europe Country, x-dim? u y-dim?)

Q3 πKx-dim?uy-dim?(S3(∃hasManu.∃locatedIn.Europe Country))

Q4 (Digital SLR u (release date = 20020222) u (user review = 4.50), x-dim? u y-dim?)

Q4 π∅x-dim?uy-dim?(σ
K
C (S2(release date = 20020222)))

Table 5.1: Test queries and the corresponding query plans chosen by CARE. Qi and Qi refer
to the original query and the query plan, respectively. C = Digital SLR u (release date =
20020222) u (user review = 4.50).

user query (C,Pd), there is a default plan that can be evaluated over some knowledge base
K, i.e., πKPd(σ

K
C (PK)). It can be seen from Table 5.1 that CARE seemed to prefer plans that

consist of K-free operators and that have some of the operators completely removed from
the default plan. The selection of such plans by CARE is congruous with the intuition
that selection and projection operations are expensive to evaluate over an underlying K.

Figure 5.7 delineates the execution times of the default plans and the optimized plans,
as well as the time spent in query optimization for each test query. For the point query
Q1 the selected plan Q1 uses a cached scan and a K-free projection operation and is free of
selection operations. All these optimizations makes Q1 extremely efficient to evaluate: it
is a purely structural plan. Q2 is a range query, and Q2 scans the cached query result S2
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Figure 5.7: Query optimization and query execution times in seconds. td, to, and tp refer
to the time to execute the default plan of a user query Qi, the time to perform query
optimization, and the time to execute the corresponding query plan Qi selected by CARE,
respectively.

on the feature release date. Because of this cached query result, Q2 is able to obtain a K-
free projection operation, which significantly reduced the execution time compared to the
default plan. For Q3 the chosen plan Q3 involves a cache scan on the cached query result S3

with the selection condition, which enables the dismissal of the selection operation. Notice
that Q3 still uses projection operations to get the x and y dimensions, which could have
been avoided by another cache scan over S2. In fact, CARE selected Q3 because a join
of two cache scans using nested loops (note that merge join is not available in this case
because S2 is not ordered by Ind alone) is also costly, which could jeopardize the benefits
of such a join. In the case of Q3, the system decided that performing projections over a
small set of concept assertions is less costly than the previous join of two cache scans. The
selection of Q4 is similar to that of Q3 because an alternative could be to join the scan
over S2 with another cache scan S1(user review = 4.50). Such a join would eliminate the
selection operation that exists in Q4, as well as the projection operation. However, for the
same reasons discussed in the case Q3, the chosen plan avoids such a join because the cache
scan over S2 only returns a few answers and performing selection or projection operations
in this situation may be more preferable. Of course, the decisions made by CARE to choose
Q3 and Q4 could be seriously wrong in situations where the underlying K is so complicated
that reasoning tasks should be kept to a minimum. To obtain more reasonable plans in
these cases, a more refined cost model than the one presented in this chapter is required.
In particular, the “hardness” of an inference task w.r.t. K needs to be considered for the
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given K, while the current cost model weighs all inference tasks w.r.t. different knowledge
bases the same way. Nevertheless, there is no known, accurate approach to measure the
“hardness” of any given knowledge base.

As shown in Figure 5.7, all the query plans selected by CARE are far more efficient
than the default plans of the original test queries. Furthermore, query optimization in
all cases only took a few seconds. Observe that the query optimization time for Q4 over
DPC1 outweighed the execution time of the default plan. Such a situation could arise if
executing the default plan takes little time, however, when a query such as Q4 is executed
repeatedly (in this case, running Q4 twice suffices), the optimized query plan enables more
efficient query execution overall.

This chapter presents a query optimization framework for assertion queries over knowl-
edge bases. In particular, K-free rewritings are discussed in greater details because reason-
ing w.r.t. a knowledge base is computationally intensive. Nevertheless, a naive implemen-
tation of the K-free rewriting rules is inefficient, and an approximation of the rewriting
conditions is provided.

Since a variety of plans exist for a single user query, CARE implements a straightfor-
ward cost-based selection algorithm to choose a more efficient plan than the default plan.
In addition, implementation details for algebraic operators in CARE are provided. An
empirical study of CARE on query planning shows that the query optimization proposed
in this work, together with a simple cost-based query planning strategy that derives from
existing relational databases, can significantly improve query performance.
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Chapter 6

Conclusions and Future Research

Object queries are an important class of queries that users pose over knowledge bases. This
dissertation presents a framework for answering object queries, generalized as assertion
retrieval over description logics knowledge bases, in which users are able to obtain specific
details about objects that satisfy the given conditions. The key feature of this query
paradigm is to compute projections of general concepts to make properties of objects
syntactically explicit. To efficiently answer assertion queries, this work provides a basis
for introducing efficient relational-style query processing. Particularly, details for caching
concept assertions from previously computed answers are given, which can account for
circumstances in which general knowledge base reasoning can be supplanted with reasoning
without domain knowledge.

The task of assertion retrieval is inherently computationally intensive, because it en-
tails a large volume of instance checking problems over the underlying knowledge bases.
Although the relational-style query processing enables, in some circumstances, query an-
swering without resorting to general reasoning, the standard approach to use instance
checking are indispensable in general. To make instance checking more efficient, a novel al-
gorithm called ABox absorption has been devised. The algorithm augments any SHIQ(D)
knowledge base K with additional axioms that capture the interaction between individuals
in K. Such axioms are appropriately absorbed in a way such that they can be applied in
a lazy fashion during tableau expansions. The ABox absorption algorithm then ensures
that, for a given instance checking in the form of a : C, only those individuals that are
necessary for deciding satisfiability are involved during tableau reasoning. Because the
absorption relies on auxiliary concept names introduced to K, dubbed guards, the effect of
ABox absorption is also called guarded reasoning.
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To validate the efficacy of the assertion retrieval framework, an empirical evaluation has
been performed based on a prototypical system for answering assertion queries, i.e., CARE,
which implements the proposed query optimization framework and ABox absorption. The
experimental results on a number of diverse knowledge bases, including both synthesized
and realistic ones, have corroborated the significance of the ideas presented in this research
work.

6.1 Future Research

There are a number of possible extensions to the current framework for assertion retrieval.
This section provides some thoughts on several interesting topics that can make this frame-
work more practical and useful.

Refining Projection Descriptions A projection description defined as Pd currently
serves two roles: a syntactic formatting specifier that controls the presentation of query
answers, and a semantic parameter that captures some knowledge about an object deriving
from the background knowledge base. It is possible to separate the two roles of a Pd such
that additional artifacts can be introduced in Pd to deal with the syntactic aspects. The
most important consequence is on the performance of extracting values from query answers.
Consider the projection description Pd = f? u g? used in some query. It is easy to see
that query answers are in the form of a : f = k1 u g = k2. In the current framework, the
extraction of a subexpression in the concept description of a necessitates reasoning, for
instance, a cache scan that retrieves results that satisfy f < k3 from these query answers
will initiate a logical consequence check a : (f = k1 u g = k2) |= a : f < k3. When Pd
has syntactic extractors, a more straightforward and efficient way is to fetch the value of
the first field, i.e., the f -values, in the query answers and perform comparisons properly,
similar to what a relational database does.

Definability and Query Rewriting Section 5.2 presents the following condition for
rewriting selection operations of the form σKC (Q) into σ∅C(Q): {C} ↪→ LQ. If the condition
is not met by C, then such a rewriting is not possible. However, observe that if the
selection condition C can be superseded by another equivalent concept D, and it is the
case that {D} ↪→ LQ, then a K-free rewriting can be obtained. Indeed, the rewriting will
be as follows: σKC (Q) ≡ σ∅D(Q). The problem of finding an appropriate replacement for C
is characterized by the Beth definability theorem, and some recent work, e.g., [Ten Cate
et al., 2011], has studied this problem in description logics.
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Approximation Another direction for research is to consider approximation of TBoxes
in a knowledge base with underlying expressive DL dialect. As an example, Zhou et al.
[2012] presents a technique to obtain an upper and lower bound of a TBox in K such
that the resulting approximated TBoxes are expressed by a less expressive language. Since
reasoning with these approximated TBoxes has a lower complexity, answering the original
query over these TBoxes is far more efficient. In the context of assertion retrieval, two new
algebraic operators, union and complement, can be used to gather the answers that are
beyond the lower bounds and that are in the upper bounds. Only these answers need to be
reasoned w.r.t. K, because the answers computed in the lower bound are already part of
the final answers. In summary, a more efficient technology, including relational databases
for the DL-Lite dialects, can be used to compute a superset of final answers, while the
technology presented in this work can be used subsequently to find actual answers among
a fairly small subset of potential answers, as opposed to dealing with all individuals in the
ABox.

In addition to the aforementioned research directions, another practical and challenging
direction is to work on identification of objects. Recall that the unique name assumption
(UNA) stipulates that an object, i.e., an individual, is identified by its name. In many cases,
this assumption does not hold; in particular, when the ABox data references multiple data
sources during query evaluation. In relational databases, this is overcome by the use of keys.
Nevertheless, a use of general keys in description logics makes the language undecidable
[Toman and Weddell, 2005; Lutz et al., 2005]. Alternative ways to identifying objects in a
knowledge base can include finding referring expressions for objects [Areces et al., 2008],
i.e., computing a concept description to uniquely identify an object in a given context.

There are also a number of ways to improve the performance of the CARE system,
particularly, many known optimizations for DL reasoning can be added to the implemen-
tation. It should be pointed out the architecture of CARE may be inappropriate for some
optimizations. For instance, the binary retrieval technique may not be used when query
evaluation is pipelined because the former saves execution time by combining several in-
stance checking tasks, while the latter requires one instance checking request at a time.
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Appendix A

Correctness Proofs of the Rewriting
Rules

In the following proofs, it is assumed that a given knowledge base K is consistent, hence,
K 2 a : ⊥ for every individual a occurring in K. Recall that JQKSIK denote the set of concept
assertions obtained by evaluating the algebraic expression Q over some knowledge base K
with a given set of cached query results SI. When K (SI, respectively) is absent or empty
(i.e., ∅), then query evaluation of Q does not depend on K (SI, respectively). Observe that
the order of concept assertions in JQKSIK is irrelevant for the proofs.

Rules in Figure 5.2

Proof. In the following we prove the transformation laws presented in Figure 5.2.

• (5.1). For any a : (C1 u C2) ∈ JQ1 ./ Q2K, it holds that there are a : C1 ∈ JQ1K and
a : C2 ∈ JQ2K, which implies that a : (C1 u C2) ∈ JQ2 ./ Q1K. The proof of the other
direction is similar.

• (5.2). For any a : (C1 u C2 u C3) ∈ JQ1 ./ (Q2 ./ Q3)K, it holds that there are
a : Ci ∈ JQiK, i ∈ {1, 2, 3}; therefore, it holds that a : (C1 u C2) ∈ JQ1 ./ Q2K, which
further implies that a : (C1 u C2 u C3) ∈ J(Q1 ./ Q2) ./ Q3K. The proof of the other
direction is similar.

• (5.3). For any a : D ∈ JS1(σKC (Q))KSIK , we have a : D ∈ S1, such that there is
a : E ∈ JQKSIK , K ∪ {a : E} |= a : C and a : D |= a : E. It also holds vacuously that
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K ∪ {a : D} |= a : E for a : D ∈ S1, which implies a : D ∈ JS1(Q)KSIK ; therefore,
together with K ∪ {a : D} |= a : C, we can derive that a : D ∈ JσKC (S1(Q))KSIK .

• (5.4). For any a : D ∈ JσKC1
(σKC2

(Q))K∅K, it holds that a : D ∈ JQK∅K such that

K ∪ {a : D} |= a : (C1 u C2); hence, it follows immediately that a : D ∈ JσKC2
(Q)K∅K

and, further, a : D ∈ JσKC2
(σKC1

(Q))K∅K. The other direction is similar.

• (5.5). For any a : D ∈ JσKC1
(σKC2

(Q))K∅K, it holds that a : D ∈ JQK∅K such that

K∪{a : D} |= a : (C1uC2); hence, it follows immediately that a : D ∈ JσKC1uC2
(Q)K∅K.

The other direction is similar.

• (5.6). This rule follows immediately from the semantics, given that C1 and C2 are
semantically equivalent w.r.t. K.

• (5.7). It suffices to prove that a : > ∈ JπKPd2(Q)K∅K iff a : > ∈ JQK∅K, where the concept
> serves merely as a placeholder, i.e., these two subqueries compute exactly the same
set of instances. The above claim, however, holds vacuously by the semantics.

• (5.8). For any a : D ∈ Jπ∅Pd1(π
∅
Pd2

(Q))K, D is the most specific concept in LPd1 for

some a : E ∈ Jπ∅Pd2(Q)K such that {a : E} |= a : D, where E is the most specific
concept in LPd2 for some a : F ∈ JQK such that K ∪ {a : F} |= a : E. It is easy
to see that {a : F} |= a : D. We then show that D is the most specific concept in
LPd1 w.r.t. a : F . Assume, by way of contradiction, there is D′ ∈ LPd1 such that
{a : F} |= a : D′ and D′ is more specific than D. It is evident that E ∈ LPd2 is more
specific than D′ because E is the most specific in LPd2 and LPd1 ⊆ LPd2 . Therefore,
D′, distinct from D, is the most specific concept in LPd1 for a : E ∈ Jπ∅Pd2(Q)K such

that {a : E} |= a : D′: a contradiction. Consequently, a : D ∈ Jπ∅Pd1(Q)K.

The other direction. For a : D ∈ Jπ∅Pd1(Q)K, it holds that D is the most specific
concept in LPd1 for some a : F ∈ JQK such that {a : F} |= a : D. Now let a : E ∈
Jπ∅Pd2(Q)K, where E is the most specific concept in LPd2 such that {a : F} |= a : E
(note that such E must exist given the existence of D). Because LPd1 ⊆ LPd2 it
follows that E is more specific than D, i.e., {a : E} |= a : D. We now show that D
is the most specific concept in LPd1 w.r.t. a : E. Assume, by way of contradiction,
that D′ ∈ LPd1 is more specific than D and {a : E} |= a : D′. Then, it is easy to
see that {a : F} |= a : D′, which implies that D′, different from D, is also the most
specific concept in LPd1 for some a : F ∈ JQK: a contradiction. Hence, D is the most
specific concept in LPd1 , and, therefore, a : D ∈ Jπ∅Pd1(π

∅
Pd2

(Q))K.
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Lemma 5.1.1

Proof. Assume Q1 = πKPd(σ
K
C (PK)) and Q2 = πKPd(σ

K
C ((S1(C1) ./ · · · ./ Sn(Cn)))), we need

to show that JQ1KSIK = JQ2KSIK , providing the following conditions hold: (i) Si = (Di, Pdi)
and Si ∈ SI, (ii) K |= C v (D1u ...uDn), and (iii) Ci = bb{D | D ∈ LPdi ,K |= C v D}ccK,
for all 0 < i ≤ n.

We start by incrementally evaluating Q2. First, observe that

JS1(C1) ./ · · · ./ Sn(Cn)KSIK = {a : E1 u · · · u En | a : Ei ∈ Si,
K ∪ {a : Ei} |= a : Ci, a appears in K, 1 ≤ i ≤ n}.

By evaluating the selection operator, we obtain

JσKC ((S1(C1) ./ · · · ./ Sn(Cn)))KSIK = {a : E1 u · · · u En | a : Ei ∈ Si,K ∪ {a : Ei} |= a : Ci,

K ∪ {a : E1 u · · · u En} |= a : C, a appears in K, 1 ≤ i ≤ n}.

Consequently, by evaluating the projection operator, we have

JQ2KSIK = {a : bb{D | K ∪ {a : >} |= a : D,D ∈ LPd}ccK
| a : Ei ∈ Si,K ∪ {a : Ei} |= a : Ci,K ∪ {a : E1 u · · · u En} |= a : C,

a appears in K, 1 ≤ i ≤ n} (A.1)

Condition (i) states that Si = (Di, Pdi) :: Odi, therefore a : Ei ∈ Si implies that
a : Ei ∈ {a : {bbD | K ∪ {a : >} |= a : D,D ∈ LPdPdccK} | K |= a : Di, a appears in K},
which ensures that K∪{a : >} |= a : Ei. Also, K∪{a : >} |= a : E1u· · ·uEn. Note that the
constraint K |= a : Di in the definition of Si can be overridden by the constraint K |= a : C
because of Condition (ii). Therefore, these two conditions lead to a simplification of (A.1):

JQ2KSIK = {a : bb{D | K ∪ {a : >} |= a : D,D ∈ LPd}ccK | K ∪ {a : >} |= a : Ci,

K ∪ {a : >} |= a : C, a appears in K, 1 ≤ i ≤ n} (A.2)

Condition (iii) states that Ci is the minimum concept in LPdi such that K |= C v Ci.
Hence, (A.2) can be further simplified as follows.

JQ2KSIK = {a : bb{D | K ∪ {a : >} |= a : D,D ∈ LPd}ccK
| K ∪ {a : >} |= a : C, a appears in K, 1 ≤ i ≤ n} (A.3)

For any consistent K, K |= a : > if a appears in K; therefore, (A.3) is the same as (3.2),
i.e., JQ1KSIK = JQ2KSIK , providing that the three conditions are satisfied.
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Lemma 5.1.2

Proof. Let Q′ = S1(C1) ./ · · · ./ Sn(Cn), Q1 = πKPd(σ
K
C (Q′)), Q2 = πKPd(Q

′), we show that
JQ1KSIK = JQ2KSIK given that K |= (C1 u · · · u Cn) v C.

By definition,

JQ′KSIK = {a : E1u· · ·uEn | a : Ei ∈ Si,K∪{a : Ei} |= a : Ci, a appears in K, 1 ≤ i ≤ n};
hence it follows that

JσKC (Q′)KSIK = {a : E | K ∪ {a : E} |= a : C, a : E ∈ JQ′KSIK}.
For any a : E ∈ JQ′KSIK , we have K ∪ {a : E} |= a : (C1 u · · · u Cn). Given that

K |= (C1 u · · · u Cn) v C, we have K ∪ {a : E} |= a : C, therefore, a : E ∈ JσKC (Q′)KSIK . On
the other hand, for any a : E ∈ JσKC (Q′)KSIK , it must be the case that a : E ∈ JQ′KSIK .

Therefore, JQ′KSIK = JσKC (Q′)KSIK , i.e.,JQ1KSIK = JQ2KSIK , given the condition that K |=
(C1 u · · · u Cn) v C.

Lemma 5.1.3

Proof. We show a proof of a general case here, namely, Sj(Cj) is generalized to any query Q′.
Observe that the final projection πKPd′(·) computes the same description for any qualifying
objects for the given two subqueries. This observation reduces the proof to showing the
following two queries, Q1 = Si(Ci) ./ Q′ and Q2 = Si(Ci ./ π

K
Pd(Q

′)), compute exactly the
same set of qualifying objects, abstracting the descriptions of these objects. Consequently,
it suffices to prove a : > ∈ JQ1KSIK iff a : > ∈ JQ2KSIK , given that LPd ⊆ LPdi . Note that in
the subsequent proofs, the concept > in a : > is only used as a placeholder for the concept
assertion, it does not, however, represent the resulting description of this object.

The → direction. Suppose a : > ∈ JQ1KSIK , then a : > ∈ Si, a : Ci (w.r.t. Si) and
a : > ∈ JQ′KSIK . Because a : > ∈ JQ′KSIK and projection does not disqualify objects, it follows
that a : > ∈ JπKPd(Q′)K. It also follows that a : > ∈ JCi ∩ πKPd(Q′)K because of the constant
query Ci. Finally, the condition LPd ⊆ LPdi ensures that any qualifying objects computed
by πKPd(Q

′) will also be present in Si, which contains more general answers. This condition,
together with the facts that a : Ci holds w.r.t. Si and that a : > ∈ Si, ensures that
a : > ∈ JSi(Ci ./ πKPd(Q′))K, i.e., a : > ∈ JQ2KSIK .

The ← direction. Suppose a : > ∈ JQ2KSIK , then by definition, a : > ∈ Si, a : Ci (w.r.t.
Si) and a : > ∈ JQ′KSIK , which implies a : > ∈ JSi(Ci) ./ Q′K, i.e., a : > ∈ JQ1KSIK .
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Since Q1 and Q2 computes the same set of objects, JπKPd′(Q1)KSIK = JπKPd′(Q2)KSIK .

Theorem 5.2.2

We first prove the following lemmas:

Lemma A.0.1. For any a : D ∈ JQKSIK , where Q is pure, it holds that

1. D ∈ LQ, and

2. ∀D′ ∈ LQ, if K ∪ {a : E} |= a : D′, where E is an arbitrary concept provided that
K ∪ {a : E} is consistent, then |= D v D′.

Intuitively, Lemma A.0.1 states that the concept in a query answer is the most specific
concept in the corresponding representative language.

Proof. The proof of this claim is by structural induction on pure algebraic operations Q.

• Cases Q = PK. For any a : D ∈ JQKSIK , D = >, and LPK = {>}; hence, the claim
holds vacuously.

• Case Q = Si(Q1) and LQ = LPdi . For any a : D ∈ JSi(Q1)KSIK , a : D ∈ Si, which, by
Definition 17, implies that D = bbSccK, where S = {D | D ∈ LPdi ,K |= a : D}. For
any D′ ∈ LPdi , if K∪{a : E} |= a : D′, it then follows that K∪{a : E} |= a : DuD′,
i.e., D uD′ is satisfiable (because K∪ {a : E} is consistent). Thus, by Lemma 3.2.1,
there is D3 ∈ LPdi and |= D3 ≡ D u D′. Clearly, D3 ∈ S. Assume, by way of
contradiction, that 6|= D v D′, then D3 is strictly more specific than D; however,
this is contradictory to the fact that D is the most specific concept in S by the
definition of D = bbSccK. Therefore, |= D v D′.

• Case Q = σKC (Q1) and LQ = LQ1 . For any a : D ∈ JσKC (Q1)KSIK , a : D ∈ JQ1KSIK . By the
induction hypothesis it holds that D ∈ LQ1 and that ∀D′ ∈ LQ1 , ifK∪{a : E} |= a : D′

then |= D v D′. Because LQ = LQ1 and Q1 must be pure (as otherwise Q is impure),
the previous two claims hold for LQ as well.

• Case Q = πKPd(Q1) and LQ = LPd. For any a : D ∈ JπKPd(Q1)KSIK , by the semantics
of projection (see Table 3.1), D ∈ LPd; moreover, there is a : C ∈ JQ1KSIK such
that S = {Ds | K ∪ {a : C} |= a : Ds, Ds ∈ LPd} and D = bbSccK. For any
D′ ∈ LPd and K ∪ {a : E} |= a : D′, it holds that {D,D′} ⊆ LPd. In addition,
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K∪{a : C}∪{a : E} |= a : DuD′, which implies DuD′ must be satisfiable because
K ∪ {a : C} ∪ {a : E} is consistent by Lemma 3.5.1 for pure Q1. By Lemma 3.2.1,
there is D3 ∈ LPd and |= D3 ≡ D u D′. Clearly, D3 ∈ S. Assume, by way of
contradiction, that 6|= D v D′, then D3 is strictly more specific than D; however,
this is contradictory to the fact that D is the most specific concept in S by the
definition of D = bbSccK. Therefore, |= D v D′.

• Case Q = Q1 ./ Q2 and LQ = {D1 uD2 | D1 ∈ LQ1 , D2 ∈ LQ2}. For any a : D ∈ JQ1 ./
Q2KSIK , D ≡ D1 u D2 such that a : D1 ∈ JQ1KSIK and a : D2 ∈ JQ2KSIK . By induction
hypotheses, Di ∈ LQi , i = {1, 2}, it then follows that D ∈ LQ. Furthermore, for any
D′ ∈ LQ, if K |= a : D′ and D′ is defined to be D′1 uD′2, then |= D v D′ also holds
by the induction hypotheses that |= Di v D′i, where Di is an arbitrary concept in
LQi and K |= a : D′i, i = {1, 2}.

Observe that the algebraic operations σ∅C(Q) and π∅Pd(Q) are just special cases when Q =
σKC (Q1) and when Q = πKPd(Q1), respectively.

We can now demonstrate a proof of Theorem 5.2.2.

Proof. (1) The if direction.

Suppose a : D ∈ JσKC (Q′)KSIK , then a : D ∈ JQ′KSIK and K ∪ {a : D} |= a : C. By the
assumption {C} ↪→ LQ′ , there is C ′ ∈ LQ′ such that |= C ≡ C ′. Because K ∪ {a : D} |= a :
C ′ and K∪{a : D} is consistent (a : D is a result of a pure query Q′ and by Lemma 3.5.1),
by Lemma A.0.1, |= D v C ′, or equivalently, |= D v C, which implies a : D ∈ Jσ∅C(Q′)KSI∅ .

The only if direction.

Given JσKC (Q′)KSIK = Jσ∅C(Q′)KSI∅ , for any a : D ∈ Jσ∅C(Q′)KSIK , we have a : D ∈ JQ′KSIK and
|= D v C. In particular, a : > ∈ JσKC (Q′)KSIK , hence in this case |= > v C, or simply,
|= > ≡ C. It remains to show that > ∈ LQ′ for any pure Q′. This can be demonstrated
by the fact that if a : > ∈ JσKC (Q′)KSIK then a : > ∈ JQ′KSIK and Lemma A.0.1. Therefore,
{C} ↪→ LQ′ .

(2) The if direction.

For any a : D ∈ JπKPd(Q′)KSIK , we have D = bbSccK and S is defined to be {D | K ∪ {a :
C} |= a : D,D ∈ LPd} for some a : C ∈ JQ′KSIK . By the assumption LπKPd(Q′) ↪→ LQ′ , i.e.,

LPd ↪→ LQ′ , we conclude that |= D ≡ D′ for some D′ ∈ LQ′ . Because K ∪ {a : C} |= a : D
and a : C is a result of the pure query Q′, we have the consistency of K ∪ {a : C} by
Lemma 3.5.1. Consequently, by Lemma A.0.1, C ∈ LQ′ and |= C v D′ (clearly K ∪ {a :
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C} |= a : D′). Therefore, S can be equivalently defined to be {D | {a : C} |= a : D,D ∈
LPd}. Now we look at the reductions, i.e., D = bbSccK, in which K is only exploited in the
first reduction (see Definition 16), i.e., bScK.

We now show how to completely remove K for the first reduction bScK. Observe that
S ⊆ LPd and, by LPd ↪→ LQ′ , we can replace S by SL ⊆ LQ′ such that S = SL up to
equivalence, so, bScK=bSLcK. We write DL ∈ SL to denote the equivalent concept of
D ∈ S. Given DL ∈ SL, for all D′L ∈ SL, we have DL ∈ LQ′ and D′L ∈ LQ′ ; additionally,
Q′ is pure. Obviously, a : DL ∈ JπKPd(Q′)KSIK by equivalence. Furthermore, by the definition
of S (or equivalently SL), it is easy to see K ∪ {a : C} |= a : D′L for some a : C ∈ JQ′KSIK .
By Lemma 3.5.1 K ∪ {a : C} is consistent. With the above conditions, it follows from
Lemma A.0.1 that |= DL v D′L. Thus, by Definition 16, we can conclude that bSLcK is
equivalent to bSLc. Hence bScK=bSc∅, i.e., K is removed in the reduction. Together with
the second reduction, we have D = bbSccK iff D = bbScc∅. The above proof guarantees that
K is not needed for any a : D ∈ JπKPd(Q′)KSIK , which means a : D ∈ Jπ∅Pd(Q

′)KSI∅ .

The only if direction.

We show that, for any Pd and pure Q′, if LPd 6↪→ LQ′ , then JπKPd(Q′)KSIK 6= Jπ∅Pd(Q
′)KSI∅ . Ob-

serve that a : > is a possible result of any pure query Q′, which also implies by Lemma A.0.1
that > is in LQ′ for any pure Q′. Assume C ∈ LPd and C 6∈ LQ′ up to equivalence. Now
let K |= > v C for some knowledge base K. It is easy to observe the following: for some
a : > ∈ JQ′KSIK , it holds that a : C ∈ JπKPd(Q′)KSIK , but a : C 6∈ Jπ∅Pd(Q

′)KSI∅ .

Lemma 5.2.3

Proof. By Definition 30, the infinity of LQ is due to LPd, which, by Definition 14, is on
account of LTUP

Pd when Pd = f?, i.e., the infinity is ultimately owing to all the possible
concrete domain values (i.e., strings in this work) for f . However, the definition of a finite
approximate stipulates that the values of f in Lfin

Q is necessarily restricted to the admissible
concrete domain values (SD) or ∗. Since the former has a finite number of strings by the
definition of queries, Lfin

Q is finite as well.

To prove LQ1 ↪→ LQ2 iff Lfin
Q1

↪→ Lfin
Q2

, it suffices to consider only concepts that have
subexpressions of the form f = k′, where k′ 6∈ SD, because, intuitively, the restriction of
Lfin
Q is to simply replace by f = ∗ any occurrences of f = k′ in LQ, where k′ 6∈ SD. Such

concepts are called variable concepts for short in this proof.
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It is easy to see the only-if direction holds. Assume for any variable concept C1 ∈ LQ1
with a subconcept of the form f = k′ for some string k′ 6∈ SD. Since there is C2 ∈ LQ2 such
that |= C1 ≡ C2, it must be the case that f = k′ is also a corresponding subconcept of C2.
Then, for the corresponding concept C ′1 ∈ Lfin

Q1
of C1, the subconcept of C1 becomes f = ∗

and the rest remains the same by definition. It follows that there is C ′2 ∈ Lfin
Q2

by simply
replacing f = k′ in C2 by f = ∗, and |= C ′2 ≡ C ′1.

The proof of if direction is also straightforward. As shown earlier in the proof, for LQ
strings beyond SD can only be introduced by LPd (i.e., when Q = Si(Q1) or Q = πKPd(Q1))
and f? is part of Pd. For any variable concept C1 ∈ Lfin

Q1
with f = ∗ as a subconcept, there

is C2 ∈ Lfin
Q2

with f = ∗ as a subconcept, by the condition that |= C1 ≡ C2. Consequently,
there is at least one string k′ 6∈ SD (k′′ 6∈ SD) and f = k′ (f = k′′) is a subconcept of
C ′1 ∈ LQ1 (C ′2 ∈ LQ2). By Definition 14, it must be the case that k′ and k′′ can be any
possible strings. Therefore, by selecting k′′ ∈ D such that k′′ = k′, it holds that there is
C ′2 ∈ LQ2 and |= C ′1 ≡ C ′2.
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