
A Structural Modelling Approach to
Closed End Bond Funds

by

Stephen Szaura

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Quantitative Finance

Waterloo, Ontario, Canada, 2013

c© Stephen Szaura 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis develops a model of closed end bond funds that helps us better understand a
recent finding in the literature. In 2012 Elton et al. published an empirical study of closed
end bond funds (CEBFs) and they suggested that the use of leverage in CEBFs could
explain the fact that these funds had higher returns than those of comparable open end
funds. This thesis provides a framework for estimating the impact of leverage on expected
return and risk in this context. We use a Merton type approach to model both unlevered
and levered CEBFs. The assets of a CEBF are primarily risky bonds. Each of these risky
bonds can be analysed in terms of options under the Merton approach. We create an
unlevered CEBF model by extending Merton’s model [28] to a multi-firm framework to
represent a CEBF composed of several risky bonds. We then add leverage by assuming the
CEBF issues debt. This permits us to model the securities of a levered closed end bond
fund as compound options. The equity and debt of the CEBF can be decomposed into
options on a portfolio of options. This framework enables us to compute the expected rate
of return and standard deviation of an unlevered and levered CEBF. We obtain results
that are comparable to those observed in Elton et al. [17].
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Chapter 1

Thesis Roadmap

Closed end funds (CEFs) have long been an interesting topic to both investors and aca-
demics. Recent empirical findings in Elton, Gruber, Blake, and Shachar [17] (Elton et al.)
have presented several interesting observations regarding the use of leverage in closed end
bond funds (CEBFs). Elton et al. analyze CEBF data from 1996 to 2006. They find
that closed end bond funds have higher returns than comparable open ended funds. They
postulate that it is the leverage employed by CEBFs that causes the difference in returns
of levered CEBFs over open ended bond funds (OEBF) and unlevered CEBFs. No quan-
titative analysis or intuitive mathematical justification is provided in [17] as to why there
is a difference in returns. In this thesis we develop an unlevered and levered CEBF model
in order to show that it is use of leverage in levered CEBFs that causes the difference in
returns of levered CEBFs over unlevered CEBFs.

Chapter 2 begins by introducing CEFs as one of the different types of mutual funds
and gives some estimates of their relative importance compared to the universe of mutual
funds. We introduce some basic information regarding the different asset classes of CEFs
(based on the types of assets that the fund holds) as well as where, when, and how CEFs
trade. In section 2.4 we explain how CEFs differ from open end funds (OEFs) in where,
when, and how they trade. In section 2.5 we choose a specific example of a CEBF, the
PIMCO Income Opportunity Fund, and present the information that is typically contained
in the fund prospectus. Next we discuss the so called CEF discount/premium and why the
existence of the discount/premium is termed The Closed End Fund Puzzle.

Section 2.6 provides a short literature review of various models and frameworks that
have contributed a better understanding of the CEF discount/premium. Although this
thesis does not rely on any of the models presented in section 2.6 directly, they highlight
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which factors are important determinants of the CEF discount. In section 2.7 we outline
the key findings of Elton et al. [17]. These findings serve as motivation for the models
developed in this thesis. We describe the construction of our structural credit risk model
in Chapter 3. Elton et al. [17] suggested that it is the use of leverage in CEBFs that allows
them to achieve higher returns from OEBF and from unlevered CEBFs. We describe some
of the costs, both to the fund and the investor, that are associated with the use of leverage
in CEBFs. Both Cherkes [10] and Elton et al. [17] provide reviews of the CEBF literature.

The main contributions of this thesis are in Chapter 3 where we develop a structural
credit risk model of an unlevered CEBF and a levered CEBF. The assets of a CEBF consist
of risky bonds which can be modelled using the Merton framework. The unlevered CEBF
is financed solely by equity and the levered CEBF is financed by debt and equity. First
we obtain expressions for the market value of the equity and its standard deviation in an
unlevered CEBF. Then we determine the market value and standard deviation of the debt
and equity of a levered CEBF. The chapter begins with our construction of a multi-firm
version of Merton’s structural credit risk model [28]. In sections 3.2.1 and 3.2.2 we outline
and construct the unlevered and levered CEBF structural models.

The second contribution is in section 3.3 where we quantify the impact of varying firm
correlations and volatilities on the market value and standard deviation of an unlevered
and levered CEBF. This provides a convenient framework for evaluating the impact of a
financial crisis on the debt and equity of closed end bond fund. In a crisis both volatility of
the underlying firms and the correlations across firms increases. The increase in volatility
makes the firm’s bonds more risky so the market value of the assets of a CEBF will fall.
However, an increase in correlations among firms means that a call option written on a
portfolio of risky bonds will increase in value other things equal. Hence an increase in
correlation across firms without any associated change in each firm’s volatility, will not
affect the toal assets of a CEBF but it will transfer wealth from the debtholder of a levered
CEBF to the equityholder of the CEBF.

The third contribution of this thesis is in Chapter 4 where we show that expected rate
of return of the equityholder of the levered CEBF is higher than that of the unlevered
CEBF. Furthermore we show that our levered CEBF model can achieve return results
comparable to those observed by Elton et al. [17]. First we derive the expected rate of
return (ERR) under the physical measure (the Real World P-measure) of a risky bond
(RB) that is held for a period but priced under the Risk-Neutral or Q-measure. We use
the model for the ERR on a European put option developed by in Rubinstein’s [31]. Next
we extend Rubinstein’s framework to both a unlevered CEBF and a levered CEBF using
the models introduced in sections 3.2.1 and 3.2.2. In section 4.3 we obtain the expected
rate of return, variance of the rate of return, and Sharpe Ratio of the unlevered CEBF.
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Subsequently in section 4.4 we obtain the expected rate of return, variance of the rate of
return, and Sharpe Ratio for the debtholder and equityholder of the levered CEBF. Under
the same model assumptions as in section 3.3 the levered CEBF equityholder achieves a
higher ERR than the unlevered CEBF equityholder. Section 4.5 shows that we achieve
similar expected return and variance of return to those of Elton et al. [17].

Chapter 5 summarizes our results and discusses some future areas of research in closed
end bond funds.
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Chapter 2

An Overview of Closed End Bond
Funds

We begin this chapter with a gentle introduction to CEFs as a type of mutual fund. Some
basic facts about CEFs are presented regarding the different asset classes of CEFs and how
CEFs differ from open end funds (OEFs) in where, when, and how they trade. We present
the information that is typically contained in the fund prospectus with a specific example
of a CEBF, the PIMCO Income Opportunity Fund. Next we discuss the so called CEF
discount/premium and provide a short literature review of various models and frameworks
surrounding it. The most important part of this chapter is our outlining of the key findings
of Elton et al. [17]. These findings serve as motivation for the models developed in Chapters
3 and 4. We would like to mention that in this chapter we do not contribute any new
academic findings or models. Lastly we would like to mention that the results presented
in this thesis are based on CEBF information collected and observed in the U.S. markets
and not the Canadian markets.

2.1 An Introduction to Mutual Funds

As per Elton and Gruber [16], there are four distinct types of mutual funds1,

• Open end funds (OEFs);

1From Elton and Gruber [16], we found that when people refer to mutual funds they typically mean
open end funds.
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• Exchange traded funds (ETFs);

• Closed end funds (CEFs);

• Unit investment trusts (UITs);

Note that exchange traded funds (ETFs) are either considered OEFs or UITs that trade
on an exchange. Based on information collected from the 2012 Investment Company Fact
Book [23], summarized in the table below, it is clear that OEFs are by far the most popular
investment vehicle, followed by ETFs. At this point we are not differentiating funds based
on which asset class of investments they purchase, such as stock funds, bond funds, etc.

Fund Type Total Net Assets at 12/31/2011 (USD)
Open end funds $11.6 Trillion
Exchange traded funds 1.0 Trillion
Closed end funds 239 Billion
Unit investment trusts 60 Billion

Table 2.1.1: Mutual Fund Investment Breakdown

This thesis is concerned with CEFs (specifically CEBFs) and we will not concern ourselves
with details from the other structures. We will, however, mention some of the fund return
characteristics and comparisons of OEF to CEF returns from Elton et al. [17].

2.2 Classes of Closed End Funds

CEFs are typically grouped into the four main categories based on the type of assets the
fund holds2.

• Tax Free Income Strategy Funds typically invest in municipal bonds. These are bonds
that are issued by a municipality, city, or state requiring funding for various public
or government projects. The interest that is paid to the municipal bondholder is not
taxed at the federal income tax level. For individuals that purchase resident state
specific bonds any income provided by these bonds is not taxed at the state income
tax level. Without taking into account the tax savings at the state and federal level,

2This information was obtained from Closed End Fund Connect [18]
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it is difficult to make a comparison of tax free investments to taxed investments. It is
important to note that municipal bonds are one of the largest groups of investments
made by CEFs.

• Taxable Income Strategy Funds include government, investment grade, corporate,
convertible, high yield, and unrated bonds with differing term to maturities. These
funds offer exposure to senior loans, preferred investments, or unsecured junior debt.

• U.S. Equity Funds earn their returns from U.S. stock returns, option premiums (Eu-
ropean, American, and exotics), option profits, and dividends from common and
preferred shares. This category includes fund investments in real estate investment
trusts. Real estate investment trusts are publicly traded companies that own com-
mercial real estate property such as appartments, shopping centers, hotels, etc. The
fund generates income from dividends based on rent and income received from the
underlying real estate rent and appreciation/depreciation of the property.

• Non - U.S. Funds are funds that invest in international stocks and bonds. Global
stock funds have equity investments across different countries, regions, and credit
ratings. Global bond funds can give investors exposure to sovereign debt which not
only gives rise to foreign interest rate and credit rating but also to foreign currency
exposure. With foreign country investment exposure comes exposure to foreign cor-
porations, legal systems, political risk, legal, accounting, less liquid markets, and
other risks.

From the 2012 Investment Company Fact Book [23], we observe a historical trend
where more than half of the existing CEFs were bond funds. The following graph shows
the number of closed end bond and stock funds from 2001 to 2011.
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Figure 2.2.1: Annual number of Closed End Stock and Bonds Funds

Elton et al. [17] found that of those CEFs that are bond funds, most of the bonds
being held by the fund are in fact corporate bonds. The table below is provided by Table
5 in Elton et al. [17].

Asset Type Closed End Fund Open End Fund
Government Bonds 8.50% 9.60%
Mortgages 7.60% 10.20%
Corporate Bonds 67.50% 69.10%
Foreign Bonds 11.00% 8.90%
Stocks 0.50% 0.60%
Preferred 0.60% 1.50%
Convertibles 0.30% 0.50%
Other 4.10% 0.00%

Table 2.2.1: Closed and Open End Fund Return Summary

Table 2.2.1 shows that the CEBFs contain a substantial amount of risky bonds in their
fund portfolios. The fact that CEBFs are composed of risky bonds will be a key point in
the construction of our structural model of CEBFs in Chapter 3.
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2.3 An Introduction to Closed End Funds and the

Fund Discount

A CEF is a type of mutual fund in which at fund initial public offering (IPO)3 a fixed
number of common shares are issued in order to raise capital for the fund manager to
invest. Subsequent to the IPO no more common shares can be issued and the fund’s
common shares are then traded in a secondary market (an exchange). As per Elton and
Gruber [16], CEF shares can be purchased or sold at the market price at any time in
which the market is open. In addition to reporting the price per share (denoted P ), closed
and open end funds report the net asset value (denoted NAV ) per share. The NAV is
calculated as the total market value of the underlying assets of the fund less expenses
divided by the number of shares outstanding. The net asset value and the price per share
are typically not equal. The CEF common shares are said to be trading at a premium
when the fund share price is above the NAV and trading at a discount when the fund
share price is below the NAV . We define the discount at time t, to be,

DISCt = NAVt − Pt (2.3.1)

where NAVt and Pt are the net asset value and price per share at time t of the CEF
respectively. Naturally a negative discount is a positive premium and vice versa. An
investor is purchasing a fund at a discount at time t at a price Pt if the NAVt > Pt and at
a premium otherwise.

2.4 Comparing Closed and Open End Funds

There are several important differences between open and closed end funds. For OEFs
the number of outstanding common shares and how the shares are traded is different from
CEFs. For OEFs the common share price is determined as total market value of the
portfolio divided by the total number of common shares outstanding. Investors purchase
and sell common shares at the current market price directly to the fund where additional
shares are issued from the fund as necessary to satisfy investor demands. As per Elton
and Gruber [16], OEFs can be bought and sold throughout the day, however, the price
is set at the net asset value per share at the end of the trading day. Since the net asset

3A fund initial public offering is also be referred to as the point of fund inception.
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value and price per share are set equal at the end of each trading day for open end funds,
the net asset value and the price per share are usually equal. Whereas for CEFS they are
typically not equal since the shares trade on an exchange and are not directly determined
by the net asset value but rather by market forces.

2.5 Example of a Closed End Fund

In this section we take a detailed look at a specific CEF and the fund prospectus to get
a broad picture of how a CEF is organized. Our choice of CEF is the PIMCO Income
Opportunity Fund which is a CEBF. When a particular investor wishes to look at the
fund objective they have or wish to purchase they look into a fund’s prospectus. A fund
prospectus is a legal document that must be filed with the Securities and Exchange Com-
mission (SEC) and details certain required information regarding the fund management.
One of the key pieces of information that one would see in a fund’s prospectus is the fund’s
Investment Objective. From it’s fund prospectus [1], we can see the investment objective
is to maximize capital appreciation and fund income. The investment objective also lays
out its investment strategy in how the fund will choose, allocate and manage fund assets.
From [1] we can see that the PIMCO Income Opportunity Fund uses a dynamic allocation
strategy, which is an active global macroeconomic approach to investment analysis. Its
portfolio management strategies focus on quality of credit rating, time to maturity of the
assets, geographic region, and industrial sector. The PIMCO Income Opportunity Fund
seeks to maintain an average portfolio duration of roughly 2 to 8 years. The portfolio
management strategies are used in order to earn a fund return in excess of the risk free
rate while minimizing interest rate risk exposure.

The prospectus also outlines the different types of leverage that the fund can and plans
to use. Bank loans, reverse purchase agreements, commercial paper, and issuing preferred
shares are some of the methods of financing that the fund can use to generate leverage.
The section on leverage also discusses the limitations on specific types of leverage that the
fund intends to have as a maximum percentage of total assets. For example, according to
[1], the PIMCO Income Opportunity Fund can add leverage in the form of reverse purchase
agreements not to exceed 20% of the fund’s total assets.

We note that the PIMCO Income Opportunity Fund invests in corporate, municipale,
government, foreign, emerging market, and high yield debt securities. In addition to bonds,
the fund can invest in mortgages, other asset backed securities, inflation protected secu-
rities, options, and complex derivatives. The fund can use reverse purchases, dollar rolls
and leverage in the form of preferred shares. The PIMCO Income Opportunity Fund can

9



also make short sales or take a short position. The assets that the fund purchases can be
of U.S. or of any other global market.

The graph on the left below shows daily observations of the NAV and share price P of
the fund from July 2, 2007 to December 31, 20094. The graph to the right shows the fund
discount/premium over the same time period.
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Figure 2.5.1: PIMCO Income Opportunity Fund

The propectus outlines the different shareholder fees that are paid by the shareholders
from their investment in the fund. According to [1] there are sale charges imposed by
purchases that the fund makes and annual expenses. The annual expenses are management
fees, interest expenses on reverse purchase agreements, and other expenses.

Part of the fund prospectus also provides a general outline of the risks associated with
an investment made in the fund. Some of the risks associated with the PIMCO Income
Opportunity Fund are:

• Market Risk : changes in the fund asset value due to fluctuations in the equity and
bond markets;

4The data for the graphs in figure 2.5.1 was obtained from Bloomberg using ticker code PTY US Equity.
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• Interest Rate Risk : changes in the interest rate levels that affect the value of the
bonds of the portfolio;

• Credit Risk : there are two types, credit risk default and downgrade. Credit risk
default is the risk of a counterparty defaulting on its financial obligations and loss
of coupon payments and principal in partial or in full value. Credit risk downgrade
is the risk of decrease in value of a debt security upon which the external rating
decreased;

• Currency Risk : risk of changes in the exchange rate could negatively impact the
value of the fund portfolio;

• Emerging Market Risk : risks inherent in investing in emerging market countries
such as less liquid markets, increased economic insecurity, political instability, and
regulatory uncertainty;

• Leverage Risk : more leverage results in a larger net asset value which magnifies the
impact of changes in interest rates (larger market and interest rate risk);

2.6 The Closed End Fund Puzzle

In the academic literature, two questions have typically been asked about closed end funds,

• Why do closed end funds exist over their more liquid counterpart, open end funds?

• What is a rational economic explanation for the observed share price to net asset
value discount/premium at which closed end funds sell?

The unexplained existence of the share price to net asset value discount/premium for a
CEF is termed The Closed End Fund Puzzle. The Closed End Fund Puzzle is a long-
standing puzzle in modern finance. The existing literature that has attempted to provide
possible explanations for the observed market discount/premium have been based on a
variety of approaches. These include empirical regression models, investor sentiment mod-
els, and quantitative models that have tried to explain the CEF discount/premium. The
consensus so far is that no single one of these explanations fully explains the existence of
the discount/premium. Each one can explain only a small portion of the observed dis-
count/premium. This section is a review of some of the models that have been developed
and their contributions to a better understanding of the discount/premium and CEFs
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themselves. We would like to stress there are no new contributions to this problem in this
thesis. This section serves as a literature review of existing models. For further information
about any particular model the reader is referred to the original paper(s).

2.6.1 The First Contributor

One of the first papers in analyzing and explaining the Closed End Fund Puzzle was by
Burton Malkiel [27]. He composed the list below detailing some of the observed behaviours
of CEF share prices and portfolios which can serve to better understand and provide an
explanation for the CEF discount/premium. The data set used at the time of publication
of [27] consisted of 24 major CEFs observed over 1967 to 1974.

• Unrealized Capital Appreciation;

• Distribution Policy;

• Restricted, or Letter Stock;

• Holdings of Foreign Stock;

• Fund and Managerial Performance;

• Asset Turnover in the Portfolio;

• Management Fee;

It is widely believed that CEFs have a tax liability built into their share price that comes
from their unrealized capital appreciation potential. In theory, the larger the amount of
unrealized capital appreciation a fund has, the larger the fund discount. This comes from
the fact that the fund investor must pay a capital gains tax on the distributions from the
fund. Hence a larger fund will have a larger distribution and thus a larger tax. The tax
amount that the investor will pay depends on both the size of the fund and the amount of
time in which the investor has held the fund.

The fund capital distribution policy, with respect to how a CEF realizes and distributes
capital gains (in the form of dividends), is hypothesized to be an influencial factor in the
CEF discount/premium. It is presumed that they could have three possible effects:

• The fund’s capital gains realization and distribution policy will decrease the fund’s
unrealized capital appreciation which in turn will lower the future tax liability;
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• The fund capital distribution policy would be directly favourable to a specific investor
tax bracket. The low tax bracket investors will prefer the fund to have regular set
distribution policy. This is in order for them to avoid transaction costs involved in
fund sales. However, high tax bracket investors would prefer the fund to realize and
reinvest all their capital gains;

• The capital gains paid from the fund in the form of dividends are considered a dis-
tribution of part of the fund portfolio. As long as the sum of the amount distributed
from the fund and the unrealized appreciation are less than the discount the investors
benefit from the fund selling at a discount;

It is known that some CEFs invest a large portion of their assets in restricted and
letter stock. Letter stocks require written consent of the buyer to confirm that they have
been purchased for a considerable investment holding. Typically restricted and letter
stocks are purchased at a discount to market price, however, they are considered very
illiquid securities. Funds that hold these types of securities are expected to sell at a
discount. Certain funds will invest solely in foreign assets benefiting from exchange and tax
controls. Fund discounts may be driven by past fund performance and managerial ability
or reputation. Fund portfolio management requires fairly active management and portfolio
turnover which incurs frequent transaction costs and taxes to the shareholders. The larger
the portfolio the higher the cost to the shareholders. Although active management of the
portfolio has the best intentions of steering the portfolio in order to earn higher returns, it
is believed that the costs can outweigh the potential gains. It is believed that a portfolio
that incurs more transaction costs from buying and selling more assets, will yield a larger
discount. At the time of [27], in 1977, no relationship was discovered between management
fees and fund return indicating no correlation between the two. As a result a higher fee
is a cost solely borne by the investor and hence it is believed that a higher fee implies a
larger discount.

Cross sectional empirical estimates, using 24 CEFs from 1967 to 1974, show the relation-
ship between the model factors and the observed fund discount/premium. The regression
results of the empirical data shows that the factors listed below have a small but noticeable
explanation of the CEF discount/premium.

• fund unrealized capital gains;

• distribution policy of capital gains;

• holding of foreign securities, and letter stocks;
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One of their additional observations was that the fund discount decreases as the mar-
ket decreases and increases as the market increases. This result suggests that CEFs are
a particularly attractive investment opportunity for diversification purposes. They have
a negative covariance with respect to the market. Aoun [2] provides recent evidence that
this observation is not always true. During the credit crises of 2008-2010 the CEF dis-
count/premium widened.

2.6.2 Individual Investor Sentiment Model

In addition to the Closed End Fund Puzzle, Lee, Schleifer, and Thaler [25] (Lee et al.) add
the empirical observations of CEFs listed below to the list of unexplained behaviour of
CEFs.

• CEF shares start selling, shortly after their IPO, at a premium (of at least 10%) to
their NAV ;

• Most CEF shares move to sell at a discount (of over 10%) to their NAV within the
first 3 months of trading on secondary markets after selling at a premium to their
NAV ;

• Discounts are subject to wide fluctuations over time, moving from selling at a large
discount to a large premium, however, they have been observed to be mean reverting;

• Share prices tend to increase resulting in a narrowing discount around the time in
which a fund announces termination through either fund conversion (to an OEF) or
asset liquidation;

The list of factors below are strongly believed to be possible determinants of the Closed
End Fund Puzzle. They are also believed to help explain some of the other observed
unexplained market anomalies of CEFs in the above list.

• Agency Costs, in terms of high management fees and the notion of below average
future expected managerial performance lower the NAV and cause the fund dis-
count/premium;

• Tax Liabilities, that must be paid by the fund if assets are sold, on unrealized appre-
ciations that are not taken into account in the NAV thus causing the NAV to be
overvalued;
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• Illiquidity of holding assets are overvalued in the calculations of the NAV ;

Lee et al. [25] show that none of the above factors can explain more than a small portion
of the Closed End Fund Puzzle. Agency costs, management fees and future managerial
experience, do not account for the range of fluctuations in the discount, from being large
premiums to large discounts. As well, they also fail to account for why the funds are
purchased by investors at a premium shortly after fund inception. Despite the fact that
investors are aware that the funds have a history of then moving from selling at a premium
to varying discount levels. When fund assets are sold, they are taxed at a capital gains
tax rate which is not taken into account in the calculation of the NAV . This tax theory
implies that the fund discount should increase when the market increases. It was noted
in Malkiel [27] that the tax liability theory can create a fund discount of not more than
6%. With regards to the illiquid holding asset theory, Lee et al. [25] note that some of the
largest CEFs observed during 1968 to 1986 hold only very liquid traded securities.

An obvious question comes to mind for a fund that trades at a discount. Why can’t an
individual buy up all the shares at a discount to the NAV thereby taking control of the
fund and begin to liquidate the fund assets at the NAV thereby making a profit? Grossman
and Hart [21] outline the reasons explaining that this is difficult to accomplish in real time.
The common shareholders will not sell their shares to bidders without receiving full NAV .
On the other hand bidders will not pay the full price of the NAV since they will not
profit on the transaction. Furthermore there will be resistance from the fund management
as well as the regulatory agency to such fund liquidations. There is yet another obvious
question that comes to mind for a CEF selling at a discount. Why can’t an individual
create an arbitrage opportunity from the fund discount by short selling the CEF portfolio
while purchasing the common shareholder stock? The reasons for this are listed below.

• Shortselling the CEF portfolio will involve shorting each component of the fund,
and these funds are often composed of hundreds of assets for which rebalancing the
portfolio in real time may be difficult and time consuming;

• Transaction costs on rebalancing the portfolio will become very costly given the
number of assets involved;

• The hedge is not perfect in finite time (since the fund can be maintained indefinitely)
and when the discount widens the investors takes a loss on the short position in the
portfolio;

• Short sellers will not receive full proceeds from their short sale and may need to
liquidate some of the portfolio on demand;
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Lee et al. [25] construct an investor sentiment model for explaining the CEF dis-
count/premium and related market anomalies of the funds. The authors postulate that
the CEF discount/premium is caused by changes in individual investor sentiment on the
future expectations of fund performance. Zweig [34] first suggested a model in which the
individual investor’s fund expectations is a key factor in the CEF discount/premium. The
model conjectured by Lee et al. is based on that constructed by DeLong, Shleifer, Sum-
mers, and Waldman [15] (DeLong et al.). The model constructed in DeLong et al. [15]
is an asset pricing model that assumes the existence of both rational investors and noise
traders. The rational investors have short investment horizons with the primary concern
being the value of their holding assets in secondary markets. This implies that their pri-
mary concern is not the present value of their dividends. The noise traders have investment
sentiment that is random and is not completely predictable by the rational investors. The
existence of noise traders imposes an extra risk to the rational traders. When the rational
investor chooses to either buy or sell an asset, there is a positive probability that the noise
trader will act in an adverse manner causing the price to shift against those expected by
the rational investor.

The main thesis in Lee et al. [25] is that changes in the fund discount/premium are
driven by the different individual investor sentiments of the holders and traders. The main
implication is that the individual investor sentiment that affects CEFs also impacts other
funds that are held by individual investors, particularly small firm investments (also termed
The Small Firm Effect). Lee et al. [25] model the risk of changes in CEF share prices
coming from changes in the noise trader sentiments about the fund price. As well as the
actual market value changes in the assets held by the portfolio. It is also a requirement
of the model to assume that noise traders would rather trade or hold the CEF itself as
oppose to the assets that compose the CEF. Under the individual investor sentiment model
investing in the CEF is riskier than investing in the portfolio of assets that it is composed
of. This is so since the required rate of return on share assets held by the fund must yield
an average higher rate of return than the assets held by the fund (since the assets held by
the fund can easily be purchased on the open market).

The model of Lee et al. [25] is consistent with the other three main components of the
Closed End Fund Puzzle listed at the beginning of this section. First of all, the theory
suggests that irrational investors must be the investors that purchase CEFs shortly after
their IPO. This follows since rational investors would not purchase funds that follow a
regular pattern of selling at a premium shortly after their IPO then subsequently selling
at a discount. Secondly the theory requires fluctuations in the fund discount over time
which is driven by changes in investor sentiment about future returns on the fund. This
in itself is a requirement of the model. Lastly, the increase in CEF share price after the
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announcement of fund liquidation (or conversion to an OEF) stems from the fact that as
long as the fund is selling at a discount an investor knows that they can create a profit.
The profit is generated by short selling the fund portfolio and purchasing the shares and
holding them until the end of the existence of the fund. At liquidation, or fund conversion,
the fund NAV and price per share will converge together (or nearly together) and the
profit is realized.

They suggest that model has the additional implications listed below.

• Changes in a fund discount are believed to be correlated across various funds;

• New CEFs are created when long standing funds are selling at a premium (or small
discount);

• The investor sentiment that affects the discount on CEFs affects other funds that are
completely unrelated to CEFs;

The data collected is over the time period of 1960 to 1987 from Wiesenberger’s In-
vestment Company Series annual survey of mutual funds as well as from 1956 to 1985
of the Wall Street Journal (WSJ). Of the 87 original funds, 68 were used in the analysis
and others were removed due to missing data. The empirical evidence presented in [25]
shows that the discount/premium on funds is in fact correlated across funds and asset
classes. The theory that new CEFs are started when long standing funds are being sold
at a premium is tested. Lee, Schleifer, and Thaler [25] present some evidence that funds
have been issued when the average CEFs are selling at a small discount or premium. The
theory is difficult to test since it takes time to register a new fund that is being issued and
the market may already obtain information about the fund through news prior to the fund
actually beginning to trade on the market.

The theory that the discount/premium on CEFs affects other completely unrelated
funds is tested by analyzing the funds’ correlation with portfolios of other asset classes. In
Table IV of [25], when the fund returns are grouped into deciles and the value weighted
portfolio of CEF returns is compared to a value weighted portfolio returns of the New York
stock Exchange firms, they note that the discount on CEFs narrows when the correlation
between them and small capitalization stocks increases. The implication that discount on
CEFs narrows when the correlation between them and small capitalization stocks increases,
is that the Closed End Fund Puzzle is a phenomenon that is being caused by the Small
Firm Effect.

One of the main concerns in the analysis conducted by [25] is the stability of the
results over time. The total time period used in Table IV is divided equally and the value
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weighted portfolio of CEF returns is compared to a value weighted portfolio returns of the
New York Stock Exchange firms. In each subsample, the results are considerably stronger
in the first half and much weaker in the second half than when the entire sample is used.
The main reason for this is believed to be the increase in ownership of small firms by
larger institutions thereby diminishing the influence of the individual investor during the
time period between 1975 to 1985. This theory is tested and a weaker correlation between
changes in the fund discount and small stock firms is observed in the second half period
confirming the theory.

Lee et al. [25] conclude that the changes in share prices and discounts of the CEFs are
due to changes in individual investor sentiment about the funds and their future expected
returns. A consequence of individual investor sentiment driving CEF share price and
their asset portfolio selling at a discount, is that other funds that are held by individual
investors are at risk to trade, on average, at a discount from their intrinsic value. Another
consequence of individual investor sentiment driving CEF share prices and discounts is
other market shares will exhibit changes in prices due to investor sentiment.

2.6.3 Arguments against the Individual Investor Sentiment Model

The conclusions drawn in Lee et al. [25] were strongly rejected by Chen, Kan, and Miller
[8] (Chen et al.). Chen et al. [8] claim that the empirical results of Lee et al. [25] in
respect to the co-movement of the CEF discounts and small firm returns are not strong or
robust enough to claim that the Closed End Fund Puzzle and the Small Firm Effect are
being driven by small investor sentiment. The main arguments in Chen et al. [8] are that
the correlation between the CEF discount and small firm returns decreases substantially
in the second data set from Lee et al. [25] when the primary sample is divided in two to
the point that one cannot claim an impact of investor sentiment. In the test for correlation
between the CEF returns and small firm returns, Chen et al. [8] claim that Lee et al. [25]
have confounded the effect of institutional ownership with other extraneous factors.

Chen et al. [8] perform a revised test whereby the smallest decile of small firms is
divided into two groups (subportfolios), one with small firms that have less than 10%
institutional ownership and the other with all small firms that have greater than 10%
institutional ownership. The percentage of institutional ownership is measured as of the
end of the previous year. In order for the investor sentiment theory to be true the two
subportfolios should behave very differently. The subportfolio of small firms that have
less than 10% institutional ownership should exhibit strong correlation between the CEF
discount and fund returns when the sample size data is divided in half and the whole
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data set is used. Neither of which is observed. The subportfolio with small firms that have
greater than 10% institutional ownership should exhibit weak correlation between the CEF
discount and fund returns in both the cases when the sample size data is divided in half
and the whole data set is used, neither of which is observed. Both when the sample size
data, from 1965 to 1985, is divided in half and the whole data set is used, there is virtually
no distinction between the performance of the two subportfolios (in terms of R-Squared
and regression coefficients).

2.6.4 Arguments in favour of the Investor Sentiment Model

In a subsequent paper, Chopra, Lee, Shleifer, and Thaler [12] (Chopra et al.) defend the
work of Lee et al. [25] from the criticisms of Chen et al. [8]. They test the results and
comments of Chen et al. [8] used to support their claim that the relationship between
CEF discounts and small firm returns is the same regardless of significant or insignificant
institutional ownership.

More evidence is provided to show the impact of institutional ownership of shares and
the relationship of their changes in returns with those of changes in the CEF discounts
proposed in Lee et al. [25]. For each year of data, the firms are divided into deciles by
market capitalization and then ranked and grouped into one of three categories based on
size of institutional holdings (high, medium, and low). From this the changes in returns
and the fund discount within each group within each decile can be analyzed with respect
to firm ownership. The data set used spans the entire Spectrum database of 13-F SEC
filings of all NYSE and AMEX firms between 1981 and 1990 which is a larger data set
and independent from Lee et al. [25] or Chen et al. [8]. The results show that in each of
the deciles, except the first, there is stronger evidence of co-movement of low institutional
firm ownership with changes in fund discount than co-movement of medium and high
institutional ownership firms and the fund discount. Their tests, in a test using many
more firms, confirm the original result of Lee et al. [25] that the shares that have low
institutional ownership increase more in value when the discount on CEFs decreases than
shares that have a large institutional ownership.

It is of interest to note that despite the fact that there are weak points in Lee et al.
[25], Chen et al. [8] do not point out the strengths of Lee et al. [25] such as the observed
phenomenon that the investor sentiment model does capture but rather the points that
were admitted to be weak to begin with.
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2.6.5 A Liquidity Premium Model

Lee et al. [25] first noticed that most CEF shares begin to sell at a premium (of over 10%)
to their NAV after their IPO. Within the first 3 months of trading on secondary markets
after selling at a premium to their NAV they start to trade at a discount (of over 10%) to
their NAV within the first 3 months of trading on secondary markets. Empirical evidence
provided in Cherkes, Sagi, and Stanton [11] (Cherkes et al.) shows that CEFs invest a
substantial amount of their capital in illiquid assets. CEFs provide investors liquid access
to the relatively illiquid assets that CEFs invest in since the fund shares are sold to other
investors in secondary markets without the underlying assets begins sold themselves. It
is clear that CEFs provide a liquidity benefit to their shareholders in the sense that they
themselves do not have to hold illiquid assets.

From their observations, as well as those of Lee et al. [25], Cherkes et al. [11] derive
a model that predicts CEF IPO and post-IPO behaviour. Their model is built on the
relation between the proportion of assets that the fund holds that are illiquid and the fund
liquidity premium. This relation is postulated to be negative since new CEF IPOs are
believed to be more liquid than previously existing CEFs.

The market value of the fund, Pt, is determined as the sum of the present value of the
fund’s future cash flows discounted at interest rate r plus the sales proceeds from selling the
fund assets at an optimal stopping time, a stochastic variable denoted by τ . The optimal
stopping time τ is determined by the shareholders when they choose to liquidate the fund.
Note that while the fraction of the cost of liquidating a fund (K) is larger than the fraction
of the fund cash flows that management receives (k), it is never optimal to liquidate the
fund. Under the condition that cost of liquidating a fund is larger than the fraction of the
fund cash flows that management receives, Pt can be written in closed form.

Pt = Et
[∫ τ

t

(1− k)Ct′e
−
∫ t′ trdt′′dt′

]
+ (1−K)Et

[
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The net asset value of the fund at time t is determined as the expected present value

of CEF future dividends. The interest rate used for discounting is the sum of the risk free
rate r and the liquidity premium ρt.
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Cherkes et al. [11] show that in equilibrium, when the liquidity premium ρt follows
a Reflected Geometric Brownian Motion process, there exists distributions for NAVt and
Pt and corresponding parameters for an existing equilibrium. In this equilibrium there is
an attainable liquidity premium level such that the closed end fund can enter the market
competitively.

The CEF premium distribution greatly depends on the fact that the liquidity premium,
in the absence of CEFs, follows a Geometric Brownian Motion process. As well as the
attainable liquidity premium level in which the fund enters the market at a competitive
price. The authors determine the liquidity premium stationary distribution. Using the
stationary distribution, the CEF expected premium can be determined at a specific time
after IPO of the fund. Under a set of model parameters, the model can show the CEF
market price falls from selling at a premium to at a discount as is observed in actual CEFs
that are traded in the market.

2.6.6 Further Papers on the Closed End Fund Puzzle

For more papers on the Closed End Fund Puzzle see Berk and Stanton [3], Brenan and
Jain [6], Gemmill and Thomas [19], or Ross [30].

2.7 Leverage in Closed End Funds

A recent empirical study by Elton et al. [17] hypothesizes that the ability of CEFs to use
leverage (in the form of debt and preferred shares) is the main reason for the existence of
CEFs. First we begin with an introduction to the use of leverage in CEFs.

2.7.1 History of Leverage in Closed End Funds

Prior to 2003 debt5 was the primary use of leverage financing (for non-municipal bonds).
Then preferred shares were used up until 2008. It is important to note that preferred
share dividend payments are tax exempt to the shareholder. Also note that the CEBF
debt interest payments are not tax exempt to the debtholder. For the shareholder of
a CEF it is more advantageous if the fund issues preferred shares as opposed to debt.

5This information was obtained from the 2012 Investment Company Fact Book [23] and Elton et al.
[17].
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Preferred shares have a structure that is similar to a debt instrument but ultimately it is
considered an equity instrument. In the event of firm liquidation, preferred shareholders
have preference over common shareholders, but, not over debtholders. The claim that
preferred shareholders have on liquidation proceeds is equal to the par value of the shares,
whereas common shareholders only have a residual claim on firm assets after debtholders
and preferred shareholders. Typically preferred shareholders have no voting rights and do
not participate in the actual returns of the fund value, however, their dividend payment
is senior in priority to that of common shareholders. Naturally dividends from preferred
shares are not guaranteed in the same way that interest payments are to the debtholders.

There are both fixed and auction market preferred shares (AMPS)6. For fixed rate
shares the dividend rate on preferred shares is fixed whereas the AMPS have rates that
can change when there is an auction. Before the credit crisis of 2008, dividend paying
AMPS were by far the most commonly issued type of preferred share by CEFs. Dividend
rates on AMPS are reset during the auction markets which were held either weekly or
monthly. In these auction markets a broker submits bids to an auction agent. The bid
orders are filled with the available shares and the sell orders are filled as long as there are
bid orders. The bids that are filled receive dividends at the rates set by the dealers or at
the market clearing rate.

When the credit crises of 2008 began, there was a large demand for liquidity in the
equities market and in particular many investors in AMPS wanted to sell their shares.
In the auction markets sellers outnumbered buyers, causing an imbalance in supply and
demand. Although not required, dealers would occasionally enter the auction and buy up
any shares to prevent the auctions from failing. With a large number of outstanding sell
orders the auction markets began to fail. Once a few of the weekly or monthly auctions
failed all the subsequent ones failed. Failure in the auction markets was not believed to
have caused problems with respect to liquidity of the CEF common shareholder stock. The
credit quality of the CEFs during the 2008 crisis was not believed to be a major cause of
the failed auctions.

Since the failure of the auction markets, CEFs have been replacing their AMPS by
redeeming their outstanding preferred share balances. Replacing and redeeming the AMPS
was achieved by issuing loans and extended notes while maintaining leverage and re-issuing
a new class of preferred shares. Boards of directors have duties to both the common and
preferred shareholders when considering refinancing options7. The board of directors must
consider the impact that the refinancing decisions will have on common shareholders’

6This information was obtained from the 2012 Investment Company Fact Book [23]
7Noted in BlackRock [22].
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share value when deciding on how to refinance the preferred shareholder value. Most of
the refinancing options available involve bank notes and tender offers which may not be
the optimal refinancing decisions for common shareholders. The reason to redeem AMPS
is to provide liquidity to the preferred shareholders affected by the frozen auction markets
(essentially there is no liquidty in these markets) in which rates can no longer be set by
auction mechanisms. Financial firms are designing alternative forms of leverage in order
to benefit both the preferred and common shareholders.

One of the recent developments8 in the CEF capital structure is the use of puttable
preferred stock in order to redeem AMPS while keeping the firm leveraged as much as
possible. The puttable preferred share pays dividends that vary in the rate paid. The
main difference is that the dividend rate is not set in an auction process, but rather
through remarketing runs. Remarketing runs occur when financial firms provide notice
of a dividend rate and remarketing agents solicit existing holders and buyers to gauge
interest in buying and selling. For interested buyers and sellers, agents make a match at
the lowest dividend rate as long as there are sellers for the bidders. Liquidity providers
are third party members that are obliged to purchase all excess sell orders over bids in the
remarketing. Under SEC rules, money market funds, banks and insurance companies can
purchase puttable preferred shares.

2.7.2 Leverage and the Expected Rate of Return of CEBFs

As noted in Elton et al. [17], most CEBFs use leverage to increase fund capital in order
to further increase the return of their funds. The leverage can be in the form of preferred
stock, reverse purchase agreements, dollar rolls, commercial paper, bank loans, and notes.
As we pointed out in section 2.7.1 the most commonly used method to lever a CEBF was to
issue preferred shares (specifically AMPS). Under Section 18 of the Investment Company
Act of 1940, CEFs are only permitted to issue one class of preferred shares, meaning all
preferred shares issued by a fund must be identical. One of the possible reasons for using
preferred shares as the method of financing is that a CEF can have debt up to 50% of
shareholder equity (common) and can issue preferred shares up to 100% of shareholder
equity. Not only is it typical for CEBFs to use leverage they tend to use the maximum
amount of leverage that is allowed by the SEC. In their empirical analysis Elton et al. [17]
found that almost all CEBFs make extensive use of their ability to lever, when compared
to their matched OEBF. As noted before, OEBF do not tend to use leverage.

8Obtained from Investment Company Institute [24].
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It is believed9 that CEBF managers would alter leverage strategically by investing in
higher yielding longer term to maturity assets when current interest rates are low. This was
done to produce higher expected returns and variance of returns for levered funds in the
long term. The larger the difference between the long term and short term rate the greater
the profit. As the yield curve flattens out the difference between long term and short term
rate decreases. A flattening of the yield curve results in a lower return to the fund and to
the common shareholders (since the preferred shareholders do not share in the fund gains
and losses). Elton et al. [17] find that CEBFs tend to issue leverage strategically when
current interest rates are low, however, they maintain a constant amount of leverage over
time (that is to say they do not reduce their leverage strategically).

2.7.3 Cost of Borrowing and Leveraging

Elton et al. [17] note that the CEF borrowing cost to the common shareholders will depend
on whether or not the CEF uses leverage and whether that leverage is in the form of debt
and/or preferred shares. Note that when the fund uses debt as leverage the total cost of
borrowing is the sum of the interest payments on the debt and the increased management
fee collected. The increased management fee collected is in the form of the management
fee on the increased total assets of the fund. Also note that when using preferred shares to
lever the fund the total cost of borrowing is the sum of the preferred share dividend and
the increased management fee collected. Elton et al. [17] estimated the increased annual
management fee due to leverage to be 51 basis points (bps) by looking at the average
change in administrative costs and management fees charged for a fund in the two years
prior to borrowing. The list below are the fees charged to CEBFs for the use of leverage
in the form of either preferred shares or debt.

• the interest payments on bonds used to finance the CEBF leverage;

• the dividend payments on preferred shares paid from the fund to the preferred share-
holders;

• administrative costs and management fees charged to the common shareholders as
a fee by the fund paid for assets under management (included in total expenses
reported) paid by the common shareholders to the fund which was estimated by
Elton et al. to be 65bps municipal and non municipal bond funds from 1996 to 2006;

9By Elton et al. [17].
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• flotation costs paid from the fund to the broker handling the issuance of AMPS which
are paid weekly or monthly (from Elton et al. this cost averaged 33 bps per year per
dollar of preferred share issued which averaged 48bps for non-municipal bonds);

2.7.4 Comparison of Open and Closed End Funds Returns

Elton et al. [17] match CEBFs and OEBFs by issuing company and investment objectives
to compare the portfolio composition and returns of the funds. When they are comparing
differences in portfolio composition they look at differences in asset maturities, credit
ratings of the assets being held, as well as the amount of cash being held by the funds.

No statistically significant results were found in differences between investment grade,
non-investment grade bonds, unrated bonds, and even when comparing at the detailed
credit rating level in the portfolio holdings of matched CEBFs and OEBFs. When compar-
ing asset maturities of matched CEBFs and OEBFs, with short term assets being thought
of as more liquid, the percentage of assets held in short time to maturity is actually higher
for CEBFs than for OEBFs. Based on the data in Elton et al. [17], the authors conjecture
that the CEBFs do not employ more illiquid asset portfolios than their matched OEBF
counterparts. The median percentage of assets being held as cash in matched CEBFs and
OEBFs were found to be 0.6% to 2.3% respectively in which this difference would impact
returns by less than 8 basis points (bps)10. Hence the impact due to CEBFs holding a
lower cash position than OEBFs is negligible.

The time series correlations of returns between matched CEBFs and OEBFs are ana-
lyzed for time patterns of returns between different portfolio managers. When analyzing
pairwise correlations of returns for all CEBFs and OEBFs that had different portfolio man-
agers, Elton et al. [17] find that OEBFs and CEBFs that have the same fund manager and
are issued by the same company have higher correlated returns than CEBFs of the same
type but with different fund managers.

When Elton et al. [17] are comparing returns between CEBFs and OEBFs they are
comparing the mean and variance of returns on both the fund assets and share price.
Naturally the return on fund assets and share price should be identical for OEFs whereas
for CEFs they will not be equal. For comparison purposes the returns between CEBFs
and OEBFs are presented before and after including the costs of leverage in the form of
debt and preferred shares. Table 2.7.1 below, which is Table 5 from Elton et al. [17],

10The authors determine that the returns would be impacted by less than 8bps by taking the difference
in cash between CEBFs and OEBFs and adding it to return on the fund assets before expenses.
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displays the pre-expense return on assets for matched CEBF and OEBF with the same
fund objectives, have the same fund family, and having the same fund manager.

Return on All Assets Open End Funds Closed End Funds Difference
All Funds 6.40% 6.35% −0.05%
Municipal Funds 6.05% 6.03% −0.02%
Non-Municipal Funds 6.92% 6.83% −0.09%

Table 2.7.1: CEBF and OEBF Annual Return on Assets

One can see from Table 2.7.1 that the returns on assets for OEBFs and CEBFs are
very similar. This empirical evidence is not consistent with the theory that CEFs invest
in riskier securities or more illiquid securities to earn higher returns since there was also
no difference in the detailed credit rating level in the portfolio holdings of matched CEBFs
and OEBFs as well.

Table 2.7.2 below, which is Table 9 from Elton et al. [17], shows both the annual return
on net asset value NAV (including cost of levering) and return on share price P (return
to the common shareholders).

Bond Fund Type Return on NAV Return on Share Price P
All Open End Bond Funds 5.27% 5.27%
All Closed End Bond Funds 6.72% 8.08%
Unlevered Open End Bond Funds 5.77% 5.77%
Unlevered Closed End Bond Funds 5.77% 7.01%
Levered Open End Bond Funds 5.07% 5.07%
Levered Closed End Bond Funds 6.82% 8.40%

Table 2.7.2: Closed and Open End Bond Fund Return Summary

From Table 2.7.2 we can see that the return on NAV and the return on share price
P are equal for OEBFs but as expected they are not equal for CEBFs. For CEBFs we
see that the return on share price P is higher than the return on NAV for both levered
and unlevered CEBFs. Also both the return on NAV and the return on P are larger for
levered CEBFs as opposed to unlevered CEBFs which is as expected. Table 2.7.311 below,
which is information collected from Elton et al. [17], shows both the standard deviation of
the return on net asset value NAV and the standard deviation of return on share price P .

11The entries labeled N/A indicates no information was provided in Elton et al. [17].
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Standard Deviation
Bond Fund Type NAV Returns P Returns
All Open End Bond Funds 4.63% 1.24%
All Closed End Bond Funds 5.56% 3.40%
Unlevered Open End Bond Funds N/A 1.19%
Unlevered Closed End Bond Funds N/A 2.71%
Levered Open End Bond Funds N/A 1.24%
Levered Closed End Bond Funds N/A 3.51%

Table 2.7.3: Closed and Open End Bond Std. Dev. of Return Summary

From Table 2.7.3 we can see that both the standard deviation of the NAV returns and
P returns are higher for CEBFs than for OEBFs. More important is the fact that the
standard deviation of the levered returns are higher than the unlevered returns for CEBFs
(as well as for OEBFs). From the table we can see that levered CEBF are riskier than
unlevered CEBF. In the next chapter we develop a model for both an unlevered and levered
CEBF. In Chapter 4 we use the model to generate returns from both the unlevered and
levered CEBFs to compare against those from Elton et al. [17] presented in this section.
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Chapter 3

Modelling Closed End Bond Funds
using Structural Credit Risk Models

As we discussed in section 2.7, recent findings in Elton et al. [17] observed that almost
all closed end bond funds lever their assets with debt (as well as preferred shares). They
noted that leverage typically increases returns of a levered CEBF over an unlevered CEBF
as well as variability in returns. This implies that the decision to lever the CEBF is a
key component to the CEBF’s future return performance. In this chapter, as the principle
contribution of this thesis, we develop a structural model of an unlevered CEBF that is
financed solely by equity and a levered CEBF which is financed by debt and equity. Both
the unlevered and levered CEBF are multi-firm structural credit risk models based on
Merton’s risky bond model [28]. The choice for using Merton’s risky bond model [28] was
motivated by the empirical findings of Elton et al. [17] that we discussed in section 2.2 in
that most of the bonds held by CEBFs are in fact risky bonds. In section 3.1 we extend
Merton’s risky bond model [28] to apply to several firms.

As a technical point, when we refer to the underlying firms of the risky bonds that
the CEBF has purchased we will refer to them as firms. Note that this distinction is
necessary as to distinguish between when we consider the debtholders of the CEBF and
the bondholders of the firms in which the CEBF has invested in. Our goal is to analyze and
compare the expected value and standard deviation of the equityholder market value of
an unlevered CEBF with that of the debtholder and equityholder of a levered CEBF. Our
analysis will focus on the impact of adding leverage, when the underlying firm correlations
change, and when the firm volatilities change.

It is important to note that the market value and standard deviation of the equityholder
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market value of an unlevered CEBF are determined under the Risk Neutral Q-measure.
Deriving the unlevered and levered CEBF framework under the Risk Neutral Q-measure
serves as a introductory point for our results in Chapter 4. In Chapter 4 we will analyze
both the unlevered and levered CEBF that are held for a period h under the Real World
P-measure and valued under the Risk Neutral Q-measure for the remaining time T−h until
maturity at time T . The motivation for analyzing the standard deviation of equityholder
and debtholder is driven from the standard deviation results presented in section 2.7 from
Elton et al. [17].

In section 3.3 we provide numerical results to illustrate how the unlevered and levered
CEBF market value and standard deviation change when the CEBF adds leverage, when
firm correlations change, and when firm volatilities change. Using our model, we show
that whether the correlations of the firms increase or decrease, for an unlevered CEBF,
the market value remains the same. Whereas for a levered CEBF the market value of the
debtholder and equityholder positions of the CEBF will change depending on whether the
correlations increase or decrease. In a levered CEBF, regardless of whether the correlations
increase or decrease, the sum of the market values of the debt and equityholder positions
will remain the same. From seeing asset volatilities skyrocket to record highs during
the Credit Crises of 2008, one cannot help but to consider the impact that increased
volatilies will have on the unlevered and levered CEBF. We analyze the case when the firm
volatilities of the risky bonds increase (in both the cases where the firm correlations are
low and high), for both an unlevered and levered CEBF. We find that as the volatilities
increase the market value to the equityholder of an unlevered CEBF as well as the debt
and equityholder of a levered CEBF all decrease. This result implies that the total market
value of the CEBF drops when firm volatilities increase, as was seen of many debt and
equityholders of corporations during the Credit Crises of 2008.

3.1 Multi Firm Merton Model of Risky Bonds

We begin by extending the single firm debt valuation model from Merton’s risky bond
model [28] to a multi-firm model. Note that the notation and method of construction of
a Multi Firm Merton model come from Sundaram [33]. Consider holding a portfolio of n
firms each of which has risky debt (risky bond) outstanding. We denote the value of the
ith firm’s assets at time t as Si(t), for i = 1, 2, ..., n. As in Merton [28], we make the simple
assumption regarding each firm’s debt structure being that each firm has one issue of debt
outstanding. Each debt is in the form of a zero coupon bond with face value (FV) Ki,
i = 1, 2, ..., n, due at future time Ti, i = 1, 2, ..., n, respectively.
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There are two claimholders being considered in this analysis, the equityholder and the
bondholder. The ith bondholder receives the value Ki at maturity times Ti if Si(Ti) > Ki

otherwise he/she receives the residual value of the firm’s assets Si(Ti). The ith equity-
holder receives each of Si(Ti)−Ki if Si(Ti) > Ki, otherwise they receive nothing since the
bondholders are first claimholders of the firm’s residual asset value in the case of default.
To summarize, we have

Bondholder payment on firm i at time Ti is

{
Ki if Si(Ti) > Ki

Si(Ti) otherwise

Equityholder payment on firm i at time Ti is

{
Si(Ti)−Ki if Si(Ti) > Ki

0 otherwise

A key result in Merton [28], was that each of the bondholder payments at time Ti can
be rewritten as Ki− (Ki−Si(Ti))+ for firms i = 1, 2, ..., n. It is clear that the first term in
the above expression, Ki, is the payoff at time Ti of a long position in a default free zero
coupon bond with face value Ki that matures at time Ti. The second term,−(Ki−Si(Ti))+,
is the payoff at time Ti of a short position in a put option on the assets of the firm Si(Ti)
with strike price Ki at maturity date Ti.

The price of a risky bond at time t is denoted by RBi(t), for each of i = 1, . . . , n, as
defined in Merton [28] and can be determined as

RBi(t) = Kie
−r(Ti−t) − Pi(Si(t), Ki, r, t, Ti, σ

2
i )︸ ︷︷ ︸

*

(3.1.1)

where ∗ is a European put option on firm i. The option price is defined under the Risk
Neutral Q-measure as

Pi(Si(t), Ki, r, t, Ti, σ
2
i ) = e−r(Ti−t)EQ [(Si(T )−Ki)+|Fi(t)] (3.1.2)

which can be evaluated using the Black and Scholes [5] European option pricing framework.
Note that Fi(t) is defined as the sigma algebra (or available information) for Si(t) at time
t. We determine the yield to maturity (Y TMi(t)) for each of the risky bonds RBi(t), for
i = 1, . . . , n by

Y TMi(t) =
1

Ti − t
log (Ki/RBi(t)). (3.1.3)

As is noted in Merton [28], formally (3.1.1) shows the value at time t of the decompo-
sition at time Ti has two components, the long position in the bond and a short position
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in the put. Clearly only the bond is risk free whereas the put option will change in value
depending on the firm value Si(·). The risk inherent in the bondholder’s payment is rep-
resented by the value of the short position in a put option on the assets of the firm.

3.2 Structural Modelling of Closed End Bond Funds

We assume that a closed end bond fund, denoted as V (·), owns n risky bonds. We will
assume, for computational simplicity and for other reasons explained later, that each of
the n risky bonds has time to maturity T ∗. That is to say Ti = T ∗ for all i = 1, ..., n
where the ith bond has time to maturity Ti. Under this definition, we have the value of
the CEBF at time T ∗ as

V (T ∗) =
n∑
i=1

[Ki − (Ki − Si(T ∗))+] . (3.2.1)

It is important to note that (3.2.1), where Si(ti) follows a Geometric Brownian motion
as in the Black Scholes framework, cannot be used to model an OEBF. In section 2.4 we
noted that for OEFs the net asset value and price per share are typically set equal at the
end of the trading day. A feature that is not taken into account in (3.2.1).

In section 3.2.1 we determine the market value and standard deviation of an unlevered
CEBF. In section 3.2.2 we determine the market value and standard deviation of a levered
CEBF for both the debtholder and the equityholder of the fund.

3.2.1 The Unlevered Closed End Bond Fund

First we consider a CEBF financed solely by equity, an unlevered CEBF, denoted by VUL(.)
(where the subscript UL refers to unlevered CEBF). The CEBF owns n risky bonds, where
the ith bond has time to maturity Ti, as outlined in section 3.1. At time T ∗, (where T ∗ < Ti
for all i = 1, ..., n) the unlevered CEBF value can be written as the sum of its component
risky bonds, hence

VUL(T ∗) =
n∑
i=1

[Ki − (Ki − Si(T ∗))+] . (3.2.2)
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The market value of the unlevered CEBF VUL(T ∗) at time t, with t < T ∗, can be
written as,

EQ [e−r(T ∗−t)VUL(T ∗)|F(t)
]

=
n∑
i=1

Kie
−r(T ∗−t) −

n∑
i=1

EQ [e−r(T ∗−t)(Ki − Si(T ∗))+|F(t)
]

(3.2.3)

Note that F(t) is the sigma algebra (or available information) for all of S1(t), . . . , Sn(t) at
time t. The risk neutral variance of the unlevered CEBF VUL(T ∗) has value at time t,

VarQ
[
e−r(T

∗−t)VUL(T ∗)|F(t)
]

= VarQ

[
n∑
i=1

(Kie
−r(T ∗−t) − e−r(T ∗−t) (Ki − Si(T ∗))+ )|F(t)

]

= VarQ

[
n∑
i=1

e−r(T
∗−t) (Ki − Si(T ∗))+ |F(t)

]

=
n∑
i=1

e−2r(T
∗−t) VarQ [(Ki − Si(T ∗))+|F(t)]︸ ︷︷ ︸

*

+
n∑
i 6=j

2e−r(T
∗−t)e−r(T

∗−t) CovQ [(Ki − Si(T ∗))+, (Kj − Sj(T ∗))+|F(t)]︸ ︷︷ ︸
**

(3.2.4)

Note that analytical formulas for ∗ and ∗∗ in (3.2.4) are derived under the Black and Sc-
holes framework in section A.1. It is also important to note that the market value and vari-
ance of the unlevered CEBF VUL(T ∗) are conditional on observing each of S1(t), . . . , Sn(t)
at time t.

3.2.2 The Levered Closed End Bond Fund

Next we consider a CEBF financed by both debt and equity, a levered CEBF. Suppose the
CEBF has one issue of debt outstanding in the form of a zero coupon bond with face value
K∗ and time to maturity T ∗. The CEBF debtholder receives the value K∗ at maturity
times T ∗ if V (T ∗) > K∗ otherwise he/she receives the residual value of the CEBF’s assets
V (T ∗). The CEBF debtholder payment at time T ∗ can rewritten as K∗ − (K∗ − V (T ∗))+
where K∗ is the payoff at time T ∗ of a long position in a default free zero coupon bond
with face value K∗ that matures at time T ∗. The second term,−(K∗ − V (T ∗))+, is the
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payoff at time T ∗ of a short position in a put option on the assets of the CEBF V (T ∗) with
strike price K∗ at maturity date T ∗. The equityholder receives V (T ∗)−K∗ if V (T ∗) > K∗

otherwise they receive nothing since the debtholder is the first claimholder of the CEBF’s
residual asset value in the case of default. To summarize, we have

Debtholder payment at time T ∗ is

{
K∗ if V (T ∗) > K∗

V (T ∗) otherwise

Equityholder payment at time T ∗ is

{
V (T ∗)−K∗ if V (T ∗) > K∗

0 otherwise

We denote the value of the debtholder of the CEBF as VL−dt(·) where the subscript

L−dt refers to the debtholder of the levered CEBF. Similarly we denote the value of the
equityholder of the CEBF as VL−eq(·) where the subscript L−eq refers to the equityholder
of the levered CEBF.

The value of the debtholder of the levered CEBF can be written as

VL−dt(T
∗) = K∗ − (K∗ −

n∑
i=1

[Ki − (Ki − Si(T ∗))+])+ (3.2.5)

and similarly, the value of the equityholder of the levered CEBF can be written as

VL−eq(T
∗) = (

n∑
i=1

[Ki − (Ki − Si(T ∗))+]−K∗)+. (3.2.6)

At time t, the risk neutral value of the debtholder of the levered CEBF has market
value

EQ [e−r(T ∗−t)VL−dt(T ∗)|F(t)
]

= K∗e−r(T
∗−t)

− EQ

[
e−r(T

∗−t)(K∗ −
n∑
i=1

[Ki − (Ki − Si(T ∗))+])+|F(t)

]
(3.2.7)

and similarly the risk neutral value of the equityholder of the levered CEBF has market
value

EQ [e−r(T ∗−t)VL−eq(T ∗)|F(t)
]

= EQ

[
e−r(T

∗−t)(
n∑
i=1

[Ki − (Ki − Si(T ∗))+]−K∗)+|F(t)

]
.

(3.2.8)
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The risk neutral variance of the debtholder of the levered CEBF has value at time t, that
can be written as

VarQ
[
e−r(T

∗−t)VL−dt(T
∗)|F(t)

]
= VarQ

[
K∗e−r(T

∗−t) − e−r(T ∗−t)(K∗ −
n∑
i=1

[Ki − (Ki − Si(T ∗))+])+|F(t)

]
. (3.2.9)

The risk neutral variance of the equityholder of the levered CEBF has value at time t, that
can be written as

VarQ
[
e−r(T

∗−t)VL−eq(T
∗)|F(t)

]
= VarQ

[
e−r(T

∗−t)(
n∑
i=1

[Ki − (Ki − Si(T ∗))+]−K∗)+|F(t)

]
.

(3.2.10)

3.3 Numerical Results for an Unlevered and Levered

Closed End Bond Fund

The market value of the unlevered CEBF given in (3.2.3) is no more than the sum of n
risky bonds as defined in section 3.1. As a result we can determine the market value (using
(3.2.3)) and standard deviation (using (3.2.4)) of an unlevered CEBF under the Black
Scholes framework [5]. With regards to a levered CEBF since all of (3.2.7)–(3.2.10) are of
the basket option form, none of the equations have closed form solutions. We use Monte
Carlo simulation to determine the market value and standard deviation (Std. Dev.) for
the equityholder and debtholder. We assume that the unlevered and levered CEBFs have
purchased 5 risky bonds whose individual firm prices, volatility, and face value (FV) of
debt are detailed in Table 3.3.1. We refer the reader to section A.2 for a more detailed
outline of the economic and model assumptions used in this simulation analysis.

Firm Initial Firm Price Firm Volatility Firm FV of Debt
1 S1(0) = 10 σ1 = 0.15 K1 = 40
2 S2(0) = 20 σ2 = 0.15 K2 = 40
3 S3(0) = 30 σ3 = 0.15 K3 = 40
4 S4(0) = 40 σ4 = 0.15 K4 = 40
5 S5(0) = 50 σ5 = 0.15 K5 = 40

Table 3.3.1: Closed End Fund Asset Data
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Assuming the Black and Scholes framework [5], we can determine the discounted risk-
free (Rf) bond price and European put option price. Using this information we can de-
termine the risky bond (RB) price and yield to maturity (YTM) for each of the bonds in
Table 3.3.1.

Firm Rf Bond Price Put Option Price RB Price YTM
1 31.15 21.153 9.995 27.73%
2 31.15 11.513 19.639 14.23%
3 31.15 4.6737 26.478 8.25%
4 31.15 1.5529 29.599 6.02%
5 31.15 0.46942 30.683 5.30%

Table 3.3.2: Risky Bond Prices

Remark 3.3.1. From Table 3.3.2 we can see that as Si(0) increases the RB price increases
since the value of the put option price decreases as Si(0) increases. This causes the RB
price to increase as can be seen from (3.1.1). It’s evident that as the risky bond prices
increase the yield to maturity also decreases.

By direct application of (3.2.3) and (3.2.4) we can determine the unlevered CEBF
market value and the standard deviation. One important modelling assumption that we
haven’t discussed yet is the correlations of the firms in which the CEBF has purchased.
We use two different firm correlation matrices for the 5 firms, one with a high correlation
structure and one with a low correlation structure. This is done in order to compare the
differences in resulting market values and standard deviations under two different economic
settings. One correlation matrix has a high correlation structure with an average correlation
of 0.79 and the other is a low correlation structure with an average correlation of 0.12. The
specific details of the two correlation matrices used are outlined in section A.2.

Correlation Environment Low Correlation High Correlation
Unlevered CEBF Market Value 116.4 116.4

Unlevered CEBF Value Standard Deviation 10.55 16.21

Table 3.3.3: Unlevered CEBF Market Value and Standard Deviation

Using the economic assumptions of Table 3.3.2, we analyze the market value and stan-
dard deviation of the levered CEBF debt and equityholder for varying face values of CEBF
debt K∗. Considering the market value of an unlevered CEBF from Table 3.3.3 of 116.4 we
consider the range of FV of CEBF debt K∗ to be K∗ = 90, 100, 110, and 120. These FV of
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CEBF debt correspond to a levered CEBF which employs a ratio of FV of CEBF to market
value of an unlevered CEBF of roughly 77%, 86%, 95%, and 103% respectively. Note that
we analyze the market value and standard deviation of the levered CEBF debtholder and
equityholder under both the high and low correlation environments.

Low Correlation Environment
CEBF Strike Price K∗ K∗ = 90 K∗ = 100 K∗ = 110 K∗ = 120
Debtholder Portion Market Value 70.09 77.88 85.66 93.36
Std. Dev. of Debtholder Value 0.024 0.119 0.312 0.883
Equityholder Portion Market Value 46.39 38.54 30.82 23.12
Std. Dev. of Equityholder Value 10.47 10.46 10.42 10.21
Total Levered CEBF Value 116.48 116.48 116.48 116.48

High Correlation Environment
CEBF Strike Price K∗ K∗ = 90 K∗ = 100 K∗ = 110 K∗ = 120
Debtholder Portion Market Value 70.02 77.67 85.17 92.41
Std. Dev. of Debtholder Value 0.88 1.67 2.80 4.31
Equityholder Portion Market Value 46.45 38.80 31.30 24.06
Std. Dev. of Equityholder Value 15.98 15.61 14.96 13.93
Total Levered CEBF Value 116.47 116.47 116.47 116.47

Table 3.3.4: Levered CEBF Market Value and Standard Deviation

Remark 3.3.2. From Table 3.3.4 we see that changing from a low to a high correlation
environment decreases the market value of the debtholder position. This increases the
market value of the corresponding equityholder for a levered CEBF. We also see that
changing from a low to a high correlation environment increases the standard deviation of
CEBF value of both the debtholder and equityholder. This increase happens for each FV
of CEBF debt K∗. Despite the change in the market values of the equity and the debt of
the CEBF as the correlations change the total market value of the levered CEBF remains
the same. The total market value is constant for each value of K∗.

One cannot help but think of the impact of the change in firm volatilities on the
unlevered and levered CEBF market value and the standard deviation. We can determine
the unlevered CEBF market value and the standard deviation assuming the firm volatilities
σi = 0.15 and then σi = 0.50 for all i = 1, . . . , 5.
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Firm Volatilities (i = 1, . . . , 5) σi = 0.15 σi = 0.50
Unlevered CEBF Market Value 116.4 82.37

Unlevered CEBF Value Standard Deviation 10.55 26.77

Table 3.3.5: Unlevered CEBF Market Value and Standard Deviation

Similarly we analyze the market value and standard deviation of the levered CEBF
for the debtholder and equityholder for varying FV of CEBF debt K∗. We assume the
firm volatilities are σi = 0.15 and then σi = 0.50 for all i = 1, . . . , 5. Note that we only
analyze the market value and standard deviation of the levered CEBF for the debtholder
and equityholder under the low correlation environment.

Firm Volatilities Equal to 0.15
CEBF Strike Price K∗ K∗ = 90 K∗ = 100 K∗ = 110 K∗ = 120
Debtholder Portion Market Value 70.09 77.88 85.66 93.36
Std. Dev. of Debtholder Value 0.024 0.119 0.312 0.883
Equityholder Portion Market Value 46.39 38.54 30.82 23.12
Std. Dev. of Equityholder Value 10.47 10.46 10.42 10.21
Total Levered CEBF Value 116.42 116.42 116.42 116.42

Firm Volatilities Equal to 0.50
CEBF Strike Price K∗ K∗ = 90 K∗ = 100 K∗ = 110 K∗ = 120
Debtholder Portion Market Value 64.30 69.12 73.07 76.17
Std. Dev. of Debtholder Value 11.02 13.80 16.55 19.11
Equityholder Portion Market Value 18.02 13.21 9.25 6.16
Std. Dev. of Equityholder Value 19.57 17.06 14.36 11.62
Total Levered CEBF Value 82.31 82.32 82.32 82.32

Table 3.3.6: Levered CEBF Market Value and Standard Deviation

Remark 3.3.3. From Tables 3.3.5 and 3.3.6 we see that increasing the firm volatilities from
0.15 to 0.5 decreases the market value of the debtholder and equityholder for a levered
and unlevered CEBF. Since both the market values of the equity and the debt of the
levered CEBF decrease, the total market value of the levered CEBF decreases as the firm
volatilities increase. We also see that increasing the firm volatilities increases the standard
deviation of CEBF value of both the debt and equityholder at each value of K∗. Increasing
the firm volatilities also increases the standard deviation of an unlevered CEBF.

We further explore the impact of increasing firm volatilities in sections 3.3.2 and 3.3.3.
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We continue next in section 3.3.1 to further analyze the impact of changing firm correlations
on the market value of the unlevered and levered CEBF.

3.3.1 Impact of Varying Firm Correlations

As noticed in remark 3.3.2, the firm correlations will impact the market value and standard
deviation (Std. Dev.) of the equityholder and debtholder value in a levered CEBF. The
firm correlations will only impact the standard deviation of the equityholder value in an
unlevered CEBF as can be seen from Table 3.3.3. To further understand the impact of
changes in firm correlations on an unlevered CEBF market value and standard deviation,
we vary the firm correlation assumption, holding all other model assumptions constant. We
calculate (3.2.3) and (3.2.4) with the assumption of the low correlation environment, then
high correlation environment. Then we increase the correlations to all firms having pair-
wise correlations equal to 0.8 and then 0.9, while holding all other modelling assumptions
constant. The results are presented in figure 3.3.1 below.
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Figure 3.3.1: MV and Std. Dev. of Unlevered CEBF as a function of Firm Correlations

Remark 3.3.4. From figure 3.3.1 we see that the market value of the unlevered CEBF
remains constant. This is not surprising given the result in Table 3.3.3 and the fact that
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(3.2.3) is no more than the sum of n risky bonds as defined in section 3.1. The model
does not depend on the firm correlations. On the other hand the standard deviation of the
unlevered CEBF value linearly increases as the firm correlations increase from 0 towards
1.

Next we consider the impact of varying firm correlations on a levered CEBF, as outlined
by (3.2.5) and (3.2.6), on the calculations of the market value and standard deviations of
the debt and equityholder. We calculate the market values of the debt and equityholder
using (3.2.7) and (3.2.8) as well as the standard deviations using (3.2.9) and (3.2.10).
First we consider the low correlation environment, then high correlation environment, to
all firms having pairwise correlations equal to 0.85 and then 0.95, while holding all other
modelling assumptions constant. The debtholder market value and standard deviation are
presented in figure 3.3.2 below and the equityholder market value and standard deviation
are presented in figure 3.3.3.
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Figure 3.3.2: MV and Std. Dev. of Levered CEBF Debtholder Position as a function of
Firm Correlations
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Figure 3.3.3: MV and Std. Dev. of Levered CEBF Equityholder Position as a function of
Firm Correlations

Remark 3.3.5. In figure 3.3.2 as the firm correlations increase towards 1 the market value
of the debtholder value decreases. On the contrary, as the firm correlations increase the
standard deviation of the debtholder increases (becomes more risky). In figure 3.3.3 as the
correlations increase the market value of the equityholder of the fund increases. The stan-
dard deviation of the CEBF value of the equityholder is lower when the asset correlations
of the firms increase (as was the case for the standard deviation of the debtholder).

When considering a levered CEBF the market values of the equity and the debt of the
CEBF will change as the correlations change. Despite the changing correlations the total
market value of the CEBF remains the same (as was noted in remark 3.3.2). However,
we noticed that the put option inherent in each of the credit risky bonds becomes more
valuable as the correlations increase. This implies that the risky CEBF debt becomes more
risky and hence less valuable which in turn means that the market value of the CEBF equity
becomes more valuable.
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3.3.2 Impact of Varying Firm Volatilities - Low Correlation En-
vironment

Of particular interest is the impact of changes in the firm volatilities on the market value
and standard deviation of the unlevered and levered CEBF. We calculate (3.2.3) and
(3.2.4) when σi, i = 1, 2, ..., 5 are increased from 0.15 to 0.25, 0.5, and 0.85 holding all other
model assumptions constant. Note that we assume the low correlation environment when
determining (3.2.3) and (3.2.4). The results are presented in figure 3.3.4 below.
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Figure 3.3.4: MV and Std. Dev. of Unlevered CEBF as a function of Firm Volatilities -
Low Correlation Environment

Remark 3.3.6. From figure 3.3.4 we see that the market value of the unlevered CEBF de-
creases and the standard deviation of the unlevered CEBF increases while the firm volatil-
ities increase. The market value of the unlevered CEBF decreases as the firm volatilities
increase since the put options inherent in each of the risky bonds increase in value as the
firm volatilities increase. This decreases the value of the risky bonds hence decreasing the
market value of the unlevered CEBF.

The standard deviation of the unlevered CEBF increases then peaks and begins to
decrease at high values of firm volatility. The unlevered CEBF becomes relatively riskier
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as the firm volatilities increase since the market value of the unlevered CEBF also decreases
as the firm volatilities increase. For firm volatilities greater than 0.8 the unlevered CEBF
becomes less risky as the rate of decrease of the market value of the unlevered CEBF
decreases for high values of firm volatilities.

Next we consider the impact of varying firm volatilities on a levered CEBF on the
calculations of the market value and standard deviations of the debt and equityholder. We
calculate the market values of the debt and equityholder using (3.2.7) and (3.2.8) as well
as the standard deviations using (3.2.9) and (3.2.10). As was the case for the unlevered
CEBF, we assume the low correlation environment in this section while holding all other
modelling assumptions constant. The debtholder market value and standard deviation are
presented in figure 3.3.5 below. The equityholder market value and standard deviation are
presented in figure 3.3.6.

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

M
V

 o
f C

E
B

F
 D

eb
t

FV of CEBF Debt

MV of CEBF Debt as a function of FV of CEBF Debt

 

 

sigma=0.15
sigma=0.25
sigma=0.5
sigma=0.85

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

S
td

 D
ev

 o
f C

E
B

F
 D

eb
t

FV of CEBF Debt

Std Dev of CEBF Debt as a function of FV of CEBF Debt

 

 

sigma=0.15
sigma=0.25
sigma=0.5
sigma=0.85

Figure 3.3.5: MV and Std. Dev. of Levered CEBF Debtholder Position as a function of
Firm Volatilities - Low Correlation Environment
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Figure 3.3.6: MV and Std. Dev. of Levered CEBF Debtholder Position as a function of
Firm Volatilities - Low Correlation Environment

Remark 3.3.7. From figure 3.3.5 we see that as the firm volatilies increase the debtholder
market value decreases. As the face value of CEBF debt increases the larger the decrease in
market value. The levered CEBF debtholder market value decreases as the firm volatilities
increase since the put options inherent in each of the risky bonds that the CEBF holds
increase in value as the firm volatilities increase. As the put options increase in value this
decreases the value of the risky bonds that the CEBF holds which increases the value of
the put option inherent to the debtholder of the CEBF which decreases the market value of
debtholder position of the CEBF. When the firm volatilies increase the standard deviation
of the CEBF debtholder value increases since an increase in the firm volatilities increases
the value of the put option inherent in the risky bonds. Increasing the value of the inherent
put options of the risky bonds decreases the value of the risky bonds. Decreasing the value
of the risky bonds increases the value of the put option inherent on the CEBF debt and
hence increases the standard deviation of the CEBF debtholder value. As the face value of
CEBF debt K∗ inceases the standard deviation of the CEBF debtholder value increases.
This is due to the fact that an increase in the face value of the CEBF increases the value
of the put option inherent to the CEBF debtholder which increases the standard deviation
of the CEBF debtholder value.
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With respect to the market value of the CEBF equityholder, from figure 3.3.6 we
see that increasing the firm volatilities decreases the market value of the equityholder
position. As the FV of CEBF debt increases the market value of the equityholder position
decreases. The market value of the levered CEBF equityholder position decreases as the
firm volatilities increase since the put options inherent in each of the risky bonds that
the CEBF holds increase in value as the firm volatilities increase. As the put options
increase in value this decreases the value of the risky bonds that the CEBF holds which
decreases the value of the inherent call option of the equityholder on the CEBF. Increasing
the firm volatilies decreases the standard deviation of the equityholder value. As the firm
volatilities increase the value of the put option inherent in the risky bonds increases. This
decreases the value of the risky bonds and decreases the value of the call option inherent
to the CEBF equityholder. Since the call option inherent to the CEBF equityholder has
decreased the standard deviation of the CEBF equityholder also decreases. As the face
value of CEBF debt K∗ increases the CEBF equityholder standard deviation decreases.
This is due to the fact that an increase in the face value of the CEBF debt K∗ decreases
the value of the call option inherent to the CEBF equityholder which decreases the CEBF
equityholder standard deviation.

Remark 3.3.8. Recall that in remark 3.3.6 we noted that increasing the firm volatilities
decreases market value of the unlevered CEBF and increases the standard deviation of
the unlevered CEBF. Since we noted in remark 3.3.7 that increasing the firm volatilities
decreases both the levered CEBF debt and equityholder market values (and hence the
total CEBF market value) we can conclude that increasing the firm volatilities decreases
the market value of the CEBF regardless of whether or not the CEBF is unlevered or
levered.

3.3.3 Impact of Varying Firm Volatilities - High Correlation En-
vironment

In section 3.3.2 we analyzed the impact of changes in firm volatilities on an unlevered
and levered CEBF market value and standard deviation assuming the low correlation
environment. In this section we determine the impact of changes in firm volatilities on
an unlevered and levered CEBF market value and standard deviation assuming the high
correlation environment. For an unlevered CEBF market value and standard deviation, we
calculate (3.2.3) and (3.2.4) when σi, i = 1, 2, ..., 5 are increased from 0.15 to 0.25, 0.5, and
0.85 under a high correlation environment and present the results in figure 3.3.7 below.
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Figure 3.3.7: MV and Std. Dev. of Unlevered CEBF as a function of Firm Volatilities -
High Correlation Environment

Remark 3.3.9. From figure 3.3.7 we see that the market value of the unlevered CEBF
decreases and the standard deviation unlevered CEBF increases while the firm volatilities
increase. When comparing figure 3.3.7 to figure 3.3.4, when the low correlation environment
was used, we note that there is no difference in the market value of the unlevered CEBF
curves (whether the low or high correlation environments were used). This is due to the
fact that changes in the firm correlations do not impact the market value of the unlevered
CEBF, as was noted in remark 3.3.4.

Note, however, that there is a difference in the standard deviation of the unlevered
CEBF from a low to high correlation environment in that the higher correlation envi-
ronment leads to a higher standard deviation of the unlevered CEBF for all levels of firm
volatilities (as can been seen in the difference in standard deviation of the unlevered CEBF
from figures 3.3.4 and 3.3.7). As in figure 3.3.4 the standard deviation of the unlevered
CEBF increases then peaks and begins to decrease at high values of firm volatility (the
explanation for this is discussed in remark 3.3.6).

Next we consider the impact of varying firm volatilities on a levered CEBF, as outlined
by (3.2.5) and (3.2.6), and the impact on the market value and standard deviations of the
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debt and equityholder. We calculate the market values of the debt and equityholder posi-
tions using (3.2.7) and (3.2.8) as well as the standard deviations using (3.2.9) and (3.2.10)
assuming the high correlation environment while holding all other modelling assumptions
constant. The debtholder market value and standard deviation are presented in figure
3.3.8 below. The equityholder market value and standard deviation are presented in figure
3.3.9.
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Figure 3.3.8: MV and Std. Dev. of Levered CEBF Debtholder Position as a function of
Firm Volatilities - High Correlation Environment
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Figure 3.3.9: MV and Std. Dev. of Levered CEBF Equityholder Position as a function of
Firm Volatilities - High Correlation Environment

Remark 3.3.10. When comparing the market values and standard deviations of the CEBF
debtholder under a low correlation, figure 3.3.5, and high correlation environment, figure
3.3.8, there are minimal differences in the market values but the high correlation envi-
ronment yields a higher standard deviation for all firm volatilities. When comparing the
market values and standard deviations of the CEBF equityholder under a low correlation,
figure 3.3.6, and high correlation environment, figure 3.3.9, again there are minimal differ-
ences in the market values but the high correlation environment yields a higher standard
deviation for all firm volatilities.
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Chapter 4

Portfolio Analysis of Closed End
Bond Funds

In Chapter 3 we developed a model to determine the market value and standard deviation
of an unlevered CEBF and a levered CEBF (for both the debt and equityholders). As
mentioned in section 2.7.4, Elton et al. [17] noted that leverage typically increases expected
returns and the variance of returns of a levered CEBF over an unlevered CEBF. In this
chapter we move to provide a more mathematical and intuitive explanation of why a levered
CEBF has higher expected returns and variance over an unlevered CEBF. To determine the
expected return of both an unlevered and levered CEBF we first begin by introducting and
extending the work of Rubinstein [31]. Rubinstein [31] determined the expected return of
a European vanilla option held for a period h under the Real World P-measure and valued
under the Risk Neutral Q-measure for the remaining time T − h until option maturity at
time T , where T > h. Next we proceed to determine the return on a credit risky bond
and then to an unlevered and levered CEBF (as defined in sections 3.2.1 and 3.2.2). Our
goal is to compare the expected return and Sharpe Ratio (as defined in Sharpe [32]) of an
unlevered CEBF to the equityholder and debtholder Sharpe ratios of a levered CEBF. We
also compare our expected returns and variance of returns against those from Elton et al.
[17] presented in section 2.7.4.
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4.1 Expected rate of return of a European Put Option

What is the rate of return on holding a European call or put option? This interesting
question was answered by Rubinstein’s [31] option pricing framework1, who defines the
rate of return on an European put option held for a period of h as,

EP [RP (h)] =

[
EP [P (S(h), K, r, h, T, σ2)]

P (S(0), K, r, 0, T, σ2)

]1/h
− 1 (4.1.1)

where the denominator is the price of a European put option using the classical Black and
Scholes European option pricing framework. From (4.1.1) we can see that the option is
held for a period h under the Real World P-measure and valued under the Risk Neutral
Q-measure for the remaining time T − h until option maturity at time T , where T > h.
From Rubinstein’s [31] option pricing framework, the numerator is the expected value of
a European put option evaluated assuming the following asset price process S(t) (pointed
out by Cheng [9]) on the time interval 0 ≤ t ≤ T ,

dS(t) = µS(t)dt+ σ̃S(t)dWt for 0 ≤ t ≤ h
dS(t) = rS(t)dt+ σS(t)dWt for h ≤ t ≤ T.

(4.1.2)

where µ and σ̃ are the Geometric Brownian Motion (GBM) model parameters on the
interval 0 ≤ t ≤ h and r and σ are the GBM model parameters on the interval h ≤ t ≤ T .
In summary, using (3.1.2), this requires us to determine

EP [P (S(h), K, r, h, T, σ2)
]

= EP [e−r(T−h)EQ [(S(T )−K)+|F(h)]
]

(4.1.3)

which results in,

EP [P (S(h), K, r, h, T, σ2)
]

= Ke−r(T−h)Φ(−x̃+ 0.5σ∗
√
T )− S(0)eµhΦ(−x̃− 0.5σ∗

√
T )

(4.1.4)

where

σ∗ =
√
σ̃2 h

T
+ σ2 (T−h)

T
m = µ− 1

2
σ̃2

x̃ = log (S(0)µ′/Ke−r(T−h))

σ∗
√
T

µ′ = eµh
(4.1.5)

For a proof see section B.2.1.

Although Rubinstein [31] assumes different volatilities, σ and σ̃, in (4.1.2) there is no
reason for them not to be equal. For the remainder of this chapter we will assume that σ
and σ̃ are equal for all asset price processes that follow (4.1.2).

1The notation used in this chapter with regards to Rubinstein’s [31] framework follows his original
work, however, we also make extensive use of the measure theoretic notation of his framework that was
outlined by Cheng [9].
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4.2 Expected rate of return of a risky bond

We define the annualized expected rate of return of a risky bond over a holding period h,
denoted as EP [RRB(h)] (where the subscript RB denotes risky bond), to be

EP [RRB(h)] =

[
EP [RB(S(h), K, r, h, T, σ2)]

RB(S(0), K, r, 0, T, σ2)

]1/h
− 1 (4.2.1)

The denominator of (4.2.1) can be determined from (3.1.1) and the numerator can be
obtained from (4.1.4). The numerator results in

EP [RB(S(h), K, r, h, T, σ2)
]

= Ke−r(T−h) −Ke−r(T−h)Φ(−x̃+ 0.5σ∗
√
T )

+ S(0)eµhΦ(−x̃− 0.5σ∗
√
T ). (4.2.2)

For a proof of (4.2.2) see section B.2.1.

4.3 Portfolio Analysis for an Unlevered Closed End

Bond Fund

Now we extend the result of one risky bond presented in section 4.2 to a portfolio of risky
bonds to form a CEBF as defined in (3.2.1). Note that for notational convenience, we have
for each of i = 1, . . . , n risky bonds, as defined in (3.1.1),

RBi(h) = RB(Si(h), Ki, r, h, Ti, σ
2
i ). (4.3.1)

We define the annualized expected rate of return of an unlevered CEBF over a holding
period h, denoted as EP [RUL(h)] (where the subscript UL denotes unlevered CEBF), to be

EP [RUL(h)] =

[
n∑
i=1

EP(RBi(h))∑n
i=1RBi(0)

]1/h
− 1. (4.3.2)
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We can determine the annualized variance2 of the rate of return over a holding period
h of an unlevered CEBF under Rubinstein’s [31] option pricing framework as

VarP [RUL(h)] = VarP

[
n∑
i=1

RBi(h)√
h
∑n

i=1RBi(0)

]

=
1

h(
∑n

i=1RBi(0))2
VarP

[
n∑
i=1

RBi(h)

]

=
n∑
i=1

1

h(
∑n

i=1RBi(0))2
VarP [RBi(h)]︸ ︷︷ ︸

*

+ 2
n∑
i 6=j

1

h(
∑n

i=1RBi(0))2
CovP [RBi(h), RBj(h)]︸ ︷︷ ︸

**

(4.3.3)

For a portfolio of risky bonds, as defined in (3.2.1), under Rubinstein’s [31] option
pricing framework, h is limited to the life of the shortest option time to expiration (or
less). Note that analytical formulas for ∗ and ∗∗ in (4.3.3) are derived under Rubinstein’s
[31] framework in section B.2.2 and section B.2.3.

As per Sharpe [32], we define the Sharpe Ratio for an unlevered CEBF over a holding
period h to be

λUL(h) =
EP [RUL(h)]− r√
VarP(RUL(h))

. (4.3.4)

4.4 Portfolio Analysis for Levered Closed End Bond

Fund

Next we extend the results presented in section 4.3 from an unlevered CEBF to a levered
CEBF that includes a debtholder and equityholder as defined in section 3.2.2. We define
the annualized expected rate of return to the equityholder of levered CEBF over a holding
period h, denoted as E [RL−eq(h)] (where the subscript L−eq denotes equityholder portion

2As noted on page 331 of Cox and Rubinstein [14] there is no clear way to annualize volatility, hence
we proceed as Cox and Rubinstein did to annualize by dividing by

√
h.
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of the levered CEBF), under Rubinstein’s [31] option pricing framework, as

EP [RL−eq(h)] =

EP
[
EQ
[
e−r(T

∗−h)ṼL−eq(T
∗)|F(h)

]]
EQ [e−rT ∗VL−eq(T ∗)]

1/h

− 1 (4.4.1)

We define the annualized expected rate of return to the debtholder of levered CEBF over
a holding period h, denoted as E [RL−dt(h)] (where the subscript L−dt denotes debtholder
portion of the levered CEBF), under Rubinstein’s [31] option pricing framework, as

EP [RL−dt(h)] =

EP
[
EQ
[
e−r(T

∗−h)ṼL−dt(T
∗)|F(h)

]]
EQ [e−rT ∗VL−dt(T ∗)]

1/h

− 1 (4.4.2)

The variance of the rate of return to the equityholder of the levered CEBF over a
holding period h is

VarP(RL−eq(h)) =
1

hEQ [e−rT ∗VL−eq(T ∗)]
2VarP

[
EQ
[
e−r(T

∗−h)ṼL−eq(T
∗)|F(h)

]]
. (4.4.3)

The variance of the rate of return to the debtholder of the levered CEBF over a holding
period h is

VarP(RL−dt(h)) =
1

hEQ [e−rT ∗VL−dt(T ∗)]
2VarP

[
EQ
[
e−r(T

∗−h)ṼL−dt(T
∗)|F(h)

]]
. (4.4.4)

We define the Sharpe Ratio, over a holding period h, for the equityholder of a levered
CEBF as

λL−eq(h) =
EP [RL−eq(h)]− r√
VarP(RL−eq(h))

(4.4.5)

and similarly the debtholder Sharpe Ratio for levered CEBF is defined as

λL−dt(h) =
EP [RL−dt(h)]− r√
VarP(RL−dt(h))

. (4.4.6)
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4.5 Numerical Examples for Portfolios of Levered and

Unlevered Closed End Bond Funds

In this section we present numerical results of expected rate of return and standard devia-
tion of the rate return of the unlevered and levered CEBF using the framework in sections
4.3 and 4.4. Note that we will use the same economic and modeling assumptions as in sec-
tion 3.3. Table 4.5.1 lists the additional model assumptions required for our analysis. Note
that in this section we only present the results using the low correlation matrix assumption
introduced in section 3.3.

Asset Price t=0 RW Asset ERR RW Asset Volatility
1 S1(0) = 10 µ1 = 0.078 σ̃1 = 0.15
2 S2(0) = 20 µ2 = 0.078 σ̃2 = 0.15
3 S3(0) = 30 µ3 = 0.078 σ̃3 = 0.15
4 S4(0) = 40 µ4 = 0.078 σ̃4 = 0.15
5 S5(0) = 50 µ5 = 0.078 σ̃5 = 0.15

Table 4.5.1: Closed End Bond Fund Asset Data

First we determine the expected rate of return of each risky bond using (4.2.2). We
also determine the rate of return on the inherent put option in the risky bond using (4.1.1)
for each of the firms listed in Table 4.5.1 for holding periods of h = 1 and h = 2.

Firm i
h=1 h=2

Put Option Return RB Return Put Option Return RB Return
1 3.72% 8.11% 3.69% 8.11%
2 0.63% 7.76% 0.52% 7.74%
3 −3.71% 6.69% −3.90% 6.64%
4 −7.93% 5.81% −8.16% 5.78%
5 −11.61% 5.38% −11.85% 5.37%

Table 4.5.2: Risky Bond Returns

Remark 4.5.1. From Table 4.5.2 we can see that as the initial firm price Si(0) increases the
put option return decreases and quickly becomes negative. Negative returns on European
put options in reality are certainly possible and well discussed in Coval and Shumway [13].
The reason that the returns become negative as Si(0) increases is that the numerator in
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(4.1.1) decreases in value faster than the denominator. This is due to the fact that Si(0)
grows exponentially in terms of µi over the period h. The larger the value of Si(0) the
faster the numerator will decrease in value over the denominator in (4.1.1).

As Si(0) increases the rates of return on the risky bonds decrease since, per (4.2.2),
as Si(0) increases the value of a risky bond will increase. This is due to the fact that the
value of the inherent put option on the risky bond decreases as Si(0) increases. The reason
that the rate of return on a risky bond decreases even though the value of the risky bond
increases is that in the ratio (4.2.1) both the numerator and the denominator are increasing
at a decreasing rate. This is due to the fact that Si(0) grows exponentially in terms of µi
over the period h and the inherent put option become less in-the-money faster.

We also determine the standard deviation of return of each risky bond for each of the
firms listed in Table 4.5.1 for holding periods of h = 1 and h = 2.

Firm i RB Std. Dev. h = 1 RB Std. Dev. h = 2
1 16.29% 17.07%
2 14.17% 15.00%
3 8.30% 8.50%
4 3.74% 3.83%
5 1.47% 1.56%

Table 4.5.3: Risky Bond Returns

Remark 4.5.2. From Table 4.5.3 we can see that as the initial firm price S0(i) increases the
risky bond return standard deviation decreases. The reason that the standard deviation
decreases as Si(0) increases is that the inherent put option becomes less in-the-money as
Si(0) increases. As a put option becomes less in-the-money its standard deviation will
decrease.

Next we determine the expected rate of return and standard deviation of return, using
Rubinstein’s framework, for an unlevered CEBF using (4.3.2) and (4.3.3) respectively.
Using this information we can determine the Sharpe Ratio for an unlevered CEBF as per
(4.3.4) for holding periods (h) of one and two years.

Holding Period EP [RUL(h)]
√
VarP [RUL(h)] λUL(h)

h = 1 6.42% 3.96% 0.3597
h = 2 6.40% 4.13% 0.3392

Table 4.5.4: Unlevered CEBF Expected Returns as a function of holding period (h)
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Remark 4.5.3. From Table 4.5.4 we see that for an unlevered CEBF the Sharpe Ratio
decreases as the holding period of return h increases. The decrease in Sharpe Ratio is driven
by a decreasing unlevered CEBF expected return and an increasing standard deviation of
return as h increases.

Since the expected return and standard deviation of return ((4.4.1) and (4.4.3) respec-
tively) for the equityholder of the levered CEBF are of the basket option form, neither
of the equations have closed form solutions. We use nested Monte Carlo simulation to
evaluate (4.4.1) and (4.4.3). The outer set of nested simulations are performed across the
Real World P-measure and inner nested simulations are valued under the Risk Neutral
Q-measure. Note that we value the expected return and standard deviation of return for
different FV of CEBF debt K∗ as was done in section 3.3.

Holding Period CEBF debt K∗ EP [RL−eq(h)]
√
VarP [RL−eq(h)] λL−eq(h)

h = 1 10 6.54% 4.25% 0.3626
20 6.65% 4.58% 0.3604
30 6.78% 4.97% 0.3583

h = 2 10 6.48% 4.43% 0.3336
20 6.58% 4.77% 0.3314
30 6.70% 5.13% 0.3292

Table 4.5.5: Levered Closed End Fund Equityholder Performance

Remark 4.5.4. From Table 4.5.5, for a fixed FV of CEBF debt K∗, the Sharpe Ratio for
the equityholder of the levered CEBF decreases as h increases. The decrease in the Sharpe
Ratio for the equityholder of a levered CEBF is driven by a decrease in the expected rate
of return and an increase in the standard deviation of return for the levered CEBF as h
increases. As the FV of CEBF debt K∗ increases the expected rate of return and standard
deviation of the rate of return both increase which also causes the Sharpe Ratio to increase.

Next we determine the expected rate of return and standard deviation of the rate return
as well as Sharpe Ratio for the debtholder of a levered CEBF using (4.4.2), (4.4.4), and
(4.4.6). Similarly for the debtholder of the levered CEBF, we use nested Monte Carlo
simulation to evaluate (4.4.2) and (4.4.4). Again the outer set of nested simulations are
performed under the Real World P-measure and inner nested simulations are valued under
the Risk Neutral Q-measure.

Remark 4.5.5. Debtholder return is 5.13% for both h = 1 and h = 2, for the same face
values of CEBF debt K∗ in Table 4.5.5, with a standard deviation of the rate return of
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virtually zero. The near zero standard deviation does not come as a surprise since for low
face values of CEBF debt K∗ the inherent put option to the debtholder will be out of the
money. The debtholder will thus receive a virtually riskless expected rate of return for
low face values of CEBF debt K∗. As the face values of CEBF debt K∗ increases (as the
CEBF takes on more debt) the debtholder standard deviation of the rate return increases
(the risk increases). The debtholder standard deviation of the rate return reaches 1% at
roughly K∗ = 140 in our example.

4.6 Comparing Portfolio Returns

We reduce the firm volatilities from σi = 0.15 to σ̃i = 0.1 for i = 1, . . . , 5 in Table 3.3.1
(and subsequently in Table 4.5.1). We regenerate the expected rate of return and standard
deviation of return for an unlevered CEBF in Table 4.5.4 with the firm volatilties of σ̃i = 0.1
for i = 1, . . . , 5.

Holding Period EP [RUL(h)]
√
VarP [RUL(h)] λUL(h)

h = 1 6.34% 2.61% 0.5151
h = 2 6.32% 2.72% 0.4860

Table 4.6.1: Unlevered CEBF Expected Returns as a function of holding period (h)

Remark 4.6.1. We find our expected unlevered CEBF return of 6.34% below the overall
average of 6.35% and lower than the non-municipal fund average 6.83% in Table 2.7.1.
Our expected unlevered CEBF return is slightly lower than the return on share price P
and higher than the return on NAV from Table 2.7.2. Note, however, that our expected
unlevered CEBF return has not been adjusted for expenses in order to be compared to the
return on NAV . When reducing the unlevered return by 65bps (the estimated management
fee discussed in section 2.7.3), our unlevered return is comparable to the return on NAV
for an unlevered CEBF.

When comparing the standard deviation of returns from Table 4.6.1 to that of Elton et
al. [17] in Table 2.7.3 for unlevered CEBFs we find comparable results of 2.61% to 2.71%.

Next we determine the expected return and standard deviation of return for different FV
of CEBF debt K∗ for the equityholder with the firm volatilties of σ̃i = 0.1 for i = 1, . . . , 5.
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Holding Period CEBF debt K∗ EP [RL−eq(h)]
√
VarP [RL−eq(h)] λL−eq(h)

h = 1 10 6.39% 2.83% 0.4892
20 6.48% 3.05% 0.4860
30 6.59% 3.29% 0.4829
40 6.72% 3.58% 0.4798
50 6.87% 3.93% 0.4767

Table 4.6.2: Levered Closed End Fund Equityholder Performance

Remark 4.6.2. Comparing the expected levered CEBF equityholder returns in Table 4.6.2
to the overall average CEBF return in Table 2.7.1 our returns are comparable to the overall
average of 6.35%. When comparing our results against those of Elton et al. in table 2.7.2
for levered funds our equityholder returns are lower than the return on share price of 8.08%.
We can also see that our expected levered CEBF equityholder returns are higher than the
return on NAV for higher face values of CEBF debt K∗. One can clearly see from Table
4.6.2 that increasing the face value of CEBF debt K∗ increases both equityholder expected
return and standard deviation. Upon deducting the average leverage cost (the leverage cost
assumption is outlined further in section A.3) at high FV of CEBF debt K∗ our expected
levered CEBF equityholder returns are comparable to those of levered CEBF return on
NAV . When comparing the standard deviation of returns from Table 4.5.5 to those in
Table 2.7.3, for levered CEBFs we find 3.58% at K∗ = 40 comparable to 3.51% from Elton
et al. [17].

Unfortunately there are no debtholder CEBF returns reported in Elton et al. [17] in
Table 2.7.2. Using σ̃i = 0.1 for i = 1, . . . , 5 yields a return to the debtholder of 5.13%
with near zero standard deviation (for the same reasons outlined in remark 4.5.5). The
debtholder return is higher than the risk free rate outlined in the pricing assumptions in
section A.2. This implies that the debtholder is earning a return that is slightly higher
than the risk free rate which is as expected.

57



Chapter 5

Conclusions and Future Research

In summary, one of our contributions of this thesis was determining the impact of changes
in firm volatilies and correlations on an unlevered and levered CEBF market value and
standard deviation. In remark 3.3.5 we noted that for a levered CEBF the market values
of the equity and the debt of the CEBF will change as the correlations change even though
the total market value of the CEBF remains the same. If all the correlations increase the
total value of the CEBFs assets does not change. With regards to firm volatilities, we
noted in remark 3.3.7 that increasing the firm volatilities decreases the market value of
equityholder. As the FV of CEBF debt increases, the market value of levered CEBF equi-
tyholder decreases. The market value of the levered CEBF to the equityholder decreases
as the firm volatilities increase since the put options inherent in each of the risky bonds
increase in value as the firm volatilities increase. As the put options increase in value
this decreases the value of the risky bonds which decreases the value of the call option of
equityholder position of the CEBF. In remark 3.3.8 we concluded that increasing the firm
volatilities decreases the market value of the CEBF regardless of whether or not the CEBF
is unlevered or levered.

Our simulated results in section 4.5 show that the equityholder of levered CEBFs has
a higher expected rate of return and standard deviation of the rate of return than an
unlevered CEBF, as was noted in Elton et al. [17]. The levered CEBF expected rate of
return and standard deviation of the rate of return (for different holding periods h and
CEBF debt K∗) of Table 4.5.5 are clearly larger than those of the unlevered CEBF in
Table 4.5.4. The resulting returns we simulated in Table 4.6.1 and 4.6.2 are comparable to
those in Tables 2.7.2 and 2.7.3 from Elton et al. [17].

Despite the fact that our model of an unlevered and levered CEBF can achieve expected
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rates of return and standard deviation of returns similar to those observed by Elton et al.
[17] there is certainly room for improvement. Our model relies on several simplifying
assumptions which, given time, can be improved. First of all, for computational simplicity
we only considered a CEBF composed of five risky bonds when in fact most CEBF are
composed of hundreds of bonds. Our definition of a CEBF, (3.2.1), heavily relies on the
Merton risky bond model [28] definition which does not consider the possibility of the
bond defaulting before maturity. Some models that would incorporate the possibility of
the bond defaulting before maturity would be the famous Black and Cox [4] First Passage
Time model or using the approximate simulation techniques for correlated First Passage
Time models in Metzler[29]. A Copula model approach (such as from Li [26]) would be
interesting to explore as opposed to using a basket-option pricing model approach as we
did. Bush et al. [7] develop a limiting distribution of surviving bonds from a portfolio of
bonds and then use it to price options. This density can be used in the framework that we
have developed instead of assuming the Black and Scholes framework. In the levered CEBF
model outlined in section 3.2.2 we only consider the debtholder and equityholder and that
all the fund leverage is supplied by the debtholder. Our model does not consider preferred
shareholders as a separate class of financing for the CEBF leverage. As we discused in
section 2.7, a CEF can lever with both debt and preferred shares. An extension of our
levered CEBF model would be to include preferred shares as a separate class of leverage
financing and having them as another senior claimant over equityholders (but less senior
than debtholders). Furthermore the maximum amount of debt allowed for both preferred
share and debtholder financing should also be included in the model (as discussed in section
2.7.2).

Even though this entire thesis is concerned with CEBFs, we observed in figure 2.2.1
some changes in the assets being held by CEFs. The figure shows the percentage of closed
end bond and stock funds changing from nearly 75% and 25%, respectively in 2001 to
nearly a 65% and 35%, respectively in 2011. It would be interesting to spend some time
conjecturing and exploring reasons for the change in asset holdings of CEFs. We can add
this question to list of unexplained behaviours of CEFs!
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Appendix A

Chapter 3 Formulas and Economic
Assumptions

This appendix contains the derivations of several formulas from Chapter 3.

A.1 Unlevered CEBF Company Formulas

A.1.1 Variance of Two European Put Options

Our goal is to determine the variance at maturity T of a European put option payoff written
on an underlying asset S(·), under the classical market model assumptions of Black and
Scholes [5]

VarQ
[
e−r(T−t)(K − S(T ))+|F(t)

]
= e−2r(T−t) EQ [(K − S(T ))2+|F(t)

]︸ ︷︷ ︸
*

− (EQ [e−r(T−t)(K − S(T ))+|F(t)
]
)2 (A.1)

From [5] we have the following model assumptions,

• r is the constant risk free interest rate;

• δ is the constant dividend yield on the underlying asset S(·);

• σ is the constant volatility of the underlying asset S(·);
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• F(t) is defined as the sigma algebra (or available information) for S(t) at time t;

• at time T , conditional on S(t), the underlying asset process S(T ) follows the distri-
bution,
ln (S(T )/S(t))|F(t) ∼ N (µ′, σ′) where µ′ = (r − δ − σ2

2
)(T − t) and σ′ = σ

√
T − t;

We can derive ∗ under the Black and Scholes framework as follows

EQ [(K − S(T ))2+|F(t)
]

=

∫ ∞
−∞

[
(K − S(0)ex)2+

] 1

σ′
φ(
x− µ′

σ′
)dx

=

∫ ln (K/S(0))

−∞

[
K2 − 2KS(0)ex + (S(0))2e2x

] e− 1
2
(x−µ

′
σ′ )2

σ′
√

2π
dx

= K2

∫ ln(K/S(0))

−∞

e−
1
2
(x−µ

′
σ′ )2

σ′
√

2π
dx− 2KS(0)

∫ ln(K/S(0))

−∞
ex
e−

1
2
(x−µ

′
σ′ )2

σ′
√

2π
dx

+ (S(0))2
∫ ln(K/S(0))

−∞
e2x

e−
1
2
(x−µ

′
σ

)2

σ′
√

2π
dx (A.2)

where

1

σ′
φ(
x− µ′

σ′
) =

e−
1
2
(x−µ

′
σ′ )2

σ′
√

2π
. (A.3)

The first integral in (A.2) can be determined as follows.

K2

∫ ln(K/S(0))

−∞

e−
1
2
(x−µ

′
σ′ )2

σ′
√

2π
dx = K2

∫ ln(K/S(0))−µ′
σ′

−∞

e−
1
2
u2

√
2π

du

= K2Φ(
ln (K/S(0))− µ′

σ′
)

= K2Φ(
−(ln (S(0)/K) + (r − δ − σ2

2
)(T − t))

σ
√
T − t

)

= K2Φ(−d2) (A.4)

The second integral in (A.2) can be determined as follows.

−2KS(0)

∫ ln(K/S(0))

−∞

exe−
1
2
(x−µ

′
σ′ )2

√
2πσ′

dx = −2KS(0)

∫ ln(K/S(0))−µ′
σ′

−∞

e
−(u2+2uσ′+2µ′)

2

√
2π

du
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= −2KS(0)eµ
′
∫ ln(K/S(0))−µ′

σ′

−∞

e
−(u2−2uσ′+σ′2−σ′2)

2

√
2π

du

= −2KS(0)eµ
′+σ′2

2

∫ ln(K/S(0))−µ′
σ′

−∞

e
−(u−σ′)2

2

√
2π

du

= −2KS(0)eµ
′+σ′2

2

∫ ln(K/S(0))−µ′−σ′2
σ′

−∞

e
−v2
2

√
2π
dv

= −2KS(0)e(r−δ−
σ2

2
)(T−t)+σ2(T−t)

2 Φ(−d1)
= −2KS(0)e(r−δ)(T−t)Φ(−d1) (A.5)

The third integral in (A.2) can be determined as follows.

(S(0))2
∫ ln(K/S(0))

−∞

e2xe−
1
2
(x−µ

′
σ′ )2

σ′
√

2π
dx = (S(0)2)

∫ ln(K/S(0))−µ′
σ′

−∞

e
−(u2−4uσ′−4µ′)

2

√
2π

du

= (S(0)2)e2µ
′
∫ ln(K/S(0))−µ′

σ′

−∞

e
−(u2−4uσ′+4σ′2−4σ′2)

2

√
2π

du

= (S(0)2)e2µ
′+2σ′2

∫ ln(K/S(0))−µ′
σ′

−∞

e
−(u−2σ′)2

2

√
2π

du

= (S(0)2)e2µ
′+2σ′2

∫ ln(K/S(0))−µ′−2σ′2
σ′

−∞

e
−v2
2

√
2π
dv

= (S(0)2)e2µ
′+2σ′2Φ(

ln(K/S(0))− µ′ − 2σ′2

σ′
)

= (S(0)2)e2((r−δ)(T−t))+σ
2(T−t)Φ(−d1 − σ

√
T − t)

(A.6)

Combining the results of (A.4), (A.5), and (A.6) yields the following result for (A.2)

EQ [e−2r(T−t)(K − S(T ))2+|F(t)
]

= e−2r(T−t)K2Φ(−d2)− 2e−2r(T−t)KS(0)e(r−δ)(T−t)Φ(−d1)
+ e−2r(T−t)(S(0)2)e2((r−δ)(T−t))+σ

2(T−t)Φ(−d1 − σ
√
T − t).

(A.7)

Combining (A.7) with the use of the Black Scholes European put option pricing formula
yields the following result for (A.1)

VarQ
[
e−r(T−t) (K − S(T ))+ |F(t)

]
= e−2r(T−t)K2Φ(−d2)− 2e−2r(T−t)KS(0)e(r−δ)(T−t)Φ(−d1)
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+ e−2r(T−t)(S(0)2)e2((r−δ)(T−t))+σ
2(T−t)Φ(−d1 − σ

√
T − t)

− (Ke−r(T−t)Φ(−d2)− S(0)e−δ(T−t)Φ(−d1))2. (A.8)

A.1.2 Covariance of Two European Put Options

Consider two asset price processes S1(t) and S2(t), with correlation ρ, that are both Geo-
metric Brownian Motion (GBM) processes for 0 ≤ t ≤ T

dS1(t) = (r − δ1)S1(t)dt+ σ1S1(t)dZ1(t)
dS2(t) = (r − δ2)S2(t)dt+ σ2S2(t)dZ2(t)

where we have the following model assumptions

• r is the constant risk free interest rate;

• δi is the constant dividend yield on the underlying asset Si(·) for i = 1, 2;

• σi is the constant volatility of the underlying asset Si(·) for i = 1, 2;

• F(t) is defined as the sigma algebra (or available information) for S1(t) and S2(t) at
time t;

• Z1(t) and Z2(t) are Brownian Motion processes under the risk neutral measure such
that dZ1(t)dZ2(t) = ρdt, where ρ is the correlation between the two processes;

Using a result from Ghasem[20], we have that the stock price processes S1(t) and S2(t)
have joint distribution, conditional on F(t),

(X, Y ) = (ln (S1(T1)/S1(t)), ln (S2(T2)/S2(t)))|F(t) ∼ BVN (µ′x, µ
′
y, σ

′
x, σ

′
y, ρ)

where

• ρ is the correlation between the two processes X and Y ;

• µ′i = (r − δi − σ2
i

2
)(Tj − t) and σ′i = σi

√
Tj − t is used for i = x, y and j = 1, 2;
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• (X, Y ) have joint density function,

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ) =
e

−1

2(1−ρ2)

[
(
x−µ′x
σ′x

)2−2ρ(x−µ
′
x

σ′x
)(
y−µ′y
σ′y

)+(
y−µ′y
σ′y

)2
]

2πσ′xσ
′
y

√
1− ρ2

. (A.9)

Recall that for a pair of Bivariate Normal random variables each marginal random variable
is Normally distributed, hence we have that,

X = ln (S1(T1)/S1(t))F(t) ∼ N (µ′x, σ
′
x) and Y = ln (S2(T2)/S2(t))F(t) ∼ N (µ′y, σ

′
y) with

correlation ρ.

The motivation to determine the covariance of two European put options, using risk
neutral pricing framework, was given by the desire to determine the variance of a portfolio
of two European put options (with different times to maturity, strike prices, and underlying
(correlated) assets).

VarQ
[
e−r(T1−t) (K1 − S1(T1))+ + e−r(T2−t) (K2 − S2(T2))+ |F(t)

]
= e−2r(T1−t)VarQ [(K1 − S1(T1))+|F(t)] + e−2r(T2−t)VarQ [(K2 − S2(T2))+|F(t)]

+ 2e−r(T1−t)e−r(T2−t)CovQ [(K1 − S1(T1))+, (K2 − S2(T2))+|F(t)] (A.10)

We can determine the variance of a put option payoff at maturity for i = 1, 2 from the
result in A.1.1. The more challenging result is to determine

CovQ [(K1 − S1(T1))+, (K2 − S2(T2))+|F(t)]

= EQ [(K1 − S1(T1))+(K2 − S2(T2))+|F(t)]︸ ︷︷ ︸
**

−(EQ [(K1 − S1(T1))+|F(t)])×

(EQ [(K2 − S2(T2))+|F(t)]). (A.11)

Of course the challenging part is determining ∗∗ which can be calculated as follows.

EQ [(K1 − S1(T1))+(K2 − S2(T2))+|F(t)]

=

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
(K1 − S1(T1))(K2 − S2(T2))

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

=

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
(K1 − S1(0)ex)(K2 − S2(0)ey)

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx
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= K1K2

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

−K1S2(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ey

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

−K2S1(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ex

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

+S1(0)S2(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ex+y

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

The first integral can be determined as follows.

K1K2

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

= K1K2

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞

e
−1

2(1−ρ2)

[
(
x−µ′x
σ′x

)2−2ρ(x−µ
′
x

σ′x
)(
y−µ′y
σ′y

)+(
y−µ′y
σ′y

)2
]

2πσ′xσ
′
y

√
1− ρ2

dxdy

= K1K2

∫ ln(K1/S1(0))−µ
′
x

σ′x

−∞

∫ ln(K2/S2(0))−µ
′
y

σ′y

−∞

e
−1

2(1−ρ2) [u
2−2ρuv+v2]

2π
√

1− ρ2
dvdu (A.12)

= K1K2Φ2(
ln(K1/S1(0))− µ′x

σ′x
,
ln(K2/S2(0))− µ′y

σ′y
; ρ)

= K1K2Φ2(
ln(K1/S1(0))− (r − δ1 − σ2

1

2
)(T1 − t)

σ1
√

(T1 − t)
,
ln(K2/S2(0))− (r − δ2 − σ2

2

2
)(T2 − t)

σ2
√

(T2 − t)
; ρ)

= K1K2Φ2(−d2(1),−d2(2); ρ) (A.13)

In order to obtain (A.12) we use the substitution u = x−µ′x
σ′x

and v =
y−µ′y
σ′y

. The second

integral can be determined as follows.

−K1S2(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ey

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

= −K1S2(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ey
e

−1

2(1−ρ2)

[
(
x−µ′x
σ′x

)2−2ρ(x−µ
′
x

σ′x
)(
y−µ′y
σ′y

)+(
y−µ′y
σ′y

)2
]

2πσ′xσ
′
y

√
1− ρ2

dydx

= −K1S2(0)eµ
′
y

∫ ln(K1/S1(0))−µ
′
x

σ′x

−∞

∫ ln(K2/S2(0))−µ
′
y

σ′y

−∞

e
−1

2(1−ρ2) [u
2−2ρuv+v2]−2(1−ρ2)σyv

2π
√

1− ρ2
dvdu
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= −K1S2(0)eµ
′
y

∫ ln(K1/S1(0))−µ
′
x

σ′x

−∞

e−
u2

2

√
2π

∫ ln(K2/S2(0))−µ
′
y

σ′y

−∞

e
−1

2(1−ρ2)
(v−ρu)2−2(1−ρ2)σyv√
2π(1− ρ2)

dvdu

= −K1S2(0)eµ
′
y+

σ2y(1−ρ
2)

2 ×∫ ln(K1/S1(0))−µ
′
x

σ′x

−∞

e−
(u2−2ρuσ′y)

2

√
2π

∫ ln(K2/S2(0))−µ
′
y

σ′y

−∞

e
−1

2(1−ρ2)
(v−(ρu+σ′y(1−ρ2)))2√
2π(1− ρ2)

dvdu (A.14)

= −K1S2(0)eµ
′
y+

σ′y
2

2

∫ ln(K1/S1(0))−µ
′
x

σ′x

−∞

e−
(u−ρσ′y)

2

2

√
2π

∫ ln(K2/S2(0))−µ
′
y

σ′y

−∞

e
−1

2(1−ρ2)
(v−(ρu+σ′y(1−ρ2)))2√
2π(1− ρ2)

dvdu

= −K1S2(0)eµ
′
y+

σ′y
2

2

∫ ln(K1/S1(0))−µ
′
x

σ′x

−∞

e−
(u−ρσ′y)

2

2

√
2π

∫ ln(K2/S2(0))−µ
′
y

σ′y

−∞

e
−1

2(1−ρ2)
(v−(ρu+σ′y(1−ρ2)))2√
2π(1− ρ2)

dvdu

= −K1S2(0)eµ
′
y+

σ′y
2

2

∫ ln(K1/S1(0))−µ
′
x

σ′x
−ρσ′y

−∞

e−
k2

2

√
2π

∫ ln(K2/S2(0))−µ
′
y

σ′y
−σ′y

−∞

e
−1

2(1−ρ2)
(z−ρk)2√

2π(1− ρ2)
dzdk

= −K1S2(0)eµ
′
y+

σ′y
2

2

∫ ln(K1/S1(0))−µ
′
x

σ′x
−ρσ′y

−∞

∫ ln(K2/S2(0))−µ
′
y

σ′y
−σ′y

−∞

e
−1

2(1−ρ2) [z
2−2ρzk+k2]

2π
√

1− ρ2
dzdk

= −K1S2(0)e(r−δ2)(T2−t)Φ2(−d2(1) − ρσ2
√

(T2 − t),−d2(2) − σ2
√

(T2 − t); ρ)

= −K1S2(0)e(r−δ2)(T2−t)Φ2(−d2(1) − ρσ2
√

(T2 − t),−d1(2); ρ) (A.15)

(A.14) comes from applying transformation k = u−ρσy and z−ρk = v− (ρu+σy(1−ρ2))
(hence z = ρk + v − (ρu+ σy(1− ρ2))). The third integral can be determined similarly to
the second integral above.

−K2S1(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ex

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx

= −K2S1(0)

∫ ln(K2/S2(0))

−∞

∫ ln(K1/S1(0))

−∞
ex
e

−1

2(1−ρ2)

[
(
x−µ′x
σ′x

)2−2ρ(x−µ
′
x

σ′x
)(
y−µ′y
σ′y

)+(
y−µ′y
σ′y

)2
]

2πσ′xσ
′
y

√
1− ρ2

dxdy

= −K2S1(0)e(r−δ1)(T1−t)Φ2(−d2(1) − σ1
√

(T1 − t),−d2(2) − ρσ1
√

(T1 − t); ρ)

= −K2S1(0)e(r−δ1)(T1−t)Φ2(−d1(1),−d2(2) − ρσ1
√

(T1 − t); ρ) (A.16)

The fourth integral can be determined as follows.

S1(0)S2(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ex+y

1

σ′x

1

σ′y
φ2(

x− µ′x
σ′x

,
y − µ′y
σ′y

; ρ)dydx
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= S1(0)S2(0)

∫ ln(K1/S1(0))

−∞

∫ ln(K2/S2(0))

−∞
ex+y

e
−1

2(1−ρ2)

[
(
x−µ′x
σ′x

)2−2ρ(x−µ
′
x

σ′x
)(
y−µ′y
σ′y

)+(
y−µ′y
σ′y

)2
]

2πσ′xσ
′
y

√
1− ρ2

dydx

= S1(0)S2(0)eµ
′
x+µ

′
y

∫ u∗

−∞

∫ v∗

−∞

e
−1

2(1−ρ2) [u
2−2ρuv+v2−2(1−ρ2)σ′yv−2(1−ρ2)σ′xu]

2π
√

1− ρ2
dvdu

= S1(0)S2(0)e
2µ′x+2µ′y+[(1−ρ2)σ′y2+(σ′x+ρσ

′
y)

2]
2 ×∫ u∗

−∞

e
−(u−(σ′x+ρσ

′
y))

2

2

√
2π

∫ v∗

−∞

e
−1

2(1−ρ2) [v−(ρu+(1−ρ2)σ′y)]
2√

2π(1− ρ2)
dvdu (A.17)

= S1(0)S2(0)e
2µ′x+2µ′y+[(1−ρ2)σ′y2+(σ′x+ρσ

′
y)

2]
2

∫ u∗−σ′x−ρσ′y

−∞

e
−k2
2

√
2π

∫ v∗−ρσx−σ′y

−∞

e
−1

2(1−ρ2)
[z−ρk]2√

2π(1− ρ2)
dzdk

= S1(0)S2(0)e
2µ′x+2µ′y+[(1−ρ2)σ′y2+(σ′x+ρσ

′
y)

2]
2 ×∫ u∗−σ′x−ρσ′y

−∞

∫ v∗−ρσ′x−σ′y

−∞

e
−1

2(1−ρ2) [z
2−2ρzk+k2]

2π
√

(1− ρ2)
dzdk (A.18)

= S1(0)S2(0)e
2µ′x+2µ′y+[(1−ρ2)σ′y2+(σ′x+ρσ

′
y)

2]
2 N2(−d2(1) − σ′x − ρσ′y,−d2(2) − σ′y − ρσ′x; ρ)

= S1(0)S2(0)A(r, δ̂, T̂ , σ̂)Φ2(−d1(1) − ρσ2
√
T2 − t,−d1(2) − ρσ1

√
T1 − t; ρ) (A.19)

Where in (A.18) we use the notation u∗ = ln(K1/S1(0))−µ′x
σ′x

and v∗ =
ln(K2/S2(0))−µ′y

σ′y
. As well

as in (A.19) we have

A(r, δ̂, T̂ , σ̂) = e

[
2(r−δ1−

σ21
2 )(T1−t)+2(r−δ2−

σ22
2 )(T2−t)+(1−ρ2)σ22(T2−t)+(σ1

√
T1−t+ρσ2

√
T2−t)

2

]
2 .

Note (A.18) comes from applying the substitutions k = u − (σ′x + ρσ′y) and z − ρk =
v − (ρu+ σy(1− ρ2)) (hence z = v − ρ′x − σ′y).

Combining the resulting integrals of (A.13)–(A.19) with the Black and Scholes European
option pricing model for a European put option for each of S1(t) and S2(t) we have a
resulting closed form solution for (A.12). With a closed form solution for (A.12) yields a
closed form solution for (A.11). By applying (A.8) to each of S1(t) and S2(t), this results
in a closed form solution for (A.10) as desired.
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A.2 Simulation Assumptions

In section 3.3, we make the following economic assumptions to value the unlevered and
levered CEBF of n risky bonds at time T ∗:

• The number of simulations M = 10, 000;

• Both the unlevered and levered CEBF companies have purchased n = 5 risky bonds;

• Each firm asset price process, Si(t), underlying the risky bond follows a Geometric
Brownian Motion (GBM) process

dSi(t)
Si(t)

= µidt+ σidZi(t)

where Zi(t) is a Brownian motion process for each i = 1, . . . , n;

• The time to maturity of the firm debt is T ∗ = 5 years;

• The CEBF face value of debt is varied from K∗ = 5 to K∗ = 150;

• The risk free rate is r = 0.051;

In order to determine the covariance of two credit risky bonds, shown earlier to be
∗∗ in (3.2.4), we must consider the correlations between the different firms (i, j) where
i, j = 1, . . . , 5. Note that these are instantaneous correlations that we assume are held
constant for the entire period of observation. We consider two different correlation matrices
between the firms, one where the firms are weakly correlated (average correlation of 0.12)
and one where they are strongly correlated (average correlation of 0.79).

For evaluating (3.2.4), and (3.2.7)–(3.2.10) we assume two different correlation matrices,
a low and a high correlation environment, between the underlying 5 firms. Below we define
the low correlation environment (ρLow)

ρLow =


1 0.05 0.15 0.10 0.07

0.05 1 0.08 0.05 0.25
0.15 0.08 1 0.10 0.15
0.10 0.05 0.10 1 0.20
0.07 0.25 0.15 0.20 1


1r = 5% is the average return observed on the 5-year US treasury rate over 1996 to 2006 rounded to

the nearest integer.
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Below we define the high correlation environment (ρHigh).

ρHigh =


1 0.60 0.80 0.75 0.65

0.60 1 0.70 0.90 0.80
0.80 0.70 1 0.85 0.90
0.75 0.90 0.85 1 0.95
0.65 0.80 0.90 0.95 1



A.3 Expense Assumptions

Table A.3.1 below is from Table 6 in Elton et al. [17] which shows the cost of borrowing
for non-municipal CEBFs which include the preferred dividend over the amount of the
preferred shares plus the management fee. For debt the cost is the interest over the
amount of the loan. We only include the estimated total cost of borrowing based on the
management fee from the original table since there is only a small difference from assuming
a flat fee of 51bps.

Year # with Preferred Shares Total Cost # with Debt Total Cost
1996 1 3.47% 5 5.45%
1997 1 5.20% 6 6.06%
1998 1 5.65% 7 6.93%
1999 1 6.00% 7 6.60%
2000 1 8.22% 7 7.83%
2001 3 8.30% 7 6.75%
2002 5 4.13% 7 3.83%
2003 7 2.36% 7 2.42%
2004 11 2.34% 7 2.53%
2005 11 3.87% 7 4.09%
2006 11 5.49% 7 6.01%
Mean 4.82 5.19% 6.64 5.32%

Table A.3.1: Non-Municipal CEBFs Cost of Levering
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Appendix B

Chapter 4 Formulas and Economic
Assumptions

This appendix contains the derivations of several formulas from Chapter 4. We first begin
by proving a few lemmas that are used later on.

B.1 Some Useful Lemmas

Lemma B.1.1. Let A and B are real valued constants and Z ∼ N (0, 1) then∫ ∞
−∞

Φ(A+Bz)φ(z)dz = Φ(
A√

1 +B2
) (B.1)

Proof. ∫ ∞
−∞

Φ(A+Bz)φ(z)dz = Ez [Φ(A+Bz)]

= Ez
[
PU |z(U ≤ A+Bz|z)

]
= Ez

[
EU |z

[
I(U≤A+Bz|z)

]]
= Ez

[
EU |z

[
I(U≤A+Bz|z)

]]
= EU

[
I(U≤A+BZ)

]
= Φ(

A√
1 +B2

)
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Lemma B.1.2. Let A1, A2, B1, and B2 be real valued constants and Z ∼ N (0, 1) then we
have∫ ∞

−∞
Φ(A1 +B1z)Φ(A2 +B2z)φ(z)dz = Φ2(

A1√
1 +B2

1

,
A2√

1 +B2
2

;
B1B2√

1 +B2
1

√
1 +B2

2

)

(B.2)

Proof. ∫ ∞
−∞

Φ(A1 +B1z)Φ(A2 +B2z)φ(z)dz

= Ez [Φ(A1 +B1z)Φ(A2 +B2z)]

= Ez
[
PU1|z(U1 ≤ A1 +B1z|z)PU2(U2 ≤ A2 +B2z|z)

]
= Ez

[
EU1|z

[
I(U1≤A1+B1z|z)

]
EU2|z

[
I(U2≤A2+B2z|z)

]]
= Ez

[
EU1|z

[
I(U1≤A1+B1z|z)

]
EU2|z

[
I(U2≤A2+B2z|z)

]]
= Ez

[
E(U1,U2|z

[
I(U1≤A1+B1z|z)I(U2≤A2+B2z|z)

]]
= E(U1,U2,Z)

[
I(U1≤A1+B1Z)I(U2≤A2+B2Z)

]
= E(U1,U2,Z)

[
I(U1−B1Z≤A1)I(U2−B2Z≤A2)

]
= E(U∗1 ,U

∗
2 )

[
I
(U∗1≤

A1√
1+B2

1

)
I
(U∗2≤

A2√
1+B2

2

)

]

= P(U∗1 ,U
∗
2 )

(U∗1 ≤
A1√

1 +B2
1

, U∗2 ≤
A2√

1 +B2
2

;
B1B2√

1 +B2
1

√
1 +B2

2

)

= Φ2(
A1√

1 +B2
1

,
A2√

1 +B2
2

;
B1B2√

1 +B2
1

√
1 +B2

2

)

Corollary B.1.3. Let A and B are real valued constants and Z ∼ N (0, 1) then∫ ∞
−∞

Φ(A+Bz)2φ(z)dz = Φ2(
A√

1 +B2
,

A√
1 +B2

;
B2

1 +B2
) (B.3)

Proof. ∫ ∞
−∞

Φ(A+Bz)2f(z)dz = Ez
[
Φ(A+Bz)2

]
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= Ez
[
PU1|z(U1 ≤ A+Bz|z)PU2|z(U2 ≤ A+Bz|z)

]
= Ez

[
EU1|z

[
I(U1≤A+Bz|z)

]
EU2|z

[
I(U2≤A+Bz|z)

]]
= Ez

[
E(U1,U2)|z

[
I(U1≤A+Bz|z)I(U2≤A+Bz|z)

]]
= E(U1,U2,Z)

[
I(U1≤A+BZ)I(U2≤A+BZ)

]
= E(U1,U2,Z)

[
I(U1−BZ≤A)I(U2−BZ≤A)

]
= E(U∗1 ,U

∗
2 )

[
I(U∗1≤ A√

1+B2
)I(U∗2≤ A√

1+B2
)

]
= Φ2(

A√
1 +B2

,
A√

1 +B2
;

B2

1 +B2
)

Lemma B.1.4. Let A1, A2, B1, and B2 be real valued constants and

(Z1, Z2) ∼ BVN (0, 0, 1, 1, ρ)

then∫ ∞
−∞

∫ ∞
−∞

Φ(A1 +B1z1)Φ(A2 +B2z2)φ2(z1, z2; ρ)dz1dz2 = Φ2(
A1√

1 +B2
1

,
A2√

1 +B2
2

; ρ∗)

(B.4)

where ρ∗ = B1B2ρ√
1+B2

1

√
1+B2

2

.

Proof. ∫ ∞
−∞

∫ ∞
−∞

Φ(A1 +B1z1)Φ(A2 +B2z2)φ2(z1, z2; ρ)dz1dz2

= E(Z1,Z2) [Φ(A1 +B1Z1)Φ(A2 +B2Z2)]

= E(Z1,Z2)

[
PU1|Z1(U1 ≤ A1 +B1Z1|Z1)PU2|Z2(U2 ≤ A2 +B2Z2|Z2)

]
= E(Z1,Z2)

[
EU1|Z1

[
I(U1≤A1+B1Z1|Z1)

]
EU2|Z2

[
I(U2≤A2+B2Z2|Z2)

]
= E(Z1,Z2)

[
EU1|(Z1,Z2)

[
I(U1≤A1+B1Z1|(Z1,Z2))

]
EU2|(Z1,Z2)

[
I(U2≤A2+B2Z2|(Z1,Z2))

]
= E(Z1,Z2)

[
E(U1,U2)|(Z1,Z2)

[
I(U1≤A1+B1Z1|(Z1,Z2))I(U2≤A2+B2Z2|(Z1,Z2))

]]
= E(U1,U2)

[
I(U1≤A1+B1Z1)I(U2≤A2+B2Z2)

]
= E(U1,U2,Z1,Z2)

[
I(U1≤A1+B1Z1,U2≤A2+B2Z2)

]
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= P(U∗1 ,U
∗
2 )

(U∗1 ≤
A1√

1 +B2
1

, U∗2 ≤
A2√

1 +B2
2

;
B1B2ρ√

1 +B2
1

√
1 +B2

2

)

= Φ2(
A1√

1 +B2
1

,
A2√

1 +B2
2

;
B1B2ρ√

1 +B2
1

√
1 +B2

2

)

B.2 Formula Derivations - Portfolio Analysis of Un-

leverd CEBFs

Our goal is to determine the expected return of a European vanilla option held for a period
h under the Real World P-measure and valued under the Risk Neutral Q-measure for the
remaining time T−h until option maturity at time T , where T > h. The method to do this
is outlined in Rubinstein [31], where an asset process S(t) on the time interval 0 ≤ t ≤ T
follows (as was pointed out by Cheng [9])

dS(t) = µS(t)dt+ σ̃S(t)dWt for 0 ≤ t ≤ h
dS(t) = rS(t)dt+ σS(t)dWt for h ≤ t ≤ T.

(B.1)

B.2.1 Return on a European Put Option and a Risky Bond

This section contains the derivation of (4.1.4) from (4.1.3) in section 4.1 on page 49. First
let

−x1 = − y

σ
√
T − h

− log (S(0)/Ke−r(T−h))− 0.5σ2(T − h)

σ
√
T − h

(B.2)

and

−x2 = − y

σ
√
T − h

− log (S(0)/Ke−r(T−h)) + 0.5σ2(T − h)

σ
√
T − h

(B.3)

EP(P (S(h), K, r, h, T, σ2)) = EP [e−r(T−h)EQ [(S(T )−K)+|F(h)]
]

=

∫ ∞
−∞

[
Ke−r(T−h)Φ(−x2)− S(0)eyΦ(−x1)

] 1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy
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= Ke−r(T−h)
∫ ∞
−∞

Φ(−x2)
e
−(y−mh)2

2σ̃2h

σ̃
√

2πh
dy

−
∫ ∞
−∞

S(0)eyΦ(−x1)
e
−(y−mh)2

2σ̃2h

σ̃
√

2πh
dy

= Ke−r(T−h)Φ(
−mh+log (S(0)/Ke−r(T−h))−0.5σ2(T−h)

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

)

− S(0)eµhΦ(−
mh+log (S(0)/Ke−r(T−h))+0.5σ2(T−h)+σ̃2h

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

) (B.4)

= Ke−r(T−h)Φ(−x̃+ 0.5σ∗
√
T )− S(0)eµhΦ(−x̃− 0.5σ∗

√
T )
(B.5)

where

σ∗ =
√
σ̃2 h

T
+ σ2 (T−h)

T
m = µ− 1

2
σ̃2

x̃ = log (S(0)µ′/Ke−r(T−h))

σ∗
√
T

µ′ = eµh
(B.6)

Note that (B.4) results from a direct application of (B.1).

Using (B.5), we can determine (4.1.3) under Rubinstein’s [31] framework for a holding
period of return, h, shown below.

EP(RB(h)) = Ke−r(T−h) −Ke−r(T−h)Φ(− log (S(0)µ′/Ke−r(T−h))− 0.5σ∗2T

σ∗
√
T

)

+ S(0)eµhΦ(− log (S(0)µ′/Ke−r(T−h)) + 0.5σ∗2T

σ∗
√
T

) (B.7)

B.2.2 Variance of a Risky Bond

For notation simplicity we denote a European put option at time h, Pi(h) on an underlying
asset Si(h) for i = 1, . . . , n.

Pi(h) = Pi(Si(h), Ki, r, h, Ti, σ
2
i ) (B.8)

and

RBi(h) = Kie
−r(Ti−h) − Pi(Si(h), Ki, r, h, Ti, σ

2
i ) (B.9)
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From properties of variances of random variables, the variance of a risky bond reduces to,

VarP(RBi(h)) = EP(Pi(h)2)− (EP(Pi(h)))2. (B.10)

The challenging exercise is to determine

EP(Pi(h)2) =

∫ ∞
−∞

[
Ke−r(T−h)Φ(−x2)− S(0)eyΦ(−x1)

]2 1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy

= K2e−2r(T−h)
∫ ∞
−∞

Φ(−x2)2
1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy

− 2Ke−r(T−h)S(0)

∫ ∞
−∞

Φ(−x1)Φ(−x2)ey
1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy

+ (S(0))2
∫ ∞
−∞

Φ(−x1)2e2y
1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy (B.11)

The first integral in (B.11) can be evaluated as

K2e−2r(T−h)
∫ ∞
−∞

Φ(−x2)2
1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy (B.12)

= K2e−2r(T−h)Φ2(−
mh+log (S(0)/Ke−r(T−h))−0.5σ2(T−h)

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

,−
mh+log (S(0)/Ke−r(T−h))−0.5σ2(T−h)

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

; ρ′)

= K2e−2r(T−h)Φ2(−x̃+ 0.5σ∗
√
T ,−x̃+ 0.5σ∗

√
T ; ρ′) (B.13)

where ρ′ =
√
σ̃2h
√
σ̃2h√

σ̃2h+σ2(T−h)
√
σ̃2h+σ2(T−h)

. Note that (B.12) comes from a direct application of

(B.3). The second integral can be evaluated as

−2Ke−r(T−h)S(0)

∫ ∞
−∞

Φ(−x1)Φ(−x2)ey
1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy (B.14)

= −2Ke−r(T−h)S(0)eµh×

Φ2(−
mh+log (S(0)/Ke−r(T−h))+0.5σ2(T−h)+σ̃2h

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

,−
mh+log (S(0)/Ke−r(T−h))−0.5σ2(T−h)+σ̃2h

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

; ρ′)

= −2Ke−r(T−h)S(0)eµhΦ2(−x̃− 0.5σ∗
√
T ,−x̃+ 0.5σ∗

√
T − σ̃2h

σ∗
√
T

; ρ′) (B.15)
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Note that (B.14) comes from a direct application of (B.2). The third integral can be
evaluated as

(S(0))2
∫ ∞
−∞

Φ(−x1)2e2y
1

σ̃
√
h
φ(
y −mh
σ̃
√
h

)dy

= (S(0))2e2µh+σ̃
2h×

Φ2(−
mh+log (S(0)/Ke−r(T−h))+0.5σ2(T−h)+2σ̃2h

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

,−
mh+log (S(0)/Ke−r(T−h))+0.5σ2(T−h)+2σ̃2h

σ
√
T−h√

1 + (
√
σ̃2h

σ
√
T−h)2

)

= (S(0))2e2µh+σ̃
2hΦ2(−x̃− 0.5σ∗

√
T − σ̃2h

σ∗
√
T
,−x̃− 0.5σ∗

√
T − σ̃2h

σ∗
√
T

; ρ′) (B.16)

Combining (B.13)–(B.16) with use of (B.5) yields a closed form solution for (B.10) as
desired.
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B.2.3 Covariance of a Risky Bond

Our next step is to determine the covariance between two risky bonds at maturity similarly to that of two
European call options at maturity from Cox and Rubinstein [14]. We first show that for the covariance of
two risky bonds RB1(h) and RB2(h) we have

CovP(RB1(h), RB2(h)) = EP(P1(h)P2(h))− EP(P1(h))EP(P2(h)). (B.17)

The challenging exercise is determining

EP [P1(S1(h), K1, r, h, T1, σ
2
1)P2(S2(h), K2, r, h, T2, σ

2
2)
]

=

∫ ∞
−∞

∫ ∞
−∞

Πj=2
j=1

[
Kje

−r(Tj−h)Φ(−x2(j) + σj
√
Tj − h)− Sj(0)eyjN(−x1(j))

] 1

σ̃1
√
h

1

σ̃2
√
h
φ2(

y1 −m1h

σ̃1
√
h

,
y2 −m2h

σ̃2
√
h

; ρ)dy1dy2

=

∫ ∞
−∞

∫ ∞
−∞

K1K2e
−r(T1−h)e−r(T2−h)Φ(−x2(1))Φ(−x2(2))

1

σ̃1
√
h

1

σ̃2
√
h
φ2(

y1 −m1h

σ̃1
√
h

,
y2 −m2h

σ̃2
√
h

; ρ)dy1dy2

−
∫ ∞
−∞

∫ ∞
−∞

[
K1e

−r(T1−h)S2(0)ey2Φ(−x2(1))Φ(−x1(2))
] 1

σ̃1
√
h

1

σ̃2
√
h
φ2(

y1 −m1h

σ̃1
√
h

,
y2 −m2h

σ̃2
√
h

; ρ)dy1dy2

−
∫ ∞
−∞

∫ ∞
−∞

[
S1(0)ey1K2e

−r(T2−h)Φ(−x1(1))Φ(−x2(2))
] 1

σ̃1
√
h

1

σ̃2
√
h
φ2(

y1 −m1h

σ̃1
√
h

,
y2 −m2h

σ̃2
√
h

; ρ)dy1dy2

+

∫ ∞
−∞

∫ ∞
−∞

[
S1(0)S2(0)Φ(−x1(1))Φ(−x1(2))ey1ey2

] 1

σ̃1
√
h

1

σ̃2
√
h
φ2(

y1 −m1h

σ̃1
√
h

,
y2 −m2h

σ̃2
√
h

; ρ)dy1dy2 (B.18)

where, for the jth asset, we have

−x1(j) =
−yj

σj
√
Tj − h

−
log (Sj(0)/Kje

−r(Tj−h)) + 0.5σ2
j (Tj − h)

σj
√
Tj − h

(B.19)

and

−x2(j) =
−yj

σj
√
Tj − h

−
log (Sj(0)/Kje

−r(Tj−h))− 0.5σ2
j (Tj − h)

σj
√
Tj − h

(B.20)

as well as
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• the correlation between the two firms is ρ;

• the covariance of the two firms is σ12 = ρσ̃1σ̃2;

• mjh = (µj −
σ̃2
j

2
)h for j = 1, 2;

• σ∗j =
√
σ̃2
j
h
Tj

+ σ2
j (1− h

Tj
) for j = 1, 2;

• ρ∗ = σ12
σ∗1σ
∗
2

√
T1T2

;

• µ′j = eµjh for j = 1, 2;

The first integral in (B.18) is determined below.∫ ∞
−∞

∫ ∞
−∞

K1K2e
−r(T1−h)e−r(T2−h)Φ(−x2(1))Φ(−x2(2))

1

σ̃1
√
h

1

σ̃2
√
h
φ2(

y1 −m1h

σ̃1
√
h

,
y2 −m2h

σ̃2
√
h

; ρ)dy1dy2

= K1K2e
−r(T1−h)e−r(T2−h)

∫ ∞
−∞

∫ ∞
−∞

Φ(−x2(1))Φ(−x2(2))φ2(z1, z2; ρ)dz1dz2

= K1K2e
−r(T1−h)e−r(T2−h)×

Φ2(
−µ1h+log (S1(0)/K1e−r(T1−h))−0.5σ2

1(T1−h)
σ1
√
T1−h√

1 + (

√
σ̃2
1h

σ1
√
T1−h

)2

,
−µ2h+log (S2(0)/K2e−r(T2−h))−0.5σ2

2(T2−h)
σ2
√
T2−h√

1 + (

√
σ̃2
2h

σ2
√
T2−h

)2

; ρ∗) (B.21)

= K1K2e
−r(T1−h)e−r(T2−h)Φ2(−x̃2(1),−x̃2(2); ρ∗) (B.22)

Note that (B.21) comes from a direct application of (B.4). Also note that

ρ∗ =
ρ

√
σ̃2
1h

σ1
√
T1−h

√
σ̃2
2h

σ2
√
T2−h√

1 + (

√
σ̃2
1h

σ1
√
T1−h

)2

√
1 + (

√
σ̃2
2h

σ2
√
T2−h

)2

. (B.23)
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The second integral is determined below.

−
∫ ∞
−∞

∫ ∞
−∞

[
K1e

−r(T1−h)S2(0)ey2Φ(−x2(1))Φ(−x1(2))
] 1

σ̃1
√
h

1

σ̃2
√
h
φ2(

y1 −m1h

σ̃1
√
h

,
y2 −m2h

σ̃2
√
h

; ρ)dy1dy2

= −K1e
−r(T1−h)S2(0)

∫ ∞
−∞

∫ ∞
−∞

[
ez2
√
σ̃2
2h+m2hΦ(−x2(1))Φ(−x1(2))

] e −1

2(1−ρ2) [z
2
1−2ρz1z2+z22]

2π
√

1− ρ2
dz1dz2

= −K1e
−r(T1−h)S2(0)em2h

∫ ∞
−∞

∫ ∞
−∞

Φ(−x2(1))Φ(−x1(2))
e
−z21
2

√
2π

e

−
[
(z2−ρz1)

2−2(1−ρ2)z2
√

σ22h

]
2(1−ρ2)√

2π(1− ρ2)
dz1dz2

= −K1e
−r(T1−h)S2(0)em2h+

σ̃22h

2

∫ ∞
−∞

∫ ∞
−∞

Φ(−x2(1))Φ(−x1(2))
e
−(z1−ρ

√
σ̃22h)

2

2

√
2π

e
−(z2−(ρz1+(1−ρ2)

√
σ̃22h))

2

2(1−ρ2)√
2π(1− ρ2)

dz1dz2

= −K1e
−r(T1−h)S2(0)eµ2h×∫ ∞

−∞

∫ ∞
−∞

Φ(−x2(1) −
ρ
√
σ̃2
1hσ̃

2
2h

σ1
√
T1 − h

)Φ(−x1(2) −
σ̃2
2h

σ2
√
T2 − h

)
e
−(u1)

2

2

√
2π

e
−(u2−ρu1)

2

2(1−ρ2)√
2π(1− ρ2)

du1du2 (B.24)

= −K1e
−r(T1−h)S2(0)eµ2h×

Φ2(
−m1h+log (S1(0)/K1e−r(T1−h))−0.5σ2

1(T1−h)
σ1
√
T1−h

− ρ
√
σ̃2
1hσ̃

2
2h

σ1
√
T1−h√

1 + (

√
σ̃2
1h

σ1
√
T1−h

)2

,
−m2h+log (S2(0)/K2e−r(T2−h))+0.5σ2

2(T2−h)
σ2
√
T2−h

− σ̃2
2h

σ2
√
T2−h√

1 + (
σ̃2
2h

σ2
√
T2−h

)2
; ρ∗)

= −K1e
−r(T1−h)S2(0)eµ2h×

Φ2(−
log (S1(0)µ′1/K1e

−r(T1−h))− 0.5σ∗21 T1 + ρ
√
σ̃2
1hσ̃

2
2h

σ∗1
√
T1

,− log (S2(0)µ′2/K2e
−r(T2−h)) + 0.5σ∗22 T2

σ∗2
√
T2

; ρ∗12)

= −K1e
−r(T1−h)S2(0)eµ2hΦ2(−x̃2(1) −

ρ
√
σ̃2
1hσ̃

2
2h

σ∗1
√
T1

,−x̃1(2); ρ∗) (B.25)

Note that (B.24) comes from applying the joint transformation u1 = z1−ρ
√
σ̃2
2h and u2−ρu1 = z2− (ρz1 +
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(1− ρ2)
√
σ̃2
2h). The third integral is determined below.

−
∫ ∞
−∞

∫ ∞
−∞

[
S1(0)ey1K2e

−r(T2−h)Φ(−x1(1))Φ(−x2(2))
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√
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σ̃2
√
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√
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∫ ∞
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∫ ∞
−∞

[
ez1
√
σ̃2
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∫ ∞
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∫ ∞
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√
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]
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2π(1− ρ2)
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∫ ∞
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√
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√
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−∞

∫ ∞
−∞

Φ(−x1(1) −
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σ1
√
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√
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√
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√
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ρ
√
σ̃2
1hσ̃

2
2h

σ∗2
√
T2
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The fourth integral is determined below.∫ ∞
−∞

∫ ∞
−∞

[
S1(0)S2(0)Φ(−x1(1))Φ(−x1(2))ey1ey2
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√
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√
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=

∫ ∞
−∞

∫ ∞
−∞

[
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√
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√
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√
h

)+(
y2−m2h

σ̃2
√
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∫ ∞
−∞

∫ ∞
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√
σ̃2
2h+m2h

] e −1

2(1−ρ2) [z
2
1−2ρz1z2+z22]

2π
√

1− ρ2
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∫ ∞
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√
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√
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1(T1−h)+σ̃2
1h+ρ
√
σ̃2
1hσ̃

2
2h

σ1
√
T1−h√

1 + (

√
σ̃2
1h

σ1
√
T1−h

)2

,
−m2h+log (S2(0)/K2e−r(T2−h))+0.5σ2

2(T2−h)+σ̃2
2h+ρ
√
σ̃2
1hσ̃

2
2h

σ2
√
T2−h√

1 + (
σ̃2
2h

σ2
√
T2−h

)2
; ρ∗)

= S1(0)S2(0)eµ1h+µ2h+ρ
√
σ̃2
1hσ̃

2
2hΦ2(−x̃1(1) −

ρ
√
σ̃2
1hσ̃

2
2h

σ∗1
√
T1

,−x̃1(2) −
ρ
√
σ̃2
1hσ̃

2
2h

σ∗2
√
T2

; ρ∗) (B.27)

where, for the jth asset, we have

−x̃1(j) = −
log (Sj(0)µ′j/Kje

−r(Tj−h)) + 0.5σ∗2j Tj

σ∗j
√
Tj

(B.28)

and

−x̃2(j) = −
log (Sj(0)µ′j/Kje

−r(Tj−h))− 0.5σ∗2j Tj

σ∗j
√
Tj

(B.29)
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Combining the results of (B.22)–(B.27) yields a closed form solution for (B.18).
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Appendix C

Glossary of Notation

In this appendix we outline some important notation that is used in each chapter of this
thesis.

C.1 Chapter 1

1. CEF: Closed end fund [Chapter 1 on page 1];

2. CEFs: Closed end funds [Chapter 1 on page 1];

3. CEBF: Closed end bond fund [Chapter 1 on page 1];

4. CEBFs: Closed end bond funds [Chapter 1 on page 1];

5. OEBF: Open end bond fund [Chapter 1 on page 1];

6. OEBFs: Open end bond funds [Chapter 1 on page 1];

7. RB: Risky bond [Chapter 1 on page 1];

8. ERR: Expected rate of return [Chapter 1 on page 1];
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C.2 Chapter 2

1. OEF: Open end fund [Section 2.1 on page 4];

2. UIT: Unit investment trust [Section 2.1 on page 4];

3. CEF: Closed end fund [Section 2.1 on page 4];

4. USD: U.S. dollars [Table 2.1.1];

5. IPO: Initial Public Offering [Section 2.3 on page 8];

6. NAVt: the net asset value of the closed end fund at time t [Section 2.3 on page 8];

7. Pt: the price per share of the closed end fund at time t [Section 2.3 on page 8];

8. DISCt: the discount per share of the closed end fund at time t [Section 2.3 on page 8];

9. SEC: Securities and Exchange Commission [Section 2.5 on page 9];

10. AMPS: Auction market preferred shares [Subsection 2.7.1 on page 21];

11. bps: Basis Points [Subsection 2.7.4 on page 25];

C.3 Chapter 3

1. FV: Face value of debt [Section 3.1 on page 29];

2. Si(t): Asset i price at time t, for i = 1, . . . , n [Section 3.1 on page 29];

3. Ti: Asset i time to maturity, for all i = 1, . . . , n [Section 3.1 on page 29];

4. Ki: Face value of asset i, for all i = 1, . . . , n [Section 3.1 on page 29];

5. RBi(t): risky bond (RB) price at time t of firm i with firm price Si(t) [as defined
(3.1.1)];

6. Pi(Si(t), Ki, r, t, Ti, σ
2
i ): price of a European put option at time t written on firm i

with firm price Si(t), asset volatility σi, with option contract maturity of Ti and risk
free rate r [Section 3.1 on page 29];
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7. Fi(t): is defined as the sigma algebra (or information) for Si(t) at time t [as defined
in section 3.1 on page 29];

8. F(t) is the sigma algebra (or available information) for all of S1(t), . . . , Sn(t) at time
t [as defined in section 3.2.1 on page 31];

9. Y TMi(t): is the yield to maturity on the credit risky bond RBi(t) priced on firm i
at time t [as defined in (3.1.3)];

10. V (T ∗): closed end bond fund value at time T ∗ [as defined in (3.2.1)];

11. K∗: Face value of the debt taken by the CEBF [as defined in Section 3.2.2 on page 32];

12. T ∗: Maturity of the debt K∗ taken by the CEBF V (·) [Section 3.2 on page 31];

13. VUL(T ∗): the unlevered CEBF value [as defined in (3.2.2)];

14. VL−dt(T
∗): the value of the debtholder portion of the levered CEBF [as defined in

(3.2.5)];

15. VL−eq(T
∗): the value of the equityholder portion of the levered CEBF [as defined in

(3.2.6)];

16. r: risk free rate [Section 3.3 on page 34];

17. σi: Asset i volatility according to the Black and Scholes European option pricing
model [Section 3.3 on page 34];

18. Std. Dev.: Standard Deviation [Section 3.3.1 on page 38]

19. ρLow: 5 × 5 correlation matrix in a low correlation environment [Introduced in Sec-
tion 3.3 on page 34 and defined in Section A.2 on page 69];

20. ρHigh: 5 × 5 correlation matrix in a high correlation environment [Introduced in
Section 3.3 on page 34 and defined in Section A.2 on page 69];

C.4 Chapter 4

1. EP [·]: is the expected value evaluated under the Real World P-measure [Section 4.1
on page 49];
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2. EQ [·]: is the expected value evaluated under the Risk Neutral Q-measure;

3. EP [RP (h)]: is the expected rate of return on a European put option priced using
Rubinstein’s option pricing model over a holding period h [as defined in (4.1.1)];

4. EP [RRB(h)]: is the expected rate of return on a European put option priced using
Rubinstein’s option pricing model over a holding period h [as defined in (4.2.1)];

5. EP [RL−eq(h)]: the expected equityholder rate of return of the levered CEBF over a
holding period h [as defined in (4.4.1)]

6. EP [RL−dt(h)]: the exptected debtholder rate of return of the levered CEBF over a
holding period h [as defined in (4.4.2)];

7. λUL(h): equityholder Sharpe Ratio for an unlevered closed end bond fund [as defined
in (4.3.4)];

8. λL−eq(h): equityholder Sharpe Ratio for levered closed end bond fund [as defined in
(4.4.5)];

9. λL−dt(h): debtholder Sharpe Ratio for levered closed end bond fund [as defined in
(4.4.6)];

10. µi: Asset i P-measure expected rate of return for all i = 1, . . . , n under Rubinstein’s
option pricing model [Section 4.5 on page 53];

11. σ̃i: firm i for all i = 1, . . . , n, P-measure volatility under Rubinstein’s option pricing
model [Section 4.5 on page 53];

C.5 Appendix A

1. r: is the constant risk free interest rate [as defined in section A.1.1 on page 61];

2. δ: is the constant dividend yield on the underlying asset S(·) [as defined in sec-
tion A.1.1 on page 61];

3. σ: is the constant volatility of the underlying asset S(·) [as defined in section A.1.1
on page 61];

4. µ′ = (r− δ− σ2

2
)(T − t): simplified notation [as defined in section A.1.1 on page 61];
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5. σ′ = σ
√
T − t: simplified notation [as defined in section A.1.1 on page 61];

6. N (µ, σ): denotes a Normal distribution with mean µ and variance σ2 [as defined in
section A.1.1 on page 61];

7. φ(x): denotes the probability density function of a standard Normal density with
mean zero and unit variance evaluated at x [as defined in section A.1.1 on page 61];

8. Φ(x): denotes the cumulative standard Normal distribution with mean zero and unit
variance evaluated at x [as defined in section A.1.1 on page 61];

9. d1 =
log(S(0)/K)+(r−δ+σ2

2
)(T−t)

σ
√
T−t : as defined in the Black Scholes framework [as defined

in section A.1.1 on page 61];

10. d2 =
log(S(0)/K)+(r−δ−σ

2

2
)(T−t)

σ
√
T−t : as defined in the Black Scholes framework [as defined

in section A.1.1 on page 61];

11. GBM: Geometric Brownian Motion process [as defined in section A.1.2 on page 64];

12. ρ: Correlation between two asset price processes S1(t) and S2(t) [as defined in sec-
tion A.1.2 on page 64];

13. BVN (µx, µy, σx, σy, ρ): denotes a Bivariate Normal Distribution with means µx and
µy with standard deviations σx and σy with correlation ρ [as defined in section A.1.2
on page 64];

14. µ′i = (r − δi − σ2
i

2
)(Tj − t): for i = x, y and j = 1, 2 [as defined in section A.1.2 on

page 64];

15. σ′i = σi
√
Tj − t: for i = x, y and j = 1, 2 [as defined in section A.1.2 on page 64];

16. φ2(u, v; ρ): denotes a probability density function of a standard Bivariate Normal
distribution evaluated at u and v with correlation parameter ρ [as defined in sec-
tion A.1.2 on page 64];

17. Φ2(u, v; ρ): denotes a standard Bivariate Normal cumulative density function evalu-
ated at u and v with correlation parameter ρ [as defined in section A.1.2 on page 64];

18. di(j): denotes the value of di for i = 1, 2 as denoted in the standard Black and Scholes
framework for the jth asset, j = 1, 2 [as defined in section A.1.2 on page 64];
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C.6 Appendix B

1. σ∗ =
√
σ̃2 h

T
+ σ2 (T−h)

T
: weighted geometric average of σ̃ over a period h and σ over

the period T − h [see section B.2.1 on page 74];

2. m = µ− 1
2
σ̃2: Real-World P-measure Lognormal model parameter [see section B.2.1

on page 74];

3. x̃ = log (S(0)µ′/Ke−r(T−h))

σ∗
√
T

: Black-Scholes style analogue shorthand of d1 − 1
2
σ2 [see

section B.2.1 on page 74];

4. µ′ = eµh: expected rate of return under the Real-World P-measure [see section B.2.1
on page 74]:

5. Pi(h) = Pi(Si(h), Ki, r, h, Ti, σ
2
i ): is a European put option at time h written on firm

i with firm price Si(h), asset volatility σi, with option contract maturity of Ti and
risk free rate r [as defined in (B.8) in B.2.2 on page 75];

6. RBi(h) = Kie
−r(Ti−h) − Pi(Si(h), Ki, r, h, Ti, σ

2
i ): is a risky bond at time h written

on firm i with firm price Si(h), asset volatility σi, with option contract maturity of
Ti and risk free rate r [as defined in (B.9) in B.2.2 on page 75];

7. ρ′ =
√
σ̃2h
√
σ̃2h√

σ̃2h+σ2(T−h)
√
σ̃2h+σ2(T−h)

: resulting implied correlation from the variance of

European put option price [see section B.2.2 on page 75];

8. ρ: the correlation between the two firms [See section B.2.3 on page 78];

9. σ12 = ρσ̃1σ̃2: the covariance between the two firms [See section B.2.3 on page 78];

10. mjh = (µj −
σ̃2
j

2
)h: Real-World P-measure Lognormal model parameter for j = 1, 2:

[See section B.2.3 on page 78];

11. σ∗j =
√
σ̃2
j
h
Tj

+ σ2
j (1− h

Tj
): weighted geometric average of σ̃j over a period h and σj

over the period Tj − h for assets j = 1, 2 [See section B.2.3 on page 78];

12. ρ∗ = σ12
σ∗1σ
∗
2

√
T1T2

: resulting firm correlation with volatilities σ∗1 and σ∗2 [See section B.2.3

on page 78];

13. µ′j = eµjh: expected rate of return of stock j under the Real-World P-measure for
j = 1, 2 [See section B.2.3 on page 78];
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14. −x̃1(j) = − log (Sj(0)µ
′
j/Kje

−r(Tj−h))+0.5σ∗2j Tj

σ∗j
√
Tj

: Black-Scholes style analogue shorthand of

d1 for assets j = 1, 2 [See section B.2.3 on page 78];

15. −x̃2(j) = − log (Sj(0)µ
′
j/Kje

−r(Tj−h))−0.5σ∗2j Tj

σ∗j
√
Tj

: Black-Scholes style analogue shorthand of

d2 for assets j = 1, 2 [See section B.2.3 on page 78];
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