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Abstract

This thesis considers statistical issues in the analysis of data in the studies of chronic

diseases which involve modeling dependencies between life history processes using copula

functions.

Many disease processes feature recurrent events which represent events arising from

an underlying chronic condition; these are often modeled as point processes. In addition,

however, there often exists a random variable which is realized upon the occurrence of

each event, reflecting the severity of the event, the cost associated with its occurrence, or

possibly a short term response indicating the effect of a therapeutic intervention, which is

called a mark of the point process. When considered together, such processes are called

marked point processes. Examples arise in diverse areas such as insurance, finance, biol-

ogy, medicine, seismology, etc. In the existing literature, marks are often assumed to be

independent of the points to enable one to model the marks and points separately, but this

assumption is often questionable. A novel copula model for the marked point process is

described here which uses copula functions to govern the association between marks and

event times. Specifically, a copula function is used to link each mark with the next event

time following the realization of that mark to reflect the pattern in the data wherein larger

marks are often followed by longer time to the next event. Our model ensures that (1) a

dependence structure between continuous marks and the event process is incorporated, (2)

the marginal models for the events and the marks are compatible with standard models

for recurrent event and longitudinal analyses respectively, (3) (conditional) independence

assumptions made are weaker than those in the existing literature, and (4) efficiency is
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gained compared to separate analysis of the marks and the events.

The extent of organ damage in an individual can often be characterized by ordered

states, and interest frequently lies in modeling the rates at which individuals progress

through these states. Risk factors can be studied and the effect of therapeutic interventions

can be assessed based on relevant multistate models. When chronic diseases affect multiple

organ systems, joint modeling of progression in several organ systems is also important.

Disease progression in each organ can be characterized by a progressive multistate Markov

process and an affected individual experiences multiple such processes. In contrast to

common intensity-based or frailty-based approaches to modelling, this thesis considers a

copula-based framework for modeling and analysis. Through decomposition of the density

and by use of conditional independence assumptions, an appealing joint model is obtained

by assuming that the joint survival function of absorption transition times is governed by

a multivariate copula function. The copula formulation herein ensures that (1) a wide

range of marginal processes can be specified, (2) the joint model will retain these marginal

features to provide simple estimates and straightforward interpretation of transition rates

and covariate effects for each component process, and (3) the scientific understanding

regarding the relation between processes is facilitated. Different approaches to estimation

and inference are discussed and compared including composite likelihood and two-stage

estimation methods. Special attention is paid to the case of interval-censored data arising

from intermittent assessment.

Attention is also directed to use of copula models for more general scenarios with a

focus on semiparametric two-stage estimation procedures. In this approach nonparamet-

ric or semiparametric estimates of the marginal survivor functions are obtained in the
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first stage and estimates of the association parameters are obtained in the second stage.

Bivariate failure time models are considered for data under right-censoring and current

status observation schemes, and right-censored multistate models. A new expression for

the asymptotic variance of the second-stage estimator for the association parameter along

with a way of estimating this for finite samples are presented under these models and

observation schemes.
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Chapter 1

Introduction

This thesis is concerned with the modeling and analysis of multifaceted life history pro-

cesses. Innovative statistical models are developed which have appealing marginal prop-

erties and convenient parameterizations of association. Statistical inference is carried out

based on likelihood and composite likelihood with both simultaneous and multistage esti-

mation procedures. The relative efficiencies of joint versus marginal analyses are assessed

and useful findings are made to help inform the planning of analyses.

We begin with a brief review of models and methods for life history analysis and copula

models before describing the motivating studies and providing a brief overview of the

remainder of the thesis.
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1.1 An Overview of Relevant Statistical Models

1.1.1 Marked Point Processes

Recurrent event data can be analyzed by point process models (Cox and Isham, 1980;

Snyder and Miller, 1991; Karr, 1991). For the purpose of both modelling and statistical

analysis, the concepts of intensity functions and counting processes are particularly useful

(Andersen and others , 1993). Let Z = 1 if the individual is randomized to receive the

experimental intervention and Z = 0 otherwise. For a single recurrent event process

starting for simplicity at t = 0, let 0 < T1 < T2 < . . . denote the event times, where Tk

is the time of the kth event. N(t) =
∑∞

k=1 I(Tk ≤ t) is the number of events occurring

over the time interval [0, t], where I(·) is the indicator function such that I(A) = 1 if A

is true and I(A) = 0 otherwise. The associated counting process {N(t), 0 < t} is right-

continuous and it records the cumulative number of events generated by the process and

their respective times. More generally, N(s, t) = N(t) − N(s) represents the number of

events occurring over the interval (s, t]. We let t− denote times that are infinitesimally

smaller than t and let ∆N(t) = N(t + ∆t) − N(t−) denote the number of events in the

interval [t, t+ ∆t]. We let HN(t) = {N(u), 0 < u < t} denote the history of the process at

time t. For events occurring in continuous time we make the mathematically convenient

assumption that two events cannot occur simultaneously. The event intensity function

(Cook and Lawless, 2007) gives the instantaneous probability of an event occurring at t,
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conditional on the event process history, and is defined mathematically as

λ(t|HN(t)) = lim
∆t↓0

P{∆N(t) = 1|HN(t)}
∆t

.

Models for recurrent events can be defined very generally by specifying the intensity func-

tion.

In many settings there are auxiliary data associated with an event that reflect the

severity, importance, or implications of its occurrence. The associated random variable is

called the mark of the event and the process as a whole is called a marked point process

(Daley and Vere-Jones, 2008). Let Yk be a possibly vector-valued random variable that

denotes the mark realized at the occurrence of kth event. We let Y (t) = {Y0, . . . , YN(t)}

denote the set of marks realized over [0, t]. It is convenient to denote the history of the

marks at t as HY (t) = {Y (u), 0 < u < t}. The full history of a marked point process is

then H(t) = {N(u), Y (u), 0 < u < t, Z} and the corresponding complete event intensity is

λ(t|H(t)) = lim
∆t↓0

P{∆N(t) = 1|H(t)}
∆t

.

1.1.2 Multistate Processes

A multistate process is a stochastic process with a finite state space and a right-continuous

sample path (Hougaard, 1999). Such processes can be used to describe how a disease

leads to changes in conditions over time. With progressive disease processes, the extent of

damage can be characterized by ordered states 1, 2, . . . , K + 1, where state 1 represents no
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impairment and state K+1 represents the most severe degree of impairment or damage. In

this setting, the only possible transition at any instant in time is to the state representing

the next stage of damage (i.e. k → k + 1 transitions for k = 1, 2, . . . , K), thus we use the

term “progressive” multistate process.

Let ζ(t) represent the state occupied by the disease process at time t and {ζ(t), 0 < t}

denote the associated stochastic process. A p× 1 vector of time-independent covariates is

denoted by Z and the history of the process is denoted by H(t) = {ζ(u), 0 < u < t, Z}.

The term I(ζ(t−) = k) indicates whether the individual is at risk of a k → k+ 1 transition

at time t, where ζ(t−) is the left limit of ζ(u) for u ↑ t. The intensity function governing

transitions out of state k is defined as

λk(t|H(t)) = I(ζ(t−) = k) lim
∆t↓0

P{ζ(t+ ∆t) = k + 1|H(t), ζ(t−) = k}
∆t

,

k = 1, . . . , K.

A Markov assumption (Andersen and others , 1993), common in studies of progressive

conditions, gives

λk(t|H(t)) = I(ζ(t−) = k)λk(t|z) ,

where

λk(t|z) = lim
∆t↓0

P{ζ(t+ ∆t) = k + 1|ζ(t−) = k, Z = z}
∆t

is the intensity rate of k → k + 1 transition for an individual with covariate vector z. We
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let Λk(t|z) =
∫ t

0
λk(u|z)du denote the cumulative transition intensity, and let

A(u|z) =



−Λ1(u|z) Λ1(u|z) 0 . . . . . . 0

0 −Λ2(u|z) Λ2(u|z) . . . . . . 0

...
...

...
...

...
...

0 0 0 . . . . . . 0

0 0 0 . . . −ΛK(u|z) ΛK(u|z)

0 0 0 . . . 0 0


be the (K+1)× (K+1) cumulative transition intensity matrix. The transition probability

matrix P(s, t|z) has [k, `] entry

Pk`(s, t|z) = P (ζ(t) = `|ζ(s) = k, Z = z) , ` = k, . . . , K + 1 , s < t ,

and is obtained by product integration via

P(s, t|z) =
∏
u∈(s,t]

[I + dA(u|z)] , (1.1.1)

where I is an identity matrix of size K + 1 (Andersen and others , 1993).

We primarily consider Markov regression models with multiplicative effects of covariates

on intensities of the form

λk(t|z;αk, βk) = λk(t;αk) exp(z′βk) , (1.1.2)
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where λk(t;αk) is a baseline intensity function indexed by a parameter vector αk, and βk

is a p× 1 vector of regression coefficients. When we conduct semiparametric analysis, we

assume that λk(t) does not bear any particular parametric form. The formulation (1.1.2)

yields relative risks which are easy to interpret, and model diagnostics can be adopted from

survival analysis for use here (Therneau and Grambsch, 2000). Asymptotic theory based

on counting processes can be utilized to determine large sample properties of estimators

(Fleming and Harrington, 1991; Andersen and others , 1993).

1.1.3 Joint Modeling Event Times via Copulas

If U1 and U2 are two uniformly-distributed random variables on [0, 1], the bivariate distri-

bution

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) ,

corresponds to a copula function (Nelsen, 2006). For two continuous random variables V1

and V2 with marginal survivor functions Fj(·), j = 1, 2, a joint survivor function F(v1, v2) =

P (V1 ≥ v1, V2 ≥ v2) is constructed through a copula (Genest and MacKay, 1986) by

defining

F(v1, v2) = C(F1(v1),F2(v2)) ;

Sklar’s theorem (Sklar, 1959) ensures the existence and uniqueness of C : [0, 1]2 → [0, 1].

Suppose Fj(vj|z) is the survivor function of Vj given Z = z, j = 1, 2. Patton (2006) proved

that for each Z = z in the support of Z, the joint survivor function of V1 and V2 given

6



Z = z, F(v1, v2|z) = P (V1 ≥ v1, V2 ≥ v2|Z = z), is uniquely defined by

F(v1, v2|z) = C(F1(v1|z),F2(v2|z)|z) , (1.1.3)

for all (v1, v2) ∈ R2.

If there exists a continuous, strictly decreasing and convex function Ψ(u;φ) such that

Ψ : [0, 1]× Φ→ [0,∞) and Ψ(1;φ) = 0, and if the copula function can be written as

C(u1, u2;φ) = Ψ[−1](Ψ(u1;φ) + Ψ(u2;φ);φ) , (1.1.4)

then the copula belongs to the Archimedean family. The vector of parameters φ has

parameter space Φ. The function Ψ(u;φ) is called the generator (Nelsen, 2006) of the

copula and Ψ[−1] is defined by

Ψ[−1](u;φ) =

 Ψ−1(u;φ) if 0 ≤ u ≤ Ψ(0;φ) ,

0 if Ψ(0;φ) ≤ u ≤ ∞ .

If (Ui1, Ui2)′ and (Uj1, Uj2)′ are random variables drawn from (1.1.4), Kendall’s τ is

τ = P [(Ui1 − Uj1)(Ui2 − Uj2) > 0;φ]− P [(Ui1 − Uj1)(Ui2 − Uj2) < 0;φ]

= 1 + 4

∫ 1

0

Ψ(u;φ)

Ψ′(u;φ)
du .

The Clayton copula is a widely-adopted member of the Archimedean family with
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Ψ(u;φ) = u−φ − 1 and the resulting form is

C(u1, u2;φ) =
(
u−φ1 + u−φ2 − 1

)−1/φ

, φ ≥ 0 . (1.1.5)

For this copula, Kendall’s τ is given by τ = φ/(2 + φ).

1.2 Motivating Studies in Health Research

Here we briefly introduce several studies motivating the developments in this thesis.

1.2.1 Platelet Transfusions in Thrombocytopenic Patients

Mirasol is a pathogen inactivation technology which utilizes exposure to ultraviolet light

to inhibit the proliferation of pathogens and inactivate white blood cell replication to

produce pathogen-reduced platelets (PRT-PLT). The Cazenave and others (2010) report

on a recent multicentre trial of 118 hematology/oncology patients with chemotherapy-

induced thrombocytopenia who were randomized to receive either PRT-PLT or standard

platelets over a 28-day treatment period. The primary outcome in this trial was the

corrected count increment (CCI), which is the difference between the patients platelet

count before and after the transfusion, adjusted for dose of platelets and body surface

area of the patient (Davis and others , 1999). Patients received prophylatic transfusions

whenever their platelet counts dropped below the defined threshold of 10 × 109 m2/`. As

a result, one might expect an association between the CCI for a particular transfusion

and the time to the next transfusion. The primary analysis is based on comparing the
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probability of successful response between treatment arms under the implicit assumption

that this probability does not change over time within treatment groups.
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Figure 1.1: Profiles of four patients from the Mirasol study (Cazenave and others , 2010)
showing the times of the transfusions, the corrected count increments and the duration of
follow-up; the horizontal line at 4.5 ×109 m2/` is the threshold for a successful transfusion

Figure 1.1 illustrates data for a sample of four patients from the platelet transfusion

study. In each panel, the horizontal axis indicates the number of days since the first trans-

fusion and the vertical axis is the corrected count increment based on the measurement 24

hours after the transfusion. The horizontal dashed line at 4.5 ×109 m2/` corresponds to

the threshold used to define a successful (CCI > 4.5 ×109 m2/`) or unsuccessful (CCI ≤ 4.5
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×109 m2/`) transfusion. Patient 1 required only one transfusion during the 28-day treat-

ment period and experienced a large increase in their platelet count due to this transfusion.

Patient 4 on the other hand, required 9 transfusions with only three of these leading to

successful transfusions. Patients 2 and 3 had intermediate numbers of transfusions which

generally led to successful responses.

The average duration of follow-up was 23.2 and 23.7 days for patients randomized to

receive pathogen-inactived or standard platelets respectively with the mean number of

platelet transfusions of 3.7 and 3.2. The average corrected count increment was 6.2 and

8.9 (×109 m2/`) respectively.

1.2.2 Joint Damage in Psoriatic Arthritis

Psoriatic arthritis (PsA) is an immunological disease associated with considerable joint

pain, inflammation and destruction which can ultimately lead to serious disability and

poor quality of life (Chandran and others , 2010). The Centre for Prognosis Studies in

Rheumatic Disease is a tertiary referral center at the Toronto Western Hospital which

treats patients with a variety of rheumatic diseases and maintains a clinic registry of

patients with psoriatic arthritis. This cohort was established in 1976 and the patient have

been recruited and followed since its formation; today it is one of the largest cohorts of

patients with PsA in the world.

Upon entry to the clinic, the patients undergo a detailed clinical and radiological ex-

amination and provide serum samples which are subsequently stored. Follow-up clinical

and radiological assessments are scheduled annually and biannually respectively in order
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to track changes in joint damage, functional ability, and quality of life. Additional serum

samples are taken at follow-up clinic visits to measure dynamic markers of inflammation

and to store for future analysis of genetic data. To date, 1191 patients have been recruited

and there is a median of 4.84 years of follow-up and a median of 6 clinical follow-up assess-

ments. Given this data, disease progression can be modeled in a number of ways including

the development of newly damaged joints (Gladman and others , 1995; Sutradhar and Cook,

2008), the involvement of particular types (e.g. spinal) of joints (Tolusso and Cook, 2009),

or progression to a state of clinically important damage (Chandran and others , 2012).

Figure 1.2: Multistate diagram for modeling damage in sacroiliac joints

We focus on the state of damage of the left and right sacroiliac (SI) joints since damage

in these joints signifies the onset of spondyloarthritis, a condition associated with consid-

erable disability. The modified Steinbrocker scale (Steinbrocker and others , 1949; Rahman

and others , 1998) is a five-point scale used to formally record the extent of damage based

on radiographic examination. The states are numbered 1 − 5 with labels 1 = normal;

2 = equivocal; 3 = abnormal with erosions or sclerosis; 4 = unequivocally abnormal,

moderate or advanced sacroiliitis showing one or more of erosions, sclerosis, widening, nar-
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rowing or partial ankylosis; 5 = total ankylosis. In our analysis, we combine states 2 and 3

to form a state representing mild or moderate joint damage, and states 4 and 5 as a state

denoting severe damage as illustrated in Figure 1.2.
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Figure 1.3: Multivariate multistate processes observed at intermittent inspection times

Figure 1.3 illustrates the process of disease development for one subject observed at a

sequence of inspection times. The both processes of this individual, representing the left

and right sacroiliac joints here, occupied state 1 at time V0 meaning that the sacroiliac

joints on his/her both sides of this subject are normal at the beginning of follow-up. At

the first follow-up assessment at V1, process 1 was in state 2 but process 2 was recorded to

still be in state 1, which suggests that this subject had mild or moderate joint disease on

the left side but normal joint on the right side at time V1. At V2, process 1 was in state 3

but process 2 remained in state 1. At the last assessment (at V3), process 1 was in 3 (the
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absorbing state) and process 2 was in state 2, which means the sacroiliac joint disease of

this subject had developed into a severe state on the left side and a mild or moderate state

on the right side at time V3.

1.2.3 Skeletal Complications from Bone Metastases

Patients with skeletal metastases are at increased risk of pathological fractures and bone

pain. Bisphosphonates are a class of compounds that are used to reduce the occurrence

of these skeletal complications and hence improve quality of life. Hortobagyi and others

(1996) report on an international multicenter trial of 382 women with stage IV breast

cancer with at least one predominantly lytic bone lesion greater than or equal to one

centimeter in diameter. Patients were accrued between January 1991 and March 1994

from 97 sites in the United States, Canada, Australia and New Zealand and randomized to

receive pamidronate (m = 185) or a placebo control (m = 197). Two patients randomized

to placebo did not have bone metastases and were therefore excluded from subsequent

analyses. Patients randomized to the pamidronate arm received 90 mg of pamidronate

disodium via a two-hour infusion every four weeks whereas patients randomized to the

placebo received dextrose infusions. Patients were monitored closely and the occurrence of

pathologic fractures and need for radiotherapy for the treatment of bone pain were recorded.

After completion of the planned one-year follow-up, the observation was extended for an

additional year and the results were published in Hortobagyi and others (1998). Each

patient was followed until death, loss to follow-up, or February 1, 1996.

To avoid the complications arising from the terminal event of death, we restrict atten-
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tion to patients who survived 12 months; note that patients who withdrew from the study

early were followed for survival, so these patients were still censored over the 12-month

period for the occurrence of these skeletal complications. Interest here lies in assessing the

effect of pamidronate on the occurrence of these two types of skeletal complications and

modeling the two types of skeletal complications jointly. We let Zi = 1 for pamidronate-

treated patients and Zi = 0 for control patients.

1.2.4 Seroconversion Following Anticoagulation Therapy

Patients undergoing orthopedic surgery are at increased risk of developing thrombosis

which is associated with increased morbidity and mortality (White and others , 1998).

Prophylaxis with antithrombotic heparin-based therapies is highly effective at reducing the

risk of thrombosis and is now standard practice in orthopedic surgery. Four large recent

multicenter randomized trials were conducted to compare enoxaparin and fondaparinux

for thromboprophylaxis. Two were set in Europe (Lassen and others , 2002; Eriksson and

others , 2001) and two in North America (Bauer and others , 2001; Turpie and others ,

2002). Some patients undergoing orthopedic surgery and exposed to antithrombotic drugs

developed antibody responses and it is of interest to understand the correlation of the

different types of antibody responses. The first injection of enoxaparin was given before

surgery in 1011 (32.1%) of the patients and after surgery for the remainder.

We let the time of surgery be the time origin. Antibody formation can begin any time

following surgery and we let Ti denote the time from surgery to the antibody response for

individual i, and F(t) = P (Ti ≥ t) the corresponding survivor function. The time from
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surgery to recovery and discharge varied considerably from patient to patient, but upon

discharge a blood sample was taken and the antibody status was determined.

1.3 Outline of Thesis

An innovative model for marked point processes is given in Chapter 2, which is motivated

by problems arising in transfusion medicine where interest lies in the assessment of the

effect of the platelet products on the corrected count increment, the mark, following a

platelet transfusion, the recurrent event. A copula model is used to link the mark with

the time to the next event. This formulation ensures that standard multivariate models

can be formulated to link the marks over time and that any point process model can

be used to model the events. The biases and relative efficiencies of separate versus joint

analyses of the marks and events are assessed for a variety of estimation strategies including

simultaneous estimation procedure, two-stage estimation procedure, asymmetric two-stage

estimation procedure and three-stage estimation procedure. Robustness to misspecification

of the model for recurrent events or the copula function is also explored. An application

to the data from the motivating study in Section 1.2.1 is given to illustrate the model and

methods.

In Chapter 3 we develop models for the joint analysis of multivariate multistate pro-

cesses. Such models are useful for progressive disease processes which arise in clusters

of individuals who may share observed, or more importantly unobserved, genetic or en-

vironmental exposures. They also appeal when a disease affects more than one feature

in an individual but when the progression of each feature can be modeled in a similar
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way. Attention is restricted primarily to Markov models, which are particularly attractive

when dealing with interval-censored transition times arising from intermittent inspection

of individuals. Estimation and statistical inference are based on composite likelihood with

simultaneous or two-stage estimation procedures. Empirical biases and relative efficiencies

are assessed and the proposed methods are found to perform well. An application to the

motivating study of joint damage in patients with psoriatic arthritis in Section 1.2.2 is

provided.

In Chapter 4 attention is directed to use of copula models for more general scenar-

ios with a focus on semiparametric two-stage estimation procedures. In this approach,

nonparametric or semiparametric estimates of the marginal survivor function are obtained

in the first stage and estimates of the association parameters are obtained in the second

stage. Bivariate failure time models are considered for data under right-censoring and

current status observation schemes, and right-censored multistate models. Asymptotic

variances are derived under these models and observation schemes and assessed empiri-

cally to compare with formula based on parametric ways of viewing nonparametric and

semiparametric methods. Applications to motivating examples in Section 1.2.3 and 1.2.4

are given.

This thesis concludes with Chapter 5 where some avenues for further research are

outlined, of which some topics are currently under investigation.
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Chapter 2

A Copula Model for Marked Point

Prcessess

2.1 Introduction

2.1.1 Overview

Many disease processes feature recurrent events which represent acute exacerbations of an

underlying chronic condition. Examples include respiratory attacks in patients with asthma

which can be associated with considerable disability and increased risk of death (Verona

and others , 2003), flares of symptoms in patients with systemic lupus erythematosus (Petri

and others , 1991; Fok and others , 2012), recurrent headaches among migraineurs (Pascual

and others , 2000), and graft rejection episodes arising in transplant recipients (Cole and

others , 1994).
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Statistical methods for the analysis of recurrent events have seen considerable devel-

opment in the last three decades. The three primary classes of methods are based on

intensity-based models (Andersen and others , 1993; Aalen and others , 2008), random ef-

fect models (Lawless, 1987) and marginal models (Lawless and Nadeau, 1995). In the

clinical trial arena, marginal methods based on rate functions (Andersen and Gill, 1982)

have considerable appeal, and the development of methods for robust inference (Lawless

and Nadeau, 1995) has led to their widespread use. Partially conditional models (Prentice

and others , 1981) and marginal methods based on multivariate failure time data (Wei and

others , 1989) are also used routinely.

The events in many conditions are severe enough to warrant therapeutic intervention

for alleviation of symptoms and mitigation of risk for more serious complications. When

such interventions are applied, there is typically a short-term response which reflects how

effective the intervention was in alleviating symptoms and improving health. Studies of

short-acting β2-agonists for the treatment of asthma attacks (Sears and others , 1990), for

example, aim to quickly improve lung function as measured by short-term change in forced

expiratory volume.

The data resulting from such processes feature event times, with each event having

an accompanying attribute realized upon event occurrence. Marked point processes are

suitable for modeling such data, and have been used extensively in areas such as seismology

(Holden and others , 2002), genetics (Robin, 2002), image analysis (Descombes and Zerubia,

2002), insurance (Grandell, 1997; Ch. 9), finance (Prigent, 2001), forestry (Penttinen and

others , 1992), and management science (Chen and Zheng, 1997). The theory of marked

point processes is given in several excellent books on stochastic processes including Cox
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and Isham (1980) (Ch. 5), Snyder and Miller (1991) (Ch. 4), Karr (1991) (Sec. 1.4), and

more recent Daley and Vere-Jones (2008) (Sec. 13.4). Semiparametric methods of analysis

based on likelihood are discussed in Andersen and others (1993) (Sec. 2.4) and robust

nonparametric marginal methods are considered in Cook and others (2003) and Cook

and Lawless (2007). Goulard and others (1996) consider pseudo-likelihood methods and

moment estimation is developed by Politis and Sherman (2001). In the existing literature,

the marks are often assumed to be independent of the event times to facilitate their separate

modeling using simple methods, but this assumption is often questionable. Tests of the

independence between the marks and event times are developed by Schlather and others

(2004), Schoenberg (2004), and Guan (2006).

We propose a novel model for a marked point process in which the marginal models

for the events and the marks are compatible with standard models for recurrent event and

longitudinal analyses. A copula function is used to link the “survival” function of each

mark given the history of marks, with that of the next event time given the relevant event

history. This appealing structure means that analyses of the incidence of the events and

analysis of the marks are compatible with standard methods for recurrent event data and

any continuous multivariate distribution; efficiency gains can therefore be explored for joint

versus separate analyses.

The remainder of this chapter is organized as follows. In Section 2.2 we define nota-

tion, describe the formulation of a copula-based marked point process model, construct the

likelihood and discuss multiple estimation procedures. Simulation studies and an illustra-

tion of the Mirasol platelet transfusion trial are presented in Section 2.3 and Section 2.4

respectively, and general remarks are given in Section 2.5.
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2.2 Model Formulation and Estimation Procedures

2.2.1 A Copula-Based Marked Point Process Model

Recall that in Section 1.1.1 we defined Z = 1 if the individual is randomized to receive

the experimental intervention and Z = 0 otherwise. We consider studies in which the

primary purpose is to compare the effect of the experimental intervention to the standard

intervention with respect to the distribution of the marks, and secondary interest lies in

the effect of the randomized intervention on event occurrence.

We suppose the process begins with an initiating event at T0 = 0, let Tk be the time

of the kth event recurrence, and let Wk = Tk − Tk−1 denote the waiting time between the

(k − 1)st and kth event, k = 1, 2, . . .. We let N(t) =
∑∞

k=1 I(Tk ≤ t). The associated

right-continuous counting process is {N(t), 0 < t} and the associated history is HN(t) =

{N(u), 0 < u < t}. Let ∆N(t) = N(t+∆t)−N(t−) be the number of events over [t, t+∆t],

dN(t) = lim∆t↓0 ∆N(t) = 1 if an event occurs at time t, and dN(t) = 0 otherwise. The

mark associated with the kth event is denoted by the random variable Yk, k = 0, 1, . . ., and

we let Y (t) = {Y0, . . . , YN(t)} denote the set of marks realized over [0, t]. It is convenient

to denote the history of the marks at t as HY (t) = {Y (u), 0 < u < t}, and the full history

is then H(t) = {N(u), Y (u), 0 < u < t, Z}. Let [0, CA] denote the planned period of

observation, where CA > 0 is an administrative right censoring time. Suppose further

that CR > 0 is a random right-censoring time (Kalbfleisch and Prentice, 2002; Lawless,

2003) giving a net duration of observation C = min(CA, CR). Figure 2.1 gives a schematic

diagram relating key variables.
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We let C(t) = I(t ≤ C) indicate whether the process is under observation at time t.

Then if dN̄(t) = C(t)dN(t), dN̄(t) = 1 implies that an event occurs and is observed at t.

We define N̄(t) =
∫ t

0
dN̄(u) and let Ȳ (t) = {Y0, . . . , YN̄(t)} denote the number of events

and the respective marks observed over [0, t]. The corresponding histories at time t are

then HN(t) = {N̄(u), C(u), 0 < u < t} and HY (t) = {Ȳ (u), C(u), 0 < u < t} and the full

history is H(t) = {N̄(u), Ȳ (u), C(u), 0 < u < t, Z}.
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Figure 2.1: Schematic diagram with notation for a marked point process

The full likelihood for a randomly-censored marked point process over [0, CA] can be

expressed in product integral notation (Cook and Lawless, 2007; Ch. 8) as

∏
u∈[0,CA]

P (C(u)|H(u))
[
P (dN̄(u)|H(u), C(u) = 1)P (YN̄(u)|H(u), C(u) = 1, dN̄(u) = 1)dN̄(u)

]C(u)

,

where we informally let the conditional probability involving YN̄(t) represent a conditional

density when the marks are continuous. Under non-informative censoring we omit the term
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P (C(u)|H(u)) and work with the partial likelihood

∏
u∈[0,CA]

[
P (dN̄(u)|H(u), C(u) = 1)P (YN̄(u)|H(u), C(u) = 1, dN̄(u) = 1)dN̄(u)

]C(u)

.

(2.2.1)

If censoring is conditionally independent (Lawless, 2003), (2.2.1) is equal to

∏
u∈[0,CA]

P (dN(u)|H(u))C(u)
∏

u∈[0,CA]

P (YN(u)|H(u), dN(u) = 1)dN̄(u) , (2.2.2)

and we can express the partial likelihood in terms of the model of interest.

We consider the case where the marks are continuous random variables and for con-

venience let HN
k = {T1, . . . , Tk−1}, HY

k = {Y0, . . . , Yk−1} and Hk = {T1, . . . , Tk−1, Y0,

. . . , Yk−1, Z}. If we let N̄(C) = n, note that

∏
u∈[0,CA]

P (dN(u)|H(u))C(u) =
n∏
k=1

f(tk|Hk) · P (Tn+1 > C|Hn+1) . (2.2.3)

We formulate the joint conditional “survival” distribution F(tk, yk−1|HN
k ,HY

k−1, Z) through

a copula C as

C(F(tk|HN
k ,HY

k−1, Z),F(yk−1|HN
k ,HY

k−1, Z);φ) , (2.2.4)

where φ is a vector of association parameters. The structure of the motivating problem in

transfusion medicine motivates consideration of models which accommodate a dependence

between the mark Yk−1 and the time to the kth transfusion. We also aim to specify a model
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such that the event intensity is formulated so that a marginal analysis of the recurrent event

process yields parameters compatible with a standard recurrent event model. Copula

models can be used for this purpose (Joe, 1997; Nelsen, 2006). That is, larger realized

values of Yk−1 are expected and empirically observed to be associated with larger gap

times Wk = Tk − Tk−1. To retain the feature that the marginal models for the event times

and marks have a standard form, we make the following two assumptions:

A.2.1 Tk ⊥ HY
k−1|HN

k , Z, k = 1, 2, . . .

A.2.2 Yk−1 ⊥ HN
k |HY

k−1, Z, k = 2, 3, . . .

Assumption A.2.1 means that given the history of the event times and the fixed covariate

the marks at times prior to Tk−1 are not associated with Wk = Tk − Tk−1. Assumption

A.2.2 states that the mark at Tk−1 is independent of the event times prior to Tk given

the previous marks and the fixed covariate. This means that any models for longitudinal

data can be used for the joint distribution of the marks. Under assumptions A.2.1 and

A.2.2, (2.2.4) simplifies to involve F(tk|HN
k , Z) (under A.2.1) and F(yk−1|HY

k−1, Z), the

“survivor function” of the mark given the history of the marks (under A.2.2). By applying

the copula constructed in (2.2.4) with assumptions A.2.1 and A.2.2 to
∏n

k=1 f(tk|Hk) in

(2.2.3), it becomes

n∏
k=1

[
f(tk|HN

k , Z) · c
(
F(tk|HN

k , Z),F(yk−1|HY
k−1, Z)

) ]
,

where c(u, v) = ∂2C(u, v)/∂u∂v, the density function of the copula C(u, v) in (2.2.4).

The term P (YN(u)|H(u), dN(u) = 1) in the second part of the product integrand in
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(2.2.2) is the density of the mark at time u conditional on the full history H(u) and the

fact that an event occurred at time u. It can be written in terms of event times and marks

as f(yk|HN
k+1,HY

k , Z) and by assumption A.2.2 this becomes f(yk|HY
k , Z).

If n events are observed for one individual over (0, C], the likelihood of the observed

outcome “n events occur at times t1 < · · · < tn with respective marks y0, y1, . . . , yn given

covariate z” is proportional to

[
C(01)

(
P (Tn+1 > C|HN

n+1, Z), P (Yn > yn|HY
n , Z)

)
·

n∏
k=1

c
(
P (Tk > tk|HN

k , Z), P (Yk−1 > yk−1|HY
k−1, Z)

) ]
(2.2.5)

·

[
n∏
k=1

P (Tk ∈ [tk, tk + dtk)|HN
k , Z)

]
·

[
n∏
k=0

P (Yk ∈ [yk, yk + dyk)|HY
k , Z)

]
,

where C(01)(u, v) = ∂C(u, v)/∂v. The likelihood (2.2.5) is in a very amenable form. The

first n+1 components provide information about all parameters, the second n components

provide information about the marginal model for the recurrent event, and the last n + 1

components relate to the marginal model for the marks.

The formulation of this model through the use of copula functions enables specification

of the marginal and association models separately. Particular models for the recurrent

events are mentioned in Section 2.2.2 and those for the marks in Section 2.2.3.
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2.2.2 Marginal Models for the Recurrent Events

The “marginal” intensity function of the recurrent event process is defined as

λ(t|HN(t), Z) = lim
∆t↓0

P
(
∆N(t) = 1|HN(t), Z

)
∆t

,

where we assume that two events cannot occur at the same time. We call this a marginal

intensity since it does not incorporate the history of the marks and is concerned only with

the event process. Specific intensity functions are indicated by making it explicit what

aspects of the event history have bearing on the instantaneous risks of event occurrence.

Markov Models

One might adopt a Markov model, of which the marginal intensity function is of the form

λ(t|HN(t), Z) = λk(t|Z) ,

where N(t−) = k, whereby the transition intensity depends on cumulative number of events

over (0, t]; see Prentice and others (1981). The Poisson intensity (Lawless, 1987b) as a

special case arises if we set λk(t|Z) = λ(t|Z) for k = 0, 1, . . .. Models with multiplicative

covariate effects, of the form

λ(t|Z; θ) = λ0(t;α) exp(Zβ) ,
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are very common, where λ0(t;α) is a baseline intensity (rate) function indexed by α, and

β is a regression coefficient; θ = (α, β)′.

A Mixed Markov Model

To allow for extra-Poisson variation, one can consider a standard mixed Poisson model, in

which conditional on a random effect U > 0 with E(U) = 1 and Var(U) = γ, the marginal

intensity given U is of the form

λ(t|HN(t), Z, U) = lim
∆t↓0

P (∆N(t) = 1|Z,U)

∆t
= Uλ0(t;α) exp(Zβ) .

Under this mixed Poisson model, if we define E(N(t)|Z) = µ(t|Z), then Var(N(t)|Z)

= µ(t|Z) + µ(t|Z)2γ and it is apparent that extra Poisson variation is accommodated

(Lawless, 1987a). When U follows a gamma distribution, the marginal intensity function

has a convenient closed-form

(
1 +N(t−)γ

1 + µ(t|Z)γ

)
λ0(t;α) exp(Zβ) , (2.2.6)

which is the intensity for a negative binomial process (Cook and Lawless, 2007).
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A Semi-Markov Model

Semi-Markov models are useful when there is a renewal in the process upon event occurence.

Such models feature intensities of the form (Andersen and others , 1993; Zhao and Hu, 2013)

λ(t|HN(t), Z) = hk(B(t)|Z) ,

where N(t−) = k and B(t) = t− TN(t−) is the time since the most recent event. A renewal

process is obtained if hk(u) = h(u) for k = 0, 1, . . . in which case the waiting times are

independent and identically distributed within subjects. Use of mixed semi-Markov models

is likewise possible, where given a random effect U we may have

λ(t|HN(t), Z, U) = Uhk(B(t)|Z) .

2.2.3 Marginal Models for the Marks

Let Y = (Y0, Y1, . . . , YK)′ denote the vector of K + 1 marks. We may assume, for

example, that Y |Z is a (K + 1) × 1 multivariate normal random variable with mean

µ(Z) = (µ0(Z), . . . , µK(Z))′ and (K+1)×(K+1) covariance matrix Σ with diagonal events

σ2 and off-diagonal elements ρσ2. We may specify, for example, that µk(Z) = η0k + η1kZ

and so the effect of treatment is to change the mean mark. Often one would set η1k = η1,

k = 1, 2, . . ., to obtain a parsimonious representation of the treatment effect, although

tests of H0 : η1k = η1 are often sensible. When marks are binary, analogous multivari-

ate binary models may be adopted and often these would be most naturally formulated
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with marginal specifications of treatment and other covariate effects, particularly for data

arising in clinical trials. We do not consider the use of discrete marks in what follows.

2.2.4 Estimation and Statistical Inference

Let L(θ;D) denote the likelihood function (2.2.5), where D denotes the data comprised of

the marks Y0, Y1, . . . , Yn observed at time points 0, T1, . . . , Tn, the right censoring time C,

and the covariate Z; the vector θ = (ψ′1, ψ
′
2, φ
′)′ is the full vector of parameters where ψ1

indexes the marginal recurrent event process, ψ2 indexes the joint distribution of the marks,

and φ characterizes the association between the marks and the event times. Suppose that

there is a random sample of size m and the observed data for individual i are denoted by

Di so that all of the data in the sample are recorded in D = (D′1, . . . , D
′
m)′. Estimation and

statistical inference can be approached using one of the following four different estimation

procedures.

The Simultaneous Estimation Procedure

The simultaneous estimation procedure is conducted by estimating the full vector of pa-

rameters θ simultaneously. Conditional on covariate Z, the maximum likelihood estimator

(MLE) θ̂ is the solution to the score equation U(θ) =
∑m

i=1 Ui(θ) = 0, where

Ui(θ) =
∂ logL(θ;Di)

∂θ
.
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If the model is correctly specified, the MLE θ̂ is consistent and
√
m(θ̂−θ) d−→ N(0,A−1

1 (θ))

as m→∞, where A1(θ) = −E[∂Ui(θ)/∂θ
′]. The estimator of the matrix A1(θ) is

Â1(θ̂) = − 1

m

m∑
i=1

∂Ui(θ)

∂θ′

∣∣∣∣∣
θ=θ̂

. (2.2.7)

The simultaneous estimation procedure produces the most efficient estimators for the full

vector of parameters. However, misspecification of either the marginal models or the

association model may lead to biased estimators.

The Two-stage Estimation Procedure

Instead of simultaneously estimating all the parameters in the full likelihood function

(2.2.5), a two-stage estimation procedure can be adopted. Under this approach, the pa-

rameters for the marginal recurrent event process (ψ1) and those for the marks (ψ2) are

estimated in the first stage; and the association parameters (φ) are estimated in the sec-

ond stage by maximizing the full likelihood with respect to φ with the first-stage estimates

plugged in. Specifically, the partial likelihood for the recurrent event process of one subject

is

L(ψ1;HN
n+1, C, Z) =

n∏
k=1

f(tk|HN
k , Z) · P (Tn+1 > C|HN

n+1, Z)

=
n∏
k=1

λ(tk|HN(tk), Z) exp

[
−
∫ C

0

λ(u|HN(u), Z)du

]
,
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and the partial likelihood for the marks is

L(ψ2;HY
n+1, Z) =

n∏
k=0

f(yk|HY
k , Z) = f(y0, · · · , yn|Z) .

The stage-one estimators of ψ1 and ψ2, denoted by ψ̃1 and ψ̃2, are the solutions to the

score equations

U1(ψ1) =
m∑
i=1

Ui1(ψ1) = 0 , (2.2.8)

and

U2(ψ2) =
m∑
i=1

Ui2(ψ2) = 0 , (2.2.9)

respectively, obtained from a sample of size m, where

Ui1(ψ1) =
∂ logL(ψ1;HN

i,n+1, Ci, Zi)

∂ψ1

,

and

Ui2(ψ2) =
∂ logL(ψ2;HY

i,n+1, Zi)

∂ψ2

.

The second-stage estimator of φ, denoted by φ̃, is the solution to the score equation

U3(φ; ψ̃1, ψ̃2) =
m∑
i=1

Ui3(φ; ψ̃1, ψ̃2) = 0 , (2.2.10)
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where

Ui3(φ; ψ̃1, ψ̃2) =
∂ logL(ψ̃1, ψ̃2, φ;Di)

∂φ
.

If Ui1(ψ1), Ui2(ψ2) and Ui3(φ;ψ1, ψ2) are “stacked” to form

Gi1(θ) = [U ′i1(ψ1), U ′i2(ψ2), U ′i3(φ;ψ1, ψ2)]′ ,

then equations (2.2.8), (2.2.9) and (2.2.10) are simply the three components of the joint

estimating equation
∑m

i=1Gi1(θ) = 0. Since Gi1(θ) is unbiased, under certain regularity

conditions (Godambe, 1960), θ̃ = (ψ̃′1, ψ̃
′
2, φ̃
′)′ is consistent. The consistency of ψ̃1 is subject

to correct model specification of the marginal model for the recurrent events, that of ψ̃2 is

subject to correct specification of the marginal model for the marks, and that of φ̃ requires

correct specification of the full model. We also have

√
m(θ̃ − θ) d−→ N(0,A−1

2 (θ)B2(θ)
[
A−1

2 (θ)
]′

) ,

as m→∞, where A2(θ) = −E[∂Gi1(θ)/∂θ′] and is equal to

−E


∂Ui1(ψ1)/∂ψ′1 0 0

0 ∂Ui2(ψ2)/∂ψ′2 0

∂Ui3(φ;ψ1, ψ2)/∂ψ′1 ∂Ui3(φ;ψ1, ψ2)/∂ψ′2 ∂Ui3(φ;ψ1, ψ2)/∂φ′

 ,
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B2(θ) = E[Gi1(θ)G′i1(θ)] and is equal to

E


Ui1(ψ1)U ′i1(ψ1) Ui1(ψ1)U ′i2(ψ2) Ui1(ψ1)U ′i3(φ;ψ1, ψ2)

Ui2(ψ2)U ′i1(ψ1) Ui2(ψ2)U ′i2(ψ2) Ui2(ψ2)U ′i3(φ;ψ1, ψ2)

Ui3(φ;ψ1, ψ2)U ′i1(ψ1) Ui3(φ;ψ1, ψ2)U ′i2(ψ2) Ui3(φ;ψ1, ψ2)U ′i3(φ;ψ1, ψ2)

 .

The asymptotic covariance matrix is estimated by

Â−1
2 (θ̃)B̂2(θ̃)

[
Â−1

2 (θ̃)
]′
,

where

Â2(θ̃) = − 1

m

m∑
i=1


∂Ui1(ψ1)/∂ψ′1 0 0

0 ∂Ui2(ψ2)/∂ψ′2 0

∂Ui3(φ;ψ1, ψ2)/∂ψ′1 ∂Ui3(φ;ψ1, ψ2)/∂ψ′2 ∂Ui3(φ;ψ1, ψ2)/∂φ′


∣∣∣∣∣∣∣∣∣∣
θ=θ̃

,

and B̂2(θ̃) is equal to

1

m

m∑
i=1


Ui1(ψ1)U ′i1(ψ1) Ui1(ψ1)U ′i2(ψ2) Ui1(ψ1)U ′i3(φ;ψ1, ψ2)

Ui2(ψ2)U ′i1(ψ1) Ui2(ψ2)U ′i2(ψ2) Ui2(ψ2)U ′i3(φ;ψ1, ψ2)

Ui3(φ;ψ1, ψ2)U ′i1(ψ1) Ui3(φ;ψ1, ψ2)U ′i2(ψ2) Ui3(φ;ψ1, ψ2)U ′i3(φ;ψ1, ψ2)


∣∣∣∣∣∣∣∣∣∣
θ=θ̃

.

This usual two-stage estimation procedure provides some protection for the estimators

for the marginal parameters from misspecification of the association model. However, the

joint modelling does not enhance the efficiency of the marginal estimators since the first
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stage estimation is exactly the same as marginal analyses under working independence

assumptions.

Asymmetric Two-stage Estimation Procedure

Here we propose a novel two-stage estimation procedure. There is a tendency in the existing

literature on two-stage procedures to treat each marginal distribution symmetrically, such

that all of the marginal parameters are estimated in the first stage. Under the proposed

asymmetric two-stage estimation procedure, only the marginal parameters for the recurrent

event process are estimated in the first stage, and the parameters governing the marginal

distribution of the marks and the association parameters are estimated in the second stage.

So, ψ̃1 is estimated in the first stage as before, but in the second stage, (ψ′2, φ
′)′ is estimated

by solving the score equation U23(ψ2, φ; ψ̃1) =
∑m

i=1 Ui23(ψ2, φ; ψ̃1) = 0, denoted by (ψ̄′2, φ̄
′)′,

where

Ui23(ψ2, φ; ψ̃1) =
∂ logL(ψ̃1, ψ2, φ;Di)

∂(ψ′2, φ
′)′

. (2.2.11)

If Ui1(ψ1) and Ui23(ψ2, φ;ψ1) are “stacked” to form

Gi2(θ) = [U ′i1(ψ1), U ′i23(ψ2, φ;ψ1)]′ ,

then equations (2.2.8) and (2.2.11) are the two components of the joint estimating equation∑m
i=1Gi2(θ) = 0. SinceGi2(θ) is unbiased, under the usual regularity conditions (Godambe,

1960), θ̄ = (ψ̃′1, ψ̄
′
2, φ̄
′)′ is consistent. The consistency of ψ̃1 is subject to correct model
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specification of the marginal model for the recurrent events and that of (ψ̄′2, φ̄
′)′ requires

correct specification of the full model. We also have

√
m(θ̄ − θ) d−→ N(0,A−1

3 (θ)B3(θ)
[
A−1

3 (θ)
]′

) ,

as m→∞, where A3(θ) = −E[∂Gi2(θ)/∂θ′] and is equal to

−E

 ∂Ui1(ψ1)/∂ψ′1 0

∂Ui23(ψ2, φ;ψ1)/∂ψ′1 ∂Ui23(ψ2, φ;ψ1)/∂(ψ′2, φ
′)

 ,

B3(θ) = E[Gi2(θ)G′i2(θ)] and it is equal to

E

 Ui1(ψ1)U ′i1(ψ1) Ui1(ψ1)U ′i23(ψ2, φ;ψ1)

Ui23(ψ2, φ;ψ1)U ′i1(ψ1) Ui23(ψ2, φ;ψ1)U ′i23(ψ2, φ;ψ1)

 .

The asymptotic covariance matrix is estimated by

Â−1
3 (θ̄)B̂3(θ̄)

[
Â−1

3 (θ̄)
]′
,

where

Â3(θ̄) = − 1

m

m∑
i=1

 ∂Ui1(ψ1)/∂ψ′1 0

∂Ui23(ψ2, φ;ψ1)/∂ψ′1 ∂Ui23(ψ2, φ;ψ1)/∂(ψ′2, φ
′)


∣∣∣∣∣∣∣
θ=θ̄

,
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and B̂3(θ̄) is equal to

1

m

m∑
i=1

 Ui1(ψ1)U ′i1(ψ1) Ui1(ψ1)U ′i23(ψ2, φ;ψ1)

Ui23(ψ2, φ;ψ1)U ′i1(ψ1) Ui23(ψ2, φ;ψ1)U ′i23(ψ2, φ;ψ1)


∣∣∣∣∣∣∣
θ=θ̄

.

Asymmetric two-stage estimation procedure provides protection for the estimators of

the parameters for the recurrent event process from misspecification of the model for the

marks or the association model. The estimators for the parameters of the marks are more

efficient than those using the usual two-stage estimation but less efficient than those using

simultaneous estimation.

A Three-stage Estimation Procedure

The three-stage estimation procedure goes one-step further than the usual two-stage esti-

mation procedure. Following the first two steps of the usual two-stage procedure, in the

third stage, we plug the estimator for the association parameters φ̃ into the full likelihood

(2.2.5) and re-estimate all the marginal parameters. In the third stage, ψ̆ = (ψ̆′1, ψ̆
′
2)′, the

estimator of ψ = (ψ′1, ψ
′
2)′, is estimated by solving the score equation

U12(ψ; φ̃) =
m∑
i=1

Ui12(ψ; φ̃) = 0 , (2.2.12)

where

Ui12(ψ; φ̃) =
∂ logL(ψ, φ̃;Di)

∂ψ
.
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The asymptotic properties of φ̃ is given in the section of the usual two-stage estimation

procedure. Under regularity conditions (Godambe, 1960) and in the view of consistency

of φ̃, ψ̆ is consistent and

√
m(ψ̆ − ψ)

d−→ N
(

0,A−1
4 (ψ)B4(ψ)

[
A−1

4 (ψ)
]′)

,

as m→∞, where A4(ψ) = −E[∂Ui12(ψ;φ)/∂ψ′] and

B4(ψ) = A4(ψ) + HCov(φ̃)H′

and H is equal to

E

[
∂

∂φ′
Ui12(ψ; φ̃)

]
+ E

[
Ui12(ψ; φ̃)Ui3(φ;ψ)

]
.

The asymptotic covariance matrix is estimated by

Â−1
4 (ψ̆)B̂4(ψ̆)

[
Â−1

4 (ψ̆)
]′
,

where

Â4(ψ̆) = − 1

m

m∑
i=1

∂Ui12(ψ;φ)

∂ψ′

∣∣∣∣∣
ψ=ψ̆

,
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B̂4(ψ̆) = Â4(ψ̆) + ĤĈov(φ̃)Ĥ′ and

Ĥ =
1

m

m∑
i=1

[
∂

∂φ′
Ui12(ψ;φ) + Ui12(ψ;φ)Ui3(φ;ψ)

]∣∣∣∣∣
ψ=ψ̆,φ=φ̃

.

Ĉov(φ̃) was given in the section introducing the usual two-stage estimation procedure.

The consistency of the estimators is subject to correct specification of the full model.

The estimators using three-stage estimation are almost as efficient as those using simulta-

neous estimation. In our future research, we can actually conduct the iterative multistate

estimation procedure. We may estimate φ and ψ iteratively by solving (2.2.10) and (2.2.12)

with plugged-in estimators from the last iteration until the difference of estimates between

two steps is smaller than some tolerance value. The resulting estimators should converge

to the MLEs obtained from the simultaneous estimation procedure.

2.3 Simulation Studies

2.3.1 Empirical Performance under Correct Model Specification

Here we investigate the finite sample performance of the estimators based on the different

estimation procedures mentioned in Section 2.2.4. We first consider events generated from

a process where the marginal model for the recurrent events is a non-homogeneous Poisson

process. The marginal rate function is of the form

λ(t|Z) = α1α2(α1t)
α2−1 exp(Zβ)
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giving the corresponding marginal mean function

E(N(t)|Z) =

∫ t

0

λ(u|Z)du = (α1t)
α2 exp(Zβ) .

We set the administrative censoring time CA to be 1, α2 = 0.75 to induce mild trend,

and set E(N(1)|Z = 0) = αα2
1 = 4 giving α1 = 6.3496. We set the coefficient β =

log(0.5) = −0.6931 to reflect a 50% reduction of the risk of events under the experimental

treatment. We assume that the marks are multivariate normal with σ2 = 1 and consider a

moderate (ρ = 0.3) and strong correlation (ρ = 0.6) between marks under an exchangeable

correlation structure. The means are assumed to be constant over time within individuals

with η0k = η0 = 0 and η1k = η1 = 0.5, k = 0, 1, . . ., corresponding to an experimental

treatment giving a larger mean response. The events and the marks are linked through

a Clayton copula (1.1.5). We consider scenarios with both moderate (Kendall’s τ = 0.2)

and strong (τ = 0.6) dependence between the marks and the recurrent event process

leading to the association values φ = 2τ/(1 − τ) = 0.5 and 3 respectively (Nelsen, 2006).

In addition, we suppose that P (CR ≤ CA) = 0.4, i.e., 40% random right censoring, by

assuming CR to follow an exponential distribution with P (CR > CA) = exp(−λc) = 0.6

and hence λc = 0.5108. A total of five hundred samples (nsim= 500) are simulated

with m = 200 and 500 subjects per sample for each parameter configuration. For each

parameter configuration, the empirical bias (BIAS), empirical standard error (ESE) and

average asymptotic (large sample) standard error (ASE) are reported for each method of

estimation. The ASE is the average of the 500 asymptotic sample standard errors, the

ESE is the standard deviation of 500 parameter estimates, and the ECP is the proportion
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of all trials for which the computed 95% confidence intervals contain the true respective

parameter value.

The estimation methods include the simultaneous (ML), the two-stage (2S), the asym-

metric two-stage (A2S) and the three-stage (3S) estimation procedures. The frequency

properties of the estimates for the recurrent event process parameters are reported in Ta-

ble 2.1 and those for the mark parameters and the association parameters are reported

in Table 2.2 and 2.3 respectively. The empirical biases of all the estimators are negligible

based on all the four estimation procedures under the correctly-specified model in Table

2.1, 2.2 and 2.3. Moreover, there is excellent agreement between the empirical standard er-

rors and average model-based standard errors, indicating the validity of the four estimation

methods. Estimators under three-stage estimation procedure are almost equally efficient

as those under simultaneous estimation procedure. There is a marked decrease in the

empirical and average model-based standard errors of all the estimators of the marginal

parameters under the simultaneous estimation procedure compared to those under two-

stage estimation procedure. The estimators of the parameters governing the distribution

of the marks and the association parameters under the asymmetric two-stage procedure

are more efficient than those under the usual two-stage estimation but less efficient than

those under the simultaneous and three-stage procedure. The gain in efficiency is greatest

when τ is largest; but there is little effect of the association between the marks on the

relative efficiency.

In Diao and others (2013), comparisons of estimators from “joint analysis” (under si-

multaneous estimation procedure) and marginal analyses are made. Marginal analyses of

the event times are conducted based on a parametric non-homogeneous Poisson model
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(NHPP) and a semiparametric Andersen-Gill model (AG). Marginal analysis of the marks

are also carried out based on generalized estimating equations (GEE) under both an in-

dependence working correlation structure (WI) and an exchangeable working correlation

structure (EXCH). Generally speaking, both the parametric and seimiparametric marginal

analyses for the recurrent event process are valid but yield less efficient estimators compared

to joint analysis; the efficacy loss is greater with larger values of Kendall’s τ . The analy-

sis of the marks based on generalized estimating equations with a working independence

assumption yields heavily-biased estimators; use of an exchangeable working correlation

structure provides some protection against the selection effects arising from the association

between the marks and the event times.

We next repeat the simulation study with events generated according to a negative

binomial process with intensity function given by (2.2.6) and the baseline intensity function

is of the Weibull form as that in (2.3.1). Note that the Poisson model is a special case

of this negative binomial model with γ = 0. The same parameter configuration is used

as that for the Poisson model and γ is set to be 0.5. The frequency properties of the

estimators are reported in Table 2.4, 2.5 and 2.6. The simulation results for the joint

analysis with a negative binomial process for the events are similar to those obtained with

a Poisson model. Small empirical biases of the estimators are observed except that those

of γ are relatively large when sample size is 200. The empirical standard errors are close

to average model-based standard errors. The efficiencies of estimators using the three-

stage, the asymmetric two-stage and the usual two-stage estimation procedures are in a

decreasing order compared to those using the simultaneous estimation procedure.
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2.3.2 Empirical Performance under Model Misspecification

Misspecification of the Marginal Models

In Table 2.7, 2.8 and 2.9, we report the results for the marginal event process when data

are generated from a joint model with a negative binomial process for the events of which

the intensity is of the form (2.2.6) with γ = 0.5 but analyzed based on a Poisson assump-

tion. Not surprisingly the empirical biases of the marginal estimators under the two-stage

estimation procedure and those of recurrent event parameters under asymmetric two-stage

estimation procedure are ignorable. This is a consequence of the robustness of estimation

of rate and mean function parameters in the context of a mixed Poisson model. Misspeci-

fication of the marginal model for the recurrent event process leads to biased estimators of

the marginal parameters for the marks as well as estimation of the association parameter

when using simultaneous, asymmetric and three-stage estimation procedures; this effect is

stronger for larger τ .

In Diao and others (2013), the resulting data from a joint model with a negative bi-

nomial margin are analyzed marginally under a misspecified parametric non-homogeneous

Poisson (NHPP), a semiparametric Anderson-Gill (AG) model, a semiparametric negative

binomial model (SNB) for the recurrent events and GEE with a working independence

correlation structure and an exchangeable correlation structure for the marks. The biases

of the estimators under the marginal recurrent event models are negligible and this phe-

nomenon reveals that misspecification of the marginal intensity is more of a concern in

the joint analysis. The empirical biases of the estimators with a working independence

correlation structure are larger than those with an exchangeable correlation structure.
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Misspecification of the Copula Function

Prokhorov and Schmidt (2009) discuss asymptotic properties of parameter estimators un-

der misspecification of the copula model and characterize settings in which inferences can be

robust regarding features of the marginal distributions. Other authors have examined the

issue of copula misspecification in special cases. Chatterjee and others (2006) investigate

misspecification in the context of “parallel” bivariate survival data in response-dependent

(i.e. case-control and case-only) designs and find misspecification of the copula function

does not lead to appreciable bias in estimators of the marginal parameters for some types

of misspecification. Craiu and Craiu (2008) empirically study the effect of copula misspec-

ification on conditional means and variances and show there can be significant impact on

inferences; careful consideration of the copula family is therefore required. He and Lawless

(2005) study multivariate regression models whose marginals are of location-scale form and

the copula is used to link the error terms. They find that, for complete data, the MLEs

for regression coefficients are consistent even when the joint distribution is misspecified.

In the case of censored responses, estimators of regression coefficients are no longer consis-

tent under model misspecification, but bias is small in many practical situations given the

simulation results.

In this chapter, we deal with a setting involving life history data in which the copula

plays a role in defining the conditional distribution of successive marks and event times.

To provide insight into the effect of misspecification in this context, we carry out further

simulations in which data are generated using a Frank copula or a Gumbel copula, both

of which are in the Archimedian family (Nelsen, 2006); analyses, however, are conducted
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based on a Clayton copula. We consider ρ = 0.3 and 0.6 for the correlations between the

marks, and τ = 0.2 and 0.6 for the dependence between the marks and the event times, and

restrict attention to the setting in which the events are generated according to a marginal

Poisson process and with a sample size of m = 200.

The results are reported in Table 2.10, 2.11 and 2.12 and reveal that biases arising

from copula misspecification are negligible for the marginal parameters when Kendall’s τ

is modest, but can be appreciable when Kendall’s τ is large. Not surprisingly the biases

for Kendall’s τ are generally quite large. We remark that in addition to biases that may

arise due to copula misspecification in the context of “parallel” bivariate survival data,

the limiting behaviour in our context depends on the validity of the likelihood in (2.2.5)

and specifically the conditional independence assumptions A.2.1 and A.2.2, which are not

satisfied under misspecification of the copula.

2.4 Application to Data from the Mirasol Study

The Mirasol Study (Cazenave and others , 2010) is a multicenter, open-label, parallel-

group non-inferiority randomized controlled trial. As mentioned in Section 1.2.1, 118

haematology/oncology patients with thrombocytopenia were randomized to receive either

a pathogen-reduced platelet product (PRT-PLT) (Z = 1) or standard reference platelets

(Z = 0) over a 28-day treatment period (i.e. CA = 28). Events of interest are blood trans-

fusions. The primary outcome is transfusion-based and defined as the 24-hour corrected

count increment (CCI). The count increment is the post-transfusion platelet count mea-

sured 24 hours after transfusion minus the pre-transfusion platelet count and the corrected
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count increment adjusts this number by the dose of platelets transfused and the patients’

body surface area (Davis and others , 1999).

In Table 2.13 we report on analyses of the Mirasol Study using the copula-based joint

model introduced in Section 2.2.1 with Poisson and negative binomial marginal models

respectively for the events and the estimation procedures discussed in Section 2.2.4. Gen-

erally speaking, the analysis results based on the four estimation procedures are in close

agreement. We report results analyzed using the simultaneous estimation procedure in

what follows since it is the most efficient one based on simulation studies in Section 2.3.

Under a joint model with a Poisson model for the recurrent event process, the estimated

coefficient β̂ and the corresponding standard error are 0.162 and 0.126 respectively. Recall

that this standard error (0.126) is calculated by taking the square root on the diagonal of

the matrix [mÂ1(θ̂)]−1 where Â1(θ̂) is given in (2.2.7), smaller than its respective robust

standard error 0.163, which is calculated by taking square root on the diagonal of the

matrix

1

m
Â−1

1 (θ̂)B̂1(θ̂)
[
Â−1

1 (θ̂)
]′
,

where

B̂1(θ̂) =
1

m

m∑
i=1

Ui(θ)U
′
i(θ)

∣∣∣∣∣
θ=θ̂

.

It is in turn close to the model-based standard error of β̂ from the semiparametric negative

binomial model (0.163) as reported in Diao and others (2013), suggesting the presence of

extra-Poisson variation. The likelihood ratio test statistic of H0 : γ = 0 (the marginal
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Table 2.13: Results from marginal and joint analyses of the transfusion events and the
24 hour corrected count increments (m2/`) from the Mirasol Study (Cazenave and others ,
2010).

Joint Analysis (Poisson) Joint Analysis (NB)

ML 2S A2S 3S ML 2S A2S 3S

α1 Est. 0.119 0.115 0.115 0.119 0.118 0.114 0.114 0.118
S.E. 0.016 0.016 0.016 0.016 0.019 0.016 0.016 0.016

α2 Est. 0.796 0.793 0.793 0.796 0.788 0.788 0.788 0.789
S.E. 0.050 0.041 0.041 0.041 0.050 0.039 0.039 0.038

β Est. 0.162 0.212 0.212 0.162 0.165 0.218 0.218 0.166
S.E. 0.126 0.167 0.167 0.163 0.154 0.165 0.165 0.161
p-value 0.200 0.205 0.205 0.322 0.283 0.187 0.187 0.302

γ Est. - - - - 0.193 0.222 0.222 0.193
S.E. - - - - 0.082 0.091 0.091 0.089
p-value - - - - 0.019 0.015 0.015 0.031

η0 Est. 10.072 9.995 10.109 10.072 10.138 9.995 10.172 10.132
S.E. 0.720 0.881 0.917 0.906 0.728 0.881 0.916 0.906

η1 Est. -3.360 -3.355 -3.434 -3.360 -3.366 -3.355 -3.429 -3.364
S.E. 0.999 1.029 1.067 1.045 1.007 1.029 1.059 1.038
p-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

σ2 Est. 33.537 33.470 33.548 33.535 34.016 33.470 34.052 33.972
S.E. 3.766 5.097 5.091 5.090 3.874 5.097 5.209 5.190
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

ρ Est. 0.628 0.616 0.628 0.628 0.635 0.616 0.636 0.635
S.E. 0.050 0.068 0.066 0.066 0.049 0.068 0.065 0.065
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

τ Est. 0.154 0.154 0.154 0.154 0.157 0.155 0.156 0.155
S.E. 0.030 0.031 0.031 0.031 0.031 0.031 0.031 0.031
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

ML corresponds to the simultaneous estimation procedure; 2S corresponds to the two-stage estimation procedure;
A2S corresponds to the asymmetric two-stage estimation procedure; 3S corresponds to the three-stage estimation
procedure.
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model for the events is a Poisson model) versus HA : γ > 0 (the marginal model for

the events is a negative binomial model) asymptotically follows a distribution which is a

50 : 50 mixture of a point mass at zero and a χ2
1 distribution (Self and Liang, 1987). Under

joint model with negative binomial recurrent event process, the resulting test statistic is

10.344 which gives a p−value of 0.5P (χ2
1 > 10.344) = 0.0007. This leads to rejection of

the Poisson assumption for the marginal model and supports the use of the joint model

with a negative binomial recurrent event process. Thus we report results with the negative

binomial margin in what follows. The estimated treatment effect on the event rate is

RR = 1.18 (95% CI: 0.86, 1.62; p = 0.306) reflecting a nonsignificant trend towards

increased need for transfusion in the PRT-PLT arm. Regarding the marks, there is a

significantly lower response in the PRT-PLT arm compared to the reference arm. We see

a lower response by an average of 3.37 (95% CI: -5.40, -1.33; p = 0.001) ×109 m2/`. Thus

noninferiority of the PRT-PLT product is not successfully demonstrated based on the 24-

hour CCI response. The correlation between the marks is quite strong at 0.635, suggesting

the importance of accommodating this association. The estimate of Kendall’s τ is 0.157

(95% CI: 0.094, 0.220; p < 0.001), so there is significant but modest dependence between

the CCI at the kth transfusion and the time to the next transfusion. We therefore may

not expect an appreciable gain in efficiency in this dataset from the joint modeling using

simultaneous estimation procedure.

Figure 2.2 contains plots of the estimated mean number of transfusions from a para-

metric analysis with a nonhomogeneous baseline Poisson rate function, a semiparametric

Andersen-Gill analysis, and a joint analysis based on a Poisson and negative binomial in-

tensity function. There is excellent agreement between the three parametric analyses in
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terms of the expected number of transfusions required over the 28 day treatment period.

The estimated mean function based on the semiparametric Andersen-Gill model reflects a

higher rate during the first two weeks followed by a lower rate in the latter two weeks; this

is not exhibited in the parametric models suggesting the need for more flexible piecewise

constant baseline rate functions, which will be studied in the future research.
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Figure 2.2: Plots of estimated baseline mean function obtained by integrating the marginal
rate from a marginal analysis under a Poisson assumption with a parametric Weibull rate
and semiparametric Andersen-Gill and from a joint analysis using (2.2.5) with a Poisson
and negative binomial parametric marginal rate
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2.5 General Remarks

We have described a novel model for marked point processes which incorporates a de-

pendence between continuous marks and the event process through the use of a copula

function. The idea of using copula functions to link the marks and the event times has

been proposed in the ruin theory literature based on renewal processes (Albrecher and

Teugels, 2006; Landriault and others , 2012) but these models have different formulations

motivated by issues arising in actuarial science. This model is the first we are aware of

that address an important problem prevalent in the health research.

We have empirically studied the finite sample behaviour of estimators from joint anal-

yses using the simultaneous, the two-stage, the asymmetric two-stage and the three-stage

estimation procedures. We have also studied the efficiency loss of the other three esti-

mation procedures compared to using simultaneous estimation procedure, the effect of

misspecifying the marginal intensity for event times under the assumption that the copula

function and the marginal model for the marks are correctly specified. We examined the

empirical properties of the estimators arising from misspecification of the copula function

and correct specification of the marginal models and found, in our limited investigation,

only modest impact when Kendall’s τ is modest. When the association between the marks

and subsequent event times is strong, the copula model should be checked carefully. One

attractive avenue for doing this is through model expansion; see Yilmaz and Lawless (2011)

for a discussion of this approach in the failure time context.
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Chapter 3

Correlated Markov Processes Under

Interval Censoring

3.1 Introduction

3.1.1 Overview

Multistate models are used routinely to characterize, identify risk factors for, and make

predictions about chronic disease processes (e.g. Hougaard, 1999, 2000). Areas of appli-

cation are diverse and include health promotion (Kalbfleisch and Lawless, 1985; Cook and

others , 2002), research on dynamics of infectious disease (Gentleman and others , 1994;

Sweeting and others , 2010), and studies of cognitive function (Tyas and others , 2007).

Markov and semi-Markov processes are two fundamental classes of models with the former

being most widely adopted in settings involving progressive conditions. The considerable
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advances in counting process theory in recent years have led to a unification of survival and

more general event history methods (Andersen and others , 1993; Therneau and Grambsch,

2000; Kalbfleisch and Prentice, 2002; Lawless, 2003; Cook and Lawless, 2007; Aalen and

others , 2008) and it is now relatively easy to fit parametric and semiparametric models.

Chronic diseases frequently affect multiple organ systems or multiple locations in the

body raising the need to accommodate dependencies between related disease processes.

Diseases of the eyes are often a consequence of genetic abnormalities or environmental

exposures and as a result, visual acuity deteriorates over time in both eyes (Marshall

and Jones, 1995). Kidney function naturally declines with age but more rapidly among

diabetic individuals (Al-Kateb and others , 2008), and rates of damage for the left and

right kidneys may be associated within individuals. In psoriatic arthritis, interest lies in

modeling changes in joint damage over time and the extent of damage in individual joints

is measured on a five-point scale (Rahman and others , 1998). Models for the rates at

which joints progress through these states are useful to characterize disease progression,

identify risk factors, and evaluate therapeutic interventions; interest also lies in modelling

progression in many joints simultaneously.

There are a variety of frameworks available for analysis of multiple multistate processes.

First, models for two or more multistate processes may be constructed based on the com-

plete intensity functions, which characterize the instantaneous risk of transition between

disease states in terms of the full process history (Andersen and others , 1993). One may

view this as working with an expanded state space defined by all combinations of states

from the marginal processes (Ross, 1996). Second, mixed-effect models can be specified in

which transitions for the different processes are made independently, conditional on ran-
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dom effects (Satten, 1999; Cook and others , 2004; Sutradhar and Cook, 2008). Third,

standard separate analysis of each process is justified under a working independence as-

sumption (Lee and Kim, 1998) and a robust covariance matrix can be obtained to ensure

valid simultaneous inference in the spirit of generalized estimating equations (Liang and

Zeger, 1986) and marginal methods of multivariate survival data (Wei and others , 1989).

A natural goal in the analysis of multiple multistate processes is to provide simple es-

timates of transition rates and related covariate effects for each component process, which

have a straightforward “marginal” interpretation. Estimates of this sort do not arise nat-

urally from the aforementioned approaches to analysis of several processes, except the one

based on a working independence assumption. It may, however, be important to paramet-

rically model the association between processes to improve efficiency and advance scientific

understanding about the relation between the processes under study. We develop a joint

model for multiple multistate processes based on copula functions (Joe, 1997; Nelsen, 2006),

which yields straightforward inferences regarding the marginal processes while parameter-

izing the association.

The remainder of this chapter is organized as follows. In Section 3.2 we define notation

and formulate a joint model for multiple multistate processes. In Section 3.3 we discuss

methods for estimation and statistical inference. We focus on the setting in which the

transition times are interval-censored since disease processes are often only observed at

periodic assessment times. Simulation studies and an application to data on joint damage

in psoriatic arthritis are presented in Section 3.4, and general remarks are given in Section

3.5. We begin first, however, with a review of composite likelihood.
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3.1.2 Review of Composite Likelihood

Composite likelihoods are based on partial specification of the full likelihood (Besag, 1974;

Lindsay, 1988; Cox and Reid, 2004; Lindsay and others , 2011). Let {A1, . . . ,AQ} denote

a set of Q user-selected marginal or conditional events. Component likelihoods Lq(ψ) ∝

f(t ∈ Aq;ψ), indexed by a vector of parameters ψ, are associated with Aq and a composite

likelihood is simply a product of the component likelihoods,

CL(ψ) =

Q∏
q=1

Lq(ψ) . (3.1.1)

When the selected events are not independent, we apply a “working independence assump-

tion” and simply multiply the component likelihoods together as in (3.1.1).

Since each component likelihood is a true likelihood in some context, it has some of

the features of an ordinary likelihood; see Lindsay (1988) and Molenberghs and Verbeke

(2005) for the asymptotic theory. Under mild regularity conditions, the component score

functions satisfy

E(∂ logLq(ψ)/∂ψ) = 0 , q = 1, . . . , Q,

and from (3.1.1) it is apparent that the composite score ∂ logCL(ψ)/∂ψ is simply the

summation of the component score functions, implying under regularity conditions,

E(∂ logCL(ψ)/∂ψ) = 0 .

We denote CLi(ψ) as the composite likelihood for the ith individual. With a sample of m
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independent individuals, the overall composite likelihood is
∏m

i=1CLi(ψ) and a consistent

estimator ψ̂ is obtained by solving

m∑
i=1

∂ logCLi(ψ)/∂ψ = 0 .

Moreover,

√
m(ψ̂ − ψ)

d→ N(0,D−1(ψ)B(ψ)[D−1(ψ)]′) , as m→∞, (3.1.2)

where

D(ψ) = −E

[
∂2 logCLi(ψ)

∂ψ∂ψ′

]
,

B(ψ) = E

[
∂ logCLi(ψ)

∂ψ

∂ logCLi(ψ)

∂ψ′

]
.

In the analysis of a particular dataset, standard errors are estimated based on this result

by replacing the expectations in (3.1.2) with their empirical counterparts and evaluating

at the estimate ψ̂.

The natural question is how to select {A1, . . . ,AQ} to construct the composite like-

lihood. One approach is to construct the composite likelihood from low-dimensional

marginal or conditional densities; this is called the “construction method”. Alternatively,

a composite likelihood can be constructed by omitting particular terms for a full likelihood;

this is referred to as “omission method” (Varin, 2008). The general guideline for both the

construction and the omission method is that the parts kept in the composite likelihood
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should be informative, easily computed and contain parameters of interest; in contrast, the

parts omitted are usually hard to evaluate, not very informative, or pose a significant com-

putational burden. Both approaches invoke a series of working independence assumptions

under which we can write down a new, more convenient composite likelihood.

3.2 Multiple Multistate Processes

Recall that we defined notation for a single multistate process in Section 1.1.2 and denoted

p×1 vector of time-independent covariates by Z. Consider a disease process in which dam-

1 2 K−1 K K+1

1 2 K−1 K K+1

j = J

j = 1

Figure 3.1: State space diagram for multivariate multistate processes

age may occur in J similar organs of the affected individuals as depicted in Figure 3.1. Ex-

amples involving paired organs include left and right eyes, kidneys, or lungs, where J = 2,

or more generally joints at risk of damage in patients with arthritis. Let Tjk denote the time

of a k → k + 1 transition for process j, k = 1, · · · , K, where 0 < Tj1 < Tj2 < · · · < TjK ,

j = 1, . . . , J , Tj = (Tj1, . . . , TjK)′, and T = (T ′1, . . . , T
′
J)′. Let (T1K , . . . , TJK)′ denote

the vector of absorption times for the J processes. Define Tj,−K = (Tj1, . . . , Tj,K−1)′,

T−j,k = (T1k, . . . , Tj−1,k, Tj+1,k, . . . , TJk)
′ and T−j,−K = (T ′−j,1, . . . , T

′
−j,K−1)′. We similarly

define notation tj, t, tj,−K , t−j,k and t−j,−K . A fully-specified multiple multistate model
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requires a complete specification of the joint density of all transition times given covariate

Z = z, f(t|z). This can be written by decomposing the full density into a product of

conditional and unconditional densities, and working (conditional) independence assump-

tions can be made to avoid specifying (conditional) dependence structures of secondary

interest. These conditional independence assumptions lead to some simplifications and

motivate our use of composite likelihood. There are many ways to decompose the joint

density, with different decompositions and working independence assumptions serving to

address different research objectives.

Our first goal is to model each component process in a way that is similar to that

of a single multistate process as described in Section 1.1.2. Specifically, we want each

component process to be modeled by a Markov process with intensities of the form (1.1.2).

Introducing a subscript j before every subscript k, the joint density of Tj = (Tj1, . . . , TjK)′

given Z = z has the form

fj(tj|z; θj) =
K∏
k=1

[
λjk(tjk|z; θjk) exp

(
−
∫ tjk

tj,k−1

λjk(u|z; θjk)du

)]
, (3.2.1)

where 0 = tj0 < tj1 < . . . < tjK for j = 1, . . . , J , θjk = (α′jk, β
′
jk)
′ and θj = (θ′j1, . . . , θ

′
jK)′

(Andersen and others , 1993). In this case, each process preserves the Markov property and

covariate effects retain their interpretation as multiplicative effects on marginal intensities.

In what follows, an extra subscript is introduced to terms defined in Section 1.1.2 to

denote the counterpart specific to process j; we restrict attention, however, to “cluster-

level” covariates, Zj = Z, common to all processes and representing, for example, a genetic

marker, sex or treatment. Our second goal is to parameterize the association between
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processes which we can do by representing the joint survivor function of the absorption

times (T1K , . . . , TJK)′ given Z = z as

P (T1K ≥ t1K , . . . , TJK ≥ tJK |z;ψ) = C(F1K(t1K |z; θ1), . . . ,FJK(tJK |z; θJ);φ) , (3.2.2)

(Nelsen, 2006; Patton, 2006), where C(·;φ) is a multivariate copula function with associa-

tion parameters φ, FjK(tjK |z; θj) is the marginal survivor function of the absorption time

in process j, θ = (θ′1, . . . , θ
′
J)′ and ψ = (θ′, φ′)′. If process j is Markov, the survivor function

for Tjk is obtained as the complement of the [1, K + 1] entry of (1.1.1) where s = 0.

To ensure the satisfication of these two goals, we decompose the joint density f(t|z;ψ)

in a particular way and make “working” conditional independence assumptions about the

dependence relations of little interest. First, we decompose the full joint density f(t|z;ψ)

as

f(t|z;ψ) = f(t1,−K , . . . , tJ,−K |t1K , . . . , tJK , z;ψ) · f(t1K , . . . , tJK |z;ψ) , (3.2.3)

which can be rewritten as

f(t|z;ψ) =
J∏
j=1

f(tj,−K |t1K , . . . , tJK , z;ψ) · f(t1K , . . . , tJK |z;ψ) , (3.2.4)

under the first working conditional independence assumption

A.3.1 Tj,−K⊥T−j,−K |(T1K , . . . , TJK , Z
′)′,
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where we write Y1⊥Y2|Y3 to denote settings in which

fY1,Y2|Y3(y1, y2|y3) = fY1|Y3(y1|y3)fY2|Y3(y2|y3)

for random vectors Y1, Y2 and Y3. This assumption states that the dependence between

processes is governed by the associations between absorption times and intermediate tran-

sition times are independent between processes given the absorption times for all processes.

Second, expression (3.2.4) can then be further simplified to

f(t|z;ψ) =
J∏
j=1

f(tj,−K |tjK , z; θj) · f(t1K , . . . , tJK |z;ψ) , (3.2.5)

by making the second working conditional independence assumption

A.3.2 Tj,−K⊥T−j,K |(TjK , Z ′)′.

This assumption states that the intermediate transition times for a particular process

are conditionally independent of the absorption times for other processes given its own

absorption time. By (3.2.2) and (3.2.5), the joint density f(t|z;ψ) can then be expressed

as

f(t|z;ψ) =
J∏
j=1

fj(tj|z; θj) · c(F1K(t1K |z; θ1), . . . ,FJK(tJK |z; θJ);φ) , (3.2.6)

where the first J components are marginal density functions which correspond to marginal

models (3.2.1), and the last component is a copula density function c(·) of the copula C(·)

in (3.2.2) governing the absorption time distribution.
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Some conditional dependence structures are left unspecified by making the working con-

ditional independence assumptions A.3.1 and A.3.2, so (3.2.6) is only a partial specification

of the full likelihood (3.2.3). As such it can be characterized as a composite likelihood for

a fully observed multiple multistate processes. The working independence approach of

Lee and Kim (1998) involving separate marginal analyses can be cast in this framework.

They require their multiple multistate model to have the first feature only, and do not

model the dependence structure between processes. Thus (3.2.1) is a composite likelihood

under working independence assumptions between processes. We also remark that, in the

case J = 2 and K = 2, our model can be also justified by a vine copula decomposition

(Joe, 1996; Bedford and Cooke, 2001; Bedford and Cooke, 2002; Aas and Berg, 2009; Aas

and others , 2009). Figure 3.2 shows the decomposition specification of the joint density

Figure 3.2: A D-vine with four variables

f(t|z;ψ) according to a D-vine (Kurowicka and Cooke, 2005). Each edge in Figure 3.2
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corresponds to a pair-copula (conditional) density, e.g., the edge T11, T22|T12 corresponds

to the conditional copula density c(F(t11|t12, z; θ1),F(t22|t12, z; θ, φ);φ2). The joint density

of Tj1, Tj2 is given by (3.2.1), which is not induced by a copula function, for j = 1, 2. The

joint density f(t|z;ψ) corresponding to the D-vine illustrated in Figure 3.2 may be written

as

f(t|z;ψ) = f1(t11, t12|z; θ1) · c(F12(t12|z; θ1),F22(t22|z; θ2);φ) · f2(t21, t22|z; θ2)

· c(F(t11|t12, z; θ1),F(t22|t12, z; θ, φ);φ2)

· c(F(t12|t22, z; θ, φ),F(t21|t22, z; θ2);φ3)

· c(F(t11|t12, t22, z; θ, φ, φ2),F(t21|t12, t22, z; θ, φ, φ3);φ4) . (3.2.7)

Conditional independence assumptions are commonly used in the vine copula framework

to reduce the number of pair copulas in the decomposition and hence simplify model

construction. The working conditional independence assumptions A.3.1 and A.3.2 lead

one to set the last three terms of (3.2.7) equal to one, simplifying (3.2.7) to (3.2.6) with

J = 2.

The marginal processes are compatible with those of a single multistate process and

each component process in (3.2.6) yields parameters with a straightforward interpretation

in terms of transition rates and covariate effects. However, our model features a parame-

terized association structure and hence a measure of association can be readily calculated

based on the functional form of the copula C(·) and association parameter φ (Genest and

MacKay, 1986). In addition, our working assumptions are weaker than those of complete

independence, and may lead to more efficient estimation. Under (3.2.6), one can separately
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specify the marginal models for each process and the model for the association among the

processes, thereby avoiding specification of the conditional dependence structures of lit-

tle interest. Many options exist for specification of the marginal models and association

models, making (3.2.6) quite flexible.

3.3 Estimation and Inference

3.3.1 Notation for Interval-Censored Data

When individuals are assessed intermittently, the times of transitions between states are

subject to interval censoring. This is routinely the case when the processes relate to damage

of internal organs. For notational convenience, we restrict attention to the case in which

all processes are assessed at the same M(> 1) time points denoted by v0 < v1 < · · · <

vM < vM+1, where v0 = 0, vM+1 = ∞. Let V1, . . . , VM be a sequence of corresponding

random variables with joint density fV1,...,VM (v1, . . . , vM ; ν) indexed by ν. We assume that

ζj(v0) = 1 with probability one, j = 1, . . . , J . The data available then consist of the

covariate vector, the inspection times, and the states occupied at those times for each

process:

{(vm, ζ1(vm), . . . , ζJ(vm)); m = 0, 1, . . . ,M, Z} . (3.3.1)

It is also helpful to define random variables recording the number of “transitions” of a

particular type. Let Nm
jk` = I(ζj(vm−1) = k, ζj(vm) = `) indicate that process j occupies
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state k at assessment time vm−1 and state ` at vm, k ≤ `. In this case,

{
(vm, N

m
jk`, ` = k, . . . , K + 1, k = 1, . . . , K, j = 1, . . . , J); m = 1, . . . ,M, Z

}
contains exactly the same information as (3.3.1). The data can also be expressed as the

left and right censoring time of transition times which leads to the third way of expressing

data:

{Tjk ∈ (Ljk, Rjk]; k = 1, . . . , K, j = 1, . . . , J, Z} ,

where Ljk = vM(Tjk) and Rjk = vM(Tjk)+1. The observed history of process j at time t is

denoted Hj(t) = {(vm, ζj(vm)); m = 1, . . . ,M(t), Z} where M(t) = argmaxm{vm < t}.

3.3.2 Composite Likelihood Construction

We assume that the parameter ν associated with the inspection time process in

fV1,...,VM (v1, . . . , vM ; ν)

is functionally independent of the parameter of interest ψ. Under the conditions of Grüger

and others (1991) we proceed to construct the full likelihood arising from intermittent

inspection of a multiple multistate process as if the inspection times are fixed and hence

in what follows we restrict attention to the likelihood

L(ψ) = P (Tjk ∈ (ljk, rjk]; k = 1, . . . , K; j = 1, . . . , J |z, v1, . . . , vM ;ψ) . (3.3.2)
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The likelihood in (3.3.2) is obtained by computing J × K dimensional integrals over the

fully specified f(t|z;ψ) in (3.2.3). For example, in the case J = K = 2, four dimensional

integration on f(t|z;ψ) in (3.2.7) is required. The likelihood involves computationally-

demanding high-dimensional integration when J or K is large. Use of composite likelihood

enables some simplification in model specification and increases robustness of the model

structure.

Lee and Kim (1998) discuss the case when interest lies only in estimation of marginal

parameters. If a working independence assumption among processes is reasonable, the

estimation problem simplifies to one which has been addressed in the literature (Kalbfleisch

and Lawless, 1985). Since process j is Markov, the composite likelihood of process j is

Lj(θj) =
M∏
m=1

K∏
k=1

K+1∏
`=k

Pjk`(vm−1, vm|z; θj)
nm
jk` , (3.3.3)

where the transition probability is defined in Section 1.1.2. A Fisher-scoring or Newton-

Raphson algorithm can be used for estimation, and robust variance estimation is in the

spirit of (3.1.2).

If both marginal and association parameters are of interest, we make the following

working conditional independence assumptions:

A.3.3 Tj,−K⊥T−j,−K |(T1K ∈ (L1K , R1K ], . . . , TJK ∈ (LJK , RJK ], Z ′)′,

A.3.4 Tj,−K⊥T−j,K |(TjK ∈ (LjK , RjK ], Z ′)′.

These are slightly different from assumptions A.3.1 and A.3.2, but enable one to write
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down the composite likelihood arising from intermittent inspection:

CL1(ψ) =
J∏
j=1

P (Tjk ∈ (ljk, rjk], k = 1, . . . , K − 1|TjK ∈ (ljK , rjK ], z; θj)

× P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |z;ψ) . (3.3.4)

In (3.3.4),

P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |z;ψ)

=
∑
a∈A

(−1)da · C(F1K(a1K |z; θ1), . . . ,FJK(aJK |z; θJ);φ) , (3.3.5)

where a = (a1K , . . . , aJK)′, A = {a : ajK ∈ {ljK , rjK}, j = 1, . . . , J}, da =
∑J

j=1 I(ajK =

rjK), and (3.3.5) involves a summation of 2K items. Note that since {Tjk ∈ (Ljk, Rjk]; k =

1, . . . , K, j = 1, . . . , J, Z} contains the same information as {(vm, Nm
jk`, ` = k, . . . , K +

1, k = 1, . . . , K, j = 1, . . . , J); m = 1, . . . ,M, Z}, P (Tjk ∈ (ljk, rjk], k = 1, . . . , K|z; θj)

is equal to the marginal likelihood Lj(θj) of process j in (3.3.3). The composite likelihood

(3.3.4) can therefore be written as

CL1(ψ) =
J∏
j=1

Lj(θj)

FjK(ljK |z; θj)−FjK(rjK |z; θj)

× P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |z;ψ) . (3.3.6)

A composite likelihood can alternatively be built using the “construction method” by using

J marginal likelihoods to obtain marginal estimates and using the joint probability of the

J absorption times to estimate the association parameters. The composite likelihood is
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then

CL2(ψ) =
J∏
j=1

Lj(θj)× P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |z;ψ) , (3.3.7)

in which the J + 1 components are analogous to those in (3.2.6).

Composite likelihoods based on (3.3.3), (3.3.6) and (3.3.7) represent simplifications to

the full likelihood (3.3.2) and so may lead to some loss of efficiency, but their use introduces

robustness and significant computational advantages. The composite likelihood (3.3.3) is

obtained under the strongest working independence assumption so it does not provide

estimation of any association parameters and the estimators of the marginal parameters

obtained based on (3.3.3) would be expected to be the least efficient. The composite

likelihoods in (3.3.6) and (3.3.7) are constructed based on different ideas but have similar

forms, and both successfully avoid the need for high-dimensional integration.

3.3.3 Two-stage Estimation

A two-stage estimation procedure (Shih and Louis, 1995; Newey and McFadden, 1994) is

possible with the formulation described due to use of the copula function for the association

model. In the first stage, an estimate of the marginal parameters θj is obtained for each

process j using the marginal likelihood (3.3.3), j = 1, . . . , J . In the second stage, the

estimate θ̂ is inserted into composite likelihood function CL1(ψ) in (3.3.6) or CL2(ψ)

in (3.3.7), and the composite likelihood is then maximized with respect to φ to obtain

an estimate φ̃. With regard to the two composite likelihoods (3.3.6) and (3.3.7), only
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P (TjK ∈ (ljK , rjK ], j = 1, . . . , J |z;ψ) in (3.3.5) contains the association parameters, so this

is the objective function in the second stage. Shih and Louis (1995) develop the asymptotic

distribution for the case when the association parameter is a scalar. The corresponding

asymptotic results for a vector of association parameters are given in Newey and McFadden

(1994).

3.4 Simulation Studies and Illustration

3.4.1 Design and Analysis of Simulation Studies

The simulation studies conducted here are designed to assess the finite sample properties of

estimators from the various composite likelihoods. We consider two processes (J = 2) with

three states each (K = 2), where state 1 represents a “normal” condition, state 2 represents

“abnormal”, and state 3 represents the absorbing state of “organ damage”; we assume that

all subjects start from state 1 for both processes. We consider one Bernoulli covariate Z,

with P (Z = 1) = 0.5. We generate data from the joint density of the form (3.2.7) where

the marginal progress adopts a model with progressive time-homogeneous Markov margins

with transition intensity λjk(t|z; θjk) = αjk exp(zβjk) for j, k = 1, 2 and bivariate Clayton

copulas for all the conditional or unconditional densities. The Clayton copula, a member

of the Archimedian family, has the form (1.1.5) and is frequently used in survival analysis

due to its connection with the gamma frailty model (Joe, 1997). We assume here that

there are M = 10 common inspection times evenly spaced over the interval (0, 1], giving

visit times vm = 0.1×m for m = 1, . . . , 10.
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We assume that the two processes have the same margins, as would be the case with

clustered processes, so that α1k = α2k and β1k = β2k for k = 1, 2. We set βj1 = log(1.25)

to reflect a mild increase of the risk of transition from state 1 to 2 when Z = 1 and set

βj2 = log(1.4) to reflect a moderate effect on increasing the risk of transition from state 2

to 3 in both processes. The baseline transition intensities αjk for j, k = 1, 2 are set under

the following constraints: (i) the baseline transition rate out of state 2 is 1.5 times of that

out of state 1, i.e. αj2 = 1.5αj1 for j = 1, 2; (ii) the probability of both processes being in

state 3 by time 1 is 0.4 in the control group, so

P (ζ1(1) = 3, ζ2(1) = 3|Z = 0) = P (T12 ≤ 1, T22 ≤ 1|Z = 0) = 0.4.

These constraints give αj1 = 1.8148 and αj2 = 2.7221. The association parameters of

the Clayton copulas in (3.2.7) are set to (φ, φ2, φ3, φ4)′ = (3, 8, 2, 4.6667)′ giving Kendall’s

τ ’s of (0.6, 0.8, 0.5, 0.7)′ respectively (Nelsen, 2006). Two thousand samples of m = 1000

individuals each are simulated.

For each dataset, analyses are carried out based on the composite likelihoods (3.3.6)

and (3.3.7), and two-stage estimation used the composite likelihood to estimate ψ. The

empirical bias (BIAS), average asymptotic (large sample) standard error (ASE), empiri-

cal standard error (ESE) and empirical coverage probability (ECP) are evaluated for all

parameter estimates and reported in Table 3.1. Analyses are carried out using R.

As expected from the asymptotic theory of composite likelihood, the empirical biases

are all very small for both the estimates of marginal parameters and association param-

eters using all methods. The ASE and ESE are consistent with each other and the ECP
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Table 3.1: Frequency properties of estimators using three estimation methods (1000 indi-
viduals per sample; 2000 simulated samples)

Composite Likelihood (3.3.6) Composite Likelihood (3.3.7)

True Value BIAS ASE ESE ECP BIAS ASE ESE ECP

log(α11) 0.5960 0.0006 0.0449 0.0451 0.9475 0.0007 0.0466 0.0469 0.9455
log(α12) 1.0014 -0.0007 0.0560 0.0553 0.9540 -0.0009 0.0558 0.0550 0.9535
log(α21) 0.5960 0.0001 0.0455 0.0456 0.9485 0.0002 0.0469 0.0471 0.9515
log(α22) 1.0014 0.0016 0.0547 0.0527 0.9545 0.0015 0.0552 0.0536 0.9495
β11 0.2231 -0.0028 0.0559 0.0565 0.9485 -0.0032 0.0612 0.0618 0.9490
β12 0.3365 0.0025 0.0775 0.0765 0.9550 0.0023 0.0760 0.0749 0.9530
β21 0.2231 -0.0011 0.0582 0.0588 0.9495 -0.0014 0.0622 0.0626 0.9465
β22 0.3365 -0.0032 0.0744 0.0726 0.9535 -0.0035 0.0747 0.0732 0.9495

log(φ) 1.0986 0.0022 0.0609 0.0618 0.9455 0.0017 0.0610 0.0620 0.9410

Two-stage Estimation Relative Efficiency

True Value BIAS ASE ESE ECP RE1 RE2 RE3 RE4

log(α11) 0.5960 0.0006 0.0489 0.0495 0.9465 0.9639 0.9603 0.9184 0.9102
log(α12) 1.0014 -0.0007 0.0561 0.0553 0.9530 1.0040 1.0052 0.9985 1.0011
log(α21) 0.5960 0.0005 0.0489 0.0491 0.9520 0.9702 0.9690 0.9297 0.9298
log(α22) 1.0014 0.0019 0.0561 0.0545 0.9495 0.9894 0.9830 0.9747 0.9666
β11 0.2231 -0.0031 0.0680 0.0689 0.9490 0.9140 0.9130 0.8219 0.8196
β12 0.3365 0.0021 0.0761 0.0749 0.9485 1.0198 1.0219 1.0183 1.0212
β21 0.2231 -0.0016 0.0680 0.0685 0.9495 0.9368 0.9384 0.8561 0.8577
β22 0.3365 -0.0035 0.0760 0.0750 0.9495 0.9972 0.9916 0.9793 0.9677

log(φ) 1.0986 0.0001 0.0610 0.0619 0.9450 0.9977 0.9964 0.9977 0.9985

RE1−RE4 respectively denote relative efficiency of composite likelihood (3.3.7) v.s. composite likelihood
(3.3.6) based on ASE, composite likelihood (3.3.7) v.s. composite likelihood (3.3.6) based on ESE, two-
stage estimation v.s. composite likelihood (3.3.6) based on ASE, two-stage estimation v.s. composite
likelihood (3.3.6) based on ESE.
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are all very close to the nominal confidence level of 95%, suggesting that the methods

proposed provide a valid basis for inference. The estimate of the association parameter by

the two-stage procedure is of comparable efficiencies, however, there is more substantial

loss for the estimates of the marginal parameters compared to those using simultaneous

estimation procedure based on the composite likelihood (3.3.6) and (3.3.7). We remark as

well that estimates of the marginal parameters with respect to the transition from mild to

intermediate state obtained from the composite likelihood (3.3.6) are slightly more efficient

than those from the composite likelihood (3.3.7).

3.4.2 Joint Damage Progression in Individuals with Arthritis

Patients with arthritic conditions are at risk of developing debilitating joint damage and

it is common to use the total joint count as a global summary of damage. We consider

data from the University of Toronto Psoriatic Arthritis (PsA) Clinic which are comprised of

several hundred patients as mentioned in Section 1.2.2. We consider the Human Leukocyte

Antigen (HLA) B27 as a covariate Z, since it is an inherited genetic marker associated with

a number of related rheumatic diseases including ankylosing spondylosis. The severity of

joint damage is recorded in a five-point modified Steinbrocker scale as mentioned earlier.

The primary interest is to evaluate the covariate effect on the joint damage progression

of the left and right sacroiliac (SI) joints. We restrict attention to data, as of December

1, 2007, for 640 patients with complete covariate information (HLA B27) and use data

obtained at all assessment times that the modified Steinbrocker score could be assessed. In

our analysis, we combine the original states 2 and 3 to form a state representing mild joint
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damage, and states 4 and 5 as a state denoting moderate to severe damage. We allow the

covariate HLA B27 to have different effects for the left and right SI joints, and also allow

different baseline transition rates for both transition into the mild-moderate state and that

into severe state. We conduct joint analysis of the PsA data to estimate the effect of the

HLA B27 and association parameters between the two processes using the three methods

we proposed in Section 3.2.

The results are summarized in Table 3.2. The upper third of the table gives estimates

pertaining to baseline transition rates, the middle third is of the regression coefficients,

and the lower third is for the association parameter. The estimated regression coefficients

suggest that HLA B27 increases the risk of transition into the mild-moderate and severe

damage states. Based on analysis using the composite likelihood (3.3.6), for example,

individuals being HLA B27 positive have a significantly higher transition rate to mild-

moderate damage on the left SI joint (RR = 1.28, 95% CI: 1.16–1.41, p-value < 0.001)

and a significantly higher rate of progression to the state of severe damage on that side

(RR = 1.68, 95% CI: 1.33–2.03, p-value < 0.001). On the right SI joint, being B27

positive is associated with an increased risk of mild-moderate damage (RR = 1.16, 95%

CI: 1.11–1.21, p-value < 0.001) and there is evidence of a more rapid onset of severe damage

(RR = 1.48, 95% CI: 1.07–1.90, p-value < 0.001). The estimate of Kendall’s τ based on

(3.3.6) was τ̂ = 0.82 (95% CI: 0.77–0.87, p-value < 0.001) corresponding to significant

evidence of a very strong association in progression times to severe damage.

One of the New York criteria (Moll and Wright, 1973) for diagnosis of ankylosing

spondylitis is satisfied if both the left and right SI joints are in state 3 (i.e. (ζ1(t), ζ2(t)) =

(3, 3)). The joint model is particularly appealing here then, since it permits prediction of
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Table 3.2: Joint analysis of progression in the left and right sacroiliac joints in psoriatic
arthritis (PsA) with the covariate HLA B27 and allowing different parameters in the two
processes

Independence Assumption† Composite (3.3.6) Composite (3.3.7)

EST. Naive S.E. Robust S.E. EST. S.E. EST. S.E.

Baseline Intensity

Left-side
log(α11) -0.215 0.057 0.035 -0.182 0.015 -0.196 0.028
log(α12) -0.977 0.105 0.187 -0.788 0.027 -0.944 0.098

Right-side
log(α21) -0.005 0.007 0.003 0.009 0.001 0.019 0.003
log(α22) -0.903 0.097 0.136 -0.828 0.049 -0.978 0.093

Coefficients

Left-side
β11 0.265 0.131 0.440 0.249 0.049 0.291 0.081
β12 0.649 0.191 0.835 0.519 0.107 0.568 0.251

Right-side
β21 0.176 0.106 0.306 0.149 0.022 0.173 0.211
β22 0.398 0.192 0.728 0.395 0.143 0.428 0.419

Association Parameter

log(φ) - - - 2.188 0.161 2.288 0.137

† The marginal estimates under working independence assumption are plugged into the composite likeli-
hood to obtain log(φ̂) = 2.239 (S.E. = 0.246).
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time to the development of ankylosing spondylitis in PsA patients. Figure 3.3 gives plots
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Figure 3.3: Plots of the cumulative probability of ankylosing spondylitis by B27 status
according to the composite likelihood (3.3.6) analysis from the joint model and based on
nonparametric estimate of Gentleman and Vandal (2002); for the fitted parametric model

the estimated joint probability is P (ζ1(t) = ζ2(t) = 3|ζ1(0) = ζ2(0) = 1; ψ̂)

of the cumulative probability of ankylosing spondylitis by this criteria based on the fitted

model using the composite likelihood (3.3.6) as an illustration. The left-hand panel shows

this probability estimated for individuals who are B27 negative and the right-hand panel is

for those who are B27 positive. Overlaid on these plots are estimates obtained by the graph

theoretic approach to nonparametric estimation of bivariate failure time distributions with

interval-censored data developed in Gentleman and Vandal (2002) and implemented in the

R package MLEcens (Maathuis, 2013). There is reasonable agreement between the estimates

obtained with the joint model and the nonparametric estimates.
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The joint model is also useful for examining how risks of damage in a particular SI

joint depend on the damage state of the contralateral SI joint. For example if we consider

the risk of the left SI joint exhibiting severe damage since onset, we can consider three

scenarios: the right SI joint has developed

i) no damage by 10 years,

ii) mild-moderate damage by 10 years, and

iii) severe damage by 10 years.

The fitted model yields estimates as P (ζ1(t) = 3|ζ1(0) = 1, ζ2(10) = 1, z; ψ̂), P (ζ1(t) =

3|ζ1(0) = 1, ζ2(10) = 2, z; ψ̂), and P (ζ1(t) = 3|ζ1(0) = 1, ζ2(10) = 3, z; ψ̂) respectively.

These are plotted in Figure 3.4 and reveal that the appreciable estimate of Kendall’s τ

leads to a strong influence on the conditional probabilities and hence prediction in the

course of disease.

3.5 General Remarks

In contrast to commonly-adopted intensity-based or frailty-based approaches, we have for-

mulated a copula-based joint model for multiple multistate Markov processes and have

paid special attention to the case that the processes are observed subject to intermittent

inspections. Through decomposition of the density and conditional independence assump-

tions, an appealing joint model is obtained by assuming that the joint survival function of

absorption transition times is governed by a multivariate copula function.
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Figure 3.4: Plots of the estimated conditional probability P (ζ1(t) = 3|ζ1(0) = 1, ζ2(10) =

1, z; ψ̂), P (ζ1(t) = 3|ζ1(0) = 1, ζ2(10) = 2, z; ψ̂) and P (ζ1(t) = 3|ζ1(0) = 1, ζ2(10) = 3, z; ψ̂)
vs. time since disease onset (years) for the composite likelihood (3.3.6) analysis using the
joint model
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This copula formulation has obvious advantages. It ensures comparability of marginal

analyses to those of a single disease process and allows us to use the marginal methods in

the existing literature. It guarantees an easy interpretation of marginal covariate effects

which is not available if a frailty-based model is adopted. In addition to offering a number

of options for estimation as discussed in Section 3.3, the copula formulation also ensures

flexibility of model selection in that a wide range of marginal processes can be specified

and copula functions can be selected from a rich family. Compared to the marginal method

based on working independence assumption, our method facilitates scientific understanding

regarding how the progression of one marginal disease process affects the other processes.

With interval-censored data arising from intermittent inspection, the full likelihood may

involve high-dimensional integration when the marginal processes have a large number of

states. Use of composite likelihood helps overcome such problems. The composite likeli-

hood approaches and the two-stage methods offer considerable computational advantages

and bring about increased robustness since they involve a lower degree of model specifica-

tion at the price of some loss in efficiency. The robustness regarding consistency is similar

in spirit to the robustness of generalized estimating equations (GEE) since both methods

avoid specification of the higher-order dependencies (Xu and Reid, 2011). The computa-

tional advantages are based on the fact that the composite likelihood is integration-free

and is easier to maximize (Varin and others , 2011). As is often the case, the computa-

tional convenience and robustness are gained by sacrificing statistical efficiency, so that the

trade-off between those factors needs to taken into account when formulating a composite

likelihood function.
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Chapter 4

Semiparametric Two-stage

Estimation for Copula Models in

Survival Data

4.1 Introduction

Multivariate time-to-event data frequently arise in medical studies and are drawing in-

creased attention. Appropriate multivariate models can be useful to identify risk factors,

characterize their effects, and make predictions about multivariate event times. Moreover,

it is often of interest to model the association between event times to advance scientific

understanding about the relation between event times under study.

Two approaches are commonly used in modeling multivariate data: random effect (or
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“frailty”) models and marginal approaches. In random effect models, conditional inde-

pendence assumptions are made between event times given a scalar or vector-valued non-

negative random variable. In marginal methods, the marginal distribution is modeled

directly under a working independence assumption (Wei and others , 1989) and a robust

covariance matrix can be obtained to ensure valid simultaneous inference in the spirit of

generalized estimation equations (Liang and Zeger, 1986). A dependency structure can

alternatively be imposed and this is often done through selection of a copula model (Joe,

1997; Nelsen, 2006), leading to a fully-specified model.

A significant appeal of copula models is that they enable separate modeling and es-

timation of the marginal distribution and the association. A nonparametric two-stage

estimation (Chen and Huang, 2007) can be conducted by estimating the two marginals by

one kernel distribution estimator given by Bowman and others (1998) and estimating the

copula function by another kernel estimator considered by Fermanian and Scaillet (2003)

in the second stage based on the estimated marginals . Nonparametric approaches can

provide robustness but are inefficient and, have difficulty in handling censoring. If interest

primarily lies in estimation of the association parameters in the copula, a parametric two-

stage estimation can be followed by modelling the marginal distribution parametrically

and estimating the marginal parameters in the first stage, and the association parameter

in the copula in the second stage. Use of parametric models can lead to highly-efficient

inference but often with the price that there is little robustness to inferences. A semipara-

metric two-stage approach can combine the best features of both approaches and will be

our focus in what follows. This approach is carried out by conducting marginal analyses

nonparamerically when no covariates appear or based on semiparametric models when co-
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variates are present in the first stage. The association parameter in the copula is then

estimated in the second stage by optimizing an objective function (often a likelihood) ex-

ploiting the estimates of the marginal distribution functions obtained in the first stage.

Genest and others (1995) study the estimation of the association parameter and asymp-

totic properties of the estimator obtained from such a semiparametric two-stage approach

for complete data. In medical studies, the event times are usually subject to censoring.

The asymptotic properties of the estimator in the semiparametric two-stage estimation

have been discussed in the literature for right-censored data with random censoring time

(Shih and Louis, 1995), right-censored data with dependent censoring time (Wang, 2003),

current status data (Wang and Ding, 2000), and interval-censored data (Sun and others ,

2006). The asymptotic variance is also estimated by discretizing parameterization (Bailey,

1984; Lawless and Yilmaz, 2011; Yilmaz and Lawless, 2011) and calculating the asymptotic

covariance matrix in the spirit of parametric two-stage estimation procedure (Newey and

McFadden, 1994; Shih and Louis, 1995)

This chapter presents a new expression for the asymptotic variance of the second-stage

estimator for the association parameter along with a way of estimating this in finite samples.

This estimator of the asymptotic variance can be applied to complete, right-censored,

and current status data with or without covariates. Simulation studies are conducted to

compare the behaviour of the new estimators of the asymptotic variance with those in

the established literature listed above and the empirical variance estimated in simulation

studies.

The remainder of this chapter is organized as follows. The proposed estimator for the

asymptotic variance of the second-stage estimator for the association parameter is given in
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Section 4.2. Simulation studies and analyses of data from motivating studies are in Section

4.3 and 4.4 respectively, and general remarks are in Section 4.5.

4.2 Estimation and Inference

4.2.1 Preliminary Remarks

We first consider a single-sample problem. Let (T1, T2) denote a pair of random survival

times with continuous marginal survivor functions (F1(·),F2(·)), where Fj(t) = P (Tj ≥ t),

j = 1, 2, and density functions (f1(·), f2(·)), where fj(t) = −dFj(t)/dt, j = 1, 2. If

(T1, T2) is governed by a copula function Cφ(·, ·), where φ is an association parameter, then

F(t1, t2) = P (T1 ≥ t1, T2 ≥ t2), the joint survivor function of (T1, T2), is of the form

F(t1, t2) = Cφ(F1(t1),F2(t2)) , t1, t2 ≥ 0 . (4.2.1)

We let cφ(·) denote the bivariate density corresponding to the copula Cφ(·).

4.2.2 Data Structure

Let (C1, C2) denote a pair of random times with continuous marginal survivor functions

(G1(·),G2(·)) and density functions (g1(·), g2(·)), and suppose further that (C1, C2) are

independent of (T1, T2). For right-censored data, let Xj = min(Tj, Cj) and ∆j = I(Tj ≤

Cj), j = 1, 2. Under a current status observation scheme, we observe Xj = Cj and

∆j = I(Tj ≤ Cj), j = 1, 2. In an effort to unify the way that these two settings are handled,
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we note that the observed data for these two cases can be expressed as times (X1, X2) and

indicators (∆1,∆2). Here we let Xj has the survivor function Hj(·) and density function

hj(·). Since X1 and X2 are continuous but ∆1 and ∆2 are discrete random variables, we

define (X1, X2,∆1,∆2) having the “mixed joint density”

h(x1, x2, δ1, δ2) = hX1,X2(x1, x2|∆1 = δ1,∆2 = δ2)P (∆1 = δ1,∆2 = δ2) ,

and the joint cumulative distribution function (c.d.f.)

H(x1, x2, δ1, δ2) =
∑
s1≤δ1

∑
s2≤δ2

∫ x2

t2=−∞

∫ x1

t1=−∞
h(t1, t2, s1, s2)dt1dt2 .

Let {(X1i, X2i,∆1i,∆2i), i = 1, . . . ,m} be a random sample from H and let Hm denote

the empirical distribution function corresponding to H based on a sample of size m. For

right-censored data, the marginal density function of Xj is

hj(xj) = fj(xj)Gj(xj) + gj(xj)Fj(xj) ,

and for current status data, hj(xj) = gj(xj).

4.2.3 Stage I: Estimation of the Marginal Survivor Functions

In the first stage of the semiparametric two-stage estimation procedure, a working indepen-

dence assumption is made and estimation of marginal survivor functions is carried out. The

problem is then simplified to that of a univariate survival analysis. Let Fj(t) = 1−Fj(t).
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Complete Data

If the complete data are observed, the estimated marginal c.d.f. is taken to be m/(m+ 1)

times the marginal empirical distribution function, i.e.,

F̂j(t) =
1

m

m∑
i=1

I(Xji < t) ,

and F̂j(t) = 1− F̂j(t), j = 1, 2. This rescaling avoids difficulties arising from the potential

unboundedness of log cφ(u1, u2) as u or v tend to one (Genest and others , 1995).

Right-censored Data

If the event times are subject to right-censoring, the marginal survivor function Fj(t) can

be estimated by the Kaplan-Meier method (Kaplan and Meier, 1958) as

F̂j(t) =
∏

i:Xji<t

(
1− dΛ̂j(Xji)

)
, (4.2.2)

where

dΛ̂j(Xji) =
∆ji∑m

k=1 I(Xjk ≥ Xji)
, (4.2.3)

if we assume there are no ties in the data.
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Current Status Data

The estimation of the survival function in this context is thoroughly reviewed in Huang

and Wellner (1997). The nonparametric maximum likelihood estimator (NPMLE) of Fj,

denoted by F̂j, maximizes the function

`(Fj) =
m∑
i=1

[
∆ji logFj(Cj(i)) + (1−∆ji) logFj(Cj(i))

]
,

for j = 1, 2. The marginal estimator of the c.d.f. for events of type j, F̂j, can be represented

by the max-min formula with current status data,

F̂j(Cj(i)) = max
`≤i

[
min
k≥i

(∑k
n=` ∆j(n)

k − `+ 1

)]
,

where Cj(1) ≤ Cj(2) ≤ . . . ≤ Cj(m) are ordered values of (Cj1, . . . , Cjm) and ∆j(i) are the

associated indicators for Cj(i), for j = 1, 2 and i = 1, . . . ,m. This expression is not optimal

for actual computation of F̂j(Cj(i)), and a popular algorithm for this setting is the pool

adjacent violators algorithm (PAVA) (Ayer and others , 1955; van Eeden, 1956, 1957). No

attempt is made to smooth the estimate of what is likely a continuous function and so

this estimate has been criticized for its lack of smoothness, the presence of too many flat

regions, and its slow (n1/3) rate of convergence (Groeneboom and Wellner, 1992). The

isotonized kernel estimator (Schimek, 2000) is defined by

F̂ ∗j (t) =

∑m
i=1K

(
(t− Cj(i))/bm

)
F̂j(Cj(i))∑m

i=1K
(
(t− Cj(i))/bm

) , (4.2.4)
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for time t, where bm is the bandwidth and K(·) is a log-concave density (i.e., K(·) =

exp(Q(·)), Q(·) is a concave function).

4.2.4 Stage II: Estimation of the Association Parameter

In the second stage of the two-stage estimation procedure, the association parameter is

estimated by maximizing the likelihood with respect to φ when it is evaluated at the

estimated marginal survivor functions at the observed times (F̂1(X1i), F̂2(X2i)) and the

corresponding indicators (∆1i,∆2i) for i = 1, . . . ,m. This is denoted by

m∏
i=1

L(φ; F̂1(X1i), F̂2(X2i),∆1i,∆2i) , (4.2.5)

and we let `(φ;u1, u2, δ1, δ2) = logL(φ;u1, u2, δ1, δ2), where uj ∈ [0, 1] and δj = {0, 1},

j = 1, 2. The estimator of φ, denoted by φ̃, is the solution to the estimating equation

m∑
i=1

Uφ(φ; F̂1(X1i), F̂2(X2i),∆1i,∆2i) = 0 , (4.2.6)

where

Uφ(φ;u1, u2, δ1, δ2) =
∂`(φ;u1, u2, δ1, δ2)

∂φ
.
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We also define some auxiliary quantities

Vφ(φ;u1, u2, δ1, δ2) =
∂2`(φ;u1, u2, δ1, δ2)

∂φ2
,

Vφ,1(φ;u1, u2, δ1, δ2) =
∂2`(φ;u1, u2, δ1, δ2)

∂φ∂u1

,

Vφ,2(φ;u1, u2, δ1, δ2) =
∂2`(φ;u1, u2, δ1, δ2)

∂φ∂u2

.

Complete Data

For complete data (Genest and others , 1995), L(φ;u1, u2, δ1 = 1, δ2 = 1) = L(φ;u1, u2) and

L(φ;u1, u2) = cφ(u1, u2).

Right-censored Data

Under right censoring (Shih and Louis, 1995), we obtain

L(φ;u1, u2, δ1, δ2) = cφ(u1, u2)δ1δ2
∂Cφ(u1, u2)δ1(1−δ2)

∂u1

∂Cφ(u1, u2)δ2(1−δ1)

∂u2

Cφ(u1, u2)(1−δ1)(1−δ2) .

Current Status Data

For current status data (Wang and Ding, 2000),

L(φ;u1, u2, δ1, δ2) = [1− u1 − u2 + Cφ(u1, u2)]δ1δ2 · [u2 − Cφ(u1, u2)]δ1(1−δ2)

· [u1 − Cφ(u1, u2)]δ2(1−δ1) · Cφ(u1, u2)(1−δ1)(1−δ2) .
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4.2.5 Asymptotic Properties of the Estimator φ̃

The consistency of φ̃ can be shown by applying Theorem 2.5 in Newey and McFadden

(1994) or justified by asymptotical unbiasedness of (4.2.6) in the theory of estimating

equations (Godambe, 1991). This section focuses on conditions for asymptotic normality.

Theorem 1. Under regularity conditions (a)-(h) of Appendix A, m1/2(φ̃−φ) converges to

a normal distribution with mean zero and variance σ2 = (σ2
1 + σ2

2)/σ4
1, as m→∞, where

σ2
1 = E [−Vφ(φ;F1(X1),F2(X2),∆1,∆2)] ,

σ2
2 = E [W1(φ,X1) +W2(φ,X2)]2 ,

and

Wj(φ,Xj) =

∫
A
Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)
I(Xj ≥ xj)dH(x1, x2, δ1, δ2) .

The proof of Theorem 1 is given in Appendix A along with the regularity conditions

(a)-(h).

For finite samples, an estimator of the asymtotic variance of φ̃ may be obtained by

replacing H by its empirical distribution function Hm, and Fj(·), fj(·), hj(·) and φ by
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their (uniformly) consistent estimators F̂1(·), f̂j(·), ĥj(·) and φ̃, for j = 1, 2. Specifically,

σ̂2
1 = − 1

m

m∑
i=1

Vφ(φ̃; F̂1(X1i), F̂2(X2i),∆1i,∆2i) , (4.2.7)

σ̂2
2 =

1

m

m∑
i=1

[
Ŵ1(φ̃, X1i) + Ŵ2(φ̃, X2i)

]2

, (4.2.8)

where

Ŵj(φ̃, Xji) =
1

m

m∑
k=1

Vφ,j(φ̃; F̂1(X1k), F̂2(X2k),∆1k,∆2k)
f̂j(Xjk)

ĥj(Xjk)
I(Xji ≥ Xjk) , (4.2.9)

j = 1, 2.

Theorem 2. Under regularity conditions (a)-(j) of Appendices A and B, σ̂2
1 and σ̂2

2 in

(4.2.7) and (4.2.8) are consistent estimators of σ2
1 and σ2

2 respectively.

The proof of Theorem 2 is given in Appendix B.

4.2.6 Regression Problem

Let Z be a vector of fixed discrete covariates, such as treatment indicators, or gender. The

Cox model (Cox, 1972) specifies the hazard rate of failure for the survival time Tj given

Z = z to have the form

λj(t|z) = λj0(t) exp(z′βj) , t ≥ 0 ,
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where the baseline intensity function λj0(t) is not assumed to have any particular para-

metric form. The marginal survivor function of Tj given Z = z has the form Fj(tj|z) =

Fj0(tj)
exp(z′βj) and the corresponding density function is denoted by fj(tj|z); Fj0(tj) =

exp
[
−
∫ tj

0
λj0(u)du

]
. We also assume that the joint survivor function of (T1, T2) condi-

tional on Z = z is induced by a conditional copula function (Patton, 2006) as introduced

in (1.1.3) and bears the form

F(t1, t2|z) = Cφ(F1(t1|z),F2(t2|z)), t1, t2 ≥ 0 .

Suppose that the censoring times (C1, C2) and (T1, T2) are conditional independent given

covariate Z. Under right censoring, the marginal density function of Xj conditional on

Z = z is then

hj(xj|z) = fj(xj|z)Gj(xj|z) + gj(xj|z)Fj(xj|z) ,

and for current status data hj(xj|z) = gj(xj|z).

In the first stage, we estimate F̂j(·|z), the marginal survivor function conditional on

Z = z, and in the second stage, the likelihood (4.2.5) is maximized with respect to φ when it

is evaluated at the estimated marginal survivor function (F̂1(X1i|Zi), F̂2(X2i|Zi),∆1i,∆2i)

to obtain an estimate of the association parameter φ, denoted by φ̃. Asymptotic normality

can be proven as in Theorem 1, except that here the relevant functionals are conditional

on Z and so take the form

σ2
1 = E [−Vφ(φ;F1(X1|Z),F2(X2|Z),∆1,∆2)] ,
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and

σ2
2 = E [W1(φ,X1, Z) +W2(φ,X2, Z)]2 ,

where

Wj(φ,Xj, Z) =

∫
A
Vφ,j(φ;F1(x1|z),F2(x2|z), δ1, δ2) · fj(xj|z)

hj(xj|z)

· I(Xj ≥ xj)I(Z = z)

P (Z = z)
dH(x1, x2, δ1, δ2|z) .

Consistent estimators of σ2
1 and σ2

2 are

σ̂2
1 = − 1

m

m∑
i=1

Vφ(φ̃; F̂1(X1i|Zi), F̂2(X2i|Zi),∆1i,∆2i) , (4.2.10)

and

σ̂2
2 =

1

m

m∑
i=1

[
Ŵ1(φ̃, X1i, Zi) + Ŵ2(φ̃, X2i, Zi)

]2

, (4.2.11)

where we define mi =
∑m

k=1 I(Zk = Zi) and

Ŵj(φ̃, Xji, Zi) =
1

mi

m∑
k=1

Vφ,j(φ̃; F̂1(X1k|Zi),F̂2(X2k|Zi),∆1k,∆2k)

· f̂j(Xjk|Zi)
ĥj(Xjk|Zi)

· I(Xji ≥ Xjk) · I(Zk = Zi) ,

for j = 1, 2.
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4.2.7 Discrete Parameterization

In this approach we drop the assumption that the baseline survivor functions Fj0(·), j =

1, 2, are continuous functions, and instead assume them to be discrete survivor distributions

which place mass only on observed failure times. Following this discrete parameterization,

parametric maximum likelihood methods can be used for estimation and inference, making

this virtually the same problem as that of parametric two-stage estimation procedures

(Newey and McFadden, 1994; Shih and Louis, 1995). This ad hoc approach is frequently

adopted in research because it by-passes the nonparametric or semiparametric nature of the

problem by conducting estimation and inference in the parametric setting. Ackerberg and

others (2012) derive a number of results demonstrating the numerical equivalence between

nonparametric or semiparametric variance estimates and variance estimates based on a

parametric treatment of the problem. The equivalence will be studied in some cases here

through examination of the theory and by simulation.

4.3 Examples and Simulation Studies

In this section, we empirically assess the performance of the variance estimates of log φ̃,

the logarithm of the estimate of the dependence parameter in the copula, under different

scenarios. We reparameterize and estimate log(φ) instead of φ to remove issues with

estimates near the boundary of the parameter space. A pair of survival times are generated

by a Clayton copula (1.1.5).
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4.3.1 Bivariate Right-censored Survival Data

We first consider bivariate right-censored survival data.

The One-sample Problem

We assume unit exponential margins and set Kendall’s τ from the Clayton copula to

be 0.25, 0.50 and 0.75 to represent mild, moderate and strong association respectively.

We consider the cases of no-censoring and 30% right-censoring with the latter achieved

by generating a pair of independent uniformly-distributed random censoring times over

[0, 3.197]. For each parameter configuration, we generate 2000 samples with m = 200 or

400 subjects in each sample.

For each dataset, analyses are carried out based on a semiparametric two-stage es-

timation method, in which the first-stage estimation is conducted as in (4.2.2) and the

second-stage estimation is carried out by plugging in the marginal distribution estimators

as shown in (4.2.5). The empirical bias (BIAS), empirical standard error (ESE), average

asymptotic (large sample) standard error (ASE) and empirical coverage probability (ECP)

are evaluated for the association parameter estimate. Analyses are carried out using pro-

grams in R.

The ASE1 is the average of the 2000 large sample standard errors, each of which is

calculated based on the method proposed in Section 4.2.5, computed by
√
σ̂2

1 + σ̂2
2/σ̂

2
1,

where σ̂2
1 and σ̂2

2 are given in (4.2.7) and (4.2.8) respectively. In (4.2.9), the functions fj(t)

and hj(t) are estimated by kernel function estimators f̂j(t) and ĥj(t). The kernel function
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estimator of the marginal density function fj(t) is

f̂j(t) = −b−1
m

∫
K
(
t− u
bm

)
dF̂j(u) , (4.3.1)

where K(·) is a kernel probability density function with support over [−1, 1]. When K(u)

is the uniform kernel function, i.e., K(u) = 1
2
I(−1 ≤ u ≤ 1), this amounts to estimating

fj(t) by

f̂j(t) =
1

2bm

[
F̂j(t− bm)− F̂j(t+ bm)

]
,

where bm is a bandwidth. Similarly, hj(t) is estimated by

ĥj(t) =
1

2bm

[
Ĥj(t− bm)− Ĥj(t+ bm)

]
, (4.3.2)

where Ĥj(t) is the Kaplan-Meier estimator for Hj(t) of the form

Ĥj(t) =
∏

i:Xji<t

(
1− 1∑m

k=1 I(Xjk ≥ Xji)

)
,

again assuming that there are no ties but this time the assumption is made for the X

terms. Uniform convergence stands if

(i) fj(t) and hj(t) are continuous on t ∈ [0,∞],

(ii) K(u) is a continuous density function with support u ∈ [−1, 1] and is of bounded

variation,
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(iii) bm → 0 and (logm)/(mbm)→ 0 as m→∞.

The selection of the bandwidth bm is critical as it will affect the performance of the es-

timator for asymptotic variance of φ̃. This usually can be carried out by cross-validation

method. The bandwidth selection for kernel estimator of fj(t) and hj(t) can be tackled in

the same way, and we take fj(t) as an example. We follow Bowman (1984) and select a

bandwidth by minimizing the following quantity

1

m

m∑
i=1

∫ (
f̂

(−i)
j (y)

)2

dy − 2

m

m∑
i=1

f̂
(−i)
j (Xji)

where f̂
(−i)
j (y) denotes the kernel estimator constructed from the data without the ith

observation. This method is commonly referred to as least square cross-validation, since

it is base on the so-called leave-one-out density estimator f̂
(−i)
j (y). In our specific imple-

mentation, we choose candidate values from 0.001 to 0.1 in step of 0.001 and select the

optimal value for bandwidth bm by the least square cross-validation method. In princi-

ple, we can conduct cross-validation for each of the 2000 simulated samples. Due to the

computational burden, we refrain from doing so and instead use a common bandwidth bm

for all of the 2000 samples selected by conducting cross-validation for a few trials on some

randomly-generated samples.

The ASE2 is the average of the 2000 large sample standard errors introduced in Shih

and Louis (1995), of the form
√
σ̂2

1 + σ̃2
2/σ̂

2
1, in which

σ̃2
2 =

1

m

m∑
i=1

[
W̃1(φ̃, X1i,∆1i) + W̃2(φ̃, X2i,∆2i)

]2

,
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with

W̃j(φ̃, Xji,∆ji) =
1

m

m∑
k=1

Vφ,j(φ̃; F̂1(X1k), F̂2(X2k),∆1k,∆2k)Îj(Xji,∆ji, Xjk) ,

Îj(Xji,∆ji, Xjk) = −F̂j(Xjk)

I(Xji ≤ Xjk,∆ji = 1)

p̂ji
−

∑
Xj`≤min(Xji,Xjk)

dΛ̂j(Xj`)

p̂j`

 ,

and

p̂ji =

∑
` {Xj` ≥ Xji}

m
, for j = 1, 2.

The ASE3 is the average of the 2000 large sample standard errors calculated assuming

a parametric model with a discrete hazard in which the estimates of F1(·) and F2(·) have

jumps only at observed (i.e. uncensored) times (Bailey, 1984). Let λj = (λj1, . . . , λjNj
)′,

Nj =
∑m

i=1 ∆ji and ψ = (φ, λ′1, λ
′
2)′ be the full vector of parameters. The two-stage

“parametric” two-stage estimation procedure can be conducted in the way that marginal

discrete hazard parameters λj are estimated in the first stage by maximizing the function

`j(λj) =
m∑
i=1

 ∑
k:Xjk<Xji

log(1− λjk) + ∆ji log λji

 .

We thus obtain

λ̂ji =
∆ji∑m

k=1 I(Xjk > Xji) + ∆ji

,
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which is equal to dΛ̂j(Xji) in (4.2.3). The marginal survival function is estimated by

F̂j(t) =
∏

i:Xji<t

(1− λ̂ji) ,

which is equal to the Kaplan-Meier estimator (4.2.2) and ensures the equivalence between

nonparameteric and parametric methods for estimation of the marginal distributions. In

the second stage, F̂j(t) is then plugged into a likelihood as in (4.2.5), of which the log-

likelihood can be written as `(ψ) =
∑m

i=1 `i(ψ). We can get an estimate of φ by maximizing

`(ψ) with respect to φ given (λ̂′1, λ̂
′
2)′. The sample standard error is the square root of item

[1, 1] of the matrix

Â−1(ψ̂)B̂(ψ̂)
[
Â−1(ψ̂)

]′
,

where

Â(ψ̂) =
m∑
i=1


∂2`i(ψ)
∂φ∂φ′

∂2`i(ψ)
∂φ∂λ′1

∂2`i(ψ)
∂φ∂λ′2

0 ∂2`i1(λ1)
∂λ1∂λ′1

0

0 0 ∂2`i2(λ2)
∂λ2∂λ′2


∣∣∣∣∣∣∣∣∣∣
ψ=ψ̂

,

and

B̂(ψ̂) =
m∑
i=1


∂`i(ψ)
∂φ

∂`i(ψ)
∂φ′

∂`i(ψ)
∂φ

∂`i1(λ1)
∂λ′1

∂`i(ψ)
∂φ

∂`i2(λ2)
∂λ′2

∂`i1(λ1)
∂λ1

∂`i(ψ)
∂φ′

∂`i1(λ1)
∂λ1

∂`i1(λ1)
∂λ′1

∂`i1(λ1)
∂λ1

∂`i2(λ2)
∂λ′2

∂`i2(λ2)
∂λ2

∂`i(ψ)
∂φ′

∂`i2(λ2)
∂λ2

∂`i1(λ1)
∂λ′1

∂`i2(λ2)
∂λ2

∂`i2(λ2)
∂λ′2


∣∣∣∣∣∣∣∣∣∣
ψ=ψ̂

,
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Table 4.1: Empirical frequency properties of the estimates and associated variance esti-
mates for the association parameter of bivariate survival times with no-censoring; 2000
simulated samples

n Kendall’s τ BIAS ESE ASE1 ECP1 ASE2 ECP2 ASE3 ECP3

200 0.25 0.027 0.219 0.220 0.944 0.221 0.930 0.221 0.944
0.50 0.003 0.139 0.139 0.951 0.137 0.944 0.141 0.952
0.75 -0.023 0.111 0.113 0.944 0.111 0.943 0.114 0.946

400 0.25 0.017 0.154 0.155 0.946 0.155 0.939 0.155 0.947
0.50 0.004 0.096 0.099 0.956 0.097 0.952 0.099 0.956
0.75 -0.014 0.077 0.079 0.954 0.078 0.952 0.079 0.954

1. average large sample standard error estimate from proposed method in Section 4.2.5; 2.
average large sample standard error estimate of Shih and Louis (1995); 3. average large
sample standard error estimate by a parametric approach.

and ψ̂ = (φ̃, λ̂′1, λ̂
′
2)′.

Table 4.1 reports the empirical frequency properties of the estimate of the association

parameter and its corresponding standard error estimates when data are complete. The

findings in Table 4.1 reveal, as expected from the asymptotic theory, that the empirical

biases are all very small for the estimates of the association parameters with mild, moderate

or strong dependence between survival times. The ASE and ESE are in close agreement

and the empirical coverage probabilities are close to the nominal 95% level, suggesting that

the methods proposed provide a valid basis for inference and behave equally well as the

method proposed by Shih and Louis (1995) and the ad hoc parametric approach of Section

4.2.7.

Table 4.2 reports the same type of information as Table 4.1, but when the survival
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Table 4.2: Empirical frequency properties of the estimates and associated variance esti-
mates for the association parameter of bivariate survival times with 30% right-censoring;
2000 simulated samples

n Kendall’s τ BIAS ESE ASE1 ECP1 ASE2 ECP2 ASE3 ECP3

200 0.25 -0.019 0.290 0.280 0.954 0.297 0.960 0.290 0.963
0.50 -0.007 0.173 0.171 0.948 0.177 0.952 0.176 0.954
0.75 -0.040 0.138 0.139 0.945 0.149 0.956 0.147 0.955

400 0.25 -0.010 0.199 0.192 0.946 0.203 0.953 0.200 0.950
0.50 -0.007 0.116 0.114 0.946 0.123 0.962 0.123 0.964
0.75 -0.026 0.093 0.092 0.942 0.101 0.962 0.101 0.960

1. average large sample standard error estimate from proposed method in Section 4.2.5; 2.
average large sample standard error estimate of Shih and Louis (1995); 3. average large
sample standard error estimate by a parametric approach.

times are subject to 30% right-censoring. The results for this case demonstrate that there

is often much closer agreement between the empirical standard error and the proposed

standard error estimates based on (4.2.7) and (4.2.8); as these estimates are often smaller,

the resulting confidence intervals are also narrower.

The Regression Problem

In the first stage of the two-stage estimation procedure, we obtain the estimator of the

marginal coefficient βj and the marginal baseline hazard function dΛj(·). Inference about

βj can be carried out by constructing the marginal partial likelihood (Andersen and Gill,
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1982)

L(βj) =
m∏
i=1

[
exp(z′iβj)∑m

k=1 I(Xjk ≥ Xji) exp(z′kβj)

]∆ji

. (4.3.3)

Let β̂j be the value that maximizes (4.3.3) and the estimator for the corresponding baseline

hazard function at time Xji is

dΛ̂j0(Xji) =
∆ji∑m

k=1 I(Xjk ≥ Xji) exp(z′kβ̂j)
, (4.3.4)

if we assume there are no ties in the data. The marginal survivor function Fj(t|z) can be

estimated by (Andersen and others , 1993)

F̂j(t|z) =
∏

i:Xji<t

[
1− dΛ̂j0(Xji) exp(z′iβ̂j)

]
. (4.3.5)

In the second stage, an estimate of φ is obtained by maximizing (4.2.5) with respect to φ

with plugged-in F̂j(Xji|Zi), j = 1, 2.

Empirical frequency properties of the estimate of the association parameter and its

standard error estimates are reported in Table 4.3 for the case of 30% right-censoring with

a binary covariate. In Table 4.3, ASE1 is the average of the 2000 large sample standard

errors using the method proposed in Section 4.2.6, equal to
√
σ̂2

1 + σ̂2
2/σ̂

2
1, where σ̂2

1 and σ̂2
2

are given in (4.2.10) and (4.2.11) respectively. The term ASE2 is calculated by discretizing

the hazard parameters and calculating parametric two-stage standard errors. In the first

stage, the marginal discrete hazard parameters λj and coefficient βj are estimated by
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maximizing the function

`j(θj) =
m∑
i=1

 ∑
k:Xjk<Xji

log [1− λjk exp(z′kβj)] + ∆ji [log λji + z′iβj]

 .

where θj = (λ′j, βj)
′. Then we obtain

λ̂ji =
∆ji∑m

k=1 I(Xjk > Xji) exp(z′kβ̂j) + ∆ji exp(z′iβ̂j)
,

which is equal to dΛ̂j0(Xji) (4.3.4). The marginal survival function is estimated by

F̂j(t|z) =
∏

i:Xji<t

[
1− λ̂ji exp(z′iβ̂j)

]
,

which is equal to (4.3.5). In the second stage, F̂j(Xji|Zi) is plugged into (4.2.5), the log-

likelihood of which can be written as `(ψ) with ψ = (φ, θ′1, θ
′
2)′. The sample standard error

is square root of the [1, 1] element of the matrix

Â−1(ψ̂)B̂(ψ̂)
[
Â−1(ψ̂)

]′
,

where

Â(ψ̂) =
m∑
i=1


∂2`i(ψ)
∂φ∂φ′

∂2`i(ψ)
∂φ∂θ′1

∂2`i(ψ)
∂φ∂θ′2

0 ∂2`i1(θ1)
∂θ1∂θ′1

0

0 0 ∂2`i2(θ2)
∂θ2∂θ′2


∣∣∣∣∣∣∣∣∣∣
ψ=ψ̂

,
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Table 4.3: Empirical frequency properties of the estimates and associated variance esti-
mates for the association parameter of bivariate survival times with covariate under 30%
right-censoring; 2000 simulated samples

n Kendall’s τ BIAS ESE ASE1 ECP1 ASE2 ECP2

200 0.25 -0.029 0.272 0.269 0.962 0.285 0.968
0.50 -0.023 0.161 0.158 0.948 0.172 0.962
0.75 -0.062 0.128 0.138 0.942 0.149 0.952

400 0.25 -0.014 0.188 0.182 0.946 0.194 0.956
0.50 -0.011 0.118 0.116 0.942 0.119 0.957
0.75 -0.033 0.092 0.099 0.951 0.099 0.956

1. average large sample standard error estimate from proposed method in Section 4.2.6; 2.
average large sample standard error estimate by a parametric approach.

and

B̂(ψ̂) =
m∑
i=1


∂`i(ψ)
∂φ

∂`i(ψ)
∂φ′

∂`i(ψ)
∂φ

∂`i1(θ1)
∂θ′1

∂`i(ψ)
∂φ

∂`i2(θ2)
∂θ′2

∂`i1(θ1)
∂θ1

∂`i(ψ)
∂φ′

∂`i1(θ1)
∂θ1

∂`i1(θ1)
∂θ′1

∂`i1(θ1)
∂θ1

∂`i2(θ2)
∂θ′2

∂`i2(θ2)
∂θ2

∂`i(ψ)
∂φ′

∂`i2(θ2)
∂θ2

∂`i1(θ1)
∂θ′1

∂`i2(θ2)
∂θ2

∂`i2(θ2)
∂θ′2


∣∣∣∣∣∣∣∣∣∣
ψ=ψ̂

,

and ψ̂ = (φ̃, θ̂′1, θ̂
′
2)′.

In Table 4.3, the empirical biases are small for the estimates of the association param-

eter under different scenarios and there is close agreement between the empirical standard

error and the standard errors proposed by us and estimated by (4.2.10) and (4.2.11). The

standard error estimated by the parametric treatment of the problem tends to overesti-

mate the empirical standard error, particularly with the smaller sample size and when the
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dependence between survival times is weaker.

4.3.2 Bivariate Current Status Survival Data

We next consider the case with bivariate current status data where the times are generated

by unit exponential margins. The performance of the proposed estimator is evaluated under

three dependence levels as before wherein Kendall’s τ is equal to 0.25, 0.50 or 0.75. We

define P (∆j = 1) as the prevalence level and set it to be 0.5. To achieve this we generate

the inspection times from a uniform distribution on [0, 1.594]. We generate 2000 samples

with m = 200 or 400 subjects per sample for each dependence level.

The first-stage estimation F̂ ∗j (t) is given in (4.2.4) and the second stage estimation is

conducted by plugging the marginal estimators F̂ ∗j (t) into (4.2.5). The ASE is calculated

based on the method proposed in Section 4.2.5. The kernel function estimators of the

marginal density function fj(t) and hj(t) are given as in (4.3.1) and (4.3.2). Bandwidth

selection is similarly conducted as in Section 4.3.1.

Table 4.4 reports the empirical frequency properties of the proposed estimates for bi-

variate current status data. The empirical biases are, in general, very small. There is

a close agreement between empirical standard errors and average large sample standard

errors, and the empirical coverage probabilities are close to the nominal 95% level. This

proposed approach to variance estimation for φ̃ appears to perform satisfactorily for bi-

variate current status data.
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Table 4.4: Empirical frequency properties of the estimates and associated variance esti-
mates for the association parameter of bivariate current status data with 50% prevalence
level; 2000 simulated samples

n Kendall’s τ BIAS ESE ASE ECP

200 0.25 0.009 0.410 0.412 0.948
0.50 0.057 0.275 0.271 0.944
0.75 0.072 0.307 0.292 0.955

400 0.25 0.009 0.279 0.278 0.953
0.50 0.031 0.185 0.183 0.947
0.75 0.041 0.201 0.191 0.942

4.3.3 Absorption Times in Bivariate Multistate Processes

We consider bivariate multistate processes as formulated in Chapter 3. Under this set-up,

we have two progressive processes with three states in each. We consider a single binary

covariate Z with P (Z = 1) = 0.5. All transition times, Tjk, j, k = 1, 2, are generated from

the joint density (3.2.7) where the marginal processes are progressive time-homogeneous

Markov processes with transition intensity λjk(t|z; θjk) = αjk exp(zβjk) for j, k = 1, 2, and

a bivariate Clayton copula is adopted for all bivariate densities. The same parameter

settings used in Section 3.4.1 are considered here. The left multistate process is observed

subject to uniformly-distributed random censoring time on [0.5, 1.5] and the right process is

subject to uniformly-distributed random censoring time on [0.5, 2]. Two thousand samples

of m = 500 individuals each are simulated.

The interest lies in estimating the coefficients in the marginal processes and the asso-

ciation parameter in the copula governing the absorption times of the two processes. We
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adopt a semiparametric framework to analyze the marginal multistate process by assuming

that the marginal intensity function is of multiplicative form

λjk(t|z; βjk) = λjk0(t) exp(zβjk) ,

where the baseline intensity function λjk0(t) is not assumed to have any particular para-

metric form. Under the working independence assumption between processes, inference

regarding βjk can be carried out by constructing the marginal partial likelihood (Andersen

and Gill, 1982)

L(βjk) =
m∏
i=1

[
exp(ziβjk)∑m

`=1 Ȳjk`(Xjki) exp(z`βjk)

]∆jki

, (4.3.6)

where Xjki = min(Tjki, CA), ∆jki = I(Tjki ≤ CA), i,= 1, . . . ,m, j, k = 1, 2, Ȳj1`(u) =

I(u ≤ Xj1`) and Ȳj2`(u) = I(Xj1` < u ≤ Xj2`). In the first stage, let β̂jk be the value

that maximizes (4.3.6) and let the estimator for the corresponding baseline intensity be

(Breslow, 1972)

dΛ̂jk0(Xjki) =
∆jki∑m

`=1 Ȳjk`(Xjki) exp(z`β̂jk)
.

We estimate the marginal Markov transition probability matrix Pj(0, t|z) of process j by

plugging in dΛ̂jk(·|z) = dΛ̂jk0(·) exp(zβ̂jk) into (1.1.1) and the estimated survivor function

of the absorption time given covariate Z = z, F̂j2(t|z), is obtained as the complement of the

[1, 3] entry of P̂j(0, t|z). In the second stage, the estimates of the association parameters φ

maximize the function (4.2.5) evaluated at (F̂12(X12i|Zi), F̂22(X22i|Zi),∆12i,∆22i).
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Table 4.5: Empirical frequency properties of the estimates and associated variance es-
timates for the parameters of bivariate multistate processes with random right-censoring;
m = 500; 2000 simulated samples

BIAS ESE ASE1 ECP1 ASE2 ECP2 ASE3 ECP3

Kendall’s τ=0.2

β11 0.002 0.096 0.099 0.960 0.099 0.960 0.099 0.960
β12 -0.003 0.113 0.112 0.952 0.112 0.952 0.113 0.953
β21 0.001 0.096 0.096 0.957 0.096 0.957 0.097 0.957
β22 0.002 0.108 0.106 0.948 0.106 0.948 0.106 0.950

log φ -0.013 0.214 0.211 0.954 0.210 0.953 0.201 0.944

Kendall’s τ=0.4

β11 0.003 0.098 0.098 0.953 0.098 0.953 0.099 0.954
β12 0.001 0.112 0.111 0.948 0.111 0.948 0.112 0.950
β21 0.002 0.096 0.096 0.954 0.096 0.954 0.096 0.953
β22 0.004 0.107 0.105 0.945 0.105 0.945 0.105 0.946

log φ -0.004 0.124 0.126 0.951 0.121 0.942 0.106 0.904

Kendall’s τ=0.6

β11 0.003 0.097 0.098 0.954 0.098 0.954 0.098 0.954
β12 0.001 0.110 0.110 0.950 0.110 0.950 0.110 0.953
β21 0.002 0.096 0.096 0.954 0.096 0.954 0.096 0.957
β22 0.004 0.106 0.104 0.947 0.104 0.947 0.104 0.951

log φ -0.004 0.094 0.098 0.956 0.094 0.947 0.072 0.866

1. average large sample standard error estimate from proposed method in Section 4.2.6; 2.
average large sample standard error estimate by a parametric approach; 3. naive average
large sample standard error estimate.
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Empirical frequency properties of both the marginal coefficients and the association

parameter and their respective standard error estimates are reported in Table 4.5. The

ASE1 is calculated based on the method proposed in Section 4.2.6. The term ASE2 is

computed based on the ad hoc standard method as illustrated in Section 4.2.7 and 4.3.1,

The ASE3 is average naive standard error computed directly by taking the square root

of inverse of the Fisher information function corresponding to the marginal likelihood∏m
i=1 Li(βjk) and the second-stage likelihood (4.2.5) with respect to φ.

In Table 4.5, we observe small empirical biases for all the estimates. The naive ASE3 is

inappropriately smaller than the empirical standard error and the corresponding empirical

coverage probability is much lower than 95% when Kendall’s τ is large. The other two

standard error estimates behave similarly well in the sense that they all have a reasonably

close agreement to the empirical standard errors and the corresponding empirical coverage

probabilities are around the nominal 95% level. There is slightly closer agreement between

ASE2 and the ESE when τ = 0.6 but very little difference for the other values of Kendall’s

τ .

4.4 Application

4.4.1 Right-censored Data

Hortobagyi and others (1996, 1998) report on an international multicenter trial of 382

women with stage IV breast cancer with skeletal metastases in which patients were ran-

domized to receive pamidronate (Z = 1) or a placebo control (Z = 0) as mentioned in
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Table 4.6: Results from semiparametric two-stage estimation of the association between
the survival times for two types of events, fracture and need for radiotherapy

Number of Samples Setting Parameter EST SE1 SE2 SE3

One - log(φ) -0.007 0.284 0.283 0.282
τ 0.332 0.126 0.125 0.125

Two Common β log(φ) -0.111 0.302 - 0.307
τ 0.309 0.129 - 0.131

Two Different β log(φ) -0.066 0.297 - 0.308
τ 0.319 0.129 - 0.134

Two Stratified-Treated log(φ) -0.200 0.550 0.551 0.524
τ 0.290 0.227 0.227 0.216

Two Stratified-Control log(φ) -0.026 0.347 0.357 0.374
τ 0.328 0.153 0.157 0.165

1. standard error estimate from proposed method in Section 4.2.5 and 4.2.6; 2. stan-
dard error estimate of Shih and Louis (1995); 3. standard error estimate by a parametric
approach.

Section 1.2.3. Patients were monitored closely and the occurrence of pathologic fractures

and need for radiotherapy for the treatment of bone pain were recorded. Each patient was

followed until death, loss of follow-up, or close of the study. Special attention is paid to

patients who survived 12 months.

Semiparametric two-stage estimation for the survival times of the two types of events,

fracture and need for radiotherapy, is conducted and results are summarized in Table 4.6.

Here SE1 is a standard error computed based on our proposed method, SE2 is calculated

by the method in Shih and Louis (1995) and SE3 uses the ad hoc “parametric” method.
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We first conduct a one-sample analysis ignoring the covariate effect for all the subjects.

The estimated Kendall’s τ is 0.332 (95% CI1: 0.085, 0.579; p−value1=0.008), indicating a

moderate and significant dependence structure between the two types of events. We then

consider a regression analysis. If we constrain the coefficients in the two marginal models

to be the same and denote it by β, β̂ = −0.696 (95% CI: -0.993, -0.399; p−value<0.001)

and the estimated Kendall’s τ is 0.309 (95% CI1: 0.056, 0.562; p−value1=0.017). If we

allow the coefficients in the two marginal models to differ and denote them by β1 and β2, we

obtain β̂1 = −0.475 (95% CI: -0.872, -0.079; p−value=0.019), β̂2 = −0.964 (95% CI: -1.393,

-0.535; p−value<0.001), and the estimated Kendall’s τ is 0.319 (95% CI1: 0.066, 0.572;

p−value1=0.013). In a third analysis, we stratify based on the treatment covariate and

conduct a one-sample analysis in each subsample. In the treatment group, the estimated

Kendall’s τ is 0.290 (95% CI1: -0.155, 0.735; p−value1=0.200) and not significant; in the

control group, the estimated Kendall’s τ is comparable at 0.328 (95% CI1: 0.028, 0.628;

p−value1=0.032) and it is significant.

4.4.2 Current Status Data

As introduced in Section 1.2.4, four large recent multicenter randomized trials were con-

ducted to compare enoxaparin and fondaparinux for thromboprophylaxis. Interest lies in

understanding the factors associated with antibody responses caused by antithrombotic

drugs (Warkentin and others , 2005). The two event times of interest are the time from

surgery to the antibody response of EIA-A, denoted by T1, and the time from surgery to

the antibody response of HAM GTI, denoted by T2. C is the time from surgery to the
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blood test and the corresponding indicator is ∆j = I(Tj < C), j = 1, 2. ∆j = 1 if antibody

positive at C, and ∆j = 0 otherwise, for j = 1, 2.
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Figure 4.1: Plots of the cumulative probability of responses vs. time since surgery (days)

In Figure 4.1, we plot the cumulative probability of response versus time since surgery

(days) for HAM GTI and EIA-A. Both curves are very close. Since the prevalence level

for HAM GTI is 1.65% and that for EIA-A is 1.57%, the estimated cumulative probability

is small. We conduct a one sample analysis for all the subjects. The estimated Kendall’s

τ is 0.914 (95% CI: 0.838, 0.990; p−value< 0.001) indicating a very strong and significant

association between the time to the two types of antibody responses.
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4.5 General Remarks

We proposed a new estimator of the asymptotic variance of the second-stage estimator for

the association parameter for bivariate event times. We proved the asymptotic properties

and gave illustrations through simulation studies and the analysis of data from motivating

studies under different scenarios. In the empirical studies, we found the proposed standard

error estimator behaves very well in general in the sense that it often has closer agreement

to the empirical standard error than those computed based on other methods, and this

trend is more obvious when the sample size is smaller. The other advantage of our proposed

estimator is that it bears a general form which applies to complete, right-censored, and

current status data with or without covariate.

Kernel smoothing is required to obtain the estimated densify functions f̂j(·) and ĥj(·).

Bandwidth selection is important and the ideal bandwidth should be selected by cross-

validation.

Appendix A: Asymptotic Normality of φ̃

In deriving the limiting distribution of the two-stage estimator of φ, we assume that the

following regularity conditions hold:

(a) Let {(X1i, X2i,∆1i,∆2i); i = 1, . . . ,m} be independent and identically distributed

(i.i.d.), each with density h(x1, x2, δ1, δ2;φ) depending on some real parameter φ ∈ Φ,

where φ is a (non-empty) open interval in the real line.
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(b) The set A = A1 ×A2 does not depend on the copula parameter φ, where

Aj = Bj × {0, 1} and Bj = {x > 0 : hj(x) > 0} , j = 1, 2.

(c) Define

V ′φ(φ;u1, u2, δ1, δ2) =
∂3`(φ;u1, u2, δ1, δ2)

∂φ3
,

V ′φ,1(φ;u1, u2, δ1, δ2) =
∂4`(φ;u1, u2, δ1, δ2)

∂φ3∂u1

,

V ′φ,2(φ;u1, u2, δ1, δ2) =
∂4`(φ;u1, u2, δ1, δ2)

∂φ3∂u2

.

We assume that

(i) Uφ(φ;u1, u2, δ1, δ2), Vφ(φ;u1, u2, δ1, δ2), Vφ,j(φ;u1, u2, δ1, δ2), V ′φ(φ;u1, u2, δ1, δ2),

and V ′φ,j(φ;u1, u2, δ1, δ2) exist;

(ii) Uφ(φ;u1, u2, δ1, δ2), Vφ(φ;u1, u2, δ1, δ2) and V ′φ(φ;u1, u2, δ1, δ2) are continuous func-

tions of u and v;

(iii) Uφ(φ;u1, u2, δ1, δ2), Vφ,j(φ;u1, u2, δ1, δ2), and V ′φ,j(φ;u1, u2, δ1, δ2) are bounded

functions for (u1, u2, δ1, δ2) ∈ [0, 1] × [0, 1] × {0, 1} × {0, 1} and all φ ∈ Φ, for

j = 1, 2.

(d) It is possible to interchange derivatives and integrals so that

∂k

∂φk

∫
B2

∫
B1
h(x1, x2, δ1, δ2;φ)dx1dx2 =

∫
B2

∫
B1

∂k

∂φk
h(x1, x2, δ1, δ2;φ)dx1dx2

120



for k = 1, 2.

(e) E [−Vφ(φ;u1, u2,∆1,∆2)] is strictly positive and finite for all φ ∈ Φ.

(f) There exists a real-valued function b(x1, x2, δ1, δ2) which does not depend on φ, such

that

∣∣V ′φ(φ;F1(x1),F2(x2), δ1, δ2)
∣∣ ≤ b(x1, x2, δ1, δ2)

for all (x1, x2, δ1, δ2) ∈ A, and such that E[b(X1, X2,∆1,∆2)] <∞, for all φ ∈ Φ.

(g) F̂j(xj) converges in probability to Fj(xj) uniformly in xj ∈ Bj, for j = 1, 2.

(h) There exists a differentiable function qj(·) and its inverse function q−1
j (·) such that

Fj(xj) = qj(Hj(xj)) for xj ∈ Bj.

Proof of Theorem 1: To simplify notation, we set

Uφ(φ;F1,F2, Hm) :=
m∑
i=1

Uφ(φ;F1(X1i),F2(X2i),∆1i,∆2i) ,

and similarly define Vφ(φ;F1,F2, Hm) and V ′φ(φ;F1,F2, Hm). Expanding the score function

Uφ(φ; F̂1, F̂2, Hm) in a Taylor series around φ and evaluating it at φ̃, we obtain

0 = Uφ(φ̃; F̂1, F̂2, Hm)

= Uφ(φ; F̂1, F̂2, Hm) + (φ̃− φ)Vφ(φ; F̂1, F̂2, Hm) +
1

2
(φ̃− φ)2V ′φ(φ̄; F̂1, F̂2, Hm) ,
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where φ̄ is some value between φ and φ̃. Thus

√
m(φ̃− φ) =

Uφ(φ; F̂1, F̂2, Hm)/
√
m

−Vφ(φ; F̂1, F̂2, Hm)/m− V ′φ(φ̄; F̂1, F̂2, Hm)(φ̃− φ)/(2m)
.

The desired result therefore follows from Slutsky’s lemma (van der Vaart, 2000) if we can

show as m→∞,

−Vφ(φ; F̂1, F̂2, Hm)/m− V ′φ(φ̄; F̂1, F̂2, Hm)(φ̃− φ)/(2m)
P→ σ2

1 , (4.A.1)

and

Uφ(φ; F̂1, F̂2, Hm)/
√
m

D→ N(0, σ2
1 + σ2

2) . (4.A.2)

Proof of (4.A.1)

We first work on the asymptotic behaviour of −Vφ(φ; F̂1, F̂2, Hm)/m. We begin with the

proof of the asymptotic equivalence between Vφ(φ; F̂1, F̂2, Hm)/m and Vφ(φ;F1,F2, Hm)/m

in the sense that

Vφ(φ; F̂1, F̂2, Hm)/m− Vφ(φ;F1,F2, Hm)/m ,
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denoted by Dm, converges in probability to zero. We know that

|Dm| =

∣∣∣∣∫
A
Vφ(φ; F̂1(x1), F̂2(x2), δ1, δ2)− Vφ(φ;F1(x1),F2(x2), δ1, δ2)dHm(x1, x2, δ1, δ2)

∣∣∣∣
≤

∫
A

∣∣∣Vφ(φ; F̂1(x1), F̂2(x2), δ1, δ2)− Vφ(φ;F1(x1),F2(x2), δ1, δ2)
∣∣∣ dHm(x1, x2, δ1, δ2)

≤
∫
A

∣∣∣Vφ(φ; F̂1(x1), F̂2(x2), δ1, δ2)− Vφ(φ;F1(x1), F̂2(x2), δ1, δ2)
∣∣∣ dHm(x1, x2, δ1, δ2)

+

∫
A

∣∣∣Vφ(φ;F1(x1), F̂2(x2), δ1, δ2)− Vφ(φ;F1(x1),F2(x2), δ1, δ2)
∣∣∣ dHm(x1, x2, δ1, δ2) .

From regularity condition (c), Vφ(φ;u1, u2, δ1, δ2) is continuous in u1 and u2 and there

exists a constant Mj such that |Vφ,j(φ;u1, u2, δ1, δ2)| ≤ Mj on (u1, u2, δ1, δ2) ∈ [0, 1] ×

[0, 1]× {0, 1} × {0, 1} and all φ ∈ Φ, j = 1, 2. We have then

|Dm| ≤
∫
A
M1

∣∣∣F̂1(x1)−F1(x1)
∣∣∣ dHm(x1, x2, δ1, δ2)

+

∫
A
M2

∣∣∣F̂2(x2)−F2(x2)
∣∣∣ dHm(x1, x2, δ1, δ2)

≤ M1 sup
x1∈B1

∣∣∣F̂1(x1)−F1(x1)
∣∣∣+M2 sup

x2∈B2

∣∣∣F̂2(x2)−F2(x2)
∣∣∣ .

In view of regularity condition (g), |Dm|
P→ 0, i.e.,

− 1

m
Vφ(φ; F̂1, F̂2, Hm) +

1

m
Vφ(φ;F1,F2, Hm)

P→ 0 .

By regularity condition (a) and the law of large numbers (van der Vaart, 2000),

− 1

m
Vφ(φ;F1,F2, Hm)

P→ σ2
1 ,
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where σ2
1 is strictly positive and finite by regularity condition (e). We obtain

− 1

m
Vφ(φ; F̂1, F̂2, Hm)

P→ σ2
1 .

We next work on the asymptotic behaviour of −V ′φ(φ; F̂1, F̂2, Hm)/m. By the continu-

ity of V ′φ in u and v, and the boundedness of V ′φ,j, j = 1, 2, in regularity condition (c)

and condition (g), we can show that V ′φ(φ̄; F̂1, F̂2, Hm)/m is asymptotically equivalent to

V ′φ(φ̄;F1,F2, Hm)/m. By regularity conditions (a), (f) and the law of large numbers, we

have

∣∣∣∣− 1

2m
V ′φ(φ̄;F1,F2, Hm)

∣∣∣∣ ≤ 1

2m

m∑
i=1

b(X1i, X2i,∆1i,∆2i)

P→ 1

2
E[b(X1, X2,∆1,∆2)] <∞ .

Since φ̃
P→ φ, (4.A.1) has limit

−Vφ(φ; F̂1, F̂2, Hm)/m− V ′φ(φ̄; F̂1, F̂2, Hm)(φ̃− φ)/(2m)
P→ σ2

1 .

Proof of (4.A.2)

We first decompose

1√
m
Uφ(φ; F̂1, F̂2, Hm) =

√
m

∫
A
Uφ(φ; F̂1(x1), F̂2(x2), δ1, δ2)dHm(x1, x2, δ1, δ2)
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into the summation of three terms: R1(φ), R2(φ) and R3(φ), where

R1(φ) =
√
m

∫
A

[
Uφ(φ; F̂1(x1), F̂2(x2), δ1, δ2)− Uφ(φ;F1(x1),F2(x2), δ1, δ2)

]
d(Hm −H)(x1, x2, δ1, δ2) ,

R2(φ) =
√
m

∫
A
Uφ(φ;F1(x1),F2(x2), δ1, δ2)d(Hm −H)(x1, x2, δ1, δ2) ,

R3(φ) =
√
m

∫
A
Uφ(φ; F̂1(x1), F̂2(x2), δ1, δ2)dH(x1, x2, δ1, δ2) .

In view of the assumption that Uφ(φ;u1, u2, δ1, δ2) is continuous and bounded by condition

(c), condition (g), and the fact
√
m(Hm −H) = Op(1), R1(φ) converges in probability to

0. Since regularity condition (d) allows for the interchanging of derivatives and integrals,

we have

E [Uφ(φ;F1(X1),F2(X2),∆1,∆2)] = 0 , (4.A.3)

and

Var [Uφ(φ;F1(X1),F2(X2),∆1,∆2)] = σ2
1 .

Note that R2(φ) is a sum of i.i.d. random variables of mean zero and variance σ2
1. By

regularity condition (h), Fj(xj) = qj(Hj(xj)) on xj ∈ Bj, for j = 1, 2. Let Ĥj(xj) =

q−1
j (F̂j(xj)). Using von Mises expansion (Fernholz, 1983) of R3(φ) = R3(φ; q1(Ĥ1), q2(Ĥ2))
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around H1,H2, we get

R3(φ; q1(Ĥ1), q2(Ĥ2)) = R3(φ; q1(H1), q2(H2))−
∫
B1
ψH1(s1)d(Ĥ1 −H1)(s1)

−
∫
B2
ψH2(s2)d(Ĥ2 −H2)(s2) + op(1) , (4.A.4)

where ψHj
is given as follows

ψHj
(sj) =

∂

∂εj
R3(φ; q1(H1 + ε1(ηs1 −H1)), q2(H2 + ε2(ηs2 −H2)))|ε1=ε2=0

=
√
m

∫
A
Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)
(ηsj −Hj)(xj)dH(x1, x2, δ1, δ2) ,

and ηsj(xj) = I(sj ≥ xj), the survivor function of the point mass one at sj.

Then R3(φ; q1(H1), q2(H2)), the first term on the right of the equality sign in (4.A.4), is

equal to zero. Next, we consider the integrals in (4.A.4). For j = 1, 2, we have

∫
Bj
ψHj

(sj)dHj(sj)

=
√
m

∫
A
Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)

{∫
Bj

[I(sj ≥ xj)−Hj(xj)] dHj(sj)

}
dH(x1, x2, δ1, δ2)

= −
√
m

∫
A
Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)
[Hj(xj)− 1 · Hj(xj)] dH(x1, x2, δ1, δ2)

= 0 ,
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and

−
∫
Bj
ψHj

(sj)dĤj(sj) =
1

m

m∑
i=1

ψHj
(Xji)

=
1√
m

m∑
i=1

∫
A
Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)
[I(Xji ≥ xj)−Hj(xj)] dH(x1, x2, δ1, δ2) .

(4.A.5)

Let Wj(φ,Xj) =
∫
A Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)
I(Xj ≥ xj)dH(x1, x2, δ1, δ2), and

then

E [Wj(φ,Xj)] = −
∫
Bj
Wj(φ, sj)dHj(sj)

=

∫
A
Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)
Hj(xj)dH(x1, x2, δ1, δ2) .

Thus (4.A.5) is a sum ofm i.i.d. random variables with mean zero and variance E [Wj(φ,Xj)]
2,

and R3(φ) is a sum of i.i.d. random variables of mean zero and variance

σ2
2 = E [W1(φ,X1) +W2(φ,X2)]2 .

In the end, we show the covariance between Uφ(φ;F1(X1),F2(X2),∆1,∆2) and W1(φ,X1)+
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W2(φ,X2) is equal to zero. Due to (4.A.3), it is sufficient to show

E [W1(φ,X1) · Uφ(φ;F1(X1),F2(X2),∆1,∆2)]

=

∫
A
W1(φ, x1) · ∂h(x1, x2, δ1, δ2;φ)/∂φ

h(x1, x2, δ1, δ2;φ)
dH(x1, x2, δ1, δ2)

=
1∑

δ1=0

1∑
δ2=0

∫
B1
W1(φ, x1)

[
∂

∂φ

∫
B2
h(x1, x2, δ1, δ2;φ)dx2

]
dx1 (by condition (d))

=
1∑

δ1=0

1∑
δ2=0

∫
B1
W1(φ, x1) · 0 dx1 = 0 ,

and E [W2(φ,X2) · Uφ(φ;F1(X1),F2(X2),∆1,∆2)] = 0 can be similarly proved.

Ultimately then

1√
m
Uφ(φ; F̂1, F̂2, Hm) =

1√
m

m∑
i=1

{
Uφ(φ;F1(X1i),F2(X2i),∆1i,∆2i) +W1(φ,X1i)

+ W2(φ,X2i)− E [W1(φ,X1i) +W2(φ,X2i)]
}

+ op(1) ,

which, by the central limit theorem, converges to a normal distribution with mean zero

and variance σ2
1 + σ2

2 as m→∞.

Appendix B: Consistency of the Asymptotic Variance

Estimator

In addition to the regularity conditions (a)-(h) stated at the beginning of Appendix A here,

we further assume that the following regularity conditions hold:
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(i) f̂j(xj) converges in probability to fj(xj) uniformly and ĥj(xj) converges in probability

to hj(xj) uniformly for xj ∈ Bj, for j = 1, 2.

(j) Vφ(φ;u1, u2, δ1, δ2) is continuous of φ and Vφ,j(φ;u1, u2, δ1, δ2) are continuous in u1, u2

and φ; V ′φ(φ;u1, u2, δ1, δ2), ∂Vφ,j(φ;u1, u2, δ1, δ2)/∂φ, ∂Vφ,j(φ;u1, u2, δ1, δ2)/∂u1, and

∂Vφ,j(φ;u1, u2, δ1, δ2)/∂u2 are bounded functions for (u1, u2, δ1, δ2) ∈ [0, 1] × [0, 1] ×

{0, 1} × {0, 1}, and fj(xj)/hj(xj) is bounded on xj ∈ Bj and all φ ∈ φ, for j = 1, 2.

Proof of the Convergence of σ̂2
1

P→ σ2
1

The asymptotic equivalence between σ̂2
1 = Vφ(φ̃; F̂1, F̂2, Hm)/m and Vφ(φ;F1,F2, Hm)/m

can be justified in the same way the asymptotic equivalence of Vφ(φ; F̂1, F̂2, Hm)/m and

Vφ(φ;F1,F2, Hm)/m was demonstrated in the proof of Theorem 1, with additional require-

ments in regularity conditions (j) that φ̃
P→ φ and Vφ(φ;u1, u2, δ1, δ2) is continuous in φ

and V ′φ(φ;u1, u2, δ1, δ2) is bounded, for j = 1, 2. We then have

− 1

m
Vφ(φ̃; F̂1, F̂2, Hm)/m+

1

m
Vφ(φ;F1,F2, Hm)

P→ 0 ,

and by condition (a) and the law of large numbers,

− 1

m
Vφ(φ;F1,F2, Hm)

P→ σ2
1 .

Thus, we obtain σ̂2
1

P→ σ2
1.
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Proof of the Convergence of σ̂2
2

P→ σ2
2

Let H(x1, x2) denote the joint c.d.f. of (X1, X2) and Hm(x1, x2) is its empirical distribution

function. We write

∣∣σ̂2
2 − σ2

2

∣∣ =

∣∣∣∣∫
B1×B2

[
Ŵ1(φ̃, s1) + Ŵ2(φ̃, s2)

]2

dHm(s1, s2)

−
∫
B1×B2

[W1(φ, s1) +W2(φ, s2)]2H(s1, s2)

∣∣∣∣
≤

∫
B1×B2

∣∣∣∣{[Ŵ1(φ̃, s1) + Ŵ2(φ̃, s2)
]2

− [W1(φ, s1) +W2(φ, s2)]2
}∣∣∣∣ dHm(s1, s2)

(4.B.1)

+

∫
B1×B2

∣∣[W1(φ, s1) +W2(φ, s2)]2
∣∣ d(Hm −H)(s1, s2) . (4.B.2)

By condition (a) and the law of large numbers, (4.B.2) converges to zero in probability.

For (4.B.1), we need to prove the asymptotic equivalence between

∫
B1×B2

[
Ŵ1(φ̃, s1) + Ŵ2(φ̃, s2)

]2

dHm(s1, s2)

and ∫
B1×B2

[W1(φ, s1) +W2(φ, s2)]2 dHm(s1, s2) ,

which can be justified in the same way we justified the asymptotic equivalence between

Vφ(φ; F̂1, F̂2, Hm)/m and Vφ(φ;F1,F2, Hm)/m in the proof of Theorem 1. We require the
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conditions (1) W1(φ, s1) +W2(φ, s2) is bounded on (s1, s2) ∈ B1 × B2 and (2)

sup
sj∈Bj

∣∣∣Ŵj(φ̃j, sj)−Wj(φj, sj)
∣∣∣ P→ 0 ,

for j = 1, 2. Condition (1) is satisfied since Vφ,j(φ;u1, u2, δ1, δ2) and fj(xj)/hj(xj) are

bounded as assumed in condition (c) and (j). Thus, to show the first term in (4.B.1)

converges to zero in probability, it is sufficient to show condition (2):

sup
sj∈Bj

∣∣∣Ŵj(φ̃j, sj)−Wj(φj, sj)
∣∣∣

≤ sup
sj∈Bj

∫
A

∣∣∣[Vφ,j(φ̃; F̂1(x1), F̂2(x2), δ1k, δ2k)
f̂j(xj)

ĥj(xj)
I(sj ≥ xj)

− Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)
fj(xj)

hj(xj)
I(sj ≥ xj)

]∣∣∣dHm(x1, x2, δ1, δ2)

+ sup
sj∈Bj

∫
A

∣∣∣∣Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)
fj(xj)

hj(xj)
I(sj ≥ xj)

∣∣∣∣ d(Hm −H)(x1, x2, δ1, δ2)

≤
∫
A

∣∣∣∣∣
[
Vφ,j(φ̃; F̂1(x1), F̂2(x2), δ1k, δ2k)

f̂j(xj)

ĥj(xj)
− Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)

]∣∣∣∣∣
dHm(x1, x2, δ1, δ2) (4.B.3)

+

∫
A

∣∣∣∣Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)
fj(xj)

hj(xj)

∣∣∣∣ d(Hm −H)(x1, x2, δ1, δ2) . (4.B.4)

Note that (4.B.4) converges in probability to zero by condition (a) and the law of large

numbers. For (4.B.3), the asymptotic equivalence between

∫
A
Vφ,j(φ̃; F̂1(x1), F̂2(x2), δ1k, δ2k)

f̂j(xj)

ĥj(xj)
dHm(x1, x2, δ1, δ2)
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and ∫
A
Vφ,j(φ;F1(x1),F2(x2), δ1, δ2)

fj(xj)

hj(xj)
dHm(x1, x2, δ1, δ2) ,

can be proven using a similar argument by showing asymptotic equivalence between

Vφ(φ; F̂1, F̂2, Hm)/m and Vφ(φ;F1,F2, Hm)/m in the proof of Theorem 1, which requires

(1) consistency of φ̃ and uniform consistency of F̂j(·), f̂j(·) and ĥj(·), j = 1, 2, given in

condition (g) and (i), (2) continuity of Vφ,j(φ;u1, u2, δ1, δ2) in φ, u1 and u2 given in condition

(c) and (3) boundedness of Vφ,j(φ;u1, u2, δ1, δ2), fj(xj)/hj(xj), ∂Vφ,j(φ;u1, u2, δ1, δ2)/∂φ,

∂Vφ,j(φ;u1, u2, δ1, δ2)/∂u1, and ∂Vφ,j(φ;u1, u2, δ1, δ2)/∂u2 for (u1, u2, δ1, δ2) ∈ [0, 1]× [0, 1]×

{0, 1} × {0, 1} and all φ ∈ φ, for j = 1, 2, given in condition (c) and (j). Taken together

these results demonstrate σ̂2
2

P→ σ2
2.
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Chapter 5

General Remarks and Future

Research

5.1 Overview

The three research projects address different problems in the field of life history analysis but

the techniques to handle the complex dependence structures have a common theme. All

involve decomposing a multivariate density and modeling the conditional or unconditional

pairwise distributions using bivariate copula functions. In fact, the models in Chapter 2

and 3 along with many other interesting topics on dependence modeling in lifetime history

analysis, can be cast into the framework of vine copulas. Robust estimation and model

misspecification are also part of an underlying theme of this research.

It would be interesting to explore issues of model misspecification in more details. Two
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types model assumptions are usually made in modeling dependence structure to simplify

the model, reduce computational burden, and lower the number of parameters. The first is

the so-called conditional independence assumption (Aas and others , 2009). As is custom-

ary in hierarchical modeling, a model simplifies only if we avoid specifying all or some of

the conditional pairwise densities. The second simplifying assumption is that the copulas

corresponding to conditional distributions are constant in the sense that the the copula

function and the association parameters are the same irrespective of the values of the vari-

ables that they are conditioned on (Stöber and others , 2012). This assumption is usually

made to keep model selection and inference tractable. While these assumptions may seem

restrictive at the first glance, if it is not true, the conditional independence assumption

will simply lead to less efficient marginal estimates; this can be justified from a compos-

ite likelihood argument. Haff and others (2010) comment that the simplified pair-copula

construction is a rather good approximation even when the simplifying assumption is far

from the correct. It is of interest to study the effect of those assumptions on inferences

for lifetime data which feature censoring or truncation. Another interesting question is

regarding model selection. Vine copula selection requires two steps: one is selection of the

vine model and the other is choice of bivariate copula functions for each pair of variables

selected in the vine model. There are a number of different ways to decompose a mul-

tivariate joint density when the dimension is high. Selection of a reasonable vine model

becomes an important topic and it has been discussed in two recent papers (Dißmann and

others , 2013; Czado and others , 2013). Genest and others (2009) give an excellent review

of methods on the assessment of fitting copula functions. Most work in this area is based

on financial data, however, the challenges arise when dealing with censored lifetime data
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and it is important to explore this topic further.

5.2 A Copula Model For Marked Point Processes

In Chapter 2 we described a novel model for marked point processes which incorporates a

dependence between continuous marks and the event process through the use of a copula

function. The model proposed in Section 2.2 is a fully parametric model and it would

be desirable to relax the parametric assumption for the baseline rate within the class of

mixed Poisson marginal processes to obtain some robustness. A simple first step would

be to assume a piecewise constant baseline rate which would require specification of break

points at which the rate can change. This approach has the advantage that it admits a

more flexible form for the baseline rate which can be shown to give good approximations

to results from semiparametric models. A disadvantage is the need to specify the break

points and the arbitrary nature of any choices one might make for them. Recent work

(Lawless and Yilmaz, 2011a; Lawless and Yilmaz, 2011b) on fitting bivariate failure time

data with marginal Cox models and a specified copula suggests that some progress could

be made in semiparametric analysis. The two-stage semiparametric estimator of the copula

parameter is about as good as the simultaneous semiparametric estimator of it (Lawless

and Yilmaz, 2011a). Since there are considerable computational challenges that arise in

a joint analysis, two-stage estimation procedures (Shih and Louis, 1995) can be applied

in principle, however, there will always be a trade-off between the need to make greater

assumptions in the joint analysis with the robustness to dependent observation schemes

that arise from joint analysis.
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Several other extensions are possible to this model. We assumed that the dependence

between the recurrent event process and the marks is the same for each consecutive pair

of marks and waiting times. We also assumed that the association between the mark and

the subsequent waiting time was the same in the two treatment arms (4.2.1). One could

generalize the model to allow different copula parameters or even different copula functions

for successive pairs of marks and waiting times, and these could even differ between the

two treatment arms.

5.3 Multiple Multistate Processes Under Intermittent

Inspection

In Chapter 3, we formulated a copula-based joint model for multiple multistate Markov

processes by assuming that the joint survival function for the absorption times is governed

by a multivariate copula function. In Section 3.2, different baseline transition intensities

and regression coefficients are accommodated between processes. In settings where pro-

cesses are clustered, one may wish to constrain the parameters in marginal intensities to

be the same (e.g. when the processes represent progression in damage in paired organs).

In such cases, we can write αjk = αk and βjk = βk, j = 1, 2, . . . , J , α = (α1, . . . , αK)′,

β = (β1, . . . , βK)′ and θ = (α′, β′)′ (Lee and others , 1992).

In Section 3.3, we restricted attention to the case in which all of the processes were

inspected at the same time. In studies of organ damage in diabetic patients, interest may lie

in modeling diabetic retinopathy and nephropathy (Cook and Lawless, 2013). The extent
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of damage in the eyes, assessed by a detailed clinical examination, and kidneys, assessed by

blood tests or imaging, would routinely be measured at different times. Adaptation of the

proposed methods are relatively straightforward to handle this case by allowing process j

to be assessed at Mj time points vj0 < vj1 < · · · < vj,Mj
< vj,Mj+1 where vj0 = v0 = 0,

vj,Mj+1 = vMj+1 =∞ for j = 1, . . . , J .

The use of a copula function to model the association enables separate modelling and

estimation of the marginal parameters and the association parameters. Different copula

functions yield different dependence structures and so there are many choices of copula

functions from copula families one can make for the association model. The marginal

processes may correspond to more general, non-Markov, intensity-based models (2.2.6).

Multiple ways of devising estimation strategies in this paper point to the flexibility of

estimation. We have focused on parametric estimation, but weakly-parametric piecewise

constant transition rates, or even more robust semiparametric analysis should be explored

for estimation of marginal parameters. Estimation and inference can be conducted using

generalized estimating equations based on working independence assumptions, first order

generalized estimating equations (Liang and Zeger, 1986), and second order generalized

estimating equations (Prentice, 1988; Zhao and Prentice, 1990).

Several extensions are possible to the association model. First, we again assumed

the dependence between the absorption transition times is the same whether X = 1 and

X = 0; see (3.2.2). One could allow different association parameters for different covariate

values; indeed entirely different copula functions could be adopted. Second, we modeled
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the association between absorption times via a copula, but one could set,

ujk = exp

(
−
∫ tjk

tj,k−1

λjk(s|x; θjk)ds

)
, j = 1, . . . , J,

and use a copula function to model the association between ujk and uj′k, and hence the

transition times Tjk and Tj′k. If a semi-Markov model is adopted for the marginal processes,

the association between sojourn times is then modeled, as is routinely done in survival

analysis.

5.4 Semiparametric Two-stage Estimation Procedure

in Copula Models for Survival Data

Recall that a new estimator of the asymptotic variance of the second-stage estimator

for the association parameter is proposed in Chapter 4. This proposed standard error

estimator applies to complete, right-censored and current status data with or without

covariate. However, we assume the censoring times are independent of survival times. In

our future study, we will consider more general framework including interval-censored data

and dependent censoring.

For the scenario with right-censored event times, we assumed that there are no ties

in our data. We will consider a more general situation when the ties appear and we

will compare the proposed asymptotic variance estimator with those in the established

literature. For current status data, we studied the case with 50% prevalence level. We will
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further study the behaviour of the estimates under 5% and 30% prevalence level.

Other estimating methods can be considered for right-censored multiple multistate

processes. Alternating logistic regression estimating equations (Carey and others , 1993)

or the estimating equations constructed based on marginal martingale and correlation

between the marginal martingales corresponding to the absorption times (Prentice and

Hsu, 1997) could be adopted.

5.5 Analysis of Recurrent Episodes in Chronic Dis-

ease with Vine Copula Models

In some chronic disease settings, processes are not progressive but rather exhibit a con-

tinual risk of periodic episodic conditions. Examples include chronic respiratory diseases

such as asthma, infectious disease, and psychotic disorders. For each of these examples,

the recurrent events have non-ignorable durations associated with them and are better

characterized as recurrent episodes. We will formulate models in which the onset times

are generated according to a Markov time scale and the durations of the episodes are gov-

erned by a semi-Markov process. To reflect multiple dependencies between the episode

onset times and the duration of the episodes, we will consider a construction based on

vine copula model (Joe, 1996; Bedford and Cooke, 2001, 2002; Berg and Aas, 2009; Aas

and others , 2009). The idea of a vine copula model is to decompose the multivariate

joint density into a cascade of densities of the original variables and their conditional or

unconditional pairwise density functions, and to use bivariate copula functions for joint
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distributions in this cascade. For high-dimensional multivariate distributions, there are a

significant number of possible pair-copula decompositions. The vine, a graphical model for

dependent random variables, has been introduced in this context to help organize those

structures. The class of regular vines is general enough to provide a very rich set of options

for possible pair-copula decompositions. In future work we will propose several candidate

models, study properties of the models, assess treatment effects, and examine the biases

arising from simple analyses which ignore some dependencies. Options for dealing with the

biases induced by dependent censoring will be also explored.
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