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Abstract 

Disposable technology has gained increasing acceptance in the biopharmaceutical industry over 

the last decade, and provides many advantages over conventional stainless steel equipment. 

Disposable rocking bioreactors (RBs) are widely employed for cultivation of recombinant 

mammalian and insect cell lines, although the perception of inadequate mass transfer has 

prevented their application to bioprocesses based on microbial platforms. In an effort to 

thoroughly evaluate the suitability of disposable RBs for cultivation of aerobic microorganisms, 

a comparative study of one-dimensional (1D) and two-dimensional (2D) disposable RBs, and the 

conventional stirred tank reactor (STR) was performed. The comparison involved: 1) physical 

characterization of oxygen mass transfer efficiency and mixing intensity, 2) batch cultivation of 

Escherichia coli BL21 for comparison of growth characteristics, and 3) batch cultivation of 

recombinant E. coli BL21 expressing a clinical therapeutic, hCD83ext (the extracytoplasmic 

domain of human CD83). Oxygen mass transfer (evaluated as the mass transfer coefficient, kLa) 

was comparable between the 1D RB and STR (approximately 150 h-1) at low working volume 

(WV), declining linearly with increasing WV, while kLa was highest in the 2D RB for all tested 

WVs, providing the maximum kLa (394 h-1) at 3 L WV. Fast mixing (t95 of 8-20 s) was observed 

in all three systems for water and aqueous carboxymethylcellulose (CMC) solutions. Batch 

growth characteristics of E. coli BL21 were similar in each system, although acetate 

accumulation was significant in the 1D RB. Batch production of GST-hCD83ext (glutathione S-

transferase-hCD83ext fusion protein) resulted in similar soluble protein yields and inclusion 

body formation between bioreactors. Although cell growth and protein expression were 

comparable between all bioreactors, the 1D RB is not considered a suitable cultivation system 

for E. coli under experimental conditions given the significant acetate accumulation observed 
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and high supplemental oxygen requirement for low cell density cultures. On the other hand, 

considering its formidable mass transfer capacity and overall performance in batch cultivations, 

the CELL-tainer® is an attractive alternative to the STR for cultivation of recombinant E. coli 

expressing high value therapeutic proteins.  
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Chapter 1- Overview 
 

1.1 Research background 

Biopharmaceuticals are the fastest growing segment of the pharmaceutical industry, accounting 

for approximately one-sixth of the $600 billion global market by 2007 [1]. Due to innovations in 

recombinant protein technology over the last 10 years, the number of available therapeutics has 

dramatically increased along with product quality and titer [2, 3]. Biopharmaceuticals are 

categorized according to biological activity: blood factors (thrombolytics, anticoagulants), 

hormones, growth factors, cytokines, monoclonal antibodies (mAbs), and enzymes [4]. mAbs-

based products, accounting for 40% of total annual sales, are the most lucrative biological 

therapeutics on the market [1]. However, the rapidly increasing presence of ‘biosimilars’ is 

driving down large premiums once associated with new therapeutics [1, 5]. Additionally, high 

failure rates associated with biopharmaceuticals impart great risk to the considerable investment 

required for product development [3, 5]. The push to reduce capital investment in conjunction 

with dramatic increases in titer, pressure to reduce health care costs, preference (in some cases, 

requirement) to manufacture locally, and increased focus on multiproduct capability and niche 

markets drives the need for small, flexible, and cost effective manufacturing facilities [5, 6].  

Implementing disposable technology (i.e., bioreactors, depth filters, filtration cassettes, 

chromatography columns, piping, etc.) can address many of the concerns associated with 

biopharmaceutical process development [5-7]. Disposable components provide additional 

benefits beyond reduced initial capital investment and increased production flexibility, i.e., 

reduced occurrence of contamination (especially for multiproduct facilities) and labor costs 

associated with validation and cleaning, faster market entry due to expedited facility 
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construction, and shorter turnover times between production runs. On the other hand, disposable 

unit operations have potential drawbacks such as increased risk of failure, increased waste 

disposal costs, and additional operating costs due to regular component replacement which must 

be considered. The first widely adopted disposable bioreactor, the WAVE Bioreactor [8], was 

introduced in the late 1990s and was later acquired by GE Healthcare Life Sciences. The 

cultivation chamber is a disposable bag mounted on a rocking platform, facilitating enhanced 

surface aeration via wave propagation at the gas-liquid interface. Agitation intensity in rocking 

bioreactors (RBs) is controlled through adjustment of rocking rate (K), expressed in rocks per 

min (rpm) and vertical displacement (VD). Subsequent disposable formulations include rotary 

oscillating [9], orbitally shaken, pneumatically driven, and stirred cultivation systems [10]. 

Modern versions of these bioreactors are equipped with disposable or multiuse pH and dissolved 

oxygen (DO) probes, enabling sophisticated control schemes already employed in traditional 

stirred-tank reactors (STR).  

Initially, disposables were intended for mammalian cell culture prone to contamination 

(due to slow growth characteristics) and shear stress [11, 12]. The relatively low oxygen transfer 

required for mammalian and insect cell culture is easily achieved by disposable systems [13-16], 

although application to microbial cultivation has generally been avoided due to mass transfer 

limitations. Disposable RBs have been evaluated for cultivation of Saccharomyces cerevisiae 

[17] and Escherichia coli [18, 19] demonstrating their capability in generating low to moderate 

cell densities in batch and fed-batch mode. The latest development in disposable RBs, the two-

dimensional (2D) CELL-tainer® (CELLution Biotech), is differentiated by simultaneous rocking 

and horizontal movement, facilitating significantly higher oxygen mass transfer efficiency 

compared to one-dimensional (1D) RBs. High cell density cultivation of E. coli was achieved 



3 
 

during fed-batch operation at 12 and 120 L scales, and mass transfer efficiency (represented as 

the volumetric mass transfer coefficient, kLa) was comparable to conventional STRs [20]. 

As of 2011, approximately one-third of biopharmaceuticals having received regulatory 

approval in the United States and European Union are produced in Escherichia coli [4]. 

Demonstration of acceptable growth characteristics in disposable RBs was an important step 

towards establishing their suitability for biopharmaceutical production in microbial hosts. 

However, studies of recombinant protein expression extend only to relatively low value, 

prokaryotic proteins of no pharmaceutical interest [19, 20]. Given the considerable cost of 

disposable cultivation systems, their application is most appropriate for high value products such 

as recombinant therapeutics. Considering E. coli is the preferred recombinant host for production 

of many biopharmaceuticals, characterization of disposable RBs for eukaryotic therapeutic 

protein expression in E. coli was undertaken to provide valuable insight for future 

biopharmaceutical process development.  

 

1.2 Research objectives 

The overall objectives of this thesis were to: 

1) characterize 1D and 2D disposable RBs in terms of oxygen mass transfer efficiency (kLa) 

and mixing intensity (represented as the mixing time, tm); 

2) compare batch growth characteristics, and glucose and metabolite profiles of 

nonrecombinant E. coli in 1D and 2D disposable RBs to elucidate suitability for aerobic 

cultivation under typical conditions; and 

3) evaluate eukaryotic therapeutic protein expression in recombinant E. coli, in terms of titer 

and inclusion body formation, relative to the conventional STR. 

 



4 
 

1.3 Outline of thesis 

Chapter 2 is a review of economic comparison studies of stainless steel, hybrid (stainless steel 

and disposable), and fully disposable biopharmaceutical production schemes; measurements of 

oxygen mass transfer coefficients (kLa) and approaches to modelling mass transfer in bioreactors; 

measurements of mixing time (tm) and approaches to modelling mixing time in bioreactors; and 

typical cultivation conditions for recombinant E. coli and strategies to enhance recombinant 

protein expression. In Chapter 3, 1D and 2D disposable RBs are assessed and compared with 

conventional stirred tank reactor (STR) for recombinant therapeutic protein production in 

Escherichia coli. The comparison involves: 1) physical characterization of oxygen mass transfer 

efficiency and mixing intensity, 2) batch cultivation of non-recombinant BL21 for comparison of 

growth characteristics, and 3) batch cultivation of recombinant BL21 expressing a clinical 

therapeutic, hCD83ext (the extracytoplasmic domain of human CD83). Finally, Chapter 4 

summarizes the results from the investigation presented in Chapter 3 and implications to the 

biopharmaceutical industry, and proposes future studies to adequately characterize mass transfer, 

mixing, and recombinant protein production in disposable RBs. 
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Chapter 2 - Literature Review 

The considerable capital investment and high risk associated with product success and timing of 

market entry are critical factors under consideration in the planning stage of biopharmaceutical 

process development. The majority of biopharmaceutical processes are based on stainless steel 

components due to reliability and passive interaction with process media, buffers, etc. However, 

the considerable costs associated with stainless steel construction and large footprint of fixed unit 

operations ensures that even the smallest production schemes require investments well above $10 

million [3, 5-7]. For example, a small scale commercial facility operating a single 1,000 L 

stainless steel bioreactor would cost $25-40 million to construct [6, 7], while a higher capacity 

facility (≥ 10,000 L) can easily exceed $100 million [3, 6]. Additionally, novel 

biopharmaceutical life cycles are often short due to patent expiration and biosimilar introduction 

requiring jump investments every 5-10 years [1, 3, 5]. Integration of disposable components can 

significantly reduce capital investment and time-to-market, while enabling flexibility and 

increased productivity via reduced downtime. That aside, aspects such as production scale, 

expression host, and process conditions must also be carefully considered when selecting 

bioprocess unit operations. 

 

2.1 Cost effectiveness of disposable technology 

As previously discussed, disposable technology may afford key benefits for biopharmaceutical 

manufacturing in the appropriate context. Critical factors addressed early on in the development 

process are capital availability, time-to-market, and flexibility for future expansion (either for 

increased volume or additional products) [5]. Existing data indicates that significant reduction in 

capital investment is achievable by replacing stainless steel equipment with disposables, enabling 
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even distribution of capital costs over the project lifecycle. A case study of a 100 kg capacity 

mAb plant in which stainless steel and hybrid (stainless steel and disposable components) 

production platforms were compared, projected total capital cost reduction of 54% for hybrid 

versus stainless steel options [21]. This estimate is similar to that obtained in an earlier study in 

which a 42% reduction in fixed capital investment was projected for a fully disposable plant [5]. 

Variation in capital investment estimates can be significant given the dependence on Lang factor 

estimation, the ratio of total installed cost to equipment cost alone.  

Analysis of annual operating costs is a more complicated issue, particularly when 

evaluating hybrid production schemes. Relative to the conventional option, a fully disposable 

plant was projected to incur 70% greater running costs, primarily due to increased materials and 

waste disposal costs [5]. Downstream separation and purification equipment (i.e., membranes 

and chromatography columns) represented the largest expense for disposables replacement. This 

trend was observed in a subsequent cost analysis study in which the author pointed out that some 

companies use chromatography matrices in a product-specific manner, reducing the need for 

validation of performance in the absence of cross-contamination [22]. Interestingly, in this study 

operating costs were 30 and 19% lower for fully disposable and hybrid production facilities, 

respectively, compared to the stainless steel option. This is largely due to the higher number of 

projects completed annually in fully disposable and hybrid plants, owing to reduced (or absence 

of) downtime for clean-in-place/steam-in-place (CIP/SIP). This issue was not formally 

considered in the earlier study although the authors speculated that increased productivity via 

reduced turnaround time was a critical factor to address in future work [5]. Returning to the mAb 

production case study, annual operating costs were estimated to be 16% lower for the hybrid 

facility. However, certain limitations of this study must be considered: 1) disposable components 
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were mainly limited to storage bags for media, buffers, culture, etc. (disposable filters and 

membranes were employed but did not contribute significantly to cost adjustments); and 2) 

adjustments in productivity were not considered due to reduced downtime for CIP/SIP [21]. The 

first item is important as the use of disposable bioreactors, piping, ultrafiltration and diafiltration 

equipment, etc. could significantly increase waste disposal costs while, at the same time, further 

reduce utility and labor expenditures associated with CIP/SIP. The latter effect could outweigh 

the former as CIP/SIP was the greatest running expense for the stainless steel scenario [22]. In 

accordance with this study, increased productivity resulting from diminished downtime could 

further enhance cost savings estimated for the hybrid mAb production scheme.  

Another point to consider is the impact of expression host and reactor configuration, and 

inclusion of disposable chromatography matrices on yield. The preceding studies assumed equal 

yield for each scenario although sensitivity analyses indicated significant reductions in net 

present value (NPV) [5], or annual cost of goods (per gram of product) [22] for corresponding 

decrease in fermentation titer. Accordingly, selecting the appropriate bioreactor for cultivation of 

microbial expression hosts is a critical step in the development process. For example, opting for 

a disposable bioreactor to cultivate recombinant E. coli may reduce operating costs and time-to-

market while increasing annual productivity, if oxygen mass transfer is sufficient to support the 

required cell density and physiology for target protein titer. Table 2-1 presents a comparison of 

cost and performance metrics for stainless steel, hybrid, and fully disposable production 

facilities. Currently, fully disposable facilities are not necessarily a practical option, particularly 

when considering the substantial cost of disposable chromatography hardware for capturing and 

polishing therapeutics [6, 22]. Furthermore, disposable bioreactors are currently limited to 2000 

L or less such that higher production volumes will require multiple units in parallel, or 
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conventional stainless steel fermenters [6]. Consequently, the integration of disposable 

technology and biopharmaceutical development is an attractive option of increasing interest in 

industry, although factors such as expression host, production volume, and recovery costs must 

be carefully considered when deciding between disposable and stainless steel components. 

 

Table 2-1 - Comparison of cost and performance metrics between stainless steel, hybrid, and 

fully disposable production facilities [5, 21, 22]. 

Component Stainless 
steel 

Hybrid Fully 
disposable 

Fixed capital investment H M L 
Consumables/raw materials L M H 
Waste disposal L M H 
Utilities H M L 
Labor H M L 
Fermentation titer H M/H* M/H* 
Overall yield H M/H** M 
Production runs L M H 
H ≡ highest; M ≡ moderate; L ≡ lowest 
*dependent on choice of expression host and bioreactor 
**dependent on chromatography hardware 

 

2.2 Oxygen mass transfer in bioreactors 

Bioreactor selection is a critical step in the development of any commercially feasible 

bioprocess, particularly when microbial expression hosts are employed due to the high oxygen 

demand and viscous nature of fully developed cultures. The STR has been the default choice for 

cultivation of aerobic bacteria due to superior mass transfer and flexibility in terms of operating 

conditions (i.e., air flow, agitation, and pressure). The limiting factor for application of 

disposable bioreactors to microbial cultivation is assumed to be mass transfer. On the other hand, 

fed-batch operation at low growth rate along with supplemental oxygen has proven effective in 
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generating moderate to high cell densities in disposable RBs [19, 20]. Understanding the nature 

of oxygen transfer and response to fermentation parameters ensures appropriate bioreactor 

selection to achieve target yields.   

 In general, the oxygen transfer rate (OTR) is derived from the simple two film model in 

which resistance occurs across the thin film occurring on either side of the gas-liquid interface. 

Equation 1 is obtained by assuming mass transfer resistance is negligible on the gas side of the 

interface: 

𝑂𝑇𝑅 = 𝑑𝐶𝐿
𝑑𝑡

= 𝑘𝐿𝑎(𝐶∗ − 𝐶𝐿)     (1) 

where kLa, the volumetric mass transfer coefficient, is the product of the local mass transfer 

coefficient (kL) and interfacial area (a); C* is the bulk liquid saturation concentration of oxygen; 

and CL is the bulk liquid concentration of oxygen versus time (t) [23]. Mass transfer is driven by 

the concentration gradient between the interface and bulk liquid. The concentration gradient is 

affected by cellular oxygen uptake and solubility, the latter being a function of temperature, 

salinity, and pressure [24]. For the STR, spargers generate gas bubbles which are reduced in size 

(increasing interfacial area for mass transfer) and distributed by mechanically driven stirrers 

(e.g., Rushton turbine, curved blade turbine, curved blade paddle, flat blade paddle, etc.). 

Considerable effort has been made to develop empirical correlations for kLa based on parameters 

such as power input per unit volume (P/V), liquid effective viscosity (µe), and superficial gas 

velocity (Vs) [24]: 

𝑘𝐿𝑎 = 𝐴𝑉𝑠𝑎(𝑃/𝑉)𝑏𝜇𝑒𝑐      (2) 

The exponents found in Equation 2 vary significantly between studies, for example, [25-27], 

owing largely to experimental techniques used to measure kLa [27] and inherent difficulty in 

obtaining reproducible estimates. Alternatively, some correlations replace P/V with stirrer speed, 



10 
 

N [28-30], while others make use of dimensionless variables such as the Reynolds (ρNT/µe), 

Schmidt (µe/ρD), and Weber (ρN2T3/σ) numbers to evaluate kLa via the Sherwood number, 

kLaT2/D, where T is the stirrer diameter, ρ is fluid density, D is the oxygen diffusivity in liquid, 

and σ is the interfacial tension [31-33].  

A theoretical approach has also been used to determine kLa based on Higbie’s penetration 

theory [34], which estimates kL via the exposure time (te) for mass transfer represented by the 

ratio of the Kolmogorov length scale, η = (ν3/ε)0.25, and fluctuation velocity, u = (νε)0.25, of 

turbulent eddies [35] where ν is the kinematic viscosity and ε is the energy dissipation rate of 

turbulence: 

 𝑘𝐿 = 2� 𝐷
𝜋𝑡𝑒

= 2 �𝐷
𝜋
�
1
2� �𝜀

𝜈
�
1
4�     (3) 

A theoretical basis for kLa determination is attractive due to inconsistency between empirical 

correlations obtained under similar conditions, and the simplified manner in which dependencies 

on reactor geometrical parameters are lumped together (i.e., constant A in Equation 2). 

Theoretical models will provide a better understanding of the relationships between process 

parameters and kLa, reducing the difficulty inherent to bioreactor scale-up, a complicated process 

which is highly dependent on maintaining acceptable mass transfer. For example, referring to 

Equation 2, dependence on Vs varies widely (0.3≤ a ≤0.7) although an increase in kLa with air 

flow rate is anticipated (over the range of conditions tested). On the other hand, ε and, in turn, kL 

have an inverse dependence on Vs (aeration reduces power consumption relative to non-aerated 

systems), while interfacial area (a) increases with Vs [34]. Sensitivity analyses and optimization 

could enhance bioreactor performance and process efficiency, particularly when interactions 

between Vs and N are considered. Qualitatively, kLa is controlled by mechanical agitation for 

N>Nc (agitation controlled), where Nc is the critical impeller speed, negating the impact of 
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aeration [29, 36]. Similarly, under vigorous aeration and N<Nc, agitation has a negligible effect 

on kLa (bubbling controlled) [29]. A previous study demonstrated that constants associated with 

Vs and N in standard correlations vary significantly across the intermediate regime. [29]. 

Consequently, operation in the intermediate regime (the most common situation) would be most 

efficient under optimized conditions based on consideration of expression host, sensitivity of 

product to oxidation, relative utility and process gas costs, etc. Obviously, this approach could be 

extended to disposable bioreactors as models become available. kLa values from select studies 

are presented in Table 2-2. 

 

Table 2-2 - kLa data from selected studies of STRs 

Reference Vs x103 

(m/s) 
P/V x10-3 

(W/m3) 
N (s-1) DT 

(m) 
T  
(m) 

V 
(L) 

Liquid µe 
(mPa·s) 

kLa  
(h-1) 

[25] 6.3 0.6-4.8 4.2-8.3 0.9 0.27 600 water 1.0 170-1613 
 12.7 0.4-3.7       218-1228 
[27] 5.0 1.0-6.0 --- --- --- 9 water 1.0 125-220 
 14.0 0.5-6.0       150-360 
[29] 4.2 --- 1.7-

16.7 
0.15 0.05 2.7 water 1.0 23-250 

 11.3        60-360 
 0.9-

11.3 
 5.0      13-65 

   13.3      100-200 
[32] 3.8 --- 5-10 0.25 0.1 12.3 glycerol

-water 
9.1 70-230 

 2.0-8.0  6.7      100-150 
 3.8  5.0-

10.0 
   CMC 

(0.4 %) 
--- 15-180 

[28] 0.6-2.1 --- 5.0 0.12 0.05 2 xanthan  
gum 

2.7 13-18 

 2.1  5.0-6.7      20-30 
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As previously discussed, oxygen transfer in disposable RBs occurs through surface 

aeration via wave propagation at the gas-liquid interface. Although empirical correlations 

relating kLa to rocking rate, K (expressed as rocks/min, rpm), VD, working volume (WV), air 

flow rate, and P/V have not been formulated, general trends have been established for 1D and 2D 

RBs. During the introduction of the 1D RB, kLa was reported to depend weakly on K at low air 

flow rate (≤ 0.05 vvm), while increasing significantly with rpm at 0.1 vvm [8]. The kLa increased 

moderately from 0.01 to 0.04 vvm, but increased dramatically from 0.04 to 0.1 vvm (2.7-fold). In 

another study of a modified GE Wave bioreactor fitted with a frit sparger, kLa increased 

marginally with K without headspace aeration, although for agitation below 25 rpm the effect of 

headspace aeration was less significant [17]. Similarly, increasing the gas flow rate from 0.25 to 

0.5 vvm corresponded to a small increase in kLa (14%) at moderate rocking speeds [37]. 

Accordingly, the low gas flow capacity of 1D systems is not a limiting factor during cultivation 

of mammalian, plant, and insect cells at low to moderate K. However, increased gas flow 

capacity may provide significant improvements in oxygen transfer at high agitation, bolstering 

the potential of 1D RBs for aerobic microbial fermentation. As anticipated, kLa increased with 

VD, although K and VD were relatively low as mAB production in a myeloma/mouse hybridoma 

cell line was under investigation [38].  

Similar trends in kLa were observed for K and VD in the CELL-tainer® compared to 

Wave bioreactor. kLa increased with K up to 35 rpm (maximum rpm tested) for 5, 10, and 15 L 

WV (20 L cultivation bag), exceeding values of 500 h-1 [20], and no significant increase in kLa 

was observed beyond 40 rpm for 15 L WV except under maximum VD [39].  Two key 

advantages of the CELL-tainer® relative to 1D RBs are the capacity to 1) process up to 75% of 

total bag volume (compared to 50% in 1D RB) while maintaining formidable kLa, and 2) handle 



13 
 

significantly higher gas flow rates, although kLa is not dependent on air flow rate [39]. Due to the 

complex nature of fluid flow in the CELL-tainer®, optimization of VD and K for a given WV 

may be prudent. During 10-fold scale-up of the CELL-tainer®, kLa maxima were observed for 

different combinations of rpm and WV [20]. It follows that selecting extremes of K for any WV 

may inhibit the kLa, while maximizing energy consumption. 

To better understand the dynamics of fluid flow in RBs, one must consider the nature of 

wave development in shallow water. 

 
Figure 2-1 - General characteristics of a wave [40] 

 

Referring to Figure 2-1, a wave of period τ, height H, and length L initially travels at speed C = 

L/τ. As the wave travels into shore, the water depth beneath it (h) decreases, until the wave 

reaches shallow water based on the criterion, h/L ≈ 1/20 [40]. In shallow water, wave speed is 

described by Equation 4: 

𝐶 = �𝑔(ℎ −𝑚𝑥)      (4) 

where x is positive in the direction of the shore and m is the slope of the shore [41]. H is 

inversely proportional to C, and as the wave slows down (i.e. as h decreases), H begins to 
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increase (a process known as shoaling) until the critical height is achieved. At this point, wave 

breakage occurs dissipating energy in the form of turbulence. The water depth at which breakage 

occurs (hb) is approximated by Equation 5 [40]: 

ℎ𝑏 = 1

𝑔
1
5� 𝜅

4
5�
�𝐻0

2𝐶0𝑐𝑜𝑠𝜃0
2

�
2
5�
     (5) 

where κ is a constant dependent on the slope of the shore (m), θ is the angle of incidence of the 

wave, and the zero subscript denotes properties in deep water. The breaking height (Hb) is 

simply, Hb = κhb  [40]. In general, H0 and C0 increase with τ [42], C and κ decrease with 

increasing m [40, 41], and τ depends on the total energy of the wave [42]. In the context of a 

disposable RB, C and κ decrease with increasing VD, and τ depends upon P/V which is dictated 

by WV, K, and VD. The bag geometry is fixed, and as a result, H cannot exceed an upper limit. 

Due to the increase in h across the length of the cultivation bag, and, in part, a restriction on H, C 

will tend to decrease more gradually as WV increases. Consequently, as WV increases the wave 

travels farther across the bag before breaking, approaching the end of the bag opposite inception 

for large WV. Delayed breaking of the wave reduces the extent of turbulent air entrainment, in 

turn, reducing mass transfer (and the kLa). This logic favors smaller WV to obtain the maximum 

kLa. A final point to consider is the total wave energy (per unit width), E, taken as the sum of a 

wave’s potential and kinetic energies as per Equation 6 [40]: 

𝐸 = 1
8𝜌𝑔𝐻

2𝐿                    (6) 

E could be used to estimate ε for a breaking wave which, in turn, could be used to determine kL 

via Equation 3. This approach could be used in subsequent studies to obtain theoretical models of 

mass transfer in disposable RBs in the same way it has been applied to STRs [34]. Note that 

Equation 6 provides only an approximation of E as its derivation assumes the wave to be a non-

dissipative system, and is based on linear wave theory which is most accurate in water of 
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intermediate depth [40].  In any case, it is clear that deeper investigation is required to elucidate 

the effects of operational parameters on mass transfer in RBs. While empirical correlations 

describing kLa would be a step in the right direction, the development of theoretical models or 

application of advanced computational methods (i.e. computational fluid dynamics, CFD) will 

greatly enhance process optimization and scale-up. Table 2-3 contains kLa values for disposable 

RBs obtained under different operating conditions. 

 

Table 2-3 - kLa data from studies of disposable RBs 

Reference Type Flow rate 
(vvm) 

VD 
(°) 

Rocking 
rate (rpm) 

WV(L) Bag 
volume (L) 

Liquid kLa (h-1) 

[8] 1D 0.01 --- 5-30 10 20 Water 0.6 
  0.04      0.5-1.5 
  0.10      0.7-4.0 
[17] 1D 0.10 10 40 5 10 PBS, 

antifoam 
38.0 

       PBS 68.0 
[38] 1D 0.05 4.5 8-13 2 10 --- 1.6-3.0 
   6 8    3.2 
   5 8-10 3.5   2.3 
[20] 2D --- --- 35 5-15 20 --- 50-500 
[39] 2D --- 8 24-48 15 20 water 40-200 
   12 30-48    120-240 
    24-48    60-295 
 

 

2.3 Mixing intensity in bioreactors 

The quality of bulk mixing in STRs can be expressed in terms of the axial dispersion coefficient 

(Ez), or the mixing time (tm). [43]. Ez is an important design characteristic describing the extent of 

mixing, although tm, representing the time required to reach a specified degree of homogeneity 

after pulse introduction, is considered more relevant in the field of biotechnology [44]. The 

distribution of substrate (i.e. oxygen, glucose, etc.), metabolites (i.e., lactate, acetate, ethanol, 
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etc.), and acid and base for pH control can significantly impact culture performance [45, 46]. 

Accordingly, in combination with kLa, tm is a critical parameter used in the scale-up of industrial 

fermenters. As in the determination of kLa, Kolmogorov’s theory of isotropic turbulence has been 

applied to models describing Ez in STRs [43, 44]. A relationship between Ez and tm was 

established leading to the conclusion that, in the turbulent flow regime, the dimensionless mixing 

time (tmN) is essentially constant for fixed reactor configurations [44], substantiating the results 

of previous studies [47]. However, relatively simple theoretical models of this nature do not 

adequately address the influence of aeration on tm, as only an indirect dependence of ε on gas 

flow rate exists (as previously discussed in Section 2.3).  

Empirical correlations have been developed for dimensionless mixing time in single stage 

(i.e. single agitator) unaerated systems, and for aerated systems operating above and below Nc 

[36]. In each case, agreement with experimental data was within 20-25%. More recently, the use 

of multi-impeller STRs of reduced diameter/height (DT/HT) ratios has become common practice, 

reducing the footprint of larger fermenters. Multi-stage agitation requires new approaches to 

hydrodynamic characterization given the increased complexity of fluid and gas dispersion. 

Currently, the Compartment Model Approach (CMA), an effective tool demonstrated in earlier 

studies of bioreactor scale-up [48, 49], is commonly used to evaluate mixing time in multi-stage 

STRs [50-55]. Studies in which CMA is applied vary in the assignment of reactor compartments. 

The simplest configuration consists of a single compartment per agitator stage [51, 52], where 

each compartment is treated as an ideally mixed vessel in series as per Equation 7: 
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Figure 2-2 - Schematic representation of single compartment (per stage) model for STR with 

three agitators (stages). 

 

where Vk is the volume of compartment k; Ck is the tracer concentration in compartment k; and 

the exchange flow rate (QE) between compartments is the unknown parameter obtained through 

regression analysis [51, 52]. Although single compartment/stage models were considered 

adequate (as long as agitator spacing is ≥ DT), increasing the number of compartments (up to 

four/stage) improved model accuracy in another study of an unaerated system [50]. Additionally, 

other investigators have employed as many as 15 compartments per stage, plus an additional 10 

compartments for the secondary circulation loop (induced by aeration) in the reactor top, for 

axisymmetric STR modelling. Sensitivity analysis indicated this configuration to be suitable for 

modeling overshoot response curves, and model estimates of tm were in good agreement with 

experimental data (±5-15%) [54, 55]. As expected, more sophisticated models require estimation 

of an increasing number of flow parameters, e.g. the division of exchange flow to components of 

QE 

QE QE 

QE 
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circulation flow (QCF) due to mechanical power, axial turbulent exchange (QTE), and gas induced 

flow (QGI) resulting from density gradients due to gas hold-up [54].  

As previously discussed, the accuracy of empirical models is often unsatisfactory for 

moderate variations in operating conditions and reactor configurations. While CMA is a useful 

tool for bioreactor design, it suffers from reliance on regression analysis of empirical correlations 

to obtain flow parameter estimates. A fundamental approach to reactor characterization is 

computational fluid dynamics (CFD), an advanced technique recently applied to modelling of 

aerated STRs [56-58] and disposable RBs [59]. CFD relies on the numerical solution of 

continuity equations for mass, momentum, and energy to simulate multi-phase flow systems 

[56]. In a recent CFD simulation of a single-stage aerated STR, excellent agreement was 

observed between experimental and predicted tm (±5-10%) [58], demonstrating the utility of the 

theoretical approach to bioreactor modelling. It is anticipated that CFD will be the dominant 

method of bioreactor scale-up in the years to come. 

A reduction in tm with increasing N is intuitive and has been well established [36, 51, 55]. 

A pronounced effect on tm was observed between impeller types in the absence of aeration. Axial 

flow impellers (Scaba type) were found to reduce tm by half compared to Rushton impellers 

(radial flow) for the same specific power consumption [55], which was attributed to reduced 

zoning in the flow field of the axial impeller facilitating enhanced circulation and QE. When 

aeration is present, two opposing effects dictate power distribution in STRs: 1) reduced 

mechanical power from the agitator(s) due to gas hold-up (ρ declines), and 2) induced axial flow 

from rising air bubbles [53]. Earlier work demonstrated that below Nc, an increase in Vs reduces 

tm to a point at which it levels off as flow rate increases [36]. For operation near Nc, tm initially 

increases upon aeration, however, further increase in Vs reduces tm until it eventually stabilizes. 
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Similar trends were observed in a later study in which drastic reductions in tm were observed 

during aerated operation at low N (<150 rpm), relative to no aeration, after which tm increased 

gradually with N approaching the unaerated condition [51]. The decrease in tm at high Vs in the 

critical agitation region observed in the former study was most likely due to impeller flooding. A 

slight increase in tm with aeration rate was observed prior to a sharp drop as flooding commenced 

[54]. Table 2-4 contains selected tm values for STRs obtained under different operating 

conditions. 

 

Table 2-4 - tm data from selected studies of STRs 

Reference Vs x103 

(m/s) 
N (s-1) DT 

(m) 
T  
(m) 

V 
(L) 

Liquid Agitator 
type 

t95  
(s) 

[36] 0-30 5 0.3 0.10 21.2 Water FBDT 10.3-4.0 
  10.6      5.5-7.5 
  6.4     PBT 10.3-7.8 
  14.3      5.0-6.5 
[51] 0 2-6 0.29 0.1 76.6 Water RT x 4 195-70 
 3.8       30-75 
 10.1 0-6      15-75 
 0 2-6     PBT x 4 235-80 
 3.8       20-70 
 10.1 0-6      15-40 
[60] 3.7 5-10 0.24 0.08 10.9 Water RT 16-8 
 0-7.4 6.7      10-13 
  8.3      8-9.5 
[53] 0-8.7 2.7 0.29 0.146 58.7 Water RT x 3 82-12 
  5.0      43-48 
  10.0      21-28 
FBDT: flat bladed disc turbine 
PBT: pitched blade turbine 
RT: Rushton turbine 
 
 
 As is the case for mass transfer studies, investigations of mixing characteristics in 

disposable RBs are limited in number. Upon introduction of the Wave Bioreactor, tm of 5-10 s 

was reported for 20 L cultivations bags (10 L WV), while 200 L bags (100 L WV) could achieve 



20 
 

homogeneity in 60 s [8]. However, operating conditions (i.e. K and VD) were not fully specified 

providing only a rough estimate of expected performance. More detailed analysis of mixing in 

1D RBs was performed in a later study of the GE Wave bioreactor [37]. A modified Reynolds 

number (Remod,1D) was derived by implementing correction factors B, accounting for the effects 

of bag geometry and VD on the volumetric flow rate (Q) of fluid, and F, relating Remod,1D to the 

modified Reynolds number obtained for stirred reactors (Remod,str): 

𝑅𝑒𝑚𝑜𝑑,1𝐷 = 𝑄𝐾𝐵𝐹
15𝜐(2𝑦+𝑊)

     (8) 

where y is the liquid level in the bag and W is the bag width. The critical value of Remod,1D, i.e. 

for which turbulent flow ensues, was found to vary significantly with cultivation bag size, 

ranging from 400 to 1000. Application of moderate to high K (≥18 rpm) and VD (≥6°) was 

sufficient to ensure operation in the turbulent flow regime. Accordingly, tm was independent of 

WV during operation under the specified conditions in an analogous manner to the STR, for 

which dimensionless mixing time was constant (with increasing Remod,str) in the turbulent flow 

regime for a particular reactor configuration. These findings indicate that adequate mixing 

intensity is achievable for moderate P/V; however, mass transfer remains the limiting factor for 

cultures of high oxygen demand. As anticipated, tm was a strong function of K and VD [37]. 

 Mixing characteristics were thoroughly evaluated in both the BIOSTAT® Cultibag RM 

(1D RB)  and CELL-tainer® via response surface modelling of tm as a function of K, VD, and 

WV [61]. Equations 9 and 10 were proposed for the BIOSTAT® Cultibag RM and CELL-

tainer®, respectively: 

𝑡𝑚 = −125.82𝐾 − 42.89𝑉𝐷 + 135.65𝐾2 + 42.08𝐾 ∙ 𝑉𝐷     (9) 

𝑡𝑚 = −0.308𝐾 − 0.345𝑉𝐷 + 0.179𝑊𝑉 + 0.219𝑉𝐷2 − 0.112𝐾 ∙VD (10) 
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Adherent Vero cells were cultivated in the 1D RB first to establish conditions (corresponding to 

measured tm) for which microcarrier suspension and homogeneity were acceptable. Process 

transfer to the CELL-tainer® was achieved using Equation 10 to establish K and VD (for 3 L 

WV) corresponding to tm established in the 1D system. This approach was successful as cell 

density, microcarrier distribution, metabolite profiles, and virus production were comparable 

between 1D and 2D RBs. As in the previous study, WV did not significantly impact tm in the 1D 

RB, as per the proposed model (Equation 9), although this parameter was included in the model 

for the CELL-tainer® (Equation 10). However, the full range of K was not tested in the latter 

case such that the CELL-tainer® may not have been operating in the fully turbulent flow regime. 

In a previously mentioned study, tm estimation was conducted in both 20 and 200 L cultivation 

bags for different WV [20]. As in the previous study, tm decreased with increasing K and a minor 

dependence on WV appeared to exist, although the latter observation is inconclusive based on 

the negligible difference observed between many of the data points and lack of available 

standard errors. The authors pointed out that the modified Reynolds number derived for the 1D 

RB (Remod,1D) may not be adequate in describing the hydrodynamics of the CELL-tainer® as the 

fluid is completely passing the point of rotation due to horizontal platform movement. In any 

case, further investigation of wave propagation, velocity distribution, and shear rates via 

advanced modelling techniques such as CFD would greatly improve our understanding of the 

complex hydrodynamics in 2D RBs. CFD has been successfully employed for this purpose in 1D 

RBs [59], and is proving to be an indispensable tool for bioreactor scale-up. Table 2-5 contains 

tm data for disposable RBs: 
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Table 2-5 - tm data for disposable RBs 

Reference Type VD 
(°) 

Rocking 
rate (rpm) 

WV 
(L) 

Bag volume 
(L) 

Liquid t95  
(s) 

[37] 1D 5 6-24 80 200 water 540-120 
    100   880-120 
  8 6-20 80   320-90 
    100   390-90 
  10  80   200-70 
    100   240-70 
[61] 1D 4 6-30 1 2 PBS 300-30* 
  8 10, 16    200, 95* 
 2D 8.5 15 5 20  65* 
  17 5, 25    125, 20* 
  8.5 5-25 10   200-50* 
  17 15    70* 
  8.5 15 15   150* 
  17 5, 25    270, 45* 
[20] 2D --- 15-35 5 20 water 15-9 
    10   16-14 
    15   20-14 
   8-30 75 200  138-100 
    115   140-66 
   15, 30 150   114, 84 
*t85 

 
 
2.4 Cultivation of E. coli for recombinant protein expression  

E. coli is the organism of choice for industrial recombinant protein production due to 1) its 

superior growth characteristics in inexpensive media, 2) high productivity, 3) the extensive 

knowledge of its physiology, and 4) the availability of advanced techniques for genetic 

manipulation [4, 62, 63]. Obtaining high level protein expression in E. coli is a challenging 

endeavor, one that demands compromise between cell growth and functional protein expression. 

On the one hand, cell densities exceeding 200 g/L dry cell weight (DCW) have been obtained 

during dialysis fermentation of E. coli [64], while on the other, high level expression can result 

in yields of up to 50% of total cellular protein via strong promoters [65]. Cultivation conditions 
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facilitating optimal growth rarely favor high functional protein yields [63] such that process 

optimization is required to identify satisfactory conditions for both. 

 Process development for recombinant protein expression in E. coli requires optimization 

of media components, temperature, oxygen saturation, agitation, and induction conditions. Media 

tailoring is an essential step in bioprocess development as an appropriate formulation facilitates 

control of growth rate (µ), cell density, and metabolite formation [62, 66, 67], protein folding 

and solubility [68], and downstream purification of recombinant proteins [69]. Defined media 

containing essential nutrients such as ammonium, phosphorus, zinc, iron, and magnesium can 

significantly improve biomass yields relative to complex media (i.e. lysogeny broth) [62], while 

glucose limiting feeding strategies are used to moderate growth rate, in turn, reducing respiration 

and metabolite formation [62, 70]. Inclusion of the trace elements selenium, nickel, and 

molybdenum was shown to reduce formate accumulation in oxygen limited fed-batch cultures of 

strain W3110 through activation of the formate hydrogenylase (FHL) complex [67]. 

Additionally, higher growth rates were achievable prior to the onset of significant acetate 

accumulation in glucose-mineral salts media as compared to complex media (0.35 versus 0.2 h-

1), and the maximum specific acetate production rate was two-fold greater in complex media 

[71]. Inhibitory acetate levels seem to vary significantly between strains and in the presence of 

different carbon sources. One study of strain K12 found acetate to be growth inhibiting at 

concentrations as low as 0.5 g/L in glucose minimal media, while growth inhibition occurred 

above 1 g/L with glycerol as sole carbon source [72]. On the other hand, growth inhibition of 

recombinant MC1061 (K12 derivative) expressing human growth hormone (hGH) was observed 

once acetate reached 6 g/L in semi-defined glucose media [73]. Specific hGH production 
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decreased when acetate exceeded 2.4 g/L. As a general rule of thumb, however, acetate should 

be maintained below 2 g/L to avoid inhibition of growth and protein expression [62].  

  Cultivation of E. coli for recombinant protein expression is often conducted at 

suboptimal growth temperatures to facilitate protein folding [68], reduce proteolytic degradation 

[74], and enhance chaperone activity [75]. Penicillin acylase (PGA), a common industrial 

enzyme used in the production of semisynthetic penicillins and cephalosporins, is produced via 

fermentation of recombinant E. coli at temperatures of 25-30 °C to enhance translation and 

enable proper folding [76]. Particularly low optimal temperature (21°C) has been reported for 

functional expression of the κ-chain and Fd fragment of an antigen-binding fragment (Fab) 

possessing antibody activity against carcinoembryonic antigen [77]. While the growth rate of    

E. coli is significantly diminished at temperatures below 30 °C, expression of heterologous 

chaperones originating from a psychrophilic organism (Oleispira Antarctica) was shown to 

significantly increase growth rate at low temperature (< 15°C) [75]. Tailoring the temperature 

dependency of growth rate based on optimal protein expression conditions could be an attractive 

genetic strategy in the future.  

 Critical DO in E. coli fermentations, based on the criterion µ = 0.97µmax, was reported as 

relatively low (0.12 mg/L) [78], although in practice DO is maintained well above critical levels 

to minimize metabolite formation [64, 79]. DO is controlled through a cascade of agitation rate 

and gas flow composition (oxygen/air) and volume, and has been used as feed indicator in fed-

batch cultivations [80]. Mass transfer in high cell density (HCD) cultures is a limiting factor due 

to the poor solubility of oxygen in aqueous media and high oxygen demand of fully developed 

cultures. Fed-batch strategies in which the carbon source remains low to reduce oxygen 

requirement are commonly employed to offset inadequate oxygen transfer [81]. While average 



25 
 

oxygen levels in a bioreactor are typically not excessive, local concentrations can be markedly 

elevated in oxygen-enriched cultures, particularly in the vicinity of the sparger(s) [82]. Oxidative 

stress from exposure to reactive oxygen species (ROS) such as H2O2, O2
-, and OH∙ can result in 

DNA instability, and protein and lipid denaturation [83]. Previous studies have demonstrated that 

the effects of excess DO on the growth of E. coli are strain dependent. Marginal reductions in the 

growth rates of strains TB-1 [84], W3110 [85], and MG1655 [86] were observed in oxygen-

enriched culture, while the growth rate of JM101 declined significantly [84]. Moreover, excess 

DO can reduce the yields of certain recombinant proteins via oxidation of Met and Cys residues 

[83], resulting in misfolding, loss of activity, and protease degradation [87, 88]. Reduced yields 

have been observed for recombinant hGH [85], p24Gag (human immunodeficiency virus-1 

protein) [89], and monoamine oxidase (MAO) [90] in oxygen-enriched E. coli fermentations. 

 Selection of induction conditions (i.e. inducer concentration and induction timing) 

depends on the structure of recombinant DNA, expression host, and type of desired product. For 

inducible expression systems, e.g. those derived from the lac operon of E. coli, promoter 

strength, translational efficiency, and posttranslational processing capacity dictate optimal 

inducer concentration [91, 92]. Plasmid copy number is usually complementary to promoter 

strength [91], although copy number can be manipulated to tailor gene dosage [93]. A strong 

promoter is most beneficial when structural components such as ribosome binding site (RBS), 

start codon, and spacer between RBS and start codon are optimized [94] reducing bottlenecks 

associated with translation. Strong promoters coupled with excessive inducer levels may cause 

severe insoluble protein aggregation (inclusion bodies) resulting in reduced soluble protein 

production and cell lysis [92]. Moreover, optimal inducer concentrations vary widely for 

different expression systems (i.e. strain-vector-promoter combinations) intended for the same 
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protein, such that inducer optimization is required upon modification of expression vector or 

strain. For example, in strain JM109, specific PGA activity was highest upon induction of the trc 

promoter with 0.05 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), while specific activity 

peaked at 0.2 mM IPTG for T7 driven expression (peak specific activity was within 7%) [95]. 

Differences in posttranslational processing efficiency (i.e. translocation, proteolysis, and folding) 

between strains also influences extent of induction [92], although coexpression of cytoplasmic 

chaperones may improve posttranslational maturation, in turn, reducing inclusion body formation 

[96]. In general, for lac derived promoters, it is generally accepted that IPTG need not exceed 1 

mM for full induction of protein expression [97]. Induction timing depends on the type of 

recombinant protein expressed (i.e. growth, mixed-growth, or non-growth associated) [76, 98] 

and the extent of growth arrest upon induction [97]. Induction during exponential phase (i.e. at 

high growth rate) is optimal  for expression of growth-associated proteins [98], although for 

mixed-growth associated products induction could be delayed until early stationary phase, 

potentially improving yields via increased biomass accumulation during uninduced exponential 

growth [76]. Accordingly, induction during early stationary phase at maximum cell density is 

ideal for non-growth associated protein production.  
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3.1 Introduction 

Due to the highly competitive nature of today’s biopharmaceutical market and the high failure 

rates associated with biopharmaceuticals [5], flexible and cost-effective manufacturing facilities 

are prerequisite for survival of biopharmaceutical producers. Over the last decade, disposable 

bioreactors have become integral components in the production of many high-value 

biopharmaceuticals [6]. Advantages of disposable bioreactors compared to conventional tank 

reactors include high flexibility, reduced occurrence of cross-contamination, lower capital 

investment, reduced labor costs associated with validation and cleaning, and shorter turnover 

times between production runs [5, 10]. Disposable bioreactors are classified by mode of power 

input as mechanically driven (wave-mixed, stirred, orbitally shaken or vertically oscillating), 

pneumatically driven, or hybrid systems [10].  

Wave-mixed RBs were introduced in the late 1990s [8], and are commonly employed in 

the production of biopharmaceutical products (e.g. monoclonal antibodies, vaccines, therapeutic 

and diagnostic proteins, etc.) in mammalian [13, 15], plant [99], insect [16], and human cell 

cultures [100]. These cultivation systems typically consist of an oscillating or sectional platform, 

supporting one or more pre-sterilized cultivation bags made of biologically inert polymers such 

as polyethylene, polypropylene, or polytetrafluoroethylene. Temperature is controlled through 

the moving platform or external cabinet. Bags are equipped with disposable or multiuse online 

pH and DO sensors. Gas-liquid mass transfer occurs through surface aeration and turbulent air 

entrainment via wave propagation and is controlled by adjustment of VD and rocking rate. While 

reports of cultivation of microorganisms in disposable RBs [17-20] exist, it is commonly 

assumed that these disposable systems are not capable of meeting the high oxygen demand of 

microbial cultures. Towards the end of 2011, 66 out of 211 biopharmaceuticals receiving 
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regulatory approval in the United States and European Union are produced in Escherichia coli 

while mammalian cells represent the most common host system for biopharmaceutical 

production [1]. However, few reports exist on the application of disposable RBs to recombinant 

therapeutic protein production in E. coli.  

The oscillation trajectory for most RB platforms is 1D, limiting the extent of wave 

development and, in turn, the efficiency of mass transfer. The CELL-tainer®, a RB with an 

innovative design of 2D oscillation trajectory, moves around the axis of rotation in a closed loop 

facilitating simultaneous vertical and horizontal displacement [61]. 1D systems tilt along a 

central pivot axis which only a portion of the fluid is able to pass with each oscillation [59]. In 

the CELL-tainer®, the fluid completely passes the center of the bag due to the additional 

horizontal movement, which may partially explain increased mass transfer due to additional film 

formation along the bottom of the bag [20]. Additionally, the CELL-tainer® provides more 

efficient mass transfer with respect to specific power input, and is capable of processing larger 

WVs and higher gas flow rates compared to 1D RBs [39]. Previous studies of oxygen transfer 

efficiency in 1D RBs report kLa values in range of 38 to 55 h-1 [17, 19], while kLa exceeded 500 

h-1 in the CELL-tainer® at maximum WV [20]. In this study, the CELL-tainer® was used for 

recombinant therapeutic protein production in E. coli and the culture performance was compared 

with the traditional stirred-tank reactor (STR) and 1D RB. The target protein of GST-hCD83ext 

is a protein fusion of glutathione S-transferase and the extracytoplasmic domain of human CD83 

(hCD83ext), and the bioprocess for its expression and purification was previously developed 

[63]. We specifically investigated oxygen transfer efficiency and mixing intensity of 1D and 2D 

disposable RBs to evaluate performance relative to the STR. RBs are believed to provide an 

environment suitable for shear-sensitive and fragile microbial recombinant cells. Batch growth 
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characteristics, glucose consumption, and metabolite profiles of non-recombinant E. coli were 

compared to elucidate suitability of RBs for cultivation under typical culture conditions. Also, 

culture performance for recombinant GST-hCD83ext expression was evaluated under previously 

optimized culture conditions, and soluble and insoluble fractions of cell lysates were analyzed to 

assess titer and inclusion body formation.  

 

3.2 Materials and methods 

3.2.1 Physical characterization and OUR estimation 

10 L and 20 L cultivation bags were used for physical characterization and cultivation in the 1D 

and 2D (CELL-tainer®, CELLution Biotech, The Netherlands) disposable RBs, respectively. 

Different WVs were tested under conditions providing maximum oxygen transfer, i.e. 40 rpm 

and 12° VD (1D RB), and 40 rpm and 17° VD (CELL-tainer®). Trials were conducted at 28 °C 

and 0.4 vessel volume per minute (vvm) aeration rate. Measurements of kLa were performed 

using the dynamic “gas out-gas in” method [101]. The cultivation chamber was filled with an 

appropriate volume of deionized water, which was subsequently stripped of oxygen by nitrogen 

purging until the DO level fell below 5% of air saturation. The headspace was evacuated with a 

vacuum pump (GAST, Michigan, USA) and then filled with air. Once the headspace was full, 

agitation resumed and DO measurements were recorded at appropriate time intervals.  An optical 

DO sensor was used without the oxygen permeable membrane resulting in a time constant of < 6 

s.  kLa estimates were obtained from the mass balance equation: 

𝑙𝑛 � 𝐷𝑂
∗−𝐷𝑂(𝑡)

𝐷𝑂∗−𝐷𝑂(𝑡0)
� = −𝑘𝐿𝑎(𝑡 − 𝑡0)     (11) 

where DO* is the saturation reading of the probe.  The volumetric oxygen uptake rate (OUR) was 

measured during exponential growth by temporarily stopping the supply of gas to the cultivation 
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chamber, evacuating the headspace, and recording DO measurements upon resuming platform 

movement.  The following mass balance equation was used to estimate the volumetric OUR: 

𝐶𝑂2,𝑙(𝑡0) − 𝐶𝑂2,𝑙(𝑡) = 𝑂𝑈𝑅(𝑡 − 𝑡0)     (12) 

where 𝐶𝑂2,𝑙 is oxygen concentration in the liquid phase (approximated using solubility data and 

DO measurements). tm was evaluated by adding an acidic tracer (HCl) to the system at a steady-

state pH, and estimating the time required to achieve 95% of the pH set-point change (t95). 

Experimental conditions were identical for kLa and tm estimation. kLa, OUR, and tm 

measurements in the 1 L STR (Omni-Culture, VirTis, NY, USA) were performed similarly, 

except that headspace evacuation and filling was not required, enabling continuous operation. 

For the STR, tank diameter = 10 cm, stirrer diameter = 5 cm (2 × 6 flat blade paddle), liquid 

height = 12 cm, and agitation was maintained at 600 revolutions per minute (rpm). All other 

conditions were maintained the same as those of the disposable RBs. 

 

3.2.2 Bacterial strains and plasmids 

E. coli BL21 (F- ompT gal [dcm] [lon] hsdSB (rB
- mB

-) λ(DE3)) was used to investigate growth 

characteristics.  Plasmid pGEX2ThCD83ext containing hCD83ext cDNA fused to the gst gene, 

served as expression vector for production of recombinant GST-hCD83ext under control of the 

strong tac promoter. BL21 containing plasmid pLysS harboring the gene encoding T7 lysozyme 

was used as the expression host to minimize leaky expression [102]. 

 

3.2.3 Cultivation 

Cells were maintained as glycerol stocks at -80 °C and revived on LB agar plates (10 g/L NaCl, 

5 g/L Bacto yeast extract, 10 g/L Bacto Tryptone, 15 g/L Bacto Agar) supplemented with 
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ampicillin (50 mg/L) and chloramphenicol (17 mg/L) as needed. Selected colonies were 

transferred to LB shake-flasks and grown for 16 h at 225 rpm and 37 °C in an orbital shaker 

(New Brunswick Scientific, New Jersey, USA) to generate the seed culture. E. coli BL21 was 

cultivated in LB broth supplemented with 20 g/L glucose and 15 µL/L Antifoam 204 (Sigma 

Aldrich). Cultivations were performed at 30 °C, 0.4 vvm  aeration rate, 40 vol% O2, 40 rpm and 

12° VD (1D RB), 40 rpm and 17° VD (CELL-tainer®), and 600 rpm (STR). pH was maintained 

at 6.8 ± 0.1. Recombinant BL21(pGEX2ThCD83ext, pLysS) was cultivated in modified LB 

broth (5 g/L NaCl, 20 g/L Bacto yeast extract, 20 g/L Bacto tryptone) supplemented with 5 g/L 

glucose, 15 µL/L Antifoam 204, and 50 mg/L ampicillin. The same cultivation conditions were 

used as for non-recombinant BL21 except for small variations in temperature (28 °C) and pH (7 

± 0.1). When the cell density reached 1.5-1.8 OD600, isopropyl β-D-thiogalactopyranoside 

(IPTG) was added to 0.5 mM for induction of protein expression.   

 

3.2.4 Sample preparation and analysis 

To obtain cell extract, cells in the amount of 30 OD600-units (defined as the product of OD600 and 

sample volume in mL) were centrifuged at 8,000g and 2 °C for 10 min. The supernatant was 

collected and filter sterilized for analysis of glucose and metabolites using a Shimadzu LC-10AT 

HPLC with RID-10A refractive index detector (Shimadzu, Kyoto, Japan) and Aminex HPX-87H 

column (Bio-Rad Laboratories, CA, USA). The cell pellet was resuspended in 1.5 mL 

phosphate-buffered saline (PBS) and sonicated intermittently (0.5/0.5 s on/off) for 2 min with an 

ultrasonic liquid processor and microtip (Sonicator 3000, Misonix, NY, USA). The lysate was 

centrifuged at 18,000g for 15 min at 2 °C for cell debris removal and the supernatant containing 

soluble GST-hCD83ext was used for GST assay and SDS-PAGE. The pellet containing insoluble 
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fraction and cell debris was washed once with PBS, and resuspended in TE/SDS buffer (10 mM 

Tris–HCl, pH 8.0, 1 mM EDTA, 1% SDS) upon boiling for 5-10 min.  The solubilized pellet was 

analyzed using SDS-PAGE as the insoluble fraction. GST assay and SDS-PAGE were performed 

as previously described [63].  

 

3.3 Results and discussion 

3.3.1 Physical characterization 

Operating conditions providing maximum oxygen transfer (i.e. rocking rate and VD) were 

established for the 1D RB and CELL-tainer®, and subsequently used to evaluate kLa, tm, 

nonrecombinant growth characteristics, and recombinant protein expression. A comparison of 

kLa values over a range of WVs is presented in Figure 3-1. Oxygen transfer efficiency was a 

linear function of WV in the 1D RB, presenting similar kLa values to the STR for 1 L WV. 

Under these conditions the immersion depth of the DO probe was minimal as the platform tilted 

away from the side of the bag in which the probe was inserted. However, excellent linearity was 

obtained when applying Equation 1 to obtain kLa estimates (R2>0.99). Similar kLa values were 

obtained previously for 1D RBs operating at maximum WV [17, 19]. An inherent limitation of 

the 1D RB was the low gas flow capacity due to the type of outlet filter provided, and the 

inability of the heated filter jacket to adequately dry the filter [17]. Enhanced gas flow capacity 

may improve oxygen transfer efficiency in 1D RBs under high agitation. Increasing the gas flow 

rate from 0.25 to 0.5 vvm corresponded to a 14% increase in kLa at moderate rocking speeds 

[37]. However, kLa was weakly dependent on headspace oxygen transfer at low to moderate 

rocking rates while the opposite effect was observed at maximum agitation [17]. 
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An optimal WV of 3 L was observed for the CELL-tainer®, reaching kLa values of nearly 

400 h-1, while maintaining formidable oxygen transfer capacity over all tested conditions (Figure 

3-1). Our data is in range of recently published kLa measurements [20], although discrepancies 

exist with regard to optimal WV. A reduction of kLa with increasing WV is intuitive considering 

the nature of wave development in shallow water. The wave propagates from the corner of the 

bag, shoaling across the length of the bag until the critical height is achieved, resulting in wave 

breakage [40]. As water depth increases with WV, the wave travels farther across the bag before 

slowing down and breaking. Consequently, wave breakage occurs increasingly near the end of 

the bag opposite inception, in turn, reducing the extent of turbulent air entrainment. This 

rationale supports our observations of low optimal WV for both disposable systems. Moreover, 

an earlier study of mass transfer in the CELL-tainer® reported kLa values at 15 L WV that were 

approximately 60% lower compared to the recently published data [39].  Finally, reduction in kLa 

with increasing WV cannot be solely attributed to reduced specific power input given the sharp 

reduction in kLa observed at maximum rocking rate in the CELL-tainer® (Figure 3-2). Optimal 

rocking rates resulting in the maximum kLa at different WVs has been reported elsewhere [20]. 
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Figure 3-1 - Results for comparative kLa analysis. Experimental conditions described in M&M. 

Standard deviations of three experiments are included. 

 

kLa values increased with increasing rocking rate in the 1D RB up to the maximum 

setting of 40 rpm (Figure 3-2). In contrast, a marginal difference was observed between 40 and 

45 rpm in the CELL-tainer® after which kLa values decreased at the maximum setting of 50 rpm 

(Figure 3-2). Maximum rocking rates may prove beneficial for WVs exceeding 10 L as an 

increase in kLa was obtained beyond 40 rpm at 15 L WV [39]. An advantage of 2D RBs, such as 

the CELL-tainer®, over 1D systems is the capacity to process WVs of up to 75% of the total bag 

volume while maintaining high mass transfer [39]. Finally, kLa values were consistent with those 

previously reported for lab-scale STRs [27, 29, 32]. Although atypically low air flow rates were 

employed due to the limitations of the 1D RB, a significant increase in kLa is not expected at 

higher air flow rates as the STR was operating well above the critical impeller speed 

(approximately 290 rpm for this system) [36]. 
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Figure 3-2 - Results for comparative kLa analysis. 5 L and 2.5 L WV in 1D RB and CELL-

tainer®, respectively. Experimental conditions for 1D RB: 20 L cultivation bag, 35 °C, 0.1 vvm 

air, and 12° VD. Experimental conditions for CELL-tainer® described in M&M. Standard 

deviations of two experiments are included. 

 

Effective mixing was observed in all three systems investigated using water and CMC 

solution (Figure 3-3). tm estimates were consistent with previously reported data using 1D RBs 

[8, 37]. A strong dependence on WV was observed at low rocking rates, although, consistent 

with our observation, tm was independent of WV as rocking rate increased [37]. For the CELL-

tainer®, our tm results were in good agreement with recent studies [20, 61], in which minimal 

dependence of tm on WV was observed. In addition, our tm estimates were in good agreement 

with previous studies of mixing intensity in lab-scale STRs [36, 60]. Comparison of tm associated 

with water and aqueous CMC allows qualitative comparison of the relative shear stress applied 
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in a reactor due to the pseudoplastic nature of CMC. tm of water was shorter than that of CMC 

solution for the 1D RB, while the opposite trend was observed in the CELL-tainer® (Figure 3-3). 

This suggests that greater shear stress may be applied to the fluid in the CELL-tainer® relative to 

the 1D RB under experimental conditions, as tm is often a function of liquid viscosity [103, 104]. 

For STRs, it is well known that local shear stress at the impeller tip is significantly higher than 

the average value [105], and therefore is expected to exceed that of disposable RBs. Shear stress 

is typically not a concern when cultivating E. coli [106], although it has been implicated in the 

reduction of product formation in recombinant E. coli [107, 108]. In such a case, one may benefit 

from reducing the rocking rate without sacrificing adequate oxygen transfer efficiency in RBs.  
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Figure 3-3 - Results for comparative tm analysis. Experimental conditions described in M&M. 

DI water (Panel A) and 0.5% CMC (Panel B). Standard deviations of three experiments are 

included. 
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3.3.2 BL21cultivation and GST-hCD83ext expression 

In addition to evaluating cultivation systems under typical operating conditions and large WV, it 

was interesting to compare culture performance between the STR and 1D RB under comparable 

kLa values (Figure 3-4). A steep decline in DO during early exponential phase resulted in oxygen 

limitation which, in turn, caused significant undesired metabolite accumulation and retarded cell 

growth. Interestingly, the maximum specific growth rate (µmax) for STR cultivation was 18.5% 

higher than that for 1D RB (0.88 vs. 0.74 h-1) although, as shown in Table 3-1, oxygen uptake 

was typically more effective in the 1D RB in the higher DO range (i.e. 50-100% saturation). The 

lower specific OUR measured in the STR in this range can be partially due to surface aeration 

from residual oxygen in the headspace, which can contribute significantly to oxygen transfer in 

smaller vessels [109].  

Note that the influence of antifoam addition on culture performance should be considered 

(Figure 3-4). The kLa value decreased by 45% upon addition of antifoam in a recent study of 

yeast cultivation in the GE WAVE Bioreactor® [17], while a smaller reduction (30%) was 

observed in an STR [110]. These findings are not surprising considering the mode of oxygen 

transfer in RBs, and explain, in part, the difference in DO profiles observed in Figure 3-4. 

Increasing culture viscosity was shown to inhibit wave development in the BIOSTAT® CultiBag 

RM [111], although viscosity likely had minor influence on oxygen transfer at low cell density. 

Consequently, the reliability of kLa estimation at low WV due to superficial probe immersion 

depth was, once again, called into question. Based on our observations, and lack of available data 

for comparison of kLa at minimum WV, further investigation is required to identify the cause(s) 

of severe oxygen limitation under experimental conditions. 
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Figure 3-4 - Typical results for cultivation of E. coli BL21 in the 1D RB (Panels A and B) and 

STR (Panels C and D). Cell density and dissolved oxygen (Panels A and C), and metabolite and 

glucose profiles (Panels B and D). 1 L WV in the 1D RB and 0.4 vvm air.  All other cultivation 

conditions described in M&M. 
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Table 3-1 - Typical results for cultivation of E. coli BL21 in the 1D RB, CELL-tainer®, and 

STR. 5 L and 10 L WV in 1D RB and CELL-tainer®, respectively.  All other cultivation 

conditions described in M&M.  Maximum specific growth rate (µmax) was observed during the 

first 5-6 h of cultivation. Minimum and maximum specific OUR measured over DO range of 20-

50% and 50-100% saturation, respectively. Linear regression errors are included. 

 

 

The results of full-scale non-recombinant E. coli cultivation are presented in Figure 3-5. 

As expected, oxygen limitation ensues quickly in the 1D RB after which DO is rescued 

temporarily upon increasing inlet oxygen supply to 60 vol% at 8.5 h. Cell density was not 

significantly affected under oxygen limitation during which acetate titer reached 6.9 g/L after 

only 11 h. Comparing Figures 3-4b and 3-5b, markedly different glucose consumption patterns 

were evident, indicating improved oxygen availability for 5 L cultivation. This is not unexpected 

as a 2.5-fold increase in available oxygen could offset the 65% decrease in the kLa from 1 to 5 L 

WV [17]. Moreover, the accumulation of various metabolite byproducts (including acetate, 

lactate, and ethanol) was higher after 12 h cultivation at 1 L WV as compared to the 5 L batch. 

Cultivation in the CELL-tainer® produced completely different DO and metabolite profiles, 

although only slight differences in µmax, specific OUR, and cell density were observed. Acetate 

production was merely 2 g/L and all other metabolites were essentially undetectable, 

corresponding to DO exceeding 110% saturation for the entire culture. Comparing Figures 3-5d 
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and 3-5f, glucose consumption occurred at a slower rate during cultivation in the CELL-tainer® 

and faster biomass accumulation was observed in the STR, potentially due to higher oxygen 

availability in the CELL-tainer®. Previous studies have demonstrated that the effects of excess 

DO on the growth of E. coli are strain-dependent. For examples, strains TB-1 [84], W3110 [85], 

and MG1655 [86] exhibited minimal change in growth rate in oxygen-enriched culture. In 

contrast, in accordance with our observations of BL21, the growth rate of JM101 declined at 

high DO [84]. Up to approximately 7 h of cultivation, the growth was similar in the STR and 

CELL-tainer®, after which biomass accumulation slowed as DO increased in the CELL-tainer®, 

while growth rate was maintained with decreasing DO in the STR. 
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Figure 3-5 - Typical results for cultivation of non-recombinant BL21 in the 1D RB (Panels A 

and B), CELL-tainer® (Panels C and D), and STR (Panels E and F). Cell density and dissolved 

oxygen (Panels A, C, and E), and metabolite and glucose profiles (Panels B, D, and F). 5 L and 

10 L WV in the 1D RB and CELL-tainer®, respectively.  All other cultivation conditions 

described in M&M. 

Our investigation reveals that the CELL-tainer® is suitable for batch operation at a 

relatively high growth rate, while the mass transfer capacity of the 1D RB was inadequate under 

current experimental conditions. Although growth characteristics were quite similar, acetate 

accumulation in the 1D RB exceeded levels shown to significantly reduce growth rate [72], 
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potentially compromising cell physiology. The use of the GE WAVE Bioreactor® in generating 

seed culture for a production fermenter was demonstrated at reduced growth rate (0.42 h-1), 

resulting in delayed oxygen depletion relative to our study [18]. Additionally, fed-batch 

cultivation has proven feasible in the BIOSTAT® CultiBag RM, yielding a moderate cell density 

of 20 g/L dry cell weight (dcw) at 5 L WV [19]. A higher biomass yield (42.8 g/L dcw) was 

obtained in 12 L fed-batch cultivation in the CELL-tainer® and 10-fold scale-up resulted in 

similar cell density (45 g/L dcw) even though gas flow was only 10% of that employed in 12 L 

culture due to prototype limitations [20]. 

As shown in Figures 3-6 and 3-7, culture performance was rather comparable in all 

bioreactors. SDS-PAGE confirmed the presence of the GST-hCD83ext fusion (Figure 3-7) and 

corroborated the trends observed for specific GST activity (Figure 3-6). Previously, it was 

reported that specific GST activity peaked at approximately 6 h post-induction coinciding with 

accumulation of the insoluble GST-hCD83ext [63]. Our current results generally agree with 

these observations, although the formation of insoluble GST-hCD83ext appeared less significant. 

The increase in specific GST activity and decrease of insoluble protein could be, in part, due to 

the efficacy of cell lysis at reduced sample concentration. Interestingly, during CELL-tainer® 

cultivation specific GST activity increased slightly from 6 to 8 h post-induction, resulting in a 

16% increase in volumetric GST activity. Specific and volumetric GST activities were similar 

between disposable RBs, although the specific GST activity peaked earlier in the 1D RB. 
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Figure 3-6 - Typical results for cultivation of BL21(pGEX2ThCD83ext,pLysS). 5 L and 10 L 

WV in the 1D RB and CELL-tainer®, respectively. All other cultivation conditions described in 

M&M. Cell density (Panel A), DO (Panel B), and specific GST activity (Panel C). 
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Figure 3-7 - Typical results for cultivation of BL21(pGEX2ThCD83ext,pLysS) in the 1D RB 

(Panel A), CELL-tainer™ (Panel B), and STR (Panel C). 5 L and 10 L WV in the 1D RB and 

CELL-tainer®, respectively. All other cultivation conditions described in M&M. SDS-PAGE 

analysis of soluble and insoluble intracellular protein fractions postinduction. 
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Compared to a previous bioprocess development study [63], a 36% increase in specific 

GST activity with similar cell growth characteristics was observed in the current study. It was 

previously hypothesized that a critical balance exists between GST-hCD83ext expression and 

DO. Recombinant protein expression in oxygen-enriched cultures has been studied extensively 

[84, 85, 89, 90], and excess DO is often associated with lower specific protein yields. Under 

conditions of severe oxidative stress, E. coli may be unable to reduce oxygen radicals (i.e., O2
-, 

H2O2, etc.) sufficiently to prevent oxidation of Met and Cys residues [83], potentially resulting in 

protein misfolding, loss of activity, and protease degradation [87, 88]. Considering that 

hCD83ext contains five Cys residues known to cause protein structural variability and instability 

under oxidative conditions [112], varying levels of oxidative stress could partially explain 

differences in protein expression between cultivations. However, the recently observed increase 

in specific GST activity relative to previous studies without oxygen enrichment suggests other 

factors could be at play. A side note to oxidative stress in our cultivations concerns a natural 

function of GST, which reduces organic hydroperoxides using glutathione as electron donor 

[113], a process natively facilitated by alkylhydroperoxide reductase (Ahp) in E. coli [83]. 

Hence, oxidative stress response could be potentially bolstered in E. coli upon GST 

overexpression under our cultivation conditions.  

 

3.4 Conclusions 

In this study, we explored the application of RBs for bacterial cultivation. The results suggest 

that shear stress and DO mildly affects recombinant GST-hCD83ext expression during E. coli 

cultivation in the CELL-tainer®, consistent with our earlier studies using STR. Note that the 

accumulation of undesirable metabolites such as acetate was minimal for cultivations using 
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enriched media with low glucose concentrations. While both 1D and 2D disposable RBs proved 

feasible for E. coli cultivation for recombinant GST-hCD83ext production, the CELL-tainer® 

afforded greater flexibility in terms of operating conditions. However, the use of moderate 

oxygen with extreme agitation (i.e. VD and rocking rate corresponding to maximum kLa) was 

excessive for recombinant protein production. Accordingly, potential oxidative and shear stresses 

could be significantly alleviated under optimized conditions of oxygen supply and agitation. 

Such bioreactor operation and control strategies can be critical, particularly for the production of 

therapeutics, which are often unstable under oxidative conditions. In summary, disposable RBs 

present great opportunity for microbial cultivation compared to conventional STRs, particularly 

for production of high value therapeutics requiring strenuous validation and our study provides 

valuable insight for future biopharmaceutical bioprocess development. 
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Chapter 4 – Conclusions and Recommendations 

 

4.1 Conclusions 

The comparative analysis presented herein demonstrates the utility of disposable RBs in 

obtaining typical biomass yields and high level recombinant protein expression in batch cultures. 

kLa values in the CELL-tainer® were 2.7 and 4.5-fold higher for optimal and maximum WV, 

respectively, compared to the 1D RB; the kLa was 1.5-fold higher at maximum WV compared to 

the STR. kLa at maximum WV (5 L) in the 1D RB was consistent with earlier studies. Maximum 

kLa in the CELL-tainer® was in range of recently reported data, although discrepancies exist 

with regard to optimal WV (12 L in the previous study). Based on large discrepancies in kLa 

values for 15 L WV between the aforementioned study and an earlier investigation, and upon 

consideration of the nature of wave development in shallow water, it is believed that our 

observations of low optimal WV corresponding to maximum kLa are more reliable. Fast mixing 

was observed in all three systems, each providing t95 values of less than 20 s in water and 

aqueous CMC solution under experimental conditions. Comparison of tm in water and aqueous 

CMC solution indicated that shear stress was greater in the CELL-tainer® relative to the 1D RB. 

The 1D RB and CELL-tainer® produced comparable cell densities and recombinant hCD83ext 

yields relative to the conventional STR. In the 1D RB, cell growth was severely hindered without 

supplemental oxygen in 1 L culture, and acetate accumulation was excessive for 5 L 

nonrecombinant cultivation regardless of inlet oxygen concentration. Biomass accumulation and 

glucose consumption occurred at a faster rate in the STR relative to the CELL-tainer®, possibly 

due to enhanced mass transfer given that the growth rate of BL21 was inhibited by elevated DO. 

Variations in hCD83ext expression between bioreactors were attributed to significant differences 
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in DO profiles, and possibly shear stress. In the CELL-tainer®, reduced oxygen and/or agitation 

could potentially enhance growth characteristics and protein expression, and improve process 

efficiency via reduced oxygen and power consumption. While hCD83ext expression and cell 

growth in the 1D RB were comparable to other systems, the use of oxygen for low cell density 

cultures is not desirable in the context of process scale-up given that other cultivation systems 

are capable of meeting the relatively low oxygen demand without oxygen enrichment. On the 

other hand, the CELL-tainer® provides mass transfer capacity similar to the STR, and improved 

efficiency with respect to specific power input compared to 1D RBs. Accordingly, the CELL-

tainer® presents new opportunities for cost reduction in biopharmaceutical manufacturing 

processes based on microbial platforms, and provides versatility to multiproduct facilities 

utilizing prokaryotic and shear sensitive eukaryotic expression hosts.  

 

4.2 Recommendations 

The utility of disposable RBs for cultivation of E. coli, a robust aerobic organism, to achieve 

high level expression of a eukaryotic therapeutic protein was successfully demonstrated. While 

protein expression and cell density were comparable between the 1D RB, CELL-tainer®, and 

conventional STR, the low mass transfer capacity of the 1D RB barely met the relatively low 

oxygen demand of batch cultures, even with supplemental oxygen. 1D RBs are, therefore, not 

recommended for cultivation of fast growing aerobic microorganisms given the current 

limitations of these systems. Fed-batch cultivation in 1D RBs has been investigated in an earlier 

study [19], although oxygen demand at moderate cell density (20 g/L dcw) and low growth rate 

(< 0.15 h-1) exceeded mass transfer capacity. As previously discussed, higher gas flow capacity 

may significantly increase the kLa at high agitation rates in 1D RBs. Therefore, it is 
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recommended that 1D RBs evolve with improved gas flow capacity if biopharmaceutical 

production in microbial expression hosts is a target application.  

 The CELL-tainer®, on the other hand, shows promise as a cultivation system for the full 

range of recombinant expression hosts, demonstrating comparable performance to the STR with 

regard to cell growth, DO profiles, and hCD83ext expression in batch cultures of E. coli. 

Furthermore, the kLa exceeded that of the STR and tm was comparable for all WV. Although 

atypically low air flow rates were employed due to the limitations of the 1D RB, a significant 

increase in kLa is not expected at higher air flow rates as the STR was operating well above the 

critical impeller speed. Subsequent investigations needed to fully characterize the CELL-

tainer®’s performance are outlined: 

1. Fed-batch cultivation of nonrecombinant BL21 (or other robust E. coli strain) under 

typical operating conditions for recombinant protein expression (i.e. 25-30 °C, 30-35 

rpm, 1-1.5 vvm) to establish limits on achievable cell density, and corresponding 

undesirable metabolite profiles and oxygen consumption. Fed-batch cultivation of 

nonrecombinant BL21 has been investigated in the CELL-tainer® , however, cultivation 

temperature (37 °C) greatly exceeded temperatures typically employed during 

recombinant protein production [20]. 

2. Fed-batch cultivation of BL21(pGEX2ThCD83ext, pLysS) to assess the CELL-tainer®’s 

potential in achieving production scale titers of a recombinant therapeutic. hCD83ext is 

an ideal candidate for this type of study due to its sensitivity to oxidative conditions and 

propensity for inclusion body formation. Under the appropriate conditions of oxygen 

enrichment and agitation, the CELL-tainer® may provide certain advantages over STRs 
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for production of oxygen sensitive proteins due to the lack of oxygen hot spots found in 

the vicinity of the sparger(s).   

3. Theoretical modelling of mass transfer and CFD simulations to characterize kLa, tm, 

velocity distribution, wave properties (i.e. H, C, T, L, and θ), liquid height profiles, and 

shear rates. As previously discussed, ε can be approximated via Equation 6 which, in 

turn, can be used to determine kL from Equation 3. The difficulty in this approach is 

obtaining reliable measurements of a, H, and L. In the absence of reliable experimental 

data, CFD modeling could provide predictions of these parameters for a given set of 

operating conditions (i.e. K, VD, and WV). This study would entail a more thorough 

assessment of kLa and tm over a broad range of operating conditions to better characterize 

mass transfer and mixing, and to verify the theoretical model. 
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