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Abstract

CDMA channel selection requires sharp as well as wide-band filtering. SAW filters

which have been used for this purpose are only available in IF range. In direct conversion

receivers this has to be done at low frequencies.

Switched Capacitor technique has been employed to design a low power, highly selective

low-pass channel select filter for CDMA wireless receivers.

The topology which has been chosen ensures the low sensitivity of the filter response.

The circuit has been designed in a mixed-mode 0.18µ CMOS technology working with

a single supply of 1.8 V while its current consumption is less than 10 mA.
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Chapter 1

Introduction

This thesis deals with the design of a baseband CDMA channel select filter. In this chapter

the motivations for this research, the contributions and the thesis scope are discussed.

1.1 Motivations

CDMA wireless receivers require wide-band as well as sharp channel select filtering [11].

Up to now, channel selection has been done using bulky as well as expensive off-chip

SAW filters in intermediate frequency (IF) range. But with recent improvements in direct

conversion methods the demand for DC channel selection has been substantially increased.

Two methods, i.e., switched capacitor (SC) and continuous time (CT) can be utilized

to perform channel selection at DC. Albeit both can be well integrated into the whole mo-

bile transceiver, due to the inherent nature of integrated continuous time method in which

poles and zeros of the filter’s transfer function are determined by ratios of transconduc-

tances and capacitors, they are not accurate. The process related variations of capacitor

and transconductor values are uncorrelated, so that even a 40% degradation from the de-

sired frequency response has been reported [19]. In order to combat this crucial obstacle,

utilizing tuning methods in integrated continuous time filters is inevitable [38] [22]. This

problem increases the complexity of the whole filtering circuitry. On the other hand, SC

filters deliver very accurate frequency response without any need for an extra tuning block

[5], provided that some fundamental aspects such as high gain, large bandwidth, large

phase margin, high slew rate and highly matched integrated capacitors have been carefully

considered in the design process.

Moreover, the fact that the final circuit is to be used in a wireless receiver demands for

1



Introduction 2

both low voltage and low power design.

Based on the foregoing discussions, a highly selective CDMA channel filter has been

designed in a 0.18µ mixed-mode CMOS process, operating with a single supply of 1.8 V.

1.2 Original Contributions

The contributions of this thesis can be divided to two different categories, i.e., analysis and

design.

Chapter 4 contains the analysis of the effects of nonidealities of fully differential op-amps

on the characteristics of bilinear switched capacitor differential integrators which includes

step-by-step derivation of all mathematical relationships. The major contributions in that

context are two-fold as follows:

• Utilization of a more realistic model for the operational amplifier by the inclusion of

the effect of finite-gain and finite band-width simultaneously

• Inclusion of the op-amp input capacitance in the analysis which gives rise to the

concept of effective unity-gain frequency

The contributions in the design context include applying the well established SC tech-

nique to stringent requirements of CDMA wireless receivers using an advanced sub-micron

CMOS process.

Moreover, certain design guidelines and techniques presented in Sec. 5.5 try to develop

an innovative approach to the circuit design in sub-micron technologies.

1.3 Thesis Scope

Integrated filters design in general and SC ones in particular are multi-disciplinary areas.

They cover wide range of subjects from basic circuit theory, filter theory, integrated circuit

design as well as advanced topics like sensitivity, noise and distortion analysis.

Based on the foregoing discussions, to keep the thesis as concise as possible, the majority

of the basics are assumed to be known.

The thesis starts with a quick overview of discrete time (DT) systems and their char-

acteristics. Then, in order to derive the appropriate DT circuits from the well-know CT

ones, Bruton’s theory is presented, and following that the SC blocks which comply with

the previously discussed requirements are presented.
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The next chapter quickly reviews one of the most important theorems of the circuit

theory and its applications to the analysis of the filters are presented.

Based on the theories developed in the previous chapters, the design of the desired

channel select filter are fully discussed. It includes, derivation of the block diagram pa-

rameters from the system level requirements followed by the transistor level design of the

integrated circuits.

Mathematics and physical interpretations are fully incorporated in all parts of this the-

sis. It has been tried hard to justify all the arguments, either by presenting mathematical

proof or giving deep insights into the physics of the problems.



Chapter 2

Discrete-Time Systems and Switched

Capacitor Technique

2.1 DT Signals

A signal which does not change continuously by time is called discrete time(DT). Depending

on the time domain characteristics or the values that the signal can accept, DT signals can

be classified into different categories.

A DT signal can consist of either short period or wide pulses. The former is called

sampled signal and the latter sampled-and-held (Fig. 2.1).

The time difference between the moments that the values of consecutive samples change,

can be equal or different (Fig. 2.2).

Signals which consist of equally spaced samples could be represented by Z-transform,

as follows

X(z) =
n=+∞
∑

n=−∞

x(nT ) · z−n (2.1)

A DT signal can accept either any values or in opposite, it might consist of only

quantized values, called digital signals. The former is called analog-sampled.

The subject of SC technique is to deal with equally spaced analog sampled signals which

in most cases are sampled-and-held, but not necessarily. As a result, from this point, all

the signals which will be called DT in this thesis are assumed to have these properties,

unless otherwise explicitly mentioned.

4
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t


(b)
 (c)


t


t


(a)


Figure 2.1: CT signals and two different DT representation. (a)Original CT signal

(b)Sampled DT (c)Sampled-and-held

t


(a)


t


(b)


Figure 2.2: Two different scheme of sampling. (a) is the popular one in which the samples

are equally spaced, whereas in (b) samples have been taken at different moments
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The complex variable z is an exponential function of jω, in which ω is the real frequency.

Consequently, the spectrum of a DT signal which is obtained by substituting z = exp(jω)

will be periodic.

This is a very basic, yet a crucial property of DT signals, and it will be seen that it has

severe effects on the characteristics as well as design requirements of SC circuits.

2.2 Nyquist Criterion

For every DT signal which consists of equally spaced samples, there exist infinite number

of CT signals which have exactly the same values at the moments that the samples have

been taken. As a result, a DT signal by itself cannot uniquely express a corresponding

CT signal. However, putting some restrictions on the CT signal can establish a one-to-one

relationship between DT domain and CT domain.

Nyquist criterion deals with this restriction and proposes the condition through which

there exists one and only one CT signal for a specific DT signal.

Sampling a CT signal x(t) results in a DT signal x(nT ) in which T = 1/fs is sampling

period and fs sampling frequency.

If the original signal x(t) has a finite bandwidth BW , for some values of fs there will

be DT signals from which x(t) can be uniquely reconstructed. Depending on whether this

signal is low-pass (LP) or band-pass (BP), as it is shown in Fig. 2.3, the sampling could

be classified into two different categories. Nyquist criterion is presented for both cases as

the following.

f


(a)
 (b)


f


BW
BW


Figure 2.3: Frequency spectrum of (a)LP (b)BP signals
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2.2.1 Over-sampling: LP Signals

For an LP signal, i.e., a signal which has DC value, the sampling frequency fs has to be

higher than twice the signal bandwidth BW (Fig. 2.4).

−BW ≤ f ≤ BW −→ fs > 2 ·BW (2.2)

This condition ensures that aliasing won’t happen and as a result the original CT signal

can be exactly reconstructed from the DT one.

Since in this case, fs is higher than the signal bandwidth, it is known as over-sampling,

and the ratio

OSR =
fs
BW

(2.3)

is called over-sampling ratio.

It should be noted that since the magnitude components of negative frequencies are

exact replicas of the positive ones—which is a basic property of double-sided Fourier

transform—therefore for LP signals, BW is defined from the DC up to the highest fre-

quency component.

f
s


BW


f


BW


-f
s


Figure 2.4: Frequency spectrum of an over-sampled LP signal.

2.2.2 Under-sampling: BP Signals

For BP signal, i.e., those which do not contain DC value, or in other words their frequency

spectrum consists of components in range f0 up to f0 + BW where BW is the signal

bandwidth and f0 is greater than zero, still the Nyquist criterion for LP signal is applicable,
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which in this case, it gives rise to the values of fs that will be greater than 2(f0 + BW ).

But this results in severe practical difficulties. In most cases f0 is orders of magnitude

larger than BW, so that the very high value of required sampling frequency makes the

processing of signal in DT domain absolutely difficult, if not impossible. For instance in

mobile communication f0—carrier frequency—is in the range of GHz but BW, at the worst

case, is in the range of tens of MHz.

Fortunately, placing one more restriction on the original CT signal can result in a

new version of Nyquist criterion for BP signals which itself consequently gives rise to very

relaxed requirements for fs. This extra condition requires that

f0 > BW (2.4)

which as stated earlier, it is easily satisfied in most practical cases.

Therefore Nyquist criterion changes to the following, i.e., for BP signals, sampling with

a frequency in the range

BW < fs < f0 (2.5)

gives rise to a DT signal from which the original CT signal can be exactly reconstructed,

provided that Eq. 2.4 is held.

Since in this case, the sampling frequency is less than signal bandwidth, it is known as

under-sampling, and the ratio

USR =
BW

fs
(2.6)

is called under-sampling ratio.

Under-sampling of a BP signal can result in a typical frequency spectrum as shown in

Fig. 2.5.

2.3 Bruton’s Theory

When Bruton published his excellent paper [4] in 1975, SC filters had not been known at

that time. Nevertheless, in about five years they were emerged as the optimum choice for
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BW


f


f
0

f
0
 + BW
f
0
 - f
s
 f
0
 + BW - f
s


- f
s
+ f
s


BW
BW
 BW


Figure 2.5: Frequency spectrum of an under-sampled BP signal

analog sampled filtering, henceforth Bruton’s paper written on DT filters—mainly digital

ones—had a profound effect on SC technique.

As it will be thoroughly reviewed in Chap. 3, sensitivity is a major concern in filter

design, and as Orchard’s theorem [30] states, the sensitivity of attenuation function is very

low in pass-band for passive LC filters, and any network which can simulate the governing

equations of these circuits will inherit their insensitivity characteristics and will be immune

to first order perturbations in reactive element values.

This simulation of governing Kirchhoff’s equations can be performed in two different

ways, i.e., impedance simulation and signal flow graph (SFG) method, that both of them

will be treated in detail in Sec. 2.6. For our current discussion, it should be just noted

that in either case the realization of the desired TF reduces to a network consisting of

integrators with different gains.

As a result, integrators are the most fundamental blocks in transfer function realization

and any attempt to generate a desired frequency response reduces to providing suitable

integrators with specific characteristics which are basically the subject of investigation in

Bruton’s theory.

The ultimate goal in this theory is to design low-sensitivity DT filters, and based on

the foregoing discussions a premier choice for the realization of these networks will be

substitution of CT integrators with their DT counterparts in an original low-sensitivity

CT circuit. Nevertheless, with regard to this methodology, several fundamental questions

have yet to be answered which are classified as follows

• Is there a direct relationship between reactive element values of an LC filter and the
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constituting parameters of the DT filter?

A positive answer to this question leads to the fact that since the original filter is

insensitive to the perturbations of reactive element values, therefore the resulting

DT network will also be immune to first order variations of the parameters of its

constituting components.

• What type of discrete integrators has to be employed to retain the insensitivity sig-

nificance of original LC network?

This is in fact the highlight of Bruton’s theory and a major concern in DT filter

design.

In order to answer these questions, the concept of lossy and loss-less integration will be

introduced and based on that, these concerns will be addressed.

The frequency response of an ideal integrators is written as the following

I(jω) =
1

jω
(2.7)

whereas real integrators have some gain error as well as phase error with respect to the

ideal case, as follows

I(jω) =
1

jω
(1 + ε) · ejθ (2.8)

in which ε and θ are gain and phase errors respectively.

On the other hand, the frequency relationship of a non-ideal integrator can be expressed

in another form using the concept of quality factor which will be

I(jω) =
1

jω
(1 +

j

Q
) (2.9)

in which Q is the quality factor. It is evident that for the ideal case where the quality

factor Q is infinite, Eq. 2.9 reduces to Eq. 2.7.

Applying Taylor’s series expansion to Eq. 2.8 and keeping the most significant terms

with the assumption that ε¿ 1 results in

I(jω) '
1

jω
(1 + jθ) (2.10)
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Comparing Eq. 2.9 and Eq. 2.10 suggests that with a good approximation

Q '
1

θ
(2.11)

This relationship implies that Q degradation—which stands for ohmic losses in reactive

elements or in other words the existence of parasitic resistances—is solely dependent on

the phase deviations from the ideal case. This statement is of invaluable significance, since

as stated earlier for LC networks the sensitivity of attenuation function is zero with respect

to the variations of reactive element values, whereas having finite Q for such an element

corresponds to the existence of parasitic resistance, so that as a result Orchard’s theorem

would not be applicable.

In order to obtain a DT network which has inherited the low-sensitivity properties of

the LC prototype, the DT integrators that are substituted for their CT counterparts must

have zero phase degradation to ensure the infinite quality factor of the integrator or in

other words the lack of loss in the element. Amplitude degradation is not of significant

importance, since it can be appropriately compensated in the prototype network.

Two infamous types of integrators which have this property are to be closely examined.

2.3.1 Bilinear Transformation and Bilinear Integrator

This type of integrator is based on infamous bilinear transformation in complex number

theory which is described as follows

sct =
2

T
tanh s

T

2
=
2

T

1− e−sT

1 + e−sT
=
2

T

z − 1

z + 1
(2.12)

where T is the sampling period as before and z = exp(sT ).

This transformation has the property of mapping the entire left half plane (LHP) of sct

domain onto the unit circle in Z domain. The jωct axis is correspondingly mapped into

the perimeter of the unit circle. This implicitly states that a discrete transfer function

obtained by applying bilinear transformation to an original continuous one is stable iff the

original one is stable.

When Eq. 2.12 is written in terms of real frequencies, we get

ωct =
2

T
tan (ωT/2) (2.13)
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Therefore the frequency response of a bilinear DT integrator—which is obtained by

applying Eq. 2.13 to the original CT one (Eq. 2.7)—will be

I(jω) =
1

j
·

T/2

tan (ωT/2)
=

1

jω
·

ωT/2

tan (ωT/2)
(2.14)

As it is easily seen the deviation of this TF from the ideal case is only in the form of

a real multiplier. The great outcome of this fact is that a bilinear integrator has no phase

error comparing to an ideal one, so that based on the foregoing discussions, it is in fact

a loss-less integrator. Conclusively, Orchard’s sensitivity theorem is applicable to any DT

network obtained by applying a bilinear transformation to an original passive LC circuit

or in other words all the excellent insensitivity properties are retained in DT domain.

The trigonometric relationship 2.13 shows that in the process of moving from CT do-

main to DT, a frequency scaling happens which is widely known as warping.

In the case of bilinear transform, the warping effect shows itself in terms of frequency

compression, or in other words, the DT filter will have more selectivity—sharper frequency

response—comparing to the original CT one [25]. This is due to the infamous trigonometric

inequality

ωT/2 ≤ tan (ωT/2) (2.15)

where |f | ≤ fc/2 or in other words |ωT/2| ≤ π/2.

2.3.2 Loss-less Discrete Integrator(LDI)

This type of integrator is based on the following transformation

sct =
1

T
(esT/2 − e−sT/2) =

1

T
(z1/2 − z−1/2) (2.16)

or in terms of real frequencies

ωct = j
2

T
sinω

T

2
(2.17)

Therefore the frequency response of a DT integrator obtained through this transforma-

tion will be
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I(jω) =
1

jω
·

ωT/2

sin (ωT/2)
(2.18)

As it is evident, there is no phase degradation, so that sensitivity properties are pre-

served under this transform.

It should only be mentioned that under this transformation, the warping effect appears

in terms of sin function, whereas for bilinear transform this was tan (Eq. 2.13). Therefore

in this case a frequency expansion occurs which results in less selectivity. Hence this is

considered as one of the shortcomings of LDI transformation.

The other problem which is in fact a crucial one, is the fact that under this transfor-

mation the whole LHP in sct domain is mapped onto the whole plane in Z domain. This

can be easily verified, since by applying z −→ 1/z, the relationship 2.16 does not change.

More precisely, for every pole in original CT-TF there exist two poles in DT-TF which are

inverse of each other. One of these is inside the unit circle and the other outside. The latter

stands for inherent instability of TFs obtained through this transform, although there are

certain ways to address this issue [25].

2.4 SC Resistor

Decades of attempt to realize inductor-less filters led to the invention of SC filters in late

1970’s. In fact, the idea proposed by Fried [9], ignited heavy research on the potentials

of employing switched capacitors to implement discrete filters, so that finally after half a

decade the earliest versions of SC filters emerged.

In this section the idea that a periodically switched capacitor shows the behavior of

a resistor is presented. Albeit in subsequent sections, SC filters are treated in a much

more fundamental way, it is worthwhile knowing the fact that there are always different

ways to look into a problem and SC technique is not an exception. The material in this

section gives us a crude viewpoint of the essence of the technique and it is invaluable in

understanding the physical nature of filtering CT signals in a rather odd way by switching

capacitors.

Consider Fig. 2.6 in which a capacitor is periodically switched between two nodes of

network N. The two switches are controlled by two phases of a clock signal with period

T = 1/fc. The second terminal of the capacitor is permanently connected to ground.

During phase φ1, the capacitor is charged up to voltage V1. In phase φ2, the capacitor
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voltage becomes V2. Therefore total charge difference during the whole clock period will

be

∆q = C (V2 − V1) (2.19)

This net charge difference is provided through nodes 1 and 2, and the average current

passing from node 2 to 1 is defined as the total passed charge divided by the whole period,

as follows

Iav =
∆q

T
= C

(V2 − V1)

T
(2.20)

This relationship clearly shows that on average the switched capacitor acts as an equiv-

alent resistor with value

Req =
1

fc · C
(2.21)

1

2

1

- �

- �

C

Figure 2.6: Switched capacitor acting as an equivalent resistor.

2.5 SC Integrator

The fact that a switched capacitor acts as an equivalent resistor on average, can promote

the idea of realization of an integrator using only capacitors, op-amps and switches which

basically stands for implementing a fully integrated filter in CMOS technology.
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C

R
Vi

Vo

Figure 2.7: Typical CT integrator.

A typical CT integrator is shown in Fig. 2.7. A crude idea for implementing a SC

integrator would be substitution of the resistor R with an equivalent SC one as it was

proposed in Sec. 2.4.

But since often, the simplest way of doing something is not the best one, the resultant

SC integrator is not of practical significance. This is due to systematic as well as practical

shortcomings of the circuit. Nevertheless, theoretically it sheds light on a way that lead

us to more complicated, yet deliberate way of performing discrete integration. As a result,

in this section the basic integrator will be introduced. Then its drawbacks will be closely

examined, so that the trends will become evident. In continuation, more elaborate ways

of discrete integration will be presented, and by the end of this section all the aspects of

discrete integrators will be covered in full details.

2.5.1 Basic Integrator

The most basic form of SC integrator is obtained by replacing resistor R in Fig. 2.7 with

the SC equivalent resistor presented in Sec. 2.4. The resultant circuit is drawn in Fig. 2.8.

From this point, whenever a SC circuit is under investigation, it will be mathematically

treated, so that the exact behavior of the circuit can be obtained. Since SC circuits are

discrete-time, Kirchhoff’s laws cannot easily be applied to them. As a result the analysis

of SC circuits will mainly be based on charge conservation principle which itself is in fact

the basis of KCL.

Also, from this point, whenever a SC circuit is examined, it is assumed that there exist

two non-overlapping clock signals which control the switches all across the network. The
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Vi

Ci

Vo
Cr

-
�

-
�

Figure 2.8: Basic SC integrator.

assumption of being non-overlapping is crucial, otherwise during transients two switches

which have to be alternatively on and off can conduct simultaneously and result in severe

degradation in desired characteristics of the network.

Assuming that the operational amplifier is ideal and the input Vi changes only once per

clock cycle, i.e., at moments ..., n− 1, n, ... the charge stored in resistive capacitor Cr and

integrating capacitor Ci during phase φ1 will be

q1 [n− 1] = CrVi [n− 1/2] = CrVi [n− 1] (2.22)

q2 [n− 1] = CiVo [n− 1/2] = CiVo [n− 1] (2.23)

and at the end of phase φ2 it becomes

q1 [n] = 0 (2.24)

q2 [n] = CiVo [n] (2.25)

therefore the net charge difference for both capacitors will be

∆q1 = q1 [n]− q1 [n− 1] (2.26)

∆q2 = q2 [n]− q2 [n− 1] (2.27)

and from charge conservation principle
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∆q1 = ∆q2 (2.28)

which gives rise to the following relationship

−CrVi [n− 1] = Ci (Vo [n]− Vo [n− 1]) (2.29)

Taking Z transform, the transfer function of the integrator will be

Vo

Vi

= −
Cr

Ci

1

z − 1
= −

fc · Cr

Ci

T

z − 1
(2.30)

Comparing this to the transfer function of the analog integrator of Fig. 2.7, i.e.,

Vo

Vi

= −
1

R · C

1

sct
(2.31)

it is seen that utilization of the basic DT integrator stands for applying the following

transformation between CT and DT domains

sct =
1

T
(z − 1) (2.32)

The frequency response of the basic SC integrator is given by

I(jω) =
Vo

Vi

∣

∣

∣

∣

z=ejωT

= −
fc · Cr

Ci

·
1

jω
·

ωT/2

sin(ωT/2)
· e−jωT/2 (2.33)

As it can be easily seen, the deviation from the ideal frequency response (2.7) has

been appeared in two forms: gain or warping effect as well as phase difference. As it

was thoroughly discussed previously the warping effect can be pre-compensated, but the

phase degradation is equivalent to having loss in the integrator or in other words the DT

filter obtained by merely replacing integrating elements by this block do not inherit the

insensitivity characteristics of the original one.

A second problem which is of extreme practical significance is the sensitivity of the

integrator to parasitic capacitances present in the actual real-life circuit. In real life, the

switches are implemented by single MOS transistors, NMOS mainly, or an NMOS and
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a PMOS in parallel as it is shown in Fig. 2.9. The latter is known as transmission gate.

Consequently, the parasitic capacitances of these transistors, i.e., source-bulk Csb and drain-

bulk Cdb are in parallel with the resistive capacitor Cr, so that the total capacitance that

contribute to the integrator gain will be Cr + Csb + Cdb. If the values of these capacitors

were known, it might be possible to pre-compensate for this extra capacitance by properly

reducing Cr value. However, these capacitor do not have known values and to make the

situation even worse, they are largely dependent on operating conditions such as applied

voltage, etc. This stands for a major degradation of the characteristics of the integrator,

so that a network consisting of a few of these imprecise devices can be unacceptably

inaccurate. Therefore a new scheme should be employed to combat this problem in a proper

way, and in fact, this is the subject of investigation of the rest parts of SC integrators study.

(a) (b) (c)

21

- �
- �

- �

21 21

Figure 2.9: (a)Ideal switch schematic (b)NMOS implementation (c)Transmission gate.

2.5.2 Stray Insensitive Integrator

The susceptibility of basic SC integrator to stray capacitances—mainly due to Csb and Cdb

of the transistors used as switching elements—requires a different switching scheme so that

the effect of these parasitic components can be effectively eliminated.

Compensation for these stray capacitors through adjustment of other circuit elements

is not practical, since not only the values of these parasitic elements are not exactly known

but also they are subject to large variations due to ambient as well as circuit operating

conditions.

Two methodologies can be adopted to address this issue:

• Preventing charge build-up on stray capacitors.
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If during two consecutive clock cycles the voltage of the terminals of the switched

capacitor is kept at a constant level, the stored charge in these parasitic component

do not change and therefore they do not contribute to governing equations of the

circuit which are based on charge conservation.

• Disposing the stored charge of stray capacitors.

The other way to cancel the effect of parasitic capacitances is to constantly keeping

terminals of the switched capacitor connected to voltage sources. The fact that the

stray capacitor is switched between two voltage source, ensures that its voltage is

known at all moments, so that it has no effect on the total circuit behavior. In fact,

this is one of the early results of basic circuit theory in which every element that

is placed in parallel with a voltage source can be simply discarded. It is obvious,

yet worthwhile mentioning that the common ground of the circuit can be used as a

voltage source.

Following this guideline, two kinds of stray-insensitive integrators are examined after-

wards, known as inverting and non-inverting. As it will be evident shortly, their difference is

beyond just a minus sign in their transfer function—which itself is also of great importance

since it introduces the idea of implementing negative resistors using SC technique—and

expands to different warping and phase degradations.

Inverting Integrator

The stray insensitive integrator is depicted in Fig. 2.10. It has two extra switches comparing

to the basic SC integrator of Fig. 2.8, yet it is completely immune to parasitic capacitances.

Unlike the basic integrator, in this structure both terminals of the switched capacitor

are floating. Therefore stray elements at both nodes have to be considered.

The parasitics at the right node of the capacitor are effectively eliminated through the

first scheme presented previously, i.e., this node is switched between two points which have

the same potential—in this case zero—and they are common ground and virtual ground

provided by the operational amplifier at its inverting node.

For the left node the second scheme has been employed. This node is alternatively

switched between two voltage source, i.e., input Vi and common ground.

During phase φ2, Cr is grounded at both ends, so that it has no charge. Assuming that

ideally there is no leakage through the op-amp input terminals, the charge stored in Ci

remains unchanged. During phase φ1, Cr is charged up to the input voltage Vi and again
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Figure 2.10: Stray insensitive inverting integrator.

since there is no current passing through the inverting input terminal of the op-amp, this

amount of charge has to be provided by Ci. Mathematically this can be written as follows

q1 [n− 1/2] = 0 (2.34)

q2 [n− 1/2] = q2 [n− 1] = CiVo [n− 1] (2.35)

q1 [n] = CrVi [n] (2.36)

q2 [n] = CiVo [n] (2.37)

∆q1 = q1 [n]− q1 [n− 1/2] = CrVi [n] (2.38)

∆q2 = q2 [n]− q2 [n− 1/2] = Ci (Vo [n]− Vo [n− 1]) (2.39)

Applying charge conservation

∆q1 +∆q2 = 0 (2.40)

gives rise to the following transfer function

Vo

Vi

= −
Cr

Ci

z

z − 1
(2.41)
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and the frequency response is given by

I(jω) = −
fc · Cr

Ci

·
1

jω
·

ωT/2

sin (ωT/2)
· ejωT/2 (2.42)

Non-inverting Integrator

The stray insensitive non-inverting SC integrator is shown in Fig. 2.11. The structure is

similar to inverting integrator in Fig. 2.10, unless the switching sequence is different for

the left hand terminal of Cr. The methodology described earlier have been used exactly in

the same manner as the inverting case to neutralize the stray capacitors.

Vi

Ci

Vo

Cr -
�

-
�

-
�

-
�

Figure 2.11: Stray insensitive non-inverting integrator.

During phase φ1, Cr is charged up to Vi. In the next cycle, the positive terminal

is connected to ground and the negative terminal to the op-amp input. That basically

stands for a sudden voltage drop of the op-amp’s inverting terminal. The op-amp tries to

bring this node voltage to zero in order to provide a virtual ground, therefore a current

in opposite direction of the previous cycle flows into Cr. This current is passing through

Ci, but in reality it is provided by the active element, i.e., the operational amplifier. The

opposite direction of current flow in Cr in consecutive clock cycles, can be considered as

having a negative equivalent resistor. In fact this is the case, and that is the reason of the

lack of a minus sign in the transfer function of this block. It should be noted that this

effect only exist as long the active element is present in the circuit. This is based on energy

conservation principle. Without the existence of an active element, reversing of the current

flow direction is not possible, since there would be no source to provide extra amount of
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energy. The equations governing the block are written in a way similar to the inverting

integrator as follows

q1 [n− 1/2] = CrVo [n− 1/2] = CrVo [n− 1] (2.43)

q2 [n− 1/2] = q2 [n− 1] = CiVo [n− 1] (2.44)

q1 [n] = 0 (2.45)

q2 [n] = CiVo [n] (2.46)

∆q1 = q1 [n]− q1 [n− 1/2] = −CrVi [n− 1] (2.47)

∆q2 = q2 [n]− q2 [n− 1/2] = Ci (Vo [n]− Vi [n− 1]) (2.48)

Applying charge conservation

∆q1 +∆q2 = 0 (2.49)

gives rise to the following transfer function

Vo

Vi

=
Cr

Ci

1

z − 1
(2.50)

and the frequency response is given by

I(jω) =
fc · Cr

Ci

·
1

jω
·

ωT/2

sin (ωT/2)
· e−jωT/2 (2.51)

2.5.3 Fully Differential Integrator

The great immunity of differential circuits to power supply noise and other types of inter-

ference, motivates the designer to apply this technique to SC circuits. In order to do that,

the existence of a stray insensitive differential SC integrator is essential. The integrator

which is presented in this section, not only shows immunity to stray capacitance but also

it has a true bilinear transfer function. This is in fact of great significance, since as it will
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Figure 2.12: Stray insensitive fully differential bilinear integrator.

be seen later a direct consequence of having a true bilinear integrator makes the derivation

of a DT filter from a CT prototype, a simple as well as a straightforward task.

In order to achieve this goal, the ideas behind single-ended inverting and non-inverting

integrators can deliberately be combined to obtain a fully-differential integrator (Fig. 2.12).

As it was shown in previous section, inverting integrator provides a minus sign but no phase

delay from input to output. Non-inverting has no sign change but provides half a cycle

delay. Their difference is only due to the timing difference in the switches connected to the

left hand terminal of capacitor Cr. This kindles the idea of switching the ground connec-

tion of the left hand terminal of Cr with the inverse voltage of Vi. In this case, the stray

insensitivity remain unchanged since the new connection is also a voltage source and the

associated terminal of Cr is switched back and forth between two voltage sources, hence-

forth the parasitic capacitance present at this node has no effect on the circuit behavior.

Furthermore, there exists an inverting TF from one input and a non-inverting TF from the

other one to the output. If the switching scheme is kept the same for the other half circuit

of the block but the inputs are switched together, then the TFs will be different for these

half circuits, and consequently looking differentially at the output provides a true bilinear

integration.

It should be noted that the negative sign of voltage requires no extra circuitry in
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differential networks, since by just swapping two lines the opposite voltage will be obtained,

whereas in single ended case this requires an extra active element for sign inversion.

qr [n− 1/2] = CrV
+
i [n− 1/2] = CrV

+
i [n− 1] (2.52)

qi [n− 1/2] = qi [n− 1] = CiV
+
o [n− 1] (2.53)

q
′

r [n− 1/2] = C
′

rV
−
i [n− 1/2] = C

′

rV
−
i [n− 1] (2.54)

q
′

i [n− 1/2] = q
′

i [n− 1] = C
′

iV
−
o [n− 1] (2.55)

qr [n] = Cr V
−
i [n] (2.56)

qi [n] = Ci V
+
o [n] (2.57)

q
′

i [n] = C
′

i V
+
i [n] (2.58)

q
′

i [n] = C
′

i V
−
o [n] (2.59)

∆qr = qr [n]− qr [n− 1/2] = Cr

(

V −
i [n]− V +i [n− 1]

)

(2.60)

∆qi = qi [n]− qi [n− 1/2] = Ci

(

V +o [n]− V +o [n− 1]
)

(2.61)

∆q
′

r = q
′

r [n]− q
′

r [n− 1/2] = C
′

r

(

V +i [n]− V −
i [n− 1]

)

(2.62)

∆q
′

i = q
′

i [n]− q
′

i [n− 1/2] = C
′

i

(

V −
i [n]− V +i [n− 1]

)

(2.63)

From charge conservation

∆qr + ∆qi = 0 (2.64)

∆q
′

r + ∆q
′

i = 0 (2.65)

and assuming

C
′

r = Cr (2.66)

C
′

i = Ci (2.67)

Ci [(V
+
o [n]− V −

o [n]) − (V +o [n− 1]− V −
o [n− 1])] =

Cr

[(

V +i [n]− V −
i [n]

)

+
(

V +i [n− 1]− V −
i [n− 1]

)]

(2.68)
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Ci (Vo [n− 1] − Vo [n− 1]) = Cr (Vi [n] + Vi [n]) (2.69)

Therefore, the transfer function of stray-insensitive fully differential integrator of Fig. 2.12

will be a true bilinear one as follows

Vo

Vi

=
Cr

Ci

·
z + 1

z − 1
(2.70)

and the frequency response is given by

I(jω) =
2 · fc · Cr

Ci

·
1

jω
·

ωT/2

tan (ωT/2)
(2.71)

2.5.4 Fully Differential Damped Integrator

As it will be seen in Sec. 3.1.2 the insensitivity properties of the prototype CT filter is

retained iff it is doubly terminated one. That means that the original fitler hast to be

terminated by resistive loads at both ends. As a direct consequence, when the equivalent

SFG of the the prototype filter is derived, two special integrators appear at both ends

which are no longe loss-less.

This might seem somewhat contradictory, since up to now, all our efforts have been

concentrated to realize loss-less integrators, and now suddenly we need integrators which

are not loss-less. This can be clarified by noting that the essence of Bruton’s theory lies

on the fact that in order to preserve sensitivity properties of the CT prototype circuit, the

discrete integrators must not show any phase difference with regard to their CT counter-

parts. Subtlity is in the fact that there is no restriction on having loss-less integrators in

CT domain, but the DT integrators must show a loss behavior exactly equal to the original

CT ones.

Coclusively, in order to prevent any confusion, the integrators which are not in fact

loss-less will be called damped, and the terminology lossy is kept exclusively for those

integrators which show different loss behavior with respect to their CT counterparts.

In order to realize a damped integrator, the original one in Fig. 2.12 can be used,

provided that by some means an appropriate portion of the charge delivered by the source

to Cr is damped and not delivered to the integrating capacitor Ci. To do this, a CT damped

integrator gives the idea of inserting equivalent SC positive resistors between input and
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Figure 2.13: Stray insensitive fully differential bilinear damped integrator.

output nodes with different polarities. Based on this the SC bilinear differential damped

integrator can be realized as given in Fig. 2.13.

The equations can be easily written in a way similar to Sec. 2.5.3 so that the TF of the

circuit will be obtained as the following

Vo

Vi

=
1

Cd
Cr

+ Ci
Cr
· z − 1z + 1

(2.72)

and the frequency response is given by

I(jω) =
1

Cd
Cr

+ j Ci
Cr
tan (ωT/2)

(2.73)

2.6 SC Filter Synthesis

Filter synthesis have been the subject of study for a century. By the time, several methods

have been developed for the realization of a desired transfer function. More or less, all the

methods available for designing analog filters can be realized using SC techniques. The full
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coverage of these methods require hundreds of pages of mathematical as well as illustrative

discussions which is not the aim of this thesis. Therefore, it is assumed that the reader is

familiar with the basics of CT filter theory. A very brief overview of the methods which

can be used for SC realization of desired TFs are given, and then one of them, i.e., leapfrog

ladder simulation which is the premier choice for LP filters—the subject of this work—will

be covered in details.

The available filter synthesis methods which can be employed to SC circuits are classified

as follows:

1. Cascade

The transfer function is split into a series of second-order terms and one first-order

if necessary, each of which can easily be realized by the infamous bi-quad blocks [35]

[36]. The great advantage of this method is that they can readily be tuned, i.e.,

changing the place of every single pole or zero is a simple task, since it is reduced to

tuning one block independent of the others, and ideally the behavior of each block

has no effect on the others. However, these kinds of filters are strongly vulnerable to

element variations or in other words they show high sensitivity to random variations

of constituting components. This greatly affects the preciseness of these filters and

as a result they are not very suitable for integrated technology in which the absolute

tolerance of element values can be extremely high.

2. LC Ladder Simulation

Based on Orchard’s theorem (Sec. 3.1.2), the sensitivity of LC passive filters is ex-

tremely low in pass-band. On the other hand, any network that can simulate the

governing equations of an LC ladder structure will inherit all its properties, including

the magnificent immunity to element value variations in pass-band.

This task can be done in two different ways:

• Element substitution

In this method either the impedance of inductors are directly simulated or after

some transformations, e.g., Bruton’s, new networks are obtained and then the

resultant components are replaced by SC blocks [3] [36].

• Leapfrog structure

Simulation of fundamental state variable equations of the network is the basis

of this method.
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The voltages of capacitors and the currents of inductors are considered as state

variables and Kirchhoff’s laws, i.e., KCL and KVL that relate these variables to-

gether are written. In fact, the relationship between current-voltage or voltage-

current of these elements is in the form of integration. Consequently a network

consisting of a series of interconnections between several integrators is obtained

and these integrators are subsequently replaced by suitable SC blocks.

This results in an efficient as well as straight-forward way of implementing a

desired TF which has very low sensitivity to element value variations. The filter

designed in this work is based on this topology. Conclusively, this method will

be treated thoroughly, later in this chapter.

3. Wave Filter

The generality of Orchard’s theorem is so significant which does not restrict it to

LC passive or better to say lumped networks. It can be applied to a much broader

extent to include even distributed networks, like microwave filters.

Since in distributed networks the governing equations are dealt with wave variables

instead of voltages and currents for lumped circuits, these networks are known as

wave filters.

In fact, some deviations from the extensive research on wave filters initiated by

Fettweis—the father of SC technique—in 1960’s led circuit designers to the utilization

of periodically switched capacitors to implement accurate, integrated, highly selective

filters. A good introduction to wave filters can be found in [24] and [28] presents a

SC filter based on this method.

2.6.1 Leapfrog LC Ladder Simulation

A typical doubly terminated ladder network is shown in Fig. 2.14. It consists of a number of

impedances Z2k−1 in parallel branches and admittances Y2k in series branches, alternatively

placed in a chain.

The voltages V2k−1 and the currents I2k are the circuit variables. Therefore the govern-

ing equations of the network based on KVL and KCL are as follows
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Y4Y2 Y6

Z1 Z3 Z7Z5

Rs

RL
Vs

I2 I4 I6

I8

I0

V1 V3 V5 V7

Figure 2.14: General ladder network.

I2 = Y2 (V1 − V3) (2.74)

I4 = Y4 (V3 − V5) (2.75)

I6 = Y6 (V5 − V7) (2.76)

V1 = Z1 (I0 − I2) (2.77)

V3 = Z3 (I2 − I4) (2.78)

V5 = Z5 (I4 − I6) (2.79)

V7 = Z7 (I6 − I8) (2.80)

Obtaining the Norton equivalent circuit of the source shown in Fig. 2.15 results in a

resistor Rs in parallel with impedance Z1. On the other hand, load resistance RL and

impedance Z7 are in parallel. Therefore by defining two new impedances

Z
′

1
∆
= Z1‖Rs (2.81)

Z
′

7
∆
= Z7‖Rs (2.82)

two variables I0 and I8 becomes redundant and as a result the equations 2.77 and 2.80 can

be rewritten as
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Is = Vs / Rs Rs

Figure 2.15: Norton equivalent circuit of the source.

V1 = Z
′

1 (Is − I2) (2.83)

V7 = Z
′

7 I6 (2.84)

where Is is given by

Is
∆
=

Vs

Rs

(2.85)

In order to obtain a Signal Flow Graph (SFG), an impedance scaling is desirable. That

could be done by multiplying all the admittances by a truly real impedance R0 and dividing

all the impedances by R0. In this way all the impedances and admittances in the network

convert to dimensionless voltage transfer function. Moreover, all the state variables of type

current, are multiplied by R0, so that they become voltage variables. R0 can accept any

values, which in its simplest form it will be 1 Ω.

The aforementioned discussion can be easily seen by multiplying both sides of Eq. 2.74–

2.76 by R0 and a modification in right sides of Eq. 2.83–2.84.

Based on these, the new state variables are given by

u1 = V1 (2.86)

u3 = V3 (2.87)

u5 = V5 (2.88)

uo = V7 (2.89)
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us = R0Is =
R0
Rs

Vs (2.90)

u2 = R0I2 (2.91)

u4 = R0I4 (2.92)

u6 = R0I6 (2.93)

and the dimensionless voltage transfer functions are as follows

z1 = Z
′

1/R0 = (Z1‖Rs) /R0 (2.94)

z3 = Z3/R0 (2.95)

z5 = Z5/R0 (2.96)

z7 = Z
′

7/R0 = (Z7‖Rl) /R0 (2.97)

y2 = R0Y2 (2.98)

y4 = R0Y4 (2.99)

y6 = R0Y6 (2.100)

Also, as it can be seen from Eq. 2.74–2.79, every state variable is proportional to

the difference between two others. But, combining adders and integrators can be easily

done by duplexing the switched capacitor at the input of an integrator and connecting

each one to the associated input signal. Moreover two types of integrators, i.e., invert-

ing and non-inverting are readily available. Therefore, by properly changing the signs

of some variables—in a special manner that will be seen shortly—a network consisting

of only adder-integrators will be obtained and there will be no need for subtracters or

sign-inverters.

These new voltage variables and dimension-less voltage transfer functions together with

the argument just presented, describe a SFG as depicted in Fig. 2.16.

It should be noted that negative sign of block transfer functions correspond to utilization

of inverting integrators in single-ended realization. For the differential realization, the same

integrator can be used for all the blocks and sign inversion will be done readily by just

swapping the wires.
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Figure 2.16: SFG of the ladder network.

Once the SFG is obtained, the remaining task will be realization of each block transfer

function using appropriate SC circuits. For fully differential case, the integrator presented

in Sec. 2.5.3 is a true bilinear stray insensitive one and can easily be substituted for the

SFG blocks. Also for resistive termination at both ends, the SC integrator presented in

Sec. 2.5.4 gives an exact bilinear transform of the CT circuit. A complete procedure of

these steps are given in Chap. 5 where a 7th-order LP elliptic filter will be designed.

For single ended design, the derivation of a SC network that can realize the bilinear

transform of the original CT network in a parasitic insensitive manner is not a straight-

forward task. It requires some frequency or element transformations, to obtain a network

that utilize the integrators presented in Sec. 2.5.2— which are neither bilinear nor loss-less

(according to Bruton’s definition of a lossy integrator)—nevertheless, their total transfer

function is the bilinearly transformed version of the original CT ladder network. Interested

readers are referred to the literature [25] [26] [6] [17].

2.6.2 Dynamic Range Optimization

The SFG obtained in previous section simulates a passive LC ladder network, so that the

ratio of output voltage uo over input us has a maximum value of one. However, this is

not the case for the intermediate state variables of SFG. In fact the transfer function from

input to any of these variables can have a value much higher than one. Ideally this poses no

difficulties, but in practice that this circuit is to be realized in an MOS integrated circuit,

working with low-voltage supplies, this suddenly becomes a severe problem. And if the
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filter is to be used for wireless applications this is in fact a bottleneck, since it must be

extremely linear while working with very low levels of voltage—typically less than 2 V. It is

obvious that if an intermediate state variable of the graph which corresponds to an internal

node of the final circuit has a maximum value higher than the output voltage, there will

be ranges of frequencies that these voltages reach to the saturation level while the output

voltage—which from circuit theory has the most impact on linearity performance of the

whole network—can be at levels much less than its maximum. In conclusion, a method

should be found that limit the maximum value of all the variables of the network to a

common level. In other words, the transfer function from the input to any node of the

circuit must have a maximum value of one.

It can be shown that the input-output transfer function is in fact a function of loop TFs

of the graph [36]. That means changing the TF of every individual block in a way that loop

TFs remain unchanged, guarantees that the input-output relationship completely retains

its frequency characteristics except for a constant gain factor.

Consider the new SFG of Fig. 2.17 The input is multiplied by a gain factor K, so that

the maximum value of the output voltage uo does not change. In this respect, the TF

uo(jω)/us(jω) remains absolutely unchanged.
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Figure 2.17: New SFG of the ladder network for dynamic range optimization.

For the new graph we have

û6(jω) =
uo(jω)

α6 · z7(jω)
(2.101)
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therefore the maximum value of |û6(jω)| will be

Max (|û6(jω)|) = Max

(∣

∣

∣

∣

uo(jω)

α6 · z7(jω)

∣

∣

∣

∣

)

=
1

α6
·Max

(∣

∣

∣

∣

uo(jω)

z7(jω)

∣

∣

∣

∣

)

(2.102)

It should be noted that since α6 is a constant—independent of frequency—it could be

taken out ofMax() function. Equation 2.102 suggests that how α6 can be selected to make

the maximum value of
∣

∣

∣

ˆi6(jω)
∣

∣

∣
and |vo| equal, i.e.,

α6 =
Max (|u6(jω)|)

Max (|uo(jω)|)
(2.103)

In a similar fashion the other gain factors in Fig. 2.17 are defined as follows

αk
∆
=

mk

mk+1

(2.104)

mk
∆
= Max (|uk(jω)|) (2.105)

and K is given by

K
∆
=

k0
∏n

k=1 αk

= k0
m1
mn+1

(2.106)

in which k0 is an arbitrary gain factor which only affects the ratio of output over input

variable, leaving the internal variables untouched. In order to keep the overal gain of the

final circuit exactly equal to the protoype one, k0 should be selected as 1.

With the introduction of these gain factors, the SFG of Fig. 2.17 presents the desired

frequency response and simultaneously all the internal and output voltages experience

similar maximum values, so that the optimum linearity performance can be achieved.



Chapter 3

Fundamental Issues in Filter Design

3.1 Sensitivity

Any physical system is subject to deviations from the desired characteristics. Ambient

conditions—like temperature, humidity, etc.—in addendum to aging and human errors are

only few reasons behind these unwilling variations.

This problem is even worse for such sophisticated systems like integrated circuits. Some

component parameters may even experience tens of percents of error during the lengthy as

well as complicated fabrication process. And by the end of fabrication process, even if the

permanent deviations from the ideal characteristics lie between certain bounds that the

device could be used for the required task, working conditions, ambient parameters, etc.

might all affect the characteristics of the components.

Based on these facts, employing certain techniques to combat the deviations of circuit

elements will be inevitable. To achieve this goal, an exact knowledge of the effects of

individual element variations on desired parameters has to be gained. And sensitivity

analysis is the one responsible for this extremely important task.

The study of sensitivity of electrical circuits has been an ongoing research field for

around one hundred years, nevertheless some breakthroughs which happened during three

decades of 60’s to 80’s brought deep insights into the various aspects of the area.

The aim of this section is to expose the reader to some fundamental theorems and

properties of electrical networks. As the reader moves forward through the section, the

obtained knowledge clearly justifies why ladder simulation technique has been chosen as a

premier choice for the architecture of the filter under investigation of this thesis.

The infamous Tellegen’s theorem is presented, since it’s the foundation for the deriva-

35
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tion of all sensitivity analysis formulas. Then Orchard’s theorem to which it was referred

for several times in previous chapter, and later on the general sensitivity analysis formulas

for doubly terminated reciprocal lossless networks which was formulated by his own and

his colleagues twenty years after proposition of the aforementioned theorem.

But before moving forward, it is necessary to give a sound description of sensitivity.

Some functions and notations that will be used later, is also introduced here.

• Sensitivity

First order sensitivity which will be referred to as sensitivity in short, is a figure of

merit that shows how constituting elements of a circuit affect its properties. The

sensitivity of function P with respect to element x is defined as follows

S
∆
=

d(lnP )

d(lnx)
∆
=

x

P
·
dP

dx
(3.1)

• Transducer function: Loss and Phase

Transducer function H(j ω) or transducer coefficient θ(jω) determines signal trans-

mission properties of the filter —relationship between input and output power or

voltage, depending on the network structure. The loss α(jω) (in nepers), and the

phase β(jω) (in radians), are the real and the imaginary part of the transducer

coefficient, respectively, as it is given by

α(jω) + jβ(jω) = θ(jω)
∆
= lnH(jω) (3.2)

α(jω) = ln |H(jω)| (3.3)

β(jω) = 6 H(jω) (3.4)

Unless otherwise explicitly mentioned, all the networks which are dealt with here,

are assumed to be passive, so that α may never be negative.

• Doubly terminated filters

The transducer function H(j ω) of a doubly terminated filter, Fig. 3.1, is given by

H(j ω)
∆
=

Vs

2V2

√

R2
R1

(3.5)
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R1

R2Vs V21V1

Figure 3.1: A doubly terminated filter.

as a result the loss can be written in terms of maximum available power and power

delivered to the load as the following

α =
1

2
ln |H(j ω)|2 =

1

2
ln
|Vs|

2 /4R1

|V2|
2 /R2

= ln
Pmax

P2
(3.6)

• Singly terminated filter

The transducer function H(j ω) of a singly terminated filter, Fig. 3.2, is given by

H(j ω)
∆
=

Vs

V2
(3.7)

The main difference between singly and doubly terminated filters is that in singly

terminated case, there is no upper bound for the output voltage, and as it will be

seen later in this chapter, this the basis for far inferiority of loss function sensitivity

of singly terminated networks comparing to doubly terminated ones.

It should be noted that both networks in Fig. 3.2 can contain resistive elements, yet

there shouldn’t be any resistance in series with the voltage source in case (a) and

any resistance in parallel with output port in case (b).

The reason for this unboundedness is that in case (a) for some frequencies the

impedance seen by the source is zero, so that the output delivered by the source

will be infinite. For case (b) it can be interpreted in a different way by noticing

that since the output voltage is taken across a purely reactance element, therefore

regardless of the amount of power delivered by the source, this voltage which has no

associated real power can approaches infinity.
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R1
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V21V1Vs
R2
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(b)

Figure 3.2: Singly terminated filters. (a)Resistive termination at output port. (b)Resistive

termination at input port

3.1.1 Tellegen’s Theorem

Tellegen’s theorem in its most complete form deals with special operators known as Kirch-

hoff’s. In order to be able to present this theorem in its most concise form, a more formal

representation of Kirchhoff’s laws, followed by the introduction of Kirchhoff’s operators are

given. Later on, the strong form as well as its weak forms will be introduced. Interested

readers can consult books dealing with fundamentals of circuit theory or some monographs

written specially on the topic, e.g., [33]. The notations used in this section is adopted from

this reference.

Consider a network with b branches, n nodes and s separate parts. This network is

represented by a matrix B, (b−n+s)×b, known as loop matrix. Vectors v and i, both b×1,

represent branch voltages and currents respectively. There exist only b−n+s independent

currents in the network, given by vector i, (b− n+ s)× 1.

KVL and KCL are stated as the following

B v = 0 (3.8)

i = Bt i (3.9)

A direct corollary of these relations is the actual power theorem, give by
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vt i = 0 (3.10)

which states that at any given point of time, regardless of nature and constituting laws of

network elements, the sum of the power of the total branches of the network is zero. In

fact, as it will be seen later, this is a special case of the Tellegen’s theorem.

Kirchhoff’s Operators

Consider operator Λ{} that maps an n-dimension space to a new n-dimension space.

• Kirchhoff Voltage Operator

Operator Λ{} is called a Kirchhoff voltage operator iff when acts upon branch voltages

of a network, vector v, the resulting mapped voltages, v′ = Λ{v} also obeys KVL.

Laplace transform or Fourier transform are some typical examples of Kirchhoff volt-

age operators.

• Kirchhoff Current Operator

Operator Λ{} is called a Kirchhoff current operator iff the set of currents i′ yielded

by applying it on the branch currents of the network, i′ = Λ{i}, also obey KCL.

Derivation with respect to time, d/dt, is an example of Kirchhoff current operators.

It should be noted that many Kirchhoff voltage operators are also Kirchhoff current

operators and vice versa, like all the three examples introduced here, nevertheless that is

not always true [33].

Strong Form of Tellegen’s Theorem

Let Λ′{} and Λ′′{} be Kirchhoff voltage operator and Kirchhoff current operator, respec-

tively.

The most general statement of Tellegen’s theorem, known as strong form is as follows

Λ′{vt} Λ′′{i} = 0 (3.11)

For a network with ports—port current is defined in opposite direction of a normal

branch [33]— in which voltages and currents of the ports are defined by vectors vp and



Fundamental Issues in Filter Design 40

ip, and branch voltages and currents are given by vectors ib and vb, respectively, Eq. 3.11

can be written in the following form

Λ′{vt
p} Λ

′′{ip} = Λ′{vt
b} Λ

′′{ib} (3.12)

The Eq. 3.12 is very generic and has extensive range of applications. As a simple

example, Λ′{} and Λ′′{} can be considered as two operators that select voltage and current

sets of the network from two different moments. For these types of operators, the resulting

relationship is known as quasi power theorem.

Weak Forms of Tellegen’s Theorem

If Λ′{} and Λ′′{} are both Kirchhoff voltage operators and Kirchhoff current operators

simultaneously, then a direct consequence of Eq. 3.12 will be

Λ′′{vt
p} Λ

′{ip} = Λ′′{vt
b} Λ

′{ib} (3.13)

Adding or subtracting Eq. 3.12 and Eq. 3.13 gives rise to two different versions of

Tellegen’s theorem known as weak forms.

• Sum form

Λ′{vt
p}Λ

′′{ip} + Λ′′{vt
p}Λ

′{ip} = Λ′{vt
b}Λ

′′{ib} + Λ′′{vt
b}Λ

′{ib} (3.14)

• Difference form

Λ′{vt
p}Λ

′′{ip} − Λ′′{vt
p}Λ

′{ip} = Λ′{vt
b}Λ

′′{ib} − Λ′′{vt
b}Λ

′{ib} (3.15)

Reciprocity

The concept of reciprocity and reciprocity theorem are extensively used in sensitivity anal-

ysis. Therefore they are briefly explained here.

An LTI m-port network is said to be reciprocal iff

Vt
p Ĩp = Ṽt

p Ip (3.16)
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in which (Vp, Ip) and (Ṽp, Ĩp) are port voltage-current phasor sets of the network for two

experiments with different excitations, provided that the frequency of excitation be equal

for both experiments.

Reciprocity theorem states that a network consisting of reciprocal elements is itself

reciprocal, which is easily proved using Tellegen’s theorem and the definition of a reciprocal

element [33].

It should be emphasized that many network elements, but not all of them, are reciprocal.

Gyrators are one of those elements which are not reciprocal.

3.1.2 Orchard’s Theorem

The theorem that Orchard presented with a qualitative proof [30], has left an enormous

impact on the design of real-life electrical filters. For more than a decade before his

argument, there was an extensive search for inductor-less filters, and this had made cascade

active filters a hot topic. Nevertheless, the researchers had never been able to realize

precise filters. No matter how careful the design had been done, still the final frequency

response used to experience major deviations from the desired output. But ever since the

introduction of his argument, the doubly terminated filters with points of maximum power

transfer in their pass-band has been the premier choice for designers, and their attempts

have been focused on finding different methods to simulate the behavior of this type of

networks.

Orchard’s theorem, in its comprehensive form [31], states that for any two port network,

the sensitivity of the filter insertion loss to the variations of reactive element values, at

points where maximum power transfer to the load occurs, is zero.

This is quite general and may include even networks with dissipative elements, like

resistors. Therefore, the essence of this argument is not based on zero loss, rather on the

condition of having maximum power transfer. And a direct corollary of this theorem is

that it is not applicable to singly terminated filters, since for these networks there is no

upper bound for power transfer, so that the condition of maximum power transfer will

never satisfy.

His argument is based on the fact that if there exists a point of maximum power

transfer, i.e., a point where the filter neither reflects back any portion of the input power

nor consumes any part of that, any changes in element values, including source or load

immittances, if any, will only cause reflection or consumption of a portion of the power. In

other words, a change, increase or decrease, in an element value, causes the condition of
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maximum power transfer to be disturbed. This basically stands for a quadratic relationship

between element values and the filter loss function. Conclusively, the first derivative of filter

loss function with respect to any element value, at points that the condition of maximum

power transfer exist, is zero.

Quite opposite, the sensitivity of cascade filters’ loss to element value variations is

very high, so that regardless of how much care has been taken in the design process, the

frequency response may never be accurate due to these unwilling deviations.

3.1.3 Sensitivity Formulas for Reciprocal Lossless Two-Ports

The formulas derived in [32], express the sensitivity of transducer coefficient θ(jω) (Eq. 3.2)

of singly or doubly terminated, reciprocal lossless two-ports in terms of some parameters

of the network which are mainly stored reactive power, reflection coefficient and the power

delivered to the load.

For the doubly terminated case which is of our main interest, deviations of transducer

coefficient in terms of tolerance of reactive elements—inductors and capacitors—in the

network is given by

∆θ =
∑

i

|Ii|
2 + ρ∗1 I

2
i

2P2
Li∆zi +

∑

j

|Vj|
2 − ρ∗1 V

2
j

2P2
Cj ∆yj (3.17)

where ∆zi and ∆yj are the relative tolerances of inductor impedance and capacitor admit-

tance, respectively, as given by

∆zi =
∆ri
Li

+ jω
∆Li

Li

(3.18)

∆zi =
∆gj
Cj

+ jω
∆Cj

Cj

(3.19)

As it is seen, Eq. 3.17 takes into account even small parasitic dissipations of reactive ele-

ments. Moreover, Orchard theorem for the reactive components can be easily derived from

this relationship. At points where the maximum power transfer exist, i.e., the reflection

coefficient ρ1 in Eq. 3.17 is zero, and the component tolerance is restricted to variations of

reactive elements, ∆Li and ∆Cj in Eq. 3.18, transducer coefficient will contain only com-

plex deviations from its nominal value—∆θ is pure complex in Eq. 3.17—which basically

stands for attenuation keeping its nominal value to a first order approximation.
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For the case of variations of either terminating resistances, the interested reader is

referred to [31].



Chapter 4

Op-Amp Non-Ideality Effects on

Bilinear Differential SC Integrator

4.1 Introduction

The effects of op-amp non-idealities on SC filter characteritics have been studied for the

single-ended integrators of Sec. 2.5.2 in [27].

Nevertheless, certain issues lead us to generalize that work, so that it could address our

own problem. They are summarized as follows:

• The circuit under the investigation of this thesis is fully differential and the integrators

are bilinear ones.

• The effect of op-amp input capacitance has not been considered in [27] and as it will

be seen shortly this in fact has profound outcomes with regard to the characteristics

of the integrtor.

• The analysis in [27], considers two different models for the operational amplifier;

one for very low frequencies neglecting any frequency dependency of the op-amp TF

and the other for very high frequencies neglecting the finite gain of the amplifier.

Nevertheless, the subtlity lies in the fact that the major deviations of the filter TF

from the ideal case happens at the edge of pass-band, and for our case as it will be

seen in Sec. 5.1, this is in fact comparable to the BW of the op-amp. For frequencies

around the BW of the op-amp, neither the effect of finite BW nor the effect of finite

gain can be neglected. This is based on the fact that the differential equation which

44
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describes the input-output relationship of the op-amp, i.e., Eq. 4.2 is very vulnerable

to the variations of its coefficients for input signal with frequencies around op-amp’s

BW. As a result these two non-idealities can not be separated in order to obtain

precise knowledge of the sensitivity of the total SC filter.

Based on the foregoing discussion, a detailed derivation of the respective formulas is

given in the following section.

4.2 Derivation of Formulas

First order frequency response of an operational amplifier with DC gain A0 and bandwidth

ωB is given by

Vo

Vp

=
A0

1 + jω/ωB

(4.1)

which in time domain the corresponding differential equation is

dvo
dt

+ ωBvo = A0 ωB vp (4.2)

Writing the KCL during phase Φ1

Cp

dv−p
dt

+ Ci

dv−p
dt

= Ci
dv+o
dt

(4.3)

Cp

dv+p
dt

+ Ci

dv+p
dt

= Ci
dv−o
dt

(4.4)

Subtracting Eq. 4.4 from Eq. 4.3 gives rise to

−

(

1 +
Cp

Ci

)

dvp
dt

=
dvo
dt

(4.5)

KCL should also be written during clock phase Φ2 for the top section

(Ci + Cp + Cr)
dv−p
dt

= Ci
dv+o
dt

+ Cr
dv−i
dt

(4.6)

(Ci + Cp + Cr)
dv+p
dt

= Ci
dv−o
dt

+ Cr
dv+i
dt

(4.7)
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And by subtracting Eq. 4.7 from Eq. 4.6

−

(

1 +
Cp + Cr

Ci

)

dvp
dt

=
dvo
dt

(4.8)

A comparison of Eq. 4.5 and Eq. 4.8 shows that during both phases of clock, KCL

results in equations in the following general form

− (1 + αk)
dvp
dt

=
dvo
dt

(4.9)

where αk is given by

α1 =
Cp

Ci

during phase φ1 (4.10)

α2 =
Cp + Cr

Ci

during phase φ2 (4.11)

Therefore the following two first order differential equations—given by Eq. 4.2 and

Eq. 4.9—determines the evolution of op-amp’s input and output voltages.

dvo
dt

+ ωBvo = A0ωBvp (4.12)

− (1 + αk)
dvp
dt

=
dvo
dt

(4.13)

By differentiating we get

− (1 + αk)
d2vp
dt2

=
d2vo
dt2

(4.14)

d2vo
dt2

+ ωB
dvo
dt

= A0ωB
dvp
dt

(4.15)

Putting 4.9 and 4.14 into 4.15 gives rise to

d2vp
dt2

+

(

1 +
A0

1 + αk

)

dvp
dt

= 0 (4.16)
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Normally

A0
1 + αk

¿ 1 (4.17)

so that Eq. 4.16 can be written in the form

d2vp
dt2

+ ωt,k
dvp
dt

= 0 (4.18)

where ωt,k is effective unity-gain frequency of the op-amp during clock phase ωk, defined

as follows

ωt,k
∆
=

ωB A0
1 + αk

(4.19)

The evolution equation (Eq. 4.18) of the input node of the op-amp has the following

solution

vp(t) = C0 + C1 e
−ωt,k t (4.20)

in which initial values are given by

vp|t=0+ = C0 + C1 (4.21)

dvp
dt

∣

∣

∣

∣

t=0+
= −C1 ωt,k (4.22)

Using Eq. 4.2 and Eq. 4.9 and Eq. 4.22 we get

C1 ωt,k =
A0 ωB

1 + αk

vp|t=0+ −
ωB

1 + αk

vo|t=0+ (4.23)

Using the definition of ωt,k (Eq. 4.19) into Eq. 4.23 and then applying the result to

Eq. 4.21, C0 and C1 are obtained as follows

C0 =
1

A0
vo|t=0+ (4.24)

C1 = vp|t=0+ −
1

A0
vo|t=0+ (4.25)
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Assuming that the output voltage of the operational amplifier does not jump—since it

acts as an integrator—or in other words

vo|t=0+ = vo|t=0 (4.26)

and considering the fact that equations 4.24 and 4.25 are valid during both clock phases,

the following relationship will be obtained

during clock phase φ1 C0 =
1

A0
vo[n− 1] (4.27)

C1 = vp[n− 1]−
1

A0
vo[n− 1] (4.28)

during clock phase φ2 C0 =
1

A0
vo[n− 1/2] (4.29)

C1 = vp[n− 1/2]
+ −

1

A0
vo[n− 1/2] (4.30)

Consequently the values of vp at the moments of transition will be

vp[n− 1/2]
− =

1

A0

(

1 − e−ωt,1 T/2
)

vo[n− 1] + e−ωt,1 T/2 vp[n− 1] (4.31)

vp[n] =
1

A0

(

1 − e−ωt,2 T/2
)

vo[n− 1/2] + e−ωt,2 T/2 vp[n− 1/2]
+ (4.32)

It is worthwhile mentioning that at the moment of transition from φ2 to φ1, vp experi-

ences no voltage jump, so that

vp[n− 1]
+ = vp[n− 1]

− = vp[n− 1] (4.33)

In order to obtain vo(t), Eq. 4.2 can be solved using the known vp(t), but since we

are mainly interested in the boundary values of these voltage variables at the moments of

transitions, we can directly integrate Eq. 4.9 to get

−(1 + αk)
[

vp(t)− vp|t=0+
]

= [vo(t)− vo|t=0+ ] (4.34)

which results in
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− (1 + αk)
(

vp[n− 1/2]
− − vp[n− 1]

)

= (vo[n− 1/2]− vo[n− 1]) (4.35)

− (1 + αk)
(

vp[n]− vp[n− 1/2]
+
)

= (vo[n− 1/2]− vo[n− 1/2]) (4.36)

Also, in order to find the relationship between the values of vp, just before and after of

switching from φ1 to φ2, the following equation—based on charge conservation principle—

can be written

∑

∆q = 0 (4.37)

∆qp + ∆qi + ∆qr = 0 (4.38)

in which

∆qp = Cp

(

−v−p [n− 1/2]
+ + v−p [n− 1/2]

−
)

(4.39)

∆qi = Ci

[(

v+o [n− 1/2]− v−p [n− 1/2]
−
)

−
(

v−o [n− 1/2]− v−p [n− 1/2]
+
)]

(4.40)

∆qr = Cr

[(

v−i [n] − v−p [n− 1/2]
−
)

− v+i [n− 1]
]

(4.41)

Based on this and also an equation derived in a similar way for the second input node

of the op-amp, the following relationships are obtained

(Ci + Cp + Cr) v
−
p [n− 1/2]

+ − (Ci + Cp) v
−
p [n− 1/2]

− = Cr

(

v−i [n] − v+i [n− 1]
)

(4.42)

(Ci + Cp + Cr) v
+
p [n− 1/2]

+ − (Ci + Cp) v
+
p [n− 1/2]

− = Cr

(

v+i [n] − v−i [n− 1]
)

(4.43)

And subtracting Eq. 4.42 from Eq. 4.43 gives rise to

Cr (vi[n] + vi[n− 1]) = (Ci + Cp + Cr) vp[n− 1/2]
+ − (Ci + Cp) vp[n− 1/2]

−

(4.44)
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It is necessary to mention that it has been assumed that input signal vi changes only

once per clock cycle at the beginning of clock phase φ2; and [n−1/2]
+ refers to the moment

after the settlement of the input signal.

In order to simplify the notations, the following variables are defined

p1
∆
= vp[n− 1] (4.45)

p2
∆
= vp[n− 1/2]

− (4.46)

p3
∆
= vp[n− 1/2]

+ (4.47)

p4
∆
= vp[n] (4.48)

x
∆
= vo[n− 1/2] (4.49)

Also k1 and k2 are defined as follows

k1
∆
= ωt,1 T/2 (4.50)

k2
∆
= ωt,2 T/2 (4.51)

Using equations 4.45–4.51 into 4.31, 4.32, 4.35, 4.36, and 4.44 the following 5-th order

system of linear equations describes the relationship between the boundary values of voltage

variables vi, vp and vo

p2 =
1

A0

(

1 − e−k1
)

vo[n− 1] + e−k1 p1 (4.52)

p4 =
1

A0

(

1 − e−k2
)

vo[n− 1] + e−k2 p3 (4.53)

− (1 + α1) p2 + (1 + α1) p1 = x− vo[n− 1] (4.54)

− (1 + α2) p4 + (1 + α2) p3 = vo[n− 1]− x (4.55)

(1 + α2) p3 − (1 + α1) p2 =
Cr

Ci

(vi[n] + vi[n− 1]) (4.56)

Our goal is to eliminate intermediate variables p2, p3, and x. Since there exist five

equations, after elimination of these three variables, there will be two independent relations

between six variables p1, p4, vi[n− 1], vi[n], vo[n− 1], and vo[n]. The Z transform neglects

the effect of initial conditions, i.e., the transformation of p4 is related to the transform of

p1, so that finally there will be two independent equations in Z domain with three variables,

and by the elimination of Vp a relationship between Vo and Vi will be obtained.
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Adding 4.54 to 4.55 gives rise to

−(1 + α1) p2 + (1 + α1) p1 − (1 + α2) p4 + (1 + α2) p3 = vo[n] − vo[n− 1]

(4.57)

and by using Eq. 4.56 into Eq. 4.57 we get

Cr

Ci

(vi[n] + vi[n− 1]) + (1 + α1) p1 − (1 + α2) p4 = vo[n] − vo[n− 1] (4.58)

In addition to this relationship, we need one other in which the variables p2, p3 and x

have been eliminated.

Substituting in Eq. 4.53 from Eq. 4.54 for x gives

p4 =
1

A0
(1 − e−k2) [−(1 + α1) p2 + (1 + α1) p1 + vo[n− 1]] + e−k2 p3 (4.59)

On the other hand, multiplying Eq. 4.56 by factor exp(−k2) and employing Eq. 4.53

we get

(1 + α2)

[

p4 −
1

A0
(1 − e−k2)x

]

− (1 + α1) e
−k2 p2 = e−k2

Cr

Ci

(vi[n] + vi[n− 1])

(4.60)

Using Eq. 4.54 into this relationship, we get

(1 + α2)

[

p4 −
1

A0
(1 − e−k2) ((1 + α1) (p1 − p2) + vo[n− 1])

]

− (1 + α1) e
−k2 p2 = e−k2

Cr

Ci

(vi[n] + vi[n− 1]) (4.61)

And by using Eq. 4.52 we can substitute for (p1 − p2) as well as p2 to get

−β1 p1 + β2 vo[n− 1] = e−k2
Cr

Ci

(vi[n] + vi[n− 1]) (4.62)

in which
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β1 = (1 + α1)

[

1

A0
(1 + α2) (1 − e−k1) (1 − e−k2) + e−(k1+ k2)

]

(4.63)

β2 =
1

A0
{

1

A0
(1 + α1) (1 + α2) (1 − e−k1) (1 − e−k2) −

[

(1 + α1) (1 − e−k1) e−k2 + (1 + α2) (1 − e−k2)
]}

(4.64)

Taking Z transforms of Eq. 4.62 and Eq. 4.58

−β1 Vp + β2 Vo = e−k2
Cr

Ci

(z + 1)Vi (4.65)

Cr

Ci

(z + 1)Vi − [(1 + α2) z − (1 + α1)] Vp = (z − 1)Vo (4.66)

and solving for Vo/Vi gives rise to

Vo

Vi

=
Cr

Ci

z + 1

z − 1
Hn(z) (4.67)

Hn(z) =
1 + e−k2

β1
[(1 + α2) z − (1 + α1)]

1 + 1
z − 1

β2
β1
[(1 + α2) z − (1 + α1)]

(4.68)

Function Hn determines the phase and amplitude deviations from the ideal bilinear

integrator due to finite gain, finite bandwidth and input capacitance of the operational

amplifier.

Once the phase and amplitude deviations of the integrator are known through Hn, the

realations presented in Sec. 3.1.3 or Blostein’s formulas [2] can be employed to estimate

the variations of overal filter TF w.r.t non-idealities of constituting operational amplifiers.



Chapter 5

Design of a CDMA SC Channel

Select Filter

5.1 Filter Bandwidth and Clock Frequency

CDMA channel selection requires very selective as well as linear filtering. Phase linearity

is also of extreme importance. The filter designed in this work is based on the first two

categories. In order to have sharp filtering, a 7-th order elliptic transfer function is selected

and to increase the linearity performance of the filter, SC technique has been employed in

the common-mode feedback (CMFB) circuitry of the differential operational amplifiers, as

it will be seen later.

The bandwidth of the filter is 612 kHz, based on IS-95 CDMA specifications [11].

fBW = 612 kHz (5.1)

Since the filter is a SC one, the second major parameter is the clock frequency, as all

the frequency specifications are relative to that frequency. The selection of clock frequency

is somewhat arbitrary, although an upper bound and a lower bound limits the range of

frequencies which can be selected for the clock signal.

Quite interestingly, the upper bound is determined by circuit limitations, whereas the

lower bound is specified solely by the system specifications.

Having higher clock frequency stands for shorter time period between two consecuitve

edges of the clock pulse. In other words, when the clock edge triggers the switches of the

integrators, shorter period of time is available for the otuput of the integrator to reach

53
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to its final value. This issue, known as the settling time of the integrator depends on the

unity gain frequency of the operational amplifier.

On the other hand, since SC fitlers are DT circuits, before sampling the input signal, it

has to be band-limited. Moreover, SC filters have periodic frequency response with a period

equal to clock frequency fc. As a result the band-limiting circuit or so called anti-aliasing

filter must show considerable attenuation at frequencies around fc.

CDMA band has frequencies up to 25 MHz, therefore to satisfy the aforementioned

requirement, the clock frequency fc has to be higher than this vaule. The higher the clock

frequency, the simpler the realization of anti-aliasing filter will be.

In addition, the othe factor affecting the lower bound of the clock frequency is posed

by the degradation due to the frequency response of the S/H block at the input of the SC

filter which is given by sinc(πf/fc). As fc decreases, the effect of sinc function becomes

more apparant. It is obvious that S/H effect is only important for frequencies lying in the

BW of the filter, and it shows its largest degradation at the BW edge. For LP filters this

is in fact the bandwidth frequency fBW , which in this case is 612 kHz. For a ratio of fc,

50 times higher than fBW , the effect of sinc function is less than 0.1%. This results in

frequencies equal or higher than 30 MHz which in fact satisfy the requirements imposed

by the anti-aliasing filter, as stated earlier.

Now that the range of clock frequency is known, the remaining task will be the deter-

mination of the exact value of fc. For this task, again the sepecifications of CDMA comes

into place. The carrier frequency of the CDMA base station is 1930 MHz. The direct

conversion receiver will generate this frequency in order to extract the frequency band

of interest. Therefore assuming that an accurate clock at the frequency of the carrier is

already available in the system, it is highly desirable to generate the required clock signal

of the SC channel selection filter using this signal. To minimize the amount of circuitry

required for this task, the ratio between frequencies of these two signals should be a power

of 2. Ratios of 64 and 128 correspond to 30.15625 MHz and 15.078125 MHz, respectively.

The former is in fact 49.3 times the bandwidth frequency which is very close to 50, that

was explained before. Consequently

fc = 30.15625 MHz (5.2)

is chosen as the filter clock frequency.
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5.2 CT Prototype Filter

Knowing the bandwidth and clock frequency of the filter, a CT prototype should be selected

to satisfy these in addition to high selectivity requirements.

Elliptic fitlers provide the optimum selectivity, and obviously, increasing the order of

the filter, improves its sharpness. Nevertheless, in practice, filters of the order of 8 or

higher are seldom designed, otherwise the poles of the high order filter would be very close

to the jω axis, so that small variations of element values or parasitic effects might cause

them to fall into the righ half plane and result in unstability. On the other hand from filter

theory it is known that an 8th order elliptic filter has also its maximum pass-band loss at

DC. This is indeed quite undesired. To avoid this problem, the filter order is selected as 7.

Considering the fact that the ratio of clock frequency over filter bandwidth is around 50,

in order to obtain a maximum attenuation of less than 1% throughout the filter pass-band,

the reflection coefficient ρ is selected to be 10%—corresponding to 0.044 dB attenuation.

Therefore the maximum attenuation in pass-band due to intrinsic properties of the elliptic

filter as well as the effect of S/H block is given by

1 − 10−0.044/20 sinc(π
fBW

fc
) = 1− 0.994273 ' 0.57% (5.3)

The last parameter which has to be known to uniquely specify the filter is the modular

angle θ. It basically represents the trade-off between fitler sharpness and rejection of the

out of band signals. The higher the value of θ, the smaller the transit band of the filter

will be, but the lower value of θ means, the larger the out of band attenuation.

CDMA channel filter must have more than 50 dB attenuation for frequencies higher

than 800 kHz, therefore the ratio between stop-band (fSB) and pass-band (fBW ) frequencies

of the prototype filter is determined by applying pre-warping (Eq. 2.13) and given by

ωct,SB

ωct,PB

=
fct,SB
fct,PB

=
tan(π fBW/fc)

tan(π fSB/fc)
= 1.3084 (5.4)

A value of 52◦ for θ is a good choice for the modular angle of the prototype elliptic

filter, since it provides slightly more than 53 dB rejection of out of band frequencies, while

the transit band is less than 27 % of the filter bandwidth which meets the requirement of

Eq. 5.4.

Therefore, the CT prototype filter is a doubly terminated elliptic one with the following

specifications



Design of a CDMA SC Channel Select Filter 56

GL
Vs

Gs

C1 C3 C5 C7

C2 C4 C6

L2 L4 L6

Figure 5.1: CT prototype filter: Doubly terminated 7th-order LP elliptic

n = 7 (5.5)

ρ = 10% (5.6)

θ = 52◦ (5.7)

Realization of this filter is a classical problem and the element values can be found in

any filter handbook [40].

The normalized prototype filter has the structure shown in Fig. 5.1 and the element

values are given in Table 5.1.

As it can be seen in Fig. 5.1 capacitors in series branches form complete loops with

their two adjacent capacitors in parallel branches, so that based on circuit theory their

voltage variables are not independent of each other. On the other hand realization of

the admittance of every series branch in this form results in a rather complicated circuit.

To combat this problem, a simple modification to the circuit which is explained by the

following example results in a new network that can easily be realized by 7 integrators.

This stands for 4 varialbes, (v1, v3, v5, and v7), corresponding to every capacitor in each

parallel branch and 3 variables, (i2, i4, and i6) corresponding to every inductor current in

each series branch.

Writing KCL at the node which consists of capacitor C3 gives rise to

C3s v3 = i2 + C2s (v1 − v3) − i4 − C4s (v3 − v5) (5.8)
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Gs 1

C1 0.90504

C2 0.13022

L2 1.28752

C3 1.44739

C4 0.63601

L4 0.94676

C5 1.28991

C6 0.47479

L6 0.94158

C7 0.65382

GL 1

Table 5.1: CT prototype filter element values

Solving for v3 results in

v3 =
(i2 − i4) + (C2 s v1 + C4 s v4)

(C2 + C3 + C4) s
(5.9)

In a similar way the TFs of the rest of voltage variables can be calculated as follows

v1 =
(is − i2) + C2 s v2
(C1 + C1) s + Gs

(5.10)

v5 =
(i4 − i6) + (C4 s v4 + C6 s v6)

(C4 + C5 + C6) s
(5.11)

v7 =
i6 + C5 s v5

(C6 + C7) s + Gl

(5.12)

The consequence of this modification on the circuit implementation is twofold. First,

in every integrator which simulate the nodal voltage of every parallel capctior, the effective

integrating capacitor is the sum of the corresponding capacitor in the CT prototype filter as

well as its two adjacent series capacitors. Second, there exists direct coupling between every
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voltage variable and its two adjacent voltage variables. The possibility of the realization

of the latter is indeed a unique property of SC cirvuits, since they can simultaneously deal

with DT and CT signals [20]. A very delicate and important consequence of this property

is the fact that although the direct realization of true DT filters using bilinear integrtors

is not possible [4] [7]—due to the necessity for delay free loops, yet they can easily be

implemented using SC technique.

Moreover the implementation of the filter with the source in its original form requires an

extra voltage variable, but by changing the source into its Thevenin equivalent circuit, the

source resistance can be absorbed into capacitor C1, so that their equivalent impedance

can easily be implemented by the damped integrator presented in Sec. 2.5.4. The load

resistance is also absorbed into capacitor C7 in a similar way.

5.3 Filter SFG and DR optimization

Based on the discussions presented in Sec. 2.6.2, in order to obtain a a DR optimized

SFG suitable for realization with SC bilinear differential integrators, the maximum value

of state variables—voltages of parallel capacitors and currents of inductors in this case—of

the prototype filter in Fig. 5.1, must be measured. This is done and they can be found in

Table 5.2. Based on these extremums, the scaling factors αi have been calculated according

to Eq. 2.104 and Eq. 2.105 and are given in Table 5.3–5.4.

Overal gain factor K can also be calculated using Eq. 2.106. A value of 2 has been

chosen for k0, in order to compensate for the half gain drop of doubly terminated filters.

K = 2×
0.5

0.989898
= 1.01020509 (5.13)

Using Eq. 5.9–5.12 and element values of the prototype filter from Table 5.1, the ca-

pacitor ratios of Table 5.5 can easily be calculated. It should be noted that in this table,

Ck,k represents the integrating capacitor of every stage. Ck,k−1 and Ck,k+1 represent the

equivalent SC resistors that transmit signals to stage k, from the outputs of stages k − 1

and k + 1, respectively. Capacitors Ck,k−2 and Ck,k+2 are direct coupling ones from the

output of stages k − 2 and k + 2 to the input of stage k.

The next phase is to introduce scaling factors for DR optimization. This is done by

applying scaling factors αk from Table 5.4 to the third column of Table 5.5 and factors

1/αk to the elements of column 4, i.e., Ck,k+1. For direct coupling capacitors, the scaling

factors of Table 5.4 have to be used, i.e., scaling factors αkαk + 1 are applied to column 2,
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and 1/(αkαk+1) to column 5. Conclusively, all the signal paths from any node to any other

one experience the same amount of gain. The equivalent SFG is depicted in Fig. 5.2.

Final capacitor ratios are derived from Table 5.6 by applying the frequency scaling

factor

fB = tan(πfBW/fc) = tan(π0.612/30.15625) = 0.063844295 (5.14)

to the non-switched capcitors, i.e., columns 1, 2 and 5. The results are given in Table 5.7.

V1 0.989898 0.177941

I2 1.39743 0.169288

V3 1.11832 0.166388

I4 1.86657 0.164572

V5 0.862783 0.161478

I6 1.08103 0.160664

V7 0.5

Table 5.2: State variable’s extremums of the CT prototype filter

αk 1/αk

k = 1 0.70837037 1.4116909

k = 2 1.24957973 0.80026906

k = 3 0.89913103 1.66908397

k = 4 2.16342927 0.46222912

k = 5 0.79811199 1.25295699

k = 6 2.16206 0.46252185

Table 5.3: Integrators’ scaling factors for DR optimization

5.4 WATSCAD Simulation

Before implementing the electronic circuit of the obtained SFG, the capaciotr ratios should

be tested to make sure that the functionality meets the required specifications. This task
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Figure 5.2: Final SFG: optimized for DR
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αkαk+1 1/(αkαk+1)

k = 1 0.88516525 1.12973256

k = 3 1.29617760 0.77149921

k = 5 1.725566 0.57952

Table 5.4: Coupling capacitors’ scaling factors for DR optimization

Ck,k Ck,k−2 Ck,k−1 Ck,k+1 Ck,k+2

stage 1 1.03526 0 1 1 0.13022

stage 2 1.28752 0 1 1 0

stage 3 2.21362 0.13022 1 1 0.63601

stage 4 0.94676 0 1 1 0

stage 5 2.40071 0.63601 1 1 0.47479

stage 6 0.94158 0 1 1 0

stage 7 1.12861 0.47479 1 0 0

Table 5.5: Primitive capacitor value ratios

Ck,k Ck,k−2 Ck,k−1 Ck,k+1 Ck,k+2

stage 1 1.03526 0 1.01020509 1.41169090 0.14711377

stage 2 1.28752 0 0.70837037 0.80026907 0

stage 3 2.21362 0.11526622 1.24957973 1.66908398 0.49068121

stage 4 0.94676 0 0.59913103 0.46222912 0

stage 5 2.40071 0.82438192 2.16342927 1.25295700 0.27515030

stage 6 0.94158 0 0.79811199 0.46252185 0

stage 7 1.12861 0.81928148 2.16206 0 0

Table 5.6: Capacitor value ratios: normalized pass-band frequency, optimized for DR
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Ck,k Ck,k−2 Ck,k−1 Ck,k+1 Ck,k+2

stage 1 16.215729 0 15.823282 22.111930 2.3043071

stage 2 20.166988 0 11.095514 12.534963 0

stage 3 34.672895 1.8054651 19.572712 26.143590 7.6857537

stage 4 14.829514 0 9.3844503 7.2400960 0

stage 5 37.603367 12.912653 33.886735 19.625611 4.3097990

stage 6 14.748378 0 12.501176 7.2446813 0

stage 7 17.677910 12.832763 33.865288 0

Table 5.7: Final capacitor value ratios

can easily be done using WATSCAD program. The source code for the whole filter is given

in App. A.

The transfer functions for intermediate state variables are depicted in Fig. 5.3, and as

it is seen the maximum value of all of them is 1.

The overal desired TF is shown Fig. 5.4 and Fig. 5.5 which correspond to the required

specifications.

The filter phase response is also shown in Fig. 5.6.

5.5 A Low-Voltage, High Performance Operational

Amplifier

The main block of a SC filter is an operational amplifier. In this section the design procedure

of a low-voltage, high performance op-amp which meets the required specifications for the

final SC filter have been thoroughly discussed. This includes selecting a suitable topology,

determination of the biasing currents, sizing of the transistors, and the design of a large

dynamic range(DR) SC common-mode feedback (CMFB) circuitry. Following that, the

op-amp will be fully characterized to obtain the lower as well the upper bounds of its

different characteristics.

5.5.1 Op-Amp Sepcifications

In order to minimize the effect of op-amp finite bandwidth on the integrator characteristic,

the effective unity gain frequency of the operational amplifier—as it is defined in Sec. 4.2—
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Figure 5.3: Magnitude response of internal SFG variables.
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has to be a few times larger than the clock frequency—30 MHz in our case. This basically

means the settling time of the op-amp is determined by the system clock.

Another parameter which is based on the clock frequency is the slew-rate (SR) per-

formance. And it will be seen shortly, the limitations imposed on SR will determine the

required biasing currents.

The fact that the final filter will be incorporated into a wireless transceiver also means

that low-voltage as well as low-power design is inevitable. The implications of low-vlotage

design itself are twofold:

• Utilizing stacked configurations is very limited, so that in order to obtain high DC

gain, multiple stages must be cascaded.

• The second which is a subtle, yet very important problem is that, utitlizing low

resistance ouput stages, i.e., source follower configuration—like the op-amp used

in [29]—is very difficult for MOS threshold voltages around 0.5 V and power supplies

less than 2 V.

This results in a high output resistance amplifier. If the dominant pole that determines

the amplifier’s bandwidth is placed at one of the internal nodes, this will be a major

problem in terms of stability. This amplifier is utilized in a SC filter so that all the loads

are capacitive. Having a high output resistance along with a totally capacitive load simply

stands for a low frequency pole at the output node. The higher the load capacitance is,

the closer this pole to the amplifier’s dominant pole will be, resulting in major degradation

in phase margin, so that eventually it might be totally unstable.

The problems discussed above require a multistage, high output resistance operational

amplifier which has a dominant pole at the last stage, meanwhile showing a reasonable

phase margin. In this case, the outcome of utilizing this amplifier in a SC filter will be

an increase in load capacitance that simply stands for lower bandwidth as well as larger

phase margin—better stability.

5.5.2 Amplifier Topology

A two-stage folded cascode structure with input PMOS transistors Fig. 5.7 can comply

with all the aforementioned characteristics. This op-amp has a core cascode structure,

M1-M6 and M2-M5 pairs, in addition to three cascade sub-blocks. They are M13-M12,

M7-M9 and M5-load pairs. The first one is a current source, the second one active load

and the last one a voltage amplifier.
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Figure 5.7: Op-Amp schematic

Following that, the properties of the cascade block and the cascode structure are quickly

examined.

Cascade Block Properties

An NMOS cascade structure is shown in Fig. 5.8. The port of interest could be either

source or drain as it is depicted in Fig. 5.9.

The structure in Fig. 5.9(a) is used as an enhanced active load where its output

impedance is given by

ro = rds + (1 +
gm
gds
) rL ' (1 +

gm
gds
) rL '

gm
gds

rL (5.15)

On the other hand, the structure in Fig. 5.9(b) is utilized as a voltage amplifier, where

its voltage gain and its input admittance are given by

Av =
gm + gds
gL + gds

(5.16)
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gin =
gm + gds
1 + gds/gL

(5.17)

For (gm À gds)—which is usually the case unless either W/L ratio is very low or the

drain-source voltage becomes very low—and (gds À gL) they reduce to the followings

Av '
gm
gds

(5.18)

gin '
gm
gds

gL ' Av · gL (5.19)

The factor gm/gds which has appeared in all the foregoing equations is the maximum

gain that can be obtained from a transistor—when its load impedance approaches infinity—

and called intrinsic gain. It is the key factor in having a high performance cascade struc-

ture, no matter whether it is to be used as an active load or as a voltage amplifier. As long

as the load impedance is much higher than the output impedance of the buffer transistor,

intrinsic gain plays the main role in the combined block.

In conclusion, to design a suitable cascade block, the optimum values of gm and gds

have to obtained. Transconductance gm is determined by current handling and noise

performance of the transistor, and then to reach to the desired intrinsic gain level, the

channel length of the buffer transistor is increased, provided that the the aspect ratio

remains constant. This basically means that after setting the gm, both W and L are

increased by a common factor.

Folded Cascode Structure

The advantages of the folded cascode structure are based on the following reasons

• PMOS transistors have lower 1/f noise.

• Having PMOS transistors at the input, makes setting the input CM voltage at the

ground level possible. Since the op-amp operates in an environment that clock signals

exist, this is is the best vlaue for the CM voltage, in terms of the stability of the

voltage level and injected noise.
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Figure 5.8: Cascade structure
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• The internal nodes are connected to the sources of M5 and M6, resulting in low

impedance nodes. With proper design and biasing of the transistors connected to

these nodes, the load capacitance of each of them can be made low enough so that

the associated poles are placed at very high frequencies.

• The output nodes of the op-amp are high impedance ones, so that with proper

selection of their load capacitance, they can easily provide the dominant poles.

• With proper selection of biasing voltages, i.e., Vb,n and Vb,p, a peak-to-peak voltage

swing of around 1V—for a 1.8V supply—can be achieved at the output. This is

mainly due to the folding the original cascode block—which utilizes the same kind of

transistors—by employing a PMOS-NMOS cascode structure—M1-M5 and M2-M6

pairs.

5.5.3 Non-idealities and Design Guidelines

The main source of non-ideality stems from channel length modulation effect [39]. Specially

for such a deep sub-micron technology like 0.18 µ, this plays a crucial role in most deviations

from the ideal characteristics.

The outcomes of non-ideality effects are more apparent when either the channel is very

short or the drain-source voltage is very low. In either cases, the the characteristics of the

transistor is not a mere function of the aspect ratioW/L, i.e., the absolute value of channel

length as well as channel width directly affect the transistor performance. This results in

the design guidelines that has been fully considered in this work:

• Whenever it is necessary to generate an integer multiple of a fixed current, like

biasing transistors M9–M12, the lenght and the width of the transistor should be

kept constant, and only the number of fingers has to found in a way to obtain the

desired current.

• Whenever either a larger output resistance, M3,M4,M9–M12, or a higher intrinsic

gain, M5 and M6 is desired, the channel length is increased, keeping the aspect ratio

constant.

• If mixed-signal technology is available, i.e., the realization of twin well transistors is

possible, in order to combat body effect, the bulk is connected to the source.
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• Whenever only the transconductance of the transistor is important and its output

resistance does not have much effect on the circuit performance, the lowest value

of the channel length is desired, since it decreases the device prasitic capacitances.

This is applicable to the input transistors M1 and M2. It should be noted the

device matching requirements impose lower bounds on the channel length which are

normally larger than the technology minimum feature.

5.5.4 Biasing Currents

Slew-Rate Requirements

As stated earlier, the biasing currents is mostly determined by slew rate consideration

which itself depends on the clock frequency of the discrete time filter.

For an output voltage change of ∆Vo and total load capacitance of Cload, the required

current at the slew rate limiting conditions is given by:

Io = Cload
∆Vo

T/2
(5.20)

where T is the clock period.

On the other hand, the integrators used in this work are bilinear differential ones whose

TFs are given by Eq. 2.70 which can be re-written as

Ci∆Vo = (z + 1)Cr Vi (5.21)

For frequencies inside the PB of the filter which are much less than the clock rate, ωT/2

approaches zero, and consequently z = exp(ωT/2) approaches unity, so that Eq. 5.21

becomes

Ci∆Vo ' 2Cr Vi (5.22)

Since the output peak-to-peak swing of every opamp is around 1 V, and the inputs of

every integrator are fed from the outputs of other op-amps, therefore the amplitude of the

input signal Vi is about 0.5 V. An approximate value of input capacitance Cr is 0.5 pF.

Also, the load capacitance of each stage consists of the integrating capcitor and the input

capacitors of other stages connected to the op-amp output. Therefore Cload can roughly
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be estimated as two times the integrating capacitor Ci. Based on these and combining

Eq. 5.20 and Eq. 5.22, the required output current Io at the slew-rate limiting conditions

is 200 µA.

Conclusively, the biasing currents will be selected in a way to make the op-amp able to

provide

Io = 300 µA (5.23)

output current at the limiting conditions, making sure that there will not be any degrada-

tions due to driving current capabilities.

Slew-Rate Performance of Folded Cascode Structure

Now that the required output current is known, in order to choose the biasing currents of

the transisitors, the current handling capabilities of the selected topology, folded-cascode

in this case, has to be examined. The aim of this section is to cover this issue. In order to

do that, first a basic current model is presented for the structure under investigation and

using the linear programming technique, the biasing currents will be found to minimize

power dissipation.

The voltage gain of the first stage is small—around 5—therefore the variations of drain

voltages ofM3 andM4 are very low, so that it can be assumed that they are equal together.

They have also equal gate-source voltage so that their total current at any time will be

constant and equal to 2Ib.

Transistors M9 and M10 also share the same biasing voltage and have equal as well as

constant drain-source voltages so that their currents are constant and equal to I
′

b all the

time. The same situation holds for M11 and M12 except for a scaling factor due to the

difference between the number of their fingers. Therefore the biasing current of M12 is

constant at all time at a level of 2I
′′

b . In conclusion a basic current model of the folded

cascode structure is drawn in Fig. 5.10.

The currents of transistorsM1,M2,M5 andM6 are represented by variables u, v, y and

x, respectively. Variable io is the output current and since the op-amp is fully differential,

the output currents at both output nodes are equal but with opposite polarity at any

moment. The extremums of io has already been determined by the required slew-rate

performance, so that variations of io will be between −Io and Io, where Io is given by

Eq. 5.23.
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Figure 5.10: The current model of the folded cascode structure (Fig. 5.7).

The equations describing Fig. 5.10 are given as follows

x = I
′

b + io (5.24)

y = I
′

b − io (5.25)

x + u = 2Ib (5.26)

y + v = 2Ib (5.27)

u + v = 2I
′′

b (5.28)

Subtracting Eq. 5.25 from Eq. 5.24 results in

x − y = 2io (5.29)

Variables x and y are the total currents of transistors, so that they can never accept

negative values. Equation Eq. 5.29 together with the extremum values of io specify the

range of variations of x and y which is given by the hatched region in x–y plane as it is

depicted in Fig. 5.11.

On the other hand, adding Eq. 5.24 to Eq. 5.25 gives rise to

x + y = 2I
′

b (5.30)
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Figure 5.11: Finding the optimum value of biasing current I
′

b by applying the linear

programming technique to Eq. 5.29 and Eq. 5.30. Output current io in Eq. 5.29 ranges

between −Io and +Io which is represented by the hatched region.

which imposes the second limitation on x and y, and it is shown by the associated line

in Fig. 5.11. As a result, x and y can only vary over this line provided that they are placed

inside the hatched region. And to satisfy the requirements of slew-rate performance, at

the limits they must have a maximum value of 2Io. As it is seen for values of I
′

b < Io

they cannot reach to this extremum at their limits. For I
′

b > Io they can, but there

exists an extra amount of current that do not contribute to the output current—since

some parts of the line is outside the hatched region—and it shows itself as unnecessary

current consumption. To achieve the current driving requirements and at the same time

keeping the power conusmption at its minimum level, I
′

b has to be selected equal to Io.

A similar procedure gives rise to the optimum value of Io for I
′′

b, and since combining

Eq. 5.26, Eq. 5.27, Eq. 5.28, and Eq. 5.30 results in

I
′

b + I
′′

b = Ib (5.31)

the optimum value of Ib is also Io.

5.5.5 Amplifier Design

The amplifier in Fig. 5.7 is composed of two stages which every single of them plays its

own role. To obtain the size of different transistors the guidelines presented in Sec. 5.5.3
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have been fully incorporated into the design procedure.

1. Input Stage

The input stage should provide the following goals:

• Large transconductance

• Large output impedance (comparing to the input impedance of the output stage)

• Low noise level

• Low input capacitance

This is important when the op-amp is utilized in closed loop configuration,

since as it was seen in Chap. 4, it affects the effective unity gain frequency of

the amplifier.

• Large bandwidth

• Highly matched input transistors

• Delivering enough current to the output stage at slew-rate limiting conditions

The latter has already been fully discussed, and the currents have been chosen in a

way to make sure that the op-amp consumes the minimum amount of power while it

can easily drive the capacitvie loads.

Knowing the current of input PMOS transistors, M1 andM2, their aspect ratio W/L

is found, so that their over-drive voltge, i.e., VGS − Vt, will be around 0.2 V.

Since the intrinsic gain of these transistor is not important, therefore the minimum

value of channel length is desired. But in order to have highly matched input transis-

tors, L has to be increased. A channel lenght of 1.6 times the technology minimum

feature is a good compromise between input capacitance and matching issue [21].

Current sources M3 and M4 are designed to provide the desired current at a drain-

source voltage of around 0.2 V, while they have much higher impedance comparing to

the other impedances connecting to their drains. In this way, it becomes inevitable

to increase their L and W by a common factor in order to reach to the required

ouptput impedance level.

For current sourcesM12 andM13, the key factor is to have very large output impedance.

They form a cascade structure, therefore, for M12 the key factor is to have high

impedance while M13 must have very large intrinsic gain. This makes sure that the
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common-mode rejection of the amplifier will be very high, which is quite desirable.

It should be noted having low levels of drain capacitance for M12 is desired since in

that case the common-mode rejection remains large even for high frequencies.

2. Output stage

The role of the output stage is to provide

• High voltage gain

• Low input impedance

• High output impedance

• Low input capacitance

• Large and at the same time symmetrical output voltage swing

Transistors M5 and M6 together with their active loads, form a cascade block, oper-

ating in the amplifying mode, so that the key factor will be the intrinsic gain. Their

aspect ratio is found to satisfy the required overdrive and drain-source voltage re-

quirements, and then their sizes are adjusted so that an intrinsic gain of around 250

is obtained. This also makes sure that the output impedance seen from the drain

is very high, as they form another cascade block together with M3 and M4. The

active load of the output stage is also a cascade structure. M7 and M8 must have

large intrinsic gains while M9 and M10 should provide high impedance with total

drain capacitance at the lowest possible level. Similarly, to obtain these goals, the

aspect ratios are found to meet biasing vlotage requirements and then their sizes are

adjusted to reach to the desired levels of intrinsic gain and ouput impedance.

A subtle, yet crucial point in the design of this stage is that since the dominant

pole of the op-amp is placed at the output node—as it is high impedance node and

also the amplifier drives wholly capacitve loads of the SC filter—in order to have

good stability the second pole which is associated to the input of this stage has to

be far away from the dominant one. Subtlity arises from the fact that albeit this

is a low-impedance node, in the normal amplifying mode of transistors M5 and M6,

i.e., pinch-off region, the capacitances seen from their sources are in fact huge which

may result in phase margin degradation. Therefore, it is not possible to up-scale

these two transistors to reach to very high levels of intrinsic gain, since keeping gm

constant, gds decreases inversely with the first power of channel length, but for input
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capacitance, it increase with square of L. Therefore a trade-off between intrinsic gain

of these transistors and stability of the amplifier is compulsory.

Based on the discussion presented here and in previous sections, the transistors’ sizes

as well as their number of finger have been found and are listed in Table 5.8.

Finger W (µ) L (µ)

M1 4 64 0.3

M2 4 64 0.3

M3 30 15 4.8

M4 30 15 4.8

M5 4 72 0.9

M6 4 72 0.9

M7 8 50 0.6

M8 8 50 0.6

M9 15 7 1

M10 15 7 1

M11 1 7 1

M12 30 7 1

M13 8 100 0.6

M14 2 6 0.3

Table 5.8: Op-Amp transistors’ sizes

5.5.6 Common-Mode Feedback (CMFB) Circuitry

The output nodes of the op-amp are high impedance ones, so that they can experience large

common-mode (CM) voltage variations without major changes in their biasing currents.

This fact may cause the output CM voltage to reach to rail voltage levels which makes the

whole amplifier malfunction. To prevent this event, a mechanism has to control the CM

voltage of these nodes. The circuitry which does this task in differential amplifiers is called

common-mode feedback (CMFB) block, and it is a crucial section of differential circuits.

The peformance of CMFB circuitry directly affects the linearity and the available range of

voltage swing. In other words, the dynamic range (DR) of the circuit strongly depends on

the performance of the CMFB block.
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tt ff fs ss sf

Gain 1572 3844 672 562 2635

BW 108 45 247 280 63 kHz

GBW 170 174 166 158 165 MHz

fT 149 152 147 94 96 MHz

Phase Margin 61 62 62 37 36 degrees

Vcmfb 669.293 562.508 567.278 778.838 773.188 mV

Output CM 902 905 902 891 890 mV

Table 5.9: Op-Amp characteristics for different models. Load capacitance has been 2 pF

per output node in addition to 2 pF per node due to SC CMFB circuitry.

The task of the CMFB block can be described as follows. It measures both positive

and negative output sinals, and a block called averager generates the CM voltage of these

two signals, which is basically their average. This signal, then will be compared with a

reference voltage to generate a feedback signal which will feed a specific control node in

the op-amp to set the common-mode voltage of the output nodes at a specific level.

The key point in designing an efficient CMFB block is that the CM signal loop has

to be faster than the main diffential signal loop, or in other words, its gain-bandwidth

product (GBW) has to be higher. In this case, perturbations in the main signal path will

be overcome by the CM loop, so that the output level will be set at the desired level.

CMFB circuitry can be designed either as a CT block or a DT one. A couple of circuits

for both cases have been proposed in [15] [21]. Normally a CT one consists of some kind

of differential amplifier whose input is connected to the output of the main op-amp. As a

result the range of common-mode voltage which is accepted by this amplifier will determine

the output CM voltage range. Usually this is quite limited so that it drastically degrades

the DR of the whole op-amp.

Quite opposite a specific structure of capacitors and switches can be set up to act as an

averager as well as a comparator. Since ideally these capacitors and switches can work at

any voltage level, therefore they do not affect the range of CM output voltages, resulting

in much better DR performance.

In this work, the structure shown in Fig. 5.12 has been employed [37] [15].

The minimum value of C0 is determined by parasitic capcitances based on process

specifications and the factor α should be chosen large enough to make sure that after
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Figure 5.12: SC CMFB circuitry

reaching to steady state conditions the swiching of the transitors which are connected to

the opamp outputs do not affect their voltages very much, so that the variations of Vcmfb

remains very small, resulting in a stable CM voltage at the opamp outputs.

In this work C0 has been chosen as 200 fF and a value of 10 has been selected for α.

5.5.7 Op-Amp Characterization

The designed operational amplifier has been fully characterized for typical as well as worst

case scenarios of transistor models. The typical case is labeled as tt and corner models

are represented by ff, fs, ss, sf standig for “fast NMOS-fast PMOS”, “fast NMOS-slow

PMOS”, “slow NMOS-slow PMOS”, “slow NMOS-fast PMOS”, respectively.

Since the op-amp is a fully differential one, four different transfer functions are needed

to fully describe the relationship between the input and the output ports and they can be

represented in matrix form as follows

[

vo,d

vo,cm

]

=

(

Ad,d Ad,cm

Acm,d Acm,cm

) [

vi,d

vi,cm

]

(5.32)

where vi,d, vi,cm, vo,d and vo,cm are differential input, CM input, differential output and CM

output, respectively and defined as follows
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vi,d = v+i − v−i (5.33)

vi,cm =
v+i + v−i
2

(5.34)

vo,d = v+o − v−o (5.35)

vo,cm =
v+o + v−o
2

(5.36)
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Figure 5.13: Differential gain of the operational amplifier for typical as well as worst case

scenarios.
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Figure 5.14: Phase response of the operational amplifier for typical as well as worst case

scenarios.
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Figure 5.15: Common-mode rejection of the operational amplifier for typical as well as

worst case scenarios.
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Figure 5.16: Differential-to-differential over CM-to-CM gain of the operational amplifier

for typical as well as worst case scenarios.
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Figure 5.17: Differential-to-differential over differetial-to-CM gain of the operational am-

plifier for typical as well as worst case scenarios.



Chapter 6

Conclusions and Future Work

This research has proved that by careful consideration of both system level and device

level it is possible to push the SC technique to much higher frequency ranges suitable for

wide-band wireless telecommunications.

The designed circuit can easily be integrated into the whole mobile receiver front-end

and it fully comply with the low-voltage low-power requirements of wireless communica-

tions.

The chosen architecture ensures that the filter response experience very low variations

due to undesired changes of circuit element values.

In continuation of this work, future research might be continued by thorough noise

analysis of the filter in order to find the main system level or device level parameters

affecting the noise characteristics of the circuit. This shall include rigorous mathematical

analysis which should be simplified to extract concise, yet insightful relationships for the

noise performance of the filter. The non-idealities associated with the deep sub-micron

technologies and the outcomes of the applying high clock frequencies should be considered

in this noise analysis in order to obtain precise knowledge over the circuit behavior. Some

old as well as recent studies of the noise performance of DT systems might be used as an

starting point for this research [18] [1] [14] [12] [13] [10] [8] [16] [34] [23] .
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Appendix A

WATSCAD Source Code

* Elliptic 7th-order

*

* Recalculation with MATLAB for better accuracy of

* Capacitor valuse!!!!!!!

*

* !!!!!! Doubly Terminated !!!!!!!!!!!

* Low sensitivity: Orchard’s theorem (Y’1966)

*

* fully differential

*

* similar clock phases for subsequent stages

*

*

* Optimized for Max Dynamic Range(DR)

*

* Elliptic 7th LC doubly prototype, rho = 10%, theta = 52degrees

*

* c = [0.90504 0.13022 1.44739 0.63601 1.28991 0.47479 0.65382]

* l = [0 1.28752 0 0.94676 0 0.94158 0]

*

* Max values (input=1)

* m = [0.989898 1.39743 1.11832 1.86657 0.86657 0.862783 1.08103 0.5]

*
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* Frequencies of Max (radians)

* wm = [0.177941 0.169288 0.166388 0.164572 0.161478 0.160664]

*

* Stage 1 --------------------------------

*

* /vlsi_export/sun4/cad/bin/watscad ellip7_doubly_dr_opt_new.txt

*

* >> fseek(fid,0,-1);[x,nx] = fscanf(fid,’%f’,[2,128]);

* >> fs = 30.156250e6 ; ff = x(1,:) ; zz = exp(j * 2 * pi * ff / fs) ;

* >> c1 = 1 ; c2 = 8.317284374 ; c3 = 1 ;

* resistive >> yy = c1 ./ ((c2*((zz-1)./(zz+1))) + c3) ; uu = abs(yy) ;

* capacitive >> yy = c1 ./ (c2 + (c3*((zz+1)./(zz-1)))) ; uu = abs(yy) ;

*

*

* alpha = tan( pi * f_bw / f_clk); f_bw=612 kHz; f_clk=30.15625 MHz;

* def alpha 0.063842953

*

*O maxswi 200

*

g gnd

cl.q 1 0

*

*

**********************************************************************

* Stage 1

*

*

op.1 vgnd1p vgnd1n out1n out1p

*

* integrating capacitors (Stage 1)

*

c.1i1p out1p vgnd1p 16.21572848

c.1i1n out1n vgnd1n 16.21572848

*

* inputs from (Stage 0) to (Stage 1)
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*

c.1r0p sig1p0 gnd1p0 1.01020509

s.1g0gp gnd1p0 gnd q

s.1g0vp vgnd1p gnd1p0 q c

s.1s0gp sig1p0 out0p q

s.1s0vp sig1p0 out0n q c

*

c.1r0n sig1n0 gnd1n0 1.01020509

s.1g0gn gnd1n0 gnd q

s.1g0vn vgnd1n gnd1n0 q c

s.1s0gn sig1n0 out0n q

s.1s0vn sig1n0 out0p q c

*

* inputs from (Stage 2) to (Stage 1)

* 1 / alpha1 = 1.41169090

*

c.1r2p sig1p2 gnd1p2 1.41169090

s.1g2gp gnd1p2 gnd q

s.1g2vp vgnd1p gnd1p2 q c

s.1s2gp sig1p2 out2n q

s.1s2vp sig1p2 out2p q c

*

c.1r2n sig1n2 gnd1n2 1.41169090

s.1g2gn gnd1n2 gnd q

s.1g2vn vgnd1n gnd1n2 q c

s.1s2gn sig1n2 out2p q

s.1s2vn sig1n2 out2n q c

*

* damping switched-capacitors (simulating Source Resistance)

*

c.1d1p dmp1vp dmp1op 1.0

s.1d1gp dmp1vp gnd q

s.1d1vp vgnd1p dmp1vp q c

s.1dp1n dmp1op out1n q

s.1dp1p dmp1op out1p q c
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*

c.1d1n dmp1vn dmp1on 1.0

s.1d1gn dmp1vn gnd q

s.1d1vn vgnd1n dmp1vn q c

s.1dn1p dmp1on out1p q

s.1dn1n dmp1on out1n q c

*

* inputs from (Stage 3) to (Stage 1)

*

* 1 / alpha1 / alpha2 =

*

*

c.1c3p vgnd1p out3n 2.30430714

c.1c3n vgnd1n out3p 2.30430714

*

*

*

*

* Stage 2 --------------------------------

*

* /vlsi_export/sun4/cad/bin/watscad stage_02_watscad.txt

* >> fs=30.156250e6; zz=exp(j*2*pi*ff/fs); yy=(1 + zz)./(zz - 1);

* >> fseek(fid,0,-1);[x,nx] = fscanf(fid,’%f’,[2,128]);

* >> yy=(cr/ci).*(1+zz)./(1-zz);

*

**********************************************************************

* Stage 2

*

*

op.2 vgnd2p vgnd2n out2n out2p

*

c.2i2p out2p vgnd2p 20.16698677

c.2i2n out2n vgnd2n 20.16698677

*

* inputs from (Stage 1) to (Stage 2)
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* alpha1 =

*

c.2r1p sig2p1 gnd2p1 0.70837037

s.2g1gp gnd2p1 gnd q

s.2g1vp vgnd2p gnd2p1 q c

s.2s1gp sig2p1 out1p q

s.2s1vp sig2p1 out1n q c

*

c.2r1n sig2n1 gnd2n1 0.70837037

s.2g1gn gnd2n1 gnd q

s.2g1vn vgnd2n gnd2n1 q c

s.2s1gn sig2n1 out1n q

s.2s1vn sig2n1 out1p q c

*

* inputs from (Stage 3) to (Stage 2)

* 1 / alpha2 =

*

c.2r3p sig2p3 gnd2p3 0.80026907

s.2g3gp gnd2p3 gnd q

s.2g3vp vgnd2p gnd2p3 q c

s.2s3gp sig2p3 out3n q

s.2s3vp sig2p3 out3p q c

*

c.2r3n sig2n3 gnd2n3 0.80026907

s.2g3gn gnd2n3 gnd q

s.2g3vn vgnd2n gnd2n3 q c

s.2s3gn sig2n3 out3p q

s.2s3vn sig2n3 out3n q c

*

*

*

*

*

* Stage 3 --------------------------------

*
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*

* >> fseek(fid,0,-1);[x,nx] = fscanf(fid,’%f’,[2,128]);

* >> yy=(cr/ci).*(1+zz)./(1-zz);

*

**********************************************************************

* Stage 3

*

*

*

op.3 vgnd3p vgnd3n out3n out3p

*

c.3i3p out3p vgnd3p 34.67289461

c.3i3n out3n vgnd3n 34.67289461

*

* inputs from (Stage 2) to (Stage 3)

* alpha2 =

*

c.3r2p sig3p2 gnd3p2 1.24957973

s.3g2gp gnd3p2 gnd q

s.3g2vp vgnd3p gnd3p2 q c

s.3s2gp sig3p2 out2p q

s.3s2vp sig3p2 out2n q c

*

c.3r2n sig3n2 gnd3n2 1.24957973

s.3g2gn gnd3n2 gnd q

s.3g2vn vgnd3n gnd3n2 q c

s.3s2gn sig3n2 out2n q

s.3s2vn sig3n2 out2p q c

*

* inputs from (Stage 4) to (Stage 3)

* 1 / alpha3 =

*

c.3r4p sig3p4 gnd3p4 1.66908398

s.3g4gp gnd3p4 gnd q

s.3g4vp vgnd3p gnd3p4 q c
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s.3s4gp sig3p4 out4n q

s.3s4vp sig3p4 out4p q c

*

c.3r4n sig3n4 gnd3n4 1.66908398

s.3g4gn gnd3n4 gnd q

s.3g4vn vgnd3n gnd3n4 q c

s.3s4gn sig3n4 out4p q

s.3s4vn sig3n4 out4n q c

*

* inputs from (Stage 5) to (Stage 3)

*

* 1 / alpha3 / alpha4 =

*

c.3c5p vgnd3p out5n 7.68575367

c.3c5n vgnd3n out5p 7.68575367

*

* inputs from (Stage 1) to (Stage 3)

*

* alpha1 * alpha2 = 0.91809978

*

c.3c1p vgnd3p out1n 1.80546501

c.3c1n vgnd3n out1p 1.80546501

*

*

* Stage 4 --------------------------------

*

* /vlsi_export/sun4/cad/bin/watscad stage_04_watscad.txt

* >> fs=30.156250e6; zz=exp(j*2*pi*ff/fs); yy=(1 + zz)./(zz - 1);

* >> fseek(fid,0,-1);[x,nx] = fscanf(fid,’%f’,[2,128]);

* >> yy=(cr/ci).*(1+zz)./(1-zz);

*

*

**********************************************************************

* Stage 4

*
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*

op.4 vgnd4p vgnd4n out4n out4p

*

c.4i4p out4p vgnd4p 14.82951441

c.4i4n out4n vgnd4n 14.82951441

*

* inputs from (Stage 3) to (Stage 4)

* alpha3 =

*

c.4r3p sig4p3 gnd4p3 0.59913103

s.4g3gp gnd4p3 gnd q

s.4g3vp vgnd4p gnd4p3 q c

s.4s3gp sig4p3 out3p q

s.4s3vp sig4p3 out3n q c

*

c.4r3n sig4n3 gnd4n3 0.59913103

s.4g3gn gnd4n3 gnd q

s.4g3vn vgnd4n gnd4n3 q c

s.4s3gn sig4n3 out3n q

s.4s3vn sig4n3 out3p q c

*

* inputs from (Stage 5) to (Stage 4)

* 1 / alpha4 =

*

c.4r5p sig4p5 gnd4p5 0.46222912

s.4g5gp gnd4p5 gnd q

s.4g5vp vgnd4p gnd4p5 q c

s.4s5gp sig4p5 out5n q

s.4s5vp sig4p5 out5p q c

*

c.4r5n sig4n5 gnd4n5 0.46222912

s.4g5gn gnd4n5 gnd q

s.4g5vn vgnd4n gnd4n5 q c

s.4s5gn sig4n5 out5p q

s.4s5vn sig4n5 out5n q c
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*

*

*

* Stage 5 --------------------------------

*

* /vlsi_export/sun4/cad/bin/watscad stage_05_watscad.txt

* >> fseek(fid,0,-1);[x,nx] = fscanf(fid,’%f’,[2,128]);

* >> yy=(cr/ci).*(1+zz)./(1-zz);

*

**********************************************************************

* Stage 5

*

*

op.5 vgnd5p vgnd5n out5n out5p

*

c.5i5p out5p vgnd5p 37.60336680

c.5i5n out5n vgnd5n 37.60336680

*

* inputs from (Stage 4) to (Stage 5)

* alpha4 =

*

c.5r4p sig5p4 gnd5p4 2.16342927

s.5g4gp gnd5p4 gnd q

s.5g4vp vgnd5p gnd5p4 q c

s.5s4gp sig5p4 out4p q

s.5s4vp sig5p4 out4n q c

*

c.5r4n sig5n4 gnd5n4 2.16342927

s.5g4gn gnd5n4 gnd q

s.5g4vn vgnd5n gnd5n4 q c

s.5s4gn sig5n4 out4n q

s.5s4vn sig5n4 out4p q c

*

* inputs from (Stage 6) to (Stage 5)

* 1 / alpha5 =
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*

c.5r6p sig5p6 gnd5p6 1.25295700

s.5g6gp gnd5p6 gnd q

s.5g6vp vgnd5p gnd5p6 q c

s.5s6gp sig5p6 out6n q

s.5s6vp sig5p6 out6p q c

*

c.5r6n sig5n6 gnd5n6 1.25295700

s.5g6gn gnd5n6 gnd q

s.5g6vn vgnd5n gnd5n6 q c

s.5s6gn sig5n6 out6p q

s.5s6vn sig5n6 out6n q c

*

* inputs from (Stage 3) to (Stage 5)

*

* alpha3 * alpha4 =

*

c.5c3p vgnd5p out3n 12.91265317

c.5c3n vgnd5n out3p 12.91265317

*

* inputs from (Stage 7) to (Stage 5)

*

* 1 / allpha5 / alpha6 = 0.61302532

*

c.5c7p vgnd5p out7n 4.30979902

c.5c7n vgnd5n out7p 4.30979902

*

*

*

* Stage 6 --------------------------------

*

* /vlsi_export/sun4/cad/bin/watscad stage_06_watscad.txt

* >> fs=30.156250e6; zz=exp(j*2*pi*ff/fs); yy=(1 + zz)./(zz - 1);

* >> fseek(fid,0,-1);[x,nx] = fscanf(fid,’%f’,[2,128]);

* >> yy=(cr/ci).*(1+zz)./(1-zz);
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*

**********************************************************************

* Stage 6

*

*

*

op.6 vgnd6p vgnd6n out6n out6p

*

c.6i6p out6p vgnd6p 14.74837782

c.6i6n out6n vgnd6n 14.74837782

*

* inputs from (Stage 5) to (Stage 6)

* alpha5 =

*

c.6r5p sig6p5 gnd6p5 0.79811199

s.6g5gp gnd6p5 gnd q

s.6g5vp vgnd6p gnd6p5 q c

s.6s5gp sig6p5 out5p q

s.6s5vp sig6p5 out5n q c

*

c.6r5n sig6n5 gnd6n5 0.79811199

s.6g5gn gnd6n5 gnd q

s.6g5vn vgnd6n gnd6n5 q c

s.6s5gn sig6n5 out5n q

s.6s5vn sig6n5 out5p q c

*

* inputs from (Stage 7) to (Stage 6)

* 1 / alpha6 =

*

c.6r7p sig6p7 gnd6p7 0.46252185

s.6g7gp gnd6p7 gnd q

s.6g7vp vgnd6p gnd6p7 q c

s.6s7gp sig6p7 out7n q

s.6s7vp sig6p7 out7p q c

*
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c.6r7n sig6n7 gnd6n7 0.46252185

s.6g7gn gnd6n7 gnd q

s.6g7vn vgnd6n gnd6n7 q c

s.6s7gn sig6n7 out7p q

s.6s7vn sig6n7 out7n q c

*

*

*

* Stage 7 --------------------------------

*

* /vlsi_export/sun4/cad/bin/watscad stage_07_watscad.txt

* >> fseek(fid,0,-1);[x,nx] = fscanf(fid,’%f’,[2,128]);

* >> yy=(cr/ci).*(1+zz)./(1-zz);

*

**********************************************************************

* Stage 7

*

*

*

op.7 vgnd7p vgnd7n out7n out7p

*

*

c.7i7p out7p vgnd7p 17.67791020

c.7i7n out7n vgnd7n 17.67791020

*

* inputs from (Stage 6) to (Stage 7)

* alpha6 =

*

c.7r6p sig7p6 gnd7p6 2.16206000

s.7g6gp gnd7p6 gnd q

s.7g6vp vgnd7p gnd7p6 q c

s.7s6gp sig7p6 out6p q

s.7s6vp sig7p6 out6n q c

*

c.7r6n sig7n6 gnd7n6 2.16206000
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s.7g6gn gnd7n6 gnd q

s.7g6vn vgnd7n gnd7n6 q c

s.7s6gn sig7n6 out6n q

s.7s6vn sig7n6 out6p q c

*

* damping switched-capacitors (simulating Load Resistance)

*

c.7d7p dmp7vp dmp7op 1.0

s.7d7gp dmp7vp gnd q

s.7d7vp vgnd7p dmp7vp q c

s.7dp7n dmp7op out7n q

s.7dp7p dmp7op out7p q c

*

c.7d7n dmp7vn dmp7on 1.0

s.7d7gn dmp7vn gnd q

s.7d7vn vgnd7n dmp7vn q c

s.7dn7p dmp7on out7p q

s.7dn7n dmp7on out7n q c

*

* inputs from (Stage 5) to (Stage 7)

*

* alpha5 * alpha6 =

*

c.7c5p vgnd7p out5n 12.83276283

c.7c5n vgnd7n out5p 12.83276283

*

*

*

*

*

*

*

* switched inputs

*

vs.0p out0p gnd 0.5 cos 0.5 500k 0
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vs.0n gnd out0n 0.5 cos 0.5 500k 0

*

#

shold no

*

*ytype real

ytype mag

*ytype phase

*

output v(out7p,out7n)

*output add v(out0p,out0n)

*output add v(out1p,out1n) v(out2p,out2n) v(out3p,out3n)

output add v(out4p,out4n) v(out5p,out5n) v(out6p,out6n)

*

phi equal

swf 30.156250Me

*xax 1 2000k lin 2048

xax 1 3000K lin 4096

band 1

kfile ellip7_doubly_dr_opt

ufile ellip7_doubly_dr_opt

freq

append no

wrt ve7_3

wr all
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