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Abstract

In this thesis, I study bipartite discord between A and B in terms of the struc-
ture formed by the bipartite and tripartite entanglement found in the purified
system ABC. I find that discord manifests itself only when there is both tripar-
tite and bipartite entanglement present in the purification. This allows one to
understand the asymmetry of quantum discord, D(A|B) 6= D(B|A) in terms of
entanglement monogamy. For the cases where AB has rank two and for two-
mode Gaussian states, I find that discord also necessarily appears whenever there
is tripartite and bipartite entanglement in ABC. As a result of this, some light
is shed on a counter-intuitive property of Gaussian states: the presence of clas-
sical correlations necessarily requires the presence of quantum discord. Finally,
these results are found to be closely linked to the protocol for remote activation
of entanglement by a third party.
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Chapter 1

Introduction

Quantum information science has as its final goal the successful creation of a quan-
tum computer. Ever since the discovery of an algorithm by Shor [7] which would
factorize numbers efficiently on a quantum computer, there have been spectacu-
lar advances in building such a computer. The resource which Shor’s algorithm
depends on is the so-called quantum entanglement. This is the resource believed by
most to allow such quantum speedups and advantages. This can be seen through
the fact that unentangled pure states require only a polynomial (in the number of
subsystems) amount of parameters to completely describe them while an entan-
gled state requires an exponential number of parameters. Therefore, a quantum
computer can do things a classical computer would find hard to simulate.

Building a quantum computer using pure states is difficult. There are already
many successful implementations of pure state algorithms such as Shor’s in the
laboratory. These are limited however by their lack of scalability. As the quantum
computer grows, there are more ways for it to couple to the environment, thus
losing the purity of the states. This is called decoherence [2].

Another approach to quantum computing would be to use mixed states. The
first mixed-state scheme for quantum computation was proposed by E. Knill and
R. Laflamme in 1998 and is called DQC1 [25], which is short for Deterministic
Quantum Computation with 1 pure qubit. This model has been shown to contain
very little, if any, entanglement and instead contains quantum discord. In addition
to playing a role in mixed state computation, discord has been found to be useful
in a range of applications, discussed in Chapter 3. We wish here to gain an
understanding of discord in terms of entanglement. This is motivated by the fact
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CHAPTER 1. INTRODUCTION

that discord is equivalent to entanglement in the case of pure states. It is natural
then to wonder how the two are related in the case of mixed states. We make
use of the fact that every mixed state can be purified into a pure state of a larger
system and propose to view discord as a manifestation of entanglement inside
this purification.

This thesis is organized as follows. In Section 1.1 we provide a quick review of
some important concepts in quantum information such as projective measurements,
POVMs and general quantum operations. All of the material presented here may
be found in more detail in the wonderful introductory book by Michael Nielsen
and Isaac Chuang [1]. In Section 1.2 we define the notion of a qubit and what a
quantum gate is along with other important quantum computing terms. We show
how a qubit may be represented as a point in or on a sphere, depending on the
purity of the qubit. Chapter 2 is devoted to quantum correlations based on non-
locality such as ones defined through the Bell inequalities and, as the title of this
section suggests, quantum entanglement. In Section 2.4, we give an axiomatic
definition of quantum entanglement which arises out of the concept of LOCC op-
erations, defined in Section 2.3. In Chapter 3 we introduce the quantum discord
between two systems through ideas originally conceived in classical information
theory (Section 3.1) and adapted to the quantum formalism. Section 3.3 discusses
the uses which have been found for quantum discord recently. In there we show
how the model for mixed state quantum computation DQC1 seems to make use
of quantum discord, instead of entanglement, to provide a quantum advantage.
Finally, in Chapter 4 we discuss relating discord and entanglement. Section 4.1
it is shown that, in the case of pure states, discord is exactly the same as entan-
glement. Discord in mixed states is not well understood except for some specific
classes of states. Section 4.2 discusses the class of Bell-state mixtures. In Section 4.3
is where our work begins. We relate discord between two unentangled subsys-
tems A and B to the different entanglements found in the purification ABC. First,
we explore this in the case where A, B and C are qubits, then move on to the more
general case where the AB system is simply rank two. We find that the results
for rank two systems AB do not exactly carry over to the completely general case
which is explored in Section 4.4. Following this, some applications of our results
are discussed.
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CHAPTER 1. INTRODUCTION 1.1. QUANTUM FRAMEWORK

1.1 Quantum framework

In classical mechanics, the state of a system is always be well-defined in the sense
that we can associate a set of numbers which completely describe it (or as much
as we care for) at any moment in time. For example, a wheel falling from the top
of a building could be described by the speed it is falling, how fast it is spinning
and its diameter. When we deal with small quantum objects, this description is no
longer valid. We find that, to completely describe a quantum system, we must
allow that it may be in a superposition of possible states at any moment in time.
Formally, a quantum mechanical state is given by

|ψ〉 = ∑
k

αk |ψk〉

where αk are complex numbers which represents the probability amplitude with
which the system is in the basis state |ψk〉. For example, these could be the energy
levels of an atom or the spin of a photon. When we make a measurement on the
system, however, the state collapses to one of its basis states |ψk〉 with probability
|αk|2 and will remain in that state if left undisturbed. The amplitudes must satisfy

∑
k
|αk|2 = 1

for the probability distribution upon measurement to make sense. We say the
state is normalized. These states can equivalently be represented in a column vector
form as

|ψ〉 =


α0

α1

.

.

.


The set of all vectors |ψ〉 along with the inner product between them form what we
call a Hilbert space, which we denote by H. Only the vectors which are normalized
correspond to physical states. Usually we choose basis states |ψk〉 which are
orthonormal, which means they are orthogonal in addition to being normalized.
The normalization condition can then be written more succinctly as

〈ψ|ψ〉 = 1
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CHAPTER 1. INTRODUCTION 1.1. QUANTUM FRAMEWORK

where 〈x|y〉 is the inner product between |x〉 and |y〉. It is also possible to take the
tensor product between two states of systems A and B: |ψA〉⊗ |ψB〉. This represents
looking at the state of the combined system AB as a whole inside the enlarged
Hilbert space HA ⊗HB.

1.1.1 Unitary evolution

Whenever a system is closed, its state evolves via a linear function U on its state
vector. Mathematically this means that, after evolution by U, it will be in the state

|ψ′〉 = U |ψ〉

The normalization condition requires that 〈ψ′|ψ′〉 = 1 so that we have

〈ψ′|ψ′〉 = 〈ψ|U†U|ψ〉 = 1 =⇒ U†U = I

The function U is therefore unitary and we say that a closed system undergoes
unitary evolution. Since a unitary has an inverse, U−1 = U†, the evolution of a
closed system is reversible.

1.1.2 Open systems

In general, our quantum system may not be closed (and is instead open) and there-
fore we may not have complete knowledge about it at any point in time. This also
means a system undergoes an evolution which is not unitary. We can, however,
always enlarge our system’s Hilbert space to include its environment, the total of
the two being a closed system and thus evolving unitarily. The density operator or
density matrix associated with the initial state of the system plus environment can
be written as, without loss of generality, the Kronecker product composition of
the density operator for the system with that for the environment

ρ⊗ ρenv

and acts on the enlarged Hilbert space H ⊗ Henv. The density matrix can be
used as an alternative to the vector representation of the state. It captures all
relevant information about the state of the system and is also used to describe

4



CHAPTER 1. INTRODUCTION 1.1. QUANTUM FRAMEWORK

open systems where vectors fail. Any density matrix ρ may be written as a convex
combination of orthogonal, pure density matrices

ρ = ∑
k

pk |ψk〉 〈ψk|

where ∑k pk = Tr(ρ) ≡ ∑k 〈ψk| ρ |ψk〉 = 1. Each |ψk〉 〈ψk| is also called a rank-one
projection operator, due to the fact that it projects a vector |φ〉 onto the subspace
spanned by |ψk〉. The density matrix can be viewed as a mixture, containing a
fraction pk of the pure state |ψk〉. If all but one of the pk are 0 then ρ is pure and
we have complete information about the system it describes, otherwise is it said
to be mixed and we lack information about the system. Our original state can be
written by taking the partial trace over the environment Henv

Trenv(ρ⊗ ρenv) = ρ⊗ Tr(ρenv) = ρ.

With this we can describe the evolution of the state ρ of an open system

ρ′ = Trenv(U(ρ⊗ ρenv)U†)

where U is a unitary operator acting on H⊗Henv.

1.1.3 Projective measurements

The Hilbert space in quantum mechanics is analogous to the phase space in clas-
sical mechanics. In both cases, the state of a system is completely described by a
vector in that space. What differs are the physical quantities we want to measure,
the observables, which are described by quantum mechanics as operators acting
on the Hilbert spaceH. Every state can be written as a sum of rank-one projection
operators which are orthogonal to one another

ρ = ∑
k

pk |ψk〉 〈ψk| ,

i.e. it has an eigendecomposition, and, similarly, so can an observable

A = ∑
m

am |am〉 〈am|

where the am are the eigenvalues of the operator A and represent the values
of the outcomes of a measurement: the result of a projective measurement of an
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CHAPTER 1. INTRODUCTION 1.1. QUANTUM FRAMEWORK

observable A for a system in state ρ will be one of the eigenvalues am of A and
will be obtained with probability

pm = 〈am| ρ |am〉 = Tr(|am〉 〈am| ρ).

After the measurement, the system will collapse to the state of the projection
operator |am〉 〈am| associated with the outcome am and therefore, if the system is
left undisturbed, returns the same outcome when performing the measurement
again. This is called the von Neumann projection postulate. The expectation or
average value of a projective measurement is given by

〈A〉 = ∑
m

am pm = Tr

(
∑
m

am |am〉 〈am| ρ
)

= Tr (Aρ) (1.1)

To shorten notation, a projective measurement is usually denoted by {Πm},
where the Πm are rank-one projection operators. It is also possible to perform a
projective measurement {Πm

A} on only a subsystem A of a larger system AB. The
probability of the outcome m is then given by

pm = Tr[(Πm
A ⊗ IB)ρAB].

The state of A after measuring outcome m is Πm
A and the state on B is given by

the partial trace over the subsystem being measured

ρB|A=m = TrA[(Πm
A ⊗ IB)ρAB]/pm.

The factor of 1
pm

is there to normalize the right hand side.
The result of a projective measurement is always a pure state. That means

after we perform a projective measurement on a subsystem A of a larger system
AB which is in a pure state, the B system will be left in a pure state as well. This
can be seen by arguing that, through the process of measuring A, we certainly
don’t lose any information and so we must still have perfect information about
AB.

1.1.4 Positive Operator Valued Measurements

Projective measurements do not cover all the measurements we might be able to
do. For example, we might let the system evolve unitarily before making our
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CHAPTER 1. INTRODUCTION 1.1. QUANTUM FRAMEWORK

measurement, or even non-unitarily as an open system. To capture this, we say a
measurement consists of a set of operators {Mm} acting on H. The probability of
measuring outcome m on state ρ is given by

pm = Tr(MmρM†
m)

and after the measurement the state collapses to

MmρM†
m/pm

The measurement operators must satisfy the completeness relation in order for
the probabilities pm to sum to 1

∑
m

M†
mMm = I.

If 〈M〉 represents the expectation value of the measurement {Mm}, then

〈M〉 = ∑
m

mpm = Tr

(
∑
m

mMmM†
mρ

)
= Tr (Mρ) (1.2)

where we have simply set M = ∑m mMmM†
m which is the observable associated

with the measurement {Mm}. This sum becomes an integral when our set of
measurements is not discrete, for example measuring the momentum of a particle.
In the case of such a general measurement, the von Neumann projection postulate
no longer necessarily holds.

In a lot of the cases dealt with in physics, only the probabilities of the outcomes
are necessary to know and not the final state of the system. So to make notation
more compact we define something called a positive operator-valued measurement
(POVM) which is simply defined as a set {Em} of POVM elements where ∑m Em =

I. What positive operator means is that the eigenvalues of the operator are non-
negative numbers. A positive operator Op also has the property that

〈ψ|Op |ψ〉 ≥ 0. (1.3)

for all vectors |ψ〉 in the Hilbert space. This simply guarantees that the prob-
abilities associated with the outcomes m, pm = Tr(Emρ), are also non-negative
numbers.

7



CHAPTER 1. INTRODUCTION 1.1. QUANTUM FRAMEWORK

In general it is always possible to factorize a POVM element as Em = M†
mMm,

which might lead one to believe that we can determine the state of the system
after measuring outcome m via MmρM†

m/pm, but their factorization is not unique
so this is not possible. It is, however, possible to rule out certain final states
MmρM†

m/pm by checking if Em 6= M†
mMm. The expected value of a POVM {Em}

is given by Tr(Eρ) where E = ∑m mEm. It is always possible to view a POVM on
H as a projective measurement of an observable A = ∑m am |am〉 〈am| in a larger
Hilbert space H ⊗ Henv so that pm = Tr(Emρ) = Tr(|am〉 〈am| ρ ⊗ ρenv), this is
called the Stinespring dilation. Each Em can be diagonalized and the number of
non-zero eigenvalues gives the rank of the POVM element. Rank-one POVMs are
of special interest and are defined as POVMs with only rank-one elements. These
elements are proportional to rank-one projection operators and are not necessarily
orthogonal to one another.

1.1.5 Quantum operations

We can go even further than measurements and define what a quantum operation
is in general. Here we take the axiomatic approach:

Definition A quantum operation is any physical process that takes a state ρ of a
system on H1 to a state ρ′ on H2. This process is described by a map E : H1 → H2

ρ′ = E(ρ).

The process is said to be physical if it satisfies the following three axioms [1]

1. Tr(E(ρ)) is the probability that the process represented by E occurs. There-
fore, 0 ≤ Tr(E(ρ)) ≤ 1 for any state ρ.

2. E is a convex-linear map on the set of density operators

E
(

∑
k

pkρk

)
= ∑

k
pkE(ρk)

for probabilities {pk}.

3. E is a completely positive map. This means E(A) must be a positive operator
over H2 for any positive operator A over H1. Furthermore, (IR ⊗ E)(A)

8



CHAPTER 1. INTRODUCTION 1.2. QUANTUM COMPUTING BASICS

must be positive for any positive operator A on any combined Hilbert space
HR ⊗H1. IR is the identity operation over HR.

There are a lot of words in those axioms, but the physical intuition might not be
clear. The first axiom is pretty clear, since a physical process Ek out of a set of
possible processes {Ei} should take a state to a multiple of another

Ek(ρ) = pkρk

where pk represents the probability of obtaining state ρk starting with ρ. The
second says if we have a machine which produces a particle in the state ρk with
probability pk, then whether E occurs on the particle while it is inside the machine
or after it is received should not change the outcome of the overall state we see.
And finally the third mentions positive operators, which just means the operator
in question has only non-negative eigenvalues, a property density operators have
since their eigenvalues are probabilities. It must be completely positive since we
should be able to view a physical process on a subsystem as one on any system
which includes the subsystem.

The unitary evolution of a closed system, the evolution of an open system
E(ρ) = Trenv(U(ρ ⊗ ρenv)U†) and quantum measurements are all examples of
valid quantum operations under the previous three axioms. Any quantum oper-
ation has an operator sum representation which means E can be expressed as

E(ρ) = ∑
i

KiρK†
i

where Kk are called Kraus operators and have the property ∑i K†
i Ki ≤ I. An exam-

ple of this could be a measurement {Mm}. In this case, the Kraus representation of
the process which consists of measuring outcome m would be Em(ρ) = MmρM†

m

and so there is just one Kraus operator which is equal to Mm.

1.2 Quantum computing basics

In this section we go through some of the quantum computing basics, which are
not required to understand most of this thesis, but are of interest nonetheless. We
do, however, later make use of the notion of a qubit which is defined here. For a
much more detailed discussion, see [1].

9
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1.2.1 Quantum bits

In a classical computer, the fundamental unit of information is the bit which is
simply either a 0 or a 1. Everything you see on the computer screen has been
encoded in terms of bits and then interpreted somehow by the computer to create
something we can understand. For example, the number of combinations of 2 bits
is 4: 00, 01, 10 and 11, and in general the number of combinations of n bits is 2n.
There are 26 letters in the alphabet, meaning we would require n > log2 26 ≈ 4.7
bits to encode a single letter of the alphabet. For a letter, we therefore need at least
5 bits to encode it, i.e. 5 bits allow us to encode 25 = 32 objects. The computer is
also able to perform operations on the bits to give new sets of bits which can then
be interpreted and displayed to us. In a quantum computer, the fundamental unit
of information is a quantum bit or qubit. Just like a classical bit, which has a state
of either 0 or 1, a qubit also has a state. Instead of being either in the 0 or the 1
state though, a qubit may be in a superposition of the 0 and 1 state:

|ψ〉 = c0 |0〉+ c1 |1〉
where c0 and c1 and complex numbers satisfying |c0|2 + |c1|2 = 1. These can be
physically realized with a system which can be in any of two definite states, such
as the spin of an electron (spin up or spin down). A qubit represents a regular
quantum system; it just lives in a Hilbert space with dimension 2. It can therefore
be in a mixed state, have quantum operations be performed on it, measurements
and so on.

1.2.2 Bloch sphere representation

In general, a complex number c may be written as c = |c|eiγ where θ is a real
number and i =

√
−1. This means our qubit can we written as

|ψ〉 = |c0|eiγ0 |0〉+ |c1|eiγ1 |1〉 .

Now, the normalization condition implies |c0|2 + |c1|2 = 1 so we can set |c0| =
cos(θ/2) and |c1| = sin(θ/2). Since global phases are of no interest to us, we can
factor one out from our qubit and drop it

|ψ〉 = eiγ0
(

cos(θ/2) |0〉+ sin(θ/2)ei(γ1−γ0) |1〉
)

→|ψ〉 = cos(θ/2) |0〉+ sin(θ/2)eiφ |1〉

10



CHAPTER 1. INTRODUCTION 1.2. QUANTUM COMPUTING BASICS

This equation provides a useful means to visualize a single qubit on the surface of
a sphere; the parameters θ and ψ specify a point~a = (sin θ cos φ, sin θ sin φ, cos θ).
This sphere is commonly called the Bloch sphere. Many of the operations on single
qubits are neatly described by paths along the Bloch sphere. There is, however, no
simple generalization of the Bloch sphere known for multiple qubits. For mixed

b

ẑ = |0〉

|ψ〉

ŷ

x̂

−ẑ = |1〉

φ

θ

Figure 1.1: Bloch sphere representation of a qubit.

states, any single qubit density matrix ρ can be expanded using the identity and

the Pauli matrices ~σ = (σx, σy, σz) where σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and

σz =

[
1 0
0 −1

]
as

ρ =
1
2
(I +~a ·~σ).

One way to check whether a state is mixed or not, is by evaluating the trace of its
square

purity = Tr(ρ2)

which is 1 for pure states and 1/d, where d is the dimension of the system, for a
maximally mixed state (one with highest entropy, ρ = I/d). Therefore, in order for
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CHAPTER 1. INTRODUCTION 1.2. QUANTUM COMPUTING BASICS

a point on the Bloch sphere to correspond to a pure state, we must have

Tr(ρ2) =
1
2
(1 + |~a|2) = 1⇔ |~a| = 1,

i.e., a point on the surface corresponds to a pure state while a point within the
sphere corresponds to a mixed state.

1.2.3 Quantum logic gates

Classical computers, as was mentioned, perform operations on their bits. When
these operations are performed in a computing setting we call them logic gates.
Consider a single classical bit and the possible operations we can perform on it.
The only non-trivial operation consists of changing a 0 to a 1 and vice-versa, this
is called a NOT gate. For single qubits, however, there are more. The analogue
to a NOT gate for qubits is given by the X gate which in matrix form is (in the
computational basis, i.e., {|0〉 , |1〉})

X ≡
[

0 1
1 0

]
,

i.e. the Pauli matrix σx. Applying it to the qubit state |ψ〉 = c0 |0〉+ c1 |1〉 yields

X |ψ〉 =
[

0 1
1 0

] [
c0

c1

]
=

[
c1

c0

]

and we see that |0〉 has been flipped to |1〉 and |1〉 to |0〉. The other non-trivial
quantum gates consist of all other unitary operations U. A couple more important
ones are the Z gate:

Z ≡
[

1 0
0 −1

]
which leaves |0〉 unchanged, and flips the sign of |1〉 to give − |1〉, and the
Hadamard gate,

H ≡ 1√
2

[
1 1
1 −1

]
which sends |0〉 to (|0〉+ |1〉)/

√
2 and |1〉 to (|0〉 − |1〉)/

√
2.

12
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On the Bloch sphere, the X gate simply reflects a state with respect to the xy
plane, the Z gate does a 180 degree rotation about the z axis and H is a 90 degree
rotation about the y axis.

There are also gates which act on multiple qubits, such as the controlled not
or CNOT gate, which takes a control qubit and a target qubit as input. The target
qubit is flipped whenever the control qubit is |1〉 and remains the same otherwise.
The CNOT gate in matrix form is

CNOT ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

[
I 0
0 X

]

for the case where the first qubit is the control. Another important controlled gate
is the three-qubit Toffoli gate, also called a CCNOT gate, which is the same as a
CNOT except an extra control qubit is added. Its matrix form is

CCNOT ≡

 I 0 0
0 I 0
0 0 X


1.2.4 Quantum circuits

A quantum circuit is an acyclic network of quantum gates connected by wires. At
each end of the circuit are the input and output qubits which are connected by
the wires which pass through the gates. At any point within this network, we
may also perform measurements. Gates are represented by a number of different
symbols across the wires which they affect. In Fig. 1.2 we list the gates previously
discussed and their symbols. An example of one inside a circuit is given in Fig.
1.3, where the circuit performs a CNOT gate on the input state 1√

2
(|0〉+ |1〉)⊗ |0〉

and then measures the value of the first qubit, i.e., performs a projective measure-
ment in the computational basis {|0〉 , |1〉}.

13
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X
(a) NOT gates

H
(b) Hadamard gate

b

(c) CNOT gate

b

b

(d) Toffoli gate

Figure 1.2: Symbols for some important quantum gates. The solid black dots are
used to represent the control qubits in a controlled gate. We challenge the reader
to figure out what the symbol for a Z gate looks like.

Figure 1.3: Example of a quantum circuit containing a CNOT gate.
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Chapter 2

Quantum entanglement

2.1 Classical correlations

Consider a composite system ρ = ρA⊗ ρB on a Hilbert space HA⊗HB. This state
is uncorrelated and it can be seen that the expected value for any joint observables
OA ⊗OB on the respective subsystems (OA acts on HA, OB acts on HB) always
factorizes

〈OA ⊗OB〉 = Tr[(OA ⊗OB)(ρA ⊗ ρB)]

= Tr(OAρA ⊗OBρB)

= Tr(OAρA)Tr(OBρB)

= 〈OA〉 〈OB〉 .

If a state cannot be factorized in such a way, then the system is said to be corre-
lated. But correlated how? Do these correlations exhibit non-classical behaviour?
In this chapter, we introduce a couple distinct notions of quantum correlations,
one of them being the famed quantum entanglement. In Chapter 3, we define yet
another notion of quantum correlations called quantum discord.

2.2 Local-realistic world view

This comes from the famous 1935 EPR paradox where Einstein, Podolsky and
Rosen [3] had major objections to quantum mechanics and intended to show that
it was an incomplete theory. It concerns two spacially separated particles who are
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perfectly correlated in positions and momenta as predicted possible by quantum
mechanics. What this means is that measurement of one particle’s position yields
perfect knowledge of the other’s position in an instantaneous way, without the
need to look at the other particle! They said that in order for a theory to be
complete it would have to have an element of physical reality to it which they
claimed to be local realism [4] which in short means

� locality - There is no action at a distance;

� realism - If, without disturbing a system, we can predict with certainty the
value of a physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.

Consider, for example, the two qubit mixed state

ρ =
1
2
(|0〉 〈0| ⊗ |0〉 〈0|+ |1〉 〈1| ⊗ |1〉 〈1|) (2.1)

which has exactly the same statistics in the computational basis as the two qubit
pure state

|ψ〉 = 1√
2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) . (2.2)

That is, either outcome has a 50% chance on each qubit, but once the value of one
of the qubits is known the other is also known. However, we can rewrite the first
qubit of ρ in terms of the {|±〉} basis, where |±〉 = (|0〉 ± |1〉)/

√
2, as

ρ =
1
4
(|+〉+ |−〉)(〈+|+ 〈−|)⊗ |0〉 〈0|+ 1

4
(|+〉 − |−〉)(〈+| − 〈−|)⊗ |1〉 〈1|

=
1
2
(|+〉 〈+|+ |−〉 〈−|)⊗ 1

2
(|0〉 〈0|+ |1〉 〈1|)

+
1
2
(|+〉 〈−|+ |−〉 〈+|)⊗ 1

2
(|0〉 〈0| − |1〉 〈1|)

From this we see that measuring the first qubit in the {|±〉} basis will yield either
outcome with 50% probability, but once we know the outcome, this does not tell
us anything about the second qubit. The state ρ is considered to be classically
correlated since there is clearly nothing nonlocal about this state. This is not so for
|ψ〉. Whatever basis we decide to measure in will always yield perfect correlation
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between both subsystems. Using the {|±〉} basis as an example, we get

|ψ〉 = 1√
2
(|+〉+ |−〉)⊗ 1√

2
|0〉+ 1√

2
(|+〉 − |−〉)⊗ 1√

2
|1〉

=
1√
2
|+〉 ⊗ 1√

2
(|0〉+ |1〉) + 1√

2
|−〉 ⊗ 1√

2
(|0〉 − |1〉)

=
1√
2
|+〉 ⊗ |+〉+ 1√

2
|−〉 ⊗ |−〉

which shows both qubits are perfectly correlated in the {|±〉} basis as well. This
clearly violates the element of locality EPR has argued must hold, since the out-
come of any measurement on one subsystem is perfectly correlated with the other.

EPR argued that states such as |ψ〉 violate fundamental truths about reality
and therefore quantum mechanics must be incomplete. But in comes Bell and his
Bell inequalities [1] which provide experimental tests to end the debate between
EPR and quantum mechanics. These inequalities tell us whether we have a state
like ρ in Eq. 2.1 or one like |ψ〉 in Eq. 2.2. The first one which was discovered
(there are multiple such inequalities) is the CHSH inequality: Suppose Alice and
Bob live in an EPR world and each have some particle in their possession along
with two measurement apparatuses which measure the observables Q and R for
Alice, and S and T for Bob. Suppose also, for simplicity, that these observables
have the outcomes +1 or −1. Then the CHSH inequality is

〈Q⊗ S〉+ 〈R⊗ S〉+ 〈R⊗ T〉 − 〈Q⊗ T〉 ≤ 2. (2.3)

This allows one to set up an experiment to verify whether this inequality holds.
If one can prepare a system which violates this Bell inequality, then we must
certainly live in a quantum world where non locality exists and the local realism
brought forth by EPR must not be valid.

We can also use this inequality to define a notion of classical correlations:
States which do not violate the Bell inequalities are considered to be classical
and quantum otherwise. For example, a product state ρA ⊗ ρB is easily shown to
satisfy the CHSH inequality by using the fact that observables factorize:

〈Q⊗ S〉+ 〈R⊗ S〉+ 〈R⊗ T〉 − 〈Q⊗ T〉
= (〈Q〉+ 〈R〉) 〈S〉+ (〈R〉 − 〈Q〉) 〈T〉
≤ 2 〈R〉
≤ 2
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where we have assumed, without loss of generality, that 〈R〉 ≥ 〈Q〉, and since all
expectations are at most 1. As another example, consider the previous state ρ (Eq.
2.1). The expectation of the joint observable Q⊗ S on this state is

〈Q⊗ S〉 = 1
2

Tr[(Q⊗ S)(|0〉 〈0| ⊗ |0〉 〈0|+ |1〉 〈1| ⊗ |1〉 〈1|)]

=
1
2

Tr[Q |0〉 〈0| ⊗ S |0〉 〈0|] + 1
2

Tr[Q |1〉 〈1| ⊗ S |1〉 〈1|)]

=
1
2
[Tr(Q |0〉 〈0|)Tr(S |0〉 〈0|) + Tr(Q |1〉 〈1|)Tr(S |1〉 〈1|)]

and since Tr(Q) = 0, we have Tr(Q |0〉 〈0|) = −Tr(Q |1〉 〈1|) (similarly for S) and
so

〈Q⊗ S〉 = Tr(Q |0〉 〈0|)Tr(S |0〉 〈0|).

Doing this for each of the other joint observables and applying the argument for
product states shows that the state ρ satisfies the CHSH inequality as well and is
thus deemed classical. As a final example, we test the state |ψ〉 (Eq. 2.2): Consider
the observables

Q = σz R = σx

S = (σx + σz)/
√

2 T = (σx − σz)/
√

2

Recall that σz flips only the sign of |1〉 and σx flips the qubit. We can readily
calculate the expectations for the joint observables given by these, the first one is

〈Q⊗ S〉 = 1√
2
〈σz ⊗ σz〉+

1√
2
〈σz ⊗ σx〉

=
1√
2

Tr(|ψ〉 〈ψ|) + 1√
2

Tr
(

1√
2
(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) 〈ψ|

)
=

1√
2
+ 0

and the rest are

〈R⊗ S〉 = 1√
2

; 〈R⊗ T〉 = 1√
2

; 〈Q⊗ T〉 = − 1√
2

. (2.4)

Thus,
〈Q⊗ S〉+ 〈R⊗ S〉+ 〈R⊗ T〉 − 〈Q⊗ T〉 = 2

√
2 (2.5)

which violates the CHSH inequality! The state |ψ〉 is therefore deemed to have
quantum correlations.
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2.3 Local operations and classical communication

Local operations and classical communication (LOCC) is a particular restriction
on the set of operations between two systems which means exactly what its title
suggests. If observers Alice and Bob start with the uncorrelated states ρA and ρB

respectively and sets of quantum operations {Ai} and {Bi} on each respective
state in their possession, then an LOCC operation could be the following: Alice
performs a measurement on her state and finds the outcome described by the
quantum operationAk, she then phones Bob (a regular phone is a classical device)
telling him exactly what she found. Bob can now decide what he would like to
do with his state based on Alice’s phone call. This process can then continue for
as long as Alice and Bob wish. Mathematically, the first part described looks like

ρ′AB =
(Ak ⊗ IB)(ρA ⊗ ρB)

Tr((Ak ⊗ IB)(ρA ⊗ ρB))
→ ring ring "Hi, Bob? Its Alice..."

after some discussion, they might decide it would be best for Bob to perform a
certain measurement, for which he receives the outcome described by Bj:

ρ′′AB =
(IA ⊗Bj)(ρ

′
AB)

Tr((IA ⊗Bj)(ρ
′
AB))

and so on... One can verify that such a protocol is indeed a quantum operation

Figure 2.1: LOCC allows for operations on each system separately and sending of
classical bits back and forth between systems.

under the axioms defined in Chapter 1.
Allowing classical communication give these operations quite a complicated

structure. Alice and Bob may communicate after any round of local operations
and decide on the next operation based on previous outcomes of measurements.
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Because of this complexity, a general operation ΛLOCC has no known simple char-
acterization [9]. We can, however, write down any local operation as

Elocal(ρAB) = ∑
k
(Kk

A ⊗ Kk
B)ρAB(Kk

A ⊗ Kk
B)

† (2.6)

where Kk
A and Kk

A are Kraus operators with

∑
k
(Kk

A ⊗ Kk
B)

†(Kk
A ⊗ Kk

B) = ∑
k

Kk†
A Kk

A ⊗ Kk†
B Kk

B ≤ IA ⊗ IB.

The ability to send classical information in general does not allow one to write
ΛLOCC in such way. It can be shown that any state which can be prepared via
LOCC, e.g. Alice and Bob share a product state ρA ⊗ ρB initially and use LOCC
to end up with some ρAB, has the following form

ρAB = ∑
i

piρ
i
A ⊗ ρi

B (2.7)

and is said to be a separable state. All other states are defined as entangled.
Eq. 2.7 says that a separable state is a mixture of product states or, since we can
write ρi

A and ρi
B as convex mixtures of pure states, a mixture of separable pure

states. The LOCC protocol therefore provides a precise definition of classicality:
all separable states are deemed classical.

It is known that every separable state satisfies the Bell inequalities and, in the
past, it was believed that all entangled states violate Bell’s inequalities, thus mak-
ing LOCC and Bell’s inequalities equivalent notions of classicality. It was pointed
out, however, by Werner in 1989 [5] that there exist certain mixed quantum states
which are entangled but do not violate any of the Bell inequalities. Therefore
under a local-hidden-variable theory, what is considered a classical state can have
entanglement.

2.4 Quantum entanglement

We have defined an entangled state as one which is not separable, i.e. cannot
be written in the form ρAB = ∑i piρ

i
A ⊗ ρi

B. This entanglement turns out to be
necessary for certain quantum algorithms which we discuss in Subsection 2.4.1.
Quantum entanglement is thus a quantum resource which is used to perform
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computations efficiently where a classical computer could not. This is where en-
tanglement measures come into play. They attempt to put a number on the useful-
ness of an entangled state. We go into more detail about entanglement measures
in Section 2.5.

2.4.1 Quantum computing and entanglement

Quantum entanglement has been studied extensively and there are a wide range
of applications for it. An example is the well known quantum teleportation protocol
[6], which is a process by which a qubit is transmitted exactly from one location
to another, without the qubit being transmitted through the intervening space. To
get an idea of how this works, suppose two observers Alice and Bob share two
maximally entangled qubits, i.e., one of the four Bell basis states

|Φ+〉AB =
1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)

|Φ−〉AB =
1√
2
(|0〉A ⊗ |0〉B − |1〉A ⊗ |1〉B)

|Ψ+〉AB =
1√
2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B)

|Ψ−〉AB =
1√
2
(|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B)

(2.8)

Alice take the A qubit and Bob takes the B qubit. In the following we assume
Alice and Bob share the |Φ+〉AB state. Alice also starts with another qubit |ψ〉C:
the qubit she wishes to send to Bob. The total system is thus given by

|Φ+〉AB ⊗ |ψ〉C =
1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)⊗ (c0 |0〉C + c1 |1〉C)
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We can rewrite this through a change of basis using the easily verifiable identities

|0〉 ⊗ |0〉 = 1√
2
(|Φ+〉+ |Φ−〉)

|0〉 ⊗ |1〉 = 1√
2
(|Ψ+〉+ |Ψ−〉)

|1〉 ⊗ |0〉 = 1√
2
(|Ψ+〉 − |Ψ−〉)

|1〉 ⊗ |1〉 = 1√
2
(|Φ+〉 − |Φ−〉)

as

|Φ+〉AB ⊗ |ψ〉C =
1
2
|Φ+〉AC ⊗ (c0 |0〉B + c1 |1〉B)

+
1
2
|Φ−〉AC ⊗ (c0 |0〉B − c1 |1〉B)

+
1
2
|Ψ+〉AC ⊗ (c1 |0〉B + c0 |1〉B)

+
1
2
|Ψ−〉AC ⊗ (c1 |0〉B − c0 |1〉B)

It can easily be seen that by performing a projective measurement in the Bell
basis, that, given the outcome of the measurement, Alice can inform Bob on the
telephone that he must perform one of four operations on his qubit:

� If Alice measures |Φ+〉AC, then Bob leaves his qubit alone.

� If Alice measures |Φ−〉AC, then Bob performs σz =

[
1 0
0 −1

]
on his qubit.

� If Alice measures |Ψ+〉AC, then Bob performs σx =

[
0 1
1 0

]
on his qubit.

� If Alice measures |Ψ−〉AC, then Bob performs σxσz =

[
0 −1
1 0

]
= −iσy on

his qubit.

Now Bob has the exact qubit which Alice previously had in her possession. No-
tice that Alice has communicated her state to Bob using only 2 bits of classi-
cal information (she tells Bob to perform one of four unitaries), while the state
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|ψ〉C = c0 |0〉C + c1 |1〉C requires 3 real parameters to describe it (including its
global phase). It is the quantum nature of the maximally entangled qubit they
share at the beginning which allows this advantage.

Although it is not certain whether entanglement is the only resource which
provides a quantum speedup, it is required for algorithms such as quantum tele-
portation, Shor’s algorithm for finding the prime factorization of numbers and
computing the discrete logarithm [7]. The last two algorithms involve the quantum
Fourier transform [8], which makes use of entanglement.

2.5 Entanglement measures

If quantum entanglement is a resource which can be used to make faster com-
puters, then we should be able to quantify just how much of this resource is at
hand. This is where the concept of entanglement measure comes into play. The
theory behind entanglement measures is very well understood for pure states.
For pure states we have what is called the Schmidt decomposition which is stated in
the following theorem [1]

Theorem (Schmidt decomposition). For a bipartite pure state |ψ〉 ∈ HA ⊗ HB,
there exists a basis of HA: {|αk〉}dimHA

k=1 , a basis of HB: {|βk〉}dimHB
k=1 , and proba-

bilities {pk}min{dimHA,dimHB}
k=1 such that |ψ〉 can be written down as

|ψ〉 =
min{dimHA,dimHB}

∑
k=1

√
pk |αk〉 ⊗ |βk〉 (2.9)

A pure bipartite state is then separable if and only if the probabilities pk, which
are called Schmidt coefficients are all 0 except for one, i.e its Schmidt decomposi-
tion has only one term in it. These coefficients are unique and are precisely the
features of the state which do not change under local unitary transformations,
thus they tell you everything about the separability of a state and therefore its
entanglement. The Schmidt rank is simply the number of non-zero Schmidt coef-
ficients in the expansion and serves to give an idea of how entangled a state is,
i.e., a pure state is entangled if and only if its Schmidt rank is one. The goal of an
entanglement measure is to try and capture what the Schmidt coefficients tell us
about entanglement in a single number and, it turns out, entanglement measures
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satisfying a certain set of requirements reduce to the entropy of entanglement for
pure states.

For mixed states, it isn’t so simple. We can, however, define properties that
a good entanglement measure should have. The idea is that, since entanglement
cannot be created by an LOCC operation ΛLOCC, a state σAB = ΛLOCC(ρAB) is
a weaker resource than ρAB since whatever can be done with σAB and LOCC
can also be done with ρAB and LOCC. So we say E : ρAB → E(ρAB) ∈ R is an
entanglement monotone if [10]

E(ΛLOCC(ρAB)) ≤ E(ρAB) (2.10)

for all bipartite states ρAB and all LOCC operations. Since any separable state can
be created via LOCC, we know that ρsep = ΛLOCC(σsep) and σsep = Λ′LOCC(ρsep).
This tells us that E(ρsep) = E(ΛLOCC(σsep)) ≤ E(σsep) and E(σsep) = E(Λ′LOCC(ρsep)) ≤
E(ρsep), therefore E(ρsep) = E(σsep). This means we may ask the monotone to
take on a particular value for separable states, lets take 0, and if we also ask that
E(ρAB) ≥ 0 for all ρAB then E becomes an entanglement measure. Throughout the
rest of this thesis, the word entanglement is used to mean the value of an entan-
glement measure. The following are some properties of entanglement [9]:

� Entanglement does not change under local unitary operations

This follows easily from the fact that LOCC does not increase entanglement. Since
an LOCC consisting of a local unitary operation can be inverted, it certainly can-
not decrease entanglement otherwise its inverse would increase it. Therefore the
entanglement before and after the local unitary must be the same.

� There are maximally entangled states.

It turns out that any state consisting of two d-dimensional systems can be pre-
pared through LOCC with a state of the form

|ψ〉 = 1√
d

d

∑
k=0
|αk〉 ⊗ |βk〉 . (2.11)

Such a state and all of its unitary equivalents therefore have maximal entangle-
ment.

� The only correlations in a pure state are due to entanglement.
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A separable pure state is also a product state and therefore has no correlations,
classical or quantum.

� The two subsystems of a maximally entangled states are maximally mixed.

This can be seen through the expression for a maximally entangled state: by
tracing out either subsystem we get ρ = TrA(|ψ〉 〈ψ|) = TrB(|ψ〉 〈ψ|) = I/d.

We say that E is faithful if it only maps separable states to 0 (i.e. E(ρAB) >

0 for entangled states). There are also many other optional properties that an
entanglement measure may satisfy [9, 10]:

� Instead of entanglement monotones, we might consider measures which are
monotone on average, which means

E(ρin) ≥∑
k

pout
k E(ρout

k ) (2.12)

where ρout
k are states which can be obtained with probabilities pout

k starting
with ρin through LOCC. Every entanglement monotone is also monotone on
average since E(ρin) ≥ E(ρout

k ) for all k.

� A measure is convex if

E

(
∑
k

pkρk

)
≤∑

k
pkE(ρk) (2.13)

for all density matrices ρk and probability distributions pk.

� A measure is additive with respect to independent systems if

E(ρAB ⊗ σA′B′) = E(ρAB) + E(σA′B′) (2.14)

where the entanglement is measured between AA′ and BB′ on the left hand
side.

2.5.1 Entanglement entropy

Using the Schmidt decomposition, we can write down expressions for the state of
each subsystem in a bipartite pure state |ψAB〉 = ∑d

k=1
√

pk |αk〉 ⊗ |βk〉

ρA = TrB(|ψAB〉 〈ψAB|) =
d

∑
k=1

pk |αk〉 〈αk| (2.15)
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and similarly

ρB = TrA(|ψAB〉 〈ψAB|) =
d

∑
k=1

pk |βk〉 〈βk| (2.16)

where d is just shorthand for min{dimHA, dimHB}. From this we see that the
Schmidt coefficients pk are just the eigenvalues of the density matrices of either
subsystem! Now we make use of the very useful quantity called the von Neumann
entropy S(ρ) which is defined as

S(ρ) ≡ −Tr(ρ log ρ). (2.17)

If ρ is written in terms of its eigendecomposition as ρ = ∑k pk |ψk〉 〈ψk|, then the
von Neumann entropy becomes

S(ρ) = −∑
k

pk log pk (2.18)

Some properties of the von Neumann entropy are [1]:

� S(ρ) is non-negative.

� S(ρ) = 0 if and only if ρ is a pure state.

This is simply due to the fact that S(ρ) = −∑j pj log pj = 0 if and only if
pk = 1 for some k which means ρ = |ψk〉 〈ψk|.

� S(ρ) = log d, where d is the dimension of the Hilbert space of ρ, if and only
if ρ is maximally mixed.

� S(ρ) is invariant under unitary transformations of ρ.

This is obvious since a unitary transformation does not change the eigenval-
ues of ρ.

� S(ρ) is concave:

S

(
∑
k

λkρk

)
≥∑

k
λkS(ρk) (2.19)

where the λk are positive numbers such that ∑k λk = 1.

� S(ρ) is additive:
S(ρA ⊗ ρB) = S(ρA) + S(ρB) (2.20)
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� |S(ρA)− S(ρB)| ≤ S(ρAB) ≤ S(ρA) + S(ρB), where the right hand inequality
is known as subadditivity.

If system AB is in a pure state, then its subsystems A and B are separable if and
only if they are in a product state. This means S(ρA) = S(ρB) = 0 for separable
pure states and S(ρA) > 0 (and S(ρB) > 0, since S(ρA) = S(ρB)) for entangled
states. The entanglement entropy is defined as

EE(|ψAB〉) ≡ S(ρA) = S(ρB) (2.21)

and is an entanglement monotone. It is additive due to the additivity of von
Neumann entropy.

2.5.2 Mixed state entanglement

In the case of mixed states, the answer is not so simple. In 1996, Peres [11] had
shown a necessary condition for a separable state:

Theorem (Peres criterion). If ρ is separable, then the operator (T ⊗ I)(ρ) is positive.

The map T is a transpose map on one of the subsystems of ρ and (T ⊗ I)
is called the partial transpose of ρ. In Appendix C we show how the Peres cri-
terion can be used to find a simple sufficient condition for entanglement. Soon
after, was shown by the Horodecki family, a necessary and sufficient condition for
separability in the following theorem [12]:

Theorem. Let ρ act on the Hilbert space HA ⊗HB. Then ρ is separable if and only if for
any positive map Λ : L(HB)→ L(HA), the operator (I ⊗Λ)(ρ) is positive.

The symbol L(H) denotes the space of all linear operators on the Hilbert
space H. This theorem cannot usually be applied to determine the separability
of concrete states, but it was also shown in the same paper [12] that for 2 × 2
and 2× 3 dimensional quantum systems the partial transpose criterion provided
by Peres is necessary and sufficient. There exists an entanglement monotone for
mixed states called the negativity [13] which makes use of the Peres criterion. It is
defined as follows:

N (ρAB) ≡
‖(TA ⊗ IB)(ρAB)‖1 − 1

2
(2.22)
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where ‖X‖1 = Tr(|X|) = Tr
(√

X†X
)

is the trace norm of the operator X, which is
just the sum of the absolute value of each eigenvalue. Since the partial transpose
is a trace preserving map, it is clear this is zero if and only if the eigenvalues
of (TA ⊗ IB)(ρAB) are all positive, i.e. the partial transpose of ρAB is a density
matrix. This is therefore a faithful entanglement measure for 2 × 2 and 2 × 3
systems. The negativity is not additive, and so is an example of an entanglement
measure which does not reduce to the entropy of entanglement for pure states
[9].

Another measure for mixed state entanglement which extends the definition
of entanglement entropy is the entanglement of formation [14]. It is defined as

E f (ρAB) ≡ min ∑
k

pkEE(|ψk
AB〉) (2.23)

where the minimization is taken over all ensembles of pairs {(pk, |ψk
AB〉)} such

that
ρAB = ∑

k
pk |ψk

AB〉 〈ψk
AB| (2.24)

This process of minimizing the average pure state entanglement over sets of pure
states is called a convex roof construction and it is guaranteed that such a con-
struction is an entanglement monotone [9]. It is clearly a faithful measure of
entanglement for mixed states since if E f (ρAB) = 0, then each |ψk

AB〉 in the min-
imization is separable and therefore ρAB in Eq. 2.24 is written as a convex sum
of product states, i.e. is separable. This measure trivially reduces to the entangle-
ment entropy for pure states.

2.5.3 Entanglement monogamy

Consider sharing a secret with a friend via some classical means such as email.
There is absolutely nothing stopping your secret from being shared, apart from
your friend’s loyalty, with as many other people who care to hear about it. One of
the distinct properties of entanglement is that it cannot be freely shared in such a
way. If Alice and Bob both share a maximally entangled state, then it is impossible
for anyone else to share entanglement with them. This is known as monogamy of
entanglement [15]. This is also true of states which are not maximally entangled:
systems cannot freely share entanglement between each other.
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For a pure three qubit system ABC, the negativity obeys the following monogamy
inequality [16]

N 2
AC +N 2

BC ≤ N 2
(AB)C (2.25)

where NXY is the negativity between systems X and Y. This exactly means that,
the more system A is entangled with C, the less system B is entangled with C.
The entanglement A and C each separately share with C is also bounded by the
entanglement shared by the combined system AB and C.

It turns out this inequality does not hold for all entanglement measures. For
example, it does not hold in general for the entanglement of formation [14, 17].

2.5.4 Multipartite entanglement

So far we have only talked about bipartite entanglement, that is, entanglement
between any two systems A and B. What about entanglement between multiple
systems? It is possible for a system A to be separable from system B and from
system C, but entangled with the combined system BC. So how do we define
multipartite entanglement? First, we define the notion of k-separability [18]:

Definition A state ρ composed of n systems is called k-separable if the length of
the longest separable chain of subsystems is k:

ρ = ∑
i

piρ
1
i ⊗ ρ2

i ⊗ (...)⊗ ρk
i (2.26)

where each ρ
j
i may contain an arbitrary positive number of subsystems and pi is

a probability distribution.

In such an n-partite system, if k = n then the state is fully separable. If k = 1 then
the state is fully entangled. For pure states, k is easily found by calculating the
entanglement entropy between any two bipartitions and checking its nullity. For
example, given a state |ψ〉, we find that one of its bipartitions is separable

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 . (2.27)

We may continue this process on each of the states |ψ1〉 and |ψ2〉 until we can’t go
further. If k > 1, then at least one of the bipartitions must be separable and we do
not have truly multipartite entanglement. The significance of entanglement for
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pure state computations can be seen here. For separable n-qubit pure states |ψ〉 =
|ψ0〉 ⊗ |ψ1〉 ⊗ ...⊗ |ψn〉, we see that only a polynomial amount of parameters are
required to describe this state, i.e. both coefficients in each |ψi〉. In an entangled
n-qubit state, however, we do not have such a factorization and so we require an
exponential (2n, if the state is fully entangled) number of parameters to describe
such a state. This is where entanglement in pure state computations is believed
to draw its power from.

The question now is, how do we quantify multipartite entanglement? We
can use all of the axioms defined in the bipartite setting to define a measure,
additionally, we add the following requirements:

E(ρk−sep) > 0 if k < n

E(ρk−sep) = 0 if k = n , i.e. is fully separable

Notice that, with these axioms in place, an entanglement measure cannot differ-
entiate between truly multipartite entanglement (k = 1) and others. An easy way
to overcome this is by simply changing the previous axioms to

E(ρk−sep) > 0 if k = 1

E(ρk−sep) = 0 otherwise.

Truly multipartite entanglement is what we are concerned with in the next sec-
tions, more specifically tripartite entanglement. We use a measure valid for three
qubit mixed states called the pi-tangle [16] which is defined for a system ABC as
the average of the three quantities

πA = N 2
A(BC) −N 2

AB −N 2
AC

πB = N 2
B(AC) −N 2

BA −N 2
BC

πC = N 2
C(AB) −N 2

CA −N 2
CB.

where NXY denotes the negativity between subsystems X and Y. In symbols, the
pi-tangle is defined as

πABC ≡
πA + πB + πC

3
(2.28)

This is a good measure of truly tripartite entanglement. Since negativity is itself
an entanglement monotone, we know the pi-tangle must also be. It is positive
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Figure 2.2: Pi-tangle for the three qubit GHZ type state |ψ〉 = cos θ |000〉 +
sin θ |111〉.

and zero when tripartite entanglement does not exist, i.e. when at least one of the
bipartitions of ABC is separable, due to the monogamy inequality for negativity
(Eq. 2.25). In Figures [2.2,2.3,2.4] we show plots of the pi-tangle for two classes
of states: the W and GHZ states. We see that, for these states, the pi-tangle is a
faithful measure of tripartite entanglement.
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Figure 2.3: Pi-tangle for the three qubit W type state |ψ〉 = cos θ cos φ |001〉 +
cos θ sin φ |010〉+ sin θ |100〉.
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Figure 2.4: Pi-tangle for a combination of GHZ and W type states |ψ〉 =

(cos θ |000〉+ sin θ |111〉+ cos θ cos φ |001〉+ cos θ sin φ |010〉+ sin θ |100〉)/
√
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Chapter 3

Quantum discord

Here we introduce the measure of quantum correlations called quantum discord. I
was initially proposed in [19] using ideas from classical information theory and
adapting them to the quantum formalism. A more thorough review can be found
in [20].

3.1 Information theory

We wish to quantify how much two systems are correlated. One way to look at
this is to calculate the redundant information between two systems A and B. This
quantity is called the mutual information between systems A and B [19]

I(A : B) ≡ H(A) + H(B)− H(AB). (3.1)

H(X) is the Shannon entropy H(X) = −∑x px log px where X is a classical vari-
able with values x occurring with probability px (usually the logarithm is taken
to be base two).

One could also get a sense of the correlations between two systems A and B
by calculating how much information is gained about B through knowledge of A.
For classical systems A and B, this is equal the mutual information

I(A : B) = H(B)− H(B|A) (3.2)

where the conditional entropy H(B|A) = ∑a paH(B|A = a) is the average of en-
tropies H(B|A = a). The entropies H(B|A = a) denote the amount of information
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Figure 3.1: The mutual information I(A : B) is equal to the redundant information
after discovering both A and B separately.

Figure 3.2: H(B|A) is the amount of information remaining in B after discovering
everything about A. What has been discovered about B through A, i.e. H(B)−
H(B|A), is equal to I(A : B) in classical information theory.

35



CHAPTER 3. QUANTUM DISCORD 3.2. QUANTUM DISCORD

in B given that A is in the state a which, for classical variables A and B, can be
written as

H(B|A = a) = −∑
b

pb|a log pb|a (3.3)

where pb|a = pba/pa is the conditional probability as defined by Bayes’ rule.
This relationship between the conditional entropy and mutual information

does not, in general, hold for quantum states. The outcomes a discussed are
now dependent upon the measurement made on the system. If {Ea} denotes
a POVM on the system A, then outcome a will be observed with probability
pa = Tr(EaρAB) and B has the conditional state ρB|A=a = TrA(EaρAB)/pa. There-
fore, the classical-quantum analogue to the conditional entropy can be defined as

S(B|{Ea}) ≡∑
a

paS(ρB|A=a) (3.4)

for the measurement {Ea}, where S(X) is the von Neumann entropy S(X) =

−Tr(ρX log ρX). We can define the classical-quantum mutual information, for a
particular measurement, as

J(B|{Ea}) ≡ S(B)− S(B|{Ea}) (3.5)

In order to quantify the amount of classical-quantum information contained be-
tween A and B, it is natural to maximize this quantity over all possible measure-
ments we could perform on A

J(B|A) ≡ max{Ea} J(B|{Ea}) (3.6)

This equation tells us exactly how much information it is possible to gain about
B through measurements performed on A only.

3.2 Quantum discord

We have rewritten the definition of conditional entropy using the language of
quantum mechanics: instead of classical random variables A and B we have used
the density matrix formalism where ρA = TrB(ρAB) and ρB = TrA(ρAB), and,
instead of restricting ourselves to classical measurements (questions about the
value of a classical random variable) we have the more general POVMs.
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It turns out, however, that only rank-one POVMs are required in order to
maximize J(B|{Ea}). This can be seen through the following argument [24]: In
order to maximize J(B|{Ea}) = S(B)− S(B|{Ea}), we must minimize S(B|{Ea}).
First, notice that any POVM element Ea may be reduced to a combination of
rank-one POVM elements through Ea’s spectral decomposition

Ea = ∑
k

Eak. (3.7)

We have

ρB|A=a = TrA(EaρAB)/pa = ∑
k

TrA(EakρAB)/pa = ∑
k

pak
pa

ρB|A=ak (3.8)

and so by the concavity of entropy (Eq. 2.19)

S(ρB|A=a) ≥∑
k

pak
pa

S(ρB|A=ak)→ S(B|{Ea}) ≥ S(B|{Eak}) (3.9)

In classical theory these correspond to questions about the value of a classical
random variable, so our quantum version of J(B|A) is equivalent to the classical
conditional entropy whenever A and B are classical. It is natural then to define a
state to be classical whenever

I(A : B) = J(B|A), (3.10)

where I(A : B) = S(A) + S(B) − S(AB) is the quantum version of the mutual
information, and quantum whenever

D(B|A) ≡ I(A : B)− J(B|A) > 0 (3.11)

where D(B|A) is called quantum discord. The quantity J(B|A) can be shown to
be always less than or equal the mutual information and so quantum discord is
a non-negative quantity [20]. It has also been shown [23, 24] that a state has the
form

ρAB = ∑
k

pkΠk
A ⊗ ρk

B, (3.12)

where Πk
A = |αk〉 〈αk| are orthogonal rank-one projection operators, if and only if

D(B|A) = 0. Similarly, ρAB = ∑k pkρk
A ⊗Πk

B if and only if D(A|B) = 0. It follows
from this that zero discord states are also separable. It is not, however, true that all
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Figure 3.3: The set of discordant states includes all entangled states, which in turn
includes all states which violate the Bell inequalities.

separable states have zero discord and so the set of discordant (non-zero discord)
states is larger than the set of entangled states, the latter of which is larger than
the set of states which violate the Bell inequalities. Discord is also not symmetric,
i.e., in general D(B|A) 6= D(A|B) which is due to the fact that conditional entropy
is not a symmetric quantity. An example of this is the following two qubit state,
which has D(B|A) = 0 but D(A|B) > 0:

ρ =
1
2
(|0〉 〈0| ⊗ |−〉 〈−|+ |1〉 〈1| ⊗ |0〉 〈0|)

where |±〉 = 1√
2
(|0〉 ± |1〉). Local unitary transformations (UA ⊗UB)ρAB(UA ⊗

UB)
† do not change discord because such a transformation does not alter the

entropies of each subsystem and the value obtained for S(B|{Ea}) can be obtained
via the measurement {UAEaU†

A}. Non-unitary local operations on A (but not on
B) can, however, increase discord D(B|A) [21]. This is not overly surprising since
A is the system over which classicality is being tested through measurement [20].
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3.3 Quantum computing and discord

Recent results have shown that not only entanglement is a resource capable of
allowing a quantum advantage, but that mere discord could also provide a quan-
tum advantage in some cases. This could be of practical significance because
discord is more easily produced and maintained than entanglement [37]. Here
we provide an example where quantum discord has been found to be useful in
the context of quantum computing through the computational model DQC1 [25],
and we also present results from [26] which give an operational interpretation of
discord.

3.3.1 Discord in DQC1

A computational model was proposed by Knill and Laflamme [25], called DQC1,
in which the initial input to any circuit consists of a single pure qubit, along with
n qubits in the maximally mixed state I⊗n/2n. Although it has been proven that
this model is less powerful than a regular, pure state quantum computer [27],
it can still perform tasks efficiently where there are no known polynomial time
classical algorithms. In the following, we show how a DQC1 circuit can be used
to approximate the normalized trace of an arbitrary n qubit unitary Un, Tr(Un)/2n,
in a efficient manner [25, 28]. The only known classical algorithms for calculating
such a trace are exponential in the number of qubits, n. Figure 3.4 contains a
generalization of the DQC1 circuit which performs the trace. Notice that this
circuit takes as input n maximally mixed qubits along with the qubit 1

2(I + ασz)

which is pure when α = 1 and mixed otherwise, with α = 0 giving the maximally
mixed state of a single qubit. We expect this circuit to perform at its best when
α = 1 and not work at all when α = 0 since all our inputs are maximally mixed
states. The overall initial state is

ρi =
1

2n+1 (I + ασz)⊗ I⊗n

=
1

2n+1

[
(α + 1) |0〉 〈0| ⊗ I⊗n + (1− α) |1〉 〈1| ⊗ I⊗n] (3.13)
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The first qubit passes through a Hadamard gate which maps |0〉 to |+〉 = (|0〉+
|1〉)/

√
2 and |1〉 to |−〉 = (|0〉 − |1〉)/

√
2

ρi →
1

2n+1

[
|0〉 〈0| ⊗ I⊗n + |1〉 〈1| ⊗ I⊗n + α |0〉 〈1| ⊗ I⊗n + α |1〉 〈0| ⊗ I⊗n] ,

then the others undergo the controlled unitary Un. The state right before the
measurement is performed thus becomes

ρ f =
1

2n+1

[
|0〉 〈0| ⊗ I⊗n + |1〉 〈1| ⊗ I⊗n + α |0〉 〈1| ⊗U†

n + α |1〉 〈0| ⊗Un

]
(3.14)

=
1

2n+1

(
I⊗n αU†

n

αUn I⊗n

)

Consider now the observables σx and σy. Recall from Chapter 1 the expression
for the expected value of an observable. This tells us that

〈σx〉 = Tr(ρ f σx) =
α

2n Re [Tr(Un)] (3.15)

and 〈
σy
〉
= Tr(ρ f σy) = −

α

2n Im [Tr(Un)] (3.16)

Obviously, the accuracy of this calculation depends on the number of runs the
circuit must perform. The number of runs required to estimate the trace to within
an accuracy of ε is approximately 1/α2ε2 [28]. This number is independent of the
size of the unitary Un and it is in that sense that this algorithm is deemed efficient.
It is also easily shown that the first qubit remains separable from the other n qubits
during the entire run through the circuit. Clearly, it cannot be entangled after the
Hadamard operation since it is local. If the eigendecomposition for the unitary
Un is

Un = ∑
j

eiφj |ej〉 〈ej| , (3.17)

then we can write I⊗n = ∑j |ej〉 〈ej| and plug this all into the expression for ρ f to
give

ρ f =
1

2n+1 ∑
j

[
|0〉 〈0|+ |1〉 〈1|+ αeiφj |0〉 〈1|+ αe−iφj |1〉 〈0|

]
⊗ |ej〉 〈ej| (3.18)

thus showing it is indeed always separable. What then, could possibly account for
the speedup over classical algorithms? The answer is quantum discord. Clearly

40



CHAPTER 3. QUANTUM DISCORD 3.3. QUANTUM COMPUTING AND DISCORD

Figure 3.4: Circuit to measure the normalized trace of an arbitrary n qubit unitary
Un. The measurement M belongs either to the observable σx or σy, depending on
wether we want to measure the real or the imaginary part of the normalized trace.

there is no initial discord between the first qubit and the rest, but there is after the
controlled unitary. If A represents the first qubit and B the other n qubits, then
D(A|B) = 0. However, it can be shown [29] that for large n and small Tr(Un)/2n,
the discord D(B|A) is given by

D(B|A) = 2 +
1− α

2
log
(

1− α

2

)
+

1 + α

2
log
(

1 + α

2

)
− log

(
1 +

√
1− α2

)
−
(

1−
√

1− α2
)

log e (3.19)

where the logarithm is taken base 2. Figure 3.5 plots this as a function of α.
There are some doubts about whether discord is truly the resource being uti-

lized in this case [23]. But there has since been additional evidence that discord
provides a quantum advantage in computation and/or communication. This in-
cludes, for example, the activation of distillable entanglement [38], bounds on dis-
tributed entanglement [39], quantum communication [40] and certification of en-
tangling gates [41].

3.3.2 Coherent interactions and discord

Discord has been related [26] to the advantage of coherent interactions over single
local measurements. An observer Alice encodes information within the subsys-
tem A of the bipartite system AB and Bob is tasked with retrieving the encoded
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Figure 3.5: Approximate discord between the first qubit and the rest of the n
qubits before measurement in the circuit depicted in Figure 3.4 as a function of
the parameter α.
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data. Bob’s optimal performance when he is restricted to a single local measure-
ment on each subsystem (in whichever order) is compared to the case where Bob
may also coherently interact with the subsystems, which means he is allowed to
implement arbitrary quantum operations between A and B. It was shown in [26]
that these coherent interactions give Bob an advantage if and only if AB contains
discord and that the amount of discord used by Alice during the encoding exactly
bounds this advantage. This gives an operationally significant use for discord, as
a resource which can be used to give coherent interactions this advantage.

More concretely, let ρAB represent the state of the system AB. Assume, also,
that this state has been prepared in such a way so that D(A|B) ≤ D(B|A).
Alice wants to encode the random variable K with the probability distribution
P(K = k) = pk by applying a corresponding unitary Uk to her subsystem A with
probability pk. Bob is aware of the encoding scheme but since Bob does not know
for sure which unitary Alice applies, the state he sees is

ρ′AB = ∑
k

pk(Uk ⊗ I)ρAB(U†
k ⊗ I) (3.20)

which has discord D′(A|B). Bob is now tasked with estimating, as best as he
can, the variable K. If his best attempt yields the classical variable K0, then
his estimate’s quality is determined by the mutual information I(K : K0) =

H(K0) − H(K0|K) between K and K0. If Ic represents the quality of Bob’s esti-
mate when restricted to single local measurements on A and B and Iq the quality
with additional coherent interactions, then ∆I = Iq − Ic represents the advantage
coherent interactions allow. In [26] it is proven that

∆D(A|B)− J′(A|B) ≤ ∆I ≤ ∆D(A|B) (3.21)

where ∆D(A|B) = D(A|B) − D′(A|B) is the discord consumed by Alice dur-
ing the encoding process and J′(A|B) is the classical-quantum information af-
ter encoding. This says that the advantage Bob has through coherent interac-
tions is at most the discord consumed by Alice throughout her encoding process
and so discord is required in order to have an advantage. As it turns out, it
is also possible for Alice to use up all of the discord initially present so that
D′(A|B) = J′(A|B) = 0 and

∆I = ∆D(A|B) = D(A|B). (3.22)
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In this case, the advantage of coherent interactions is exactly the discord initially
present between A and B.
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Chapter 4

Discord and entanglement

In this chapter we briefly discuss known closed form expressions for discord in
mixed states and then we show work which has been done by us [31] in relating
discord to entanglement.

4.1 Discord in pure states

For pure states |ψAB〉 the relation between discord and entanglement is simple:
they are the same. This can be seen by looking at the Schmidt decomposition of
|ψAB〉

|ψAB〉 = ∑
i

√
pi |αi〉 ⊗ |βi〉 . (4.1)

If we choose the projective measurement {|αk〉 〈αk|} we get

ρB|A=k =
TrA(|αk〉 〈αk| |ψAB〉 〈ψAB|)
Tr(|αk〉 〈αk| |ψAB〉 〈ψAB|)

= |βk〉 〈βk| . (4.2)

This means that S(B|A) = min{Ea} ∑a paS(ρB|A=a) must be zero and

J(B|A) = S(B)− S(B|A) = S(B) (4.3)

and the discord D(B|A) = I(A : B)− J(B|A) = S(A) + S(B)− S(AB)− S(B) =
S(A) which is the entropy of entanglement for the pure state |ψAB〉. Similarly,
D(A|B) = S(B) = S(A) = D(B|A).
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4.2 Discord in mixed states

The story for mixed states is more complicated. For example, there exist mixed
states which do not have entanglement but discord is present, such as the single
qubit state

ρ =
1
2
(|0〉 〈0| ⊗ |0〉 〈0|+ |−〉 〈−| ⊗ |+〉 〈+|) (4.4)

where |±〉 = 1√
2
(|0〉 ± |1〉). This clearly has both discord D(A|B) and D(B|A)

present but is separable.
Discord is a challenging quantity to calculate due to the optimization involved.

Many studies of discord rely on numerical optimization to determine which mea-
surement minimizes S(B|{Ea}). There is no known analytic expression for the
discord in a general mixed state, but a few have been obtained for specific classes
of states. For example, an analytic result is known for the class of Bell-diagonal
states, which are arbitrary mixtures of Bell states (Eqs. 2.8):

ρBD = p1 |Ψ+〉 〈Ψ+|+ p2 |Ψ−〉 〈Ψ−|+ p3 |Φ+〉 〈Φ+|+ p4 |Φ−〉 〈Φ−| . (4.5)

Through local unitary transformations, which do not alter correlations, the Bell-
diagonal states can be rewritten in the general form [20]

ρBD = (I ⊗ I + cxσx ⊗ σx + cyσy ⊗ σy + czσz ⊗ σz)/4. (4.6)

where each of the pk can be written in terms of cx, cy and cz [22]:

p1 = (1 + cx + cy − cz)/4

p2 = (1− cx − cy − cz)/4

p3 = (1 + cx − cy + cz)/4

p4 = (1− cx + cy + cz)/4

It turns out [22] that the optimization over POVMs reduces to calculating c =

max{|cx|, |cy|, |cz|} which gives

JBD(B|A) = [(1− c)/2] log(1− c) + [(1 + c)/2] log(1 + c). (4.7)

The reduced density matrices for ρBD are both I/2, which can easily be seen from
Eq. 4.6. Thus, S(A) = S(B) = 1 and S(AB) = −∑4

k=1 pk log pk, giving a mutual
information of

I(A : B) = 2 +
4

∑
k=1

pk log pk. (4.8)
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Discord is thus given by

DBD(B|A) = 2 +
4

∑
k=1

pk log pk − [(1− c)/2] log(1− c)− [(1 + c)/2] log(1 + c)

(4.9)
The discord in this case is symmetric, which is clear from the general form in Eq.
4.6. The entanglement of formation is also known for this class of states [30]

E f (ρBD) = 1− [(1− x)/2] log(1− x)− [(1 + x)/2] log(1 + x) (4.10)

where x = 2
√

pmax(1− pmax) if pmax = maxk pk > 1/2, otherwise E f (ρBD) = 0.
Although this is a nice simple equation for discord, it is restricted to a narrow

class of states. Not much is known about mixed state discord, we have a better
understanding of entanglement and of its applications. For this reason, we would
like to somehow link discord to entanglement.

Notice that it is always possible to view a mixed state on HA as part of a
larger Hilbert space HA ⊗HB. More specifically, given a ρA over HA, there exists
a |ψAB〉 ∈ HA ⊗HB such that

TrB(|ψAB〉 〈ψAB|) = ρA

for any ρAB on HA ⊗HB. This is called state purification. A simple purification
which works for any mixed state ρA = ∑k pk |ψk

A〉 〈ψk
A| is

|ψAB〉 = ∑
k

√
pk |ψk

A〉 ⊗ |ψk
B〉 (4.11)

where {|ψk
B〉} is an orthonormal basis for HB. The purification is not unique, e.g.

you can always append some other pure state to |ψAB〉: |ψAB〉 ⊗ |ψC〉. It should
thus be possible to view discord in a mixed state as arising from the entanglement
present in its purification. We use this in the next sections to get an idea of
how discord in a bipartite mixed state relates to the entanglement structure in its
purification.

4.3 Entanglement structure

Here I report on a collaboration [31] which is focused on relating discord to the
various entanglements found in a pure tripartite system. In particular, I wrote
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code to look at the behaviour of discord and entanglement numerically in differ-
ent scenarios. I also add here a calculation for the entanglement structure in an
arbitrary rank-two state which was not included in the paper which concerns this
thesis.

4.3.1 Three-qubit pure states

To get an idea of how bipartite discord is related to the bipartite and tripartite
entanglements inside a tripartite pure state, we start by looking at a simple case: a
pure three-qubit state |ψABC〉. If we require that the AB system be separable, then
we expect that, since discord is equivalent to entanglement entropy for pure states,
the presence of discord in the AB system arises because of entanglement in its
purification |ψABC〉. It can easily be shown, through the Schmidt decomposition,
that the reduction ρAB = TrC(|ψABC〉 〈ψABC|) must have at most two eigenvalues,
i.e. a rank-two operator. This fact allows us to write out a simple expression
for the most general (up to local unitary transformations) two-qubit, rank-two,
separable state

ρAB = |c1|2 |0〉 〈0| ⊗ |0〉 〈0|+ |c2|2 |α〉 〈α| ⊗ |β〉 〈β| (4.12)

where |c1|2 + |c2|2 = 1 and |α〉 and |β〉 are arbitrary qubits. Ignoring the trivial
cases where c1 = 0 or c2 = 0, we now ask under what circumstances ρAB contains
discord or not. Recall that discord D(B|A) is zero if and only if

ρAB = ∑
k

pkΠk
A ⊗ ρk

B

where the Πk
A are rank-one orthogonal projectors on HA. Comparing this with

our expression for our two-qubit ρAB we see that

D(B|A) = 0 iff {|α〉 ∝ |1〉 or |α〉 ∝ |0〉 or |β〉 ∝ |0〉} (4.13)

and similarly for discord D(A|B) to be zero we require

ρAB = ∑
k

pkρk
A ⊗Πk

B

so for our two-qubit ρAB

D(A|B) = 0 iff {|β〉 ∝ |1〉 or |α〉 ∝ |0〉 or |β〉 ∝ |0〉}. (4.14)
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We now want to determine the entanglement structure found within the purifica-
tion of ρAB by comparing where AC, BC and ABC are separable with where we
have found discord to be zero. The purification |ψABC〉 is given by

|ψABC〉 = c1 |0〉 ⊗ |0〉 ⊗ |0〉+ c2 |α〉 ⊗ |β〉 ⊗ |1〉 . (4.15)

Now tracing out the B system to get the state on AC yields

ρAC = TrB(|ψABC〉 〈ψABC|)
= |c1|2 |0〉 〈0| ⊗ |0〉 〈0|+ |c2|2 |α〉 〈α| ⊗ |1〉 〈1|+ (χ + χ†) (4.16)

where we have set χ = c1c∗2 〈0|β〉 |α〉 〈0| ⊗ |1〉 〈0|. We can rewrite χ by using the
fact that |α〉 = 〈0|α〉 |0〉+ 〈1|α〉 |1〉 to get

χ = c1c∗2 〈0|β〉 [〈0|α〉 |0〉 〈0| ⊗ |1〉 〈0|+ 〈1|α〉 |1〉 〈0| ⊗ |1〉 〈0|] (4.17)

= γ + ζ (4.18)

where

γ ≡ c1c∗2 〈0|β〉 〈0|α〉 |0〉 〈0| ⊗ |1〉 〈0| (4.19)

ζ ≡ c1c∗2 〈0|β〉 〈1|α〉 |1〉 〈0| ⊗ |1〉 〈0| . (4.20)

Combining the |0〉 〈0| terms together in ρAC yields

ρAC = |c1|2 |0〉 〈0| ⊗ ρ0 + |c2|2 |α〉 〈α| ⊗ |1〉 〈1|+ (ζ + ζ†) (4.21)

and from this we see that ρAC is separable if and only if ζ = 0 (see Appendix B
for proof), i.e.

ρAC is separable iff {|β〉 ∝ |1〉 or |α〉 ∝ |0〉} (4.22)

similarly, we find when ρBC is separable

ρBC is separable iff {|α〉 ∝ |1〉 or |β〉 ∝ |0〉}. (4.23)

Now we must figure out when |ψABC〉 has no tripartite entanglement. A state is
said to have no tripartite entanglement if any one of its bipartitions A(BC), (AB)C
or (AC)B is separable. Since |ψABC〉 is a pure state, this happens if and only if
one of the subsystems A, B or C is in a pure state. We can find out when this is
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so by simply looking at our expression for ρAB: we want either ρAB, TrA(ρAB), or
TrB(ρAB) to be pure. This happens when and only when |α〉 ∝ |0〉 or |β〉 ∝ |0〉:

|ψABC〉 has no tripartite entanglement iff {|α〉 ∝ |0〉 or |β〉 ∝ |0〉}. (4.24)

The main result of this section is found by comparing these statements about zero
entanglement with the one we had for zero discord, yielding

D(B|A) = 0 iff {BC is separable or ABC has no tripartite entanglement } (4.25)

and of course, similarly we have

D(A|B) = 0 iff {AC is separable or ABC has no tripartite entanglement}. (4.26)

A summary of these statements can be found in Fig. 4.1.

Figure 4.1: Entanglement structure in pure three qubit system with A and B
separable. Systems which are grouped together by either an ellipse or a triangle
share bipartite or tripartite entanglement respectively.

4.3.2 Testing the relation numerically

The structure seen in Fig. 4.1 would seem to suggest that an increase in D(B|A)

should be accompanied by an either an increase in the entanglement BC or ABC,
or both. Similarly D(A|B) seems it should increase with increasing entanglement
AC or ABC, or both. To test these relations, we first set |α〉 = cos α |0〉+ sin α |1〉
and |β〉 = cos β |0〉+ sin β |1〉 and calculate the discord for such a two qubit state,
along with the bipartite and tripartite entanglements via the negativity (Eq. 2.22),
denoted by N , and pi-tangle (Eq. 2.28), denoted by π, respectively. We then
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consider two trajectories through the (α, β) plane characterizing our state. One of
these is a path of constant π(ABC) and the other is a path of constant N (AC).
We then plot the remaining quantities as functions of an arbitrary parameter ϕ

that parameterizes these paths. This will let us, for example deduce how D(A|B)
changes as entanglement AC changes but while entanglement ABC is kept at a
constant, nonzero value. These plots are displayed in Fig. 4.2, where we keep
constant π(ABC) = 0.2, and in Fig. 4.3 where we keep constant N (AC) = 0.1. In
Fig. 4.2 we observe the behaviour that was expected, namely D(A|B) is perfectly
monotonic with N (AC) and D(B|A) is perfectly monotonic with N (BC). In Fig.
4.3, however, we find something rather different, namely we find that neither
D(A|B) nor D(B|A) is always monotonic with with π(ABC). This is not sur-
prising in the case of D(B|A) because, as we see, the negativity N (BC) drops to
zero. It is surprising, however, that we also see a decrease in D(A|B) during this
period, despite N (AC) remaining constant and π(ABC) increasing. Evidently,
while N (BC) does not play a role in the nullity of D(A|B), is does generally
contribute to its value.

There is another interesting observation that can be made from Fig. 4.2: For
a fixed value of π(ABC), since D(A|B) increases with N (AC) and D(B|A) in-
creases with N (BC), we notice that the asymmetry between D(A|B) and D(B|A)

stems from the fact that entanglement AC and BC are anticorrelated (entangle-
ment monogamy, see Section 2.5.3).

4.3.3 Separable rank-two states

These statements hold for any separable rank-two state on AB (does not have to
be two qubits) since the argument can be carried out again but without assuming
|α〉 and |β〉 are qubits. The if and only if statement about zero discord in Eq. 4.14,
without assuming |α〉 and |β〉 are qubits, becomes

D(A|B) = 0 iff {〈0|β〉 = 0 or |α〉 ∝ |0〉 or |β〉 ∝ |0〉}, (4.27)

i.e., the |β〉 〈β| projector must be orthogonal to the first projector |0〉 〈0|, or AB
be in a product state. We can purify the state of AB using a single qubit and, by
tracing over the B system, we see that ρAC has the same form as Eq. 4.21 except
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Figure 4.2: The behavior of discord and bipartite negativity as we move in the
(α, β) plane along a trajectory of constant tripartite entanglement πABC = 0.2.
ϕ ∈ [0, 2π) is a variable used to parameterize the trajectory through (α, β) space.

Figure 4.3: The behavior of discord, negativity, and π-tangle as we move in the
(α, β) plane along a trajectory of constant bipartite entanglement NAC = 0.1.
ϕ ∈ [0, 2π) is a variable used to parameterize the trajectory through (α, β) space.
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Figure 4.4: Graphs showing discord and entanglements in pure 3-qubit state with
c1 = c2 = 1√

2
and |β〉 = |1〉. π(ABC) represents the tripartite entanglement

as measured by the pi-tangle and N (BC) is the entanglement between BC as
measured by the negativity.
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the value for ζ (Eq. 4.19) becomes

ζ = c1c∗2 〈0|β〉
(

d

∑
k=1
〈k|α〉 |k〉 〈0|

)
⊗ |1〉 〈0| (4.28)

where d is the dimension of |α〉. Therefore, the if and only if statement about AC
separability becomes (see Appendix B for proof)

ρAC is separable iff {〈0|β〉 = 0 or |α〉 ∝ |0〉}. (4.29)

The exact same statement (Eq. 4.24) about tripartite entanglement holds.
It turns out these if and only if statements about zero discord are not true in

general for higher rank states. Consider, for example, the rank-three state

ρAB = |c1|2 |0〉 〈0| ⊗ |0〉 〈0|+ |c2|2 |0〉 〈0| ⊗ |1〉 〈1|+ |c3|2 |1〉 〈1| ⊗ |1〉 〈1|

which has zero discord. Its purification with a 3 dimensional system

|ψABC〉 = c1 |0〉 ⊗ |0〉 ⊗ |0〉+ c2 |0〉 ⊗ |1〉 ⊗ |1〉+ c3 |1〉 ⊗ |1〉 ⊗ |2〉

clearly is not separable on any of its bipartitions. The state on AC is

ρAC = |c1|2 |0〉 〈0| ⊗ |0〉 〈0|+ |c2|2 |0〉 〈0| ⊗ |1〉 〈1|+ |c3|2 |1〉 〈1| ⊗ |2〉 〈2|+ χ + χ†

where
χ = c2c∗3 |0〉 〈1| ⊗ |1〉 〈2|

which is clearly not separable (for a more rigorous argument, see Appendix C).
Therefore, zero discord does not imply AC separable or zero tripartite entangle-
ment in this case.

4.4 Generalizing the results

We make use of the following theorem, originally proven in [32]

Theorem. If a system ABC is in a pure state |ψABC〉, then the following equality holds

D(B|A) = S(A)− S(C) + E(BC) (4.30)

where S is the von Neumann entropy and E is the entanglement of formation.
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Proof This can be proven quite easily by choosing a set {(pi, |ψi
BC〉)} such that

ρBC = ∑i pi |ψi
BC〉 〈ψi

BC| for which E(BC) = ∑i piS(TrC(|ψi
BC〉 〈ψi

BC|)) and noticing
that there must exist a measurement on A, {Ea

A}, which leaves the BC system in
the state |ψa

BC〉 〈ψa
BC| with probability pa and hence leave the B system in state

ρB|A=a = TrC(|ψa
BC〉 〈ψa

BC|). From the definition of discord we have

D(B|A) = I(A : B)− J(B|A) = S(A)− S(AB) + S(B|A)

≤ S(A)− S(C) + ∑
a

paS(ρB|A=a)

= S(A)− S(C) + E(BC).

The entropy S(AB) is equal to S(C) since ABC is in a pure state. On the other
hand, choose the measurement {Ea

A} on A which minimizes S(B|{Ea
A}). Since

the ABC system is in a pure state and the Ea
A must all be proportional to rank-one

projectors, we know that outcome a will leave system BC in a pure state |ψa
BC〉

and happen with probability pa. Therefore we have a set {(pa, |ψa
BC〉)} such that

ρBC = ∑a pa |ψa
BC〉 〈ψa

BC|. The state of the B system after the measurement on A is
ρB|A=a = TrC(|ψa

BC〉 〈ψa
BC|)

E(BC) ≤∑
a

paS(ρB|A=a)

= S(B|A)

= D(B|A)− S(A) + S(C).

Putting these two inequalities together proves the theorem.

Since there is nothing which distinguishes A, B or C we can also write down equa-
tions for the other discords in the system. For example, by simply interchanging
letters we get

D(B|C) = S(C)− S(A) + E(AB) (4.31)

and
D(C|A) = S(A)− S(B) + E(BC) (4.32)

which gives us two new equalities, which are discussed in more detail in [33]

D(B|A) + D(B|C) = E(AB) + E(BC) (4.33)
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and
D(B|A)− D(C|A) = S(B)− S(C). (4.34)

The first can be interpreted as the following: "Given an arbitrary tripartite pure
system, the sum of all possible bipartite entanglement shared with a particular
subsystem, as given by the entanglement of formation, cannot be increased with-
out increasing, by the same amount, the sum of all discord shared with this same
subsystem.". In our case, AB is separable so E(AB) = 0. This means that if BC
is separable, Eq. 4.33 tells us that D(B|A) = D(B|C) = 0 since discord is non-
negative. If tripartite entanglement is zero, then at least one of the subsystems A,
B or C must be in a pure state. If A is in a pure state then |ψABC〉 = |ψA〉 ⊗ |ψBC〉
and so

ρAB = TrC(|ψABC〉 〈ψABC|) = |ψA〉 〈ψA| ⊗ ρB (4.35)

which is a product state so D(B|A) = 0. A similar argument for B can be made,
and if C is pure then so is AB and its discord is therefore equal its entanglement
which is zero. Therefore, for arbitrary separable systems AB, we have

D(B|A) = 0 if {BC is separable or ABC has no tripartite entanglement} (4.36)

The only if direction is not true in general, as was shown in Section 4.3.3. Another
simple example where this fails is any product state in which both A and B are
mixed: ρAB = ρA ⊗ ρB. Clearly this state has neither classical nor quantum corre-
lations. Purifying this state may be achieved by purifying ρA and ρB individually
to end up with the state |ψAC〉 ⊗ |ψBD〉. If we consider the CD system as the third
system, then this state clearly contains both bipartite and tripartite entanglement.

Even though the two-way implication for zero discord fails in general, the
one direction which is true tells us something about the nature of correlations
in a separable state: in order for such a state to have any correlations, classical
or quantum, its purification must contain tripartite entanglement. Furthermore,
if one wishes those correlations to have any quantum nature, this requires the
purification to have bipartite entanglement AC and/or BC.

4.4.1 Gaussian states

Pure states exhibit the property that they have classical correlations, only when
they have quantum correlations. That is, their classical correlations are equal to
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their entanglement or, equivalently, their discord since they are pure states. This
is because a pure state |ψAB〉 is separable only when it is also a product state
|ψAB〉 = |ψA〉 ⊗ |ψB〉. Another set of states which also exhibit a similar property
are the so-called two-mode Gaussian states. They have zero discord if and only if
the two modes are in a product state. This property was first suggested in [34]
and later proven in [35]. This is somewhat surprising since Gaussian states are
often considered to be the "most classical" of the quantum states, and yet it is
impossible for them to contain correlations which are only classical, in the sense
of quantum discord.

Consider a pure three-mode Gaussian system ABC where the AB system is
in a separable, mixed state. There is no point in considering AB pure since the
property just discussed is trivially true. The following statement will be proven
later, but first, we discuss its implications:

AB is in a product state ⇐⇒ ABC has no tripartite entanglement (4.37)

From this result, we can make two immediate observations. First, the property
proven in [35] says that, for a two-mode Gaussian state ρAB,

D(A|B) = 0 ⇐⇒ ρAB = ρA ⊗ ρB ⇐⇒ D(B|A) = 0

which means the result in Section 4.4 has a two-way implication for Gaussian
states. Namely, D(A|B) = 0 if and only if AC separable or no tripartite entan-
glement. Second, this gives a clear picture as to why zero discord in a Gaussian
state implies that it is in a product state. Recall from Section 4.4 that tripartite
entanglement in the purification is required for any correlations to be present in
AB, classical or quantum, and the further addition of bipartite entanglement in
the purification is what allows these correlations to have a quantum nature. But
in this case, it is impossible to have tripartite entanglement without automatically
having bipartite entanglement:

AC separable =⇒ D(A|B) = 0 =⇒ ρAB = ρA ⊗ ρB

=⇒ no tripartite entanglement (4.38)

with a similar statement for BC separable. Therefore, having tripartite entangle-
ment implies both AC and BC are entangled! It is now clear why any correlations
between A and B must be quantum.
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In the following, we will not go into any detail about Gaussian states. Every-
thing we use to prove Eq. 4.37 can be found in [36] in more detail. Consider the
covariance matrix of a pure three-mode Gaussian state in standard form:

σABC =

 σA γAB γAC

γT
AB σB γBC

γT
AC γT

BC σC

 (4.39)

where

γij =

[
e+ij 0

0 e−ij

]
(4.40)

σi =

[
νi 0
0 νi

]
. (4.41)

The σis are 2× 2 covariance matrices for the ith mode of the three-mode Gaussian
state and, in their standard form, are written in terms of νi =

√
detσi. These νi are

all greater or equal 1 with equality if and only if system i is in a pure state. The
2× 2 matrices γij encode the information about the correlations between system i
and system j. These can be written in terms of the covariance matrices {σk}

e±ij ≡
1

4√νiνj

(
S−ij ± S+

ij

)
(4.42)

where

S±ij =
√
[(νi ± νj)2 − (νk − 1)2][(νi ± νj)2 − (νk + 1)2] , k 6= i, j. (4.43)

With this information at hand, we can prove our statement. Note that one
of the directions is trivial: no tripartite entanglement =⇒ A(BC) or (AC)B
separable =⇒ AB is in a product state. To prove the other direction, we use
the fact that the AB system is in a product state if and only if γAB = 0 which is
equivalent to e±AB = 0, and so

e±AB = 0 =⇒ S±AB = 0 =⇒ νA = 1 or νB = 1. (4.44)

The statement νA = 1 or νB = 1 means either system A or B is in a pure state,
which means exactly that either A(BC) or (AC)B is separable =⇒ no tripartite
entanglement.
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4.4.2 Remote activation of entanglement

These results are directly related to the protocol of remote entanglement activa-
tion. This protocol enables a system C to locally activate bipartite entanglement
between two systems A and B if ABC has tripartite entanglement. For example,
consider the three qubit GHZ state, which possesses tripartite but no bipartite
entanglement:

|ψABC〉 = (|000〉+ |111〉)/
√

2

It is possible to perform an operation on the third qubit C so that the first two
qubits A and B are entangled. This can be seen through our results in the follow-
ing way: Recall that discord D(A|C) can be increased by local non-unitary opera-
tions on C. In particular, if we apply the map |0〉 → |0〉 and |1〉 → (|0〉+ |1〉)/

√
2

on C, then the AC system will have discord, i.e. D(A|C) > 0. Thus we can im-
mediately conclude that, since D(A|C) > 0, AB must have entanglement. Since
the tripartite entanglement is reduced through this process, an attractive interpre-
tation of this is that the tripartite entanglement present in the system has been
redistributed away from ABC and injected into AB. Notice that this description is
true for arbitrary systems ABC, not just qubits. The result in Section 4.4 says that
if D(A|C) is non-zero (and AC separable), then entanglement AB must be non-
zero. D(A|C) can always be made non-zero through local non-unitary operations
(see Section 3.2).

The ability to remotely activate entanglement is a useful tool, and our criteria
presented above can easily be used in general to determine when such an action
is possible.
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Chapter 5

Conclusion

In this thesis, we found a relationship between the quantum discord in a separa-
ble, mixed state and the entanglement structure in its purification. We found that,
for certain classes of states such as rank-two and two-mode gaussian states, a state
being discordant is equivalent to its purification having both tripartite and bipar-
tite entanglement. The discord D(A|B) in the case of a rank-two pair of qubits
is perfectly monotonic with the entanglement AC. This allows us to understand
the asymmetry of quantum discord in terms of entanglement monogamy: as the
entanglement AC increases, the entanglement BC decreases, and the associated
discords are monotonic with these. We find that, even though the entanglement in
the BC system does not affect the nullity of discord D(A|B), it does play a role as
we explore the dependence of discord on tripartite entanglement. We expect the
same behavior for general rank-two states and this should be possible to verify.

We also find a sufficient condition for zero discord in a general separable state
based on the nullity of tripartite and bipartite entanglement in its purification.
This result can be applied to the protocol for remote entanglement activation
by noticing that discord may be increased via local non-unitary operations, thus
increasing an initially null discord implies we have increased entanglement some-
where else in the purification. It turns out that the lack of tripartite entanglement
implies that the state on AB contains no correlations at all. The absence of bi-
partite entanglement means there is no discord, i.e. quantum correlations. This
tells us that tripartite entanglement is required to have correlations of any type,
while bipartite entanglement is required for these correlations to have a quantum
nature. This provides a nice explanation as to why Gaussian states have the prop-
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erty that they have no discord only when they are in a product state. We show
that Gaussian states have the property that they are without tripartite entangle-
ment if bipartite entanglement is zero. This means that any correlations between
A and B must have a quantum nature.

There may exist natural and potentially useful notions of n-partite discord for
n > 2, which in turn can be expressed in terms of n and n+ 1 partite entanglements
of a larger system. This may even help disentangle the structure of multipartite
entanglement in general. We leave this as possible future work. Also, it should
be possible and very interesting, also for practical purposes, to investigate the
Hamiltonians, i.e. the types of interactions, which give rise to the structures of
discord and entanglement.
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Appendix A

A property of the partial transpose

We prove that, given |ψA〉,|ψB〉,|φA〉 and |φB〉, it is true that

〈ψA| ⊗ 〈ψB| (T ⊗ I)(OAB) |φA〉 ⊗ |φB〉 = 〈φ∗A| ⊗ 〈ψB|OAB |ψ∗A〉 ⊗ |φB〉 (A.1)

where (T ⊗ I)(OAB) is the partial transpose on the operator OAB and ∗ denotes
the complex conjugate.

Proof The operator OAB has the general form

OAB = ∑
ijkl

ckl
ij |i〉 〈j|A ⊗ |k〉 〈l|B . (A.2)

Its partial transpose is

(T ⊗ I)(OAB) = ∑
ijkl

ckl
ij |j〉 〈i|A ⊗ |k〉 〈l|B . (A.3)

and therefore

〈ψA| ⊗ 〈ψB| (T ⊗ I)(OAB) |φA〉 ⊗ |φB〉 = ∑
ijkl

ckl
ij 〈ψA|j〉 〈i|φA〉 〈ψB|k〉 〈l|φB〉

= ∑
ijkl

ckl
ij 〈φ∗A|i〉 〈j|ψ∗A〉 〈ψB|k〉 〈l|φB〉

= 〈φ∗A| ⊗ 〈ψB|OAB |ψ∗A〉 ⊗ |φB〉
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Proof of ρAC separability

Here we prove that the more general (Eq. 4.16 with arbitrary states |α〉 and |β〉)

ρAC = |c1|2 |0〉 〈0| ⊗ |0〉 〈0|+ |c2|2 |α〉 〈α| ⊗ |1〉 〈1|+ (χ + χ†) (B.1)

where χ = γ + ζ and

γ = c1c∗2 〈0|β〉 〈0|α〉 |0〉 〈0| ⊗ |1〉 〈0| (B.2)

ζ = c1c∗2 〈0|β〉
(

d

∑
j=1
〈j|α〉 |j〉 〈0|

)
⊗ |1〉 〈0| (B.3)

is separable if and only if ζ = 0. We show that the partial transpose (T⊗ I)(ρAC)

is not a positive operator if ζ 6= 0 (Peres criterion, Thm. 2.5.2).

Proof Consider the vector

|ψ〉 = |α∗⊥〉 ⊗ |1〉+ t |k〉 ⊗ |0〉 (B.4)

where |α∗⊥〉 is any vector perpendicular to |α∗〉 (the complex conjugate of |α〉),
|k〉 is any one of k = 1, 2, ..., d and t is an arbitrary complex number. Taking the
expected value of the operator (T⊗ I)(ρAC) gives (omitting tensor products ⊗ for
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brevity, |a〉 ⊗ |b〉 → |a, b〉)

〈ψ| (T ⊗ I)(ρAC) |ψ〉
= |c1|2 〈ψ|0, 0〉 〈0, 0|ψ〉+ |c2|2 〈ψ|α∗, 1〉 〈α∗, 1|ψ〉+ 〈ψ| (T ⊗ I)(χ + χ†) |ψ〉
= 〈ψ| (T ⊗ I)(ζ + ζ†) |ψ〉+ 〈ψ| (T ⊗ I)(γ + γ†) |ψ〉
= 〈ψ| (T ⊗ I)(ζ) |ψ〉+ 〈ψ| (T ⊗ I)(ζ†) |ψ〉+ 〈ψ| γ + γ† |ψ〉
= 〈ψ| (T ⊗ I)(ζ) |ψ〉+ 〈ψ| (T ⊗ I)(ζ†) |ψ〉
= 〈ψ| (T ⊗ I)(ζ) |ψ〉+ 〈ψ| (T ⊗ I)(ζ)† |ψ〉
= 2Re [〈ψ| (T ⊗ I)(ζ) |ψ〉]

Expanding this last term gives us

〈ψ| (T ⊗ I)(ζ) |ψ〉 = 〈a∗⊥, 1| (T ⊗ I)(ζ) |a∗⊥, 1〉
+ t 〈a∗⊥, 1| (T ⊗ I)(ζ) |k, 0〉
+ t∗ 〈k, 0| (T ⊗ I)(ζ) |a∗⊥, 1〉
+ |t|2 〈k, 0| (T ⊗ I)(ζ) |k, 0〉

= 〈a⊥, 1| ζ |a⊥, 1〉
+ t 〈k, 1| ζ |a⊥, 0〉
+ t∗ 〈a⊥, 0| ζ |k, 1〉
+ |t|2 〈k, 0| ζ |k, 0〉

where we have used the property from Appendix A in the second equality. The
first term 〈a⊥, 1| ζ |a⊥, 1〉 and the last term |t|2 〈k, 0| ζ |k, 0〉 are zero. Finally, this
means that

〈ψ| (T ⊗ I)(ρAC) |ψ〉 = 4Re
[
t 〈k, 1| ζ |a⊥, 0〉

]
. (B.5)

This must be non-negative for all t in order for the partial transpose of ρAC to be
a positive operator. The only way for that to happen is if

〈1, k| ζ |a⊥, 0〉 = c1c∗2 〈0|β〉 〈k|α〉 〈0|α⊥〉 = 0. (B.6)

Since |α⊥〉 is an arbitrary vector perpendicular to the state |α〉, it must be either
〈0|β〉 = 0 or 〈k|α〉 = 0. To see this more clearly, suppose |α〉 = ∑d

j=0 cj |j〉. Then
setting |α⊥〉 = |0〉 − c∗0 |α〉 we get

〈α|α⊥〉 = 〈α|0〉 − c∗0 〈α|α〉 = c∗0 − c∗0 = 0 (B.7)
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and
〈0|α⊥〉 = 〈0|0〉 − c∗0 〈0|α〉 = 1− |c0|2. (B.8)

This is zero only when |c0| = 1, i.e. |α〉 ∝ |0〉 =⇒ 〈k|α〉 = 0. We have thus shown
that ζ = 0 is necessary for separability. Of course it is sufficient since, in this case,

ρAC = |c1|2 |0〉 〈0| ⊗ |0〉 〈0|+ |c2|2 |α〉 〈α| ⊗ |1〉 〈1|+ (γ + γ†)

= |c1|2 |0〉 〈0| ⊗ ρ0 + |c2|2 |α〉 〈α| ⊗ |1〉 〈1|

where we have just factored out a |0〉 〈0| from γ + γ†.
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Sufficient condition for entanglement

The method used in Appendix B can be extended to provide a sufficient condition
for entanglement which is easy to verify. We may write an arbitrary state in the
basis {|a, b〉} as

ρ = ∑
ab

pab |a, b〉 〈a, b|+ χ (C.1)

where χ denotes the off diagonal terms of ρ. Consider now the vector

|ψ〉 = |j∗, k〉+ t |m∗, n〉 (C.2)

where t is any complex number and |j, k〉 6= |m, n〉. The expected value of the
partial transpose of ρ is

〈ψ| (T ⊗ I)(ρ) |ψ〉 =∑
ab

pab 〈ψ|a∗, b〉 〈a∗, b|ψ〉+ 〈ψ| (T ⊗ I)(χ) |ψ〉

=pjk + |t|2pmn + 〈ψ| (T ⊗ I)(χ) |ψ〉 (C.3)
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We calculate the third term using the property from Appendix A

〈ψ| (T ⊗ I)(χ) |ψ〉 = 〈j∗, k| (T ⊗ I)(χ) |j∗, k〉
+ t 〈j∗, k| (T ⊗ I)(χ) |m∗, n〉
+ t∗ 〈m∗, n| (T ⊗ I)(χ) |j∗, k〉
+ |t2| 〈m∗, n| (T ⊗ I)(χ) |m∗, n〉

= 〈j, k| χ |j, k〉
+ t 〈m, k| χ |j, n〉
+ t∗ 〈j, n| χ |m, k〉
+ |t2| 〈m, n| χ |m, n〉

The first term 〈j, k| χ |j, k〉 and the last term |t2| 〈m, n| χ |m, n〉 are zero since χ

contains only off-diagonal terms. Therefore, since ρ is self-adjoint =⇒ χ = χ†,
we have

〈ψ| (T ⊗ I)(χ) |ψ〉 = 2Re [t 〈m, k| χ |j, n〉] . (C.4)

Since 〈m, k| · |j, n〉 is zero on the diagonal, we can rewrite Eq. C.4 as

〈ψ| (T ⊗ I)(χ) |ψ〉 = 2Re [t 〈m, k| ρ |j, n〉] . (C.5)

We want Eq. C.3 to be negative for some s. Setting y = 〈m, k| ρ |j, n〉 and t = y∗s
where s is a real number, we have

〈ψ| (T ⊗ I)(ρ) |ψ〉 = pjk + s2|y|2pmn + 2|y|2s. (C.6)

If this is to be negative, there should be multiple roots, so

|y|2 > pjk pmn (C.7)

guarantees there is entanglement. More explicitly

| 〈m, k| ρ |j, n〉 |2 > 〈j, k| ρ |j, k〉 〈m, n| ρ |m, n〉 (C.8)

implies the state ρ is entangled. Clearly this is not true for j = m or k = n since we
get the same inequality whether we use ρ or (T ⊗ I)(ρ) and ρ is positive. We can
therefore say that a state ρ is entangled if Eq. C.8 is true for some j 6= m, k 6= n. It
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should be noted that (T⊗ I)(ρ) might not be a positive operator and not satisfy Eq.
C.8 for any j, k, m, n, thus making this weaker than Peres’ criterion. It is, however,
a much quicker check (no eigenvalues or partial transposes involved) of whether
it might be positive. If M and N are the dimensions of each subsystem, then brute
forcing this check takes at most M(M − 1)N(N − 1)/2 ≈ (MN)2 operations,
while finding the eigenvalues would take ≈ (MN)3, incurs numerical error, plus
it takes time to perform the partial transpose. Also, in our case, where we deal
with a lot of variables, it makes sense to use something like this rather than
symbolically evaluating eigenvalues.

An example making use of this condition is: an arbitrary pure two-qubit state
a |0, 0〉+ b |0, 1〉+ c |1, 0〉+ d |1, 1〉 is entangled if |a||d| 6= |b||c| which is obtained
immediately by choosing |j, k〉 = |0, 0〉 and |m, n〉 = |1, 1〉, followed by |j, k〉 =
|0, 1〉 and |m, n〉 = |1, 0〉.

As another example, consider the Bell-diagonal states introduced in Eq. 4.5.
Choosing again |j, k〉 = |0, 0〉 and |m, n〉 = |1, 1〉 followed by |j, k〉 = |0, 1〉 and
|m, n〉 = |1, 0〉 gives the two inequalities

(p1 − p2)
2 > (p3 + p4)

2 = (1− p1 − p2)
2

(p3 − p4)
2 > (p1 + p2)

2 = (1− p3 − p4)
2.

If one of the pk > 1/2 then one of these inequalities is satisfied. Therefore if any
of the pk are greater than 1/2 this implies entanglement.

Finally, we reprove the result from Appendix B: let |j, k〉 = |0, 1〉 and |m, n〉 =
|r, 0〉where r 6= 0. We have 〈r, 0| ρAC |r, 0〉 = 0 and 〈r, 1| ρAC |0, 0〉 = c1c∗2 〈0|β〉 〈r|α〉
so ρAC separable implies either 〈0|β〉 = 0 or 〈r|α〉 = 0.
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