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Abstract

One of the most essential objectives in WSNs is to determine the spatial coordinates

of a source or a sensor node having information. In this study, the problem of range

measurement-based localization of a signal source or a sensor is revisited. The main chal-

lenge of the problem results from the non-convexity associated with range measurements

calculated using the distances from the set of nodes with known positions to a fixed sen-

sor node. Such measurements corresponding to certain distances are non-convex in two

and three dimensions. Attempts recently proposed in the literature to eliminate the non-

convexity approach the problem as a non-convex geometric minimization problem, using

techniques to handle the non-convexity.

This study proposes a new fuzzy range-free sensor localization method. The method

suggests using some notions of Euclidean geometry to convert the problem into a convex

geometric problem. The convex equivalent problem is built using convex fuzzy sets, thus

avoiding multiple stable local minima issues, then a gradient based localization algorithm

is chosen to solve the problem.

Next, the proposed algorithm is simulated considering various scenarios, including the

number of available source nodes, fuzzification level, and area coverage. The results are

compared with an algorithm having similar fuzzy logic settings. Also, the behaviour of

both algorithms with noisy measurements are discussed. Finally, future extensions of the

algorithm are suggested, along with some guidelines.

iii



Acknowledgements

I would like to express my sincere gratitude to my supervisors, Prof. Karray and Prof.

Fidan for their guidance and support throughout my thesis. Without their supervision,

this work would not have been succeeded.

I am indebted to Prof. Fidan for his remarkable advice and time commitment during

my studies. I am also very grateful to my readers, Prof. Melek and Prof. Ponnambalam

for their time to review this thesis. Special thanks to Prof. Melek for his greatest vision

and helpful discussions during his Computational Intelligence course.

Furthermore, I would like to thank all my friends who brought me joy and enriched my

life intellectually. Finally, my deepest appreciation goes to my family for their support,

patience, understanding and unconditional love.

iv



To my lovely family

v



Contents

List of Acronyms viii

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Problem Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Formal Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Motivation, Focus and Contributions . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Literature Review 7

2.1 Convex Optimization Based Approaches . . . . . . . . . . . . . . . . . . . 7

2.2 Soft Computing-Based Approaches . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Absolute Range-Based vs Range-Free Algorithms . . . . . . . . . . . . . . 14

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



3 Proposed Fuzzy Logic Based Range-Free Localization Algorithm 17

3.1 General Structure and Main Components . . . . . . . . . . . . . . . . . . . 17

3.2 The Fuzzy Ring-Overlapping Range-Free Localization Algorithm . . . . . . 18

3.3 Preliminaries of the Proposed Algorithm: Constructing Convex Fuzzy Regions 24

3.4 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Simulation Tests and Numerical Assessments 37

4.1 Localization of a Chosen Sensor Node . . . . . . . . . . . . . . . . . . . . . 38

4.2 Testing the Effect of Anchor Locations . . . . . . . . . . . . . . . . . . . . 47

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conclusion and Future Work 52

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Extension to Cases with Higher Number of Anchors . . . . . . . . . . . . . 53

5.3 Extension to Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 55

References 57

vii



List of Acronyms

WSN Wireless Sensor Network

GPS Global Positioning System

ToA Time of Arrival

TDoA Time Difference of Arrival

AoA Angle of Arrival

RSS Received Signal Strength

ToF Time of Flight

WLS Weighted Least Square

ML Maximum Likelihood

POCS Projection onto Convex Sets

CI Computational Intelligence

ROCRSSI Ring Overlapping Based on Comparison of Received Signal Strength Indicator

TSK Takagi-Sugeno-Kang

FRORF Fuzzy Ring Overlapping Range Free

CoG Center of Gravity

RAFRF Radical Axis Based Fuzzy Range Free

viii



List of Tables

4.1 Average and maximum error values using FRORF and RAFRF . . . . . . 47

4.2 Average and maximum error values using FRORF and RAFRF in an ex-

tended area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Average and maximum error values using FRORF and RAFRF with noise

(σ = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Average and maximum error values using FRORF and RAFRF with noise

(σ = 0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ix



List of Figures

2.1 A typical fuzzy inference system with crisp input d and crisp output w. . . 11

2.2 Working scheme overview of FRORF [1]. . . . . . . . . . . . . . . . . . . . 13

3.1 Representation of a ring interval formed according to an anchor Ai proposed

in FRORF [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Membership functions for a fuzzy ring: (a) non-overlapping fuzzy regions of

µLT j
and µGT j

; (b) overlapping fuzzy regions of µLT j
and µGT j

[1]. . . . . 21

3.3 An instance of finding area code for 3-Anchors in FRORF [1]. . . . . . . . 23

3.4 The case of two circles, intersection utilizing the radical axis property. . . . 25

3.5 Representation of node-distance measurement pairs (xi, di), (xi+1, di+1) and

the corresponding radical axis li. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Radical axis convergence test illustration of 3 anchors in a 2−dimensional

sytem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Generic representation of power line intervals formed based on ordering of

radical axis power of sensor S to anchor pairs. . . . . . . . . . . . . . . . . 31

3.8 An instance of finding area code for 3 anchors in RAFRF. . . . . . . . . . 33

x



4.1 Errors using RAFRF for 3 anchors with fuzzification parameter p = 0.1. . . 38

4.2 Errors using FRORF for 3 anchors with fuzzification parameter p = 0.1. . . 39

4.3 Error differences between RAFRF and FRORF for 3 anchors when fuzzifi-

cation parameter p = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Errors using RAFRF for 3 anchors with fuzzification parameter p = 0.5. . . 41

4.5 Errors using FRORF for 3 anchors with fuzzification parameter p = 0.5. . . 42

4.6 Error differences between RAFRF and FRORF for 3 anchors when fuzzifi-

cation parameter p = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Errors using RAFRF for 4 anchors with fuzzification parameter p = 0.1. . . 44

4.8 Errors using FRORF for 4 anchors with fuzzification parameter p = 0.1. . . 45

4.9 Error differences between RAFRF and FRORF for 4 anchors when fuzzifi-

cation parameter p = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xi



Chapter 1

Introduction

Recent improvements in radio and embedded systems have resulted in the development

of sensor nodes with relatively low power and low cost. Those sensor nodes with wireless

interfaces originated the real-life wireless sensor networks (WSNs),which led to change in

the means of gathering information using the networks. That change has enabled tremen-

dous opportunities for the networks in many applications. Such applications as detecting

hazardous chemicals, monitoring seismic activity [2], healthcare and medical research [3],

homeland security and defence-related applications [4], [5], as well as personnel tracking

in large complexes, intelligent audio players in self-guided museum tours, and intelligent

maps for large malls and/or offices [6].

1.1 Problem Domain

A WSN, in general, consists of a large number of sensor nodes with ad-hoc deployment.

These sensors will have varying features, such as infrared, ultrasonic, visible light, sonar,
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radar, and orientation detection [7], based on the needs of the specific application. These

sensor nodes are used to sense the environment, do some computations, and accomplish

several common objectives using sensor intercommunications. After deployment, there

will be nodes whose location is unknown, as well as the location-known, i.e., anchors or

beacons, because the capacity to have only location-known sensors is a costly one (in terms

of time, computational effort, cost of hardware). However, the information collected from

sensors is meaningless in most cases if the physical positions of the sensor nodes which

gathered the information are unknown. Such cases include animal habitat monitoring,

bush fire surveillance, road traffic monitoring, and inventory management [6]. Also, missing

coordinate information of a sensor node can often cause an incorrect interpretation of data.

Therefore, it is important for a WSN to have the capability of determining the estimate of

spatial coordinates of sensor nodes in the network [8].

WSN localization algorithms utilize the location information of anchors and inter-

sensor measurements to estimate the locations of sensors with initially unknown position

information. The position information of anchors are obtained either by employing a global

positioning system (GPS), or by installing anchors manually. Excluding the applications

requiring a GPS, a local coordinate system is established by these anchors with reference

to all sensors in the system, since GPS receivers are expensive in both financial and power-

usage terms [6].

Location discovery techniques employing anchors include trilateration, triangulation,

and maximum likelihood multilateration [9]. Trilateration employs the intersection of three

circles of three anchor nodes, built using distance measurements between the sensor node

to be located and the three anchors as the radii of the corresponding circles. However, the

number of anchors needs to be decreased, since distance measurements are usually noisy in

real applications. To handle this problem, distance measurements from multiple neighbour
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nodes can be used by applying maximum likelihood estimation, which aims to minimize the

differences between the measured ones and the estimated ones. In triangulation, location

of a sensor node is estimated by utilizing the angle information of anchors to the sensor

node and their coordinate information.

Another component of WSN localization algorithms is inter-sensor measurements. Such

measurements are computed using time of arrival (ToA), time difference of arrival (TDoA),

angle of arrival (AoA), and techniques based on received signal strength (RSS) [6, 10, 11].

ToA, also known as time of flight (ToF), utilizes the travelling time of a specific signal from a

transmitter to a receiver during propagation along with the propagation speed, to calculate

the distance between the transmitter and the receiver. That this requires the sending and

receiving clocks to be synchronized is the primary restriction of ToA. However, TDoA

eliminates the restriction by using the combination of two different signals with different

propagation speeds. AoA employs the coordinate-based angle of the received signal, using

an antenna array, to estimate the position of a sensor. Due to the need for array antennas

which are high-priced, use of the AoA technique must be carefully considered.

Among the inter-sensor measurement techniques, RSS-based ones are widely appreci-

ated because they depend on a standard feature found in most wireless devices, thus not

requiring any extra hardware cost. On the other hand, calculations of estimates based on

RSS can arrive at inaccurate results because of the side effects of the radio propagation

environment [10, 12]. Overall, there are several inter-sensor measurement techniques for

WSNs, and deciding which technique to use is an application-dependent choice.
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1.2 Formal Problem Definition

Formally speaking, accurate position approximation of a source by applying relative

data of a group of sensors to the source is called source localization, and self-location

estimation of a sensor applying similar data relative to several anchors, is called sensor

localization.

The generic definition of a sensor/source localization problem is given by:

Problem 1.2.1 Given known 2 or 3- dimensional anchors A1, . . . , AN (N > 2 and N > 3

in 2 and 3 dimensions respectively) and a sensor/source node S with unknown position y∗,

estimate the coordinates of S, from the distance estimates/measurements di ≈ ‖y∗ − Ai‖.

Here, either S symbolizes the position of the unknown source and the Ai are the po-

sitions of sensors seeking to approximate the location of S, or S represents the position

of the sensor approximating its position, and the Ai are the positions of the anchors, i.e.,

position-known nodes.

There are many ways to obtain distance estimates, such as using signal intensity and

features of the vehicle for a signal sending from a source, calculating time to emit a signal to

a known point to return for a self-transmitting sensor, and cooperatively using the TDOA

information from a set of sensors. However, they are outside the scope of this study, with

the exception of the one expressed in the following for simulation purposes.

This approach is known as received signal strength (RSS). It employs source signal

strength A, the distance d from the source, and a power loss coefficient η represented by

s = A/dη (1.2.1)

where s is the source emitting a signal. The distance d can be derived from (1.2) using

given values of A, η and s distance d.
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1.3 Motivation, Focus and Contributions

A common task in many applications involving WSN problems requiring accurate po-

sition information of sensor nodes, is to achieve correlation between sensor readings and

coordinates, position-based routing and data aggregation, and thus ease the network’s self-

configuration and -organization utilizing an ad-hoc deployment of large number of sensors.

Moreover, getting the position information itself is the goal in several applications such as

inventory management and target tracking [1].

One can encounter numerous methods for solving localization problems in literature

in terms of conventional and soft computing ones, including: using signal intensity and

features of the vehicle for a signal emitting from a source; calculating the time needed to

emit a signal to a known point and back for a self-transmitting sensor; cooperatively using

the TDOA information of a set of sensors; or by applying fuzzy logic, genetic algorithms,

neural networks, and hybrids of these involving multiple methods.

The data used for position approximation ranges from bearing to power level, or from

time difference of arrival (TDOA) to received signal strength (RSS). However, distance

measurements with or without noise are-the only focus of this study.

To have a better understanding of the difference between conventional and soft compu-

tational aspects, one method from each perspective, using a similar distance measurement

technique, is applied. One proposed in [13] aims to classify sequential nodes into pairs

to utilize the radical axis property of pairs of sensor nodes. Thus, the cost function can

be rewritten with respect to that property and minimized by applying a gradient descent

algorithm. Such classification ensures highly desirable performance in noisy cases, which

can have practical advantages in costs, by reducing the number of sensors/ anchors to deal

with, and eliminating the necessity of re-initialization. The other utilizes a fuzzy logic
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area-based inference system in [1], using area-codes of a sensor as an input, and estimated

location as an output, by applying adequate If-Then rules. The algorithm proposed in [1]

follows the weighted centroid principle that all of the weighted estimated locations of a

sensor are averaged to find an overall mean.

The contribution in this study is to construct such a fuzzy-based inference system using

some geometric notions, namely the radical axis of pairs of sensor nodes, to convert non-

convex regions into convex ones. Thus, the potential problems in the position of the center

of gravity for the corresponding region can be eliminated, and the execution time can be

reduced.

The rest of the study is organized as follows. Chapter 2 presents a historical background

and literature review of the most-used conventional and soft computing methods. Chapter 3

explains the proposed algorithm in detail. Chapter 4 evaluates the algorithm proposed

by comparing it with the algorithm proposed in [1], and highlights the strengths and

weaknesses of each algorithm. Chapter 5 summarizes this work and discusses extension of

the proposed algorithm for five or more anchors, followed by proposing some suggestions

for potential improvements that can be examined in future studies.
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Chapter 2

Background and Literature Review

Source/signal localization problems involving wireless networks have had an increasing

significance as a result of advances in radio and embedded systems, and studies on them

have become more popular. There have been various approaches to tackle localization

problems, which can be categorized, from the algorithmic aspect, into two classes; conven-

tional convex optimization, and soft computing-based approaches. This thesis will aim to

bring together a set of tools from these two categories. In this chapter, we provide a review

of the literature on both approaches.

2.1 Convex Optimization Based Approaches

Convex optimization [14–17] is one of the most popular frameworks used for developing

mathematical models and defining problems for real-life applications. Such applications

include modelling, system optimization, and estimation and control tasks as applied to

various branches of engineering. In a typical model-forming and problem definition proce-
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dure based on convex optimization, the optimization/estimation/control task is formulated

using a convex (mostly quadratic) objective function, and a set of linear equality and in-

equality constraints. The system model is constructed in a parametric form suitable for

this formulation. The sensor network localization problem of interest in this paper, Prob-

lem 1.2.1, is also defined in the aforementioned framework.

Next, we provide a literature review of studies on range measurement estimation-based

localization problems of the form of Problem 1.2.1, or similar to it. In such a problem,

the ability of each sensor to measure its distance using an adequate number of anchors

is critical in anchor deployment. It is also inferred that there is a non-convexity issue

resulting from range measurements, in both two and three dimensions.

A number of algorithms to address sensor or source localization problems have been

proposed [6,11,18–23]. In fact, S in Problem 1.2.1 can be estimated using linear algorithms

if the signal model is linear in the unknown parameters [18], [24]. Thus, the di uniquely

specify S. However, these range measurements are noisy in real life applications, causing

the localization algorithm to arrive at an inaccurate result.

Another approach in the literature is the use of weighted least squares (WLS)-based

estimation [22]. This approach functions by utilizing a non-convex cost function, requiring

some conditions to prevent local minima. Another similar approach is maximum likelihood

(ML) [25] estimator design, assuming the noise measurements are Gaussian. The cost

function used in the ML design [25] also has stable local minima. Hence, this design has

issues with convergence to a global minimum.

There are a number of attempts in the literature to eliminate the local minimum issue

[6, 11, 18–23, 26]. One such recent attempt is the projection onto convex sets (POCS)

algorithm proposed in [19]. The POCS algorithm is effective when the sensor node to be
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localized resides within the convex hull of the anchors used for localizing it. If the sensor to

be localized is outside the convex hull, the algorithm is observed to result in a limit cycle,

not reaching the desired target sensor location. POCS was improved by Rydstorm et

al., [20], where the improved algorithm was called hyperbolic POCS. However, hyperbolic

POCS does not always converge as well, and has unspecified convergence conditions [20].

As observed in the studies mentioned above, the cost functions used in formulation of

range measurement-based localization problems are naturally non-convex, and have a high

chance to be influenced by local minima. Even the presence of a large number of distance

measurements in sensor/anchor deployment may not be sufficient for obtaining accurate

results. Further, the convergence characteristics of any non-linear algorithm applied must

be carefully considered. From another aspect, it is also essential to build regions enclosing

fewer numbers of sensors/anchors to prevent wasting energy and to minimize delays. If a

source/sensor is known to reside in one such region, a cost function that is convex in this

region can be minimized by applying a gradient descent algorithm, resulting in exponential

convergence in the noise-free case for the specific region. Such a regional partitioning

eases practical localization in three aspects: ensuring accuracy in noisy cases, providing

practical advantages such as lower computational and communication cost, and preventing

re-initialization [21].

In Section 3.3, we revisit Problem 1.2.1 and the approach of [21], proposing a technique

that employs a geometric feature to build a convex formulation of the localization problem.

Once the convex formulation is built, numerous convex minimization methods can be used,

including the gradient-based localization algorithm chosen for this study.
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2.2 Soft Computing-Based Approaches

Computational intelligence (CI) is an area of study about mechanisms having the abil-

ity to learn, to adapt to changes in environments, and to make human-like inferences.

Many soft computing methods such as neural networks, reinforcement learning, swarm

intelligence, evolutionary algorithms, fuzzy logic, and genetic algorithms, have surpassed

conventional ones under conditions of uncertainty. Furthermore, compared to conventional

approaches, soft computing-based approaches are better able to handle situations with mul-

tiple restrictions, such as in power supply, communication bandwidth, and computational

capabilities. [27]

Classical set theory, preferred in the conventional approaches, allows elements to be

either in a set or not, which prevents the system from using human-like reasoning, such

as dealing with uncertainty and imprecision. This reasoning can be modelled using fuzzy

logic, allowing elements to have partial membership degrees in a set [27]. The membership

degree of an input in a certain range is the degree of truth for the input ranging between

0 and 1.

Fuzzy logic-based system involves the three main steps demonstrated in Figure 2.1:

fuzzification, rule-based inferencing, and defuzzification. In the fuzzification step, the

sytem takes crisp, i.e. non-fuzzy, input values, and converts them into fuzzy values us-

ing membership functions. These functions can be in different forms, such as triangular,

trapezoidal, Gaussian, etc. The membership functions result in membership degrees of the

input. These membership degrees are combined based on some IF-THEN rules in the fuzzy

inference engine, and then are sent into the defuzzifier. The inference methods include the

max-min method, the averaging method, the root sum squared method, and the clipped

center of gravity method [28]. In the defuzzification step, opposite to fuzzification, the
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fuzzy values obtained in the inference engine are converted into crisp values.

Figure 2.1: A typical fuzzy inference system with crisp input d and crisp output w.

Since fuzzy logic-based methods mimic human decision-making by giving degrees of

truth, such methods are outstanding preferences in several applications. These applica-

tions include air conditioning systems, heating systems, home appliances, power systems,

industrial automation, digital image processing, and pattern recognition [27].

Fuzzy logic-based approaches are also chosen in many localization problems. Ability to

give detailed location data is one of the main reasons to use fuzzy logic in such problems.

Many studies, such as [29], use fuzzy sets to express different kinds of uncertainty in

location data.

Furthermore, fuzzy logic is complimented by Dharne et al., [30] for avoiding the use

of strict probabilistic approximation methods or special hardware in the localization of

mobile robots. They also mention that a fuzzified system helps to lessen computational

resources, to be more robust to inaccurate sensor location estimates, and to ease heuristic

rule determination. Fuzzy logic also assists in accomplishing multiple simultaneous tasks

for target localization applications. One of the studies regarding multiple simultaneous

tasks, developed by Rowaihy et al., [31], uses exact position information and fuzzy logic in

order to employ various types of different directed sensor nodes.
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To have more optimized and self-learning systems, hybrid fuzzy techniques consisting of

fuzzy logic and another soft computing method have been employed by several researchers

[32, 33]. One of these studies employs genetic-fuzzy and neuro-fuzzy algorithms to handle

the shortcomings of the centroid localization [32]. The study aims to achieve more accurate

results and error resilience by using several kinds of membership functions. [33]

On the other hand, there have been various studies [34–37] involving fuzzy logic and

area-based localization methods. Area-based range-free localization methods are preferred,

because they can handle larger environments by dividing the environment into a number of

overlapping sub-regions. The absence or presence of a sensor node in such regions guides

the algorithm to find the potential sub-region where the sensor node is located. He et

al. [37], introduce a range-free algorithm in which a sensor node is tested as to being inside

or outside the triangle defined by three anchors, and the diameter of the approximate area

can be narrowed using the locations of anchors to obtain better position approximation.

Liu et al. [34] describe the ROCRSSI (Ring-overlapping based on comparison of received

signal strength indicator) algorithm, in which intersecting overlapping rings constrain the

location of a sensor node. Such rings take all anchors as centre points and use signal

strength between anchors to form the radii of these centres. The signal strength which

the sensor node receives from anchors are also employed to localize the sensor. However,

there are some issues in the proposed method which prevent the algorithm functioning

properly [36]. The first is choosing a false ring, which is unfolded by selecting the valid

region with the maximum number of intersecting rings. Another is large localization errors

caused by small radio irregularities in the vicinity of ring boundaries.

In order to eliminate the side effects of inaccurate RSSI measurements which resulted

in high cost, a method based on the Takagi-Sugeno-Kang (TSK) fuzzy model is proposed

in [35]. This method employs fuzzy logic to transform RSSI into edge weights of adjacent
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anchors used for localization by a weighted centroid localization approach.

As a remedy for ROCRSSI, the fuzzy ring overlapping range-free (FRORF) localization

technique was proposed by Velimirovic et. al, [1]. The FRORF algorithm represents

localization areas with overlapping rings, similar to ROCRSSI. Rings are formed with

anchors as ring centres, based on RSS measurements between the anchor at the centre

and other anchors. Furthermore, FRORF utilizes fuzzy logic to handle uncertain RSSI

measurements which can result in significant localization errors. Overlapping rings are

represented as fuzzy sets, and membership degrees of a sensor node are obtained from

membership functions based on RSSI measurements. To find the estimate of the sensor,

the weighted average center of gravity of localization areas with these membership degrees

is calculated. (see Figure 2.2 for general working scheme of FRORF)

Figure 2.2: Working scheme overview of FRORF [1].

Although FRORF overcomes the uncertainty in RSSI measurements, there is another

issue: non-convexity. This issue is a result of local minima at the intersection of overlapping

rings. To avoid non-convexity, we propose a new range-free method, using overlapping

lines instead of rings to form localization areas. Absolute distance measurements between

anchor pairs, and a geometric feature, called radical axis, are used to build line intervals.
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Membership degrees and location estimation of a sensor node are determined similar to

FRORF, and will be explained in details in Chapter 3.

2.3 Absolute Range-Based vs Range-Free Algorithms

Wireless sensor network localization algorithms are classified based on various criteria

[10]. One such categorization, which has motivated this study is absolute range-based vs.

range-free localization.

Absolute range-based techniques employ absolute distance or angle measurements be-

tween anchors and sensor nodes. These measurements are used to determine the location

of the sensor nodes. Range-based algorithms utilize inter-sensor measurement techniques

such as received signal strength (RSS), time of arrival (TOA), time difference of arrival

(TDoA), or angle of arrival (AoA) [6,10,11]. Information on coordinates of anchors is pop-

ulated by using a GPS (for outdoor application), or an accurate indoor positioning system

(for indoor applications), or via direct assigments during set-up, before the localization

process.

Range-based methods can output more accurate location estimates with the help of

additional hardware equipment. However, they bear higher cost and power consumption,

and generally require higher traffic in network communication [10], as well as being more

sensitive to measurement noises. Furthermore, certain WSNs might not have hardware

devices needed to implement absolute range-based algorithms. Hence, range-free methods

are preferred in many cases, because they use only standard features found in most radio

modules, and are thus more economical and simpler than range-based ones. Although most

range-free methods yield low system costs, their localization results are not as accurate as
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those of range-based ones [1]. Also, the proximity calculation can be easily affected by the

environment and thus fail.

Range-free methods utilize approximate distances, in contrast to range-based techniques

which use absolute estimates of distances. Such distance estimates include means of anchor

proximity, near-far information, and comparison of less accurate distance estimation, to

determine which sensor node is in the transmission range of which anchor. This determina-

tion guides the system to produce approximate distance information for the sensor nodes.

There is no single perfect algorithm which works very well for all localization problems.

Thus both absolute range-based and range-free algorithms are used in practice, a choice

depending on the specific application and requirements [38]. Nevertheless, the focus of this

work will be settings with inaccurate measurements, where range-free algorithms are more

appropriate to use.

In this study, to avoid non-convexity, we propose a new range-free method using certain

overlapping rectangles instead of rings. Absolute distance measurements between anchor

pairs, and a geometric feature called radical axis, are used to build these regions. We

develop our methodology combining the fuzzy framework of (FRORF) and a new convex

geometric methodology proposed in [13].

2.4 Summary

This chapter gives insights into the field of study of convex optimization and soft

computing-based approaches. In order for the reader to help assess the two approaches,

several algorithms in both fields of study are mentioned, with pros and cons. Finally,

absolute range-based and range-free algorithms are compared, to understand further the

motivation behind the algorithm proposed in the following chapter (in Section 3.4).
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The next chapter introduces a new fuzzy logic based range-free localization algorithm:

the general structure and main components of our algorithm are introduced in Section 3.1,

the main components are further elaborated in Sections 3.2 and 3.3, and our algorithm

design based on these main components is presented in Section 3.4.

16



Chapter 3

Proposed Fuzzy Logic Based

Range-Free Localization Algorithm

In this chapter, we propose a new fuzzy logic-based range-free localization algorithm,

combining the fuzzy approach of ring-overlapping proposed in [1], and a new convex geo-

metric methodology proposed by us in [13]. The general structure and main components of

our algorithm are introduced in Section 3.1. The main components are further elaborated

in Sections 3.2 and 3.3. Our algorithm design based on these main components is presented

in Section 3.4. Concluding remarks of the chapter are given in Section 3.5.

3.1 General Structure and Main Components

Our motivation for designing a new fuzzy range-free localization algorithm is the po-

tential non-convexity issue (multiple stable local minima) in similar algorithms in the

literature, particularly a recently proposed algorithm, FRORF [1]. This issue stems from
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the non-convex nature of range measurement: the set of points having a fixed distance x

from a sensor S is non-convex, and is a circle if we consider a planar setting.

The fuzzy logic-based studies in the literature, including FRORF [1], consider fuzzy

sets whose definition is based on such natural non-convex sets. Instead of fixed distances,

ranges at distances are used, leading to rings, which are also non-convex.

To overcome the convexity issue we propose using the notions of radical axes and

radical axis powers. As detailed in Section 3.3, these notions help to compose convex fuzzy

regions, still based on distance information. Our proposed algorithm consists of two main

components:

(i) A fuzzy logic setting similar to that of FRORF

(ii) A new methodology for generating convex fuzzy sets based on the radical axis prop-

erty.

In the following two sections, these components are explained in details.

3.2 The Fuzzy Ring-Overlapping Range-Free Local-

ization Algorithm

The idea in FRORF as proposed by Velimirovic et al. [1] is built using an area-based

range-free localization approach. The authors aim to partition the region containing a

number of nodes into a number of fuzzy regions. The fuzzy regions are in the form of inter-

sections of overlapping rings that are represented as fuzzy sets with ambiguous boundaries.

The working scheme of the proposed algorithm for Problem 1.2.1 in [1] is as follows.
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Consider an anchor sensor Ai and the estimate distance measurement x of the sensor

node S from the anchor Ai. Order the other anchors Akj (kj 6= i, j = 1, . . . , N − 1)

according to their distances dij = |AkjAi| from Ai in the Euclidean domain, such that

dij ≤ di(j+1) for all j. Define also di,0 = 0 and di,N = ∞. Based on this ordering, define

the ring intervals

RI ij = {S|αj ≤ |AiS| ≤ βj} := RI(Ai)[αj, βj] (3.2.1)

where αij = dij and βij = di(j+1) for j = 1, . . . , N − 1. As illustrated in Figure 3.1, ring

intervals for Ai are derived from (3.2.1) according to ordering of the distances from Ai.

Figure 3.1: Representation of a ring interval formed according to an anchor Ai proposed in

FRORF [1].

Each such ring interval RIj (dropping the superscript i for brevity) can be considered

as the intersection

RIj = LT j ∩GT j (3.2.2)

of the region LT j = RI(Ai)[0, βj], which is the area inside the circle C(Ai, βj)
1 and the

region GT j = RI(Ai)[αj,∞), which is the area outside the circle C(Ai, αj).

1Given A ∈ <2 and r ∈ <+, C(A, r) denotes the circle with center A and radius r.

19



For the sensor S with crisp value x, representing the distance estimate to Ai, LT j

and GT j crisp intervals are represented by fuzzy sets L̃T j = {(x, µLT j
(x))|x ∈ R+} and

G̃T j = {(x, µGT j
(x))|x ∈ R+}. Here, µLT j

(x) and µGT j
(x) are the membership functions

illustrated in Figure 3.2, and are formally defined as follows for a pre-defined fuzzification

parameter p ∈ [0, 1]:

µLT j
(x) =


1 if x ≤ βj(1− p)
(1+p)βj−x

2pβj
if βj(1− p) < x < βj(1 + p)

0 if x ≥ βj(1 + p)

(3.2.3)

µGT j
(x) =


0 if x ≤ αj(1− p)
x−(1−p)αj

2pαj
if αj(1− p) < x < αj(1 + p)

1 if x ≥ αj(1 + p)

(3.2.4)

µRIj(x) = µLT j
(x) + µGT j

(x)− 1 (3.2.5)

The membership functions (3.2.3) - (3.2.4) follow fuzzy intersection rules in fuzzy set

theory [28, Chapter 2]. Here, the fuzzification parameter p ∈ [0, 1] enables the system

or the user to decide on the width of the region in the neighbourhood of ring boundaries

corresponding to αj and βj.

For fuzzification, two different approaches were proposed in [1]: direct-RSS fuzzifica-

tion, and indirect-RSS fuzzification. In this study, indirect-RSS fuzzification is preferred

for comparison purposes, since the algorithm we propose uses known distances between an-

chors. In the indirect-RSS fuzzification, after defining fuzzy rings in the Euclidean domain,

20



Figure 3.2: Membership functions for a fuzzy ring: (a) non-overlapping fuzzy regions of µLT j

and µGT j ; (b) overlapping fuzzy regions of µLT j and µGT j [1].

RSS measurements of sensor nodes are converted into distances, and final membership de-

gree of a sensor node S is taken as the average of membership degrees of S for distance

estimation by each anchor Ai. Details of the RSS measurement mechanism and distance

estimate generation are beyond the scope of this thesis. Hence, we assume availability of

the estimated distance x.

Next step is to build fuzzy inference and fuzzy sets based on the fuzzy intervals and

membership functions as defined for each anchor Ai. The fuzzy ring set corresponding to
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anchor Ai is defined as

R̃Si = {(kj, µRIij)|µRIij > 0, kj 6= i, kj ∈ {1, ..., N}}. (3.2.6)

The overall fuzzy regional map R̃M is constructed by taking the Cartesian product over

the fuzzy ring sets of the N anchors:

R̃M = R̃S1 × R̃S2 × . . .× R̃SN = {(c, µRM(c))} (3.2.7)

where

µRM(c) =
N∏
m=1

µRImjm (3.2.8)

is the membership degree of the region with area code

c = (kj1 , kj2 , ..., kjN ) (3.2.9)

denoting the intersection region ∩Nm=1RI
m
jm . The feasible area code set is defined as

R̃ = {c|(c, µR(c)) ∈ R̃M} (3.2.10)

i.e., the set corresponding to all the non-empty fuzzy intersection regions.

As an example of the region area coding, examine the system of three anchors and one

sensor node, depicted in Figure 3.3. Let the sensor node be located in the shaded area.

Considering the anchor A1, this region is inside the fuzzy ring RI12. From the aspects of

A2 and A3 anchors, respectively, it is inside RI22 and RI33. Hence the corresponding area

code is c = (2, 2, 3).

The last step, defuzzification, determines the location estimate according to the mem-

bership degrees of sensor node to regions R̃M . Each area code in R̃ is associated with a

center of gravity (CoG) of the corresponding region and a membership degree in R̃.
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Figure 3.3: An instance of finding area code for 3-Anchors in FRORF [1].

The final location estimation formula is as follows:

Ŝ = Estimated location =

∑
c∈R̃ gc(c)µRM(c)∑

c∈R̃ µRM(c)
(3.2.11)

where gc(c) is the CoG of the region with area code c.

In most localization problems, non-convexity is a common issue. This issue is also

encountered in FRORF, since FRORF employs ring intervals to represent fuzzy sets. To

work with the fuzzy logic-based framework of [1] more efficiently, there is a need for an

alternative approach which can handle the non-convexity problem. Since ring intersections

lead to non-convex regions, a different geometric technique is proposed in the next section

to construct convex regions based on distance measurements.
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3.3 Preliminaries of the Proposed Algorithm: Con-

structing Convex Fuzzy Regions

In this section, we present the geometric preliminaries of the algorithm we proposed

in Section 3.4. The aim is to construct an alternative set of convex regions in place of

the non-convex rings used by FRORF. In a slightly different context, in [13], a geometric

methodology is proposed to construct such convex regions. The methodology is based on

a new cost convex function with the following Euclidean geometric property:

Theorem 3.3.1 [39, Fact 45] Given two non-concentric circles with centres C1, C2 and

radii r1, r2, respectively, there is a unique line consisting of points S holding equal powers

with regard to these circles, i.e., satisfying

‖S − C1‖2 − r21 = ‖S − C2‖2 − r22 (3.3.1)

This line is perpendicular to the line connecting C1 and C2, and if the two circles intersect,

passes through the intersection points.

The unique line mentioned in Theorem 3.3.1 is called the radical axis of C(C1, r1) and

C(C2, r2) [39]. In this work, we call the difference

‖S − C1‖2 − ‖S − C2‖2 = r21 − r22 (3.3.2)

the radical axis power of S with respect to the pair (C1, C2) and denoted by P (S, (C1, C2)).

Lemma 3.3.1 In 2 dimensions, if the distance estimates/measurements di in Problem 1.2.1

are noise-free, the intersection of the radical axes of any N−1 distinct circle pairs C(xi, di),

C(xj, dj) (i 6= j) is S.
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Figure 3.4: The case of two circles, intersection utilizing the radical axis property.

Proof 3.3.1 The result straightforwardly follows from the Problem 1.2.1 definition and

the last statement of Theorem 3.3.1.

See the mathematical representation of the radical axis of a circle pair C(xi, di), C(xj, dj)

(i 6= j) given the values of xi, xj, di, and dj shown in Figure 3.4 for the case of circle inter-

section. Here, j is taken to be i+ 1.

Using Theorem 3.3.1 for a sensor network with N nodes located at x1, . . . , xN , one can

consider the N − 1 node-distance measurement pairs (xi, di), (xi+1, di+1) and the corre-

sponding radical axes line li perpendicularly intersecting xixi+1 at yi (refer to Figure 3.5).

Hence any point y on li satisfies

(y − yi)T ei = 0,∀i ∈ {1, ..., N − 1} (3.3.3)

where

ei = xi+1 − xi

25



Figure 3.5: Representation of node-distance measurement pairs (xi, di), (xi+1, di+1) and the

corresponding radical axis li.

yi can be computed as

yi = xi + ai
ei
‖ei‖

, (3.3.4)

as well as di
2 − ai2 = di+1

2 − ai+1
2 = di+1

2 − (‖ei‖ − ai)2, from which ai can be calculated

as

ai =
‖ei‖2 + di

2 − d2i+1

2‖ei‖
. (3.3.5)

Note that sequential pairs of nodes are chosen in this study. Next, we use Lemma 3.3.1

to build a convex alternative for the cost function proposed in [13]. Therefore, Lemma 3.3.1

implies that the intersection of l1, . . . , lN−1 is S, i.e., S is the unique point satisfying (3.3.3).

As a result, S is the unique solution of the equation J(y) = 0, where

J (y) =
1

2

N−1∑
i=1

((y − yi)T ei)
2
. (3.3.6)

Note that (3.3.6) is a convex cost function.
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The assessments above bring about the following results: in a two-dimensional system, if

the distance measurements di in Problem 1.2.1 are noise-free, then S satisfies the following:

• S is the intersection point of the radical axis lines l1, . . . lN−1 defined by (3.3.3) for

i = 1, . . . , N − 1, respectively.

• S is the unique local minimum, and consequently the global minimum, of (3.3.6).

As mentioned in Section 2.1, there have been various algorithms to compute S in

Problem 1.2.1, which can be formed based on the convex cost function (3.3.6). Here,

to enable easy analysis and comparison with [21], a gradient-based algorithm with the

standard iterations of estimate updates in the negative gradient direction is proposed.

−∇J(y) = −
(
∂J(y)

∂y

)
= −

N−1∑
i=1

[
(y − yi)T ei

]
ei. (3.3.7)

The corresponding gradient-based localization algorithm is given by

y [k + 1] = y [k]− µ∇J(y[k]), (3.3.8)

where µ is a small positive design coefficient.

Note that ∇J(y) = 0 if and only if y = S as a result of Lemma 3.3.1. Thus, once

the algorithm (3.3.8) reaches point y[k] = S, it becomes settled at that point. There are

several analyses of how to choose the gradient gain µ, and its effects on the convergence of

the gradient descent algorithm (3.3.8) in the convex optimization literature [11,15,23,25].

Here, the main convergence result for (3.3.8) with constant gain µ > 0 is summarized as

follows:

Theorem 3.3.2 Consider Problem 1.2.1 in 2 dimensions, with noise-free distance mea-

surements di. Assume that the xi, i ∈ {1, . . . , N} are non-collinear. Then for every M > 0,
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there exists a µ∗(M) such that

lim
k→∞

y[k] = S. (3.3.9)

whenever

J(y[0]) ≤M (3.3.10)

and

0 < µ ≤ µ∗(M). (3.3.11)

that for any arbitrary choice of y[0], there exists a sufficiently small µ for the algorithm

(3.3.8) such that (3.3.9) is satisfied.

Proof 3.3.2 Consider an arbitrary scalar M > 0 and the corresponding convex set SJ(M) =

{y : J(y) ≤ M}. Since (3.3.6) is a quadratic and hence differentiable function of y,

it is Lipschitz within SJ(M), i.e., there exist L(M) such that for any ȳ1, ȳ2 ∈ SJ(M),

‖∇J(ȳ1) − ‖∇J(ȳ2)‖ ≤ L(M). Hence, Proposition 1.2.3 of [14] (or Theorem 1 on pp. 21

of [16]) implies that, for y[0] ∈ SM

0 < µ < µ∗(M) = 2/L(M), (3.3.12)

we have (i) J(y[k + 1]) ≤ J(y[k]), and hence y[k] ∈ SJ(M) for k = 0, 1, . . . ; and (ii)

limk→∞∇J(y[k]) = 0, which, by Lemma 3.3.1 is equivalent to (3.3.9).

An example for the effect of the radical axis on the convergence is given in Figure 3.6.
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Figure 3.6: Radical axis convergence test illustration of 3 anchors in a 2−dimensional sytem.

3.4 The Algorithm

RAFRF is built in a similar manner to FRORF; however, it employs the radical axis

property mentioned in Theorem 3.3.1 to form the fuzzy sets, and to avoid potential local

minima. These fuzzy sets are represented with the intersection of overlapping rectangular

regions for each anchor pair in the sequel. The working scheme of RAFRF algorithm for

Problem 1.2.1 is as follows.

Consider an anchor pair (Ai, Aj) in the sequel and estimate distance measurement x of

the sensor node S with respect to a power value of the anchor pair (Ai, Aj). For a given

sensor node S, the radical axis power (defined in (3.3.2)) to anchor pair (Ai, Aj) is denoted

by P (S, (Ai, Aj)).

Order all anchors A1, . . . , AN according to radical axis power

P(i,j)(Ak) = P (Ak, (Ai, Aj)),∀i, j ∈ {1, . . . , N}. (3.4.1)
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Define the permutation set I(i,j) = {ρ(i,j)k } of {1, . . . , N} based on this ordering, so that

P(i,j)(Aρ(i,j)k
) ≤ P(i,j)(Aρ(i,j)k+1

) for all k. (3.4.2)

With respect to the anchor ordering, describe the power line intervals as

PI
(i,j)
k = {S|αk ≤ P(i,j)(S) ≤ βk}, for k = 0, 1, . . . , N (3.4.3)

where α
(i,j)
0 = −∞ and β

(i,j)
N =∞. As demonstrated in Figure 3.7, power line intervals are

obtained from 3.4.3 based on the ordering. Also, define

α
(i,j)
k = β

(i,j)
k−1 = P(i,j)(Aρ(i,j)k

). (3.4.4)

Each such line interval PIk (dropping the superscript (i, j) for brevity) can be consid-

ered as the intersection

PIk = LT k ∩GT k (3.4.5)

of the region LT k = PIk(Ak)(−∞, βk] inside the power line interval with maximum radical

axis power βk, and GT k = PIk(Ak)[αk,∞), outside the power line interval with minimum

radical axis power αk.

For the sensor S with crisp value x, representing the radical axis power estimate

with respect to AiAj, LT k and GT k crisp intervals are represented by fuzzy sets L̃T k =

{(x, µLTk
(x))|x ∈ R+} and G̃T k = {(x, µGTk

(x))|x ∈ R+}. Here, µLTk
(x) and µGTk

(x) are

membership functions formally defined as follows for a pre-defined fuzzification parameter

p ∈ [0, 1]:

µLTk
(x) =


1 if x ≤ sign(βk)(1− p)βk
(1+p)βk−x

2pβk
if sign(βk)(1− p)βk < x < sign(βk)(1 + p)βk

0 if x ≥ sign(βk)(1 + p)βk

(3.4.6)
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Figure 3.7: Generic representation of power line intervals formed based on ordering of radical

axis power of sensor S to anchor pairs.

µGTk
(x) =


0 if x ≤ sign(αk)(1− p)αk
x−(1−p)αk

2pαk
if sign(αk)(1− p)αk < x < sign(αk)(1 + p)αk

1 if x ≥ sign(αk)(1 + p)αk

(3.4.7)

µPIk(x) = µLTk
(x) + µGTk

(x)− 1. (3.4.8)

Similar to FRORF, the fuzzification parameter p enables the system or the user to decide

on the width of the region in the neighbourhood of the power line boundaries corresponding
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to αk and βk.

For fuzzification, indirect-RSS fuzzification is also preferred, and we assume availability

of distance estimate x. Note that the number of power line intervals corresponding to each

anchor pair AiAj is equal to N + 1 for k = 1, . . . , N . Also, the number of anchor pairs

AiAj for i, j = 1, . . . , N in the network is given as

M =

(
N

2

)
. (3.4.9)

Next step is to build fuzzy inference and fuzzy sets based on the fuzzy intervals and

membership functions defined for each anchor pair (AiAj). The fuzzy set for (AiAj) is

defined as

P̃S(i,j) = {(k, µ
PI

(i,j)
k

)|µ
PI

(i,j)
k

> 0, k ∈ {0, 1, . . . , N}}. (3.4.10)

Overall fuzzy regional map P̃M is constructed by taking the Cartesian product over the

fuzzy sets of the M anchor pairs:

P̃M = P̃S(1,2) × . . . P̃ S(1,N) × P̃S(1,N) × . . .× P̃S(N−1,N) = {(c, µPM(c))} (3.4.11)

where

µPM(c) =
N−1∏
i=1

N∏
j=i+1

µ
PI

(i,j)
k(i,j)

(3.4.12)

is the membership degree of the region with area code

c = (k(1,2), k(1,3), . . . , k(N−1,N)) (3.4.13)

denoting the intersection region of PI
(1,2)
k(1,2)

, P I
(1,3)
k(1,3)

, . . . , P I
(N−1,N)
k(N−1,N)

. The feasible area code

set is defined as

P̃ = {c|(c, µPM(c)) ∈ P̃M} (3.4.14)
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i.e., the set corresponding to all the non-empty fuzzy intersection regions. Consequently,

the total (maximum) number of intersection (fuzzy) regions is equal to

nF = (N + 1)M . (3.4.15)

As an example of the region area coding, examine the system of three anchors and one

sensor node, depicted in Figure 3.8. Let the sensor node be located in the shaded area.

Considering the power line of anchor pair (A1, A2), this region is inside the fuzzy line PI1,22 .

From the aspects of (A1, A3) and (A2, A3) anchor pairs, respectively, it is inside PI1,33 and

PI2,33 . Thus, the corresponding area code is c = (2, 3, 3).

Figure 3.8: An instance of finding area code for 3 anchors in RAFRF.

In the defuzzification step, similiar to FRORF, location is estimated using membership

degrees of the sensor node to regions in P̃M , and the corresponding center of gravity (CoG)
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value associated with those regions. Thus, the final location estimation formula is

Ŝ = Estimated location =

∑
c∈P̃ gc(c)µPM(c)∑

c∈P̃ µPM(c)
(3.4.16)

where gc(c) is the COG of the region with area code c.

Initialization of RAFRF

1: A = {A1, . . . , AN} Set of anchors

2: for i = 1 to N − 1 do

3: for j = i+ 1 to N do

4: Consider anchor pair (Ai, Aj)

5: for k = 0 to N do

6: Define intervals/sets LT
(i,j)
k , GT

(i,j)
k and PI

(i,j)
k using (3.4.3) and (3.4.5)

7: Define membership functions µ
PI

(i,j)
k

using (3.4.6), (3.4.7), (3.4.8)

8: end for

9: end for

10: end for
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Algorithmic Representation of RAFRF

1: x = crisp radical axis estimate of sensor node S with respect to (Ai, Aj)

2: for i = 1 to N − 1 do

3: for j = i+ 1 to N do

4: for k = 0 to N do

5: Evaluate µ
PI

(i,j)
k

(x)

6: Define K(i,j) = {k(i,j)|µPI(i,j)k
> 0}

7: end for

8: end for

9: end for

8: Evaluate membership degree of the intersection region µPM(x) using (3.4.12)

9: Evaluate center of gravity of the corresponding region gc(x)

10: Calculate estimated location of S using µPM(x) and gc(x) via (3.4.16)

3.5 Summary

In this chapter, an absolute distance measurement-based range-free localization method,

RAFRF, is proposed. First, the reasons for developing a new algorithm are explained, and

the generic form of the algorithm is presented. Then, the bases of the RAFRF are elabo-

rated in Sections 3.2 and 3.3. Section 3.2 expressed the details of the utilized algorithm

proposed in [1], and demonstrates the potential problematic parts of FRORF. Section 3.3

introduces a way of handling such issues in FRORF. In this section, a notion of Euclidean

geometry called the radical axis is introduced as a solution for non-convexity. Section 3.4

combines fuzzy logic settings in FRORF and the radical axis property to get leverage from

the performance of FRORF, which is tested in next chapter.
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Chapter 4 illustrates experimental results. A comparative analysis of RAFRF is con-

ducted, using results obtained with FRORF. Although RAFRF gives more accurate esti-

mates, the algorithm needs to scan more sub-regions to obtain the center of gravity. Given

a network with N anchors, the number of regions to deal with in RAFRF is computed

in 3.4.15. However, the number of regions to calculate in FRORF is NN for the same

network.
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Chapter 4

Simulation Tests and Numerical

Assessments

In the simulations, the FRORF localization algorithm is implemented in a similar fash-

ion to that proposed in [1] using MATLAB. Also, several experiments are conducted to

evaluate the performance of RAFRF, and to compare it with the FRORF. Findings are

analyzed based on changes in level of fuzzification (p), number of anchor nodes, range of

the localization area, and noise.

It is intended to illustrate approximation errors applying the algorithms separately,

and localization areas where the algorithms work well by indicating the differences of those

errors values. Localization errors used in evaluations are defined by taking norms of the

approximation errors, which are simply norm differences in the Euclidean domain between

the actual points obtained in every step size, and their estimates found using the algorithms

(see Equation (3.1.7)).
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4.1 Localization of a Chosen Sensor Node

In this section, simulations are performed to test performance of the algorithms in the

case of localization of one sensor node. Positions of anchor nodes are assigned randomly.

In the first set of simulations, we consider a network of three anchors located at A1 =

[3,−0.5]T , A2 = [2,−2]T , A3 = [0.5, 0.8]T . The fuzzification parameter is taken as p = 0.1.

Figures 4.1 and 4.2 show the estimation errors eS = ‖Ŝ−S‖ vs. the actual sensor position

S = [Sx, Sy]
T to be estimated. For easier comparison of performances, the difference of

these plots, eS,FRORF − eS,RAFRF , is plotted in Figure 4.9.

Figure 4.1: Errors using RAFRF for 3 anchors with fuzzification parameter p = 0.1.

As can be seen from Figure 4.2, FRORF does not work properly for points in the edge

areas; however, RAFRF gives much better location approximations (see Figure 4.1). The
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Figure 4.2: Errors using FRORF for 3 anchors with fuzzification parameter p = 0.1.

shortcoming of FRORF for points at the edges occurs because the algorithm is attracted

by local optima. The differences between those errors, eS,FRORF − eS,RAFRF , represented

above, are illustrated in Figure 4.3. Average and maximum values of eS using RAFRF

are 2.7168 and 7.5527, respectively, while the corresponding values for using FRORF are

6.0844 and 12.1709.

It is known that the fuzzification level has an impact on the width of the fuzzy regions

[1]. To investigate the effect of change in the fuzzification value p, in the second set of

simulations, we choose p = 0.5 while maintaining the same anchor positions {A1, A2, A3}.

We examine the algorithms for estimating position of the same S = [Sx, Sy]
T in the same

localization area. The results are demonstrated in Figure 4.4 and Figure 4.5.

It can be observed from Figures 4.4 and 4.5 that, as the values of fuzzification level
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Figure 4.3: Error differences between RAFRF and FRORF for 3 anchors when fuzzification

parameter p = 0.1.

increases, better location estimations are obtained, because the higher fuzzification value

the inference system has, the higher coverage the fuzzy sets have. Such a high fuzzification

level p also helps the fuzzy inference system deal with the larger number of regions. Average

and maximum error values of using RAFRF are reduced to 1.0980 and 3.3503, respectively,

and while the average error value using FRORF is reduced to 3.3152, the maximum remains

as 7.9721.

Another evaluation criterion is the number of anchors (N) in the network. In the

third set of simulations, we consider a network of four anchors located at A1 = [1, 1]T ,

A2 = [3,−0.5]T , A3 = [2,−2]T , A4 = [0.5, 0.8]T , and the fuzzification parameter remaining

as p = 0.1. The algorithms try to approximate the coordinates of the same S = [Sx, Sy]
T
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Figure 4.4: Errors using RAFRF for 3 anchors with fuzzification parameter p = 0.5.

in the same localization area.

As can be detected from Figure 4.7, the error values of RAFRF, eRAFRF , show a

significant decrease. Hence, RAFRF functions better with the network of four anchors

compared to the network of three anchors. Average and maximum error values using

RAFRF are 2.4626 and 10.9628, respectively. Although FRORF gives better results with

four anchors, there is a very slight decrease in eFRORF , the error values of FRORF, with

average 6.0977 and maximum 12.1231.
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Figure 4.5: Errors using FRORF for 3 anchors with fuzzification parameter p = 0.5.
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Figure 4.6: Error differences between RAFRF and FRORF for 3 anchors when fuzzification

parameter p = 0.5.
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Figure 4.7: Errors using RAFRF for 4 anchors with fuzzification parameter p = 0.1.
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Figure 4.8: Errors using FRORF for 4 anchors with fuzzification parameter p = 0.1.
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Figure 4.9: Error differences between RAFRF and FRORF for 4 anchors when fuzzification

parameter p = 0.1.
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4.2 Testing the Effect of Anchor Locations

To acquire general understanding, ten WSNs of four anchors are randomly generated

and tested in different scenarios.

First, the anchors have randomly generated positions (x, y) ∈ [−3, 6] × [−6, 6]. The

localization performances for all S = [Sx, Sy]
T locations, Sx ∈ {−6,−5.5,−5, . . . ,+9}, Sy ∈

{−9,−8.5,−8, . . . ,+9}, using FRORF and RAFRF are summarized in Table 4.2. As can

Table 4.1: Average and maximum error values using FRORF and RAFRF

ave(eS) max(eS)

Set No FRORF RAFRF FRORF RAFRF

1 2.8301 2.7961 6.7794 5.8563

2 2.2562 2.5856 7.9962 5.8057

3 2.4044 2.1457 5.3470 5.8652

4 2.4456 1.4516 6.9227 5.6235

5 2.2339 2.1740 5.4664 5.8313

6 1.8371 1.1956 5.4104 3.1399

7 1.8883 1.1956 5.4104 3.1399

8 2.7566 2.5186 7.0481 6.6550

9 1.8864 1.9380 6.9928 7.2340

10 2.4908 1.6635 7.7783 5.0856

be inferred from Table 4.1, RAFRF has better results than FRORF, in general. Then, the

extension of the localization area range is considered, to test performance of the algorithms

for nodes outside of the localization area. Maintaining the same sets of anchors, the range
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of the area is extended to [−3, 6] × [−6, 6], and the results for estimating S = [Sx, Sy]
T

are shown in Table 4.2. The inference can be drawn from the results that RAFRF is

Table 4.2: Average and maximum error values using FRORF and RAFRF in an extended area

ave(eS) max(eS)

Set No FRORF RAFRF FRORF RAFRF

1 5.1400 4.6540 12.7279 12.6989

2 4.4296 4.2332 12.9292 11.4641

3 4.4969 4.0387 12.5084 10.1078

4 5.0208 3.4789 12.3840 12.0416

5 4.5949 3.9338 12.7279 10.8167

6 4.4684 3.4756 12.7279 10.5178

7 4.4228 2.9798 12.7279 10.8167

8 4.9771 3.9922 12.6352 10.6381

9 4.4297 3.9224 15.9784 12.6945

10 5.0646 3.4247 15.8777 10.7072

working more efficiently than FRORF does for nodes outside the region. Previous results

were obtained in a noise-free case in general, algorithms which work well without noise

will perform less well with noise. Therefore, Gaussian noise with σ = 0.05 is inserted, to

examine the performance of the algorithms in the case with noise. Results are shown in

Table 4.3 as follows.

The results demonstrate that the superior performance of RAFRF is valid in mea-

surements with noise σ = 0.05. Further, higher Gaussian distance noise with σ = 0.1 is

included into the algorithms to evaluate their performance, as summarized in Table 4.4.
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Table 4.3: Average and maximum error values using FRORF and RAFRF with noise

(σ = 0.05)

ave(eS) max(eS)

Set No FRORF RAFRF FRORF RAFRF

1 5.1410 4.6343 12.7279 12.7279

2 4.4288 4.1684 12.9293 11.6745

3 4.4971 4.0106 12.6320 9.9619

4 5.0229 3.4910 12.3840 12.0416

5 4.5943 3.9243 12.7279 10.8167

6 4.4674 3.4684 12.7279 10.5645

7 4.4254 2.9996 12.7279 11.4339

8 4.9785 4.0163 12.6319 10.5520

9 4.4319 3.9233 15.9023 12.6397

10 5.0657 3.4155 15.8777 10.6102

To sum up, FRORF and RAFRF are simulated by taking into consideration the change

in number of anchors N , fuzzification level p, and area coverage. RAFRF gives better

outcomes in different scenarios compared to FRORF.
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Table 4.4: Average and maximum error values using FRORF and RAFRF with noise (σ = 0.1)

ave(eS) max(eS)

Set No FRORF RAFRF FRORF RAFRF

1 5.1427 4.6475 12.7279 12.3794

2 4.4310 4.2344 12.9255 11.9586

3 ∞ 4.0516 12.5588 9.9138

4 5.0233 3.6158 12.3840 12.3794

5 4.5948 3.9434 12.7279 10.8167

6 4.4710 3.4899 12.7279 10.5085

7 4.4242 3.0331 12.7279 11.0114

8 4.9788 4.0992 12.6405 10.5867

9 4.4344 3.9466 15.9201 12.7279

10 5.0707 3.4823 15.8777 10.5649

4.3 Discussion

Many localization algorithms have a common shortcoming: non-convexity. The non-

convexity problem is solved in this study using a notion of Euclidean geometry called

radical axis. This notion eliminates the problem by redefining fuzzy regions using convex

sets. This is one reason for the superior performance of RAFRF.

Another performance failure of FRORF, as can observed from the simulations results

above, is that it tends toward inaccuracy in the edges of the localization area. As the sensor

node to be localized gets further from the anchors in the network, FRORF degrades. This

is because the coordinates of center of gravity of some regions are not in the same region,
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due to the shape of the region.

On the other hand, center of gravity calculation in FRORF does not require much

computational time, since the number of overlapping regions is not high. Thus, FRORF

can still estimate the location of a sensor with four or more anchors, while RAFRF has

to handle a larger number of overlapping regions. This handling process takes much more

time compared to the time needed by FRORF. Furthermore, there is a feasibility problem

caused by non-matching grid points and regions during center of gravity calculation.
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Chapter 5

Conclusion and Future Work

5.1 Summary

This study introduced a new fuzzy logic-based range-free localization technique for so-

lution of Problem 1.2.1. Giving some relevant algorithms for source/sensor localization

problems enhanced the basis of Problem 1.2.1. Further, the pros and cons of the measure-

ment techniques were discussed, to analyse the algorithm better.

The algorithm the combines soft computing-based method of FRORF and a new con-

vex optimization methodology. Such a combination works with uncertainty in distance

measurements employing fuzzy logic, and eliminates multiple local minima using notions

of radical axis and power lines.

Next, assessments of the proposed algorithm were demonstrated using comparisons

with FRORF. The inferior performance of FRORF is shown in several illustrations for the

system of four anchors. The center of gravity calculation method in RAFRF is problematic

for five or more anchors due to the number of overlapping regions. This issue will be studied
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in the future, and a brief guide is explained in the following section.

5.2 Extension to Cases with Higher Number of An-

chors

WSNs are highly preferred because a WSN enables the system to communicate in a

large area through the union of several small sensors. Anchors play a significant role in

network communication; hence, deploying more anchors increases the network communi-

cation, resulting in more accurate location estimates.

In the proposed algorithm, RAFRF, we would like to extend the number of anchors

to obtain better localization results. However, there is a computational difficulty resulting

from center of gravity(CoG) calculation of fuzzy regions. The CoGs are calculated using a

grid point check. Checking whether each point belongs to a region or not causes a feasibility

problem, since the number of grid points are quite a bit smaller than the number of regions,

meaning that the CoG of most regions cannot be calculated. Thus, there is a need for an

alternative method, a closed-form solution, to calculate CoGs.

A new CoG calculation procedure; hence, follows:

Define the symmetry axis of PI
(i,j)
k , l

(i,j)
ck for k = 0, . . . , N . Note that

l(i,j)ck
⊥ AiAj. (5.2.1)

Consequently,

l(i,j)ck
⊥ e(i,j) (5.2.2)

where

e(i,j) = Aj − Ai. (5.2.3)
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The symmetric axis l
(i,j)
ck passes through

A
(i,j)
ρk + A

(i,j)
ρk+1

2
= y

(i,j)
k . (5.2.4)

y0 and yN are defined separately taking A0 and AN+1 on the border at the intersection

point the region of interest. So, the line equation of the symmetric axis can be written as

l(i,j)ck
: (y − y(i,j)k )T e(i,j) = 0. (5.2.5)

Find the CoG of region with code c = (k(1,2), . . . , k(N−1,N)): this region, for ideal con-

ditions, needs to contain an intersection point or any line pair (l
(i1,j1)
ck(i1,j1)

, l
(i1,j1)
ck(i1,j1)

). Mutual

intersection points passing both line pairs satisfy the line equations as follows (dropping

the superscript (i, j) for brevity)

(yI − y(i1,j1)k1
)T e(i1,j1) = 0

(yI − y(i2,j2)k2
)T e(i2,j2) = 0.

(5.2.6)

The system of linear equations can be written as e(i1,j1)
T

e(i2,j2)
T

 yI =

 y
(i1,j1)
k1

T
e(i1,j1)

y
(i2,j2)
k2

T
e(i2,j2)

 . (5.2.7)

In short, the solution of the system is

yI = E−1B (5.2.8)

where

E =

 e(i1,j1)
T

e(i2,j2)
T

 , B =

 y
(i1,j1)
k1

T
e(i1,j1)

y
(i2,j2)
k2

T
e(i2,j2)

 . (5.2.9)

The CoG can be taken as the average of location coordinates of all these intersection points.

Such a CoG calculation helps to eliminate the feasibility problem.
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A brief explanation of the number of elements needed for CoG calculation is given in the

following: for a line data-base, there are M =
(
N
2

)
anchor pairs (i, j) for i < j ∈ {1, . . . , N}.

For each pair, there are N + 1 lines l
(i,j)
ck , k = 0, . . . , N . These lines are defined by (5.2.2)

and (5.2.4). The database for e(i,j) and y
(i,j)
k are given respectively as

Number of e(i,j) :
(
N
2

)
= N2−N

2
elements

Number of y
(i,j)
k :

(
N
2

)
× (N + 1) = (N+1)N(N−1)

2
= N3−N

2
elements.

From (5.2.8), the intersection database is given in the following:

E database :
((N

2 )
2

)
= N4−2N3−N2+2N

2
elements

B database :
(N3−N

2
2

)
= N5−2N4−2N3+N2+2N

2
elements

The numbers calculated above are much smaller than the number calculated in (3.4.15),

which is (N + 1)M .

5.3 Extension to Three Dimensions

In this study, the design steps and analysis of the algorithm are explained when consid-

ering WSNs in two dimensions. This section provides an understanding of the algorithm

for networks in three dimensions.

Similar to settings in two dimensions, the proposed algorithm can be designed for

three-dimensional networks. The main components of the algorithm for three-dimensional

networks differ from those mentioned in Section 3.1 in building convex fuzzy sets based on

the radical plane property.

The radical plane is defined as a plane having the circle built as a result of the inter-

section of two spheres. The rest of the algorithm can be designed with respect to such a
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notion. Note that in order to have a location estimate point, two different anchor pairs are

needed.
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