
Verification of temporal properties
involving multiple interacting objects

by

Nomair A. Naeem

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Nomair A. Naeem 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Defects that arise due to violating a prescribed order for executing statements or ex-
ecuting a disallowed sequence of statements can be hard to detect since the sequence is
often spread over multiple functions and source code files. In this dissertation, we de-
velop a verification tool which uses a sound and precise static analysis to verify temporal
specifications that can involve multiple objects.

Statically analyzing properties that involve multiple objects requires two separate ab-
stractions; one that abstracts the objects in the program and the second which abstracts
the state of a group of objects. We present two such abstractions. Objects are abstracted
using a storeless heap abstraction. This provides flow-sensitive tracking of individual ob-
jects along control flow paths and precise may-alias information. The state abstraction
leverages the object abstraction to abstract the state of a group of related objects. We
prove these abstractions to be sound with respect to the concrete operational semantics of
tracematches, the AspectJ construct that we use to specify temporal properties.

We use the IFDS algorithm, an interprocedural, context-sensitive and flow-sensitive
data flow analysis algorithm, to implement an analysis that computes the object and
state abstractions. Since the original IFDS algorithm is not directly suitable for domains
involving objects and pointers, we develop four extensions to the original IFDS algorithm.
We present results of an empirical study to measure the precision of the analysis. For the
selected benchmarks and tracematches, the analysis successfully confirms 42% of the test
cases to not violate the specified property. Overall, the analysis guarantees that 89% of
statements of interest that could be violations are not.

The performance of the analysis is improved through the use of two types of method
summaries. Callee summaries guarantee that using the summary instead of flow-sensitive
analysis of the callee does not degrade the precision of the abstraction at the callsite
for the callee. For further performance gains, caller summaries that make conservative
assumptions for aliasing between parameters of a function call are used. We present results
from empirically evaluating the use of these summaries for the object analysis. The results
show that although caller summaries may theoretically reduce precision, empirically they
do not. Furthermore, on average, using callee and caller summaries reduces the running
time of the object analysis by 27% and 96%, respectively.

Finally, to make the analysis practical for use in the development life cycle, we present
a verification tool to configure the analysis and visualize the results. The tool provides a
number of configuration options to run the analysis. The analysis results are presented
in a list displaying statements flagged as possible violations of a property and, for each
violation, the sequence of events (statements) that lead to this violation.

iii

Acknowledgements

First, I would like to thank my advisor, Professor Ondrej Lhotak. Ondrej has been a
guide, a mentor and someone I could always rely on to share my concerns. I could not have
asked for a better advisor. His insights into complex technical problems and his ability to
explain concepts never ceases to amaze me. His flexibility in letting me pursue my teaching
interests and his concern for my well-being and success have been a great strength. It is
indeed my honour to be his first graduating PhD.

I owe much, in terms of my academic achievements, to Professor Laurie Hendren from
McGill University. Thank you for introducing me to the wonderful world of programming
languages and compilers. It is incredible to think that a last minute decision to take her
Compiler Design course would lead to a PhD in this field.

I would like to thank Professor Gordon Cormack, Professor Frank Tip, Professor
Krzysztof Czarnecki and Professor Atanas (Nasko) Rountev (Ohio State University) for
serving on my thesis committee. Their valuable feedback and suggestions has greatly
helped in improving the quality of this work. I would also like to thank the department’s
administrative staff (especially Margaret, Paula, Wendy, Jessica and Helen) for always
helping me despite short notices. A special thanks to my colleagues at the PLG Lab with
whom I have spent countless hours chatting, ranting and discussing things of great and no
importance.

I would also like to thank Dr. Steffen Roller and Tim Lehan from OpenText for
giving me the opportunity to work on, and build, an industrial programming language and
compiler. I have fond memories of the time spent with my R&D team at OpenText.

I must also thank Professor Khwaja Masud, my high school mathematics teacher.
Though he is not amongst us anymore, he lit a spark in me that eventually led to this
degree.

On a personal note, one person that has always stood rock solid beside me is my wife,
Mariam. Her unconditional support and love made this journey much easier. I would
also like to thank my in-laws, Arzoo Fatima and Mati-ur-Rasool, for letting their daughter
marry a graduate student. My parents are my inspiration. Both holding PhDs, they never
pushed me and just asked me to “try my best and forget the rest”. My mom’s prayers, her
joy at hearing of completion of my PhD milestones and her love was all the encouragement
I ever needed. My dad’s words of wisdom, his tactful ways of giving advice without making
it sound like advice, and his valuable life lessons made me the person I am. My sisters,
Muznah, Anika and Maliha have always been the best sisters in the world (well most of

iv

the time). And finally, my son Mekaeel, who brings me immense joy and makes me look
forward to the future.

My life would not have been the same without my truly great friends. Ahmar K, Ahmer
A., Bilal, Farhan, Farheen, Hassan, Kamran, Mariam A., Nabeel A., Nabeel B., Omar Z.,
Raqib, Rehan, Sajjad, Salman, Sumair, Mohsin, Umar F., Umar S., Usman, Umair, Uzma,
Waqqas, Zara and Zunaira, thank you for being such an important part of my life. I will
forever remember and cherish the wonderful times we have shared.

This work was financially supported by NSERC.

v

Dedication

This thesis is dedicated to my parents,
Dr. Naeem Tariq (baba)

Dr. Shahida Naeem (amaa)

my wife,
Mariam Rasool

my son,
Mekaeel Naeem

and my sisters,
Muznah, Anika and Maliha

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Challenges . 3

1.2 Contributions . 6

1.3 Organization . 7

2 Tracematches 9

2.1 Declarative Semantics . 10

2.2 Original Operational Semantics . 11

2.3 A Lattice-Based Operational Semantics . 16

2.4 Summary . 23

3 Static Abstraction 25

3.1 Intermediate Representation . 25

3.2 Object Abstraction . 26

3.3 Tracematch Abstraction . 32

3.4 Related Work . 42

3.5 Summary . 46

vii

4 Extensions to IFDS 47

4.1 The Original IFDS Algorithm . 48

4.2 Running Example: Type Analysis . 52

4.3 Demand Construction of the Supergraph 55

4.3.1 Eliminating the SummaryEdge Table 58

4.3.2 Empirical Evaluation . 61

4.4 Return Flow Functions . 62

4.5 Static Single Assignment (SSA) Form . 65

4.5.1 Example of precision loss . 67

4.6 Exploiting Structure in the Set Dom . 68

4.6.1 Empirical Evaluation . 70

4.7 Related Work . 71

4.8 Using the Extended IFDS Algorithm for Analyzing Tracematches 75

4.9 Concluding Remarks . 76

5 Implementation 77

5.1 Collecting Useful Update Shadows . 83

5.2 Empirical Evaluation . 85

5.2.1 Discussion of Results . 87

6 Optimizations 90

6.1 Alias Set Analysis . 92

6.2 Callee Summaries . 95

6.2.1 Computing Callee Summaries . 96

6.2.2 Using Callee Summaries . 101

6.3 Caller Summaries . 104

6.4 Experiments . 106

6.4.1 Shadow Statistics . 107

viii

6.4.2 Efficiency . 108

6.4.3 Tracematch Analysis Precision . 110

6.4.4 Fine-grained Precision Metrics . 110

6.5 Related Work . 112

6.6 Concluding Remarks . 113

7 Presenting Analysis Output 115

7.1 Motivation . 115

7.2 TMAnalysis: an Eclipse plugin . 116

7.2.1 Configuration . 116

7.2.2 Running the Analysis . 120

7.2.3 Visualization of Results . 120

7.3 Conclusion . 122

8 Conclusion and Future Work 123

8.1 Abstractions . 123

8.2 Static Analysis . 124

8.3 Precision . 124

8.4 Efficiency . 125

8.5 Verification Tool . 125

8.6 Future Work . 126

APPENDICES 128

A Proofs 129

References 156

Index of Symbol Definitions 162

ix

List of Tables

4.1 Benchmark Characteristics . 62

6.1 Statically reachable methods and time to compute callee summaries 107

6.2 Percentage of reachable methods in M∗ and S 108

6.3 Effect of using summaries on the time to compute the alias set analysis . . 109

6.4 Fine-grained Precision metrics . 111

x

List of Figures

1.1 Tracematch example: iterator safety . 3

1.2 Tracematch source code . 4

2.1 Example: Declarative semantics of tracematches 12

2.2 Tracematch source code . 12

2.3 Example: Operational semantics of tracematches 17

2.4 Concrete Binding Lattice Bind . 18

2.5 Example automaton . 20

2.6 Transfer function for tr 〈a, b〉 in lattice-based operational semantics 21

2.7 Example: Lattice-based operational semantics for tracematches 22

3.1 Transfer functions for s 6= {tr,body} in lattice-based operational semantics 26

3.2 Transfer function for the object abstraction 29

3.3 Example statement sequence to illustrate transfer functions 30

3.4 Abstract Binding Lattice Bind♯ . 33

3.5 Transfer functions for the tracematch state abstraction for s 6= tr(T). . . . 37

3.6 Computing reduced environments . 39

3.7 Generalized compatibility predicate. 39

3.8 Transfer function for tracematch state abstraction for s = tr(T) 40

3.9 Example: State abstraction for tracematches 43

4.1 Compact representation of functions and their composition 49

xi

4.2 Original IFDS Algorithm reproduced. 50

4.3 Intraprocedural flow functions for the Variable Type Analysis 54

4.4 Extended IFDS Algorithm . 56

4.5 Extended IFDS Algorithm without computing summary edges 59

4.6 Comparing the Exploded Supergraph and its reachable subgraph 63

4.7 Example: mapping information from caller back to caller 64

4.8 The effect on precision due to the choice of merge strategy at φ nodes. . . 67

4.9 Extended Propagate Procedure . 70

4.10 Effect of taking advantage of subsumption relationships in D. 72

5.1 Precision of IFDS on Dacapo Benchmark Suite 88

6.1 Sample code illustrating the use of callee and caller summaries 91

6.2 Interprocedural control flow graph with call, return and CallFlow edges. . . 93

6.3 Transfer functions for the alias set abstraction 94

6.4 Callee Summary for a callsite with target method m 96

6.5 Example illustrating the effect of a method call on alias sets in the caller. . 97

6.6 Algorithm to compute callee escape summary (αesc) for a method m 98

6.7 getSeededWorklist: algorithm to obtain escaped variables 99

6.8 Algorithm to compute the return value summary (αret) for a method m . . 100

6.9 Tracking whether the returned object has escaped 101

6.10 allEscaped: algorithm to compute variables that escape from a method m . 102

6.11 Modified transfer functions for the alias set analysis using callee summaries. 103

6.12 Transfer functions using callee and caller summaries. 106

7.1 Configuration Screen . 117

7.2 Example Input . 120

7.3 Example Input . 121

7.4 Visualization Screen . 122

xii

Chapter 1

Introduction

Software defects often occur when a chain of events leads the program into an undesirable
state. Such undesirable temporal sequences of events can often be specified in the form
of a temporal specification that the programmer must strive to avoid. For an object, a
temporal specification can be expressed using typestate [64]. At any time, the object is in
some state, and the state changes when an operation is performed on the object. Many
programming errors can be detected by checking whether undesirable states are reachable.
A multitude of typestate checking tools, both dynamic and static, have been developed [4,
8, 9, 15, 22, 23, 29, 30, 31, 32, 34, 35, 37, 47]. Temporal specifications can also be applied
to express constraints on the interactions between software components. In this case,
the specified protocol may involve multiple interacting objects from different components.
Additionally, even within a software component, an object is not isolated; it interacts
with other objects. Some newer specification mechanisms can express temporal properties
of multiple objects [4, 15, 47, 32]. These formalisms are mainly intended for dynamic
checking. This work focuses on developing a technique to formulate and implement the
static analysis of such multi-object temporal specifications.

Such a static analysis has two classes of applications. First, it can be used for sound
static program verification. The analysis is intended to be precise: in the ideal case, all
possible violations are ruled out statically, and the program is therefore guaranteed to
observe the specified protocol. However, it is not always possible to rule out all violations
statically. In this case, the program can be instrumented with dynamic checks that report
violations at run time. The second application of the static analysis is to reduce the
overhead of these dynamic checks. If the analysis proves that some instrumentation points
cannot possibly lead to a violation, no instrumentation is required at those points. Thus,
the runtime overhead at those program points is reduced.

1

We have chosen tracematches [4] as the formalism for specifying the temporal properties
to be checked. A tracematch specifies which operations are relevant to the specification,
how the operations identify the objects involved, the sequence of operations leading to
an undesirable state, and what should be done when a violation is detected at run time.
For our analysis, tracematches have two advantages over similar formalisms. First, they
are widely applicable because their semantics is intuitive and highly expressive compared
to other regular-expression-based formalisms. A key issue in defining such formalisms is
how to tease apart the interactions between operations on different objects; in some other
systems, operations on different objects are not cleanly separated. Conceptually, a trace-
match executes a separate copy of a finite automaton for every possible combination of
runtime objects. While other systems require each automaton to bind all objects on the
first state transition, tracematches do not have this restriction. Second, the semantics
of tracematches has been formally specified, which allows us to formally prove that the
static analysis soundly abstracts the semantics. The original tracematch paper motivates
the design of a declarative semantics from the programmer’s point of view, then proves
it equivalent to an operational semantics better suited for implementation [4]. The op-
erations, and how they bind objects, are specified using AspectJ pointcuts, which are in
widespread use and have a formal specification [6].

While the operational tracematch semantics is convenient for a dynamic implementa-
tion, it is difficult to abstract statically because it is defined in terms of manipulating and
simplifying boolean formulas, a relatively complicated concrete domain. Thus, we have
defined a new, equivalent semantics based on sets and lattices, which are more convenient
to reason about and to abstract. We have proven the two semantics bisimilar. The static
analysis uses a provably sound abstraction of the lattice-based semantics.

The formal definitions and correctness proofs are important because reasoning about
interacting objects is subtle. Allan et al. wrote this about their dynamic implementation:

In our experience it is very hard to get the implementation correct, and indeed,
we got it wrong several times before we formally showed the equivalence of the
declarative and operational semantics.[4]

Similar pitfalls apply when defining a static analysis.

A key difference between our analysis and previous work on typestate verification is
that in a tracematch, typestate is associated not with a single object, but with a group
of objects. Existing work on typestate verification (e.g. [29, 30]) generally uses some
abstraction of objects and adds the current state to each abstract object. This approach
cannot be applied when there is no single object to which the state can be attached. Thus,

2

our analysis uses two separate abstractions: the first models individual objects and the
second models tracematch state of related groups of objects.

1.1 Challenges

The example in Figure 1.1 illustrates the kind of property that the analysis verifies. The
method flatten takes a list of lists in, and adds all of their elements to the list out.
The automaton besides the code checks that a list is not updated during iteration, and
that every call to next on an iterator is preceded by a call to hasNext. A violation of the
property causes the automaton to enter one of the final states. The tracematch associated
with this automaton (shown in Figure 1.2) has two parameters, the list (c) and the iterator
(i). The next and hasNext operations bind the iterator i, update binds the list c, and
makeiter binds both. According to the declarative tracematch semantics, a copy of the
automaton is made for every possible runtime pair of list and iterator. Each operation
causes a transition in those automata consistent with the bindings. For example, the
update(c) operation on runtime list object oc causes an update transition in all automaton
copies having oc as their list c.

1 void flatten(List in, List out) {

2 Iterator it = in.iterator ();

3 while(it.hasNext ()) {

4 List l = (List) it.next ();

5 Iterator it2 = l.iterator ();

6 while(it2.hasNext ()) {

7 Object o = it2.next ();

8 out.add(o);

9 }

10 }

11 }

0

1

makeiter(c,i)

5

next(i)

2

update(c) 3

hasNext(i)

4

next(i), hasNext(i)

next(i)

update(c)

hasNext(i)

Figure 1.1: Tracematch example: iterator safety

3

1 tracematch(Collection c, Iterator i) {

2 sym makeiter after returning(i):

3 call(* Collection +. iterator ()) && target(c);

4 sym next before: call(* Iterator +.next ()) && target(i);

5 sym hasNext before: call(* Iterator +. hasNext ()) && target(i);

6 sym update after : (call(* Collection +.add *(..)) ||

7 call(* Collection +. clear ()) ||

8 call(* Collection +. remove *(..))) && target(c);

9
10 makeiter (hasNext+ next)* (next | hasNext* update+ (next | hasNext))

11 {

12 throw new RuntimeException (‘‘Violated safety property.’’);

13 }

14 }

Figure 1.2: Tracematch source code

Abstraction
Consider what information a static analysis needs to prove the absence of a violation.
First, it needs precise may-alias information to determine that the list out updated in
line 8 is not aliased with the list in or any of the lists it contains, over which the loops
iterate. Interprocedural information is necessary because aliases may be made elsewhere;
for example, the caller of the method could pass in the same list as both in and out. In
fact, since the method could be called several times on different lists, context sensitivity is
useful. In addition, the analysis must ensure that each call to hasNext occurs on the same
iterator as the subsequent call to next. Although some have suggested using must-alias
analysis, proving this fact requires more than just knowing that a pair of variables must be
aliased. A must-alias analysis can prove that whenever execution reaches a given program
point, two variables point to the same object. A must-alias analysis does not say anything
about the values of variables at different times during execution. It would be difficult to
extend the notion of must-aliasing to an unambiguous definition of the relationship between
variables at different times. For example, it is not true that it2 in line 6 always points to
the same object as it2 in line 7. When control flows from line 6 to line 7, it2 continues
to point to the same iterator, but when control flows from line 7 around the outer loop
and back to line 6, the object to which it2 points changes. Thus, a statement about the
relationship between it2 at line 6 and it2 at line 7 would be ambiguous unless it somehow
considered specific control flow paths between the two points. Instead, in order to reason
about the objects pointed to by variables at different points in time, the analysis must

4

track the flow of individual objects along specific control flow paths.

Implementation
The requirements for context-sensitivity, precise may-aliasing and flow-sensitive tracking
of individual objects make any implementation of the analysis computationally expensive.
Therefore, in order to mitigate the high computational demands, an efficient and pre-
cise algorithm is required. One such algorithm is the Interprocedural Finite Distributive
Subset (IFDS) algorithm [54]. IFDS is an efficient and precise, context-sensitive and flow-
sensitive dataflow analysis algorithm for the class of problems that satisfy its restrictions.
These include the classic bit-vector dataflow problems. Unfortunately the algorithm can-
not be directly used for other interesting problems for which context- and flow-sensitivity
would be useful, particularly problems involving objects and pointers. This is due to the
following four restrictions in the original algorithm:

1. The analysis requires as input a graph where the number of nodes in the graph is
approximately |Inst|×|Dom| where Inst is the set of instructions in the program and
Dom is the analysis domain. Therefore, a practical restriction is that Dom must be
small. Domains for analyses modelling objects and pointers are often theoretically
very large, making the original algorithm impractical to use due to the size of the
graph that would be required as input.

2. The original IFDS algorithm provides limited information to functions modelling
return flow from a procedure. In particular, information about the state before the
procedure was called is not available within the return flow function. Many analyses
require this information to map dataflow facts from the callee back to the caller.

3. Many dataflow analysis algorithms, IFDS included, can be less precise on a program
in Static Single Assignment (SSA) form [20] than on the original non-SSA form of
the program. This imprecision arises due to imprecisely modelling the semantics of
φ instructions in SSA form.

4. In many analysis domains, particularly those for objects and pointers, elements of
Dom often subsume others. The original IFDS algorithm does not take advantage
of such properties to reduce analysis time.

Performance
An abstraction for the objects in the program with the properties mentioned above is ex-
pensive to compute irrespective of how efficient the dataflow algorithm is. This is primarily
due to two requirements. First, the analysis must be flow sensitive. Flow sensitivity takes

5

into account the order of instructions in the program to compute a result for each program
point. This is useful so that precise results are available at program points that are of inter-
est for verifying a property. For instance, in the example illustrated in Figure 1.1, precise
information is needed at program points which involve either a makeIter, next, hasNext or
update operation. Whereas precise information is required at these program points, it is
not needed at all program points. In fact, there might be long segments of code where the
results of the analysis (and therefore the precision of the results) are of no use. However,
typical dataflow algorithms are either flow-sensitive or not i.e. there is no way to make the
algorithm selectively flow sensitive even though that is exactly what is needed to improve
performance.

The second requirement is that the abstraction be computed using an interprocedural
dataflow algorithm. This is necessary to ensure that already computed precise information
regarding the parameters and receiver of a function call are passed into the called function
at a callsite. For example, only an interprocedural analysis would be able to ascertain
whether the two parameters in and out are aliased when the flatten function from Fig-
ure 1.1 is called. Without the use of an interprocedural analysis, conservative worst case
assumptions need to be made at method entry. In situations, where the running time of
the analysis is a bigger concern an intraprocedural analysis could be substituted. How-
ever, this would cause a theoretical decrease in precision of the abstraction which might or
might-not ripple into the analysis to verify temporal properties.

1.2 Contributions

This dissertation contributes to the use of static program analysis to verify temporal prop-
erties of objects. We use the tracematch construct to specify temporal properties. The
inventors of the construct provided a declarative semantics and an operational semantics
based on boolean formulas. Since boolean formulas are a difficult domain to abstract, we
have developed a new operational semantics based on sets and lattices. We have proved
the two operational semantics to be bisimilar.

We have developed two abstractions for the analysis. First, we compute an abstraction
of the objects in the program and second, we use the object abstraction to compute an
abstraction that models the state of objects. The object abstraction satisfies the following
requirements that were highlighted in Section 1.1:

1. precise may-alias information,

6

2. precise context-sensitive interprocedural information, and

3. flow-sensitive tracking of individual objects along control flow paths.

To overcome the restrictions to the original IFDS algorithm highlighted in the previous
section, we have made four extensions. First, we remove the restriction on the size of Dom
by enabling the algorithm to compute only the reachable part of the graph. By dynamically
computing just the reachable subset of the graph, IFDS can be used for domains which
are theoretically large, but only a small subset of the domain is encountered during the
analysis. Second, we extend the IFDS algorithm to expose the state before a procedure
was called at the return sites of the procedure. Third, we extend the algorithm to handle
φ statements in a semantically correct manner. Fourth, we provide the ability to exploit
any structure in Dom to reduce analysis time.

We have successfully formulated the verification problem as an IFDS problem. The
result of this analysis is simply an indication of how many possible violations of the specified
temporal property exist for a given program. More useful would be the exact sequence of
operations that lead to a possible violation of the property. To obtain these sequences of
operations, we have implemented another analysis as an instance of the Interprocedural
Distributive Environment (IDE) [60] algorithm.

We have used method summaries to improve the analysis time for computing the object
abstraction. Callee summaries guarantee that foregoing flow-sensitive analysis of the callee
will not degrade precision in the caller. For even better performance, caller summaries
further reduce the number of methods analyzed flow-sensitively although with a theoretical
loss in precision.

We have developed an Eclipse plugin that can be used to configure and execute our
analysis for verifying temporal properties. Once the analysis has been executed, the plugin
lists the potential violations found and provides a mechanism for users to navigate the
sequence of operations leading to a violation.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2 we provide a
background of the tracematch construct, including the original declarative semantics and
the operational semantics. We also present the new lattice-based operational semantics.
Chapter 3 discusses the formulation of the object and state abstractions. The extensions
to the IFDS algorithm and an experimental evaluation of these extensions on an example

7

Variable Type Analysis are reported in Chapter 4. The implementation of the abstractions
using the IFDS algorithm and of the analysis to compute the sequences of operations lead-
ing to a violation using the IDE algorithm are discussed in Chapter 5. We also present an
empirical evaluation of our analysis and a comparison with existing work. The optimiza-
tion using method summaries is discussed in Chapter 6. Results from an evaluation of the
effect of caller summaries on the precision of the analysis, and the use of summaries on the
running time are also presented. Chapter 7 discusses the Eclipse plugin for the analysis. In
Chapter 8 we conclude and mention promising future avenues of research. Existing related
work falls into three categories: analyzing properties of programs by abstracting objects,
the IFDS dataflow analysis algorithm and the use of summaries to improve performance.
We include separate related work sections for each of these categories in Sections 3.4, 4.7
and 6.5.

8

Chapter 2

Tracematches

We have chosen tracematches [4] as the formalism for specifying the temporal properties
to be checked. The tracematch construct was introduced in the abc compiler for AspectJ
as a mechanism to perform runtime verification. To verify that a program conforms to a
certain property, the property is first specified as a tracematch. Then, the program and
the tracematch are compiled using the abc compiler. The compiler generates instrumented
bytecode which can be executed to verify that the program does not violate the property
at runtime.

For statically analyzing a property specified by a tracematch, the instrumented bytecode
is the ideal starting point since the compiler has already identified, and instrumented,
relevant operations and objects. The static analysis can detect this instrumentation and
thereby determine relevant operations and objects. In this work, by using the tracematch
construct, we were able to focus on the static analysis while relying on the abc compiler to
catch the operations and objects relevant to the property.

Allan et al. [4] define a tracematch as follows:

Definition 1 A tracematch is a triple 〈F,A, P 〉, where

F is a finite set of tracematch parameters,

A is a finite alphabet of symbols (operations), and

P is a regular language over A.

9

Figure 1.2 shows the source code that a programmer would write to define the example
tracematch discussed in Chapter 1. This tracematch has two parameters, a Collection

c and an Iterator i. Lines 2-8 define the four tracematch symbols. Each symbol is
accompanied by an AspectJ pointcut that specifies where in the base code the symbol
occurs. A pointcut may also bind objects from the base code to tracematch parameters.
For example, the makeIter pointcut binds the target of the call (the collection) to c and
the returned iterator to i. Line 10 defines the regular language of the tracematch and lines
11-13 provide the code to be executed when the tracematch matches at run time.

When writing a tracematch, the programmer specifies P using a regular expression.
Internally within the abc compiler, P is represented as a non-deterministic finite automa-
ton accepting the same language. To refer to this NFA, we use the customary notation
〈Q,A, q0, Qf , δ〉, where Q is a finite set of states, A is the finite alphabet of tracematch
symbols, q0 ∈ Q is the start state, Qf ⊆ Q is a set of final states, and δ ⊆ Q × A × Q is a
transition relation.

A tracematch is applied to a program in an existing language such as Java or AspectJ.
The program executes according to the semantics of the base language, but the dynamic
tracematch implementation maintains additional state to keep track of the configuration
of the tracematch. Allan et al. defined a declarative semantics of how tracematches ought
to work, as well as an operational semantics that they proved equivalent [4].

Next, we review both of these semantics, formalizing a few details that were left implicit.
We then define a new operational semantics based on sets and lattices which is more
amenable to static analysis. Finally, we formally prove that the lattice-based operational
semantics is bisimilar to the operational semantics of Allan et al. Thus, all three semantics
are equivalent.

2.1 Declarative Semantics

The essential part of a tracematch is a regular expression over operations of interest (sym-
bols). The dynamic tracematch implementation checks, for each suffix of the program
trace, whether the suffix is a word in the language specified by the regular expression.
Each such word is a match and causes the tracematch body to be executed. When a trace-
match defines a safety property, each violation of the specified property is a match of the
tracematch. Checking each suffix of the program trace ensures that the match (violation)
is detected as soon as it occurs in the program.

Much of the expressive power of tracematches comes from their parameters, to which

10

symbols can bind specific objects. The tracematch body executes for each suffix of the trace
that matches the specified regular expression with a consistent set of object bindings. The
declarative semantics makes this precise: a separate version of the tracematch automaton
is considered to be instantiated for each possible set of objects that could be bound to the
tracematch parameters. These automaton versions run independently of each other. An
automaton version makes a transition on an event in the trace if the parameters bound
by the event are bound to the same objects that are associated with that automaton
version. Whenever an automaton version reaches an accepting state, the tracematch body
is executed; at that point, the automaton version is discarded.

We illustrate with an example. Figure 2.1 shows a possible trace of the events declared
in the tracematch from Figure 1.2 which we have reproduced in Figure 2.2 for ease of
reference. Each hasNext and next event binds an iterator object, update binds a list object
and makeiter binds both a list and an iterator. We assume the program creates two list
objects x and y and two iterator objects f and g. Thus, there are four possible ways
in which these objects could be bound to the parameters, which correspond to the four
automaton versions shown as columns in Figure 2.1. Each column includes only those
events from the trace that are consistent with the object bindings of each version. The
example trace results in matches of two automaton versions: the version with c=x and
i=f, and the version with c=y and i=g. The first of these signals that the collection
was modified while it was being iterated. The second signals two consecutive next events
without an intervening hasNext event on the same iterator.

2.2 Original Operational Semantics

In the declarative semantics, the number of automaton versions that must be maintained
is unbounded because the number of objects that could be created by the program is
unbounded. This unboundedness hinders a practical dynamic implementation. Therefore,
Allan et al. defined an equivalent operational semantics, which we now discuss.

The abc compiler includes a transformation that implements tracematch semantics at
run time. This is done by inserting additional code, which we call transition statements, at
each point in the base program where a tracematch symbol could match. In the dynamic
implementation, the effect of each transition statement is to update the tracematch state
to reflect the corresponding state transition and parameter bindings. The operational
semantics is defined on the code that results after transition statements have been inserted.

The two instructions directly relevant to tracematches are tr 〈a, b〉 (transition state-
ment) and body (body statement). Each transition statement contains a pair a, b where

11

c=x c=x c=y c=y

Trace i=f i=g i=f i=g

makeiter(x,f) makeIter
hasNext(f) hasNext hasNext

makeiter(y,g) makeIter
next(f) next next

hasNext(g) hasNext hasNext
update(x) update update
next(g) next next
next(f) next next
next(g) next next

match no no match

Figure 2.1: Example: Declarative semantics of tracematches. Column 1 shows the program
trace. Columns 2 to 5 show automaton versions for different runtime objects bound to
tracematch parameters.

1 tracematch(Collection c, Iterator i) {

2 sym makeiter after returning(i):

3 call(* Collection +. iterator ()) && target(c);

4 sym next before: call(* Iterator +.next ()) && target(i);

5 sym hasNext before: call(* Iterator +. hasNext ()) && target(i);

6 sym update after : (call(* Collection +.add *(..)) ||

7 call(* Collection +. clear ()) ||

8 call(* Collection +. remove *(..))) && target(c);

9
10 makeiter (hasNext+ next)* (next | hasNext* update+ (next | hasNext))

11 {

12 throw new RuntimeException (‘‘Violated safety property.’’);

13 }

14 }

Figure 2.2: Tracematch source code

12

a ∈ A is one of the symbols of the tracematch and b : F →֒ Var is a partial map specifying
the object to be bound to each tracematch parameter. The map b binds a subset of the
parameters; any of the parameters may be left unbound. When tr 〈a, b〉 is executed, each
automaton version whose object bindings are consistent with the objects currently pointed
to by the variables specified by b performs a transition on the symbol a.

In fact, Allan et al. [4] allow each transition statement to contain multiple transitions,
each consisting of a pair 〈a, b〉. This is necessary because the placement of transition
statements is determined according to AspectJ pointcuts, and it can happen that the
pointcuts of multiple symbols match in the same place. When such a statement is executed,
the tracematch non-deterministically follows the transitions specified by each individual
pair. The semantics and our analysis fully handle this general though rare case. For
clarity, we use the term transition element when referring to a pair 〈a, b〉 from a transition
statement.

A body statement is generated immediately after every transition statement which con-
tains a transition element 〈a, b〉 in which a is a symbol on which the tracematch automaton
contains a transition into an accepting state. The effect of body is to find each automaton
version that is in an accepting state, execute the tracematch body for it, and discard it.

The semantics of transition statements is defined in terms of a set Var of variables in
the base language and a set Obj∪{⊥} of values that those variables can take. The symbol
⊥ denotes the special null value and Obj denotes the set of all non-null values. We assume
the presence of an environment ρ : Env , Var → Obj ∪ {⊥} that gives the value of each
variable at each (dynamic) program point.

The operational semantics expresses tracematch state using boolean formulas. The
literals of these formulas are true, false, and (f = o), where f ∈ F is any tracematch
parameter and o ∈ Obj is any runtime value. A formula is constructed from these literals
using the boolean connectives ∧, ∨, and ¬. Let S denote the set of all formulas that can
be expressed in this way. The concrete runtime state σ̊ : Q → S of a tracematch maintains
one such formula for each state of the tracematch automaton1. Intuitively, the formula
associated with a state q is a predicate on tracematch bindings which is satisfied by the
bindings of exactly those copies of the automaton that are in state q.

When a transition statement containing a single transition element 〈a, b〉 is executed
in environment ρ, a boolean formula is generated that evaluates to true for tracematch

1We use the ring superscript to indicate concepts in the original operational semantics, and we will use
the same identifiers without the ring for the corresponding concepts in a new operational semantics that
we propose in the next section.

13

bindings that are consistent with the objects bound in the transition element:

e̊0(b, ρ) ,
∧

f∈dom(b)

(f = ρ(b(f)))

In [4], the notation e(a) is used with the same meaning as e̊0(b, ρ).

When the transition statement contains a set T of transition elements, the formula is
a disjunction of the formulas for each element, since the tracematch non-deterministically
executes all of the transition elements:

e̊T (T, ρ) ,
∨

b:〈a,b〉∈T

e̊0(b, ρ)

Recall that a tracematch state σ̊ conceptually represents the state of different automata
with different bindings. At a transition, each automaton performs a transition if its bind-
ings are consistent with the objects bound in the transition (i.e. e̊0(b, ρ) is satisfied), or
remains in its current state if its bindings are inconsistent (i.e. ¬e̊0(b, ρ) is satisfied). Thus,
the transition function is defined [4, 7] as:

e̊[T, ρ](̊σ) , λi.





∨

a,j:δ(j,a,i)

σ̊(j) ∧ e̊T (Ta, ρ)



 ∨

(

σ̊(i) ∧
∧

a∈A

¬e̊T (Ta, ρ)

)

where Ta , {b : 〈a, b〉 ∈ T}.

The first clause on the right hand side of the function above deals with the case when
a transition element 〈a, b〉 binds objects that are consistent with the bindings for some
automaton in state j. Then, the automaton transitions to some state i as defined by the
transition function for the tracematch state machine for state j and symbol a. Addition-
ally, since the bindings for the automaton must be consistent with objects bound in the
transition element, e̊0(b, ρ) must be satisfied. When multiple transition elements are con-
sistent with the bindings of the automaton, then, since the tracematch state represents
each such automaton separately, the result is a disjunction of such clauses. The second
clause deals with inconsistent bindings. In this case, the automaton stays in the current
state i only if the bindings for the automaton are not consistent with the objects bound
by the transition element, i.e., for a single transition element 〈a, b〉 the automaton stays in
state i if ¬e̊0(b, ρ) is satisfied. If there are multiple such transition elements, the automaton
stays in the current state only if the bindings for the automaton are not consistent with
the objects bounds in any of the transition elements.

14

Finally, a tracematch is defined to match when any suffix of the sequence of operations
executed matches the specification. Thus, every automaton is considered to potentially be
in the initial state at all times. Therefore, the transfer function for transition statements
in the operational semantics is:

〈tr(T), ρ, σ̊〉 →̊ e̊[T, ρ](̊σ[q0 7→ true])

where σ̊[q0 7→ true] maps q0 to true and every other state q to σ̊(q).

At the beginning of program execution, the tracematch state is initialized to false for
all states q ∈ Q.

After every transition statement, if the formula for any final state is not false, the
tracematch is said to match and its body is executed. When this happens, the formula is
reset to false. These effects are expressed in the semantics of the body statement:

〈body, ρ, σ̊〉 →̊λq.

{

σ̊(q) if q 6∈ Qf

false if q ∈ Qf

We illustrate with an example. Consider the program trace from Figure 2.1. The first
event makeiter(x,f) is represented by the transition statement
tr 〈makeiter, [c 7→ x, i 7→ f]〉. Assume the presence of the following environment ρ, map-
ping variables to values:

ρ = [x 7→ o1, y 7→ o2, f 7→ o3, g 7→ o4]

We compute e̊0(b, ρ) as:

e̊0(b, ρ) = (c = ρ(x) ∧ i = ρ(f))

= (c = o1 ∧ i = o3)

Since the transition statement tr 〈makeiter, [c 7→ x, i 7→ f]〉 only contains one transition
element, the transfer function simplifies to:

e̊[〈a, b〉 , ρ](̊σ) , λi. (̊σ(j) ∧ e̊0(b, ρ)) ∨ (̊σ(i) ∧ ¬e̊0(b, ρ))

where j : δ(j, a, i). Using this transfer function, we compute the tracematch state σ̊ by
computing the predicate for each state of the automaton, q1 to q5

2. This state labelling is

2q0 is always true

15

obtained from the automaton for the tracematch as presented in Figure 1.1.

q1 7→ (̊σ(q0) ∧ c = o1 ∧ i = o3) ∨ (̊σ(q1) ∧ ¬(c = o1 ∧ i = o3))

7→ (true ∧ c = o1 ∧ i = o3) ∨ false

7→ c = o1 ∧ i = o3

q2 7→ σ̊(q2) ∧ ¬(c = o1 ∧ i = o3) = false

q3 7→ σ̊(q3) ∧ ¬(c = o1 ∧ i = o3) = false

q4 7→ σ̊(q4) ∧ ¬(c = o1 ∧ i = o3) = false

q5 7→ σ̊(q5) ∧ ¬(c = o1 ∧ i = o3) = false

The above tracematch state indicates that the configuration c = o1 and i = o2 is in
state q1. Since o1 is pointed to by variable x and o3 by variable f, this indicates that the
automaton version for variables x and f is in state q1. This is equivalent to our discussion of
Figure 2.1 where the event makeiter(x,f) was applied only to those automaton versions
where the object bindings of the version were consistent with the event. Figure 2.3 shows
the tracematch state as computed by the operational semantics for the complete trace
from figure 2.1. The first match occurs after statement 12. The predicate for state q4 is
satisfied for the collection o1 (pointed to by variable x) and the iterator o3 (pointed to by
variable f). This represents the violation that the collection was modified while it was
being iterated.The following body statement executes the tracematch body and sets state
q4 to false. The next violation occurs after statement 14 is executed since the predicate
for q5 is satisfied. This represents the occurrence of two consecutive next events without
an intervening hasNext event on the same iterator. The body statement 15 executes the
tracematch body and clears q5.

Allan et al. [4] proved that this operational semantics is equivalent to the declarative
semantics defined in terms of operations on a multitude of automata, one for each possible
set of objects bound to tracematch parameters. This makes a dynamic implementation of
tracematches practical, because the implementation only has to manipulate one automaton
with boolean formulas on its states, rather than an unbounded collection of automata.
However, boolean formulas are a difficult domain to abstract.

2.3 A Lattice-Based Operational Semantics

The operational semantics just presented is suitable for a dynamic implementation of trace-
matches, but boolean formulas are a difficult concrete domain to abstract. We therefore

16

Instructions executed Change in tracematch state
1 tr 〈makeiter, [c 7→ x, i 7→ f]〉 σ̊[q1 7→ (c = o1 ∧ i = o3)]
2 tr 〈hasNext, [i 7→ f]〉 σ̊[q3 7→ (c = o1 ∧ i = o3)]
3 body No change to σ̊
4 tr 〈makeiter, [c 7→ y, i 7→ g]〉 σ̊[q1 7→ (c = o2 ∧ i = o4), q3 7→ (c = o1 ∧ i = o3)]
5 tr 〈next, [i 7→ f]〉 σ̊[q1 7→ (c = o2 ∧ i = o4) ∨ (c = o1 ∧ i = o3)
6 body No change to σ̊
7 tr 〈hasNext, [i 7→ g]〉 σ̊[q1 7→ (c = o1 ∧ i = o3), q3 7→ (c = o2 ∧ i = o4)]
8 body No change to σ̊
9 tr 〈update, [c 7→ x]〉 σ̊[q2 7→ (c = o1 ∧ i = o3), q3 7→ (c = o2 ∧ i = o4)]
10 tr 〈next, [i 7→ g]〉 σ̊[q1 7→ (c = o2 ∧ i = o4), q2 7→ (c = o1 ∧ i = o3)]
11 body No change to σ̊
12 tr 〈next, [i 7→ f]〉 σ̊[q1 7→ (c = o2 ∧ i = o4), q4 7→ (c = o1 ∧ i = o3)]
13 body σ̊[q1 7→ (c = o2 ∧ i = o4)]
14 tr 〈next, [i 7→ g]〉 σ̊[q5 7→ (c = o2 ∧ i = o4)]
15 body σ̊[q0 7→ true]

Figure 2.3: Example: Operational semantics of tracematches. Column 1 shows the same
instructions as in Figure 2.1 but using the IR. Columns 2 shows the change in tracematch
state after each statement. Since state q0 is always true it is not shown. Similarly, any
state which has false as its formula is also not shown.

17

define a different but equivalent operational semantics based on sets and lattices that is
well suited for static analysis.

The core construction of our semantics is a binding lattice. Figure 2.4 illustrates a
sample binding lattice for a program with three objects o1, o2, o3; in general, the binding
lattice is defined analogously for the unbounded number of objects that the program may
allocate. Thus, the binding lattice is infinite. In Section 3, we will define a finite abstraction
of the binding lattice for use in the static analysis. The binding lattice comprises the
element ⊥, positive bindings (which are a single object), and negative bindings (which
contain zero or more objects). The interpretation of each element of the binding lattice is
a set of objects: ⊥ represents the empty set, a positive binding represents a single object,
and a negative binding represents the set of all objects other than those in the binding.
We write ⊤ as a synonym for the empty set of negative bindings (which represents all
objects). The lattice order corresponds to the subset order on sets of objects: for any pair
of bindings d1 ⊑ d2, every object in the set represented by d1 is also in the set represented
by d2. As a reminder that a set of objects indicates negative bindings, we will always write
such a set with a bar above it: O. The bar is only a reminder; it has no semantic meaning.

positive bindings

negative bindings

bottom⊥

⊤

{o1} {o2} {o3}

{o1o2} {o1o3} {o2o3}

{o1o2o3}

o1o2o3

Figure 2.4: Concrete Binding Lattice Bind

Formally, the binding lattice 〈Bind,⊑〉 is defined as follows. Its elements are Bind ,

Obj ⊎ P(Obj) ⊎ {⊥}. The partial order ⊑ is defined as the reflexive transitive closure of
the following rules: ⊥ ⊑ d for any d; O1 ⊑ O2 if O1 ⊇ O2; and o1 ⊑ O2 if o1 6∈ O2.

The following proposition assures us that the binding lattice is indeed a lattice and
provides a meet.

18

Proposition 1. 〈Bind,⊑〉 is a complete lattice with meet operator defined as:

l
D ,























⊥ if D contains ⊥ or D contains two positive bindings o1, o2 that
are distinct (o1 6= o2) or D contains a positive binding o1 and a
negative binding O2 with o1 ∈ O2

o if the above case does not hold and o ∈ D
⋃

O∈D O otherwise

The proof for the proposition can be found in the Appendix.

For example, using the concrete binding lattice shown in Figure 2.4, o1 ⊓ o2 = ⊥ since
o1 6= o2. Similarly, o3 ⊓ {o1, o3} = ⊥ as o3 ∈ {o1, o3}. Also, o3 ⊓ {o1, o2} is o3 as the first
case in the definition above is not applicable.

We extend the binding lattice pointwise to the space of functions that map each
tracematch parameter to an element of the binding lattice. We say that a mapping
m ∈ F → Bind is consistent with a given automaton version if the object it associates with
each parameter f is in the set represented by m(f). Thus, each mapping m can be inter-
preted as a set of automaton versions. For example, consider the mapping c 7→ x, i 7→ {g}.
Of the automaton versions shown in Figure 2.1, only the one corresponding to c=x and
i=f is consistent with this mapping. Again, the lattice order on F → Bind corresponds
to the subset order on automaton versions.

The runtime state of a tracematch is then defined as a set σ of pairs 〈q,m〉, where q is
a tracematch state, and m ∈ F → Bind. Each pair 〈q,m〉 indicates that all automaton
versions consistent with m are in the state q.

When execution begins, the initial tracematch state is the single pair 〈q0, λf.⊤〉. The
binding map λf.⊤ is consistent with every version of the automaton, and q0 indicates that
all these versions are in the initial state.

Whenever a transition statement executes, some automaton versions change state and
others keep their old state. A mapping m in the runtime state must be refined to distinguish
the versions whose state changes from those whose state remains the same. In both cases,
this refinement is done using the meet operator of the lattice.

For example, consider a tracematch with a single parameter c and the automaton in
Figure 2.5, and suppose that the transition 〈a, c 7→ o1〉 occurs. The automaton version
for o1 should move to state qa and all others should remain in state q. From the initial
map λf.⊤, we perform meets with c 7→ o1 and c 7→ {o1} to obtain the desired pairs

〈qa, [c 7→ o1]〉 and
〈

q, [c 7→ {o1}]
〉

. Suppose the transition 〈b, c 7→ o2〉 occurs next. We

19

again perform the meets of the existing states with both c 7→ o2 and c 7→ {o2} to obtain

〈qab, [c 7→ ⊥]〉 , 〈qa, [c 7→ o1]〉 , 〈qb, [c 7→ o2]〉,
〈

q, [c 7→ {o1o2}]
〉

. Since the binding in the

first pair is ⊥, it is not consistent with any automaton version and can be discarded. The
next two pairs correspond to the two automaton versions for o1 and o2 in states qa and
qb, respectively, and the final pair corresponds to all other automaton versions still in the
initial state.

q

qa

qb

qab

a

b

b

a

Figure 2.5: Example automaton

In the general case of a tracematch with multiple parameters, there is an additional
difference between negative and positive bindings. In the declarative semantics, only the
automaton versions consistent in all the parameters bound by the transition statement
change state; if an automaton version is inconsistent in any parameter, its state remains
the same. Thus, for the automaton versions that change state, the new map is computed
by replacing each m(f) with the meet m(f) ⊓ o, where o is the object bound to f by the
transition statement. However, for the automaton versions that do not change state, mul-
tiple maps must be computed, one for each parameter bound by the transition statement.
The map computed for each parameter f reflects the condition that the object bound to f
in the automaton version differs from the object bound to f by the transition statement.
Thus, the new map for parameter f is constructed by replacing only m(f) with m(f)⊓{o},
where o is the object bound to f by the transition statement.

Figure 2.6 shows the complete transfer function e that is applied to each pair 〈q,m〉 in
the tracematch state at every transition statement tr 〈a, b〉 that contains a single transition
element 〈a, b〉.

When a transition statement contains multiple transition elements 〈a, b〉, we apply all
the associated positive updates to the original state independently. We only remain in the
current state if none of the transitions are taken; therefore, all of the negative updates are
applied in sequence: e[{〈a1, b1〉 · · · 〈an, bn〉}, ρ](q,m) ,

(
⋃

1≤i≤n e+[ai, bi, ρ](q,m)
)
⋃

e−[b1, ρ](· · · (e−[bn, ρ](q,m)) · · ·)

20

e+
0 (b, ρ) , λf.

{

ρ(b(f)) if f ∈ dom(b)
⊤ otherwise

e−0 (b, ρ, f) , λf ′.

{

{ρ(b(f))} if f = f ′

⊤ otherwise

e+[a, b, ρ](q,m) ,
{〈

q′,m ⊓ e+
0 (b, ρ)

〉

: δ(q, a, q′)
}

e−[b, ρ](q,m) ,
{〈

q,m ⊓ e−0 (b, ρ, f)
〉

: f ∈ dom(b)
}

e[a, b, ρ](q,m) , e+[a, b, ρ](q,m) ∪ e−[b, ρ](q,m)

Figure 2.6: Transfer function, in the Lattice-based operational semantics, for tr 〈a, b〉 in
local variable environment ρ, which is applied to each pair 〈q,m〉 in the tracematch state.

The tracematch transition statement performs the above operation on each pair in the
set describing the current tracematch state, as well as on the pair 〈q0, λf.⊤〉 that describes
the initial state:

〈tr(T), ρ, σ〉 →
⋃

〈q,m〉∈σ∪{〈q0,λf.⊤〉}

e[T, ρ](q,m)

The body statement executes the tracematch body when σ contains a pair 〈q,m〉 such
that q is a final state and m(f) is not ⊥ for any f . When this happens, all such pairs are
removed from the tracematch state:

〈body, ρ, σ〉 → {〈q,m〉 ∈ σ : q 6∈ Qf}

In Figure 2.7 we compute the tracematch state σ for the same program trace used in
Figures 2.1 and 2.3. As before, we assume the environment ρ to contain the same mapping
from variables to values:

ρ = [x 7→ o1, y 7→ o2, f 7→ o3, g 7→ o4]

For transition statements, the first 〈q,m〉 (shown in bold in Figure 2.7) represents
the pair in which the automaton versions consistent with the parameters bound by the
transition statements changed state i.e. e+[a, b, ρ](q,m). In Figure 2.7, the state numbering
q0 to q5 is obtained from the labelling of states from the automaton defined in Figure 1.1.
As seen in the boolean-formula-based operational semantics, the first match occurs at

21

Instructions executed Change in tracematch state
1. tr 〈makeiter, [c 7→ x, i 7→ f]〉 〈q1, [c 7→ o1, i 7→ o3]〉,

D

q0, [c 7→ {o1}, i 7→ ⊤]
E

,
D

q0, [c 7→ ⊤, i 7→ {o3}]
E

2. tr 〈hasNext, [i 7→ f]〉 〈q3, [c 7→ o1, i 7→ o3]〉,
D

q0, [c 7→ {o1}, i 7→ {o3}]
E

,
D

q0, [c 7→ ⊤, i 7→ {o3}]
E

3. body No change to σ

4. tr 〈makeiter, [c 7→ y, i 7→ g]〉 〈q1, [c 7→ o2, i 7→ o4]〉, 〈q3, [c 7→ o1, i 7→ o3]〉 ,
D

q0, [c 7→ {o1, o2}, i 7→ {o3}]
E

,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o2}, i 7→ {o3}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o3, o4}]
〉

5. tr 〈next, [i 7→ f]〉 〈q1, [c 7→ o1, i 7→ o3]〉, 〈q1, [c 7→ o2, i 7→ o4]〉 ,
D

q0, [c 7→ {o1, o2}, i 7→ {o3}]
E

,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o2}, i 7→ {o3}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o3}]
〉

6. body No change to σ

7. tr 〈hasNext, [i 7→ g]〉 〈q3, [c 7→ o2, i 7→ o4]〉, 〈q1, [c 7→ o1, i 7→ o3]〉 ,
〈

q0, [c 7→ {o1, o2}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o2}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ ⊤, i → {o3, o4}]
〉

8. body No change to σ

9. tr 〈update, [c 7→ x]〉 〈q2, [c 7→ o1, i → o3]〉, 〈q3, [c 7→ o2, i 7→ o4]〉 ,
D

q0, [c 7→ {o1}, i 7→ ⊤]
E

,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o1, o2}, i 7→ {o3, o4}]
〉

10. tr 〈next, [i 7→ g]〉 〈q1, [c 7→ o2, i 7→ o4]〉, 〈q2, [c 7→ o1, i 7→ o3]〉 ,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o1}, i 7→ {o4}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o4}]
〉

,
〈

q0, [c 7→ {o1, o2}, i 7→ {o3, o4}]
〉

11. body No change to σ

12. tr 〈next, [i 7→ f]〉 〈q4, [c 7→ o1, i 7→ o3]〉, 〈q1, [c 7→ o2, i 7→ o4]〉 ,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o3}]
〉

,
〈

q0, [c 7→ {o1, o2}, i 7→ {o3, o4}]
〉

13. body 〈q1, [c 7→ o2, i 7→ o4]〉 ,
D

q0, [c 7→ ⊤, i 7→ {o3, o4}]
E

,
D

q0, [c 7→ ⊤, i 7→ {o3}]
E

,
〈

q0, [c 7→ {o1, o2}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

14. tr 〈next, [i 7→ g]〉 〈q5, [c 7→ o2, i 7→ o4]〉,
D

q0, [c 7→ ⊤, i 7→ {o3, o4}]
E

,
D

q0, [c 7→ ⊤, i 7→ {o4}]
E

,
〈

q0, [c 7→ {o1, o2}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

15. body
〈

q0, [c 7→ {o1}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o4}]
〉

,
〈

q0, [c 7→ {o1, o2}, i 7→ {o3, o4}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o3, o4}]
〉

,

Figure 2.7: Computing the tracematch state using the lattice-based operational semantics
for the same sequence of instructions as in Figure 2.1 and 2.3.

22

statement 12 due to the occurrence of the pair 〈q4, [c 7→ o1, i 7→ o3]〉, which represents the
situation where the collection o1 was modified while iterating over it using the iterator
o3. As per the operational semantics of the body statement, this pair is removed from
σ. The tracematch state after statement 14 contains the pair 〈q5, [c 7→ o2, i 7→ o4]〉 which
represents the occurrence of two consecutive next events without an intervening hasNext
on the same iterator. This pair is removed from σ in the following body statement. The
lattice-based semantics is equivalent to the declarative semantics. The following function
sσ makes this precise by defining a translation from a state σ in the lattice-based semantics
to an equivalent state σ̊ in the boolean-formula-based semantics.

sd(〈f, d〉) ,







false if d = ⊥
(f = o) if d is a positive binding o

∧

o∈O ¬(f = o) if d is a negative binding O

sm(m) ,
∧

f∈F

sd(〈f,m(f)〉)

sσ(σ) ,λq.
∨

〈q,m〉∈σ

sm(m)

We have proven that the lattice-based semantics is bisimilar to the original tracematch
semantics:

Theorem 1. The transition relations →̊ and → are bisimilar with bisimulation relation
σ̊Rσ , sσ(σ)(q) ⇐⇒ σ̊(q). That is,

• for every σ there exists σ̊ with sσ(σ)(q) ⇐⇒ σ̊(q) such that 〈tr(T), σ〉 → 〈σ′〉 =⇒
〈tr(T), σ̊〉 →̊ 〈̊σ′〉 ∧ σ̊′(q) ⇐⇒ sσ(σ′)(q), and conversely,

• for every σ̊ there exists σ with sσ(σ)(q) ⇐⇒ σ̊(q) such that 〈tr(T), σ̊〉 → 〈̊σ′〉 =⇒
〈tr(T), σ〉 → 〈σ′〉 ∧ σ̊′(q) ⇐⇒ sσ(σ′)(q).

We direct the interested reader to the Appendix A for the proof.

2.4 Summary

In this chapter, we have provided background information on the tracematch construct that
we use to specify temporal specifications to be verified. We have presented the original

23

declarative semantics and the original operational semantics based on boolean formulas.
Since boolean formulas are a difficult domain to abstract, we have also presented a new
operational semantics based on sets and lattices. We also proved that the newly proposed
lattice-based operational semantics are bisimilar to the original operational semantics. In
the next chapter, we create an abstraction for tracematch states and prove it to be correct
with respect to the concrete lattice-based operational semantics formalized in this chapter.

24

Chapter 3

Static Abstraction

In this chapter, we present the abstractions we have designed to statically analyze temporal
specifications involving multiple objects as specified by tracematches. We first discuss the
intermediate representation used by the static analysis in Section 3.1. The abstraction is
presented in two parts. The first abstraction computes object aliasing relationships and is
presented in Section 3.2. This information is needed to determine which objects are pointed
to by the variables in each transition statement. The second abstraction is presented in
Section 3.3 and models the tracematch state. Using this abstraction, the analysis can prove
that at certain body statements, the tracematch cannot be in an accepting state. We also
discuss some related work in Section 3.4.

3.1 Intermediate Representation

Before performing the static analysis, we simplify the code to an intermediate representa-
tion (IR) containing only instructions relevant to tracematch semantics. The intraproce-
dural instructions in the IR are:

s ::= tr 〈a, b〉 | body | v1 ← v2 | v ← h | h ← v | v ← null | v ← new

In addition, the IR contains method call and return instructions. In the IR, v can be
any variable from the set Var of local variables of the current method. For the properties
of tracematches, we do not intend to distinguish individual heap locations. Therefore,
we use the symbol h to represent any heap location, such as a field of an object or an
array element. The copy instruction v1 ← v2 copies object references between variables.

25

Therefore, after the copy, variable v1 points to the same object that v2 points to. The load
instruction, v ← h, copies the reference for an object from the heap into variable v, so
that after the instruction executes, v points to the loaded object. The instruction h ← v
escapes the object pointed to by v by storing it in a location within the heap. After the
null assignment instruction v ← NULL, variable v does not point to any object. The
instruction v ← new, creates a new object and assigns a reference to that object to v.

In Section 2.3, we already gave transfer functions for the tr 〈a, b〉 and body instruc-
tions in the lattice-based operational semantics. To extend the operational semantics to
statements other than these, we add to it a set h abstracting all objects referenced from
the heap. The instructions tr 〈a, b〉 and body do not change the environment ρ or the
heap h. The operational semantics of the remaining instructions are shown in Figure 3.1.
For the copy instruction v1 ← v2, the environment ρ is updated so that v1 is mapped to the
same value as v2, i.e., ρ(v2). The effect of the load instruction v ← h is non-deterministic,
because we do not know which specific object from h is loaded. The transfer function
updates v to reference any of the objects that could be referenced from the heap. The
instruction h ← v, does not change the environment ρ, but since the object referenced by
v has escaped, we add it (ρ(v)) to the set h that abstracts all objects referenced from the
heap. The instruction v ← new creates a new value o. Therefore, the environment ρ is
updated with v mapped to the new value, o. For the instruction v ← null, the environment
ρ is updated with v mapped to the special null value, ⊥.

〈v1 ← v2, ρ, h, σ〉 → 〈ρ[v1 7→ ρ(v2)], h, σ〉

〈v ← h, ρ, h, σ〉 → 〈ρ[v 7→ o], h, σ〉 for every o ∈ h

〈h ← v, ρ, h, σ〉 → 〈ρ, h ∪ {ρ(v)}, σ〉

〈v ← new, ρ, h, σ〉 → 〈ρ[v 7→ o], h, σ〉 with o fresh

〈v ← null, ρ, h, σ〉 → 〈ρ[v 7→ ⊥], h, σ〉

Figure 3.1: Transfer functions for s 6= {tr 〈a, b〉 ,body} in the lattice-based operational
semantics

3.2 Object Abstraction

In a world where an object could only be assigned to a single, never changing, variable,
abstracting objects would be trivial; the variable pointing to an object would represent

26

its abstraction as it would uniquely identify the object at all program points. However,
real world programs contain pointers, and pointers cause aliasing. Therefore, statically
abstracting the objects in a program is really an exercise in inferring which pointers point
to what objects.

Inferring properties of pointers created and manipulated by programs has been the sub-
ject of intense research [38, 59]. A large spectrum of pointer analyses, ranging from efficient
points-to analyses to highly precise shape analyses, have been developed. A shape anal-
ysis emphasizes individual concrete objects and the relationships between them, whereas
a pointer analysis emphasizes the pointers, and often models multiple concrete objects
using the same abstract representative (e.g. an allocation site). A useful tradeoff, and
an increasingly used abstraction, is alias set analysis. This analysis uses a storeless heap
abstraction [42, 24] and has been used effectively in earlier work [61, 36, 17, 29, 30]. The ab-
straction combines certain aspects of both pointer and shape abstractions. Unlike a shape
analysis which emphasizes the precise relationships between objects, and is expensive to
model, an alias set analysis, like a pointer abstraction, focuses on local pointers to objects.
This makes computing the alias set abstraction faster than shape analyses. However, since
the analysis is flow-sensitive and inter-procedural it is still considerably slower than most
points-to analyses. In Chapter 6 we propose two ways to further speed-up the alias set
analysis.

We use the alias set abstraction to model the objects in the program. The abstraction
represents each concrete object by the set of local variables pointing to it. This is the same
abstraction as the nodes in Sagiv et al.’s shape analysis [61]. However, our abstraction is
simpler in that it tracks only the nodes, not the pointer edges between objects.

The set of variables in the abstraction of each object is exact; it is neither a may-point-to
nor a must-point-to approximation. Since it may not be known statically whether a given
pointer points to the object, the analysis maintains a set ρ♯ of abstract objects. This set
is an over-approximation of all possible objects. That is, if it is possible for some concrete
object to be pointed to by the set of variables o♯, then the set o♯ must be an element of ρ♯.
Conversely, the presence of o♯ in ρ♯ indicates that there may exist zero or more concrete
objects which are pointed to by the variables in o♯ and no others. For example, consider
a concrete environment in which variables x and y point to distinct objects and z may be
either null or point to the same object as x. The abstraction of this environment would
be the set {{x}, {x, z}, {y}}. Formally, define Obj♯ , P(Var) as the set of all sets of
variables. The function βo[ρ] : Obj → Obj♯ gives for each concrete object o its abstract
counterpart, the set of variables pointing to it:

βo[ρ](o) , {v ∈ Var : ρ(v) = o}

27

The set of abstract objects can be thought of as an abstraction of the possible concrete
environments ρ. Thus, the abstraction function βρ : Env × P(Var) → P(Obj♯) for
environments is defined as:

βρ(ρ, h) , {βo[ρ](o) : o ∈ range(ρ) ∪ h \ {⊥}}

where h is the set of all objects referenced from the heap.

The alias set abstraction subsumes both may- and must-alias relationships. Pointer
analyses generally use one of two abstractions. The first are points-to pairs (p, o), indicating
that the pointer p may point to one of the concrete objects represented by the abstract
object o. The second are may- or must-alias pairs (p1, p2), indicating that the pointers p1

and p2 may or must point to the same object. In comparison, the alias set abstraction
associates with each program point a set of alias sets, each of the form {p1, . . . , pn}. The
presence of the set {p1, . . . , pn} indicates that there may exist an object pointed to by
all of the pointers p1, . . . , pn and no others. The presence of an alias set containing both
p1 and p2 at a given program point implies that p1 and p2 may be aliased at that point.
On the other hand, if every alias set at a given program point contains either both p1

and p2 or neither of them, then p1 and p2 must be aliased at that point. For example,
consider an abstraction ρ♯ that contains only the alias sets {z}, {x, y} and {x, y, z}. From
this abstraction, we can infer that variables x and y must be aliased since all alias sets in
ρ♯ either contain both these variables or contain neither x nor y. Similarly, we can also
infer that z may alias variables x and y since it is present in some (but not all) alias sets
containing x or y. Notice that we cannot make the stronger inference that z must alias x
(or y) since not all alias sets in ρ♯ contain z whenever they contain x (or y). If information
about allocation sites is needed, an alias set could be augmented with an allocation site,
and thus represent only those objects pointed to by the pointers in the set and allocated
at the given allocation site.

Each alias set except the empty set represents at most one concrete object at any given
instant at run time. For example, consider the alias set {x}. At run time, the pointer x
can only point to one concrete object o at a time; thus at that instant, the alias set {x}
represents only o and no other concrete objects. This property to statically pinpoint a
runtime object enables very precise transfer functions for individual alias sets, with strong
updates. This makes the abstraction suitable for a wide variety of analyses that track
individual objects [17, 52, 30]. In particular, for the tracematch analysis, the ability to
precisely determine which object a variable points to is essential since only then the state
of objects can be transitioned based on variables bound in a transition statement.

The transfer function JsKo♯ shown in Figure 3.2 computes the effect of any statement s
in the IR except a heap load (v ← h) on o♯, the set of variables pointing to a given concrete

28

object o. After a copy statement, v1 ← v2, both variables point to the same object. If this
object is abstracted by o♯, i.e., v2 is in the set o♯, then variable v1 is added to o♯. However,
if v2 is not in o♯, then o♯ does not represent the abstraction of the object pointed to by v2.
Therefore, v1 can also not point to the object abstracted by o♯ and must not be in this set.
If v is assigned the value null, v ← null, then v no longer points to the object represented
by the set o♯ and is removed from this set. Similarly, if s is v ← new, then, since v points
to a new value, it cannot possibly point to some object that is abstracted by o♯. Hence v
is removed from o♯. The statements h ← v, tr(T) and body do not change the variables
pointing to an object and therefore do not effect o♯.

JsKo♯(o♯) ,























o♯ ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ o♯

o♯ \ {v1} if s = v1 ← v2 ∧ v2 6∈ o♯

o♯ \ {v} if s ∈ {v ← null, v ← new}
o♯ if s ∈ {h ← v, tr(T),body}

undefined if s = v ← h

focus[h♯](v, o♯) ,

{ {

o♯ \ {v}
}

if o♯ 6∈ h♯
{

o♯ \ {v}, o♯ ∪ {v}
}

if o♯ ∈ h♯

JsKO♯ [h♯](O♯) ,

{ {

JsKo♯(o♯) : o♯ ∈ O♯
}

if s 6= v ← h
⋃

o♯∈O♯ focus[h♯](v, o♯) if s = v ← h

JsKρ♯(ρ♯, h♯) ,

{

JsKO♯ [h♯](ρ♯) ∪ {{v}} if s = v ← new
JsKO♯ [h♯](ρ♯) otherwise

JsKh♯(ρ♯, h♯) , JsKO♯ [h♯]

({

h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯} if s = h ← v
h♯ otherwise

)

JsKρh♯(ρ♯, h♯) ,
〈

JsKρ♯(ρ♯, h♯), JsKh♯(ρ♯, h♯)
〉

Figure 3.2: Transfer function for the object abstraction

To precisely handle the uncertainty in heap loads we use the materialization or focus
operation [61, 36, 17, 29]. The abstract object o♯ is split into two, one representing the single
concrete object that was loaded, and the other representing all other objects previously
represented by o♯. Focus is important to regain the precision lost when an object is no
longer referenced from any local variables, in which case the analysis lumps it together
with all other such objects. In order for a tracematch operation to be performed on such
an object, the object must first be loaded into a variable. At the load, the focus operation
separates the loaded object from the other objects. If multiple tracematch operations are

29

then performed on the object, the analysis knows that they are performed on the same
concrete object as long as the local variable continues to point to it.

In addition to the set ρ♯ of possible abstract objects, the analysis tracks a subset h♯ ⊆ ρ♯

of abstract objects which may have escaped to the heap. Formally, the heap abstraction
is defined by:

βh(ρ, h) , {βo[ρ](o) : o ∈ h}

The focus operation is performed only on these escaped abstract objects. Since focus
splits one abstract object into two, it can theoretically lead to exponential growth in the
abstraction. The escape information was necessary and sufficient to control this growth in
the benchmarks that we evaluated.

We illustrate the effect of the transfer functions using the example statement sequence
shown in Figure 3.3. Statement 1 creates a new concrete object and assigns it to variable x.
Correspondingly, the transfer function JsKρ♯ creates the abstract object {x}. Statement 2
assigns the value of x to some pointer in the heap. The transfer function JsKh♯ adds the
abstract object {x} to h♯ since the concrete object represented by this abstract object has
been assigned to a heap location. The value of x is then assigned to a local variable w in
statement 3. The transfer function JsKo♯ adds the variable w to the abstract object {x}
since after statement 3 executes, w and x point to the same concrete object. Statement 4
creates a new concrete object and assigns it to y. Like in statement 1, a new abstract

x

1. x new

x

2. h x

3. w x

x,w

4. y new

yx,w

5. z h

x,w x,w,z y

w w,z x,y

w x,y

6. x y

7. z null

Figure 3.3: Example statement sequence to illustrate transfer functions. Shaded ovals
represent abstract objects that are in both ρ♯ and h♯.

30

object, {y}, is added to ρ♯. Statement 5 is a load from the heap. The transfer function
JsKO♯ applies the focus operation to both {y} and {x,w}. Since the abstract object {y}
is not in h♯, focus[h♯](z, {y}) is simply {{y}}. However, since {x,w} ∈ h♯, this abstract
object is split into two: {x,w, z} and {x,w}. After statement 5, ρ♯ contains three abstract
objects: {x,w}, {y}, and {x,w, z}. Statement 6 assigns y to x. The transfer function
JsKo♯ is applied to each of the three abstract objects, yielding {w}, {x, y}, and {w, z}.
Statement 7 assigns null to z. This changes {w, z} to simply {w}, yielding the abstract
environment {w}, {x, y}.

The example illustrates the key characteristic of the object abstraction. The transfer
functions flow sensitively track the effect of statements on variables. Each path in the
figure represents what happens to a particular concrete object as statements execute; all
that changes is the set of variables that point to the same object at different program
points. Specifically, if s is any statement in the IR except a heap load, and if o♯ is the
set of variables pointing to a given concrete object o, then the transfer function JsKo♯ from
Figure 3.2 computes the exact set of variables which will point to o after the execution
of s. This property enables the analysis to flow-sensitively track individual objects along
control flow paths; this was one of the three requirements motivated in the introduction.
The following proposition formalizes the property:

Proposition 2. If s is any statement except v ← h, and 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉, then for
any concrete object o that exists prior to the execution of s,

JsKo♯(βo[ρ](o)) = βo[ρ
′](o)

We prove this proposition in Appendix A.

Formal definitions of the transfer functions for ρ♯ and h♯ in terms of JsKo♯ and the focus
operation are given in Figure 3.2. We combine ρ♯ and h♯ into a single abstraction and
define the combined abstraction function βρh(ρ, h) , 〈βρ(ρ, h), βh(ρ, h)〉. On the combined

abstraction, we define the partial order
〈

ρ♯
1, h

♯
1

〉

⊑
〈

ρ♯
2, h

♯
2

〉

if ρ♯
1 ⊆ ρ♯

2 ∧ h♯
1 ⊆ h♯

2, which

induces a join operator
〈

ρ♯
1, h

♯
1

〉

⊔
〈

ρ♯
2, h

♯
2

〉

,

〈

ρ♯
1 ∪ ρ♯

2, h
♯
1 ∪ h♯

2

〉

. The property that ρ♯ ⊇ h♯

is always maintained by the transfer functions. On the combined object abstraction, the
correctness relation Rρh is defined as 〈ρ, h〉Rρh

〈

ρ♯, h♯
〉

, βρh(ρ, h) ⊑
〈

ρ♯, h♯
〉

. This ensures
that for any concrete object o occurring at run time, its abstract counterpart o♯ is included
in ρ♯, as well as in h♯ if o is referenced from the heap. We have proven that the transfer
function for ρ♯ and h♯ preserves the correctness relation:

Theorem 2. If 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and 〈ρ, h〉Rρh

〈

ρ♯, h♯
〉

, then
〈ρ′, h′〉Rρh JsKρh♯(ρ♯, h♯).

31

A proof of the theorem is presented in Appendix A.

3.3 Tracematch Abstraction

Typestate associates a state with each runtime object. Existing typestate analyses (e.g. [64,
30]) model each runtime object using an abstraction similar to the one defined in the pre-
vious section. The typestate analysis models the state of a runtime object by maintaining
a set of possible states for each abstract object. A runtime object o can only be in state q
if the abstract object o♯ representing o has q in its set of possible states. When the analysis
encounters an instruction that changes the state of an object, it updates the possible states
of the appropriate abstract objects.

In our setting, a state is not associated with any single object, but with multiple objects.
Thus, we cannot just add the state to any given object abstraction. Therefore, our analysis
uses a second abstraction to represent the tracematch state. Each such abstract tracematch
state contains within it the abstractions of the objects bound by the tracematch.

We begin by presenting a simple but inefficient abstraction of the tracematch state,
then discuss the refined version that we have implemented in our analysis. Thanks to
the lattice-based design of our tracematch semantics, a basic tracematch state abstraction
would be straightforward to define. Recall that a concrete tracematch state is a set of
pairs 〈q,m〉, where m maps each tracematch parameter to an element of the Bind lattice.
An abstraction of this state could be defined by replacing all concrete objects in the Bind
lattice with their abstract counterparts as defined in the previous section. The resulting
abstract lattice Bind♯ has the same structure as Bind, but each positive binding is an
abstract object, and each negative binding is a set of abstract objects. The overall abstrac-
tion is a set of pairs

〈

q,m♯
〉

, where m♯ maps each tracematch parameter to an element

of Bind♯. After working out some details, we defined a transfer function on this domain,
proved that it correctly abstracts the semantics, and implemented it. However, on trace-
matches with multiple parameters, the implementation did not scale to large benchmarks.
The key reason for this is that the focus operation was applied to every abstract object
bound by a tracematch state. Since each focus splits the state into two, the growth was
exponential in the number of abstract objects appearing in the tracematch state.

In fact, there is little benefit to performing the focus operation once the object has
been bound in a tracematch state. The benefit of the focus operation is that it singles
out one object, so that if a sequence of transition statements occurs, we know that they
occur on the same concrete object. Thus, focus is needed for precise aliasing information

32

⊥

⊤

x? y? x?yxy?

x yxy∅

x?y?

{x}{y}

{xy}

positive bindings

negative bindings

bottom

Figure 3.4: Abstract Binding Lattice Bind♯

at the transition statement before an object is bound. However, after the object is bound,
focusing it simply causes both resulting objects to appear in two separate tracematch
states, and does not improve precision of the tracematch abstraction.

Therefore, in the tracematch state, we replaced the object abstraction (the precise set
of variables pointing to the object) with an under- and over-approximation: a pair of a
must set o! and may set o? represents every concrete object pointed to by all variables in
o! and only by variables in o?. In the special case when the must and may sets are equal,
we recover the precise set of variables pointing to the object. The resulting abstract lattice
Bind♯ is illustrated for two variables x, y in Figure 3.4. We use the notation x? to say that
the variable x is in the may set but not the must set, and x to say that it is in both sets.
Suppose that a tracematch state has bound an object pointed to by x and a heap load to y
occurs. Instead of focusing the bound object to x and xy, we instead use the join of these
two, namely xy?, to represent both possibilities. Thus, we avoid focusing objects already
bound in the tracematch state.

Efficiency can be further improved for negative bindings. It turns out that the transfer
function is independent of the may sets of negatively-bound objects; thus, we need only
maintain the must sets. This is because a negative binding indicates that some object o′

is not the object o bound by a given automaton version; knowing that a given variable v

33

may not point to o′ gives no information about the identity of o, since v could still point to
some other object o′′ that is also not o. In addition, although a concrete negative binding
is a set of objects, all the must sets representing these objects can be replaced with their
union without affecting precision of the analysis. Thus, the Bind♯ lattice illustrated in
Figure 3.4 represents a negative binding as simply a set of variables that definitely point
to every concrete object that may have been negatively bound.

Formally, the object abstraction used in the tracematch state abstraction is given by:

Bind♯
, {⊥} ⊎

{〈

o!, o?
〉

∈ P(Var)2 : o! ⊆ o?
}

⊎ P(Var)

As a result, when we do not know whether a variable points to some object, instead of
requiring two precise abstract objects, we need only one in which the variable appears in
the may set o? but not the must set o!. Informally, a positive binding

〈

o!, o?
〉

represents an

object o for which o! ⊆ βo(o) ⊆ o?. A negative binding V ♯ represents a set O of negatively
bound objects for which V ♯ ⊆

⋃

o∈O βo(o).

We illustrate the abstraction for positive bindings using the following example. Suppose
that a tracematch state has bound an object pointed to by x. In the object abstraction, this
object is abstracted by the alias set {x}. In the tracematch state, we represent the same
object as a pair 〈{x}, {x}〉. Now, if a heap load to y occurs (y ← h), the object abstraction
would focus {x} resulting in the two alias sets, {x} and {x,y}. In the tracematch state we
represent the bound object, after the heap load, by the pair 〈{x}, {x, y}〉.

Let us now also consider an example for negative bindings. Assume that a tracematch
state negatively binds object o1 and o2 which are represented in the object abstraction
as the alias sets {a} and {b} respectively. If we had simply chosen the same abstraction
as for positive bindings, the negative bindings would have been represented using a set
containing both the pairs 〈{a}, {a}〉 and 〈{b}, {b}〉. This would have been sufficient to
make the abstraction efficient when encountering loads from the heap (as discussed earlier
in the case of positive bindings). However, for negative bindings, we chose a more efficient
abstraction which collects the must sets of the abstractions for objects o1 and o2 in a single
set of variables. Hence, for our chosen abstraction, the negative binding of o1 and o2 is
represented by the set {a, b}.

The function βd is defined as the most precise abstraction of an element of the concrete
binding lattice:

βd[ρ](d) ,







⊥ if d = ⊥
〈βo[ρ](o), βo[ρ](o)〉 if d is a positive binding o ∈ Obj

⋃

o∈O βo[ρ](o) if d is a negative binding O ⊆ Obj

34

We extend βd pointwise to maps F → Bind♯ and to the overall tracematch state State♯ ,

P
(

Q ×
(

F → Bind♯
))

as follows:

βm[ρ](m) ,λf.βd[ρ](m(f))

βσ[ρ](σ) ,{〈q, βm[ρ](m)〉 : 〈q,m〉 ∈ σ}

A partial order on Bind♯, coinciding with the partial order on Bind, is defined as the

reflexive transitive closure of the following rules: ⊥ ⊑ x for any x; V ♯
1 ⊑ V ♯

2 if V ♯
1 ⊇ V ♯

2 ;
〈

o!, o?
〉

⊑ V ♯ if o! ∩ V ♯ = ∅; and
〈

o!
1, o

?
1

〉

⊑
〈

o!
2, o

?
2

〉

if o!
1 ⊇ o!

2 and o?
1 ⊆ o?

2.

The following propositions ensure that Bind♯ is a finite lattice and that the abstraction
function βd preserves the partial order from Bind in Bind♯ i.e. it is monotone.

Proposition 3.
〈

Bind
♯,⊑

〉

is a finite lattice with meet operator defined as:

⊥ ⊓ x = x ⊓ ⊥ ,⊥ for any x
〈

o!
1, o

?
2

〉

⊓
〈

o!
2, o

?
2

〉

,pos(o!
1 ∪ o!

2, o
?
1 ∩ o?

2)
〈

o!, o?
〉

⊓ V ♯ = V ♯ ⊓
〈

o!, o?
〉

,pos(o!, o? \ V ♯)

V ♯
1 ⊓ V ♯

2 ,V ♯
1 ∪ V ♯

2

where pos
(

o!, o?
)

,

{ 〈

o!, o?
〉

if o! ⊆ o?

⊥ otherwise

Proposition 4. The abstraction function βd[ρ] is monotone. That is, d1 ⊑ d2 =⇒
βd[ρ](d1) ⊑ βd[ρ](d2).

Proofs of the propositions can be found in the Appendix.

A correctness relation relating concrete and abstract binding lattice elements is defined
in terms of the partial order, and is extended pointwise to maps F → Bind♯ and the overall
abstract tracematch state State♯:

d Rd[ρ] d♯ if βd[ρ](d) ⊑ d♯

〈q,m〉 Rm[ρ]
〈

q,m♯
〉

if ∀f ∈ F.m(f) Rd[ρ] m♯(f)

σ Rσ[ρ] σ♯ if ∀ 〈q,m〉 ∈ σ.∃
〈

q,m♯
〉

∈ σ♯. 〈q,m〉 Rm[ρ]
〈

q,m♯
〉

35

An abstract state σ♯ soundly approximates a concrete state σ if for every pair 〈q,m〉 in
σ, there is a corresponding pair

〈

q,m♯
〉

in σ♯ that soundly approximates it. A pair
〈

q,m♯
〉

soundly approximates 〈q,m〉 if for every tracematch parameter f , m♯(f) is higher in the
binding lattice than the abstraction of m(f) obtained by replacing each concrete object
with the set of variables that point to it. Recall that a body statement completes a match
only if the concrete state contains a pair 〈q,m〉 such that q is a final state and m(f) is not
⊥ for any f . The correctness relation ensures that if this happens, the abstract state σ♯

must also contain a pair
〈

q,m♯
〉

satisfying the same conditions. In the absence of such a
pair in the abstract state, the analysis concludes that the body statement cannot complete
a match.

The transfer function for the tracematch state abstraction for all statements except
transition statements is shown in Figure 3.5. We again draw a bar over each negative
binding like we did for the concrete tracematch lattice. The helper function JsKd♯ is similar
to JsKo♯ from the object abstraction, but it updates both the must and may set of each
abstract binding. On a heap load instruction, it introduces uncertainty into the binding
instead of focusing it. The transfer function is extended pointwise to maps of bindings by
JsKm♯ and to sets of abstract state pairs by JsKσ♯ . Like for JsKo♯ , we have proven that the
adapted function JsKd♯ also tracks each concrete object flow-sensitively along control flow
paths:

Proposition 5. If 〈s, ρ〉 → 〈ρ′〉 then d Rd[ρ] d♯ =⇒ d Rd[ρ
′] JsKd♯(d♯).

We prove this proposition in the Appendix.

The transfer function for transition statements is more complicated. Recall from our
discussion in Section 2.2 that a transition statement tr(T) is inserted into the code at
each point in the program where a tracematch symbol could match. In the operational
semantics, all variables mentioned in each transition statement are looked up in the concrete
environment. How should this lookup be performed in the abstract domain? A sound but
imprecise and therefore costly approach is to consider that each variable v could point
to any abstract object containing v, and to handle all possible combinations of variable
values independently. We use a more precise approach that considers compatibility [61],
the notion that some abstract objects cannot possibly correspond to concrete objects in
the same execution. For example, the abstract environment may contain both {x} and
{x, y} if the object pointed to by x is also pointed to by y in some but not all executions.
However, at any given instant at run time, y cannot both point and not point to the object
pointed to by x; thus, the two abstract objects are incompatible. The analysis therefore
considers reduced environments, which are subsets of the abstract environment ρ♯ satisfying
the following constraints:

36

JsKd♯(⊥) ,⊥ for all statements s

JsKd♯

(〈

o!, o?
〉)

,































〈

o! ∪ {v1}, o
? ∪ {v1}

〉

if s = v1 ← v2 ∧ v2 ∈ o!
〈

o! \ {v1}, o
? ∪ {v1}

〉

if s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 ∈ o?
〈

o! \ {v1}, o
? \ {v1}

〉

if s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 6∈ o?
〈

o! \ {v}, o? \ {v}
〉

if s ∈ {v ← null, v ← new}
〈

o! \ {v}, o? ∪ {v}
〉

if s = v ← h
〈

o!, o?
〉

if s ∈ {h ← v,body}

JsKd♯

(

V ♯
)

,



















V ♯ ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ V ♯

V ♯ \ {v1} if s = v1 ← v2 ∧ v2 6∈ V ♯

V ♯ \ {v} if s ∈ {v ← null, v ← new, v ← h}

V ♯ if s ∈ {h ← v,body}

JsKm♯(q,m♯) ,
{〈

q, λf.JsKd♯(m♯(f))
〉}

JsKσ♯(σ♯) ,
⋃

〈q,m♯〉∈σ♯∪{〈q0,λf.⊤〉}

JsKm♯(q,m♯)

Figure 3.5: Transfer functions for the tracematch state abstraction for s 6= tr(T).

• The objects must all be compatible with each other, and with all objects in the
tracematch state being updated.

• The objects must be relevant: each object must be pointed to by some variable in
the transition statement.

• The subset must contain some object pointed to by each variable in the transition
statement.

These constraints guarantee that each variable points to a unique abstract object, so every
variable can be looked up in the reduced abstract environment. In addition, the constraints
reduce the otherwise possibly exponential number of subsets of the abstract environment
to a small number, usually only one. To be sound, the analysis considers all reduced
environments satisfying the constraints.

Consider, for example, a transition statement binding x and y to two tracematch pa-
rameters. Suppose that the abstract environment contains abstract objects {x}, {y}, {x, y}

37

and {z}. The subsets {{x}, {y}} and {{x, y}} satisfy the constraints of the reduced en-
vironment. The subsets {{x}, {x, y}} and {{y}, {x, y}} are not compatible. The subset
{{x}, {y}, {z}} is compatible but not relevant since the transition statement does not bind
z. The subset {{x}} is not in the reduced environment because it does not contain any
object pointed to by y.

It would be expensive to construct the reduced environment by considering all sub-
sets of the abstract environment and selecting those that satisfy the constraints. Instead,
we use the algorithm in Figure 3.6, which, by construction, only generates environments
satisfying the constraints. The algorithm works as follows: at each step, it chooses some
abstract object o♯ to remove from the abstract environment ρ♯, and calls itself recursively
to construct all reduced environments not containing o♯ and all reduced environments con-
taining o♯. The set of all reduced environments not containing o♯ is simply the set of all
reduced environments of the smaller abstract environment ρ♯ \ {o♯}. A reduced environ-
ment can contain o♯ only if o♯ is relevant and compatible with other abstract objects in
the environment. To check that o♯ is relevant, the algorithm checks that o♯ ∩ relevantVars
is non-empty. To ensure that o♯ is compatible with other abstract objects in the envi-
ronment, the algorithm uses a parameter called forbiddenVars to keep track of variables
which already appear in some abstract object. When it calls itself recursively to construct
the reduced environments to which o♯ will be added, it adds all the variables in o♯ to
forbiddenVars. Thus, the abstract objects in the environments returned by the recursive
call cannot contain any of the variables in o♯, so they are compatible with o♯. To each of
the reduced environments returned by the recursive call, the algorithm adds o♯, and the
environments are then returned. In the base case, when ρ♯ is empty, the algorithm returns
either the empty environment if every relevant variable has already been included in some
abstract object, or no environments if some relevant variable remains.

Since Sagiv et al.’s notion of compatibility [61] is defined only for the precise object
abstraction, we generalized it for the must-may abstraction. The generalized compatible
predicate and the computation of reduced environments are formally defined in Figure 3.7.
In order for two abstract objects to be compatible, they must either be abstractions of
distinct concrete objects, or of the same concrete object. In the former case, the two must
sets need to be disjoint. In the latter case, the must set of each abstract object needs to
be a subset of the may set of the other. Before computing the reduced environments using
Algorithm 3.6, we use the generalized compatibility predicate to remove from the abstract
environment any abstract objects that are incompatible with an abstract object already
bound in the tracematch state.

At a high level, the transfer function for transition statements mirrors the operational
semantics of tr(T) presented in Section 2.3. We first define the transfer function e♯ (Fig-

38

reducedEnvs(ρ♯: P(Var), relevantVars: Var, forbiddenVars: Var)

1 if ρ♯ 6= ∅

2 Let o♯ ∈ ρ♯

3 r1 = reducedEnvs(ρ♯ \ {o♯}, relevantVars, forbiddenVars)

4 if (o♯ ∩ relevantVars 6= ∅) ∧ (o♯ ∩ forbiddenVars = ∅)

5 r2 = reducedEnvs(ρ♯ \ {o♯}, relevantVars \ o♯, forbiddenVars ∪ o♯)

6 r3 = {ρ′♯ ∪ {o♯} : ρ′♯ ∈ r2}

7 return r1 ∪ r3

8 else

9 return r1

10 fi

11 else

12 if relevantVars = ∅ then return {{}}

13 else return {}

14 fi

Figure 3.6: Computing reduced environments

same(
〈

o!
1, o

?
1

〉

,
〈

o!
2, o

?
2

〉

) ,o!
1 ⊆ o?

2 ∧ o!
2 ⊆ o?

1

diff(
〈

o!
1, o

?
1

〉

,
〈

o!
2, o

?
2

〉

) ,o!
1 ∩ o!

2 = ∅

compatible(o!?
1 , o!?

2) ,same(o!?
1 , o!?

2) ∨ diff(o!?
1 , o!?

2)

setcompat(O!?) ,∀o!?
1 , o!?

2 ∈ O!?compatible(o!?
1 , o!?

2)

relevant(O♯, V) ,V ⊆ ∪o♯∈O♯o♯ ∧ ∀o♯ ∈ O♯o♯ ∩ V 6= ∅

red-envs(ρ♯, O!?, V) ,{O♯ ⊆ ρ♯ : relevant(O♯, V)∧

setcompat
({〈

o♯, o♯
〉

: o♯ ∈ O♯
}

∪ O!?
)

}

Figure 3.7: Generalized compatibility predicate.

39

ure 3.8) that is applied for each pair
〈

q,m♯
〉

on a transition element 〈a, b〉 for a transition
statement tr(T). Having defined abstract variable lookup, the abstract tracematch tran-
sition functions e+♯

0 , e−♯
0 , e+♯, e−♯, e♯ are exactly like their concrete counterparts, but with

abstract lookup lookup(O♯, v) substituted for concrete lookup in ρ.

objs
(

m♯
)

,{
〈

o!, o?
〉

∈ range(m♯)}

lookup(O♯, v) ,o♯ ∈ O♯ : v ∈ o♯

e+♯
0 (b, O♯) ,λf.

{ 〈

o♯, o♯
〉

where o♯ = lookup(O♯, b(f)) if f ∈ dom(b)
⊤ otherwise

e+♯[a, b, O♯](q,m♯) ,

{〈

q′,m♯ ⊓ e+♯
0 (b, O♯)

〉

: δ(q, a, q′)
}

e−♯
0 (b, O♯, f) ,λf ′.

{

lookup(O♯, b(f)) if f = f ′

⊤ otherwise

e−♯[b, O♯](q,m♯) ,

{〈

q,m♯ ⊓ e−♯
0 (b, O♯, f)

〉

: f ∈ dom(b)
}

e♯[a, b, O♯](q,m♯) ,e+♯[a, b, O♯](q,m♯) ∪ e−♯[b, O♯](q,m♯)

Figure 3.8: Transfer function for a transition statement tr(T), which is applied to each
pair

〈

q,m♯
〉

in the tracematch state abstraction.

As we did in the case of the operational semantics for tr(T), if the transition statement
contains multiple pairs 〈a, b〉 we apply all the associated positive updates to the original
state independently. Also as before, all the negative updates are applied in sequence since
we only remain in the current state if none of the transitions are taken:

e♯[{〈a1, b1〉 · · · 〈an, bn〉}, O
♯](q,m♯) ,

(
⋃

1≤i≤n e+♯[ai, bi, O
♯](q,m♯)

)

∪ e−♯[b1, O
♯](· · · e−♯[bn, O♯](q,m♯) · · ·)

Then, the overall transfer function Jtr(T)Km♯ is defined as:

Jtr(T)Km♯ [ρ♯](q,m♯) ,
⋃

O♯∈red-envs(ρ♯,objs(m♯),
S

〈a,b〉∈T range(b)) e♯[T,O♯](q,m♯)

The transfer function joins the results of e♯ for all reduced abstract environments O♯ ⊆
ρ♯. Finally, JsKσ♯ extends JsKm♯ to sets of abstract tracematch state pairs; it is the same as
in Figure 3.5. At control flow merge points, the join operator used on sets of tracematch
state pairs is set union.

We illustrate the effect of the tracematch state transfer function using our continued
example from previous chapters. The safety property dealing with collections and iterators

40

was specified in Chapter 1 and the actual tracematch is stated in Figure 1.2. Previously, we
have used the same sequence of events to illustrate the declarative semantics (Figure 2.1)
and the computation of the tracematch state using the operational semantics (boolean-
based in Figure 2.3 and lattice-based in Figure 2.7). The example assumed the presence
of a runtime environment ρ to contain the following mapping for variables to values:

ρ = [x 7→ o1, y 7→ o2, f 7→ o3, g 7→ o4]

We assume that object o1 is represented by the abstract object {x}, o2 by {y}, o3 by
{f} and object o4 is abstracted by the set {g}. Hence the abstract environment ρ♯ is:

ρ♯ = [x 7→ {x}, y 7→ {y}, f 7→ {f}, g 7→ {g}]

For conciseness, we will use the precise object abstraction and not the one which uses may
and must sets. Also, for the sake of simplicity, objects are not aliased.

The first event makeiter(x,f) is represented by the transition statement
tr 〈makeiter, [c 7→ x, i 7→ f]〉. Since this is the first transition statement, σ♯ does not con-
tain any pair

〈

q,m♯
〉

. The only pair on which we must apply Jtr(T)K is 〈q0, λf.⊤〉. Since
the tracematch has two parameters, c and i, this is equivalent to 〈q0, [c 7→ ⊤, i 7→ ⊤]〉.

Jtr(T)Km♯ [ρ♯](〈q0, [c 7→ ⊤, i 7→ ⊤]〉) =
⋃

O♯∈red-envs(ρ♯,objs(m♯),
S

〈a,b〉∈T range(b)) e♯[T,O♯](〈q0, [c 7→ ⊤, i 7→ ⊤]〉)

As the transition statement has one transition element 〈makeiter, [c 7→ x, i 7→ f]〉,
⋃

〈a,b〉∈T range(b) = {x, f}. Also as m♯ = [c 7→ ⊤, i 7→ ⊤], O!? = objs(m♯) = {}. Therefore:

Jtr(T)Km♯ [ρ♯](〈q0, [c 7→ ⊤, i 7→ ⊤]〉) =
⋃

O♯∈red-envs(ρ♯,{},{x,f}) e♯[makeiter, [c 7→ x, i 7→ f], O♯](〈q0, [c 7→ ⊤, i 7→ ⊤]〉)

Computing red-envs(ρ♯, {}, {x, f}) gives us that the only reduced environment possible
is the environment {{x}, {f}} since {y} and {g} are not relevant.

Jtr(T)Km♯ [ρ♯](〈q0, [c 7→ ⊤, i 7→ ⊤]〉) =
e♯[makeiter, [c 7→ x, i 7→ f], {{x}, {f}}](〈q0, [c 7→ ⊤, i 7→ ⊤]〉)

We compute e+♯ and e−♯:

e+♯ = {〈q1, [c 7→ {x}, i 7→ {f}]〉}

e−♯ =
{〈

q0, [c 7→ {x}, i 7→ ⊤]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f}]
〉}

Above, the pair
〈

q,m♯
〉

obtained from e+♯ represents the pair in which the automaton
has changed state from q0 to q1 with a consistent binding between the parameters bound

41

by the transition element and the automaton. The two pairs generated by e−♯ represent
automaton versions which stay in state q0 since the parameters bound by the transition
element are inconsistent with the automaton.

Therefore:

σ♯ = {〈q1, [c 7→ {x}, i 7→ {f}]〉 ,
〈

q0, [c 7→ {x}, i 7→ ⊤]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f}]
〉

}

When we computed the tracematch state using the lattice-based operational semantics
(Figure 2.7), the state σ after the first transition statement was:

σ = 〈q1, [c 7→ o1, i 7→ o3]〉 ,
〈

q0, [c 7→ {o1}, i 7→ ⊤]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {o3}]
〉

Comparing the two, we see that the states are equivalent except that the abstract
state contains the abstract representation of each runtime object. Figure 3.9 computes the
abstract tracematch state after each instruction in the sample program. We find, as per
our decision, the abstract state mimics the concrete state from Figure 2.7 with the only
difference being that for a positive binding each object is replaced by its abstraction and
the variables in the abstract objects representing negative bindings are all merged into a
single set.

We have proven that the transfer function JsKσ♯ preserves the correctness relation:

Theorem 3. If 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and σ Rσ[ρ] σ♯, then σ′ Rσ[ρ′] JsKσ♯ [ρ♯](σ♯).

We prove this theorem in Appendix A.

3.4 Related Work

When tracematches were introduced, space and time overhead of their dynamic imple-
mentation was a concern [4]. In general, the overhead varied widely depending on the
tracematch and the number of dynamic updates to the tracematch state that must be
performed; in many cases, the overhead was prohibitive.

One approach to reduce the overhead has been to improve the dynamic tracematch
implementation [7]. In this approach, the tracematch automaton (but not the base code
to which it is applied) is analyzed statically to generate more efficient matching code.
Specific attention has been paid to freeing bindings as soon as possible to reduce memory

42

Instructions executed Change in tracematch state
1. tr 〈makeiter, [c 7→ x, i 7→ f]〉 〈q1, [c 7→ {x}, i 7→ {f}]〉,

D

q0, [c 7→ {x}, i 7→ ⊤]
E

,
D

q0, [c 7→ ⊤, i 7→ {f}]
E

2. tr 〈hasNext, [i 7→ f]〉 〈q3, [c 7→ {x}, i 7→ {y}]〉,
D

q0, [c 7→ {x}, i 7→ {f}]
E

,
D

q0, [c 7→ ⊤, i 7→ {f}]
E

3. body No change to σ

4. tr 〈makeiter, [c 7→ y, i 7→ g]〉 〈q1, [c 7→ {y}, i 7→ {g}]〉, 〈q3, [c 7→ {x}, i 7→ {y}]〉 ,
D

q0, [c 7→ {x, y}, i 7→ {f}]
E

,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {y}, i 7→ {f}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f, g}]
〉

5. tr 〈next, [i 7→ f]〉 〈q1, [c 7→ {x}, i 7→ {y}]〉, 〈q1, [c 7→ {y}, i 7→ {g}]〉 ,
D

q0, [c 7→ {x, y}, i 7→ {f}]
E

,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {y}, i 7→ {f}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f}]
〉

6. body No change to σ

7. tr 〈hasNext, [i 7→ g]〉 〈q3, [c 7→ {y}, i 7→ {g}]〉, 〈q1, [c 7→ {x}, i 7→ {y}]〉 ,
〈

q0, [c 7→ {x, y}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {y}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ ⊤, i → {f, g}]
〉

8. body No change to σ

9. tr 〈update, [c 7→ x]〉 〈q2, [c 7→ {x}, i → {y}]〉, 〈q3, [c 7→ {y}, i 7→ {g}]〉 ,
D

q0, [c 7→ {x}, i 7→ ⊤]
E

,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {x, y}, i 7→ {f, g}]
〉

10. tr 〈next, [i 7→ g]〉 〈q1, [c 7→ {y}, i 7→ {g}]〉, 〈q2, [c 7→ {x}, i 7→ {y}]〉 ,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {x}, i 7→ {g}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {g}]
〉

,
〈

q0, [c 7→ {x, y}, i 7→ {f, g}]
〉

11. body No change to σ

12. tr 〈next, [i 7→ f]〉 〈q4, [c 7→ {x}, i 7→ {y}]〉, 〈q1, [c 7→ {y}, i 7→ {g}]〉 ,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f}]
〉

,
〈

q0, [c 7→ {x, y}, i 7→ {f, g}]
〉

13. body 〈q1, [c 7→ {y}, i 7→ {g}]〉 ,
D

q0, [c 7→ ⊤, i 7→ {f, g}]
E

,
D

q0, [c 7→ ⊤, i 7→ {f}]
E

,
〈

q0, [c 7→ {x, y}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

14. tr 〈next, [i 7→ g]〉 〈q5, [c 7→ {y}, i 7→ {g}]〉,
D

q0, [c 7→ ⊤, i 7→ {f, g}]
E

,
D

q0, [c 7→ ⊤, i 7→ {g}]
E

,
〈

q0, [c 7→ {x, y}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

15. body
〈

q0, [c 7→ {x}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {g}]
〉

,
〈

q0, [c 7→ {x, y}, i 7→ {f, g}]
〉

,
〈

q0, [c 7→ ⊤, i 7→ {f, g}]
〉

,

Figure 3.9: Computing the tracematch state abstraction for the same sequence of instruc-
tions as in Figure 2.1, 2.3 and 2.7.

43

requirements and to detect statically when a tracematch may lead to unbounded space
overhead. Freeing bindings early has the additional benefit of reducing the time required
to find the binding requiring update when a transition statement is encountered. This
time can be reduced further by maintaining suitable indexes on the binding set. On some
realistic tracematches, these techniques yield speed improvements of multiple orders of
magnitude. Thus, these techniques are necessary for a practical dynamic implementation
of tracematches. A similar indexing technique is also applied in JavaMOP [15].

A second approach, of which our work is an example, is to use static analysis to reduce
the number of transition statements that must be instrumented. Another example is the
work of Bodden et al. [12], which we discuss in more detail in Section 5.2. In follow-on
work, Bodden et al. [13] have augmented the analysis with a suite of intraprocedural flow-
sensitive analyses. The analyses combine local alias information with inexpensive whole
program summary information. In their benchmark suite, tracematches described mostly
local patterns, thus a careful combination of these analyses could detect many violations
and with few false positives. Guyer and Lin’s [34, 35] client-driven pointer analysis is also
related. Their analysis is based on a subset-based may-point-to analysis followed by flow-
sensitive propagation of states on the abstract object represented by each allocation site.
When a property cannot be proven, the analysis iteratively refines the context-sensitivity
of the points-to analysis in order to improve precision and hopefully verify the property.
Dwyer and Purandare [28] also use static analysis to reduce the cost of dynamic typestate
verification by proving that certain transitions need not be instrumented because they
cannot lead to a violation.

The static abstraction most closely related to ours is one used by Fink et al.’s typestate
analysis [29, 30]. Their analysis also uses an object abstraction in which an abstract object
represents at most one concrete object, and it uses the focus operation to achieve this.
Their object abstraction is more precise but more costly than ours because it tracks access
paths through fields, rather than only references from local variables. In addition, the
object abstraction contains the allocation site of each object, which provides the same
information as a subset-based may-point-to analysis. It would be possible to replace the
object abstraction in our tracematch analysis with that of Fink et al. to improve precision.
Unlike tracematches, typestate applies only to a single object. Therefore, rather than
requiring a separate tracematch abstraction, Fink et al. simply augment the abstraction
of each object with its typestate.

Another object abstraction similar to ours is used by Cherem and Rugina [17] to stat-
ically insert free instructions to deallocate some objects earlier than the garbage collector
can get to them. This application makes use of the property that the abstract object cor-
responding to a given concrete object can be traced through the control flow graph. The

44

object abstraction is also more precise than ours, but less so than Fink’s; it maintains ref-
erence counts from individual fields rather than full access paths. This object abstraction
could also be substituted in the tracematch analysis.

Multiobject temporal constraints have been studied by Jaspan and Aldrich [40, 41] in
the context of plugins for object-oriented frameworks. The motivation for their work is
that since large frameworks introduce complex constraints that are difficult to understand
and document, it is difficult for programmers to develop plugins which conform to the
constraints laid down by the framework. They present a lightweight specification system
which allows the framework developers to specify runtime interactions between objects
and the framework constraints that depend on these interactions. A static analysis is
presented that uses these specifications and analyzes the plugin code for any violations of
the constraints laid down by the framework developer. The analysis has been shown to
work on real world examples from the ASP.NET and Eclipse framework.

Torlak et al. [66] present Tracker, a tool that leverages static analysis to find resource
leaks in Java Programs. The analysis takes in specifications of procedures that acquire
and release system resources and aims to establish whether the allocation of a resource is
followed by its release on all execution paths. This is achieved by symbolically tracking
each resource through paths in the Control Flow Graph until either it is released or it
becomes unreachable without being released and is classified to have leaked. As is the
case for all analyses that track objects, to be effective the analysis computes precise inter-
procedural must-alias information. However, instead of a whole-program alias analysis,
Tracker performs efficient must-alias reasoning using selective equality predicates. This is
achieved by computing a set of must-access-paths to a tracked resource. It is also worth
mentioning that Tracker pays special attention to exceptional flow since programmers have
been known to incorrectly rely on try-catch-finally blocks to release resources.

Ramalingam et al. [53] present a verification technique for checking that a client pro-
gram follows conventions required by an API. The effects and requirements of the API
methods are specified using a declarative language. The system constructs a predicate
abstraction of the API internals from the specification. The predicate abstraction is used
to prove that a client program satisfies the requirements. The system was used to check
correct usage of iterators in client programs of up to 2396 LOC.

The Metal system [37] is an unsound state-based bug finder for C. The core system does
not consider aliasing; instead an automaton is maintained for each variable, regardless of
the object to which it may be pointing. It uses heuristics such as synonyms (an unsound
variation of must-alias analysis) to partially recover from this unsoundness. Metal was
successful in finding many locking bugs in the Linux kernel.

45

An alternative to analyzing arbitrary aliasing is to use a specialized type system to
restrict aliasing. An advantage of this approach is modularity: a violation of the type
system is local, as are violations of the typestate property when the aliasing restrictions
are obeyed. A disadvantage is that it is difficult to apply to existing, unannotated code,
although sometimes annotations can be inferred automatically. The Vault system [22] uses
keys, unique pointers to objects. The type system prevents duplication of keys, and each
typestate change is correlated with a set of keys held at the point of the change. The same
authors propose a system for specifying typestates of object-oriented programs, focusing
especially on object-oriented features such as subtyping [23]. To handle aliasing, they allow
objects to be either unaliased and updateable, or possibly aliased and non-updateable.
CQual [31] is another system similar to but simpler than Vault. Bierhoff and Aldrich [8, 9]
present a type system in which both aliasing and typestate information are specified using
types. A key innovation of their system are access permissions, which specify whether a
pointer is unique or whether it is aliased but with fine-grained restrictions on which aliases
may read or write to the object. Access permissions can be split for multiple aliases and
later recombined, making them more flexible than earlier aliasing control mechanisms.

3.5 Summary

The static analysis of properties that involve multiple objects cannot be represented using
a single abstraction. Two abstractions are required: one to represent the objects in the
program, and a second to represent the state of a group of abstract objects. In this chapter,
we presented the alias set abstraction as a precise way of representing objects. This object
abstraction supports precise may-alias information as well as the flow sensitive tracking
of objects along control flow paths. We also presented a state abstraction which uses
the alias set abstraction for objects to associate a state to a group of relevant objects.
Additionally, we specified a correctness relation and proved that the transfer functions for
the two abstractions preserve the correctness relation. In Chapter 5, we use a dataflow
analysis algorithm to compute the abstractions presented in this chapter. The resulting
abstraction is then used for the verification of the specified temporal property.

46

Chapter 4

Extensions to IFDS

In Chapter 1 we highlighted three properties that an analysis for tracematches requires.
Two of them, precise aliasing information and the ability to flow sensitively track individ-
ual objects along control flow paths, have been shown to hold for the abstraction as dis-
cussed in Chapter 3. Any standard dataflow analysis algorithm which can compute precise
context-sensitive interprocedural information can be used to compute this flow-sensitive
abstraction. We have chosen to use the Interprocedural Finite Distributive Subset (IFDS)
algorithm [54]. This is an efficient and precise, context-sensitive and flow-sensitive dataflow
analysis algorithm for the class of problems that satisfy its restrictions. Although this class
includes the classic bit-vector dataflow problems, the original IFDS algorithm is not di-
rectly suitable for more interesting problems for which context- and flow-sensitivity would
be useful, particularly problems involving objects and pointers. However, the algorithm
can be extended to solve this larger class of problems, and in this chapter, we present four
such extensions. In the following chapter, we discuss using this extended IFDS algorithm
to implement the tracematch analysis.

The IFDS algorithm is an efficient dynamic programming instantiation of the functional
approach to interprocedural analysis [62]. The fundamental restrictions of the algorithm,
which we do not seek to eliminate, are that the analysis domain must be a powerset of
some finite set Dom, and that the dataflow functions must be distributive. We present a
detailed overview of the IFDS algorithm in Section 4.1, and further illustrate the algorithm
with a running example variable type analysis in Section 4.2.

A more practical restriction is that the set Dom must be small, because the algorithm
requires as input a so-called exploded supergraph, and the number of nodes in this super-
graph is approximately the product of the size of Dom and the number of instructions in

47

the program. Our first extension, presented in Section 4.3, removes the restriction on the
size of Dom by enabling the algorithm to compute only those parts of the supergraph that
are actually reached in the analysis. This allows the algorithm to be used for problems in
which Dom is theoretically large, but only a small subset of Dom is encountered during
the analysis, which is typical of analyses modelling objects and pointers such as our object
abstraction from Section 3.2.

A second practical restriction of the original IFDS algorithm is that it provides limited
information to flow functions modelling return flow from a procedure. For many analyses,
mapping dataflow facts from the callee back to the caller requires information about the
state before the procedure was called. In Section 4.4, we extend the IFDS algorithm to
provide this information to the return flow function.

A third limitation of many standard dataflow analysis algorithms, IFDS included, is
that they can be less precise on a program in Static Single Assignment (SSA) form [20] than
on the original non-SSA form of the program. When an instruction has multiple control
flow predecessors, incoming dataflow facts are merged before the flow function is applied;
this imprecisely models the semantics of φ instructions in SSA form. In Section 4.5, we
present an example that exhibits this imprecision, and we extend the IFDS algorithm to
avoid it, so that it is equally precise on SSA form as on non-SSA form programs. SSA
form is not only a convenience; SSA form can be used to improve running time and space
requirements of analyses such as alias set analysis [50].

Finally, the IFDS algorithm does not take advantage of any structure in the set Dom.
In many analyses of objects and pointers, some elements of Dom subsume others. In
Section 4.6, we present an extension that exploits such structure to reduce analysis time.

4.1 The Original IFDS Algorithm

The IFDS algorithm of Reps et al. [54] is a dynamic programming algorithm that com-
putes a merge-over-all-valid paths solution to interprocedural, finite, distributive, subset
problems. The merge is over valid paths in that procedure calls and returns are correctly
matched (i.e. the analysis is context sensitive). The algorithm requires that the domain of
dataflow facts be the powerset of a finite set Dom, with set union as the merge operator.
The data flow functions must be distributive over set union: f(a) ∪ f(b) = f(a ∪ b).

The algorithm follows the summary function approach to context-sensitive interpro-
cedural analysis [62], in that it computes functions in P(Dom) → P(Dom) that sum-
marize the effect of ever-longer sections of code on any given subset of Dom. The al-

48

gorithm uses O(E|Dom|3) time in the worst case, where E is the number of control-
flow edges in the program. The key to the efficiency of the algorithm is the compact
representation of functions, made possible by their distributivity. For example, sup-
pose the set S = {a, b, c} is a subset of Dom. By distributivity, f(S) can be com-
puted as f(S) = f({}) ∪ f({a}) ∪ f({b}) ∪ f({c}). Thus every distributive function
in P(Dom) → P(Dom) is uniquely defined by its value on the empty set and on every
singleton subset of Dom. Equivalently, the function can be defined by a bipartite graph
〈Dom ∪ {0},Dom, E〉, where E is a set of edges from elements of Dom∪{0} to elements
of (a second copy of) Dom, i.e., the function can be efficiently represented as a graph
with at most (|Dom| + 1)2 edges [54, Section 3]. The graph contains an edge from d1 to
d2 if and only if d2 ∈ f({d1}). The special 0 vertex represents the empty set: the edge
0 → d indicates that d ∈ f({}). The function represented by the graph is defined to be
f(S) = {b : (a, b) ∈ E ∧ (a = 0 ∨ a ∈ S)}. For example, the graph in Figure 4.1(a)
represents the function g(S) = {x : x ∈ {b, c} ∨ (x = d ∧ d ∈ S)}, which can be written
more simply as g(S) = (S \ {a}) ∪ {b, c}.

(a)
g = λS.(S \ {a}) ∪ {b, c}

0 a b c d

0 a b c d

0 a b c d

0 a b c d

f = λS.(S \ {d}) ∪ {b}
(b)

0 a b c d

0 a b c d

f ◦ g = λS.(S \ {a, d}) ∪ {b, c}
(c)

Figure 4.1: Compact representation of functions and their composition

The composition f ◦ g of two functions can be computed by combining their graphs,
merging the nodes of the range of g with the corresponding nodes of the domain of f , then
computing reachability from the nodes of the domain of g to the nodes of the range of f .
That is, a relational product of the sets of edges representing the two functions gives a set
of edges representing their composition. An example is shown in Figure 4.1. The graph in
Figure 4.1(c), representing f ◦ g, contains an edge from x to y whenever there is an edge

49

from x to some z in the representation of g in Figure 4.1(a) and an edge from the same z
to y in the representation of f in Figure 4.1(b).

We have reproduced the original IFDS algorithm [54] in Figure 4.2. The input to the
algorithm is a so-called exploded supergraph (G♯

IP) that represents both the program being
analyzed and the dataflow functions. The supergraph is constructed from the interproce-
dural control flow graph (ICFG) of the program by replacing each instruction with the
graph representation of its flow function. Thus the vertices of the supergraph are pairs
〈l, d〉, where l is a label in the program and d ∈ Dom ∪ {0}. The supergraph contains an
edge 〈l, d〉 → 〈l′, d′〉 if the ICFG contains an edge l → l′ and d′ ∈ f({d}) (or d′ ∈ f({})
when d = 0), where f is the flow function of the instruction at l. For each interprocedural
call or return edge in the ICFG, the supergraph contains a set of edges representing the
flow function associated with the call or return. The flow function on the call edge typically
maps facts about actuals in the caller to facts about formals in the callee. The merge-over-
all-valid paths solution at label l contains exactly the elements d of Dom for which there
exists a valid path from 〈s,0〉 to 〈l, d〉 in the supergraph. The dataflow analysis therefore
reduces to valid-path reachability on the supergraph.

declare PathEdge, WorkList, SummaryEdge: global edge set
algorithm Tabulate(G♯

IP)
begin

1 Let (N ♯, E♯) = G♯
IP

2 PathEdge:={ 〈smain,0〉 → 〈smain,0〉 }

3 WorkList:={ 〈smain,0〉 → 〈smain,0〉 }

4 SummaryEdge:= ∅

5 ForwardTabulateSLRPs()

6 foreach n ∈ N ♯ do

7 Xn := { d2 ∈ Dom|∃d1 ∈ (Dom ∪ {0})
s.t.

〈

sprocOf(n), d1

〉

→ 〈n, d2〉 ∈ PathEdge }

8 od
end
procedure Propagate(e)
begin

9 if e /∈ PathEdge then Insert e into PathEdge; Insert e into WorkList; fi
end

continued · · ·

Figure 4.2: Original IFDS Algorithm reproduced.

50

procedure ForwardTabulateSLRPs()
begin

10 while WorkList 6= ∅ do

11 Select and remove an edge 〈sp, d1〉 → 〈n, d2〉 from WorkList

12 switch n

13 case n ∈ Callp :

14 foreach d3 s.t. 〈n, d2〉 →
〈

scalledProc(n), d3

〉

∈ E♯ do

15 Propagate
(〈

scalledProc(n), d3

〉

→
〈

scalledProc(n), d3

〉)

16 od

17 foreach d3 s.t. 〈n, d2〉 → 〈returnSite(n), d3〉 ∈ (E♯ ∪ SummaryEdge) do

18 Propagate(〈sp, d1〉 → 〈returnSite(n), d3〉)

19 od

20 end case

21 case n ∈ ep :

22 foreach c ∈ callers(p) do

23 foreach d4,d5 s.t. 〈c, d4〉 → 〈sp, d1〉 ∈ E♯ and
〈ep, d2〉 → 〈returnSite(c), d5〉 ∈ E♯ do

24 if 〈c, d4〉 → 〈returnSite(c), d5〉 /∈ SummaryEdge then

25 Insert 〈c, d4〉 → 〈returnSite(c), d5〉 into SummaryEdge

26 foreach d3 s.t.
〈

sprocOf(c), d3

〉

→ 〈c, d4〉 ∈ PathEdge do

27 Propagate
(〈

sprocOf(c), d3

〉

→ 〈returnSite(c), d5〉
)

28 od

29 fi

30 od

31 od

32 end case

33 case n ∈ (Np − Callp − {ep}) :

34 foreach 〈m, d3〉 s.t. 〈n, d2〉 → 〈m, d3〉 ∈ E♯ do

35 Propagate(〈sp, d1〉 → 〈m, d3〉)

36 od

37 end case

38 end switch

39 od
end

Figure 4.2: Original IFDS Algorithm reproduced(contd.)

51

The IFDS algorithm works by incrementally constructing two tables, PathEdge and
SummaryEdge, representing the flow functions of ever longer sequences of code. The
PathEdge table contains triples 〈d, l, d′〉, indicating that there is a path from 〈sp, d〉 to
〈l, d′〉, where sp is the start node of the procedure containing l. These triples are often
written in the form 〈sp, d〉 → 〈l, d′〉 for clarity, but the start node sp is uniquely determined
by l, so it is not stored in an actual implementation. The SummaryEdge table contains
triples 〈c, d, d′〉, where c is the label of a call site. Such a triple indicates that d′ ∈ f({d}),
where f is a flow function summarizing the effect of the procedure called at c. These triples
are often written 〈c, d〉 → 〈r, d′〉, where r is the instruction following c. For convenience,
Reps’s presentation of the IFDS algorithm [54] assumes that in the ICFG, every call site c
has a single successor, a no-op “return site” node r.

The PathEdge and SummaryEdge tables are interdependent. Consider the edge
〈sp, d1〉 → 〈ep, d2〉 added to PathEdge, in which ep is the exit node of some procedure p.
This edge means that d2 ∈ fp({d1}), where fp is the flow function representing the effect of
the entire procedure p. As a result, for every call site c calling procedure p, a corresponding
triple must be added to SummaryEdge indicating the newly-discovered effect at that call
site. In fact, several such triples may be needed for a single edge added to PathEdge,
since the effect of a procedure at c is represented not just by fp, but by the composition
fr ◦fp ◦fc, where fc and fr are the flow functions representing the function call and return.
This composition is computed by combining the graphs representing fc and fr from the
supergraph with the newly discovered edge 〈d1, d2〉 of fp. That is, for each d4 and d5 such
that 〈d4, d1〉 ∈ fc and 〈d2, d5〉 ∈ fr, 〈c, d4, d5〉 is added to SummaryEdge. This is performed
in lines 23 to 25 of the algorithm.

Conversely, consider a triple 〈c, d4, d5〉 added to SummaryEdge, indicating a new effect
of the call at c. As a result, for each d3 such that there is a path from 〈s, d3〉 to 〈c, d4〉,
where s is the start node of the procedure containing c, there is now a valid path from
〈s, d3〉 to 〈r, d5〉, where r is the successor of c. Thus 〈s, d3〉 → 〈r, d5〉 must be added to
PathEdge. This is performed in lines 26 to 28 of the algorithm.

4.2 Running Example: Type Analysis

The extensions we have made to the IFDS algorithm were motivated by the alias set
analysis (Section 3.2) and the tracematch state analysis (Section 3.3). The same extensions
are applicable to many other kinds of analyses. In order to not clutter the discussion with
the complexity of these domains, we will use a much simpler analysis domain to illustrate
the extensions.

52

The example analysis is a variation of Variable Type Analysis (VTA) [65] for Java. The
analysis computes the set of possible types for each variable. This information can be used
to construct a call graph or to check the validity of casts. At each program point p, the
analysis computes a subset of Dom, where Dom is defined as the set of all pairs 〈v, t〉,
where v is a variable in the program and t is a class in the program. The presence of the
pair 〈v, t〉 in the subset indicates that the variable v may point to an object of type t.

For the sake of the example, we would like the analysis to analyze only the applica-
tion code and not the large standard library. The analysis therefore makes conservative
assumptions about the unanalyzed code based on statically declared types. For example, if
m() is in the library, the analysis assumes that m() could return an object of the declared
return type of m() or any of its subtypes. To this end we amend the meaning of a pair
〈v, t〉 to indicate that v may point to an object of type t or any of its subtypes.

The unanalyzed code could write to fields in the heap, either directly or by calling back
into application code. To keep the analysis sound yet simple, we make the conservative
assumption that a field can point to any object whose type is consistent with its declared
type. We model a field read x = y.f with the pair 〈x, t〉, where t is the declared type of f.
We make these simplifications because the analysis is intended to illustrate the extensions
to the IFDS algorithm, not necessarily as a practical analysis.

When the declared type of a field is an interface, the object read from it could be of
any class that implements the interface. For a read from such a field, we generate multiple
pairs 〈x, ti〉, where the ti are all classes that implement the interface. If class B extends
A and both implement the interface, it is redundant to include 〈x, B〉 since 〈x, A〉 already
includes all subclasses of A, including B. For efficiency, we generate only those pairs 〈x, ti〉
where ti implements the interface and its superclass does not.

The analysis is performed on an intermediate representation comprising the following
kinds of instructions, in addition to procedure calls and returns: s ::= x ← y | y.f ←
x | x ← y.f | x ← null | x ← new T | x ← (T)y. The instructions copy pointers between
variables, store and load objects to and from fields, assign null to variables, create new
objects and cast objects to a given type, respectively. We use JsKP : P(Dom) → P(Dom)
to denote the transfer function for the type analysis. The IFDS algorithm requires the
transfer function to be decomposed into its effect on each individual element of Dom and
on the empty set. We decompose it as JsK : Dom∪{0} → P(Dom) and define JsKP (P) ,

JsK(0) ∪
⋃

d∈P JsK(d). The decomposed transfer function JsK is defined in Figure 4.3.

The flow function for a copy instruction (x ← y) applied to a pair 〈v, t〉 requires three
cases. When v is the same as y, the pair 〈v, t〉 is preserved and, since the value of y is copied
to x, a new pair 〈x, t〉 is created. If v is neither x nor y, the value of v is unaffected by the

53

Jx ← yK(〈v, t〉) ,







{〈x, t〉 , 〈y, t〉} if v = y
{〈v, t〉} if v 6= y and v 6= x

∅ if v 6= y and v = x

Jy.f ← xK(〈v, t〉) ,{〈v, t〉}

Jx ← null|new T |y.fK(〈v, t〉) ,

{

{〈v, t〉} if v 6= x
∅ otherwise

Jx ← new T K(0) ,{〈x, T 〉}

Jx ← y.fK(0) ,{〈x, c〉 : c ∈ implClasses(type(f))}

Jx ← (T)yK(〈v, t〉) ,
⋃

c∈implClasses(T)

cast(x, y, c)(〈v, t〉)

cast(x, y, t2)(〈v, t1〉) ,























{〈v, t1〉} if v 6= x and v 6= y
∅ if v = x and v 6= y

{〈x, t1〉 , 〈y, t1〉} if v = y and t1 <: t2
{〈x, t2〉 , 〈y, t2〉} if v = y and t2 <: t1

∅ if v = y and t1 and t2 are unrelated

JsK(0) , ∅ if s 6= x ← y.f and s 6= x ← new

Figure 4.3: Intraprocedural flow functions for the Variable Type Analysis

copy and the pair is therefore preserved. If v is x, and x and y are distinct, then since the
existing value of x is overwritten by the new value, the existing pair 〈v, t〉 describing the
old value of v is discarded, and the result is the empty set.

The store instruction (v.f ← x) has no effect on the values of local variables, and its
flow function is therefore the identity. The flow function for an assignment to x via a load,
new or null does not affect 〈v, t〉, unless v is x, in which case the existing value of x is
overwritten, so the pair is dropped from the set. An allocation instruction x ← new T
generates the new pair 〈x, T 〉. A load instruction x ← y.f creates the pair 〈x, t〉, if the
type of the field f is a class t, or the set of pairs 〈x, ti〉, if the type of the field f is an
interface, where the ti are all of the classes implementing the interface, as explained earlier.
The helper function implClasses(t) computes this set of classes.

The most interesting case is the cast instruction (x ← (T)y). The first complication is
that T could be an interface. Such a cast is treated as casts to all classes implementing
T . The flow function is the union of the flow functions modelling casts to these classes,

54

reflecting the fact that the cast to the interface type succeeds if the cast to at least one
of the implementing classes succeeds. For the simpler case of a cast to a type t2 that is
a class, not an interface, there are still several cases. The cast instruction has no effect
on 〈v, t1〉 when v is neither x nor y. When v is x, the pair is dropped because the cast
overwrites the existing value of x. When v is y and t1 <: t2, indicating that we already
know that y points to an object whose type is a subtype of t2, the cast acts as a copy
and the new pair 〈x, t1〉 is generated. When v is y and t2 <: t1, indicating that y is being
cast to a more restrictive type than the type it is already known to point to, we generate
the new pair 〈x, t2〉, indicating that x must point to a subtype of the more restrictive
cast type. The original pair 〈y, t1〉 can also be changed to the more precise pair 〈y, t2〉,
since if control flow proceeds after the cast, the cast must have succeeded, and therefore y
must point to an object whose type is a subtype of the cast type. For the purposes of the
example, we assume that a failing cast terminates the program rather than being caught
by an exception handler; catching class cast exceptions is rare in practice.

4.3 Demand Construction of the Supergraph

The number of nodes in the exploded supergraph G♯ is |Inst| × (|Dom| + 1), where |Inst|
is the number of instructions in the program and |Dom| is the size of Dom. In many
analyses, Dom, though finite, is very large. For example, in the alias set analysis that we
intend to compute for the tracematch analysis, Dom is a union of the powersets of the
sets of variables of all procedures, and therefore exponential in the number of variables in
a procedure. In our example variable type analysis, Dom = |Var| × |Class|, where Var is
the set of all variables in the program and Class is the set of all classes in the program,
so |Dom| is over one million even for a moderate program with a thousand variables and
a thousand classes. Constructing and storing a graph that is a million times larger than
the ICFG is not practical. In practice, only a small subgraph of G♯ is reachable by valid
paths from 〈smain,0〉 and therefore explored by the algorithm. Unfortunately, we cannot
know exactly which subgraph this is before running the IFDS algorithm, since determining
which nodes are reachable is exactly what the IFDS algorithm does. Therefore, our first
extension to the IFDS algorithm modifies it to request only those parts of the supergraph
that it encounters, instead of requiring the whole supergraph as input.

The extended IFDS algorithm with all four of our extensions is shown in Figure 4.4.
Parts of the algorithm that were changed from the original or added are underlined.

55

declare PathEdge, WorkList, SummaryEdge, Incoming, EndSummary: global
algorithm Tabulate(flow, passArgs, returnVal, callFlow)

...
procedure ForwardTabulateSLRPs()
begin

10 while WorkList 6= ∅ do

11 Select and remove an edge 〈sp, d1〉
π
→〈n, d2〉 from WorkList

12 switch n

13 case n ∈ Callp :

14 foreach d3 ∈ passArgs(〈n, d2〉) do

15 Propagate
(

〈

scalledProc(n), d3

〉 0
→

〈

scalledProc(n), d3

〉

)

15.1 Incoming
[〈

scalledProc(n), d3

〉]

∪ = 〈n, d2〉

15.2 foreach 〈ep, d4〉 ∈ EndSummary
[〈

scalledProc(n), d3
〉]

do

15.3 foreach d5 ∈ returnVal(〈ep, d4〉 , 〈n, d2〉) do

15.4 Insert 〈n, d2〉 → 〈returnSite(n), d5〉 into SummaryEdge
15.5 od
15.6 od

16 od

17 foreach d3 s.t. d3 ∈ callFlow(〈n, d2〉) or
〈n, d2〉 → 〈returnSite(n), d3〉 ∈ SummaryEdge do

18 Propagate
(

〈sp, d1〉
n
→〈returnSite(n), d3〉

)

19 od

20 end case
continued · · ·

Figure 4.4: Extended IFDS Algorithm

56

21 case n ∈ ep :
21.1 EndSummary [〈sp, d1〉]∪ = 〈ep, d2〉

22 foreach 〈c, d4〉 ∈ Incoming [〈sp, d1〉] do

23 foreach d5 ∈ returnVal(〈ep, d2〉 , 〈c, d4〉) do

24 if 〈c, d4〉 → 〈returnSite(c), d5〉 /∈ SummaryEdge then

25 Insert 〈c, d4〉 → 〈returnSite(c), d5〉 into SummaryEdge

26 foreach d3 s.t.
〈

sprocOf(c), d3

〉

→ 〈c, d4〉 ∈ PathEdge do

27 Propagate
(

〈

sprocOf(c), d3

〉 c
→〈returnSite(c), d5〉

)

28 od

29 fi

30 od

31 od

32 end case

33 case n ∈ (Np − Callp − {ep}) :

34 foreach m, d3 s.t. n → m ∈ CFG and d3 ∈ flow(〈n, d2〉 , π) do

35 Propagate
(

〈sp, d1〉
n
→〈m, d3〉

)

36 od

37 end case

38 end switch

39 od
end

Figure 4.4: Extended IFDS Algorithm (contd.)

The input to the extended algorithm is a function that, given a supergraph node n♯,
computes all of the edges leaving that node (i.e. the flow function of the desired analysis).
For clarity of presentation, we have split this function into four separate functions:

• flow(n♯) computes all intraprocedural edges.1

• passArgs(n♯) computes call-to-start edges when n♯ is at a call site.

• returnVal(n♯) computes exit-to-return-site edges when n♯ is at the exit of a proce-
dure.2

1In Figure 4.4, flow has a second parameter π, which will be explained in Section 4.5.
2In Figure 4.4, returnVal has a second node parameter, which will be explained in Section 4.4.

57

• callFlow(n♯) computes call-to-return-site edges when n♯ is at a call site. These edges
model procedure-local information that is not affected by the called procedure.

The original IFDS algorithm queries the edges of the supergraph E♯ in five places. The
queries on lines 14, 17 and 34, and the second query on line 23 can simply be replaced by
calls to passArgs, callFlow, flow, and returnVal, respectively.

However, the first query on line 23 asks to evaluate the inverse of the flow function:
find all call nodes 〈c, d4〉 from which an edge leads to the procedure start node 〈sp, d1〉.
This would require computing the inverse of the flow function, which can be difficult for
many analyses. Moreover, even though 〈sp, d1〉 is reachable in G♯, many of its predecessors
in E♯ may not be, and enumerating them may be intractable. For example, for an alias set
analysis, the number of predecessors for most nodes is 2|Var|−1, where |Var| is the number
of variables in the calling procedure. The extended algorithm therefore maintains a set
Incoming[〈sp, d1〉] that records nodes that the analysis has observed to be reachable and
predecessors of 〈sp, d1〉. Whenever the call to passArgs(〈n, d2〉) in line 14 returns 〈sp, d3〉,
〈n, d2〉 is added in line 15.1 to Incoming(〈sp, d3〉).

An obvious issue with querying the set of nodes already observed to be predecessors
of 〈sp, d1〉 is what must be done when a new predecessor is observed later. The solution
is to keep track of exit nodes for which a given value of Incoming has been queried (line
21.1). Then, whenever a new predecessor is observed, those exit nodes are reprocessed
to reflect the new predecessor. A simple way to reprocess the exit nodes correctly is to
add them to the worklist. However, this approach is very inefficient, because whenever
a new predecessor is added at one call site, the effect of the procedure is reprocessed for
all predecessors at all call sites of the procedure. This intuitively poor performance was
confirmed by our experience with the initial implementation of the algorithm.

A better way to reprocess the exit node is to recognize that when a new predecessor
of 〈sp, d1〉 is observed, the predecessor tells us the relevant call site. Instead of adding the
corresponding exit node to the worklist, we can immediately process that exit node, but
do only the work necessary for that one predecessor. Concretely, we duplicate the effect of
lines 24 through 29 after line 15.1. The effect of lines 24, 25 and 29, adding the appropriate
edge to SummaryEdge, is done in lines 15.3 through 15.5. The effect of lines 26 through
28 is already done by lines 17 through 19 of the original algorithm.

4.3.1 Eliminating the SummaryEdge Table

Once the algorithm has been modified to record nodes corresponding to callers of a pro-
cedure and the appropriate modifications have been made to reprocess the exit nodes as

58

discussed above, another opportunity to optimize the algorithm arises. At line 15.4 of the
extended algorithm, the summary edge e representing the effect of calling the procedure p
on the domain element d2 at the call site n (node 〈n, d2〉) is added to the SummaryEdge
table. Then later, at lines 17-19, this summary edge is retrieved and composed with the
path edge from a start node 〈sp, d1〉 and leading to 〈n, d2〉 to produce an edge e′ from
the start node to the return site of n. This step, first adding e into the SummaryEdge
table only to immediately retrieve it, is unnecessary. Instead, the path edge e′ can be
created directly and propagated (Line 15.4 in Figure 4.5 shown with a wavy underline).
Since all SummaryEdges originating at 〈n, d2〉 would already have been propagated at Line
15.4, there is no longer any need to repeat this, so the second loop condition at Line 17

declare PathEdge, WorkList, Incoming, EndSummary: global
algorithm Tabulate(flow, passArgs, returnVal, callFlow)

...
procedure ForwardTabulateSLRPs()
begin

10 while WorkList 6= ∅ do

11 Select and remove an edge 〈sp, d1〉
π
→〈n, d2〉 from WorkList

12 switch n

13 case n ∈ Callp :

14 foreach d3 ∈ passArgs(〈n, d2〉) do

15 Propagate
(

〈

scalledProc(n), d3

〉 0
→

〈

scalledProc(n), d3

〉

)

15.1 Incoming
[〈

scalledProc(n), d3

〉]

∪ = 〈n, d2〉

15.2 foreach 〈ep, d4〉 ∈ EndSummary
[〈

scalledProc(n), d3
〉]

do

15.3 foreach d5 ∈ returnVal(〈ep, d4〉 , 〈n, d2〉) do

:::::

15.4
::

Propagate
(

〈sp, d1〉
n
→〈returnSite(n), d5〉

)

15.5 od
15.6 od

16 od

:::

17
:::::::::::::

foreach d3
:::::::::::::::::::::::::::::

s.t. d3 ∈ callFlow(〈n, d2〉)
:::::

do

18 Propagate
(

〈sp, d1〉
n
→〈returnSite(n), d3〉

)

19 od

20 end case

Figure 4.5: Extended IFDS Algorithm without computing summary edges

59

21 case n ∈ ep :
21.1 EndSummary [〈sp, d1〉]∪ = 〈ep, d2〉

22 foreach 〈c, d4〉 ∈ Incoming [〈sp, d1〉] do

23 foreach d5 ∈ returnVal(〈ep, d2〉 , 〈c, d4〉) do

:::

24

:::

25

26 foreach d3 s.t.
〈

sprocOf(c), d3

〉

→ 〈c, d4〉 ∈ PathEdge do

27 Propagate
(

〈

sprocOf(c), d3

〉 c
→〈returnSite(c), d5〉

)

28 od

:::

29

30 od

31 od

32 end case

33 case n ∈ (Np − Callp − {ep}) :

34 foreach m, d3 s.t. n → m ∈ CFG and d3 ∈ flow(〈n, d2〉 , π) do

35 Propagate
(

〈sp, d1〉
n
→〈m, d3〉

)

36 od

37 end case

38 end switch

39 od
end

Figure 4.5: Extended IFDS Algorithm without computing summary edges (contd.)

of Figure 4.4 is removed. Once these two changes are made, the SummaryEdge table is
never queried, so the table can be removed form the algorithm. Therefore, the creation
of SummaryEdges at Lines 24, 25 and 29 is also removed. To summarize, when an exit
node of a procedure p is processed, path edges from the start nodes of all currently known
callers of p to the return site of the call to p are computed. Similarly, when a call node
within a procedure p is processed then, apart from processing the callee, path edges are
produced, directly from the start nodes in p to the successor of the call, using all known
exit nodes of the callee.

60

4.3.2 Empirical Evaluation

We have performed an empirical evaluation, using the variable type analysis, to answer
the question: How large is the supergraph, and what fraction of it is reachable along valid
paths?

We implemented the extended IFDS algorithm and the example type analysis in
Scala [51] using Soot [67] as a front-end to parse and convert Java classes into 3-address
code and construct a control flow graph (CFG). Both normal Java control flow and con-
trol flow due to exceptions was represented by edges in the CFG. We ran the extended
algorithm on the DaCapo Benchmark Suite, version 2006-10-MR2 [10]. Since most of
the benchmarks use reflection, we provided Soot with summaries of uses of reflection ob-
tained by instrumenting the benchmarks using ProBe [45] and *J [27].3 Statistics about
the benchmarks are presented in Table 4.1. The Methods column shows the number of
methods in the part of the call graph analyzed by the IFDS analysis; since the type anal-
ysis does not analyze the library, we cut off the call graph at any call into the library.4

The Variables column shows the number of SSA variables in the analyzed methods. The
Instructions column shows the number of instructions after conversion to the intermediate
representation presented in Section 4.2. The Possible Types column shows the number of
concrete classes in the benchmark. These are the classes that could appear as the type
associated with a variable in the analysis results.

We first measured the size of the complete exploded supergraph. In general, the num-
ber of nodes in the exploded graph is given by |Inst| × (|Dom| + 1) where Dom =
Var × Class, Var is the set of all variables in the program and Class is the set of all
classes. However, when analyzing a given method, only the local variables of that method
need to be tracked. Thus a much smaller exploded supergraph can be constructed of size
∑

m∈Methods |Varm| × |Class| × |Instm|, where |Varm| and |Instm| are the numbers of vari-
ables and instructions in method m. We measured the size of this smaller, more reasonable
exploded supergraph. In addition to the number of nodes, we computed the number of
edges in the exploded supergraph. To do this, we applied the flow function to every node
of the exploded supergraph and counted the number of outgoing edges. The sizes of the
exploded supergraph are shown using squares in Figure 4.6. The sizes range from 138 mil-
lion to 21 billion nodes. On average (geometric mean), each exploded supergraph has 1.16
times as many edges as nodes. The largest exploded supergraphs took over 24 hours to

3We excluded the Eclipse benchmark because it makes such heavy use of reflection that Soot is unable
to process it.

4Not analyzing the library is a characteristic of our example analysis, and not a limitation of the IFDS
algorithm in general.

61

Benchmark Methods Variables Instructions Possible Types
antlr 949 10839 16621 257
bloat 3142 33727 46550 623
chart 9419 91280 129850 2292
fop 13556 131901 185129 3400
hsqldb 768 8004 11552 443
jython 5487 56090 74031 1079
luindex 1306 12519 18131 617
lusearch 1633 14850 21368 676
pmd 3643 33945 49640 998
xalan 786 7708 11084 451

Table 4.1: Benchmark Characteristics

enumerate. This is another reason why we did not use the alias set analysis abstraction as
an example to illustrate our extensions to IFDS. Enumerating the exploded supergraph for
that abstraction would take an incredibly long time, considering the larger domain Dom
for that abstraction.

We also measured the sizes of the reachable part of the supergraph that is explored
when the IFDS algorithm has been extended with demand supergraph construction. These
sizes are shown as diamond shapes in Figure 4.6. The number of edges in the reachable
part of the supergraph is 1.09 times the number of nodes. On average (geometric mean),
the complete supergraph contains 2081 times as many nodes as the reachable part of the
supergraph. Constructing the supergraph on demand rather than exhaustively is key to
analyzing benchmarks of this size in reasonable time and memory bounds.

4.4 Return Flow Functions

In the original IFDS algorithm, the return flow function is modelled by interprocedural
edges in the exploded supergraph that lead from the exit of a procedure to the call site that
called the procedure. In the callee, each flow fact is represented in terms of the local scope
of the callee. For many analyses, it is necessary to map information in the callee back to the
caller. For example, for the code in Figure 4.7(a), the cast inside ensureCircle succeeds
only if the object pointed to by z, which is also pointed to by x and y, is of type Circle or
its subtype. Therefore, if ensureCircle returns normally, we know that x cannot point to

62

Figure 4.6: Number of nodes and edges in the exploded supergraph and its reachable sub-
graph. The letters N and E after each benchmark designate nodes and edges, respectively.

an arbitrary Shape, but only to a Circle. However, the original IFDS algorithm cannot
discover this fact: although it determines that at the exit of ensureCircle, z points to an
object of type Circle, there is no way in the supergraph to associate z in the callee with
x in the caller.

Yet with a small extension, this reverse mapping can be recovered. The fact that
z points to a subtype of Circle is expressed by the edge 〈sensureCircle, 〈y, Shape〉〉 →
〈eensureCircle, 〈z, Circle〉〉 in PathEdge. In Figure 4.7(b), which shows the demand su-
pergraph constructed by the algorithm, this edge is labeled e1. This edge means that at
the beginning of the procedure, there was an object pointed to by y, and at the exit of
the procedure, the same object is pointed to by z and we know it is of type Circle. In
addition, Incoming[〈sensureCircle, 〈y, Shape〉〉] contains 〈c, 〈x, Shape〉〉. This means that the
object passed in through y from the call site c was pointed to by x in the caller scope.
This is represented by the edge e2 in the figure. We can combine the context information

63

provided by Incoming with the intraprocedural information computed in PathEdge to de-
termine that the object pointed to by x at the call site is known to be of type Circle after
the call. In the figure, this is represented by the edge labeled e3.

void ensureCircle(Shape y)

{

Shape z = y;

(Circle) z;

}

Shape x = ...;

ensureCircle(x);

(a) Source Code

Shape x = ...

ensureCircle(x)

void ensureCircle(y)

z = (Circle)y

eensureCircle

r

0 < x, Shape >

< z, Circle >0 < y, Shape >

0 < x, Shape > < x, Circle >

e
2

e
1

e
3

(b) Demand Supergraph

Figure 4.7: Example: mapping information from caller back to caller

This extension appears in the extended algorithm in Figure 4.5 on line 23. The return-
Val function takes, in addition to the node d2 at the exit instruction ep, a second node d4

at the call site c. These arguments indicate not only that the node d2 is reachable at ep,
but that it is reachable from some node d1 at the start instruction sp of the procedure,
and that a passArgs edge leads to the latter node from node d4 at the call site c. Thus the
returnVal function can use the caller-side state from the time the procedure was invoked
to map the callee-side state at the exit of the procedure back to the caller-side context.

This extension is not merely an extension of the IFDS algorithm, but an extension of
the exploded supergraph abstraction that the algorithm is based on. In the supergraph,
for every pair of nodes d2 at an exit node and d5 at a return site, there either is or is not an
edge from d2 to d5; if there is such an edge, the algorithm adds a SummaryEdge from 〈c, d4〉
to 〈returnSite(c), d5〉 for every call site c calling the procedure and for every reachable node
d4 at c. However, the extended algorithm gives the analysis designer more flexbility, in that
the decision to add the SummaryEdge is additionally dependent on the specific call-site
node 〈c, d4〉 being considered. It is as if the supergraph edge 〈ep, d2〉 → 〈returnSite(c), d5〉
can both exist and not exist, depending on which call site node 〈c, d4〉 is being taken on
the path used to reach 〈ep, d2〉.

64

4.5 Static Single Assignment (SSA) Form

Static Single Assignment (SSA) form [20] is a popular intermediate representation that
makes many program analyses simpler and more efficient. Standard dataflow analysis
algorithms such as the original IFDS can be applied unchanged to programs in SSA form,
but without appropriate extensions, such an analysis may be less precise than when the
same analysis is done on the original, non-SSA version of the program. In this section, we
discuss the reasons for the precision loss and propose an extension to the IFDS algorithm
that fully restores the lost precision. The extended algorithm analyzes a program in SSA
form as precisely as in its original, non-SSA form.

The defining feature of SSA form is that every variable is written to in only one in-
struction in the program. To convert a program to SSA form, every variable is renamed
at each of its definitions, so each definition writes to a fresh, unique variable. Every use of
a variable must also be renamed to match the reaching definition. A problem arises when
multiple definitions reach a use: to which of the new names should the variable at the use
be renamed? The solution is to add φ pseudo-instructions to select the reaching definition
based on the control flow path taken. A φ instruction at a control flow merge point defines
a new variable whose value is selected from among the reaching definitions depending on
the edge taken into the merge point. Thus only the φ definition of the variable reaches the
instructions following the merge.

The φ pseudo-instruction differs from normal instructions in two ways. First, if multiple
variables require φ assigments at a given merge point, the φ assignments are performed
simultaneously, in parallel. The set of φ instructions at the merge point defines, for each
incoming control-flow edge, a permutation of the variables. Thus it is clearer to group
all of the φ instructions at a given merge point into a single multi-variable φ instruction.
Multiple instructions in sequence would suggest that the operations are performed one
after the other, which is an incorrect semantics for φ instructions.

Second, unlike other instructions, the effect of a φ depends on the control-flow edge
taken to reach the instruction. This causes many dataflow analysis algorithms, including
the original IFDS, to lose precision when analyzing a program in SSA form, compared to
analyzing the same program in its original non-SSA form. We will present an example
program that exhibits such precision loss in Section 4.5.1. In most dataflow analyses, at
a control flow merge point, the analysis first merges the dataflow facts from the incoming
edges, then passes the merged value to the flow function of the instruction after the merge
(i.e. out[s] = fs(

⋃

p∈pred(s) out[p])). Merging before applying the flow function reflects the
structure of the control flow graph, and is appropriate when the merge is followed by a

65

non-φ instruction. When the merge is followed by a φ instruction, however, the merge
preceding the flow function application makes it impossible for the flow function fs to
depend on the control flow predecessor that its input came from, since the inputs from all
the predecessors have been merged into a single dataflow value. Most dataflow analyses
treat a φ instruction such as x3 = φ(x1, x2) as an assignment from both x1 and x2 to x3,
ignoring the control flow edges on which those values of x1 and x2 arrived.

To analyze SSA-form code as precisely as non-SSA-form code, the merge must be
delayed until after the φ instruction. That is, the φ flow function is applied separately to
the dataflow value on each incoming control flow path, and the merge is performed on the
outputs of the φ flow function, not on its input. As a result, the incoming control flow
edge associated with each dataflow value can be made available to the flow function fφ

modelling the φ instruction. Formally, out[φ] =
⋃

p∈pred(φ) fφ(p, out[p]).

Extending the IFDS algorithm to perform dataflow merges after φ instructions instead
of before them requires two modifications. First, every edge added to PathEdge is anno-
tated with a control flow predecessor. The edge 〈sp, d1〉

n
→ 〈m, d2〉 indicates that there is

a path in the supergraph starting at the dataflow fact d1 at the start node sp, leading to
the dataflow fact d2 at node m, and that the second-last node on the path is at node n.
In other words, the dataflow fact d2 reaches m along the incoming control flow edge from
n. Two PathEdge edges that differ only in the control flow predecessor are considered
to be distinct. The PathEdge edges created in lines 18, 27, and 35 of the algorithm are
annotated with the control flow predecessor, shown above the arrow. The PathEdge edge
created in line 15 corresponds to the empty path from 〈s, d3〉 to itself, so there is no control
flow predecessor to record. We therefore use a dummy predecessor, which we write as 0.
However, the target of this edge is the start node of the procedure, which is never a φ
instruction, so the predecessor will never be needed for this node.

Second, the flow function is extended with a second parameter, and when the function
is called in line 34, the control-flow predecessor π of the PathEdge edge currently being
processed is passed in. Thus the flow function for the φ instruction can depend on the
control-flow predecessor π associated with the dataflow value d2 reaching n.

An obvious optimization is to annotate only those edges 〈sp, d1〉 → 〈m, d2〉 in which m is
a φ instruction, and leave all other edges unannotated. We do this in our implementation,
but have not shown it in Figure 4.5 to avoid cluttering the algorithm.

66

Object x = new Circle

if (cond) ... = (Square) x;

else x = new Triangle;

x.draw ();

(a) Original Source Code

(b) Non-SSA Type Results (c) SSA Type Results

Figure 4.8: The effect on precision due to the choice of merge strategy at φ nodes.

4.5.1 Example of precision loss

An example of how merging dataflow information before rather than after a φ instruction
reduces precision is shown in Figure 4.8. The original non-SSA source code of the example
program is in Figure 4.8(a). A variable x is initialized as a Circle. In the left branch of
the conditional, x is cast to Square. In the right branch, x is redefined as a Triangle.
Figure 4.8(b) shows the results of running the type analysis on the code. The flow function
for the cast operation kills the flow fact 〈x, Circle〉, since a Circle cannot be successfully
cast to a Square. Therefore, the type analysis indicates that the only possible type for
receiver x at instruction x.draw() is Triangle. This is sound since the cast operation can
never succeed and therefore a program executing the left branch can never reach the draw

call. Conversely, if the program reaches the draw call it must have taken the right branch
and the receiver must be a Triangle.

Figure 4.8(c) shows the same code after SSA conversion. The receiver x3 for the call
x3.draw() is x1 when the path follows the left branch and x2 when the path follows the
right branch, as reflected in the φ function. The left predecessor of the φ function has

67

no flow facts because the cast kills 〈x1, Circle〉 as before. The right predecessor has the
facts 〈x1, Circle〉 and 〈x2, Triangle〉. The original IFDS algorithm would first merge the
incoming flow facts from the two branches, then apply the flow function that models the
φ as a copy from both x1 and x2. At the call to x3.draw(), the analysis would compute
the facts 〈x3, Circle〉 and 〈x3, Triangle〉, which is less precise than the non-SSA version
of the analysis that was able to rule out x being a Circle.

In the extended IFDS algorithm, the merge is not performed before the flow function of
the φ instruction, so the flow function has information about the control flow edge on which
each dataflow fact arrives. For facts coming in from the left edge, it models a copy from x1

to x3; for facts coming in from the right edge, it models a copy from x2 to x3. Thus only
the fact 〈x2, Triangle〉 coming from the right edge leads to a new fact 〈x3, Triangle〉. The
fact 〈x1, Circle〉 does not give rise to 〈x3, Circle〉, as it did before, because it comes in
from the right edge, which is not associated with a copy from x1 to x3. Thus the extended
IFDS algorithm achieves the same precision on the SSA-form version of the program as on
the original non-SSA-form version.

4.6 Exploiting Structure in the Set Dom

The IFDS algorithm requires that the dataflow domain be the powerset of a finite set
Dom. The elements of Dom are treated independently and equally. The algorithm does
not assume or take advantage of any relationships between the elements of Dom. This is
appropriate for bit-vector dataflow problems. For example, the liveness of variable x at
some program point implies nothing about the liveness of a different variable y.

However, some domains have more structure in the form of subsumption relationships
between elements. In the example type analysis, the fact 〈x, Circle〉 subsumes the fact
〈x, Shape〉, since knowing that x points to an object whose type is some subtype of Circle
implies that its type is also a subtype of Shape. Therefore, if the analysis computes,
for some program point, the set {〈x, Circle〉 , 〈x, Shape〉}, which means that x points to
a subtype of Circle or that x points to a subtype of Shape, then this set provides no
additional information compared to the smaller set {〈x, Shape〉} that could have been
computed; the two sets are equivalent.

Formally, we can define for an arbitrary analysis the partial order a ≤ b, meaning that
a subsumes b (for example, 〈x, Circle〉 ≤ 〈x, Shape〉). We require all of the dataflow
functions to be monotone in the partial order: a ≤ b =⇒ flow(a) ≤ flow(b). We consider
two sets computed by the analysis to be equivalent, written D1 ∼ D2, if every element of

68

each set is subsumed by some element of the other set:

D1 ≤ D2 ⇐⇒ ∀d1 ∈ D1∃d2 ∈ D2 s.t. d1 ≤ d2

D1 ∼ D2 ⇐⇒ D1 ≤ D2 ∧ D2 ≤ D1

The original IFDS algorithm handles analyses in which Dom has structure correctly
but not as efficiently as possible. Because it ignores the subsumption relationship, it
compute {〈x, Circle〉 , 〈x, Shape〉} instead of the equivalent smaller set {〈x, Shape〉}. We
have extended the algorithm to use subsumption relationships in Dom to find smaller
equivalent sets. The extension reduces the size not only of the final result, but of the
intermediate sets during execution of the algorithm. The performance improvement is
cumulative since smaller intermediate sets require less further processing.

The extended algorithm is as precise as the original IFDS algorithm in the sense that
if the algorithms compute dataflow facts Domext and Domorig, respectively, for a given
program point, then Domext ∼ Domorig.

Extending the algorithm to exploit subsumption requires two steps. First, the Prop-
agate function is changed to only add an edge to PathEdge if it does not subsume any
already existing edge, as shown in Figure 4.9.5 Any edges in PathEdge and in the WorkList
subsuming the newly-added edge are redundant and can be removed in line 9.1. Removing
a subsuming edge from the WorkList would be an expensive operation. Therefore, in our
implementation, we remove subsuming edges only from PathEdge. Since PathEdge is a set,
this can be achieved efficiently. Since a subsuming edge is not removed from the WorkList,
at some point in the algorithm the edge will be dequeued (Line 11 in the IFDS algorithm).
At this point, our implementation checks if this edge is still in PathEdge and ignores the
edge if it is not found. This ensures that the algorithm does not process any edge that has
been removed from PathEdge without having to remove such edges from the WorkList.
We have not presented these implementation details in the algorithm so as to not clutter
the algorithm.

Second, the worklist is modified so that subsumed elements are processed before sub-
suming ones. Without an appropriate worklist ordering, the algorithm might do the work
of constructing the full sets and only afterwards discover an element that the existing ele-
ments subsume, making the existing elements unnecessary. Thus only after all of the work
was done would the algorithm discover that the work was not necessary.

5Though it may seem counterintuitive, it is correct to only add elements that do not subsume an existing
element, rather than elements not themselves subsumed by an existing element. The interpretation of the
PathEdge set is a disjunction of the possible types for each variable: any element in the set is a possible
abstraction of runtime behaviour. If a subsumes b, then adding a to a disjunction already containing b

does not change the meaning of the disjunction.

69

procedure Propagate(〈sp, d1〉 → 〈n, d2〉)
begin

9 if 6 ∃ 〈sp, d1〉 → 〈n, d3〉 ∈ PathEdge s.t. d2 ≤ d3 then
Insert e into PathEdge; Insert e into WorkList;

fi
9.1 Remove all edges 〈sp, d1〉 → 〈n, d3〉 s.t. d3 ≤ d2 from PathEdge

and from WorkList
end

Figure 4.9: Extended Propagate Procedure

To define a suitable worklist ordering, we define an estimate function mapping each
element of Dom to an integer with the property that d1 ≤ d2 =⇒ estimate(d1) ≤
estimate(d2). For all analyses we have encountered, we have found it easy to define such
an estimate. For the example type analysis, we use the following estimate: the class Object
has estimate 0, and the estimate of each other class is one less than the estimate of its
superclass. For a given estimate function, the worklist is implemented as a priority queue
that makes the algorithm process edges with the highest estimate first.

This ordering heuristic does not completely guarantee that the algorithm will never
call Propagate with an edge that makes a previous edge unnecessary, but it does ensure
this property in most cases, and works well in practice. Recall that each flow function is
monotonic, so that a ≤ b =⇒ flow(a) ≤ flow(b). We can be sure to compute flow(b) and
flow(a) in the correct order (that is, flow(b) first) by following the ordering heuristic to
remove b from the worklist before a. However, at a control flow merge point, it is possible
that a and b appear at two different control flow predecessors p, p′, which are modelled by
different flow functions. There is no guarantee that a ≤ b =⇒ flowp(a) ≤ flowp′(b), so we
cannot guarantee that it is more efficient to compute flowp′(b) before flowp(a).

4.6.1 Empirical Evaluation

Using the same experimental setup as in Section 4.3.2 we set out to answer the question:

How does taking advantage of subsumption relationships in Dom reduce
the number of dataflow facts that must be processed and the running
time of the IFDS algorithm?

We ran the type analysis three times. In the first run, the subsumption extension was
turned off, so all dataflow facts were propagated regardless of their subsumption relation-

70

ships. In the second run, the subsumption extension was turned on, but the original first-in
first-out (FIFO) worklist was used. In the third run, both the subsumption extension and
the subsumption-aware worklist ordering were used. For each case, we measured the run-
ning time of the analysis and the total number of pairs 〈v, t〉 computed (i.e. the sum over
all instructions of the number of 〈v, t〉 pairs for that instruction). The results are shown
in Figure 4.10 both in tabular form and as bar charts. Empty cells in the table indicate
that the analysis did not complete within 10000 seconds of CPU time and 10 GB of mem-
ory. These are marked as DNT on the bar charts indicating that the analysis Did Not
Terminate within the allotted resources. The subsumption-extended analysis completed
on all of the benchmarks, but the unextended analysis completed on only five benchmarks
within these time and memory limits. Columns 2 and 3 show the number of 〈v, t〉 pairs
without and with the subsumption extension (this number is independent of the worklist
ordering). The same result is shown as a bar chart in the bottom left part of the figure.
Columns 4, 5, and 6 show the running time of the three runs of the analysis (also shown
graphically in the bottom right corner of the figure). On the five benchmarks on which
all algorithms ran to completion, the unextended analysis had to compute 6.3 times as
many pairs as the extended analysis, so the unextended analysis took 55 times as long as
the extended analysis (geometric mean). In the extended analysis, the subsumption-aware
priority queue worklist reduced the running time by 10% (geometric mean over all bench-
marks). Extremes were jython, where the reduction was 43%, and antlr, where the running
time increased by 2% due to the higher cost of maintaining a priority queue compared to a
FIFO list. The subsumption extension presented in this section is very important for the
speed of the analysis and for its ability to analyze programs of significant size.

4.7 Related Work

Sharir and Puneli [62] extended Kildall’s framework of intraprocedural dataflow analy-
sis [44, 43] to two frameworks of context-sensitive interprocedural dataflow analysis, which
they called the call-strings approach and the functional approach. The two frameworks
compute a merge-over-all-valid-paths solution, where a valid path is one in which proce-
dure calls and returns are correctly matched. The call-strings approach treats calls and
returns from a procedure like all other control flow but restricts propagation to valid paths
by tagging propagated dataflow facts with a call string (an abstraction of the active call
stack). In the functional approach, the effects of each procedure are summarized by a
summary function fp : Dom → Dom, where Dom is the dataflow analysis domain. The
summary function is then used at each call site of the procedure to model the effect of

71

Facts (x103) Time (s)
Benchmark w/o subs. w subs. w/o subs. w subs., w/o PQ w subs., w PQ

antlr 546 309 179 44 45
bloat 2037 1544 1518
chart 2817 3377 3197
fop 4408 3247 2847
hsqldb 1758 224 4720 60 60
jython 1015 1225 697
luindex 2900 326 9860 75 70
lusearch 3432 356 9776 78 68
pmd 556 241 211
xalan 1809 218 4813 61 60

Figure 4.10: Effect of taking advantage of subsumption relationships in D.

72

the call. The key operation in the functional approach is function composition. For ex-
ample, to compute the summary function fr of a caller procedure that contains a call site
to a callee procedure, the summary function fe of the callee procedure must be composed
with functions representing the intraprocedural effects of the caller procedure. Although
the functional approach has the potential to be more precise and more efficient than the
call strings approach, a key challenge is devising efficient representations of the summary
functions that are amenable to function composition.

The IFDS framework [54] provides such an efficient representation of summary func-
tions for the functional approach, as discussed in Section 4.1. When the dataflow domain
is P(Dom) for a finite set Dom and all of the dataflow functions are distributive, they can
be compactly represented using bipartite graphs with O(Dom) nodes. Function composi-
tion can be computed efficiently in this representation, and the composition of distributive
functions is also distributive. Thus the IFDS algorithm makes the functional approach
practical for the class of dataflow analyses satisfying these restrictions. The IFDS algo-
rithm has been used to solve both locally separable problems such as reaching definitions,
available expressions and live variables, and non-locally-separable problems such as unini-
tialized variables and copy-constant propagation.

The IDE [60] algorithm6 generalizes IFDS to a wider class of dataflow analyses. Whereas
in IFDS, the dataflow facts are elements of P(Dom), the IDE algorithm allows dataflow
facts that are maps drawn from Dom → L, where Dom is a finite set and L is a finite-
height semi-lattice.7 The IDE algorithm has been used to express copy-constant propaga-
tion and linear constant propagation [60]. The IDE literature calls elements of Dom → L
environments, so the flow functions that are composed in the algorithm are environment
transformers drawn from (Dom → L) → (Dom → L). Provided these transformers are
distributive, they can be represented efficiently using graphs similar to those used in the
IFDS algorithm, with additional labels on the edges of the graph describing the effect of
the edge on elements of L. Whereas the IFDS problem computes reachability along valid
paths, the IDE algorithm additionally evaluates functions L → L along those paths. The
overall structure of both algorithms is very similar, however. All of the extensions pre-
sented in this chapter are equally applicable to the IDE algorithm as well as to the IFDS
algorithm. We have implemented the extensions in both algorithms.

Demand-driven variations of the IFDS and IDE algorithms have been thoroughly stud-
ied [55, 39, 60, 25, 26]. These algorithms differ from the exhaustive algorithms in that

6We use the IDE algorithm in Section 5.1 to compile a list of all transition statements that may
contribute to a match at each body statement.

7The domain P(Dom) is isomorphic to Dom → L if L is chosen to be the two-point lattice.

73

rather than computing all nodes reachable from the start node, they determine whether a
given node n is reachable. These algorithms can be faster when only a small number of
nodes are queried. The algorithms work by exploring reverse paths along the supergraph
from the given node n, by evaluating inverses of the dataflow functions. The demand-
driven computation of reachability implemented by these algorithms is distinct from and
complementary to the demand-driven exploded supergraph construction that we presented
in Section 4.3. The purpose of demand supergraph construction is to avoid constructing
the whole supergraph, which may be much larger than its reachable subgraph; the demand-
driven reachability algorithms do require the whole exploded supergraph to be constructed
ahead of time. Although our extended IFDS algorithm constructs the exploded supergraph
on demand, it then exhaustively computes all nodes reachable along valid paths, rather
than answering reachability queries for specific notes. An interesting direction for future
work would be to combine demand supergraph construction with demand-driven reacha-
bility queries. Such an algorithm appears to be challenging to design and to tune, however.
The key difficulty that we had to overcome in constructing the exploded supergraph on
demand was the need, on line 23 of the original IFDS algorithm, to evaluate the inverse
of the dataflow function. The demand-driven supergraph reachability algorithms require
much more evaluation of inverse dataflow functions.

Others have noticed limitations of the original IFDS algorithm, and mention implement-
ing extensions similar to some of those that we have presented here [29, 30, 56, 63, 69].
Fink et al. [29, 30] used the IFDS algorithm to verify typestate properties of objects. To
verify that an object respects a temporal property, they build precise abstractions of the
objects in the program and aliasing between them. The analysis computes an object ab-
straction containing sets of access paths that must or must-not reference an object. This
abstraction is computed using the IFDS algorithm with extensions for exceptional control
flow and polymorphic dispatch. Though their presentation focuses on the typestate anal-
ysis rather than specifics of their extensions to the IFDS algorithm, their implementation
depends on constructing the exploded supergraph on demand, providing call-site informa-
tion to return flow functions, and exploiting subsumption between elements of D. Shoham
et al. [63] apply the infrastructure of Fink et al. [29, 30], along with its IFDS extensions,
to statically extract finite-state automata of sequences of API calls.

Some shape analyses that have been implemented as instances of the IFDS algorithm
construct the supergraph on demand for scalability. Rinetzky et al. [56] present an efficient
shape analysis for the class of cutpoint-free programs, in which at each procedure call, the
subgraph of the heap reachable in the callee can only be reached in the caller through
arguments of the call. Yang et al. [69] present a different shape analysis that works for
general programs. Both of these analyses are instances of the IFDS algorithm, and both

74

implementations construct only the reachable part of the supergraph.

Several of the analyses just mentioned [29, 30, 63, 56, 69] use partial joins, an extension
similar to subsumption in the analysis domain D that we discussed in Section 4.6. Whereas
a partial join enables the analysis designer to sacrifice precision for efficiency, exploiting
subsumption does not change analysis precision. A partial join may make the analysis
output depend on the order of exploration; exploiting subsumption does not. A partial
join operator †⊔ is a partial function †⊔ : D×D 9 D with the property that if a†⊔b = d, then
each of a and b subsume d. Whenever the partial join IFDS algorithm encounters both a
and b in a given set, it replaces them with d, reducing the size of the set. This operation
is sound, since if each of a and b subsume d, then so does their disjunction. However, it
may reduce precision. For example, if we also define a†⊔c = d, it becomes impossible for
the analysis to distinguish {a, b} from {a, c}, even though neither set subsumes the other
(i.e. {a, b} 6∼ {a, c}). Our subsumption extension can be implemented using the following

definition of a partial join: if a ≤ b, then a†⊔b = b†⊔a = b, else a†⊔b is undefined.

4.8 Using the Extended IFDS Algorithm for Analyz-

ing Tracematches

The extensions to the original IFDS algorithm that we presented in this chapter were born
out of necessity. In this section, we discuss how each extension relates to the tracematch
analysis. The following chapter discusses the implementation in more detail.

In the original IFDS algorithm, the exploded supergraph contains |Inst| × (|Dom|+ 1)
nodes. For the object abstraction, the domain is the set of sets of variables. This makes the
exploded supergraph extremely expensive to compute, and the overall analysis infeasible
on any program of reasonable size. Our extension to the algorithm, to only compute the
reachable subset of the supergraph, alleviates this restriction and allows us to use the IFDS
algorithm for computing the object abstraction on reasonably sized programs.

Our second extension extends the return flow function by making available, to the
end nodes of the callee, caller-side information at the time of the procedure call. The
tracematch analysis relies on this extension. An object is abstracted by the set of local
variables that point to it. Therefore, within a callee, all variables contained in an abstract
object are local to the callee. At end nodes, the analysis must map abstract objects,
containing variables local to the callee, to abstract objects that contain variables local to
the caller. In the unextended IFDS algorithm, the return flow function is defined only in
terms of the facts computed for the end nodes of the callee and is not sufficient to perform

75

this mapping. Our extension makes the mapping possible by providing the function that
mapped caller-side variables to callee-side variables at the time of the call.

As discussed earlier, correctly handling φ nodes within a SSA-based representation is
important to ensure that the analysis does not lose precision compared to their non-SSA
counterparts. Since the tracematch analysis is performed on an intermediate representation
that is in SSA form, it benefits from the semantically correct handling of φ nodes.

The last extension deals with exploiting the structure in the analysis domain to improve
performance by computing a small final result and intermediate sets. This is achieved by
only adding an edge to PathEdge if it does not subsume any already existing edge. Such a
subsumption relationship is easy to define for the object abstraction. An abstract object
o1 subsumes an abstract object o2 (o1 ≤ o2) if o2 is a subset of o1. The object abstrac-
tion implementation discussed in the following chapter uses this subsumption relationship
between abstract objects to improve the performance of the analysis.

4.9 Concluding Remarks

In this chapter, we presented four extensions to the IFDS algorithm that make it applicable
to a wider class of interprocedural dataflow analysis problems, in particular analyses of
objects and pointers. The extended algorithm does not require an exploded supergraph
as input, but builds it on demand, only for those dataflow facts for which it is actually
needed. The extended algorithm provides caller-side context information from before a
procedure call to the flow function that maps callee-side state back to the caller after the
call. The extended algorithm analyzes programs in SSA form as precisely as programs
not in SSA form. The extended algorithm takes advantage of structure in the dataflow
analysis domain to significantly speed up analyses exhibiting such structure. We illustrated
our extensions on a variation of variable type analysis. In the next chapter, we leverage
the extended IFDS analysis to implement the object and state abstractions we discussed
in Chapter 3.

76

Chapter 5

Implementation

To formulate the tracematch analysis as an IFDS problem, we must define the set Dom and
the transfer functions on individual elements of Dom. This cannot be done for the overall
flow function, λρ♯, h♯, σ♯.

〈

JsKρh♯(ρ♯, h♯), JsKσ♯ [ρ♯](σ♯)
〉

, that computes both the object and
tracematch abstractions because it is not distributive. This is because the tracematch
state depends on abstractions of multiple objects, which could come from different control
flow paths. Individually, however, each of the transfer functions for the object abstraction
and for the tracematch state abstraction is distributive. Thus, we can first perform the
object analysis as one instance of IFDS, then use the result to perform the tracematch state
analysis as a second instance of IFDS. Moreover, the decomposition into transfer functions
on individual elements of a finite set Dom comes naturally from the definition of the overall
transfer functions. For the object abstraction, Dom is two copies of the set of all possible
abstract objects, one copy to represent each of ρ♯ and h♯. Thus, the decomposed transfer
function specifies the effect of an instruction on a single abstract object at a time. For
the tracematch state abstraction, Dom is the set of all possible pairs

〈

q,m♯
〉

. Thus, the
decomposed transfer function specifies the effect of an instruction on one pair at a time.

Let us now formally define the decomposed transfer functions. As mentioned earlier,
ρ♯ and h♯ are both defined as Obj♯ = P(Var). Therefore, the value abstraction

〈

ρ♯, h♯
〉

is

defined as two sets of Obj♯. To distinguish elements of the two sets, we use the notation
ρ[o♯] to mean o♯ from ρ♯, and h[o♯] to mean o♯ from h♯. Thus, a given pair

〈

ρ♯, h♯
〉

is

represented using the set decomp(ρ♯, h♯) , {ρ[o♯] : o♯ ∈ ρ♯} ∪ {h[o♯] : o♯ ∈ h♯}. The transfer

77

function for individual elements of Dom ∪ {0} is defined as follows:

JsKρh♯(ρ[o♯]) ,















{ρ[o♯ \ {v}]} if s = v ← e
{ρ[o♯], h[o♯]} if s = e ← v and v ∈ o♯

{ρ[o♯]} if s = e ← v and v 6∈ o♯

{ρ[JsKo♯(o♯)]} otherwise

JsKρh♯(h[o♯]) ,

{

{ρ[o♯ \ {v}], ρ[o♯ ∪ {v}], h[o♯ \ {v}], h[o♯ ∪ {v}]} if s = v ← e
{h[JsKo♯(o♯)]} otherwise

JsKρh♯(0) ,

{

{ρ[{v}]} if s = v ← new
∅ otherwise

The transfer function above uses JsKo♯ as defined earlier for the object abstraction in Fig-
ure 3.2. We reproduce it below for ease of reference:

JsKo♯(o♯) ,























o♯ ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ o♯

o♯ \ {v1} if s = v1 ← v2 ∧ v2 6∈ o♯

o♯ \ {v} if s ∈ {v ← null, v ← new}
o♯ if s ∈ {e ← v, tr(T),body}

undefined if s = v ← e

The following proposition guarantees that when these pointwise transfer functions are
composed, the result is isomorphic to the transfer function JsKρh♯ from Section 3.2

Proposition 6.

JsKρ♯(ρ♯, h♯) =







o♯ : ρ[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







JsKh♯(ρ♯, h♯) =







o♯ : h[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







A proof of the proposition is presented in Appendix A.

Recall that the IFDS algorithm (Tabulate in Figure 4.4) expects the functions flow(n♯),
passArgs(n♯), returnV al(n♯

1, n
♯
2) and callF low(n♯) where n♯ is a node in the ICFG and

78

has the form 〈l, d〉 with l being a label in the program and d ∈ Dom ∪ {0}. Using
the decomposed transfer functions for the value abstraction we define flow(〈l, d〉) as:
flow(〈l, d〉) , JlKρh♯(d)

The analysis for computing the tracematch abstraction operates on the set of possible
tracematch state pairs Dom , Q× (F → Bind♯). The analysis uses the value abstraction
ρ♯ computed in an earlier pass. The tracematch transfer function from Section 3.3 is already
in the decomposed form required by the IFDS algorithm:

JsKσ♯ [ρ♯](σ♯) ,
⋃

〈q,m♯〉∈σ♯∪{0}

JsK[ρ♯]m♯(q,m♯) where JsK[ρ♯]m♯(0) , JsK[ρ♯]m♯(q0, λf.⊤)

In addition, the IFDS algorithm requires functions describing the flow into (passArgs)
and out of (returnVal) procedure calls. These flow functions are also decomposed into
functions acting on individual elements of Dom ∪ {0}. The passArgs function for the
object abstraction is straightforward to define. Within each variable set representing an
abstract object, each argument is replaced with the corresponding parameter, and all other
variables are removed.

Given a substitution r that maps each argument to its corresponding parameter, the
function is defined as:

updateo♯ [r](o♯) ,
{

r(v) : v ∈ o♯ ∩ dom(r)
}

callρh♯ [r]
(

ρ[o♯]
)

,{ρ[update[r](o♯)]}

callρh♯ [r]
(

h[o♯]
)

,{h[update[r](o♯)]}

callρh♯ [r] (0) ,∅

passArgs(〈l, d〉) ,callρh♯ [r](d)

Let us now define the flow out of procedure calls for the object abstraction. In the
unextended IFDS algorithm (Figure 4.2), the return flow function is defined only in terms
of the flow facts computed for the end node of the callee. The difficulty is that in the
callee, each abstract object is represented by a set of variables local to the callee, and it
is unknown which caller variables point to the object. However, the only place where the
algorithm uses the return flow function is when computing a SummaryEdge flow function
for a given call site by composing return ◦ JpK ◦ call, where call is the call flow function, JpK
is the summarized flow function of the callee, and return is the return flow function. The
original formulation of the algorithm assumes a fixed return flow function return for each

79

call site. In the extended algorithm we use a returnVal function that, given a call site and
the computed flow function JpK ◦ call, directly constructs the SummaryEdge flow function.

This summary flow function is also specified pointwise. The pointwise function summ•

takes two arguments d, d′ ∈ Dom ∪ {0}. The overall summary function is defined as:

summ(D) ,
⋃

d∈D∪{0}

⋃

d′∈(JpK◦call)(d)∪{0}

summ•(d, d′)

Intuitively, d is the caller-side abstraction of an object existing before the call, d′ is one
possible callee-side abstraction of the same object at the return site, and summ•(d, d′)
ought to yield the set of possible caller-side abstractions of the object after the call. An
object newly created within the callee is handled by the case d = 0.

The summary flow function for the object abstraction is defined as follows, where vs is
the callee variable being returned and vt is the caller variable to which the returned value
is assigned. If the object that was represented by o♯

c in the caller before the call is being
returned from the callee (i.e. vs ∈ o♯

r), then vt is added to o♯
c. If some other object is being

returned, then vt is removed from o♯
c, since vt gets overwritten by the return value. In the

case of an object newly created within the callee, the empty set is substituted for o♯
c, since

no variables of the caller pointed to the object before the call.

rv(o♯
c, o

♯
r) ,







o♯
c if p does not return a value

o♯
c ∪ {vt} vs ∈ o♯

r

o♯
c \ {vt} vs 6∈ o♯

r

summρh♯

(

cρ
h[o

♯
c], r

ρ
h[o

♯
r]
)

,
{

rρ
h[rv(o

♯
c, o

♯
r)]

}

where each of cρ
h, r

ρ
h is either ρ or h

summρh♯

(

0, rρ
h[o

♯
r]
)

,
{

rρ
h[rv(∅, o

♯
r)]

}

returnV al(〈ep, d1〉 , 〈n, d2〉) ,summρh♯(d2, d1)

The passArgs function for tracematch state applies the update[r] function that was
defined for the object abstraction to each must, may, and negative binding set. Arguments
are replaced by parameters, and non-arguments are removed.

80

updated♯ [r]
(〈

o!, o?
〉)

,
〈

updateo♯ [r](o!), updateo♯ [r](o?)
〉

updated♯ [r]
(

V ♯
)

,updateo♯ [r](V ♯)

callm♯ [r](q,m♯) ,
{〈

q, λf.updated♯ [r](m♯(f))
〉}

callm♯ [r](0) ,∅

passArgs(〈l, d〉) ,callm♯ [r](d)

Next, we must define the returnVal function for the tracematch abstraction. We first
define a function rvd♯(b♯

c, b
♯
r), where b♯

c ∈ Bind♯ represents the binding for some tracematch
parameter f at the call and b♯

r ∈ Bind♯ represents the binding for the same parameter f at
the return site. The function rvd♯ computes a binding for f after the return. Notice that
both b♯

c and the resulting binding from rvd♯ contain variables local to the caller, whereas
b♯
r contains variables local to the callee. The function rvd♯ is defined analogously to the

function rv for the object abstraction. As before, we use vs to specify the callee variable
being returned and vt for the caller variable to which the returned value is assigned.

Elements of Bind♯ are either a positive or negative binding. For the state abstraction,
a positive binding abstracts a runtime object using a pair

〈

o!, o?
〉

of a must set o! and a
may set o?. A negative binding on the other hand is a set of variables that do not reference
the object bound by the tracematch parameter. When both b♯

c and b♯
r represent abstract

objects (positive bindings), if the object that was represented by oc in the caller before the
call is being returned from the callee (vs ∈ o!

r), then vt points to the object after the call,
i.e. vt is added to both o!

c and o?
c. If the object being returned might have been represented

by oc before the call, i.e. vs is in o?
r but not in o!

r, then we introduce the same uncertainty
in oc by adding vt to o?

c and removing it from o!
c. If some other object is being returned,

then vt is removed from both o!
c and o?

c. Formally:

rvd♯

(〈

o!
c, o

?
c

〉

,
〈

o!
r, o

?
r

〉)

,















〈

o!
c, o

?
c

〉

if p does not return a value
〈

o!
c ∪ {vt}, o

?
c ∪ {vt}

〉

if vs ∈ o!
r

〈

o!
c \ {vt}, o

?
c ∪ {vt}

〉

if vs 6∈ o!
r ∧ vs ∈ o?

r
〈

o!
c \ {vt}, o

?
c \ {vt}

〉

if vs 6∈ o!
r ∧ vs 6∈ o?

r

If both b♯
c and b♯

r are negative bindings, then, b♯
c is a set V ♯

c that represents the set of caller

side variables that reference objects not bound by f , and b♯
r is a set V ♯

r that represents
the set of callee side variables that reference objects not bound by f . Therefore, if the

81

returned variable vs is in V ♯
r , vs does not reference the bound object. Hence, after the

return, the assigned variable vt does not reference the bound object either; vt is added to

the caller-side negative binding. Alternately, if vs is not in V ♯
r , then vt should not be in the

caller-side negative binding after the return. The function for negative bindings behaves
exactly the same as the function rv used in the object abstraction.

A last case to handle in function rvd♯ is when b♯
c is a negative binding and b♯

r is a
positive binding 1. The result must be a positive binding

〈

o!, o?
〉

. The set o! represents the
set of caller side variables that reference the bound object. Before the call, no variables
are known to reference the bound object, whereas at the return site, variables in o!

r must
reference the bound object. Hence, rv(∅, o!

r) computes the set of caller side variables that
must reference the bound object after the call. To compute the set of caller side variables
that might reference the bound object, recall that before the call, parameter f was mapped

to a negative binding V ♯
c . Therefore, any caller side variable other than variables in V ♯

c

might reference the bound object. Therefore, rv(Varcaller \ V ♯
c , o?

r) computes the caller side
variables that might reference the bound object after the call. Formally:

rvd♯

(

V ♯
c , V ♯

r

)

,rv(V ♯
c , V ♯

r)

rvd♯

(

V ♯
c ,

〈

o!
r, o

?
r

〉

)

,

〈

rv(∅, o!
r), rv(Varcaller \ V ♯

c , o?
r)

〉

Having defined rvd♯ , we now define the returnVal function using the summary function
summm♯(d2, d1), where d2 is the caller-side state pair before the call and d1 represents a
callee-side pair at the return site for the same automaton version that was abstracted by
d2 at the call. The summary function returns a caller-side state pair after the call. Recall
that each state pair is an element from the domain Q× (F → Bind♯) i.e. a pair containing
the state and a map from each tracematch parameter to an element of Bind♯ for the
automaton version this pair abstracts.

The state of the generated caller-side pair after the call is the state from d1, the pair
at the return site. In the formal definition below, this is state qr. For each tracematch
parameter f , we apply the function rvd♯(m♯

c(f),m♯
r(f)), where the parameters respectively

represent the caller and callee side elements from Bind♯ for parameter f . For an automaton

1The case that b♯
c is a positive binding and b♯

r is a negative binding is not possible since positive bindings
are lower than negative bindings in the bind lattice Bind♯.

82

version that is newly created in the procedure, we substitute d2 with 0 and m♯
c(f) with ⊤.

returnV al(〈ep, d1〉 , 〈n, d2〉) ,summm♯(d2, d1)

summm♯

(

0,
〈

qr,m
♯
r

〉)

,{
〈

qr, λf.rvd♯(⊤,m♯
r(f))

〉

}

summm♯

(〈

qc,m
♯
c

〉

,
〈

qr,m
♯
r

〉)

,{
〈

qr, λf.rvd♯(m♯
c(f),m♯

r(f))
〉

}

This completes the definition of the returnVal function for the tracematch abstraction.

Finally, the callF low(n♯) function for the IFDS algorithm is defined as the empty set
for both the object and tracematch state abstraction.

5.1 Collecting Useful Update Shadows

The analysis presented thus far can prove that the tracematch will never be in an accept-
ing state at a given body statement. If this can be proved for all body statements in the
program, the property expressed by the tracematch has been fully verified statically, and
all dynamic instrumentation can be removed. However, the analysis may not be successful
in ruling out all body statements. In this case, it is useful to compile a list of all transition
statements that may contribute to a match at each body statement. Such a list is useful
both for static verification and for optimizing a dynamic implementation. In static verifi-
cation, this list helps the user identify the source of the bug, or to decide that the error
report is a false positive. For example, if a collection is updated during iteration, the body
statement is the failing next call on the iterator; more useful to the programmer would be
the location of the collection update. In optimizing the dynamic tracematch implementa-
tion, all transition statements not leading to a potentially matching body statement can
be removed, thereby reducing the runtime overhead of matching.

The analysis can be extended to keep track of relevant transition statements by using
the Interprocedural Distributive Environment [60] (IDE) algorithm instead of IFDS. The
IDE algorithm is an extension of IFDS to analysis domains of the form Dom → L, where
Dom satisfies the same conditions as for IFDS and L is a lattice of finite height. Indeed,
IFDS is a special case of IDE with L chosen as the two-point lattice ⊥ ⊑ ⊤. The IFDS
version of the tracematch analysis presented thus far determines only whether a given pair
〈

q,m♯
〉

is (⊤) or is not (⊥) present at each program point. To keep track of transition

statements leading to a match, we keep the same set Dom = Q×(F → Bind♯), and define
L to contain ⊥ along with all subsets of the set of all transition statements. For each pair

83

〈

q,m♯
〉

present at a program point, the IDE version of the analysis maintains the set of
transition statements that may have contributed to its presence.

The IDE transfer functions are extensions of the IFDS transfer functions that we have
already presented. The transfer function for every statement other than a transition state-
ment keeps the set of relevant transition statements for each tracematch state pair un-
changed. The transfer function for a transition statement adds the current transition
statement to the set of relevant transition statements for each tracematch state pair. There
is one exception: when the transition statement transforms a tracematch state pair

〈

q,m♯
〉

to itself, the transition statement is not added to the set of relevant transition statements
for that pair. A transition statement that does not change the concrete tracematch state
at run time is not considered relevant because removing it would not change the program
behaviour. Such a statement occurs when the tracematch regular expression contains a
subexpression of the form a∗, which causes a self-loop in the finite automaton. In what
follows, we formally define the IDE transfer functions.

Like the IFDS algorithm, the IDE algorithm uses a decomposed transfer function. In
the IDE algorithm, the pointwise transfer function has the form JsK• : (Dom ∪ {0}) →
Dom → L → L. Given a pair of elements d, d′ from Dom, the pointwise transfer function
yields a transformer from L to L to be used to transform the lattice value associated with
d to a lattice value to be associated with d′. The pointwise transfer function uniquely
defines the overall transfer function JsK : (Dom → L) → (Dom → L) as JsK(f) ,

λd′.
⊔

d∈Dom∪{0}JsK•(d)(d′)(f(d)). Given an element d′, the transfer function applies the

pointwise transfer function JsK• to each element of Dom ∪ {0}.

The pointwise transfer function JsKm♯ from Section 3.3 can be re-used to implement the
tracematch state analysis within the IDE framework. Statements other than tr(T) do not
change the set of transition statements relevant to a match, so the transfer function yields
the identity when d′ ∈ JsKm♯(d) and the bottom function λl.⊥ otherwise:

JsKσ♯{} [ρ♯](q,m♯)(q′,m′♯) ,

{

λl.l if
〈

q′,m′♯
〉

∈ JsKm♯ [ρ♯](q,m♯)
λl.⊥ otherwise

The call and return flow functions are generalized in the same way from those used in
the IFDS version of the algorithm.

The transfer function for a transition statement is similar, but in addition, its label ℓ
is added to the set of relevant transition statements associated with each generated pair
〈

q′,m′♯
〉

.

84

Jℓ : tr(T)Kσ♯{} [ρ♯](q,m♯)(q′,m′♯) ,






λl.l ⊔ {ℓ} if
〈

q′,m′♯
〉

∈ Jtr(T)Km♯ [ρ♯](q,m♯) ∧
〈

q,m♯
〉

6=
〈

q′,m′♯
〉

λl.l if
〈

q′,m′♯
〉

∈ Jtr(T)Km♯ [ρ♯](q,m♯) ∧
〈

q,m♯
〉

=
〈

q′,m′♯
〉

λl.⊥ otherwise

In the second case above, when
〈

q,m♯
〉

=
〈

q′,m′♯
〉

, the label is not added. As discussed
earlier, a transition statement that does not change the concrete tracematch state is not
considered relevant because removing it would not change the program behaviour. To
soundly exclude such a transition statement, we must ensure that it does not change the
concrete state. The following proposition assures us that this is the case when the transition
statement does not change the abstract state.

Proposition 7. If 〈q2,m2〉 ∈ e♯[T, ρ](q1,m1); 〈q1,m1〉 6= 〈q2,m2〉; ρ♯ overapproximates ρ;

and 〈q1,m1〉 Rm[ρ]
〈

q♯
1,m

♯
1

〉

; then there exists
〈

q♯
2,m

♯
2

〉

∈ Jtr(T)Km♯ [ρ♯](q♯
1,m

♯
1) such that

〈

q♯
1,m

♯
1

〉

6=
〈

q♯
2,m

♯
2

〉

and 〈q2,m2〉 Rm[ρ]
〈

q♯
2,m

♯
2

〉

.

A proof of the proposition is provided in Appendix A.

It may happen that a transition statement in a loop changes the tracematch state in the
first iteration but not in any subsequent iteration. An optimized dynamic implementation
should execute the first, relevant transition, but should avoid executing the redundant
transitions in subsequent iterations of the loop. This can be achieved by peeling one
iteration of every loop containing a transition statement prior to performing the IDE
analysis. The analysis will mark the transition as relevant in the peeled iteration and
unnecessary in the remaining loop.

5.2 Empirical Evaluation

We empirically evaluated the precision of our analysis and compared it to Bodden et al.’s
existing tracematch analysis [12], which uses may-point-to information to rule out possi-
bly matching transition statements. The evaluation was performed on the tracematches
from [12] plus one new one (FailSafeEnumHashtable), summarized below:

ASyncIteration: A synchronized collection should not be iterated over without owning
its lock.

85

FailSafeEnum: A vector should not be updated while enumerating it.

FailSafeEnumHashtable: A hashtable should not be updated while enumerating its keys
or values.

FailSafeIter: A collection should not be updated while iterating over it.

HasNext: The hasNext method should be called prior to every call to next on an iterator.

HasNextElem: The hasNextElem method should be called prior to every call to
nextElement on an enumeration.

LeakingSync: A synchronized collection should only be accessed through its synchronized
wrapper.

Reader: A Reader should not be used after its InputStream has been closed.

Writer: A Writer should not be used after its OutputStream has been closed.

We applied the above tracematches to the benchmarks antlr, bloat, hsqldb, luindex,
jython, and pmd from the DaCapo benchmark suite, version 2006-10-MR2 [10]. Most of
the benchmarks use reflection to load key classes. We instrumented the benchmarks using
ProBe [45] and *J [27] to record actual uses of reflection at run time, and provided the
resulting reflection summary to the static analysis. The jython benchmark generates code
at run time which it then executes; for this benchmark, we made the unsound assumption
that the generated code has no effect on aliasing or tracematch state.

Each of the 6 benchmarks was analyzed with each of the 9 tracematches, a total of 54
cases (tracematch/benchmark pairs). The 54 cases evaluated contained a total of 5409 final
transition statements. We define a transition statement 〈a, b〉 as final if the tracematch au-
tomaton contains a transition to an accepting state on a. Thus, a match can be completed
only at a final transition statement and implies a violation of the specified property. We
count only final transition statements in the reachable part of the call graph. Of these,
our analysis proved that 4815 (89 %) will never complete a match. Thus, a programmer
wishing to check the tracematch properties need only examine 11 % of the uses of the
features checked by the tracematches.

Bodden’s analysis comprises three stages. The first stage (QC) considers only the set of
tracematch symbols present in the program; if every word satisfying the tracematch pattern
contains a given symbol and that symbol does not appear anywhere in the program, the
tracematch cannot match and hence the safety property, cannot be violated. The second

86

stage (FI) considers the may-point-to sets of the variables in each transition statement. If a
sequence of transitions is to lead to a violation, they must have consistent bindings, which
is possible only if their points-to sets overlap. Bodden observed this stage to reduce the
number of matching transition statements in seven of nine cases (tracematch/benchmark
pairs); in one case, it completely eliminated all possibility of a match. The third stage (FS)
considers the order in which symbols occur during execution, but does not coordinate this
order with the flow of individual objects; Bodden observed no precision improvement over
FI. Since our analysis subsumes QC and the precision of FI and FS is equivalent in practice,
the evaluation in this section compares our analysis with FI.

Of the 54 cases, 36 actually used the features described by the tracematch, in the sense
that QC did not rule out a match. These cases contained 1509 final transition statements,
and our analysis proved that 915 will never complete a match and hence do not violate the
tracematch property. Each of the 36 cases is represented by a circle in Figure 5.1. Beside
each circle is a fraction giving the number of transition statements at which a match could
not be ruled out and the total number of final transition statements. In 15 of the 36 cases,
our analysis ruled out all matches; i.e. it successfully verified that the benchmark is free
of any violations of the property specified by the tracematch. These cases are represented
by the 15 fully white circles. In comparison, the FI analysis ruled out all matches in only
1 of the 36 cases where QC was unsuccessful (LeakingSync/Luindex).

However, the two analyses are complementary in that they are successful on different
transition statements. Our analysis fares better when the temporal order in which events
occur is relevant in ruling out the match. When the feature monitored by the tracematch is
used in many distinct ways in different parts of the program, like iterators, FI is sometimes
better at distinguishing the different uses based on the allocation sites of the objects
involved. More specific examples are discussed in the rest of this section. The two analyses
can be run together, and the combination is more precise than each analysis on its own.

5.2.1 Discussion of Results

In this section we take a closer look at some of the results from Figure 5.1. Of the 21
remaining cases in which all violations could not be removed, 4 involve the HasNext and
HasNextElem tracematches. In one case (HasNext/pmd), all possible matches are actual
violations of the tracematch pattern. The code uses isEmpty to ensure that a collection is
not empty, then calls next on an iterator without calling hasNext first.2 Similar violations

2The HasNext tracematch could be extended to check if either hasNext or isEmpty has been called.
However, isEmpty must be invoked on the collection being iterated. This requires changing the tracematch

87

antlr bloat hsqldb jython luindex pmd

ASyncIteration
0
37

FailSafeEnum
8
43

0
3

24
26

5
9

0
3

FailSafeEnumHashtable
8
43

3
3

24
26

4
9

FailSafeIter
297
316

0
1

14
15

6
11

44
49

HasNext
18
315

0
1

4
15

0
11

2
49

HasNextElem
0
43

0
1

0
3

11
26

0
9

0
3

LeakingSync
0

200

Reader
1
10

18
22

5
13

0
3

2
6

Writer
25
77

71
104

0
3

0
1

Figure 5.1: Fraction of final transition statements that may complete a match. The white
part of each circle represents those that cannot complete a match. The black part represents
those at which a match cannot be ruled out, due either to analysis imprecision or an actual
violation. The gray part represents those at which a violation is known to exist.

occur in the other three cases (in jython and in HasNext/bloat). In addition, these cases
contain false positives due to iterators stored only in fields and not local variables. In the
HasNext and HasNextElem tracematches, flow-sensitive tracking of individual objects is
crucial to ensure that the hasNext call occurs on the same object as the calls to next.
Thus, while our analysis ruled out matches at 441 of the 476 final transition statements,
FI could not rule out a match at any of them.3

In 11 cases involving the FailSafe* tracematches, the analysis found both violations and
likely false positives due to aliasing. Some collections, such as java.util.Hashtable, keep
a singleton enumeration and iterator which are reused every time the collection is empty.

to bind both the iterator and the collection, making the tracematch contain multiple parameters hence
making the tracematch another example of a temporal property that involve multiple interacting objects.

3Some transition statements were ruled out in [12] because they were determined to be in code that
could not be reached at run time. Our evaluation considers only reachable code.

88

This violates the tracematch because an iterator is being used even though a collection
with which it was previously associated has since been updated. This accounts for many
but not all of the detected matches; the associated transition statements are shown in gray
in Figure 5.1.

At many of the other transition statements, a match cannot be ruled out because a
loop iterating over a collection contains calls leading to very deep call chains comprising
many methods, some of which update collections. The analysis is not able to prove that
all these collections are distinct from the collection being iterated. In some of these loops,
may point-to information would help: FI ruled out matches at 19 transition statements in
3 cases that our analysis did not. On the other hand, our analysis ruled out matches at 54
transition statements in 2 cases that FI did not. Since so many methods are transitively
called from the loop, it is difficult to examine them all by hand to determine whether any
of the updated collections may in fact alias the iterated collection.

The cases involving the Reader and Writer tracematches can be classified into three
categories. The first category includes readers/writers of files, which are closed after the
last access. In these instances, our analysis proved all accesses occur before the close,
thereby ruling out a violation. Since FI ignores the order of the events, it could not rule
out a violation. The second category includes readers/writers of the standard input/output
streams. These are never closed, and the FI analysis proves this fact, thus ruling out a
match. These streams are often referenced only by their static field in the System class,
and not by any local variables. Therefore, our analysis cannot distinguish them from other
readers/writers on which close is called, and cannot rule out a match. The third category
includes readers/writers for which neither analysis can rule out a violation. We noticed the
following pattern in several benchmarks. A loop repeatedly calls a helper method that uses
the reader/writer. Both the loop and the helper method contain a try block. An exception
during the input/output operation is caught in the helper, which closes the stream and
re-throws the exception. The try block protecting the loop catches the exception, thereby
terminating the loop and preventing any further use of the reader/writer. Because our
analysis does not distinguish normal and exceptional returns, it conservatively assumes
that the loop could continue iterating and therefore use the reader/writer after the stream
was closed. Overall, our analysis proves three Reader/Writer cases correct compared to
two for FI, but FI rules out slightly more final transition statements than our analysis.

In summary, although our analysis is often more precise than FI, the two are comple-
mentary in that each is more effective than the other on certain code patterns. In many
practical cases, our analysis is precise enough to rule out a match. However, there re-
main cases where the abstraction loses all local variable references to an object. Thus, our
analysis would benefit from some information about pointers from within the heap.

89

Chapter 6

Optimizations

As discussed in Section 3.2 we use the alias set analysis to create a static abstraction for the
objects in the program. A key reason for our choice was that unlike a shape analysis which
emphasizes the precise relationships between objects, and is expensive to model, an alias
set analysis, like a pointer abstraction, focuses on local pointers to objects. This makes
computing the alias set abstraction faster than shape analyses. However, since the analysis
is flow-sensitive and inter-procedural it is still considerably slower than most points-to
analyses, despite the use of the efficient IFDS algorithm. In this chapter we describe two
ways to further speed-up the alias set analysis; callee summaries providing effect and return
value information and caller summaries that make conservative assumptions at method
entry.

Flow sensitive analyses take into account the order of instructions in the program and
compute a result for each program point. Although typically more precise than those that
are insensitive to program flow, flow-sensitive analyses often have longer execution times
than their flow-insensitive counterparts. Computing such precise information for each
program point is often overkill; clients of the analysis need precise results only at specific
places. Long segments of code might exist where a client neither queries the analysis
nor cares about its precision. As an example, consider the code in Figure 6.1 in light of
the example tracematch discussed in Chapter 1. The tracematch analysis is a client of
the alias set analysis as it requires flow-sensitive tracking of individual objects to statically
determine runtime objects, in this case involved in operations on lists and iterators. Notice
that precise alias sets are required only when operations of interest occur. For the example,
these are the two calls to next at lines 7 and 10 and the call to add at line 11. On the other
hand, a typical alias set analysis computes flow-sensitive results for all program points even
though it is likely to be queried only at a few places.

90

 class Foo {

 void foo(){

1 List a = new ...

2 addElements(a)

3 List b = new ...

4 bar(a,b)

5 ...

 }

 }

 void bar(List a, List b){

6 Iterator it = a.iterator

7 x = it.next()

8 method3(x)

9 method7(b)

10 ... = it.next()

 }

 11 b.add()

1
2

3

4 5

6

7 8

Figure 6.1: Sample code illustrating the use of callee and caller summaries

In such situations, we propose the use of a selectively flow-sensitive alias set analysis
that uses callee method summaries as a cheaper option. Only methods that contain a point
of interest (which we call shadows), or that transitively call methods containing shadows,
are analyzed flow-sensitively1. For all other methods, callee summaries providing effect
information for the parameters of a method invocation and the possible return value are
used. If callee summaries were available, only methods 1, 2, 7 and 8 from Figure 6.1 would
have to be analyzed flow-sensitively since they contain shadows or call methods contain-
ing shadows. For the entire segment of code represented by methods 3-6, flow-sensitive
information is not required and callee summaries can be used instead. In particular, while
analyzing method 2 the alias set analysis need not propagate the analysis into method 3
at line 8 and instead its callee summary can be used. From the client’s perspective this is
acceptable since it does not query any program point within methods 3-6. In fact, as long
as callee summaries contain sufficient information so that foregoing flow-sensitive analysis
of methods without shadows does not affect alias set precision in methods with shadows,
the client’s precision will be unaffected. Details of the construction of callee summaries
and their use in the alias set analysis are given in Section 6.2.

The advantage any static analysis derives from interprocedurally analyzing a program
is that the analysis need not make conservative worst case assumptions at method entry.
This certainly holds true for the alias set analysis. At a callsite, the analysis ensures
an appropriate mapping from the caller scope arguments to the callee scope parameters
so that alias sets in the callee precisely represent aliasing at the start of the method.

1For the tracematch analysis, the shadows are the transition statements.

91

However, when efficiency is a bigger concern, we propose the use of caller summaries which
are conservative and sound approximations of incoming alias sets. A direct benefit of
using such summaries at method entries is that methods that were previously analyzed
flow-sensitively only to obtain precise entry mappings for methods containing shadows no
longer require flow-sensitive analysis. For example, since methods 1 and 7 in Figure 6.1
were analyzed flow-sensitively only because they contain calls to methods 2 and 8, with
the added use of caller summaries this is no longer required. Only methods 2 and 8 will
be analyzed flow-sensitively with caller summaries used to seed their initial alias sets and
callee summaries used at all callsites.

Unlike callee summaries, caller summaries can affect the precision of the alias set ab-
straction since important aliasing information available at a particular callsite might not
be propagated into the callee and instead some conservative assumption is made. The
degree to which the use of caller summaries affects precision is dependent on the choice of
caller summary as well as the client analysis.

The remainder of this chapter is organized as follows:

• In Section 6.1 we summarize the alias set analysis as discussed in Chapters 3 and 5.

• In Section 6.2 we describe callee method summaries for the alias set analysis which
provide sufficient information at a method callsite to forego flow-sensitive analysis of
the callee without a loss of precision in the caller. We present algorithms to compute
such summaries and a transfer function that employs the computed summary.

• Section 6.3, introduces the simplest caller summary as a proof of concept to using such
summaries to flow-sensitively analyze even fewer methods. A transfer function for
the alias set abstraction that uses both callee and caller summaries is also presented.

• We empirically evaluate the effect of caller summaries on the precision of the trace-
match analysis and present, in Section 6.4, precision metrics for the alias set abstrac-
tion. The effect on the running time of different incarnations of the alias set analysis
is discussed.

• We end with some concluding remarks in Section 6.6.

6.1 Alias Set Analysis

We assume that the program has been converted into an SSA-based intermediate repre-
sentation containing the following kinds of instructions:

92

s ::= Copy(v1 ← v2) | Store(h ← v) | Load(v ← h) |
Null(v ← null) | New(v ← new) | Call(m(p0 · · · pk))

The interprocedural control flow graph is created in the standard way; nodes represent
instructions and edges specify predecessor and successor relationships. Each procedure
begins with a unique Start node and ends at a unique Exit node. By construction, a call
instruction is divided into two nodes; call and return. A call edge connects the call node
in the caller with the start node in the callee. A return edge connects the exit node in
the callee with the return node in the caller. A CallFlow edge connects a call node to its
return node completely bypassing the callee (Figure 6.2). This edge is parameterized with
the method it bypasses and the variable the return from the call is assigned to.

Start foo

New(y)

call(bar(x,y))

Start bar

Load(z,x.f)

Exit
return

Exit

CallFlow[bar,y]

call

return

Copy(x,y)

Copy(ret,z)

 void foo(){

 y = new ...

 x = y

 y = x.bar(y)

 }

Object bar(Object y){

 z = x.f

 return z

}

Figure 6.2: Interprocedural control flow graph with call, return and CallFlow edges.

The intra-procedural transfer functions for the alias set abstraction were presented in
Figure 3.2 which we reproduce in Figure 6.3. In Figure 3.3 we gave a detailed example
illustrating the effect of the transfer functions on a sequence of statements. In Chapter 5 we
extended these transfer functions in terms of the IFDS functions for flow into (passArgs)
and out of (returnVal) procedure calls. The same functions are reproduced in Figure 6.3
but this time in terms of the transfer functions for call and return where the overall effect
of calling a function m is JreturnK ◦ JmK ◦ JcallK for each possible callee. The function
JcallKo♯ and JreturnKo♯ are the same as updateo♯ [r](o♯) and rv(o♯

c, o
♯
r) from Chapter 5.

93

JsK1
o♯(o

♯) ,























o♯ ∪ {v1} if s = v1 ← v2 ∧ v2 ∈ o♯

o♯ \ {v1} if s = v1 ← v2 ∧ v2 6∈ o♯

o♯ \ {v} if s ∈ {v ← null, v ← new}
o♯ if s = h ← v

undefined if s = v ← h

focus[h♯](v, o♯) ,

{ {

o♯ \ {v}
}

if o♯ 6∈ h♯
{

o♯ \ {v}, o♯ ∪ {v}
}

if o♯ ∈ h♯

JsK1
O♯ [h

♯](O♯) ,

{ ⋃

o♯∈O♯JsK1
o♯(o

♯) if s 6= v ← h
⋃

o♯∈O♯ focus[h♯](v, o♯) if s = v ← h

JsK1
ρ♯(ρ

♯, h♯) , JsK1
gen ∪ JsK1

O♯ [h
♯](ρ♯)

JsK1
gen ,

{

{{v}} if s = v ← new
∅ otherwise

JsK1
h♯(ρ

♯, h♯) , JsKO♯ [h♯]

({

h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯} if s = h ← v
h♯ otherwise

)

JsK1
ρh♯(ρ

♯, h♯) ,
〈

JsK1
ρ♯(ρ

♯, h♯), JsK1
h♯(ρ

♯, h♯)
〉

JcallK1
o♯(o

♯) ,
{

r(v) : v ∈ o♯ ∩ dom(r)
}

rv(o♯
c, o

♯
r) ,







o♯
c if p does not return a value

o♯
c ∪ {vt} vs ∈ o♯

r

o♯
c \ {vt} vs 6∈ o♯

r

JreturnK1
o♯(o

♯
c) , {rv(o♯

c, o
♯
r) : o♯

r ∈ JmK ◦ JcallK}

Figure 6.3: Transfer functions on individual alias sets.The superscript1 identifies the version
of the transfer function; we will present modified versions of the transfer functions later.We
illustrated the effect of the transfer functions using the example statement sequence shown
in Figure 3.3.

94

6.2 Callee Summaries

Although precise, the alias set analysis in its original form is expensive to compute. Using
efficient data structures [50] and algorithms [54] only improves the efficiency to some ex-
tent. In situations where a faster running time is desired, we propose the use of method
summaries. In this section, we discuss the use of callee summaries that decrease the com-
putation load without any effect on a client analysis.

The key insight is that clients of a flow-sensitive whole program analysis often need
precise information at a small subset of program points. On the other hand, a flow-
sensitive program analysis computes precise information at all program points and therefore
computes a lot more information than required. Computing this unnecessary information
is wasteful and should be avoided. We use callee summaries to achieve this.

Before we explain the contents of a callee summary, let us see how the alias set analysis
can use such summaries. Consider a callsite, with a target method m. If an oracle predicts
that a client of the alias set analysis never queries any program point within m or any
methods transitively called by m, then computing flow-sensitive alias results for all methods
in the transitive closure of m is unnecessary. Instead a callee summary, which provides
information regarding the parameters and return value, could be used. For many client
analyses such an oracle exists. For example, in the case of the tracematch analysis, the
shadows are transition statements, i.e., operations that change the state an object is in
and are statically known ahead of time.

The key requirement we put on a callee summary is that it should enable the analysis
to bypass flow-sensitively analyzing a method without impacting precision in the caller,
i.e., the alias set abstraction computed after a callsite should be the same irrespective of
whether the method was analyzed flow-sensitively or whether a callee summary was used.
Figure 6.4 provides a summary of the contents of such a summary. The summary is divided
into escape (αesc) and return value (αret) information.

To determine the contents of a callee summary, one must understand the effect of a
method call on the alias set abstraction. First, the callee might escape the receiver or
arguments of the call. This might occur directly, when a callee’s parameter is stored in a
field, or indirectly, when a parameter is copied to a local reference which is then stored. In
Figure 6.5, the function foo escapes both its parameters, p directly via a store to field f
of class Foo and q indirectly by first copying the reference to y and then storing in Foo.f .
Therefore, a callee summary analysis must track such copies and ultimately provide a list
of all parameters that might have escaped.

Second, the return value from the callee might be assigned to a reference in the caller.

95

Escape Information (αesc)
params set of parameters (including receiver) that may be stored into

the heap by m or procedures transitively called by m

Return Value Information (αret)
params set of parameters (including receiver) that might be returned by

m.
heap might an object loaded from the heap be returned?
fresh might a newly created object be returned?
escaped might a newly created object be stored in the heap before being

returned?
null might a null reference be returned?

Figure 6.4: Callee Summary for a callsite with target method m

To see how this might affect aliasing in the caller, consider once again the example in
Figure 6.5. The function foo returns the pointer y which is a copy of q, one of foo’s

parameters. Therefore, the returned reference is the argument which is mapped to q, in
this case variable b. At run time, the effect of calling foo is that after the call, a and b must
point to the same object. Let us examine the effect on the abstraction at the callsite if the
interprocedural transfer functions from Figure 6.3 were used. JcallK determines that b and
q point to the same location and JfooK determines that q and y point to the same location.
This leads JreturnK to infer that since b and y point to the same location and y is assigned
to a, b and a must point to the same location after the call; an alias set containing both
a and b is created in the caller. In order to forego flow-sensitive analysis of foo in favour
of a callee summary, the summary must specify which of the callee’s parameters might
be returned so that similar updates can be made at the callsite. Other possible returned
references include references to newly created objects or those loaded from the heap.

6.2.1 Computing Callee Summaries

The algorithm to compute the set of parameters that escape (αesc) from a method m is
presented in Figure 6.6. The algorithm takes as input a SSA-based control flow graph
of the method and returns a set of indices which refer to the positions of parameters in
the method’s signature which might have escaped 2. At Line 1 the algorithm invokes the

2Recall from Section 6.1 that we write a function call as m(p0, · · · pk) where p0 denotes the receiver of
the call and p1 to pk are the arguments.

96

bar(){

 Object a = new ...

 Object b = new ...

 a = foo(a,b)

 ...

}

foo(Object p, Object q){

 Foo.f = p;

 y = q;

 Foo.f = y;

 return y;

}

Figure 6.5: Example illustrating the effect of a method call on alias sets in the caller.

helper function getSeededWorklist (Figure 6.7) which populates and returns a worklist
with variables that either escaped through a store or through a function call from within
m. The algorithm then proceeds through each variable v in the worklist. Using the SSA
property that each variable has a single reaching definition, the algorithm retrieves the
unique definition def of v (line 6). If def represents the Start node, then v is a receiver
or a parameter and the appropriate index is added to the mayEscape set. For a copy
instruction v ← s, s is added to the worklist, since v and s both point to the same
escaped object. Notice that the order between the instruction that escapes v and the copy
from s to v does not matter, since in SSA-form once a variable is defined its value remains
unchanged. If variable v is assigned the return value from a function call, then all arguments
corresponding to the parameters that might be returned are added to the worklist since
these might have escaped (lines 10-14). A SSA φ instruction acts as a multi-variable copy
statement.

Figure 6.8 presents the algorithm to compute the return value summary for a function
m. The algorithm maintains a worklist of variables that might be returned. The worklist is
seeded with the unique return variable of m. For each variable v in the worklist, depending
on its unique definition, the return value summary and the worklist are updated. In lines
10-12, if v is defined at the Start node, then, since a Start node defines the receiver or
parameters of method m, the corresponding index of the parameter is stored in params.
This represents the situation when the receiver or a parameter to m might be returned.
Lines 13-21 update the return value summary if v is assigned the return value at a callsite.
The return value summaries of all possible target methods at the callsite are consulted and
the fresh, heap and null fields of the summary of m appropriately updated. If any of
the return value summaries indicate that a receiver or parameter might be returned, the
corresponding argument is added to the worklist. Copy and Phi instructions add sources
of assignments to the worklist. Load, New and Null instructions require an update to the
corresponding heap, fresh and null fields of the return value summary.

97

input: SSA-based CFG of method m
output:mayEscape
declare mayEscape : Set[Int], WorkList: FIFOWorklist[Var], seen : Set[Var]

1 WorkList: getSeededWorklist(cfg)

2 while WorkList not empty

3 Select and Remove variable v from WorkList

4 if seen contains v then continue fi

5 add v to seen

6 def = uniqueDef(cfg,v)

7 switch def

8 case def = Start(p0 · · · pk): mayEscape += { i : pi = v } end case

9 case def = Copy(v,s): add s to WorkList end case

10 case def = CallSite(args, retval):

11 foreach tgt ∈ callees(def) do

12 WorkList += { args(i) : i ∈ RetValSummaries(tgt).params }

13 od

14 end case

15 case def = Phi :

16 foreach Copy(v,s) ∈ phi.defs(v) do add s to WorkList od

17 end case

18 end switch

19 od

Figure 6.6: Algorithm to compute callee escape summary (αesc) for a method m

The algorithm maintains a set seen that is updated (Line 7) every time a variable v is
processed. This ensures that we process a variable that makes its way into the WorkList
only once. Once the WorkList is empty, the seen set contains all variables that flow to
the return value. The last line (Line 30) of the algorithm uses the seen set to update the
escaped information for the return value summary, i.e., whether the object being returned
has escaped or not. The set of seen variables is intersected with the return from the
helper function allEscaped. If the intersection is non-empty escaped is set to true for the
method m. To understand why this is necessary, let us consider how objects escape. In
our IR, an object escapes if the reference v that points to the object is the source of a
Store(h ← v) instruction. This might occur directly where the reference v itself is stored
before being returned or indirectly as is the case in Figure 6.9(a). Alternately, it is possible
that an object escaped because a reference to that object was passed as an argument to
another method which escaped it (via a Store). Again, this could occur directly (where the

98

input: SSA-based CFG of method m
output: WorkList
declare WorkList: FIFOWorklist[Var]

1 foreach instruction inst ∈ cfg do

2 switch inst

3 case inst = Store(v) : add v to WorkList end case

4 case inst = CallSite(args, retval) :

5 foreach tgt ∈ callees(inst) do

6 WorkList += { args(i) : i ∈ EscapeSummaries(tgt) }

7 od

8 end case

9 end switch

10 od

Figure 6.7: getSeededWorklist: algorithm to obtain escaped variables

returned reference was also an argument to some method call that escaped the argument)
or indirectly as shown in Figure 6.9(b). The algorithm in Figure 6.8 could have caught the
first case by simply checking whether any of the set of variables in seen occur as a source of
a Store instruction. For example, in Figure 6.9(a) the set seen is {x,y} and y is the source
in a Store instruction. The second case, when called methods escape an argument, could
be caught by checking whether any of the variables in seen were passed as arguments and
whether the argument escaped. In Figure 6.9(b) the seen set is {x,y} and y is an argument
to a call to foo where it escapes. Unfortunately, the way objects escape is not limited to
these two types of examples. Consider for instance Figure 6.9(c). The seen set is {x,y}
and neither of these are the source in a Store instruction. Yet, the object pointed to by
these references has escaped via the copy to z and the Store of z. Therefore, on Line 30 of
the algorithm we find whether the escaped predicate should be set to true by intersecting
the seen set with the output of the helper function allEscaped shown in Figure 6.10. The
function maintains a worklist of variables from method m that are known to have escaped.
The Worklist is initialized through the use of the helper function getSeededWorklist which
returns all variables of method m that have escaped either through a Store or through
a function call. At each step, an escaped variable from the worklist is dequeued and its
definition traced backwards. If the unique definition is a CallSite, i.e., the escaped variable
was assigned the return from a call, then the return value summary of each call target
is queried to see if any of its parameters are returned. If yes, corresponding arguments
are added to the worklist since these too have escaped (Lines 8-13). For a variable whose
definition comes from a copy, the source variable is added to the worklist, since it too has

99

input: SSA-based CFG of method m
output:retValSum
declare WorkList: FIFOWorklist[Var], seen : Set[Var]

1 retValSum = { params: Set[Int], heap = fresh = escaped = null = false }

2 if m.isV oid then return retValSum fi

3 Insert unique return variable into WorkList

4 while WorkList not empty

5 Select and remove variable v from WorkList

6 if seen contains v then continue fi

7 add v to seen

8 def = uniqueDef(cfg,v)

9 switch def

10 case def = Start(p0 · · · pk) :

11 retValSum.params += { i : pi = v }

12 end case

13 case def = CallSite(args, retval) :

14 foreach tgt ∈ callees(def) do

15 calleeRetValSum = RetValSummaries(tgt)

16 if calleeRetValSum.fresh then retValSum.fresh = true fi

17 if calleeRetValSum.heap then retValSum.heap = true fi

18 if calleeRetValSum.null then retValSum.null = true fi

19 WorkList += { args(i) : i ∈ calleeRetValSum.params }

20 od

21 end case

22 case def = Copy(v,s) : add s to WorkList end case

23 case def = Phi :

24 foreach Copy(v,s) ∈ phi.defs(v) do add s to WorkList od

25 end case

26 case def = Load : retValSum.heap = true end case

27 case def = New : retValSum.fresh = true end case

28 case def = Null : retValSum.null = true end case

29 end switch

30 if seen ∩ allEscaped(cfg) 6= {} then retValSum.escaped = true fi

Figure 6.8: Algorithm to compute the return value summary (αret) for a method m

100

escaped. The end result of computing allEscaped for method m is a set of variables which
have escaped. Line 30 of the algorithm in Figure 6.8 intersects this set with the set of seen
variables to find if the object being returned has escaped.

Object y = ...

Store(y)

x = y

return x

(a)

foo(a) {

Store(a)

}

bar (){

Object y = ...

x = y

foo(y)

return x

}

(b)

z = y

x = y

Store(z)

return x

(c)

Figure 6.9: Tracking whether the returned object has escaped

Since the callee summary of a function m depends on summaries of functions called by
m, the algorithms presented must be wrapped in an interprocedural fixed-point computa-
tion. A worklist keeps track of all functions whose summaries may need to be recomputed.
Whenever the summary of a function changes, all of its callers are added to the worklist.
The computation iterates until the worklist becomes empty. It is interesting to note that
the algorithms presented in this section are computing reachability along dataflow paths
and could be represented as IFDS problems.

6.2.2 Using Callee Summaries

To leverage callee summaries in the alias set analysis, the transfer functions from Figures 6.3
are modified. These modifications are presented in Figure 6.11. We denote the set of
methods that contain shadows or that transitively call methods containing shadows by M∗.
The function JcallK1

o♯ is modified so that arguments in the caller are mapped to parameters
in the callee only for methods in M∗, the methods that are still analyzed flow-sensitively.
Since return instructions are only encountered in methods not using callee summaries, no
change is required to the return function JreturnK1

o♯ .

For methods not in M∗, we define the transfer function CallF low for the similarly
named edge connecting a call node to a return node in the caller. The CallF low function
uses two helper functions mustReturn and mightReturn which employ the return value
summary αret to update alias sets by simulating the effect of analyzing the callee. The

101

input: SSA-based CFG of method m
output: allEscape
declare WorkList: FIFOWorklist[Var], allEscape : Set[Var]

1 WorkList: getSeededWorklist(cfg)

2 while WorkList not empty

3 Select and remove variable v from WorkList

4 if allEscape contains v then continue fi

5 add v to allEscape

6 def = uniqueDef(cfg,v)

7 switch def

8 case def = CallSite (args, retval) :

9 foreach tgt ∈ callees(def) do

10 calleeRetValSum = RetValSummaries(tgt)

11 WorkList += { args(i) : i ∈ calleeRetValSum.params }

12 od

13 end case

14 case def = Copy(v,s) : add s to WorkList end case

15 case def = Phi :

16 foreach Copy(v,s) ∈ phi.defs(v) do add s to WorkList od

17 end case

18 end switch

19 od

Figure 6.10: allEscaped: algorithm to compute variables that escape from a method m

102

JcallK2
o♯(o

♯) ,

{

JcallK1
o♯(o

♯) if s = call ∧ target(call) ∈ M∗

∅ otherwise

mustReturn(o♯, αret) ,







true if !αret.fresh ∧!αret.heap ∧!αret.null ∧
∀p, p ∈ o♯ : p ∈ r(αret.params)

false otherwise

mightReturn[h♯](o♯, αret) ,







true if (o♯ ∈ h♯ ∧ αret.heap)∨
∃p, p ∈ o♯ : p ∈ r(αret.params)

false otherwise

CallF low2
o♯ [h

♯,m, v](o♯) ,































∅ if m ∈ M∗

{o♯ ∪ v} if m /∈ M∗∧
mustReturn(o♯, m.αret)

{o♯ \ v, o♯ ∪ v} if m /∈ M∗∧
mightReturn[h♯](o♯, m.αret)

{o♯ \ v} otherwise

JsK2
ret ,







{{v}} if s = CallF low[m, v] ∧ m /∈ M∗∧
m.αret.fresh

∅ otherwise

JsK2
O♯ [h

♯](O♯) ,























⋃

o♯∈O♯JsK1
o♯(o

♯)
if s /∈ {v ← h, CallF low[m, v]}

⋃

o♯∈O♯ CallF low2
o♯ [h

♯,m, v](o♯)
if s = CallF low[m, v]

⋃

o♯∈O♯ focus[h♯](v, o♯) if s = v ← h

JsK2
ρ♯(ρ

♯, h♯) , JsK1
gen ∪ JsK2

ret ∪ JsK1
O♯ [h

♯](ρ♯)

escape(ρ♯, h♯,m) , h♯ ∪ {o♯ ∈ ρ♯ : ∃p, p ∈ o♯ : p ∈ r(m.αesc.params)}

JsK2
esc(m) ,

{

{{v}} if m.αret.fresh∧ m.αret.escaped
∅ otherwise

JsK2
h♯(ρ

♯, h♯) ,















JsK2
O♯ [h

♯]
(

h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯}
)

if s = h ← v
JsK2

esc(m) ∪ JsK2
O♯ [h

♯]escape(ρ♯, h♯,m)
if s = CallF low[m, v] ∧ m /∈ M∗

JsK2
O♯ [h

♯]
(

h♯
)

otherwise

Figure 6.11: Modified transfer functions for the alias set analysis using callee summaries.

103

function mustReturn is true only when the object represented by o♯ before the call is
returned by the callee. Therefore the null, fresh and heap flags of the return value summary
should be false since a non-null object, which was not allocated in the callee nor loaded from
the heap, should be returned. Additionally, o♯ must contain the corresponding arguments
of all parameters that might be returned by the callee. Parameters that might be returned
are given by αret.params and the corresponding arguments are retrieved through the inverse
function r, where r is the function mapping arguments to parameters.

The helper function mightReturn determines whether o♯ might be returned. This is
true if o♯ represents an escaped object (o♯ ∈ h♯) and an object loaded from the heap might
be returned. An object representing o♯ might also be returned if at least one parameter,
whose corresponding argument is in o♯, might be returned. To handle the uncertainty
when mightReturn is true, CallF low accounts for both possibilities similarly to the focus
operation. If the returned object must not be o♯ then the variable assigned from the return
of the callee cannot possibly point to o♯ after the call.

The callee escape summary αesc is utilized to update alias sets representing objects that
might escape due to the function call (the function escape in Figure 6.11). If any of the
corresponding arguments to parameters that escape (αesc.params) are in an alias set in ρ♯,
the alias set is added to h♯ since the function call escapes the parameter. The transfer
function must also handle situations when the callee allocates and returns a new object.
If αret.fresh is true and the return from the callee is assigned to variable v, an alias set
containing only v is added to ρ♯. If the freshly created object might have been stored in
the heap before being returned (αret.escaped is true) a similar alias set is added to h♯.

6.3 Caller Summaries

In this section we present caller summaries as a mechanism to speed up the interproce-
dural context-sensitive alias set analysis. Although static analyses that infer properties of
pointers can be useful even when the analysis is carried out locally on individual methods,
such analyses shine most when computed interprocedurally. The added ability to carry
forward computed pointer and aliasing information from a caller into a callee by mapping
arguments to parameters can significantly improve precision. However, when efficiency is
a bigger concern, a natural trade-off is to forego some precision by conservatively assuming
initial pointer and aliasing relationships for the parameters of a method.

Using caller summaries improves efficiency because it decreases the number of the
methods that must be analyzed flow-sensitively. Let us revisit the example in Figure 6.1.

104

Using callee summaries enables the alias set analysis to discard flow-sensitive analysis of
methods 3-6 since they do not contain any shadows. However, even though methods 1 and
7 do not contain shadows, they are analyzed flow-sensitively to ensure that at a callsite
to a method containing a shadow, precise information can be mapped into the callee. In
an analysis that uses caller summaries to make conservative assumptions at every method
entry, flow-sensitively analyzing such methods is un-needed since the precise information
computed at the callsite will never be propagated into the callee.

We have implemented a conservative mechanism for computing caller summaries. In
our summaries, initial alias sets are created for the parameters of a method such that the
abstraction at the start of the method specifies that any two parameters might be aliased.
In our intermediate representation the method bar in the example from Figure 6.1 has three
parameters; the this receiver and the two List references a and b. The caller summary for
this method contains the following sets: {}, {this}, {a}, {b}, {this,a}, {this,b}, {a,b}
and {this,a,b}. Notice that given these alias sets, the only conclusion that can be drawn
is that the three parameters might be aliased, ., no must or must-not relationships exist
between the parameters. This is overly conservative. First, the caller summary does not
take into account any type information. Although a and b are both references to a List

data structure, the receiver this is of type Foo and, unless Foo is declared a supertype
of List, a reference of type Foo can never point to a List object. Second, the caller
summaries do not leverage any pointer information. For example, subset-based points-to
analyses that use allocation sites as their object abstraction are often performed at onset
for constructing a callgraph. Using this type of pointer analysis could potentially improve
the precision of the caller summary in situations where the pointer analysis can specify
that parameters a and b were created at different allocation sites.

Our reason for using a naive caller summary was to investigate the maximum preci-
sion degradation due to such summaries. Whereas the callee summaries presented in the
preceding section do not affect precision, caller summaries do. As an example, let us look
more closely at the example in Figure 6.1. The method bar receives two List references, a
and b. An alias set analysis which does not utilize caller summaries is able to differentiate
between the two references. In particular, at the start of method bar the analysis infers
that a and b must-not alias (two separate lists were created at lines 1 and 3 and assigned
to a and b respectively, and a reference of one is never copied to the other). However, the
naive caller summary assumes that a and b could be aliased. Hence the precision of the
alias set analysis degrades, i.e., fewer must-not facts are computed.

This decrease in precision can cascade into client analyses. For example suppose a client
of the alias set analysis is a verification tool for the property that an iterator’s underlying
list structure has not been modified when its next method is invoked (executing such

105

code results in a runtime exception). If caller summaries are not used, the analysis infers
that the iterator’s underlying list, i.e., the list referenced by a, is never modified since a
and b must-not point to the same object and the code only modifies the list referenced
by b. Hence, the client analysis can prove that line 10 is not a violation of the property.
However, when caller summaries are used, the client analysis infers that the list pointed
to by reference a might be modified (the caller summary suggests that a and b might be
aliased and an element is added at line 11 to the list pointed to by reference b). Hence the
client analysis loses precision since it can no longer prove that the next operation at line
10 is safe w.r.t. the property being verified. We empirically evaluate the loss in precision
of using caller summaries on the alias set analysis and a client analysis in Section 6.4.

JcallK3
o♯(o

♯) , callerSummaries(target(call))

CallF low3
o♯ [h

♯,m, v](o♯) ,







{o♯ ∪ v} if mustReturn(o♯, m.αret)
{o♯ \ v, o♯ ∪ v} if mightReturn[h♯](o♯, m.αret)

{o♯ \ v} otherwise

JsK3
h♯(ρ

♯, h♯) ,















JsK2
O♯ [h

♯]
(

h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯}
)

if s = e ← v
JsK2

esc(m) ∪ JsK2
O♯ [h

♯]escape(ρ♯, h♯,m)
if s = CallF low[m, v]

JsK2
O♯ [h

♯]
(

h♯
)

otherwise

Figure 6.12: Transfer functions using callee and caller summaries.

Modifying the alias set analysis to use caller summaries is straightforward. Figure 6.12
shows those transfer functions which have been modified from their earlier version (Fig-
ure 6.11). First, the call function is modified. Instead of mapping arguments to parameters,
the caller summary provides the set of alias sets to seed the callee’s analysis. Second, callee
summaries are used for all methods that do not contain shadows.

6.4 Experiments

In this section, we discuss experimental results in evaluating the effect of using callee and
caller summaries. The questions that we wanted to answer were:

• What is the effect of using callee and caller summaries on the running time of the
analysis?

106

• What effect does the use of caller summaries have on the precision of the alias set
analysis?

• Does the resulting decrease in precision of the alias set analysis due to the use of
summaries degrade the precision of the client analysis? And if yes, by how much?

Our experiments were conducted using the same benchmark suite and tracematches
as discussed in Section 5.2, where we discussed the precision of our analysis. To give an
indication of the size of these benchmarks, we computed the number of methods statically
reachable in the control flow graph created by Soot and present these in Table 6.1. Time
taken to pre-compute the callee summaries using the algorithms discussed in Section 6.2
is also shown.

Benchmark antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan
Reachable Methods 4452 5955 14912 27408 11418 14437 7358 7821 9365 14961

Callee SummaryTime(s) 8 12 29 72 28 50 10 10 15 29

Table 6.1: Number of statically reachable methods and the time to precompute callee
summaries.

The tracematch analysis is an ideal analysis for evaluating the effect of callee and caller
summaries on the alias set analysis. First, each temporal property specifies its own points
of interest; only events that transition the state machine of that property are considered
shadows. By choosing different properties, we ensure a varying set M∗, the set of methods
for which callee summaries are used. Second, the tracematch analysis cleanly teases apart
the computation of the alias set abstraction and its use in computing the state abstraction.
This enables us to measure the precision and efficiency of the alias set abstraction in a real-
world scenario.

We call a pair containing a benchmark and temporal property a test case. Since not all
benchmarks exercise all temporal properties, we have chosen to present results only for test
cases when a temporal property is applicable for a benchmark e.g. the antlr benchmark
never uses a Writer and hence the corresponding temporal property is inapplicable.

6.4.1 Shadow Statistics

In Section 6.2 we proposed the use of callee summaries for methods not in M∗. Later, in
Section 6.3, we proposed the use of caller summaries for all methods, thereby requiring flow-
sensitive analysis of only methods containing shadows (S). We measured the percentage of

107

reachable methods that are in M∗ and S and present these in Table 6.2. The maximum
percentage of methods in M∗ was for the test case jython-FSI, where 59.9% of the methods
are in M∗. Notice that only 0.6% of the methods for jython-FSI contain shadows, indicat-
ing that most methods are in M∗ since they call methods containing shadows. On average
(geometric mean), M∗ contains 11.9% of the reachable methods implying that callee sum-
maries are used for the remaining 88.1%. When using both callee and caller summaries, a
mere 0.3% of reachable methods (average of set S) require flow-sensitive analysis.

antlr bloat chart fop hsqldb
M∗ S M∗ S M∗ S M∗ S M∗ S

FSE 56.3 0.7 47.6 0.1 1.6 0.1
FSEH 56.3 1.1 2.8 0.1
FSI 56.3 4.2 50.6 0.6 47.7 0.5 54.0 0.1
HN 56.0 2.6 50.5 0.4 47.6 0.1 54.0 0.1
HNE 56.3 0.7 0.1 0.1 1.6 0.1
R 7.5 0.2 4.2 0.3
W 55.8 0.5 47.6 0.3 5.7 0.6

jython luindex lusearch pmd xalan
M∗ S M∗ S M∗ S M∗ S M∗ S

FSE 59.8 0.4 1.6 0.4 1.1 0.2 9.5 0.1 50.0 0.6
FSEH 59.8 0.4 1.1 0.3 0.8 0.2 49.9 0.3
FSI 59.9 0.6 53.1 0.4 52.4 0.6 52.4 1.0 50.0 0.5
HN 59.8 0.2 53.1 0.2 52.3 0.3 52.2 0.5 0.1 0.1
HNE 59.8 0.2 0.5 0.2 0.3 0.1 6.6 0.1 49.9 0.2
R 59.8 0.2 0.9 0.1 2.3 0.3 7.7 0.1 49.9 0.1
W 0.8 0.1 1.7 0.3 0.2 0.1 49.9 0.4

Table 6.2: Percentage of reachable methods that contain shadows or transitively call meth-
ods with shadows (M∗) and methods that contain shadows (S)

6.4.2 Efficiency

To measure the effect of summaries on the time required to compute the alias set abstrac-
tion, we computed the abstractions using the three versions of the transfer functions. In
Table 6.3, we show the running time of the original alias set abstraction (ORIG), the alias
set abstraction which uses only callee summaries (CS) and the abstraction using both callee

108

and caller summaries (CCS). The times for CS and CCS include the time for computing
the callee summary and CCS also includes the time to compute the caller summary.

For all test cases, the time required to compute the abstraction is reduced when callee
summaries are used for methods not in M∗. The greatest reduction is for pmd-W, which
takes 99.6% less time to compute (6670 vs 29 seconds). The reason for this is quite
obvious; for pmd-W, M∗ contains only 12 methods out of the 9365 reachable methods. On
average, the use of callee summaries reduces the time to compute the alias set abstraction
by 27%. Introducing caller summaries has a more significant impact; an average reduction
of 96% is witnessed over the entire test set.

antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan
FSE-ORIG 484 5934 1351 2390 1017 580 2638 5052
FSE-CS 349 5422 220 1524 118 151 37 4484
FSE-CCS 15 108 40 71 19 18 26 112
FSEH-ORIG 500 1426 2020 1054 576 6395
FSEH-CS 386 226 1397 120 133 5834
FSEH-CCS 18 39 77 17 17 51
FSI-ORIG 1810 1653 4057 1316 2335 1057 553 3685 5100
FSI-CS 1683 1022 4051 651 1671 391 407 2069 5099
FSI-CCS 563 72 109 37 69 17 17 29 119
HN-ORIG 1601 1665 3735 1406 2225 1019 485 5273 5262
HN-CS 1556 1035 3289 714 1390 393 388 5031 164
HN-CCS 455 44 115 41 70 18 17 29 45
HNE-ORIG 457 1607 1450 2233 1098 562 5182 4361
HNE-CS 358 119 220 1481 137 121 32 3588
HNE-CCS 16 18 40 77 18 17 26 44
R-ORIG 511 1416 2205 1097 563 4348 3280
R-CS 55 238 1487 123 123 35 3172
R-CCS 13 39 73 16 16 27 48
W-ORIG 1551 3840 1450 1067 607 6670 3468
W-CS 1411 3553 318 120 146 29 3323
W-CCS 19 447 37 17 18 28 66

Table 6.3: Time taken to compute the alias set abstraction for the original transfer functions
(ORIG), the transfer functions leveraging Callee Summaries (CS) and the transfer functions
employing both Callee and Caller Summaries (CCS)

109

6.4.3 Tracematch Analysis Precision

Callee summaries do no affect the precision of the tracematch analysis. To evaluate the
effect of using caller summaries on the precision of the tracematch analysis, we executed
the tracematch analysis using the ORIG and CCS abstractions for the alias set analy-
sis. As per our discussion in Section 6.3, we expected a decrease in precision since caller
summaries cause the alias set abstraction to compute fewer aliasing facts. However, the
results surprised us; none of the 54 test cases showed any degradation in the tracematch
analysis and the results were exactly the same as discussed in Section 5.2 and illustrated in
Figure 5.1. The CCS abstraction contained sufficient must and must-not aliasing at each
shadow of a test case to produce the same transitions on the abstract state machine.

Our conclusion from this experiment is that even though caller summaries cause a
theoretical decrease in precision, this does not automatically translate into precision loss
for the client analysis. The tracematch analysis is one such example where the benefits of
using caller summaries outweigh the slight chance of losing precision.

6.4.4 Fine-grained Precision Metrics

Although the tracematch analysis did not show a loss of precision, we know that caller
summaries have the potential of reducing precision of the alias set analysis e.g. they
prevent any must-not alias information to be forwarded into a method from a callsite. To
measure this loss of precision, we developed a fine-grained metric for evaluating precision
of alias sets. Using the alias set abstraction, we compute must and must-not alias pairs
for variables live at the shadows of each test case. Then we sum the alias pairs for all
shadows in a test case to give us two precision metrics: MA the aggregated must-alias
pairs and MNA the aggregated must-not alias pairs. As expected, the metric values for
ORIG and CS are identical indicating that no precision is lost by using callee summaries.
Table 6.4 presents the results of ORIG (alternately CS) vs CCS. For each test case, the MA
and MNA values for ORIG are presented. Below this is a number indicating the number
of alias pairs that are lost with CCS. For example, the MA value for jython-FSE is 51
indicating that 51 different alias-pairs were identified at the shadows of this test case. The
absence of a number below indicates no decrease in precision when using caller summaries.
The MNA value for jython-FSE is 189. The -7 below indicates that 7 must-not alias pairs
were lost when caller summaries were used.

Of the 54 test cases, only 9 showed a degradation in the MA precision metric. The four
highest degradations were for luindex-R (75%), luindex-W (73%), lusearch-R (22%) and

110

antlr bloat chart fop hsqldb
MA MNA MA MNA MA MNA MA MNA MA MNA

FSE
1 81 57 141 0 21

FSEH
1 80 0 21

FSI
1152 18858 3344 6244 357 876 0 21

-611 -212 -254 -28

HN
606 7584 704 1529 136 336 0 21

-328 -14 -214 -26

HNE
2 135 0 21 0 21

R
133 338 46 189

-7

W
7 306 53 439 163 339

-55 -12 -4

jython luindex lusearch pmd xalan
MA MNA MA MNA MA MNA MA MNA MA MNA

FSE
51 189 6 98 18 91 0 35 371 1180

-7 -2 -1 -1 -64

FSEH
930 1546 4 63 1 17 179 384
-21 -19 -4 -2

FSI
404 583 76 226 77 233 459 1505 350 1042

-32 -1 -1 -3 -79 -22

HN
322 386 95 202 58 112 127 839 0 13

-1 -53

HNE
11 133 8 91 0 13 0 41 45 194

-10 -2 -1

R
253 427 59 80 203 222 56 130 671 1395
-9 -14 -44 -44 -7 -20

W
56 83 200 219 0 22 524 799
-41 -41 -21

Table 6.4: Alias set abstraction precision in terms of aggregated must aliasing (MA) and
must not aliasing (MNA) metrics computed at the shadows for each test case.

111

lusearch-W (21%). The average (geometric mean) degradation for the 9 test cases was 8%.
31 of the 54 test cases also noted a decrease in the MNA metric. The maximum decrease
was 17% for bloat-W with an average decrease of 4%.

6.5 Related Work

As discussed in Chapter 4, the IFDS and IDE algorithms are an example of Sharir and
Pnueli’s [62] functional approach for context-sensitive interprocedural dataflow analysis.
The crux of this approach is that the effect of a procedure is computed by composing
functions representing the effect on individual instructions in the procedure. Once a pro-
cedure’s summary has been computed, it is used at each call site of the procedure to model
the effect of the call.

Whole-program analysis of even relatively small applications can be expensive since
the entire program, including the library, must be analyzed. A possible optimization is
to not analyze the library and instead use pre-computed summaries. If a library did
not call back into the application, the IFDS and IDE algorithms could be used to pre-
compute such summaries. This would enable a whole-program analysis to just analyze
the application and use the pre-computed summaries for library procedures. Rountev et
al. [57] present a framework to summarize the effects of libraries even in the presence of
call backs. Their extension to the IFDS and IDE algorithms to enable pre-analyzing the
library independently of any application code. For a library procedure p that contains a
call back to a procedure n, the extended algorithm summarizes the effect of p by computing
a summary from the start node of p to the call site for n and then from the return site of
the call to n to the exit node of p. The missing portion, the effect of n, is computed when
the application code becomes available. This enables efficient whole-program analysis since
the analysis of an application can use pre-computed summaries for a library. Building on
this, Rountev et al. [58] evaluated the use of such summaries on a client analysis expressed
as an IDE problem. Their experiments showed a 51% saving in time and a 33% saving in
memory.

Other frameworks for computing procedure summaries have also been proposed. Gul-
wani and Tiwari [33] developed procedure summaries in the form of constraints that must
be satisfied for some generic assertion to hold at the end of the procedure. Their key insight
was to use weakest preconditions of such generic assertions. Furthermore, for efficiency,
they used strengthening and simplification of these preconditions to ensure early termina-
tion. The approach has been used to compute two useful abstractions; unary uninterpreted
functions and linear arithmetic. Recently, Yorsh et al. [70] introduced an algorithm which

112

also computes weakest preconditions and relies on simplification for termination. They
describe a class of complex abstract domains (including the class of problems solvable us-
ing IFDS) for which they can generate concise and precise procedure summaries. Their
approach uses symbolic composition of the transfer functions for the instructions in the
program to obtain a compact representation for the possibly infinite calling contexts.

In contrast to the related work discussed above, we propose a technique to reduce the
number of methods that must be analyzed using any of the approaches discussed above
(our implementation uses the IFDS algorithm [54] to compute the alias set abstraction).
Under certain conditions, instead of computing expensive procedure summaries through
IFDS, our analysis uses cheaper callee summaries without a loss of precision.

Cherem and Rugina [18] present a flow-insensitive, unification-based context-sensitive
analysis to construct method summaries that describe heap effects. The analysis is param-
eterized for specifying the depth of the heap to analyze (k) and the number of fields to
track per object (b). Varying the values for k and b results in different method summaries;
smaller values produce lightweight summaries whereas larger values result in increased pre-
cision. Method summaries were shown to significantly improve a client analysis that infers
uniqueness of variables i.e. when a variable holds the only reference to an object.

Also related are analyses which traverse the program callgraph (mostly bottom-up but
some top-down analyses have also been proposed) and compute a summary function for
each procedure [68, 14, 16]. This summary function is then used when analyzing the callers.

Escape analysis has been widely studied [19, 11, 1, 68] and used in a variety of ap-
plications ranging from allocating objects on the stack to eliminating unnecessary syn-
chronization in Java programs. To determine whether an object can be allocated on the
stack and whether it is accessed by a single thread, Choi et al. [19] compute object escape
information using connected graphs. A connected graph summarizes a method and helps
identify non-escaping objects in different calling contexts. In their work on inferring alias-
ing and encapsulation properties for Java [46], Ma and Foster present a static analysis for
demand-driven predicate inference. Their analysis computes predicates such as checking
for uniqueness of pointers (only reference to an object), parameters that are lent (callee
does not change uniqueness) and those that do not escape a callee.

6.6 Concluding Remarks

This chapter presented callee and caller summaries as a means to improve the efficiency
of the alias set analysis. We described the information required from a callee summary

113

to ensure that their use does not decrease precision at a callsite. Through experimental
evidence, we showed that a client analysis and alias set precision metrics are unaffected by
the use of callee summaries. On average a 27% reduction in the running time to compute
the abstraction was witnessed.

In situations where some loss of precision is acceptable in favour of larger gains in
efficiency, we showed how caller summaries that make assumptions about pointer and
aliasing relationships at method entry can be employed. In order to gauge the maximum
decrease in precision, we chose to use a conservative caller summary which assumes that
any two parameters of a method might be aliased. Empirical evaluation of the effect
of using caller summaries on the precision of the client analysis revealed no decrease in
the abilities of the client analysis. For a fine-grained evaluation of precision, two metrics
deriving aggregated must and must-not aliasing between variables were calculated. The
average decrease was 8% for the must- and 4% for the must-not alias metric. The running
time for computing the alias set abstraction decreases by 96% on average if both callee
and caller summaries are used.

114

Chapter 7

Presenting Analysis Output

7.1 Motivation

The IFDS-based analysis attempts to prove that a program does not violate a property by
determining that the state machine representing the property never reaches an accepting
state. However, in case the analysis is not successful in ruling out all violations, it outputs
a list of potential violations. Each violation is a transition statement which, based on
the transitions already taken, would transition the state machine to an accepting state.
Although finding these violations is useful as it gives an indication of how many possible
violations there are in the program, more useful is obtaining a list of transition statements
that may contribute to a match at the final transition statement. The IDE analysis of
Section 5.1 computes this list for each possible violation.

In our experience, interpreting the raw results of the verification analysis is difficult
since all we have is a list of possible violations, and for each violation a list of transition
statements that led to the violation. These transition statements are not necessarily within
one method and can be interspersed in a large segment of the program. To make the
analysis practical for use during the development life cycle, we found it important to
develop a Graphical User Interface (GUI) to run the analysis and visualize the output.
Another reason for developing the TMEclipse plugin is that the analysis can be configured
in many ways. Again, for practicality of use, it is useful to be able to configure the analysis
via a GUI rather than having to deal with many command line options and parameters. In
this chapter, we highlight the tool that we created for configuring, running and analyzing
the output from our verification analysis.

115

7.2 TMAnalysis: an Eclipse plugin

We developed the verification tool as a plugin to the Eclipse IDE. The tool provides a
configuration screen, progress indicator and a visualization window. We highlight key
features of these functionalities in the following three sections:

7.2.1 Configuration

Figure 7.1 shows the configuration panel which opens when the developer selects the Plu-
gin’s Configure option. The developer can choose any of the projects open within their
Eclipse workspace from a drop down list. The developer must specify the main class for
the project. This is used by the analysis to determine the starting point of the program
(in order to generate the callgraph). The next input field (Choose Application Classes)
allows the user to select which portions of the code are to be verified (i.e. belong to the
application).

Since Java programs can use reflection to load classes, the configure panel provides the
Dynamic Class List field to specify which, if any, classes are loaded via reflection. The
field expects a path to a file which contains each of the dynamically loaded classes in a
separate line. In Section 5.2 we mentioned our use of Probe and *J to record actual uses of
reflection. These uses can be stored in a file and supplied to the analysis via the Dynamic
Class List field.

The next input field is a drop down list to select a tracematch. The plugin only supports
verifying one property at a time and hence the list allows selecting one tracematch. The
tracematches discussed in this work (Section 5.2) come built-in with the plugin. For these
built-in tracematches a description page that provides the actual code for the tracematch,
a graphical representation of the state machine and a description of the tracematch are
provided. Developers can also specify their own property by choosing the “Create Custom
Tracematch” option from the drop-down list and specifying the location of a Java file
containing the tracematch specification using AspectJ syntax.

The output folder field lets developers specify a place where the analysis outputs the
results in XML format. The Output XML field lets the developer specify the name of the
output file that will be generated.

The default behaviour of the tool is to first execute the IFDS-based analysis which de-
termines whether there are any violations of the property in the program. If any violations
are found, then the IDE-based analysis is automatically executed to find the transition

116

statements that contribute to each violation. If the developer’s intent is only to verify the
program for conformance to a selected tracematch, then, to save time, there is no need to
run the IDE analysis. The tool provides a checkbox which can be unchecked to disable the
IDE-analysis. In this case the tool only executes the IFDS-based analysis and therefore
functions purely as a verification tool .

The additional options field supports a number of checkbox fields that can be used to
modify the behaviour of the analysis. Most are useful for debugging the analysis. More

Figure 7.1: Configuration Screen

117

details can be found by pressing the information button next to the input field on the
configure screen.

Using summaries for the object abstraction analysis

These options are used to control which method summaries approaches (that were discussed
in Chapter 6) are used.

NOSUMMARY: This option disables the use of any summary causing all methods to
be analyzed flow-sensitively.

ONLY CALLEE: This option enables the use of callee summaries but not caller sum-
maries. Therefore, only methods that contain shadows or call methods that contain shad-
ows are analyzed flow-sensitively.

CALLEE CALLER NAIVE: This option enables the use of both callee and caller sum-
maries. Therefore, methods that call methods containing shadows are not analyzed flow-
sensitively. Additionally, methods that contain shadows are analyzed flow-sensitively with
an initial naive approximation for the parameters of the method.

For a developer, selecting one of ONLY CALLEE or CALEE CALLER NAIVE is the
only useful option. Since running the analysis with no summaries and with only callee
summaries has the same precision guarantees, there is no reason not to use callee sum-
maries. When precision is of utmost importance, it is good to use the ONLY CALLEE
option since CALLEE CALLER NAIVE does cause some loss of precision in the alias set
abstraction.

The options also serve for debugging the alias set analysis. The key use is that multiple
summary options can be selected within the same run. This causes the tool to run the
Alias Set Analysis (object analysis) multiple times, once for each type of summary. Once
all abstractions have been computed, the tool will output to the Console, the aggregated
must- and must-not alias inferences that were made. This is useful to compare the precision
of the alias set abstraction created by using (or not using) summaries. For example, to
empircially see that the use of callee summaries does not effect the abstraction’s precision,
one can select both NOSUMMARY and ONLY CALLEE. The aggregated must- and must-
not alias inferences will be identical for the two abstractions.

Computing the state abstraction

As discussed in Chapter 3, the analysis relies on two abstractions: abstracting the
objects in the program and the abstraction of the state that these objects are in. By default
the state abstraction is computed for each type of object abstraction that is computed
(depending on the summary options mentioned above). This is a useful debugging feature

118

so that the effect on the precision of the tracematch analysis can be monitored with respect
to the use of different summaries. However, if this is not the intent, then the following
options can be used to disable the state abstraction computations. For finer control, three
separate debugging options are provided which individually turn off the state computation
for each of the summary options discussed above.

NOT TM NOSUMMARY: This disables the computation of the state abstraction us-
ing the object abstraction that did not use any summaries.

NOT TM ONLY CALLEE: This disables the computation of the state abstraction
using the object abstraction that only used callee summaries.

NOT TM CALLEE CALLER NAIVE: This disables the computation of the the state
abstraction using the object abstraction that used the callee and the naive caller summaries.

For example running the tool with the options NOSUMMARY, ONLY CALLEE and
CALLEE CALLER NAIVE allows us to infer if the alias-set abstraction for NOSUM-
MARY and ONLY CALLEE are the same (as discussed above). Since this is always going
to be true, then there is no need to separately compute the state abstractions for both the
NOSUMMARY and ONLY CALLEE object abstractions (they are going to be the same).
We can additionally set the NOT TM NOSUMMARY option. The analysis will then com-
pute the state abstraction only twice; once using the object abstraction when using callee
summaries only and once using the object abstraction that used both summaries. When
multiple state abstractions are computed, the analysis outputs to the console the total
number of violations found for each abstraction. This is useful for debugging the effect
of summaries on a client analysis. To only compute the object abstraction and no state
abstraction, the NOT TM * counterparts to the summary options must be selected.

Intraprocedural Control Flow Graph for Debugging

The OUTPUTDOT option can be selected to output DOT files for all methods contain-
ing useful shadows for each type of object analysis (using different summaries options).
Similar output is generated for IFDS and IDE analysis. The destination is the specified
output folder. DOT is a plain text graph description language that is especially useful
for describing directed graphs. The tool produces a separate DOT file for each method
and contains the description of the control flow graph for that method. Each instruction
in the method appears as a node and outbound edges from a node represent control flow
successors. Additionally, each node is decorated with useful debug information such as
alias-sets at that node and any bindings for the state abstraction. The DOT file can be
processed by any program that understands the DOT language e.g. dot from the Graphviz
package, GVEdit etc. to render the graph.

119

7.2.2 Running the Analysis

When the “Save and Analyze” button on the Configure screen is pressed, the current
configuration is saved and the analysis executed. Depending on the options selected, the
analysis can take a considerable time to complete. To ensure that the tool does not become
unresponsive, a “Run in Background” option is provided which allows the user to continue
to work within the Eclipse IDE while the analysis executes as a background task. A
Progress Indicator displays the current stage of the analysis. Once the analysis finishes,
the user is notified by opening the Tracematch Analysis View discussed below.

7.2.3 Visualization of Results

The visualization component displays a list of possible violations (body shadows) that
the analysis has identified. Each violation can be selected to display a list of transition
statements (update shadows) that contribute to a possible match.

To illustrate the visualization, we use the example discussed in Figure 6.1, but with

Figure 7.2: Example Input

120

one change. The original example illustrated the benefits of using summaries and did
not violate the safe iteration property discussed in Section 1.1. To highlight the tool’s
capabilities, we intentionally modify the example to introduce a violation by replacing
Line 4 in the code from Figure 6.1 with the function call bar(a,a), i.e., the function bar
is called with the two parameters aliased. The actual code is shown in Figure 7.2. Even
for this contrived example, it is non-trivial to trace this violation. The violation can be
determined by tracing the bar function. bar calls method7 with b as an argument. Method7
then calls method8 which updates the list. When the call to method7 from within bar
returns, the iterator for the list pointed to by a is incremented (via next). Since a and b
were aliased, this violates the property that the underlying data structure should not be
updated while iterating over it.

The analysis is able to detect the violation and provides an easy way to visualize the
result. The visualization comprises of two parts: annotations within the editor window
and a custom view. We show the analysis supplied annotations for the above example in
Figure 7.3. Transition statements relevant to the possible violation appear highlighted and
a marker appears on the left border for ease of navigation. The custom view is shown in

Figure 7.3: Example Input

121

Figure 7.4. The view is a table with five columns: Description, Symbol, Class, Method
and location. Each of the possible violations are listed with the name of the class and
method the statement occurs in and the offending line of code. Clicking on any of these
body shadows opens a sub-level containing the transition elements that contribute to this
violation. For the example, there is one possible violation which occurs at line 19 within
the SummariesTest file in method bar. This corresponds to the invocation of the next
method on it. The sequence of events that lead to this violation are a match of the symbol
create iter in method bar at line 15, followed by the symbol update source in method8 at
line 34 and followed by the symbol next at line 19 in method bar.

Figure 7.4: Visualization Screen

7.3 Conclusion

This chapter presented a verification tool that we developed to configure and execute the
analysis to verify temporal properties of programs. The configuration screen allows users
to easily configure the analysis and specify which property to verify on which program.
The tool has the ability to run in the background, thereby releasing the Eclipse IDE for
use by the developer during execution. A list-based and a source-code based visualization
of results are provided. All violations and related transition statements are presented in
the custom list view. Each entry in this list can be clicked to reach the relevant line in the
source code editor. Additionally, relevant source code lines are highlighted and marked for
ease of navigation and visualization.

122

Chapter 8

Conclusion and Future Work

Verifying the conformance of a program to specified usage requirements is important to
ensure the reliability of the software. Requirements are often in the form of sequences
of operations that must (or must not) be performed. These requirements often involve
multiple objects that interact with each other. We have designed static abstractions for
the objects in the program and the state they are in. Additionally, we have leveraged inter-
procedural, context-sensitive dataflow analysis algorithms to compute these abstractions
to determine if a program violates specified properties. Furthermore, we have significantly
improved the performance of the analysis by designing and employing two types of method
summaries. Finally, we have packaged the static analysis as an Eclipse plug-in that provides
developers with an easy-to-use temporal property verification tool.

8.1 Abstractions

We have presented two abstractions that can be used to analyze temporal specifications
of multiple interacting objects expressed via tracematches. The first abstraction models
individual objects using a storeless heap abstraction. This alias-set abstraction provides
precise may-alias information and flow-sensitive tracking of individual objects along control
flow paths. The second abstraction models the tracematch state for a group of related
objects. The abstraction can be viewed as a tuple containing the state and the abstract
objects corresponding to the runtime objects that would cause the tracematch to be in
the given state. Transition statements (events of interest) modify the state of only those
tuples that contain the abstract objects corresponding to the runtime object on which the

123

event occurs. We have proven the abstractions to be sound with respect to the tracematch
semantics.

8.2 Static Analysis

We have implemented fully context-sensitive and inter-procedural versions of the abstrac-
tions as instances of the IFDS and IDE algorithms. The IFDS-based analysis is used to
determine transition statements that are potential violations of a specified temporal prop-
erty. The IDE-based analysis provides more useful information by providing a sequence of
transition statements that could eventually lead to a violation.

The IFDS and IDE algorithms in their original form were not directly suitable for
problems involving objects and pointers. We have presented four extensions to the IFDS
algorithm that make it applicable to a wider class of interprocedural dataflow analysis
problems, in particular analyses of objects and pointers. These include not requiring an
exploded supergraph as input and instead building one on demand, extending the return-
flow function to expose dataflow facts available before the call, more precise handling of
programs in SSA form, and leveraging subsumption properties of the analysis domain to
speed up the dataflow analysis. Although the extensions were discussed in terms of the
IFDS algorithm they are equally applicable to the more general IDE algorithm and we
have implemented them in both.

8.3 Precision

The precision of the analysis was evaluated using the tracematches of Bodden et al. [12]
on the Dacapo Benchmark Suite. The results showed that the analysis is very precise.
Of the 36 tracematch/benchmark pairs in which the benchmark used features checked by
the tracematch, the analysis fully verified 15 to contain no possible violations. This gives
the analysis a 42% success rate in fully verifying a program for a given property without
requiring any manual intervention.

Overall, the analysis ruled out the possibility of a violation at 89% of the final transition
statements in the benchmarks. From a practical standpoint, this leaves 11% of final tran-
sition statements that could not be verified. To complete the verification of the program,
this much smaller subset of transition statements can be checked manually to determine

124

whether they are indeed violations or false positives. Alternately, these transition state-
ments and associated update shadows can be instrumented to perform runtime monitoring
of the temporal property.

8.4 Efficiency

A quick runtime was essential to make the analysis viable as a tool to be used within the
development lifecycle. We have made the analysis efficient by implementing an optimiza-
tion that uses method summaries. We designed and implemented callee summaries with
the design principle that foregoing flow-sensitive analysis of a method in favour of using its
callee summary should not decrease the precision of the computed abstraction at a callsite.
Through experimental evidence, we showed that the precision of the tracematch analysis
and alias set precision metrics are unaffected by the use of callee summaries. Empirically,
the use of callee summaries reduced the running time for computing the abstraction by
27% on average.

When efficiency is even a bigger concern and some loss of precision is acceptable, we have
designed and leveraged caller summaries to make the analysis even faster. To determine
the maximum decrease in precision, we used the most conservative caller summary that
assumes that any two parameters of a method might be aliased. Even with this worst
case assumption, empirical evaluation revealed that the tracematch analysis’s precision
is not affected by using caller summaries. Since there is a decrease in the precision of
the abstraction itself, we computed fine-grained alias-set precision metrics. These metrics
showed an average decrease of 8% in the must-aliasing information that can be inferred
from the abstraction, and a decrease of 4% on average for the must-not alias information
that can be inferred. Empirical evaluation of the running time when using both summaries
on the alias set abstraction showed a significant 96% decrease, which makes the tracematch
analysis quite suitable for use in a typical development and quality assurance life cycle.

8.5 Verification Tool

We have developed a verification tool in the form of an Eclipse plugin to make the analysis
practical to use for developers. The tool provides a configuration panel which can be used
to specify inputs to the analysis. These include specifying which part of a project’s source
to analyze and specifying any code that is loaded through reflection. Options to select use
of method summaries and many debugging and analysis options are also exposed. The tool

125

provides two features for visualizing the results. A list view provides a list of transition
statements flagged as possible violations. Below each violation is the sequence of transition
statements that could lead to this violation. The location of each statement in the source
code is specified. Clicking on any statement opens a Java editor window containing the
class which contains the statement. The editor has been customized to contain specialized
markers in the left browsing panel to provide quick visual references to where possible
violations and related transition statements are. These lines of code are also highlighted.

8.6 Future Work

A key observation while comparing the precision of our analysis with that of Bodden et al.
was that the analyses are complementary to each other as they are successful on different
transition statements. Therefore, the result of running the two analyses together is more
precise than either analysis on its own. Our analysis relies on precise information in the
form of sets of local variables pointing to an object. In cases where no local references
to an object remain, the analysis cannot track that object in the heap and makes worst
case assumptions. A situation which was encountered often in the benchmarks was when
instead of passing an object as an argument, it was stored in a field of another object
which was made available to the called method. Since there is no local reference to the
object, our analysis cannot track it precisely. A possible solution for this imprecision is
to use a flow-insensitive subset-based pointer analysis, using allocation sites as the object
abstraction, to track the set of objects stored in a particular field. In cases where the
analysis has no local references to an object, the may-points-to information can be used.
If the may-points-to information guarantees that the field can never point to a particular
object, i.e., the may-points-to set for the field does not contain the allocation site of the
given object, then this is more precise than the current worst-case assumption that the
analysis makes for fields.

A second source of imprecision is due to imprecise handling of interprocedural excep-
tional control flow. By making suitable modifications to the IFDS and IDE algorithms, it
should be possible to improve the precision of how exceptions are handled, which would
improve the precision of the analysis.

A significant portion of the running time of the analysis is spent creating a sound
and precise whole-program call graph, including the Java standard library. Recently, Ali
et al. [2, 3] have developed the Averroes tool that generates a placeholder library which
over-approximates the behaviour of the standard library. This library can be constructed
quickly, is smaller in size and can be used in place of the standard Java library. The

126

advantage is that by using the placeholder library, the construction time for the whole-
program call graph can be improved by a factor of 4.3x to 12x. Additionally, Averroes
makes it easier to handle reflection soundly. Since the call graphs built with Averroes have
been shown to be as precise as the framework we used to build our call graph, using the
Averroes generated library promises to lead to further improvements in the running time
of the analysis.

127

APPENDICES

128

Appendix A

Proofs

Proposition 1. 〈Bind,⊑〉 is a complete lattice with meet operator defined as:

l
D ,







⊥ if D contains ⊥ or o1, o2 with o1 6= o2 or o1, O2 with o1 ∈ O2

o if the above case does not hold and o ∈ D
⋃

O∈D O otherwise

Proof. We first show that the meet as defined is the greatest lower bound of D.

Case ⊥ ∈ D: In this case, ⊥ ⊑ d by definition for all d ∈ D, and ⊥ is the only lower
bound of ⊥, so ⊥ is the glb.

Case o1, o2 ∈ D with o1 6= o2: In this case, ⊥ is the only lower bound of both o1 and o2,
so ⊥ is the glb.

Case o1, O2 ∈ D with o1 ∈ O2: In this case, ⊥ is the only lower bound of both o1 and O2,
so ⊥ is the glb.

Case o ∈ D and none of the above cases hold: In this case, D does not contain ⊥ or
any positive bindings other than o. Thus D only contains o and negative bindings.
None of the negative bindings contain o. Therefore o is a lower bound of each negative
binding. Thus o is a lower bound of D. The only elements that can be lower bounds
of a positive binding are the positive binding itself or ⊥. Since o ⊒ ⊥, o is the glb.

Case none of the above cases hold: In this case, D contains only negative bindings.
Their union contains all of them and is therefore a lower bound. Other lower bounds

129

are other sets that contain all of them, positive bindings not contained in any of the
negative bindings in D, and ⊥. All of these are less than

⋃

O∈D O. Thus the latter
is the glb.

Since 〈Bind,⊑〉 has a meet for arbitrary subsets, it is a complete meet semi-lattice.
Thus it is a complete lattice [21, Theorem 2.16]. ⊓⊔

Theorem 1. The transition relations →̊ and → are bisimilar with bisimulation relation
σ̊Rσ , sσ(σ)(q) ⇐⇒ σ̊(q). That is,

• for every σ there exists σ̊ with sσ(σ)(q) ⇐⇒ σ̊(q) such that 〈tr(T), σ〉 → 〈σ′〉 =⇒
〈tr(T), σ̊〉 →̊ 〈̊σ′〉 ∧ σ̊′(q) ⇐⇒ sσ(σ′)(q), and conversely,

• for every σ̊ there exists σ with sσ(σ)(q) ⇐⇒ σ̊(q) such that 〈tr(T), σ̊〉 → 〈̊σ′〉 =⇒
〈tr(T), σ〉 → 〈σ′〉 ∧ σ̊′(q) ⇐⇒ sσ(σ′)(q).

The following lemmas are needed to prove the theorem.

Lemma 1.
sd(〈f, d1 ⊓ d2〉) = sd(〈f, d1〉) ∧ sd(〈f, d2〉)

Proof. Using case analysis on d1 and d2.

Case d1 = ⊥ or d2 = ⊥: Then sd(〈f, d1 ⊓ d2〉) = sd(〈f,⊥〉) = false. On the other side,
sd(〈f, d1〉) = false or sd(〈f, d2〉 = false, so their conjunction is false.

Case d1 = d2 = o: Then sd(〈f, d1 ⊓ d2〉) = sd(〈f, o〉) = sd(〈f, o〉)∧sd(〈f, o〉) = sd(〈f, d1〉)∧
sd(〈f, d2〉).

Case d1 = o1 and d2 = o2 where o1 6= o2: Then sd(〈f, d1 ⊓ d2〉) = sd(〈f,⊥〉) = false. On
the other side, sd(〈f, d1〉) ∧ sd(〈f, d2〉) = (f = o1) ∧ (f = o2) = false since o1 6= o2.

Case d1 = O1 and d2 = o2 where o2 ∈ O1: Then sd(〈f, d1 ⊓ d2〉) = sd(〈f,⊥〉) = false.
On the other side, sd(〈f, d1〉)∧sd(〈f, d2〉) =

∧

o∈O1
¬(f = o)∧(f = o2) =

∧

o∈O1
¬(f =

o) ∧ ¬(f = o2) ∧ (f = o2) = false since o2 ∈ O1.

Case d1 = O1 and d2 = o2 where o2 6∈ O1: Then sd(〈f, d1 ⊓ d2〉) = sd(〈f, o2〉) = (f =
o2). On the other side, sd(〈f, d1〉)∧sd(〈f, d2〉) =

∧

o∈O1
¬(f = o)∧(f = o2) = (f = o2)

since (f = o2) =⇒ ¬(f = o) for all o 6= o2, and o2 6∈ O1.

130

Case d1 = O1 and d2 = O2: Then sd(〈f, d1 ⊓ d2〉) = sd(〈f,O1 ∪ O2〉) =
∧

o∈O1∪O2
¬(f = o). On the other side, sd(〈f, d1〉) ∧ sd(〈f, d2〉) =

∧

o∈O1
¬(f = o) ∧

∧

o∈O2
¬(f = o) =

∧

o∈O1∪O2
¬(f = o).

⊓⊔

Lemma 2.
sm(m1 ⊓ m2) = sm(m1) ∧ sm(m2)

Proof.

sm(m1 ⊓ m2) =
∧

f∈F

sd(〈f, (m1 ⊓ m2)(f)〉) definition of sm

=
∧

f∈F

sd(〈f,m1(f) ⊓ m2(f)〉) definition of ⊓F→Bind

=
∧

f∈F

sd(〈f,m1(f)〉) ∧ sd(〈f,m2(f)〉) Lemma 1

=
∧

f∈F

sd(〈f,m1(f)〉) ∧
∧

f∈F

sd(〈f,m2(f)〉)

= sm(m1) ∧ sm(m2) definition of sm

⊓⊔

Lemma 3.
sm(e+(b, ρ)) = e̊0(b, ρ)

Proof.

sm(e+(b, ρ)) =
∧

f∈F

sd(
〈

f, e+(b, ρ)(f)
〉

) definition of sm

=
∧

f∈dom(b)

sd(〈f, ρ(b(f))〉) ∧
∧

f /∈dom(b)

sd

(〈

f, ∅
〉)

definition of e+

=
∧

f∈dom(b)

f = ρ(b(f)) ∧
∧

f /∈dom(b)

∧

o∈∅

¬(f = o) definition of sd

= e̊0(b, ρ) ∧ true empty conjunction

= e̊0(b, ρ)

131

⊓⊔

Lemma 4.
∨

f∈dom(b)

sm(e−(b, ρ, f)) = ¬e̊0(b, ρ)

Proof.
∨

f∈dom(b)

sm(e−(b, ρ, f)) =
∨

f∈dom(b)

∧

f ′∈F

sd(
〈

f ′, e−(b, ρ, f ′)(f ′)
〉

)

=
∨

f∈dom(b)



sd

(〈

f, ρ(b(f))
〉)

∧
∧

f ′∈{F\f}

sd

(〈

f ′, ∅
〉)





=
∨

f∈dom(b)



¬(f = ρ(b(f))) ∧
∧

f ′∈{F\f}

∧

o∈∅

¬(f ′ = o)





=
∨

f∈dom(b)

¬(f = ρ(b(f)))

= ¬
∧

f∈dom(b)

(f = ρ(b(f)))

= ¬e̊0(b, ρ)

⊓⊔

Lemma 5. For all q ∈ Q,
∨

〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ))···)

sm(m) = sσ(σ)(q) ∧
∧

1≤i≤n

¬e̊0(bi, ρ)

Proof. We use induction on n.
In the base case, n = 0, so the left-hand side is

∨

〈q,m〉∈σ sm(m) and the right-hand side is

sσ(σ)(q) ∧ true. These are equal by the definition of sσ.

For the inductive case, let σ′ = e−[b(n−1), ρ](· · · (e−[b1, ρ](σ)) · · ·). We will show that if
∨

〈q,m〉∈σ′

sm(m) = sσ(σ)(q) ∧
∧

1≤i≤n−1

¬e̊0(bi, ρ)

then
∨

〈q,m〉∈e−[bn,ρ](σ′)

sm(m) = sσ(σ)(q) ∧
∧

1≤i≤n

¬e̊0(bi, ρ)

132

Case dom(bn) = ∅: In this case, e−[bn, ρ](σ′) = ∅, so
∨

〈q,m〉∈e−[bn,ρ](σ′) sm(m) = false, and

¬e̊0(bn, ρ) = ¬true = false, so the right-hand side is also false.

Case 6 ∃ 〈q,m〉 ∈ σ′: In this case, e−[bn, ρ](σ′) = ∅, so
∨

〈q,m〉∈e−[bn,ρ](σ′) sm(m) = false, and

sσ(σ′)(q) = false, so the right-hand side is also false.

Case dom(bn) 6= ∅ and ∃ 〈q,m〉 ∈ σ′:
_

〈q,m〉∈e−[bn,ρ](σ′)

sm(m)

=
_

〈q,m〉∈σ′

_

f∈dom(bn)

sm(m ⊓ e−(bn, ρ, f))

=
_

〈q,m〉∈σ′

_

f∈dom(bn)

sm(m[f 7→ m(f) ⊓ {ρ(bn(f))}])

=
_

〈q,m〉∈σ′

_

f∈dom(bn)

^

f ′∈F

sd

“D

f ′, m[f 7→ m(f) ⊓ {ρ(bn(f))}](f ′)
E”

=
_

〈q,m〉∈σ′

_

f∈dom(bn)

0

@sd

“D

f, m(f) ⊓ {ρ(bn(f))}
E”

∧
^

f ′∈F\{f}

sd

`˙

f ′, m(f ′)
¸´

1

A

=
_

〈q,m〉∈σ′

_

f∈dom(bn)

0

@sd (〈f, m(f)〉) ∧ sd

“D

f, {ρ(bn(f))}
E”

∧
^

f ′∈F\{f}

sd

`˙

f ′, m(f ′)
¸´

1

A

=
_

〈q,m〉∈σ′

_

f∈dom(bn)

0

@sd

“D

f, ρ(bn(f))
E”

∧
^

f ′∈F

sd

`˙

f ′, m(f ′)
¸´

1

A

=
_

〈q,m〉∈σ′

_

f∈dom(bn)

¬(f = ρ(bn(f))) ∧ sm (m)

=

0

@

_

〈q,m〉∈σ′

_

f∈dom(bn)

¬(f = ρ(bn(f)))

1

A ∧

0

@

_

〈q,m〉∈σ′

_

f∈dom(bn)

sm (m)

1

A

=

0

@¬
^

f∈dom(bn)

(f = ρ(bn(f)))

1

A ∧

0

@

_

〈q,m〉∈σ′

sm (m)

1

A

=¬e̊0(bn, ρ) ∧ sσ(σ)(q) ∧
^

1≤i≤n−1

¬e̊0(bi, ρ)

=sσ(σ)(q) ∧
^

1≤i≤n

¬e̊0(bi, ρ)

⊓⊔

Lemma 6. Every tracematch state in the original semantics has an equivalent in the
lattice-based semantics. Formally, for every σ̊ ∈ Q → S, there exists a σ ∈ State such
that for all q ∈ Q, σ̊(q) ⇐⇒ sσ(σ)(q).

Proof. Let σ̊(q) be an arbitrary boolean formula. It has an equivalent formula in disjunctive
normal form as a disjunction of conjunctions of literals of the forms (f = o) and ¬(f = o).
Simplify the DNF formula using the following identities:

133

• Replace (f = o1) ∧ (f = o2) with false if o1 6= o2.

• Replace (f = o) ∧ ¬(f = o) with false.

• Replace (f = o1) ∧ ¬(f = o2) with just (f = o1) if o1 6= o2.

• Remove true from any conjunction in which it appears.

• Eliminate any conjunctions containing false.

Then each resulting conjunction contains, for each f ∈ F , either a single literal (f = o),
or a set of literals ¬(f = o). In the former case define m(f) , o. In the latter case
define m(f) , {o : ¬(f = o) is a literal in the conjunction}. Then sm(m) is exactly the
conjunction. Define sσ as the set of all pairs 〈q,m〉 such that sm(m) is a conjunction in
the formula normalized from σ̊(q). Then sσ(σ)(q) ⇐⇒ σ̊(q) for all q as required. ⊓⊔

Having proved the lemmas, we now give a proof of Theorem 1.

Proof (Proof of Theorem 1). For every σ we can define σ̊ , sσ(σ), and this definition
ensures that σ̊(q) ⇐⇒ sσ(σ)(q). Conversely, for every σ̊, Lemma 6 constructs a σ
such that the same property holds. It remains to show that if the property holds and
〈tr(T), σ〉 → 〈σ′〉 and 〈tr(T), σ̊〉 →̊ 〈̊σ′〉, then σ̊′ = sσ(σ′).

134

σ̊′ = λq.





∨

a,j:δ(j,a,q)

(̊σ[q0 7→ true](j) ∧ e̊(a, {〈a1, b1〉 · · · 〈an, bn〉}, ρ))



∨

(

σ̊[q0 7→ true](q) ∧
∧

a∈A

¬e̊(a, {〈a1, b1〉 · · · 〈an, bn〉}, ρ)

)

= λq.





∨

a,j:δ(j,a,q)

(

sσ(σ ∪ {〈q0, λf.⊤〉})(j) ∧
∨

i:ai=a

e̊0(bi, ρ)

)







sσ(σ ∪ {〈q0, λf.⊤〉})(q) ∧
∧

1≤i≤n

¬e̊0(bi, ρ)





= λq.





∨

a,j:δ(j,a,q)





∨

〈q,m〉∈σ∪{〈q0,λf.⊤〉}

sm(m) ∧
∨

i:ai=a

sm(e+(bi, ρ))







∨





∨

〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.⊤〉}))···)

sm(m)





= λq.





∨

a,j:δ(j,a,q)

∨

〈q,m〉∈σ∪{〈q0,λf.⊤〉}

∨

i:ai=a

(

sm(m) ∧ sm(e+(bi, ρ))
)



∨





∨

〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.⊤〉}))···)

sm(m)





= λq.





∨

1≤i≤n

∨

j:δ(j,ai,q)

∨

〈q,m〉∈σ∪{〈q0,λf.⊤〉}

sm(m ⊓ e+(bi, ρ))



∨





∨

〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.⊤〉}))···)

sm(m)





= λq.





∨

1≤i≤n

∨

〈q,m〉∈e+[ai,bi,ρ](σ∪{〈q0,λf.⊤〉})

sm(m)



∨





∨

〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.⊤〉}))···)

sm(m)





135

σ̊′ = λq.





∨

1≤i≤n

∨

〈q,m〉∈e+[ai,bi,ρ](σ∪{〈q0,λf.⊤〉})

sm(m)



∨





∨

〈q,m〉∈e−[bn,ρ](···(e−[b1,ρ](σ∪{〈q0,λf.⊤〉}))···)

sm(m)





= λq.
∨

〈q,m〉∈(
S

1≤i≤n
e+[ai,bi,ρ](σ∪{〈q0,λf.⊤〉}))∪e−[b1,ρ](···(e−[bn,ρ](σ∪{〈q0,λf.⊤〉}))···)

sm(m)

= sσ









⋃

1≤i≤n

e+[ai, bi, ρ](σ ∪ {〈q0, λf.⊤〉})



 ∪ e−[b1, ρ](· · · (e−[bn, ρ](σ ∪ {〈q0, λf.⊤〉})) · · ·)





= sσ(σ′)

⊓⊔

Proposition 2. If s is any statement except v ← h, and 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉, then for
any concrete object o that exists prior to the execution of s,

JsKo♯(βo[ρ](o)) = βo[ρ
′](o)

Proof. Case s = v1 ← v2 and ρ(v2) = o:

βo[ρ
′](o) = βo[ρ[v1 7→ ρ(v2)]](o)

= βo[ρ[v1 7→ o]](o)

= {v : ρ[v1 7→ o](v) = o}

= {v : ρ(v) = o} ∪ {v1}

= βo[ρ](o) ∪ {v1}

JsKo♯(βo[ρ](o)) = βo[ρ](o) ∪ {v1} since v2 ∈ βo[ρ](o)

Case s = v1 ← v2 and ρ(v2) 6= o:

βo[ρ
′](o) = βo[ρ[v1 7→ ρ(v2)]](o)

= βo[ρ[v1 7→ o′ : o 6= o′]](o)

= {v : ρ(v) = o} \ {v1}

= βo[ρ](o) \ {v1}

JsKo♯(βo[ρ](o)) = βo[ρ](o) \ {v1} since v2 6∈ βo[ρ](o)

136

Case s = v ← null:

βo[ρ
′](o) = βo[ρ[v 7→ ⊥]](o)

= {v′ : ρ(v′) = o} \ {v}

= βo[ρ](o) \ {v}

= JsKo♯(βo[ρ](o))

Case v ← new:

βo[ρ
′](o) = βo[ρ[v 7→ o′]](o) with o′ fresh

= {v′ : ρ(v′) = o} \ {v} since o 6= o′

= βo[ρ](o) \ {v}

= JsKo♯(βo[ρ](o))

Case s ∈ {h ← v, tr(T),body}: For these statements, ρ′ = ρ and JsKo♯ is the identity.
Thus JsKo♯(βo[ρ](o)) = βo[ρ](o) = βo[ρ

′](o).

⊓⊔

Theorem 2. If 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and 〈ρ, h〉Rρh

〈

ρ♯, h♯
〉

, then
〈ρ′, h′〉Rρh JsKρh♯(ρ♯, h♯).

The following lemma is needed to prove the theorem.

Lemma 7. If s is any statement except v ← new, and 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉, then
range(ρ) ∪ h \ {⊥} ⊇ range(ρ′) ∪ h′ \ {⊥}.

Proof. Since x ⊇ x′ implies x \ {⊥} ⊇ x′ \ {⊥} for any x, x′, for all but the last case, we
show that range(ρ) ∪ h ⊇ range(ρ′) ∪ h′.

Case s = v1 ← v2: range(ρ′) = range(ρ[v1 7→ ρ(v2)]) ⊆ range(ρ). Also, h′ = h. Thus
range(ρ) ∪ h ⊇ range(ρ′) ∪ h′.

Case s = v ← h: range(ρ′) = range(ρ[v 7→ o]) for some o ∈ h. Thus range(ρ′) ∪ h′ =
range(ρ[v 7→ o]) ∪ h ⊆ range(ρ) ∪ h since o ∈ h.

Case s = h ← v: range(ρ′) ∪ h′ = range(ρ) ∪ h ∪ {ρ(v)} = range(ρ) ∪ h.

137

Case s ∈ {body, tr(T)}: Since ρ′ = ρ and h′ = h, range(ρ′) ∪ h′ = range(ρ) ∪ h.

Case s = v ← null: range(ρ′) = range(ρ[v 7→ ⊥]) ⊆ range(ρ) ∪ {⊥}. Since h = h′, this
implies that range(ρ) ∪ h \ {⊥} ⊇ range(ρ′) ∪ h′ \ {⊥}.

⊓⊔

Proof (Proof of Theorem 2). We first prove the theorem for the special case when
〈

ρ♯, h♯
〉

=
βρh(ρ, h).

By the definitions of Rρh and ⊑, the conclusion of the theorem is equivalent to
βρ(ρ

′, h′) ⊆ JsKρ♯(ρ♯, h♯) ∧ βh(ρ
′, h′) ⊆ JsKh♯(ρ♯, h♯). We first prove βρ(ρ

′, h′) ⊆ JsKρ♯(ρ♯, h♯).

Case s ∈ {v1 ← v2, v ← null,h ← v}:

JsKρ♯(ρ♯, h♯) = JsKO♯ [h♯](ρ♯)

= {JsKo♯(o♯) : o♯ ∈ ρ♯}

= {JsKo♯(βo[ρ](o)) : o ∈ h ∪ range(ρ) \ {⊥}}

⊇ {JsKo♯(βo[ρ](o)) : o ∈ h′ ∪ range(ρ′) \ {⊥}} (Using Lemma 7)

= {βo[ρ
′](o) : o ∈ h′ ∪ range(ρ′) \ {⊥}} (Using Proposition 2)

= βρ(ρ
′, h′)

Case s = v ← new: Let o′ be the newly created object. Since h′ = h and ρ′ = ρ[v 7→ o′],
range(ρ) ∪ {o′} ∪ h ⊇ range(ρ′) ∪ h′.

JsKρ♯(ρ♯, h♯) = JsKO♯ [h♯](ρ♯) ∪ {v}

= {JsKo♯(o♯) : o♯ ∈ ρ♯} ∪ {v}

= {JsKo♯(βo[ρ](o)) : o ∈ h ∪ range(ρ) \ {⊥}} ∪ {v}

= {βo[ρ
′](o) : o ∈ h ∪ range(ρ) \ {⊥}} ∪ {v} Proposition 2

= {βo[ρ
′](o) : o ∈ h ∪ range(ρ) \ {⊥} ∪ o′} since {v} = βo[ρ

′](o′)

⊇ {βo[ρ
′](o) : o ∈ h′ ∪ range(ρ′) \ {⊥}}

= βρ(ρ
′, h′)

138

Case s = v ← h: Let o′ ∈ h be the object such that ρ′ = ρ[v 7→ o′] (the object being
loaded).

JsKρ♯(ρ♯, h♯) = JsKO♯ [h♯](ρ♯)

=
⋃

o♯∈ρ♯

focus[h♯](o♯)

=
⋃

o∈h∪range(ρ)\{⊥}

focus[h♯](βo[ρ](o))

=
⋃

o∈range(ρ)\{⊥}\h

focus[h♯](βo[ρ](o))
⋃

⋃

o∈h\{⊥}

focus[h♯](βo[ρ](o))

= {βo[ρ](o) \ {v} : o ∈ range(ρ) \ {⊥} \ h}
⋃

⋃

o∈h\{⊥}

{βo[ρ](o) \ {v}, βo[ρ](o) ∪ {v}}

⊇ {βo[ρ[v 7→ o′]](o) : o ∈ range(ρ) \ {⊥} \ h}
⋃

⋃

o∈h\{⊥}

{βo[ρ[v 7→ o′]](o)}

= {βo[ρ
′](o) : o ∈ range(ρ) ∪ h \ {⊥}}

⊇ {βo[ρ
′](o) : o ∈ range(ρ′) ∪ h′ \ {⊥}}

= βρ(ρ
′, h′)

Case s ∈ {tr(T),body}: In this case, ρ′ = ρ, h′ = h, thus JsKρ♯(ρ♯, h♯) = ρ♯ = βρ(ρ
′, h′).

Next we prove βh(ρ
′, h′) ⊆ JsKh♯(ρ♯, h♯).

139

Case s ∈ {v1 ← v2, v ← null, v ← new}:

JsKh♯(ρ♯, βh(ρ, h)) = JsKh♯(ρ♯, h♯)

= JsKO♯ h♯

= {JsKo♯(o♯) : o♯ ∈ h♯}

= {JsKo♯(βo[ρ](o)) : o ∈ h}

= {JsKo♯(βo[ρ](o)) : o ∈ h′} (Since h = h′)

= {βo[ρ
′](o) : o ∈ h′}(Using Proposition 2)

= βh(ρ
′, h′)

Case s = h ← v:

JsKh♯(ρ♯, h♯) = JsKO♯ [h♯](h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯})

= {JsKo♯(o♯) : o♯ ∈ h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯}}

= {JsKo♯(o♯) : o♯ ∈ h♯} ∪ {JsKo♯(o♯) : o♯ ∈ ρ♯ ∧ v ∈ o♯}

= {JsKo♯(βo[ρ](o)) : o ∈ h} ∪ {o♯ ∈ ρ♯ : v ∈ o♯}

= {βo[ρ](o) : o ∈ h} ∪ {βo[ρ](ρ(v))}

= {βo[ρ](o) : o ∈ h ∪ {ρ(v)}}

= {βo[ρ
′](o) : o ∈ h′}

= βh(ρ
′, h′)

Case s = v ← h: Let o′ ∈ h be the object such that ρ′ = ρ[v 7→ o′] (the object being

140

loaded).

JsKh♯(ρ♯, h♯) = JsKO♯ h♯

=
⋃

o♯∈h♯

focus[h♯](o♯)

=
⋃

o♯∈h♯

{o♯ \ {v}, o♯ ∪ {v}}

=
⋃

o∈h

{βo[ρ](o) \ {v}, βo[ρ](o) ∪ {v}}

⊇
⋃

o∈h

{βo[ρ[v 7→ o′]](o)}

= {βo[ρ
′](o) : o ∈ h}

= βh(ρ
′, h)

= βh(ρ
′, h′)

Case s ∈ {tr(T),body}: In this case, ρ′ = ρ, h′ = h, thus JsKh♯(ρ♯, h♯) = h♯ = βh(ρ
′, h′).

This completes the proof for the special case when
〈

ρ♯, h♯
〉

= βρh(ρ, h). In general,
〈

ρ♯, h♯
〉

⊒ βρh(ρ, h). Since JsKρh♯ is monotone, JsKρh♯(ρ♯, h♯) ⊒ JsKρh♯(βρh(ρ, h)), which
we just proved is greater than βρh(ρ

′, h′). Thus, the theorem holds in the general case. ⊓⊔

Proposition 3.
〈

Bind
♯,⊑

〉

is a finite lattice with meet operator defined as:

⊥ ⊓ x = x ⊓ ⊥ ,⊥ for any x
〈

o!
1, o

?
2

〉

⊓
〈

o!
2, o

?
2

〉

,pos(o!
1 ∪ o!

2, o
?
1 ∩ o?

2)
〈

o!, o?
〉

⊓ V ♯ = V ♯ ⊓
〈

o!, o?
〉

,pos(o!, o? \ V ♯)

V ♯
1 ⊓ V ♯

2 ,V ♯
1 ∪ V ♯

2

where pos
(

o!, o?
)

,

{ 〈

o!, o?
〉

if o! ⊆ o?

⊥ otherwise

Proof. Bind♯ is finite by construction because Var is finite.

The bottom element ⊥ is a lower bound of every element, and is the only lower bound
of itself. Therefore, it is the glb of any pair containing ⊥.

141

A lower bound of two positive bindings d♯
1, d

♯
2 can be either ⊥ or a positive binding

whose must set is a superset of their must sets and whose may set is a subset of their may
sets. Of the positive bindings, the one whose must set is the union of the must sets of d♯

1

and d♯
2 and whose may set is the intersection is greater than all others. It is also greater

than ⊥, so it is the glb. However, every positive binding must respect the restriction
o! ⊆ o?. When this restriction cannot be respected the only and therefore greatest lower
bound is ⊥.

The case of a meet of a positive binding and a negative binding is similar. Any lower
bound must be either ⊥ or a positive binding whose must set is a superset of the original
must set, and whose may set is a subset of the original may set but disjoint from the negative
binding. The positive binding

〈

o!, o? \ V ♯
〉

satisfies these restrictions and is greater than
all other positive bindings that do. It is also greater than ⊥. Thus it is the glb. However,
when it does not respect the subset restriction on positive bindings, only ⊥ is a lower
bound and is therefore the glb.

The meet of two negative bindings, if it is a negative binding, must be a superset of
both. Their union is greater than any other such negative binding, and it is greater than
any positive binding and ⊥, so it is the glb.

Since Bind♯ is finite, it is a complete meet semi-lattice. Therefore it is a complete,
finite lattice. ⊓⊔

Proposition 4. The abstraction function βd[ρ] is monotone. That is, d1 ⊑ d2 =⇒
βd[ρ](d1) ⊑ βd[ρ](d2).

Proof. For conciseness, define d♯
1 , βd[ρ](d1) and d♯

2 , βd[ρ](d2).

When d1 = ⊥, d♯
1 is also ⊥, so the conclusion holds.

When d1 is a positive binding o1, d2 is either also o1 or a negative binding O2 with
o1 6∈ O2. In the former case, the conclusion holds trivially. In the latter case, since
o1 6∈ O2, none of the variables pointing to o1 point to any object in O2. Thus βo(o1) is
disjoint from every βo(o) for any o ∈ O2. Thus βd[ρ](O2) is disjoint from the must set of
βd[ρ](o1). Therefore βd[ρ](d1) ⊑ βd[ρ](d2).

When d1 is a negative binding O1, d2 can only be a negative binding O2 with O1 ⊇ O2.
Therefore d♯

1 =
⋃

o∈O1
βo(o) ⊇

⋃

o∈O2
βo(o) = d♯

2, so d♯
1 ⊑ d♯

2. ⊓⊔

Proposition 5. If 〈s, ρ〉 → 〈ρ′〉 then d Rd[ρ] d♯ =⇒ d Rd[ρ
′] JsKd♯(d♯).

We use the following lemmas to prove the proposition.

142

Lemma 8. If o Rd[ρ] d♯, then d♯ is either a negative binding, or d♯ =
〈

o!, o?
〉

and o! ⊆
βo[ρ](o) ⊆ o?.

Proof. Since o Rd[ρ] d♯, βd[ρ](o) = 〈βo[ρ](o), βo[ρ](o)〉 ⊑ d♯. Therefore d♯ cannot be ⊥, so it
must be a negative or positive binding. If it is a positive binding, it must be greater than
〈βo[ρ](o), βo[ρ](o)〉, which is defined to mean o! ⊆ βo[ρ](o) ⊆ o?. ⊓⊔

Lemma 9. If O Rd[ρ] d♯, then d♯ is a negative binding d♯ = V ♯ ⊆
⋃

o∈O βo[ρ](o).

Proof. Since O Rd[ρ] d♯, βd[ρ](O) =
⋃

o∈O βo[ρ](o) ⊑ d♯. Only negative bindings are greater
than a negative binding, so d♯ must be a negative binding. Also, to be greater, d♯ must be
a subset of

⋃

o∈O βo[ρ](o). ⊓⊔

Proof (Proof of Proposition 5).

Case d = ⊥: Then βd[ρ](d) = ⊥ ⊑ JsKd♯(d♯), so Rd[ρ
′] JsKd♯(d♯).

Case d is a positive binding o: By Lemma 8, d♯ is either a negative binding or
〈

o!, o?
〉

.
If d♯ is a negative binding, then so is JsKd♯(d♯), so since βd[ρ](d) is less than any
negative binding, d Rd[ρ

′] JsKd♯(d♯). Thus, the remaining case is when d♯ =
〈

o!, o?
〉

.
By Lemma 8, o! ⊆ βo[ρ](o♯) ⊆ o?.

Subcase s = v1 ← v2 ∧ v2 ∈ o! :

Since v2 ∈ o! this means v2 ∈ βo[ρ](o) and v2 ∈ o?.

o Rd[ρ]
〈

o!, o?
〉

=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! ∪ {v1} ⊆ βo[ρ](o) ∪ {v1} ⊆ o? ∪ {v1}
=⇒ o! ∪ {v1} ⊆ JsKo♯(βo[ρ](o)) ⊆ o? ∪ {v1} defn. of JsKo♯ when v2 ∈ βo[ρ](o)
=⇒ o! ∪ {v1} ⊆ βo[ρ

′](o) ⊆ o? ∪ {v1} Proposition 2
=⇒ o Rd[ρ

′]
〈

o! ∪ {v}, o? ∪ {v}
〉

defn. of Rd[ρ]
=⇒ o Rd[ρ

′] JsKd♯(
〈

o!, o?
〉

) defn. of JsKd♯

Subcase s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 ∈ o? :

o Rd[ρ]
〈

o!, o?
〉

=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v1} ⊆ βo[ρ](o) \ {v1} ⊆ βo[ρ](o) ∪ {v1} ⊆ o? ∪ {v1}
=⇒ o! \ {v1} ⊆ JsKo♯(βo[ρ](o)) ⊆ o? ∪ {v1} defn. of JsKo♯

=⇒ o! \ {v1} ⊆ βo[ρ
′](o) ⊆ o? ∪ {v1} Proposition 2

=⇒ o Rd[ρ
′]

〈

o! \ {v}, o? ∪ {v}
〉

defn. of Rd[ρ]
=⇒ o Rd[ρ

′] JsKd♯(
〈

o!, o?
〉

) defn. of JsKd♯

143

Subcase s = v1 ← v2 ∧ v2 6∈ o! ∧ v2 6∈ o? :

Since v2 6∈ o? this means v2 6∈ βo[ρ](o).

o Rd[ρ]
〈

o!, o?
〉

=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v1} ⊆ βo[ρ](o) \ {v1} ⊆ o? \ {v1}
=⇒ o! \ {v1} ⊆ JsKo♯(βo[ρ](o)) ⊆ o? \ {v1} defn. of JsKo♯ when v2 6∈ βo[ρ](o)
=⇒ o! \ {v1} ⊆ βo[ρ

′](o) ⊆ o? \ {v1} Proposition 2
=⇒ o Rd[ρ

′]
〈

o! \ {v1}, o
? \ {v1}

〉

defn. of Rd[ρ]
=⇒ o Rd[ρ

′] JsKd♯(
〈

o!, o?
〉

) defn. of JsKd♯

Subcase s = v ← h :

Let the object loaded from the heap be o′. Then ρ′ = ρ[v 7→ o′].

If o′ = o, then ρ′(v) = o, so

βo[ρ
′](o) = {v′ : ρ′(v′) = o}

= {v′ : ρ(v′) = o} ∪ {v}

= βo[ρ](o) ∪ {v}

If o′ 6= o, then ρ′(v) 6= o, so

βo[ρ
′](o) = {v′ : ρ′(v′) = o}

= {v′ : ρ(v′) = o} \ {v}

= βo[ρ](o) \ {v}

In either case,
o Rd[ρ]

〈

o!, o?
〉

=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v} ⊆ βo[ρ](o) \ {v} ⊆ βo[ρ](o) ∪ {v} ⊆ o? ∪ {v}
=⇒ o! \ {v} ⊆ βo[ρ

′](o) ⊆ o? ∪ {v}
=⇒ o Rd[ρ

′]
〈

o! \ {v}, o? ∪ {v}
〉

defn. of Rd[ρ]
=⇒ o Rd[ρ

′] JsKd♯(
〈

o!, o?
〉

) defn. of JsKd♯

Subcase s ∈ {v ← null, v ← new} :

144

o Rd[ρ]
〈

o!, o?
〉

=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! \ {v} ⊆ βo[ρ](o) \ {v} ⊆ o? \ {v}
=⇒ o! \ {v} ⊆ JsKo♯(βo[ρ](o)) ⊆ o? \ {v} defn. of JsKo♯

=⇒ o! \ {v} ⊆ βo[ρ
′](o) ⊆ o? \ {v} Proposition 2

=⇒ o Rd[ρ
′]

〈

o! \ {v}, o? \ {v}
〉

defn. of Rd[ρ]
=⇒ o Rd[ρ

′] JsKd♯(
〈

o!, o?
〉

) defn. of JsKd♯

Subcase s ∈ {h ← v,body} :

o Rd[ρ]
〈

o!, o?
〉

=⇒ o! ⊆ βo[ρ](o) ⊆ o?

=⇒ o! ⊆ JsKo♯(βo[ρ](o)) ⊆ o? defn. of JsKo♯

=⇒ o! ⊆ βo[ρ
′](o) ⊆ o? Proposition 2

=⇒ o Rd[ρ
′]

〈

o!, o?
〉

defn. of Rd[ρ]
=⇒ o Rd[ρ

′] JsKd♯(
〈

o!, o?
〉

) defn. of JsKd♯

Case d is a negative binding O: Then by Lemma 9, d♯ is a negative binding d♯ = V ♯ ⊆
⋃

o∈O βo[ρ](o).

Subcase s = v1 ← v2 ∧ v2 ∈ V ♯ :

O Rd[ρ] V ♯ =⇒ V ♯ ⊆
⋃

o∈O

βo[ρ](o)

Therefore, there is some o′ ∈ O for which v2 ∈ βo[ρ](o′).
So βo[ρ

′](o′) = JsKo♯(βo[ρ](o′)) = βo[ρ](o′) ∪ {v1}.

V ♯ ⊆
⋃

o∈O βo[ρ](o)

=⇒ V ♯ ⊆
(
⋃

o∈O βo[ρ](o)
)

∪ βo[ρ](o′)

=⇒ V ♯ ∪ {v1} ⊆
(
⋃

o∈O βo[ρ](o)
)

∪ βo[ρ](o′) ∪ {v1}

=⇒ V ♯ ∪ {v1} ⊆
(
⋃

o∈O βo[ρ](o) \ {v1}
)

∪ βo[ρ](o′) ∪ {v1}

=⇒ V ♯ ∪ {v1} ⊆
(
⋃

o∈OJsKo♯(βo[ρ](o))
)

∪ JsKo♯(βo[ρ](o′))

=⇒ V ♯ ∪ {v1} ⊆
⋃

o∈OJsKo♯(βo[ρ](o))

=⇒ V ♯ ∪ {v1} ⊆
⋃

o∈O βo[ρ
′](o)

=⇒ O Rd[ρ
′] V ♯ ∪ {v1} defn. of Rd[ρ]

=⇒ O Rd[ρ
′] JsKd♯(V ♯) defn. of JsKd♯

Subcase s = v1 ← v2 ∧ v2 6∈ V ♯ :

145

From the definition of JsKo♯ , it follows that Jv1 ← v2Ko♯(o♯) ⊇ o♯ \ {v1}.

O Rd[ρ] V ♯

=⇒ V ♯ ⊆
⋃

o∈O βo[ρ](o)

=⇒ V ♯ \ {v1} ⊆
⋃

o∈O βo[ρ](o) \ {v1}

=⇒ V ♯ \ {v1} ⊆
⋃

o∈OJsKo♯(o♯)

=⇒ V ♯ \ {v1} ⊆
⋃

o∈O βo[ρ
′](o)

=⇒ O Rd[ρ
′] V ♯ \ {v1} defn. of Rd[ρ]

=⇒ O Rd[ρ
′] JsKd♯(V ♯) defn. of JsKd♯

Subcase s ∈ {v ← null, v ← new} :

O Rd[ρ] V ♯

=⇒ V ♯ ⊆
⋃

o∈O βo[ρ](o)

=⇒ V ♯ \ {v} ⊆
⋃

o∈O (βo[ρ](o) \ {v})

=⇒ V ♯ \ {v} ⊆
⋃

o∈OJsKo♯(βo[ρ](o)) defn. of JsKo♯

=⇒ V ♯ \ {v} ⊆
⋃

o∈O βo[ρ
′](o) Proposition 2

=⇒ O Rd[ρ
′] V ♯ \ {v} defn. of Rd[ρ]

=⇒ O Rd[ρ
′] JsKd♯(V ♯) defn. of JsKd♯

Subcase s = v ← h :

As in the case for positive bindings, JsKo♯(βo[ρ](o)) is either βo[ρ](o′)∪{v} or βo[ρ](o)\
{v}. Either way, JsKo♯(βo[ρ](o)) ⊇ βo[ρ](o) \ {v}. Thus, the same reasoning as in the
preceding subcase applies.

Subcase s ∈ {h ← v,body} :

O Rd[ρ] V ♯

=⇒ V ♯ ⊆
⋃

o∈O βo[ρ](o)

=⇒ V ♯ ⊆
⋃

o∈OJsKo♯(βo[ρ](o)) defn. of JsKo♯

=⇒ V ♯ ⊆
⋃

o∈O βo[ρ
′](o) Proposition 2

=⇒ O Rd[ρ
′] V ♯ defn. of Rd[ρ]

=⇒ O Rd[ρ
′] JsKd♯(V ♯) defn. of JsKd♯

⊓⊔

Theorem 3. If 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and σ Rσ[ρ] σ♯, then σ′ Rσ[ρ′] JsKσ♯ [ρ♯](σ♯).

146

For ease of reference we restate the correctness relation:

d Rd[ρ] d♯ if βd[ρ](d) ⊑ d♯

〈q,m〉 Rm[ρ]
〈

q,m♯
〉

if ∀f ∈ F.m(f) Rd[ρ] m♯(f)

σ Rσ[ρ] σ♯ if ∀ 〈q,m〉 ∈ σ.∃
〈

q,m♯
〉

∈ σ♯. 〈q,m〉 Rm[ρ]
〈

q,m♯
〉

Where βd[ρ](d) is defined as:

βd[ρ](d) ,







⊥ if d = ⊥
〈βo[ρ](o), βo[ρ](o)〉 if d is a positive binding o ∈ Obj

⋃

o∈O βo[ρ](o) if d is a negative binding O ⊆ Obj

We divide the proof of the theorem into the following six lemmas. The theorem is the
combination of Lemmas 10 and 15.

Lemma 10. For all statements except tr(T), if 〈s, ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and σ Rσ[ρ] σ♯,
then σ′ Rσ[ρ′] JsKσ♯ [ρ♯](σ♯).

Proof. Notice that all statements except tr(T) leave the tracematch state abstraction un-
changed. This means that σ = σ′.

σ Rσ[ρ] σ♯:
=⇒ ∀〈q,m〉 ∈ σ.∃

〈

q,m♯
〉

∈ σ♯. 〈q,m〉 Rm[ρ]
〈

q,m♯
〉

=⇒ ∀〈q,m〉 ∈ σ.∃
〈

q,m♯
〉

∈ σ♯.∀f ∈ F.m(f) Rd[ρ] m♯(f)
=⇒ ∀〈q,m〉 ∈ σ.∃

〈

q,m♯
〉

∈ σ♯.∀f ∈ F.m(f) Rd[ρ
′] JsKd♯(m♯(f)) Proposition 5

=⇒ ∀〈q,m〉 ∈ σ.∃
〈

q,m♯
〉

∈ σ♯. 〈q,m〉 Rm[ρ′]
〈

q, λf.JsKd♯(m♯(f))
〉

=⇒ ∀〈q,m〉 ∈ σ.∃
〈

q,m♯
〉

∈ JsKσ♯ [ρ♯](σ♯). 〈q,m〉 Rm[ρ′]
〈

q,m♯
〉

=⇒ σ Rσ[ρ′] JsKσ♯ [ρ♯](σ♯) defn. of JsKσ♯

=⇒ σ′ Rσ[ρ′] JsKσ♯(σ♯) since σ′ = σ
⊓⊔

Lemma 11. If d1 Rd[ρ] d♯
1 and d2 Rd[ρ] d♯

2, then d1 ⊓ d2 Rd[ρ] d♯
1 ⊓ d♯

2.

Proof. Since d1 ⊓ d2 ⊑ d1, by Proposition 4, βd[ρ](d1 ⊓ d2) ⊑ βd[ρ](d1) ⊑ d♯
1. Similarly,

βd[ρ](d1 ⊓ d2) ⊑ d♯
2. Therefore, βd[ρ](d1 ⊓ d2) ⊑ d♯

1 ⊓ d♯
2. Thus, d1 ⊓ d2 Rd[ρ] d♯

1 ⊓ d♯
2. ⊓⊔

Lemma 12. Let o1, o2 be two concrete objects existing simultaneously at any state in the
program execution with environment ρ. If o1 Rd[ρ] o!?

1 and o2 Rd[ρ] o!?
2 , then

147

1. o1 = o2 =⇒ same(o!?
1 , o!?

2)

2. o1 6= o2 =⇒ diff(o!?
1 , o!?

2)

3. In either case, compatible(o!?
1 , o!?

2).

As a corollary, for any set {o1 · · · on} of concrete objects, if oi Rd[ρ] o!?
i for all i, then

setcompat({o!?
i }).

Proof. 1. From the correctness relation, o!
i ⊆ βo[ρ](oi) ⊆ o?

i for i ∈ {1, 2}. Since o1 =
o2, o!

1 ⊆ βo[ρ](oi) ⊆ o?
2. Similarly, o!

2 ⊆ βo[ρ](oi) ⊆ o?
1. This is the definition of

same(o!?
1 , o!?

2).

2. If o1 = ρ(v), then o2 6= ρ(v), and vice versa. Therefore, βo[ρ](o1) ∩ βo[ρ](o2) = ∅.
Since o!

i ⊆ βo[ρ](oi) for i ∈ {1, 2}, o!
1 ∩ o!

2 ⊆ ∅.

3. Immediate from the above two cases and the definition of compatible.

⊓⊔

Definition 2 Given ρ ∈ P(Var), V ⊆ Var such that ρ(v) 6= ⊥ for any v ∈ V , define
O♯(ρ, V) , {βo[ρ](ρ(v)) : v ∈ V }.

Lemma 13. Let ρ♯ ⊒ βρ(ρ, h) and V ⊆ Var. Then

1. O♯(ρ, V) ⊆ ρ♯

2. relevant(O♯(ρ, V), V)

3. lookup(O♯(ρ, V), v) = βo[ρ](ρ(v)) for all v ∈ V

Proof. 1.

O♯(ρ, V) ={βo[ρ](o) : v ∈ V ∧ ρ(v) = o}

⊆{βo[ρ](o) : o ∈ range(ρ) ∪ h}

=βρ(ρ, h)

⊆ρ♯

148

2.
⋃

o♯∈O♯(ρ,V)

o♯ =
⋃

v∈V

βo[ρ](ρ(v))

⊇
⋃

v∈V

{v}

=V

Every o♯ ∈ O♯(ρ, V) is βo[ρ](ρ(v)) for some v ∈ V . By definition of βo, v ∈ βo[ρ](ρ(v)).
Therefore, v ∈ βo[ρ](ρ(v)) ∩ V , so this intersection is not empty.

3. For all v ∈ V , O♯(ρ, V) contains βo[ρ](ρ(v)). Also, v ∈ βo[ρ](ρ(v)). Therefore,
βo[ρ](ρ(v)) satisfies the definition of lookup(O♯(ρ, V), v). Furthermore, βo[ρ](ρ(v)) is
the only such element of O♯(ρ, V), since for any other object o′ 6= ρ(v), v 6∈ βo[ρ](o′).

⊓⊔

Lemma 14. Let V be any set of variables such that range(b) ⊆ V . Then

1. e+(b, ρ) Rm[ρ] e+♯(b, O♯(ρ, V))

2. e−(b, ρ, f) Rm[ρ] e−♯(b, O♯(ρ, V), f)

Proof. 1. For f ∈ dom(b),

e+♯(b, O♯(ρ, V))(f) =
〈

lookup(O♯(ρ, V), b(f)), lookup(O♯(ρ, V), b(f))
〉

definition of e+♯

= 〈βo[ρ](ρ(b(f))), βo[ρ](ρ(b(f)))〉 Lemma 13

=βd[ρ](ρ(b(f))) definition of βd

Therefore, e+(b, ρ) = ρ(b(f)) Rd[ρ] βd[ρ](ρ(b(f))) = e+♯(b, O♯(ρ, V))(f).

For f 6∈ dom(b), e+(b, ρ)(f) = ⊤ Rd[ρ] ⊤ = e+♯(b, O♯(ρ, V))(f).

2. For f ∈ dom(b),

e−♯(b, O♯(ρ, V), f) =lookup(O♯(ρ, V), b(f)) definition of e−♯

=βo[ρ](ρ(b(f))) Lemma 13

=βd[ρ]({ρ(b(f))}) definition of βd

Therefore, e−(b, ρ, f) = {ρ(b(f))} Rd[ρ] βd[ρ]({ρ(b(f))}) = e−♯(b, O♯(ρ, V), f).

For f 6∈ dom(b), e−(b, ρ, f) = ⊤ Rd[ρ] ⊤ = e−♯(b, O♯(ρ, V), f).

⊓⊔

149

Lemma 15. If 〈tr(T), ρ, h, σ〉 → 〈ρ′, h′, σ′〉 and σ Rσ[ρ] σ♯, then σ′ Rσ[ρ′] Jtr(T)K[ρ♯](σ♯)
for any ρ♯ ⊒ βρ(ρ, h).

Proof. For any V ⊇ range(b), from Lemmas 11 and 14 and from the premise that σ Rσ[ρ] σ♯,
it follows that for every 〈q,m〉 ∈ σ ∪ {〈q0, λf.⊤〉} there is a

〈

q,m♯
〉

∈ σ♯ ∪ {〈q0, λf.⊤〉}
such that:

e+[a, b, ρ](〈q,m〉) Rσ[ρ] e+♯[a, b, O♯(ρ, V)]
(〈

q,m♯
〉)

e−[b, ρ](〈q,m〉) Rσ[ρ] e−♯[b, O♯(ρ, V)]
(〈

q,m♯
〉)

By Lemma 12, setcompat(objs(m♯)∪ {
〈

o♯, o♯
〉

: o♯ ∈ O♯(ρ, V)}). By Lemma 13, O♯(ρ, V) ⊆
ρ♯ and relevant(O♯(ρ, V), V). Thus, O♯(ρ, V) ∈ red-envs(ρ♯, objs(m♯), V).

Therefore, for each

〈q,m〉 ∈ σ′ = e+[a, b, ρ](σ ∪ {〈q0, λf.⊤〉}) ∪ e−[b, ρ](σ ∪ {〈q0, λf.⊤〉})

there exists
〈

q,m♯
〉

∈

⋃

O♯∈red-envs(ρ♯,objs(m♯),range(b))

e+♯[a, b, O♯](σ♯ ∪ {〈q0, λf.⊤〉}) ∪ e−♯[b, O♯](σ♯ ∪ {〈q0, λf.⊤〉})

= Jtr({〈a, b〉})Kσ♯ [ρ♯](σ♯) such that 〈q,m〉 Rm[ρ]
〈

q,m♯
〉

. The same correspondence holds
for the case when T contains multiple transition elements.

This is the definition of σ′ Rσ[ρ] Jtr(T)K[ρ♯](σ♯). Since ρ′ = ρ, σ′ Rσ[ρ′] Jtr(T)K[ρ♯](σ♯).
⊓⊔

Proposition 6.

JsKρ♯(ρ♯, h♯) =







o♯ : ρ[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







JsKh♯(ρ♯, h♯) =







o♯ : h[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







150

Proof. Case s = v ← h: In this case,

JsKρh♯(ρ[o♯]) ={ρ[o♯ \ {v}]}

JsKρh♯(h[o♯]) ={ρ[o♯ \ {v}], ρ[o♯ ∪ {v}], h[o♯ \ {v}], h[o♯ ∪ {v}]}

JsKρh♯(0) =∅

Therefore,






o♯ : ρ[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈ρ♯

{o♯ \ {v}} ∪
⋃

o♯∈h♯

{o♯ \ {v}, o♯ ∪ {v}}

=
⋃

o♯∈ρ♯∪h♯

focus[h♯](v, o♯)

=
⋃

o♯∈ρ♯

focus[h♯](v, o♯) = JsKρ♯(ρ♯, h♯)

Also,






o♯ : h[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈h♯

{o♯ \ {v}, o♯ ∪ {v}}

=
⋃

o♯∈h♯

focus[h♯](v, o♯) = JsKh♯(ρ♯, h♯)

Case s = h ← v: In this case,

JsKρh♯(ρ[o♯]) =

{

{ρ[o♯], h[o♯)]} if v ∈ o♯

{ρ[o♯]} if v 6∈ o♯

JsKρh♯(h[o♯]) ={h[JsKo♯(o♯)]}

JsKρh♯(0) =∅

Therefore,






o♯ : ρ[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈ρ♯

{o♯} =
⋃

o♯∈ρ♯

{JsKo♯(o♯)}

= {JsKo♯(o♯) : o♯ ∈ ρ♯} = JsKρ♯(ρ♯, h♯)

151

Also,






o♯ : h[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈h♯

{JsKo♯(o♯)} ∪
⋃

o♯∈ρ♯:v∈o♯

{o♯}

=
⋃

o♯∈h♯∪{o♯∈ρ♯:v∈o♯}

{JsKo♯(o♯)}

= {JsKo♯(o♯) : o♯ ∈ h♯ ∪ {o♯ ∈ ρ♯ : v ∈ o♯}}

= JsKh♯(ρ♯, h♯)

Case s = v ← new: In this case,

JsKρh♯(ρ[o♯]) ={ρ[JsKo♯(o♯)]}

JsKρh♯(h[o♯]) ={h[JsKo♯(o♯)]}

JsKρh♯(0) ={ρ[{v}]}

Therefore,






o♯ : ρ[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈ρ♯

{JsKo♯(o♯)} ∪ {{v}}

= {JsKo♯(o♯) : o♯ ∈ ρ♯} ∪ {{v}}

= JsKρ♯(ρ♯, h♯)

Also,






o♯ : h[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈h♯

{JsKo♯(o♯)}

= {JsKo♯(o♯) : o♯ ∈ h♯} = JsKh♯(ρ♯, h♯)

Case s is any other statement: In this case,

JsKρh♯(ρ[o♯]) ={ρ[JsKo♯(o♯)]}

JsKρh♯(h[o♯]) ={h[JsKo♯(o♯)]}

JsKρh♯(0) =∅

152

Therefore,






o♯ : ρ[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈ρ♯

{JsKo♯(o♯)}

= {JsKo♯(o♯) : o♯ ∈ ρ♯} = JsKρ♯(ρ♯, h♯)

Also,






o♯ : h[o♯] ∈
⋃

d∈decomp(ρ♯,h♯)∪{0}

JsKρh♯(d)







=
⋃

o♯∈h♯

{JsKo♯(o♯)}

= {JsKo♯(o♯) : o♯ ∈ h♯} = JsKh♯(ρ♯, h♯)

⊓⊔

Proposition 7. If 〈q2,m2〉 ∈ e♯[T, ρ](q1,m1); 〈q1,m1〉 6= 〈q2,m2〉; ρ♯ overapproximates ρ;

and 〈q1,m1〉 Rm[ρ]
〈

q♯
1,m

♯
1

〉

; then there exists
〈

q♯
2,m

♯
2

〉

∈ Jtr(T)Km♯ [ρ♯](q♯
1,m

♯
1) such that

〈

q♯
1,m

♯
1

〉

6=
〈

q♯
2,m

♯
2

〉

and 〈q2,m2〉 Rm[ρ]
〈

q♯
2,m

♯
2

〉

.

Proof. From the definition of the correctness relation Rm[ρ] , q1 = q♯
1 and q2 = q♯

2. If
q1 6= q2, the conclusion is immediate. Suppose instead that all the qi, q

♯
i are equal, and

call this common state q. Then m1 6= m2. From the definition of e♯, 〈q,m2〉 is in either
e+[a, b, ρ](q,m1) or in e−[b, ρ](q,m1) for some 〈a, b〉 ∈ T . Thus there exists an f ∈ F such
that m1(f) 6= m2(f) and either m2(f) = m1(f) ⊓ ρ(b(f)) or m2(f) = m1(f) ⊓ {ρ(b(f))}.
Also, m1(f) 6= ⊥, since then m2(f) would also have to be ⊥.

Case: m2(f) = m1(f) ⊓ ρ(b(f)) and m♯
1(f) is a positive binding containing ρ(b(f)) in its

must set

In this case, since m1(f) Rd[ρ] m♯
1(f), m1(f) = ρ(b(f)), so m2(f) = m1(f), a contra-

diction. Therefore this case cannot occur.

Case: m2(f) = m1(f)⊓ ρ(b(f)) and m♯
1(f) is a positive binding not containing ρ(b(f)) in

its must set

In this case,

m♯
1(f) ⊓ e+♯

0 (b, O♯(ρ, range(b)))

= m♯
1(f) ⊓

〈

n(O♯(ρ, range(b)), b(f)), n(O♯(ρ, range(b)), b(f))
〉

153

which contains ρ(b(f)) in its must set and is therefore distinct from m♯
1(f). Therefore

m♯
1 ⊓ e+♯

0 (b, O♯(ρ, range(b))) is a correct abstraction of m2, is distinct from m♯
1, and is

contained in Jtr(T)Km♯ [ρ♯](q♯
1,m

♯
1).

Case: m2(f) = m1(f) ⊓ ρ(b(f)) and m♯
1(f) is a negative binding containing b(f)

In this case,

m♯
1(f) ⊓ e+♯

0 (b, O♯(ρ, range(b)))

= m♯
1(f) ⊓

〈

n(O♯(ρ, range(b)), b(f)), n(O♯(ρ, range(b)), b(f))
〉

= ⊥

which is distinct from m♯
1(f). Therefore m♯

1 ⊓ e+♯
0 (b, O♯(ρ, range(b))) is a correct

abstraction of m2, is distinct from m♯
1, and is contained in Jtr(T)Km♯ [ρ♯](q♯

1,m
♯
1).

Case: m2(f) = m1(f) ⊓ ρ(b(f)) and m♯
1(f) is a negative binding not containing b(f)

In this case,

m♯
1(f) ⊓ e+♯

0 (b, O♯(ρ, range(b)))

= m♯
1(f) ⊓

〈

n(O♯(ρ, range(b)), b(f)), n(O♯(ρ, range(b)), b(f))
〉

which is a positive binding and is therefore distinct from m♯
1(f). Therefore m♯

1 ⊓
e+♯
0 (b, O♯(ρ, range(b))) is a correct abstraction of m2, is distinct from m♯

1, and is
contained in Jtr(T)Km♯ [ρ♯](q♯

1,m
♯
1).

Case: m2(f) = m1(f) ⊓ {ρ(b(f))} and m♯
1(f) is a positive binding containing b(f) in its

may set:

In this case,

m♯
1(f) ⊓ e+♯

0 (b, O♯(ρ, range(b)))

= m♯
1(f) ⊓ n(O♯(ρ, range(b)), b(f))

which is either ⊥ or a positive binding not containing ρ(b(f)) in its may set. Either
way, it is distinct from m♯

1(f). Therefore m♯
1 ⊓ e+♯

0 (b, O♯(ρ, range(b))) is a correct
abstraction of m2, is distinct from m♯

1, and is contained in Jtr(T)Km♯ [ρ♯](q♯
1,m

♯
1).

Case: m2(f) = m1(f) ⊓ {ρ(b(f))} and m♯
1(f) is a positive binding not containing b(f) in

its may set

In this case, since m1(f) Rd[ρ] m♯
1(f), m1(f) is a positive binding other than ρ(b(f)),

so m2(f) = m1(f), a contradiction. Therefore this case cannot occur.

154

Case: m2(f) = m1(f) ⊓ {ρ(b(f))} and m♯
1(f) is a negative binding containing b(f)

In this case, since
m1(f) Rd[ρ] m♯

1(f), m1(f) is either a positive binding other than ρ(b(f)) or a negative
binding containing ρ(b(f)). Either way, m2(f) = m1(f), a contradiction. Therefore
this case cannot occur.

Case: m2(f) = m1(f)⊓ {ρ(b(f))} and m♯
1(f) is a negative binding not containing b(f) In

this case,
m♯

1(f) ⊓ e+♯
0 (b, O♯(ρ, range(b))) = m♯

1(f) ⊓ n(O♯(ρ, range(b)), b(f)), which is a nega-
tive binding containing b(f) and is therefore distinct from m♯

1(f). Therefore m♯
1 ⊓

e+♯
0 (b, O♯(ρ, range(b))) is a correct abstraction of m2, is distinct from m♯

1, and is con-
tained in Jtr(T)Km♯ [ρ♯](q♯

1,m
♯
1).

⊓⊔

155

References

[1] J. Aldrich, C. Chambers, E. G. Sirer, and S. J. Eggers. Static analyses for eliminating
unnecessary synchronization from Java programs. Proceedings of SAS ’99, pages 19–
38, 1999.

[2] K. Ali and O. Lhotk. Application-only call graph construction. Proceedings of ECOOP
’12, pages 688–712, 2012.

[3] K. Ali and O. Lhotk. Averroes: Whole-program analysis without the whole program.
Proceedings of ECOOP ’13, pages 378–400, 2013.

[4] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with
free variables to AspectJ. Proceedings of OOPSLA ’05, pages 345–364, 2005.

[5] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc : An extensible AspectJ
compiler. Transactions on Aspect-Oriented Software Development I, volume 3880 of
LNCS, pages 293–334. 2006.

[6] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni, J. Tibble, and
M. Verbaere. Semantics of static pointcuts in AspectJ. Proceedings of POPL ’07,
pages 11–23, 2007.

[7] P. Avgustinov, J. Tibble, and O. de Moor. Making trace monitors feasible. Proceedings
of OOPSLA ’07, pages 589–608, 2007.

[8] K. Bierhoff and J. Aldrich. Lightweight object specification with typestates. Proceed-
ings of ESEC/FSE-13, pages 217–226, 2005.

[9] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. Proceedings
of OOPSLA ’07, pages 301–320, 2007.

156

[10] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis. Proceedings of OOPSLA ’06, 2006.

[11] B. Blanchet. Escape analysis for object-oriented languages: application to Java. Pro-
ceedings of OOPSLA ’99, pages 20–34, 1999.

[12] E. Bodden, L. Hendren, and O. Lhoták. A staged static program analysis to improve
the performance of runtime monitoring. Proceedings of ECOOP 2007, volume 4609 of
LNCS, pages 525–549, 2007.

[13] E. Bodden, P. Lam, and L. Hendren. Finding programming errors earlier by evaluating
runtime monitors ahead-of-time. Proceedings of FSE ’08, pages 36–47, 2008.

[14] R. Chatterjee, B. G. Ryder, and W. A. Landi. Relevant context inference. Proceedings
of POPL ’99, pages 133–146, 1999.

[15] F. Chen and G. Roşu. Mop: an efficient and generic runtime verification framework.
Proceedings of OOPSLA ’07, pages 569–588, 2007.

[16] B.-C. Cheng and W.-M. W. Hwu. Modular interprocedural pointer analysis using
access paths: design, implementation, and evaluation. Proceedings of PLDI ’00, pages
57–69, 2000.

[17] S. Cherem and R. Rugina. Compile-time deallocation of individual objects. Proceed-
ings of ISMM ’06, pages 138–149, 2006.

[18] S. Cherem and R. Rugina. A practical escape and effect analysis for building
lightweight method summaries. Proceedings of CC’07, pages 172–186, 2007.

[19] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis
for Java. Proceedings of OOPSLA ’99, pages 1–19, 1999.

[20] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. Proceedings of POPL ’89, pages
25–35, 1989.

[21] B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
Mathematical Textbooks. Cambridge University Press, first edition, 1990.

157

[22] R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software.
Proceedings of PLDI ’01, pages 59–69, 2001.

[23] R. DeLine and M. Fähndrich. Typestates for objects. Proceedings of ECOOP 2004,
volume 3086 of LNCS, pages 465–490, 2004.

[24] A. Deutsch. A storeless model of aliasing and its abstractions using finite representa-
tions of right-regular equivalence relations. 4th International Conference on Computer
Languages, pages 2–13. IEEE Computer Society Press, 1992.

[25] E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computation of interpro-
cedural data flow. Proceedings of POPL ’95, pages 37–48, 1995.

[26] E. Duesterwald, R. Gupta, and M. L. Soffa. A practical framework for demand-driven
interprocedural data flow analysis. ACM Trans. Program. Lang. Syst., 19(6):992–1030,
1997.

[27] B. Dufour. Objective quantification of program behaviour using dynamic metrics.
Master’s thesis, McGill University, June 2004.

[28] M. Dwyer and R. Purandare. Residual dynamic typestate analysis : Exploiting static
analysis results to reformulate and reduce the cost of dynamic analysis. Proceedings
of ASE’07, pages 124–133, 2007.

[29] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verifi-
cation in the presence of aliasing. Proceedings of ISSTA’06, pages 133–144, 2006.

[30] S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate
verification in the presence of aliasing. ACM Transactions on Software Engineering
and Methodology (TOSEM), 17(2):1–34, 2008.

[31] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. Proceedings of
PLDI ’02, pages 1–12, 2002.

[32] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over program traces.
Proceedings of OOPSLA ’05, pages 385–402, 2005.

[33] S. Gulwani and A. Tiwari. Computing procedure summaries for interprocedural anal-
ysis. Proceedings of ESOP ’07, pages 253–267, 2007.

[34] S. Z. Guyer and C. Lin. Client-driven pointer analysis. Proceedings of SAS ’03, volume
2694 of LNCS, pages 214–236, 2003.

158

[35] S. Z. Guyer and C. Lin. Error checking with client-driven pointer analysis. Sci.
Comput. Program., 58(1-2):83–114, 2005.

[36] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. Pro-
ceedings of POPL ’05, pages 310–323, 2005.

[37] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and language for building
system-specific, static analyses. Proceedings of PLDI ’02, pages 69–82, 2002.

[38] M. Hind. Pointer analysis: haven’t we solved this problem yet? Proceedings of PASTE
’01, pages 54–61, 2001.

[39] S. Horwitz, T. Reps, and M. Sagiv. Demand interprocedural dataflow analysis. Pro-
ceedings of FSE ’95, pages 104–115, 1995.

[40] C. Jaspan and J. Aldrich. Checking temporal relations between multiple objects. Tech-
nical Report CMU-ISR-08-119, School of Computer Science, Carnegie Mellon Uni-
versity, 2008. http://reports-archive.adm.cs.cmu.edu/anon/usr0/ftp/home/

anon/usr/anon/isr2008/CMU-ISR-08-119.pdf.

[41] C. Jaspan and J. Aldrich. Checking framework interactions with relationships. Pro-
ceedings of ECOOP ’09, pages 27–51, 2009.

[42] H. B. M. Jonkers. Abstract storage structures. de Bakker and van Vliet, editors,
Algorithmic Languages, pages 321–343. IFIP, North Holland, 1981.

[43] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Inf.,
7:305–317, 1977.

[44] G. A. Kildall. A unified approach to global program optimization. Proceedings of
POPL ’73, pages 194–206, 1973.

[45] O. Lhoták. Comparing call graphs. Proceedings of PASTE ’07, pages 37–42, 2007.

[46] K.-K. Ma and J. S. Foster. Inferring aliasing and encapsulation properties for Java.
Proceedings of OOPSLA ’07, pages 423–440, 2007.

[47] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws
using PQL: a program query language. Proceedings of OOPSLA ’05, pages 365–383,
2005.

159

http://reports-archive.adm.cs.cmu.edu/anon/usr0/ftp/home/anon/usr/anon/isr2008/CMU-ISR-08-119.pdf
http://reports-archive.adm.cs.cmu.edu/anon/usr0/ftp/home/anon/usr/anon/isr2008/CMU-ISR-08-119.pdf

[48] N. A. Naeem and O. Lhoták. Extending typestate analysis to multiple interacting
objects. Technical Report CS-2008-04, D. R. Cheriton School of Computer Science,
University of Waterloo, 2008. http://www.cs.uwaterloo.ca/research/tr/2008/

CS-2008-04.pdf.

[49] N. A. Naeem and O. Lhoták. Typestate-like analysis of multiple interacting objects.
Proceedings of OOPSLA ’08, pages 347–366, 2008.

[50] N. A. Naeem and O. Lhoták. Efficient alias set analysis using SSA form. Proceedings
of ISMM ’09, pages 79–88, 2009.

[51] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima Press, 2008.

[52] M. Orlovich and R. Rugina. Memory leak analysis by contradiction. Proceedings of
SAS ’06, pages 405–424. Springer, 2006.

[53] G. Ramalingam, A. Warshavsky, J. Field, D. Goyal, and M. Sagiv. Deriving specialized
program analyses for certifying component-client conformance. Proceedings of PLDI
’02, pages 83–94, 2002.

[54] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph
reachability. Proceedings of POPL ’95, pages 49–61, 1995.

[55] T. W. Reps. Solving demand versions of interprocedural analysis problems. Proceed-
ings of CC’94, pages 389–403, 1994.

[56] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-free
programs. Proceedings of SAS 2005, pages 284–302, 2005.

[57] A. Rountev, S. Kagan, and T. Marlowe. Interprocedural dataflow analysis in the
presence of large libraries. Proceedings of CC’06, pages 2–16, 2006.

[58] A. Rountev, M. Sharp, and G. Xu. Ide dataflow analysis in the presence of large
object-oriented libraries. Proceedings of CC’08, pages 53–68, 2008.

[59] B. G. Ryder. Dimensions of precision in reference analysis of object-oriented program-
ming languages. G. Hedin, editor, Proceedings of CC ’03, pages 126–137, 2003.

[60] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. Theoretical Computer Science, 167(1–2):131–
170, 1996.

160

http://www.cs.uwaterloo.ca/research/tr/2008/CS-2008-04.pdf
http://www.cs.uwaterloo.ca/research/tr/2008/CS-2008-04.pdf

[61] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS, 20(1):1–50, Jan. 1998.

[62] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. S. S.
Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 7, pages 189–233. Prentice-Hall, 1981.

[63] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification mining using
automata-based abstractions. Proceedings of ISSTA ’07, pages 174–184, 2007.

[64] R. E. Strom and S. Yemini. Typestate: A programming language concept for enhanc-
ing software reliability. IEEE Trans. Softw. Eng., 12(1):157–171, 1986.

[65] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for Java. Proceedings of OOPSLA
’00, pages 264–280, 2000.

[66] E. Torlak and S. Chandra. Effective interprocedural resource leak detection. Proceed-
ings of ICSE’10, pages 535–544, 2010.

[67] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sundaresan.
Optimizing Java bytecode using the Soot framework: is it feasible? Proceedings of
CC’00, pages 18–34, 2000.

[68] J. Whaley and M. Rinard. Compositional pointer and escape analysis for Java pro-
grams. Proceedings of OOPSLA ’99, pages 187–206, 1999.

[69] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W. O’Hearn.
Scalable shape analysis for systems code. Proceedings of CAV ’08, pages 385–398,
2008.

[70] G. Yorsh, E. Yahav, and S. Chandra. Generating precise and concise procedure sum-
maries. Proceedings of POPL ’08, pages 221–234, 2008.

161

Index of Symbol Definitions

Bind, 18
Bind♯, 34
callρh♯ [r] (0), 79
callρh♯ [r]

(

ρ[o♯]
)

, 79
callρh♯ [r]

(

h[o♯]
)

, 79
callm♯ [r](0), 80
callm♯ [r](q,m♯), 80
compatible, 38
decomp(ρ♯, h♯), 77
Dom, 48
red-envs, 38
h, 25
lookup, 40
objs, 40
Obj, 13
Obj♯, 27
diff, 38
same, 38
relevant, 38
setcompat, 38
State♯, 35

updated♯ [r]
(

V ♯
)

, 80

updated♯ [r]
(〈

o!, o?
〉)

, 80
updateo♯ [r](o♯), 79
Var, 13
βρ(ρ, h), 28
βd[ρ](d), 34
βm[ρ](m), 35
βo[ρ](o), 27

βσ[ρ](σ), 35
callFlow(n♯), 57
flow(n♯), 57
σ̊, 13
e̊0(b, ρ), 13
e̊T (T, ρ), 14
passArgs(n♯), 57
φ, 65
returnVal(n♯), 57
ρ, 13
ρ♯, 27
rv(o♯

c, o
♯
r), 80

σ, 23
σ♯, 35
summ(D), 80
summρh♯

(

0, rρ
h[o

♯
r]
)

, 80
summρh♯

(

cρ
h[o

♯
c], r

ρ
h[o

♯
r]
)

, 80
e(T, ρ), 20
e[a, b, ρ](q,m), 20
e+[a, b, ρ](q,m), 20
e−[b, ρ](q,m), 20
e♯[a, b, O♯](q,m♯), 40
e+♯[a, b, O♯](q,m♯), 40
e−♯[b, O♯](q,m♯), 40
e+
0 (b, ρ), 20

e−0 (b, ρ, f), 20
e+♯
0 (b, O♯), 40

e−♯
0 (b, O♯, f), 40

passArgs(〈l, d〉), 79, 80
returnV al(〈ep, d1〉 , 〈n, d2〉), 80

162

	List of Tables
	List of Figures
	Introduction
	Challenges
	Contributions
	Organization

	Tracematches
	Declarative Semantics
	Original Operational Semantics
	A Lattice-Based Operational Semantics
	Summary

	Static Abstraction
	Intermediate Representation
	Object Abstraction
	Tracematch Abstraction
	Related Work
	Summary

	Extensions to IFDS
	The Original IFDS Algorithm
	Running Example: Type Analysis
	Demand Construction of the Supergraph
	Eliminating the SummaryEdge Table
	Empirical Evaluation

	Return Flow Functions
	Static Single Assignment (SSA) Form
	Example of precision loss

	Exploiting Structure in the Set Dom
	Empirical Evaluation

	Related Work
	Using the Extended IFDS Algorithm for Analyzing Tracematches
	Concluding Remarks

	Implementation
	Collecting Useful Update Shadows
	Empirical Evaluation
	Discussion of Results

	Optimizations
	Alias Set Analysis
	Callee Summaries
	Computing Callee Summaries
	Using Callee Summaries

	Caller Summaries
	Experiments
	Shadow Statistics
	Efficiency
	Tracematch Analysis Precision
	Fine-grained Precision Metrics

	Related Work
	Concluding Remarks

	Presenting Analysis Output
	Motivation
	TMAnalysis: an Eclipse plugin
	Configuration
	Running the Analysis
	Visualization of Results

	Conclusion

	Conclusion and Future Work
	Abstractions
	Static Analysis
	Precision
	Efficiency
	Verification Tool
	Future Work

	APPENDICES
	Proofs
	References
	Index of Symbol Definitions

