
Querying Large Collections of
Semistructured Data

by

Shahab Kamali

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

c© Shahab Kamali 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

An increasing amount of data is published as semistructured documents formatted with
presentational markup. Examples include data objects such as mathematical expressions
encoded with MathML or web pages encoded with XHTML. Our intention is to improve
the state of the art in retrieving, manipulating, or mining such data.

We focus first on mathematics retrieval, which is appealing in various domains, such
as education, digital libraries, engineering, patent documents, and medical sciences. Cap-
turing the similarity of mathematical expressions also greatly enhances document classi-
fication in such domains. Unlike text retrieval, where keywords carry enough semantics
to distinguish text documents and rank them, math symbols do not contain much seman-
tic information on their own. Unfortunately, considering the structure of mathematical
expressions to calculate relevance scores of documents results in ranking algorithms that
are computationally more expensive than the typical ranking algorithms employed for text
documents. As a result, current math retrieval systems either limit themselves to exact
matches, or they ignore the structure completely; they sacrifice either recall or precision
for efficiency.

We propose instead an efficient end-to-end math retrieval system based on a structural
similarity ranking algorithm. We describe novel optimization techniques to reduce the
index size and the query processing time. Thus, with the proposed optimizations, math-
ematical contents can be fully exploited to rank documents in response to mathematical
queries. We demonstrate the effectiveness and the efficiency of our solution experimentally,
using a special-purpose testbed that we developed for evaluating math retrieval systems.
We finally extend our retrieval system to accommodate rich queries that consist of combi-
nations of math expressions and textual keywords.

As a second focal point, we address the problem of recognizing structural repetitions
in typical web documents. Most web pages use presentational markup standards, in which
the tags control the formatting of documents rather than semantically describing their
contents. Hence, their structures typically contain more irregularities than descriptive
(data-oriented) markup languages. Even though applications would greatly benefit from
a grammar inference algorithm that captures structure to make it explicit, the existing
algorithms for XML schema inference, which target data-oriented markup, are ineffective
in inferring grammars for web documents with presentational markup.

There is currently no general-purpose grammar inference framework that can handle
irregularities commonly found in web documents and that can operate with only a few ex-
amples. Although inferring grammars for individual web pages has been partially addressed

iii

by data extraction tools, the existing solutions rely on simplifying assumptions that limit
their application. Hence, we describe a principled approach to the problem by defining a
class of grammars that can be inferred from very small sample sets and can capture the
structure of most web documents. The effectiveness of this approach, together with a com-
parison against various classes of grammars including DTDs and XSDs, is demonstrated
through extensive experiments on web documents. We finally use the proposed grammar
inference framework to extend our math retrieval system and to optimize it further.

iv

Acknowledgements

During my work on the thesis, I had the distinct honor of being supervised by Frank
Wm. Tompa whose vast knowledge and insight in the field together with his nice person-
ality made it a wonderful experience. I would also like to thank my committee members,
Ihab Ilyas, J. Ian Munro, Davood Rafiei, and Mark Smucker, for taking the time to read
and critique my thesis and for their constructive comments.

Most of all, I want to thank my family from the bottom of my heart: my parents, my
brother Shahin, and my wife Erfaneh. You have all always stood by me and believed in
me, I would not be where I am today if it was not for your support.

Finally, I would like to thank the many friends I have met during my studies. Without
you this could probably be finished earlier, but surely less enjoyably.

v

Contents

List of Tables ix

List of Figures xii

List of Algorithms xiv

1 Introduction 1

1.1 Mathematics Retrieval . 1

1.2 Optimizing Math Retrieval . 3

1.3 Rich Queries . 4

1.4 Grammar Inference . 5

1.5 Extending Structural Similarity . 5

1.6 Processing Patterns With Repetitions . 6

1.7 Thesis Outline . 6

2 Definitions 7

2.1 Basic Tree Concepts . 7

2.2 XML Documents . 8

2.2.1 Tree Edit Distance . 9

2.3 Mathematical Expressions . 12

2.3.1 Mathematical Markup Language (MathML) 12

vi

3 Math Retrieval 15

3.1 Related Work . 18

3.1.1 Encoding Mathematical Expressions 18

3.1.2 Math Retrieval Algorithms . 19

3.1.3 Question Answering . 21

3.1.4 Querying Semistructured Data . 21

3.1.5 Evaluating Math Retrieval Systems 23

3.2 Problem Formulation . 24

3.2.1 Discussion . 25

3.3 Similarity Search . 25

3.3.1 A Similarity Ranking Algorithm . 26

3.4 Pattern Search . 28

3.4.1 A Model Query Language . 30

3.4.2 Query Processing . 33

3.5 Experiments . 35

3.5.1 Alternative Algorithms . 35

3.5.2 Experiment Setup . 36

3.5.3 Evaluation Results . 40

3.6 Chapter Conclusions . 44

4 Optimizing Math Retrieval 46

4.1 Literature Review . 46

4.2 Optimizing Structural Similarity Search . 48

4.3 Early Termination . 49

4.3.1 Compact Index . 50

4.3.2 Memoization with Unconstrained Memory 53

4.3.3 Bounded Edit Distance Calculation 58

4.4 Optimizing Pattern Search . 62

vii

4.4.1 Transforming Expressions . 62

4.4.2 Building the Index . 62

4.4.3 Processing a Pattern Query . 63

4.5 Experiments . 67

4.5.1 Experiment Setup . 67

4.5.2 Methodology . 69

4.5.3 Index Size . 69

4.5.4 Query Processing Time . 69

5 Rich Queries 73

5.1 Retrieving Objects with Text Search . 75

5.2 Rich Queries With Multiple Math Expressions 76

5.3 Efficiently Processing A Rich Math Query 76

5.3.1 Intermediate Lists And Values . 77

5.3.2 Selecting Relevant Documents Using Intermediate Lists 78

5.3.3 Pattern Queries With Similarity Constraint 79

5.4 Rich Queries With Math Expressions and Keywords 80

5.5 Experiments . 82

5.5.1 Alternative Algorithms . 82

5.5.2 Data And Query Collections . 82

5.5.3 Evaluation Measures . 83

5.5.4 Evaluation Methodology . 83

5.5.5 Evaluation Results . 83

5.6 Conclusions and Further Work . 85

6 Grammar Inference 88

6.1 Definitions . 92

6.1.1 Tree Grammars . 92

viii

6.1.2 k-Normalized Regular Expressions 94

6.2 The Inference Algorithm . 97

6.2.1 Inferring k -NREs . 97

6.2.2 Sequence Alignment . 100

6.2.3 Inferring a Repetition-Free Grammar 101

6.2.4 Identifying Instances of Repetitive Patterns 101

6.2.5 Inferring k -NRTGs . 103

6.3 Related Work . 105

6.4 Experimental Results . 109

6.4.1 Experiment Setup . 109

6.4.2 Experiment Measures . 110

6.4.3 Parameter Tuning . 112

6.4.4 Inferring Grammars . 112

7 Grammar Inference For Math Retrieval 117

7.1 Extending Structural Similarity . 117

7.1.1 Repetition In Math Expressions . 118

7.1.2 Using Grammars For Math Retrieval 120

7.2 Further Optimizing Pattern Search . 121

7.3 Experiments . 122

7.3.1 Alternative Algorithms . 122

7.3.2 Data And Query Collections . 122

7.3.3 Evaluation Measures . 123

7.3.4 Evaluation Results . 123

8 Conclusions 125

Bibliography 127

ix

List of Tables

3.1 Examples of various cost values assigned to edit operations 28

3.2 Dataset statistics . 37

3.3 Query statistics . 40

3.4 Example queries . 40

3.5 Algorithms’ performance for Forum Queries. 41

3.6 Algorithms’ performance for Interview Queries. 42

3.7 Harmonic means of NFR and MRR scores for Forum and Interview Queries. . . 43

4.1 Dataset statistics . 67

4.2 Repetitions of subtrees. 70

4.3 Subtree repetitions in experimental dataset and resulting index sizes. . . . 70

5.1 Rich math queries statistics. 83

5.2 Algorithms’ performance for Rich Queries. 84

5.3 Algorithms’ performance for Rich Queries. 84

5.4 Algorithms’ performance for Rich Queries. 85

6.1 Dataset statistics . 111

6.2 Accuracy for each category of regular expressions. 111

6.3 Accuracy of the various classes of grammars on the XHTML dataset. . . . 113

6.4 The performance of PMGI on collections of pages with specific structural
complexities. 114

x

6.5 Examples of inferred grammars for expressions from various web pages. . . 115

6.6 Accuracy of PMGI on MathML dataset. 115

6.7 Examples of grammars for mathematical expressions. 116

7.1 Math queries with repetition. 123

7.2 Algorithms’ performance for queries with repetitive patterns. 124

xi

List of Figures

2.1 Two trees representing sin(i) (left) and sin j (right) in Presentation MathML. 9

2.2 Content MathML (left) vs. Presentation MathML (right) for 2(x+ 3y) . . 13

3.1 An example of a web page with mathematical content. 16

3.2 The flow of data in a mathematics retrieval system based on similarity ranking. 26

3.3 The flow of data in a mathematics retrieval system based on pattern matching. 29

3.4 A modified query tree representing {2}[E1]4. 32

4.1 The index after x2−1
x2+1

is added. 53

4.2 The XML tree for left) sin x, center) sin 30 and right) x2. 58

4.3 A) The original expression tree for (x+ 1)2. B) The transformed expression. 63

4.4 A) The original tree for pattern (x+ 1)[N1]. B) The transformed pattern. 65

4.5 The query processing time of alternative algorithms. 71

4.6 The query processing time of alternative algorithms. 71

4.7 The query processing time for various space budgets and cache strategies. . 72

5.1 Four sample documents. Math expressions are highlighted. 74

5.2 The flow of data during the query processing. 77

6.1 Presentational XML (left) vs. descriptive XML (right) 89

6.2 A labeled ordered tree. 93

6.3 The sequence of subtrees is mapped to a sequence of cluster ids. 104

xii

6.4 The tree representing the XHTML page of Figure 6.1. 105

6.5 The tree representing the inferred grammar of Figure 6.4. 106

6.6 Effect of α on the precision and recall of PMGI. 112

7.1 Presentation MathML for x2 + · · ·+ x6. 119

7.2 Combining subtrees to obtain a template. 119

7.3 Inferred Grammar for ax2 − bx3 + ax4 − bx5 + 120

7.4 The tree representing {[N]+}{2, }[N]. 121

7.5 Inferring a grammar and transforming it for 1 + 2 + 3. 122

xiii

List of Algorithms

1 dist(T1, T2) . 10
2 dist(F1, F2, SubTreeMatrix) . 11
3 Similarity Search . 26
4 Structured Search . 30
5 submatch(Q′, E) . 33
6 match(Q,E) . 34
7 Similarity Search with Early Termination 51
8 Index Insertion Add(E, I, d) . 54
9 Calculating Edit Distance with a Limited Cache 57
10 dist(F1, F2, SubTreeMatrix) . 61
11 Building the Index For Optimum Pattern Query Processing 64
12 optimizedPatternSearch(Q) . 66
13 Selecting top-k results for rich math queries 86
14 Processing pattern queries with similarity constraints. 87
15 Partition . 99
16 Identify . 102
17 PMGI . 105

xiv

Chapter 1

Introduction

Semistructured markup is commonly used to encode online documents or objects such as
math expressions or web tables within them. A variety of applications, from information
extraction tools to complex query answering and specialized search systems, query such
data, mine patterns in them, or extract information from them.

Descriptive and presentational markup are two major categories of markup languages.
In descriptive markup tags are used to label parts of a document semantically, while in
presentational markup tags are mostly used to specify how they should be visually rendered.
The popularity of XML as the standard for expressing semistructured data has motivated
many researchers to address many challenging problems. However, the majority of such
research is focused on descriptive XML. Despite such a tremendous effort, there are still
interesting problems to be solved, which is the aim of this research.

Mathematical expressions are objects with complex structures and rather few distinct
terms, and considering their structures to further process them is inevitable. Hence, math
retrieval is a perfect example of comparing and mining structures to process and retrieve
large collections of semistructured data. Hence, we mainly focus on math retrieval as a
representative example. However, most algorithms presented in this thesis can be extended
to other structured or semistrucutred objects.

1.1 Mathematics Retrieval

Pages with mathematical contents are commonly published. Mathematics retrieval pro-
vides ways to query such pages through their mathematical expressions. The huge number

1

of potential users and the lack of powerful solutions provide an opportunity for an effective
mathematics retrieval system to be developed. Moreover, it can be extended to support
management and retrieval of other semistructured data.

Just as other documents with XML markup, mathematical expressions are encoded
with respect to their content, i.e. mathematical meaning, or their presentation, i.e. ap-
pearance. The majority of published mathematical expressions are represented by their
appearance, and the lack of content information forces a retrieval system to rely mostly
on the presentation of expressions. Presentational markup for math expressions does not
provide much semantic information about the symbols. Instead, only their appearance and
relative arrangements are encoded.

Retrieving documents based on their mathematical content is currently very limited.
Content-based mathematics retrieval systems (to be described in depth in Section 3.1)
are limited to resources that encode the semantics of mathematical expressions, which are
not very popular. The few mathematics retrieval systems that rely on the presentation
of mathematical expressions either can find exact matches only, or they use a similarity
ranking that usually returns a large number of irrelevant results. Moreover, a query lan-
guage that is simple and easy to use, but powerful enough to help the user in expressing
her needs is missing. As a result, the existing mathematics retrieval systems are not very
helpful in addressing users’ needs.

The lack of a practical definition for similarity between mathematical expressions, and
the inadequacy of searching for exact matches only, makes the problem more difficult to
answer. Conventional text retrieval systems are not tuned for mathematical expressions.
Moreover, there is no clear definition for similarity between mathematical expressions, and
merely searching for exact matches often results in missing useful information. Hence,
relying on math symbols to compare math expressions is not adequate, and we should
consider their rather complex structures to make an accurate comparison.

In Chapter 3 we assume the query is a single expression, and we consider the basic
problem of how to capture the relevance of math expressions . We review the related work
and describe the existing systems for retrieving mathematical expressions. We also discuss
various possible approaches to this problem, and propose retrieval algorithms for the most
promising ones. More specifically, we introduce structural similarity search and pattern
search. We finally compare them in terms of their efficiency and accuracy of results. The
results have been presented at various conferences [59, 60, 62].

2

1.2 Optimizing Math Retrieval

Considering the structures of math expressions when comparing them significantly im-
proves retrieval accuracy. However, comparing expressions this way is computationally
expensive, which makes the retrieval a time-consuming task, especially when the number
of expressions is large. This is an important problem that should be addressed to achieve a
practical search system. In Chapter 4 we address this problem by proposing optimization
techniques for the search algorithms described in Chapter 3.

Optimizing Structural Similarity Search

To reduce the number of comparisons between expressions, we propose an optimization
based on calculating an upper bound on the similarity of expressions. This allows defining
early termination conditions to select the top-k results and stop the search algorithm early.

Processing semistructured data objects in a breadth-first manner, such as finding the
edit distance between two trees, is the basis of many query answering and data extraction
systems. Solutions to such operations typically use dynamic programming: the problem is
solved for smaller substructures and the result is stored to be used for solving the prob-
lem for larger structures. If an application requires to perform such operation on many
semistructured objects, e.g. finding the edit distance between a query and all expressions
in the repository, then one possibility is to do it on each object separately. However, if
objects share common substructures, the same operation is calculated for such substruc-
tures repeatedly. Therefore, if objects in the repository share many common substructures,
an indexing scheme that allows reusing the result for such substructures may significantly
reduce the query processing time.

Our empirical studies show that many subtrees appear frequently in a repository of
mathematical expressions1. Therefore, storing a subtree once only, and allowing other sub-
trees to point to it, reduces the size of the index. This also optimizes the query processing
by allowing the engine to reuse partial results.

While comparing expressions, we are often interested in the result only if their similarity
is greater than a certain value. In many cases, considering a bound while filling a dynamic
programming matrix saves us from filling regions of the matrix whose distance values are

1The frequency of subtrees obeys Zipf’s law. We anticipate that the frequency of subtrees for some
other repositories of semistructured objects such as XHTML documents and natural language parse trees
also follows Zipf’s law.

3

greater than the bound. We propose an algorithm to efficiently calculate the similarity
accordingly.

We finally show that after applying the proposed optimizations, the search result re-
mains the same while the query processing is significantly faster and comparable to base-
lines that perform simple text search or database lookup.

Some of the proposed algorithms have been published in conference proceedings [60]
and [63].

Optimizing Pattern Search

The pattern search algorithm (to be described in more detail in Section 3.4) requires
parsing math expressions with respect to a pattern query. To optimize this approach, we
identify substructurues in the query, which allows efficiently filtering expressions that do
not comply to the specified pattern. This significantly reduces the number of candidates
to be parsed. Details of this approach are presented in Section 4.4.

1.3 Rich Queries

Processing queries that consist of a single math expression is a basic problem that demon-
strates how math expressions should be compared. In the first chapters we propose algo-
rithms to process such queries. However, a rich query consists of one or more keywords in
addition to one or more math expressions. Extending our solution to support rich queries
is useful in many situations, hence we discuss it in Chapter 5.

The heterogeneity of data in a rich query imposes new challenges. First, various rele-
vance scores are associated to objects depending on their types, e.g. matching mathemati-
cal expressions differs from matching keywords. Second, given a rich query, finding relevant
documents requires combining the result of such individual matches. It requires appropri-
ate optimization algorithms and indexing techniques to accommodate large collections of
web pages.

In Section 5.4 we propose a scoring scheme that considers partial scores and also the
difference between the text versus the math parts (and hence their associated scores)
to calculate the relevance. We also propose an efficient algorithm to select the top-k
documents with respect to this scoring scheme (Section 5.3). We finally demonstrate
the performance of the proposed algorithms by empirically evaluating them in terms of
accuracy and speed (Section 5.5).

4

In Section 5.3.3 we describe an approach to extend the pattern search algorithm to
handle similarity constraints. Our proposed algorithm involves transforming a pattern
with similarity constraints to a rich query and ranking documents accordingly. Similar to
adding the full-text search capability to relational database systems, this greatly increases
the expressive power of pattern queries.

1.4 Grammar Inference

Recognizing the structure of tree-structured documents can improve the performance of
applications that extract, manipulate, or retrieve such information. This knowledge is
represented in the form of a grammar (e.g. XML Schema or DTD).

For example, most data-extraction algorithms need to learn the structure of XHTML
pages in order to detect data objects within them. A major source of data extraction
failure comes from documents with complex structures, e.g. where data patterns containing
optional and duplicate fields repeat arbitrarily often within a web page. Alternatively, a
mathematics retrieval system needs to infer the structure of mathematical expressions
in order to recognize matrices, polynomials, etc. Although the existence of a grammar
can greatly improve many such systems, there has not been much effort to develop a
general schema inference framework. Current proposals for such systems mostly rely on
domain-specific heuristics, that cannot be effectively applied to other (inherently similar)
scenarios. Moreover such approaches make simplifying assumption about the structure of
presentational XML documents that affects their robustness significantly.

Therefore, we propose a grammar induction framework for such semistructured data
objects in Chapter 6. More specifically, we introduce a grammar to describe semistructured
data that is more expressive than DTDs or XML Schemas. Using only one sample docu-
ment, we rely on detecting instances of repeating patterns to infer grammars. We do not
restrict a grammar based on domain-specific assumptions, so our solution is general enough
to be applied to various forms of semistructured data. We also review the related work,
and discuss the advantages and disadvantages of each approach. Our proposed framework
and also the inference algorithms where presented at a workshop in 2011 [61].

1.5 Extending Structural Similarity

The existence of a grammar inference algorithm for math expressions provides an oppor-
tunity to handle more complex queries for math retrieval and to optimize processing such

5

queries. In Chapter 7 we discuss such opportunities. In Section 7.1 we propose an approach
based on inferring grammars of math expressions to extend structural similarity search.
This allows us to retrieve expressions that are relevant to the query but seem to be too far
from it if their grammars are not considered.

1.6 Processing Patterns With Repetitions

Our proposed optimization for processing pattern queries is based on fast filtering of math
expressions that do not match the query (Section 4.4). Recognizing repetitions within a
math expression provides further optimization opportunities. If a pattern query contains a
repeating pattern, and the repetitions in math expressions are captured during the indexing
time, we can improve the filtering criteria. In Section 7.2 we explain this approach in
more details.

1.7 Thesis Outline

The rest of this thesis is organized as follows. We present definitions for basic concepts
that are referred to frequently in this thesis in Chapter 2 . We describe various approaches
for comparing math expressions and contrast them in Chapter 3. We then propose opti-
mization techniques to improve the efficiency of the proposed algorithms in Chapter 4. We
next consider extending the proposed approaches to process rich queries in Chapter 5. In
Chapter 6 we describe a framework to infer grammars for semistructured data from limited
samples, and in Chapter 7 we explain algorithms to improve math retrieval based on this
framework.

6

Chapter 2

Definitions

In this chapter we present definitions for some concepts that will be frequently referred to
in the rest of this thesis.

2.1 Basic Tree Concepts

A labeled ordered tree is a directed graph with the following properties:

• The graph is acyclic and connected.

• A label is assigned to each node. The label of node N is represented by N.label.

• There is only one node with no in-going edge called the root. We represent the root
of a tree T as T.root.

• There is exactly one path from the root to each node.

• There is exactly one in-going edge to each node that is not the root. This edge
connects the node to its parent. The node is the child of its parent.

• There is an order among the children of a node. We represent the children of a node
N as N.children.

• Nodes with no out-going edges are called leaves.

7

• Descendants of a node N are the children of N and nodes whose parents are among
the descendants of N .

• Ancestors of a node N are the nodes along the path from the root to N excluding
N .

• The size of a tree is the number of its nodes. We represent the size of tree T as
size(T).

• A subtree of a node N is a descendant node M or N itself together with all its
descendants and edges that connect them (also called the subtree that corresponds
to M or M ’s subtree). It is a proper subtree of N if M 6= N .

In the remainder of this thesis, by a tree we mean a labelled ordered tree with the above
properties.

A forest is an ordered sequence of trees (also called a hedge). Deleting the root of a tree
results in a forest that consists of its children subtrees with the same order. Note that a
single tree and the empty sequence of trees are also forests.

2.2 XML Documents

The Extensible Markup Language (XML) is designed to structure, transport and store
data [19]. In various domains, XML standards are defined to provide a consensus on
how data is encoded to be published or transported. Examples include XHTML and
MathML [24]. A data unit encoded with XML is also called an XML document.

XML Tree Representation: Documents with XML markup can be naturally ex-
pressed as ordered labelled trees. A tree T is represented by T = (V,E), where V represents
the set of vertices and E represents the set of edges of T . A label N.label is assigned to
each node N , and Σ is the set of all possible labels. Two examples are shown in Figure 2.1.

A signature is a compact, convenient surrogate that is used to identify a tree. For our
experiments, the signature of a tree T is computed by a conventional hash function applied
to its XML string S:

sig(T) = S[0] ∗ 31(z−1) + S[1] ∗ 31(z−2) + · · ·+ S[z − 1] (2.1)

where S[i] is the ith character in S and z = |S|.
In our experiments with the above hash function collisions are very rare, but for larger

datasets appropriate collision resolution algorithms should be considered.

8

<mrow>

mfenced<mo>

sin <mi>

i

<math>

<mrow>

<mo>

sin

<math>

<mi>

j

X

Y

Z

Figure 2.1: Two trees representing sin(i) (left) and sin j (right) in Presentation MathML.

2.2.1 Tree Edit Distance

Comparing two labelled ordered trees is a problem that frequently appears in diverse
domains such as XML databases, computational biology, computer vision, and compiler
optimization [35]. One of the very common similarity measures between two rooted ordered
trees is the tree edit distance [17].

Consider two ordered labelled trees T1 = (V1, E1) and T2 = (V2, E2) and two nodes
N1 ∈ V1 ∪ {Pφ} and N2 ∈ V2 ∪ {Pφ} where Pφ is a special node with special label ε that
is not associated with any other node. An edit operation is a function represented by
N1 → N2 where N1 and N2 are not both Pφ. The edit operation is a deletion if N2 is Pφ,
it is an insertion if N1 is Pφ, and a rename if N1 and N2 do not have the same labels.
(Deleting a node N replaces the subtree rooted at N by the immediate subtrees of node
N ; insertion is the inverse of deletion.)

A cost represented by the function ω is associated with every edit operation. For
example, the cost function might reflect the design goal that renaming a variable is less
costly than renaming a math operator. A transformation from T1 to T2 is a sequence of
edit operations that transforms T1 to T2. The cost of a transformation is the sum of the
costs of its edit operations. The edit distance between T1 and T2 is the minimum cost of
all possible transformations from T1 to T2.

Consider two non-empty forests F1 and F2 such that either F1 or F2 contains at least

9

two trees. The following recursive formula can be used to calculate the edit distance [117]:

dist(F1, F2) = min


dist(F1 − u, F2) + ω(u→ ε),

dist(F1, F2 − v) + ω(ε→ v),

dist(F1 − Tu, F2 − Tv) + dist(Tu, Tv)

dist(Tu, Tv) = min


dist(Tu − u, Tv) + ω(u→ ε),

dist(Tu, Tv − v) + ω(ε→ v),

dist(Tu − u, Tv − v) + ω(u→ v)

(2.2)

where Tu and Tv are the first (leftmost) trees in F1 and F2 respectively, u and v are the roots
of Tu and Tv respectively, and F −n represents the forest produced by deleting root n from
the leftmost tree in forest F . The edit distance between a forest F and the empty forest
is the cost of iteratively deleting (inserting) all the nodes in F . This formulation implies
that a dynamic programming algorithm can efficiently find the edit distance between two
trees T1 and T2 by building a distance matrix.

Algorithm 1 dist(T1, T2)

1: Input: Two trees T1 and T2
2: Output: dist(T1, T2): The edit distance between T1 and T2
3: Let SubTreeMatrix be a (|T1|) ∗ (|T2|) matrix
4: Set all entries of SubTreeMatrix to nil
5: return dist(T1, T2, SubTreeMatrix) (see Algorithm 2)

There are various algorithms for selecting appropriate pairs of nodes to optimize the
calculation of edit distance. Zhang et al. [118] propose an algorithm with O(n2) space
complexity that runs in O(n4) where |T1|, |T2| = O(n). This algorithm runs efficiently in
O(n2log2n) for trees with depths of O(logn). Demin et al. [35] propose another algorithm
with O(n2) space complexity that runs in O(n3). Although the worst case complexity is
enhanced compared to Zhang’s algorithm (which is O(n4) when trees are not balanced),
it happens more frequently in practice. Pawlik and Augsten propose RTED, an efficient
algorithm with O(n2) space complexity and O(n3) time complexity [93]. RTED chooses
the most efficient pair of nodes to minimize the number of intermediate problems. Their
approach is based on limiting nodes from one of the trees with regard to specific root-leaf
paths. They use an auxiliary data structure (with size O(n2)) to keep track of the number
of subproblems produced if a path is considered. This algorithm guarantees to choose the
path that minimizes the number of subproblems.

10

Algorithm 2 dist(F1, F2, SubTreeMatrix)

1: Input: Two forests F1 and F2 and a (|F1|+ 1) ∗ (|F2|+ 1) matrix SubTreeMatrix
2: Output: dist(F1, F2): The edit distance between F1 and F2

3: Let ForestMatrix be a (|F1|+ 1) ∗ (|F2|+ 1) matrix.
4: ForestMatrix [0][0] = 0
5: for i = 1 to |F1| do
6: ForestMatrix [i][0] = ForestMatrix [i− 1][0] + deleteCost(F1[i])
7: end for
8: for i = 1 to |F2| do
9: ForestMatrix [0][i] = ForestMatrix [0][i− 1] + insertCost(F2[i])

10: end for
11: for i = 1 to |F1 do
12: for j = 1 to |F1 do
13: v1 = ForestMatrix [i− 1][j] + deleteCost(F1[i])
14: v2 = ForestMatrix [i], [j − 1] + insertCost(F2[j])
15: if F1 and F2 contain only one tree and i = |F1| and j = |F2| then
16: v3 = ForestMatrix [i− 1][j − 1] + renameCost(F1[i], F2[j])
17: else
18: if SubTreeMatrix[offset(F1[i])][offset(F2[j])] = nil then
19: SubTreeMatrix[offset(F1[i])][offset(F2[j])] = dist(TF1[i], TF2[j])
20: end if
21: v3 = ForestMatrix [i− |TF1[i]|][j − |TF2[j]|]

+SubTreeMatrix[offset(F1[i])][offset(F2[j])]
22: end if
23: ForestMatrix [i][j] = min{v1, v2, v3} .
24: end for
25: end for
26: return ForestMatrix [|F1|][|F2|]

11

To calculate the edit distance of two trees with respect to Equation 2.2, we consider
Algorithms 1 and 2 which are based on Zhang’s algorithm [118]. Given a forest F , F [i] is
the ith node in the forest with respect to a post-order traversal. For a node n, offset(n) is its
post-order rank in the original tree. SubTreeMatrix contains the edit distance of pairs of
subtrees of the original tree. For example SubTreeMatrix[i][j] contains the edit distance
of the corresponding subtrees for the ith node of T1 and the jth node of T2 according to
their post-order rank.

2.3 Mathematical Expressions

Definition 1 (Mathematical Expressions). A mathematical expression (or math expres-
sion) is a finite combination of symbols that is formed according to some context-dependent
rules. Symbols can designate numbers (constants), variables, operations, functions, and
other mathematical entities.

2.3.1 Mathematical Markup Language (MathML)

The approaches to encode and represent a mathematical expression can be divided into
two main groups:

1. Content-based: Semantics of symbols and their interactions are encoded. Content
MathML [24] and OpenMath [21] belong to this group.

2. Presentation-based: Expressions are encoded with respect to their appearance.
Examples include images of expressions, Presentation MathML [24], and LATEX [45].

MathML is an XML application that is increasingly used to describe mathematical
notation. It is part of the W3C recommendation that provides tools to capture both the
structure (Presentation MathML) and content (Content MathML). MathML allows math-
ematics to be served, received, and processed on the Web, as HTML has enabled this
functionality for text. Presentation MathML is increasingly used to publish mathematics
information, and many web browsers support it. There are various tools to translate math-
ematical expressions from other languages, including LATEX, into Presentation MathML.
Moreover, Presentation MathML expressions can be processed by parsers and other ap-
plications for XML documents. Hence, we assume mathematical expressions are encoded
with Presentation MathML unless otherwise specified.

12

<apply>
<times/>
<cn>

2
</cn>
<apply>

<plus/>
<ci>

x
</ci>
<apply>

<times/>
<cn>

3
</cn>
<ci>

y
</ci>

</apply>
</apply>

</apply>

<mrow>
<mn>

2
</mn>
<mfenced>

<mi>
x

</mi>
<mo>

+
</mo>
<mn>

3
</mn>
<mi>

y
</mi>

</mfenced>
</mrow>

Figure 2.2: Content MathML (left) vs. Presentation MathML (right) for 2(x+ 3y)

13

Example 1. Consider 2(x + 3y) as a simple expression. The Content MathML encoding
for this expression is shown in Figure 6.1 (left), and the Presentation MathML is shown in
Figure 6.1 (right). Presentation MathML contains some surface semantic information. For
example, <mn> and <mi> indicate that 2 and 3 are numbers and x and y are variables,
respectively. However, the multiplication operator is represented by the <times> tag in
content markup, but it is invisible and hence not shown in presentation markup. On the
other hand, parentheses are not encoded in content markup because they do not carry
semantic information. The plus operator is represented by the <plus> tag in content
markup, and its operands (x and 3y) are also clearly specified. Using presentation markup,
the “+” symbol is shown where it appears in the expression, and even though it is marked
as an operator, its operands are not explicitly indicated.

A text document, such as a web page, that contains a mathematical expression is a
document with mathematical content.

14

Chapter 3

Math Retrieval

Many collections of documents contain mathematical expressions. Examples include tech-
nical and educational web sites, digital libraries, and other document repositories such as
patent collections. The example in Figure 3.1 shows a Wikipedia page describing a Physics
concept. Much of the information in this page is presented in the form of mathematical
expressions. Currently, due to the lack of an effective mathematics retrieval system, such
rich mathematical knowledge is not fully exploited when searching for such documents.

Querying with mathematical expressions, and consequently retrieving relevant docu-
ments based on their mathematical content, is not straightforward:

• Mathematical expressions are objects with complex structures and rather few dis-
tinct symbols and terms. The symbols and terms alone are usually inadequate to

distinguish among mathematical expressions. For example
n∑
i=1

i and
m∑
j=1

j are quite

similar, but 2n and n2 are quite dissimilar even though they share the same symbols.

• Relevant mathematical expressions might include small variations in their structures

or symbols. For example, 1+
n∑
i=1

i2 and
n∑
j=1

jk might both be useful matches to a query.

On the other hand, there is no canonical form for many mathematical expressions.

• Each mathematical expression has two sides: i) its appearance (or presentation)
and ii) its mathematical meaning (often termed its content). The majority of the
published mathematical expressions are encoded with respect to their appearance,
and most instances do not preserve much semantic information.

15

Figure 3.1: An example of a web page with mathematical content.

As is true for other retrieval systems, a mathematics search engine should be evalu-
ated based on its usefulness, that is, how well it can satisfy users’ needs. What makes
mathematics retrieval distinct is the difficulty of judging which mathematical expressions
are relevant and which are not. For example, a user who is interested in sin2(x) might
also be interested in cos2(x) but not in sin3(x). We know of no consensus for similarity
of mathematical expressions in general. On the other hand, if we were to limit the search
to exact matches only, many relevant expressions will be missed, and the user might need
to issue too many queries to find a useful answer. For example if the user is looking for
10∑
i=1

1
(i+1)2

, then pages that contain
10∑
j=1

1
(j+1)2

,
n∑
i=1

1
(i+1)2

, and
n∑
x=1

1
x2

probably also address her

needs.

Mathematics retrieval is still at an early stage. Unfortunately, content-based math-
ematics retrieval systems [37, 67] are limited to resources that encode the semantics of
mathematical expressions, and they do not perform well with presentation markup. The
lack of content information within web pages forces a retrieval system to rely mostly on
the presentation of expressions, and it is often hard to judge whether a similar-looking
expression is relevant to a query.

Some systems rely on the presentation of mathematical expressions [7, 47, 86, 100, 110,
111], but they either find exact matches only or they use models that ignore the whole or
parts of the structure and usually return many irrelevant results. They do not define how
to measure the relevance of matched mathematical expressions, and there has not been
much effort to evaluate such systems in terms of the usefulness of search results.

16

In this chapter we focus on the problem of matching mathematical expressions, and
hence we assume that a query consists of a single expression. We typically use simple ex-
pressions in our explanations for illustrative purposes, but we do not limit the sophistication
or complexity of the expressions that are to be retrieved or used as queries. Systematically
addressing this problem is a prerequisite for developing systems that handle more complex
queries, such as ones that consist of multiple expressions or a combination of expressions
and keywords.

Because mathematical expressions are often distinguished by their structure rather
than relying merely on the symbols they include, we describe two search paradigms that
incorporate structure:

1. Structural similarity: The similarity of two expressions is defined as a function of
their structures and the symbols they share. The similarity is used as an indication of
how relevant a document containing an expression is when given another expression
as a query. We propose an algorithm based on tree edit distance to calculate the
similarity of two expressions. Documents are ranked with respect to the similarity
of their contained mathematical expressions to the query.

2. Pattern match: As an alternative approach, a query can be represented as a pattern
or template. The added expressivity of such a query language provides the user
with tools to specify more details, which allows more accurate and complete results
in return. On the other hand, the richness and variety of mathematical concepts
implies that the query language is potentially difficult to learn and use.

If the two mentioned approaches perform equally well, the simpler query language is
probably preferred; the extra cost of forming a query with the expressive query language is
justified only when this expressive power results in higher-quality answers. We discuss the
advantages and disadvantages of each approach, and we report on an extensive empirical
study to evaluate them in terms of their ability to predict the relevance of pages containing
mathematical expressions. We also describe other alternative algorithms (e.g. keyword
search only, etc.) and compare them against the proposed algorithms.

The contributions of this chapter are as follows:

• We categorize existing approaches to match mathematical expressions, concentrating
on two paradigms that consider the structure of expressions.

• We propose a representative system for each search paradigm.

17

• We evaluate and compare the described approaches through detailed user studies in
real scenarios.

This is the first attempt to describe and evaluate possible solutions in a principled
way [62]. Understanding the effectiveness of approaches to matching mathematical ex-
pressions is necessary for evaluating the further development of any mathematics retrieval
algorithm. Hence, we believe the result of this study is an important step towards building
a useful mathematics retrieval system.

In this chapter we focus on the quality of results when matching mathematical ex-
pressions. Indexing and other optimization techniques to reduce query processing time or
index size [63] is discussed in the next chapter. In this chapter, we also do not address
the problem of evaluating mathematical expressions, which is the goal of systems such as
Wolfram Alpha [1], or Bing Math [58].

3.1 Related Work

3.1.1 Encoding Mathematical Expressions

Interchange Formats

Interchange formats are encoding schemes with the capability to create, convert, and man-
age data.

MathML: Mathematical Markup Language (MathML) [24] is a W3C recommended
XML application for describing mathematical notations. Since MathML is an applica-
tion of XML, its syntax is governed by XML syntax rules. A mathematical expression
has two different, though related, aspects: the visual appearance and the mathematical
content. Based on this observation, MathML defines two standard markup frameworks
for representing mathematical expressions: presentation markup and content markup. In
Presentation MathML, the two dimensional visual appearance of an expression is encoded.
Content markup deals with the functional structure of mathematical expressions.

OpenMath: OpenMath [23] is a standard for representing mathematical expressions,
allowing them to be exchanged, stored in databases, or published on the World Wide
Web. OpenMath was proposed to provide a standard way of communication between
mathematical applications, so unlike MathML, OpenMath is solely concerned with the
content of mathematical expressions and not its presentation form.

18

Typesetting formats

Typesetting formats, such as LATEX, are the encoding schemes used by typesetting systems
to express mathematical expression. They are not able to encode the meaning of an
expression, but instead they offer a set of symbols and provide ways to put them together
in an expression.

As discussed earlier, in the remainder of this thesis we assume mathematical expressions
are encoded with presentation MathML.

3.1.2 Math Retrieval Algorithms

Exact Match

Some algorithms assume expressions are available only in images, and they try to match
a given query by calculating the similarity of images [113, 114]. In the best case, the
performance of such algorithms is similar to ExactMatch algorithms, which allow for very
limited variation among the expressions returned. We describe and evaluate ExactMatch
algorithms further in Section 3.5.

TexSN [110] is a textual language that can be used to normalize mathematical ex-
pressions into canonical forms. After that a search is performed to find mathematical
expressions that exactly match a (normalized) query. MathQL [47] and MML Query [7]
propose very detailed and formal query languages through which mathematical expressions
are presented as sets of symbols. To perform a search, sets of expressions containing specific
symbols are selected and then intersected using relational database operations. Einwohner
and Fateman [37] propose a data structure and an algorithm for searching integral ta-
bles. In this approach, pre-calculated integrals are stored in a table. A requested integral
matches an entry in the table if its integrand agrees with that of the table entry up to a
choice of parameters, e.g. 1

x2+1
matches 1

x2+a
. We characterize all of these approaches as

NormalizedExactMatch algorithms, which we describe and evaluate further in Section 3.5.

As shown in Section 3.5, ExactMatch and NormalizedExactMatch perform poorly in
retrieving web pages with mathematical content.

Substructure match

Sojka and Liska [100] propose an algorithm that first tokenizes expressions, where a token
is a subtree of the expression. Each token is next normalized with respect to various rules

19

(e.g. variables names are removed, number values are removed, or both), and multiple
normalized copies are preserved. The resulting collection of tokens is then indexed with a
text search engine. A query is similarly normalized (but not tokenized) and then matched
against the index.

Similarly, Egomath [84] tranforms math expressions into tokens (that represent subex-
pressions), and uses a text search system to index and query them. Regardless of the
tokenization details, some structure information is missed by transforming an expression
into bags of tokens, which affects the accuracy of results as shown later in this paper.

MathWebSearch [67] is a semantic-based search engine for mathematical expressions.
The query language is an extension to OpenMath, with some added tags and attributes,
e.g. mq:not, mq:and, mq:or. Mathematical expressions are interpreted as prefix terms and
are stored in a tree data structure called a substitution tree, where common prefixes are
shared. A search is performed by traversing the tree. MathWebSearch can only process
and index expressions encoded with Content MathML and OpenMath; presentation-based
encoding is not well suited for use by this system.

Schellenberg et al. [98] propose extending substitution trees to expressions with LATEX en-
coding. Such approaches support exact matching of expressions well, but they support par-
tial matching only when expressions share a common part at the top of the tree. Kamali
and Tompa [59] propose to allow the common parts of two expressions to appear anywhere
in the trees.

We characterize such algorithms as SubexprExactMatch algorithms, and we show in
Section 3.5 that their performance remains relatively poor.

Structure Similarity

Pillay and Zanibbi [94] propose an algorithm based on tree edit distance for combining the
results of different math recognition algorithms. The goal of this approach is to enhance
such algorithms to recognize hand-written expressions. Algorithms for retrieving general
XML documents based on tree-edit distance have been proposed [70], and these could
be adapted to match XML-encoded mathematical expressions. However, these approaches
have not been thoroughly investigated for retrieving mathematical expressions. We propose
an algorithm in this SimSearch class in Section 3.3 and show in Section 3.5 that it has a
much better performance than other approaches such as exact match.

An alternative for matching based on structural similarity is to express a query in the
form of a template, much as QBE does for querying relational data [125]. We describe how

20

templates may be used to specify precisely where variability is permitted. We review our
previous work on PatternMatch algorithm [60] in more detail in Section 3.4 and evaluate
its performance in Section 3.5.

Keyword Similarity

The maturity of keyword search algorithms has motivated some researchers to use them
for mathematics retrieval [111, 114]. Such approaches typically represent a mathematics
expression as a bag of words, where each word represents a mathematics symbol or function.
Youssef [111] proposes an algorithm based on the vector space model to rank mathematical
expressions in response to a given query. To try to accommodate the specific nature of
mathematics, alternative weighting schemes are considered instead of term frequency and
inverse document frequency. Nguyen et al. [90] propose another algorithm that considers
a semantic encoding (Content MathML) of expressions. Each expression is represented by
several textual tags, after which standard keyword search algorithms are used to search
mathematical expressions. This allows supporting queries that contain both keywords and
mathematical expressions and using existing IR optimizations. As shown in Section 3.5,
ignoring the structure significantly affects the performance.

MathFind [86] is another math-aware search engine that encodes mathematical expres-
sions as text objects. In MathFind, a layer is added to a typical text search engine to
analyze expressions in MathML and decomposes each expression into a sequence of text
encoded math fragments that are analogous to words in text documents. No further details
about this search engine and its performance are published.

3.1.3 Question Answering

Some systems such as Wolfram Alpha [1], or Bing Math [58] answer mathematical expres-
sions instead of returning pages that contain such expressions. For example they calculate

the answer to
4∑
i=1

i with 10 which is the result of this summation. This is a different problem

that is out of the scope of this paper.

3.1.4 Querying Semistructured Data

In order to issue structured queries over XML data using XPath [9] or XQuery [18], informa-
tion about the corresponding structure and metadata is required. Often such information

21

is not available, or data sources have different structures. Therefore, some languages are
proposed to relax the need for complete specification of a tree pattern [64, 95]. For example
Placek et al. [95] propose a heuristic approach for checking the containment of partially
specified tree pattern queries. Alternatively, it is proposed to enable full keyword search for
XML in a way that the results resemble that of a structured query. A problem that arises is
to identify a meaningful unit for the search result. Note that this is not a problem in struc-
tured search because the returned information is specified precisely in structured queries.
There are several proposals to determine which part of an XML tree should be returned
for a given keyword query. Many consider the lowest common ancestor of the nodes that
contain the queried keywords [50, 31, 108, 53, 16]. There are other attempts to determine
the returned information more accurately [78]. FleXPath [5] is a system that integrates
XPath querying with full-text search in a flexible way. In this approach, a framework for
query relaxation is defined formally. If all keywords are not found in the location that is
specified in the query, they are looked up in neighboring locations, and if found, the result
will be returned with a lower rank (compared to the case where all keywords are found in
the specified location). Yahia et al. [4] propose a framework for efficient XML search with
complex text predicates (e.g. find all elements in XML trees that contains terms A and B
such that A appears after B and they are within a window of 10 words). This is specially
a challenging problem when A and B are in different subtrees, or there are more than one
occurrence of A or B. This approach is based on translating queries to an algebra, called
XFT, which supports rewriting optimization and efficient score computation. In summary,
, approaches that consider keyword search over XML documents assume the keywords that
appear in tags are enough for distinguishing between different substructures. As we will
show later, this is not the case for mathematical expressions.

Whereas the database community looks at the problem of incorporating text in struc-
tured queries, the IR community looks at the alternative problem of ranking XML com-
ponents according to a keyword query. Often, the goal of such proposals is to reduce the
granularity of keyword search, which is traditionally at the level of documents, to finer lev-
els (e.g. sections of an article). Bremer and Gertz [20] propose a framework for integrating
document and data retrieval for XML. In this approach, document fragments are selected
according to patterns specified in the query. Then, they are ranked according to query
keywords using IR techniques. Lui et al. [77] propose a configurable indexing and ranking
algorithm for XML documents. In this approach, an indexing algorithm, called Ctree, is
proposed to group equivalent nodes in an XML tree into one node (e.g. all authors’ names
are put in one node). Also a vector based ranking algorithm is proposed that calculates
the weight of terms using their frequency and location in the XML tree. XSearch [31] is
a search engine for XML documents that returns related fragments of an XML document

22

and ranks them using IR techniques.

In an object-oriented database [10], data units are represented as objects, where an
object is an instance of a class. A class might be derived from other classes and inherit some
of their properties. Comparing to relational databases, object-oriented databases provide a
more natural and efficient way for storing and querying complex objects. Various indexing
techniques are proposed for efficient processing of frequent queries [11]. In all cases, it is
assumed that the structure of a class, the inheritance relationship among classes, and the
query are known when building an index.

Multimedia retrieval may also be seen as a related problem to math retrieval. Proposals
for multimedia retrieval mostly aim to build a unified framework for storing and query-
ing multimedia objects. MediaLand [107] is a multimedia data management system that
processes multimedia queries based on a seamless integration of various search approaches.
For example it allows a user to search for image files in her personal computer the same
way she searches for video files. Zwol and Apers [105] propose another multimedia retrieval
algorithm that assigns to each multimedia document a set of attributes describing its con-
tents and performs a keyword search to retrieve objects. It is assumed that the annotations
are adequate to distinguish between different objects.

Tree edit distance has been previously considered for comparing XML trees [92, 34].
Such approaches are originally proposed for version control or clustering XML documents.
Further research in this direction is mainly focused on modifying tree edit distance to
handle special cases [103]. Such approaches do not consider domain-specific tuning (or
normalizing) for document retrieval, defining and evaluating a useful similarity measure,
and handling multiple XML objects in a document. In fact, it is orthogonal to a domain-
specific (e.g. math) search system by providing it with alternative tree distance measures
to enhance its results.

3.1.5 Evaluating Math Retrieval Systems

Very few studies consider the problem of evaluating math retrieval systems in terms of
satisfying user needs. This is partly due to the lack of a consensus on the definition of the
relevance of math expressions, and partly due to the lack of a clear understanding of users’
needs.

Zhao et al. [121] report on the interviews of a small group of potential users to ascertain
their needs. They conclude that users prefer to use keywords that describe an expression
to search for it rather than specifying the expression (e.g. “binomial coefficient” instead of(
n
k

)
). As we mentioned earlier, in many cases an expression is not described with keywords

23

or the user is not aware of such keywords. Moreover, with math expressions more details
can be specified (e.g.

(
n2

n

)
). Finally, user-friendly interfaces for entering math expressions,

such as pen-based devices, were not widely available at the time of the interview.

Some search algorithms that compare images of expressions evaluate their systems
in terms of success rate [114, 112]. In such cases, the success rate mostly captures the
correctness of recognizing math expressions rather than their relevance. In other words, if
an expression or subexpression is returned as the search result, and they exactly match, it
is counted as a successful search.

To date, mathematics retrieval systems that perform approximate matching and then
rank expressions based on their similarity to a query have not been analyzed in terms of
their effectiveness: there are no experimental results comparing their ability to find relevant
matches. However, the lack of their popularity may be a sign that in many situations they
do not perform well.

3.2 Problem Formulation

Here we present a general definition for the search problem and the query language. Details
of the query language and the way a match is defined are specific to a mathematics retrieval
system. We describe several possible approaches in the following sections.

Query: The aim of a query is to describe a mathematical expression. Hence, a query is
either a mathematics expression, or it specifies a pattern that describes one or more
expressions.

Search problem: Given a query, the search problem is to find a list of relevant documents
with mathematical content. A document is relevant if it contains an expression that
is relevant to the query.

The query and all mathematical expressions are encoded with Presentation MathML.
Because forming queries directly with Presentation MathML is difficult, input devices
such as pen-based interfaces and tablets [79, 99] or more widely-known languages such
as LATEX could be used instead to enter a query. Automatic tools can then be applied
to translate queries to Presentation MathML. Hence, regardless of the user interface, we
assume the query is eventually represented in the form of Presentation MathML. Thus,
this approach is appropriate for the majority of the available mathematics information on
the web.

24

3.2.1 Discussion

In the case of text retrieval, syntactic variants of query terms can be matched through
stemmers and semantic variants can be matched through ontologies. These and simi-
lar tools can improve the results of search systems. Similarly, for mathematics retrieval
using mathematical equivalence rules and transforming expressions to canonical forms ac-
cordingly (e.g. “ab + ac” and “a(b + c)”) can improve search results. Nevertheless, such
approaches are orthogonal to our algorithms and out of the scope of this paper.

Extending the query language to cover more complex cases can increase the usefulness
of a search system. For example, allowing a query to consist of multiple mathematical
expressions or a combination of mathematical expressions and text keywords can increase
its expressive power. Including a (symbolic) mathematics engine to calculate the answer
to a mathematical query can also be used to address some users’ needs. However, in this
paper our primary goal is to study the usefulness of the basic search paradigms and to
compare them. While such extensions are potentially useful, the effectiveness of the basic
search primitives should be proved first. Hence, in this paper we only focus on the basic
search paradigms. In the next chapters, we will propose extended query languages by
leveraging our findings.

3.3 Similarity Search

The usual search problem is to find a ranked list of relevant documents according to a
similarity function. The similarity function for mathematics considers only the mathemat-
ical content of a document, where each potentially relevant document contains at least one
mathematics expression that matches the query. After the user inputs a query through a
user interface, it is translated into Presentation MathML to be processed by the ranking
algorithm. The result consists of a list of ranked documents sorted with respect to the
similarity of their mathematical content to the query. Figure 3.2 shows the flow of data in
this approach.

A general sketch for similarity search is presented in Algorithm 3. The definition of
similarity between two mathematical expressions (Line 6) is a key concept that significantly
affects such systems.

Just like other information retrieval systems, semantic similarity ranking is generally
very useful, as it can better capture the intention of a user. Thus, the limited semantic
information that is available (i.e., whether a symbol is a number, a variable, or an operator)

25

Figure 3.2: The flow of data in a mathematics retrieval system based on similarity ranking.

should also be considered to calculate similarity in order to broaden the set of potentially
matching expressions.

Unfortunately, a ranking function based on more expressive semantic similarity requires
that the query and the expressions be semantically encoded using a markup language such
as OpenMath or Content MathML. Hence, it requires more effort from the user to form a
query semantically and also requires that content markup be used to publish mathematical
expressions. As stated earlier, this is generally unavailable for retrieval from the web.

Algorithm 3 Similarity Search

1: Input: Query q and collection D of documents.
2: Output: A list of documents ranked with respect to their similarity to q.
3: Define list L that is initially empty
4: for each document d ∈ D do
5: for each math expression E in d do
6: Calculate the similarity of E and q and store the result
7: end for
8: Calculate the similarity of d and q and store the result in L
9: end for

10: Sort documents in L with respect to the calculated similarities in descending order
11: return L

3.3.1 A Similarity Ranking Algorithm

We now propose a similarity function that is based on tree edit distance [17], and define
the similarity of a document to a math query accordingly. More specifically, we propose

26

appropriate similarity functions to be used in Lines 6 and 8 of Algorithm 3.

Consider two ordered labelled trees T1 = (V1, E1) and T2 = (V2, E2) and two nodes
N1 ∈ V1 ∪{Pφ} and N2 ∈ V2 ∪{Pφ} where Pφ is a special node with a special label ε. Also
assume Σ is the set of all possible labels and does not include ε. An edit operation is a
function represented by (N1 → N2) where (N1.label, N2.label) ∈ (Σ∪ ε)× (Σ∪ ε)−{(ε, ε)}.
The operation is a relabelling if N1.label, N2.label 6= ε. It is a deletion if N1 is not the root
of T1 and N2.label = ε, where deleting N1 makes the children of N1 become the children of
the parent of N1 in place of node N1. Finally, the operation is an insertion if N1.label = ε,
where insertion is the mirror image of deletion. A transformation τ from T1 to T2 is a
sequence of edit operations that transforms T1 to T2. To each edit operation N1 → N2 we
assign a cost ω(N1 → N2). The cost of a transformation is the sum of the costs of its edit
operations. The edit distance of T1 and T2 is defined as follows:

dist(T1, T2) = min{cost(τ)|τ(T1) = T2} (3.1)

We customize the cost of an edit operation N1 → N2 for mathematical expressions as
follows:

1. If N1.label = N2.label then ω(N1 → N2) = 0.

2. If N1, N2 are leaf nodes and N1.label 6= N2.label and parent(N1).label = parent(N2)
.label then ω(N1 → N2) = CPL(parent(N1).label, N1.label, N2.label).

3. If N1, N2 are leaf nodes and N1.label 6= N2.label and parent(N1).label 6= parent(N2)
.label then ω(N1 → N2) = CL(N1.label, N2.label).

4. If N1, N2 are not both leaf nodes and N1.label 6= N2.label then cost(N1 → N2) =
CI(N1.label, N2.label).

In the above definition, CI and CL, and CPL are static functions that assign values to
an edit operation. Their values for various inputs are shown in Table 3.1. In this table,
“<mi>”, “<mn>”, and “<mo>” represent variables, numbers, and operators respectively;
α, β, and γ are constants whose values are set based on the following observations about
math expressions (Some math retrieval systems normalize math expressions based on simi-
lar observations [84].) Typically, renaming variables affects the semantics less than chang-
ing math operators. Similarly, renaming a variable should be less costly than changing a
variable to a number, and renaming non-leaf nodes should be more costly that renaming
leaf nodes. Therefore, we set α ≤ β ≤ γ. Finding optimum values for the parameters and
also further tuning the costs of edit operations is a direction of our future work.

27

Value of C Condition
CPL(“ < mi > ”, x, y) = α x 6= y
CPL(“ < mn > ”, x, y) = α x 6= y
CPL(“ < mo > ”, x, y) = α x 6= y and {x, y} ∈ {+,−}
CL(ε, x) = β
CL(x, ε) = β
CL(x, y) = 2β x 6= y
CI(ε, x) = γ
CI(x, ε) = γ
CI(x, y) = 2γ x 6= y

Table 3.1: Examples of various cost values assigned to edit operations

Example 2. Consider nodes X and Y in Figure 2.1. X → Y is a relabelling. The label of
their parents, <mi>, states that they are variables. According to Table 3.1, CPL(“ <mi>
”, “i”, “j”) = α. Hence, ω(X → Y) = α. Also, Z → Pφ is a deletion and ω(Z → Pφ) = γ.
The edit distance between the two trees is equal to α + γ.

Consider two mathematical expressions E1 and E2 represented by trees T1 and T2. The
similarity of the two expressions is calculated as follows:

sim(E1, E2) = 1− dist(T1, T2)

|T1|+ |T2|
(3.2)

where |T | is the number of nodes in tree T .

There are many algorithms for calculating the edit distance between two trees. We use
RTED [93] to calculate the tree edit distance.

Assume document d contains mathematical expressions E1 . . . En. The rank of d for a
query Q is calculated with the following formula:

docRank(d,Q) = max{sim(Ei, Q)|Ei ∈ d} (3.3)

that is, a document’s score is equal to the similarity of the most similar expression in that
document.

3.4 Pattern Search

An alternative to similarity ranking is to specify a template as the query and return expres-
sions that match it as the search result [60]. This allows flexible matching of expressions

28

Figure 3.3: The flow of data in a mathematics retrieval system based on pattern matching.

but in a controlled way (as distinct from the similarity ranking where the user has less
control on approximate matching of expressions). For example, the user can specify that
she is looking for [E]n where n is a number and [E] is an expression that contains sin(x).
This capability is not supported by any exact matching algorithm, and the similarity search
may not rank relevant expressions high enough. The approach is analogous to querying
a collection of strings by specifying a partial context-free grammar, and returning strings
that can be parsed by the grammar. Similarly, a template can be defined using wildcards as
non-terminals, and regular expressions to describe their relationships. For example,

√
[V],

where [V] is a wildcard that matches any variable, can be used to search for expressions
that consist of the square root of a variable.

According to this paradigm, the user has more power to direct the search; hence the
results are expected to be more relevant. However, the variety of wildcards and operations
that are available to specify a template may result in a complex query language, which
requires more effort from the user.

To find a relevant document, the user starts with a pattern to be searched. It may be
necessary to tune the query, as the initial pattern may not correctly model the expression
the user is looking for or it may be too general or too specific. After the results are shown,
she tunes the pattern until she finds a relevant answer. A diagram of the data flow for
this search paradigm is shown in Figure 3.3. Algorithm 4 presents a general sketch for this
search paradigm.

29

In some cases, combining similarity ranking and structured search is useful. For exam-
ple, assume a user is looking for expressions that contain the square root of an expression E
such that E is similar to sin(x). In this case,

√
sin(x) is a better match than

√
sin(x

2
+ 1),

and while the latter still complies with the pattern,
√
sin(x) + 1 is not match. This search

paradigm has been adopted in other contexts, for example where relational data is ranked
with respect to an IR ranking algorithm. Examples include full-text search capability of
relational databases [51], XQuery with full-text capability [3] or other keyword search fea-
tures on structured data [52]. Adding this capability to a search system can increase its
flexibility to capture relevant results. On the other hand, the effectiveness of a similarity
ranking algorithm and the correctness of results must still be investigated.

In conclusion, this search paradigm is suitable for specialized search where the user can
be expected to put more effort to form a query and get better results in return.

Algorithm 4 Structured Search

1: Input: Query q and collection D of documents.
2: Output: A ranked list of documents that match the query.
3: Define list L that is initially empty
4: for each document d ∈ D do
5: for each math expression E in d do
6: if E matches q then
7: put d in L
8: end if
9: end for

10: end for
11: Sort documents in L with respect to ranking criteria
12: return L

3.4.1 A Model Query Language

In this section we propose a query language for pattern search and an algorithm for match-
ing and looking up a query.

A query is expressed as a pattern consisting of a mathematical expression augmented
with wild cards, optional parts, and constraints in the form of where clauses. A query
matches an expression (Algorithm 4-Line 6) as follows. A wild card represents a slot
that will match any subtree of the appropriate type, where [Vi] matches any variable, [Ni]
matches any number, [Oi] matches any operator, and [Ei] matches any expression. A wild

30

card’s index i is an optional natural number such that if two or more wild cards share the
same type and index, they must match identical subtrees. Wild cards with no index are
unconstrained.

Example 3. The query x[N1]− y[N1] matches x2− y2 and x5− y5 but not x2− y3, whereas
either of the queries x[N1] − y[N2] or x[N] − y[N] matches all three.

Optional parts are enclosed by braces and they may appear in some matching ex-
pressions. Similar to optionals, other regular expression operators such as disjunctive or
repetition operators may also be defined.

Example 4. x2{+[N]} matches x2 and x2 + 1 but not x2 + y or x2 − 1.

Constraints can be specified for wild cards in a query using a “where” clause, as follows:

• Number wild cards can be constrained to a specific range or to a domain, which can
be specified using a context-free grammar.

• Variable wild cards can be constrained to a restricted set of possible names.

• Operator wild cards can be constrained to a restricted set of operators.

• Expression wild cards can be constrained to contain a given subexpression, which
can in turn include further wild cards and constraints.

Example 5.

• Query “[E]2[O1]3 where O ∈ {+,−}” matches x2 + 3 and (x + 1)2 − 3 but not
x2 × 3.

• Query “x[N1] where 1 ≤ N1 ≤ 5” matches x2 but not x9 or x−1.

• Query “[E1] − 2 where [E1] contains x2” matches x2 − 2 and log(x2 + 3y) − 2 but
not x− 2 or y2 − 2.

• Query “[E1] where E1 contains log2([V])” matches all expressions that include a
base 2 logarithm of a variable.

• Query “
√

[E1] where E1 similar to sin(x)” matches both
√
sin(x) and

√
sin(x+ 1)

(ranking the first expression higher) but not
√

sin(x) + 1.

31

In our experiments we assume a pattern does not contain a similarity constraint. Oth-
erwise, pattern search would be a generalized form of the similarity search approach, which
makes it hard to compare them. Moreover, ranking documents with respect to a pattern
query that contains multiple similarity constraints is a complex problem that should be
addressed after the more basic problem of capturing the similarity of two math expressions
(discussed in this paper) is addressed. This problem is a direction of our future work.

Pattern Matching Algorithm

In this section we describe how a query is matched against a math expression. As men-
tioned, similar to an expression, a query is represented as a MathML tree, with some extra
tags that represent wild cards and regular expression operators such as optionals. We rep-
resent wildcards by a special node with tag “<wild>”. We also mark regular expression
operators with special tags or flags. For instance we mark an optional subtree with a
special flag that is stored in its root. An example is shown in Figure 3.4.

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

<msup>*

<math>

<wild>

2

E1 4

<mn>

<mn>

Figure 3.4: A modified query tree representing {2}[E1]4.

In the rest of this section we assume a pattern does not contain a similarity constraint
(e.g. [E]2 where [E] is similar to sin(x)). Hence, whereas the algorithm described in
Section 3.3.1 assigns a score to a document that represents how well it matches the query,
in this approach a document either matches a query or it does not. We will later extend
this approach to handle the similarity constraint in Section 5.3.3.

To match a query against an expression, we first compare their roots tags. If the root
of the query is not a wildcard, and its tag matches the root of the expression, we parse the
children of the expression with respect to the sequence of the children of the query root
and the regular expression operators. We recursively match the subtrees that correspond
to pairs of nodes matched by the parser.

32

If the root of Q is a wild card, we evaluate the match as follows. First if the wild card
has an index, e.g. E2 or V 3, we need to determine whether it has already been bound to
a subtree because of a previous match having been made when matching another part of
the query. If an expression, E ′, is already bound to the wildcard represented by Q, then
Q matches E only if E and E ′ are equal, i.e. have the same signatures. If no expression
has previously been bound to Q, we need to compare the types of values at the roots. For
example if Q is a number wild card and E is not a number (its root’s label is not “<mn>”)
then the result is false. Similarly, variable, operator, and expression wild cards must match
variables, operators, and expressions, respectively. Otherwise, if there are no constraints
on the wild card, we return true.

Assume Q is an operator wild card with the constraint that it should belong to a specific
set of operators, S. It matches E only if E.root is “<mo>” and the label of its child is in
S. Similarly, if Q is a number or variable wild card, we check E against the constraint. If
Q is an expression wild card and there is a constraint that E should contain Q′, we match
all subtrees of E against Q′ and return true as soon as a match is found; otherwise, if no
match is found, we return false. Matching an expression containment constraint is detailed
in Algorithm 5.

Algorithm 5 submatch(Q′, E)

1: Input: Query, Q′, and Expression, E.
2: Output: true if Q′ matches a subtree in E and false otherwise
3: if match(Q′, E) then
4: return true
5: end if
6: for i := 1 to CE do
7: if submatch(Q,E[i]) then
8: return true
9: end if

10: end for
11: return false

3.4.2 Query Processing

A query is processed by trying to match it against the stored expressions by parsing them
with respect to the query. Each document that contains a match is included in the search
result.

33

Algorithm 6 match(Q,E)

1: Input: Expression, E, and Query, Q.
2: Output: true if Q and E match and false otherwise
3: opt = number of optional subtrees in Q.children.
4: if Q is a wild card then
5: if Q is bound to subtree E ′ then
6: return true if E and E ′ are equal and false otherwise
7: end if
8: if the type of wild card matches E.root then
9: if all constraints on the wild card are satisfied then

10: if Q has an index then
11: Bind E to the wild card designated by Q
12: end if
13: return true
14: else
15: return false
16: end if
17: else
18: return false
19: end if
20: end if
21: if E and Q are the same then
22: return true
23: end if
24: if E.root.label 6= Q.root.label then
25: return false
26: end if
27: Look up Q in the cache of E.
28: if Q is found then
29: return the cached match result
30: else
31: return parse(Q[1..CQ], E[1..CE])
32: end if

34

While similarity ranking is in fact an information retrieval approach to the problem,
pattern search resembles a database look-up. Therefore, the result of this search paradigm
is a list of documents with expressions that match the query. To rank documents in the list
(Algorithm 4-Line 11), a ranking criterion should be considered. In our implementation
we sort results with respect to the sizes of the matched expressions in increasing order.

3.5 Experiments

In this section we present the results of our empirical evaluation of the described ap-
proaches.The goals of this evaluation are:

• To investigate how well an algorithm satisfies users’ needs when searching for math-
ematical expressions.

• To compare diverse approaches to searching for mathematical content.

• To investigate how much effort is needed to form a suitable query.

3.5.1 Alternative Algorithms

In our experiments we consider the following specific algorithms:

• TextSearch: The query and expressions are treated as bags of words (nodes’ labels in
their XML trees). A standard text search algorithm is used for ranking documents
according to a given query1.

• ExactMatch: An expression is reported as a search result only if it matches a given
query exactly. Results are ranked with respect to the alphabetic order of the name
of their corresponding documents.

• NormalizedExactMatch: Some normalization is performed on the query and on the
stored expressions: in particular, we ignore specific numbers, variables, and operators
by removing all leaf nodes. The normalized expressions are searched and ranked
according to the ExactMatch algorithm.

1We used Apache Lucene in our implementation.

35

• SubexprExactMatch: An expression is returned as a search result if at least one of its
subexpressions exactly matches the query. Results are ranked by increasing sizes of
their DOM trees.

• NormalizedSubExactMatch: Normalization is done on the query and on the stored
expressions as for NormalizedExactMatch, and an expression is returned as a search
result if one of its normalized subexpressions matches the normalized query.

• MIaS: As described in Section 3.1, subtrees are normalized and transformed into
tokens and a text search engine is used to index and retrieve them [100].

• SimSearch: Expressions are matched against a query according to the algorithm
described in Section 3.3. The costs of edit operations (α, β, and γ in Table 3.1) are
all equal to one.

• PatternSearch: Expressions are matched against a pattern according to the algorithm
described in Section 3.4. Like SubexprExactMatch, results are ranked with respect
to the sizes of their DOM trees.

Note that among the above algorithms, the results of ExactMatch are subsets of the
results of TextSearch, NormalizedExactMatch, and SubexprExactMatch.

3.5.2 Experiment Setup

Data Collection

For our experiments we use a collection of web pages with mathematical content. We
collected pages from the Wikipedia and DLMF (Digital Library of Mathematics Func-
tions) websites. Wikipedia pages contain images of expressions annotated with equivalent
LATEX encodings of the expressions. We extracted such annotations and translated them
into Presentation MatchML using Tralics [46]. DLMF pages use Presentation MathML to
represent mathematical expressions. Statistics summarizing this dataset are presented in
Table 3.2.

Queries

To evaluate the described algorithms we prepared two sets of queries as follows.

36

• Interview: We invited a wide range of students and researchers to participate in our
study. They were asked to try our system and search for mathematical expressions
of potential interest to them in practical situations. They could also provide us with
their feedback about the quality of results after each search. The total number of
participants is 52, but as we will explain later, some queries for which the user did not
provide relevance feedback were rejected. Because human participants were involved
in this study, clearance was obtained through the Office of Research Ethics at the
University of Waterloo.

• Mathematics forum: People often use mathematics forums in order to ask questions
or discuss math-related topics. Many discussion threads can be described with a
query that consists of a single math expression. Usually, by reading the rest of the
thread and responses, the exact intention of the user is clear. This allows us to
manually judge if a given expression, together with the page that contains it, can
answer the information need of the user who started the thread. We manually read
such discussions and gathered a collection of queries.

The research investigator created the precise query formulations for PatternSearch.
Thus the experimental results reflect search environments in which queries are formed
reasonably well by an experienced user.

Table 3.3 summarizes statistics about the queries, where the number of nodes in the
query tree is used to represent query size. For the sake of reproducibility and as a basis for
further evaluation of various search paradigms, both the dataset and the complete set of
queries can be obtained from the authors upon request2. Some sample queries from each
dataset are shown in Table 3.4.

2The query collections with examples of matching documents are publicly available at
http://mathretrieval.uwaterloo.ca/queries.xhtml.

Wikipedia DLMF Total
Number of pages 44,368 1,550 45,918

Number of expressions 611,210 252,148 863,358
Average size of expressions 28.3 17.6 25.2

Maximum size of expressions 578 223 578

Table 3.2: Dataset statistics

37

Methodology

For each query we use each algorithm to search the dataset, and only consider the top 10
results.

The way we collected queries ensures that a user’s information needs are clear, which
allows us to judge if a match is actually relevant or not. Searches for which we do not
have a user’s relevance feedback (i.e., Forum queries) require that we manually judge
results. Hence, for Forum queries we consider discussion threads that clearly describe an
information need with no ambiguity. For example a discussion thread might start with this
question: “prove that F 2

n−Fn−1Fn−2 = (−1)n−1 where Fn is the nth Fibonacci number”. A
search result page is considered relevant if it satisfies the information need that is inferred
from the thread. If a page contains data that can be clearly used to answer the query,
we judge it as relevant. Note that a page may contain an exact match to a query, but
it still does not answer the information need, hence we assume it is irrelevant (e.g. if a
page contains the same expression as in the previous example, but Fn is not a Fibonacci
number, or it does not contain any information that helps to prove it.).

In order to ensure the judgment is not biased, for the forum queries we asked two
graduate students to judge the relevance of the results to the query based on their un-
derstandings from the content of the corresponding discussion thread. We exclude queries
for which they disagree on the relevance of results. For the interview queries the user is
explicitly asked to rate the results by pushing like or dislike buttons for each search result.
To ensure that the user did not randomly click on such buttons, for some queries we showed
results that are obviously far from the query. We excluded cases where the user rated all
results including the random ones as relevant.

As mentioned earlier, for PatternSearch the query may be refined repeatedly unless
appropriate results are returned or the query is refined a certain number of times and the
user gives up (Figure 3.3). Hence, unless otherwise specified, the results for PatternSearch
are presented with respect to the final refined query. For other algorithms however, refining
a query is often not necessary or effective, and the results are shown for the original query.

Evaluation measures

NFR: A search fails if fewer than 10 results are returned (including nothing returned), and
none of them is relevant. Non-Failure-Rate (NFR) is the number of searches that do not
fail divided by the total number of searches:

NFR =
|{q ∈ Q|searching q does not fail}|

|Q|
(3.4)

38

MRR: The rank of the first correct answer is a representative metric for the success
of a mathematics search. Hence, for each search we consider the Reciprocal Rank (RR),
that is, the inverse of the rank of the first relevant answer. For example if the first correct
answer is ranked second, the reciprocal rank of the search is 1

2
. The Mean Reciprocal Rank

(MRR) is the average reciprocal rank for all queries:

MRR =
1

|Q|
∑
q∈Q

1

C(q)
(3.5)

where Q is the collection of queries, and C(q) is the rank of the first relevant answer for
query q.

If 10 results are returned but no relevant document is among them, we optimistically
assume that the search did not fail and that the rank of the first relevant document is
11. This approach distinguishes the situation where it is known that an answer cannot be
found (failure) from the one in which an answer is not returned within the top 10 results
but might have been returned in a longer list. If a search fails, we do not include it for
calculating MRR.

Rewrite-Rate: It often happens that a search is not successful, and a user must rewrite
the query to find a relevant result. For each search algorithm, starting from an initial
query, we count how many times a query was rewritten to obtain a relevant answer among
the top 10 results. This information is obtained from the search logs. For forum queries,
we assume that the user gives up after five tries, and the search fails or no relevant result
is found. The average number of rewrites for all queries is the rewrite rate of an algorithm.

Other measures such as Mean Average Precision (MAP) could alternatively be consid-
ered. However, for our data and query collections, MRR seems to be a better choice. In
most cases, there are a few (often one) relevant documents for the query. Hence, MRR
can better reflect the accuracy of algorithms. Recall that some of the baselines (e.g.
pattern search and substructure search) deploy database operators to perform a search,
while some other ones (e.g. structural similarity and keyword search) use IR techniques.
Hence, because such approaches are inherently different, it is important to consider mea-
sures that fairly compare them. MRR and NFR together provide an indicative measure of
the accuracy of such algorithms.

39

Interview Math Forum Total
Number of queries 45 53 98

Average size of queries 14.2 23.8 19.4

Table 3.3: Query statistics

Interview Math Forum∑∞
x=1

1
x

(p ∨ q) ∧ (p→ r) ∧ (q → r)→ r
y′ = −x sin θ + y cos θ arctan(x) = x− x3/3 + x5/5− x7/7 + x9/9 . . .∑n

i=1
n!
i!

2i (a2 + b2 + c2)
2

= 2(a4 + b4 + c4)

(a− b)2 = a2 + b2 − 2ab T (n) = T (n− 1) + T (n− 2)
exp

∑
t λf(t, Q, t) 1

zλ(Q)
log (x+ 3) + log x

x
1+sinx

∫∞
−∞ exp (−r2)dr∫

sinx
x
dx

∑∞
n=0

(−1)nx2n
(2n)!

Table 3.4: Example queries

3.5.3 Evaluation Results

Correctness

The NFR and MRR for each algorithm are presented in Tables 3.5 and 3.6 for the Forum
and Interview queries, respectively. As the results suggest, PatternSearch and SimSearch
have high NFR and also high MRRs. PatternSearch has a higher MRR because irrelevant
expressions are less likely to match a carefully formed pattern. On the other hand, Sim-
Search has a slightly higher NFR because in some cases even an experienced user may not
be able to guess the pattern that will yield a correct answer. Furthermore, the next section
shows that a template pattern may need to be modified several times to capture a relevant
result.

Because MRR is only calculated when the search does not fail, ExactMatch has a high
(in fact, perfect) MRR. However, in most cases, there is no expression that exactly matches
the query, and hence no result is produced and this algorithm fails. SubexprExactMatch
has a slightly better NFR, but it is still too low to satisfy many users’ needs. This im-
plies that often there are no relevant expressions or subexpressions that exactly match the
query. However, in instances where a matching expression or subexpression exists, it is
ranked highly by ExactMatch and SubexprExactMatch. Normalizing expressions, as done
in NormalizedExactMatch and NormalizedSubExactMatch, further increases the NFR, but
it also increases the chances that irrelevant expressions are matched. Because such algo-

40

Algorithm NFR MRR p-value
SimSearch 100% 0.74 -

PatternSearch 90% 0.86 0.171
MiaS 94% 0.46 0.002

TextSearch 100% 0.19 0.000
ExactMatch 13% 1 0.186

NormalizedExactMatch 34% 0.46 0.007
SubexprExactMatch 18% 0.94 0.173

NormalizedSubExactMatch 41% 0.43 0.004

Table 3.5: Algorithms’ performance for Forum Queries.

rithms do not offer an effective ranking algorithm, in many cases the most relevant results
are not among the top 10 results.

Note that although the MRR of SimSearch is lower than ExactMatch and SubexprEx-
actMatch, it has a much higher NFR as it produces some results for all queries. If we
only consider queries for which there is an exact match (so ExactMatch produces at least
one answer), SimSearch has an MRR that is not significantly different from that of Ex-
actMatch. The reason is that in such cases, the structural similarity for documents that
contain exact matches is 1, and such documents are ranked at the top of the results.

TextSearch has a very low MRR. Because this algorithm ignores the structure, it often
does not rank a correct answer highly enough against many irrelevant expressions with
similar MathML tags and symbols but different structures.

Note that although we reformulate queries only for pattern search, the structural simi-
larity search produces results that are comparable with the results of well-formulated pat-
tern queries. ExactMatch or NormalizedExactMatch are essentially pattern search with
poorly formed queries. As shown, such algorithms produce poor results.

To show the statistical significance of the results, we use a Student’s t-test on the re-
ciprocal ranks of the queries. For each algorithm, we test whether there is a statistical
difference between the reciprocal ranks of its produced results and that of SimSearch. We
consider a one-tailed t-test for paired samples (i.e. only non-failed searches are considered).
As the data in Tables 5.4 and 3.6 suggest, there are significant differences (at the 0.05 sig-
nificance level) between the results of SimSearch and all algorithms except PatternSearch,
ExactMatch, and SubexprExactMatch (for Forum queries). The reason is that in cases
that such algorithms do not fail, SimSearch ranks relevant results equally well.

The F1 measure is used to create a single score that balances precision and recall for

41

Algorithm NFR MRR p-value
SimSearch 100% 0.78 -

PatternSearch 76% 0.96 0.084
MiaS 90% 0.63 0.014

TextSearch 100% 0.23 0.000
ExactMatch 15% 1 0.211

NormalizedExactMatch 50% 0.58 0.005
SubexprExactMatch 30% 0.62 0.044

NormalizedSubExactMatch 60% 0.44 0.009

Table 3.6: Algorithms’ performance for Interview Queries.

traditional retrieval tasks. In a similar way, we can calculate the harmonic mean of our NFR
and MRR measures. The results are presented in Table 3.7. As the results suggest, the
overall performance of SimSearch and PatternSearch is better than the other algorithms.

Query Rewriting

To compare how much effort is required from the user to perform a search, we look at Pat-

ternSearch in terms of its rewrite rates. Assume a user is looking for
10∑
i=1

2i, and suppose

the only relevant match to this query is
n∑
i=1

ai. The edit distance between the correspond-

ing DOM trees is relatively low, and thus this answer is ranked highly by the SimSearch
algorithm. For PatternSearch, however, if the user forms a query with no wild cards, it
performs similarly to ExactMatch, and the correct answer is not found. The following is a
plausible sequence of query refinements before an answer is found:

42

Algorithm Forum Interview
SimSearch 0.85 0.88

PatternSearch 0.88 0.85
MiaS 0.62 0.74

TextSearch 0.32 0.37
ExactMatch 0.23 0.26

NormalizedExactMatch 0.39 0.54
SubexprExactMatch 0.30 0.40

NormalizedSubExactMatch 0.42 0.51

Table 3.7: Harmonic means of NFR and MRR scores for Forum and Interview Queries.

1 -
10∑
i=1

2i No match!

2 -
10∑

[V 1]=1

2[V 1] No match!

3 -
[N1]∑

[V 1]=1

2[V 1] No match!

4 -
[N1]∑

[V 1]=1

[N2][V 1] No match!

5 -
[N1]∑

[V 1]=1

[V 2][V 1] A match is found!

While the rewrite rate of SimSearch is always 1 (as no query rewriting is required), our
application of PatternSearch required an average rewrite rate of 2.2 and 1.45 for the Forum
and Interview queries respectively. As the results suggest, when using PatternSearch, each
query may well be refined to obtain relevant results, and hence the user must invest more
effort to find relevant documents.

Summary

In summary, simply viewing mathematics expressions as if they were conventional doc-
ument fragments, as represented by TextSearch, or not allowing variations in matched
expressions or subexpressions, as represented by ExactMatch and SubexprExactMatch,
leads to extremely poor search results. On the other hand, SimSearch and PatternSearch
perform very well: much better than the other algorithms that ignore the structure or
perform exact matching only. PatternSearch may perform slightly better than SimSearch,

43

but the user will likely need to spend more time to tune a query pattern when using this
algorithm. Reassuringly, these results are consistent across the two sources of queries.

So in conclusion, structural similarity search seems to be the best way for general users
to search for mathematical expressions, but we hypothesize that pattern search may be
the preferred approach for experienced users in specific domains.

3.6 Chapter Conclusions

Given a mathematics expression, finding pages with relevant mathematical content is an
important problem that is the basis of many mathematics retrieval systems. Correctly
predicting the relevance of mathematical expressions is a core problem that should be
addressed in order to develop useful retrieval systems.

We characterized several possible approaches to this problem, and we elaborated two
working systems that exploit the structure of mathematical expressions for approximate
match: structural similarity search and pattern matching. We empirically showed that
these two search paradigms outperform other search techniques, including the ones that
perform exact matching of (normalized) expressions or subexpressions and the one that
performs keyword search. We also showed that it takes more effort from the user to form
queries when doing pattern search as compared to similarity search, but when relevant
matches are found they are ranked somewhat higher. So in conclusion, structural similarity
search seems to be the best way for general users to search for mathematical expressions,
but we hypothesize that pattern search may be the preferred approach for experienced
users in specific domains.

In this chapter we focused on the usability of answers and how well a search system can
find relevant documents for a given query. Others may wish to re-evaluate these results
using more controlled methods for assessing relevance. The study should next be extended
in an ongoing effort to include new approaches as they are developed. Optimizing the
proposed search techniques in terms of query processing time and index size is discussed
in Chapter 4. Based on the results of this chapter, in the next chapters we propose more
complex query languages to accommodate queries that consist of multiple mathematical
expressions supplemented by textual keywords that might match other parts of relevant
documents, or pattern queries with one or more similarity constraints.

NTCIR is an international initiative to create a public and shared infrastructure to
facilitate research in Math IR. It aims to provide a test collection and a set of math tasks.

44

As a part of our future research, we plan to use this data (which is not yet available) to
further evaluate the discussed algorithms.

45

Chapter 4

Optimizing Math Retrieval

In Chapter 3 we described algorithms for retrieving documents with respect to their math-
ematical expressions. We concluded that the most effective techniques for capturing the
relevance of math expressions are: i) structural similarity search and ii) pattern search.

To be useful, besides the correctness of results (i.e. their relevance to the query), the
query processing time must be kept reasonably low. However, this is difficult to achieve
because calculating structural similarity of expressions is computationally expensive, and
many potential expressions must be considered in response to each query. Hence, efficiently
processing a query is a challenging problem that we address in this chapter.

4.1 Literature Review

Many applications depend on efficient processing of top-k queries. Because of its impor-
tance, many algorithms are proposed to optimize the processing of such queries. Top-k
selection algorithms typically assume data is given in the form of one or more lists, and
they aim to find the top-k items with the highest aggregate score. They normally define a
stop condition, that if satisfied early, allows returning the results without processing the re-
maining items while guaranteeing the correct results are returned. The various approaches
differ in how they access the data. Some algorithms assume both sorted and random ac-
cess to data. Examples include Threshold Algorithm (TA) [38], Combined Algorithm [38],
Quick-Combine[48], and KLEE [82]. Some other algorithms, including Upper and Pick [80],
Mpro [26], topX [104], and Rank-Join [54], limit the random access and consider controlled
random probes only. They assume at least one list supports sorted access, and random

46

accesses are scheduled to be performed if necessary. Upper and Pick algorithm is designed
for web-accessible sources that differ in how they allow access to their data. It controls the
random access by selecting best candidates based on their score upper bounds from the
sorted lists.

To process pipelined queries, the random access to data is often limited or infeasible.
Hence, some algorithms such as NRA [38], J∗ [88], and Stream-Combine [49] are proposed
that require only sorted access to the data. Algorithms that do not allow random access
to data, cannot report the exact scores of objects. They instead calculate bounds on
their exact scores. As we will discuss further, our intermediate lists allow both random
and sorted access to data. Our algorithm also allows producing the results without fully
processing all data objects.

Some top-k selection algorithms also propose further optimizations by modifying the
order of polling the intermediate lists (if more than one list exists). Algorithms such as
TA and TopX select lists in a round-robin manner. Li et al. [73] propose an approach
based on prioritizing intermediate lists. This allows processing a query by accessing some
lists more frequently, or even completely ignoring some lists if they do not contribute to
the final ranking. Alternatively, to address this scheduling problem, IO-Top-k [8] proposes
strategies for sorted access and a cost model for random access to data. The combined cost
of random access and sorted access is considered, and algorithms to reduce this cost are
proposed. Probabilistic models are used to estimate the probability that a document fits in
the top-k documents based on the distribution of data in the intermediate lists. It is shown
that the scheduling problem is hard, therefore it is assumed the number of intermediate
lists is small.

In Section 4.3, we propose an upper bound on the similarity score of documents that
can be calculated efficiently using standard keyword search. This allows forming a sorted
list of documents and selecting the top-k documents. In Section 5.3 we consider the more
general case where multiple intermediate lists are formed. We are able to use any top-k
selection algorithm with sorted and random access to data.

Zezula et al. [115] propose a metric space approach for optimizing similarity search.
A metric space must satisfy properties such as non-negativity, symmetry, identity, and
triangle inequality. They propose indexing algorithms that optimizes range queries for
various types of similarity search algorithms assuming the metric space conditions are
satisfied. We note that tree edit distance also satisfies the metric space model. Hence this
approach can be used to further optimize our algorithm. Selecting an appropriate range for
a given query, and combining this approach with the optimizations that we will describe
in this chapter is a direction for future work.

47

To process a structured query, naively traversing all paths in an XML tree is inefficient.
A general indexing paradigm for semistructured data is to create a structural summary
in the form of a labelled directed graph that preserves all paths in the original tree while
having fewer nodes and edges. DataGuide [43] is the first attempt to create such structural
summary for semistructured data. 1-Index [83] and A(k)-index [66] use structural similar-
ity to partition the nodes of a tree into classes of bisimilar nodes and form summary graphs
accordingly. To answer more complex queries that contain multiple paths and require back-
ward traversing of some paths, The Forward and Backward (F&B) index is proposed [65].
To optimize the size of the index, some heuristics such as removing nodes with special
tags and restricting the tree depth are considered. Despite using these heuristics, the size
of the index in some cases is still very large in the above indexing schemes. FIX [119] is
an indexing scheme that breaks a large document into twig patterns, which allows high
pruning power and reduces the search space. Another family of indexing techniques is
based on transforming a tree into sequences of numbers or strings and processing queries
by performing operations on such sequences [40, 39, 36, 96]. Almost all of the above index-
ing schemes assume a query is either a single path, or it is a twig, which is unordered and
is significantly smaller than the data tree. However, in some contexts such as mathematics
retrieval, queries are ordered trees with rather large and complex structures. The size of
a query is similar to the size of its matching expression trees. Moreover, such indexes are
not optimized for similarity search.

4.2 Optimizing Structural Similarity Search

As described, a search algorithm based on the structural similarity of math expressions
would be time consuming because it requires calculating the edit distances of many pairs of
trees, which is computationally expensive. A naive approach is to calculate the similarity
score of every document and return the top k documents as the search result. However,
this naive approach depicted in Algorithm 3 performs some unnecessary computations and
can be optimized as follows:

1. Calculating the similarity of the query and an expression requires finding the edit
distance between their corresponding XML trees which is computationally expensive.
On the other hand, it is not necessary to calculate the similarity of expressions that
can be quickly seen to be too far from the query.

2. Many expressions are repeated in a collection of math expressions, and many share
large overlapping sub-expressions. Hence, memoizing some partial results and reusing

48

them saves us from repeatedly recalculating scores.

3. Finding the exact value of the edit distance between two expressions is not necessary
if it becomes apparent during the calculation of this value that it is not among the
top-k.

The next three sections address these observations. Throughout this chapter, we use
the definition of tree edit distance and costs given is Section 3.3.1.

4.3 Early Termination

In this section we propose a top-k selection algorithm that reduces query processing time
by avoiding some unnecessary computations. More specifically, we define an upper limit
on the similarity of two mathematical expressions that can be calculated efficiently, and
we define a stopping condition with respect to this upper limit. Given a query, instead
of calculating the similarity for all expressions, we stop when this condition is satisfied.
For ease of explanation, to calculate the edit distance, we will assume that the costs of all
delete and insert operations are 1 and the cost of rename is 2.

For a tree T , we designate the set of labels in T as τ(T) = {λ(N)|N ∈ T}. For two
trees, T1 and T2, we define τ -difference and τ -intersection as follows:

(T1 −τ T2) = {N ∈ T1|λ(N) /∈ τ(T2)} (4.1)

T1 ∩τ T2 = ({N |N ∈ T1} − (T1 −τ T2)) ∪ ({N |N ∈ T2} − (T2 −τ T1)) (4.2)

Note that both τ -difference and τ -intersection are defined over sets of nodes, not sets of
labels. As a result,

|T1 ∩τ T2| = |T1| − |T1 −τ T2|+ |T2| − |T2 −τ T1| (4.3)

Consider expression E and query Q. We first calculate an upper bound on the value of
sim(E,Q). If the label of a node N in TE, the XML tree of E, does not appear in TQ, the
XML tree of Q, their edit distance is at least equal to 1 + dist(TE −N, TQ) where TE −N
is the tree that results from deleting N from TE. A similar argument can be made for
nodes in TQ whose labels do not appear in TE. Hence, the following lower bound on the
edit distance of E and Q can be defined:
dist(TE, TQ) ≥ |TE −τ TQ|+ |TQ −τ TE|

49

from which an upper bound on the similarity of the two expressions is calculated using
(3.2) and (4.3):

sim(E,Q) ≤ 1− |TE −τ TQ|+ |TQ −τ TE|
|TE|+ |TQ|

=
|TE ∩τ TQ|
|TE|+ |TQ|

(4.4)

and the upper bound for the relevance of a document d to Q is calculated using (3.3):

docRank(d,Q) ≤ upperRank(d,Q) = max
Ei∈d

|TEi ∩τ TQ|
|TEi |+ |TQ|

(4.5)

We employ a keyword search algorithm to calculate upperRank(d,Q) as follows. We
build an inverted index on node labels, treating each expression as a bag of words. A
document is a collection of such expressions (bags of words). In general the keyword
search algorithm can be modified by assigning custom weights to terms to handle arbitrary
edit costs.

To find the most relevant expressions, we maintain a priority queue of length k (“the top-
k list”), which is initially empty. First, we rank documents with respect to upperRank(d,Q)
and define a cursor that iterates through the ranked documents. At each step, we calculate
the relevance score of the current document with respect to the query, using (3.3), and up-
date the top-k list if there are fewer than k elements on the list or this value is greater than
the relevance score of the lowest document in the top-k list. We stop the algorithm if the
cursor reaches the end of the ranked input list, or if k documents have been selected and
upperRank(dnext, Q) (where dnext is the next document after the cursor) is smaller than
the score of the lowest document in the top-k list. A summary of these steps is presented
in Algorithm 7.

Algorithm 7 produces the same results as Algorithm 3 but it reduces the query pro-
cessing time by avoiding some unnecessary computations. In Section 4.5 we show that this
optimization significantly reduces the query processing time.

4.3.1 Compact Index

In this section we propose an indexing algorithm that i) reduces the space requirement and
ii) speeds up the query processing. Our indexing algorithm is based on the observation
that often many subexpressions appear repeatedly in a collection of math expressions.

Consider a collection of trees C = {T1, . . . , Tn}. Let G ∈sub C denote that G is a subtree
of Ti for some Ti ∈ C. The total number of subtree instances in C is equal to |T1|+· · ·+|Tn|.

50

Algorithm 7 Similarity Search with Early Termination

1: Input: Query Q and collection D of documents.
2: Output: A ranked list of top k documents.
3: Treat Q as a bag of words and perform a keyword search to rank documents with

respect to upperRank(d,Q).
4: Define a cursor C pointing to the top of the ranked result.
5: Define an empty priority queue TopK.
6: while true do
7: dC ← the document referenced by C.
8: if dC is null or upperRank(dC , Q) < min

d∈TopK
docRank(d,Q) and |TopK| = k then

9: break
10: end if
11: Calculate docRank(dC , Q).
12: if |Topk| < k or docRank(dC , Q) > min

d∈TopK
docRank(d,Q) then

13: Insert dC in TopK.
14: if |TopK| > k then
15: Remove document with smallest score from TopK.
16: end if
17: end if
18: C ← C.next
19: end while
20: return TopK

51

If two subtrees G1 and G2 represent equivalent subexpressions, where equivalence is defined
as being exactly the same 1, we write G1 ∼ G2. This relation partitions {G|G ∈sub C}
into equivalence classes. Given an arbitrary tree T , its frequency in C is the size of the
matching equivalence class in C:

freq(T,C) = |{G|G ∈sub C ∧G ∼ T}| (4.6)

We omit the second argument C when it is clear from context.

Given a collection of math expressions, we observe that many subtrees appear re-
peatedly in various expressions’ XML trees. To confirm this, we ran experiments on a
collection of more than 863,000 math expressions. Details of this collection are presented
in Section 4.5.1, and the experimental confirmation is included in Section 4.5.3.

The basis of our indexing algorithm is to store each subexpression once only and to
allow matching subtrees to point to them. This significantly decreases the size of the
index, and as we will explain later, it also effectively speeds up the retrieval algorithm.
The approach can also be combined with other optimization techniques, such as the one
proposed in Section 4.3, to further decrease query processing time.

We assign a signature to each subtree such that matching subtrees have the same
signatures and subtrees that do not match the same expression have different signatures.
Any hash function that calculates a long bit pattern from the structure and node labels
and any collision resolution method can be used for this purpose.

Our index is a table, indexed by signatures, whose entries represent unique MathML
subtrees (both complete trees and proper subtrees). Each entry contains the label of the
root and a list of pointers to table entries corresponding to the list of the children of the
root. A data structure called exp-info is assigned to each expression that represents a
complete tree in order to store information about documents that contain it. Each entry
also contains some other information, such as the frequency of the corresponding tree in
the collection.

Initially, the index is empty. We add expression trees one by one to the index. To add
a tree T we first calculate its signature to index into the table. If there is a match, we
return a pointer to the corresponding entry in the table. We also update the exp-info of T
if it is a complete tree. If T is not found, we add a new entry to the table for that index,
storing information such as the root’s label, etc. Then, we recursively insert subtrees that
correspond to the children of the root of T in the index, and insert a list of the pointers to

1Alternatively, equivalence can be defined as being exactly the same after some normalization which is
a direction of our future work.

52

<mn>
{<http://www.wikipedia...}

<math> <mfrac>

<mrow>

<mrow>

<msup>
<mi>

<mo>

<mo> +

 −

Figure 4.1: The index after x2−1
x2+1

is added.

their corresponding entries in the entry of T . This algorithm guarantees that each tree is
inserted once only, even if it repeats. Figure 4.1 shows a fragment of the index after x2−1

x2+1

is added.

4.3.2 Memoization with Unconstrained Memory

Calculating the edit distance between two trees involves calculating the edit distance be-
tween many of their corresponding subtrees. Dynamic programming ensures that each pair
of subtrees is compared no more than once within a single invocation of sim(Ei, Q), but
building the distance matrix involves calculating the similarity between each pair of sub-
trees, one from Ei and one from Q. As noted in the previous section, many subexpressions
are shared among the mathematical expressions found in a typical document collection;
building the distance matrix to compute the similarity of a query to each stored expression
independently does not capitalize on earlier computations. We can reduce computation
time significantly by memoizing some intermediate results for later reuse.

When calculating the edit distance between two trees, we store the result in an auxiliary
data structure that we call a distance cache. More specifically, the cache stores triples of
the form [Te, Tq, dist(Te, Tq)] where Te is a subtree of the expression, Tq is a subtree of the
query, and dist(Te, Tq) is the edit distance between Te and Tq. Effectively we are saving
the distances computed by the dynamic programming algorithm (Equation 2.2) across
similarity calls.

We implement the cache as a hash table where the key consists of the two signatures
for Te and Tq. Hence, the complexity of inserting and searching for a triple is O(1). If D
represents the set of all document-level expressions whose distances to Q are calculated
through invocations to docRank in Algorithm 7, S = {G|G ∈sub D}, and n is the number
of equivalence classes in S, the space required to store the distance cache is O(n|Q|).

Each time we require the edit distance between two trees, we use the value in the cache
if it is there. Otherwise we calculate the distance and store the result together with the
signatures of the two subtrees in the cache.

53

Algorithm 8 Index Insertion Add(E, I, d)

1: Input: MathML tree for expression E, index I, and document d containing E (if E is
a complete tree).

2: Action: Adds E to I
3: sig ← signature(E)
4: Search for sig in I
5: if sig is found then
6: ent ← entry for sig
7: if E is a complete tree then
8: Update the exp-info of ent with d
9: end if

10: return a pointer to ent
11: else
12: newEnt ← createEntry(I, sig)
13: Insert the root label in newEnt
14: if E is a complete tree then
15: Update the exp-info in newEnt with d
16: end if
17: childSeq ← an empty list
18: for i = 1 to |children of E| do
19: childSeq[i] = Add(Child[i],I, null)
20: end for
21: Insert childSeq[i] in newEnt
22: return a pointer to newEnt
23: end if

54

As described in Section 2.2.1, the complexity of state-of-the-art algorithms for calcu-
lating the tree edit distance is O(n3).

Theorem 1. Consider two labelled order trees T1 and T2. If the distance between each pair
(Tu, Tv) (u ∈ T1 and v ∈ T2) of subtrees is found in the cache, the complexity of calculating
their edit distance is O(|T1||T2|).

Proof. According to Equation 2.2, if dist(Tu, Tv) is already calculated for each u ∈ T1 and
v ∈ T2, then the complexity of the dynamic programming algorithm is equal to the size of
the matrix to be filled out, which is |T1||T2|.

Hence, if the distance of many pairs of subtrees is found in the cache, there is a no-
ticeable gain in the query processing time. With respect to our results as explained in
Section 4.5.3, many subtrees repeat frequently in a collection of math expressions, hence
chances that the distance between two subtrees is found in the cache is rather high.

Memiozation with Memory Constraint

If the available memory is limited or there are too many expressions, we may not be able
to store all pairs of distances as just described. However, calculating the edit distance
between small trees may be sufficiently fast that there is no benefit gained by using the
cache, and storing such pairs significantly increases the size of the cache. Furthermore,
storing the results for rare subtrees may not be worthwhile, as the stored results may not
be reused often enough to realize the benefit of using the cache.

Cost Model

The benefit of memoizing the edit distance between two trees comes from the savings
in processing time if the result is found in the cache instead of being calculated for the
distance matrix. Following this line of reasoning, we augment the caching criteria described
above to choose which distances should be stored and which should not. We calculate
the benefit of storing the triple [Te, Tq, dist(Te, Tq)] as benefit(Te, Tq) = calcCost(Te, Tq) −
cacheCost(Te, Tq), where calcCost(Te, Tq) and cacheCost(Te, Tq) are the costs of calculating
the edit distance and looking up a value in the cache respectively.

We also wish to account for the number of times we will be able to realize the savings
by reusing the value from the cache. Therefore, to each pair (Te, Tq), we assign a weight
weight(Te, Tq) that reflects the frequency of occurrence of that pair. We suggest how to
compute the weights below.

55

Problem Statement

Consider a set of tree pairs P = {(T 1
e , T

1
q), . . . , (T ne , T

n
q)} and a space constraint that allows

C triples to be cached. Our task is then to select a set of subtree pairs
H∗ = arg max

H

∑
(T ie ,T

i
q)∈H

weight(T ie , T
i
q) benefit(T ie , T

i
q)

such that
|H∗| ≤ C.

On-the-fly Cache

If we are given the set P , the problem is easily solved by choosing the C triples having the
highest values for weight(T ie , T

i
q) benefit(T ie , T

i
q). However, Algorithm 7 maintains a sorted

list of expressions, and starting from the head of the list calculates the similarity of each
expression to Q. Thus, we cannot predict exactly which pair of subtrees will be compared
before the algorithm stops.

We need to assign the weight for a pair of subtrees that reflects the number of times
that pair will be needed for filling a dynamic programming matrix during the remainder
of the execution of Algorithm 7. Consider the following motivating example:

Example 6. Assume freq(Te, D) = 100, and freq(Tq, {TQ}) = 1. The similarity between
the expressions represented by Te and Tq will be calculated at most 100 times by Algorithm 7.
While processing the query, if the edit distance function has already been called to fill 99
distance matrices for this pair, it will be called at most once more for the rest of the query
processing. Caching the edit distance between Te and Tq at this point is not likely to be as
cost-effective as caching the distance for another pair of trees if those trees might still be
compared 10 more times during query processing.

We want to assign a weight to each pair that reflects this declining benefit. However,
we cannot afford to store frequencies for every pair of subtrees (otherwise we could store
the distances instead). Therefore, we estimate the frequencies based on the frequencies for
each subtree independently.

Note that Te matches freq(Te, D) subtrees of the expressions in the collection and re-
quires up to |TQ| entries to be made in the distance matrix during dynamic programming.
We augment the index described above by adding fields freqD and freqcur to each node to
store the frequency of that subexpression in the document collection together with a vari-
ant of that frequency, both initialized to be equal to freq(Te, D) for the node corresponding
to Te. Whenever we require a value for dist(Te, Tq), we calculate its score as the weighted

56

benefit based on expected re-use as score(Te, Tq) = freqcur(Te) freq(Tq, {TQ}) benefit(Te, Tq)
where freq(Tq, {TQ}) is the number of subtrees in the XML tree of Q that match Tq. We
also save the score in the cache along with the distance, and update freqcur(Te) with the
value freqcur(Te)− 1

|TQ|
to reflect the maximum number of times Te might still be required

in a distance computation. We then set score(Te, Tq) to the value of the weight at the time
dist(Te, Tq) was most recently evaluated.

Algorithm 9 details how the scores for each pair of trees is calculated and used to manage
a limited cache. A priority queue maintains the most promisingM pairs in the cache as sim-
ilarity search progresses. Thus the cache stores quadruples [se, sq, dist(Te, Tq), score(Te, Tq)]
where se and sq are the signatures for Te and Tq respectively. Because score(x, y) increases
monotonically with freqcur(x) and freq(y) and because trees cannot repeat more frequently
than any of their subtrees, if dist(Te, Tq) is stored in the cache for some subtree Te stored in
the document collection and some subtree Tq of the query, then dist(T ′e, T

′
q) is also stored

for all T ′e ∈sub Te and T ′q ∈sub Tq, as long as benefit(T ′e, T
′
q) is sufficiently high.

Algorithm 9 Calculating Edit Distance with a Limited Cache

Input: Two trees Te and Tq, |TQ| (the number of nodes in the query tree), and cache
M storing quadruples.
Output: dist(Te, Tq) (with side-effects on M and freqcur(Te))
Form pair p = (se, sq) that consists of the signatures of Te and Tq.
freqcur(Te)← freqcur(Te)− 1

|Q| .

v ← freqcur(Te) ∗ freq(Tq) ∗ benefit(Te, Tq) (the score for this pair).
if p is found in M then
dist← dist(Te, Tq) associated with p in M
Replace the matched quadruple in M by (se, sq, dist, v).

else
dist← compute dist(Te, Tq) using the distance matrix and cache for subproblems.
m← min{score(m)|m ∈M}
if m < v then

if |M| = C then
Remove the entry with minimum score from M.

end if
Insert (se, sq, dist, v) into M.

end if
end if
return dist

57

<mo>

<mrow>

<math>

sin x

<mi> <mi>

x

<msup>

<math>

<mo>

<mrow>

<math>

sin 30

<mn> <mn>

2

Figure 4.2: The XML tree for left) sin x, center) sin 30 and right) x2.

4.3.3 Bounded Edit Distance Calculation

In Section 2.2.1 we described the edit distance between two ordered trees, and explained
an algorithm to calculate it (Algorithm 1). We also described an algorithm to find the
top-k relevant documents earlier in this section (Algorithm 7). We notice that we can
optimize Algorithm 1 if called by Algorithm 7 through a call to the docRank function.
More specifically, the exact value of the edit distance between the query and an expression
is not needed if we can show this distance is too high for the calculated similarity to be
among the top-k. In this section we describe this optimization, and in Section 4.5 we show
that it reduces the total query processing time by an order of magnitude.

Assume k documents are already in the top-k list, and Algorithm 7 proceeds. With
respect to this algorithm, the exact value for the score of a document d is only useful if:
docRank(d,Q) ≥ min

c∈TopK
docRank(c,Q) = minScore. Hence, the score of an expression E

in d is only useful if:

1− dist(E,Q)

|E|+ |Q|
≥ minScore⇒ dist(E,Q) ≤ (1−minScore).(|E|+ |Q|) = uBound(E)

(4.7)

Example 7. Consider query Q = sinx and E = x2 (Figure 4.2). Assume the lowest match
in the top-k is for expression E ′ = sin 30. sim(E ′, Q) = 0.83, and |Q| = |E| = 6. Hence
dist(E,Q) must be at most (1 − 0.83)(6 + 6) = 2.04 to be useful. In other words, if the
edit distance between E and Q exceeds 2.04, we do not need to calculate the exact value for
dist(E,Q).

With respect to Equation 2.2, the edit distance between two trees is calculated recur-
sively from the edit distance of their subproblems. Following this equation, the value of

58

each intermediate result (e.g. dist(F1−u, F2) +ω(u→ ε) and dist(Tu−u, Tv) +ω(u→ ε))
is only useful when it is not greater than uBound(E). Therefore, at each step when filling
up the dynamic programming matrix (Algorithm 2-Line 34), we replace the value by a
large number∞ if it is greater than uBound(E). We also make a recursive call to the dist
function (Line 27) only if ForestMatrix[i− |TF1[i]|][j − |TF2[j]|] ≤ uBound(E).

Consider the dynamic programming matrix in Algorithm 2 (ForestMatrix). Assume all
values in a row in ForestMatrix are ∞:


.

...
∞ . . . ∞ . . . ∞

...
.


We call such a row an infinity-row.

Theorem 2. Assume the mth row of the ForestMatrix is an infinity row (1 ≤ m < |F2|).
The (m+ 1)th row is also an infinity row.

Proof. Assuming ForestMatrix[i][m] =∞ for 0 ≤ i ≤ |F1|, we show that ForestMatrix[i][m+
1] =∞ for 0 ≤ i ≤ |F1|.

ForestMatrix[0][m+1] = ForestMatrix[0][m]+insertCost(F2[m+1]) ≥ ForestMatrix[0][m] =
∞. Hence, ForestMatrix[0][m+ 1] =∞.

Assuming dist(F1, F2) < min{dist(F1−u, F2) +ω(u→ ε), dist(F1, F2− v) +ω(ε→ v)},
we prove that:
dist(F1 − Tu, F2 − Tv) + dist(Tu, Tv) ≥ dist(F1 − u, F2 − v).
We first show that dist(Tu, Tv) ≥ dist(Tu − u, Tv − v). Assume dist(Tu, Tv) < dist(Tu −
u, Tv − v). Therefore, from Equation 2.2, dist(Tu, Tv) = min{dist(Tu − u, Tv) + ω(u →
ε), dist(Tu, Tv − v) + ω(ε→ v)} and dist(F1, F2) = dist(F1 − Tu, F2 − Tv) + min{dist(T1 −
u, T2)+ω(u→ ε), dist(T1, T2−v)+ω(ε→ v)} ≥ min{dist(F1−u, F2)+ω(u→ ε), dist(F1, F2−
v) + ω(ε→ v)} which is a contradiction.

Therefore, dist(F1, F2) = dist(F1−Tu, F2−Tv)+ dist(Tu, Tv) ≥ dist(F1−Tu, F2−Tv)+
dist(Tu − u, Tv − v) ≥ dist(F1 − u, F2 − v).

dist(F1, F2) = min{dist(F1 − u, F2) + ω(u → ε), dist(F1, F2 − v) + ω(ε → v), dist(F1 −
Tu, F2 − Tv) + dist(Tu, Tv)} ≥ min{dist(F1 − u, F2) + ω(u → ε), dist(F1, F2 − v) + ω(ε →

59

v), dist(F1−u, F2−v)}. Hence, ForestMatrix[i][m+1] ≥ min{ForestMatrix[i−1][m+1]+
deleteCost(F1[i]), ForestMatrix[i][m]+insertCost(F2[m+1]), ForestMatrix[i−1][m]} ≥
min{ForestMatrix[i − 1][m + 1],∞,∞} = ForestMatrix[i − 1][m]. Hence, because
ForestMatrix[0,m+1] =∞, we can prove by induction that ForestMatrix[i][m+1] =∞
for 0 ≤ i ≤ |F1|.

Theorem 3. Any value below an infinity-row is ∞.

Proof. Following Theorem 2, we can easily prove by induction that ForestMatrix[i][j] =
∞ for any j > m.

According to Theorem 3, any value below an infinity-row is ∞. Hence, we can stop
filling the rest of the matrix as soon as we detect an infinity-row .

Example 8. The original ForestMatrix for E and Q (Example 7) is:

0 1 2 3 4 5 6
1 2 3 2 3 4 5
2 3 4 3 2 3 4
3 4 5 4 3 4 5
4 5 6 5 4 5 6
5 6 7 6 5 6 7
6 7 8 7 6 7 6


Replacing the values that are greater than 2 with ∞ results in this matrix:

0 1 2 ∞ ∞ ∞ ∞
1 2 ∞ 2 ∞ ∞ ∞
2 ∞ ∞ ∞ 2 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞


The fourth row in this matrix is an infinity-row. Hence, we stop the algorithm after

this row is filled.

60

Algorithm 10 dist(F1, F2, SubTreeMatrix)
1: Input: Two forests F1 and F2 and a (|F1| + 1) ∗ (|F2| + 1) matrix SubTreeMatrix, and uBound which is the highest

value for the distance.
2: Output: dist(F1, F2): The edit distance between F1 and F2

3: Let ForestMatrix be a (|F1|+ 1) ∗ (|F2|+ 1) matrix.
4: ForestMatrix[0][0] = 0
5: for i = 1 to |F1| do
6: ForestMatrix[i][0] = ForestMatrix[i− 1][0] + deleteCost(F1[i])
7: if ForestMatrix[i][0] > uBound then
8: ForestMatrix[i][0] =∞
9: end if

10: end for
11: for i = 1 to |F2| do
12: ForestMatrix[0][i] = ForestMatrix[0][i− 1] + insertCost(F2[i])
13: if ForestMatrix[0][i] > uBound then
14: ForestMatrix[0][i] =∞
15: end if
16: end for
17: for i = 1 to |F1 do
18: isInfinitRow ← true
19: for j = 1 to |F1 do
20: v1 = ForestMatrix[i− 1][j] + deleteCost(F1[i])
21: v2 = ForestMatrix[i], [j − 1] + insertCost(F2[j])
22: if F1 and F2 contain only one tree and i = |F1| and j = |F2| then
23: v3 = ForestMatrix[i− 1][j − 1] + renameCost(F1[i], F2[j])
24: else
25: if ForestMatrix[i− |TF1[i]|][j − |TF2[j]|] <∞ then

26: if SubTreeMatrix[offset(F1[i])][offset(F2[j])] = nil then
27: SubTreeMatrix[offset(F1[i])][offset(F2[j])] = dist(TF1[i], TF2[j])

28: end if
29: v3 = ForestMatrix[i− |TF1[i]|][j − |TF2[j]|]

+SubTreeMatrix[offset(F1[i])][offset(F2[j])]
30: else
31: v3 =∞
32: end if
33: end if
34: ForestMatrix[i][j] = min{v1, v2, v3} .
35: if ForestMatrix[i][j] > uBound then
36: ForestMatrix[i][j] =∞
37: else
38: isInfinitRow ← false
39: end if
40: end for
41: if isInfinitRow then
42: return ∞
43: end if
44: end for
45: return ForestMatrix[|F1|][|F2|]

61

To apply the above optimization, we modify Algorithm 2 for calculating the edit dis-
tance as presented in Algorithm 10.

Note that as the algorithm progresses and the value of the bound decreases, an infinity
row is often found at earlier stages.

4.4 Optimizing Pattern Search

In Section 3.4 we described a pattern matching strategy for math retrieval. In this section
we propose an efficient algorithm to process queries represented in the form of a pattern.
Our algorithm produces the same result as the pattern search algorithm described in Sec-
tion 3.4.1 with a much lower query processing time.

4.4.1 Transforming Expressions

The aim of transforming an expression is to modify it so it is independent of details such
as number values or variable and operator names. This will allow us to efficiently look up
candidate expressions with respect to patterns that contain wildcards.

For an expression E, we create an enhanced expression, H(E), as follows. Leaves
represent literal values such as numbers, variables, and operators (Figure 4.3-A). Hence,
we remove all leaves of the corresponding tree of E. We also remove attributes that are
not mathematically significant such as font sizes or white space. After these two steps, we
obtain a tree that is independent of the specified details (Figure 4.3-B).

4.4.2 Building the Index

To build the index, we first create a pseudo-document for each expression in the collection
as follows.

Consider an expression E in document d. We transform E as described in the previous
section. For each node N in the transformed expression, we calculate the signature of the
subtree rooted at N (Equation 2.1). We also consider the path from the root of E to N ,
and calculate its signature. The signature of a path is calculated similar to a tree (treating
the path as a tree that consists of a single path).

62

<msup>

<math>

<msup>

<math>

<mfenced>

<mi>

<mrow>

<mo>

 <mn>

2

 <mn> <mfenced>

<mi>

<mrow>

 x +

<mo> <mn> <mn>

1

A B

Figure 4.3: A) The original expression tree for (x+ 1)2. B) The transformed expression.

The pseudo-document for E consists of a set of terms, where each term is the signature
of a subtree or a path in its enhanced form with no duplicates.The header of the pseudo-
document also contains a pointer to E, and a pointer to the page that contains E.

Similar to text documents, we build an inverted index on the terms. Using this index,
we can efficiently retrieve expressions with respect to their contained terms using standard
text-retrieval techniques. A summary of the steps is presented in Algorithm 11.

4.4.3 Processing a Pattern Query

Recall that a pattern query is a math expression with some further information represented
in the form of wild cards and regular expression operators such as repetition or optional
operators. Our optimization is based on using the index to efficiently filter expressions that
do not match the query because they do not contain specific parts. This results in a set
of potential matches (candidates), that will be processed further to check if they actually
match the query. In the remainder of this section we elaborate on this idea.

Given a pattern query, we first transform it to obtain its enhanced form as explained
in the previous section by removing leaves of the tree. An example is shown in Figure 4.4.
This results in a tree that may contain wild cards or regular expression operators such as
disjunctive, optional, and repetition operators.

A node is a pseudo node if it is represents a wild card or it is associated with a regular
expression operator such as a disjunction or repetition operator, otherwise it is a constant
node. A subtree is maximal-constant tree if:

63

Algorithm 11 Building the Index For Optimum Pattern Query Processing

1: Input: collection C of expressions.
2: Output: an index to facilitate processing pattern queries.
3: Let ind be an empty inverted index
4: for each expression E ∈ C do
5: Let pd be an empty pseudo-document
6: pd.page← pointer to the page that contains E
7: pd.expression← pointer to E
8: E ′ ← transform(E)
9: for each node N of E ′ do

10: sSig ← the signature of the subtree rooted at N .
11: if pd does not contain sSig then
12: Add sSig to pd
13: end if
14: pSig ← the signature of the path from E ′.root to N .
15: if pd does not contain pSig then
16: Add pSig to pd
17: end if
18: end for
19: Add pd to ind
20: end for

64

 <mn><mi>

<mrow>

<mo>

 x + 1

<mfenced>

<msup>

<math>

<wild>

N1

<msup>

<math>

<mfenced>

 <mn><mi>

<mrow>

<mo>

<wild>

A B

Figure 4.4: A) The original tree for pattern (x+ 1)[N1]. B) The transformed pattern.

1. It consists of constant nodes only.

2. None of the immediate subtrees of the root’s ancestors is constant.

3. None of its ancestors is a pseudo node.

An example of a maximal constant subtree is circled with solid line in Figure 4.4-B

A path in the tree is a maximal-constant path if:

1. Starts from the root.

2. Consists of constant nodes only.

3. No constant path with a longer length exists that contains all its nodes (i.e. it cannot
be extended).

From the last property we can conclude that a maximal-constant path ends with a leaf
node or the parent of a pseudo node. An example of a maximal-constant path is circled
with dashed line in Figure 4.4-B.

We next form a token query that consists of a collection of tokens. Each token is the
signature of a maximal-constant path, or a maximal-constant subtree. For each such path
or subtree, we calculate the signature and add it to the token query if it is not added
previously (to avoid duplicates).

After the token query is formed, we use the index to retrieve expressions that contain
such tokens using a standard keyword search algorithm. Each retrieved expression is a
candidate that should be processed further to check if it matches the pattern query.

65

Algorithm 12 optimizedPatternSearch(Q)

1: Input: Query, Q.
2: Output: a list of documents containing expressions that match Q.
3: Modify the query
4: T ← the tree representing the modified query
5: E ← an empty set of tokens.
6: for each maximal-constant subtree M of T do
7: sig ← the signature of M
8: Add sig to E
9: end for

10: for each maximal-constant path P in N do
11: sig ← the signature of P
12: Add sig to E
13: end for
14: candidateExprs← textSearch(E)
15: res← an empty list of documents
16: for entry ent in candidateExprs do
17: E ← the expression stored in ent
18: if match(E,Q) [Algorithm 6] then
19: Add the document associated to ent to res
20: end if
21: end for
22: return res

66

Wikipedia DLMF Combined
Number of pages 44,368 1,550 45,918

Number of expressions 611,210 252,148 863,358
Average expression size 28.3 17.6 25.2

Maximum expression size 578 223 578

Table 4.1: Dataset statistics

Example 9. Assume the query is (x+ 1)[N1] (Figure 4.4-A). The modified query is shown
in Figure 4.4-B. The modified tree contains only one maximal-constant subtree (the subtree
rooted at the node with tag “<mfenced>”). There are three maximal-constant paths: from
the root (with tag “<math>”) to nodes with tags “<mi>”, “<mo>”, and “<mn>”. Hence,
the token query contains four tokens: the signature of the subtree, and the three paths. The
pseudo-document for expression E = (x + 1)2 (Figure 4.3) contains all the tokens, and
hence E is returned as a candidate expression to be matched against the query.

Hence, after a list of candidate expressions are obtained, we use Algorithm 6 to match
each one against the query. We return documents that contain matching expressions as
the search results.

4.5 Experiments

In this section we empirically evaluate the proposed optimization techniques.

4.5.1 Experiment Setup

Data Collection

For our experiments we use a collection of web pages with mathematical content. We
collected pages from the Wikipedia and DLMF (Digital Library of Mathematics Func-
tions) websites. Wikipedia pages contain images of expressions annotated with equivalent
LATEX encodings of the expressions. We extracted such annotations and translated them
into Presentation MatchML using Tralics [46]. DLMF pages use Presentation MathML to
represent mathematical expressions. Statistics summarizing this dataset are presented in
Table 4.1.

67

Data and Query Collections

In our experiments we use the collection of expressions from Wikipedia and DLMF web-
sites as described in Section 4.5.1. We also consider the Interview and the Forum query
collections (Section 4.5.1).

Evaluation Measures

We evaluate the proposed algorithms using the following measures:

Query Processing Time: The time in milliseconds from when a query is submitted until
the results are returned. A query is encoded with Presentation MathML and if the user
interface allows other formats, the time taken to translate it is ignored. Also the network
delay and the time to render results are not included. Each query is executed five times
and the average time is used as its query processing time. For a collection of queries, we
measure the query processing time of each and report the average query processing time.

Alternative Algorithms.

We further refine SimSearch to cover the following algorithms that reflect the proposed
optimization techniques:

• Unoptimized: Each expression is stored independently. The relevance score is cal-
culated for any expression sharing at least one tag with the query.

• ET: The early termination algorithm described in Sect. 4.3. Each expression is stored
independently. As described, an inverted index is used to calculate upper bounds on
the scores of each document, which increases the index size.

• Compact: Similar to unoptimized a query is processed by comparing the relevance of
each document that contains an expression with at least one node whose tag appears
in the query. Each subtree is stored once only to reduce the index size as described
in Sect. 4.3.1.

• Compact-ET-NMC: The early termination algorithm with a compact index, and no
memory constraint as described in Sect. 4.3.2.

• Compact-ET-RandMC: Similar to Compact-ET-MC, but entries are chosen at ran-
dom for being assigned space in the cache.

68

• Compact-ET-MC: The early termination algorithm with a compact index and a con-
straint on the memory that is available during the query processing (Sect. 4.3.2).
The results are presented for specific amounts of available memory separately (e.g. if
the memory constraint allows storing 1000 cache entries, we use the label Compact-
ET-MC-1000). We consider three values for the memory constraint: 5000, 10000,
and 50000 entries.

• Compact-ET-NMC-ETTED: Compact-ET-NMC algorithm with modified tree edit
distance calculation (Algorithm 10).

4.5.2 Methodology

Each alternative approach consists of an indexing scheme and a query processing algorithm.
The performance of each approach is measured by the average query processing time.
Hence, for each approach we first import the expressions in the collection and build an
index. For that approach we then process queries from the query collection and calculate
the described evaluation measures.

4.5.3 Index Size

In this section we investigate the repetition rate of subtrees in the collection of expressions
and show how it affects the index size.

The average number of repetitions of subtrees with sizes in specific ranges is listed in
Table 4.2. The average repetitions of trees whose sizes are in the range of [1−k] for various
values of k is shown as a graph. As the results suggest, most subtrees repeat at least a few
times. Not surprisingly, for smaller subtrees the rate of repetition is higher.

Next, we compare the compact index to an index that stores each expression indepen-
dently. As shown in Table 4.3, the size of the compact index (in terms of the number of
nodes stored) is significantly smaller than that of the regular index.

4.5.4 Query Processing Time

Figure 4.5 shows that the early termination algorithm significantly reduces the query pro-
cessing time — by a factor of 44. Using the compact index and memoizing partial results
also reduces the query processing time by an additional factor of 1.5, to about .8 seconds

69

Size Average repetition
1-5 325.0
6-10 10.5
11-15 3.2
16-20 2.1
21-25 1.7
26-30 1.5
> 30 1.3

Table 4.2: Repetitions of subtrees.

Number Of Stored Nodes
Original index 19,775,322
Compact index 1,284,701

Table 4.3: Subtree repetitions in experimental dataset and resulting index sizes.

per query on average (Note that accuracy is not affected by employing any of the optimiza-
tion techniques.). Figures 4.5 and 4.6 compare the proposed approach against alternative
approaches. The alternative algorithms use straightforward text search or database lookup
algorithms, which result in query processing times that are two to four times faster, but
at the expense of very poor accuracy. To date, these approaches have been preferred to
a more elaborate similarity search, largely because the latter was deemed to be too slow
to be practical. However, Compact-ET-NMC, which applies both early termination and
memoization, has practical processing speeds and far better accuracy.

The effect of the available memory on the query processing time is investigated in
Fig. 4.5.4. For higher values of the space budget, the query processing time is very similar
to that of Compact-ET-NMC, which assumes there is no constraint on the available mem-
ory. Even for smaller values of the constraint (e.g. when we can memoize at most 5,000
intermediate results), there is a notable improvement over the performance of ET .

The figure also compares the performance when the available space is managed with
respect to the described algorithm and when distances for pairs of trees are chosen to be
cached at random. For a small space budget, caching randomly chosen pairs has little
advantage over the ET algorithm, which does not use a cache. For greater values of the
space budget the performance is improved compared to ET, but not as much as when
caching is applied more strategically. For example, the performance of Compact-ET-MC-
50000 is very close to that of Compact-ET-NMC, which assumes unlimited memory is

70

Figure 4.5: The query processing time of alternative algorithms.

Figure 4.6: The query processing time of alternative algorithms.

available, and Compact-ET-MC-5000 performs similarly fast as Compact-ET-RandMC-
50000 while using only a tenth of the space budget. This validates the proposed method
for choosing which pairs to cache.

71

Figure 4.7: The query processing time for various space budgets and cache strategies.

72

Chapter 5

Rich Queries

In the previous chapters we explained how a query that represents a single math expression
can be processed. We now turn to handling richer queries that contain multiple math
expressions or a combination of keywords and expressions which is the aim of this chapter.
Supporting queries that consist of keywords and math expressions significantly improves
the retrieval of rich documents, and we refer to such queries as rich queries. An example
of a rich query is presented below:

Example 10. An appropriate query to retrieve pages about a probability distribution that
contain a specific expression describing its mass function is: Q = “

(
n
k

)
pk(1− p)n−k proba-

bility distribution”. This query consists of an expression and two keywords.

The information contained in the math parts of rich documents, such as those shown
in Figure 5.1, allows supporting queries in the form of math expressions to retrieve such
documents in a more precise and expressive way. However, queries that consist of math
expressions only fail to access the additional information embedded in the text. On the
other hand, as shown in Chapter 3, by performing keyword search only, the structured
information is not fully exploited, or are exploited in an undesired fashion. In summary,
the advantages of supporting rich queries are as follows:

• Allowing keywords with math expressions helps overcoming polysemy (i.e. when two
expressions with similar appearance have different meanings).

• More expressive queries help to narrow down a search when many documents contain
specific expressions or terms.

73

Figure 5.1: Four sample documents. Math expressions are highlighted.

• While a user may prefer to use keywords in cases where an expression can be described
by keywords, she may also include math expressions to find more accurate results.

Example 11. Assume a user is looking for documents that discuss how the intersection
of two curves, y = x2 + 1 and y = 2x, is calculated. A query that consists of only one
math expression (y = x2 + 1 or y = 2x) causes many irrelevant documents to be retrieved.
On the other hand, a rich query such as {y = x2 + 1, y = 2x, “intersection”} can better
express her needs.

In the rest of this chapter, we first assume a rich query consists of several math expres-
sions only. We next consider rich queries that consist of math expressions and keywords.
Finally, we consider the related problem of processing structured queries with multiple
similarity constraints. In all cases, the search result is a ranked list of the k most similar
documents to the query. The similarity of a document to a query will be defined in the
next sections, where we also describe algorithms to rank documents efficiently.

74

5.1 Retrieving Objects with Text Search

In many approaches that consider retrieving pages by the objects they contain, it is assumed
that the object is annotated with textual tags. Such approaches usually differ on how
objects are annotated.

Zhou et al. [124] propose algorithms for exploiting social annotations for retrieving doc-
uments. They assume each document is annotated by a user, and queries and annotations
have a plain text format. Given a query and a document, the ranking algorithm estimates
the query language model1 and compares it with the language model of the document,
using a risk minimization technique to obtain its score. Yang et al. [109] study the prob-
lem of modelling and ranking accumulative social annotations. They assume a document
is annotated by various users over time, and propose an algorithm to calculate its score.
A ranking algorithm for retrieving socially annotated data based on interpolated n-grams
is proposed by Sarkas et al. [97]. The aim of this algorithm is to retrieve objects such as
images or videos that are described by keyword tags. Queries and tags are assumed to be
bags of words.

The above algorithms assume the annotations of a document, similar to its content,
have a plain text format. Hence they cannot be applied to process rich queries because
math expressions should be compared differently from textual terms. Moreover, as we
previously showed, and will discuss further in Section 5.5, ignoring the structure of math
expressions (i.e. annotating them with the tags of their XML trees) results in a very poor
accuracy.

Nie et al. [91] propose an algorithm for web object retrieval. They consider the problems
of extracting object information from web pages, and exploiting such information for re-
trieving objects with keyword queries. Each object is described using structured data that
is extracted from text with some confidence level. After the structured data is extracted,
the text is not used for retrieving objects, and structured queries are considered instead.
This approach is not applicable to the problem we consider in this chapter because math
objects are already available and they are distinct from the text.

1A language model is a probability distribution of data units, e.g. words, that captures the statistical
regularities of the language.

75

5.2 Rich Queries With Multiple Math Expressions

In this section we consider the problem of processing queries consisting of several math
expressions. Note that in Chapter 3, a query is assumed to designate one math expression
only, which is a special case of the query language we consider in this section.

Assume query Q consists of n math expressions: Q = {QM
1 , Q

M
2 , . . . , Q

M
n }. Recall that

according to Equation 3.3, for each QM
j ∈ Q:

docRank(d,QM
j) = max{sim(Ei, Q

M
j)|Ei ∈ d} .

Assume we model the query or a document as a vector where each dimension cor-
responds to an expression in the query. For each expression of the query assume the
corresponding value is 1 in the query vector2, and it is docRank(d,Qi) in the document
vector which is formed at query time. After that, we calculate the similarity of a document
to a query based on cosine similarity as widely used in information retrieval [6] as follows:

docRank(d,Q) =

∑
Qi∈Q

docRank(d,Qi)

|Q| |d|
(5.1)

In the above equation, |d| is the number of expressions in d.

In Section 5.5, we empirically show that the above similarity measure results in an
effective ranking scheme.

5.3 Efficiently Processing A Rich Math Query

In this section we describe an algorithm to process a query and rank documents based on
the described scoring function (Equation 5.5). We assume a query consists of several math
expressions.

To select the most relevant documents, a trivial solution is to calculate the scores for
all documents in the corpus and then to choose the documents with the highest scores.
Obviously, this approach does not scale well when the size of the corpus is large. Moreover,
processing each component of the query independently results in a number of potentially
long lists that must be joined to obtain the final scores. The existence of many such
intermediate lists makes this a time consuming task.

2Assuming there is no prior preference on the query components, otherwise a weight could be considered.

76

To process a query efficiently, we first form intermediate lists for each component of
the query. Each such list contains a partial score that can be calculated efficiently. After
such lists are formed, we select the top-k results efficiently by defining appropriate stop-
conditions and list selection criteria. An overview of these steps is shown in Figure 5.2.

Figure 5.2: The flow of data during the query processing.

In the remainder of this section we propose efficient algorithms to create intermediate
lists. We next describe a top-k selection algorithm to retrieve the most relevant documents.

5.3.1 Intermediate Lists And Values

Given a query, the similarity score for a document is the combination of its score for each
query expression (Equation 5.5). Hence, to process a query, we form intermediate lists as
follows. Given a query Q = {QM

1 . . . QM
n } (where QM

i is the ith math expression of the
query), we form a sorted list for each QM

i . We denote the list that corresponds to QM
i with

LMi . Together with each document, we store a score and sort the list with respect to this
score.

The score of documents in LMi should be docRank(QM
i , dM). However, as argued in

Section 4.3, calculating this score for every document is not efficient. Instead, we calculate
an upper bound on the value of docRank(QM

i , dM) and use it to sort documents in LMi .
Similar to Equation 4.5, we calculate the upper limit on the value of docRank(QM

i , dM) as
follows:

docRank(QM
i , dM) ≤ docRankUL(dM , Q

M
i) = max

Ei∈dM

|TEi ∩τ TQMi |
|TEi|+ |TQMi |

(5.2)

77

Recall that TEi and TQMi in the above equation represent the XML trees of expressions

Ei and QM
i respectively.

In summary, LMi stores d.id and docRankUL(dM , Q
M
i) (Equation 5.2) for each doc-

ument d if dM contains at least one tag from QM
i . This list is sorted with respect to

docRankUL(dM , Q
M
i).

To form the described intermediate lists efficiently, we create an inverted index (IM)
on the tags of mathematical expressions. As described in Section 4.3, IM allows efficient
ranking of documents with respect to docRankUL (Equation 5.2) by performing a keyword
search.

5.3.2 Selecting Relevant Documents Using Intermediate Lists

Given a query, after the intermediate lists are formed, the search result, which is a ranked
list of top-k documents, is found using the information in these lists. Because the interme-
diate lists are sorted in decreasing order of the similarity scores, and the similarity function
in Equation 5.2 is increasing for each partial score, a top-k selection algorithm guarantees
to return the most similar documents for a query.

As stated earlier, a naive solution is to join all lists, obtain the relevance score of each
document, and finally sort the results. This algorithm is not efficient, because we only
need the top-k relevant documents, and calculating the score of all documents requires
unnecessary computations. Hence, we instead use a top-k selection algorithm as follows.
In Section 4.1, we described various top-k selection algorithms that can be used to find the
top-k results with respect to their relevance score. We use the Threshold Algorithm [38]
with further optimizations in this section.

We maintain a list of documents that at each step contains the k most relevant docu-
ments processed so far. At each round, we pick an intermediate list (the order of picking
lists is discussed later in this section). Next, the document at the top of the chosen list
is removed, its score is calculated, and the top-k list is updated if necessary. We define a
threshold φ and update its value at each step. The threshold is the relevance score of an
imaginary document, such that the score of each of its components is the maximum in the
corresponding list. This maximum score is the score of the document at the top of the list
if it is not empty (it is zero otherwise). The algorithm stops when all intermediate lists
are exhausted or when a stop condition is satisfied. That is, when the score of the lowest
document in the top-k list is greater than the threshold.

The order of picking intermediate lists impacts how fast the stop condition is satisfied.
In general picking the following lists more often makes the algorithm stop earlier [55]:

78

• Shorter lists.

• Lists whose stored probabilities have a higher variance.

Therefore, to each intermediate list L, we assign an importance grade G(L):

G(L) =
1√
|L|

σ(L) (5.3)

where σ(L) is the standard deviation of the corresponding scores of documents in L. After
all scores are calculated, at each round we assign a number of tokens to each list that is
proportional to G(L)∑

G(Li) . At each round we pick a list with respect to the number of tokens
assigned to it. At the end of a round, we update G for each list.

A summary of these steps is presented in Algorithm 13.

5.3.3 Pattern Queries With Similarity Constraint

We now describe a specific application of processing rich queries described earlier in this
section. We introduced an algorithm to process pattern queries in Section 3.4.1 where we
assumed a pattern does not contain a similarity constraint. Supporting similarity greatly
increases the expressive power of the approach by adding all the benefits of similarity search
to it. Recall that a similarity constraint is associated to an expression wildcard as follows:

Definition 2. Consider an expression wildcard [E]. A similarity constraint for [E] is
specified as “ where [E] ∼ E ′ ” such that E ′ is a math expression.

Because a pattern may include an arbitrary number of expression wildcards, there may
also be more than one similarity constraint.

Definition 3. A similarity constraint associated with [E] is ambiguous, if Q can be matched
against a given expression X such that either of two subexpressions of X can be matched
to [E].

For instance, if a similarity constraint is associated to an expression wildcard that
appears with another expression wildcard as disjuncts, it is ambiguous, but this is not the
only such condition.

79

Example 12. Consider query Q=“ [E1]?[E2][E3]? where [E2] ∼ sin(x). Matching this
query against expression E= sin2(y) cos(y) results in two possibilities: [E2] is bound to
sin2(y) or [E2] is bound to cos(y). The decision is made with respect to the value of their
similarities.

Processing ambiguous constraints is computationally expensive, and such cases are
rather rare. Hence, we disallow query with ambiguous constraints.

To process a pattern query with similarity constraints, we first remove all such con-
straints. This results in a more general query that does not contain any similarity con-
straints. We process the refined query as described in Section 4.4.3. The result of this
step is a list of expressions that match the query exactly, but with some constraints under-
specified.

Next, we rank documents associated with the list of the matched expressions with
respect to the similarity constraints in the query. We form a rich query RQ that consists
of a collection of expressions that correspond to the similarity constraints. We process this
query as described previously in this section with the following modifications. Instead of
the collection of all expressions, we only consider the expressions resulting from the first
step. For each constraint Ci, we consider the collection Xi of subexpressions bound to its
associated wildcard. While processing RQ, we form intermediate list QM

i (Subsection 5.3.1)
only from expressions in Xi. While forming the intermediate lists, in order to look up
subtrees bound to the similarity constraints by their tag words, we should also consider
extending the index. More specifically, we extend IM (Section 5.3.1) by adding all subtrees
of each expression to the inverted index. The rest of this algorithm remains unchanged.

We obtain the final result by ranking documents that contain expressions resulting from
the first step with respect to RQ. The above steps are summarized in Algorithm 14, and
the approach is evaluated experimentally in Section 5.5.

5.4 Rich Queries With Math Expressions and Key-

words

Effective retrieval of documents with respect to rich queries that contain math expressions
and also keywords requires holistic calculation of the similarity of each part. Some desired
properties of the similarity score include the following: (i) the score of each part should
be calculated differently as they have different formats and semantics; (ii) the score also
should reflect full matches versus partial matches; and finally (iii) relevance scores of the

80

math part and the text part should be combined in a meaningful way to obtain the score
of the whole document.

Assume a rich query consists of a collection of math expressions and a collection of
terms. More specifically, a query Q consists of two sets: Q = QM ∪ QT , where QM =
{QM

1 , . . . , Q
M
n } is a collection of math expressions, and QT = {QT

1 , . . . , Q
T
m} is a collection

of terms.

Following standard practice, we calculate the similarity of QT to d based on cosine
similarity [6] as follows. For each term QT

i , docRank(QT
i , dT) is calculated based on term

frequency (i.e. the number of times a term appears in a document), inverse document
frequency (i.e. the number of documents that contain a term) and whether dT contains
QT
i or not. More specifically, given term t, document d, and a collection of documents D,

we consider the following equations:
tf(t, d) =

√
frequency of t in d

idf(t) = log |D|
|{d∈D | t∈d}|

docRank(QT , dT) =
∑

QTi ∈QT

tf(QT
i , dT).idf(QT

i) (5.4)

Finally, the similarity of a document to the query is calculated as follows:

docRank(Q, d) = ω docRank(QT , dT) + (1− ω)docRank(QM , dM) (5.5)

docRank(QM , dM) is calculated as described in Section 5.2. ω (0 ≤ ω ≤ 1) specifies
how much the text part versus the math part of the query affects the similarity. For ease
of explanation we assume both parts are equally important (ω = 0.5) in the rest of this
chapter. As a part of our future work, we propose to investigate the effect of different
values of ω on the quality of results.

According to the above equation, the value of docRank for the text and the math
expressions are linearly combined. Using the theory of language models, we can show that
docRank(QT , dT) and docRank(QM , dM) are in fact estimations of the probabilities that
the language models that generate the text and math parts of the query also generate the
text and math parts of the document (details are out of the scope of this thesis). This
justifies the combination of the partial scores according to Equation 5.5.

We can efficiently calculate the similarity score of math expressions in a similar way
as described in Algorithm 13. The only modification that is necessary is to add a list
of documents sorted by the value of docRank(QT , dT), and calculating final score of each
document with respect to Equation 5.5.

81

5.5 Experiments

In this section we present the results of the empirical evaluation of the proposed algorithms.
The purpose of this study is to compare the performance of the algorithms in terms of the
usefulness of results and query processing speed.

5.5.1 Alternative Algorithms

We evaluate and compare the following algorithms for this study:

RS3: Our proposed algorithm (Rich Structural Similarity Search) for processing rich
queries with math expressions and keywords (Algorithm 13).

RichTextSearch: Similar to TextSearch described in Section 3.5.1, we treat each
math expression as a collection of nodes’ labels in their XML trees. Together with
other expressions and the text of a document (or query), they form a collection of
terms. A standard keyword search algorithm is used to rank documents with respect
to the query and select the top-k matches 3.

MEM: Exactly match math expressions. Documents that do not contain at least
one exact match to each math expression in the query are filtered out. The remaining
documents are ranked with respect to the query keywords.

RichMIaS: According to MIaS algorithm (described in Section 3.1), math expres-
sions are transformed into collections of tokens. Such tokens together with the text
of a document, form a collection of terms. A rich query is similarly transformed into
a collection of terms. A standard text search engine is used to index both the text
and math expressions, and to rank them according to a rich query.

5.5.2 Data And Query Collections

For this study, we use the collection of documents described in Section 4.5.1. However, for
this experiment, we also preserve the text of each document.

To collect a set of representative queries, similar to Section 4.5.1, we use math forums.
By manually reading the discussions in a thread we gathered a collection of queries. After

3We used Apache Lucene in our implementation.

82

Forum Query Collection
Number of queries 20
Average number of math expressions per query 1.4
Average keyword per query 1.2
Average size of query math expressions 19

Table 5.1: Rich math queries statistics.

reading such discussions we often understand the intention of the user, which allows us to
judge if a document is relevant to the query or not. For this experiment we form a query
as a combination of math expressions and keywords. We only consider queries that contain
at least two components, and one or more math expressions. Statistics about the query
collection are presented in Table 5.1.

5.5.3 Evaluation Measures

We evaluate the discussed algorithms in terms of the correctness (relevance of results to
the query), and query processing time. For the correctness of results, we consider NFR
and MRR metrics described in Subsection 3.5.2. We consider the average query processing
time (Subsection 4.5.1) to compare algorithms in terms of their efficiency.

5.5.4 Evaluation Methodology

To evaluate the algorithms in terms of the correctness of results, we run them on the
collection of queries. Recall that a query corresponds to a discussion thread in a math
forum, and the content of the thread allows us to understand the intention of the query.
Hence, in each case we manually inspect the results and calculate the Reciprocal Rank
(RR). We finally calculate the NFR, and the MRR for each algorithm.

To measure the query processing time, we do not consider the network delay, the time
to convert query’s math expressions into Presentation MathML, or to render the results.

5.5.5 Evaluation Results

The result of evaluating the correctness of the described algorithms is presented in Ta-
ble 5.4. As the results suggest, RS3 returns some results for all queries (NFR = 100%).

83

Algorithm NFR MRR
RS3 100% 0.81

RichTextSearch 100% 0.14
RichMIaS 100% 0.64

MEM 18% 0.95

Table 5.2: Algorithms’ performance for Rich Queries.

NFR MRR
PatternSim 76% 0.72

PatternSim with similarity constraint 89% 0.70

Table 5.3: Algorithms’ performance for Rich Queries.

This algorithm ranks a relevant page fairly high in most cases (MRR = 0.81). Rich-
TextSearch also returns some results for all queries, but it performs poorly in ranking a
relevant document high (MRR = 0.14). Surprisingly, this algorithm performs worse than
TextSearch (Section 3.5.1). This is because in this algorithm the tags of all math expres-
sions are considered together with the rest of the document as a single collection of terms.
Hence, matching expressions based on their tags and ignoring their structures results in
an even worse performance for this algorithm. MEM does not return any result in many
cases (NFR = 18%) but it ranks a correct result highly when it finds a match. RichMIaS
performs better than the other baselines, but because it loses some structure information,
it performs worse than RS3. In summary, RS3 outperforms the other algorithms in terms
of accuracy.

We next consider the set of pattern queries extracted from math forums (Subsec-
tion 3.5.2), and modify some by adding similarity constraints to them based on the dis-
cussions in a thread. We compare the performance of PatternSearch with similarity con-
straints on the modified queries with that of the original pattern search with no similarity
constraint. Note that we do not consider the queries that are not modified for this com-
parison. As the results suggest, similarity search increases the NFR, which implies that for
more queries we return some results. This is because with similarity constraints expressions
can be matched more flexibly. The MRR stays relatively high.

Finally, we consider the query processing times of the described algorithms. As the
results suggest, RS3 and PatternSim have a somewhat higher query processing time than
the other algorithms, but they perform significantly better in terms of the accuracy of
results.

84

Algorithm Average Query Processing Time (MS)
RS3 1077

RichTextSearch 573
RichMIaS 721

MEM 682
PatternSim 949

Table 5.4: Algorithms’ performance for Rich Queries.

5.6 Conclusions and Further Work

We proposed algorithms to efficiently process queries that consist of several math ex-
pressions and, possibly, textual keywords. We also proposed optimization techniques and
showed how such approaches can be used to process pattern queries with similarity con-
straints.

The proposed algorithms can be applied to other types of data. For example, pages
that consist of text and sets of attribute-value pairs are popular on the web (e.g. a page
about an electronic product that contains a review in plain text format, and specifications
of the product in attribute-value format). Retrieving such documents with respect to both
parts is a problem with useful applications that is relevant to the problem we discussed int
this chapter.

To combine the scores of the text and the math parts of a document, we used Equa-
tion 5.5 and assumed ω is set to 0.5. Tuning this parameter to enhance the results should
be further investigated.

Finally, further work on indexing and optimization algorithms is necessary in order to
handle rich queries on larger data sets while keeping the query processing time low and
even competitive to that of keyword search.

85

Algorithm 13 Selecting top-k results for rich math queries

1: Input: Query Q, document collection D.
2: for each QM

i ∈ QM do
3: Perform a keyword search using IM
4: LMi ← a ranked list of documents with respect to the upper bound on

docRankUL(dM , Q
M
i)

5: end for
6: allLists = {LM1 , . . . LM|QM |}
7: Set threshold φ = the score of an imaginary document with highest value in each list.
8: Set topK list to be empty
9: while true do

10: L← next list in allLists such that L.tokens > 0
11: if L is null (no list with positive number of tokens exists) then
12: Update G(Li)s and assign tokens
13: else
14: L.tokens← L.tokens− 1
15: d← top document in L
16: Remove d from all lists
17: Calculate docRank(Q, d)
18: if docRank(Q, d) > min{docRank(Q, di)|di ∈ topK} then
19: Insert d in topK.
20: Remove document with lowest score if |topK| > k
21: end if
22: Update φ
23: end if
24: if all lists are empty, or φ < min{docRank(Q, di)|di ∈ topK} then
25: Return topK
26: end if
27: end while

86

Algorithm 14 Processing pattern queries with similarity constraints.
1: Input: Pattern query, Q.
2: Output: A list of documents that contain matching expressions to Q ranked with

respect to the similarity constraints.
3: Q′ ← modify Q by removing all similarity constraints.
4: Run optimizedPatternSearch(Q), and store information about bound expression wild-

cards.
5: exprs← expressions that match Q′

6: RQ ← a rich query that consists of the expressions in the similarity constraints of Q
7: Rank expressions in exprs with respect to RQ

8: return ranked list of documents containing expressions in exprs

87

Chapter 6

Grammar Inference

The techniques we have investigated so far rely on matching the structure and content of a
query to the structure and content of expressions appearing in documents. However, some
of the proposed algorithms can be improved by comparing the grammar describing the
query against expressions appearing in the document or against their grammars. Further-
more, by considering grammars, we will see in the next chapter that we can also extend
the query language. An approach based on recognizing grammars can also be used as the
basis of an information extraction system.

A considerable amount of information is stored in documents encoded with a markup
language. Extracting, manipulating, and retrieving such information requires a knowledge
about the structure of the documents and the way data is arranged in them. Such knowl-
edge is represented in the form of a grammar (e.g. XML Schema or DTDs). Similarly, web
page wrappers describe the structure of a group of web pages. Although required by many
applications, the grammatical information is unknown in many scenarios.

Recall that markup languages can be classified into descriptive and presentational.
Descriptive markup encodes data records and is mostly used to exchange data between
applications or to store it in a database, and presentational markup is mostly used to
format documents in order to publish them. HTML or XHTML pages and objects within
a page such as mathematical expressions encoded with (presentation) MathML [24] are
examples of widely used presentational markup languages for publishing data on the Web.
An example of presentational XML is shown in Figure 6.1, where students are listed in the
body of an XHTML document.

Example 13. Assume a set of university professors’ personal web pages is collected, and
we wish to extract information about supervised students. Each page is created by a different

88

<h3>Students</h3>

<h4>Doctoral Students</h4>
<hr/>
John
<div> (since 2008)</div>

Sarah
<div> (since 2007)</div>

Sarah’s page

Jack
<div> (since 2002) </div>
<h4>Masters Students</h4>
<hr/>
Andrew
<div>(since 2010)</div>

Andrew’s page

David
<div>(since 2009)</div>

...

<students>
<studentlist level="doctoral">

<student>
<name>John</Name>
<year>2008</year>

</student>
<student>

<name>Sarah</Name>
<year>2007</year>
<homepage>

uwaterloo.ca/˜sarah
</homepage>

</student>
<student>

<name>Jack</Name>
<year>2002</year>

</student>
</studentlist>
<studentlist level="masters">

<student>
<name>Andrew</Name>
<year>2010</year>
<homepage>

waterloo.ca/˜andy
</homepage>

</student>
...

Figure 6.1: Presentational XML (left) vs. descriptive XML (right)

professor and has a potentially unique structure in the collection. Also, many professors are
not familiar with HTML and hence may use HTML tags only for their visual effect, resulting
in complex structures (e.g. Figure 6.1) . Currently, because there are very few examples
corresponding to each grammar, recognizing lists such as these cannot be done without
intensive manual involvement. Similar examples exist for other types of presentational
XML documents, such as mathematical expressions.

To date, schema induction has mostly been studied in the context of descriptive XML,
aiming to infer appropriate DTDs or XSDs for a set of sample XML documents [41, 13, 12],
and in the case of presentational XML to induce wrappers for a set of web pages [72, 76,
33, 123]. They typically require huge sample sets to infer a grammar correctly. That is,
they assume a large set of instances generated from the same grammar is given, and the

89

problem is to infer the unknown grammar accordingly. Descriptive markup is often used to
encode massive amounts of information to be stored in a database. Similarly, many large
websites use a single template to publish data in web pages. Hence, providing a learning
algorithm with large sample sets is feasible in such cases. However, in many scenarios
only a few, possibly only one, samples are available, hence these approaches fail to infer a
grammar correctly.

A great amount of data is published with presentational markup, and many existing
and emerging applications need to analyze such data before they can provide extra services:

• A math retrieval system benefits from identifying the grammar of expressions to
enhance the retrieval accuracy or to optimize it for specific queries (see Chapter 7).

• Commercial search engines and question answering systems (e.g. Google and Bing’s
Calculators), need to identify specific queries (query classifiers) and recognize their
structures to further process them [60, 101].

• Rendering engines restructure web pages that are initially designed to be shown
on traditional devices such as desktop computers, in order to optimize them for
increasingly popular devices such as smart-phones and tablets [27].

• Web tables are widely used to enhance web search and are sources of other valuable
information [22] (e.g. Google Fusion Tables [44]). Currently, only tables that are
created using HTML table tags can be identified [22].

The above applications are often provided with only one sample. Assuming only one
sample is given, the problem is to infer its grammar. In general, grammars overlap and
a given sample may be generated by many grammars. Based on our observation of the
existing Web objects, we define a class of grammars that minimizes such overlaps and
allows inferring a grammar that is likely to have been used to generate a given sample
(Web object) correctly.

Despite the previous work, we do not assume all samples are generated by the same
grammar. Instead, we assume that most grammars that generate real-world samples satisfy
some simple constraints. We show that limiting ourselves to suitably constrained grammars
reduces false inferences (i.e. grammars that generate a sample but differ from the unknown
grammar that was actually used to generate it). We formally define a suitable set of
constraints in this chapter and propose algorithms to infer grammars that satisfy them.
In order to infer correct grammars, the defined constraints should realistically reflect the
characterization of the samples. This is especially a challenging problem if the sample
documents use presentational markup.

90

Example 14. Consider the presentational XML document in Figure 6.1. There is no ex-
plicit delimiter that separates the students and their attributes from each other and from the
rest of the document. Moreover, some fields appear often and in various locations within a
listing (e.g.
 delimits disparate entities), and the same tags might represent different
entities. For example in the same figure <div> tags are used for both year and biography.
Figure 6.1 also illustrates an alternative representative XML for the student listings. With
descriptive markup, tags represent the semantics of their contents. Therefore, the same
tags represent similar data and the structure is cleaner. For example, the <name> tag
appears exactly once for each student because each student has exactly one name.

Despite its wide applications, there has not been a principled approach to the described
problem. Data extraction systems define some constraints on the grammars that allow a
grammar to be identified for a given instance. However, such constraints are too restrictive
and result in inferring incorrect grammars in many cases. For example some approaches
consider only single occurrence grammars [75, 123, 2], some do not allow optional and dis-
junctive expressions within repetitive patterns [74, 106, 116], and some do not allow nested
repeating patterns [25, 74, 116]. These restrictions are described further in Section 6.3.

An operator that greatly influences the cardinality and expressive power of a grammar
is the repetition operator (e.g. A∗). In practice, such repetitions often provide important
information about the data (e.g. list of data records in web pages). A repetition consists
of a grammar (nested within the unknown grammar) that repeats. Hence, each instance of
the unknown grammar contains several instances of the nested one. Therefore, even if one
sample is provided, it potentially contains several samples from the nested grammars. For
example, Figure 6.1 displays a single page with many instances of a student record. If we
are able to identify such (smaller) samples, we can potentially infer the nested grammars,
and through them, the unknown overall grammar. We achieve this by defining constraints
on the repetition operator that allows identifying nested instances correctly.

Our goal is to identify an unknown grammar that contains repetition when only one
instance is given. We define a class of grammars, more expressive than DTDs and XSDs,
that captures repetitions without unnecessary over-generalization of the language. We pro-
pose an algorithm that finds instances of repeating patterns within a given instance based
on multiple sequence alignment to infer a grammar. Because the algorithm is particularly
suited to recognize the structure in individual pages using presentation markup, we name
it the Presentational Markup Grammar Inference algorithm, or PMGI. We argue that the
chance that an appropriate grammar is inferred is the highest among the grammars that
generate the sample. Through empirical studies, we demonstrate the effectiveness of our
algorithm on documents with presentational markup.

91

Because PMGI works well when only one sample is provided, it is suitable for applica-
tions dealing with documents with presentational markup, although it can also be applied
to the easier problem of inferring grammars for descriptive XML documents. If more
than one sample is provided, our algorithm can be used to infer a grammar for each one.
Combining the resulting grammars to obtain a more general grammar is a straightforward
application of the same algorithm.

In summary, the contributions of this chapter are as follows:

• We define a class of regular tree grammars, called k-normalized regular tree grammars
(k-NRTGs), that can model typical presentational XML found on the Web. The set
of languages generated by k-NRTGs is a superset of the languages of DTDs and
XSDs. In other words, our grammar is more expressive than DTDs and XSDs in
capturing the structure of presentational XML documents.

• We propose an inference algorithm and prove that, even if only a few samples are
provided, the correct grammar is inferred with high probability.

• We categorize and compare the class of grammars identified by the existing algorithms
against k-NRTGs in terms of how well they can describe XML documents on the Web.

We finally show that while the existing approaches fail to recognize a grammar that
correctly describes a presentation XML document when a small sample size is given, our
algorithm correctly recognizes the grammar with high probability [61].

6.1 Definitions

6.1.1 Tree Grammars

A regular tree grammar describes a “language” of parse trees in terms of regular expres-
sions, just as a conventional grammar uses regular expressions on the right sides of its
productions to describe a language of strings.

Definition 4. A regular tree grammar is a 4-tuple H = (N, T, S, P) where N is a finite
set of non-terminals, T is a finite set of terminals, S is a set of start symbols (S ⊆ N), and
P is a set of production rules of the form X → a or X → a[E] where X is a non-terminal,
a is a terminal, and E is a regular expression over N [87].

92

Terminals correspond to labels for a tree’s nodes, and they cannot be null. Each non-
terminal X, with production rule X → a[E], generates a set of trees, where a represents
the label of each root, and E is their content model. Different non-terminals may not
generate the same sets of trees. We allow the following operators within a regular ex-
pression: concatenation, disjunction, and bound repetition. Concatenation of E1 and E2

is represented as E1E2 and their disjunction is represented as E1|E2. Bound repetition is
represented as E[l,u], where E is a regular expression that is constrained to repeat at least
l times and at most u times, and 0 < l ≤ u. For example E[1,3] means E should occur at
least once and at most three times. The bound [1,∞] indicates that the regular expression
E can repeat arbitrarily often. For convenience, we define Ek = E[k,k], E? = E|ε (i.e.,
optional, where ε denotes the empty tree), E+ = E[1,∞], and E∗ = E+|ε. The language of
a regular expression E is the set of all strings generated by E and is denoted by L(E). Two
regular expressions are equivalent if they generate the same language. An atomic regular
expression is a non-terminal or an expression of the form E+ or (E1|E2|...|Ek) where k > 1
and each Ei is an atomic regular expression (i.e. a limited concatenation of expressions is
non-atomic). A regular expression E is in disjunctive form if E = (E1|E2|...|Ek), k > 1,
and L(Ei) 6= L(Ej) if i 6= j. (Note that by definition E? and E∗ are disjunctive regular
expressions when E 6= ε.)

Figure 6.2: A labeled ordered tree.

As an example consider the tree in Figure 6.2, which can be generated by the following
regular tree grammar:

H = {N, T, S, P}, P = {E → e,N → n,Q→ q,
T = {a, b, e, g,m, n, q} G→ g[E], J → b[G],
N = {E,N,Q,G, I, J,K, L,M} I → b[ENQ?], K → b[Q+],
S = {L} M → m[K], L→ a[(IJ?M)+]}

Note that I, J , and K share a common root symbol. This grammar cannot be described
by a DTD or XSD.

93

6.1.2 k-Normalized Regular Expressions

In the rest of this section we define a class of regular tree grammars that can be efficiently
inferred from small sets of samples. Whereas a DTD describes valid tagged text in a
document and XML Schema describes valid elements and attributes in a corresponding
Infoset model, a regular tree grammar (the basis of RELAX NG) describes valid parse
trees [32, 87].

Our k-normalized regular tree grammars relax some restrictions that DTDs and XSDs
impose and hence can better model documents with presentational markup. The way such
grammars are defined allows learning them from small sample sets.

We wish to assign weights to subtrees to capture differences in their significance in
forming a tree. Hence we compare subtrees by size (i.e., the number of nodes they contain).
We assign weights to each non-terminal N in the grammar to represent the maximum size
of a tree that can be generated by N or a constant W if this size is unbounded or it exceeds
W . We augment this by assigning weights to regular expressions as follows:

• if E is a nonterminal N where N → n[E ′],
ω(E) = min{W, 1 + ω(E ′)}

• ω(E1E2...Ek) = min{W,
∑
ω(Ei)}

• ω(E[l,u]) = min{W,u.ω(E)}

• ω(E1|E2|...|Ek) = max{ω(Ei)}

Alternative monotonic weighting schemes could be adopted instead, provided they assign
the same (positive) weights to equivalent expressions.

Definition 5. For an atomic regular expression A, let κ(A) = 1 if either A is disjunctive
or ε ∈ L(A) and κ(A) = 0 otherwise, and let α be a constant such that 0 ≤ α < 1. A
regular expression of the form R = A1A2 . . . An, where Ais are atomic regular expressions,
is repeatable if V (R) =

∑
κ(Ai)ω(Ai)∑
ω(Ai)

≤ α. E is a repetitive pattern if E = (R)[l,u] and u > 1.
E is a valid repetitive pattern if R is valid and repeatable, where a regular expression is
valid if it contains only valid repetitive patterns or no repetitive pattern at all.

For example if E = (A?B(C|D))+, α = 0.5, and ω(A) = ω(B) = ω(C) = ω(D) = 5,

then V (E) = ω(A?)+ω(C|D)
ω(A?)+ω(B)+ω(C|D)

= 10
15
> α, so E is not a valid repetitive pattern. This

reflects the fact that the production includes “too few” terms that must appear in every

94

repetition. On the other hand, if A and (C|D) are “small,” say ω(A) = ω(C) = ω(D) = 1,
then V (E) = 2

7
which is less than α, and therefore E would be a valid repetitive pattern:

the “large” B appears in every repetition. Without such a restriction, any sample sequence
can be generated by a repetitive pattern. Assume the sequence of the children of a node
in the instance tree is c1c2...cn, and non-terminal Ci generates ci, then this sequence can
be generated by (C1|C2|...|Cn)+, which is a repetitive pattern but not a valid repetitive
pattern if α < 1. If α = 0 then no disjunctive or optional components are allowed in a
repetitive pattern and if α = 1 then any regular expression is repeatable.

Definition 6. Let U = U1U2...Um and V = V1V2...Vn be two regular expressions in which
every Ui and Vi is atomic. The alignment of U and V is a maximal ordered sequence
< (Ui1 , Vj1), (Ui2 , Vj2), ..., (Uik , Vjk) > of pairs such that Uix and Vjx are equivalent and for

every two pairs (Uix , Vjx) and (Uiy , Vjy), ix < iy iff jx < jy. Define Ũix = Uix+1...Uix+1−1

(or ε if ix+1 = ix + 1), and Ũi0 = U1...Ui1−1, and define (̃Vjx) similarly. Finally define

Ax = Uix and A′x = ((̃Uix)|(̃Vjx)). The merge operator
⊕

is defined to be the combination
function that takes two regular expressions and returns a “covering” regular expression as
follows: U

⊕
V = A′0A1A

′
1...AkA

′
k.

For example AB
⊕

BC = A?BC? and (ABCE)
⊕

(B(C|D)E) = (A?B(C|D)E). In
Section 6.2.2 we will describe various sequence alignment algorithms. Sequence alignment
is a well-studied problem with applications in various fields such as bio-informatics and
natural language processing [85].

Definition 7. Consider a regular expression of the form E = U [l1,u1]CV [l2,u2] where (U
⊕

V)C?
is repeatable. The compression function Γ returns a regular expression as follows: Γ(E) =
((U

⊕
V)C?)[l1+l2,u1+u2]. A regular expression is compressed if no compression can be ap-

plied to any of its subexpressions, and in that case we define Γ(E) = E for notational
convenience. Note that L(E) ⊆ L(Γ(E)).

For example, assume that ω(A) = ω(B) = 3, ω(C) = 1, and α = 0.5. According to the
above definition, Γ(ABAB) = (AB)2, Γ(ABC(AB)3) = (ABC?)4, Γ((ABC)[1,3](AB)2) =
(ABC?)[3,5], and Γ((AB)+C(AB)2) = ((ABC?)[3,∞].
ABABBCBC and (AB)2BCBC are not compressed, but (AB)2(BC)2 is compressed. If
ω(A) = ω(C) = 1 and ω(B) = 3, then (AB)2(BC)2 is not compressed because AB

⊕
BC

is repeatable and (A?BC?)4 is valid and compressed. According to the choice of subex-
pressions, more than one compressed form might exist for a regular expression, e.g. AB2C
and (A?BC?)2 are both compressed forms of ABBC (if (A?BC?) is repeatable).

95

Definition 8. For a constant k, a k-normalized regular expression (k-NRE) is a com-
pressed regular expression where all bound repetition operators are of the form [1,∞] or
[m,n] where m ≤ n ≤ k. Regular tree grammars with k-normalized regular expressions are
called k-normalized regular tree grammars (k-NRTG).

For example (AB)3(CD)2 and (AB)[1,3](CD)2 are compressed regular expressions, but
they are not k-NREs for k < 3, (AB)+(CD)2 is a 2-NRE, and (AB)+(CD)+ is a 1-NRE. To
ensure k-normality, we define the compression function, Γk, identically to Γ but replacing
[l, u] in the resulting expression by [1,∞] if u > k. Our experiments show that 2-NRTGs
can capture the structure of most presentational XML published on the Web.

We now briefly explain the concept of language identification in the limit introduced
by Gold [42].

Definition 9. A language learner is an algorithm that infers the name of an unknown
language. The learner is provided with a training sequence (i1, i2, . . .) of information units
describing the language. A training sequence can be in the form of text (i.e., each it is a
string from the language) or an informant (i.e., each it states whether or not a specific
string is in the language). We associate a set of allowable training sequences with each
language. Given a specific training sequence, at time t the learner is provided with it, and
it guesses the name of the unknown language. The language is identifiable in the limit if
after some finite time the guesses are all the same and are correct. A class of languages is
identifiable in the limit if there is an effective learner (i.e. an algorithm) that can identify in
the limit any language in the class given any allowable training sequence for that language.
A language is finitely identifiable if there is a finite time t when the learner can tell that it
is making correct guesses. (Note that unlike finite identifiability, identifiability in the limit
does not require the learner to know when its guesses are correct.)

According to this definition, a text consists only of positive examples while an informant
can also contain negative examples. For instance, consider these regular expressions: R1 =
L((abc)+) and R2 = L((abc?)+). A text training set for the first regular expression can
only contain strings such as abc or abcabc, whereas an informant training set can contain
information such as “abcabc is in R1” and “ababc is not in R1”. Since R1 ⊂ R2, if a
learner is given only positive samples from R1, it cannot distinguish R1 from R2. Gold
proves that the class of regular expression languages are not identifiable in the limit from
positive examples. However, if the probability of any string in L(E) appearing as a text is
at least δ > 0, the more samples from R1 are observed with no samples from R2 −R1, the
higher the chance that R1 is the correct guess. Also, languages with limited cardinality are
identifiable in the limit from positive examples. A characteristic set of strings for L is a

96

subset C of L such that for any training sample set S if C ⊆ S then the learner identifies
L in the limit.

The problem of inferring k-NRTGs from one instance is equivalent to the problem of
identifying an unknown language in the limit, but with the extra requirement that the
training set is finitely bounded and the bound is small. If the sample set does not contain
a characteristic set of strings for the unknown language, then it is impossible to identify
it, but we propose an approach that infers it with high probability.

6.2 The Inference Algorithm

In this section we explain an inference algorithm when only one sample is provided. We
start by describing an algorithm for inferring a k-normalized regular expression (k-NRE)
that generates a given instance. Then we describe a clustering algorithm for subtrees in
order to transform a sequence of subtrees into a sequence of cluster ids. We next infer
a k-NRE that generates this sequence. Inferring a k-NRTG consists of inferring k-NREs
for the sequence of the subtrees of each node in a depth-first manner and combining the
k-NREs of nodes whose corresponding subtrees belong to the same cluster.

6.2.1 Inferring k-NREs

An instance of a regular expression E is an arbitrary string taken from L(E). We represent
non-terminals with capital letters and their instances with lower case letters.

Theorem 4. Consider a valid repetitive regular expression R = E+ where E = E1E2 . . . Ek
and each Ei is an atomic regular expression that does not itself contain a repetitive pattern.
Assuming E repeats at least twice, an instance of R, r, can be partitioned into instances
of E. Moreover, E is identifiable in the limit, and if the set of its instances contains a
characteristic set of E, R and E can be identified.

Proof. Any instance of R is a sequence of instances of E. Because none of the Eis contain
a repetitive pattern, L(E) has a limited cardinality (i.e. |L(E)| is bounded), and so it can
be finitely identified from positive examples. We show that the inference of E implies the
inference of R.

97

Each Ei is an atomic regular expression that does not contain a repetitive regular
expression. Thus, it is either a non-terminal, or it is disjunctive. Let Wd =

∑
κ(Ei)ω(Ei)

(the sum of the weights of the disjunctive components) and Wn =
∑

(1−κ(Ei))ω(Ei) (the
sum of the weights of the non-terminals). R is a valid repetitive regular expression, so E is
repeatable. Therefore V (E) = Wd

Wd+Wn
≤ α, so there are no disjunctive terms if α = 0 and

Wd
1−α
α
≤ Wn if 0 < α < 1, which implies that Wn > 0. Thus some non-terminals must

appear in every instance of E. Assume M is the set of such mandatory non-terminals, and
let D be the set of all non-terminals in R. M ⊆ D, so 0 < |M | ≤ |D|. Assume Em is the
leftmost Ei that belongs to M (i.e. m is the smallest i such that Ei ∈ M). Em is not in
disjunctive form and it is atomic, therefore it consists of a single non-terminal. Assume E ′

is a permutations of the elements of E:
E ′ = Em, Em+1, . . . , Ek, E1, . . . ,Em−1.
Because E is repeatable, E ′ is also repeatable. We first partition the given sample into
instances of E ′.

Recall that r is an instance of R = E+. Let r = r1 . . . r|r| where each ri is a symbol
that represents an instance of a non-terminal. Assume rτ = s is an instance of Em (the
leftmost Ei that belongs to M). Hence, s must be the first symbol in every instance of
E ′. For symbol s, we define an s-based subsequence to be a subsequence ri . . . rj of r such
that:

ri = s

1 ≤ j − i+ 1 ≤ |r|
2−α

j = |r| or rj+1 = s

The number of instances of E in r is at least 2 and at most |r|, and it is repeatable,

therefore as calculated in the above equation, 1 ≤ |E| ≤ |r|
2−α .

Let Q = {q1 . . . q|Q|} be a set of s-based subsequences that cover rτ . . . r|r|r1 . . . rτ−1.
Assume there is no overlap between them. We perform a multiple sequence alignment to
find the largest common subsequence of the strings in Q. Assume qmax is the longest qi, and
com(Q) is the length of the longest common subsequence of qis. If cmax−com(Q)

com(Q)
≤ α, then Q

is a possible partition of r according to E ′. A partition of r according to E can be acquired
by permuting the subsequences in Q. We repeat the above algorithm for s = rτ with τ = 1
to α|r|

2−α , and find all possible partitions according to the above algorithm. Each partition
results in a possible grammar for E. Intuitively, if there are more samples from a language,
comparing to fewer samples from another language, the first sample set is more indicative,
assuming the cardinality of both languages are similar. Therefore, if there is more than
one partition possible, we choose the one with the maximum repetitions (Q with maximum

98

size, |Q|). If there is more than one such partition with maximum repetitions, we choose
the one with the smallest number of unaligned (i.e. optional) symbols. A summary of the
above steps is presented in Algorithm 15.

After such anchoring non-terminals are recognized, the subexpressions that are in dis-
junctive form can be determined, and hence E and R are recognized. We describe details
in the next section.

Algorithm 15 Partition

1: {Goal: partition an instance of R = E+ into instances of E}
2: Input: r, an instance of R.
3: Output: A partition of r into instances of E.
4: res = Φ
5: for i = 1 to |r|

2−α do
6: s = ri
7: Find all s-based∗ subsequences of r.
8: for all Q = a set of s-based non-overlapping subsequences that covers

ri . . . r|r|r1 . . . ri−1 do
9: Perform multiple sequence alignment on Q.

10: if cmax−com(Q)
com(Q)

> α then
11: Discard Q
12: continue
13: end if
14: if |Q| > |res| then
15: res = Q
16: else if |Q| = |res| and |com(Q) > |com(res)| then
17: res = Q
18: else if |Q| = |res| and |com(Q) = |com(res)| then
19: Report both, or disambiguate
20: end if
21: end for
22: end for
23: return res
24: ∗ An s-based subsequence of r is ri . . . rj such that ri = s, 1 ≤ j − i+ 1 ≤ |r|

2−α , and j = |r| or rj+1 = s.

For a given regular expression E with limited cardinality and sequence S of strings in
L(E), let P (E|S) be the probability that E is the correct regular expression given S and

99

P (S|E) be the probability of generating S given E. Assuming a uniform distribution over
strings in L(E) (i.e. all strings in L(E) are generated with equal probability), P (S|E) =
s∈S∏

P (s|E) =
|S|∏

1
|L(E)| = 1

|L(E)||S| . By Bayes’ theorem:

P (E|S) = P (S|E)P (E)
P (S)

= P (E)

P (S)|L(E)||S| . Therefore the k-NRE with the smallest language

that can generate S has the highest probability to be the unknown grammar. Hence,
because R should be compressed, if r = s1s2...sn and if Esi is the regular expression chosen
to describe si, Es1

⊕
Es2 · · ·

⊕
Esn has the highest probability of being the correct k-NRE

for E. If n > k, then we choose R = E+; otherwise, R = En is more likely to be the
correct expression for generating this instance.

In some cases where E contains boundary disjunctive forms (i.e. E1 or Ek are disjunc-
tive), ambiguities in recognizing instances of E might occur. For example, r = abababa
can be partitioned as ab, ab, ab, a, which results in inferring E = (AB?)+, or as a, ba, ba, ba,
which results in E = (B?A)+. In these situations, our algorithm generates all possible
partitions, and heuristics can subsequently be applied to resolve such ambiguities.

6.2.2 Sequence Alignment

Multiple sequence alignment is the problem of aligning a collection of sequences of symbols.
Efficient algorithms that use dynamic programming to align two sequences exist [89], but
the general problem of finding the optimal alignment for n sequences is NP-complete.
However, because of its wide range of applications, many approximation algorithm are
proposed [85]. Progressive multiple sequence alignment is a technique that incrementally
builds up an alignment by combining pairwise alignments starting from the two most
similar sequences. An alignment is built in two stages: first a guide tree is formed that
stores pairwise similarity information of the sequences, and then sequences are aligned
incrementally according to the guide tree [85]. This method does not guarantee to find the
optimum alignment, but it performs well in most biological applications where hundreds
to thousands of sequences are required to be aligned and their lengths is in the range of
thousands symbols.

According to our experiments, the number of sequences and also their length rarely
exceed 50, and therefore the alignment problem is much simpler in our case. Moreover,
the result of progressive methods is close to the optimal when sequences are similar. We
are interested only in the alignment of instances of a repetitive pattern, and by definition,
such instances should be similar enough if the pattern is valid. Hence, the error from using
these methods are negligible in practice. There are various implementations of progressive

100

sequence alignment, and we use Clustal [28], which is commonly used in the bioinformatics
community.

6.2.3 Inferring a Repetition-Free Grammar

After the partitioning step, we must infer the grammar of the repetitive pattern. So
the problem is to infer a grammar with limited cardinality (because it does not contain
a repeating pattern), where the number of instances is the size of the partition. Such
grammar should look like D0M1D1 . . .MnD

′
n where each Di is an expression in disjunctive

form (Dis can be empty strings), and each Mi is a mandatory non-terminal. The cost-based
sequence alignment allows us to arrange the instances as a grid, where each cell contains a
symbol or is empty. Each sequence corresponds to a row, and non-empty symbols in the a
given column are the same. Columns that correspond to mandatory non-terminals do not
contain an empty symbol in any row:

a - - d e -
a b c d - f
a b c d e -

Assume A1 . . . Ak are the sequence of symbols whose corresponding columns are be-
tween Mi and Mi+1. A1? . . . Ak? obviously generates the sample set, but it might be an
over-generalization. For example, in the above alignment (BC)? and E|F also generate
the sample set and they are subsets of B?C? and E?F?. We argued earlier that the most
precise grammar according to a given sample set has the highest chance to be the cor-
rect grammar. Intuitively, a regular expression is precise if it does not cover too many
expressions that are not among the samples. To find a precise grammar, we form an
automaton with a state representing each column, using standard approaches to form an
automaton according to the sample set and to find the regular expression with the smallest
language that generates the sample set. Because the language is repetition-free, and the
sequences are already aligned, this approach results a concise regular expression and avoids
the generation of lengthy regular expressions. In the above example, our approach results
in A(BC)?D(E|F), and the corresponding repetitive pattern is (A(BC)?D(E|F))+.

6.2.4 Identifying Instances of Repetitive Patterns

Next, we wish to detect an instance of a repetitive pattern within a larger sample string,
e.g. instance abab of (AB)∗ in cdababef . For this purpose, we try the above algorithm

101

on all consecutive subsequences of the sample. For optimization purposes, we preprocess
each subsequence for early detection of the ones that are not repetitive. We do not further
process a subsequence U if:∑
sioccurs once in U

ω(si)> α
∑

distinct si

ω(si).

That is, if the total weight of symbols that appear once only in a subsequenceis is greater
than α times the total weight of its distinct symbols, the subsequence cannot be repetitive
by definition. In practice, this pre-processing phase greatly reduces the number of times
we run our partitioning algorithm.

Algorithm 16 Identify

1: {Goal: Find repetitive patterns within a given sample sequence, U}
2: Input: A sequence U .
3: Let T be an empty set
4: for i = 1 to |U | do
5: for j = i+ 1 to |U | do

6: if

∑
si occurs once in [Ui...Uj]

ω(si)∑
distinc si in [Ui...U−j]

ω(si)
> α then

7: Continue
8: end if
9: Run Partition on [Ui . . . Uj]

10: Add the partition information to T
11: end for
12: end for
13: Disambiguate pairs of overlapping partitions.
14: return T

Using Algorithm 16 we can find instances of repetitive patterns within a sample up to
the ambiguity caused by boundary disjunctive forms. If two partitions P1 and P2 overlap,
similar to the disambiguation algorithm presented earlier, we choose the one with the max-
imum repetitions, and if there is more than one such partition with maximum repetitions,
we choose the one with the smallest number of symbols in disjunctive form. Further ties
are broken by choosing the partition whose corresponding instance is shorter. If there
is still a tie, we report both possibilities. For example consider E1 = (ABC)+(C?DE)+

and E2 = (ABC?)+(CDE)+. If the repetitions of the first pattern in a given sample is
larger (e.g. S = ABCABCABCABCDECDE), the probability that E1 generates it is
higher: P (E1|S) > P (E2|S). However, for some samples our disambiguation algorithm
still results in a tie and these probabilities are equal so we report both patterns, e.g.

102

S = ABCABCDECDE. Many such ambiguities in finding an instance of R are caused
by boundary disjunctive forms and can be resolved based on probabilities of generating
strings. For example, assume a sample string is s = abababc. Two possibilities for E are
X1 = (ABC?) and X2 = (AB). In the former case abababc is an occurrence of R and in
the latter case ababab is an occurrence of R. Assume that R includes n repetitions of E (n
is found as a consequence of finding the set of mandatory non-terminals). If the probabil-
ity that c appears in an instance of X1 is 0.5, the probability that it appears only in the
last instance given n instances is (0.5)n. Hence for that example P ((ab)nc|X1, n) = 0.5n

and P ((ab)n|X2, n) = 1. Assuming no a priori bias (i.e., P (X1) = P (X2)), with a high
probability X2 represents E. Note, however, that if ω(C) is large enough, then there is no
ambiguity because (ABC?) is not repeatable and therefore is not an admissible solution.
Alternatively, if ω(C) is small and c appears elsewhere within S, e.g. s = abcababc, then
again there is no ambiguity: this time X1 = (ABC?)+ must be correct. Following a similar
approach we can resolve most ambiguities caused by boundary disjunctive items.

Given an input string S, if R is the set of so far identified repetitive patterns in S, for
each Ri ∈ R we create a new temporary non-terminal Ni and replace the instance of Ri in
S with ni and repeat the above steps. The new non-terminals should be chosen in a way
that allows merging compatible patterns if necessary. When no more repetitive patterns
are found, we replace the newly introduced non-terminals with their corresponding regular
expressions to generate the final result. This allows the inference of expressions with nested
repetitive patterns such as ((AB)+(CD?E)+)+.

The above steps explain how a k-NRE can be inferred from a single input string. If
we are given multiple input strings, we infer a regular expression for each and combine the
results using

⊕
.

Theorem 5. For every given sample, there is at least one k-NRE that generates it.

Proof. The above algorithm obviously generates at least one k-NRE for a given sample
set. The number of such grammars can be more if there are ambiguities that cannot be
resolved.

6.2.5 Inferring k-NRTGs

Recall that a document with presentational markup can be represented by a tree. Given an
instance tree, each subtree is generated by a non-terminal in an unknown k-NRTG, and the
sequence of children for its root is generated by the k-NRE for its content model. Therefore,
to infer a grammar for a sample tree, we should infer a k-NRE for the sequence of the

103

children of each node. Our algorithm traverses the tree in post-order so that productions
for the children of a node are generated before the root node is considered.

<div> <div>
 <div>

<table>

<td>

<tr>

<a><a>

T

T

T
{0 1 2 1 0 1}

Figure 6.3: The sequence of subtrees is mapped to a sequence of cluster ids.

Consider an instance tree T , a node N in T , and the sequence S of the subtrees rooted
at the children of N , S = c1 . . . ck. Because of the post-order processing, k-NRTGs for each
ci have already been recognized. We use hierarchical agglomerative clustering [56], which
is based on the similarity between trees, to partition the cis into clusters such that each
cluster contains similar subtrees that are assumed to be generated by a single production
in the underlying tree regular grammar. Thus all subtrees in a cluster must have the same
root label, however subtrees with the same root labels are not necessarily in the same
cluster. There are various ways to calculate tree similarity, such as comparing the inferred
k-NRTGs for the cis using variations of tree edit distance [17]. Although tree edit distance
usually provides a good measure of similarity, its calculation is costly (its complexity is
O(mn) where m and n are the sizes of the two trees). Alternatively, similarity can be
defined based on heuristics such as comparing the label and degree of the roots, the sizes,
and the depths of trees. Thus an appropriate similarity function should be chosen based
on the application requirements.

We assign a unique id to each cluster, which allows us to map c1 . . . ck to a sequence
I of cluster ids. We combine the k-NREs for all trees in a cluster using an extension of
the

⊕
operator, and replace their content models with the result. We also calculate their

weights as described in Section 6.1. Then, we use the algorithm from Section 6.2.1, to infer
a regular expression for I. Lastly, we create a new non-terminal, with the label of N as its
root label and the inferred k-NRE as its content model. A summary of the above steps is
presented in Algorithm 17.

An an example, consider the page in Figure 6.1. A tree representing the presentational
markup (XHMTL) for this page is shown in Figure 6.4, and the tree of its inferred grammar
is shown in Figure 6.5.

104

Algorithm 17 PMGI

1: {Goal: Infer a K-NRTG for a given sample tree.}
2: Input: A sample tree T .
3: for each child c in T.root.children do
4: PMGI(c)
5: end for
6: Cluster T.root.children
7: Transform the sequence of the children of T.root into a sequence U of cluster-ids
8: res = U
9: Identify(U)

10: Replace each instance of a repeating pattern in res with its inferred grammar
11: Replace each symbol in res with its corresponding non-terminal.
12: return res

<h3>

Students

<body>

Sarah Jack

 <div> <h4>

Masters Strudents

<hr>

Andrew

<div>

(Since 2010)

 ...<hr>

John

<h4>

Doctoral Strudents

<div>

(Since 2008) (Since 2002)

 <a><div>

(Since 2007)

 <a>

Figure 6.4: The tree representing the XHTML page of Figure 6.1.

6.3 Related Work

Descriptive markup is typically used to encode data objects to be stored in a database.
Any subset of the documents in the database can be used as a sample set for an inference
algorithm. As a result, a rather large number of sample documents is available to a learn-
ing algorithm to infer a grammar for descriptive XMLs. In fact, most grammar induction
algorithms for descriptive markup extensively rely on large sample sets [12, 13], and their
results for small sample sets is quite poor. XTRACT [41] is a system for inferring a DTD
that is balanced in terms of conciseness (i.e. being short in length) and preciseness (i.e.
not covering too many expressions that are not among the samples) for a given database
of XML documents with descriptive markup. The heuristics that generate regular expres-
sions are rather simple, and they do not generate complex expressions such as the ones
that contain optional expressions nested within Kleene stars. Finally, experiments on real
data show that XTRACT generates large, long-winded and difficult to understand regular
expressions [13]. Bex et al. [13] propose an algorithm for inferring concise DTDs from a

105

T

<h4>

T
<div>

T

<repeating>

<a>?

<repeating>

<hr>

<body>

<h3>

T

?

Figure 6.5: The tree representing the inferred grammar of Figure 6.4.

given set of descriptive XML documents. They identify single occurrence regular expres-
sions, a class of deterministic regular expressions that allows each non-terminal to appear
once only.
Limiting a regular expression to contain each nonterminal once is too restrictive, hence
the authors define a class of deterministic regular expressions called k-occurrence regular
expression that allows each nonterminal to appear at most k times within a regular ex-
pression [12, 14]. This algorithm is computationally expensive, hence only small values
for the size of k and the alphabet size are considered, and it is rather slow even for such
small values. The performance of this algorithm highly depends on the size of the sam-
ple set, and requires large sample sizes to perform well (e.g. thousands of samples for
medium-size grammars). Moreover, the success rate of the algorithm when the alphabet
size is rather large (more than 10), or when the nonterminals repeat often (1.8 or higher
on average) within the regular expression is low. It fails when one nonterminal appears
many times (more than 4) within a regular expression, which is common in cases such as
HTML data. Therefore, this algorithm it is not suited well for applications like extracting
data from HTML pages that might require inferring non-deterministic and complex regular
expressions in a timely manner.

Unlike inferring DTDs, to infer an XML schema from XML documents the problem
of defining complex types should also be addressed. Bex et al. [15] and Chidlovskii [29]
propose that nonterminals be assigned types that depend on their contexts (either ancestry
or content models), and as a consequence, if a nonterminal has two children with the same
root labels, the same types are assigned to those children. Obviously this is not true in
some contexts, such as HTML documents, where for example two nodes with label <div>

106

might represent two completely different types.

In summary, DTDs and XSDs impose some limitations on documents which makes
them insufficient to model the structure of documents with presentational markup. Conse-
quently, the algorithms for inferring DTDs and XSDs make simplifying assumptions about
the structure of documents that makes them less effective for learning grammars for presen-
tational XML documents. Also such algorithms rely on large sample sets that is typically
not available in the case of presentational markup.

Because of the way tags are used in documents with presentational markup, they typ-
ically have more complex structures than the ones with descriptive markup. DTDs and
XSDs are aimed for descriptive XMLs, and hence they are free to impose some restrictions
to simplify parsing. For example competing non-terminals (i.e. non-terminals that have
the same terminals in their production rules, e.g. A → tR1 and B → tR2) cannot occur
anywhere in a DTD, and XSDs do not allow competing non-terminals within a production
rule [87]. As explained in the previous section, this is clearly inadequate for presenta-
tional XML. Fortunately most applications that need grammars describing the structure
of presentational documents do not require the form to be either DTDs or XSDs.

Web page wrappers [123] are programs that extract semi-structured information from
collections of web pages generated from a common template. The problem of wrapper
generation is to construct wrappers using a training set. The generated wrappers will
be later used to extract data from pages that have similar layouts to the ones in the
training set. Wrapper generation algorithms mostly assume some manual tuning by a
user. Automatic wrapper generation is also known as wrapper induction [68, 69, 120].
This problem is inherently different from the problem of extracting data from a single
page. Wrapper induction algorithms assume a large training set [30, 72, 122]. Moreover,
they typically use methods that we explained earlier in this section to learn the structure
of a single page, and then combine such structures to infer a grammar for the whole
collection [68, 76, 120, 122, 123]. As a result, they inherit similar shortcomings.

Unlike data-centric pages using descriptive markup, pages created with presentation
markup are often idiosyncratic: many sample documents are often not generated from the
same source using the same grammar. For example, web pages from different websites
have different structures, and even pages from the same website might be published with
variations in their structures. Hence, providing a large sample set of presentational markup
documents with the same grammar is difficult and even infeasible in some cases. In practice,
in many data extraction scenatios, the number of samples is very limited [33, 74, 75], and
in some cases it is assumed that only one sample is provided [74, 75].

Many information extraction algorithms need to recognize data objects that appear

107

more than once in a web page. Therefore, most of the algorithms summarized in this
section try to detect repetitive patterns in an HTML document as a part of their data
extraction process. Some algorithms assume a list of data records are represented in the
form of tables (without necessarily using HTML table tags), and hence they call a list of
data records a data table. Liu et al. propose MDR [74] and DEPTA [116], very similar
methods for extracting structured data from web pages. It is assumed that a web page
contains a list of at least two data records, represented as a Document Object Model (DOM)
tree. It is assumed that a repetitive pattern does not contain optional subexpressions. For
example if the repeating pattern is of the form (AC?B)∗, these algorithms cannot correctly
detect it. Also they traverse a tree in a preorder fashion, and if they detect a repetitive
pattern among the children of a node, they stop without continuing down to the children.
Therefore, they do not detect nested repeating patterns.

NET [75] is another algorithm that is proposed to detect and extract data records from
web pages containing a list of at least two data records. It infers only single occurrence reg-
ular expressions, and thus languages such as (ABCA)∗ are not detected correctly. In fact,
if a non-terminal appears more than once in a sequence, NET considers it as repeating,and
thus abcda is detected as (AB?C?D?)∗. As a further restriction, it does not allow the first
non-terminal in a repetitive expression to be optional, e.g. (A?BC)∗ is not recognizable.
In other work, the authors propose a similar algorithm [57] that detects repetitive patterns
using a non-deterministic finite automaton, but they assume none of the optionals in a
repeating pattern are missing in its first occurrence. Similar to NET, they also assume
non-terminals appear at most once in a repetitive pattern.

Alvarez et al. [2] propose an algorithm for extracting a list of data records from a given
web page. Their algorithm consists of methods for locating the main list of records in a
page, partitioning the list into records, and extracting data from each record. They assume
a data record consists of a consecutive sequence of subtrees. They propose an algorithm
for clustering subtrees, and assume the first or the last subtree are not optional and do
not repeat within the record. They also assume the subtrees that appear before or after
the list are not similar to any of the subtrees that form data records in the list and do
not belong to the same cluster as any of them. Finally, they do not handle nested regular
expressions, and their clustering algorithm does not work when XML tags contain nested
repeating subtrees.

Other data extraction systems [71, 81, 102, 106, 25] do not infer a grammar. They
instead rely on heuristics to detect data records. For example they assume each data record
contains a link to a detail page [71], or they ignore the tree structure of pages [106, 25]. In
summary such approaches fail when a document contains nested repetitive patterns [74,
116, 25], a repetitive pattern contains expressions in disjunctive form [74, 116, 106], or

108

the unknown grammar violates the single occurrence constraint [81, 75]. These limitations
significantly affect their performance, and they have not been deployed in other applications
dealing with presentational markup, such as rendering engines and table extractors.

6.4 Experimental Results

In this section we empirically evaluate our approach and compare it against various alter-
natives.

• We categorize grammars that describe presentation XML documents by their imposed
restrictions (e.g. whether optional patterns are allowed or not).

• Using real data sets collected from the Web, we compare the classes of grammars in
terms of their ability to correctly describe a sample presentation XML document in
practice.

• We compare the existing approaches with respect to how well they can correctly
recognize samples generated from each class of grammars.

• We evaluate representative algorithms for each class of grammars using real and
generated data sets, and compare them in terms of the percentage of samples that
they correctly recognize.

6.4.1 Experiment Setup

Alternative grammars: To compare approaches, we consider the class of grammars that
each approach infers and compare them. There may be various implementations to infer a
grammar for each class, but even an ideal solution would fail when the unknown grammar
does not belong to the class. We consider the following classes of grammars:

• PMGI: The class of grammars described in Definition 8.

• A1: This class of grammars allows only single occurrence regular expressions. The
first non-terminal in a repetitive expression is not allowed to be optional. This class
of grammars in adopted in various state-of-the-art data extraction algorithms such
as NET [75].

109

• A2: A repetitive pattern is not allowed to contain optional or disjunctive patterns.
MDR [74] and DEPTA [116] are restricted to this class of grammars.

• A3: Competing non-terminals are not allowed. DTDs belong to this class of gram-
mars.

• A4: Competing non-terminals are not allowed within the production rule of a non-
terminal. XSDs belong to this class of grammars.

For our experiments, we implemented recognizers for classes A1 and A2 based on NET
and DEPTA, respectively. Results for classes A3 and A4 are presented as if the experiments
were run with perfect recognizers (i.e., failures are recorded only if the correct grammar is
not in the appropriate class).

Data collections: For our evaluations we consider the following sample sets:

• XHTML pages: A collection of 100 test pages from various domains such as news,
personal web pages, online shops, etc. For each page we manually developed a
grammar that describes the structure of that page. We assume incomplete HTML
tags are fixed, and there is no error in the HTML code of pages.

• Presentational MathML: We collected two sets of mathematical expressions encoded
with LATEX from Wikipedia, and translated them into MathML. The first set includes
50 expressions that contain matrices, and the second set includes 50 expressions that
contain series and polynomials. We normalized the expressions by removing values of
numbers and names of variables, e.g. x+1 is normalized to “{variable} + {number}”.

• Generated strings: A set of 90 regular expressions, manually created to represent
the forms of regular expressions that we have frequently found in the structure of
web documents. The regular expressions are categorized by various parameters of
complexity. Each category contains 10 arbitrary regular expressions with similar
complexity, and we randomly generate 10 distinct instances for each.

Some statistics about each dataset are presented in Table 6.1. The second row shows
the average number of instances of repetitive patterns within the provided samples.

6.4.2 Experiment Measures

To compare the grammars and algorithms that recognize them, we consider the following
measures. Accuracy:

110

XHTMLs MathMLs Strings

Size 100 100 900
Average repetition 16 5 7

Table 6.1: Dataset statistics

Optionals Disjunction Duplicates Multiple repetition
Within same Common Nested Result

repeating pattern nonterminal
Yes No Yes No Correct Subset Superset Other

× × × × × × × PMGI 100% 0% 0% 0%
A1 100% 0% 0% 0%
A2 100% 0% 0% 0%√

× × × × × × PMGI 81% 12% 0% 7%
A1 69% 7% 0% 24%
A2 0% 100% 0% 0%

×
√

× × × × × PMGI 74% 6% 10% 10%
A1 0% 6% 18% 76%
A2 0% 100% 0% 0%

× × ×
√

× × × PMGI 71% 0% 29% 0%
A1 0% 0% 79% 21%
A2 100% 0% 0% 0%

× ×
√

× × × × PMGI 74% 0% 26% 0%
A1 0% 0% 80% 20%
A2 100% 0% 0% 0%

× × × × ×
√

× PMGI 100% 0% 0% 0%
A1 0% 0% 0% 100%
A2 100% 0% 0% 0%

× × ×
√ √

× × PMGI 84% 8% 8% 0%
A1 0% 0% 62% 38%
A2 100% 0% 0% 0%

× × × × × ×
√

PMGI 89% 0% 10% 1%
A1 20% 0% 40% 40%
A2 0% 100% 0% 0%√

× ×
√ √

× × PMGI 83% 5% 0% 12%
A1 0% 0% 0% 100%
A2 0% 100% 0% 0%

Table 6.2: Accuracy for each category of regular expressions.

111

6.4.3 Parameter Tuning

According to Definition 5, the value of α has a great impact on the grammars that PMGI
can infer. Too low values of α result in many false negatives (i.e. patterns that are
repetitive but are not detected as repetitive) and hence a low precision. On the other
hand, high values of α result in many false positives (i.e. patterns that are not repetitive
but are detected as repetitive) and hence a low recall. To find a value for α that results
in a balance between false negatives and false positives, we investigate the performance of
PMGI on a data sets of Presentation MathML and XHTML documents when the value
of α varies from 0 to 1. As Figure 6.6 implies, the performance for very small values
of α is relatively poor because in these cases disjunctive forms are not allowed, or are
very restricted, and hence the repetitive patterns that require disjunctive forms are not
detected correctly. On the other hand, when α is very close to 1, disjunctive forms are less
restricted, and some patterns that are not repetitive are mistakenly recognized as being
repetitive patterns. PMGI performs best when α is between 0.2 and 0.6, and thus we set
the value of α to 0.4 for our experiments.

Figure 6.6: Effect of α on the precision and recall of PMGI.

6.4.4 Inferring Grammars

For this experiment we use the generated strings dataset. For PMGI the weights of all
non-terminals are assumed to be equal. For each sample in the dataset and each class
of grammars, we infer a grammar that satisfies the constraints of the class. We calculate
the average number of inferred expressions that are equivalent to the original one. If an
inferred regular expression is not equivalent to the original regular expression, it might
be a subset or a superset of it. It may be that an inferred regular expression is a subset
of the original one because the instance is not representative. For example, for original
regular expression (ABC?)+ and instance ABABAB, the inferred regular expression is
(AB)+, which is a subset of the original one. But in some cases, especially with A2, the

112

Correct Subset Superset None

PMGI 89% 5% 2.5% 3.5%
A1 69% 4.3% 10.5% 16.2%
A2 52.3% 21.2% 0% 26.5%
A3 31% - - -
A4 44% - - -

Table 6.3: Accuracy of the various classes of grammars on the XHTML dataset.

inferred regular expression is too close to the instance, and so the result is a subset of
the original regular expression. For example, for (ABC?)+ with sample ABCABABC,
A2 infers ABC(AB)+C, which is also a subset of the original expression (Note that this
is not compressed so it is not a k-NRE). As the results suggest, for regular expressions
with simple structures all classes perform well, but for more complex structures, PMGI
outperforms the other alternatives.

Next, we consider the XHTML dataset, and similar to the previous experiment, we
infer a grammar for each page in the dataset and each class of grammars. For PMGI, the
weight of each non-terminal is calculated as explained in Section 6.1.

From each web page we chose some prototypical sections (mostly with repeating pat-
terns) and manually built a grammar for each section. The reason that we considered
smaller granularity than a whole page to evaluate the algorithms is that XHTML pages
are typically very large, and if an algorithm fails to correctly infer the correct structure
of any part, we will conclude that the algorithm fails to infer the structure of the page
as a whole. Moreover, in applications depending on data extraction, it often suffices if
the algorithm can correctly infer structures for specific sections, namely the data-centric
parts of a page. We chose mostly sections that contain repetitive patterns because such
sections tend to have more complex structures and they form the basis for recognizing
“data records”.

The results are calculated as the percentage of grammars that are correctly inferred
for each set of web pages, and they are presented in Table 6.3. As the results suggest,
A1 grammars tend to be over-generalizations of the original grammars while A2 grammars
tend to be under-generalized. A3 does not allow competing non-terminals and A4 does
not allow them within a production rule. Hence, they perform poorly for this dataset as
many pages contain competing non-terminals (e.g. two different sections of a page with
<div> tag, or two <td> columns with different structures). PMGI outperforms the other
alternatives by at least 30%.

113

None Optionals Repeated Nested
non-terminals

None 100% 92% 100% 100%
Optionals - - 77% 71%
Repeated - - - 73%

non-terminals

Table 6.4: The performance of PMGI on collections of pages with specific structural com-
plexities.

We further categorize the web pages according to the features in their grammars and
present the result for PMGI for each category separately. The result is shown in Table 6.4.

Finally, to demonstrate the performance of PMGI in inferring grammars of other types
of presentational XML documents, we applied it on the Presentational MathML dataset.
The results are presented in Table 6.6, and some examples of mathematical expressions that
PMGI can correctly infer are shown in Table 6.7, where N and V are non-terminals that
generate numbers and variables. Some polynomial expressions tend to have very complex
structures that cannot be expressed with a k-NRTG, hence the performance is relatively
low for polynomials.

In conclusion, the constraints defined by alternative classes of grammars are too re-
strictive, so that in many cases the correct grammar that generates an instance does not
belong to such classes.

114

Source Repetitive pattern Number of PMGI A2 A1
1 buzzle.com L→< li > [T]

U →< ul > [L∗]
T → text (T?A)∗T (B(RT)?RIUIRTR)

∗︸ ︷︷ ︸TAT 5
√

× ×

A→< a > [T] 2 imdb.com (ATI?)
∗︸ ︷︷ ︸ 26

√
×

√

B →< b > [T] 3 imdb.com (ATR)
∗︸ ︷︷ ︸ 2

√ √ √

R→< br > 4 imdb.com L→< li > [A]
U →< ul > L∗

I →< i > [T] (AU)
∗︸ ︷︷ ︸ 2

√
×

√

5 buzzle.com L→< li > [T]
U →< ul > [L∗]

M →< li > [T (AT)?]
O →< ul > [M∗]
N →< ol > [L∗]

(T?A)∗TR (BR(TATR)?BOBUBNR)
∗︸ ︷︷ ︸TAT 3

√
× ×

6 amazon.com L→< li > [(AT?)∗] 2 × α = 0.4
L

∗︸︷︷︸ √
α ≥ 0.5 ×

√

7 tribute.ca S →< span > [ATA]
G→< strong > [T], P →< span > [G]

D →< div > [T]
P →< div > [SPT (DTDR?)∗]

(PR?)
∗︸ ︷︷ ︸ 2

√
× ×

8 amazon.ca H →< h6 > [T] 8
√

×
√

(HA
∗
)
∗︸ ︷︷ ︸

Table 6.5: Examples of inferred grammars for expressions from various web pages.

Matrices 91 %
Polynomials 74%

Series 83%

Table 6.6: Accuracy of PMGI on MathML dataset.

115

Expression Regular tree grammar

pn = 1 + 1
1!

+ 1
2!

+ 1
3!

M →< mrow > [NO]
U →< msub > [IN]
F →< frac > [NM]
P →< mo > +

M →< mrow > [UPN (PF)∗︸ ︷︷ ︸]
2x2 + 3y2 + 2z2 = 1 E →< msup > [IN]

T → +
P →< mo > [T]

L→=
Q→< mo > [L]

M →< mrow > [(NEP?)∗︸ ︷︷ ︸QN] λ1 γ1 β1
λ2 γ2 β2
λ3 γ3 β3

 I →< msub > [V N]

D →< mtd > [I]
R→< mtr > [D∗]

M →< mfenced > [R∗︸︷︷︸]
Table 6.7: Examples of grammars for mathematical expressions.

116

Chapter 7

Grammar Inference For Math
Retrieval

In the previous chapter we described a framework to infer grammars for semi-structured
objects. Now we describe how a grammar inference algorithm can be used to improve
the results of a structural similarity algorithm. We also describe an algorithm to optimize
processing pattern queries with repetition.

7.1 Extending Structural Similarity

In this section, we consider cases where the query or a document’s matching expression
contain a pattern that may repeat arbitrarily. As an example consider the query “x+x2 +
x3 + x4 + x5”, and the expression “x + x2 + · · · + xn”. Although they are similar, their
similarity may not be correctly captured with the algorithms described in Chapter 3. A
grammar that describes both of them is x+ [x[N]]+, and obviously their similarity is better
captured if the grammars are inferred correctly. In the rest of this chapter we address the
following problems:

• Given a math expression, infer a grammar that describes it. The inference algorithm
should be extended to consider math-specific symbols such as “. . . ”.

• Assuming correct grammars are inferred, extend the retrieval algorithms described
in Chapter 3 to consider such grammars.

117

7.1.1 Repetition In Math Expressions

Symbols such as “. . . ” and “
...” that denote repetitions appear frequently in math expres-

sions. As an example consider the following expression that appeared earlier in this thesis:
.

...
∞ . . . ∞ . . . ∞

...
.


We call such notations dots symbols. Dots symbols replace parts of an expression

that are repetitions of the preceding or succeeding subexpressions, introduced to make it
more concise. For example using dots we can represent x2 + x3 + x4 + x5 + x6 with this
shorter expression: x2 + · · ·+x6. However, with the techniques presented so far we cannot
correctly infer a grammar that describes the former expression from the latter. We observe
the following properties:

• At least one instance of the subexpression that repeats precedes a dots operator. E.g.
x2 in x2 + · · ·+ x6.

• A subexpression that succeeds a dots operator is often also an instance of the repeat-
ing subexpression. E.g. x6 in x2 + · · ·+ x6. However, no subexpression repeats after
the dots operator in x2 + x3 +

• Often at least two instances of the repeating subexpression appear near the dots
operator. E.g. x2 + · · ·+ x6 and x2 + x3 +

• The operator that connects the instances of the repeating subexpression usually pre-
cedes the dots operator. It succeeds the dots operator if an instance of the repeating
subexpression also succeeds the dots operator. E.g. + in x2 + · · ·+ x6.

We infer a grammar for expressions with dots operators by starting with the sequence
of the siblings of the node representing the dots operator (Figure 7.3). Hence, following
Algorithm 17, we cluster the sibling subtrees and transform the sequence to a sequence of
cluster ids. Because the dots operator is not part of the repeating pattern, we remove its
corresponding cluster id from the sequence. We next run Algorithm 16 to find the repetitive
patterns. According to the above observation, in most cases at least two occurrences of

118

<msup>

<mn><mi>

x 2

<mo>

+

<mo>

...

<mo>

+

<mrow>

<math>

<msup>

<mn><mi>

x 4

Figure 7.1: Presentation MathML for x2 + · · ·+ x6.

<msup>

<mn><mi>

x 2

<msup>

<mn><mi>

x 2

<mn><mi>

 2y

<msup>

 [V]

<msup>

<mi>

 [N]

<mn>

Figure 7.2: Combining subtrees to obtain a template.

the repeating pattern exist. Hence, Algorithm 16 is able to find such occurrences. Also
we observe the dots operator is most likely preceded by the operator that separates the
occurrences of the repeating pattern (which we call the connecting operator, e.g. + in
Figure 7.3), hence we modify Algorithm 16 to consider this. More specifically, we limit the
loop at Line 5 of Algorithm 16 by limiting s (Line 6) to be the corresponding cluster id for
the connecting operator.

Note that if an expression does not contain a dots operator, we can still apply Algo-
rithm 17 to infer its grammar.

While merging subtrees of the same cluster to obtain a template, we perform the fol-
lowing normalizations. To merge number or variable nodes with different labels, instead
of adding one node for each label in a conjunctive form, we create a new node whose label
is a wild card for numbers. For example to merge subtrees for x2, x3, and x4 instead of
creating a template such as x2|3|4 we use a number wildcard (e.g. x[N]), and similarly for
variables. Finally, we remove symbols indicating optional or disjunctive subtrees (e.g. ‘*’
symbol). Examples are shown in Figures 7.2 and 7.3.

In the next section we describe an approach to extend math retrieval by considering

119

<msup>

<mn><mi>

[N][V] x

<mi> + −

 <mo>

<mrow>

<repeating>

<math>

Figure 7.3: Inferred Grammar for ax2 − bx3 + ax4 − bx5 +

grammars of math expressions to compare them.

7.1.2 Using Grammars For Math Retrieval

Assume grammars for all expressions with repetitive patterns are inferred. In the remainder
of this section we describe how this information can be deployed to increase the recall of a
math retrieval algorithm based on structural similarity search. For the ease of explanation
assume the query consists of a single math expression. Also assume the search problem is
to find the top-k documents.

Consider an expression E in the collection that belongs to document d. We infer a
grammar that describes E and if it contains a repetitive pattern, we add the inferred
grammar (after the described normalizations, e.g. Figure 7.3) as a new math expression
to d. Hence, d contains both E and its inferred grammar. For the rest of this chapter we
assume all documents are modified this way. Note that a document that does not contain
a math expression with a repetitive pattern is the same as its modified form. We also
modify a query similarly.

We similarly process a modified query that contains a repetitive pattern. Note that if
the query consists of a single math expression with a repetitive pattern, the modified query
contains the original expression and its inferred grammar.

In Chapter 5 we discussed how a rich query with multiple components is processed.
We similarly process a modified query. The advantage of this approach is that documents
containing expressions with similar grammars to those in the query are still retrieved,
while documents containing closer matches are ranked higher. For example if the query is

120

<wild>

<mrow>

<math>

 <mrow>

<wild> <mo>

 <repeating>

Figure 7.4: The tree representing {[N]+}{2, }[N].

x2 + · · · + xn, a document that contains x2 + x3 + x4 is retrieved, but another document
that contains a closer match such as y2 + · · ·+ yk is ranked higher.

7.2 Further Optimizing Pattern Search

In Section 4.4 we described an algorithm to optimize the processing of pattern queries.
The described algorithm is based on fast filtering of irrelevant expressions and parsing
the resulting candidate expressions with the query to find matches. This often reduces
the query processing time significantly, but in some cases where the query consists of a
repeating pattern, even after filtering expressions, too many candidates may still remain
to be matched against the query.

Example 15. Assume the query is {[N]+}{2, }[N] that is, a number and the plus operator
repeat at least twice followed by a number. It matches 1 + 2, 1 + 3 + 9, etc. The normalized
tree for this query is shown in Figure 7.4. The only maximal-constant subtree consists of
a single node with tag <mo> which appears in many expressions. Also the only maximal-
constant path is <math><mrow> which also appears in many expressions.

Therefore, processing such queries requires matching the query against many expres-
sions which is a time-consuming task.

To optimize the processing of such queries, we build an index as follows. The index
structure is the same as described in Section 4.4. We similarly, transform each expression
and add it to the index. For each expression we infer a grammar (Section 4.4). If the
grammar contains a repeating pattern, we also add the inferred grammar to the index
similar to an ordinary math expression (by transforming it first, and then creating a pseudo-
document for it, e.g. Figure 7.5).

121

 <mn>

<mrow>

<mo>

 +

 <mn> <mn><mo>

 1 2 + 3

<math>

<reapeating>

<mrow>

<math>

 <mn>

<mrow>

 <mn> <mo>

Figure 7.5: Inferring a grammar and transforming it for 1 + 2 + 3.

To process a query we modify the definition of constant nodes to also include the ones
that represent a repetition (“<repeating>” tag). Hence, paths or subtrees that contain
such nodes can be maximal-constant. For example the paths marked in Figures 7.4 and
7.5 are maximal-constant.

The modified index allows retrieval of expressions that contain such paths. In most
cases, the number of such candidate expressions is much lower as compared to the number
in the original optimization algorithm.

7.3 Experiments

In this section we present the result of the empirical evaluation of the proposed algorithms.
We first investigate how modifying the structural similarity search with respect to the in-
ferred grammars enhances the accuracy of results. Next, we compare the query processing
time of the pattern search algorithm when it is optimized for queries with repetitive pat-
terns.

7.3.1 Alternative Algorithms

For the accuracy of results, we consider the proposed algorithm (represented by ReptSim-
Search) and also the alternative algorithms described in Section 3.5.1.

7.3.2 Data And Query Collections

For this study, we use the collection of expressions described in Section 4.5.1. We enhance
documents by inferring grammars and adding the ones that contain repetitive patterns to

122

them.

Forum Query Collection
Number of queries 10
Average size of query math expressions 34

Table 7.1: Math queries with repetition.

We gather a collection of queries with repetitive patterns from a math forum in a
similar way as described in Section 4.5.1. We manually read discussion threads and formed
representative queries for each thread. For this experiment, we only consider queries with
repetitive patterns. We also form pattern queries as previously described. Statistics about
the query collection are presented in Table 7.1.

7.3.3 Evaluation Measures

We compare the algorithms in terms of their accuracy. We consider NFR and MRR metrics
as described in Subsection 3.5.2.

7.3.4 Evaluation Results

The NFR and MRR of the described algorithms is presented in Table 7.2. The NFR of
ReptSimSearch and SimSearch is 1 which implies that both algorithms return some results
for all queries. However, the MRR of SimSearch is rather low, but the MRR of ReptSim-
Search is higher. This is because for some queries, there is no close match but there are
expressions whose grammars match the grammar of the query. TextSearch also returns
some results for all queries but it has a poor accuracy. MiaS produces a result for most
queries, but its accuracy is still low. The other algorithms do not produce any results for
most queries except when there is an exact match (or normalized exact match). In conclu-
sion, ReptSimSearch performs better than the other algorithms on queries with repetitive
patterns. Note that if a query does not contain a repetitive pattern, this algorithm produces
the same results as SimSearch.

Next, we compare the query processing time of PatternSearch when a query contains
repetitive patterns after the proposed modifications. We denote the modified algorithm as
ModPatternSearch. The average query processing time of PatternSearch is 3718ms, while
ModPatternSearch has an average query processing time of 1478ms, which is less than
half as long. Our results confirm that when a pattern repeats and the maximal-constant

123

Algorithm NFR MRR
ReptSimSearch 100% 0.68

SimSearch 100% 0.46
PatternSearch 40% 1

MiaS 80% 0.42
TextSearch 100% 0.27
ExactMatch 20% 1

NormalizedExactMatch 40% 1
SubexprExactMatch 20% 1

NormalizedSubExactMatch 40% 1

Table 7.2: Algorithms’ performance for queries with repetitive patterns.

paths or subtrees in the query are not enough to filter out non-matching expressions, the
algorithm performs much better if we use repeating patterns to filter out more expressions.

124

Chapter 8

Conclusions

Semistructured objects and XML documents are widely used to publish data on the Web
or in digital libraries. Processing such objects is the basis of many services such as special-
purpose search systems. Such pages are usually encoded with presentation markup that
mainly aims to describe how such documents are visualized rather than how the underlying
data is organized. This makes it more difficult to process such objects.

Mathematical expressions are representative of XML documents with fairly complex
structures and rather few symbols. They appear in many online documents and retrieving
such documents with respect to their mathematical content is appealing in various domains.
Hence, we focused on math retrieval as a representative example and proposed algorithms
that often can be extended to other types of objects with presentational XML encoding.

In Chapter 3, we considered various similarity measures to compare math expressions
and proposed corresponding retrieval algorithms. Through extensive empirical evaluations
on real data and realistic scenarios, we showed that math retrieval based on structural
similarity and pattern search outperform other approaches. We also noted that forming
queries for structural similarity search is easier, while pattern search is more accurate.
Hence the former approach is preferred for typical users.

Considering structures to compare math expressions is computationally expensive.
Also, the number of expressions that should be compared for each search is quite large,
which makes applications of such approaches limited. Therefore, in Chapter 4 we pro-
posed optimization techniques that significantly reduce the query processing time without
affecting the accuracy of results.

We initially assumed a query consists of a single math expression. In Chapter 5 we

125

relaxed this assumption and proposed algorithms to handle rich queries that are combina-
tions of one or more math expressions and textual keywords.

We also considered the problem of inferring a grammar. We assumed only one sample
with presentational markup is provided and supposed the sample contains a pattern that
repeats. In Chapter 6 we proposed a framework to infer grammars for such samples and re-
laxed some restrictions imposed by the existing algorithms that limit the their application.
Using this framework, in Chapter 7 we proposed techniques to enhance the result of our
math retrieval system for queries that contain math expressions with repeating patterns.

Because we assume math expressions are encoded with respect to their appearance,
considering math equivalences to compare them is a very difficult problem. However, if we
can infer the content of math expressions from their presentation, we can better compare
them and significantly enhance the retrieval results. Hence, one direction for future research
is to consider math equivalences for expressions with presentational encoding and to extend
the retrieval algorithm accordingly.

Further optimizing the proposed algorithms for web-scale datasets is another direction
for future work. While we showed that our algorithms work well in terms of query pro-
cessing time for a specific domain or digital library, a web-scale dataset that is larger by
an order of magnitude or more requires further optimizations.

126

Bibliography

[1] www.wolframalpha.com.

[2] M. Álvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda. Extracting lists of data
records from semi-structured web pages. Data Knowl. Eng., 64(2):491–509, 2008.

[3] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: a full-text search
extension to XQuery. In The International World Wide Web Conference (WWW),
pages 583–594, 2004.

[4] S. Amer-Yahia, E. Curtmola, and A. Deutsch. Flexible and efficient XML search with
complex full-text predicates. In ACM International Conference on Management of
Data (SIGMOD), pages 575–586, 2006.

[5] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: Flexible structure
and full-text querying for XML. In ACM International Conference on Management
of Data (SIGMOD), pages 83–94, 2004.

[6] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley, 1999.

[7] G. Bancerek. Information retrieval and rendering with MML Query. In Mathematical
Knowledge Management (MKM) Conference, pages 266–279, 2006.

[8] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. Io-top-k: Index-
access optimized top-k query processing. In International Conference on Very Large
Data Bases (VLDB), pages 475–486, 2006.

[9] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernndez, M. Kay, J. Robie, and J. Si-
mon. XML Path Language (XPath) 2.0. 2007.

127

[10] E. Bertino and G. Guerrini. Object-Oriented Databases. Wiley Encyclopedia of
Computer Science and Engineering, 2008.

[11] E. Bertino, B. C. Ooi, R. Sacks-Davis, K.-L. Tan, J. Zobel, B. Shidlovsky, and
B. Catania. Indexing Techniques for Advanced Database Systems. Kluwer, 1997.

[12] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning deterministic regular
expressions for the inference of schemas from XML data. ACM Transactions on the
Web, 4(4):14:1–14:32, 2010.

[13] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs from
XML data. In International Conference on Very Large Data Bases (VLDB), pages
115–126, 2006.

[14] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of concise regular
expressions and DTDs. ACM Transactions on Database Systems, 35(2), 2010.

[15] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML Schema definitions from
XML data. In International Conference on Very Large Data Bases (VLDB), pages
998–1009, 2007.

[16] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using banks. In International Conference on
Data Engineering (ICDE), pages 431–440, 2002.

[17] P. Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci.,
337(1-3):217–239, 2005.

[18] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, and J. Simon.
XQuery 1.0: An XML Query Language. 2007.

[19] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation, 2008.

[20] J.-M. Bremer and M. Gertz. Integrating document and data retrieval based on XML.
The VLDB Journal, 15:53–83, 2006.

[21] S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaëtano, and M. Kohlhase,
editors. The OpenMath Standard, Version 2.0. The OpenMath Esprit Consortium,
2004.

128

[22] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables:
exploring the power of tables on the web. International Conference on Very Large
Data Bases (PVLDB), 1(1):538–549, 2008.

[23] D. Carlisle. OpenMath, MathML, and XSL. SIGSAM Conference on Symbolic and
Algebraic Manipulation, 34(2):6–11, 2000.

[24] D. Carlisle, P. Ion, and R. Miner. Mathematical Markup Language (MathML) Version
3.0. W3C Recommendation, 2010.

[25] C.-H. Chang and S.-C. Lui. IEPAD: Information extraction based on pattern dis-
covery. In The International World Wide Web Conference (WWW), pages 681–688.

[26] K. C.-C. Chang and S. won Hwang. Minimal probing: supporting expensive predi-
cates for top-k queries. In ACM International Conference on Management of Data
(SIGMOD), pages 346–357, 2002.

[27] Y. Chen, W.-Y. Ma, and H. Zhang. Detecting web page structure for adaptive viewing
on small form factor devices. In The International World Wide Web Conference
(WWW), pages 225–233, 2003.

[28] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and J. D.
Thompson. Multiple sequence alignment with the Clustal series of programs. Nucleic
Acids Res, 31:3497–3500, 2003.

[29] B. Chidlovskii. Schema extraction from XML data: A grammatical inference ap-
proach. In International Workshop on Knowledge Representation meets Databases,
2001. 10 pp.

[30] B. Chidlovskii, B. Roustant, and M. Brette. Documentum eci self-repairing wrappers:
performance analysis. In ACM International Conference on Management of Data
(SIGMOD), pages 708–717, 2006.

[31] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A semantic search engine
for XML. In International Conference on Very Large Data Bases (VLDB), pages
45–56, 2003.

[32] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. 2007. Available on:
http://www.grappa.univ-lille3.fr/tata.

129

[33] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic data
extraction from large web sites. In International Conference on Very Large Data
Bases (VLDB), pages 109–118, 2001.

[34] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. K. Sellis. A methodology for clustering
xml documents by structure. Inf. Syst., 31(3):187–228, 2006.

[35] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal decomposition
algorithm for tree edit distance. ACM Transactions on Algorithms, 6(1), 2009.

[36] P. F. Dietz. Maintaining order in a linked list. In STOC, pages 122–127, 1982.

[37] T. H. Einwohner and R. J. Fateman. Searching techniques for integral tables. In The
International Symposium on Symbolic and Algebraic Computation (ISSAC), pages
133–139, 1995.

[38] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences - Elsevier, 66(4):614–656, 2003.

[39] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and search-
ing XML data via two zips. In The International World Wide Web Conference
(WWW), pages 751–760, 2006.

[40] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and in-
dexing labeled trees, with applications. The Journal of the ACM (JACM), 57(1),
2009.

[41] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT:
Learning document type descriptors from XML document collections. Data Mining
and Knowledge Discovery, 7(1):23–56, 2003.

[42] E. M. Gold. Language identification in the limit. Information and Control, 10(5):447–
474, 1967.

[43] R. Goldman and J. Widom. DataGuides: Enabling query formulation and optimiza-
tion in semistructured databases. In International Conference on Very Large Data
Bases (VLDB), pages 436–445, 1997.

[44] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley,
W. Shen, and J. Goldberg-Kidon. Google fusion tables: web-centered data manage-
ment and collaboration. In ACM International Conference on Management of Data
(SIGMOD), pages 1061–1066, 2010.

130

[45] G. Grätzer. Math into LATEX. Birkhauser, 3rd edition, 2000.

[46] J. Grimm. Tralics, A LATEX to XML Translator. INRIA, 2008.

[47] F. Guidi and I. Schena. A query language for a metadata framework about mathe-
matical resources. In MKM, pages 105–118, 2003.

[48] U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for
image databases. In International Conference on Very Large Data Bases (VLDB),
pages 419–428, 2000.

[49] U. Güntzer, W.-T. Balke, and W. Kießling. Towards efficient multi-feature queries in
heterogeneous environments. In International Symposium on Information Technology
(ITCC), pages 622–628, 2001.

[50] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword
search over XML documents. In ACM International Conference on Management of
Data (SIGMOD), pages 16–27, 2003.

[51] J. R. Hamilton and T. K. Nayak. Microsoft SQL Server full-text search. IEEE Data
Engineering Bulletin, 24(4):7–10, 2001.

[52] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style keyword search
over relational databases. In International Conference on Very Large Data Bases
(VLDB), pages 850–861, 2003.

[53] V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword proxim-
ity search in XML trees. IEEE Transactions on Knowledge and Data Engineering,
18(4):525–539, 2006.

[54] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in
relational databases. VLDB Journal, 13(3):207–221, 2004.

[55] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys, 40(4), 2008.

[56] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988.

[57] N. Jindal and B. Liu. A generalized tree matching algorithm considering nested
lists for web data extraction. In SIAM Conference on Data Mining (SDM), pages
930–941, 2010.

131

[58] S. Kamali, J. Apacible, and Y. Hosseinkashi. Answering math queries with search
engines. In The International World Wide Web Conference (WWW), pages 43–52,
2012.

[59] S. Kamali and F. W. Tompa. Improving mathematics retrieval. In
MKM/Calculemus/DML, pages 37–48, 2009.

[60] S. Kamali and F. W. Tompa. A new mathematics retrieval system. In Conference
on Information and Knowledge Management (CIKM), pages 1413–1416, 2010.

[61] S. Kamali and F. W. Tompa. Grammar inference for web documents. In International
Workshop on the Web and Databases (WebDB), 2011.

[62] S. Kamali and F. W. Tompa. Retrieving documents with mathematical content. In
ACM Special Interest Group on Information Retrieval (SIGIR), 2013.

[63] S. Kamali and F. W. Tompa. Structural similarity search for mathematics retrieval.
In MKM/Calculemus/DML, pages 246–262, 2013.

[64] Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In PODS, pages
40–51, 2001.

[65] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes for
branching path queries. In ACM International Conference on Management of Data
(SIGMOD), pages 133–144, 2002.

[66] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity
for indexing paths in graph-structured data. In International Conference on Data
Engineering (ICDE), pages 129–140, 2002.

[67] M. Kohlhase and I. A. Sucan. A search engine for mathematical formulae. In Artificial
Intelligence and Symbolic Computation (AISC), pages 241–253. Springer, 2006.

[68] N. Kushmerick. Wrapper induction for information extraction. PhD thesis, Dept
of Computer Science and Engineering, Univ of Washington. Technical Report UW-
CSE-97-11-04, 1997.

[69] N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intelli-
gence, 118(1–2):15–68, 2000.

132

[70] C. Laitang, M. Boughanem, and K. Pinel-Sauvagnat. XML information retrieval
through tree edit distance and structural summaries. In Asia Information Retrieval
Societies Conference (AIRS), pages 73–83, 2011.

[71] K. Lerman, L. Getoor, S. Minton, and C. Knoblock. Using the structure of web
sites for automatic segmentation of tables. In ACM International Conference on
Management of Data (SIGMOD), pages 119–130, New York, NY, USA, 2004.

[72] K. Lerman, S. N. Minton, and C. A. Knoblock. Wrapper maintenance: a machine
learning approach. Journal of Artificial Intelligence Research (JAIR), 18(1):149–181,
2003.

[73] C. Li, K. C.-C. Chang, and I. F. Ilyas. Supporting ad-hoc ranking aggregates. In
ACM International Conference on Management of Data (SIGMOD), pages 61–72,
2006.

[74] B. Liu, R. Grossman, and Y. Zhai. Mining data records in web pages. In ACM
Conference on Knowledge Discovery and Data Mining (KDD), pages 601–606, 2003.

[75] B. Liu and Y. Zhai. NET – a system for extracting web data from flat and nested data
records. In Web Information Systems Engineering (WISE), pages 487–495, 2005.

[76] L. Liu, C. Pu, and W. Han. XWRAP: An XML-enabled wrapper construction sys-
tem for web information sources. In International Conference on Data Engineering
(ICDE), pages 611–621, 2000.

[77] S. Liu, Q. Zou, and W. W. Chu. Configurable indexing and ranking for XML infor-
mation retrieval. In ACM Special Interest Group on Information Retrieval (SIGIR),
pages 88–95, 2004.

[78] Z. Liu and Y. Chen. Identifying meaningful return information for XML keyword
search. In ACM International Conference on Management of Data (SIGMOD), pages
329–340, 2007.

[79] S. Maclean and G. Labahn. A new approach for recognizing handwritten mathemat-
ics using relational grammars and fuzzy sets. International Journal on Document
Analysis and Recognition (IJDAR), pages 1–25, 2012.

[80] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over web-accessible
databases. ACM Transactions on Database Systems, 29(2):319–362, 2004.

133

[81] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser. Extracting data
records from the web using tag path clustering. In The International World Wide
Web Conference (WWW), pages 981–990, 2009.

[82] S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework for distributed top-k
query algorithms. In International Conference on Very Large Data Bases (VLDB),
pages 637–648, 2005.

[83] T. Milo and D. Suciu. Index structures for path expressions. In The International
Conference on Database Theory (ICDT), pages 277–295, 1999.

[84] J. Mǐsutka and L. Galamboš. System description: Egomath2 as a tool for mathe-
matical searching on wikipedia.org. In Calculemus/MKM, pages 307–309, 2011.

[85] D. M. Mount. Bioinformatics - sequence and genome analysis (2. ed.). Cold Spring
Harbor Laboratory Press, 2004.

[86] R. Munavalli and R. Miner. Mathfind: a math-aware search engine. In ACM Special
Interest Group on Information Retrieval (SIGIR), pages 735–735, 2006.

[87] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema lan-
guages using formal language theory. ACM Transactions on Internet Technology,
5(4):660–704, 2005.

[88] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting incre-
mental join queries on ranked inputs. In International Conference on Very Large
Data Bases (VLDB), pages 281–290, 2001.

[89] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970.

[90] T. T. Nguyen, K. Chang, and S. C. Hui. A math-aware search engine for math ques-
tion answering system. In Conference on Information and Knowledge Management
(CIKM), pages 724–733, 2012.

[91] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object retrieval. In The
International World Wide Web Conference (WWW), pages 81–90, 2007.

[92] A. Nierman and H. V. Jagadish. Evaluating structural similarity in xml documents.
In International Workshop on the Web and Databases (WebDB), pages 61–66, 2002.

134

[93] M. Pawlik and N. Augsten. Rted: A robust algorithm for the tree edit distance.
International Conference on Very Large Data Bases (PVLDB), 5(4):334–345, 2011.

[94] A. Pillay and R. Zanibbi. Intelligent combination of structural analysis algorithms:
Application to mathematical expression recognition. In International Workshop on
Pen-Based Mathematical Computation (PenMath), 2009.

[95] P. Placek, D. Theodoratos, S. Souldatos, T. Dalamagas, and T. Sellis. A heuristic
approach for checking containment of generalized tree-pattern queries. In Conference
on Information and Knowledge Management (CIKM), pages 551–560, 2008.

[96] P. Rao and B. Moon. PRIX: Indexing and querying XML using prüfer sequences. In
International Conference on Data Engineering (ICDE), pages 288–300, 2004.

[97] N. Sarkas, G. Das, and N. Koudas. Improved search for socially annotated data.
International Conference on Very Large Data Bases (PVLDB), 2(1):778–789, 2009.

[98] T. Schellenberg, B. Yuan, and R. Zanibbi. Layout-based substitution tree indexing
and retrieval for mathematical expressions. In Document Recognition and Retrieval
Conference (DRR), 2012.

[99] E. S. Smirnova and S. M. Watt. Communicating mathematics via pen-based inter-
faces. In Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
pages 9–18, 2008.

[100] P. Sojka and M. Ĺıska. The art of mathematics retrieval. In ACM Symposium on
Document Engineering, pages 57–60, 2011.

[101] B. Sun, P. Mitra, C. L. Giles, and K. T. Mueller. Identifying, indexing, and ranking
chemical formulae and chemical names in digital documents. ACM Transactions on
Information Systems, 29(2):12, 2011.

[102] M. Takahashi. Generalizations of regular sets and their application to a study of
context-free languages. Information and Control, 27(1):1 – 36, 1975.

[103] J. Tekli, R. Chbeir, and K. Yétongnon. Efficient xml structural similarity detection
using sub-tree commonalities. In Brazilian Symposium on Databases (SBBD), pages
116–130, 2007.

[104] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with probabilistic
guarantees. In International Conference on Very Large Data Bases (VLDB), pages
648–659, 2004.

135

[105] R. van Zwol and P. M. G. Apers. The webspace method: on the integration of
database technology with multimedia retrieval. In Conference on Information and
Knowledge Management (CIKM), pages 438–445, 2000.

[106] J. Wang and F. H. Lochovsky. Data extraction and label assignment for web
databases. In The International World Wide Web Conference (WWW), pages 187–
196, 2003.

[107] J.-R. Wen, Q. Li, W.-Y. Ma, and H. Zhang. A multi-paradigm querying approach for
a generic multimedia database management system. SIGMOD Record, 32(1):26–34,
2003.

[108] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in XML
databases. In ACM International Conference on Management of Data (SIGMOD),
pages 537–538, 2005.

[109] L. Yang, S. Xu, S. Bao, D. Han, Z. Su, and Y. Yu. A study of information retrieval
on accumulative social descriptions using the generation features. In Conference on
Information and Knowledge Management (CIKM), pages 721–730, 2009.

[110] A. Youssef. Search of mathematical contents: Issues and methods. In International
Conference on Intelligent and Adaptive Systems and Software Engineering (IASSE),
pages 100–105, 2005.

[111] A. Youssef. Methods of relevance ranking and hit-content generation in math search.
In Calculemus/MKM, pages 393–406, 2007.

[112] R. Zanibbi and D. Blostein. Recognition and retrieval of mathematical expressions.
International Journal on Document Analysis and Recognition (IJDAR), 15(4):331–
357, 2012.

[113] R. Zanibbi and L. Yu. Math spotting: Retrieving math in technical documents using
handwritten query images. In International Conference on Document Analysis and
Recognition (ICDAR), pages 446–451, 2011.

[114] R. Zanibbi and B. Yuan. Keyword and image-based retrieval of mathematical ex-
pressions. In Document Recognition and Retrieval Conference (DRR), pages 1–10,
2011.

[115] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search - The Metric
Space Approach, volume 32 of Advances in Database Systems. Kluwer, 2006.

136

[116] Y. Zhai and B. Liu. Structured data extraction from the web based on partial tree
alignment. IEEE Transactions on Knowledge and Data Engineering, 18:1614–1628,
2006.

[117] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing (SICOMP), 18(6):1245–
1262, 1989.

[118] K. Zhang, R. Statman, and D. Shasha. On the editing distance between unordered
labeled trees. Inf. Process. Lett., 42(3):133–139, 1992.

[119] N. Zhang, M. T. Özsu, I. F. Ilyas, and A. Aboulnaga. FIX: Feature-based indexing
technique for XML documents. In International Conference on Very Large Data
Bases (VLDB), pages 259–270, 2006.

[120] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully automatic wrapper
generation for search engines. In The International World Wide Web Conference
(WWW), pages 66–75, 2005.

[121] J. Zhao, M.-Y. Kan, and Y. L. Theng. Math information retrieval: user require-
ments and prototype implementation. In ACM/IEEE-CS joint conference on Digital
libraries, pages 187–196, 2008.

[122] S. Zheng, R. Song, J.-R. Wen, and C. L. Giles. Efficient record-level wrapper induc-
tion. In CIKM, pages 47–56, 2009.

[123] S. Zheng, R. Song, J.-R. Wen, and D. Wu. Joint optimization of wrapper generation
and template detection. In ACM Conference on Knowledge Discovery and Data
Mining (KDD), pages 894–902, 2007.

[124] D. Zhou, J. Bian, S. Zheng, H. Zha, and C. L. Giles. Exploring social annotations for
information retrieval. In The International World Wide Web Conference (WWW),
pages 715–724, 2008.

[125] M. M. Zloof. Query-by-Example: the invocation and definition of tables and forms.
In International Conference on Very Large Data Bases (VLDB), pages 1–24, 1975.

137

