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Abstract

It is widely accepted that OAuth is the most popular authorization scheme adopted and

implemented by industrial and academic world, however, it is difficult to adapt OAuth

to the situation in which online applications registered with one cloud party intends to

access data residing in another cloud party. In this thesis, by leveraging Ciphertext-Policy

Attribute Based Encryption technique and Elgamal-like mask over the protocol, we propose

a reading authorization scheme among diverse clouds, which is called fuzzy authorization, to

facilitate an application registered with one cloud party to access to data residing in another

cloud party. More importantly, we enable the fuzziness of authorization thus to enhance

the scalability and flexibility of file sharing by taking advantage of the innate connections

of Linear Secret-Sharing Scheme and Generalized Reed Solomon code. Furthermore, by

conducting error checking and error correction, we eliminate operation of satisfying a access

tree. In addition, the automatic revocation is realized with update of TimeSlot attribute

when data owner modifies the data. We prove the security of our schemes under the

selective-attribute security model. The protocol flow of fuzzy authorization is implemented

with OMNET++ 4.2.2 and the bi-linear pairing is realized with PBC library. Simulation

results show that our scheme can achieve fuzzy authorization among heterogeneous clouds

with security and efficiency.
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Chapter 1

Introduction

Cloud storage is a model of networked enterprise storage where data is stored in virtualized

pools of storage which are generally hosted by third parties. The third parties, or cloud

service providers (CSPs) operate large data centres. Clients of cloud service providers who

require their data to be hosted buy or lease storage capacity from CSPs. Those clients are

called data owners, or owners for short. The data center operators, in the background,

virtualize the resources according to the requirements of the customer and expose them

as storage pools, which the customers can themselves use to store files or data objects.

Data hosted in the cloud is referred as outsourced data. Physically, the resource may span

across multiple servers. The safety of the files depends upon the hosting websites.

Advantages of cloud storage such as ease of accessibility, in-time syncing and less phys-

ical space consuming, etc., have motivated more and more people to adopt cloud storage

service provided by companies like JustCloud, Google Drive and so on. In the meantime,

cloud computing services are boosting as well. There were 360 million-plus users and

32 thousand-plus applications merely in Google Chrome Web Store by the middle April

2013 [1]. As a result, the demand of inter-operations and authorizations between cloud

storage service providers and cloud application service providers becomes more and more

urgent. For example, a data owner stores several PDF files inside Justcloud, which is the

top one cloud storage service provider [2]. Later on, data owner wants to merge some

of the PDF files into one with the help of pdfmerge, an online cloud application service
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provider registered with Google Chrome Web Store [3]. The application pdfmerge needs

to be authorized to access the pdf files residing in Justcloud, i.e., cloud storage provider;

otherwise owner has to download the files from Justcloud and upload them to pdfmerge.

Since the direct authorization solution outweighs the downloading and uploading opera-

tions in perspective of flexibility, scalability, efficiency and convenience, a proper and secure

authorization protocol is needed.

One of the main obstacles is that it is tough to build trust between owner and cloud

application, e.g., pdfmerge, because they are residing in diverse cloud parties. Another

unwieldy issue is that multiple access tokens and secret keys are needed rather than one if

owner wants to authorize access right of several files. Therefore, a scheme that builds the

trust between owner and applications and reduces the number of access tokens and secret

keys is required.

It is widely accepted that OAuth [4] is the most widely-adopted authorization scheme,

unfortunately, it is infeasible to address the situation mentioned above. This is because

Oauth protocol requires both resource data and accessing application to be in the same

domain. For example, http://pixlr.com, a web-application targeting on editing pictures

online, registered with Google Chrome Web Store which can easily access to data residing

in Google Drive, but can hardly edit pictures from JustCloud. By introducing a trusted

organization Authority which maintains the integrity of cloud application service provider,

AAuth proposed by Tassanaviboon et al. addressed a similar situation in which owner and

consumer are not the same domain [5]. Unfortunately, the feeble scalability of authorization

in AAuth does not fix multiple authorizations required by the situation mentioned above.

In order to address the aforementioned issues, we propose fuzzy authorization (FA) for

cloud storage which is an secure file-sharing scheme with high scalability and flexibility

by leveraging and modifying Ciphertext-Policy Attribute Based Encryption (CP-ABE) [6]

and Oauth. Moreover, FA is suitable for owner to share encrypted data with others and

keep the content of data from being known by the cloud storage provider.

The term fuzzy indicates that our authorization scheme has attribute-discrepancy toler-

ance. Depending on where the checking nodes are added, different attribute sets will possess

error-tolerance ability and hence different functionality can be achieved. For example, if
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the checking nodes are inserted into the sub-tree of file attributes, the file-attribute set will

gain error-tolerance property. Therefore one secret key issued to an application could be

used to access multiple files which share a large enough overlap on the file-attribute set.

While if we add the checking nodes into the sub-tree of application attributes, the archive

without changing or updating the access policy could be accessed by multiple applications

as well as enough numbers of attributes are shared among the applications.

Authorization schemes supporting fuzziness can also be derived from Fuzzy IBE. How-

ever, the leakage of file attributes to ASPs is needed. Knowing the file attributes, one can

easily deduce a certain amount of private information of owner and hence jeopardize the

privacy of owner. For example, last modified time of file alludes owner’s activity time.

Comparing to the authorization schemes derived from Fuzzy IBE, our scheme avoids file

attributes’ leakage and protects owner’s privacy thoroughly.

The key features of FA include:

• Fuzzy authorization enables data owner to share their data with applications from a

different cloud party.

• By exploiting the transformation from Linear Secret-Sharing Scheme (LSSS) to Gen-

eral Reed Solomon (GRS) code and inserting checking nodes into the access tree,

FA enhances the scalability and flexibility of file-sharing. Moreover, through error

detection and error correction, FA avoids owner sending file attributes to application

service providers and eliminates the procedure of satisfying access tree [7].

• FA scheme revokes applications’ right of accessing to a file automatically when the

file is modified and re-encrypted by updating the secret share of TimeSlot attribute.

To summarize, the contributions of our work are as follows:

1. We proposes a new secure authorization scheme for cloud storage providing error

tolerance, called fuzzy authorization (FA).

2. The security analysis shows that our FA scheme provides a thorough security of

outsourced data, including confidentiality, integrity and secure access control.
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3. The simulation results demonstrates that FA reduces the storage consumption com-

pare to other similar possible authorization schemes. Simulation of FA protocol also

suggests that our scheme could achieve the error tolerance and realize fuzzy autho-

rization

The rest of the thesis is organized as follows: The literature survey is discussed in the Chap-

ter 2 and preliminaries are introduced in Chapter 3. While in Chapter 4, we present the

constructions of our scheme and the protocol procedures. Then detailed security reduction

and analysis are then given in Chapter 5. In Chapter 6, we demonstrate implementa-

tion environment, optimizations and experience results. Finally, in Chapter 7, we make a

conclusion and give out the future work.
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Chapter 2

Literature Survey

Cloud storage has grown to become popular and is adopted by many individuals and

organizations. The widely adoption of cloud storage raised several security concerns about

the outsourced data, such as confidentiality, integrity and access control of the data. Both

academic and industrial world are making efforts to maintain the security of the outsourced

data.

2.1 Encryption Solutions for Cloud Storage

Cloud storage providers are neither considered as fully trustworthy nor are resistant to

attacks because they have access to the storage infrastructure. So the encryption of owner’s

data seems to be necessary. A plenty of encryption solutions are devised and introduced into

cloud computing environment. For the confidentiality of the outsourced data, Agudo et al.

suggested several encryption schemes that can be adopted in cloud storage environment [8].

Xu et al. [9] adopt the traditional AES encryption for their scheme and introduce the access

policy on the top of this encryption.

On the premise that individuals previously possessed the plain data M and stored the

secret key k derived from M in their local storage, Davida et al. introduce their encryption

solution for cloud-based storage [10]. Since the secret key is derived as the hash value of M ,
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the requirement of pre-sharing key among individuals is avoided. Moreover, by leveraging

Error Correction Code (ECC) encoding and decoding, they suggest a scheme to achieve

compressed encryption for slightly different messages. In their compressed encryption

construction, messages M1 and M2 are similar. Message M1 is first decoded as canonical

M ′, and the difference vector δ1 = M1

⊕
M ′ is computed. For the similar message M2,

δ2 = M2

⊕
M ′ is calculated as well. In order to reduce the storage consumption, the cipher-

text M ′ and the compressed δ1 and δ2 are stored into the cloud rather than cipher-texts of

both M1 and M2.

Vimercati et al. propose an encryption scheme relying on the translation from the

access control policy to an equivalent encryption policy which will reduce the number of

keys and amount of encryption [11]. In order to enable a cloud storage user to authorize

the limited access right to a desired group of other users, an external honest-but-curious

service is introduced to manage the authorization policies. But the external service is

unable to approach the plain data and prevent authorized user to access data. The plain

data is encrypted with a symmetric key. By exploiting a Diffie-Hellman key agreement

method, the symmetric key is derived from a secret held by each group user. So only the

users who hold the appointed secrets can obtain the key and perform decryption.

2.2 Integrity Schemes for Cloud Storage

Besides confidentiality, integrity is another significant security concern for cloud storage.

As the outsourced data is in control of a cloud storage provider rather than owner, the

data can be easily tampered due to intentional or unintentional reasons.

Several researchers suggests to adopt a third party auditor (TPA) to maintain the

integrity of owner’s data stored in cloud [12] [13]. Zhu et al. introduce a dynamic au-

dit services for integrity verification [13], in which TPA regularly audit the integrity and

availability of the outsourced data with index-hash table (IHT) and public verification pa-

rameters (PVP) that are previously stored in TPA . In addition, authorized entities with

secret key sk have the ability to dynamically update IHT and PVP stored in TPA. Wang

et al. suggest a TPA leveraging the homomorphic linear authenticator [14] to reduce the
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communication and computation overhead compared to the straightforward data auditing

approaches.

Rather than relying on a TPA, Bowers, Juels et al. devise High-Availability and In-

tegrity Layer (HAIL) [15] for cloud storage to enhance the availability and integrity of data

residing in cloud. In this paper, they combine the proof of retrievability (POR) [16] and

proof of data possession (PDP) [17]. No third party auditor is needed because a single

trusted verifier is attached with outsourced data and will be verified by a client or a service

acting on behalf of a client.

2.3 Access Control for Cloud Storage

Works have been done as to migrate and adapt the mature traditional authorization man-

agement to cloud computing [18]. Besides that, a series of new access control schemes and

solutions have been researched and devised for cloud environment based on the general

access control solutions.

Of all the access control architectures, Attribute-Based Encryption (ABE) schemes are

the most popular ones due to its scalability and security. Unlike Access Control List (ACL)

only defines which entities have the access right, ABE schemes encrypt the data under the

access policy which only ensure the eligible entities to do decryption. A distinguished

work Fuzzy Identity-Based Encryption (IBE) [19] was introduced by Sahai and Waters in

2005. In Fuzzy IBE scheme, a private key for an identity set ω, can be used to decrypt

a cipher-text encrypted with an slightly different identity set ω′. Fuzzy IBE realizes error

tolerance by setting the threshold value of root node smaller than the size of identity set.

Later based on Fuzzy IBE, Goyal et al. present Keypolicy-Attribute Based Encryption

(KP-ABE) [20] in which cipher-texts are labelled with sets of attributes and private keys

are associated with access structures that control which cipher-texts a user can decrypt.

Bethencourt et al. then introduce a complementary scheme to KP-ABE, called Ciphertext-

Policy Attribute-Based-Encryption (CP-ABE) [6] in which attributes are used to describe

the user’s credentials and the formulas over these credentials are attached to the cipher-text

by the encrypting party. Waters supplies more concrete and general CP-ABE construc-
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tions in later papers [21] [22]. Boneh constructed BB1 and BB2 approaches [7] to build

Identity-Based Encryption. The hierarchical construction within BB1 and BB2 can be ef-

ficiently secured against chosen-ciphertext attack. More importantly, Boneh extended the

underlying Diffie-Hellman assumption to asymmetric pairing which is more advantageous

and practical. Both CP-ABE and KP-ABE can be easily adapted to cloud environment

and hence a lot of research work are founded on them [5] [23] [24] [25].

Key to Cloud (K2C), is realized by Zarandioon et al. through Attribute Based-

Hierarchical Key Updating (AB-HKU) [23]. Built on top of KP-ABE with an access

tree, AB-HKU scheme supports efficient delegation and revocation of privileges for hier-

archies as well as eliminates the requirements of complex cryptographic data structures.

AB-HKU is especially convenient and efficient in revocation through one increment of the

root threshold value.

Tassanaviboon et al. proposes an OAuth and ABE based authorization in semi-trusted

cloud computing called AAuth [5]. Their authorization method enables an owner-to-

consumer encryption and supports encrypted file sharing without revealing owner’s se-

cret key to consumers by introducing a third party authority. In AAuth, owner’s data is

first encrypted by a symmetric key; then the symmetric key is encrypted under modified

CP-ABE. To ensure the integrity of the outsourced data, integrity tag is computed and

attached with the cipher-texts. Only authorized consumer is granted with secret key to

decrypt for the symmetric key.

A cryptographic-based access control [24] for owner-write-user-read applications is in-

troduced by Wang et al. in 2009. Their access control system encrypts every data block of

cloud storage and adopts a key derivation method to reduce the number of keys. Yu ad-

dressed fine-grained data access control, efficient key/user management, user accountability

and etc., for cloud storage in his dissertation [25].

A solution to address the proof of ownership and eliminate the unnecessary client-

side duplication of users sensitive data files is devised by Xu et al. [9]. To protect data

privacy from both outside adversaries and the honest-but-curious cloud storage server, they

encrypts the sensitive data with AES method and introduces their own hash function and

constructs Merkle Hash Tree (MHT) to provide hash-as-a-proof functionality. During the
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process of proof-of-ownership, a cross-user provides the digest hash value and the random

leaf node value of MHT required by the cloud server can be proved as owner and access to

the data.

Due to the reason of economy and simplicity, most cloud environment tends to utilize

the mature method or standardized method to handle the security concerns in the cloud

storage. Google Drive, for example, authorize the access right based on OAuth standard [4].

From industrial aspect, Cloud Data Management Interface (CDMI) [26], was stan-

dardized by Storage Networking Industry Association (SNIA) specifying a protocol for

self-provisioning, administering and accessing cloud storage. In CDMI, access control

comprises the mechanisms by which various types of access to data are authorized and

permitted or denied. CDMI uses the well-known mechanism of an ACL as defined in the

NFSv4 standard [27].

2.4 Other Security Concerns for Cloud Storage

Besides the security of outsourced data, there are several other issues that might be con-

sidered.

Targeted on protecting users’ consumption pattern of cloud computing resources, such

as CPU time, storage space etc., anonymous yet authorized and bounded cloud resource

schemes [28] are introduced by Slamanig. In the anonymous yet authorized and bounded

cloud resource schemes, a partially blindly signed token comprising the setting where users

should be able to register and obtain a resource bound from a cloud provider is granted

to user. Convinced that the anonymous user’s request for resource, computing or storage

resource, does not exceed the limit, cloud provider grants the request. Therefore, there is

no way for cloud provider to figure out the consumption pattern of a particular user due

to the anonymity and unlink-ability.
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Chapter 3

Preliminaries

In this chapter, we primarily introduce Shamir’s (K, N) threshold scheme in Section 3.1.

Then some background about GRS encoding, error checking and decoding are reviewed in

Section 3.2. Then in Section 3.3, the fundamental information of CP-ABE is given. At

last the asymmetric bilinear pairing is given in Section 3.4 and the security assumption is

demonstrated in Section 3.5.

3.1 Shamir’s (K,N) Threshold Scheme

Secret sharing acts as an critical part in CP-ABE and hence Waters gives out the denifi-

nition of a general Linear Secret-Sharing Scheme (LSSS) [21]. Shamir’s (K, N) threshold

scheme is a typical LSSS which plays an essential role in constructing the access policy

tree and the recovery of the top secret s.

3.1.1 Distribute the Shares of Top Secret

In order to share a top secret s ∈ Zq, we divide it into N pieces si ∈ Zq, i ∈ U where U

is an index set {1, 2, ..., N}. Given p(x) = s + p1x + p2x
2 + ... + pK−1x

K−1, where pi are
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randomly selected from Zq. The secret shares are evaluated as

si = p(xi) (3.1)

where xi ∈ Zq are distinct non-zero numbers.

3.1.2 Reconstruct the Top Secret

Given an index set U ′ = {i1, i2, ..., iK} and K distinct points in the 2-dimensional plane

(xi1 , yi1), (xi2 , yi2), ..., (xiK , yiK ), by interpolation, an unique polynomial

p(x) = p0 + p1x+ p2x
2+, ...,+pK−1x

K−1,

where pk(x) =
∏

j∈U ′,j 6=ik

x− xj
xik − xj

;
(3.2)

or equivalently, p(x) =
K∑
k=1

∏
j∈U ′,j 6=ik

x− xj
xik − xj

yik (3.3)

can be reconstructed. Hence given any different K out N points, the top secret s can be

recovered as

s = p(0) =
K∑
k=1

∏
j∈U ′,j 6=ik

0− xj
xik − xj

yik . (3.4)

3.2 Generalized Reed Solomon (GRS) Code Encoding

and Decoding

3.2.1 GRS Code Encoding

Let F be a finite field with q elements, vector of code locators γ = (γ1, γ2, ..., γN) ∈ FN,

where γi are distinct and vector of column multipliers v = (v1, v2, ..., vN) ∈ FN where

vi 6= 0. Let p = (p0, p1, ..., pK−1), pi ∈ F be a message vector to be encoded and the
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message polynomial is p(x) =
∑K−1

i=0 pix
i. Then the corresponding codeword vector is

presented as

c = (c1, c2, ..., cN)

= (v1p(γ1), v2p(γ2), ..., vNp(γN)).
(3.5)

3.2.2 GRS Code Error Checking

GRS code is a linear [N,K, d] code, where d = N −K + 1, with error correction ability e

= bN−K
2
c. The parity check matrix is defined as

H ,


1 1 ··· 1
γ1 γ2 ··· γN
γ21 γ22 ··· γ2N
...

...
...

...
γN−K−1
1 γN−K−1

2 ··· γN−K−1
N


 v1 0 0 ··· 0

0 v2 0 ··· 0
0 0 v3 ··· 0
...

...
...

...
...

0 0 0 ··· vN

 . (3.6)

Suppose vector r = (r1, r2, ..., rN) is received. We denote the error vector as e = (e1, e2, ..., eN).

Decoder computes the syndrome vector as

s = (s1, s2, ..., sN−K)

= Hr>

= H(c> + e>)

= He>.

(3.7)

This yields

sl+1 =
N∑
j=1

ejvjγ
l
j, l = 0, 1, ..., N −K − 1. (3.8)

An all-zero vector s indicates that there is no error. Otherwise, error(s) exists and

further error correction process must be performed.

3.2.3 GRS Code Decoding

In this subsection, we briefly review the three decoding algorithms of GRS code. Recall

that r = (r1, r2, ..., rN) is the received vector, c = (c1, c2, ..., cN) is the codeword, γ =
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(γ1, γ2, ..., γN) is the code locator vector and v = (v1, v2, ..., vN) is the column multiplier

vector.

Interpolation-based decoding and syndrome-based decoding are two well-known de-

coding types of GRS codes. Berlekamp-Welch algorithm [29], a typical interpolation-

based decoding algorithm, and Peterson-Gorenstein-Zierler(PGZ) algorithm [30], a classi-

cal syndrome-based decoding procedure are reviewed here. Both algorithms are well known

for their efficiency. Intuitively, one of these algorithms should be adopted to perform decod-

ing. Unfortunately, none of them, nor the other advanced decoding algorithm is applicable

in our system. A detailed representation of how these algorithms fail to decoding in our

system is shown in the next chapter Section 4.5.5. Fortunately, Reed-Solomon’s original

decoding method can be adapted in our situation.

Berlekamp-Welch Algorithm

Let two vectors x = {x1, x2, . . . , xn} and y = {y1, y2, . . . , yn}, xi, yi ∈ F, the distance of

x and y is defined as d(x, y) = {i|xi 6= yi, 1 ≤ i ≤ n}. We define E(x) an error locator

polynomial over F such that

E(γi) = 0 where ri 6= ci and deg(E(x)) = e. (3.9)

That is

E(x) =
∏
γi∈J

(x− γi), where J = {γi|ri 6= ci} (3.10)

and

|J | = e ≤ N −K
2

. (3.11)

From equation (3.9), it is easy to check equation

riE(γi) = viP (γi)E(γi), i = 1, 2, ...N (3.12)

will always hold. We now define a polynomial Q(x) over F as

Q(x) = P (x)E(x). (3.13)
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From equations (3.11) and (3.12), it follows

deg(Q(x)) ≤ N −K
2

+K − 1 (3.14)

and

Q(γi) =
E(γi)ri
vi

, i = 1, 2, ...N. (3.15)

Berlekamp-Welch decoder takes the codeword length N , the number of errors e, and the

received word r as input, and outputs either P (x) or failure. The decoder contains two

main steps.

1. By interpolation, decoder computes a non zero polynomial E(x) of degree e such

that (3.11), (3.14) and (3.15) hold. Failure will be outputted if there is no such

polynomials E(x) or Q(x) satisfying those conditions.

2. Let P ′(x) = Q(x)
E(x)

, and c′ = (c′1, c
′
2, ..., c

′
N) where c′i = viP

′(γi). Let d(c′, r) denote

the distance between codeword derived from P ′(x) and the received codeword. If

d(c′, r) ≤ e, sets P (x) = P ′(x).

Peterson-Gorenstein-Zierler (PGZ) algorithm

In PGZ algorithm, syndrome polynomial S(x) = 1 +
N−K−1∑
i=1

sixi is defined based on vector

s. Error locator polynomial is represented as Λ(x) = 1 +
e∑
i=1

Λix
i. Expanding the equa-

tion (3.12), a certain connection between coefficients of Λ(x) and S(x) can be deducted

and expressed as [ s1 s2 ··· se
s2 s3 ··· se+1

...
...

...
...

se se+1 ···s2e−1

] Λe
Λe−1

...
Λ1

 =

[ −se+1
−se+2

...
−s2e

]
. (3.16)

Denote the left-most matrix as Se×e and the invert of this matrix as S>e×e. Solving the

above equation will give us the coefficients of error locator polynomial. With further

factorization of Λ(x), set J , i.e., the locations of where went wrong will be identified.

From equation (3.10), error polynomial E(x) can be obtained.
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Original Decoding Algorithm

Given received vector r = (r1, r2, ..., rN) and index set U = {1, 2, ..., N}, decoder selects

K out of N indices in all possible ways to form subset U ′′ = {i1, i2, ..., iK} of U . Decoder

then interpolates a potential message polynomial p′(x) of degree K − 1 as

p′(x) = p′0 + p′1x+ p′2x
2+, ...,+p′K−1x

K−1 =
K∑
t=1

∏
j∈U ′′,j 6=it

x− γj
γit − γj

rit . (3.17)

Consequently, the potential message is given as the vector of coefficients of p′(x), i.e.,

p′ = (p′0, p
′
1, ..., p

′
K−1). Since all possible selections are made, the most often occurring

potential message polynomial gives a codeword closest to the received word [31]. However,

we need to re-encode the message by evaluating p′(x) at γi to get codeword c′. Denote

d(c′, r) as the distance of c′ and r, if d(c′, r) ≤ e, c = c′ is the canonical codeword and

s = p′(0) is the top secret. If not, decoding fails.

Despite the fact that Reed-Solomon’s original decoding method’s inefficiency, in terms

of small size messages and codewords, it is still useful and practical. Moreover, unlike the

other advanced and efficient decoding algorithms, the original decoding method helps us

circumvent the discrete logarithm problem in CP-ABE scheme. A detailed description of

why advanced algorithm like Berlekamp-Welch algorithm and PGZ algorithm cannot be

used is given in the next chapter. The original GRS decoding procedure brought up by I.

S. Reed and G. Solomon [31] serves our purpose and hence is adopted here.

3.3 CP-ABE

CP-ABE method is conceptually close to traditional Role-Based Access Control (RBAC).

In this section, we present the construction of access tree, procedure of satisfying an access

tree, and the four main algorithms of CP-ABE.
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3.3.1 CP-ABE Model

A sensitive message is encrypted under the access tree and a private key used to decrypt

must have an attribute set S satisfying the access tree.

Access Tree T

An access tree T is constructed with AND and OR gates. Each internal node x of T is a

threshold gate attached with a threshold value kx. Assume there are numx children nodes

of the internal node x, CP-ABE assigns indexes of the children nodes from 1 to numx.

When kx = numx, the threshold gate is an AND gate and when kx = 1, the threshold

gate is an OR gate.

Several functions are defined to facilitate the working with access trees. Like function

parent(x) returns the parent of node x. Function att(x) represents the attribute that

attached with node x when x is a leaf node. The number associated with each node is

represented as index(x). Where the index values are uniquely assigned to nodes in the

access structure for a given key in an arbitrary manner. Those functions are also utilized

in our FA scheme.

Satisfying Access Tree

Denote r the root node of access tree. For an arbitrary node x in the access tree, Tx
represents a sub-tree rooted at node x. A special case is when x = r, Tx is the access tree

itself. If an attribute set S satisfy Tx, we set Tx(S) = 1.

Satisfying access tree is a recursive procedure starting from the root node. If x has no

child, then Tx(S) = 1 if and only if att(x) ∈ S. If x has children, we set Tx(S) to 1 if and

only if at least kx children return 1 where kx is the threshold value associated with x.

The procedure of satisfying access tree is used to select the matching secret key com-

ponents when decrypt the cipher-text.
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3.3.2 Construction of CP-ABE

CP-ABE construction is based on a symmetric bilinear pairing. There are four main

procedures of CP-ABE, Setup, Encrypt, Delegate and Decrypt. The detailed discription

of the four procedures can be found in [6] and hence is omitted in the thesis.

3.4 Bilinear Maps

Benefits such as a broader choice of elliptic curve implementations and more compact rep-

resentations of group elements make asymmetric bilinear pairing more favourable if the

symmetry is not explicitly required by a cryptographic scheme [7]. Hence, an asymmet-

ric bilinear pairing is adopted in our cryptographic scheme. Some basic definitions and

denotations about groups with efficient computable bilinear maps are introduced below.

Denote G1,G2 and GT three multiplicative cyclic groups of prime order q. Define the

generators of G1 and G2 as g1 and g2 respectively. Then the efficiently computable bilinear

pairing or bilinear map is e : G1 ×G2 → GT . Bilinear map e has the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zq, e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g1, g2) 6= 1.

Tuple (q, g1, g2, G1, G2, GT ) is called an asymmetric bilinear setting when G1 6= G2. If

G1 = G2 = G, and g is a generator of G, then the tuple (q, g, G, GT ) is a symmetric

bilinear setting.

3.5 Decisional Bilinear Diffie-Hellman Exponent As-

sumption

Waters proposes the decisional parallel Bilinear Diffie-Hellman Exponent assumption [21]

and introduces the security of CP-ABE on this assumption. Under a generalization for
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asymmetric pairings, we introduce the computational Bilinear Diffie-Hellman Exponent

assumption as follows:

We continue to use the notations of bilinear pairing from section 3.4. Let s ∈ Zq be the

target secret that adversary intends to recover and K be the threshold value attached with

the target node. Denote W̃ as an index set of secret shares and sets W̃ ′ and W̃ ′′, where

|W̃ ′′| < K, are two disjoint subsets of W̃ . Random numbers r, a, s, β, x1, x2, ..., xN , y1,

y2, ..., yN , µ1, µ2, ..., µN , r1, r2, ..., rN are chosen from Zq. Tuple

ȳ =(g1, g2, g
y1
2 , g

y2
2 , ..., g

yN
2 , gµ1y11 , gµ2y21 , ..., gµNyN1 ,

g
µtr′t
1 , g

r′t
2 , g

ra+µtr′′t
1 , g

r′′t
2 )|∀t′ ∈ W̃ ′, ∀t′′ ∈ W̃ ′′

(3.18)

is given. To distinguish a random element T ∈ GT from e(g1, g2)ras is referred to as

the decisional Bilinear Diffie-Hellman Exponent problem (d-BDHE). Let an algorithm B
outputting z ∈ {0, 1} has advantage ε in solving d-BDHE in (G1, G2) if

|Pr[B(ȳ, e(g1, g2)ras) = 0]− Pr[B(ȳ, T ) = 0]| ≥ ε. (3.19)

Definition 1 The divisional Bilinear Diffie-Hellman Exponent Assumption holds if no

polynomial algorithm has a non-negligible advantage in solving the d-BDHE problem.
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Chapter 4

Fuzzy Authorization

We present the construction of fuzzy authorization (FA) in this chapter. First, we present

the system model and overview of our protocol in Section 4.1. The access tree structure

is established in Section 4.2. Then in Section 4.3, the archive format is introduced. The

transformation from LSSS to GRS code is introduced in Section 4.4. We provide the main

procedures and algorithms of FA in Section 4.5. At last, a comparison of FA and Fuzzy

IBE adapted in authorization is demonstrated in Section 4.6.

4.1 System Model and Overview of FA

In this section, we present an overview of the system architecture, the compendium of

protocol procedure and notations of our system as shown in Table 4.1. After that, several

possible adversary models are demonstrated.

4.1.1 Overview of Protocol

There are four main parties in the system as displayed in Fig. 4.1. We assume that all

parties hold validate public-key certificates from Certificate Authorities and communica-

tions among the four parties are protected by Transport Layer Security (TLS) channels.
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Table 4.1: Notations In The Thesis.

Notations Descriptions

ω The overall attribute set

ω′ The attribute set of files

ω′′ The attribute set of ASPs

e Maximum number of error

e Error vector

s Syndrome vector

γ Vector of code locators

v Vector of column multipliers

W̃ Index set of secret shares

W̃ ′ Subset of W̃ ; ∀t′ ∈ W̃ ′, g
utr′t
1 and g

r′t
2 are known by adversary

W̃ ′′ Subset of W̃ ; ∀t′′ ∈ W̃ ′′, g
ra+utr′t
1 and g

r′′t
2 are known by adversary

Pf (x) Polynomial attached to file sub-tree

Pa(x) Polynomial attached to application sub-tree

U The index set {1, 2, ..., N}
Y The set of all the leaf nodes in T
Y ′ Subset of Y ; contains all the leaf nodes in F-subtree

Y ′s Subset of Y ′; a selected set of leaf nodes to perform interpolation
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Figure 4.1: Example of System Model

Session tokens are adopted against replay attack during authentication. A final assump-

tion is that only owner has writing permission to cloud storage while application service

providers merely have a permission of reading.

• Application service provider (ASP): an application software resides on the vendor’s

system and is accessed by users through a web browser or through a special purpose

client software provided by the vendor. For example, http://pdfmerge.w69b.com/ is

a website to merge several pdf files into one pdf file online. ASP and application are

interchangeable in this thesis.

• Cloud storage provider (CSP): the entity which supplies storage as service to its

clients and also provides access Application Platform Interfaces (APIs) to ASPs when

ASPs hold an access token. Dropbox and JustCloud mentioned previously are such

entities.

• Application store (AS): an entity with which the application service providers must
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be registered to ensure the integrity of the applications. Google Chrome Web Store

is a typical application store.

• Data owner: an entity who stores his or her data inside cloud storage and wishes to

utilize cloud application services.

The protocol contains two phases, offline phase and running phase. In the offline phase,

data owner encrypts his or her data with a random symmetric key KE and encrypts KE

with our modified CP-ABE scheme, see details in Section 4.6. Then owner encapsulates

cipher-text of KE and cipher-text of data as an archive file and stores the archive in the

cloud. Format of the archive is defined in Section 4.3.

In the protocol running phase, when owner needs to share data with an ASP, she and

CSP join together to issue ASP the indirect secret shares of file attributes while AS and

owner collaborate to issue the indirect secret shares of application attributes. Indirect

share means that the genuine secret share is an exponent or a part of exponent of a group

elements. For example, when s1 is known as a secret share and g1 is a group element, gs1r1

is an indirect secret share.

In this thesis, we emphasize the flexibility of multiple-file sharing and therefore in our

construction, the fuzziness is realized for the file attributes. As soon as ASP gets all the

indirect secret shares, it will send a request to CSP for a formatted archive and then

perform the decryption of archive header for KE. With KE, ASP decrypts the data

cipher-text. The main objective of this thesis is to propose a secure and feasible way to

address file-sharing issue with high scalability and flexibility in cloud storage, the method

of owner accessing the resource data is not included in the scheme.

4.1.2 Adversary Models

Although entities do not trust each other, we assume that every entity will execute the

protocol honestly. We consider the following five adversary situations.

1. CSP is trusted to provide storage services properly but may wants to access owner’s
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data illegally. CSP may take advantage of the indirect shares that he possesses and

query the other indirect shares so as to reconstruct the top secret.

2. ASP may try to decrypt the unauthorized files by utilizing the previous indirect

shares that issued to him. ASP is allowed to query for the indirect shares that he

does not possess.

3. Application store which is in involved in issuing the indirect application secret shares

may try to access to owner’s data in the name of an ASP. Since he knows part of

the indirect shares of application attributes, he may desire to query about the rest

of indirect shares of application attributes and obtain the complete indirect shares

of application attributes.

4. An adversary owner may impersonate other owners to construct the indirect secret

shares with its own secret key.

5. Targeting on the secret keys and access tokens, general network attacks might be

launched by internet hackers.

Figure 4.2 shows an example of authorization. Owner wishes to use pdfmerge, a cloud

service provider to merge several pdf files stored in Dropbox into one pdf file. Instead of

sharing the symmetric key KE directly with pdfmerge, owner encrypts the KE with mod-

ified CP-ABE and issues the secret key SK of CP-ABE to pdfmerge. Owner and Dropbox

co-work together to issue the first part of SK and the common part D to pdfmerge. Then

the owner and Google Chrome Web Store collaborate to issue the second part of SK to

pdfmerge. After receiving the SK, pdfmerge requests for the encrypted file directly from

Dropbox and Dropbox transmit the encrypted files to pdfmerge.

4.2 Access Tree Structure

Properly arranging access policy and inserting additional nodes at suitable places when

authorize will help us achieve scalability and flexibility.
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4.2.1 Construction of Access Tree

Access tree structures are the same for all the files, but we assign different polynomials

for the root nodes of access trees. The symmetric key KE used to encrypt the sensitive

data is then encrypted under the access tree. Access trees are constructed with stan-

dard techniques [6] through ANDing operation. Sub-tree of file attributes, sub-tree of

application attributes and the TimeSlot attribute are ANDed at the tree root node, as

shown in Fig. 4.3(a). For abbreviation, let us call sub-tree of file attributes as F-sub-tree

and sub-tree of application attributes as A-subtree. All file attributes, such as FileName,

FileLocation, FileType, FileOwner, FilePermission etc. are ANDed at the root node of

F-subtree. While A-subtree contains attributes like AppStore, AppName, AppExpireDate,

AppFunctionality, AppAuthor, AppAddress etc. All the attributes are attached with leaf

nodes which are drawn as dashed circles in Fig. 4.3(a) and Fig. 4.3(b). Each node in the

tree is labelled with one index number. From now on, we will use indexes to represent

the nodes. A polynomial attached with F-subtree root node is denoted as Pf (x) and a

polynomial attached with root node of A-subtree is called Pa(x).

4.2.2 Adding Checking Nodes into the Tree

Before each authorization, owner chooses to enable the checking nodes or to disable the

usage of checking nodes. If no redundant node is inserted, the issued secret key could only

decrypt one single file without any security loss. However, in many occasions, applications

need to access more than just one archive. For example, pdfmerge needs to access several

pdf files to perform merging. By inserting appropriate number of redundant checking nodes

into F-subtree, a token issued to the application could be used to decrypt different archives.

Fig. 4.3(a) displays an example of adding two redundant nodes in the F-subtree which gives

us one error tolerance. In Fig. 4.3(b), values of additional nodes are evaluated as Pf (n+1)

and Pf (n + 1). The new cipher components of the additional nodes are computed and

appended to the archive.

Similarly, owner could insert the additional nodes in the A-subtree to empower one

token to be used by several application. Further more, adding additional nodes in both

25



sub-trees will result in multiple applications gain access to multiple files. For simplicity,

we only consider inserting redundant nodes in the F-subtree in this thesis.

4.3 Archive Format

In this section, we first present the archive format which supports the fuzzy authorization.

The archive file mainly contains three parts, header, encrypted data, and the integrity tag.

The format of the archive file is shown as follows.

< Archive > = < Header >ABE || < Data >KE || < InteTag > (4.1)

where < Data >KE is the protected data encrypted with symmetric key KE, < InteTag >

is the integrity tag generated from < Header >ABE || < Data >KE. The structure

< Header >ABE is relatively complex which is given as

< Header > = < FileDesc > || < EncryptionMeth > || < InteMeth >

|| < KE > || < KV > || < A >,
(4.2)

where< FileDesc > represents the description of protected-file content. < EncryptionMeth >

denotes the symmetric-key algorithm used to encrypted the data, < InteTMeth > is a set

of algorithm used to generate an integrity tag, such as RSA-MD5, RSA-SHA1, DSA-MD5,

DSA-SHA1 etc., and < KV > is the asymmetric key used to verify an integrity tag.

In our authorization, with the insertion of additional nodes, extra ciphertext contents

need to be added as well. Hence the previous < InteTag > is replaced with a new

< InteTag >. Alternatively, owner computes several < InteTag >s beforehand, and uses

the right < InteTag > when authorize.

4.4 Transformation from Shamir’s Linear Secret Shar-

ing Scheme to GRS

From Shamir’s (K, N) threshold scheme and GRS encoding and decoding algorithms, there

is a transformation from secret distributing to GRS encoding and from secret recovery to
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GRS decoding [32]. A detailed transformations from one to another is provided here.

4.4.1 Transformation From Secret Distributing to GRS Encod-

ing

By setting column multipliers vector v to (1, 1, ..., 1) and the code locator vector γ =

(x1, x2, ..., xN) where xi are the indexes of the nodes, the process of GRS encoding is

basicaly the secret distributing procedure.

4.4.2 Transformation From Secret Recovery to GRS Decoding

As shown in equations (3.3) and (3.17), interpolation is the kernel part of both secret

recovery and GRS decoding. The difference is that GRS codeword has N coordinates, of

which N −K are redundant and hence are used for error correction. So in order to take

advantage of error correction ability from GRS, we will add some checking nodes into the

access tree as redundant nodes in our scheme.

4.5 Main Procedures of Fuzzy Authorization

In lieu of using symmetric pairing which can be instantiated with merely suitable super-

singular elliptic curves, we adopt asymmetric pairing which will allow a greater variety of

constructed and ordinary curves to be used. A Type 2 bilinear pairing [33] is adopted here.

Recall that, G1, G2 and GT are cyclic groups of prime order q. Assume that Diffie-Hellman

problem is hard in G1. Let φ : G2 → G1 be an efficient computable group isomorphism.

Set g1 = φ(g2). A security parameter, k, will determine the size of those three groups. An

efficiently computable function is defined as e : G1 × G2 → GT . In addition, we are able

to choose a hash function H : (0, 1)∗ → G1 which will map any binary string to a random

element from G1 [34].
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4.5.1 Setup(k)

The setup algorithm, is first initiated by CSP. CSP chooses generators g1, g2 of G1 and

G2 and a bilinear map e : G1 ×G2 → GT of prime order q according to the input security

parameter k. Next CSP chooses a random exponent β and publishes the public key as:

CPK = 〈G1, G2, g, h = gβ1 , f = g
1/β
2 〉. (4.3)

CSP’s keeps CSK = 〈β, gγ2 〉 as its secret key.

Later, each owner chooses a random exponent α and computes its public key and private

key separately as

OPK = 〈e(g1, g2)α〉 and OSK = 〈gα2 〉. (4.4)

4.5.2 Encrypt(CPK, OPK, m, T )

Performed by owner, this algorithm encrypts a secret key KE under the access tree T .

Let Y denote the set of all the leaf nodes of T and py(x) be the polynomial that assigned

to a leaf node y. Then the cipher-text CT is given by

CT =〈T , C̃ = KE · e(g1, g2)αs, C = hs,

∀y ∈ Y : Cy = g
py(0)
2 , C ′y = H(att(y))py(0)〉.

(4.5)

If later 2e checking nodes are added, where e > 0, owner also computes the cipher com-

ponents of checking nodes as Cn+1 = g
pn+1(0)
2 , Cn+1 = g

pn+2(0)
2 , ..., Cn+2e = g

pn+2e(0)
2 and

C ′n+1 = H(att(n+1))pn+1(0), C ′n+2 = H(att(n+2))pn+2(0), ..., C ′n+2e = H(att(n+2e))pn+2e(0)

where n+ i are the indexes of checking nodes.

4.5.3 KeyGen(CSK, OSK, ω)

The algorithm requires CSP, owner, ASP and AS to collaborate together to issue access

token and secret key without revealing their secret keys to each other. Taking secret keys

of CSP and owner, together with a set of attributes ω as input, the procedure will output

common part D and a set of indirect secret shares of secret key.

28



First, Owner and CSP work together to compute D = g
(α+ra)/β
2 in which r ∈ Zq is

chosen by CSP and a ∈ Zq is selected by owner. The sequence of interactions ensures

that owner only knows gra2 and CSP is merely aware of g
(α+ra)/β
2 using method in [5]. The

common part D is sent by CSP to ASP.

Let ω′ be the file attribute set and ω′′ be the application attribute set, then the overall

attribute set ω = {TimeSlot} ∪ ω′ ∪ ω′′. After receiving the appointed file attribute set

and time slot attribute, i.e., ω′ ∪ {TimeSlot} from owner, for any i ∈ ω′ ∪ {TimeSlot},
CSP randomly chooses ri ∈ Zq and computes H(i)ri . Then owner computes gra2 H(i)ri and

sends them to ASP. ASP then authenticates itself to AS and presents the attributes of ω′′.

If authentication succeeds, for all j ∈ ω′′, AS will choose rj ∈ ω′′ and compute H(j)rj .

Again owner computes gra2 H(j)rj and sends them to ASP. This algorithm ends up with

ASP getting the SK which is represented as

SK = 〈D = g
(α+ra)/β
2 , ∀t ∈ ω : Dt = gra1 H(t)rt , D′t = grt2 〉. (4.6)

4.5.4 Delegate(SK, ω̃)

The algorithm takes in a secret key SK with which an attribute set ω is embedded and

another attribute set ω̃ ⊂ ω. Normally, this algorithm is used by an ASP. The algorithm

first chooses a random value r̃ ∈ Zq and for alll ∈ ω̃, r̃l ∈ Zq are randomly picked. After

that, a new private key S̃K for an attribute set ω̃ is generated as

S̃K = {D̃ = Df r̃,∀k ∈ ω̃ : D̃k = Dkg
r̃a
1 H(k)r̃k , D̃′k = D′kg

r̃k
2 }. (4.7)

4.5.5 DecryptandErrorCorrect(CT, SK, T )

The decryption algorithm is a recursive procedure over the access structure T comprising

four steps. The algorithm is conducted by ASP.
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Decryption on the Node

Let DecryptNode(CT, SK, x) denote the function that takes ciphertext CT, secret key SK

and the node x in the tree as input. If x is a leaf node of the tree,

DecryptNode(CT, SK, x) =
e(Di, Cx)

e(C ′x, D
′
i)

=
e(gra1 H(i)ri , g

P ′x(0)
2 )

e(H(i)qy(0), gri2 )

= e(g1, g2)raP
′
x(0).

(4.8)

If x is the root node of F-subtree where the additional nodes are added, then for all child

nodes z of x, the algorithm calls DecryptNode(CT, SK, z) and stores the result as

fz = e(g1, g2)raP
′
z(0). (4.9)

If the secret key issued is not designed to decrypt this file, i.e., the attributes set based

on which the secret key is issued does not satisfy the access tree, error checking and error

correction is needed. Note that, the attribute sets attached with access trees do not have

any errors. We adopt the terminology of error correcting code. Here we use GRS for

reconstructing the top secret. Thus, a single key can decrypt multiple files for which the

attribute sets have distance less than or equal to η.

Error Checking

Let e be the maximum number of errors that can be tolerated. Then at least 2e additional

nodes are added in the sub-tree. Error checking will be enforced and further error correction

may be performed depends on the result of error checking.

According to the way we construct the access structure, the code locator vector is

γ = (4, 5, ..., l, n+ 1, n+ 2, ..., n+ 2e) and column multiplier vector is v = (1, 1, ..., 1)

with the length of N = l − 3 + 2e which is also the number of leaf nodes in the sub-

tree. Parity check matrix H can be easily obtained through equation (3.6) with γ and v.

Because the symbols of codeword or secret shares are exponents of e(g1, g2), resembling
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computing syndromes in equations (3.7) and (3.8), the checking procedure is performed

over the exponent of e(g1, g2) and the derived syndrome vector can be represented as

s′ =(s′1, s
′
2, ..., s

′
N)

=(e(g1, g2)ra
∑n−1

j=0 ejvjγ
0
j , e(g1, g2)ra

∑n−1
j=0 ejvjγj1, ..., e(g1, g2)ra

∑n−1
j=0 ejvjγ

N−1
j ).

(4.10)

An all-one vector s′ indicates no error, therefore no further correction will be needed. In

this case, the decryption procedure continues to interpolate Fx = e(g1, g2)Pf (0). On the

other hand, a non-all-one vector of s′ indicates that error(s) does exist and the algorithm

tries to correct the error(s).

Error Correction

Given leaf nodes set Y ′ = {4, 5, ..., l, n + 1, n + 2, ..., n + 2e}, construct the subset Y ′s =

{j1, j2, ..., jK} ⊂ Y ′ which will give us (NK) different Y ′s. For each set Y ′s, do interpolation

as

e(g1, g2)raP
′
f (x) = e(g1, g2)

ra
K∑
t=1

∏
∀i∈Y′,i 6=jt

(x−i)fjt
jt−i

.
(4.11)

(NK) results will be obtained. According to [31], the most often occurring result shall be

selected and used to obtain another vector

f ′
z =(e(g1, g2)raP

′
f (4), e(g1, g2)raP

′
f (5), ..., e(g1, g2)raP

′
f (l),

e(g1, g2)raP
′
f (n+1), e(g1, g2)raP

′
f (n+2), ..., e(g1, g2)raP

′
f (n+2e)).

(4.12)

Let d(fz, f
′
z) denote the distance between fz and f ′z. If d(fz, f

′
z) ≤ bN−K

2
c = e, set

e(g1, g2)raPf (0) = e(g1, g2)raP
′
f (0). Otherwise, error correction procedure fails and the de-

cryption aborts. The reason why decoding process cannot be replaced by Berlekamp-Welch

algorithm or PGZ decoding algorithm will be discussed later.

Final Decryption

If error checking and decoding go smoothly, we will get A = DecryptNode(CT, SK, r) =

e(g1, g2)ras. The encrypted message KE can be computed by

KE = Decrypt(CT, SK) =
C̃

e(C,D)/A
=

C̃

e(gβs1 , g
(α+ra)/β
2 )/e(g1, g2)ras

(4.13)
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Analysis of Other Decoding Algorithms

Decoding with Berlekamp-Welch Algorithm

We adapt the two steps of Berlekamp-Welch algorithm to our scheme.

1. Given FZi= e(g1, g2)raP (αi), i = 1, 2, ..., N , the decoder tries to interpolate e(g1, g2)raQ(x)

and e(g1, g2)raE(x) under some confinements. Since the elements of codeword are given

as exponents, the interpolation would be similar to regular operation as soon as we

replace the regular summation with multiplication and change normal multiplication

to power operation.

2. Computing e(g1, g2)raP (0), i.e. e(g1, g2)ra
Q(0)
E(0) .

Unfortunately, even the decoder interpolate the e(g1, g2)raQ(x) and e(g1, g2)raE(x), given

e(g1, g2)raE(0), there is no efficient way to compute e(g1, g2)
1

E(0) over Zq. As a result, de-

coding with Berlekamp-Welch algorithm will be hardly fulfilled in this scenario.

Decoding with PGZ Algorithm

In order to find the coefficients of error locator polynomial, equation (3.16) must be

solved for regular GRS decoding. While in our case, the equation (3.16) can be decomposed

and derived into the following equation set:

e(g1, g2)
ra

e−1∑
i=0

siEe−1−i

= e(g1, g2)−rase

e(g1, g2)
ra

e∑
i=1

siEe−i

= e(g1, g2)−rase+1

...

e(g1, g2)
ra

2e−2∑
i=e−1

siE2e−2−i

= e(g1, g2)−ras2e−1

(4.14)

where there is no efficient computable method to compute e(g1, g2)raEi without knowing

si. To summarize, PGZ algorithm does not apply to this scenario.
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4.5.6 Time Slot Synchronization

We divide time zone into small intervals, not necessarily of the same length. In each

time interval, polynomials attached to the access structures of archives are updated. The

main idea of lazy re-encryption [23] is used in our system regarding to re-encrypt sensitive

data. When an application’s access right is revoked, lazy revocation allows to postpone

the update of polynomials and re-encryption of sensitive data until writing action has

happened. Because only data owner has writing permission, time slot synchronization

happens when owner updates the file. In the beginning of each time slot, CSP and owner

needs to collaborate together to re-encrypt the header file. LetM denote the children set

of the root node, and |M| = m. Assume the time-slot attribute is attached with node i∗,

i∗ = 1 in Fig.2, timeslot synchronization procedure initiates with owner chooses a random

value s̃t, set the most up-to-date TimeSlot share as

P (i∗)t = PTS(0)t = PTS(0)t−1 + s̃t. (4.15)

New cipher-text components for a new time slot can be obtained as CTSt = gP (i∗)t and

C ′TSt
= H(TimeSlot)P (i∗)t . From equation (3.4), the top secret can be obtained. More

precisely,

st = P (0)t

=
i∗−1∑
u=1

∏
∀i∈M,i 6=u

(0− i)P (u)

u− i

+
∏

∀i∈M,i 6=i∗

(0− i)P (i∗)t
i∗ − i

+
m∑

u=i∗+1

∏
∀i∈M,i 6=u

(0− i)P (u)

u− i
.

(4.16)

So the discrepancy between st and st−1 can be obtained based on equations (4.15) and (4.16)

∆s =st − st−1

=
∏

∀i∈M,i 6=i∗

(0− i)P (i∗)t
i∗ − i

−
∏

∀i∈M,i 6=i∗

(0− i)P (i∗)t−1

i∗ − i

=
∏

∀i∈M,i 6=i∗

0− i
i∗ − i

s̃t.

(4.17)
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Owner ASP

ServiceReq, F ileAddress

Redirect, [AttributeSet, RedirectURI]ASP

Figure 4.4: Service Request Flow

Number i∗ is constant, so as
∏

∀i∈M,i 6=i∗
0−i
i∗−i , the most left part of ∆s. Hence the new

ciphertext’s main component C̃ can be updated as C̃ = m · e(g1, g2)α(s+∆s) and C as

C = h(s+∆s).

4.6 Fuzzy Authorization Protocol Flow

The flow of Fuzzy Authorization (FA) involves in four on-line protocols. With the require-

ment of adding checking nodes, FA protocol needs to re-encapsulate the archive file.

4.6.1 Service Request

1. Owner initiates by sending a request ServiceReq along with the files’ addresses to

ASP, for example, pdfmerge, http://www.pdfmerge.com/.

2. ASP redirects data owner’s user agent to the authorization endpoint of CSP. ASP

includes its identifier, functionality, local state and a redirection URI attributes to

which the authorization server will send the user-agent back once access is granted(or

denied).

4.6.2 Token and Secret Key Issuing

1. From the redirect command, owner’s user agent passes the redirect command con-

taining a targeted application attribute set and the redirect URI to CSP. An example
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ASP Owner CSP AS

1. Redirect, [AttributeSet, RedirectURI]ASP

2. HTTP Form

3. ID,Credentials

4. AttributeSet, RedirectURI

5. D′j

6. ∀j ∈ ω ∪ {TimeSlot}, D′j;∀i ∈ ω′, D′′i

7. gα+ra
2

8. Redirect[g
(α+ra)/β
2 , AuthzCodeASP ]AA

8. Redirect[g
(α+ra)/β
2 , AuthzCodeASP ]AA

9. Di,∀i ∈ {TS} ∪ ω;D′′j ,∀j ∈ ω′

10. REQ[IDapp, RedirectURI]

11. D′′j = grj∀j ∈ ω′′

Figure 4.5: Token and Secret Key Issuing Flow
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of redirection command and attribute set is given as follows.

Redirect1 =[AttributeSet, RedirectURI]ASP

where AttributeSet ={AppStore, AppID,AppExpireDate,
AppFunctionality, AppAuthor, AppAddress}.

(4.18)

The subscript ASP means that content in the square brackets are digitally signed

by ASP.

2. CSP sends owner the authentication HTTP Form.

3. Owner fills her ID and credentials and submits the form to authenticate herself to

CSP.

4. If the authentication succeeds, CSP generates an authorization code AutzCode (a

nonce) and sends AS a command including ASP attribute set and redirect URI to

request for the partial application key components from AS. The request command

is shown as follows.

ReqAppAttPart1 = [AttributeSet, RedirectURI]CSP

5. Application store retrieves applications attributes from AttributeSet, then ∀j ∈
AttributeSet, application store generates partial part-1 D′j = H(j)rj and replies

it to CSP. The part-2 D′′j = g
rj
2 is sent to ASP when ASP authenticate itself to AS

in the later step.

6. The CSP, on the other hand, ∀i ∈ ω′ ∪ {TimeSlot} generates partial part-1 D′i =

H(i)ri and part-2 D′′i = gri . And CSP randomly selects r ∈ Zq. Then the part-1 and

the part-2 signed by the CSP, gr , and the partial part-1 Dj
′ of ASP received earlier

are sent to the owner.

7. Owner verifies whether D′j, D
′′
j where ∀i ∈ ω′ ∪ {TimeSlot} are valid by computing

bilinear pairing e(D′i, g) = e(D′′i , H(i)). If the verification succeeds, the owner ran-

domly chooses a, computes gα+ra
2 from a, gr2 and the owner secret key gα2 . Owner then

replies to the CSP with the result gα+ra
2 .
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8. CSP generates the common part D = g
(α+ra)/β
2 from the MSK β and gα+ra

2 received

from owner. Hence, with ElGamal-like mask, we prevent CSP from knowing about

owner secret key gα2 , and owner from knowing CSP’s master secret key β. CSP

encrypts the common part D and the authorization code AutzCode with ASPs public

key and signs with the its private key, before sending the owner a redirect command

Redirect[g
(α+ra)/β
2 , AuthzCodeASP ]AA to redirect the user-agent back to the consumer

with the redirection URI received earlier.

9. The owner binds all partial key components by multiplying them with gra1 and sends

all key components Di = gra1 D
′
i, ∀i ∈ ω ∪ {TimeSlot} and Dj = gra1 D

′′
j ,∀j ∈ ω′ to

the application service provider.

10. The application service provider sends the authority a command

REQ[IDapp, RedirectURI]

to authenticate itself and to request the partial part-2 key components of application

attributes.

11. If authentication succeeds, application store replies to the application service provider

with the partial part-2 D′′j = g
rj
2 ,∀j ∈ ω′′ of application components.

Note that, the detail of how application service providers are authenticated by appli-

cation store are beyond the scope. However, readers can get a general idea of this process

through Google Accounts Authentication and Authorization [35].

4.6.3 File Access

The file access protocol is similar as OAuth 2.0 [4]. Also, compare to other protocol

procedures, it is rather easy and simple.

1. The application accesses archive files by presenting the access token to the CSP.

2. The CSP validates the access token and ensures that it has not expired and that its

scope covers the requested resource.
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3. If the access token is valid, then CSP will transmit the required archive file to ASP.

4.6.4 TimeSlot Synchronization

The procedure of time slot synchronization is presented below.

1. Assume owner updates the plain data at time t, he chooses a new random value st

and computes e(g, g)α∆s using its OPK = e(g, g)α. Owner now sends e(g, g)α∆s and

st to the CSP.

2. CSP computes the new TimeSlot share as PTS(0)t = PTS(0)t−1 + st. Then the

new cipher-text components for the new time slot can be computed as CTSt =

gPTS(0)tandC ′TSt
= H(TimeSlot)PTS(0)t where TimeSlot is the string of the tth time

slot. Also CSP updates C = hst from MPK = gβ.

3. Owner computes e(g, g)α∆s using its OPK = e(g, g)α and send it to the CSP.

4. CSP replaces two cipher-text components CTSt , C
′
TSt

and C = hst with the received

components according to the current time slot. CSP also computes the new cipher

C̃t = C̃t−1 · e(g, g)α∆s .

4.7 Difference Between Fuzzy Authorization and Other

Solutions

Fuzzy Authorization (FA) maintains the confidentiality of data with symmetric encryption

and encrypts the symmetric key with modified CP-ABE. Integrity tags are computed so

that it is convenient for data owner and authorized parties to check the integrity without

any TPAs. Especially, FA provides an scalable, efficient and flexible access control by

exploiting the modified CP-ABE to adapt to the cloud storage environment. Requiring

no third authority parties, FA is totally practical and feasible in the industrial world for

all the entities involved already exist. Moreover, we enable the fuzziness of authorization
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by transforming secret reconstruction to GRS decoding to take advantage of GRS error

correction ability. Through assembling fuzziness functionality into system, we enhance

scalability and flexibility at the price of minor security loss.
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Chapter 5

Security Analysis

In this section, our system is analyzed from perspectives of internal and external adver-

saries. For internal adversaries, all entities in the system are considered to be semi-trusted,

in the sense that they can exploit threats to subvert authorization control and data secu-

rity, but still honestly follow the protocol. As to external adversaries, they may not run the

protocol but try to launch general attacks to compromise the security of data. We will first

give security analysis for internal adversary models provided that adversaries can get the

cipher-text CT = 〈T , C̃ = m·e(g1, g2)αs, C = hs,∀y ∈ Y : Cy = g
qy(0)
2 , C ′y = H(att(y))qy(0)〉.

According to our access structure, in order to recover the top secret s, the adverse party

has to recover PTS(0), Pf (0) and Pa(0) in the first place.

5.1 CSP Tries To Illegally Access or Modify Owner’s

Plain Data

Without any collusion with other parties, cloud server is able to get the TimeSlot and file

attributes, that is {TimeSlot} ∪ ω′. For any t ∈ {TimeSlot} ∪ ω′, cloud server can obtain

H(t)rt and grt2 , however, not gra2 H(t)rt .

1. Scenario 1. Let the target secret be PTS(0) and the threshold value is K = 1, then

we can settle set W̃ = {TimeSlot}, W̃ ′ = W̃ and W̃ ′′ = ∅ where W̃ , W̃ ′ and W̃ ′′ are
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notations defined in the d-BDHE assumption. Clearly, |W̃ ′′| = 0 < K = 1 satisfies

and therefore the d-BDHE assumption holds.

2. Scenario 2. Let the target secret be Pf (0) and the threshold value of F-subtree’s root

node be K, then W̃ = ω′, W̃ ′ = W̃ = ω′ and W̃ ′′ = ∅. Again, inequity |W̃ ′′| = 0 < K

satisfies and our assumption still holds in this scenario. Since CSP has no information

about application attributes, it is impossible for it to guess Pa(0).

3. Scenario 3. Setting our target secret as the top secret s and the threshold value

K = 3, then W̃ = {1, 2, 3} in which the set elements are indexes of children of the

root node. Also, W̃ ′ = ∅ and W̃ ′′ = ∅ and |W̃ ′′| = 0 < K = 3. As a consequence, it

remains difficult for CSP to get the top secret s.

5.2 ASP Tries to Decrypt Owner’s Data without Per-

mission

Two cases must be considered if ASP tries to access Owner’s data illegally. The first case

is that, an ASP is registered with an AS, but has never be requested by owner to fetch and

handle owner’s data. The second is, an ASP registered with an AS and has been issued a

token to access a certain file, but tries to access the file illegally after owner has updated

the file. The second occasion is more severe since the ASP holds indirect file attributes

shares.

1. Scenario 4. In the first occasion, TimeSlot is not known by ASP, neither attributes

of F-subtree. However, as to the application attribute set ω′′, for any t ∈ ω′′, ASP

could randomly choose rt, and fabricates D̃t = H(t)rt and grt2 . Obviously, setting

our target secret to PTS(0) and Pf (0) will leads us to Scenario 1 and Scenario 2

separately. If ASP sets the target secret as Pa(0) and the threshold of A-subtree,

a positive integer, to K. Then we will have W̃ = ω′, W̃ ′ = W̃ and W̃ ′′ = ∅ with

|W̃ ′′| = 0 < K. Once again, the d-BDHE assumption holds.
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2. Scenario 5. In the second occasion, not only sub-trees of file attributes and application

attributes are acquainted to ASP, but also Pf (0) and Pa(0). Even though, ASP could

forge the random exponent rt for TimeSlot attribute and get H(TS)rt , grt2 , there is

no way for ASP to guess gra1 H(TS)rt . Setting the target secret as the top secret s

and threshold value K = 3, W̃ = {1, 2, 3}, W̃ ′ = {TimeSlot} and W̃ ′′ = {2, 3} where

|W̃ ′′| = 2 < K = 3. Hence, the d-BDHE assumption applies to this scenario as well.

5.3 AS Tries to Access Owner’s Data Illegally

It is clear to find that attributes exposed to AS are application attributes and thus W̃ = ω′′.

Similar as we reduce the adverse CSP model to d-BDHE assumption, we can also reduce

this adverse model to our assumption. Hence it is impractical for AS to recover the top

secret s.

5.4 Owner Propose Tokens to Access Other Owners’

File

A vicious owner may either pretend to be an innocent owner to issue tokens or she may

fabricate the tokens in place of another owner. The former case is unlikely for the vicious

owner has to authenticate herself to CSP. As to the latter case, the vicious owner may

fabricate the partial components of indirect secret shares attached with file attributes and

application attributes and multiply them with her own gra
′

1 . Alternatively put, for any t ∈
ω(ω is the attribute set that is appointed by the innocent owner), an owner may fabricate

H(t)rt and grt2 and combine them with gra
′

1 . Even in the best case, the ominous owner

will get e(g1, g2)ra
′s and e(g1, g2)(ra+α)s. With e(g1, g2)ra

′s and e(g1, g2)(ra+α)s to compute

e(g1, g2)ras, the problem will be reduced to a discrete logarithm problem and hence the

fabrication is unsuccessful.
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Chapter 6

Implementation of Fuzzy

Authorization

In this chapter, we present an implementation of FA protocol and their performance. The

implementation environment and parameters chosen for communication among four parties

are first introduced in Section 6.1. Some optimizations of the implementation is presented

in Section 6.2. Comparisons with Fuzzy IBE adapted in authorization is demonstrated in

Section 6.3. Then measurements of performance is demonstrated in Section 6.4.

6.1 Parameter Selection and Simulation Environment

6.1.1 Pairing Implementation

Our implementation uses symmetric bilinear pairing which was implemented with pairing-

based cryptography (PBC) library [36] from Stanford University. A 160-bit elliptic curve

group G based on the supersingular curve y2 = x3 + x over 512-bit finite field is adopted.

Operations on the elements of group G, such as addition, negation and exponentiation are

computed through calling corresponding functions from PBC library. Random bits read

from Linux kernel file /dev/urandom are used to generate random number from Zq where
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q is the order of group G. Using a computer with 4 Intel(R) Core(TM) i3-2130 CPUs

running at 3.40GHz.

6.1.2 Implementation of FA Protocol with OMNETPP

OMNET++ 4.2.2 is used to build the framework of the FA protocol. CSP, data owner,

ASP and AS are simulated as simple modules in the project. For simplicity, we fix the

number of CSP, ASP and AS as one for each, but the number of data owner is flexible

which can be assigned manually at the beginning of simulation. OMNET++ 4.2.2 provides

two self-defined methods, handleMessage() and activity(), to receive and deal with data

packets for each module. And each module has to choose one of them. In our project, we

adopt handleMessage() function due to its convenience of co-working with library PBC.

However, in our implementation, simulation time does not elapse in the function, in

other words, bilinear pairing and other relative computing time will not be counted in the

FA protocol, the experiment time we collected is simply the protocol running time.

6.1.3 Parameter Selection for Communication

FA protocol mainly facilitates user who are prone to use smart phones and tablets to access

the cloud storage. In order to make the simulation close to reality, before setting the param-

eters such as delay and bandwidth for simulation, we monitored communications between a

smart phone and online websites in real life with WebSitePulse [37] a tool used to monitor

internet communications. Depending on the websites smart phone accessed and the situa-

tion of WiFi to which smart phone connected, connection time and responding time varies.

The effective upload bandwidth of the WiFi is 500Kbps and download speed is 65KBps.

Under this circumstance, and after one thousand test for each cloud storage provider, there

exist 2ms delay of https://drive.google.com, 29ms delay of https://skydrive.live.com , and

69ms delay of https://dropbox.com. As a compromise, we set 15ms as the communication

delay between CSP and owner. The response delay of all the parties are summarized in

Table 6.1 Bandwidth of cloud storage provider is unlimited just as most cloud storage

providers set in real life [38] and so as bandwidth of application store. Upload bandwidth
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Table 6.1: Response Delay Parameters

Dropbox Chrome Web store Owner Device (Android) pdfmerge

15ms 10ms 49ms 20ms

of owner is 500Kpbs and download bandwidth is 65KBps, the same as the parameters of

real life smart phone communication.

6.2 Optimizations

For error correction, the original decoding algorithm is introduced in Chapter 3. Before

each interpolation, a set Y ′s of K indexes is chosen for all possibilities. Let k range from 1 to

(NK) and Y ′sk be the kth set. Combination in lexicographical order algorithm [39] is used and

further optimization could be done on top of it. In lexicographical order combination, the

next combination is constructed based on current combination and the difference between

them is only one component. So instead of conducting (NK) complete interpolations, the

optimized procedure will perform the first complete interpolation and rest (NK)− 1 partial

interpolations.

For each index ju ∈ Y ′sk , compute the corresponding exponential Lagrange polynomial

as

wk,ju(x) = e(g1, g2)
ra

∏
∀i∈Y′sk ,i6=ju

(x−i)Pf (ju)

ju−i

.
(6.1)

Then we will obtain set Wk = {wk,1(x), wk,2(x), ..., wk,K(x)} where wk,ju(x) is defined as

equation (6.1).

Denote the complementary set of Y ′sk as YCsk = {1, 2, ..., N}\Y ′sk . An index iold ∈ Y ′sk is

the old index to be replaced by the new index inew ∈ YCsk . Then the kth set Wk is updated

to Wk+1 as following:

1. ju ∈ Y ′sk and ju = iold,

wk+1,ju = wk,ju ; (6.2)
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2. ∀ju ∈ Y ′sk and ju 6= iold,

wk+1,ju = w
inew−ju
iold−ju

k,ju
. (6.3)

By keeping Wk up-to-date, the interpolation will always be

e(g1, g2)raPf (x) = e(g1, g2)
ra

K∑
u=1

wk,ju
, u = 1, 2, ..., N. (6.4)

Before the optimization, for each set Y ′sk , interpolation will cost 1 + 2(K − 1) exponential

operations on the element from group GT and (NK)[1 + 2(K − 1)] exponentiation overall.

The optimization reduced 1 + 2(K − 1) exponential operations to 1 exponential operation

and the overall number of exponential operation is reduced from (NK)[1 + 2(K − 1)] to

2(K − 1) + (NK).

Another optimization can be adopted when performs the decryption over the root

of sub-tree where the checking nodes are added, e.g., F-subtree in our case. Instead of

computing the exponential polynomial Pf (x), unknown x can be replaced by node index

number. Thus the interpolation result is a potential indirect share. Replacing x with

indexes of root’s children nodes in turn, a set of new indirect secret shares will be obtained.

Instead of choosing the most frequently occurring polynomial, the advantage of parity check

matrix H could be used. For each new set of share components obtained, equations (3.7)

and (3.8) can be applied to check whether they are the correct share components. If (3.7)

and (3.8) are satisfied for a certain set of potential share components, stop interpolation

and set the unknown x to 0 to obtain e(g1, g2)raPf (0).

6.3 Fuzzy IBE Adapted in Cloud Storage Authoriza-

tion

In order to compare the performance of FA, we apply two simple methods derived from

Fuzzy IBE proposed in [19]. The first solution of Fuzzy IBE is referred as Fuzzy IBE1 and

the second solution is denoted as Fuzzy IBE2.
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Figure 6.1: Access Trees of Fuzzy IBE1

6.3.1 First Solution of Fuzzy IBE

As shown in Fig. 6.1, for each file, owner creates multiple access trees with distinct thresh-

old values of F-subtrees. Different threshold values indicates different degrees of Pf (x)

attached with F-subtree. A smaller threshold gives us larger error-tolerant ability. There-

fore, for each access tree owner has to reconstruct the polynomial Pf (x) and compute the

corresponding Pf (i) where i is the node index number.

Then owner encrypts the symmetric key KE under these different trees to obtain

different cipher-texts. As a result, different cipher-texts matched with different access
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trees are stored together in the cloud server. At the beginning of authorization, owner

determines the error-tolerant ability and assigns one of the cipher-texts that will be sent to

ASP. Since ASP has no idea about the file attribute set, there is no way for ASP to perform

the satisfying an access tree procedure over F-sub-tree. Hence owner has to transmit the

file attribute set of application to ASP as well.

After receiving the file attribute set, cipher-text and the secret key, ASP first applies the

satisfying an access tree procedure to determine which key components of the attributes

are correct and can be used to perform decryption. Then, by making use of the Decryp-

tion procedure [19], ASP can obtain K correct indirect shares and recover the top secret,

finally get symmetric key KE. If the satisfying an access tree procedure fails, ASP quits

decryption and requests the secret key again.

Fuzzy IBE1 is simple, however a large amount of extra space and computation of

encryption are needed. In addition, owner has to transmit ASP the file attribute set.

Moreover, ASP also needs to run satisfying an access tree procedure to select the correct

key components so as to decrypt.

6.3.2 Second Solution of Fuzzy IBE

The second solution is that owner reserves some default attributes in the F-subtrees of

all the files and maintains the threshold values. This solution is denoted as Fuzzy IBE2

shown in Fig. 6.2. By increasing the number of these default attributes, owner enhances

the tolerance of error. The additional nodes’ values, i.e., Pf (i) where i is the index number

of additional nodes, are computed with polynomial Pf (x). Unlike Fuzzy IBE1 above, the

solution two does not require the reconstruction of the polynomials attached with extra

access trees. There is only one access tree for each file. Still the cipher-text components

of the additional default nodes are computed and inserted into the cipher-text.

Since ASP is not aware of the file attributes, owner has to send application the file

attributes along with the secret key, which is the same as Fuzzy IBE1. Before performing

decryption with the secret key, ASP needs to carry out satisfying an access tree proce-

dure with the received file attributes to determine which attributes are matched with the
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Figure 6.2: Access Trees of Fuzzy IBE2
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attributes attached with tree leaf nodes. Founded on the matched attributes, the corre-

sponding components of the secret key are selected to do decryption.

6.3.3 Comparisons of FA to Fuzzy IBE1 and Fuzzy IBE2

Similar to the second solution, our fuzzy authorization scheme adds additional attributes

into F-subtree. However, Fuzzy IBE2 requires owner to send the attribute set of file which

may result leakage of owner’s privacy. Also in Fuzzy IBE2, ASP has to perform satisfying

access tree procedure to determine which indirect shares can be utilized. According to the

property of Maximum Distance Separable (MDS) code, by adding 2e additional attributes

in the tree, where e is the maximum number of errors that could be tolerated, fuzzy

authorization has the ability to check and correct errors. Then fuzzy authorization is

able to perform error correction when some of the attributes are not matched. When

every indirect shares are correct, the reconstruction of top secret key can be performed on

arbitrarily K out of N shares.

Thus unlike the two solutions derived from Fuzzy IBE, FA begins error correction at

the indirect share level while the two former solutions select the right key components at

attributes level. Therefore, fuzzy authorization avoids owner from sending file attributes to

ASP and eliminating the necessity of carrying out the satisfying an access tree procedure

by ASP. More importantly, FA avoids the privacy leakage of data owner.

The requirements of the three solutions are summarized in Table 6.2. In Table 6.2,

notations are given.

• R1 represents the operation that owner needs to send file attributes to ASP.

• R2 denotes that ASP needs to performs procedure of satisfying access tree.

• R3 stands for the leakage information of owner.

• R4 means the error checking operation should be performed.

• R5 means that error creation operation is required.
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Table 6.2: Comparison of FA, Fuzzy IBE1, and Fuzzy IBE2

Properties FA Fuzzy IBE1 Fuzzy IBE2

R1 No Yes Yes

R2 No Yes Yes

R3 No Yes Yes

R4 Yes No No

R5 Yes No No

6.4 Performance Measurements

6.4.1 Time Consumption

For single computation, the time is collected as following.

1. On average, it costs 1.14ms to compute bilinear pairing.

2. It costs 1.51ms and 0.14ms on average to complete exponentiation in G and GT

receptively.

3. Adding and multiplication operations cost 0.001ms and 0.09ms which are relatively

small.

4. For one authorization operation of 3 different files with one error tolerance, the

average overall time of our simulation is 1.187s.

Compare to other authorization schemes, FA utilizes error checking and correction. The

simulation results show that error checking and correction is not very time consuming. The

average time consumption of error checking and correction is shown in the following table.

Table 6.3 shows the time consumption of error checking and correction.

As to the transmission of file attribute set, at east one round trip time (RTT) is needed.

In the most commonly used 3G and 4G networks, the average RTT of these networks are

around or over 100ms [40]. Compare with the communication overhead cost by transmission

of file attribute set, error checking and correction is more efficient.

51



Table 6.3: Time Consumption of Error Checking and Correction

Time Consumption Attribute Number in F-subtree Error Number

47.45ms 6 1

56.02ms 4 2

68.63ms 8 1

79.91ms 6 2

6.4.2 Extra Space Consumption

In the access tree, each leaf node is attached with an attribute y for which two cipher

components Cy = g
Py(0)
2 , C ′y = H(y)Py(0) must be added into the cipher-text. Assume total

number of leaf nodes of the access tree is n, and the number of F-subtree leaf nodes is n
2
.

Let l be the number of archives that could be decrypted with the same KE and e be the

maximum number of errors that can be tolerated. In our simulation, n = 16 and l ranges

from 1 to 10. Since FileName and FileLocation are the two attributes that most likely to

be different, two typical values of e = 1 and e = 1 are simulated.

For Fuzzy IBE1, fuzziness of authorization can be achieved by changing the threshold

value of F-subtree. Then polynomial Pf (x) and values of leaf nodes have to be recom-

puted. As a consequence, the cipher components for F-subtree leaf nodes must be updated

accordingly. Then at least 2 ∗ n
2

extra elements from group G are required. The extra

storage required is referred as Fuzzy IBE1 in Fig. 6.3.

As to Fuzzy IBE2, extra default nodes are added into F-subtree which results in extra

cipher components to be mounted in the cipher-text, i.e., 2e group elements from G. In

addition, extra space for n
2

file attributes is needed.

In fuzzy authorization, we insert checking nodes in the access trees and compute extra

cipher components. According to the property of MDS code, for error correction ability of

e, at least 2e checking nodes are required. The number of extra elements from group G is

4e. The storage consumption of these three solutions are demonstrated in Fig. 6.3.

From Fig. 6.3, we can observe that extra storage consumption of fuzzy authorization

is always less than that of Fuzzy IBE1. In addition, when e = 1, k < 10 and e = 2, k < 6,
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Figure 6.3: Comparison of Storage Consumption

fuzzy authorization has an advantage in storage consumption than Fuzzy IBE2 as well.

6.4.3 Revocation

Currently, most authorization schemes utilize manually revocation. As the backgrounds of

owners vary large and for a less-cared owner, he or she may easily forget the revocation.

We assume that once owner remembers, he or she will revoke. Therefore, based on Ebbing-

haus Forgetting Curve, the probability of revocation failure is demonstrated in Fig. 6.4.

Assume owner updates the original data at time tchange, then in FA, the non-revocation

probability before tchange is 100% and after tchange is 0%. As manifested in Fig. 6.4, the

uncertainty of human brain may result in higher probability of failure while revocation in

fuzzy authorization is more determinate.
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6.4.4 Time Cost for Protocol Procedures

Since the response delay of each parties varies, the time consumption of each protocol

procedure varies as well. By keeping the response delay of one party as a variant and

fixing the delay response of the other three parties, we show how one party’s response

delay affects the overall time consumption.

Time Consumption of Service Request Protocol

The service request protocol basically contains two steps. Owner send a request to ASP

asking for service and ASP responses with a redirect command that redirect owner to cloud

storage provider. So the overall procedure contains propagation delay from owner to ASP,

ASP to owner and owner to cloud storage provider and also the response delay between

owner and ASP.
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Figure 6.5: Time Consumption of Service Request Protocol

So there are two major factors affect the overall time. One is the response delay of

ASP and the other is response delay of owner. Through testing with WebSitePulse, we fix

the response time of owner as 40ms when set the response delay of ASP as a variant. In

Fig. 6.5, blue line shows that the overall time consumption starts at 40ms and is linearly

increased with gradient one as the response delay ascending. In Fig. 6.5, the black line

indicates the entire time consumption growth based on the increase of the response delay

of owner. The black line shows that, the entire time consumption grows with gradient one

and starts at 30ms.

Time Consumption of Token Issuing Protocol

Token issuing protocol is much more complex and involves four parties. So there are at

least four major factors that influence the overall time. Let us fix the response delay of AS

as 20ms and response delay of CSP as 50ms where these two factors are not variants. We
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Figure 6.6: Time Consumption of Token Issuing Protocol

shall take a look at the Fig. 6.6 and analyze how each response delay impacts the entire

time of the protocol.

The plain blue line shows how the response delay impacts the overall time consumption.

Blue line with asterisks demonstrates the way the response delay of application service

provider impacts the overall time. Blue line embedded with circles indicates response

delay of application store influences the overall time consumption. The way how response

time of owner affects the overall time is shown with the blue line embedded with triangles.

For simplicity of notation, let us denote the lines as lines 1, 2, 3 and 4 respectively.

As demonstrated in Fig. 6.6, line 1 indicates overall time increases with gradient of four

starting from 260ms as the response time of CSP ascending. Line 2 shows that overall time

initiating from 460ms and grows with gradient of two. Line 3 demonstrates that overall

time ascends along with the increase of response delay of application store. Line 4 shows

that increases of the response delay of owner influences the overall time to ascend four
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times. Also, it is obvious to notice that the response delay of owner and CSP cast larger

influence to the overall time consumption because the increase gradients are larger.

Time Consumption of File Access Protocol

The file access protocol is relatively simpler where ASP request for the archive file and

show the access token to CSP. CSP examines the expiration time and access scope of the

access token before sending file to ASP. So the overall time contains propagation and the

response delay from ASP to CSP and the transmission time of the archive file.

As a result, there are two major factors affect the overall time. They are the response

delay and propagation time of ASP and the response delay and propagation time of CSP. In

Fig. 6.7, the black line indicates the entire time consumption growth based on the increase

of the response delay of ASP. The black line shows that, the entire time consumption grows

with gradient one and starts at 30ms. The blue line of CSP, on the other hand, display

that entire time consumption grows with gradient one and starts at 30ms.

6.4.5 Algorithm Complexity Analysis

Assume the number of files that about to be authorized to ASP is k and the number of

error that can be tolerated is e. We denote N as the number of leaf nodes in F-subtree,

O(Exp) the computing time of exponentiation of group elements, and O(Mul) be the time

of multiplication of two group elements.

Ciphertext Computing

In Fuzzy IBE adapted in authorization 1, access trees with another threshold value of all

the files that are about to be authorized to ASP are created. Furthermore, the cipher-text

components matched with F-sub-tree are recomputed. Let the complexity of computing

the attributes of A-Fubtree and TimeSlot be O(Basic). So the complexity of Fuzzy IBE

adapted in authorization 1 is 2NK · O(Exp) + O(Basic). As to Fuzzy IBE adapted in

authorization 2, there are e extra nodes added in the F-sub-tree and then the complexity
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Figure 6.7: Time Consumption of File Access Protocol

of computing is 2e · O(Exp) + O(Basic). Similarly, Fuzzy Authorization’s computing

complexity is 4e · O(Exp) + O(Basic). The computing complexity of three schemes is

shown in Table 6.4.

Table 6.4: Ciphertext Computing

Schemes Complexity of ciphertext computing

Fuzzy IBE1 2NK ·O(Exp) +O(Basic)

Fuzzy IBE2 2e ·O(Exp) +O(Basic)

FA 4e ·O(Exp) +O(Basic)
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Table 6.5: Secret Key Issuing Complexity

Schemes Complexity of secret key issuing

Fuzzy IBE1 O(Fundamental)

Fuzzy IBE2 2d ·O(Exp) + d ·O(Mul) +O(Fundamental)

FA 4d ·O(Exp) + 2d ·O(Mul) +O(Fundamental)

Secret Key Issuing Complexity

Let O(Fundamental) be the computing complexity of the original access tree. In Fuzzy

IBE1, there is no extra computing while in Fuzzy IBE2, extra 2d · O(Exp) + d · O(Mul)

computing is needed. Besides the fundamental computing, in FA, extra 4d ·O(Exp) + 2d ·
O(Mul) computing is needed. The computing complexity of three schemes is shown in

Table 6.5.

Decryption Complexity

The main procedure of decryption is to perform interpolation. In both Fuzzy IBE1 and

Fuzzy IBE2, decryption needs to call satisfying an access tree procedure to determine

which of the cipher-text components and secret key components are selected to perform

interpolation. The number of leaf nodes in F-subtree is N in Fuzzy IBE1 and N + e in

Fuzzy IBE2. Hence the complexity of satisfying an access tree of Fuzzy IBE1 is N string

comparisons and of Fuzzy IBE2 is N+e string comparisons. In fuzzy authorization, instead

of calling satisfying an access tree procedure, the error checking procedure is required which

has a cost of N(N −K) · O(Exp) + (N − 1)(N −K) · O(Mul). If there are errors exist,

correction procedure is then conducted. The complexity of error correction is [2(K −
1) + (NK)]O(Exp) + (NK)K · O(Mul). Let O(DecInter) denote the rest interpolations for

decryption. Then the complexities of decryption of three schemes are displayed in Table 6.6.
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Table 6.6: Decryption Complexity

Schemes Complexity of secret key issuing

Fuzzy IBE1 N string comparisons

Fuzzy IBE2 N + e string comparisons

FA [2(K − 1) + (NK)]O(Exp) + (NK)K ·O(Mul)
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Chapter 7

Conclusion and Future Work

In this chapter, we present the conclusion in Section 7.1 and in Section 7.2, we demonstrate

the future work.

7.1 Conclusion

In this thesis, we propose a new authorization scheme, fuzzy authorization, which carries

out a flexible file sharing between owner who stores her data in one cloud party and

applications who registered within another cloud party. In addition, in fuzzy authorization,

the confidentiality of data is maintained through symmetric encryption and attribute based

encryption; the integrity of data is checked with integrity tag by owner or ASP; and the

access control is securely implemented with modified CP-ABE.

By tampering one of the components of secret key to be incorrect, the simulation of

FA protocol suggests that our authorization scheme successfully corrects the unmatched

indirect secret share, recovers the top secret and performs the decryption for KE. FA’s

self-error-checking ability eliminates the requirement of sending the file attribute to ASP

and error-correcing ability omits necessity of performing satisfying the access tree proce-

dure are proved by our simulation at a minor tradeoff in efficiency. Further more, the

simulation indicates that with the update of TimeSlot attribute, our authorization scheme
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automatically invalidates the authorized reading right from ASP. Comparing to Fuzzy

IBE1 and Fuzzy IBE2, the simulation results show that our solution FA reduces the stor-

age consumption when e = 1 and number of authorization file is less than nine which is

the most often occurring situation. The average time consumption of protocol collected in

our simulation implies that FA scheme is feasible and acceptable.

7.2 Future Work

While this thesis addresses the reading right authorization on cloud storage, our future

work will aim to resolve the writing right accreditation. Since the writing authorization

accreditation other parties to change owner’s data, trust between owner and other parties

must be built on a more rigorous authentication.

Also, we adopt the lazy revocation for our scheme which requires the owner to choose

random increase value st and compute e(g, g)αst at time t when he updates the archive file.

The cryptographic data structure is updated so as to revoke. Compare to revocation at the

beginning of equivalent time slot, lazy revocation keeps owner from extra re-encryption.

Unfortunately, lazy revocation slightly lowers the security [23]. In the future work, we will

work on another revocation scheme that eliminates the updating of cryptographic data

structure and enhance the security.

Besides, for we are using the original GRS decoding method, the complexity of er-

ror correction grows exponentially when the number of file attributes increases. A more

efficient way to detect and correct the errors should be considered and tested in later work.

62



References

[1] http://www.chromeosapps.org/, 2013.

[2] http://www.thetop10bestonlinebackup.com/cloud-storage, 2013.

[3] http://www.pdfmerge.com/, 2013.

[4] E. Hammer-Lahav, D. Recordon, and D. Hardt, “The oauth 2.0 authorization proto-

col,” Network Working Group Internet-Draft, 2011, available at http://tools.ietf.org/

html/rfc6749.

[5] A. Tassanaviboon and G. Gong, “Oauth and abe based authorization in semi-trusted

cloud computing,” in Data intensive computing in the clouds - DataCloud-SC ’11,

second international workshop, Proceedings. ACM, 2011, pp. 41–50.

[6] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-

tion,” in In Proceedings of the IEEE Symposium on Security and Privacy. IEEE,

2007, pp. 321–334.

[7] D. Boneh and X. Boyen, “Efficient selective-ID secure identity based encryption with-

out random oracles,” in Advances in Cryptology—EUROCRYPT 2004, ser. Lecture

Notes in Computer Science, vol. 3027. Springer Berlin Heidelberg, 2004, pp. 223–238,

available at http://www.cs.stanford.edu/∼xb/eurocrypt04b/.

[8] I. Agudo, “Cryptography goes to the cloud,” in Secure and Trust Computing and Data

Management and Applications, ser. Communications in Computer and Information

Science, vol. 187. Springer Berlin Heidelberg, 2011, pp. 190–197.

63

http://www.chromeosapps.org/
http://www.thetop10bestonlinebackup.com/cloud-storage
http://www.pdfmerge.com/
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
http://www.cs.stanford.edu/~xb/eurocrypt04b/


[9] J. Xu, E.-C. Chang, and J. Zhou, “Leakage-resilient client-side deduplication of en-

crypted data in cloud storage,” Cryptology ePrint Archive, Report 2011/538, 2011,

http://eprint.iacr.org/.

[10] G. Davida and Y. Frankel, “Efficient encryption and storage of close distance

messages with applications to cloud storage,” in Cryptography and Security: From

Theory to Applications, ser. Lecture Notes in Computer Science, D. Naccache,

Ed. Springer Berlin Heidelberg, 2012, vol. 6805, pp. 465–473. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-28368-0 29

[11] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi, and P. Samarati,

“Encryption-based policy enforcement for cloud storage,” in Proceedings of the 2010

IEEE 30th International Conference on Distributed Computing Systems Workshop.

ACM, 2010, pp. 42–51.

[12] C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public

auditing for secure cloud storage,” IEEE Transaction on Computers, vol. 62, pp. 362–

375, February 2013.

[13] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau, “Dynamic audit services

for integrity verification of outsourced storages in clouds,” in IEEE Transactions on

Services Computing. IEEE, 2011, pp. 227–238.

[14] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proceedings of

the 14th International Conference on the Theory and Application of Cryptology and

Information Security: Advances in Cryptology. ACM, 2008, pp. 90–107.

[15] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-availability and integrity layer

for cloud storage,” in Proceedings of the 16th ACM conference on Computer and com-

munications security. ACM, 2009, pp. 187–198.

[16] A. Juels and B. Kaliski, “Pors: Proofs of retrievability for large files,” in ACM Con-

ference on Computer and Communications Security. ACM, 2007, p. 584597.

64

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-28368-0_29


[17] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song,

“Provable data possession at untrusted stores,” in ACM Conference on Computer and

Communications Security. ACM, 2007, p. 598609.

[18] U. Lang, “Openpmf scaas: Authorization as a service for cloud & soa applications,”

in Cloud Computing Technology and Science (CloudCom). IEEE, 2010, pp. 634–643.

[19] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptology

EUROCRYPT 2005, ser. Lecture Notes in Computer Science, vol. 3494. Springer

Berlin Heidelberg, 2005, pp. 457–473.

[20] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for

fine-grained access control of encrypted data,” 2006, extended abstract to appear in

ACM CCS 2006. This is the full version. vipul@cs.ucla.edu 13428 received 31 Aug

2006, last revised 7 Oct 2006. [Online]. Available: http://eprint.iacr.org/2006/309

[21] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient,

and provably secure realization,” Cryptology ePrint Archive, Report 2008/290, 2008,

http://eprint.iacr.org/.

[22] ——, “Ciphertext-policy attribute-based encryption: An expressive, efficient, and

provably secure realization,” in Public Key Cryptography PKC 2011, ser. Lecture

Notes in Computer Science, vol. 6571. Springer Berlin Heidelberg, 2011, pp. 53–70.

[23] S. Zarandioon, D. D. Yao, and V. Ganapathy, “K2c: Cryptographic cloud storage with

lazy revocation and anonymous accessn,” in Security and Privacy in Communication

Networks, ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, vol. 96. Springer Berlin Heidelberg, 2012, pp.

59–76.

[24] W. Wang, Z. Li, R. Owens, and B. Bhargava, “Secure and efficient access to outsourced

data,” in Proceedings of the 2009 ACM workshop on Cloud computing security. ACM,

2009, pp. 55–65.

[25] S. Yu, “Data sharing on untrusted storage with attribute-based encryption,” Ph.D.

dissertation, Worcester Polytechnic Institute, MA, USA, July 2010.

65

http://eprint.iacr.org/2006/309
http://eprint.iacr.org/


[26] S. T. Position, “Cloud data management interface,” Advancing Storage and Informa-

tion Technology, 2012, available at http://snia.org/sites/default/files/CDMI%20v1.0.

2.pdf.

[27] S. Shepler, “Network file system (nfs) version 4 minor version 1 protocol,” Network

Working Group Internet-Draft, 2010, available at http://tools.ietf.org/html/rfc5661.

[28] D. Slamanig, “Efficient schemes for anonymous yet authorized and bounded use of

cloud resources,” in Selected Areas in Cryptography, ser. Lecture Notes in Computer

Science, A. Miri and S. Vaudenay, Eds. Springer Berlin Heidelberg, 2012, vol. 7118,

pp. 73–91. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-28496-0 5

[29] E. R. Berlekamp and L. R. Welch, “Error correction for algebraic block codes,” U.S.

Patent US 4 633 470 A, Septemper, 1983.

[30] D. Gorenstein, W. W. Peterson, and N. Zierler, “Two-error correcting bose-chaudhuri

codes are quasi-perfect,” Information and Control, vol. 3, pp. 291–294, 1960.

[31] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of

Society for Industrial and Applied Mathematics, vol. 8, pp. 300–304, 1960.

[32] R. McEliece and D. Sarwate, “On sharing secrets and reed-solomon codes,” Commu-

nications of the ACM, vol. 24, no. 9, pp. 583–584, 1981.

[33] S. Chatterjee and A. Menezes, “On cryptographic protocols employing asymmetric

pairings the role of ψ revisited,” Cryptology ePrint Archive, Report 2009/480, 2009,

http://eprint.iacr.org/.

[34] B. Lynn, “On the implementation of pairing-based cryptosystems,” Ph.D. dissertation,

Stanford University, CA, USA, June 2007.

[35] “Google accounts authentication and authorization,” https://developers.google.com/

accounts/docs/OAuth2Login#registeringyourapp, April 2013.

[36] B. Lynn, PBC Library Manual, http://crypto.stanford.edu/pbc/manual.pdf, 2006.

66

http://snia.org/sites/default/files/CDMI%20v1.0.2.pdf
http://snia.org/sites/default/files/CDMI%20v1.0.2.pdf
http://tools.ietf.org/html/rfc5661
http://dx.doi.org/10.1007/978-3-642-28496-0_5
http://eprint.iacr.org/
https://developers.google.com/accounts/docs/OAuth2Login#registeringyourapp
https://developers.google.com/accounts/docs/OAuth2Login#registeringyourapp
http://crypto.stanford.edu/pbc/manual.pdf


[37] “Website test tools,” http://www.websitepulse.com/help/tools.php, 2013.

[38] http://support.justcloud.com/question/205/is-there-a-bandwidth-limit, justCloud.

[39] C. J. Mifsud, “Algorithm 154: Combination in lexicographical osrder,”

Commun. ACM, vol. 6, no. 3, p. 103, Mar. 1963. [Online]. Available:

http://dx.doi.org/10.1145/366274.366309

[40] Y.-C. Chen, E. M. Nahum, R. J. Gibbens, D. Towsley, and Y. sup Lim, “Characteriz-

ing 4g and 3g networks: Supporting mobility with multi-path tcp,” UMass Technical

Report, 2012.

[41] C. Cocks, “An identity based encryption scheme based on quadratic residues,” in

Cryptography and Coding, ser. Lecture Notes in Computer Science, vol. 2260. Springer

Berlin Heidelberg, 2001, pp. 360–363.

[42] A. O. Michael Backes, Christian Cachin, “Secure key-updating for lazy revocation,”

in Computer Security ESORICS 2006, ser. Lecture Notes in Computer Science, vol.

4189. Springer Berlin Heidelberg, 2006, pp. 41–50.

[43] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric encryp-

tion schemes,” in Advances in Cryptology - CRYPTO ’99, 19th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Pro-

ceedings, ser. Lecture Notes in Computer Science, vol. 1666. Springer, 1999, pp.

537–554.

[44] T. O. Eiichiro Fujisaki, “Secure integration of asymmetric and symmetric encryption

schemes,” Journal of Cryptology, vol. 26, pp. 80–101, 2013.

[45] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted

data,” in Theory of Cryptography, ser. Lecture Notes in Computer Science, vol. 4392.

Springer Berlin Heidelberg, 2007, pp. 535–554.

[46] D. Boneh and X. Boyen, “Efficient selective-ID secure identity based encryption with-

out random oracles,” Journal of Cryptology, vol. 24, pp. 659–693, 2011.

67

http://www.websitepulse.com/help/tools.php
http://support.justcloud.com/question/205/is-there-a-bandwidth-limit
http://dx.doi.org/10.1145/366274.366309


[47] R. S. Kumar and A. Saxena, “Data integrity proofs in cloud storage.” in COMSNETS,

D. B. Johnson and A. Kumar, Eds. IEEE, 2011, pp. 1–4. [Online]. Available:

http://dblp.uni-trier.de/db/conf/comsnets/comsnets2011.html#KumarS11

[48] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained

data sccess control in cloud computing,” in INFOCOM’10 Proceedings of the 29th

conference on Information communications. IEEE, 2010, pp. 534–542.

[49] D. Recordon and J. Hoyt, “Openid authentication 2.0 - final,” Network Working Group

Internet-Draft, 2007, available at http://openid.net/specs/openid-authentication-2 0.

html.

[50] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, pp. 612–

613, 1979.

[51] http://www.facebook.com/help/405977429438260/, 2013.

[52] A. Beimel, “Secure schemes for secret sharing and key distribution,” Ph.D. disserta-

tion, Israel Institute of Technology, Technion, Haifa, Israel, 1996.

[53] L. R. Welch, “The original view of reed-solomon codes,” http://csi.usc.edu/PDF/

RSoriginal.pdf, 1997.

68

http://dblp.uni-trier.de/db/conf/comsnets/comsnets2011.html#KumarS11
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://www.facebook.com/help/405977429438260/
http://csi.usc.edu/PDF/RSoriginal.pdf
http://csi.usc.edu/PDF/RSoriginal.pdf

	List of Tables
	List of Figures
	Introduction
	Literature Survey
	Encryption Solutions for Cloud Storage
	Integrity Schemes for Cloud Storage
	Access Control for Cloud Storage
	Other Security Concerns for Cloud Storage

	Preliminaries
	Shamir's (K, N) Threshold Scheme
	Distribute the Shares of Top Secret
	Reconstruct the Top Secret

	Generalized Reed Solomon (GRS) Code Encoding and Decoding
	GRS Code Encoding
	GRS Code Error Checking
	GRS Code Decoding

	CP-ABE
	CP-ABE Model
	Construction of CP-ABE

	Bilinear Maps
	Decisional Bilinear Diffie-Hellman Exponent Assumption

	Fuzzy Authorization
	System Model and Overview of FA
	Overview of Protocol
	Adversary Models

	Access Tree Structure
	Construction of Access Tree
	Adding Checking Nodes into the Tree

	Archive Format
	Transformation from Shamir's Linear Secret Sharing Scheme to GRS
	Transformation From Secret Distributing to GRS Encoding
	Transformation From Secret Recovery to GRS Decoding

	Main Procedures of Fuzzy Authorization
	Setup(Lg)
	Encrypt(CPK, OPK, m, Lg)
	KeyGen(CSK, OSK, Lg)
	Delegate(SK, Lg)
	DecryptandErrorCorrect(CT, SK, T)
	Time Slot Synchronization

	Fuzzy Authorization Protocol Flow
	Service Request
	Token and Secret Key Issuing
	File Access
	TimeSlot Synchronization

	Difference Between Fuzzy Authorization and Other Solutions

	Security Analysis
	CSP Tries To Illegally Access or Modify Owner's Plain Data
	ASP Tries to Decrypt Owner's Data without Permission
	AS Tries to Access Owner's Data Illegally
	Owner Propose Tokens to Access Other Owners' File

	Implementation of Fuzzy Authorization
	Parameter Selection and Simulation Environment
	Pairing Implementation
	Implementation of FA Protocol with OMNETPP
	Parameter Selection for Communication

	Optimizations
	Fuzzy IBE Adapted in Cloud Storage Authorization
	First Solution of Fuzzy IBE
	Second Solution of Fuzzy IBE
	Comparisons of FA to Fuzzy IBE1 and Fuzzy IBE2

	Performance Measurements
	Time Consumption
	Extra Space Consumption
	Revocation
	Time Cost for Protocol Procedures
	Algorithm Complexity Analysis


	Conclusion and Future Work
	Conclusion
	Future Work

	References

