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Abstract

In this thesis, a demand elasticity model is developed and tested for the dispatch of high
voltage power systems and microgrids. The price obtained from dispatching a network in a
base-case scenario is used as input to a price-elastic demand model. This demand model is
then used to determine the price-responsive demand for the next iteration, assuming that
the load schedule is defined a day-ahead. Using this scheme, trends for demand, hourly
prices, and total operation costs for a system can be obtained to study the impact of
demand response on unit commitment and dispatch of distributed energy resources. This
way, the effect on the scheduling of dispatchable generators and energy storage systems
can be analyzed with respect to price-elastic loads. The results for a test power system
and a benchmark microgrid show that as the demand is more elastic, the longer it takes for
the dispatch to converge to a final condition. The 24-hour model eventually converges to
a steady state, with prices and costs at their lowest values for different scenarios, which is
good for most system participants and desirable in a market environment, thus highlighting
the importance of price-responsive loads in electricity markets.
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Chapter 1

Introduction

1.1 Motivation

With the evolution of smart grids and Distributed Energy Resources (DER), the concept
of Demand Response (DR) has gained significance over the last decade. It is expected that
appliances and loads in general would have the capability of reacting to external signals,
such as prices and direct scheduling commands from the utility. With these capabilities,
DR would also be able to provide various system support services such as operational
reserves, frequency response and congestion management [1].

As seen in Figure 1.1 [2], loads that can be controlled directly in real-time can be used for
frequency regulation or emergency response. Additionally, during the Unit Commitment
(UC), customers can be encouraged to modify their demand at the day-ahead stage through
different DR programs. In fact, DR can even have an impact on system planning when
properly designed programs are in place, helping to defer decisions on capacity investment.

Most of the practical implemented DR approaches have been associated with programs
established by government or utilities, which seek to reduce the peak demand or re-arrange
the system demand profile. In the case of voluntary DR programs, customers may receive a
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Figure 1.1: Role of DR in electric system planning and operations [2].

financial incentive for participating and modifying their demand profiles. Similarly, time-
based electricity tariffs sway energy consumption toward a point of mutual convenience
for both customers and generators. This is achieved by offering lower electricity prices
at low demand periods, while charging higher prices when the system is stressed or more
expensive generating units are in operation.

The application of DR programs, as well as the participation from customers is envis-
aged to grow in the future. In the United States, the Federal Energy Regulatory Commis-
sion (FERC) estimates that the deployment of DR by 2019 could bring about 188 GW of
peak reduction under a full participation scenario [3]. This amount represents 20% of the
peak demand expected in 2019, and would come mainly from enabling technologies, such as
central controllers and intelligent loads, in conjunction with pricing programs. As seen in
Figure 1.2, enabling technologies are expected to play a key role in the future DR, making
pricing schemes far more effective than other forms of DR. In Figure 1.3 it is observed that
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Figure 1.2: DR potential by programs in the US by 2019 [3].

most of the demand reduction envisioned from DR corresponds to residential consumption.
Thus, it can be inferred that most of the DR potential in the US is related to the pricing
scheme effect over residential customers, especially when enabling technologies are used.

In Ontario, Canada, some DR programs are available and are being tested [4]. For
example, a load shifting DR program in operation pays an incentive to customers for
reducing consumption during peak hours while increasing consumption at off-peak times,
offering a maximum of 119 MW load reduction. Another example is an aggregator based
DR program, which enables the reduction of load upon an Ontario Power Authority’s call;
by the end of 2011, the total contracted curtailment capacity reached was 383 MW. Besides
these two industrial and commercial load focused DR programs, the Peaksaver program
is targeted towards residential customers [5], allowing the utility to curtail loads such as
air-conditioning, electric water heaters, and pool pumps for up to four hours in the summer
on a few occasions in a year.
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Figure 1.3: DR potential by customer category in the US by 2019 [3].

1.2 Literature Review

1.2.1 Demand Response in Power Systems

DR programs may be classified as indirect or direct depending on whether demand alter-
ation is a choice of customers or directly a utility decision, respectively. An important
indirect DR program is proposed in [6], discussing a Real-Time Pricing (RTP) scheme
example, which reflects the actual short-term conditions of the system. The potential
of distribution automation and control systems to increase system operation flexibility is
discussed, and a frequency dependent real-time electricity tariff is proposed. Under the
proposed market mechanism, all consumers are entitled to buy electricity directly from the
market, thus increasing demand responsiveness.

Another example of indirect DR is the Time-of-Use (TOU) pricing scheme [7], which
encourages load shifting and curtailment by presenting different price levels during the day.
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In [8], the sectoral demand elasticity in Taiwan is estimated, and an optimized TOU pricing
scheme is proposed. The findings of this study corroborate the intuition that elasticity of
one period with respect to another highly depends on each process characteristics for
industrial loads. This means that, depending on the production cycle of each industry,
demand can or cannot be shifted from one period to another, which is a limitation of DR
programs to be considered.

Among the direct programs, worth mentioning are the Direct Load Control (DLC) and
the Interruptible Load (IL) management programs, which pay an incentive to customers
allowing the utility to take direct control over a portion of the load. In this regard, [9]
proposed a tariff calculation framework for ILs on an hourly basis. An optimization model
for determining the most suitable interruptible tariff is discussed; the model uses an optimal
power flow with ramping rate constraints and a modified objective function that includes
financial returns for the utility, which includes interactions between utility and customers.
The study found, besides the expected increase of economic social welfare for the market,
that transmission congestion due to operational constraints is almost completely mitigated
when IL is used.

One of the most used mechanisms for assessing the effects of DR programs over the
system is to summarize the demand behavior into price-elasticity parameters. In [10]
a compendium of elasticity types and values in power systems is provided, classifying
between short and long term elasticities, and proving real values estimated for residential
and industrial demand price-elasticity from different published studies. The fact that
demand elasticity not only depends on prices is discussed and applied, finding correlations
between elasticity and environmental conditions such as temperature or daylight. It is
concluded that, in general, demand elasticities are fairly low for present day operation
when comparing demand variations and spot prices. In fact, this is concordant with what
is seen in Figure 1.2, where business-as-usual peak demand reduction is limited to less
than 5% with current DR programs. However, in the case where enabling technologies are
deployed, demand price-responsiveness is much higher and diverse than what is observed
in this data collection.
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A statistical method for estimating customers response to pricing signals is developed
in [11], which is then used for calculating an optimal RTP scheme that improves the social
welfare. The study aims to analyze DR in a smart grid context by considering enabling
technologies controlling loads. The approach considers demand elasticity and DLC with
load curtailment and shifting capabilities. By considering a statistical iterative procedure,
based on the customers response to previous DR pricing program, an optimized pricing
vector can be generated. Thus, system demand is controlled with higher certainty on a
day-ahead basis. From this work, a parallel between DLC programs and instantaneous
demand elasticity models can be derived, providing with an additional tool for analysis.

In [12], a data mining method is proposed to study responsiveness and create a demand
control scheme via pricing signal to control residential heating devices. Without considering
network limitations, price responsiveness is estimated, which then allows to control the
demand by directly influencing temperature setpoints within a customer defined comfort
zone. Estimation of DR is carried out by fitting the response to a stochastic function, which
is used to design the controller by minimizing the expected value of the demand variation
obtained. The results of a real case of the implementation of the proposed control scheme
show a reduction of peak consumption of up to 11%. The general guidelines for estimating
demand responsiveness in this work are a solid base to construct different DR models.

Paper [13] shows how oligopoly market efficiency is increased when its demand is elastic,
noticing that there is reduction in the surplus of producers and consumers. The model used
is characterized by a market perspective, defining an operational constraint market clearing
model with linear demand curves. Results show that market performance is improved, as
the percentage difference between a firm’s bidding price and its marginal cost is reduced
from 0.43 to 0.2 when an increase from 0 to -0.5 in elasticity is applied. Moreover, this
work also discusses congestion management achieved by expanded demand responsiveness.

DR studies for an isolated system with Renewable Energy Sources (RES) were con-
ducted in [14] by using two approaches for load shifting: direct control and customers
demand elasticity. The methodology uses a two step process, where a UC model without
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responsive demand defines prices for which variations in demand are calculated. Then, a
minimization of total cost from DR variations is conducted, in order to obtain the final
costs and operation schedules. The study shows that with DR, less units are committed
due to a lower impact of wind variations, thus reducing total costs. This work provides in-
sights on the DR capability to mitigate system operation issues due to high penetration of
RES. The same findings are reported in [15], where a study of the effects of elasticity from
the planning perspective is presented, considering operational constraints, and including
DR in the short-term optimization models. Demand responsiveness is modeled in different
ways by either utilizing a market settlement approach, or giving a cost to customers benefit
from energy consumption, or maximizing their surplus. By assuming elasticity values from
the literature, ranging from 0 to -0.25 for self-elasticity, this work concludes that weighted
average electricity prices are reduced as elasticity increases.

A UC method with DR is proposed in [16], which studies economic and environmen-
tal impacts, analyzing different DR programs and DLC in order to create a DR program
priority list for independent system operators. The model proposed to carry out the study
consists of generating optimal incentives for different DR programs, and then receiving
the feedback from customers to repeat a cost-emission based UC resolution. One of the
intentions of this work is to improve the participation of customer in DR programs, encour-
aging an optimal amount of responsiveness and preventing DR from negatively affecting
the system.

These studies reflect the importance of DR during the last three decades, and illustrate
its main applications, which are considered in this thesis. So far, the work carried out
in the area of DR analysis mostly examines it in an ex-post basis, not considering the
future usage of intelligent devices and controllers. Moreover, the studies performed so far
consider the demand responsiveness on a day-ahead basis, not taking into account the fact
that sustained responsiveness may produce an evolutionary response of the demand. This
may result in inaccurate estimation of the applications and the effects of DR on power grids
and microgrids. Hence, the methodology proposed in this work intends to characterize the
possible effects that DR may have on the grid. To this end, an elasticity model is developed,
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based on the behavior that load Energy Management System (EMS), such as [17], would
have on these networks on the long term.

1.2.2 Operational Aspects of Microgrids

In a smart microgrid, several dispatchable and non-dispatchable energy resources have to
interact in order to provide a reliable service. Due to the importance that researchers
and the industry attach to microgrids, many studies and control topologies have been
developed and documented. Thus, a differential evolution method is proposed in [18]
for fuel cost and emissions minimization in combined-heat-and-power based microgrids.
The proposed model includes constraints for real power balance, DER capacity limits,
and heat balance inequality. By considering a cost of emissions as a penalty factor, a
single objective optimization is carried out. However, there is difficulty and uncertainty
in generating an accurate penalty factor. Similarly, a heuristic algorithm for active power
dispatch of DERs is proposed in [19], solving the dispatch cost minimization problem in less
time than traditional approaches, which allows to use this method in real-time operation
of microgrids.

One of the most important issues in microgrids is their inability to deal well with major
uncertainties from demand and variable generation from RES. This is resolved in most
cases by introducing Energy Storage System (ESS) in the microgrid. Thus, in [20], the
operation of a hybrid power plant with wind and fuel cells as storage system is presented.
A method to evaluate the operational reliability and energy utilization of a microgrid
with high RES penetration, conventional generators, and ESSs is discussed in [21]; it is
demonstrated that a comparatively small ESS connected to a microgrid can have a great
impact in the efficiency of energy use, thus reducing the operational costs. An Economic
Dispatch (ED) model that accounts for active power reserve in case of isolated operation
is developed in [22]; in this model, interconnected microgrids are able to maintain stable
operation by sharing power among different sections or areas, being mainly limited by the
capacity of the feeders connecting different areas.
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As of today, there are several microgrids implemented around the world reporting real
data and operation issues. The microgrid of Santa Rita Jail, in Dublin, California, has a
peak load of 3 MW, of which more than 2 MW is supplied by RES, and it has 4 MWh
of ESS [23]. A joint project between US and Portugal in Azores Archipelago, Portugal,
is discussed in [24], which provides the framework for optimal operation of the microgrid,
reporting the Pareto frontiers for the multi-objective optimization of cost and emissions
minimization. Similarly, the Huatacondo community owned microgrid in Chile is presented
in [25], addressing operational and communications schemes, and featuring a social SCADA
system and its interaction with the central EMS.

Some of the most noteworthy microgrid test systems, research activities, and remote
microgrids in Canada are mentioned in [26]. These include the Canadian smart micro-
grid research network, NSMG-Net, which involves over 10 research institutions, 8 utilities,
and 24 technology related companies [27]. Part of this network is the microgrid installed
in British Columbia Institute of Technology campus, which includes combined-heat-and-
power microturbines, distributed RES and ESS, smart appliances and an EMS along with
all the communication infrastructure for its operation [28]. In [29], the issue of remote
microgrids is discussed, indicating that there is a high average cost of energy generation
($0.84/kWh) and increased investment costs for additional capacity in such remote loca-
tions; for these microgrids, the deployment of EMS and DR programs may have a beneficial
impact on total operation costs, as discussed in [26].

The work mentioned in this section allows to understand how different system compo-
nents can operate in conjunction in power grids and microgrids to ensure proper system
dispatch. However, only few of these papers consider DERs, DLC, RES, DR programs,
and ESS, all common components in smart grids, together in a system. Thus, in order
to develop a simulation platform for the study of the effect of DR on dispatch and vice
versa, two mathematical models are developed in this thesis to represent the dispatch of
power grids and microgrids, respectively, which properly integrate demand elasticity in the
dispatch models.
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1.3 Research Objectives

The main objective of the research presented in this thesis is to characterize the possible
effects that DR may have over a power system or a microgrid. To this end, the specific
goals of this thesis are the following:

• Implement and examine different existing mathematical models for price-elastic loads,
identifying the most suitable model for a system level study, and estimating the
parameters of the model for price-elastic demand that appropriately represents the
behavior of novel load EMS and other intelligent devices.

• Study the effects of price-responsive demand on dispatch levels in power systems
and microgrids, including dispatchable generation, ESS operation, and power flows,
and examine the inter-relationship between price and demand responsiveness on sys-
tem dispatch, studying the evolution of demand as successive iterations of DR are
considered.

1.4 Thesis Content

The rest of this thesis is structured as follows: Chapter 2 presents the relevant background
to this thesis such as the UC, the operational issues of smart microgrids, and price-elasticity
of demand, including its theory and applications to power systems. Chapter 3 presents
the mathematical models for a power grid and a microgrid, along with a procedure to
estimate the parameters of an elastic load model. In Chapter 4, the results of several case
studies are presented and discussed for a power system and two different configurations of
a microgrid, including a load model to represent intelligent loads. Finally, in Chapter 5,
the main conclusions and contributions of this work are presented, along with a few ideas
for future work.
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Chapter 2

Background

In this chapter, the UC problem is defined and briefly discussed, providing the basis for the
models used in this thesis. A summary on smart microgrids is also presented, describing
some of its key features. Finally, demand elasticity is defined and associated basic models
used in this thesis are discussed.

2.1 Unit Commitment

In power systems, the allocation of system demand among generating units is carried
out using ED, which involves minimizing the generation cost subject to various system
operational constraints. However, this ED process supposes that all generating units are
available and are synchronized to the grid, which is not necessarily true. In fact, online/off-
line conditions of generators need to be considered. The extended ED problem that includes
start-up and shutdown decisions for each generator is called UC [30]. A UC problem can
be static or multi-period, depending on whether it considers one or more time periods,
respectively, with several representations of this problem reported in the literature.

In the conventional UC [30]-[31], the objective function is the minimization of the total
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cost as follows:

Cost =
∑
g,t

(
agWGg,t + bgPGg,t + SUCgUGg,t + SDCgVGg,t

)
(2.1)

The variables and parameters in this equation, and others, are defined in the Nomenclature,
and denote in this case the operational costs of dispatchable generators, including no-load
cost of the generators when committed, variable cost of power output, and start-up and
shutdown costs.

Demand-Supply Balance

The nodal demand-supply balance in the system is represented by:

∑
g

PGg,t +
∑
j

Bi,j (δi,t − δj,t) = PDi,t ∀i, t (2.2)

Feeder Limit Constraint

The power transferred from bus i to j is constrained by line limits as follows:

Bi,j (δi,t − δj,t) ≤ P line
i,j ∀i, j, t (2.3)

Power Generation Limits

Required upper and lower operation limits of generators are given as follows:

WGg,tPG
min
g ≤ PGg,t ≤ WGg,tPG

max
g ∀g, t (2.4)
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Start-up and Shutdown Coordination

The necessary link between start-up and shutdown decisions, and the transition in gener-
ator states from one hour to the next, are given by:

UGg,t − VGg,t = WGg,t −WGg,t−1 ∀g, t; t 6= 1 (2.5)

Spinning Reserve

For regulation purposes, “typical” 10% spinning reserves are assumed here, as follows:

1.10
∑
i

PDi,t ≤
∑
g

WGg,tPG
max
g ∀g, t (2.6)

Ramp-Up and Ramp-Down Constraints

These following constraints ensure that the inter-hour changes in generation, for the dis-
patchable units, satisfy necessary ramping limits:

PGg,t − PGg,t−1 ≤ Rampupg ∀g, t; t 6= 1 (2.7a)

PGg,t−1 − PGg,t ≤ Rampdown
g ∀g, t; t 6= 1 (2.7b)
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Minimum Up-Time and Down-Time Constraints

The following set of equations account for the minimum up-time of dispatchable generators
in a 24-hour period:

Gg∑
k=1

(
1−WGg,k

)
= 0 (2.8a)

t+MUT g−1∑
k=t

WGg,k ≥MUT g

(
WGg,t −WGg,t−1

)
∀t = Gg + 1, . . . , 25−MUT g (2.8b)

24∑
k=t

((
WGg,t −WGg,t−1

)
−WGg,k

)
≤ 0 ∀t = 26−MUT g, . . . , 24 (2.8c)

In (2.8a), the down-time condition for the first Gg time steps is enforced, preventing the
generator from shutting down if it was ON during the last steps of the previous day.
Equation (2.8b) forces the generator g to be ON at least MUT g steps if it is switched on.
Finally, (2.8c) provides the condition that ensures that if a generator is started up within
the last MUT g time steps, it will stay ON until the end of the 24-hour optimization time
frame.

Analogous to the expressions (2.8a)-(2.8c), minimum down-times are described by the
following expressions:

Lg∑
k=1

WGg,k = 0 (2.9a)

t+MDT g−1∑
k=t

(
WGg,k − 1

)
≤MDT g

(
WGg,t −WGg,t−1

)
∀t = Lg + 1, . . . , 25−MDT g (2.9b)

24∑
k=t

(
WGg,k − 1 +

(
WGg,t−1 −WGg,t

))
≤ 0 ∀t = 26−MDT g, . . . , 24 (2.9c)

Equation (2.9a) enforces the down-time condition for the first Lg time steps, preventing the
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generator from starting if it was OFF at k = 0. Equation (2.9b) forces the generator g to
be OFF at leastMDT g steps, and (2.8c) ensures that if a generator is shutdown within the
finalMDT g steps, it will stay OFF until the last period. The 24-hour UC model described
by equations (2.1) to (2.9c) correspond to a Mixed Integer Linear Programming (MILP)
problem.

Researchers have devoted significant attention over the years to developing computa-
tionally efficient algorithms to solve the UC optimization problem [32].An important and
widely used technique, which is applied in this thesis, is the branch and bound method,
along with its variations. Branch and bound solves a MILP problem by splitting the origi-
nal problem into a sequence of Linear Programming (LP) problems by relaxing the integer
conditions and including additional constraints [33]. After each sequential solution of a
LP problem, additional constraints are created forming a set of complementary feasible
regions out of the initial one. This approach starts its iterative process with an upper and
a lower bound, which sequentially converge to the solution when the problem is feasible.
The branching technique, on one hand, splits each sequential problem in two, where each
of the new LP problems has a complementary constraint, as shown in Figure 2.1, with
each of the newly originated LPs problems having a new constraint added. One constraint
includes the lower integer bound of the solution found for the last LP in the sequence, while
the other includes the upper integer bound as a constraint; in this manner integrality is
ensured. It is important to notice that, for binary variables, the resolution of the problem
is equivalent to fixing the value of these variables to one or zero in each branching process.
On the other hand, the bounding technique updates the general problem upper bounds
and lower bounds, eliminating any solution that is outside these limits and updating these
limits whenever the procedure finds better solutions inside the bounds.

Relatively recent techniques from soft computing such as neural networks, fuzzy logic,
genetic algorithms and combinations of these methods with others, called hybrid models,
have also been applied to the UC problem [34], [35].
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𝑊𝑔 ≤ 𝑊𝑔
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𝑖,∗ +1 

Figure 2.1: Branching technique in branch-and-bound method.

2.2 Smart Microgrids

Due to the growing need for incorporating RES and improving efficiencies in the electricity
business, researchers and industry are pointing to the so called Smart Grid as the best
option. This new concept not only promises to foment RES and increase grid efficiency,
but also to operate the assets of the grid in a more reliable, optimal and less pollutant
way [36]-[37]. According to the US Department of Energy, the smart grid is defined as an
automated broadly distributed energy network, characterized by electricity and information
bidirectional flows that enable the monitoring and control of each equipment and software
piece that make the grid, from generators to customer appliances. This is achieved by
benefiting from distributed computing and communications structures in order to deliver
information in real-time, enabling close to instant balance of generation and demand at a
device level [38].

With the new smart grid, Distributed Generation (DG), EMS and Demand Side Management
(DSM) technologies will be able to combine strengths through a robust communication
system. In the transition from the current state of power systems to the smart grid, infor-
mation technologies play a key role, such as the extensive use of the internet or the cloud
for data transmission [36], together with the continuous deployment of Advanced Metering
Infrastructure (AMI) for data acquisition and routing. However, the implementation of
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smart grids needs to address several issues, especially the ones related to information secu-
rity [39]. These concepts and ideas apply the same to large and small grids (microgrids).

Smart microgrids are defined as interconnected networks with their own DGs and de-
mands, able to maintain operation while connected or disconnected (isolated mode) from
the rest of the power system [37]. This operational capability comes from the fact that one
of the main characteristics of microgrids is their ability to manage the energy locally avail-
able in an optimal way, injecting or absorbing the net difference at its point of connection
to the rest of the network. In this process, industrial, commercial and residential loads
are considered as responsive, along with the additional support from ESSs, the usage of
electric power is optimized in order to seize most of the locally generated power, whether
this power comes from dispatchable or non-dispatchable sources.

These smart microgrids are proving to be the first actual and complete implementa-
tion of smart grids. In fact, these networks are being implemented in different countries,
not only with academic or research objectives, but also for commercial and practical pur-
poses. For instance, countries like United States, Portugal, Chile and Canada have already
implemented a number of smart microgrids [23]-[26].

2.3 Price-Elasticity of Demand

2.3.1 Modeling

According to microeconomics, the concept of the elasticity of a variable is defined as the
percentage change in that variable in response to a given percentage change in another
variable while all other relevant variables are held constant [40]. More intuitively, it can
be said that elasticity is a summary statistic which represents the responsiveness of one
variable to changes in another. Thus, the formal expression for the elasticity of a variable
y with respect to another variable xi is given as follows:
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ε =
percentage change in y
percentage change in xi

=
∆y/y × 100

∆xi/xi × 100
≈ ∂y

∂xi

xi
y

(2.10)

where ∆y is the variation in y, with ∆y/y representing the percentage variation in y. It
is important to mention that xi may not be the only variable that affects y, in which case
several elasticities could be used to summarize the responsiveness of y.

Price-elasticity of demand, as the concept suggests, is the percentage change of the
quantity demanded in response to a given percentage change in the price. Specifically in
power systems, price-elasticity of demand represents the percentage change in electricity
demand with respect to the percentage change in price. Since, as mentioned earlier, several
variables can affect the demand, its price-responsiveness should consider various factors.

By considering a basic one-hour elasticity model, an expression that correlates the price
difference between the forecasted and the expected price for a given hour can be defined.
The expression that allows to estimate the change in demand for that particular hour,
based on the general expression for elasticity in (2.10), can be represented as follows:

ρmin ρmax 

Price  [$/MWh] 

Pd [MWh] 

Pmax 

Pmin=(1-α)P0 

𝑃𝐷 = 𝑃0 ∙ 1 + 𝛼 ∙ 𝜀 ∙
𝜌

𝜌0
− 1  

P 
 ρ 

ρ0 

P0 

(a) Linear demand curve

𝑃𝐷 = 𝑃0 ∙ 1 − 𝛼 + 𝛼 ∙
𝜌

𝜌0

𝜀

 

Price [$/MWh] 

ρmin ρmax 

Pd [MWh] 

Pmax 

Pmin=(1-α)P0 

  

P 
 ρ 

ρ0 

P0 

(b) Exponential demand curve

Figure 2.2: Demand curves
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ε =
dPD

dρ

ρ0
PD0

(2.11)

From this equation, different expressions can be obtained depending on the behavior of
the demand, as shown in Figure 2.2, where the behavior of the demand curve is linear or
exponential. From Figure 2.2a, the following linear elasticity relationship can be obtained
for demand PD as a function of price ρ with respect to a reference price and base demand:

PD = P0

(
1 + α ε

(
ρ

ρ0
− 1

))
(2.12)

For Figure 2.2b, the following expression applies:

PD = PD0

(
(1− α) + α

(
ρ

ρ0

)ε)
(2.13)

In equations (2.12) and (2.13), α represents the elastic portion of the demand, meaning
that (1− α) percentage of the demand will be always fixed (inelastic). Hence, both models
can be written as the summation of a fixed demand plus a varying component that depends
on the behavior of the demand with respect to price.

The aforementioned elasticity expressions and parameters only represent the variation
of demand with respect to the change in price at the same hour; thus, these models are
not suitable for representing load shifting and other important features of DR. Therefore,
a cross-time elasticity matrix E was proposed in [41], as follows:

E =


ε1,1 · · · ε1,24
... . . . ...

ε24,1 · · · ε24,24

 (2.14)

where the diagonal elements of E, given by εt,t, represent self-elasticity, i.e. the load
elasticity at time t with respect to price changes at time t. Similarly, non-diagonal elements
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εt,k represent the elasticity of load at time t with respect to price variations at time k. It is
important to note that εt,k is not necessarily equal to εk,t, since each of these represent how
energy would be shifted from the time expressed in the first index to the time in the second
one. Based on E, and considering a constant reference price ρ0, the general expression for
estimating demand can be given by:

PDt = P0t

(
1 + α

∑
k

εt,k

(
ρk
ρ0
− 1

))
(2.15)

Here, responsiveness is modeled by the total contribution of percentage changes in prices
throughout the whole 24-hour period, plus the parameters α and P0t. It is important to
note that the elastic term can be positive, zero, or negative, effectively translating the total
contribution from all price variations into hour-by-hour demand variations.

2.3.2 Elasticity in Smart Grids

From the origins of the RTP scheme and other DR programs, price responsiveness from
customers has been modeled with elasticity parameters. This load elasticity has been used
mainly for demand forecast, assuming that the change in demand does not affect prices,
which is reasonable when only a small part of the demand is elastic. In this context, the
estimation of total demand considering DSM and DR programs has been studied by many
authors. However, demand elasticity is expected to increase in the smart grid context, in
view of developments such as load EMS [17] and intelligent loads, and the need of utilities
to reduce demand at peak hours. Therefore, as new devices and programs are widely
deployed, elasticity models will become crucial in determining electricity prices.

One of the main features of elasticity, particularly using the matrix notation in (2.14), is
that it can successfully help in determining optimal shifting patterns in the demand. With
this, as it is shown in [11], elasticity would also enable utilities to create DLC incentive pro-
grams, that would allow managing unexpected events in the network, providing frequency
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and voltage regulation. This new form of DLC could be more economically efficient than
traditional load shedding programs.

2.4 Summary

This chapter discussed several relevant background issues regarding UC, smart microgrids,
and the price-elasticity of the demand. The UC problem was generally defined, and some
solution techniques were listed. The concept of smart microgrids was briefly introduced,
since this thesis concentrates on these types of grids. Finally, demand price-elasticity was
characterized and briefly discussed in the context of smart grids, defining three different
models that are used in this work.
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Chapter 3

Mathematical Models and

Implementation

This chapter describes the mathematical models used in this thesis and their implemen-
tation. Thus, from the UC grid model described in Chapter 2, a microgrid UC model is
derived, including DER, RES, DLC, and ESS, for both grid-connected and isolated con-
ditions. Next, a procedure for estimating the parameters of a price-responsive load model
is developed for a given load EMS. Finally, an iterative procedure to study the impact of
price-elastic loads on the UC and vice versa is described.

3.1 Microgrid Mathematical Modeling

For a smart microgrid, in addition to the UC model described in Chapter 2, components
such as RES, ESS and directly controllable loads need to be included. Thus, the proposed
model considers RES as negative loads included in the demand-supply balance equation.
In the case of ESS, the modeling is more complex, since it includes State-of-Charge (SOC),
power output (or input), as well as binary variables representing the charging/discharging
operation status of the ESS. A small percentage of directly controlled loads are considered
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as well, since they allow the microgrid to react to conditions such as energy shortage.
Therefore, some of the equations for the UC grid model are modified and new constraints
are added.

The objective function for the microgrid operation is given as follows:

Cost =
∑
g,t

(
ag ·WGg,t + bg · PGg,t + SUCg · UGg,t+SDCg · VGg,t

)
+

+
∑
s,t

Cs ·
(
Wscs,t +Wsds,t

)
+
∑
d,t

Cd · PDCd,t

(3.1)

The first term in this equation is the same as in (2.1), representing the operational cost
of dispatchable generators. The second term denotes the cost of operating the ESS owned
by the microgrid, where Cs is the cost per charging and discharging operation cycles. The
last term of this equation represents the cost of direct control of customers’ loads, where
Cd represents different incentives to customers for curtailment or shifting of loads.

Demand-Supply Balance

The new nodal demand-supply balance relationship, including all the distributed compo-
nents of the microgrid, is formulated as follows:

PDGi,t − PDi,t +
∑
g∈i

PGg,t +
∑
s∈i

PSs,t +
∑
d∈i

(
PDCd,t − PDSd,t

)
=
∑
j

Bi,j (δj,t − δi,t) ∀i, t
(3.2)
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Energy Storage Systems

The following equations represent the ESS operational constraints and relations based on
[42]:

Cmin
s ≤ SOCs,t ≤ Cmax

s ∀s, t (3.3)

PSs,t

ηds
·Wsds,t + PSs,t · ηcs ·Wscs,t = SOCs,t − SOCs,t+1 ∀s, t; t 6= 24 (3.4)

Equation (3.3) represents the limits on the ESS SOC, and (3.4) represents the energy
balance of the ESS. However, this equation is linearized, by using the “big” M method
for alternative sets of constraints [33]; as a result, (3.4) is replaced in the model by the
following equations:

−PSs,t · ηcs −Ms ·Wsds,t ≤ SOCs,t+1 − SOCs,t ∀s, t; t 6= 24 (3.5a)

SOCs,t+1 − SOCs,t ≤ −PSs,t · ηcs +Ms ·Wsds,t ∀s, t; t 6= 24 (3.5b)

−PSs,t

ηds
−Ms

(
Wscs,t−W sds,t + 1

)
≤ SOCs,t+1 − SOCs,t ∀s, t; t 6= 24 (3.6a)

SOCs,t+1 − SOCs,t ≤ −
PSs,t

ηds
+Ms

(
Wscs,t−W sds,t + 1

)
∀s, t; t 6= 24 (3.6b)

Expressions (3.5a) and (3.5b) represent the energy balance of the ESS while charging,
considering the charging efficiency ηcs. Equations (3.6a) and (3.6b) represent the discharging
process, considering the discharging efficiency ηds .

The minimum and maximum capability of ESS energy injection or absorption is given
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as:
PS

min
s ≤ PSs,t ≤ PS

max
s ∀s, t (3.7)

And the charging and discharging limits, considering the battery SOC and the maximum
and minimum storage capacity, are modeled as:

(SOCs,t − Cmax
s )

ηcs
≤ PSs,t ∀s, t (3.8a)

PSs,t ≤
(
SOCs,t − Cmin

s

)
· ηds ∀s, t (3.8b)

Finally, coordination of charge/discharge decision variables is achieved by:

Wsds,t +Wscs,t ≤ 1 ∀s, t (3.9)

which ensures that the ESS cannot charge and discharge simultaneously.

Direct Controllable Loads

Microgrid controllable loads are modeled as follows:

Typed ·
∑
t

PDCd,t =
∑
t

PDSd,t ∀d, t (3.10)

PDCd,t ≤ WDd,t · PD
max
d ∀d, t (3.11a)

PDSd,t ≤ (1−WDd,t) · PD
max
d ∀d, t (3.11b)

where (3.10) represents the two types of controllable loads, Typed = 1 for shiftable loads
and Typed = 0 for curtailable loads. This equation allows to synthesize both classes of
direct control loads, and is a variation from the constant energy model proposed in [43];
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in the case of load shifting, this guarantees that demand curtailed is consumed during
times where no curtailment is needed. Expressions (3.11a) and (3.11b) limit the amount
of energy directly controlled, depending on whether the load shed command WDd,t is in
place or not.

Equations for line limits (2.3), generation output limits (2.4), startup and shutdown co-
ordination (2.5), regulation reserve (2.6), ramping constraints (2.7a) and (2.7b), minimum
up-time (2.8a)-(2.8c), and minimum down-time (2.9a)-(2.9c) are also used, unmodified
since these do not contain any additional distributed component. With all these equa-
tions, the security constrained UC model discussed in Chapter 2 is modified to properly
represent microgrid operation.

3.2 Estimation of Demand Elasticity Parameters

The expected Locational Marginal Price (LMP) ρ0i in (2.15) is assumed to be the same for
the whole UC time frame (24 hours in this case). Considering that all the demand behaves
as intelligent loads, the aforementioned assumption intends to reflect that load EMS would
modify demand profiles until there are no savings from this process; this agrees with [12],
where the control objective is to achieve constant demand. Thus, this is the price to which
all price-elastic loads would tend to converge towards by definition, since it is the price
these demands are willing to pay. Hence, price-responsive loads at bus i would increase
when the actual price ρi,t is lower than ρ0i, and decrease demand when ρi,t is higher than
ρ0i, swaying demand profiles towards a constant value. Here, it is assumed that expected
customer price is defined by the weighted average of prices at each node, as follows:

ρ0i =

∑
t PDi,t ρi,t∑

t PDi,t

(3.12)

It has been mentioned in the literature that the main components that are considered
in DR are water heaters and air conditioning, heat and ventilation; however, the proposed
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Figure 3.1: Demand elasticity model estimation.

model can be extended for more complex demand control devices. Thus, a model of a load
EMS and its response to historical data for RTP can be assessed. A uniform probability
distribution for prices can be considered to determine the impact of varying prices on such
load demands; the ranges of these distributions comprise the maximum and minimum
prices at each hour, after eliminating the outliers. Once the distribution is parametrized,
several daily price sets (24 hour price vectors) can be generated and recorded; for each of
these vectors, the behavior of the load can then be obtained. Finally, each price can be
compared to the reference price ρ0i, while each demand vector is compared to the base
load; in this manner, a set of changes in prices and their corresponding demand variation
can be created. This process would yield data to determine the parameters for the Ei

matrix in 2.14. A minimum squared error optimization model can be used for estimating
the Ei matrix parameters based on the difference between the estimated demand from
(2.15) and the actual demand of the loads with EMS. This minimization is carried out
considering that diagonal elements of matrix Ei are expected to be negative while the
rest are positive. The latter intends to characterize appropriately the behavior of the
model, where an increase in price for a certain hour must result in a decrease of energy
consumption, while a positive difference among two given hours could result in increasing
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the demand at the lowest price difference of those two. The proposed parameter estimation
procedure for price-elastic loads with EMS is illustrated in Figure 3.1.

3.3 Iterative Procedure

In contrast to what the literature proposes, it is not absolutely correct to assume that
demand responsiveness only affects the demand once. As DR is applied to consecutive
days, smart devices or sensitive customers will learn from past behavior and adapt to
the prices resulting from their responsiveness. This changes the procedure to a more
iterative one that takes into account this two-way interaction between demand and price.
Thus, as shown in Figure 3.2, the proposed procedure yields nodal prices from the security
constrained UC model, starting with the original values at k = 0 for system demand.
Then, by using the price vector obtained for day k as the input for a demand elasticity
model, the demand for the next day k + 1 is obtained. This iteration process continues
until convergence in prices and load demands is attained.

After solving the security constrained UC problem, hourly LMPs are obtained from the
shadow price of the power balance constraint at each node and time step on a day-ahead
basis. These prices can be used as the RTP signals to which the price-elastic demand for
the next day would respond. In the case of power grids, LMPs are obtained at each bus
and are used to estimate the day-ahead bus demand, whereas in the microgrid system only
the main bus LMP is used as pricing signal to compute the demand for all the nodes. This

Security 
Constrained Unit 

Commitment 
Pd

(0) ρ(k) 
Demand 
Elasticity 

Model 
Pd

(k+1) 

Figure 3.2: Iterative procedure for dispatch and demand correction.

28



is because the power grid has a transmission system with long lines that tend to decouple
the LMPs, while the microgrid is a comparatively smaller distribution system and thus
only the LMP of the main bus is sufficient.

3.4 Summary

In this chapter, an MILP mathematical model for security constrained UC was developed
for microgrids, intending to model all the common components that can be part of a smart
microgrid. In addition, a procedure was proposed to estimate the parameters of the cross-
time elasticity matrix. Finally, an iterative demand correction model was proposed to
study the impact of price-responsive load on prices and demand, and vice versa.
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Chapter 4

Case Studies

The models and procedures discussed in the previous chapters of this thesis are applied
in this chapter. The results of several simulations for different load models and grids are
shown and discussed, starting with a power grid example and three different load models,
for which their parameters are assumed or estimated. This allows to obtain an initial
understanding and insights on the effects of price-responsive demand on a power system.
A microgrid test system is then presented, and a 24-hour load model is used to determine
the impact of DR on such networks under different conditions.

4.1 Power Grid

As mentioned in Chapter 1, many researchers have used various load elasticity models
to analyze the demand responsiveness to price signals. In these studies, values of self-
elasticity between 0 and -0.5 have been reported and applied. Based on these values, the
behavior and impact of self-elastic loads is first analyzed here, in order to illustrate demand
responsiveness. Then, a more complete cross-elastic model is used to asses the impacts of
load EMS on the operation of power grids.
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Figure 4.1: Test power system based on the IEEE RTS 24-bus system [44].
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The test power system used for the studies is a modified version of the 24-bus IEEE
RTS system. The system provides many different features that can be used for realistic
tests, such as generator and line limits, ramp-up and ramp-down generator constraints,
and maximum up- and down-times for each generator [44]. Some modifications are here
introduced to this test system in order to simplify the cost functions to facilitate the UC
solution process and to study demand elasticity effects under stressful system conditions;
hence, the cost functions were linearized, and the line limits were reduced. A one-line
diagram of the system is provided in Figure 4.1.

4.1.1 Simple Elasticity Models

Applying the proposed procedure in Chapter 3 with a set of single hour linear elasticity
models, parametrized with the values provided in Table 4.1, yield the resulting total de-
mand and average electricity price, for the proposed iterative process, shown Figure 4.2. In
this case, only one hour was considered for illustrative purposes of the price-elastic demand
impacts.

Depending on the parametrization used in the elastic demand models, as price-elasticity
εit,t, share of elastic demand αi, and/or total base demand P0i,t varies, total system demand
and prices exhibit less stable and more oscillatory behaviors, since variations in demand
also increase as the aforementioned parameters increase. Some particular cases show a
slow convergence to oscillatory behavior; these cases are characterized by different lines

Table 4.1: Demand elasticity parameters for the linear and exponential single-hour elastic
load models.

Low Medium High
α 10% 35% 60%
Demand [MW] 1,436 2,154 2,873
Elasticity -0.05 -0.25 -0.45
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Figure 4.2: Total demand and prices with different linear-elastic loads.
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Figure 4.4: Uniform price vs demand relationship for uncongested 24-bus test system.

congested, and only reach steady state once these congestion have been relieved. The
exponential demand price-responsive models exhibit the same patterns for the parameters
given in Table 4.1, but with faster convergence and slightly greater variations, as seen in
Figure 4.3.

The above mentioned oscillatory behavior can be attributed to the multi-step marginal
cost characteristic shown in Figure 4.4, which is obtained for this test system by steadily
increasing the inelastic demand. Since certain price-demand equilibrium may force the sys-
tem to jump between two discontinuous points in the curve, the iterations would bounce
between price and demand levels. Additionally, it is interesting to note some similari-
ties between the behaviors observed here and the Cobweb theorem [45], which intends to
characterize price fluctuations of sequential periods in terms of the relationship between
demand elasticity and the supply curve slope.
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4.1.2 Cross Time Elasticity Models

After applying the procedure described in Section 3.2 using RTP values in Ontario, Canada,
during summer, the resulting Ei matrix for the EMS proposed in [17] is shown in Table
4.2. As previously explained, these parameter values were obtained by using the historical
hourly Ontario energy price (HOEP) data available at [46], and a resulting stochastic
model of hourly pricing. This table shows that self-elasticities at 2 AM and 7 AM are
at least 2 or 3 times higher than the average self-elasticity; additionally, from 3 AM to 6
AM, and then from 10 AM to 5 PM, self-elasticities are around the average, while at every
other hour these are low. On the other hand, cross-time elasticities behave the opposite
to self-elasticities, which means that variations in demand are directly proportional to the
variation in prices. Therefore, considering typical electricity prices, demand is expected to
increase at night and decrease during the day.

Table 4.2: Demand elasticity matrix estimated for the load EMS in [17].E table 2 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 -0.9 0.3 0.4 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1
2 0.7 -8.9 1.1 2.0 0.8 0.5 0.1 1.1 0.2 0.7 0.6 1.0 0.9 0.2 0.1 0.1
3 0.3 1.2 -3.7 0.8 0.7 0.0 0.1 0.2 0.3 0.3 0.1 0.2
4 0.1 0.7 0.8 -3.7 0.5 0.1 0.1 0.4 0.6 0.1 0.1 0.1 0.1 0.1
5 0.0 0.2 0.3 -2.6 0.3 0.1 0.1 0.1 0.3 0.0 0.2 0.0 0.2 0.3 0.1 0.0 0.0
6 0.3 0.1 0.1 -2.2 0.1 0.0 0.0 0.2 0.1 0.3 0.3 0.2 0.1 0.0 0.1
7 0.6 0.4 1.7 1.3 -6.4 0.6 0.5 0.2 0.9 0.4 0.2 0.2 0.0 0.4 0.4
8 -0.3
9 0.0 -0.6 0.1 0.0

10 0.1 0.0 0.2 0.2 0.1 -2.3 0.3 0.3 0.1 0.3 0.2 0.1
11 0.3 0.3 0.1 0.1 0.2 -2.7 0.2 0.0 0.6 0.3 0.1 0.2 0.0 0.0
12 0.0 0.5 0.1 0.3 0.1 0.6 -2.2 0.1 0.2 0.2 0.1 0.0 0.0
13 0.1 0.0 0.1 0.0 0.2 0.2 0.2 -1.7 0.1 0.2 0.1 0.1 0.0 0.1
14 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.3 0.3 0.0 -2.4 0.3 0.1 0.5 0.0 0.0
15 0.1 0.0 0.1 0.1 0.0 0.0 0.2 0.1 0.2 0.1 0.2 -2.0 0.2 0.1 0.0 0.1 0.0
16 0.1 0.1 0.1 0.0 0.1 0.3 0.3 0.1 -1.9 0.0 0.1 0.1 0.1 0.0 0.1 0.2
17 0.0 0.3 0.1 0.1 0.2 0.2 0.3 0.4 0.1 -2.3 0.2 0.1 0.0 0.2
18 0.1 0.1 0.2 0.1 0.2 0.1 0.1 -1.0 0.0
19 0.3 0.0 0.1 0.2 0.1 -1.0 0.0 0.0 0.3
20 0.1 -0.3 0.0
21 0.1 0.0 -0.4
22 -0.4
23 -0.8
24 -0.9
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Results

• Twenty four‐hour model in HV grid.
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Figure 4.7: Total daily operation cost convergence for different levels of elastic-matrix
demand for the 24-bus test system.

It is worth mentioning that the higher cross-elasticities are mostly located along the
matrix diagonal, meaning that there is a stronger shifting capability between close hours
than there is between distant hours. Another interesting observation is that, for the given
load EMS, self-elasticity values reach values of -8.9, and are higher than 1 for cross elasticity,
which means that such EMS technologies are capable of increasing demand elasticity up
to 20 times more than “common” DR programs, based on the elasticities reported in [10].

The impact of responsive loads on the RTS 24-bus system for the elasticity matrix load
model in Table 4.2 is carried out for different levels of penetration of elastic loads, i.e.
different α values in (2.15). The resulting behavior for total hourly demand and operating
cost are shown in Figures 4.5 and 4.6, respectively.

From Figure 4.5 it can be observed that the more elastic the demand, the higher the
variations, as observed for the single hour models in Section 4.1.1. Moreover, is interesting
to observe that the more elastic demand in the system, the faster the process convergences,
as demonstrated in Figure 4.7, which shows the daily operating costs as the days progress.
This is the opposite to the behavior of the simple single-hour elastic models, due probably
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to the interrelated 24-hour elastic load model. Figure 4.6 shows how as successive days
pass, the overall hourly costs are lower and show less peaks. This means that less expensive
generators are required, as expected due to the demand elasticity. However, as demand
elasticity increases, total operating costs increase, as shown in Figure 4.7 due to the higher
variability of the demand.

4.2 Microgrid

The test microgrid used for the studies is a modified version of the CIGRE-IEEE DER
MV benchmark network presented in [47]. The original test system has 15 buses and an
HVDC link between Buses 8 and 14. The network features a total of 210 kW of highly
distributed photovoltaic capacity; a 1,500 kW wind farm at Bus 7; a 310 kW CPH diesel
unit at Bus 9; and a total of 1,059 kWh in ESS distributed among Buses 5, 9 and 10. In
this work, the system is modified into a 13-bus network by joining together Buses 0, 1
and 12 in the original system, and replacing the HVDC link with an AC feeder, as seen
in Figure 4.8. The modified microgrid includes 1,710 kW of renewable DERs, 1,339 kWh
of ESS installed capacity, and 5,810 kW of dispatchable thermal capacity. A detailed list
showing the capacity for each source type is provided in Table 4.3.

Among the dispatchable thermal generation, the generator at Bus 1 is assumed to be
the main microgrid source. This large generator (5,000 kW), due to its size and in order to
maintain the model linear, is modeled as a 5 step piece-wise linear generator, so that the
quadratic cost of the generator is adequately represented. For modeling and comparison
purposes, Bus 1 is assumed to be either connected to the main generator or directly to the
utility grid. For the utility connected microgrid, Bus 1 is assumed to be an infinite bus,
with a cost function corresponding to the TOU prices for Ontario, Canada, for the summer
[48].

In terms of direct controllable loads, a value corresponding to 7% of the lowest hourly
demand for each bus is assumed to be available for curtailment, and 15% for shifting, at any
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Figure 4.8: Microgrid test based on the CIGRE-IEEE DER benchmark MV network [47].
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Table 4.3: DERs’ Capacity

DER distribution 

Bus DER type Capacity Bus DER type Capacity

1 Diesel 5000 kW 8 ESS 200  kWh

3 Photovoltaic 20 kW 8 Photovoltaic 30 kW

4 Photovoltaic 20 kW 9 Diesel 310 kW

5 ESS 600 kWh 9 ESS 212 kWh

5 ESS 33 kWh 9 Photovoltaic 30 kW

5 ESS 30 kWh 10 ESS 200 kWh

5 Photovoltaic 30 kW 10 ESS 14 kWh

6 ESS 50 kWh 10 Photovoltaic 40 kW

6 Photovoltaic 30 kW 11 Photovoltaic 10 kW

7 Wind Farm 1500 kW 13 Gas 500 kW

time at each of the load buses. These values were chosen so that only a small percentage of
the load is assumed to be controllable, in order to consider a realistic scenario. Since DLC
has a major impact on the customers’ comfort, the cost of load shifting is assumed to be
a high $2/kWh, whereas curtailment cost is assumed to be $20/kWh, which compared to
the marginal prices for the microgrid without DR, are about 8 times and 80 times higher,
respectively. In this way, direct control only occurs when the microgrid load cannot be
supplied from the given sources without load reduction.

Finally, the cost Cs of operating the ESS was estimated by considering 2 operating
cycles per day, an annual rate of return of 8%, an investment cost of $1,200/kWh, and a
life spam of 3,000 cycles, as per [49]. Using these values for calculating a daily annuity,
the resulting average ESS operating cost is $0.54/kWh.

4.2.1 Utility Connected Microgrid

Since under grid connected operation a microgrid would not be able to generate its own
pricing signals, the network behaves as a price taker entity. In fact, as shown in Figure 4.9,
the system converges to a fixed demand profile in just one iteration, due to the inability
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Figure 4.9: Effect of demand responsiveness on the total demand for a utility connected
microgrid.

of the microgrid demand to affect system prices. This can result in several problems when
the pricing signal does not match the needs of the system, as it might generate undesirable
load peaks as seen in Figure 4.9. Since the microgrid acts as a price taker, there is not much
interest in this configuration, besides demonstrating a weakness of fixed price schemes, and
the fact that demand changes have no impact on market prices.

4.2.2 Isolated Microgrid

When the demand affects market prices, as is the case of isolated microgrids, more com-
plex and interesting phenomena take place. For this case, Figure 4.10 displays how the
forecasted demand evolves, filling up low demand hours by shifting peaks in demand to
the valleys, similarly to what was observed in the utility connected case. Since the load
model used considers thermal loads, the net value of demand variation is not zero due
to thermal inertia, thus increasing demand at the beginning of the 24-hour period and
reducing consumption towards the end of the day. This is the same behavior exhibited
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Figure 4.10: Effect of demand responsiveness on total demand for an isolated microgrid.
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Figure 4.11: Effect of demand responsiveness on pricing signals for an isolated microgrid.

by the load EMS in [17], where the scheduling is done in a day-ahead basis, resulting in
pre-climatizing the building in the morning to meet the constraints during day time.
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Figure 4.12: Effect of demand responsiveness on total demand for an isolated microgrid
under high demand and high content of non-dispatchable RES.

When comparing Figures 4.10 and 4.11, one can observe how the demand and prices
increase during the night, as expected. It can also be noticed that the morning peak is
extended for an hour. Note as well that the total system operating cost for the microgrid
decreases as the the demand evolves towards a fixed profile. When considering the opera-
tion under stressful conditions, the changes in demand are far more drastic, because both
the base load and hourly price variability are greater. Figure 4.12 depicts the evolution
of net load in the microgrid showing its convergence to a fixed profile, which is between
the initial and first iteration load profiles. This can also be seen in Figure 4.13 for price
corrections.

Under stressful conditions, ESS operation takes place more often than for the initial
load profile, as shown in Figure 4.14. The reason for this is that the system feeders
are saturated at the initial loading conditions, and after considering responsiveness, this
problem is mostly mitigated. This figure also shows how, after DR activation, the ESS
mainly consumes energy from the grid, to ensure the proper usage of the available energy
during periods of high RES generation. It is interesting to note that in the cases presented
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Figure 4.13: Effect of demand responsiveness on pricing signal for an isolated microgrid
under high demand and high content of non-dispatchable RES.
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Figure 4.14: Effect of demand responsiveness on ESS operation for an isolated microgrid
under high demand and high content of non-dispatchable RES.
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here, there was no need for DLC usage, as the price-elastic loads and ESS were sufficient
to keep the demand-supply balance.

4.3 Summary

In this chapter, the effect of different elastic load models was tested, using the various
models and procedures described in Chapter 3. First, two single-hour elastic load models
were considered in a power grid test system, showing either oscillatory behavior or eventual
convergence for price and demand, depending on the supply-offer cost curve characteriza-
tion. A 24-hour elasticity matrix was parametrized to represent load EMS responsiveness;
this model was then used in the power grid test system, resulting in higher demand and
price variability as elastic demand increases, and an overall hourly cost reduction. Finally,
the effect of a 24-hour elastic load model was studied in a test microgrid system, showing
flattening in demand and prices, and similar behavior between DR and ESS operation
when the system is in normal operating conditions.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

A new model for studying the effect of load price-elasticity in market prices and dispatch
has been developed. It has been shown here, as in the literature, that price-elastic loads
may present adverse effects on the grid, such as low prices translating into high demand
peaks. Hence, DR is demonstrated to not always be as beneficial as some reports claim,
especially when elastic demands becomes a significant part of the total system load. This
phenomenon would be even more pronounced for intelligent loads with EMS, since demand
will be reduced at peak-price hours, while increasing peak power during low-price times.

The use of an iterative procedure for correcting the demand profiles, show that DR ill-
effects can be mitigated in the long term. Thus, the total operation cost of a system tends
to decrease due to congestion management, and load shifting and curtailment provided by
elastic demands. However, as the responsive demand increases its penetration, the cost
reduction is limited due to higher demand variations, showing flattened price profiles but
increased demand peaks and variability.

In the particular case of microgrids, multi-period price-responsive loads were shown to
have similar behavior as ESS, soothing system variability while minimizing total operating
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costs. It was demonstrated that there can be a prioritization of DR over ESS, depending
on whether the price differences during the day are greater than ESS operating costs or
not; however, in the case when there is no other way to meet the demand-supply balance
at a certain hour, this prioritization process is nullified.

5.2 Contributions

The main contributions of this work can be summarized as follows:

• A price-responsive demand estimation methodology was developed to properly rep-
resent the behavior of EMS in intelligent loads.

• A comprehensive mathematical model for solving the UC problem in smart grids,
considering price-responsive demand, has been developed. In the context of micro-
grids, elements such as DR, ESS and DER have been included along with the demand
responsive model.

• A study considering successive iterations of price-responsiveness has been conducted
showing that, as responsive demand increases its participation in a system, higher
variability in demand and price profiles is exhibited, while demand peaks tend to
increase and overall prices and costs decreased.

5.3 Future Work

The following are some issues that may be improved in the presented studies:

• The UC models can be improved by considering an optimal power flow approach,
which allows the inclusion of line losses and voltage profiles.
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• Stochastic models can be considered, in order to study the effect of uncertainties
from RES and load operation.

• Reducing the time frames and implementing an ac model can provide the basis for
stability analysis regarding demand responsiveness. This last issue becomes more
relevant as a larger portion of the demand is controllable, since demand simultaneity
factors would result in larger and faster load variations.
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