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Abstract

An automatically trained, statistically based, fuzzy inference system that functions as a classifier is

produced. The hybrid system is designed specifically to be used as a decision support system. This hybrid

system has several features which are of direct and immediate utility in the field of decision support, in-

cluding a mechanism for the discovery of domain knowledge in the form of explanatory rules through the

examination of training data; the evaluation of such rules using a simple probabilistic weighting mech-

anism; the incorporation of input uncertainty using the vagueness abstraction of fuzzy systems; and the

provision of a strong confidence measure to predict the probability of system failure.

Analysis of the hybrid fuzzy system and its constituent parts allows commentary on the weighting

scheme and performance of the “Pattern Discovery” system on which it is based.

Comparisons against other well known classifiers provide a benchmark of the performance of the

hybrid system as well as insight into the relative strengths and weaknesses of the compared systems when

functioning within continuous and mixed data domains.

Classifier reliability and confidence in each labelling are examined, using a selection of both synthetic

data sets as well as some standard real-world examples.

An implementation of the work-flow of the system when used in a decision support context is pre-

sented, and the means by which the user interacts with the system is evaluated.

The final system performs, when measured as a classifier, comparably well or better than other classi-

fiers. This provides a robust basis for making suggestions in the context of decision support.

The adaptation of the underlying statistical reasoning made by casting it into a fuzzy inference context

provides a level of transparency which is difficult to match in decision support. The resulting linguistic

support and decision exploration abilities make the system useful in a variety of decision support contexts.

Included in the analysis are case studies of heart and thyroid disease data, both drawn from the Uni-

versity of California, Irvine Machine Learning repository.
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Chapter 1

Introduction

The more I learn, the more I realize I don’t know. The more I realize I don’t know, the more I

want to learn.

— Albert Einstein

The pattern extraction techniques of the “Pattern Discovery” (PD) algorithm developed by Wang and

Wong (Wang, 1997; Wong and Wang, 1997) is extended into the fuzzy inference domain to form a decision

support system∗ (DSS).

The classification performance of the resulting fuzzy hybrid system is higher than that of PD alone

and a metric to characterize the confidence in each decision can be formed, producing a decision support

system that allows a transparent explanation of the decision process.

1.0.1 Rationale

Using a fuzzy inference system (FIS) as the basis of a decision support tool will allow transparent decisions

to be suggested using a linguistic framework based on sound statistical data. Such a system may be used

with a wide spectrum of data types from financial to resource management, however the application of

immediate interest to the author is the area of clinical diagnostic support. For this reason, real-world data

from two bio-medical domains are used in the enclosed analysis, and the presentation of the final system

centres on the discussion of heart disease data acquired from the well-known machine learning repository

∗An index is provided at the end of the manuscript linking all key terms to their locations in the text.
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CHAPTER 1. INTRODUCTION 2

at the University of California, Irvine.†

This document describes the production, function and performance of an FIS based DSS which uses

adapted rules extracted using the PD algorithm. The system and its evaluation tools have been written in

the C++ and Python programming languages by the author, with some dependency on the GNU Scientific

Library (Galassi, Davies et al., 2005) and the routines in LAPACK (Anderson, Bai et al., 1999). All design

and implementation efforts outside of these libraries have been the author’s own.

1.1 Decision Support

The use of decision support systems is an area which has been studied for more than twenty years with ap-

plication areas as diverse as finance, emergency response, environmental management and many medical

applications.

Underlying all work in decision support is an interest in the management and reporting of the estimated

reliability of the decision, measured by the probability of successfully indicating the correct label (see

Larsson, Hayes-Roth et al., 1997; López de Mántaras, 1991; Aha, Kibler and Albert, 1991; Cordella,

Foggia et al., 1999; Levitin, 2002, 2003; Gurov, 2004, 2005). Without a measure of the reliability of

a system, the suggested analysis is useless, as graceful failure cannot be assured in the face of variable

quality data and inference. It is therefore critical that the system presented in this work is evaluated in

terms of the reliability of the decisions. Reliability measurement and system confidence prediction will be

presented in Chapter 2, and the quality of the confidence measure used within the hybrid system described

in this work will be discussed in depth in Chapter 9.

1.2 Decision Support

Decision support is a difficult field to define. In order to avoid spending many pages attempting to produce

a definition, we can content ourselves with that provided by Silver (1991, pp.13):

A decision support system is a computer-based information system that supports people en-

gaged in decision-making activities.

In this context, “‘support”’ is intended to mean that

†The famous UCI machine learning repository contains “real-world” data used for comparing techniques within the machine
learning community. It is available online at http://www.ics.uci.edu/∼mlearn/MLRepository.html.
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1. the system assists human decision makers to exercise judgement—that is, the system is

an aid for the person or persons making the decision; and

2. the system does not make the decision—that is, the system helps decision makers exer-

cise judgement but does not replace the human decision makers.

Both of these points are crucial to the design of the hybrid system described in this work.

Silver’s first point indicates that the system design is intended to ease the making of a decision; this

implies that the format of the decision support data must be driven by the need for a human being to easily

comprehend the suggestions, rapidly understand its import and assimilate the data with possibly many

other data elements at their disposal at the time the decision is to be made.

For example, in heart disease, there are a large number of symptoms and markers for disease which

must be taken into account for any single patient. Importantly, these markers change depending on a

patient’s age and other factors. It would be reasonable then for a DSS to correlate and summarize the

patient’s data, highlighting the strongest and most informative markers. Data which is not relevant to the

decision will be shown in only a cursory way, or not at all. By following such a methodology, a decision

making user is given the information they need to make an informed decision without the tedium involved

in a manual collation and exploration. In this way, a software tool can support decision making.

The second point speaks to the important design principle that the decision support system is not

authoritative. At all times it must be kept in mind that any decision support system cannot function as a

black box, but must instead be as transparent and interpretable as possible, assisting in the formation of a

judgement. As part of this transparency, it is therefore important that a user may explore alternate decision

paths in order to come to a comfortable, informed decision of their own making, evaluating the data from

any particular source within the DSS in context with the data available from all other sources.

1.2.1 History

The field of decision support began with the needs of Management Information Systems (MIS) in the

1970’s. Several works (Morton, 1971; Sprague and Carlsons, 1982; House, 1983; Schniederjans, 1987)

describe the then growing need for middle management to have access to computer based systems to

interpret the ever larger quantities of data. Previously, data for management decision making was available

in (daily or weekly) printed reports, which were produced and collated with the expectation that the reader

would absorb the presented data with enough depth of understanding to form reasoned and informed

opinions on the contents.
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The subsequent expansion of both business and its management along with the now familiar “infor-

mation explosion” drove the need for a new tool which could condense a great deal of reporting data and

characterize it in terms of possible courses of action. Using such a tool, the data previously available in the

reports would be linked to a course of action in terms of degrees of support for that particular course. A

manager using this type of tool could then construct a business plan, taking into account the recommended

actions suggested by the DSS.

Once a tool of this type was created, it was obvious that its the applicability extended far beyond the

role of middle-management supply-line and financial decision making in a mid-size company.

Current common areas of application of decision support systems include:

Conflict Resolution and Generalized Decision Making: a field which produces general tools using the

concepts of decision support. These tools are as general in approach and therefore as universal

in application as possible (Hipel, Fang and Kilgour, 1993; Kilgour, Fang and Hipel, 1995; Rajabi,

Kilgour and Hipel, 1998; Sage and Rouse, 1999; Hipel, Kilgour et al., 2001).

Environmental Management: including mapping and management of toxins (Booty, Lam et al., 1997)

and watershed management (Hipel, Yin and Kilgour, 1995; León, Lam et al., 1997; Young, Lam

et al., 1997; Yyrdusev, 1997; Hipel and Ben-Haim, 1999). This area has a great deal of ongoing

research, as shown by recent workshops (Cortés and Sànchez-Marrè, 1999; Cortés, Sànchez-Marrè

and Wotawa, 2003),

Medical Decision Making and Disease Characterization: a field in which common areas of applica-

tion are laboratory data management (Cowan, 2003), patient monitoring (Gibb, Auslander and Grif-

fin, 1994; de Graaf, van den Eijkel et al., 1997; Abu-Hanna and de Keizer, 2003; Montani, Magni

et al., 2003), public health (O’ Carroll, Yasnoff et al., 2002) and disease characterization or evalua-

tion of prognoses (Shortliffe and Perreault, 1990; Friedland, 1998; Kukar, Kononenko et al., 1999;

Innocent, 2000a,b; Colombet, Dart et al., 2003; Coiera, 2003). A new and growing area in which

this technology is finding application is in modelling outbreaks, providing a recognition tool for

fast response (Penaloza and Welch, 1997; Zhang, Fiedler and Popovich, 2004; Brillman, Burr et al.,

2005; Costa, Dunyak and Mohtashemi, 2005; Devadoss, Pan and Singh, 2005; Guthrie, Stacey and

Calvert, 2005; Majowicz and Stacey, 2005).

Business Management Information Systems: this is still a major application area for decision support,

and many texts provide discussion of this area of application (see any of Scott, Claton and Gibson,

1991; Adelman, 1992; Sage, 1991).
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1.2.2 Medical Decision Support

Medical decision support literature ranges from discussions training physicians in the underlying data

tools needed to understand decision support (Harris and Boyd, 1995; Kononenko, 2001; Kukar, 2003;

Bennett, Casebeer et al., 2005) through handbooks assisting in the construction and design of decision

support systems (Berner, 1988; Keller and Trendelenburg, 1989; López de Mántaras, 1991; Larsson et al.,

1997)

The literature on medical decision support devotes more time than the management literature to a dis-

cussion of the reliability and desired confidence in the decision. Most of the decisions made by clinicians

are binary (two-outcome) tests for the presence or absence of a particular condition. The discussions re-

garding these tests are couched in the terminology of Receiver Operating Characteristic (ROC) curves‡

rather than the probability-of-failure measure common in other approaches.

1.3 Decision Support Tools

Any tool meant to aid a decision maker adds information to the decision process. Care must be taken

to decrease the cognitive load while increasing understanding. The human user must remain the final

decision maker, integrating the information supplied from several channels.

The decision making user:

• retains responsibility for any decision — in the medical community (among others) there are ethical,

legal and trust issues at stake;

• always has access to a higher level view of the data, frequently including data from other sources;

• is an expert in their field and wants to correlate their knowledge and hypotheses with analytical

results from this and other systems.

Any system that attempts to “replace” the decision maker or to “take over” any part of the analytical

process will most likely be met with distrust and will not be used. From an ethical standpoint, such a

system is inadmissible in any decision making arena.

The objective of a DSS tool is to augment the capabilities of the decision maker by providing an

automated means of integrating facts and correlating measurements which are otherwise difficult or time

consuming to asses. The results of this automated process are available as a condensed logical suggestion

which can be incorporated into a larger context, along with any other sources of information available.

‡An overview of the construction and utility of ROC curves is provided in Section 2.3.1 in Chapter 2.
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If the results of a decision system are to be combined in a larger scope, the decision support tool

cannot be a “black box” as described in Wiener (1948, 1961, pp. xi).

A useful decision support tool must therefore exhibit all of the following attributes:

transparency: if a decision maker can not determine on what grounds an automated characterization is

being suggested, they will rightly not trust the conclusions of such a system. It is critical that at all

levels the decisions produced by any DSS may be easily accessed and exposed to analysis.

speed: the suggested characterization must be produced on a reasonable time-scale. If, for example in the

medical domain, the system is too slow, then the results will be irrelevant, as the examination will

be over and the patient will have left, preventing any iterative analysis. Correlation of the suggested

results with other data must happen during the decision process.

graceful degradation: if the system must fail, this must occur with grace, indicating an increasing pos-

sibility of decision failure as a greater chance of error is encountered.

conservatism: as the degree of aggressiveness or conservatism of a classifier relates to the balancing of

different types of error (false negative versus false positive), the means of choosing this balance

lies in the mechanism used to integrate the automated suggestion with other data. The system must

therefore support analysis of the decision confidence, providing a means to separate likely errors

from quality decisions.

simplicity of use: all DSS tools function by enriching the decision environment. It is therefore easy to

overwhelm the decision maker, providing so much information that the decision process is made

more difficult. This effect is well described by Shortliffe and Perreault (1990) and by Kononenko

(2001).

Notably missing from the above list is “optimal performance as a classifier,” as all of the above factors

must be taken into account in DSS design. While the frequency at which a DSS suggests the correct course

of action is important, the transparency of the system outweighs the need for an optimal classifier. Any

classifier with suboptimal performance, but “white box” transparency will be superior to a optimal “black

box” classifier, assuming that a quality measure is also provided to give an estimate of the “white box”

system reliability.

What is desired is a simple, transparent system which will allow the decision maker to easily see the

decision confidence, while providing a means to “drill down” through the decision process to inspect each

phase of the decision construction.



CHAPTER 1. INTRODUCTION 7

1.4 Hybrid Pattern Discovery/Fuzzy Inference System

For this work, a hybrid approach has been selected, using a combination of methods derived from fuzzy

inference systems, and from the “Pattern Discovery” (PD) algorithm.

The work described here uses a rule framework generated using the PD algorithm, adapting this frame-

work to function within the context of fuzzy inference. The results produced by fuzzy inference are then

presented as a means of supporting each of several possible decision outcomes in the context of their

contextual data.

The PD algorithm described in Wang (1997); Wong and Wang (1997, 2003) and in Wang and Wong

(2003) is an inherently probabilistic, unsupervised learning algorithm for discrete-valued data capable of

discovering polythetic patterns without exhaustive search.

These patterns are discovered through analysis of labelled training data using a contingency table

to isolate true patterns from background noise, which can then be used to fill in any missing values in

new data samples; treating a single column as a “label” column allows the PD algorithm to function as a

supervised learning classifier. A description of this algorithm is provided in Chapter 3.

The PD algorithm was developed to deal with discrete (ordinal and nominal) data; a preliminary

investigation in this work evaluates the performance of the PD algorithm to allow it to function in a

continuous data domain through data quantization. Such quantization always comes with a cost, as the

fine-grained detail that may be present in the underlying process is masked by the application of relatively

coarse quantization intervals.

The extension and recasting of the quantized data into an FIS will allow some of the cost of quantiza-

tion to be reduced, as the bin boundaries can be softened and the artificial nature of the crisp quantization

bound can be diminished. The construction of the FIS is provided in Chapter 4 in which adaptations are

made to the PD rules in order to improve their classification performance.

The resulting PD/FIS system is then evaluated in a decision support context after a discussion of the

production of a confidence measure which estimates the reliability of each suggestion produced.

1.4.1 Outline of Decision Support and its Evaluation

Figure 1.1 indicates the data flow in the system. Training data records are presented to the PD algo-

rithm. Maximum marginal entropy (MME), as described in Gokhale (1999); Chau (2001), is used as a

discretization mechanism, producing a set of crisp events and allowing the basic PD algorithm to function

in a continuous data domain.
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Figure 1.1: Data Flow Through Hybrid System

The events based on these crisp quantization intervals are explored by the PD algorithm, generating

a set of “patterns” (or rules). The combination of a fuzzified version of the quantization intervals, rules

produced through PD plus a new weighting scheme (that improves system performance) are together used

as the basis of an FIS. This is described in Chapter 4.

The performance of the resulting FIS and PD systems are compared using several synthetic and real

examples.

A number of synthetic data type distributions used for comparison are described in Chapter 5. The

analysis of the performance of the systems on these distributions is presented in Chapters 6 and 7 for the

continuous-valued PD algorithm and the fuzzy system respectively.

Analysis of the system on real-world data is performed using clinical thyroid and heart disease data

found at the UCI (University of California, Irvine) Machine Learning Repository (Newman, Hettich et al.,

1998).§ A description of these data sets and the analysis and discussion of the hybrid classifier perfor-

mance is provided in Chapter 8.

§i.e., http://www.ics.uci.edu/∼mlearn/MLRepository.html
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1.5 Confidence Estimation and System Reliability

The FIS based classifier provides degrees of support for multiple output classes. Using these degrees

of support, a confidence measure is created that predicts the probability of classifying an input record

correctly, based on a certainty-type measure relating the internal decision consistency or conflict with the

probability of having produced an erroneous suggestion. This confidence scheme thereby provides an

indication of the probability of failure, and can therefore be seen as a predictor of system reliability.

A discussion of the calculation and use of reliability measures is presented in Chapter 9, along with a

discussion of classifier and inference reliability and confidence analysis as implemented in the FIS.

Finally, the use of the PD/FIS as a decision support system is analyzed in Chapter 10, and the overall

conclusions and recommendations for future work are found in Chapter 11.

1.6 Summary

The purpose of this work is to introduce and describe a means to extract knowledge from training data

for use in decision support. The primary motivation behind the data analysis and knowledge discovery

process is to use the resulting knowledge base in the context of supporting complex, high risk decisions.

The resulting tool must therefore be a decision support system of the highest quality.

A high quality decision support system must transparently perform two actions:

1. provide a correct labelling (i.e., classify input data) with at least reasonable frequency and

2. report a confidence in the suggested labelling that truly measures the probability of an inaccurate

suggestion.

This implies that for decision support, a good classifier is required as a basis; this need not, however, be

the “best” possible classifier if the “best” classifier is a “black box”. A suboptimal, “white box” classifier

exhibiting a good confidence measure is significantly more useful than an optimal “black box”. Such a

“white box” system is more trustworthy, and thereby more reliable than an “optimal” classifier whose

function cannot be understood in the context of a human user making a larger decision.
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Chapter 2

Pattern Recognition and Decision Support

Discovery is to see what everybody else has seen, and think what nobody else has thought.

— Albert von Szent-Gyorgi

The work described here involves the development of a decision support system based on a classifier.

For this reason, it is important to create a context of surrounding work in both decision support and

classification to which this system relates.

The most important relationship is the background and description of the PD system itself. Due to the

importance of this topic, an in-depth discussion will be left to Chapter 3, which will provide the algorithm

and describe its use and relevant theory. To provide a background for the discussion of other methods,

however, this chapter will introduce the general form of the PD system prior to the comparative discussion.

Once this background is provided, the reader is given an overview of various types of classification

systems which can be used for decision support. The relative merits of each system are discussed in

relation to a PD based design. This provides a context for the motivation for using the PD based FIS

described in this work.

The last section of this chapter will outline the past use of reliability metrics within decision support,

and discuss how decision reliability is managed and measured in other systems.

2.1 Pattern Discovery Overview

In general, the PD system introduced by Wang (1997) was designed to locate and describe statistically

significant patterns observed in discrete (integer, ordinal or nominal) training data.

11
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Figure 2.1: A Three-Dimensional Hyper-Cell

In order to function in a continuous domain, this work presents the PD pattern extraction algorithm

with discretized data constructed via independent analysis of the density of the feature values along each

dimension using marginal maximum entropy (MME) partitioning (Gokhale, 1999; Chau, 2001).

The PD algorithm then constructs a contingency table from these discretized training values to create

an event-based (hyper-cell) partitioning of the input space, as shown in Figure 2.1. In this figure, a

three-dimensional hyper-cell is shown as the intersection of the space defined by three cells on their

respective axes. The hyper-cell is the discretely bounded space associated with unique quanta along (in

this case) the axes x, y and z. A four dimensional hyper-cell would simply include a similar value along

the axis w. Hyper-cells, which form first-order events, are related to each other by rules extracted through

mutual occurrence of observed values. Potential rules must pass a test of statistical rigour in order to

be considered, preventing patterns describing correlations due to random noise from being considered as

rules.

Classification decisions are made using a nonlinear-weighted, information-theory based estimation of

the relative likelihoods of each possible labelling. These estimates are calculated by using the set of rules

triggered by matching input values.

Relative degrees of likelihood are calculated for each label, relating each possible choice within a

spectrum running from total support through complete refutation, incorporating both positive and negative

logic rules to describe the relationships present in the data. The existence of negative logic rules allows the
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Figure 2.2: Pattern Discovery Rule Extraction Based on Uniform Random Null Hypothesis

characterizations of known negative relationships, as well as providing context to the degrees of positive

relationship.

While the theory behind the pattern extraction algorithm rests on analysis of entropy, the rationale be-

hind each decision can be discovered by comparing the observed probabilities of matching data occurring

in each hyper-cell.

An example is shown in Figure 2.2 where a 3 × 2 grid is populated with data from three classes, “A”,

“B” and “C”. There are 6 instances of each of the classes. The null hypothesis therefore states that the

number of occurrences should be close to 1 in each cell (ignoring the effects of variance in this very tiny

example). Each of the cells in this example have been constructed to demonstrate a particular facet of the

PD hypothesis testing scheme.

Beginning in the top-left corner, we see a cell for which the observation (1 occurrence of each class)

matches the hypothesis. For this cell, no patterns will be recorded as the model perfectly predicts this data.

The top-centre cell holds twice the number of predicted occurrences of each class. For this cell,

patterns will be produced for all classes; each pattern will indicate that there is a significant association

of its label with this class. As each pattern predicts the same number of occurrences, all the weights

will be identical. These patterns will therefore record knowledge about the data without being useful for

classification purposes, as there is no information present useful for this purpose. Note that this is quite

different from the first cell, where there was no information present at all; the fact that this cell forms a

data-dense region may be of interest to a user even though there is no decision-specific information.
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Moving to the top-right cell, we see a single occurrence of class “C”, again the value predicted by

the model. There will therefore be no pattern referencing class “C” constructed for this cell. Classes “A”

and “B”, however, both differ from the model; class “A” by a negative deviation, and class “B” by a quite

strong positive one. Class “A” will therefore have a negative rule indicating that it will not likely appear

here, class “B” will have a strongly weighted positive rule indicating it is a likely occurrence.

Continuing across the bottom row of Figure 2.2, the two left-most cells will have positive logic rules

for classes “A” and “C” respectively. In these cells there will be negative logic rules for each class which

is not observed.

The bottom-right cell contains no data, indicating that classes “A”, “B” and “C” will all have a negative

association with this cell. Again, this is not useful for classification purposes, as based on this training

data we have no knowledge of a most-likely labelling for this cell. What is present is the strong knowledge

that data in this cell is rare, this knowledge is valuable to a user as any data which may appear in this cell

after training is of the utmost interested, even if the PD algorithm cannot suggest a possible labelling. If

this strong knowledge is contrasted with the weak knowledge found in the top-left cell, it is apparent that

direct knowledge of event rarity is quite different from the knowledge of random occurrence, as a random

occurrence simply indicates that there is no information present.

The presence of both positive and negative logic rules, and the source of the rules in calculation

of mutual occurrence provides a transparency of inference extending down through the rule base to the

underlying data distribution. This level of transparency makes the use of PD highly advantageous as the

foundation for a DSS, along with the benefits of the statistical basis of both its rules and the MME input

quantization.

Simply put, in a domain such as decision support where the importance of transparency is paramount,

the accessibility of simple, robust, statistical arguments makes a PD based system very attractive.

2.2 Pattern Recognition and Classification Techniques

“Pattern recognition” is the study of techniques for the extraction and matching of a known pattern in

a test data set. This is a subset of the larger field of “machine learning.” To discuss the features of the

PD based FIS system described in this work, a description of the data analysis issues will be presented,

followed by a brief description of various classification algorithms which are popularly used.
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2.2.1 Considerations Derived from the Data Domain

The domain of the input data, and the universe of possible values within it, is a defining characteristic

for classification algorithms. Some classifiers function best on continuous data, some on discrete. This

is largely due to the structure of the data representation within the classifier as it relates to the structure

of the data itself. The largest portion of real-world data is, however, continuous. In order to use discrete

methods on continuous data, some form of quantization must be applied.

Classification of Continuous-Valued Data

Classifiers designed for use with floating-point values generally view the data domain as an n-dimensional

space in which one or more surfaces will be placed, to form boundaries between decision regions. Each

region is unambiguously associated with one of K labels associated with the data set.

If these surfaces happen to form an orthogonal planar division of the input feature space it is quite easy

to explain the mapping between feature values and output labels. This scenario, which is very unlikely

when locating an optimal input space division, is a common characteristic of quantized/discrete analysis

schemes and is largely what makes them so easily explained.

Note that even when a classifier is described as functioning on “continuous” data, the domain of the

input data for a supervised classifier is still not x ∈ R. There are two major reasons for this: the underlying

representational limits of a digital “floating point” representation; and the fact that in any finite amount of

training data, the infinitely large universe of real numbers (i.e., R) cannot be realized. Instead, a relatively

small number of distinct values will be observed, though the universe of values which are possible in a

training set is quite large (and bounded only by the digital representation).

Classification of Discrete Data

“Discrete data” by contrast can be defined as a data universe in which the set of possible values is both

finite and, usually, small. The largest universe of such data will be x ∈ I; smaller nominative or ordinal

sets are also described as discrete data.

Classifiers of discrete data tend to be relatively simple as there is a known finite universe of possible

cases into which each data element can fit.

It is therefore possible to come up with an exhaustive description (at least for relatively small uni-

verses) which can eliminate the need for generalization to large sections of the data universe. A complete

description of the universe can be created using a large contingency table outlining all possible choices —
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that is, the data can be divided among a set of orthogonal hyper-cells, where cells are created independently

along each axis, and thereby group input data values.

As the universe of possible combinations grows, the main problem in a discrete classification system

is that it may be impossible to ascertain a probable labelling for some cells in the contingency table, as

some data value combinations may never be observed during training.

One of the major problems with the application of discrete algorithms is the fact that a large fraction

of real-world data is continuous. In order to use a discrete algorithm on continuous data, the data must be

quantized or “discretized”. Adapting quantized data to discrete algorithms is therefore an important topic.

The case of dividing input data into discrete quanta can be seen as similar to the division of the input

space as managed under continuous data. A quantization algorithm tends to construct the (orthogonal)

input divisions described above as unlikely when using a continuous algorithm. The difference between

the orthogonal division of the discrete quantization and the “least error” division of the continuous algo-

rithms is a significant source of error when using continuous data in a discrete algorithm. The benefit is

that feature independent orthogonal quantization is transparent, and easy to explain. Such quantization

produces an event-based data space in which discrete algorithms can be used.

As will be shown in the discussion on the performance of the fuzzy inference system (FIS), some of

the elements in the discretized data can be accommodated by using rules speaking to data with similar

locality when discrete analysis is performed on quantized continuous data. This alleviates some of the

cost incurred by using quantization.

2.2.2 Learning System Architectures

A summary will now be presented of several popular classification architectures. In each case, the

strengths and weaknesses relative to the proposed PD/FIS system will be discussed, in terms of the in-

tended application area of decision support systems.

Back-propagation Artificial Neural Networks

A back-propagation network (Rumelhart, Hinton and Williams, 1986; Minsky and Papert, 1988) trains

by using a random initialization of weights describing a set of partitions; an error surface is iteratively

minimized by successively considering the error relative to each input point many times.

This is a gradient-descent method, so therefore back-propagation networks are prone to issues with

local minima in the error space. The main obstacle to their application in this domain is the resulting lack

of interpretability of the final stable state.
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Figure 2.3: A Back-Propagation Neural Network

This type of network is constructed by a set of input, output and hidden nodes, as shown in Fig-

ure 2.3 (adapted from similar figures found in Rumelhart et al. (1986); Minsky and Papert (1988); Simp-

son (1991); Hertz, Krogh and Palmer (1991) and others). Each node is fully connected to each subsequent

node; the value in each node is therefore passed on to each subsequent node after being scaled by a weight

value associated with the link (i.e., the lines in Figure 2.3).

The back-propagation algorithm describes how to tune these weights to reduce the observed error on

training data. The weights are usually seeded with randomized values.

Each node in the hidden layer (or layers) of a back-propagation network allows a greater degree of

non-linearity in the final partition space by controlling the location and angle of some high-dimensional

hyper-plane. While the geometry of these planes is accessible through an examination of the weights,

the actual topology of the space is not easily visualizable, and certainly is not explainable to a user not

familiar with the mathematics involved.

A further complication is that the gradient descent search from a randomly initialized topology is not

likely to produce a division of input features which is logical in anything other than an abstract mathe-

matical sense. In particular, the divisions of the input space will appear arbitrary to a casual user, again

requiring a mathematical explanation to assure the user of their correctness and logic.

For this reason, a simpler division of the input feature space and a more intuitive description of the
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resulting decisions surfaces will produce a more accessible and transparent classification engine, resulting

in a more understandable (and therefore better) decision support system.

Such a network is sometimes referred to as a multi-layer perceptron (MLP).

Expectation-Maximization (E-M)

The E-M algorithm (Duda, Hart and Stork, 2001) operates on a maximum-likelihood probabilistic (Bayesian)

approach. The main feature of the E-M algorithm is that its design takes into account missing feature val-

ues, replacing their values by a maximum-likelihood estimation when required during training.

While this admirable feature makes it robust and useful on many real-world continuous and discrete

data sets when missing values are present, it suffers from many of the same drawbacks as back-propagation

in terms of its transparency and interpretability.

E-M is not a gradient descent algorithm; instead the E-M algorithm maximizes the log-likelihood of

all observed data values, filling in expected values for any missing data points. The global log-likelihood

expectation is maximized by an iterative search based on a simple assumed model Θ which is gradually

fit to match the observed likelihoods of the available data. This algorithm is explained in detail in Duda

et al. (2001, pp. 124–128).

While not a gradient descent algorithm, the resulting fit to a parametric error surface will be just as

opaque as the local minima fit optimizations of back-propagation. Essentially, the E-M algorithm is still an

iterative fit to an error surface; the means by which the fit is produced is not instructive in determining the

value of any final rule. In particular, both the input space divisions and resulting classification geometry

will again require significant mathematical analysis to convey the relationship between the final rules and

the input data to a user.

Support Vector Machines (SVM) and Maximum Margin Classifiers

Support Vector Machines (SVM) (Vapnik, 1995; Joachims, 1998, 2005; Cristianini and Shawe-Taylor,

2000; Duda et al., 2001) and the larger family of “kernel” based classifiers such as maximum margin

classification (Xu, Neufeld et al., 2005) actually increase the dimensionality of the input space (potentially

to an infinite number of dimensions) by projection.

The advantage of doing this is to move the data into a high dimensional space in which the data is well

separated, and classification with low error rates is possible.

Excellent performance results may be had by this technique, however from an interpretability point of

view this idea obscures the inner workings of the algorithm even more than is the case in back-propagation
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as instead of working in a space with analogous dimensionality to the input space, a user must now

understand the projection by which the kernel methods expand the number of degrees of freedom for the

problem.

Bayesian Decision Theory

The ideas behind Bayesian Decision Theory (Bayes, 1763; Duda et al., 2001) involve the probabilistic

minimization of computed risk.

The main limitation in Bayesian decision theory is the assumption that the distribution from which

input data points is drawn is well understood and can be characterized in terms of its distribution and

overall likelihood.

The PD algorithm used in this work does not make any such assumptions, and as will be shown in later

chapters is largely insensitive to the actual distribution. This feature makes PD an interesting candidate

for DSS design.

Dempster-Shafer Theory

The decision technique referred to as Dempster-Shafer (D-S) Theory (Dempster, 1968; Shafer and Pearl,

1976; Shafer, 1990; Shafer and Pearl, 1990; Yager, Fedrizzi and Kacprzyk, 1994) is the combination of

strict maximum probability based assignment with a belief model. The addition of belief to probability

theory provides a mechanism for the representation of the differing amounts of knowledge available in var-

ious situations, and in particular, allows a representation of conflict and uncertainty within the mechanism

of probabilistic inference.

As an example, of the function of D-S theory, let us consider a case where two witnesses, Laura and

Monica report on whether a burglary has just occurred at a store. At the time of the incident, Laura was

across the street from the store, waiting for a friend. Monica, on the other hand was sitting on a bench

reading a book, and therefore not paying as much attention to her surroundings. Let us therefore represent

our degree of belief in statements from the two witnesses as BL = 0.9 and BM = 0.6, indicating that we

have a high degree of belief in Laura’s testimony, and a lesser degree in Monica’s.

If Laura states that a burglary took place at the store, and if Monica disagrees, then we can represent

our understanding using D-S theory. First, based on only Laura’s statements, we would have a 0.9 degree

of belief that a robbery took place, but a 0 degree of belief that one did not. This is due to the fact that

discounting Laura’s story does not contradict the possibility that a robbery occurred unobserved. Similarly,

Monica’s story gives us a 0.6 degree of belief that a robbery did not occur, but a zero degree that one did.
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Treating the witnesses as independent, we can simply multiply values to calculate probabilities, as

described in Dempster (1968). Therefore we can calculate the probability that Laura is reliable but Monica

is not

RL = BL × (1 − BM) = 0.9 × 0.4 = 0.36 (2.1)

or that Laura is not reliable but Monica is

RM = (1 − BL) × BM = 0.1 × 0.6 = 0.06; (2.2)

we can also calculate the probability that neither is reliable

R∅ = (1 − BL) × (1 − BM) = 0.1 × 0.4 = 0.04. (2.3)

We must normalize each of these possibilities over the universe of total possibility. Note that in this

case, the universe does not sum to 1.0 because Laura and Monica have taken opposing views, and in

consequence there is no possibility that they are both correct. The size of the universe of possibility in this

case may therefore be expressed as the sum of the three probabilities just discussed, or

U = RL + RM + R∅ = 0.36 + 0.06 + 0.1 = 0.52. (2.4)

Taking each of these possibilities in turn over the universe of possibility, we get:

Pr(RL) =
RL

U
=

0.36
0.52

= 0.69

Pr(RM) =
RM

U
=

0.06
0.52

= 0.12

Pr(R∅) =
R∅
U
=

0.1
0.52

= 0.19

(2.5)

This allows us to represent the probability that Laura is correct (and there was a robbery) at 0.69; the

probability that Monica is correct (and there was no robbery) at 0.12; and the additional probability of not

knowing whether a robbery occurred or not as 0.19.

As explained in Zadeh’s (1984) review of Shafer and Pearl (1976), the result of D-S modelling is

an inference system which is based on probabilities involving sets of elements, rather than on a point

probability model. Even though in his review Zadeh states that (in his opinion) “D-S theory does not

capture the human mode of reasoning about possibility,” this model of representation remains interesting,
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Figure 2.4: Typical ART Neural Network

as attested by the ongoing and vigorous publication activity in this field. A model based on D-S theory to

provide decision support in some manner designed to fit the purpose evaluated in this work would certainly

be possible, and a future work could explore this option.

Adaptive Resonance Theory (ART)

The Adaptive Resonance Theory (or ART) algorithm of Grossberg (1976) is a neural net based approach

which was originally phrased as a model for true biological learning. While based on the ideas in Gross-

berg (1976), the technique was fully presented in Carpenter and Grossberg (1987b) and has since been

refined (see Carpenter and Grossberg, 1987b,a, 1990; Carpenter, Grossberg and Reynolds, 1991a; Gross-

berg, 1995).

This network stores exemplar values observed in a training data set and initializes a new exemplar

when no existing match can be found within a given tolerance. When no new exemplar is created, the

nearest match existing exemplar is updated to take into account resemblance to the newly viewed input

vector.

Figure 2.4 shows the general scheme of an ART-based neural network. This figure is reproduced

from Carpenter and Grossberg (1990), as is Figure 2.5, which shows the sequence of events that occur in

ART pattern matching. In Figure 2.5 a), a new pattern is shown to the system, which does not exactly

match the previously stored exemplar. In Figure 2.5 part b), this is discovered by the “attentional subsys-
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Figure 2.5: Exemplar matching in ART

tem” forming the left-hand side of the network. Figure 2.5 c) shows that the patterns are insufficiently

different (determined by a threshold control termed the “vigilance parameter”), and so in Figure 2.5 d),

the exemplar is updated to incorporate the new data.

This striking idea has wonderful visual connotations, and is potentially very expressive in pattern

matching, assuming the user can transparently understand the metric by which a match occurs.

As originally proposed in Grossberg (1976) and as refined through Carpenter and Grossberg (1987a,b,

1990) ART deals strictly with discrete data values. By adapting the feedback state through use of fuzzy

logic techniques, “Fuzzy ART” (Carpenter, Grossberg and Rosen, 1991b) seamlessly deals with continuous-

valued data, and provides one of the most elegant refinements of a discrete algorithm through the use of

fuzzy systems.

While ART is interesting, in the context of our decision support goals it is not clear that the matching

of the exemplars in a generic feature space would be explainable, other than in a manner similar to that

used by back-propagation.
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Evolutionary Algorithms

Evolutionary algorithms, as a family, take the idea of gradient descent search into a probabilistically-

directed search domain.

Within the general family of evolutionary algorithms are such ideas as genetic algorithms and genetic

programming (Goldberg, 1989; Goldberg and Deb, 1991; Syswerda, 1991; Koza, 1992; Mitchell, 1996)

as well as simulated annealing (Kirkpatrick, Gelatt et al., 1983), and other randomized search techniques

such as particle swarm (Kennedy and Eberhart, 1995).

All of these techniques revolve around the central idea that local minima can be avoided by adding a

noise element to the search direction. Coupled with a parallel search of the problem space involving many

(randomly initialized) points, this powerful technique is tractable even when applied to several difficult

problems for which other techniques fail. In particular, the problem space need only be characterized in

terms of a cost or benefit function; geometries which are poorly understood can thus be traversed as long

as two possible solutions can be evaluated in terms of their merit, even if they cannot be evaluated in any

other way.

While quite powerful and requiring extremely small amounts of configuration, the results returned by

an evolutionary solution have no guarantee of interpretability other than as a least-cost/best-fit solution.

While the solution itself may perform well with respect to classification, there is no available expla-

nation of the reasons underlying the selection of a given label.

Decision Tree Classifiers

A decision tree classifier functions by establishing a set of decisions that, when made successively, result

in the assignment of a label to input data.

Decisions and sub-decisions are always made based on the same initial test, so the decisions them-

selves can be structured in the form of a tree.

Decision trees form a powerful, simple means of rapidly coming to a classification based on applying

a sequence of decisions over an input data vector in order to traverse the tree.

The broad field of decision tree classifiers contains algorithms such as Ross Quinlan’s ID3 (Quinlan,

1986), C4.5 (Catlett, 1991; Quinlan, 1993) and FOIL (Quinlan, 1996) algorithms, as well as other popular

systems such as WEKA (Witten and Frank, 2000).

The main drawback of a decision tree is the forced direction of traversal. This does not capture how

humans actually think, and may not be well supported by the data if there are missing values present.

In order to support human decision making, it is preferable to support the human mode of thought; this
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Table 2.1: Mushroom Example Data Set

Size Spots Colour Class
Large Spotted Yellow Poisonous
Large Striped Brown Edible
Small Spotted Brown Edible
Small Spotted White Poisonous
Small Plain Brown Poisonous

Not Large

Poisonous Edible

Edible Poisonous

Poisonous

Large

Yellow Spotted

Brown

Not Yellow Not Spotted

Not Brown

Figure 2.6: Tree Characterizing the Mushroom Data Set

especially includes exploring the results of “what if?” questions, which may involve constructing answers

based on partial knowledge which is not encoded in the tree.

In a decision tree, a single test must be isolated as the root of the tree. The PD algorithm allows the

presentation of the highest-weighted rule triggered by the match of the data vector as the strongest (and

therefore first) source of decision support. In a tree system there is always a fixed first question which one

must ask.

Similarly, it is impossible, while navigating a tree, to ask a question based on an unobserved value –

the best response which can be made is that the creation of the tree did not necessitate observation of that

value, based on traversal from the initial root node. This is completely different both from deciding the

value is irrelevant to any decision, and as is the case in PD, from deciding the value cannot answer any

questions with statistical confidence.
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Consider the example data set shown in Table 2.1, and the decision tree shown in Figure 2.6. While

this tree adequately captures the decisions needed to classify a new input record, it cannot answer the

question:

“Are mushrooms which are  and  edible?”

A system presenting a full contingency table would allow exploration of such a question. The partial

contingency table of PD supports all questions for which a statistically significant answer is available. To

do this, significantly more rules are stored by PD than are stored by C4.5.

The structure of the tree yields an efficient means of classifying data (as the maximum number of data

elements examined is equal to the height of the tree).

The efficient classification of a tree algorithm is significantly different from the problem of explana-

tion. In such an algorithm, the “explanation” consists of the presentation of the single rule defining the

traversal from root to leaf. This path defines the series of tests by which the tree determined the outcome,

ranked from the decision with the highest information gain to achieve any labelling down to the decision

which resolved the given label within a small sub-partition of the data space. The decision forming the first

branching of the tree therefore only describes what decision globally gives the most information within

the decision space, whereas in the PD system the user is presented with the test that contains the most

information specific to the current input data elements.

For this reason alone, a PD based implementation merits consideration over a tree-based one, as data-

specific analysis reflects the way in which decision makers will approach their data. The presence of both

positive- and negative-rule inference in PD allows relationships between labels and rules to be explored

which are simply not available in a tree based system.

In some other work, such as in Kim, Lee and Min (1999); Boyen and Wehenkel (1999) and Chiang

and Hsu (2002), ID3 and C4.5 have been developed into fuzzy inference systems.

Fuzzy Inference Based Classification

Fuzzy inference is a family of techniques, referring only to the means by which logical values are com-

bined in the form of rules, over a set of input membership functions.

Fuzzy inference in general does not speak to how the rules or input membership functions are created.

The work in this thesis is a fuzzy inference system, and suggests one possible means of creating both

rules and input membership functions.

Several other papers mention rule generation for fuzzy systems. This literature can be divided into:
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• interview of domain experts and construction of rules through human knowledge representation (Mam-

dani, 1974; Zadeh, 1976, 1978, 1983; Heske and Heske, 1999);

• fuzzy clustering (Krishnapuram and Keller, 1996, 1993; Pal, Bezdek and Hathaway, 1996; Pal, Pal

and Bezdek, 1997; Hathaway and Bezdek, 2002);

• neuro-fuzzy systems (Pedrycz, 1995; Labbi and Gauthier, 1997; Pal and Mitra, 1999; Kruse, Geb-

hardt and Klawonn, 1994; Nauck, Klawonn and Kruse, 1997; Höppner, Klawonn et al., 1999; Mitra

and Hayashi, 2000; Gabrys, 2004);

• fuzzy systems designed or configured through evolutionary algorithms (Ishibuchi, Nozaki et al.,

1994; Ishibuchi and Murata, 1997; Cordón, Herrera et al., 2001a; Spiegel and Sudkamp, 2003;

Hoffmann, 2004);

• use of an extension matrix (Hong and Lee, 1996; Yager and Filev, 1996; Chong, Gedon et al., 2001;

Wang, Wang et al., 2001; Xing, Huang and Shi, 2003) or tree generation algorithm such as ID3 or

C4.5 (Quinlan, 1986, 1993, 1996);

• approaches using contingency tables based on rough sets (Bean, Kambhampati and Rajasekharan,

2002; Shen and Chouchoulas, 2002; Tsumoto, 2002; Ziarko, 2002); and

• schemes using some kind of statistical clustering technique to create input membership functions,

combined with contingency table generation (Chen, Tokuda et al., 2001; Chen, 2002; Kukolj, 2002).

Possibilistic c-Means and Fuzzy c-Means

Possibilistic c-Means (Krishnapuram and Keller, 1993) and fuzzy c-Means (Pal et al., 1997) each provide

another means of generating rule sets based on examination of the underlying data. Both function by

performing a gradient descent evaluation over some (c) clusters in the feature space.

Showing some similarity to k-nearest neighbour, they both create fuzzy boundaries associating “nearby”

values together.

These systems function by performing the same sort of gradient descent search used by back-propagation

neural networks, which means that they may be trapped in local minima, and are not guaranteed to contain

rules whose construction will be transparent to an end-user.

Evolutionary Fuzzy Classifiers

Evolutionary fuzzy classifiers, such as Fukumi and Akamatsu (1999), while also creating linguistically

based rules uses the same type of randomized search used by other evolutionary algorithms. While the

rules themselves may be readable by a user, the means by which the rules were constructed is opaque; in
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Figure 2.7: Rough Set Example

contrast, the PD system offers a clear statistical basis for rule construction.

Neuro-Fuzzy Classifiers

Similarly, neuro-fuzzy classifiers, while more transparent than their non-fuzzy neural network counter-

parts have the same problems with respect to the transparency of the rule creation.

These systems function by performing the same sort of gradient descent search used by back-propagation

neural networks, which means that they may be trapped in local minima, and are not guaranteed to pro-

duce rules whose construction will be transparent to an end-user, but rather involve rules “that produce a

good result.”

Rough Set Based Classifiers

Rough sets (Pawlak, 1982, 1992; Lin and Cercone, 1997; Polkowski and Skowron, 1998; Øhrn, 1999;

Ziarko, 1999; Grzymala-Busse and Ziarko, 1999; Ziarko, 2000; Grzymala-Busse and Ziarko, 2000; Ziarko,

2001), as with fuzzy logic is not a technique by itself, but rather a means of representing uncertainty.

Rough sets deal in discernibility between equivalence classes rather than partial membership in a class.

Figure 2.7 shows a rough set in relation to a set of attributes, A. This figure shows the three regions of

discernment relative to A (the attribute universe) and relative to X, the true relation on A:

• the “lower bound” on the set, or AX

• the “upper bound” on the set, or AX
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• the region outside of AX

This is referred to as an “indiscernibility relation”. The boundaries for AX and AX may be the same;

if this is true for all boundaries then the set is simply a crisp set.

The task of constructing the relations is an open question, exactly comparable to the construction of

input membership functions in fuzzy logic. While techniques to create a rough-set based characterization

scheme could just as easily have been produced using a PD basis, there is no a priori reason to assume

that the performance or reliability would be any better than the FIS which has been implemented.

Classification Comparison

While the PD algorithm must deal with quantization issues, the attractiveness of the robust statistical

explanation for its rules, along with the statistical explanation from MME for quantization gives a PD

based system such a high degree of transparency that it is a very interesting algorithm in the context of

decision support.

2.3 Reliability

There are several means of discussing the reliability of a test. The two most common means of doing so

are: receiver operator characteristic (ROC) curve analysis and measurement of decision confidence using

probabilistic methods.

2.3.1 Overall Classifier Reliability — ROC Analysis

Consider the situation where there are two candidate classifiers for a given two-class problem. A method

to evaluate the two classifiers and provide a means of ranking their quality at discerning between the

classes would be advantageous in selecting which classifier to use.

For example, if a test is constructed for hypothyroidism, an analysis can be done to determine that this

test is likely to produce an incorrect result 1.25% of the time, and that of these errors, 75% will incorrectly

indicate the presence of a disease when there is none.

This type of analysis is done using a receiver operating characteristic (ROC) curve (Metz, 1978)

analysis, which provides sensitivity and specificity measures for a given two-outcome classifier.

This type of measure is discussed extensively in the medical informatics literature (see any of: Berner,

1988; Keller and Trendelenburg, 1989; Shortliffe and Perreault, 1990; Kononenko and Bratko, 1991;



CHAPTER 2. PATTERN RECOGNITION AND DECISION SUPPORT 29

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

False
Negatives

(Type I Error)

False
Positives
(Type II Error)

Decision
Boundary

True Positives

Specificity

increase sensitivity increase specificity

True Negatives

(Negative Decision) (Positive Decision)

Sensitivity

Figure 2.8: Specificity and Sensitivity

López de Mántaras, 1991; Gibb et al., 1994; Harris and Boyd, 1995; de Graaf et al., 1997; Larsson et al.,

1997; Friedland, 1998; Kukar et al., 1999; Kononenko, 2001; O’ Carroll et al., 2002; Abu-Hanna and

de Keizer, 2003; Colombet et al., 2003; Coiera, 2003; Cowan, 2003; Kukar, 2003; Montani et al., 2003;

Brillman et al., 2005) as well as in much of the discussion regarding reliability in decision making (see, for

example Schniederjans, 1987; Sage, 1991; Sundararajan, 1991; Barlow, Clarotti and Spizzichino, 1993;

Cordella et al., 1999; Gurov, 2004, 2005).

The general purpose of an ROC test is to generate a statistic globally characterizing the ability of a

two-outcome classifier to separate two distinct outcomes.

Figure 2.8 shows a plot describing typical distributions of desired positive and negative outcomes. The

portion of the graph above the central horizontal line indicates a PDF (probability density function) of the

occurrence of the values for which we want to see identification as a “positive” outcome. Below the line

is a similar PDF describing the occurrences of values for which a “negative” identification is desired. The

vertical line in the centre of the figure indicates a decision threshold, dividing the data values between

“positive” and “negative” decisions; values from either PDF falling to the right of the decision boundary

will be identified as “positive”, and all values (from either PDF) falling to the left will be identified as

“negative”.

The specificity of the test is simply calculated as the fraction of the “positive” decisions that are

correctly identified; the sensitivity, conversely is the similar fraction of the “negative” decisions.
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Figure 2.9: Example ROC Curve

As these distributions frequently overlap (as shown in Figure 2.8, it is usually impossible to select a

test statistic where a single threshold will avoid making errors in assigning label values.

From ROC analysis, we get the categorization of error types:

Type I Error: a rejection of the null hypothesis (that being a successful test) when we should accept;

also a “false negative;”

Type II error: acceptance of the null hypothesis when we should reject it; also a “false positive.”

By plotting the fraction of the errors incurred using each possible threshold value for a given classifier,

a curve (the ROC curve) is produced. The area under such a curve provides a metric by which two

classifiers can be compared. The curve with the greater area has the greater ability to discriminate between

the desired positive and negative outcomes.

The following example is drawn largely from the work by Tape (2005). Two ROC curves are plotted

as shown in Figure 2.9, for two different candidate tests “A” and “B.” The fraction of positive-class results

which are classified correctly (the sensitivity) is plotted against the fraction of positive-class results which

are classified incorrectly (1-specificity).

As can be seen in Figure 2.9, this will produce a curve which is above the line x=y. The better the test,
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the more closely this line will approach the axes of this graph. For this reason, the accuracy of the test is

measured using a calculation of the area under the ROC curve on the range [0 . . . 1], which produces an

area bounded in the domain [ 1
2 . . . 1].

ROC curves which have an area close to 1
2 are use useless, those whose area is 1 are perfect classifiers

between the “positive” and “negative” classes.

As the shape of the distribution of decisions (as shown in Figure 2.8) is dependent upon the test, the

ROC curve provides a means of evaluating different tests for the same decision.

As can be seen in Figure 2.9, this provides a simple means of characterizing the two tests, as it is not

otherwise obvious which of tests “A” and “B” would be superior, as at some points the sensitivity of “A”

exceeds that of “B”, and at some points the reverse is true.

Given the calculations of the areas under the two curves Area(A) = 0.74 and Area(B) = 0.81, we see

the “A” test is apparently superior by this measure, however it is important to note that statistical tests for

significance between the curves still apply, incorporating measures such as the number of points, etc.

While ROC analysis can provide a measure of performance of a classifier in a two-outcome test, this

measure is a global one, reporting the reliability as a mean chance of failure of the classification system.

What is truly desired in a decision support system is a means of inferring the probability of failure of

a particular decision, not the class of all decisions made by a system. For that reason, we turn to the

discussion of decision confidence within a system when knowledge of particular input values is available.

2.3.2 Input Specific Reliability

System reliability can be measured in terms of the probability of a correct response. Specifically, the

“reliability” of a system is simply the inverse of the probability of failure, or

C = E(R)

R = 1 − Pr(failure) ≡ 1 − Pr(Incorrect)
(2.6)

Generalized Probabilistic Measurement of Decision Confidence

Frequently, this is calculated as the compound probability of both measurement and inference error, com-

bined using Bayesian logic.

Bayes’s (1763) theorem provides the well-known and convenient mechanism of relating a prior distri-

bution of a particular label Pr(Ψ) with the probability of the occurrence of a particular input vector given

the occurrence of the label Pr(x|Ψ) providing the probability of occurrence of the label, given the input
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vector, as

Pr(Ψ|x) =
Pr(Ψ) Pr(x|Ψ)

Pr(x)
,

using the relation

Pr(Ψ|x) Pr(x) = Pr(Ψ, x) = Pr(x|Ψ) Pr(Ψ).

Using these relations, one can calculate the probability of an incorrect assignment for any suggested

labelling based on the observed probabilities calculated on training data, assuming a direct probabilistic

path of inference exists from input value measurement to output characterization. If this path exists, this

allows a software system to report the probability of incorrect support at the time of a decision presenta-

tion.

By using Dempster-Shafer theory, this technique can be extended through the postulated limits of

“belief”, however the underlying assumption in all Bayesian inference is that the mapping of uncertainty

can be done in probabilistic terms.

Such a technique cannot be used when the mechanism of inference is not probabilistic, such as in

possibilistic fuzzy inference systems. The use of a derived probabilistic model is frequently used in such

contexts.

Derived Probabilistic Methods

Generalized indices of reliability which only approximate probabilistic models can also be used, such as

the certainty factor of the  system (Shortliffe, 1976; Buchanan and Shortliffe, 1984).

The  index simply used a minimum operation at each logical join, rather than computing true

joint or conditional probabilities.

While not directly based on probabilistic methods, it has been proven by Heckerman (1986) (and

summarized by Ginsberg (1993)) that there is an underlying probabilistic basis for this method.

When tested against a true probabilistic model using the same inference, there was no measurable

difference in ’s performance (see, for instance, Ginsberg, 1993).

Much of the discussion regarding the “usefulness” of fuzzy systems involves a variation of this discus-

sion (for example Klir, 2005a,b), and much of this work is in the form of a response to the famous paper

by Cox (1946), which claims that any non-probabilistic system is without merit.

The large volume of research continuing in the many-sided field of approximate reasoning refutes the

validity of Cox’s claim, as do specific responses such as those by Klir, above.
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Measured Reliability

The overall focus of all reliability modelling is to predict the true probability of failure of a specific

classification or suggestion. It is therefore desirable to determine reliability by calculating the probability

of failure of the labelling process as a function of some system parameter (usually input values or some

internal state variable).

Such a calculation will provide an estimate of the true system reliability. The quality of the estimate

can be assessed by evaluating how well estimated values correlate with measured reliability, as calculated

for a population of test values.

In the work in this thesis, such a reliability metric will be used. This technique will be introduced,

discussed and evaluated in Chapter 9, “Confidence and Reliability.”

2.4 Summary

Several classification schemes have been presented. The common thread of all of the systems discussed is

that they do not have complete transparency in the creation of their decisions, and they do not necessarily

support the exploration of a suggestion presented to the user.

What is desired is a system which has a sound basis for rule generation, provides a simple means

of producing suggestions which will be explainable, provides a good estimate of the reliability of any

suggestion made, and, finally, presents its suggestions in a framework that allows the exploration of both

suggestion itself and the decision space from which the suggestion was drawn.

A pattern discovery based characterization system has all of these benefits:

• there is a statistical basis for both the input quanta and rules (patterns) generated from them;

• transparency is provided both through framing inference in terms of rules (or patterns) and from the

statistical basis of the system and

• the adaptation of the PD algorithm to fuzzy analysis provides a linguistic mechanism for explanation

and inference.

What remains is to consider the performance of a PD based FIS. To do this, we must first understand

how the PD algorithm works.



Chapter 3

(Non-Fuzzy) Pattern Discovery

The Pattern Discovery (PD) algorithm was originally described in the doctoral work of Wang (1997) and

later published in the journal literature (see Wong and Wang, 1997, 2003; Wang and Wong, 2003). It

functions as a rule based classifier constructed through statistical inference.

3.1 Pattern Discovery Algorithm

Consider a set of discrete training data presented as an array of N rows of length M+1. Each row or

input vector contains M input feature values and a single class label, Y=yk, from a set of K possible class

labels.∗ Every input vector can be considered to be an event of order M+1 in input space. Each element of

an M-dimensional input feature vector, x j, j ∈ {1, 2, · · · ,M}, can have one of ν j discrete observed values

drawn from the set of possible values or primary events describing feature j. Each possible combination

of m primary events selected from within a vector can be considered a sub-event of order m, m ∈ I, 1 ≤

m ≤ M+1.

Primary (or first order) events are represented as x1
l , while in general an event of order m is represented

as xm
l , with l indicating a particular sub-event within the list of all sub-events of order m occurring in a

particular input event x. Events of interest with respect to classification must be of order 2 or greater and

be an association of at least one input feature value (a primary event) and a specific class label.

PD analysis begins by counting the number of occurrences of all observed events among the N vectors

forming the training data. Statistically significant events (or “patterns”) within this set are then discovered

∗A summary of the variable definitions used throughout this thesis is supplied in Appendix A at the end of the document.
This is intended to form a general reference for the notation throughout the development of the discussion.

34
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by using a residual analysis technique.

3.2 Definitions for Residual Analysis

Definition 3.1 (Standardized Residual):
The standardized residual is defined as the ratio of the simple residual (i.e., oxm

l
− exm

l
) to the square root

of its expectation (Haberman, 1973):

zxm
l
=

oxm
l
− exm

l
√exm

l

(3.1)

where
exm

l
indicates the number of occurrences of xm

l expected from observation of a training set of known size

under an assumed model of uniform random chance and

oxm
l

is the observed number of occurrences of xm
l in a training data set.

In equation (3.1) it is important to note that the expectation value exm
l

cannot fall to zero under the

assumed model used here. This is because exm
l

is equivalent to a linear scale of the number of available

training examples, as it is produced by dividing the available training examples among the number of

quanta. The only way a zero value could therefore be produced is by having no observed values for some

feature. If this were to occur (i.e., if all the values for a given column in the training data were missing)

the adjusted residual would be undefined, however in this pathological case there is no discovery system

that would be able to proceed. It suffices to proceed under the assumption that there will be a non-zero

number of exemplars available for every input feature.

The standardized residual provides a normalization of the difference oxm
l
− exm

l
such that zxm

l
has an

asymptotic Normal distribution (for a proof, see Haberman, 1973, 1979). The standardized residual does

not, however, have a unit standard deviation; for this reason we proceed to further scale zxm
l

so that the

distribution is N(0, 1) by considering the adjusted residual.

Definition 3.2 (Adjusted Residual):
The adjusted residual is a normalization of the standardized residual (also Haberman, 1973, 1979) that

achieves aN(0, 1) distribution by adjusting the variance of the previously zero-mean Normally distributed

deviate of equation (3.1):

rxm
l
=

zxm
l

√vxm
l

(3.2)

where vxm
l

is the maximum likelihood estimate of the variance of the zxm
l

value of (3.1); as given by Wong
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and Wang (1997), this is:

vxm
l
= var

(
zxm

l

)
= var

oxm
l
− exm

l
√exm

l

 = 1 −
m∏

xli∈xm
l

j=1

(oxli

N

)
(3.3)

where oxli is the number of occurrences of the primary event xli ∈ xm
l (xm

l is the current event being

examined) and N is the total number of observations made (i.e., the number of rows in the training data

set).

The benefit of the adjusted residual is that it scales the space of the standardized residual into that of

a Normal deviate with unit standard deviation. Using the resulting N(0, 1) space, we can easily calculate

observed deviation from expectation.

3.3 Pattern Identification Using Residual Analysis

The test performed on each xm
l event to determine whether it is “significant” simply compares the observed

number of occurrences of the event with the expected number of occurrences under the null hypothesis

that the probability of the occurrence of each component primary event is random and independent.

The observed number of occurrences of xm
l is represented as oxm

l
and the expected number of occur-

rences, exm
l

is

exm
l
= N

m∏
xli∈xm

l
i=1

(oxli

N

)
, (3.4)

where oxli is the number of occurrences of xli, itself a primary event drawn from the event xm
l .

To select significant events, the adjusted residual rxm
l

defined in (3.2) is used as it provides a N(0, 1)

distributed z statistic (i.e., a statistic drawn from a normal distribution with zero mean and unit standard

deviation). The value rxm
l

defines the relative significance of the associated event xm
l . The PD algorithm

deems an event to be significant if |rxm
l
| exceeds 1.96, defeating the null-hypothesis with 95% confidence.

Events capturing significant relationships between feature values in the training data are termed “pat-

terns.” Patterns are used to suggest the class labels of new input feature vectors. Patterns containing a

value for the label column are termed “rules.”

Significance is calculated in absolute terms because combinations of events which occur significantly

less frequently than would be expected by the null-hypothesis (patterns with a negative rxm
l
) are just as



CHAPTER 3. (NON-FUZZY) PATTERN DISCOVERY 37

significant and potentially discriminative as those that occur more frequently. Such patterns may be used

to contra-indicate a specific class label.

3.4 Classification

Classification in PD functions by combining the implications of extracted patterns to indicate a class label.

The patterns used are chosen based on their discriminative ability.

3.4.1 Weight of Evidence Weighted Patterns

In order to measure the discriminative power of a pattern, Wang (1997) suggests the use of the “weight of

evidence” statistic or WOE.

Definition 3.3 (Weight of Evidence):
Letting (Y=yk) represent the label portion of a given pattern xm

l , the remaining portion (consisting of the

input feature values) is referred to as x?l . The mutual information between these two components can be

calculated (Wong and Wang, 1997) using:

I(Y=yk : x?l ) = ln
Pr(Y=yk|x?l )

Pr(Y=yk)
(3.5)

A WOE in favour of or against a particular labelling yk ∈ Y can be calculated as

WOE
(
Y=yk

Y,yk

∣∣∣x?l )
= I(Y=yk : x?l ) − I(Y,yk : x?l ) (3.6)

or

WOE = ln
Pr(x?l ,Y=yk) Pr(Y,yk)

Pr(Y=yk) Pr(x?l ,Y,yk)
. (3.7)

WOE thereby provides a measure of how discriminative a pattern x?l is in relation to a label yk and

gives us a measure of the relative probability of the co-occurrence of x?l and yk (i.e., the “odds” of labelling

correctly).

The domain of WOE values is [−∞ · · ·∞], where −∞ indicates those patterns (x?l ) that never occur in

the training data with the specific class label yk; ∞ indicates patterns which only occur with the specific

class label yk. These ±∞ valued WOE patterns are the most descriptive relationships found in the training

data set as any non-infinite WOE indicates a pattern for which conflicting labels have been observed.
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WOE-based support for each yk (possible class label) is evaluated in turn by considering the highest-

order pattern with the greatest adjusted residual from the set of all patterns occurring in an input data

vector to be classified, and accumulating the WOE of this pattern in support of the associated label. All

features of the input data vector matching this pattern are then excluded from further consideration for this

yk, and the next-highest order occurring pattern is considered. This continues until no patterns match the

remaining input data vector, or all the features in the input data vector are excluded. This “independent”

method of selecting patterns attempts to accumulate their WOE in way which estimates the accumulation

of the probabilities of independent random variables. Once this is repeated to consider each yk, the label

with the highest accrued WOE is assumed as the highest likelihood match and this class label is assigned

to the input feature vector.

3.4.2 Pattern Absence

It is possible that an input vector may contain only primary events which are not associated with any

pattern. This is most likely to occur when an input event matches a hyper-cell that, in the training set,

occurred with a probability similar to that of the null hypothesis. In this case, no information about the

possible classification of this event is available, and no pattern is matched, as described in Figure 2.1 on

page 12. When this occurs, the classifier leaves an input vector unclassified; this will be a distinct outcome

in addition to the set of assigned labels through the addition of an extra “” label. This behaviour

provides a strength not commonly seen in classifiers; a possibility of a graceful “no decision” in scenarios

when insufficient information is available to make a robust decision.

The alternative action in this case would be to choose the class with the greatest overall probability of

occurrence, irrespective of x, i.e.,

Y = yk such that k =
K

argmax
k=1

Pr(yk) (3.8)

however for DSS purposes these cases are intentionally flagged separately in the work described here.

3.5 Quantization: Analysis of Continuous Values

Originally, PD was developed to deal with integer or nominal data, terming the observation of each discrete

datum as an event.

In most real-world problems data is continuous-valued and must be quantized to be used by the PD
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Figure 3.1: MME Partitioning

algorithm. In order to define events over continuous-valued input data the feature values must be first

discretized. In this work, a marginal maximum entropy (MME) partitioning scheme as described by

(Gokhale, 1999; Chau, 2001) is used, this divides the continuous data into bins with Q quantization inter-

vals per feature. The general idea is that for a specific feature the data values assigned to each bin have a

local similarity, and that each bin contains the same number of assigned feature data values.

This is achieved over the set of observed values by:

• sorting all the values for a given feature j, j ∈ {1, 2, · · · ,M};

• dividing the sorted list into q j bins of N
q j

values each;

• calculating a minimum cover or “core” of each bin;

• covering gaps between the calculated cores of adjacent bins by extending the bin boundaries to the

midpoint of the gaps.

The creation of MME bounded divisions based on grouping of input data values is described in Fig-

ure 3.1 where the first two rows illustrate the construction of MME based input space quantization inter-

vals. In the top row, an input space is shown with training feature data shown as circles. The distribution

of the circles along the axis indicates the values of the features observed; where feature values occur very

close together, the values are “piled up” on top of each other.

Using this data, the second row shows the division of the sorted data points into MME quanta of three

points each, creating five MME “cells” numbered 0 to 4. These MME cells have differing sizes, as the

distribution density of the continuous values is not constant; this has also caused variability in the widths

of the gaps between MME cell cores. There is no discernible gap between quanta 0 and 1 as there is no

gap between the third and fourth data point as counted from the left. In the case of the cores of cells 3 and
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4, there is a substantial gap in which no points were recorded in the training set shown here.

These gaps are closed by expanding the bin and moving the boundaries to the midpoints of the gaps,

covering the input domain completely. New data points are then assigned to the bin whose interval includes

their value as shown in Figure 3.1 on the second row with the assignment of x0 and x1 to MME quantization

intervals 2 and 4, respectively. This assignment is not necessarily what is desired, as when there is a large

gap in the discretization of the training data there is considerable vagueness regarding the exact boundary

of the MME cells. Decisions made based on this type of data are more uncertain than decisions made if

the data falls into the core area of a bin.

There are two types of imperfection to be captured: the vagueness based on the location of the bin

boundaries, and uncertainty in the measurement of both the training and testing data points.

Figure 3.2 shows the MME divisions constructed for the two displayed classes, which are unimodal,

normally distributed data with some covariance. The training data used for the bin construction is over-

plotted on top of the bin boundaries. The data have been divided among five MME bins along each axis.

As can be seen, the MME divisions are constructed without regard to class association — the quantization
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is done by counting points in both classes together (i.e., class-independent quantization). In regions of the

graph where the data points are sparse, the MME divisions are wider. Note that in the centre of the y-axis

where the density of the data points is high, a narrower bin will accommodate the same number of points;

along the x-axis, the bins are wider throughout as the separation of the distributions along this axis means

that the density is more constant than is the case in y.

3.6 Expectation Limits and Data Quantization

The relationship between decisions made by the PD algorithm in a continuous-valued domain and the

configuration of the system is dependent upon two major factors: the number of training records available

for PD and the quantization resolutions for each feature q j that govern how many different MME bins

each feature is divided into.

Given a fixed number of training data records, it is important to choose the q j to ensure that enough

records are present to allow a statistically sound decision to be made regarding the discovery of each

possible high order pattern. As the occurrence of a high order event is simply the product of the occurrence

of the primary events (which MME attempts to keep equal across all bins), we can calculate an estimate

of this value by simply calculating a product relating the number of rows of training data available (N),

the quantization resolutions used for MME (q j) and the number of features used to represent the class

distribution (M), which defines the highest order observable event. This relation is

Exm
l
= N

m∏
xli∈xm

l
i=1

1
q j
, j = index(i, xm

l ), (3.9)

in which the function “index(i, xm
l )” selects the column index of primary event i within the poly-order

event xm
l . This function is required as pattern xm

l may well be constructed via a subset of the M input

features available in x and therefore j may not be valid for all values in the interval {1, . . . ,M}.

In equation (3.9) an increase in any q j decreases Exm
l
; an increase in m (the order of the event) also

decreases Exm
l
. Essentially, given a fixed amount of training data (or a fixed amount of information),

dividing the data into a greater number subdivisions reduces the amount of information in each. This is

the well-known “curse of dimensionality” (Bellman, 1961) which affects any multi-variate data inference

technique. To test high order events for their possible significance as patterns we are therefore obliged to

use a lower q j, given the same N; effectively consolidating our data at a very coarse resolution to ensure

that each division has enough data to be able to support a statistical inference procedure.
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As a precaution against recording spurious patterns when Exm
l

is low, the PD classifier implemented

will not consider as patterns any events for which the expected number of occurrences is less than 5.

This is desired in order to prevent the discovery of high-order patterns caused by the occurrence of only

one or two instances of a high-order event (instances that were possibly generated by chance). Such a

pattern, if accepted, will in all likelihood have an infinite WOE, as the chances of observing the same

randomly-generated pattern while observing a different label is quite small.

The existence of such patterns may diminish classifier performance, especially when the total number

of features, M, is quite large. The use of an infinite weighted but spurious pattern would then corrupt the

evaluation of any remaining features in the induction of the correct class label value.

Referring back to the introduction of PD in Figure 2.2 on page 13, we see all cells in this figure will

be discarded as the expectation at this quantization places only one element into each cell. While first

inspection may indicate that this restriction is unduly harsh, a small degree of consideration shows that in

fact there is far too little information to proceed to any sound conclusion, and indeed the data pictured in

Figure 2.2 could easily have occurred by random chance.

The purpose of equation (3.9) is to ensure that we do not extend the level of inference discovered

in a data set beyond the amount of information actually present; instead we restrict ourselves to the pat-

terns which can be discovered with confidence, omitting patterns whose rationale cannot be rigorously

defended.

Using equation (3.9) it is therefore possible to choose Q = q1 = q2 = · · · = qm based on a knowledge

of the maximum order event expected and the number of training examples available.

3.7 Summary

The PD algorithm provides a pattern (rule) selection mechanism based on a simple analysis of residuals,

which are simple to calculate and straight-forward to explain.

In order to adapt PD to a continuous domain, a class-independent quantization scheme was used. This

MME quantization is transparent and simple to explain, however any relatively coarse quantization has

the potential to raise problems when the resolution of the data is high.

The primary advantage of these two techniques is the simple statistical basis, allowing excellent ex-

plainability.
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Chapter 4

Construction of Fuzzy Pattern Discovery

Research is what I’m doing when I don’t know what I’m doing.

— Wernher von Braun

A scheme to implement a “fuzzified” version of the PD algorithm is introduced in this section. Two

main factors within the PD system are considered: the crisp nature of the quantization bins, and the lack

of any fuzzy framework for the PD patterns.

4.1 Rationale

One of the primary advantages of a fuzzy inference system (FIS) is the linguistic framework supporting the

inference and resulting transparency of the decisions made. This framework allows the robust exploration

of the knowledge structure necessary for use in decision support. A new fuzzy inference system (FIS) is

introduced here performing continuous and mixed-mode data classification based on rules recognized as

patterns by the PD method of statistically based pattern extraction. The classification performance of this

new FIS across a series of different class distributions is examined and discussed.

The rules utilized in this classification based FIS are created by the PD algorithm, based on an MME

quantization of the input feature space.

The creation of an FIS based on the PD framework will ameliorate the high cost of quantization

expressed by an MME based PD as well as provide a linguistic basis for a DSS.

The main advantage of the rules exported from the PD algorithm is the transparency and statistical

validity provided by the analytical techniques used to create them. The main problem with the use of

44
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these rules is the characterization of the weights associated with the rules by the PD algorithm; these

weights do not fall into the normalized fuzzy membership domain, but rather in the domain of the relative

likelihood of contrary observation, and are bounded only by [−∞ · · ·∞].

What is being proposed in this work, therefore, is a marriage between a probabilistically based rule

extraction system and a fuzzy inference methodology for rule evaluation and expression. It may seem

that this conjunction is a poor fit, as every fuzzy researcher has pointed out that fuzzy inference and

probability are different things, beginning with Zadeh (1968). What is proposed in this work is not a

mixing of the metaphors of fuzzy and probability, but rather a co-operation between the two, using fuzzy

sets to represent vagueness where appropriate and using probability theory to explain observation. By

using the strengths of the two paradigms together, the hybrid approach suggested here provides a means

of providing a context for decision making superior to either alone.

4.2 Fuzzification of Input Space Data Divisions

One of the advantages of fuzzy inference is the blurring of bin boundaries between adjacent input ranges

and concordant reduction in quantization costs. The construction of fuzzy input membership functions for

this purpose is described here.

Figure 4.1 extends Figure 3.1 from page 39, indicating the production of FIS input membership

functions from the vagueness in the constructions of the MME quanta. When examining Figure 4.1, we

see there are two types of imperfection to be captured: the vagueness based on the location of the bin

boundaries, and uncertainty in the measurement of both the training and testing data points.

Consider the boundaries of bin 0. When there is no gap between cells the cell-boundary vagueness is

low. The crisp, well-defined bin bounds of this cell allow the calculation of WOE to be performed with a

higher certainty than is possible when vagueness about the boundary location exists. As bin 1 (which will

define the “core” of a fuzzy set) is crisply defined by its borders with the “cores” of bins 0 and 2, any new

measured values in this feature in the vicinity of the core of bin 1 can be crisply assigned based on these

bounds.

In contrast, when there are significant gaps between the bin cores, such as those bordering bin 3, the

fuzzy concept of “vagueness” captures the imperfection present in the bin-boundary problem. As shown

on the lower-most line of Figure 4.1, this vagueness is captured when fuzzy input membership functions

are constructed with a flat central area (µ=1) corresponding to the defined region of the MME bin core,

and with extension of the support of the set into trapezoidal ramps projecting into the area of vagueness

between the quantized MME bins.
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Figure 4.1: Fuzzy Mapping of MME Partitioning

4.2.1 Creation of Fuzzy Membership Functions

Using the following rationale, we create fuzzy membership functions based on the location of the bin core

regions:

• the degree of uncertainty in the boundary of a bin is related to both the width of adjacent bin cores

and the distance between them. Cores which abut have less uncertainty than those with a large

inter-core gap; similarly, the degree to which an inter-bin gap is “large” cannot be evaluated without

a knowledge of the width of the bin cores themselves;

• limiting the extent of the support ensures that the locality of inference of information regarding

MME assertions is maintained (i.e., we maintain the assumption that as a measurement deviates

from some fixed constant, assertions made on the measured value will begin to differ from those

made on the constant);

• if the point is farther from known data than we can reasonably extend the locality of inference,

the preferred behaviour is to discard decisions altogether rather than make a classification based on

extrapolating behaviour trained using distant exemplars.

The support of a trapezoidal fuzzy set is therefore extended in each direction from the bin core in order

to expand the domain covered by the bin. The length of the extension of the support in each direction (the
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length of the trapezoidal ramp) is set to the minimum of:

• the distance from the edge of the current bin core to the midpoint of the neighbouring bin core (to

limit the number of fuzzy membership functions which overlap);

• 1/2 the width of the current bin core (to restrict the maximum distance to which a bin may have

influence, based on its width).

4.2.2 Fuzzy Membership Function Attributes

The resulting fuzzy membership functions may abut in one of three ways:

1. the overlap may be complete, as in the boundary between bins 0 and 1—in this case the support of

the set projects into the adjacent bin and the membership across the inter-core boundary never drops

below 1.0;

2. the regions of support of adjacent sets may overlap and cover the inter-core region, as in Figure 4.1

at point x0 which will be assigned to both fuzzy input membership sets 2 and 3 with non-zero

membership;

3. the regions of support may not meet, as is the case at point x1, which is sufficiently far from both

neighbouring core areas that it is outside the extent of the support for both sets.

This third option causes the creation of regions in the input space which would have no assignment in

the fuzzy logic system; in order to avoid the instability which this would otherwise cause, crisp member-

ship functions are inserted into these areas which will cause the output label “” to be assigned if

any input values fall into these regions.

The above scheme allows the point x1 (which was assigned to a distant MME bin in the PD row) to be

discarded, producing a classification of “” for x1, which allows the system to avoid performing

a classification with insufficient confidence. This strategy maintains the traditional transparency of fuzzy

systems and extends the ability of a user to inspect the rationale of the decision through to the input

domain. The user can rely upon the statistical validity of the MME quantization (see Gokhale, 1999;

Chau, 2001) and further see that this quantization is not disturbed by unduly extending the support of the

fuzzy membership functions away from the training-defined core regions. This will allow the user to “drill

down” through the final rule firings to determine the input value matches and maintain a high degree of

confidence in the conservatism of the overall system. The mechanism supporting this will be discussed in

Chapter 10.
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4.3 Use of Pattern Discovery Based Rules

Using the patterns provided by the PD algorithm as rules for a FIS also requires some thought for two

reasons: the pattern weightings used within the PD algorithm are not [0 . . . 1] bounded, and the PD logic

for pattern selection and use differs greatly from the firing of rules in a general FIS.

Aside from weighting and selection, the patterns created by the PD system are very similar to fuzzy

rules, as they enumerate the associations observed between input events and output labels. These can be

easily mapped into the association of membership in (collections of) input fuzzy sets with membership in

output universes describing the degree of association with each label.

The PD algorithm generates, however, both positive logic patterns which support a given class, and

negative logic patterns which indicate that the associated class is unlikely, given the input events observed.

Each positive logic pattern provides a vote supporting a single class. Negative logic patterns may also

exist, decreasing the support for the indicated class, and other positive logic patterns may exist increasing

the support for a conflicting conclusion. Each possible class may therefore have several assertions in

support or in refutation of its candidacy as a class label. The FIS must therefore consider assertions of

both support and refutation for each possible class; these assertions must be combined into one overall

assertion value,Ak, describing the support or refutation for each candidate label k ∈ K.

The WOE values associated with PD patterns provide a description of their discriminative power. In

order to process these as rules weighted using WOE, a provision for a system to accumulate assertions

from rules that have infinite weights within the structure of the hybrid FIS is introduced.

In order to facilitate this accumulation, the consequents of all rules are examined as hypotheses sup-

porting or rejecting each output class.

Three schemes to implement this mapping are described in the following sections:

• a Mamdani (1974) based inference using WOE weighted rules;

• a mapped WOE weighting scheme using fuzzy inference and

• a simpler occurrence based weighting scheme with fuzzy inference.

4.3.1 Mamdani Inference Using WOE Weighted Rules

This strategy is supplied to give a baseline comparison in performance using a very simplistic imple-

mentation using a fuzzy set method based on Mamdani’s (1974) initial implementation of a fuzzy logic

system.

Each rule (pattern) will fire and generate an assertion axm
l K in an output space for the associated class

K, based on the WOE of the rule using the ranges and assertions shown in Table 4.1.
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Table 4.1: Mamdani Output Values for WOE

WOE Value Output Class Name Centre
[ 1

2ω. . . ∞] SUPPORTED 1
( 0. . . 1

2ω) SOMEWHAT-SUPPORTED 0.5
(−1

2ω. . . 0] SOMEWHAT-REFUTED -0.5
[ −∞. . .−1

2ω] REFUTED -1

The value ω in the table is calculated as:

ω = max(|WOEi|) ∀ i |WOEi| , ∞, (4.1)

where i indexes the list of all rules, and | · | indicates absolute value.

Each output set described in Table 4.1 is defined as an impulse based set or fuzzy singleton; a set

whose support is a single value

Vxm
l K =

µ(axm
l K)

axm
l K
, (4.2)

where
axm

l K is an the value created by the firing of a fuzzy rule through the use of Table 4.1 based on pattern xm
l

supporting class K and

µ is the fuzzy membership match of the rule firing.

Firing of rules using this Mamdani-style assertion logic creates a collection of singletons in one of K

defuzzification universes, each of which describes the degree of support for a particular classification.

The degree of the rule firing is used to scale the membership of the impulse set, combining the degree

of input membership match of the rule (pattern) with the assertion value provided by the WOE value of

the rule.

After all rules have been processed, a centroid-based calculation is applied to the universe of discourse

to achieve a scalar output in the usual manner. The value of this scalar Ak is then taken as an assertion

of support or refutation of this classification. This assertion has the range [−1 . . . 1] where −1 is total

refutation, 1 is total support and 0 indicates no opinion.

This is similar to the “certainty factor” introduced by the  system of Shortliffe (1976); Buchanan

and Shortliffe (1984).

This procedure will be termed “M” in the discussion section.
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4.3.2 Using WOE Directly With Fuzzy Rules

The main problem with the use of WOE weighted rules is the fact that the rules have possibly infinite

weights. The range [−∞ · · ·∞] cannot be applied directly within the standard t-norm/t-conorm proposed

by Zadeh (Yager, Ovchinnikov et al., 1987) as any conflicting ±∞ values will leave the results of the

calculation undefined. A further consideration is that WOE values are measured in “relative likelihood”

and are therefore not [0, 1] bounded; instead arbitrarily large finite values may be observed, along with

any infinities.

The inconveniently bounded WOE based assertion for a particular classification provides a mapping

of the “degree of support” by which the given classification is supported by the rule, where larger positive

values indicate higher degrees of support, and larger negative values indicate higher degrees of refutation

of the classification.

To convert WOE values into a space bounded by [−1 . . . 1] in the defuzzification universe the WOE

based assertions are normalized by the maximum finite WOE value recorded in the PD rule set, indepen-

dent of class. This ensures that all the finite WOE assertions will fall into the range [−1 . . . 1]. The net

effect of this normalization is to cause all axm
l K assertions to fall into three groups:

1. assertions which fall into the range [−1 . . . 1];

2. assertions whose value = ∞ and

3. assertions whose value = −∞.

Adjusted Centroid Calculation for Infinite WOE

Assertions in the [−1 . . . 1] range can be considered using a standard centroid calculation. In the infinite

cases, the support/refutation value is simply calculated by counting the number of infinities. If more +∞

values are observed than −∞ values, an assertion of 1 is produced. If more −∞ values are present, an

assertion of −1 is produced. If there are an equal number of positive and negative infinite assertions, the

output is marked “,” regardless of the outcome of the assertions for the other class possibilities.

As each rule (each xm
l ) asserts a value (Ak) in the range [−∞,−1 . . . 1,∞], we term this “WOE” weighting.

4.3.3 Occurrence Weighted Fuzzified PD Rules

A drawback of the Mamdani-style system is that fact that the granularity of the weight is lost in the

assignment to one of a discrete number of output sets (assertion values). A similar potential problem

with pure WOE is the potential to lose resolution through the combination of infinity values in WOE
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weighting. It is therefore of interest to construct a means of providing a functional mapping for rule

weights into output assertions.

Definition 4.1 (Occurrence Based Weighting):
A relative measure (Wxm

l
) of the discriminative power of the rules (xm

l ) is created by using a weighting

based on the number of occurrences of the supporting rule in the training data:

Wxm
l
=


oxm

l
ox?l

if rxm
l
≥ 1.96,

oxm
l
−exm

l
exm

l

if rxm
l
≤ −1.96,

(4.3)

where
oxm

l
indicates the number of occurrences of the event defining rule l, or xm

l , including the class label, as

used in equation (3.2);

exm
l

is the expected number of occurrences of the event defining rule l, (xm
l ) and

ox?l
indicates the number of occurrences of only the input value portion of the event (i.e., event xm

l with

the class label column excluded), noting that this input event may also occur with other class labels.

Note that in (4.3), the first proposition produces values in the range [0 . . . 1], and the second values

in the range [−1 . . . 0]. Values of rxm
l
∈ (−1.96 . . . 1.96) will not be observed for significant patterns (or

rules).

This method can be considered an implementation of the techniques of Takagi and Sugeno (1985) and

Sugeno and Kang (1988) as it provides a functional representation which combines the membership value

of the rule firing and aWxm
l

value for the rule weighting into the output of some function producing a set of

fuzzy singletons which are collected together and defuzzified using a centroid defuzzification algorithm.

Each rule xm
l is allowed to assert a value axm

l k ∈ [−1 . . . 1], supporting or refuting some possible

classification k of input value x. Overall support for each class, Ak, is thereby based on a possibilistic

scheme and is independent of the support for any other classes.

As this algorithm creates assertions supporting or refuting an output classification weighted purely on

the observed occurrence of sub-events, we term this “O” weighting.

4.3.4 Selection of a Classification Label

For all the above schemes, once an assertion is calculated for each class for which any rule fires, the label

is selected as follows:
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1. locate the class containing the centroid which asserts the maximum value:

k? =
K

argmax
k=1

Ak (4.4)

2. ifAk? > 0 then Y=yk?

3. otherwise Y=y
In the case where Y=y, the classifier has produced a “soft failure”; that is, the classifier has

decided that the given input data does not provide sufficient discriminative information to produce a reli-

able decision, and therefore no decision will be made. In a decision support context this characteristic is a

welcome one, as it will enhance the reliability of the overall system.

4.4 Selection and Firing of PD Generated Rules

In the PD algorithm, the occurrence of a pattern is assumed to consume the information associated with

the primary events describing the pattern. For this reason, each input feature can support at most one rule

firing, in order to maintain the assumption of statistical independence of the input features. The rule to

be fired is selected by evaluating the order and adjusted residual of all rules matching the input vector.

Conversely, the fuzzy methodology allows all rules to fire, re-using the information in the associated input

values, and letting the rule and membership weights govern to what extent each rule contributes to the

final solution.

An implementation of the PD based independent selection is presented and evaluated against the

standard fuzzy rule firing scheme, with the results included as Chapter 7. This comparison allows us to

evaluate the “fuzzification” of the PD system by stages, comparing the performance as each feature of the

PD algorithm is adapted to the fuzzy framework.

4.4.1 Fuzzy Rule Firing

This strategy, termed “A” in the results, refers to the standard fuzzy logic evaluation where all rules are

fired. In the case of rules for which the input value falls outside the support of their defining membership

functions, a zero membership value is attached to the assertion provided by the rule.
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4.4.2 Independent Rule Firing

This strategy provides a rule evaluation procedure similar to that used in the PD system. This strategy is

termed “Ind” in the results chapters.

The algorithm proceeds through the following steps:

1. produce a list L of all fuzzy variables provided through fuzzification of the input values which have

a non-zero membership;

2. set search order o to be N, the number of inputs to the system;

3. place all rules of order o whose precedents exist in the list L into a list of matches,M. If this search

fails, repeat after setting o := o − 1;

4. If o = 1 has been reached, and no matches have been found, then stop;

5. find the rule ρmax inM which has the highest adjusted residual;

6. fire rule ρmax, generating consequents as described in Section 4.4.1;

7. remove from L all the variables matching the precedents of rule ρmax;

8. if L is empty, then stop

9. repeat, starting from step 3, noting that the value of o continues to decrease with each iteration.

4.5 Summary

This chapter has outlined the extension of PD rules into a FIS, along with some changes to the inference

required to evaluate the PD based rules. Three rule weightings and two rule firing techniques have been

presented.

Rule Weighting :

• M rule weighting using a lookup table for fixed output assertions with rule-based mem-

bership

• WOE rule weighting with adapted centroid calculation to manage possible infinite values

• O rule weighting with simplified, non-infinite rule weights

Rule Firing :

• FZ – standard fuzzy firing of all rules

• I – firing of PD style rules, within a fuzzy context

The next chapters will now evaluate the performance of these various strategies.



Chapter 5

Synthetic Class Distribution Data and
Analysis Tools

What is research but a blind date with knowledge?

— Will Harvey

In order to evaluate the hybrid system, several synthetic data distributions have been created. Synthetic

data is used for analysis of this part of the work as the properties of the data are known in advance, allowing

a deeper insight into both the performance triumphs and failures of the hybrid system with respect to

attributes due to the construction of the data sets.

Four main types of synthetic data have been produced: unimodal covaried data, log-Normal covaried

data, bimodal covaried data and spiral data. The construction of each of these types will now be explained.

5.1 Covaried Class Distributions

Covariance matrices for 4-feature N(0, 1) data were generated by using the variance values

V = {160, 48, 16, 90} (5.1)

arranged along the diagonal of a generating covariance matrix (Covii=Vi). Each off-diagonal element

Covi j was calculated through

Covi j = κ
√

(Covii)(Cov j j) (5.2)

54
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CovA =


160 −52.58 −30.36 −72
−52.58 48 16.63 39.44
−30.36 16.63 16 22.77
−72 39.44 22.77 90


CovB =


48 16.63 39.44 −52.58
16.63 16 22.77 −30.36
39.44 22.77 90 −72
−52.58 −30.36 −72 160


CovC =


16 22.77 −30.36 16.63
22.77 90 −72 39.44
−30.36 −72 160 −52.58

16.63 39.44 −52.58 48


CovD =


90 −72 39.44 −22.77
−72 160 −52.58 30.36

39.44 −52.58 48 −16.63
−22.77 30.36 −16.63 16


Table 5.1: Covariance Matrices for 4 Classes

using a κ value of 0.6.

This produced the covariance matrix for class A. The covariance matrix for class B was produced by

setting

CovB
ii = V(i+1) mod 4. (5.3)

Class C and D were produced by substituting i+2 and i+3 respectively into (5.3). The resulting covariance

matrices used to generate the 4-class data are shown in Table 5.1 for reference.

To use a covariance matrix to create data for some class k, a N(0, 1) data set with zero covariance

was randomly generated, and a transform T was calculated to transform the data to have the desired

covariance:

T k = Φkλk

Pk = (T kPN(0,1)
T )T + µk

(5.4)

where
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MT is the transpose of some matrix M ;

Φk is the matrix of eigenvectors derived from the covariance matrix for this class (Covk);

λk is the vector of eigenvalues for the covariance matrix;

PN(0,1) are the N(0, 1) uncoloured points;

T k is the “colouring” transform to be applied;

µk is the mean vector; and

Pk are the final coloured points.

These matrices generate clouds of data which intersect non-orthogonally and which have differing

variances and covariances in each dimension, and in each class. The covariance values themselves have

been chosen to provide both strong and weak covariances, across the various dimensions.

Class separations were produced using a combination of the variances of classes A and B within the

set of covariance matrices, where the separation vector c was calculated using

ci =
4
√

(CovA
ii )(CovB

ii ). (5.5)

The four classes were separated into different quadrants in Euclidean space by projecting the mean

vector of each class away from the origin by separation factors of

si ∈ S, S =
{

1
8
,

1
4
,

1
2
, 1, 2, 3, 4

}
, (5.6)

and combining si with ci from (5.5) to produce centres for each factor of s located at (+1
2 sici,+

1
2 sici),

(+1
2 sici,−

1
2 sici), (−1

2 sici,+
1
2 sici) and (−1

2 sici,−
1
2 sici), respectively.

5.2 Covaried Log-Normal Class Distributions

In order to evaluate the performance of the classifiers on data which is not N(0, 1) distributed, data was

generated with a log-Normal distribution. This data was produced by taking each point generated in a

N(0, 1) distribution using the method just described and calculating

p′ = epξ, p ∈ N(0, 1) (5.7)

to transform each point p to be log-Normally distributed, controlled by the shape parameter ξ. Each point

in the resulting log-Normal distribution is then transformed using (5.4), using the covariance matrix. Sepa-
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Figure 5.1: Bimodal Data Points

rate experiments were done with ξ ∈ {1.0, 1.5, 2.0}. The skewness value of the resulting class distributions

was on average 4.58 when ξ=1.0; was 13.80 when ξ=1.5 and was 27.33 when ξ=2.0.

5.3 Covaried Bimodal Class Distributions

The bimodal data was created by starting with the si cluster locations of the linearly separable class distri-

butions and then adding a second set of points for each class. The location of the second cluster is set by

projecting the mean away from the origin in a diametrically opposite direction, with an extra translation of

4
√

vmax, where vmax is the maximum variance value specified in the set of variances, V (i.e., 160.0). Thus,

along with a cluster of points centred at (s, s), a second cluster would be placed at (−4s
√

vmax,−4s
√

vmax).

Each cluster contained half the total number of points.

This algorithm was repeated for all sets, generating a layout of pairs of clusters around the origin,

shown in the sample data illustrated in Figure 5.1 for s=8, which displays the first two dimensions of the

four-feature data and shows clearly that no line can be drawn across the field to separate any one class
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from any other.

In Figure 5.1, the four modes shown in the centre (within the dotted square) indicate the distribution

of points for Unimodal data with s=8.

5.4 Spiral Class Distributions

2-class data was produced by using the spiral equation

r = ρ(2πθ) + r0, (5.8)

which relates the input variable θ to a radius where r0 is the base radius at which the spiral begins and ρ is

the scale, or acceleration of the spiral.

The spiral defined in (5.8) accelerates out from (0, 0). For each (r, θ) point chosen on this spiral, a

value from a N(0, 1) distribution was chosen to apply a scatter in radians to the θ value of each generated

point, while maintaining the same radius. To generate 4 feature points, a second scatter is chosen, to

perturb the data in the third and fourth dimensions also. The second class was generated by choosing a

similar set of points. Separation was introduced by rotating the entire set around the origin by a specified

amount in units of π radians. Maximum separation therefore is 1.0. Data was generated using σ=1.0,

ρ=0.5 and r0=0.125. Two dimensions of a sample pair of class distributions with a separation of 1.0 (a

half-turn, or 1.0π) is shown for 2-dimensional data in Figure 5.2.

5.5 Training Error

For each class distribution studied the effect of training error Terr on the performance of the classifiers

was examined. In each summary table a column indicating Terr=0.1 is included to indicate that 10% of

the records for each class have had their true label value replaced with a value chosen randomly from the

other class labels.

5.6 Jackknife Data Set Construction

For each class distribution 11 sets of randomly-generated data from each class were produced to create

training and testing data sets. The data were then combined using a jackknife procedure. This popular

performance measurement methodology is discussed in Duda et al. (2001) and is widely used in the
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Figure 5.2: Spiral Data Points

literature. Essentially, the total set of Ω available data records is divided into a set of G groups, with N

records per group. Each group Gg, g ∈ {1, . . . ,G} will be used once for testing; when group g is being

tested, the training data is formed by concatenating all other records together

Tg =

G⋃
i=1
i,g

Gi. (5.9)

In this way, each record is used for testing once, and used for training G times.

In each experiments described here G=11 separate jackknife runs have been created. The number

of training records differs among experiments, however in each case the term N will be used to indicate

the number of training vectors used for each class; in each case 1
10 N will indicate the number of testing

records. Specifically, when N=1000 training vectors per class, there are 100 testing points per class. This

amount of training data reflects the quantity of data available for several real-world problems.
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5.7 Classifiers Used in Comparison

Classification accuracies of the original PD and the hybrid PD/FIS were compared with those of back-

propagation (BP) and a minimum inter-class distance (MICD) classifier in a series of experiments involv-

ing both linearly and non-linearly separable class distributions. The MICD classifier is simply a simple

Naı̈ve Bayesian classifier, and will be defined shortly.

In this work q j was constant for all M input features and was set by the quantization resolution value

Q.

5.7.1 Back-Propagation Classifier Construction

A simple BP network was constructed using the algorithms provided in Simpson (1991, pp. 112–120)

and in Hertz et al. (1991, pp. 115–120). The learning rate and momentum for the classifiers were fixed

across all BP configurations using the typical values of 0.0125 and 0.5, respectively. Training for each

experiment was run for a maximum of 105 epochs, until the overall error dropped below 2.5 × 10−3, or

until the derivative of the error dropped below 1.25 × 10−3. Several choices for the number of hidden

nodes were studied (H={5, 10, 20}).

5.7.2 Minimum Inter-Class Distance Classifier Construction

The MICD classifier takes an input record and applies a whitening transform transform calculated from

the observed covariance. The smallest distance to a class mean in the whitened space is then the optimal

maximum likelihood match, if the true class distribution is Normally distributed, linearly separable and

sufficient points are available for the estimate of the covariance.

The transform for class k is given by Duda et al. (2001, pp. 41) as

δk = xT Wkx + wkx + wk, (5.10)

using transform components calculated by

Wk = −
1
2

Cov?k
−1
,

wk = Cov?k
−1
+ µk,

and

wk = −
1
2

(
µT

k Cov?k
−1

µk
)
−

1
2

ln
∣∣∣∣Cov?k

−1
∣∣∣∣ + Pr(k).

(5.11)
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In equation (5.11),
M−1 represents the inverse of matrix M ;

x represents the vector of feature values, as in the discussion of PD;

Cov?k is the covariance matrix calculated for class k;

µk contains the mean vector for class k;

Pr(k) is the overall probability of occurrence of class k; and

| · | is the matrix determinant operation.

5.8 Weighted Performance Measure

To compare performance across classifiers, a statistic was constructed to summarize results across all

separations into a single scalar value.

Definition 5.1 (Weighted Performance Summary Measure):
Summarizing over all separations with greater emphasis placed on data from lower separations is per-

formed using

P =

∑|S|
i=0

pclassified
i

si∑|S|
i=0

1
si

(5.12)

in which si is a separation value as defined in equation (5.6), the value |S| indicates the number of separa-

tions tested and

pclassified =

(
nclassified

ntotal

) (
1 −

nerror

nclassified

)
, (5.13)

where
nclassified represents the number of records classified;

nerror is the number of records incorrectly classified; and

ntotal is the total number of records processed (the sum of those classified and those left unclassified

through assignment to the  class label).

This generates a single (scalar) value representing the overall performance of the classifier weighed

across all separations, such that performance at lower separations (where the problem is harder) is given

more weight.
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5.9 Summary

This chapter has described a series of synthetic data type distributions to be used for analysis. The motiva-

tion for evaluation on synthetic data is the available knowledge of the problem domain and the relationship

this will have to the resulting performance.

Once the PD/FIS system is evaluated on synthetic data, real-world examples will be used to further

test the best of the proposed FIS classifiers in later chapters.

Natively continuous classifiers (BP, MICD) have been chosen as comparative test cases, as on the

continuous data type distributions described here their expected performance will be very high, providing

a real and fair test for the PD/FIS algorithm.



Chapter 6

Synthetic Data Analysis of Pattern
Discovery

You cannot have a science without measurement.

— Richard W. Hamming

Results evaluating PD are presented in the following sections, organized by the type of class distribu-

tion. The purpose of this chapter is to establish a performance baseline for the MME quantized PD system

when functioning as a classifier in the continuous domain.

6.1 Covaried Class Distribution Results

Table 6.1 displays the weighted performance results calculated using equation (5.12) for the covaried

Normal class distributions. Figure 6.1 displays the results over all separations tested for N=1000 and

Figure 6.2 for N=10, 000 training examples. The graphs in these figures are clipped at 0.5 to allow the

lines to be more clearly visible, and the x-axis is plotted in log2 for clear separation of the data points.

In all of these displays, the PD classifier implementation suggested by Wang (1997) using indepen-

dent pattern selection and WOE weightings is termed PD(WOE/I) The modified O weighting

using all existing patterns is termed PD(O/A). BP is shown only with H=10 hidden nodes as

this was the highest performance configuration tested for both values of N. The covaried class distribu-

tions are quite rich in high-order information, and were easily separated by the MICD classifier, which

63
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Table 6.1: Weighted Performance: Covaried Class Distribution

Covaried

Classifier N=100 N=500 N=1000
N=1000
T err = 0.1

N=10,000

PD(WOE/Indep);Q=5 0.51±0.07 0.61±0.03 0.66±0.03 0.65±0.02 0.69±0.01
PD(WOE/Indep);Q=10 0.52±0.07 0.64±0.03 0.63±0.02 0.63±0.02 0.69±0.01
PD(WOE/Indep);Q=20 0.48±0.05 0.60±0.03 0.61±0.02 0.60±0.02 0.66±0.01
PD(O/A);Q=5 0.50±0.07 0.65±0.03 0.66±0.03 0.65±0.02 0.68±0.01
PD(O/A);Q=10 0.51±0.07 0.64±0.03 0.66±0.02 0.65±0.02 0.69±0.01
PD(O/A);Q=20 0.44±0.04 0.59±0.03 0.60±0.02 0.59±0.02 0.68±0.01
BP;H=5 0.56±0.04 0.63±0.02 0.61±0.03 0.62±0.02 0.59±0.01
BP;H=10 0.60±0.04 0.69±0.02 0.71±0.02 0.70±0.02 0.70±0.01
BP;H=20 0.56±0.07 0.69±0.01 0.72±0.02 0.69±0.01 0.72±0.01
MICD 0.74±0.07 0.74±0.03 0.74±0.02 0.73±0.02 0.74±0.01
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Figure 6.1: Covaried Data N=1000 Results
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Figure 6.2: Covaried Data N=10, 000 Results

can be seen providing an upper bound in each of Figures 6.1 and 6.2.

The performance of the PD classifier was somewhat lower than that of BP and MICD, though some

small difference in performance between the PD(O/A) and PD(WOE/I) performance is

visible in Figure 6.1, with the PD(O/A) performance being noticeably higher at lower sep-

arations. Once a separation of 1σ is reached, there is no longer a difference between the different PD

classifier implementations.

Figure 6.2 shows no real difference in performance between either of the PD classifiers or the BP

classifier, though the MICD classifier still shows that a marked difference exists in all these cases between

the recorded performance and optimality in this case.

These analyses are supported by an examination of Table 6.1, which reports a generally stronger

performance for PD(O/A) versus PD(WOE/I) (but both being somewhat weaker than that of

BP classifier) and significant improvement in this linearly separable case when using the MICD classifier.

Considering the Terr=0.1 column in Table 6.1, we can see that the PD classifiers can tolerate moderate

training data error.
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Table 6.2: Weighted Performance: Log-Normal Class Distribution

N=10,000 4c/4f

Classifier LogNormal
s=1

LogNormal
s=1.5

LogNormal
s=2

PD(WOE/Indep);Q=5 0.93±0.00 0.86±0.01 0.82±0.01
PD(WOE/Indep);Q=10 0.94±0.00 0.87±0.01 0.82±0.01
PD(WOE/Indep);Q=20 0.93±0.00 0.84±0.01 0.77±0.01
PD(O/A);Q=5 0.92±0.01 0.83±0.01 0.79±0.01
PD(O/A);Q=10 0.93±0.00 0.86±0.01 0.82±0.01
PD(O/A);Q=20 0.91±0.00 0.83±0.01 0.80±0.01
BP;H=5 0.95±0.00 0.86±0.01 0.78±0.02
BP;H=10 0.96±0.00 0.92±0.01 0.86±0.01
BP;H=20 0.97±0.00 0.94±0.01 0.90±0.00
MICD 0.91±0.01 0.61±0.03 0.36±0.02

Overall for these class distributions, it is apparent that Q=10 performs the strongest for the PD based

classifiers; there is a notable performance decrease when comparing any of the tests using Q=10 with

those using Q=5 or Q=20.

6.2 Covaried Log-Normal Class Distribution Results

As shown in Figure 6.3, the performance of the PD classifier remained high as the data distribution de-

viated from Normal, while the MICD classifier performance dropped remarkably as the skewness of the

data increased. This is summarized across all classifiers in Table 6.2, in which it can be seen that the BP

classifier responds to changes in skewness with a stability comparable to that of the PD classifiers.

6.3 Covaried Bimodal Class Distributions Results

As there is no single hyper-plane which can linearly divide any two classes for the bimodal and spiral

data, MICD is no longer really useful as a classifier, and the comparison between PD and BP classifiers

becomes much more important.

The results for the bimodal class distributions are shown across all distributions for N=1000 in Fig-

ure 6.4, and are summarized for all bimodal class distributions studied in Table 6.3.
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Figure 6.3: Log-Normal Data N=1000 Results

The PD classifiers with N=1000, with Q=20 and with Q=30 again showed poor performance, however

with lower Q or greater N, the PD classifier performance matched that of the other classifiers. Note that

the BP classifier performance suddenly decreases at high separation for these class distributions.

As seen in Table 6.3, training data error has little effect on the performance of the PD classifiers, as

shown in the Terr=0.1 column. While this is largely true for the BP algorithm as well, the MICD classifier

shows a strong sensitivity to this form of error, due to the inaccuracies this error will introduce into the

estimates of the mean and covariance values.

6.4 Spiral Class Distributions Results

The results of experiments using spiral class distributions are summarized in Table 6.4.

We see in these results that the performance of the PD classifiers remain close to that of BP classifiers,

and that Q=10 provides good performance in all of the cases examined. The performance of Q=20 is high

when N=10, 000, however when N=1000 the performance is much lower.
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Table 6.3: Weighted Performance: Bimodal Class Distribution

Bimodal

Classifier N=100 N=500 N=1000
N=1000
T err = 0.1

N=10,000

PD(WOE/Indep);Q=5 0.69±0.05 0.73±0.02 0.78±0.02 0.78±0.02 0.82±0.01
PD(WOE/Indep);Q=10 0.73±0.05 0.79±0.02 0.79±0.01 0.79±0.02 0.83±0.00
PD(WOE/Indep);Q=20 0.73±0.05 0.78±0.02 0.79±0.02 0.78±0.02 0.82±0.00
PD(O/A);Q=5 0.70±0.05 0.77±0.03 0.80±0.01 0.80±0.01 0.81±0.01
PD(O/A);Q=10 0.72±0.05 0.81±0.02 0.82±0.01 0.81±0.01 0.84±0.01
PD(O/A);Q=20 0.71±0.06 0.77±0.02 0.78±0.02 0.78±0.01 0.83±0.00
BP;H=5 0.70±0.03 0.73±0.04 0.74±0.01 0.75±0.03 0.74±0.02
BP;H=10 0.73±0.03 0.82±0.02 0.82±0.01 0.81±0.03 0.82±0.01
BP;H=20 0.70±0.05 0.83±0.03 0.85±0.01 0.82±0.02 0.85±0.01
MICD 0.73±0.04 0.73±0.02 0.73±0.01 0.67±0.01 0.73±0.01

Table 6.4: Weighted Performance: Spiral Class Distribution

Spiral

Classifier N=100 N=500 N=1000
N=1000
T err = 0.1

N=10,000

PD(WOE/Indep);Q=5 0.17±0.07 0.61±0.04 0.65±0.03 0.64±0.03 0.67±0.01
PD(WOE/Indep);Q=10 0.14±0.04 0.58±0.05 0.70±0.03 0.68±0.02 0.74±0.01
PD(WOE/Indep);Q=20 0.29±0.02 0.59±0.02 0.63±0.02 0.61±0.02 0.74±0.01
PD(O/A);Q=5 0.17±0.02 0.62±0.04 0.65±0.03 0.64±0.03 0.64±0.01
PD(O/A);Q=10 0.14±0.04 0.57±0.04 0.70±0.03 0.69±0.02 0.73±0.01
PD(O/A);Q=20 0.07±0.02 0.32±0.04 0.43±0.03 0.37±0.04 0.73±0.01
BP;H=5 0.60±0.06 0.71±0.03 0.73±0.02 0.67±0.05 0.71±0.01
BP;H=10 0.62±0.08 0.71±0.05 0.75±0.03 0.74±0.03 0.79±0.02
BP;H=20 0.63±0.09 0.76±0.01 0.77±0.03 0.73±0.02 0.81±0.01
MICD 0.50±0.07 0.49±0.03 0.49±0.03 0.50±0.02 0.50±0.01
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Figure 6.4: Covaried Bimodal Data N=1000 Results

The relative performance of the PD classifiers shows the PD(O/A) classifier performed

more strongly than the PD(WOE/I) classifier, however note the extremely poor performance for Q=20,

and N=100 tests of the PD(O/A) classifier in this case.

Here too, the Terr=0.1 column shows a stability against training data error with the PD classifiers

being less affected than the BP classifiers.

6.5 Discussion

The results of these evaluations clearly show that the PD algorithm is an effective data mining tool. Fur-

thermore, these results demonstrate that PD classifiers can be effective components within a higher level

decision support system. These results show that the PD classifiers are sensitive to having sufficient train-

ing data, though their requirements do not exceed those of other popular classifiers, such as BP. Both PD

and BP classifiers (Rumelhart et al., 1986; Minsky and Papert, 1988; Simpson, 1991; Hertz et al., 1991)

are trained in a similar way; a set of training data is examined and the essential relationships describing the
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data are extracted. These relationships or patterns are then used in classification to provide labels for new

test data. PD and BP classifiers can be applied to linearly and non-linearly separable class-distributions.

The primary difference between the two classifiers lies in the structure of the decision space. The

PD classifiers construct a contingency table from discretized training values forming a hyper-cell divi-

sion of the input space and make classification decisions using a nonlinear-weighted information-theory

or occurrence based estimation of the most likely class calculated using the patterns occurring in the in-

put data vector. BP classifiers make a decision by selecting several optimal hyper-planes and making a

classification by performing a regression on multiple weighted hyper-planes within the subdivided space.

Both PD and BP classifiers benefit from large amounts of representative, labelled training data and

have configuration parameters that affect their classification performance. When PD is applied to continuous-

valued data, the number of intervals (i.e., the resolution) used to quantize the data relative to the number

of features and the amount of training data available is important. The number of hidden nodes and the

learning rate and momentum are important factors for BP. Therefore, the performance of various config-

urations of these two classification schemes was compared so that some insight into the impact of these

factors on the practical use of PD and BP classifiers could be obtained.

6.5.1 Covaried Class Distributions

The results for the covaried data demonstrate that when the value for Q rises, the performance may fall,

as shown in Table 6.1. This behaviour is a result of the need for sufficient data to reach the expectation

limit of (3.9) within the PD classifier to reliably discover high-order patterns. Without high-order pattern

(maximum 5th order for this data set), performance suffers.

We also see that the performance of the PD classifiers is reasonably close to the optimal performance

of an MICD classifier for these simple, linearly separable, class distributions. This implys that a PD

classifier can reach optimal classification performance when the quantization adequately represents the

underlying data set and sufficient N allows optimal pattern discovery (i.e., all existing high order patterns

are found).

With a high value for Q and a small training data set size, an insufficient number of observed events

will occur for the highest order events to be confidently observed and discovered as patterns. As a result,

events which may form patterns in the underlying data set are not discovered during training, in turn

providing a poorer pattern space in which to make decisions during classification. This is the process

responsible for the low performance for Q=20 and N=100 or 1000. Increasing the size of the training

data set will overcome this as the number of occurrences of each high order event will rise; this is not
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a satisfactory solution in all cases however, as often sufficient training data is simply not available. In

such cases, where reliable training data is difficult to produce, lowering the value of Q to produce a

coarser division of the feature space may provide a more viable alternative. Considering the accuracy of

the classification when Q=10 in Table 6.1 we see that choosing a lower value of Q does not necessarily

penalize the performance of the PD classifier; instead, for these class distributions, the strong ability to

generalize arising from the patterns discovered allows correct classification decisions to be made while

discretizing the features at a lower resolution.

It is notable that PD classifiers provide correct decisions even when the separation is very low; deci-

sions which approach the optimal MICD bound in this linearly-separable decision space.

The difference between the performance of the PD(WOE/I) and PD(O/A) classifiers

shows that using the infinite weighting of the PD(WOE/I) scheme may be over-weighting some of the

pattern assertions, and that a more generalized “centre of mass” approach such as that produced by a more

linear weighting and firing of all patterns may avoid this over-weighting problem.

6.5.2 Log-Normal Class Distributions

When examining the log-Normal data in Figure 6.3 and Tables 6.2 it is apparent that the performance of

the PD classifier is independent of the distribution of the underlying random elements of the data, while

the assumption made by the MICD classifier that the distribution is Normal penalizes its performance.

As was mentioned when describing the log-Normal distributions in Section 5.2, as the shape parameter

ξ is increased the skewness of the distributions increase. Figure 6.3 indicates that as ξ increases and the

distributions become more skewed, the performance of the MICD classifier drops, until by ξ=2, the MICD

classifier is essentially guessing.

In contrast, the PD classifier performance is only slightly affected as skewness increases, even though

in the tails of these distributions there is now insufficient data available for PD to be able to create ac-

ceptable patterns to characterize this space. The performance of the PD classifier is very stable compared

with that of the MICD classifier in this case. This demonstrates that the PD classifier performance is not

strongly tied to the inherent shape of the class distribution, nor to the distribution of the noise present dur-

ing measurement. In particular, assumptions that either of these distributions be Normal are not required.

6.5.3 Covaried Bimodal Class Distributions

The bimodal class distributions in Tables 6.3 and Figure 6.4 are not linearly separable, but still contain a

high degree of internal structure, as the covariance of each mode matches the covariance in the unimodal
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case.

All the non-linear classifiers found this problem relatively easy, out-performing the MICD classifier

from the outset. Notable again was the deviation in the performance of the PD classifiers as Q changes;

again Q=10 was the optimal value shown because of the balancing between discretization resolution

and statistically sufficient expectation. In particular the performance of Q=20 was noticeably lower as

there were not enough training samples to support this level of quantization as high order patterns were

not discovered. These class distributions are clearly divided, although in a non-linear way, and the class

divisions follow the orthogonal orientation of the feature quantization space, so PD performance was quite

similar for Q=5 and Q=10.

Here again, performance of the PD(O/A) implementation is better than that of the PD(WOE/-

I) weighted scheme, indicating that the WOE based weightings may again be confusing the classifica-

tion system into choosing an incorrect classification. As N (the size of the training set) increases, this

effect becomes much less noticeable.

The apparent performance anomaly in BP as separation increases in this bimodal distribution test is

due to local minima problems. Once the separation increases to the point where the inner modes can be

well distinguished, the bimodal data becomes a continuous version of the XOR problem — a problem

well known in the machine learning community for its need for a classifier which can function in a non-

linear space. While BP can solve this problem, it is known to be “hard” for BP to find a solution, as

several minima exist in the error space. When examining the individual performance numbers within the

BP jackknife tests, it was found that several of the classifiers had a performance of exactly 0.5, indicating

that they have failed to separate the modes of two of the classes. If these failed tests are removed, the BP

performance also saturates at 1.0 along with the other classifiers tested.

6.5.4 Spiral Class Distributions

For the spiral data, the effect of N can be clearly seen. Noting the performance of the PD classifiers with

Q=20 when N=1000, it can be seen that the PD classifiers do not have a large enough training set to

characterize this complex data. Once a training set of sufficient size is available, or if the quantization

value is kept reasonably low, the PD classifier performance rises to rival that of the BP classifier, which

performs admirably in this case.

Table 6.4, when N=1000, demonstrates the strengths and weaknesses of the PD classifier:

• as the shape of the underlying distributions is curved, the resolution of the discretization bins is

desired to be high, thus Q=5 has poor performance;



CHAPTER 6. SYNTHETIC DATA ANALYSIS OF PATTERN DISCOVERY 73

• the number of training examples is not sufficient to support 20 quantization intervals so performance

is very low for Q=20;

• using a Q value high enough to capture as much resolution in the data as possible without defeating

the threshold placed on expectation (i.e., Q=10), a performance comparable to BP can be achieved.

At high Q and low N, the PD(O/A) classifier performs abysmally, as there are not enough

training examples to discover any patterns when separation is low. This leads to a large number of unas-

signed values, and biases the performance statistic to low values.

When examining the results for each of the jackknife sets, it was found that at separation 0.125, no

rules were produced at all for the N=100 case, only 2 rules were produced at separation 0.5, and the largest

number of rules produced was 8, all of order 2. In contrast, at N=1000 up to 92 rules were produced to

characterize this data.

The low number of rules produced indicates that only a small number of the hyper-cells are covered; in

the remaining hyper-cells, no classifications will be performed. In cases where classification does occur,

it is performed based on few and conflicting rules.

The PD(O/A) classifier is particularly affected in this case as the few rules established are

of low order and exhibit a high degree of conflict. This leads to nullification of the accumulated weights

and cause incorrect assignments formed on small amounts of poor information.

6.5.5 Overall Performance Analysis

For a given value of Q, as N is increased, the relative performance of the PD classifiers improves, relative

to the BP classifiers. This performance improvement is a function of the ability of the PD algorithm to

discover higher-order pattern with the requisite statistical confidence (i.e., exm
l
≥ 5). The discovery of

these higher order patterns allows more accurate classification decisions to be made.

The interplay between N and Q is such that if Q is too low, increasing N will have little effect. Con-

versely, if Q is to be set to a high value, a large N will be required before any high order patterns are

available. For the continuous-valued class distributions studied, it seems that Q=10 provides a reasonable

compromise between sufficient quantization resolution and the ability to discern high order patterns with-

out the need for training sets which are unlikely to be available in practice. Correspondingly, data sets

of size no larger than N=1000 are sufficient to support characterization through PD patterns and achieve

high performance during classification.

When examining the effect of differing data distributions, it was shown that the PD algorithm is largely

insensitive to variations in data topology, and is not reliant on assumptions such as Normality. This is
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expected, as like BP, the underlying concepts of the PD algorithm avoid any specific assumptions about

data distribution topology. The only assumption made by the PD algorithm is the null-hypothesis that

unrelated events are independent and uniformly distributed.

The minimal effect of the training error on the performance of the PD classifiers is due to the statis-

tical rigour used in defining a pattern. This allows erroneously labelled training examples to be ignored,

providing they do not occur a statically valid (and therefore unlikely) number of times. Training errors

therefore will not affect the patterns discovered, nor subsequent classifications made.

It is clear that the performance of the PD classifier itself is improved with the use of O

weighting and the firing of all the patterns in many cases. This implies that the WOE weighted, “indepen-

dent” pattern selection strategy has some weakness which is compensated for by O weighting

and firing of all patterns. When examining the underlying data records which differ between the two

algorithms, it was found that the WOE statistic may be over-weighting the patterns found.

Examining the differences in performance between PD(WOE/I) and PD(O/A) in Ta-

bles 6.1 and 6.3 it is clear that the performance differences between the algorithms decrease as N in-

creases. This suggests that the under-performance of the WOE algorithm is related to low N. In turn, this

implies that WOE weighting is over-weighting patterns made on low numbers of training events, which

in turn contributes to erroneous classifications. This may be caused by the variability in the estimate of

WOE. The patterns themselves are correct, as shown by the higher performance obtained by using the

same patterns with different weights; it is the weighting values themselves which are flawed.

The PD classifiers performed well for all of the class distributions studied, even though in general,

they are disadvantaged by the fact that the orthogonality and interval distribution of their discretization

space is created without regard to class boundaries. The decision surfaces of the MICD classifiers can

therefore out-perform those of PD classifiers by creating an optimal hyper-plane when the data is linearly

separable. The BP classifier can similarly create non-orthogonal planes to represent the class distributions,

in both linearly separable data and in the general cases. In this regard, improved PD classifier performance

could be expected if class-dependent discretization schemes were used.

6.6 Conclusion

The PD and BP classifiers performed comparably on the selection of class distributions studied; using

simple linearly separable class distributions there is little difference and when examining non-linearly

separable class distributions the PD classifier performance is at worst comparable.

Both the PD and BP classifier require the setting of control parameters in order to function optimally:
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• for the PD classifier, the main constraints are to have sufficient quantization resolution to adequately

represent the important aspects of the class distributions while maintaining the expectation bound

of (3.9); the general desire is to increase the number of quantization intervals until the expected

number of occurrences in a hyper-cell is below statistical reason. Statistical uncertainty can be

easily avoided with only a cursory examination of the dimensionality of the class distributions and

knowledge of the number of training examples available.

• for the BP classifier, the number of hidden nodes, learning rate and momentum must be chosen.

Suitable values for each of these can be dependent on class distribution, making selection difficult

without extensive knowledge of the data or significant experimentation.

The original authors of the PD algorithm (Wang, 1997; Wong and Wang, 1997, 2003; Wang and

Wong, 2003) have evaluated its performance on a variety of ordinal and discrete-valued data problems.

The results presented here suggest that the PD classifier, using MME quantization, can be successfully

used for analysis of continuous- or mixed-value data as well.

The current results demonstrate that the performance of the PD algorithm used as a classifier and

applied to continuous-valued data is comparable to the well-accepted MICD and BP classifiers across a

number of class distributions and shows that the PD classifier performance is robust.

The amount of training data available places constraints on the extent to which input data can be quan-

tized and can limit the performance of PD classifiers. When compared with BP classifiers, it is evident

that the cost of this quantization is not over-large. The ability to confidently configure PD classifiers,

their strong absolute and relative performance when applied to continuous- or mixed-valued data and the

transparency and strong statistical basis for the patterns discovered should allow PD classifiers to be suc-

cessfully applied to classification problems where the rationale and confidence of the underlying decision

is important. The combination of the data mining abilities of the PD algorithm and the transparency of PD

based classifications provide the framework in which the context required for effective decision support

and analysis is provided.

6.7 Summary

While the PD algorithm performance may be exceeded by natively continuous classifiers such as BP and

MICD, the difference is not very great.

The PD algorithm is stable across distributions; in particular the log-Normal distribution performance

of PD is quite good while the Bayesian MICD algorithm has significant problems as skewness increases.

There is also stability of the PD algorithm across training error. As these tests have been proven successful
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on the base PD algorithm, we will not need to repeat them for the derived FIS.

The performance of PD is also stable with respect to N, within the bounds set by the occurrence

estimation calculation of (3.4).

Of the results in this chapter, one of the most significant is that within the PD system, the implemen-

tation of the new O based weighting has higher performance (in terms of the number of correct

decisions made) than the WOE based standard PD algorithm. A further important result is that while the

performance of the PD system is lower than that of BP, the performance is significantly high across a

variety of data type distributions.



Chapter 7

Synthetic Data Analysis of Fuzzy Inference
System

There’s no sense in being precise when you don’t even know what you’re talking about.

— John von Neumann

In this chapter the results of experimental evaluations of the performance of the fuzzified PD classi-

fication algorithm are provided. These results are organized by the type of class distribution used for the

experiments. After the results are presented, a full analysis is given in Section 7.4, Discussion. These eval-

uations will provide a measure of the function of the PD/FIS performance while functioning as a classifier.

The measurement of this performance will allow a discussion of extent to which the label values suggested

by the system are correct; once the system has been measured in this way, the system’s knowledge of its

own confidence can be discussed. This discussion of confidence is placed in Chapter 9.

7.1 Covaried Data Results

Figure 7.1 shows results based on the covaried data tests trained with N=1000 records per jackknife

training set. All experiments are summarized in Table 7.1 using the weighted performance statistic of

(5.12). The data in Table 7.1 are mean values, with corresponding standard deviations. As in the last

chapter, the graph in Figure 7.1 is clipped at 0.5 to allow the lines to be more clearly visible, and the

x-axis is plotted in log2 for clear separation of the data points.

77
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Table 7.1: Covaried Class Distribution Summary

Covaried Class Distribution
Classifier N=100 N=500 N=1000 N=10000
FIS(Mamdani/All,crisp;Q=10) 0.49±0.07 0.60±0.03 0.64±0.02 0.68±0.01
FIS(Mamdani/All;Q=10) 0.54±0.08 0.64±0.03 0.66±0.02 0.70±0.01
FIS(Occurrence/All,crisp;Q=10) 0.47±0.07 0.63±0.03 0.66±0.02 0.69±0.01
FIS(Occurrence/All;Q=10) 0.53±0.08 0.65±0.03 0.67±0.02 0.70±0.01
FIS(Occurrence/Ind;Q=10) 0.53±0.08 0.61±0.03 0.62±0.03 0.70±0.00
FIS(WOE/All;Q=10) 0.54±0.07 0.64±0.03 0.67±0.02 0.70±0.01
FIS(WOE/Ind;Q=10) 0.54±0.08 0.63±0.03 0.65±0.02 0.70±0.01
PD(WOE/I);Q=10 0.52±0.07 0.64±0.03 0.63±0.02 0.69±0.01
PD(O/A);Q=10 0.51±0.07 0.64±0.03 0.66±0.02 0.69±0.01
BP;H=5 0.56±0.04 0.63±0.02 0.61±0.03 0.59±0.01
BP;H=10 0.60±0.04 0.69±0.02 0.71±0.02 0.70±0.01
BP;H=20 0.56±0.07 0.69±0.01 0.72±0.02 0.72±0.01
MICD 0.74±0.07 0.74±0.03 0.74±0.02 0.74±0.01

The various fuzzy implementations are displayed as “FIS(weighting-scheme/rule-firing-method),” where

“I” rule firing indicates the PD based independent plan, and “A” indicates the standard fuzzy rule fir-

ing.

In both Figure 7.1 and Table 7.1, it is clear that the FIS using occurrence based weights and using all

rules has the highest performance of any PD based system. This performance is exceeded by both the BP

system and the (optimal) MICD classifier.

Figure 7.1 shows that the performance of all the classifiers is well-behaved with separation: the ex-

pected monotonic performance increase with separation is visible, and it is clear that the choice of weight-

ing algorithm has only a subtle effect, as the lines for all candidate PD based classifiers form a tight

spectrum across the graph. Indeed, excepting MICD and BP it is difficult to determine the identity of any

other line on the graph.

Referring therefore to the numeric data in Table 7.1, we see that the BP classifiers show a higher

performance than the PD based systems across all separations, however BP results in all cases are lower

than that of the MICD classifier. When N=10, 000, the BP classifier with H=10 hidden nodes has a correct

classification rate of 0.70 ± 0.01; this is equalled by the PD based FIS. When N is low, the PD based FIS

performance is almost equal to that of the BP classifier.
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Figure 7.1: Covaried Class Distribution Results

7.2 Bimodal Data Results

Bimodal class distribution results for N=1000 are plotted in Figure 7.2, and a complete summary is pro-

vided in Table 7.2. The MICD classifier is no longer optimal, as mentioned in the last chapter, as the data

is not linearly separable. The performance for this classifier is presented for completeness and comparison

purposes.

The BP classifiers again have superior performance relative to the PD-based classifiers, but as seen

in the results, the performance of the FIS(O/A) classifier approaches the BP classifier results

while still under-performing at all separations.

7.3 Spiral Data Results

Spiral results for N=1000 are shown in Figure 7.3, and complete results are presented in Table 7.3.

As a single hyper plane drawn across the data will simply cleave each set in half, the MICD per-

formance here is 0.5. Again, the BP classifier performance is the highest of all tested classifiers. The
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Table 7.2: Bimodal Class Distribution Summary

Bimodal Class Distribution
Classifier N=100 N=500 N=1000 N=10000
FIS(Mamdani/All,crisp;Q=10) 0.71±0.04 0.79±0.03 0.81±0.02 0.83±0.01
FIS(Mamdani/All;Q=10) 0.74±0.04 0.82±0.02 0.83±0.02 0.54±0.19
FIS(Occurrence/All,crisp;Q=10) 0.71±0.05 0.80±0.03 0.82±0.02 0.84±0.00
FIS(Occurrence/All;Q=10) 0.74±0.05 0.82±0.03 0.84±0.02 0.85±0.01
FIS(Occurrence/Ind;Q=10) 0.74±0.05 0.79±0.02 0.79±0.02 0.52±0.18
FIS(WOE/All;Q=10) 0.72±0.05 0.80±0.02 0.82±0.02 0.84±0.01
FIS(WOE/Ind;Q=10) 0.72±0.05 0.79±0.02 0.80±0.02 0.84±0.01
PD(WOE/I);Q=10 0.73±0.05 0.79±0.02 0.79±0.01 0.83±0.00
PD(O/A);Q=10 0.72±0.05 0.81±0.02 0.82±0.01 0.84±0.01
BP;H=5 0.70±0.03 0.73±0.04 0.74±0.01 0.74±0.02
BP;H=10 0.73±0.03 0.82±0.02 0.82±0.01 0.82±0.01
BP;H=20 0.70±0.05 0.83±0.03 0.85±0.01 0.85±0.01
MICD 0.73±0.04 0.73±0.02 0.73±0.01 0.73±0.01

Table 7.3: 4-feature Spiral Class Distribution Summary

Spiral Class Distribution
Classifier N=100 N=500 N=1000 N=10000
FIS(Mamdani/All,crisp;Q=10) 0.29±0.07 0.58±0.04 0.69±0.03 0.72±0.01
FIS(Mamdani/All;Q=10) 0.36±0.07 0.64±0.04 0.71±0.03 0.74±0.01
FIS(Occurrence/All,crisp;Q=10) 0.29±0.07 0.58±0.04 0.70±0.03 0.72±0.01
FIS(Occurrence/All;Q=10) 0.35±0.08 0.64±0.04 0.71±0.03 0.76±0.01
FIS(Occurrence/Ind;Q=10) 0.35±0.08 0.64±0.04 0.69±0.03 0.70±0.01
FIS(WOE/All;Q=10) 0.35±0.08 0.64±0.04 0.71±0.03 0.73±0.01
FIS(WOE/Ind;Q=10) 0.35±0.08 0.64±0.05 0.70±0.03 0.72±0.01
PD(WOE/I);Q=10 0.14±0.04 0.58±0.05 0.70±0.03 0.74±0.01
PD(O/A);Q=10 0.14±0.04 0.57±0.04 0.70±0.03 0.73±0.01
BP;H=5 0.60±0.06 0.71±0.03 0.73±0.02 0.71±0.01
BP;H=10 0.62±0.08 0.71±0.05 0.75±0.03 0.79±0.02
BP;H=20 0.63±0.09 0.76±0.01 0.77±0.03 0.81±0.01
MICD 0.50±0.07 0.49±0.03 0.49±0.03 0.50±0.01



CHAPTER 7. SYNTHETIC DATA ANALYSIS OF FUZZY INFERENCE SYSTEM 81

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.125  0.25  0.5  1  2  4  8

F
ra

ct
io

n 
of

 T
es

t 
Sa

m
pl

es

log2 Separation (s)

Fraction Correct on Bimodal β=0.5 Data
(1000 training points, Q=10)

FIS(Mamdani/All)
FIS(Mamdani/All,crisp)

FIS(WOE/Ind)
FIS(Occurrence/All)

FIS(Occurrence/All,crisp)
MICD

PD(WOE/Ind)
PD(Occurence/All)

BP(H=20)

Figure 7.2: Bimodal Class Distribution Results

unmodified PD classifier out performs some of the FIS classifiers when N=10, 000, however the FIS(O-

/A) classifier remains the top overall performing PD based classifier.

Table 7.4 indicates the number of records left unclassified by the three PD based classifiers studied.

Similar data is not presented for the other class distributions because for these distributions no records

were left unclassified. It is clear from Table 7.4 that the FIS with fuzzy support (i.e., the trapezoidal

ramps) was able to classify records which were left unclassified by the crisp methods.

7.4 Discussion

The results shown here suggest that the rules produced by PD induce correct, highly confident classifica-

tions when implemented by the FIS algorithm. In addition, the use of these rules under a number of input

and output weighting schemes provides performance which meets or exceeds the performance of a crisp

PD classifier. We see here the amelioration of the effects of quantization through the use of fuzzy input

membership functions.
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Figure 7.3: 4-feature Spiral Class Distribution Results

PD based rule generation techniques are similar to techniques that use statistical clustering for in-

put space segmentation and contingency tables for generating rule weights (Kukolj, 2002; Chen et al.,

2001; Chen, 2002). However, the PD techniques use adjusted residual analysis and, as implemented here,

MME quantization. These techniques both differentiate this work and provides a transparency of a type

not present in the other techniques. MME quantization is class independent and while class dependent

quantization can be applied within the PD framework (Ching, Wong and Chan, 1995) to possibly improve

performance, MME quantization may allow a more direct interpretation of the bins created as knowledge

of specific class characteristics is not required to interpret the quantization intervals used to define rules

and hence contribute to a more transparent classifier.

The adjusted residual analysis provides statistically valid tests to select patterns that are then known

to express valid relationships between specific feature values and specific class memberships and are thus

selected as rules for classification. Using contingency tables to solely provide rule weightings while using

all events as rules for classification may cause confusion due to the occurrence of conflicting statistically

insignificant events. Furthermore, adjusted residual analysis allows both positive and negative classifica-
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Table 7.4: Spiral Class Distribution Unclassified Records

Classifier 0.125 0.250 0.500 0.750 1.000
FZ (ramps) none none none none none
FZ (crisp) 0.013±0.0049 0.003±0.0031 0.001±0.0029 none none
PD 0.013±0.0049 0.004±0.0032 0.001±0.0029 none none

tion assertions to be made that can take advantage of information both supporting and refuting specific

classifications.

7.4.1 Performance Across Class Distributions

The performance of the PD-based fuzzy classifiers studied was robust across three very dissimilar syn-

thetic data distributions, indicating that the rules produced by the PD algorithm are robust, and that the

adaptation of these rules to provide a fuzzy logic framework maintains the power and discriminative prop-

erties of the PD rules, while at the same time overcoming some of the cost incurred by quantization of the

input data.

7.4.2 Crisp versus Fuzzy

Comparing the results of the FIS(O/A) experiments with those using FIS(O/A,C)

the improvement in the FIS produced by establishing the fuzziness of the input membership functions is

obvious. Specifically, modelling quantization vagueness contributed to the performance increases repre-

sented in Tables 7.1, 7.2 and 7.3. The fuzzification of the bin boundaries allows the FIS with fuzzy bins

to make correct decisions through the use of additional information.

The reduction in the number of errors occurs through the firing and use of more (and possibly better)

rules near inter-class feature value boundaries. These rules were created for use in the adjacent quantiza-

tion bins. The validity of their assertions extends into neighbouring bins with a high degree of observed

accuracy, improving the overall performance.

7.4.3 Performance Across Weighting Schemes

It is also apparent from Tables 7.1, 7.2 and 7.3 that the use of occurrence based weighting is superior

to the WOE mechanism when used within an FIS; this is unsurprising as evaluation of the “occurrence”
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based rule weighting provides superior performance within PD itself, as seen in the last chapter. In all the

result tables it is clear that the difference in performance among the various PD algorithms is small. This

bears witness to the admirable strength of the PD-produced rules, supporting the use of several weighting

schemes with generally strong performance.

Comparing the results of the FIS(O/A) and FIS(WOE/I) weighting schemes, it appears

that performance when using FIS(WOE/I) weighting is subject to a penalty due to an over-weighting of

the fuzzy rules. This is consistent with the evaluation of the PD system itself where PD(O/A)

has performance measures which out-perform those of PD(WOE/I).

As seen in Tables 7.1, 7.2 and 7.3, the performance improvement of FIS(O/A) over

FIS(WOE/I) is related to the improvement seen in the last chapter of PD(O/A) over PD(WOE/-

I) in Tables 6.1, 6.3, and 6.4.

7.4.4 Performance Based on Training Set Size

As N is increased, the performance of all of the FIS and PD classifiers increase. At low N, the PD based

systems show a stable performance and are still able to extract salient rules from complex data. Examining

Table 7.3, it is apparent from the performance of the PD versus FIS classifiers that the implementation

of fuzzy membership has allowed the few rules created with extremely low N to be used more often,

increasing performance at N=100 from 0.14 to 0.35. This performance improvement is possible because

of the strength of the discovered rules: even at such low N, the rules discovered are trustworthy.

7.4.5 Cost of Quantization

The use of a discrete algorithm in a continuous domain often incurs a cost of reduced performance due

to the quantization performed. One of the features of fuzzification of quantized data is to reduce the cost

of quantization and improve the performance of discrete algorithms towards that which is exhibited by

well considered natively continuous algorithms. The data in Table 7.4 suggests that fuzzification of the

input space models some of the vagueness associated with quantization of continuous-valued input data,

allowing records which are left unclassified by the crisp classifiers to be classified by the FIS using rules

which are obviously still valid.

In the spiral class distribution problem, adjacent bins frequently support differing labels simply due

to the topology of the class distributions. Table 7.4 is therefore particularly interesting as it shows that

the ramps extend the “region of effect” of a given rule into parts of the data space which are difficult to

characterize based on MME quantization, but which still can be covered successfully using the ramped
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decreasing membership of rules in adjacent bins. The use of rules from adjacent bins provides good

performance, even though the spiral class distribution would suggest that this is difficult.

As seen in all the above results, the FIS(O/A) based classifier exceeds the performance of

all other PD based systems. Table 7.1 shows a marked improvement by the FIS classifiers over the straight-

forward PD classifier. Much of this improvement is due to the presence of the trapezoidal membership

function ramps (i.e., extended, or fuzzy support) as indicated by the lower performance of the crisp input

membership function version of the FIS.

7.5 Conclusions

The PD algorithm has various weaknesses, some of which can be mitigated by applying the fuzzy set tech-

niques described in this work The improvements resulting from the fuzzification of PD are well demon-

strated using the spiral class distribution shown in Figure 7.3 and Table 7.3:

• the curving shape of the underlying distribution poses a problem with respect to the rectangularly

divided quantization space;

• this in turn causes a great deal of conflict in some of the quantized hyper-cells, generating no rules

for these regions of discord;

• the extended fuzzy support of the input membership bins allows the extension of rules from adjacent

hyper-cells into these conflicting regions, allowing classification assertions to be made based on

neighbouring cells, albeit with decreasing performance as the distance away from the cell bound

increases.

The improved performance obtained through the use of the fuzzified input membership functions oc-

curs through the firing and use of more (and possibly better) rules near inter-class feature value boundaries.

These rules were created for use in the adjacent quantization bins, however the validity of their assertions

extends into neighbouring bins with a high degree of observed accuracy, improving the overall perfor-

mance. Together, these factors allow the use of fuzzified PD based classifiers even in strongly conflicting

regions of the problem space. Their performance is acceptable in spite of the regions of discord, and they

can be used with relatively low N.

While the BP classifier out performs the FIS, the BP classifier itself suffers from several drawbacks,

notably the uncertain tuning of configuration parameters such as the number of hidden nodes, learning

rate, etc. Perhaps the most significant problem is the “black box” functionality of the neural net as a

whole, as described in the background discussion provided in Chapter 2. In contrast the FIS can be easily
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configured based on the PD expectation of (3.4) as seen in the last chapter, and provides the transparency

we will require for a DSS.

7.6 Summary

The contributions explored in this chapter are:

• performance of the FIS in relation to PD;

• performance benefits of fuzzy membership functions; and

• performance benefits of the new occurrence weighting scheme.

The performance of the new FIS is better than PD performance. The use of fuzzy membership func-

tions recovers some of the cost of quantization and improves the overall system performance. In particular,

the FIS(O/A) classifier has the highest performance of any PD based classifier.

The FIS and continuous-adapted PD systems have been evaluated on a variety of synthetic data dis-

tributions. The FIS performance still does not match the performance of BP, however the classifiers are

comparable.

Even though the FIS performance is not the best of the classifiers measured, the performance is rea-

sonably high. A decision support system needs all of: a classifier to produce a suggested label; a good

estimate of the confidence of the suggestion and exceptional transparency. For the construction of a DSS

therefore, a classifier which performs well and exhibits a high degree of transparency is preferred to one

which may have a higher classification performance but lower transparency. This implies that the PD

based FIS system meets our needs admirably for DSS design purposes, as the performance is comparable

to the BP system and the transparency of the inference is much higher.

What remains is to test the system upon real-world examples, and to describe the system in a decision

support context.



Part III

Real-World Data and Decision Support

87



Chapter 8

Analysis of UCI Data

Many data sets are available in the Machine-Learning Repository (Newman et al., 1998) at the University

of California, Irvine (UCI) which provides a collection of standard data bases for use in evaluating the

performance of various classification systems, and is now recognized as the source of “standard” data for

classification performance analysis. Two of the UCI data sets have been chosen for use here as they have

continuous-valued attributes: the “thyroid disease” and “heart disease” databases.

8.1 Analysis of Thyroid Disease Data

The human thyroid disease database available at has been chosen as an example both because this data

falls within the biomedical domain as well as because the data is multi-class and includes a fair number of

training records. Most of the data sets in the UCI repository are provided with only a very small number

of records, this is frequently the case when each record is costly to obtain. The 7200 records in the thyroid

set therefore represents a reasonably large amount of data, considering it has been collected from a real

source. This data set is referred to as thyroid-disease within the UCI repository, and is termed “the

ANN∗ data set,’ as supplied by Randolf Werner of Daimler-Benz. The access URL for this database is

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/thyroid-disease.

8.1.1 UCI Thyroid Data Preparation

The relevant attributes of this database are:
∗i.e., ‘artificial neural network”.
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Table 8.1: UCI Thyroid Data Record Counts

Class: 0 1 2
Data Set 1 33 74 1,333
" 2 33 74 1,333
" 3 33 74 1,333
" 4 33 74 1,333
" 5 34 72 1,334

Total 166 368 6,666

• the data set is fully continuous;

• there are a reasonable number of records in the data set, having 3, 428 designated for “training” and

3, 772 for “testing” as presented in the repository for a total of 7200; and

• the data set represents real disease states recorded from human patients.

The one drawback of this data set is its rather poor documentation, as the features are not named. It is

impossible, therefore, to get a good sense of how this data set relates to actual disease data.

For this work, a number of jackknife sets were produced using the following procedure:

• the “testing” data was concatenated onto the end of the “training” data;

• records for each separate class {0, 1, 2} were isolated into separate files while preserving the order

to allow later comparison by other readers;

• each class was divided into 5 sets, and finally

• the sets of each class were combined to form 5 jackknife data sets, grouping the first of each of the

5 sets together to form the first jackknife set, then using the second of each, etc.

This divides the 7, 200 available records among five files with the record counts by class as shown in

Table 8.1.

8.1.2 Results

Using only the continuous-valued attributes from the data described in 8.1.1 (and thus using records with

6 input values plus a label for training), the following familiar classifiers were evaluated:

• a BP network;

• the MICD classifier;

• the base PD algorithm;
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Table 8.2: 6 Feature Thyroid Data Correct Classification

Classifier
Fraction
Correct

FIS(O/A) 0.962±0.005
FIS(WOE/I) 0.929±0.016
PD;Q=5 0.864±0.035
MICD 0.586±0.067
BP;H=4 0.960±0.012

• the FIS(O/A) and FIS(WOE/I) classifiers of Chapter 4.

For the FIS classifiers, Q=5 was used due to the very low numbers of records, especially in class “0.”

The results for these experiments is shown in Table 8.2. This table displays the average count of the

number of records classified correctly and of those with error, as well as the variance in the count for both

correct and error. None of the algorithms left any of the records unclassified.

Interestingly, the FIS(O/A) hybrid system outperforms the BP algorithm, though only

by a very slight margin. The BP classifier in turn out-performs both PD(WOE/I) and the unmodified

PD classifier. The MICD performance is very interesting, as it indicates that the data is certainly not a

unimodal Normal distribution.

8.1.3 Discussion

The relatively high performance of the FIS(O/A) algorithm in the face of small numbers of

training records is a strong feature, especially when compared with the performance of the BP system.

The difference in performance between the various FIS algorithms is similar to that when tested on

synthetic data. The separation in classification performance of BP and FIS(O/A) has vanished,

and the relative ranking has reversed, though the difference in performance is negligible. This seemingly

surprising under-performance of the BP system is most likely due to the generally small number of records

available, and specifically the very small number of incidences of class “0.” The asymmetric distribution

of the labels will cause the training of BP to favour the most-observed label to some degree.

The analysis of thyroid data has therefore confirmed the relative ranking of the PD/FIS and PD clas-

sifiers, and has demonstrated the well-known weakness of BP when used with very small data sets. This

indicates that the PD/FIS, specifically the FIS(O/A) form, may be somewhat less susceptible
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to problems of low N than BP; an algorithm known to need a great deal of training data. This encouraging

result indicates that the analysis of synthetic data may have played into strengths of the BP algorithm,

due to the regular structure of the data. The PD/FIS system obviously extracts a comparable amount of

information from the thyroid data as does the BP classifier; further, the performance across the jackknife

sets is quite stable.

This result supports the previous conclusions that the FIS(O/A) PD/FIS system performs

admirably well when functioning as a classifier. The labels suggested by the system are of as high quality

on this real-world problem as are those suggested by the BP system.

To further explore the performance of the PD/FIS system when dealing with the amount and type of

data found in real-world problems, another data set was examined.

8.2 Analysis of Heart Disease Data

As a further real world example we will consider the data set of the Hungarian Heart Disease Database†

from the online repository at UCI. These databases are available through the URL ftp://ftp.ics.uci.

edu/pub/machine-learning-databases/heart-disease.

8.2.1 Choice of Heart Disease Database

There are four “heart disease” data sets at the UCI repository: “Cleveland,” “V.A.,” “Hungarian,” and

“Switzerland.” The collection protocol between the databases varies slightly, preventing the use of the

collected records as one data set.

The database with the largest number of records, “Cleveland”, contains some fields which are in error,

as described in the documentation accompanying the database. For this reason, it was not used. The

“Hungarian” database has almost the same number of records (294 instead of 303), and has no history of

errors or corruption; the “Hungarian” data set is therefore used for the analysis presented here.

8.2.2 Heart Disease Database Features

The heart disease data set has 13 numeric input features which are commonly used, which are outlined

in Table 8.3. These 13 features provide a sufficiently high order to allow the PD system to discover

†This data was collected through the efforts of Andras Janosi, M.D. of the Hungarian Institute of Cardiology in Budapest. Dr.
Janosi donated this data to the UCI Machine Learning Online Repository (Newman et al., 1998) through David W. Aha in July
1988.
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Table 8.3: UCI “Hungarian Heart Disease” Database Feature Names

Feature Typea Descriptionb

A C age in years
S N sex [1 = male, 0 = female]
CP N chest pain type [1 = typical angina; 2 = atypical angina; 3 = non-anginal pain; 4 =

asymptomatic]
TRBPS C resting blood pressure (in mm Hg on admission to the hospital)
C C serum cholesterol in mg/dl
FBS N fasting blood sugar > 120 mg/dl? [1 = true; 0 = false]
RECG N resting electrocardiographic results [0 = normal; 1 = having ST-T wave abnor-

mality (T wave inversions and/or ST elevation or depression of > 0.05 mV); 2 =
showing probable or definite left ventricular hypertrophy by Estes’ criteria]

TA C maximum heart rate achieved (bps)
EA N exercise induced angina [1 = yes; 0 = no]
OP C ST depression induced by exercise relative to rest
S N slope of the peak exercise ST segment [1 = upsloping; 2 = flat; 3 = downsloping]
CA I number of major vessels (0-3) coloured by fluoroscopy
Tc N [3 = normal; 6 = fixed defect; 7 = reversible defect]
L N label for disease state, values are “healthy” and “diseased”; the original data char-

acterized 3 levels of disease state, however the accompanying documentation states
that all known classification tasks have combined all disease states into a single
class.

aC=continuous, N=nominal, I=integer
bThese features and descriptive text are reproduced from the documentation accompanying the data set.
cThis rather cryptic field is not explained in the documentation for the database in the UCI repository.

informative rules. This data will be further used in the decision support discussion in Chapter 10 where

inspection of the relationships found will allow the reader to observe interesting consequences of the rule

evaluation in the context of this real-life data.

In Table 8.3, each column is described in terms of its “type.” In this mixed mode data set, some features

can be treated as continuous values using MME, and some must be treated as distinct. All features labelled

“continuous” are pre-processed using MME. All “nominal” or “integer” features are left unprocessed.
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Table 8.4: Rule Order for Hungarian Heart Disease Data

Order # of Rules
2nd 31.888±0.485
3rd 45.306±1.024
4th 38.412±1.891
5th 17.092±0.510

8.2.3 Overall Statistics from PD Analysis

In order to generate rules for this database, a “leave-one-out” protocol was established to jackknife over

all 294 records using a single record as a test case and the remaining 293 records for training. The full

jackknife protocol was used in order to make the most of the limited number of data records. All results

in this chapter are therefore averaged over all 294 tests.

The PD algorithm was run using Q=7 on these 294 different jackknife tests. This Q value was chosen

in order to ensure a reasonably high order of pattern could be discovered, as controlled by equation (3.4).

Note that the Q factor only affects columns with continuous data values, as integer and nominal data values

are not processed by MME. The number of elements in a non-continuous column is therefore determined

solely by the number of unique values occurring for that feature and is entirely independent of Q.

8.2.4 Pattern Discovery Generated Rules

For the heart disease data, there were on average 132.7 rules generated to describe a jackknife trial, with a

standard deviation of 2.554. The high number of rules indicates the complexity of the data set as observed

by the PD algorithm with MME binning.

The average and standard deviation of the order of these rules is shown in Table 8.4. No rules higher

than fifth order were discovered in this data set, due to the small number of training records available.

These low numbers indicate that the contingency table is quite sparsely characterized.

Most of the rules were weighted with non-infinite WOE, as an average of only 2.74 positive and 9.76

negative infinite rules were found in each test. On average, there were 65.27 rules characterizing disease

per jackknife set, with a standard deviation of 1.28. The average number of rules characterizing normal

patients was 67.42 with a standard deviation of 2.02.

From an information standpoint, this shows us that there is approximately equal complexity in the

relations regarding diseased and normal patients. Further, the low number of infinite-weight rules indicates
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Table 8.5: Heart Disease Data Correct Classification

Classifier
Fraction
Correct

FIS(O/A) 0.830±0.376
FIS(WOE/I) 0.813±0.390
PD;Q=7 0.813±0.390
MICD 0.765±0.424
BP;H=2 0.639±0.480
BP;H=4 0.636±0.481
BP;H=7 0.653±0.476

that both classes are mutually conflicted. The ranked decrease in order shown in Table 8.4 indicates that

the higher order rules may have been discovered if more input records had been available.

8.2.5 Analysis of Performance

Performance statistics were gathered for the same classifiers used in thyroid data testing:

• the MICD classifier;

• BP;

• unmodified PD;

• FIS(O/A) and

• FIS(WOE/I).

Results for correct classification performance are shown in Table 8.5.

The FIS system is the next best classifier, outperforming the MICD classifier by a significant margin,

and improving on the performance of PD using MME quantization both with an increase in performance

and a decrease in variability.

The BP classifier has quite low performance with high variation, indicating that this problem contains

a local minima in the BP error surface.

8.2.6 Discussion

Significant improvements are again shown by the FIS(O/A) algorithm against the PD algo-

rithm alone, as in the tests on the thyroid and synthetic data sets.
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The ranking of the other classifiers is stable across all the tests performed when the fact that BP

frequently becomes trapped in local minima while evaluating this problem is taken into account.

This example shows that the FIS(O/A) PD/FIS hybrid can attack a problem with lim-

ited amounts of training data and perform quite acceptably on a hard problem. The performance of the

MICD classifier shows that this problem has a distribution which is not unimodal Normal, and the BP

performance indicates that the amount of information in the data is quite small.

Looking again at Table 8.4, one wonders whether even higher order rules may increase the robustness

and discriminative power of the rule set, as the performance of 0.830 of the records classified correctly is

still much lower than one would desire, especially in a medical characterization problem. The performance

of the FIS(O/A) system would therefore likely be higher if more data were available for

training.

Overall, the performance of the FIS(O/A) system is quite encouraging, as again the BP

system performance has been exceeded. This PD/FIS system can therefore function as a classifier with

comparable performance to other popular classifiers. This implies, as in the thyroid data, that this complex

real-world data set shows strengths in FIS(O/A), or weaknesses in BP, that were not apparent

in the synthetic data.

The results from the synthetic analysis are therefore representative of problems for which FIS(O-

/A) is not strong. This in turn indicates that the performance shown in Chapter 7 does not

over-estimate the performance capabilities of the PD/FIS system; instead the analysis here shows that the

synthetic data class distributions provided a difficult test for the PD system.

8.3 Conclusions from UCI Data Analysis

The hybrid PD/FIS system performs comparably to the BP algorithm on two important real-world data

sets. Particularly high measured performance was observed when using the FIS(O/A) weight-

ings and rule firings. This further indicates that the system is well-behaved as a classifier, supporting the

conclusions of the synthetic data analysis of the previous chapter.

The contributions of this work are shown to consistently improve the performance of PD based clas-

sification systems and provide a consistent benefit to use of PD as a classifier on these real-world data

exmples. The specific contributions of interest are:

1. improvements to performance through FIS(O/A) weighting; and

2. improvements to performance through the use of fuzzy membership.

This measured classification performance shows that a DSS based on this method will produce a
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correct suggestion with comparable likelihood to that of other classification systems. The use of the

PD/FIS system as a classifier therefore is suggested for use in a DSS as the penalty in classification

performance is outweighed by the benefits provided by the transparency of the system.



Chapter 9

Confidence and Reliability

Science is built up of facts, as a house is with stones. But a collection of facts is no more a
science than a heap of stones is a house.

— Jules Henri Poincaré

As mentioned in the introduction, a decision support system (DSS) is useless if it does not have a

mechanism of reporting an estimation of the confidence that can be placed in the suggestion provided.

This requirement of a DSS is the means by which the system may fail gracefully. A confidence measure

provides the means by which the user may understand when there is conflict or poor statistical support in

a suggestion, and differentiate these occasions from those when the suggestion is made on confident and

clear measures. Using such a confidence measure, the user is informed under what conditions an error is

likely to be made.

9.1 Confidence and Reliability

A confidence measure is an estimate of the true reliability of the system. Equation 2.6 in Chapter 2

describes the measurement of reliability in terms of the measurable probability of failure:

C = E(R)

R = 1 − Pr(failure) ≡ 1 − Pr(Incorrect).

97
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In the context of the hybrid system described in this work, the probability of failure is equivalent to the

probability of providing the user with an incorrect suggestion.

Reliability is measured over a series of results, however, and as such is usually quantified as the

average performance of a system. ROC analysis (as described in Section 2.3.1) provides a measure of the

reliability of a two-outcome test or classification system.

What is desired for the hybrid system described here is an estimate of the system reliability, how-

ever a prefereable estimate is one which maps the confidence of a correct association being made based

specifically on the current input values. Of the class of decisions made by the system, not all can be made

with equal ease, and a good confidence estimate will be one which correlates well with the probability of

successfully classifying records at different degrees of difficulty.

We will therefore use the term reliability to indicate the system wide performance, and use the term

confidence to indicate the estimate of performance based on input data values.

This chapter will evaluate a set of possible confidence measures. Evaluation will consist of examining

how well each measure predicts the true probability of success or failure of the system, as evaluated over

the training/test data.

To choose a confidence measure, that which best predicts the true (measured) probability of a success-

ful classification being produced of the system as calculated using the synthetic data type distributions is

determined. This measure is then used to provide feedback to the user to indicate a varying expectation

of uncertainty in the suggested outcome. This provides the user a context of estimated certainty for the

suggestion put forward in a DSS.

9.2 Implementation of Confidence in Hybrid System

In the hybrid system described in this work, an assertion is assigned for each of the possible outcomes.

As described in Chapter 4, the assertion in support or refutation of class k produced by input value x is

termedAk, and this valueAk, is bounded in the domain [−1 . . . 1]. Using theseAk values we can correlate

the distances in the assertion space with the observed errors found in training. From these data we can

evaluate various possible confidence measures in order to choose the candidate that suits our purposes the

best. Rather than evaluating confidence measures for all classifiers discussed, only the best-performing

classifier, FIS(O/A), will be evaluated.
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9.2.1 Construction of τ and δMeasures

Of the possible outcomes for any classification, one outcome will have the highest assertion value. Re-

membering that

k? =
K

argmax
k
Ak

from equation (4.4), we can define

τ = Ak? (9.1)

to indicate the value of the highest assertion made. The label value which τ supports will be the label

Y=yk? , which is the label used as the final suggested characterization or classification.

In any system where K > 1 (i.e., any system containing more than one class), there will exist a class

whose assertion value is the highest value if the τ-label is ignored (i.e., the assertion with the second-

highest value).

The assertion in support of this label is termed τ2, which is defined as

τ2 =
K

max
i=0

i,k?

Ai. (9.2)

The conflict between the two classes associated with τ and τ2 can be measured by comparing the

conflicting support of the output assertions using

δ = τ − τ2. (9.3)

In cases of equal values for τ and τ2, the value for δ is zero. The value for δ approaches the maximum

distance of 2 units in the case when there is total support for the class of the label associated with τ and

total refutation for all other classes; that is, when

Ak? = 1 and

Ai = −1∀i ∈ K, i , k.
(9.4)

9.2.2 Evaluating Confidence Through δ and τ

Figures 9.1 and 9.2 display histograms of the δ/τ values observed for classifications performed on the

covaried data at separations of 0.125 and 4.0 respectively. All classifications in these plots were performed

by the FIS(O/A) classifier. In the figure, the x and y directions indicate δ and τ. Associated
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Figure 9.1: δ/τ Histograms from Covaried Data, s=0.125

with each (δ, τ) pair is a z value that indicates the fraction of the total number of records observed that fall

into the adjacent cell of the (δ, τ) domain.

The top row of each figure indicates a heat-map representation of the data, where lighter colours on the

map indicate regions with higher values of z. White areas on the heat-maps indicate cells with the highest

count for that map, black areas indicate values of zero. The same data is plotted below each heat-map

in the form of a surface histogram, where the surface is extended in z to indicate the cell count, directly

related to the colouring of the heat-map.

There is significant overlap seen in Figure 9.1 (separation 0.125s), between the correct and incorrect
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Figure 9.2: δ/τ Histograms from Covaried Data, s=4.0

distributions, even though the midpoints of the two classes are well separated. This is expected as the

number of errors made is relatively high due to the poor discernibility of the problem. The overall expected

confidence based on these decisions is low.

Considering Figure 9.1 from the standpoint of reliability, only the best-separated portions of the sur-

faces indicate regions where a high-reliability decision is expected; in sections with a great deal of overlap,

the expected decision reliability is low.

Comparing Figure 9.1 to Figure 9.2 we see that, as expected, when separation increases the separation

in the δ/τ space between errors and correct classifications increases. As well, the overall number of errors



CHAPTER 9. CONFIDENCE AND RELIABILITY 102

has dropped considerably. This can be seen by the much smaller maximum extent in z of the error graph

in Figure 9.2 versus that in Figure 9.1.

These facts indicate that in portions of the plots where no errors are made, high reliability classifica-

tions will be observed.

9.2.3 Candidate Confidence Measures

Based on the observation that the main mass of erroneous classification in Figures 9.1 and 9.2 are in a

different portion of the (δ, τ) space than corresponding masses of correct classifications, it would seem

reasonable that a measure may be constructed that can discriminate decisions made in error from those

made correctly, using τ and δ as inputs. If such a measure is related to the distance between means, or

similarly, the relative probability of conflict in this space, that measure will serve as a robust indicator of

the trueprobability of a correct classification label being suggested.

A great many different methodologies may be constructed under this hypothesis. Four candidates are

considered in this work:

• MICD Based Confidence;

• δ/τ Observed Probability Confidence;

• Normalized [0 . . . 1] Bounded τ Confidence; and

• PD (WOE Based) Probabilistic Confidence.

MICD Based Confidence

This is a measure based on the distance in δ/τ space as whitened using an MICD classifier (as per equation

(5.10) on page 60) and then compared against the sum of all distances. This is calculated by

CMICD =
e−

1
2 dcorrect

e−
1
2 dcorrect + e−

1
2 dincorrect

. (9.5)

The values dcorrect and dincorrect are based on distances for correct and incorrect decisions, respectively.

The value dcorrect indicates the distance to the mean of the whitened distribution of δ/τ values calculated

by examining decisions made correctly using training data. Similarly, dincorrect is the distance related to

those decisions made incorrectly.

The rationale behind this confidence measure is the use of the Bayesian decision surface underlying

the inter-PDF measures in the whitened MICD space. The relative distance in this space corresponds
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to the conditional probability of assignment under an assumption of Normally distributed “correct” and

“incorrect” points. This conditional probability directly mirrors the probability of failure.

While this simple probabilistic relationship provides a direct mapping to an a priori conditional prob-

ability, neither the “correct” nor “error” distributions are Normal, as can be easily seen in Figures 9.1

and 9.2. The data is generally bell-shaped, but the bounds of the (δ, τ) space sharply truncate the distri-

bution. We have seen in previous chapters that the MICD classifier still performs reasonably well with

non-Normal data, degrading in a predictable fashion. For this reason, it is a useful candidate confidence

measure.

δ/τ Observed Probability Confidence

This measure is based on a histogram-generated probability of δ/τ values

Cδ/τ Probability =
Count(correct, δ, τ)

Count(correct, δ, τ) + Count(incorrect, δ, τ)
, (9.6)

where Count(correct, δ, τ) represents the number of a correct classifications associated with the cell con-

taining (δ, τ) on a histogram of the type shown in Figures 9.1 and 9.2. The term Count(incorrect, δ, τ)

represents the count of incorrect classifications drawn from a similar histogram.

The observation of a (δ, τ) pair during classification will let us report the likelihood of error observed

for similar values at training time. This directly returns the probability of error based on a δ/τ pair.

As such, this should report a good estimate of probability of successful classification, and as such an

indication of system reliability as considered on records associated with these values of δ and τ.

The main drawback to this scheme is the possibility of observing a (δ, τ) value which corresponds

to no known bin during the classification of new data values. It will be impossible to determine a true

confidence measure for such a value, as there is no prior data upon which to base such a decision. It

will, however, be possible to flag such values to the user and indicate that a confidence measure cannot be

computed.

A similar constraint involves values rarely observed during training; confidence based on such values

will have a much higher degree of inaccuracy than confidence based on histogram data cells which re-

ceived many points during training. This implies the possibility of a “confidence of confidence” measure;

this extra complexity will be at best confusing, and is certainly not desirable.
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Normalized [0 . . . 1] Bounded τ Confidence

This calculation normalizes τ over the sum of all assertions made, after shifting τ so that it is [0 . . . 1]

bounded. This confidence is calculated using

Cτ[0...1] =


1+τ

K∑
i=1

(1+Ai)
if

∑K
i=1 (1 +Ai) > 0

0 otherwise,

(9.7)

remembering that τ is simply the highest-valuedAi as defined in equation (9.1), and that allAi (including

τ) will be bounded by [−1 . . . 1] as output from the FIS.

The rationale in this measure is that a [0 . . . 1] bounded τ-space will behave in some ways similarly

to a probability space. Once this is done, the summation will contain a probability-type measure. A side

effect of this measure is that it changes the way in which information is represented. In PD and in the

discussion of the FIS so far, information has always been represented in terms of deviation from a central

0, where strong degrees of support or refutation provided a strong deviation. Information for each class i

is therefore ∝ |Ai|, and values around 0 will therefore result from rules which fire with low confidence.

In this scheme, the 0 value of the FIS becomes 1
2 , similar in meaning and behaviour to a probability

value; information is measured from this central limit. This means that if the reported confidence falls

below 1
2 then the “best” guess has actually been made without a positive τ value.

One interesting property of this measure is that it is calculated only in terms of values internal to the

FIS system. The previous two measures require an external analysis of the δ/τ values from training data.

PD (WOE Based) Probabilistic Confidence

This measure is not directly based on δ/τ, but instead is based on the WOE measures associated with the

fired rules.

It is possible to derive a conditional probability measure for association with a particular class Y=yk

based on a given input vector xm
l , as constructed from the accumulated WOE:∗

Pr(Y = yk|x⊕l ) =
1[(

1
βWOE

) (
[1−Pr(Y=yk)]

Pr(Y=yk)

)]
+ 1

(9.8)

∗Construction of this equation, derived from the definition of WOE in (3.7), is courtesy of Lou Pino (2005). A copy of the
derivation is provided in Appendix B, beginning on page 163.
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where x⊕l is the composite pattern formed by considering all columns matched by the patterns fired, that

is

x⊕l =
⋃

x?l x?l ∈ M (9.9)

where x?l is the input portion of a pattern, as described in (3.5) when defining the use of WOE in PD in

Chapter 3.

This value provides an estimate of the probability of association with the class chosen as the label. As

this maps the underlying probability of association within the data space itself, this is a reasonable choice

as a means of estimating system failure.

The main source of noise in this estimate is the presence of the discretization bins, as all values within

the same bin generate the same classification outcome and therefore, by necessity, have the same reported

confidence based on the same defined events.

This conditional confidence cannot be directly used in the hybrid system as we cannot make the

assumption of independence between the columns of input data.

In order to establish independence and approximate the confidence of the underlying PD classifier,

the “PD (WOE Based) Probabilistic Confidence” scheme uses the WOE based conditional probability of

equation (9.8) in conjunction with the WOE value computed by considering only the rules which would

fire under the “independent” rule selection scheme, though the “occurrence” scheme is still used to select

a label value. We must restrict our consideration to just this subset of the rules in order to maintain

independence in the WOE calculation.

The benefit of this scheme is the simpler relationship with the underlying conditional probability.

some interference with the correlation relation to “true” confidence is expected. as only a subset of the

rules actually fired are used in the confidence calculation.

As in the [0 . . . 1] bounded τ metric, this scheme also uses only values internal to the FIS calculations.

9.2.4 Confidence Measure Evaluation Methodology

In order to compare these possible confidence values, a means of measuring their relative merit is re-

quired. The most direct method of evaluating confidence as a predictor of the true probability of correct

classification is simply to correlate the reported confidence values with a “true” confidence calculated

by examining the conditional probability of the winning class underlying the synthetic data distributions

described in Chapter 5.

To perform this calculation, all of the tests performed in the jackknife tests on the synthetic data were

examined and the confidence values recorded. These values were then compared with the conditional
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probability of occurrence of the winning class. The computation of the conditional probability for the

synthetic data distributions is supplied in Appendix C. Each such comparison will result in a pair of

data values, consisting of the expected and reported confidence. These values can then be correlated, and

ideally will result in a straight line.

As the data to be correlated are quantized values, Spearmannrank correlation will be used, rather than

the common Pearson rank correlation, which correlates values from continuous random variables.†

SpearmannRank Correlation

The Spearmannrank correlation coefficient (Press, Teukolsky et al., 1992; Lehmann and D’Abrera, 1998)

calculates the correlation between the ordinal positions of elements in a list.

The Spearmannranking is defined in Press et al. (1992, pp. 640) as

rSpearmann =

N∑
i=1

[(
Rxi − Rx

) (
Ryi − Ry

)]
√

N∑
i=1

(
Rxi − Rx

)2
√

N∑
i=1

(
Ryi − Ry

)2

(9.10)

where Rxi is the set of rankings in the x dimension and Ryi is the related set in the y dimension such that

for an element ai ∈ X, the ranking of this element is Rxi,Ryi.

The values Rx and Ry are the mean rankings in x and y respectively, and the ranks for duplicate values

are all equal to the mean values of the rankings that would have been applied over the range, thus the list

X = { (0, 7.5), (0, 10), (0, 12.5), (0, 15), (5, 15) }

receives the rankings

X = { (2.5, 1), (2.5, 2), (2.5, 3), (2.5, 4.5), (5, 4.5) }.

The purpose of the Spearmannranking is to give a simple correlation calculation which is unbiased by

the domain of the actual values, as long as they can be applied to an ordinal sequence.

In the Spearmannranking, a value of 0 indicates independence, and a positive or negative value indi-

cates dependence along the major axis of y=x or Y= − x, respectively.

†A discussion of the performance of several other possible metrics is provided in Appendix D. These measures include: mu-
tual information, symmetric uncertainty and the interdependence redundancy measures. Results for these measures are provided
in Appendix D but are not included here as the saturation of the measured values causes a significant distortion in the provided
results. See the appendix for details.
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The set

X = { (0, 0), (1, 1), (2, 2), (3, 3) }

will result in a Spearmannranking of 1. The set

X = { (0, 3), (1, 2), (2, 1), (3, 0) }

will result in a −1 ranking.

9.2.5 Confidence Measure Evaluation Results

Table 9.1 summarizes the Spearmannrank correlation of the probability of a successful classification and

reported confidence for all the metrics examined. This table is provided to allow easy comparison between

all reported data. Note that the table only contains values up to separation 2.0. Data at higher separations

is not included as there are too few errors observed at these separations to provide a reliable estimate of

the curve.
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Table 9.1: Conditional Probability -vs- Reported Confidence SpearmannRanked Comparison

C
M

IC
D

C
δ/
τ

Pr
ob

ab
ili

ty

C
τ[

0.
..

1]

C
PD

-P
ro

ba
bi

lis
tic

C
0.125 0.952 1.000 0.955 0.915
0.250 0.957 0.996 0.979 0.914
0.500 0.933 0.999 0.977 0.930
1.000 0.957 0.997 0.963 0.932
2.000 0.955 0.990 0.960 0.977
µ 0.951 0.996 0.967 0.933

B
0.125 0.894 0.988 0.931 0.913
0.250 0.858 0.988 0.925 0.869
0.500 0.886 0.991 0.930 0.891
1.000 0.930 0.993 0.932 0.925
2.000 0.871 0.974 0.888 0.940
µ 0.888 0.987 0.921 0.907

S
0.125 0.399 0.841 0.612 0.387
0.250 0.842 0.931 0.889 0.645
0.500 0.914 0.938 0.882 0.960
0.750 0.683 0.727 0.665 0.931
1.000 0.586 0.916 0.583 0.892
µ 0.685 0.871 0.726 0.763
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MICD Based Confidence: CMICD

Figures 9.3, 9.4 and 9.5 display the relationship found between CMICD and the probability of a successful

classification for the covaried, bimodal and spiral data respectively. Examining these figures, we see a sig-

nificant amount of noise, however a general trend towards higher reliability at higher reported confidence

is visible. The linear regression line placed across the plots clearly shows the trend to be in the correct

direction.

In Figure 9.3 there is quite a bit of noise in the central region of the curve, especially at low separa-

tions when many errors are being made. As the problem becomes easier at higher separations, the line

straightens out and a higher correlation is recorded. This is also seen in Table 9.1, where the values for

this confidence measure are shown in the column entitled CMICD.

Notable on the covaried plots at low separation in Figure 9.3 is the downward portion of the initial part

of the line. This portion of the plot is based on the MME bin with the largest range, and as such contains

points from a large range of confidences. This explains why the line deviates so sharply from the trend in

the rest of the graph. As this line indicates only that the reliability may be quite high when the confidence

is low, this artifact is not a critical problem.

Bimodal data, which exhibits fewer classification errors to begin with, has much less noise, as seen

in the plots in Figure 9.4. The spiral data in Figure 9.5 shows the most noise in the confidence/reliability

curve, as more errors are made in the assignments. As the bimodal data set is quite information rich in

comparison with the other two synthetic data sets, this response is expected.
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Figure 9.3: CMICD Plots on 4-Feature Covaried Data
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δ/τ Observed Probability Confidence: Cδ/τ Probability

The plots showing the correlation with reliability for the Cδ/τ Probability measure are shown in Figures 9.6,

9.7 and 9.8, again for covaried, bimodal and spiral data respectively. All three figures exhibit a strikingly

noise-free estimation. Both the covaried data in Figure 9.6 and the bimodal data in Figure 9.7 show little

deviation from the plotted linear regression. The slope of the regression itself clearly approximates the

x=y desired slope on these two plots. There is some decrease in the slope as the separation increases, as

the number of overall errors drops. Examining the spiral data in Figure 9.8, we see significantly more

noise than is shown in either of Figures 9.6 or 9.7. As in the MICD based confidence measure, it seems

that when the problem is harder, there is more noise in the confidence estimate.

Evaluating the Spearmanncorrelation coefficients in Table 9.1, we see that this confidence measure,

marked Cδ/τ Probability has the highest correlation with true reliability.

While the downward-sloping trend is present at lower measured reliability values, it is less significant

than when seen in the CMICD plots.
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Figure 9.6: Cδ/τ Probability Plots on 4-Feature Covaried Data
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Figure 9.7: Cδ/τ Probability Plots on 4-Feature Bimodal Data



CHAPTER 9. CONFIDENCE AND RELIABILITY 116

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Spiral FZ(Occurrence/All);Q=10 PROB Reliability (s=00.125)

Reliabilty
Regression: 0.4774x+0.3185

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Spiral FZ(Occurrence/All);Q=10 PROB Reliability (s=00.250)

Reliabilty
Regression: 0.7619x+0.1791

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Spiral FZ(Occurrence/All);Q=10 PROB Reliability (s=00.500)

Reliabilty
Regression: 0.7944x+0.1900

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Spiral FZ(Occurrence/All);Q=10 PROB Reliability (s=01.000)

Reliabilty
Regression: 0.4645x+0.5047

Figure 9.8: Cδ/τ Probability Plots on 4-Feature Spiral Data
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Normalized [0 . . . 1] Bounded τ Confidence: Cτ[0...1]

Turning to the Normalized [0 . . . 1] bounded τ confidence measure, we see that the correlations shown in

Figures 9.9, 9.10 and 9.11 (covaried, bimodal and spiral) again show a strong linearity, however with more

noise in the estimate than is the case in Cδ/τ Probability.

The Spearmannranking in Table 9.1 shows us that this measure is comparable to that of CMICD, how-

ever is not as strong as Cδ/τ Probability.
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Figure 9.9: Cτ[0...1] Plots on 4-Feature Covaried Data
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Figure 9.10: Cτ[0...1] Plots on 4-Feature Bimodal Data
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PD (WOE Based) Probabilistic Confidence: CPD-Probabilistic

Examining the performance of the CPD-Probabilistic column in Table 9.1, we see performance which is sig-

nificantly poorer than that of the other classifiers.

A look at Figures 9.12, 9.13 and 9.14 show two significant things: there is quite a lot of noise in all

three plots and the slope of the lines on each plot are considerably lower than those of the related plots in

the other measures.

While neither of these pose disastrous problems (as noted by the high correlation in Table 9.1), the

comparison with the other confidence measures shows that this estimation technique is inferior.



CHAPTER 9. CONFIDENCE AND RELIABILITY 122

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Covaried PD(Indep);Q=10 PDPROB Reliability (s=00.125)

Reliabilty
Regression: 0.4801x+0.3006

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Covaried PD(Indep);Q=10 PDPROB Reliability (s=00.250)

Reliabilty
Regression: 0.4698x+0.3237

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Covaried PD(Indep);Q=10 PDPROB Reliability (s=00.500)

Reliabilty
Regression: 0.4995x+0.3142

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Covaried PD(Indep);Q=10 PDPROB Reliability (s=01.000)

Reliabilty
Regression: 0.5099x+0.3470

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Covaried PD(Indep);Q=10 PDPROB Reliability (s=02.000)

Reliabilty
Regression: 0.5907x+0.3289

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
el

ia
b
il

it
y
 [

1
-P

r(
er

ro
r)

]

Reported Confidence

Covaried PD(Indep);Q=10 PDPROB Reliability (s=04.000)

Reliabilty
Regression: 0.4119x+0.5073

Figure 9.12: CPD-Probabilistic Plots on 4-Feature Covaried Data
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Figure 9.13: CPD-Probabilistic Plots on 4-Feature Bimodal Data
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Figure 9.14: CPD-Probabilistic Plots on 4-Feature Spiral Data
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9.3 Discussion

All of the measures discussed provide an overall linear relationship with respect to reliability. Further, the

trend of all measures show increasing reliability correlated with increasing reported confidence.

The MICD based measure shows quite acceptable performance, showing saturation of the reported

confidence at the same time that total reliability is reached.

The Cτ[0...1] measure, while not showing large amounts of noise, saturates at complete reliability sig-

nificantly before the confidence measure predicts this. Using a confidence measure which under-predicts

the true reliability is certainly preferable to an over-prediction, however this does decrease the measured

correlation significantly.

The measure CPD-Probabilistic shows significant noise, and is the poorest of all of the measures discussed.

The noise in this measure is due largely to the quantization of confidence along with the quantization of

decision outcome based on the MME quantization of the PD data space.

A further consideration in CPD-Probabilistic is that the rules fired for this measure do not exactly cor-

respond to those used for WOE calculation, as only the rules which would be fired using the PD rule-

independence scheme are used. This will introduce a further confounding factor into the relationship

between assertion confidence and this measure of confidence reporting.

The plots for the Cδ/τ Probability measure show the least deviation from linearity. The regression line on

these plots shows that there is a close relation with the desired reliability as the slope is near 1.0. This

outcome is not surprising, as of the four measured evaluated, this is the only one which is directly based

on an evaluation of error; the high correlation is expected in a calculation directly reporting observed error

during training.

The smoothness of the lines in Figures 9.6, 9.7 and 9.8 is further due to the averaging effect of the

histogram calculation of expected confidence combined with the averaging effect of the quantized relia-

bility calculation. This “double filtering” in the Cδ/τ Probability confidence reduces the noise exhibited by

this measure, and provides a better estimate of the overall system reliability.

The irregularities which appear in the spiral plots in Figure 9.8 are due to the poor separation of errors

in the δ/τ space for this problem. This in turn is driven by the difficulty of the problem overall, indicating

that there is a relationship between the information available to the system to solve a problem, and the

information available to estimate the reliability of the answer within the problem.
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9.4 Conclusion

While all of the measures exhibit reasonable performance, the extremely good correlation of theCδ/τ Probability

measure with respect to true system reliability indicates that this will be the best estimator to choose.

In order to use this estimator with a given decision support problem, a histogram of δ/τ values must

be constructed. The construction of this histogram need only use an examination of the same training data

used to construct the rule-base itself. Once created, this histogram functions as a lookup table from which

the confidence values are chosen.

The explainability of this measure is very high, as it allows a decision to be characterized in terms of

the reliability on similar decisions made using training data. An explanation of this form allows a decision-

making user to understand that the confidence is not constant for the system, but is easily parameterized

by a set of direct measures (δ and τ) based on the training data.

Cδ/τ Probability therefore is the measure which will be used in the decision support interface in order to

report decision confidence.

The presentation of such a confidence value allows a decision maker using the suggested label to

combine the DSS presented suggestion with data available from other sources. While this idea is normally

conceived in terms of a human decision maker, an equally plausible scenario would see the suggested

classification label and the confidence value as inputs to a computationally based multi-classifier voting

system.

9.5 Summary

Several possible candidate measures for decision confidence have been evaluated. The measure selected

for this hybrid system is that which provides the best indication of the system performance and which best

estimates the reliability of the suggestion. This measure will allow the user to incorporate the likelihood of

an erroneous label being suggested into a larger decision framework. The contribution of this confidence

measure within this work provides a new tool for measuring PD based performance and estimating system

confidence.

This type of confidence measure, coupled with a transparent means of determining a suggested label,

are the defining characteristics of a functional DSS.



Chapter 10

Decision Support and Exploration

Statistics are no substitute for judgement.

— Henry Clay

Decision support is a rigorous field in which the mechanism by which data is presented to the user will

define the utility of the system. The entire purpose of a decision support system is to provide explainable

insights into the decision process, based on numerical evaluation. If the results of this evaluation are

opaque or obscure, the resulting system will be confusing and, at worst, may make the resulting decisions

less reliable.

As stated by Edward Tufte (1997, pp. 27):

When we reason about quantitative evidence, certain methods for displaying and analyzing

data are better than others. Superior methods are more likely to produce truthful, credi-

ble, and precise findings. The difference between an excellent analysis and a faulty one can

sometimes have momentous consequences.

10.1 Design

It is therefore important to evaluate the work-flow by which a user of the hybrid system described here

will obtain and evaluate a decision suggested by this system. The resulting inference exploration is top-

down, starting with the presentation of a class label for a given input vector and working back towards

127
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Figure 10.1: Hierarchical Design Encourages Drill-Down Exploration

the underlying statistical support structures forming the basis for the decision. Effectively, the process by

which the classifier functions must be examined by running the data through in reverse.

The decision support system (DSS) supports the cognitive model pictured in Figure 10.1 by modelling

the problem using a similarly layered logical abstraction as the conceptual abstractions in the cognitive

model.

10.2 Evaluation

In order to evaluate the DSS proposed here, a detailed discussion of the user work-flow will be discussed

for a few illustrative examples.

The following inference results will be examined:

• a straightforward positive classification (one for which PD has infinite WOE). This will provide an

overall flavour of the system and its confidence support.

• a classification at the decision boundary of a simple domain. This will allow rule and data explana-

tions containing more complexity.

• a positive classification based on real-world data, containing a small degree of conflict. This will
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introduce the measurement of uncertainty as it is presented to the decision-maker, relating the con-

fidence measure described in Chapter 9 to the exploration of the FIS rules.

• a positive real-world data classification with significant conflict. This will provide a further explo-

ration of the uncertainty measurement, with further stress on the ability of the decision maker to

assure themselves of the degree of support for any possible decision.

10.2.1 Unimodal, 2-Feature Covaried Data

Two feature covaried data will be used to provide a simple example to begin the discussion. Simple 2-class,

2-feature data was created by generating 1000 records for each of two classes (A and B). This

data was then coloured using covariance matrices of CovA =
[

160 −52.58
−52.58 48

]
and CovB =

[
48 16.63

16.63 16

]
. The

means of the two distributions were separated along the x axis by 9.36. The PD/FIS algorithm was then run

on this data with Q=5 quantization intervals, generating descriptive rules as well as the quantization grid

shown in Figure 10.2. This grid shows the training data points as well as the quantization bin boundaries

into which they have been divided. Note that the most extreme points at top, bottom, left and right fall

exactly onto (and actually define) the outer grid boundaries. This two-dimensional data set can be easily
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Figure 10.3: δ/τ Histograms from Covaried 2-feature Data

visualized, allowing the relationship between the measured data values and the decision space to be well

understood.

Figure 10.3 shows the δ/τ histogram surfaces for this data set, upon which we will calculateCδ/τ Probability

confidence as the measure chosen in Chapter 9. In this figure we see that the extent of the errors is sim-

ilar to that of the correct classifications, however there are significantly more correct observations in the

intersecting area.
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Figure 10.4: Covaried Classification With High Confidence Summary

10.2.2 Unimodal, 2-Feature Covaried Classification With High Confidence

For the first analysis, consider the record (40,−20), which in the simple data topology of Figure 10.2, will

appear in the lower-right corner. Records at this location are unambiguously associated with A.

If we assign this point a label using the FIS in a DSS context, we are presented with the summary

output display shown in Figure 10.4, which shows the input data from features F1 and F2, along with: the

suggested labelling; the decision confidence calculated using Cδ/τ Probability; and the decision conflict. The

conflict is calculated simply using

Conflict =

 τ − τ2 if τ2 > 0

0 otherwise.
(10.1)

As is obvious in Figure 10.4, there is no conflict for this simple example, and the projected reliability is

unity. While rather an extreme projection of confidence, due to the position of the point in a portion of the

space with no conflicting classifications having a τ value of 0.858 and a δ of 1.573. Locating these values

in Figure 10.4 places the (δ, τ) location in the black bar above all of the observed errors, but within the

observed correct classifications. This location therefore has the support of previous correct classifications,

and has never been associated with an error, so the reported confidence is in fact reasonable based on

Cδ/τ Probability.

The output shown in Figure 10.4 is kept terse for two major reasons:

• the purpose of a decision support system is to reduce the cognitive load by summarizing decision

information. The decision exploration task is driven by user request in order to allow greater clarity

in the summarization;

• this technique will allow summaries from multiple decisions to be collected — this will allow “what

if?” scenarios to be explored, where the decision maker can examine the effect of changing an input

value without removing the result of the true values. Such a scenario will be discussed at the end of
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Assertion Implied When . . .





A

(F1 is V H and F2 is V L)
1.000 F1 is V H and F2 is V L
0.928 F1 is V H
0.645 F2 is V L
0.858 Support for A (Chosen Label Value)

1.000 Confidence
0.000 No Assertion Conflict





B

(F1 is V H and F2 is V L)
−0.290 F2 is V L
−0.855 F1 is V H
−1.000 F1 is V H and F2 is V L
−0.715 Refutation for B

Figure 10.5: Covaried Classification With High Confidence Rule Set

the Chapter.

Decision Exploration: Drill-Down Into Rules

Assuming the user would like further information regarding the means by which the system arrived at this

suggestion, rules associated with this suggestion may be displayed. The appropriate rules are presented,

ranked in decreasing order of assertion value, separated by the class of support, as shown in Figure 10.5,

which shows the same data as was indicated in Figure 10.4.

As is seen in Figure 10.5, only six rules have been used to characterize this data value, so a complete

inspection of all the rules associated with this assignment will be both clear and informative.

The display shows the results in support (or refutation) of the suggested labelling on the top, with

the label value highlighted. Choices for other classes are then displayed in decreasing order of overall

assertion value. In this example there are only two possible labels, “A” and “B.”

Considering the rules associated with A, one has fired with the highest possible assertion value

(1.0), and the other two have fired with strongly positive assertions. Note that the higher order rules

displayed here have higher assertion values. This is consistent with a rule set that has only support for one

of the possible labellings, and this is reflected to the user by the phrase “No Assertion Conflict.”

When examining the competing class, the display of Figure 10.5 indicates that there is indeed no
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Figure 10.6: Membership Values For 2-Feature Simple Classification Example

support at all for B as all the assertion values are negative (indicating a complete refutation of the

label B). This is indicated in the summary line with the word “refutation” instead of “assertion.”

To review the success of this display, it is illustrative to list the goals which have been met:

Relay Complexity of Decision : In this simple decision, all the rules have been presented.

Describe Degree of Conflict : Conflict is explicitly labelled in this simple plot. The conflict value is

intentionally offset in the column of numerical data in order to avoid visual clutter with the assertion

value.

Decision Exploration: Drill-Down Into Membership Functions

If the user wishes to “drill down” to discover the degree of membership in the various input classes, the

display of Figure10.6 is shown. This display is part of the same example featured in both Figure 10.4 and

Figure 10.5, and so shows the same input data values.

This display shows the number line between the minimum and maximum observed training values

which forms the universe of discourse (UOD) for this fuzzy relation. The extent of the universe is covered

by the fuzzy membership functions describing the various fuzzy input sets.

The names of the fuzzy sets are shown above the membership functions, and the points which form

the bin boundaries in the underlying PD training configuration are labelled. These are the same points that
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correspond to the ends of each trapezoidal plateau, from which the ramp extends. The end points of the

ramps are not labelled, to avoid excessive “chart-junk” as described by Tufte (1983, pp. 100-121).

Also following the principles outlined by Tufte (1997, pp. 73-78), the “smallest effective difference”

is employed to highlight the information in the display while maintaining the background of supporting

information in a non-distracting form. This is achieved by highlighting the membership function to which

the input point is assigned using the same line style but with a darker weighting. The set name is also

coloured with a darker pen. The membership within the set is added above the set name, associating

the set with its information content and dissociating this set from those which are irrelevant to further

discussion. Finally, the input point itself is added, along with a vertical line to describe the point at which

the input enters the number line and a tag to describe its value.

Given this description, we can see that the display in Figure 10.6 clearly shows us that the two input

values for Features “F1” and “F2” were 40 and −20 respectively and places these visually within the

universe of observed events. These input values have been assigned to the fuzzy input sets of “V H”

in Feature F1 and “V L” in Feature F2. As the points fall on the number line far away from any

regions of fuzziness, there is membership in only a single fuzzy set for each UOD.

The goal in this display is to associate the rule set with underlying fuzzy set membership functions. For

this reason, the greatest visual draw in the display are the membership function boundaries, which indicate

to the user the portion of the UOD associated with the fired rules. Secondary to these are the actual input

values, as when using MME and fuzzy membership aggregation schemes, the distinct values from the

input are preserved only in terms of the fuzzy set membership relations. This relationship is managed by

the relative amount of ink devoted to the membership function versus that for the representation of the

input values.

The remainder of the display is shown in muted tones in order to reduce clutter while maintaining a

framework for the important information.

10.2.3 Unimodal, 2-Feature Covaried Classification With Low Confidence

As a contrasting test, let us classify the record (−2,−20). This location will fall on the decision surface

between the classes and will therefore demonstrate what happens when the certainty of the system is

minimal in this very simple data domain.

For this point, the display shown in Figure 10.7 is presented to the user as the initial summary screen.

This point falls very near the quantization boundary between the two classes. The PD algorithm would

have assigned this point to B but here it is instead marked  as no class had a positive τ value.
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−2.0, −20.0 (B) 0.500 ∞ 7 of 54

Figure 10.7: Covaried Classification With Low Confidence Summary

As a further indication that there is no positive support for any class, the “Conflict” column in Figure 10.7

is marked as∞. This shows the conservatism of the PD/FIS DSS relative to simple PD.

The overall confidence of this classification is marked as 0.5, as for this δ/τ location we have observed

an equal number of correct and incorrect decisions.

All of the above factors combine to make it clear to the user that this suggestion is based on only

the thinnest degree of discernment. A very important corollary of such an assertion is that a confident

decision cannot be made based on this data, and that therefore in the context of a larger decision, this lack

of confidence needs to be taken into account.

This will suggest to the decision maker that testing using another source of data may be prudent, as

the DSS suggestion indicates that the particular data values recorded are not able to produce a confident

decision. If an additional test or report is available to provide more insight, the decision may thereby be

improved.

Decision Exploration: Drill-Down Into Rules

Figure 10.8 shows the rules upon which this decision is based. Note that the support for the both classes

in Figure 10.8 have rule output values which are both positive and negative. This indicates that the rules

triggered within the FIS capture the knowledge that this location is a boundary location, and further, that

logical arguments exist which would assign it to either class. It is by means of the simple aggregation

through the defuzzification operation that these sets of contradictory votes are turned into single scalar

assertions (Ak) summarized at the bottom of each column.

The overall Ak for both classes are negative, indicating that τ will be negative. This indicates that no

classification will be performed, thus the report of the summary display in Figure 10.7.

To further amplify the point that no assertion is made due to complete lack of support, the conflict

display is marked as∞ and the accompanying summary text is set to “No Positive Assertions”.
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Assertion Implied When . . .





B

(F1 is M and F2 is V L)
0.640 F1 is M
0.723 F1 is L
−0.290 F2 is V L
−0.675 F1 is M and F2 is V L

−0.009 Refutation for B (Chosen Label Value)
0.500 Confidence
∞ No Positive Assertions





A

(F1 is M and F2 is V L)
0.645 F2 is V L
−0.445 F1 is L
−0.280 F1 is M
−0.575 F1 is M and F2 is V L
−0.750 F1 is L and F2 is V L
−0.183 Refutation for A

Figure 10.8: Covaried Classification With Low Confidence Rule Set
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Figure 10.9: Membership Values For 2-Feature Simple Classification Example

Decision Exploration: Drill-Down Into Membership Functions

Examining the membership functions underlying the rule set of Figure 10.8 will bring up the display in

Figure 10.9. Note that feature F1 is no longer assigned uniquely to a single fuzzy membership function.

The point −2 now falls into the overlapping membership functions for the fuzzy sets M and L,

with memberships of 1.0 and 0.407 in these sets respectively. This in turn causes more rules to be activated

and shown in Figure 10.8, as both the rules associated with the set M and L may be used.

Comparing Figure 10.6 from the last membership function example to Figure 10.9 we see that the

figure at once looks strikingly different, even though the positions of the lines defining the memberships

have not changed. Confining the highlighting to changes in intensity allows various different parts of the

figure to be brought to focus easily, while maintaining a common paradigm for all decisions made by a

given rule base. Remembering that the membership functions are defined as a product of training on a

given data set, this means that when applying this knowledge system within a specific application area

an operator will always see the same membership functions for the same feature, regardless of the input

values. It is only the highlighting of the memberships which will change from decision to decision.

This interactive drill down mechanism thereby allows the user to explore as much, or as little, of the

decision space as is desired, while keeping the summary information terse and thus not confusing.
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10.2.4 Heart Disease Data

The Hungarian heart disease data introduced in Chapter 8 will be used as a “real-world” example, in order

to demonstrate how the system may be used by a medical professional. This data set has been chosen

to support the discussion as it provides a complex, real-world data example in which the relationships

between the features are not easily discovered by casual inspection by the reader, yet is from a domain

in which the conclusions reached by the system can be examined in terms of the reader’s understanding

about the factors underlying heart disease data. As this is a topic with significant discussion in both the

popular press and the medical community, it is expected that the reader will have a passing familiarity

with the symptoms and import, if not directly the measurement, of heart disease.

For these reasons, though it is assumed that only a trained user will be completely familiar with the

fields which have been described in Table 8.3 (from page 92 in Chapter 8), persons with a casual interest

in heart disease will still find some of these features to be familiar from other literature, and this will frame

the following rule evaluations into a useful context.

For characterization purposes, the suggestions based on the heart disease database have one of two

values: “D” or “N.”

The δ/τ distribution surface histograms are shown in Figure 10.10, which shows that the separation

between correct and incorrect is present, but not substantial. The fraction of characterizations made cor-

rectly by this system is 0.83 of the total. This in conjunction with the wide distribution of the error values

indicates that there will seldom, if ever, be a value which will be asserted at unity (1.0) confidence as was

seen in the simplistic 2-feature data just examined. Similarly, the confidence values will attain reasonable

values as inspection of the error and correct confidence surfaces of Figure 10.10 shows relatively few

errors occur over much of the region where δ/τ values have been observed.

10.2.5 Heart Disease Classification With High Confidence

In order to provide an example from a real database with as much clarity as possible, the record was

located which had the highest degree of confidence in its suggestion of any record in the Hungarian heart

disease data set. The values for this record are shown in Table 10.1.

When this record is considered by the FIS decision support system, we are presented with the results

shown in Figure 10.11. This display is quite similar to the 2-feature display shown in Figure 10.4, with the

addition of several more input feature values. The confidence value is again very high as the histogram cell

associated with (δ, τ) pair (0.679, 0.626) received 34 correct classifications and one error during training.

This datum will be available to the user by highlighting the “Confidence” value of 0.971 in Figure 10.11.
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Figure 10.10: δ/τ Histograms from Heart Disease Data
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Figure 10.11: Heart Disease Classification High Confidence Summary Display
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Table 10.1: Heart Disease Classification High Confidence Data Record

Feature Value
A 48.0
S 1 (male)
CP 4 (asymptomatic pain)
TRBPS 160.0 mm Hg
C 193.0 mg/dl
FBS 0 (fasting blood sugar ≤ 120 mg/dl)
RECG 0 (normal)
TA 102.0 bps
EA 1 (exercise induced)
OP 3.0
S 2 (downsloping)
CA 0 major vessels coloured by fluoroscopy
T 3 (normal)
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Decision Exploration: Drill-Down Into Rules

Assuming again that the user wishes to drill down to the underlying rules, the display shown in Fig-

ure 10.12 is displayed. As there are 39 rules associated with this classification, it is neither feasible nor

desirable to display them all. Instead, the top 10 rules are shown for each class, ranked in order of de-

creasing assertion value. The user is provided access to the complete list via another drill-down control.

The bracketed rules across the top of each section of Figure 10.12 show the compound rule formed

from the highest WOE independent rule firings (this is the same compound rule described in relation to

equation (9.8) in the CPD-Probabilistic discussion on page 104). While this form of rule construction is not

used to generate a weighting, it is expected that this information will aid the user in understanding the

characterization. The brackets in this statement indicate the FIS rules from which the compound has been

composed. Each bracketed sub-clause therefore refers to one of the rules in the list below. The entire

statement is shown in a muted tone in order to indicate that while it contains information useful to the

user, it should not distract from the rule list below.

Note that in this example there is no conflict recorded, as the defuzzified assertion values areADiseased =

0.642 and ANormal = −0.518 respectively, even though the maximum rule assertion is positive in both

classes. The positive values for the N class shown in Figure 10.12 are combined with the other

N assertions into the defuzzified centroid value shown at the bottom of each column.

The suggestion of the label D for this record is therefore a conflict-free, high confidence classi-

fication as the highest assertion (τ = 0.642) is both positive and distant from the second highest assertion

(τ2 = −0.518 so therefore δ = 1.160), leading to a very high confidence of Cδ/τ Probability = 0.971. As

this is the highest-confidence record in the database, and given the common knowledge that males are at

higher risk for heart disease, along with an understanding that the correlation with disease increases with

age, it is unsurprising that this record would be a M of at least M age.
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Assertion Implied When . . .
D






(A is M H and S is M and S is M H and
CP is A and FBS is M) and (RECG is M L)

0.950 A is M H and S is M and S is M H
0.905 A is M H and S is M and EA is H
0.852 A is M H and S is M

and CP is A and FBS is M
0.846 A is M H and S is M H
0.833 A is M H and S is M and CP is A
0.800 A is M H and S is M and CP is A

and RECG is M L
0.791 S is M H
0.787 EA is H
0.786 A is M H and EA is H
0.730 A is M H and CP is H

10 more rules fired with confidence [0.675 . . . 0.292]
0.642 Support for D (Chosen Label Value)

0.971 Confidence
0.000 No Assertion Conflict





A

(A is M H and C is L) and (S is M and CP is
A) and (OP is H) and (EA is H)

0.813 A is M H and C is L
−0.128 S is M
−0.277 OP is H
−0.345 A is M and EA is H
−0.349 A is M and S is M H
−0.368 A is M H and S is M and FBS is M
−0.398 A is M H and S is M
−0.434 TA is V L
−0.482 A is M H and CP is A
−0.490 CP is A

9 more rules fired with confidence [−0.507 · · · − 0.903]
−0.518 Refutation for N

Figure 10.12: Heart Disease Classification High Confidence Rule Set
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Decision Exploration: Drill-Down Into Membership Functions

If the user wishes to proceed to examine the inputs triggering the rule firings, the input membership

functions will be displayed by user selection as discussed earlier. The display shown in Figure 10.13

indicates the mapping from the input value into the mixture of membership functions named in the rules

for five input features of the heart disease database. Only the features A, S, CP, TRB and C

are shown, in order to allow the figure to be placed on a single page. The remaining features would appear

below the ones shown here on a computer based system. If necessary, a scroll bar will allow the user to

see all the data elements.

Note that in contrast to Figure 10.6, there are input values which trigger membership in more than one

fuzzy set in Figure 10.13, specifically A and C.

The age of the patient indicated in this record (i.e., 48 years of age) falls within the central region of

one of the membership functions while only catching the ramp at the end of the neighbouring function.

The reading for serum cholesterol (C) exhibits a similar relationship to its membership functions. As

indicated, this means that the patient has “L” cholesterol in the terminology of the FIS system, and may

be considered “V L.” In contrast, the measurement for TRB (resting blood pressure in mm Hg

upon admission to the Emergency department) falls uniquely into the “V H” category.

The measures for S and for CP are shown as crisp sets; this is because these fields are stored as nom-

inal integer labels in the input data set. Representation of S with non-fuzzy membership makes sense as

(except for the tiny fraction of the population exhibiting hermaphroditism) this is a physiologically crisp

division. The CP value represents a nominal label applied by an examining physician; while there may be

some vagueness associated with the label choice, information representing the degree of vagueness asso-

ciated with this choice is not available to us, so a crisp nominal label is the clearest and most informative

choice here. Remembering that the purpose of a DSS is to aid in decision making, it is clear that repre-

sentation of vagueness in the data must be driven by that vagueness which we can accurately quantify and

thus represent truly. Adding further vagueness measures will simply add more complexity to the system,

making it more confusing and therefore less useful.

The use of a crisp set within the FIS simply prevents the construction of “ramps” and ensures that all

possible associated memberships are equal to 1.

Using the architecture of the FIS, the linguistic labels {M, F} and {T A, A

A, N-A P, A P} have been loaded as the names of the sets in the FIS. This

allows the input database to remain in its standard integer form, but supply the user with the appropriate

label.
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Figure 10.13: Heart Disease Classification High Confidence Membership Functions
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Figure 10.14: Heart Disease Classification Conflict Summary Display

Decision Exploration: Drill-Down Into Statistical Support

A further drill-down is available to the user based on individual rules, allowing inspection of the underlying

relationships. For example, if the user wishes to inspect the rule “S is M,” the statistics on which

this rule was generated are presented. In this case, this second order event (a M patient in the training

set who is D) was observed 94 times out of a total of 212 M patients, indicating a probability of

0.443 for an incidence of heart disease in M patients. For F patients in the training data set, the

probability is 12/81 or 0.148.

This form of inspection is available for every rule which has been stored to define the FIS; that is,

the complete set of rules (patterns) deemed to be of statistical significance by the PD pattern extraction

algorithm.

The mechanism for initiating this inspection will be selection of (i.e., clicking on) the label “Assertion”

in a display such as Figure 10.12. This action will cause the assertion values to be replaced with the

underlying occurrence numbers. Note also, that as the assertion values are based on FIS(O/-

A) evaluation, these values are simply probabilities calculated through occurrence observations.

10.2.6 Heart Disease Classification With Conflict

The true utility of a decision support system lies in its ability to aid a user in understanding data which

contains conflict or uncertainty. Let us therefore assume that the data record shown in Table 10.2 is

processed. This record was selected by examining the database for records with conflict that still contained

a high τ value.

The summary display of Figure 10.14 resulting from the processing of this record immediately flags

the fact that there is some conflict in the decision involving this patient record, and that the confidence

is reduced from the previous case as more errors were found relative to correct classifications in this

δ/τ histogram cell. The increased visual contrast of the conflict measure allows a user to immediately



CHAPTER 10. DECISION SUPPORT AND EXPLORATION 146

Table 10.2: Heart Disease Classification Conflict Data Record

Feature Value
A 52.0
S 0 (female)
CP 4 (asymptomatic)
TRBPS 130.0 mm Hg
C 180.0 mg/dl
FBS 0 (fasting blood sugar ≤ 120 mg/dl)
RECG 0 (normal)
TA 140.0 bps
EA 1 (exercise induced)
OP 1.5
S 2 (downsloping)
CA 0 major vessels coloured by fluoroscopy
T 3 (normal)

distinguish between records of this type and those with no conflict.

Decision Exploration: Drill-Down Into Rules

In response to a drill-down selection, Figure 10.15 displays all the rules which have been fired. In this

interesting record, it is instructive to examine all of the record values, rather than just the top 10 of each

set, therefore the display in Figure 10.15 has been fully expanded.

Note the range of assertions in the defuzzification space for Nwhich results in a low assertion of

0.053 even though some rules support this classification with values as high as 0.875. Defuzzified support

for the D class is much higher as there are very few votes refuting this label, in contrast to the

N class which has both strong support and refutation. The conflict apparent in the characterization

as a D patient’s record thus has obvious roots in the rule base.

Whether a user of the decision support system would wish to use a record with such conflict is strongly

tied to the application area. A user may proceed to make a decision incorporating both the characterization

shown here and the new knowledge that there are strong conflicts relating to this record, based on an

understanding of the relationship between conflict and reliability; conversely, as in the simple conflict

example discussed previously, the user may decide that further analysis is required.
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Assertion Implied When . . .

D






(A is M H and S is M H) and (OP is M H) and
(S is M H) and (EA is H) and (S is F)

0.846 A is M H and S is M H
0.813 OP is M H
0.791 S is M H
0.787 EA is H
0.786 A is M H and EA is H
0.730 A is M H and CP is A
0.675 CP is A
0.391 A is H and EA is H
0.375 A is H and S is M H
0.340 A is H and CP is A
−0.590 S is F

0.626 Support for D (Chosen Label Value)
0.667 Confidence
0.053 Conflict





A

(A is M H and S is F and T is L) and (CP is A) and
(EA is H) and (S is M H) and (OP is M H)

0.875 A is M H and S is F and T is L
0.852 S is F
0.840 A is M H and S is F
0.833 A is M H and S is F and FBS is M
0.833 A is M H and S is F and CA is L
0.810 A is M H and S is F and RECG is M L
0.580 A is M H and C is L
0.375 A is H and TA is M
−0.274 A is H and S is M H
−0.277 A is H and CP is A
−0.308 A is H and EA is H
−0.482 A is M H and CP is A
−0.490 CP is A
−0.570 A is M H and EA is H
−0.666 EA is H
−0.673 S is M H
−0.706 OP is M H
−0.720 A is M H and S is M H

0.053 Support for N

Figure 10.15: Heart Disease Classification Conflict Rule Set
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Explored Rules and Heart Disease

It is instructive to examine the rules themselves, as such relationships are displayed such as an assertion

of N with 0.852 assertion support simply because the patient is female. Another unsurprising re-

lationship triggered by this record is that of low cholesterol and N classification even while age is

M H; this is in agreement with innumerable articles in the popular press.

Clear phrasing of these relationships will aid in understanding and acceptance of a system of this type

by professionals in the area of application.

10.2.7 Interactive Exploration — Brushing and Selection

A further means of exploring the interaction between rules and input values may be made available through

brushing.

When holding the mouse pointer over any rule in the list (for example, the list shown in Figure 10.12),

the associated input membership functions for that rule will highlight (in this case, the appropriate mem-

bership functions shown in Figure 10.13).

If this rule is selected (clicked), the highlight will remain after the mouse pointer is moved away, until

the rule is selected a second time, or another rule is selected.

In this manner the interplay between multiple rules and their input values can be shown.

Similarly, brushing an input membership function will highlight all of the rules in the associated list,

allowing an exploration of the relationship from input values through rules.

10.2.8 “What If?” Decision Exploration

A stream of output values are produced as a decision is explored, such as that shown in Figure 10.16 in

which the results of several “what if?” suggestions exploring the results of changing various input feature

values are shown.

This activity is expected to be useful in the context of exploring the consequences of input value

changes in the data space. Consider the case where a patient has gone to a clinic and is exploring their

medical status with a physician with respect to heart disease. The PD/FIS system may have classified this

patient as being at risk for disease.

In order to explore this with the patient, the physician may ask the system “what if — the patient

reduced their cholesterol count?” by adjusting that input parameter. The PD/FIS system would then

respond with the suggested characterization involving the new data.
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40.0, −20.0 A 0.867 0.0 6 of 54
30.0, 20.0 A 0.867 0.0 6
10.0, −20.0 A 0.841 0.0 6
10.0, −10.0 A 0.658 0.028 7

Figure 10.16: Covaried Classification With High Confidence Summary - Exploration

Upon examining the rule base related to the new suggestion, the physician may note that the high-

est factor still supporting heart disease risk may be a low number of hours per week of exercise. The

physician may then ask “what if — exercise hours per week were adjusted?”, and again a new suggested

characterization would be presented.

In this way, the decision maker can use the system to evaluate various possible courses of action, based

on an interactive query–and–response work-flow involving the rule base and presented suggestions.

10.3 Discussion

The DSS presented here exhibits the main features required of a decision support system: exceptional

transparency and reliable confidence.

10.3.1 Transparency

The transparency of the system is maintained through interactive inspection of the relationships between

input data, rules fired and output classification values.

The user is directed through the chain of inference from the highest level (the suggestion and summary

values) back through the rules and input data values to the underlying statistics framing the input data in

terms of the training data set. At each level, the system relays the complexity of the decision made by

summarizing the confidence, conflict and number of rules fired.

This functionality is critical in a DSS, as only through the presentation of complete transparency will a

user be able to understand the reasoning by which a decision has been presented. In the context of a larger

decision being made from several sources (of which the DSS is but one), total transparency is required in
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order that aspects of the decision involving a deep appreciation of the interplay between measured data

values can be brought into the context of the final decision.

Without the ability to inspect, for instance, the effect that gender has on heart disease, it is impossible

for a user of the system to be able to suggest a course of action involving any other parameter, such as

cholesterol level, as this secondary attribute needs to be taken into account in a gender-specific way.

Similarly, if a patient who has a family history of heart disease is being examined, it is important

to be able to correlate both gender and other factors into a larger history. This form of exploration must

accessible and supported in order that a larger understanding of the import of the data record of a particular

patient may be fully brought to light.

10.3.2 Confidence

The confidence in the system is calculated using a metric proven to have a good correlation with true

system failure. This metric provides the user a real sense of how likely the system is to be suggesting an

incorrect characterization as measured using the internal assertion weightings of the algorithm.

As seen in Chapter 9, this provides a very good estimate of the probability of failure. The evaluation

of the system in Chapters 7 and 8 shows that the system performance is strong for both the tested synthetic

and real data.

10.4 Conclusions

The DSS presented in this chapter captures the most important features required for confident decision

analysis and exploration.

This chapter has provided an overview of the exploratory mechanism present in the FIS. Several

mechanisms have been presented by which an investigative user may determine rationale supporting a

presented characterization. A graphical display for the presentation of input value membership in the

fuzzy sets driving the system has been described.

The overall statistical nature of the FIS system allows the presentation of the statistical metric under-

lying each rule used; simple weighted combinations of rule assertion values result in an assertion for the

class overall. This simple relationship leaves itself open to inspection by means of iterative drill-down

analysis.

The hierarchical structure of the data, as shown in Figure 10.1 naturally supports an interactive ex-

ploratory work-flow. The stages of inspection supported by the drill-down within the FIS correspond to
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the relative abstraction of the cognitive model the decision maker will employ. Branching shown in the

hierarchy shows the amalgamation of information from different sources at each level. Considering the

hierarchy in a bottom up formation, each branch can be considered a simplification and summarization of

the data space, allowing high level decisions to be made based on the underlying data, but without needing

to directly evaluate each fact.

The weights and the rules may both be inspected, and the previously mentioned confidence value can

be used to weight the overall suggestion in terms of a larger decision making process.

The next obvious step in the design process is to evaluate this decision making architecture with real

decision makers. This future work will be done under separate cover adapting the system to a specific

application area, such as clinical electromyographic decision support.



Chapter 11

Conclusions

“The best thing for being sad,” replied Merlyn, beginning to puff and blow, “is to learn
something. That’s the only thing that never fails. You may grow old and trembling in your
anatomies, you may lie awake at night listening to the disorder of your veins, you may miss
your only love, you may see the world about you devastated by evil lunatics, or know your
honour trampled in the sewers of baser minds. There is only one thing for it then — to learn.
Learn why the world wags and what wags it. That is the only thing which the mind can
never exhaust, never alienate, never be tortured by, never fear or distrust, and never dream
of regretting. Learning is the only thing for you.”

— T.H. White, “The Once and Future King”

Evaluation of the PD/FIS system has shown several interesting strengths and weaknesses.

The system meets the goals required for a decision support system. Specifically, it provides sugges-

tions to a decision making user with sufficiently high performance to be useful, coupling each decision

with a characterization of the degree of confidence the suggestion can bear while providing a transparent,

explorable, explainable framework describing how the decision was formed.

11.1 Transparency

The PD based FIS provides a type of transparency not common among decision support systems. It

provides not only the transparency of a rule based system, but also allows inspection of the means by
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which the MME quanta were created as well as the assurance (backed up by occurrence based probabilities

if desired) that the rules found have statistical significance.

The rules themselves are formed based on the ability to distinguish input data values from each other

in order to provide a labelling. In contrast to systems such as BP, this allows a user to see several important

aspects of the underlying rationale: exactly what parts of the current input data vector carry the greatest

information; the path of inference supporting the suggested characterization; and the logic by which that

path was formed.

This transparency in PD, along with the confidence measure, allows a drill-down based analysis to

be performed supporting a user-driven decision exploration. Through such an interactive exploration,

the complexity of the decision making is made manageable. A sufficiently simple summary can be pre-

sented to the user at the highest level while still allowing the underlying data to be available as context.

This reduces the cognitive load decision makers will experience when using the system. The drill-down

methodology allows the decision maker to inspect any part of the decision process about which they hold

curiosity. This allows the system to be regarded as trustworthy, as a “white box” presentation is main-

tained.

11.2 Performance

Through evaluation of the PD/FIS system on a variety of continuous and mixed type data, it has been

shown that the FIS performance is generally measurably lower than that of “natively continuous” clas-

sifiers such as BP. For decision support purposes, the transparency of the PD/FIS makes it the superior

candidate.

When training data set is small, such as those seen in the thyroid and heart-disease data sets, the

PD/FIS, and especially the FIS(O/A) implementation, may have a measured performance

equal to that of BP, as the scarcity of the data provides insufficient resources for BP training. For these

reasons, although the performance of the PD/FIS system classification performance may be lower than

that of other classifiers, the outstanding qualities as a means of supporting explainable decisions makes it

preferable in this context.

Reviewing the PD/FIS systems tested, the performance of the FIS(O/A) system is par-

ticularly interesting as it is significantly higher than that of the PD system when run on continuous and

mixed-mode data. The addition of the fuzzy input membership functions along with the occurrence based

rule weighting improves the PD system and allows classification of more input values even in complex

data class distributions such as the spiral data set examined here.
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This shows that the addition of fuzzy attributes and a re-thinking of the rule weightings provides a

useful improvement over the raw PD system from which the FIS(O/A) algorithm is derived.

The performance of the FIS(O/A) classifier is therefore sufficiently high that, coupled

with the confidence measure presented, a reliable DSS can be constructed. This is superior to any design

using a system with slightly higher classification performance but lower transparency.

11.3 Confidence

A confidence measure has been provided which is a good indicator of true reliability. This has been

evaluated over a series of data class distributions and found to be stable, but related to the amount of

information available in the problem.

This confidence measure allows the user to incorporate a suggestion from the DSS into a larger deci-

sion context, providing a means of differentiating between occasions when the suggestion is trustworthy,

and those when the probability of an erroneous suggestion has become high. This design allows the sys-

tem performance to degrade gracefully as input values carry the inference into regions of the decision

space which are poorly understood or have a large degree of conflict. Such grace is required in a DSS,

as without a means of indicating the variability in confidence as a function of the input data and internal

system state, the user cannot gain trust in the decisions made.

11.4 Decision Exploration

Decision exploration describes the means by which a user will learn about a decision space and thereby

come to understand and trust a decision support system. The FIS(O/A) based DSS described

here provides a “drill-down” based exploration metaphor which accurately represents the hierarchy of the

cognitive model, allowing a decision maker to explore the problem space in the context of a suggestion

being made on a set of input values.

This form of exploration allows the user both to relate a proposed suggestion to other possible la-

bellings and to determine how a suggestion is supported or refuted. By using both positive and negative

logic rules, the conflicting support for multiple classes is clearly shown; through the use of fuzzy infer-

ence methodology, this conflict is summarized though simple suggestions with accompanying confidence

values.

This provides a user with a trustworthy, transparent system which can provide characterization based

suggestions across a variety of data domains.
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11.5 Quantization Costs

The FIS adaptation of the PD system reduces the quantization cost in the evaluated problems by recasting

the crisp quantization of the MME bins into fuzzy input membership functions (i.e., the addition of ramps).

A further investigation into the performance of a class-dependent quantization scheme may prove fruitful,

as the quantization bin bounds are not in any way driven by the optimal decision surface in the system

described here.

The BP based classifiers provide an interesting upper bound describing how high the cost of quan-

tization is; a further evaluation relative to these classifiers will allow more discussion on the recovery of

this cost.

11.6 Future Work

Several major directions are possible as further goals of the research here.

A major remaining aim includes the adaptation to a particular application area, specifically character-

ization of the disease relationship of motor unit potentials within an electromyographic domain. Beyond

this direction, the following research topics immediately are accessible as extensions of this work:

Class Dependent Quantization: Much of the quantization discussion during this work has shown that

the decision surfaces of classifiers such as MICD are not reflected in the bin boundaries of MME.

The use of a class-dependent quantization scheme would allow the exploration of the benefits of

driving the bin boundaries from the observed inter-class bounds, independently by feature.

Discrete and Mixed Mode Performance Analysis: The PD(O/A) and FIS(O/A)

algorithms have shown a marked improvement in classification performance over the PD algorithm

in continuous-valued data. A further topic of research will cover the performance analysis of these

algorithms on discrete data to determine the relative utility of WOE and occurrence weighting with

these data landscapes.

Multi-Part Classification: Of particular interest in electromyographic characterization is the production

of a composite suggestion from the analysis of a set of related input vectors. Such a decision could

be built upon the system described here by running the PD/FIS system for each input vector and

combining the results together, essentially by producing an overall suggestion by a collection of

individual ones, in a way similar to that by which rule firings are combined to achieve an overall

assertion in the system described here.

Calculation of the confidence for such a scheme would be required; at this point, this remains an
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open problem, albeit one which could be addressed using techniques adapted from those shown

here.

Analysis of Noise Due to Missing Data: While the PD system has been designed to function in cases of

missing data values, an authoritative analysis of the effects of missing data values within the PD/FIS

system remains to be done. In particular, the effects of the increase in missing data fields on the

quality of the analysis is work which demands attention.

Calculation of a Fuzzy Confidence Value: While the performance of the confidence value suggested

here correlates highly with measured reliability, an interesting topic of analysis would be the eval-

uation of a fuzzy prediction of confidence, based on δ/τ or other internal values, and a comparison

of these results with those of the Cδ/τ Probability based confidence measure.

“Multi-Bin” Fuzzy Input Set Definitions: The discussion of the fuzzy input set adaptations in this work

have concentrated on using each MME bin as the basis for a fuzzy input set. It would be equally

possible to join multiple MME bins together and use a rule calculated on the joined bin, allowing

membership values to be computed based on a relative measure of association which may differ for

each composite MME bin. This would produce fuzzy membership functions from a contiguous join

of MME bins, and produce a lower number of rules. These rules may describe the major features of

a database more succinctly than the many rules based on smaller divisions.

This approach would be very useful for forming characterizations of a data base in the form of a rule

summary. This in turn could form the basis of a data mining system used to explore and identify

major patterns within a data set.

Multi-Vote Classification: The combination of a suggested label and a confidence value raises the possi-

bility of an automated means of collecting multiple votes into one composite decision, as mentioned

in Chapter 9. Such a system could incorporate the suggestions from a number of weighted classi-

fiers into an overall vote, increasing the likelihood of a correct labelling. The confidence measure

just described could then be used as a weighting, allowing the construction of a collaborative voting

system using reliability estimation, rather than one simply based on majority voting.

Multi-voting classifiers have been described in Wanas and Kamel (2002); Levitin (2002, 2003) and

Montani et al. (2003), and have an ongoing popularity as a means of producing an overall system

with a higher classification performance than that of any of the composite systems. While many

such systems combine “votes” from each sub-classifier simply through majority voting, the ability

to weight each vote by its estimated reliability provides an interesting means of letting a classifier

“abstain” when confidence is low. Such a system is described in Cordella et al. (1999).

Clinical Electromyographic Characterization: The author’s main interest as an immediate application
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of this work is the construction of a clinical DSS based on the techniques presented here. A com-

bination of the data analysis and suggestion just discussed as well as domain knowledge of the

electromyographic clinical examination will allow the work described here to be presented in the

form of a diagnostic suggestion system for muscular disease. Such a system would allow the analy-

sis of diagnostic suggestion clarity and accuracy as a spectrum of disease involvement is presented.

The characteristic changes in input values due to the progression of a disease must be taken into

account by a clinical user, and therefore a vital part of the adaptation of this system to clinical work

is a discussion and analysis of how disease progression is apparent in the DSS suggestions based on

this particular data domain.
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Appendix A

Mathematical Notation

This appendix lists the meaning of the variables used in the equations in the paper including their point

of introduction. Greek letters are arranged at the beginning of the table, followed by Roman letters and

acronyms beginning with Roman letters.

A.1 Greek Letter Variables

δ the difference between the two best output votes (τ and τ2) from the FIS. Introduced in equation (9.3)

in Section 9.2.1.

δk is used in equation (5.10) as part of the discussion of the MICD classifier in Section 5.7.2.

θ index to the spiral of equation (5.8) in Section 5.4 on page 58.

κ the “strength” of the covaried data. Used in equation (5.2) to produce Covi j. In this work, κ = 0.6.

µ when used as a variable, a mean. When used as a function, µ indicates the membership function of

some fuzzy set.

ν j the number of discretely observed values (i.e., bin assignment IDs when considering continuous data)

observed in column j.

ξ shape parameter used in equation (5.7) to control the degree of spread of the Log-Normal class distri-

bution. Described in Section 5.2 on page 56.

π the circularity constant, π = 3.14159265 . . .

ρ scale or acceleration of the generating spiral for the spiral class distribution described in equation (5.8)

159
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in Section 5.4 on page 58.

σ standard deviation.

τ the best of the output votesAk asserted by the FIS. Introduced in Section 9.2.1 and used throughout the

discussion of reliability in Chapter 9.

A.2 Roman Letter Variables

axm
l k the assertion produced by firing the rule xm

l associated with class k.

Ak the defuzzified assertion produced in support or refutation of class k. Defined originally in section 4.3

in Chapter 4, on page 48.

ci the class mean calculated for a unimodal distribution using equation (5.5) and then used to generate a

separation value, si. Described on page 56.

Covi j a covariance matrix constructed to generate unimodal covaried data. Described on page 54.

CMICD MICD based confidence, as described by equation (9.5).

Cτ[0...1] bounded normalized confidence based on examination of τ, defined in equation (9.5).

Cδ/τ Probability probability based confidence, introduced in equation (9.5).

E(Θ) expectation operator; provides the “expected value of Θ”.

Exm
l

the estimate of the number of input records expected at a given order xm
l . This value is defined in

equation (3.9) on page 41.

e the natural constant, e = 2.71828 . . .

exm
l

the expected number of occurrences of event xm
l . The construction of this value is shown in equation

(3.4). See also oxm
l
.

i a looping variable used for several purposes with local meaning only

j usually indicates the column index, i.e., j ∈ [1 . . .M].

K the number of true classes (labels) to which the data may be assigned. Note that there is always an

extra “” class also, not included in K. See also yk and Y .

k an index into the number of labels, K.

L the list of rules used within the workings of the independent or “I” fuzzy rule firing scheme outlined

in Section 4.4.2.

M the list of highest order match rules used within the workings of the independent or “I” fuzzy rule

firing scheme outlined in Section 4.4.2.

M the number of input columns in the training and testing data set, excluding the label column.

N the number of rows in the training data set.
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N(0, 1) indicates a (Gaussian) Normal distribution with zero mean, and unit standard deviation.

oxm
l

the number of observed occurrences of event xm
l . See also exm

l
.

Pr(x) the probability of event x.

P the weighted performance measure described in equation (5.12) in Section 5.8.

Q the number of MME quantization intervals into which continuous data has been discretized.

q j the number of MME quantization intervals into which continuous data in column j has been dis-

cretized. For the tests in this work, q j = Q ∀ j ∈ [1 . . .M].

r0 initial distance from the origin for the spiral equation (5.8) of Section 5.4 on page 58.

rxm
l

the adjusted residual of the current input event. the calculated residual of the current input event.

Defined in equation (3.2) on page 35. If |rxm
l
| exceeds 1.96, the multi order event xm

l defines a

statistically significant pattern. See also zxm
l
.

si a separation value from S, the list of separations. This is calculated in equation (5.6) on page 56.

T k transform generated to colour unimodal N(0, 1) data with a supplied covariance. Defined on page 55

in equation (5.4).

Terr training error introduced in Section 5.5.

Vxm
l K a single value produced by firing rule xm

l in support or refutation of class K. This will be evaluated

along with all other such values for a given class to produce an assertionAk.

V a vector of variance values used to generate unimodal covaried data.

vxm
l

the variance of zxm
l
, defined in equation (3.3) on page 35, and used in the discussion of Bimodal data

mode separation on page 57.

WOE the weight of evidence of an event, defined in equation (3.7) on page 37.

xm
l an input event at some order m, m ∈ [1 . . .M + 1], consisting of one or more input columns. In order

to be considered as a pattern, it must also contain a label value. The index l indicates the ordinality

in the set of of the order-m events.

x?l the portion of xm
l consisting only of the vector of input column data after the label column has been

removed, that is,

x?l ∩ Y = xm
l .

x⊕l a composite event built from the x?l portions of all rules firing which match a given input event x. This

value is used in the construction of conditional probability from weight of evidence, as described in

equation (9.8) in Chapter 9.

Wk, wk and wk are all used in equation (5.10) as part of the discussion of the MICD classifier in Sec-

tion 5.7.2.
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Y the output label column.

yk the kth value of the label, k ∈ [1 . . .K].

Y=yk a notation describing the considered assignment of label k (k ∈ [1 . . .K]) to the label column.

zxm
l

the calculated residual of the current input event. Defined in equation (3.1) on page 35.



Appendix B

Derivation of PD Confidence

The following proof describing (9.8) was derived by Pino (2005), and is reproduced here for reference in

the discussion of confidence measures within PD and the FIS.

A “composite input vector” is formed by the connection of the input portions of two patterns referring

to distinct columns. These patterns have conditional independence as conditioned by the class label; that

is:

Pr(xa, xb|L) = Pr(xa|L) × Pr(xb|L) (B.1)

The result is used to produce conditional probabilities of class membership based on the composite

WOE produced during the firing of PD rules, as described in equation (9.8) in Chapter 9.

Proof. Derivation of Confidence from WOE The proof begins by considering (3.7), which defines “weight

of evidence” (WOE), and proceeds to a form representing the conditional probability of a given label

(Y=yk), given a composite input vector, x⊕l constructed as the union of all rules matching a complete input

pattern xm
l

x⊕l =
⋃

x?l
x?l ∈ M

(B.2)

whereM is the list of all patterns selected to match the current input pattern using the algorithm described

in Section 3.4.1.
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The derivation begins

WOE = logβ
Pr(x⊕l ,Y=yk)Pr(Y,yk)

Pr(Y=yk)Pr(x⊕l ,Y,yk)
(B.3)

= logβ
Pr(x⊕l ,Y=yk) (1 − Pr(Y = yk))

Pr(Y=yk)
[
Pr(x⊕l ) − Pr(x⊕l ,Y=yk)

] (B.4)

Equation B.4 is the form used in Wang (1997, pp. 94).

Now letting Φ = (1−Pr(Y=yk))
Pr(Y=yk)

= logβ
Pr(x⊕l ,Y=yk)[

Pr(x⊕l ) − Pr(x⊕l ,Y,yk)
] · Φ (B.5)

= logβ
1

Pr(x⊕l )
Pr(x⊕l ,Y=yk) − 1

· Φ (B.6)

but Pr(Y = yk|x⊕l ) =
Pr(x⊕l ,Y=yk)

Pr(x⊕l )

= logβ
1

1
Pr(Y=yk |x⊕l ) − 1

· Φ (B.7)

= logβ
Φ

1
Pr(Y=yk |x⊕l ) − 1

(B.8)

Rearranging for Pr(Y = yk|x⊕l ), we get

WOE = logβ
Φ

1
Pr(Y=yk |x⊕l ) − 1

(B.9)

βWOE =
Φ

1
Pr(Y=yk |x⊕l ) − 1

· Φ (B.10)
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Letting α = Pr(Y = yk|x⊕l ) and γ = βWOE, we continue

γ =
Φ

1
α − 1

(B.11)

1
α
− 1 =

Φ

γ
(B.12)

1
α
=
Φ

γ
+ 1 =

Φ + γ

γ
(B.13)

α =
γ

Φ + γ
=

1
Φ
γ + 1

(B.14)

so as Φ = (1−P(Y=yk))
P(Y=yk) , we .̇ . conclude

Pr(Y = yk|x⊕l ) =
1

Φ
βWOE + 1

(B.15)

or

Pr(Y = yk|x⊕l ) =
1[(

1
βWOE

) ( (1−Pr(Y=yk))
Pr(Y=yk)

)]
+ 1

� (B.16)

Note that in this work all logarithms are base 2 (i.e., β=2).



Appendix C

Conditional Probabilities Derived From
Synthetic Data

In order to discuss possible confidence measures, it is logical to refer back to the underlying probability

distributions by which the data examined here were generated, as a conditional probability based on the

underlying data scheme should exhibit some relationship with the final confidence.

C.1 Confidence and Conditional Probability

The conditional probability of assignment of a given point to each distribution gives us the “true” con-

fidence of assignment, based on the maximum amount of information available by measuring the point

location.

C.2 Conditional Probability As Calculated Using z-Scores

Considering the synthetic data discussed in Chapter 5, it is possible to translate data point locations in the

n-dimensional spaces examined for performance measurement back into z-scores relative to the various

generating means. If this is done, we can then generate conditional probability values from the known

PDFs (probability density functions) that generated the data originally.

As shown in Figure C.1 the conditional probability of true association with each class at any given
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P(B|x) = 1.2 / (1.2 + 2.8) = 0.3

x

P(A|x) = 2.8 / (1.2 + 2.8) = 0.7

BA

1.2

2.8

Figure C.1: Logically Constructing Conditional Probability from PDFs

z-score along the line defining two 1-dimensional distributions is simply

P(yk|x) =
P(yk)∑K
i=i P(yi)

(C.1)

for any class k of the set of K possible classes. This is easily generalizable to n-dimensional cases by

separately considering the Euclidean distance to the K means.

Performing this calculation allows us to produce conditional probability values for any function for

which we know the a priori PDF definition. Surfaces showing the conditional probability values for two-

dimensional versions of the covaried, bimodal and spiral data are shown in Figures C.2, C.3 and C.4,

respectively.

By examining the covaried data in Figures C.2—C.4, it can be seen that as one moves away from the

mode of class A, the lowest conditional probabilities are found as one approaches class B, as expected.

Points which are distant from both modes, such as the point at location (−3,−3) at the left-hand side

of the covaried data in Figure C.2 have the highest conditional probability. This also logically follows,

as points distant from both A and B, while unlikely to occur at all (as shown by the low probabilities

in their PDF values), have a strong association with the nearest class mode as a condition of their (rare)

occurrence.

That is, given that a point (−3,−3) actually occurs, the probability of its association with class A is

very much higher than the probability of association with class B.

Similarly, conditional probability surfaces can be constructed for bimodal and for spiral data, as shown
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Figure C.2: Covaried Conditional Probability Surfaces
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Figure C.3: Bimodal Conditional Probability Surfaces
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Figure C.4: Spiral Conditional Probability Surfaces
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in Figures C.3 and C.4 respectively, simply by summing the probability of association with all modes and

adapting (C.1) to include this extra sum, or

P(yk|x) =
P(yk)∑Nmodes

j=1
∑K

i=i P(yi)
. (C.2)

C.3 Calculating z-Scores from Data Points

For the synthetic data analyzed in this work, we can calculate the z-score because the model by which

the data was generated is available. For the covaried data, we simply need to reverse the effects of the

applied covariance added by equation (5.4) from Chapter 5 and whiten the data according to the known

mean vector and covariance matrix. Each conditional probability is then calculated separately relative to

each class, much as is done in the MICD classification algorithm described earlier.

In the case of bimodal data, the process is much the same. The distance relative to each mode is,

however, converted separately into a z-score before applying (C.2) and the per-class conditional probability

is produced by summing the probabilities among all the modes for each class.

For spiral data, some care must be taken in order to ensure that both points in a positive and in a

negative rotation around the origin are taken into account; other than this small concern the PDF can be

generated by simply remembering that the N(0, 1) distribution centred at each point of the arm of the

spiral extends around the origin at a fixed radius.

Using the described method, “true” confidence values in the form of conditional probability assign-

ments to each class can be calculated for all the synthetic data considered in this work.



Appendix D

Further Tables Regarding Reliability
Statistics

This appendix contains summary information calculated for the relationship between measured and ex-

pected confidence in support of the reliability discussion in Chapter 9.

The measures included here are mutual information, symmetric uncertainty and the interdependence

redundancy measures, as well as the summaries for Spearmannranking.

The discussion here indicate some of the issues with using a non-rank based measure. Due to the

problems discussed in this appendix, only the Spearmannrank distribution is used in the text.

For information regarding the effects of quantization on these measures, please see the accompanying

discussion in Appendix E.

D.1 Symmetric Uncertainty

Symmetric uncertainty is a [0 . . . 1] bounded information based measure which describes the degree of

correlation between two values.

The name “symmetric uncertainty” is slightly confusing because of the trend of the result reported, as

the symmetric uncertainty value of independent data is 0, while the value reported for data with a perfect

correlation is 1.

While this would suggest that a better name would imply the degree of “certainty,” the standard in the

literature is to use the name “symmetric uncertainty.”

This usage seems to stem from the discussion of this measure in Press et al. (1992, pp. 634) where
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the main discussion is in terms of uncertainty coefficients, which already have this trend of 0 indicating

independent data and a rising trend as data moves away from independence.

The calculation of symmetric uncertainty is performed using

S U[A, B] ≡ 2
(

H[a] + H[b] − H[a, b]
H[a] + H[b]

)
(D.1)

which is defined in Press et al. (1992, pp. 634).

The symmetric uncertainty measure is an entropy-normalized version of the mutual information be-

tween the two values A and B.

D.2 Mutual Information

Mutual information (MI[A; B]) is defined to be

MI[A, B] ≡ H[a] + H[b] − H[a, b] (D.2)

and may also be calculated using

MI[A, B] =
∑

(a,b) ∈ A×B

p(a, b) log
p(a, b)

p(a)p(b)
(D.3)

where a and b are probability mass functions as described in in Duda et al. (2001, pp. 632).

The entropy definition

H[A] = −
∑

a

p(a) log p(a) (D.4)

formalized in Shannon (1948a,b) is extended to joint entropy (e.g., Moon, 2000) by simply considering

the joint p(x, y) instead of a single probability mass function. This is calculated using

H[A, B] = −
∑

(a,b) ∈ A×B

p(a, b) log p(a, b) (D.5)

where p(a, b) is the joint distribution of A and B.
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D.3 Interdependency Redundancy

Interdependency redundancy of two random variables is calculated as the mutual information normalized

by the joint entropy of the pair (from Wong and Ghahrarnan, 1975; Wong, Liu and Wang, 1976)

R[A, B] =
MI[A, B]

2 N H[A, B]
(D.6)

where N is the minimum number of occurrences of A or B.

D.4 Discussion

Upon evaluation, none of the entropy based statistics, namely mutual information, symmetric uncertainty,

and the interdependency redundancy measure have significantly different trends to those in the simpler

correlation calculations.

The mutual information, symmetric uncertainty and interdependency redundancy are all calculated

over the observed confidence values after binning these values using an equal-range bin scheme with 8

bins per dimension.

An examination of the performance of equal-range and MME quantization schemes in conjunction

with these statistics, as well as the effect of Q for these measures is explored in Appendix E, for readers

interested in this background.

As can be seen by examining the performance of mutual information, interdependency redundancy

and symmetric uncertainty, the saturation of the data at (1, 1) leads to a very poor correlation. For these

reasons, Spearmannrank correlation is used in the discussion in Chapter 9.
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Table D.1: Mutual Information Comparison Summary: Equal Binning, Q=10

C
M
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D

C
δ/
τ
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C
τ[

0.
..
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C
PD

-P
ro

ba
bi
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tic

C
0.125 0.260 0.274 0.352 0.149
0.250 0.274 0.280 0.352 0.170
0.500 0.206 0.224 0.296 0.182
1.000 0.236 0.254 0.268 0.257
2.000 0.178 0.136 0.150 0.157
4.000 0.067 0.073 0.086 0.188
8.000 0.000 0.000 0.001 0.000
µ 0.174 0.177 0.215 0.158

B
0.125 0.556 0.583 0.590 0.457
0.250 0.866 0.874 0.961 0.624
0.500 0.703 0.823 0.937 0.758
1.000 0.610 0.708 0.836 0.738
2.000 0.337 0.434 0.508 0.498
4.000 0.071 0.064 0.106 0.083
8.000 0.000 0.000 0.000 0.000
µ 0.449 0.498 0.563 0.451

S
0.125 0.023 0.023 0.028 0.033
0.250 0.037 0.018 0.026 0.026
0.500 0.031 0.037 0.062 0.038
0.750 0.033 0.023 0.076 0.040
1.000 0.040 0.021 0.124 0.076
µ 0.033 0.024 0.063 0.042
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Table D.2: Symmetric Uncertainty Comparison Summary: Equal Binning, Q=10

C
M

IC
D

C
δ/
τ
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C
0.125 0.134 0.143 0.189 0.077
0.250 0.145 0.155 0.203 0.094
0.500 0.116 0.133 0.158 0.091
1.000 0.150 0.144 0.155 0.179
2.000 0.122 0.122 0.103 0.181
4.000 0.000 0.000 0.000 0.000
µ 0.111 0.116 0.135 0.104

B
0.125 0.000 0.000 0.000 0.000
0.250 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000 0.000
2.000 0.000 0.000 0.000 0.000
4.000 0.000 0.000 0.000 0.000
µ 0.000 0.000 0.000 0.000

S
0.125 0.004 0.002 0.004 0.000
0.250 0.001 0.003 0.001 0.001
0.500 0.014 0.015 0.013 0.007
0.750 0.027 0.002 0.024 0.000
1.000 0.057 0.000 0.049 0.000
µ 0.021 0.004 0.018 0.001
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Table D.3: Interdependency Redundancy Comparison Summary: Equal Binning, Q=10

C
M
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D

C
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τ
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τ[
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ro
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bi
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C
0.125 0.004 0.004 0.006 0.002
0.250 0.004 0.003 0.005 0.002
0.500 0.003 0.003 0.004 0.002
1.000 0.003 0.004 0.004 0.003
2.000 0.004 0.003 0.003 0.004
4.000 0.002 0.003 0.002 0.007
8.000 0.000 0.000 0.000 0.000
µ 0.003 0.003 0.003 0.003

B
0.125 0.012 0.012 0.012 0.009
0.250 0.015 0.016 0.015 0.012
0.500 0.015 0.016 0.015 0.012
1.000 0.014 0.014 0.015 0.012
2.000 0.009 0.011 0.009 0.010
4.000 0.003 0.004 0.003 0.003
8.000 0.000 0.000 0.000 0.000
µ 0.010 0.011 0.010 0.008

S
0.125 0.000 0.000 0.000 0.001
0.250 0.001 0.000 0.000 0.000
0.500 0.000 0.001 0.001 0.001
0.750 0.001 0.000 0.001 0.001
1.000 0.001 0.001 0.002 0.002
µ 0.001 0.000 0.001 0.001
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Table D.4: Confidence Correlation Comparison Summary

C
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D

C
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τ
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C
0.125 0.496 0.525 0.593 0.378
0.250 0.495 0.528 0.593 0.398
0.500 0.423 0.453 0.549 0.399
1.000 0.438 0.461 0.499 0.424
2.000 0.333 0.357 0.373 0.404
4.000 0.166 0.117 0.140 0.113
8.000 0.001 −0.002 0.018 −0.001
µ 0.336 0.348 0.395 0.302

B
0.125 0.743 0.486 0.715 0.656
0.250 0.715 0.406 0.701 0.628
0.500 0.665 0.375 0.672 0.585
1.000 0.583 0.270 0.579 0.511
2.000 0.426 0.383 0.389 0.354
4.000 0.205 0.099 0.132 0.094
8.000 –– –– –– ––
µ 0.556 0.336 0.531 0.471

S
0.125 0.056 0.065 0.063 0.013
0.250 0.094 0.051 0.076 −0.041
0.500 0.119 0.100 0.125 0.066
0.750 0.181 0.127 0.199 0.108
1.000 0.202 0.109 0.259 0.190
µ 0.130 0.091 0.144 0.067



Appendix E

Statistical Measure Performance Under
Quantization

This appendix summarizes the performance of the mutual information, symmetric uncertainty and the

Spearmannranking statistics as evaluated under various quantization schemes for Gaussian and for Uni-

form data distributions.

Spearmannranking does not, of course, require binning, as the rank correlation will directly convert

continuous values. It is included in this comparison simply to demonstrate what the effects of binning are

in order to illuminate the behaviour of the other measures.

In each distribution, 1000 points are generated. The covariance in the distribution is adjusted from 0

(no covariance/independent data) to 1 (complete dependency of features).

E.1 Performance Tables

Tables E.1—E.5 display the numerical results for calculations using 1000 points for the statistics: mutual

information, symmetric uncertainty and Spearmannranking using both equal width and MME binning.

Equal-width bin results are shown in Table E.1 for mutual information data, Table E.3 for symmetric

uncertainty and Table E.2 for Spearmannranking.

Similar data binned using MME is displayed in Tables E.4, Tables E.6 and E.5 for mutual information

symmetric uncertainly and Spearmannranking (respectively).

The mutual information statistic is described in equation (D.2) from Section D.2 in Appendix D;

symmetric uncertainty is described in Section D.1 in equation (D.1). Both of these are entropy based
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measures.

Spearmannranking is defined in the main text in Chapter 9, in equation (9.10). Spearmannranking is

simply a correlation based on relative ordinal position in the data set.

E.1.1 Entropy Statistics Versus SpearmannRanking

When comparing the results of the SpearmannRanking data in Tables E.2 and E.5, it is apparent that

the Spearmannranking statistic benefits from being run on the raw data, as would be expected. When

discussing Spearmannranking, no binning will be performed.

E.1.2 Choice of Binning Mechanism for Entropy Summary Statistics

Examination of the figures showing equal bin plots in Figures E.2 through E.7, we see that the equal-

width bins preserves the overall shape of the underlying distribution while gathering occurrence counts

regarding similar events.

A comparison with MME the based binning in Figures E.8 through E.13, demonstrates that the MME

bins distort the effective shape of the distribution, leaving the distribution looking somewhat rounded as

in Figure E.13.

This feature of MME, while useful for confidence generation in the PD and FIS algorithms will skew

our calculation of confidence equivalency, and should thus be avoided for any discussion of these statistics.

In the discussion of confidence, we will therefore use equal-width bins in order to generate the sum-

mary statistics.

E.1.3 Choice of Q for Entropy Summary Statistics

Tables E.1 through E.6 show the effects of the number of quantization bins (Q) on the results.

As can be seen, too low a quantization (such as Q=2) results in very poor performance as there are too

few distinct events in the space to adequately represent a trend. As seen by examining different correlations

at Q=2 in Table E.3, there is no change in the statistic until perfect correlation is reached.

Conversely, a Q value which is too high incorrectly represents a great deal of information presence

even in cases where there is independence, due to the irregularities which appear due to the relatively

small N relative to the number of bins.

We must therefore balance Q and N if we are to use any of the non-ranked statistics, and choose as

small a Q value as we can in order to get reasonable performance for our choice of N. As we will calculate
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our statistics over all jackknife runs, N will be 1000, and therefore, from these tables, it would seem that

a choice of Q=8 is reasonable, as choosing Q=8 allows us to see the greatest degree of change across the

symmetric uncertainty statistic in Table E.3, as well as the greatest change in mutual information as seen

in Table E.1.
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Table E.1: Mutual Information of Equally Binned Uniform Data (1000 Points)

Correlation Coefficient
0.00 0.25 0.50 0.75 0.99 1.00

Q=2 0.000001 0.000001 0.000001 0.000001 0.000001 0.011408
Q=5 0.015014 0.141960 0.298019 0.528048 1.402589 2.006350
Q=8 0.039223 0.297239 0.388209 0.706805 1.839019 2.811652

Q=10 0.049157 0.354696 0.436370 0.752605 2.062620 3.174170
Q=15 0.159509 0.432796 0.567665 0.844415 2.356481 3.807815
Q=20 0.264482 0.518409 0.650064 0.942965 2.558243 4.247510

Table E.2: SpearmannRanking of Equally Binned Uniform Data (1000 Points)

Correlation Coefficient
0.00 0.25 0.50 0.75 0.99 1.00

raw −0.093548 0.250188 0.510996 0.777258 0.989883 1.000000
Q=2 −0.001001 −0.001001 −0.001001 −0.001001 −0.001001 1.000000
Q=5 −0.094267 0.204093 0.477265 0.711144 0.949343 1.000000
Q=8 −0.072047 0.231281 0.482814 0.762818 0.969068 1.000000

Q=10 −0.085259 0.247671 0.498017 0.769129 0.977148 1.000000
Q=15 −0.088046 0.239236 0.508771 0.774676 0.983600 1.000000
Q=20 −0.095187 0.242767 0.510054 0.772848 0.987102 1.000000

Table E.3: Symmetric Uncertainty of Equally Binned Uniform Data (1000 Points)

Correlation Coefficient
0.00 0.25 0.50 0.75 0.99 1.00

Q=2 0.000127 0.000127 0.000127 0.000127 0.000127 1.000000
Q=5 0.007478 0.077203 0.160231 0.275472 0.699178 1.000000
Q=8 0.013954 0.114255 0.147840 0.263865 0.655911 1.000000

Q=10 0.015484 0.119853 0.146094 0.248715 0.651879 1.000000
Q=15 0.041904 0.121071 0.157596 0.231302 0.620990 1.000000
Q=20 0.062282 0.129200 0.160865 0.230623 0.606215 1.000000
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Table E.4: Mutual Information of MME Binned Uniform Data (1000 Points)

Correlation Coefficient
0.00 0.25 0.50 0.75 0.99 1.00

Q=2 0.005096 0.017626 0.116276 0.298526 0.757705 0.999997
Q=5 0.015979 0.175338 0.296970 0.621629 1.575068 2.321921
Q=8 0.035495 0.279476 0.416989 0.703978 1.960117 2.999988

Q=10 0.069933 0.325090 0.458489 0.754228 2.142002 3.321914
Q=15 0.149346 0.446866 0.550683 0.889301 2.475754 3.906105
Q=20 0.285521 0.605000 0.748973 0.986812 2.542354 4.321899

Table E.5: SpearmannRanking of MME Binned Uniform Data (1000 Points)

Correlation Coefficient
0.00 0.25 0.50 0.75 0.99 1.00

raw −0.093548 0.250188 0.510996 0.777258 0.989883 1.000000
Q=2 −0.084004 0.155997 0.395998 0.619998 0.920000 1.000000
Q=5 −0.088480 0.255892 0.487579 0.767038 0.959497 1.000000
Q=8 −0.086795 0.241088 0.509401 0.769164 0.974470 1.000000
Q=10 −0.089513 0.245647 0.505015 0.772254 0.979996 1.000000
Q=15 −0.093930 0.253125 0.509376 0.779506 0.986811 1.000000
Q=20 −0.092472 0.251797 0.510864 0.778500 0.987335 1.000000

Table E.6: Symmetric Uncertainty of MME Binned Uniform Data (1000 Points)

Correlation Coefficient
0.00 0.25 0.50 0.75 0.99 1.00

Q=2 0.005096 0.017626 0.116277 0.298527 0.757707 1.000000
Q=5 0.006882 0.075514 0.127898 0.267722 0.678347 1.000000
Q=8 0.011832 0.093159 0.138997 0.234660 0.653375 1.000000

Q=10 0.021052 0.097862 0.138020 0.227046 0.644810 1.000000
Q=15 0.038234 0.114402 0.140980 0.227669 0.633817 1.000000
Q=20 0.066064 0.139985 0.173297 0.228328 0.588249 1.000000
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Figure E.1: Raw Uniform Data (1000 Points)

E.2 Quantization Figures

The remainder of this appendix contains figures showing the distribution of the points used for the calcu-

lations in Tables E.1 through E.6.

Figure E.1 displays the raw points, while Figures E.2 through E.13 show the effects of transforming

the raw points through various types of binning strategies.
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Figure E.2: Q=2 Equally Binned Uniform Data (1000 Points)
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Figure E.3: Q=5 Equally Binned Uniform Data (1000 Points)
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Figure E.4: Q=8 Equally Binned Uniform Data (1000 Points)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

F
ea

tu
re

 Y

Feature X

Q=10 Equal Binned (1000 Points) with 0.00 Covariance

Q=10 Equal Binned Data 0.00
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

F
ea

tu
re

 Y

Feature X

Q=10 Equal Binned (1000 Points) with 0.25 Covariance

Q=10 Equal Binned Data 0.25
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

F
ea

tu
re

 Y

Feature X

Q=10 Equal Binned (1000 Points) with 0.50 Covariance

Q=10 Equal Binned Data 0.50

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

F
ea

tu
re

 Y

Feature X

Q=10 Equal Binned (1000 Points) with 0.75 Covariance

Q=10 Equal Binned Data 0.75
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

F
ea

tu
re

 Y

Feature X

Q=10 Equal Binned (1000 Points) with 0.99 Covariance

Q=10 Equal Binned Data 0.99
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  1  2  3  4  5  6  7  8  9

F
ea

tu
re

 Y

Feature X

Q=10 Equal Binned (1000 Points) with 1.00 Covariance

Q=10 Equal Binned Data 1.00

Figure E.5: Q=10 Equally Binned Uniform Data (1000 Points)
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Figure E.6: Q=15 Equally Binned Uniform Data (1000 Points)
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Figure E.7: Q=20 Equally Binned Uniform Data (1000 Points)
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Figure E.8: Q=2 MME Binned Uniform Data (1000 Points)
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Figure E.9: Q=5 MME Binned Uniform Data (1000 Points)
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Figure E.10: Q=8 MME Binned Uniform Data (1000 Points)
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Figure E.11: Q=10 MME Binned Uniform Data (1000 Points)



APPENDIX E. STATISTICAL MEASURE PERFORMANCE UNDER QUANTIZATION 190

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

F
ea

tu
re

 Y

Feature X

Q=15 MME Binned (1000 Points) with 0.00 Covariance

Q=15 MME Binned Data 0.00
 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

F
ea

tu
re

 Y

Feature X

Q=15 MME Binned (1000 Points) with 0.25 Covariance

Q=15 MME Binned Data 0.25
 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

F
ea

tu
re

 Y

Feature X

Q=15 MME Binned (1000 Points) with 0.50 Covariance

Q=15 MME Binned Data 0.50

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

F
ea

tu
re

 Y

Feature X

Q=15 MME Binned (1000 Points) with 0.75 Covariance

Q=15 MME Binned Data 0.75
 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

F
ea

tu
re

 Y

Feature X

Q=15 MME Binned (1000 Points) with 0.99 Covariance

Q=15 MME Binned Data 0.99
 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14

F
ea

tu
re

 Y

Feature X

Q=15 MME Binned (1000 Points) with 1.00 Covariance

Q=15 MME Binned Data 1.00

Figure E.12: Q=15 MME Binned Uniform Data (1000 Points)
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Figure E.13: Q=20 MME Binned Uniform Data (1000 Points)



Bibliography

Abu-Hanna, A. and N. de Keizer. Integrating classification treest with local lgistic regression in Intensive

Care prognosis. Artificial Intelligence In Medicine, 29:5–23, 2003.

Adelman, L. Evaluating Decision Support and Expert Systems. Wiley Series in Systems Engineering.

John Wiley & Sons, 1992.

Aha, D. W., D. Kibler and M. K. Albert. Instance-based learning algorithms. Machine Learning, 6:37–66,

1991.

Anderson, E., Z. Bai et al. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics

(SIAM), 3rd edition, 1999. ISBN 0-89871-447-8. Software Library Available Online.

URL http://www.netlib.org/lapack/

Anzai, Y. Pattern Recognition and Machine Learning. Academic Press Inc., San Diego, 1989.

Arbib, M. A., editor. Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA, June

1995. ISBN 0-262-01148-4.

Barlow, R. E., C. A. Clarotti and F. Spizzichino, editors. Reliability and Decision Making. Chapman &

Hall, London, 1993.

Bayes, R. T. Essay towards solving a problem in the doctrine of chances. Philosophical Transactions of

the Royal Society of London, 53:370–418, 1763.

Bean, C. L., C. Kambhampati and S. Rajasekharan. A rough set solution to a fuzzy set problem. In

FUZZ-IEEE ’02, pages 18–23.

Becker, P. W. Recognition of Patterns: Using the Frequencies of Occurrence of Binary Words. Springer-

Verlag, 2nd edition, 1968.

191



BIBLIOGRAPHY 192

Bellman, R. Adaptive Control Processes: A Guided Tour. Princeton University Press, New Jersey, 1961.

Bennett, N. L., L. L. Casebeer et al. Family physicians’ information seeking behaviours: A survey com-

parison with other specialties. BMC Medical Informatics and Decision Making, 5(9), 2005.

Berner, E. S., editor. Clinical Decision Support Systems: Theory and Practice. Springer-Verlag, 1988.

ISBN 0-387-98575-1.

Bezdek, J. C. Pattern Recognition with Fuzzy Objective Function Algorithms. Advanced Applications In

Pattern Recognition. Plenum Press, New York and London, 1981.

Booty, W. G., D. C. L. Lam et al. Great Lakes toxic chemical decision support system. In Denzer, Swayne

and Schimak (1997). IFIP TC5 WG5.11 International Symposium on Environmental Software Systems

(ISESS ’97).

Boyen, X. and L. Wehenkel. Automatic induction of fuzzy decision trees and its application to power

system security assessment. Fuzzy Sets and Systems, 102(1):3–19, 1999. ISSN 0165-0114. doi:http:

//dx.doi.org/10.1016/S0165-0114(98)00198-5.

Brath, R. 3D interactive information visualization: Guidelines from experience and analysis of applica-

tions. In 4th International Conference on Human–Computer Interaction. June 1997a.

——. Metrics for effective information visualization. In Information Visualization. IEEE, Phoenix, Oct

1997b. doi:10.1109/INFVIS.1997.636794.

——. Paper landscapes: A visualization design methodology. In R. F. Erbacher, P. C. Chen, J. C. Roberts,

M. T. Groehn and K. Boerner, editors, Visualization and Data Analysis, volume 5009. International

Society for Optical Engineering (SPIE), Jun 2003. ISBN 0-8194-4809-5.

Brath, R. and M. Peters. Dashboard design: Why design is important. Data Mining Review/Data Mining

Direct, October 2004.

Brillman, J. C., T. Burr et al. Modeling emergency department visit patterns for infectious disease com-

plaints: Results and application to disease surveillance. BMC Medical Informatics and Decision Mak-

ing, 5(4), 2005.

Buchanan, B. G. and E. H. Shortliffe, editors. Rule-Based Expert Systems: The MYCIN Experiments of

the Stanford Heuristic Programming Project. Addison-Wesley, Reading, Massachusetts, 1984.



BIBLIOGRAPHY 193

Camps-Valls, G., M. Martı́nez-Ramón et al. Robust γ-filter using support vector machines. Neurocom-

puting, 62:493–499, 2004. doi:10.1016/j.neucom.2004.07.003.

Carpenter, G. A. and S. Grossberg. ART 2: Self-organization of stable category recognition codes for

analog input patterns. Applied Optics, 26(23):4919–4930, 1987a.

——. A massively parallel architecture for a self-organizing neural pattern recognition machine. Com-

puter Vision, Graphics, and Image Processing, 37(1):54–115, 1987b.

——. ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition

architectures. Neural Networks, 3(2):129–152, 1990.

Carpenter, G. A., S. Grossberg and J. H. Reynolds. ARTMAP: Supervised real-time learning and clas-

sification of nonstationary data by a self-organizing neural network. Neural Networks, 4(5):565–588,

1991a.

Carpenter, G. A., S. Grossberg and D. B. Rosen. Fuzzy ART: Fast stable learning and categorization of

analog patterns by an adaptive resonance system. Neural Networks, 4(6):759–771, 1991b.

Catlett, J. Megainduction: Machine Learning on Very Large Databases. Ph.D. thesis, Basser Department

of Computer Science, University of Sydney, Sydney, Australia, 1991.

Chan, K. C. C. and D. K. Y. Wong, Andrew K. C. Chiu. Learning sequential patterns from probabilistic

inductive prediction. IEEE Transactions Systems, Man, Cybernetics, 24(10):1532–1547, October 1994.

Chau, T. Marginal maximum entropy partitioning yields asymptotically consistent probability density

functions. IEEE Transactions on Pattern Analalysis&Machine Intelligent, 23(4):414–417, April 2001.

Chau, T. and A. K. C. Wong. Pattern discovery by residual analysis and recursive partitioning. IEEE

Transactions on Knowledge & Data Engineering, 11(6):833–852, Nov-Dec 1999.

Chen, L., N. Tokuda et al. A new scheme for an automatic generation of multi-variable fuzzy systems.

Fuzzy Sets and Systems, 120:323–329, 2001.

Chen, M.-Y. Establishing interpretable fuzzy models from numeric data. In Proceedings of the 4th World

Congress on Intelligent Control and Automation, volume 3, pages 1857–1861. IEEE, Jun 2002.

Chen, M.-Y. and D. A. Linkens. Rule-base self generation and simplification for data-driven fuzzy models.

In FUZZ-IEEE ’01, pages 424–427.



BIBLIOGRAPHY 194

Chiang, I.-J. and J. Y.-j. Hsu. Fuzzy classification on trees for data analysis. Fuzzy Sets and Systems,

130(1):87–99, 2002. ISSN 0165-0114. doi:http://dx.doi.org/10.1016/S0165-0114(01)00212-3.

Ching, J. Y., A. K. C. Wong and K. C. C. Chan. Class-dependent discretization for inductive learning from

continuous and mixed-mode data. IEEE Transactions on Pattern Analalysis & Machine Intelligent,

17(7):641–651, 1995.

Chong, A., T. D. Gedon et al. A histogram-based rule extraction technique for fuzzy systems. In FUZZ-

IEEE ’01, pages 638–641.

Coiera, E. Guide to Health Informatics. Arnold/Hodder & Stoughton, UK, 2nd edition, 2003. ISBN

0-340-76425-2.

Colombet, I., T. Dart et al. A computer decision aid for medical prevention: A pilot qualitative study of

the personalized estimate of risks (EsPeR) system. BMC Medical Informatics and Decision Making,

3(13), 2003.

Cordella, L. P., P. Foggia et al. Reliability parameters to improve combination strategies in multi-expert

systems. Pattern Analasis & Applications, 2:205–214, 1999.

Cordón, O., F. Herrera et al. Genetic Fuzzy Systems : Evolutionary Tuning and Learning of Fuzzy Knowl-

edge Bases, chapter 11, pages 375–382. In Cordón, Herrera et al. (2001b), 2001a.

——. Genetic Fuzzy Systems : Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World

Scientific, Singapore, 2001b. ISBN 981-02-4017-1.
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