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Abstract

Mapping ice and open water in ocean bodies is important for numerous purposes
including environmental analysis and ship navigation. The Canadian Ice Service
(CIS) currently has several expert ice analysts manually generate ice maps on a daily
basis. The CIS would like to augment their current process with an automated ice-
water discrimination algorithm capable of operating on dual-pol synthetic aperture
radar (SAR) images produced by RADARSAT-2. Automated methods can provide
mappings in larger volumes, with more consistency, and in �ner resolutions that
are otherwise impractical to generate.

We have developed such an automated ice-water discrimination system called
MAGIC. The algorithm �rst classi�es the HV scene using the glocal method, a
hierarchical region-based classi�cation method. The glocal method incorporates
spatial context information into the classi�cation model using a modi�ed watershed
segmentation and a previously developed MRF classi�cation algorithm called IRGS.
Second, a pixel-based support vector machine (SVM) using a nonlinear RBF kernel
classi�cation is performed exploiting SAR grey-level co-occurrence matrix (GLCM)
texture and backscatter features. Finally, the IRGS and SVM classi�cation results
are combined using the IRGS approach but with a modi�ed energy function to
accommodate the SVM pixel-based information.

The combined classi�er was tested on 61 ground truthed dual-pol RADARSAT-
2 scenes of the Beaufort Sea containing a variety of ice types and water patterns
across melt, summer, and freeze-up periods. The average leave-one-out classi�ca-
tion accuracy with respect to these ground truths is 95.8% and MAGIC attains an
accuracy of 90% or above on 88% of the scenes. The MAGIC system is now under
consideration by CIS for operational use.
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Chapter 1

Introduction

Mapping ice extents in ocean bodies serves several important purposes including
the facilitation of ship navigation, environmental science, and weather forecasting.
Operational ice mapping of Canadian waters is performed by the Canadian Ice
Service (CIS) on a daily basis. At CIS, ice analysts manually process RADARSAT-2
synthetic aperture radar (SAR) imagery to generate region-based ice concentration
maps. CIS personnel process around 3500 to 4500 RADARSAT scenes per year in
this manner [35].

CIS wants to augment their existing ice mapping process by incorporating an
automated system to di�erentiate between ice and water in RADARSAT-2 scenes.
Automated approaches have the potential to provide several valuable bene�ts to
an ice classi�cation process. These bene�ts include high volume throughput able
to process hundreds of scenes per day, very high detail mapping down to the pixel
level, and high consistency with no inter-operator bias.

A successful automated ice-water classi�cation algorithm must overcome a num-
ber of challenges associated with SAR images of ice and water. SAR images are
corrupted with signi�cant multiplicative speckle noise due to the coherent nature
of the imaging process [32]. The images are sensitive to the incidence angle result-
ing in statistical non-stationarities across scenes [30]. Ice types and water often
have tremendous within class variability both within and across scenes and have
highly nonlinear backscatter signatures. Automated methods must cope with the
aforementioned challenges in computationally e�cient ways due to the large sizes
of SAR imagery, typically 10 000 by 10 000 pixels.

We have developed a binary ice-water classi�cation system called MAGIC (MAp-
Guided Ice Classi�cation) [9] that overcomes the main limitations of SAR imagery
and satis�es requirements stipulated by CIS. The MAGIC system is able to achieve
state-of-the-art results by combining a glocal classi�cation with a support vector
machine (SVM) classi�cation using the IRGS [44] framework (Chapter 4). The
MAGIC system has been tested on 61 RADARSAT-2 dual polarization SAR scenes
of the Beaufort Sea for classi�cation accuracy, robustness, and computation time
(Chapter 5).

This thesis consists of six chapters. The Background Chapter 2 discusses the
basics of SAR systems, reviews numerous recently published ice classi�cation sys-
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tems, outlines the IRGS [44] algorithm, and discusses several SVM+MRF classi-
�cation algorithms similar to the one presented in this thesis. The proposed ice
classi�cation system was developed using image data explained in Chapter 3. Infor-
mation pertaining to the 61 scenes is presented as well as the process for generating
detailed ground truth for model training and evaluation. The Ice Classi�cation
System Chapter 4 explains the theory and operation of the ice classi�cation sys-
tem developed for this thesis work. The chapter gives an overview of MAGIC,
then explains the algorithm steps in the sequence in which it executes: glocal, then
SVM, then SVM+MRF. Chapter 5 Testing and Results evaluates MAGIC on the
61 SAR scenes and gives some analysis of the performance on some speci�c scenes
of interest. This thesis culminates with Chapter 6 which gives a brief summary and
identi�es possible future work.

2



Chapter 2

Background

2.1 SAR Basics

SAR is a specialized radar system capable of capturing two dimensional raster
images of scenes using microwave bandwidths. Such imaging systems are commonly
carried by aircraft (e.g. JPL AIRSAR), or launched into low Earth orbit (LEO) on
satellites (e.g. RADARSAT-2).

A SAR sensor must move over a target, typically an approximately linear �ight
path or a set path in LEO, transmitting and receiving pulses at various locations.
Two sample locations P1 and P2 are shown in Fig. 2.1 which presents key termi-
nology common in SAR systems. Relative distances between a satellite, the Earth,
and targets are measured using three axes. The nadir axis extends perpendicular
from the Earth towards the satellite and measures height. The ground range axis
extends perpendicularly from the nadir axis to the target. The slant range axis
measures the distance from the satellite to the target. The angle formed between
the slant range axis and a normal to the Earth's surface is called the incidence angle.
Satellites heading north are said to be in ascending orbit and southward heading
satellites are descending. Position and orientation of the imaging systems are accu-
rately tracked using GPS and inertial systems which permit accurate georeferencing
for the resulting images.

The operation of SAR systems is similar to a phased array radar system, but
uses a single transmitter-receiver with variable position [32]. In this way SAR sys-
tems are able to achieve resolutions similar to phased arrays while using a relatively
compact and portable imaging system. A SAR system transmits and receives elec-
tromagnetic (EM) pulses as it translates across various positions above a target.
At each location the SAR system behaves similarly to a classical monostatic radar
with an equation governing the EM behaviour of the form:

Pr =
PtGtA

(4π)2D4
σt (2.1)

where Pr is the power received, Pt is the power transmitted, Gt is the gain of the
transmitter, A is the e�ective aperture area of the antenna, D is the distance to
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Figure 2.1: A single SAR satellite moving between two di�erent locations P1 and
P2. A sample sensed object is shown as a yellow circle on Earth. Blue ovals are
overlapping radar footprints both of which capture a response from the sensed
object. SAR satellites predominantly reside close to Earth in LEO, usually around
700km from the Earth's surface measured on the nadir axis. Slant range measures a
distance from the satellite to an imaged object. Ground range measures a distance
from nadir to an imaged object. The incidence angle is measured between the slant
range and a normal to the Earth's surface shown as θ. The angle α is the look
angle and is measured between the nadir axis and the slant range. The azimuth
is parallel to the direction of travel of the sensor and is perpendicular to nadir,
slant range, and ground range. This �gure shows the satellite traveling north in an
ascending orbit.
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the target measured along the slant range, and σt is a measure of the re�ectance
of the target [37]. The resolutions achievable are one of the main bene�ts of SAR
systems. The resolution of a SAR system in the ground range direction Rgr is
intimately related to the length of each pulse transmitted:

Rgr =
cτ

2sin (α)
(2.2)

where c is the speed of light, τ is the pulse length, and α is the look angle. The
resolution in the azimuth direction Ra is:

Ra =
L

2
(2.3)

where L is the length of the SAR antenna [6]. These formulas show the surprising
result that the resolution of SAR systems is independent of target distance and
helps explain how modern spaceborne SAR systems are capable of resolutions as
low as 1m by 1m. These formulas are only simpli�ed approximations as signi�cant
research has contributed to further improving the resolution of SAR systems such
as pulse chirp waveforms, beam steering, and modeling Doppler shifts.

Some SAR systems can control the polarization of the EM waves transmitted
and can also measure the polarization of the returned signal. These modes are
designated HH, HV, VH, and VV with the �rst letter indicating the horizontal or
vertical polarization of the transmitted EM waves and the second letter indicating
the polarization of the received wave. Transmitting and detecting the polarization
of the EM waves is useful because di�erent surface structures and materials react
di�erently depending on the polarization. The polarizations used in this thesis work
are HH and HV.

SAR systems have many desirable aspects making them highly e�ective for ob-
serving ice conditions. The microwave bandwidths used, between 1 to 10 GHz [6],
can penetrate through weather allowing ice observation in almost any atmospheric
conditions. Moreover, those bandwidths have been found to be sensitive to certain
ice properties providing valuable information on ice thickness and type. SAR satel-
lites are spaceborne systems, which if in polar orbits such as RADARSAT-1 and
RADARSAT-2, are capable of imaging vast areas of the Arctic several times per
day. SAR systems are active sensors emitting their own EM radiation and are not
reliant on the sun meaning they can capture images any time of day. As mentioned
previously SAR systems can capture images at �ne resolutions even from space,
such as the RADARSAT-2 satellite which achieves 1m by 1m resolution from LEO.

Though SAR systems have many bene�ts, they are accompanied by some unique
challenges. Since SAR systems capture microwave bandwidths instead of optical
bandwidths the resulting images display di�erent information than the human vi-
sual system is used to interpreting. As a result the highly adept instinctual visual
interpretation skills of humans are of less value for SAR scenes and humans must
undergo training to read SAR scenes e�ectively. Backscatter statistics from SAR
scenes are dependent on incidence angle resulting in statistical non-stationarities
across a scene. These non-stationarities are most signi�cant in co-pol images (HH
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and VV) and can be compensated for algorithmically [22][30][18], or avoided using
cross-pol (HV and VH) images as is done in this thesis work. SAR images are also
corrupted by signi�cant speckle noise due to the coherent nature of the image pro-
cess. Speckle noise can be reduced using multilook sensing, though we mitigate the
issue by using algorithms insensitive to speckle noise such as region based MRFs
and window based GLCM features.

Many SAR satellites are currently in operation:

• RADARSAT-1 (Canada)

• RADARSAT-2 (Canada)

• Lacrosse (United States)

• ERS-2 (Europe)

• TerraSAR-X (Germany)

• TanDEM-X (Germany)

• SAR-Lupe 1-5 (Germany)

• COSMO-SkyMed (Italy)

• HJ-1C (China)

• METEOR-3M (Russia)

• RISAT-1 (India)

• RISAT-2 (India)

• TecSAR (Israel)

These satellites are used primarily for military reconnaissance and scienti�c obser-
vation. This thesis work utilizes images from the RADARSAT-2 satellite, though
the algorithms developed should work on calibrated SAR images from other sources
with minimal modi�cations. The details of the images captured from RADARSAT-
2 are described in Chapter 3.

2.2 Previous Ice Classi�cation Systems

A signi�cant amount of work has been published in the automated SAR sea ice
classi�cation problem domain. The main challenge could be described as devel-
oping a model that captures domain speci�c expert knowledge for discriminating
between ice and water using SAR backscatter characteristics. The most signi�-
cant di�erences between previous work are the types of models used to achieve this
goal. Many model types have been used including simple backscatter thresholding,
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dynamic thresholding (DT), regression techniques, neural networks, maximum like-
lihood (ML) and Bayesian techniques, expert systems, and Markov random �elds
(MRF) among others. Some speci�c examples of recent work utilizing these models
are brie�y described next.

Work done by Fetterer et al. [14] distinguished between ice types using DT
and incorporated spatial information using morphological closing. Haverkamp et
al. [19] also used DT to identify homogenous regions of a single ice type. Region
properties were then computed and processed by an expert system along with an-
cillary data to generate a �nal class prediction. Scheuchl et al. [33, 34] modeled
the class SAR coherency matrices using Wishart distributions and discriminated
classes using a Bayesian classi�er. Linear and non-linear regression techniques were
used by Lundhaug [28] to model the relationship between backscatter statistics
and ancillary information with ice types and water. Gill [16] modeled amplitude
and two additional SAR backscatter features using an empirical distribution func-
tion. Class discrimination was done using one of two distribution matching tests.
Karvonen et al. [21, 23] used a Gaussian mixture model to capture class backscat-
ter statistics and a neural network to incorporate spatial relationships. A system
called ARKTOS, developed by Soh et al. [38], used watershed segmentation to
incorporate spatial information. They also developed an extensive expert system
to capture an expert human decision process based on a large set of region based
features. Haarpaintner and Solbø [18] modeled simple backscatter statistics using
three dimensional Gaussian distributions which were used as input to an ML clas-
si�er. Simple thresholds of backscatter intensities and some ancillary data were
used by Geldsetzer [15]. Zakhvatkina et al. [45] analyzed a Bayesian classi�ca-
tion of backscatter histograms. They also considered neural networks for capturing
backscatter intensity and grey-level co-occurrence matrix (GLCM) texture infor-
mation.

Our proposed algorithm builds upon IRGS (iterative region growing using se-
mantics) [44]. IRGS models backscatter characteristics using Gaussian statistics
and models spatial relationships using an MRF model. IRGS is an unsupervised
classi�cation algorithm that assigns arbitrary class labels to identi�ed regions. Map-
ping the arbitrary class labels to ice-water labels is left as a manual process for
human operators. One of the main contributions of our proposed algorithm is to
remove the operator and automatically assign segmented regions ice-water labels.
IRGS is explained in more detail in Section 2.3.

Ice classi�cation systems can be di�erentiated by many important aspects in
addition to the model type. Key characteristics of the thirteen aforementioned
ice classi�cation systems are summarized in Tables 2.1, 2.2, and 2.3, outlining
algorithm details, features computed, and image details respectively.

Algorithm details are shown in Table 2.1 which identi�es four key properties
of the algorithms of each classi�cation system. The Pixel vs Region Based column
indicates whether the algorithm primarily operates on image pixels versus segment-
ing the image into regions and primarily operating on information pertaining to the
regions. The Level of User Interaction identi�es three categories: non-labeled, au-
tomated, and self training. Non-labeled means the algorithm only identi�es distinct

7



Table 2.1: Previous Classi�cation Systems: Algorithm Details. (NR: Not Reported)
Classi�cation System Pixel vs

Region
Based

Level of
User

Interaction

Computation
Time [min]

Classi�cation

Clausi et. al. [44][9] region non-labeled 1.65 ice type and
water

Lundhaug [28] pixel automatic NR ice type and
water

Karvonen [21] pixel non-labeled �fast
enough�

only ice

ARKTOS [38] region automatic �near
real-time�

ice type and
water

Scheuchl [34] pixel non-labeled NR only ice
Scheuchl and Staples

[33]
pixel non-labeled NR ice type and

water
Fetterer [14] pixel automatic NR only ice

Haverkamp [19] region automatic 5 ice type and
water*

Geldsetzer [15] pixel automatic NR ice vs water
Haarpaintner [18] pixel automatic NR ice vs water

Gill [16] pixel non-labeled,
self-training

NR ice vs water

Zakhvatkina et al. [45] pixel automatic NR ice type and
water*

Karvonen [23] region automatic 18 ice vs water
Proposed algorithm

(MAGIC)
pixel and
region

automatic 28 ice vs water
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Table 2.2: Previous Classi�cation Systems: Features
Classi�cation

System
Intensity
Based

Texture Shape Ancillary Other

Clausi et. al.
[44][9]

I None None None None

Lundhaug [28] I S None wind speed, wind
direction, air
temp, location,
time of year

local
incidence
angle

Karvonen [21] I None None None None
ARKTOS [38] I S Yes historical ice

charts, time of
year, location

None

Scheuchl [34] I, R None None None coherency
matrix

Scheuchl and
Staples [33]

I, R None None None coherency
matrix

Fetterer [14] I None None None None
Haverkamp [19] I None Yes historical ice

charts, time of
year, location

None

Geldsetzer [15] I None None None None
Haarpaintner

[18]
I S None None None

Gill [16] I S None None None
Zakhvatkina et

al. [45]
I G, S None None None

Karvonen [23] I S Yes None None
Proposed
algorithm
(MAGIC)

I G None None None
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regions on the scene, but a human is required to assign each region to ice or water.
Automated means the algorithm can perform a full ice-water classi�cation without
human interaction. Self-training means a human must �rst identify prototypical
classes within the image and the algorithm will classify the remainder of the im-
age into the identi�ed classes. Computation Time is the reported runtime of the
algorithm and is important for an operational implementation. The computation
time varies depending on computer power and test image size, but is reported here
for reference purposes. The Classi�cation column shows what each classi�cation
system is designed to distinguish. Some only identify di�erent ice types, some dis-
tinguish between di�erent ice types as well as water, and some discriminate between
only ice and water (those marked with * can not distinguish between water and
certain types of ice).

Table 2.2 summarizes the types of features used in each classi�cation system. In-
tensity information alone is usually insu�cient to obtain satisfactory classi�cations
in large part due to incidence angle variation. To overcome this, most algorithms
use additional features as input to the classi�ers. The Intensity Based column of
the table shows that all algorithms use raw intensity as a feature (indicated by I)
and a couple algorithms use simple ratios of polarizations (indicated by R). The
Texture column shows that about half of the algorithms use texture information as
features with some using statistical texture de�nitions (indicated by S) and some
using GLCMmethods (indicated by G). Three algorithms use information extracted
from image region shapes as shown in the Shape column. The Ancillary column
shows any supplementary information sources used such as image location or time of
year. Information used for classi�cation that does not �t into the previous columns
is identi�ed in the Other column.

Previous classi�cation systems were designed and tested using distinct datasets
with a variety of di�erent image properties as summarized in Table 2.3. The imaging
Sensors, Bands, and Polarizations used are shown in their respective columns.
The size and resolution of images actually processed by the algorithms (after any
downsampling in a pre-processing step) are shown in the Image Size and Resolution
columns respectively. The number of scenes analyzed are identi�ed in the # of

Scenes column. The geographic locations of the scenes were all in various Arctic
seas indicated in the Location column. The Season denotes likely types of ice
formations within an image, with particularly di�cult ice conditions arising in the
melt and freeze-up seasons.

Tables 2.1, 2.2, and 2.3 facilitate the comparison of classi�cation systems against
CIS operational requirements. Notable CIS requirements are as follows:

• Level of User Interaction: automatic

• Classi�cation: di�erentiate between ice and water

• Polarization: HH and/or HV (requires RADARSAT-2)

• Seasons tested: freeze-up, melt
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Three classi�cation systems satisfy all of these CIS requirements: ARKTOS [38],
Geldsetzer [15], and MAGIC (proposed). The ARKTOS [38] system has been pre-
viously considered by CIS but is no longer under consideration. The Geldsetzer [15]
algorithm was designed to work on freshwater lakes which have di�erent backscat-
ter signatures than sea ice. This algorithm is also based on intensity thresholding
which is much less robust when applied to larger ocean bodies as will be done by
CIS. Of those listed, our proposed algorithm is the only system that satis�es all
requirements for operational implementation by CIS.

2.3 IRGS

The ice classi�cation system presented in this thesis builds upon a previously devel-
oped classi�cation algorithm called IRGS (iterative region growing using semantics)
[44]. IRGS is a general purpose image classi�cation algorithm. The classi�cation
that IRGS performs is unsupervised and as a result only arbitrary class labels are
assigned. IRGS is based on an MRF framework that operates on many smaller
regions of an image. IRGS is capable of processing large scenes common in remote
sensing in large part due to the region based approach.

The �rst step of the IRGS process is to identify the initial regions, which is
done by performing a watershed segmentation [42]. IRGS then operates on the
fewer identi�ed regions instead of individual pixels which can reduce the problem
complexity by an order of magnitude. IRGS models region properties using Gaus-
sian statistics computing the mean and covariance of all pixels in a region.

IRGS then proceeds with an iterative process, repeatedly alternating between
a classi�cation step and a merging step. The classi�cation step involves �tting
classes to sets of regions using a Gaussian mixture model which is optimized using
expectation maximization [12]. Because the algorithm is unsupervised, the assigned
classes have arbitrary labels. The merging step then merges connected regions of
the same class if doing so reduces a speci�ed energy function of the form:

E =
∑
i∈R

VG(xi) + β
∑
〈i,j〉ξ

VE(xi, xj) (2.4)

where R is the set of all regions, xi are region labels, β is a tuning parameter, ξ
is the set of all cliques, and the VG() and VE() terms are explained next [44, eq.
(3)-(6), (20)]. The VG() term of the left sum accounts for Gaussian statistics as
follows:

VG(xi) =
1

2
ln
(
2πσ2

xi

)
+

(yi − µxi)
2

2σ2
xi

(2.5)

where yi are region averages, µxi are the class averages, and σ
2
xi
are the class co-

variances. The inclusion of this term encourages merges that result in small class
covariances. The VE() term of the right sum incorporates edge strength information
as:
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VE(xi, xj) = [1− δ (xi, xj)] g (∇ij) (2.6)

where δ() is the Dirac delta function, g() is an edge penalty function, and ∇ij is
the total edge strength between two cliques. The VE() term encourages merging
similarly labeled regions separated by weak edges. The in�uence of the two sums
in eq. 2.4 is balanced using the weight β weight set to 3 which was previously
found to perform well for ice scenes. Merges performed with this energy function
are done using a simulated annealing [24] approach to avoid local minima. This
energy function exists within a convenient MRF framework modeling the Gaussian
statistics using unary potentials and edge strength relationships using �rst order
clique potentials [25].

Since IRGS is unsupervised, the �nal step of mapping the arbitrary class labels
to ice-water labels is left as a manual process for human operators. One of the main
contributions of our proposed algorithm is to eliminate this manual process and au-
tomatically assign ice-water labels to the segmented regions. This is achieved by
combining the MRF based IRGS algorithm with a supervised SVM model, some-
thing that has never been done on SAR data. Some previous SVM+MRF algo-
rithms developed for other applications are discussed next.

2.4 Previous SVM+MRF Algorithms

SVM and MRF classi�ers have previously been combined to achieve competitive re-
sults on image classi�cation tasks. Tarabalka et al. [40] developed an SVM+MRF
classi�er for airborne hyperspectral imaging and tested on vegetation and urban
classi�cation environments. Bovolo and Bruzzone [3] tested the classi�cation accu-
racy of an SVM+MRF classi�er on eight ERS-1 SAR scenes identifying four classes:
urban, forest, water, and �elds. Farag et al. [13] developed an SVM+MRF model
from an MAP framework and evaluated the classi�er on a variety of images includ-
ing synthetic, multispectral, and hyperspectral modalities. They were interested in
agricultural and urban environments. Lui et al. [27] analyzed their SVM+MRF
model using two airborne scenes capturing RGB and infrared bands. They iden-
ti�ed three classes: bare land, dead trees, and forest. Finally, Zhang et al. [46]
combined a probabilistic pixel-wise SVM model with an MRF Ising model [20] to
classify synthetic as well as real hyperspectral scenes.

The SVM+MRF classi�er proposed in this thesis improves upon the aforemen-
tioned algorithms in a number of ways. We use a region based MRF approach
instead of a pixel-based approach used in other work enabling processing of much
larger images at 2500 by 2500 pixels, vs 700 by 700 pixels for the next largest
scene in an SVM+MRF publication. The availability of hyperspectral data, as is
the case with [46][13][40], likely improves class separability. Unlike other meth-
ods, we only use a single imaging band and extracted texture features to improve
class separability for the SVM model. Finally, the previous SVM+MRF models
were developed to classify terrestrial phenomenon including agricultural and urban
scenes. To the best of our knowledge, ours is the �rst SVM+MRF model used to
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distinguish between sea ice and water.
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Chapter 3

Data

3.1 Images

The image dataset we developed for testing consists of 61 scenes from the C-band
SAR satellite RADARSAT-2. Each scene was captured in the ScanSARWide beam
mode which provides images in HH and HV polarizations for each scene. The images
have nominal pixel dimensions of 50m and image dimensions of around 10 000 by
10 000 pixels. This is the largest standard scene size available from RADARSAT-
2 at 500km in both range and azimuth and is the most useful beam mode for
operational mapping of the vast expanses of ice and water in Arctic seas. The
incidence angle of these images ranges from 20 to 49 degrees and the scenes were
captured from both ascending and descending satellite passes [5, 29]. The images
were captured in the year 2010 at various locations over the Beaufort Sea displayed
in Fig 3.1. The 61 scenes were taken from April through December inclusive of the
more challenging freeze-up and melt seasons where many di�erent ice types and
ocean water conditions are present.

An example scene from our dataset is shown in Fig. 3.2. This scene was
captured on October 27, 2010. It is a fairly complex scene of the north Alaskan
coast containing many ice types, water and land. Both HH and HV polarizations are
shown and the unique information captured by the HV pol is apparent, speci�cally
its invariance to incidence angle e�ects in contrast to the HH pol.

We downsample the original images from 10 000 by 10 000 pixels to 2500 by
2500 pixels by performing 4 by 4 block averaging. This reduction in pixel count by
a factor of 16 greatly increases the processing throughput and allows our system
to compute a classi�cation result in well under the CIS operational requirement
of 1 hour. The primary tradeo� of downsampling is a coarser classi�cation result,
though our 2500 by 2500 pixel results with 200m pixel resolution still meet CIS
needs and are far more detailed than could be expected from a manual human
classi�cation.
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Figure 3.1: Locations of the 61 RADARSAT-2 scenes in the Beaufort Sea. Each
scene covers an area of about 250 000km2. All but one scene image a portion of the
north Alaskan coast.

Figure 3.2: RADARSAT-2 scene captured October 27, 2010 (Scene ID: 20101027).
Left: HH pol. Right: HV pol. Bottom left of scene is north Alaskan coast. Top
third of scene is ice. Water in scene is most easily identi�ed by dark regions in HV
image. A very strong incidence angle e�ect is apparent in the HH image with water
at far left appearing very bright and water at far right appearing very dark. The
backscatter of ice is also a�ected across the HH image, but is a�ected di�erently
than water: brighter at right and darker at left. The HV pol backscatter signatures
are largely una�ected by incidence angle variations. This scene was reduced to 625
by 625 pixels and contrast enhanced for display purposes.
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3.2 Ground Truth

For training and validation purposes we created a detailed ground truth with ice-
water labels for each scene. Vector-based ground truthing with associated World
Meteorological Organization (WMO) egg codes [43] based on the SAR images was
performed by an expert ice analyst for the earliest 21 scenes in the data set. A
sample vector-based ground truth for the October 27, 2010 scene is shown in Fig.
3.3. Such vector-based ground truths, while having good ice condition predictions
at larger scales, generally have a poor level of detail because of coarsely outlined
ice-water boundaries and lack of identi�cation of small �oes and leads. Using coarse
training data to develop an automated classi�cation method with an aim to output
highly detailed results is not feasible. To overcome this we generated our own
highly detailed ground truth using a previously developed performance evaluation

framework (PEF) [31].

Figure 3.3: Ground truths of October 27, 2010 scene (Scene ID: 20101027). Left:
vector-based ice map generated by expert ice analyst. Regions of similar ice condi-
tions are outlined and ice conditions are identi�ed by concentration labellings. An
example decoding of the top right polygon labeled �9+, 2my 4gw 3g 1n� means this
polygon contains over 90% ice, of which about 20% is multi-year ice, 40% grey-
white ice, 30% grey ice, and 10% is new ice. Right: PEF detailed ground truth
with ice-water labels. White is water, grey is ice, and black indicates no label due
to image artifacts, ice-water boundaries, or land. Details such as ice leads, small
�oes, and complex ice-water boundaries are missing in the vector-based mapping,
but are well outlined in the PEF ground truth.

The PEF is a framework capable of e�ciently combining prior spatial contextual
information with human interpretation to generate high quality ice-water estimates.
The �rst step of the system is to divide the HV image into 144 evenly spaced
square regions called autopolygons. Then, for each region, an IRGS classi�cation
is performed identifying anywhere from three to six classes with arbitrary class
labels. The number of classes to identify is selected by the user and is related to
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the complexity of the scene. More classes ensures regions are less likely to contain
both ice and water providing a more detailed result, while fewer classes means less
time spent by the user labeling regions. The user is then prompted one by one to
provide an ice or water label for each class. For the case of six classes and 144
autopolygons that amounts to 864 user assigned labels. In this way the PEF is able
assign ice-water labels to all 6 250 000 pixels of a scene using practical amounts of
manual work. In practice this labeling process took less than 15 minutes for simple
scenes and up to one hour for complex scenes. The PEF was run on 60 scenes to
provide a highly detailed classi�cation with binary ice-water labels. An example of
the resulting highly detailed ground truth for the October 27, 2010 scene is shown in
Fig. 3.3. Note that the leads, wispy ice, and small �oes appear to be well outlined.
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Chapter 4

Ice Classi�cation System

4.1 Overview of Algorithm

Our ice classi�cation system, MAGIC, consists of components as shown in the
�owchart of Fig. 4.1. The inputs to the system are the HH and HV pols of a
scene, the scene landmask which identi�es each pixel as either land or not land,
a previously trained SVM model, and a list of features to extract. The MAGIC
algorithm begins with two initial independent classi�cations: a �glocal� IRGS clas-
si�cation shown as the left track in Fig. 4.1, and a pixel-based SVM classi�cation
shown as the right track. The glocal IRGS classi�cation captures spatial contextual
information from the SAR scene and identi�es homogenous regions using a hierar-
chical approach. The glocal classi�cation is unsupervised and therefore does not
assign ice-water labels, but instead identi�es regions using arbitrary class labels.
The details of this glocal classi�cation method are described in Section 4.2. Texture
information of the SAR scene is exploited by the SVM classi�er which is described
in Section 4.3. The SVM classi�er uses a previously trained SVM model and is
able to provide ice-water labels. The glocal and SVM classi�cation results are then
combined using the IRGS approach with a modi�ed energy function to balance the
contributions of the contextual and texture based information. This is described
further in Section 4.4. The �nal result of the algorithm, as shown at the end of Fig.
4.1, is a region image of the input scene with ice-water labels.

4.2 Unsupervised Classi�cation with Arbitrary Class

Labels: Glocal Approach

Large SAR scenes, on the order of 250 000km square, are necessary for mapping
the large expanses of the Arctic. One of the main challenges that such large scene
sizes introduce is statistical non-stationarities across the image i.e., the statistics
for a particular class vary across the scene. The non-stationarities are a result of
incidence angle e�ects, subtle sensor and processor imperfections, as well as intra-
scene ice and water variations. However, these non-stationarities generally have low
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Ice-Water Labeled 
Classification

Divide HV image 
into autopolygons

Input:
    -Dual pol scene
    -Landmask
    -SVM model
    -feature list

Glue full HV image 
using IRGS (6 

classes)

SVM pixelwise 
classification

IRGS: Gaussian statistics + edge 
strength + SVM (2 classes: ice 

and water)

Classify each HV 
autopolygon using 

IRGS (4 classes)

Extract 28 feature 
images from HH and 

HV images

Return:
Labeled classification

Figure 4.1: MAGIC system �owchart. Inputs are full size HH and HV images of
a scene, a landmask, a previously trained SVM model, and a list of features to
extract. The left track is glocal IRGS classi�cation (Subsection 4.2). The right
track is pixel-based SVM classi�cation (Subsection 4.3). Classi�cations are merged
using a modi�ed IRGS approach (Subsection 4.4). The �nal result is a region image
with ice-water labels.
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Figure 4.2: Local autopolygon classi�cation of October 27, 2010 scene (Scene ID:
20101027). Left: autopolygon segmentation boundaries in white. Right: IRGS
classi�cation of each autopolygon. Up to four classes are distinguished in each
autopolygon. Land in bottom left is ignored using a provided landmask.

spatial frequencies, only posing a problem at large scales and distances, typically
greater than 50km. This observation motivates the use of the hierarchical classi�-
cation method called �glocal� which combines large scale global and high detail local
information in two steps. The local step divides the image into separate autopoly-
gons and captures region-based information at a �ne scale where class statistics
can be considered stationary. This local step is explained next in Subsection 4.2.1.
The global step then glues regions across autopolygons forming an image wide
classi�cation detailed in Subsection 4.2.2. Using this hierarchical approach the glo-
cal method is able to provide robust, unsupervised, full scene classi�cations with
arbitrary class labels.

4.2.1 Local Autopolygon Classi�cation

The local autopolygon classi�cation works on sub-regions, or autopolygons, of the
HV image. The autopolygons are created using a watershed segmentation [42]
with pruned minima. To select the pruned minima the image is divided into 144
square regions organized in a 12 by 12 grid. Within each square region the pixel
with the lowest response from a gradient �lter is selected as the pruned watershed
seed. Autopolygons created in this way tend to be at roughly the same scale,
have boundaries that follow natural image structures, and contain stationary class
statistics. An example of an autopolygon segmentation is presented in Fig. 4.2.

For each autopolygon an IRGS classi�cation is performed using only the HV
polarization. IRGS is set to identify four classes in each autopolygon resulting in
an over-segmentation ensuring all regions are homogenous and contain only ice or
only water. Fig. 4.2 shows this classi�cation for the October 27 scene.
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Figure 4.3: Glocal IRGS classi�cation of October 27, 2010 scene (Scene ID:
20101027). The dark purple class segments out the water very well even across
the large incidence angle variation. All other classes are various types of ice. Land
in bottom left is ignored using a provided landmask.

4.2.2 Global IRGS Gluing

The global IRGS gluing step operates on regions identi�ed during the local au-
topolygon classi�cation and completes the full scene classi�cation with arbitrary
class labels. The autopolygon boundaries are �rst converted into region bound-
aries. IRGS then merges those regions across the entire HV scene identifying six
distinct classes. An example of the �nal full scene glocal classi�cation is shown in
Fig. 4.3.

Experimentation was performed to determine preferred parameters for the glocal
algorithm. The parameters mentioned previously (12 by 12 grid and 4 classes for
local, and 6 classes for global) were found to perform well across all 21 scenes and
algorithm performance was insensitive to minor parameter variations.

4.3 Classi�cation with Ice-Water Labels: SVMModel

The result of the glocal classi�cation is an identi�cation of homogeneous regions
with arbitrary class labels. To provide the required mapping to ice-water labels a
soft-margin SVM [11] classi�er is used. We implemented an SVM classi�er using
the popular LIBSVM [7] C/C++ library.

An SVM works by computing a linear decision boundary in a high dimensional
space using the subset of labeled training samples near the decision boundary (called
the support vectors). The SVM decision boundary equation is

bS(x) =
∑
∀i
miwiK(t̄i, t̄) (4.1)

where mi are binary class labels, wi are learned weights, K() is a kernel function, t̄i
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are the support vectors and t̄ is the sample to be classi�ed. Nonlinear kernels can
be used to model nonlinear decision boundaries. The most common kernel function,
and the one used in this thesis, is a radial basis function (RBF) kernel of the form

K(t̄i, t̄) = exp
(
−γ |t̄i − t̄|2

)
(4.2)

where γ is a scaling hyperparameter.
SVM classi�ers have numerous bene�cial properties making them suitable for

our application. Their ability to model nonlinear decision boundaries is essential
for di�erentiating between the nonlinear SAR signatures of ice and water. SVM
models trained with large amounts of data consume relatively little memory making
them ideal for our large GIS datasets. Evaluation of test points in an SVM classi�er
is computationally e�cient which is necessary for classifying the many points in a
large RADARSAT-2 image. SVM classi�ers have a strong theoretical foundation
and often provide state-of-the-art classi�cation accuracy.

Our SVM model was trained using a leave-one-out (LOO) method to gauge
the likely operational performance. Training points were always left out for the
scene being tested, leaving only the sample points from the remaining 60 scenes
for training. This avoids testing on training data, gives realistic classi�cation ac-
curacies, and mimics an operational environment. The SAR scenes were found to
contain signi�cant amounts of redundant information making only a small subset
of the image data useful for SVM training. Only 400 random sample points from
each scene were necessary for training as more samples showed no improvement in
classi�cation performance. The training time for an LOO SVM model was under 5
minutes.

SVM models with RBF kernels, such as ours, generally require tuning of the
complexity vs precision hyperparameter C and the RBF scale hyperparameter γ.
A multiscale grid search [7] was performed to �nd satisfactory values for these
hyperparameters of C = 1, γ = 1.

4.3.1 Feature Search

The choice of features as inputs to the SVM model can have a signi�cant perfor-
mance impact. Generally, using more features allows for better class separability,
but too many features increases computation time as well as increasing the risk
of the �curse of dimensionality� [1] with a reduction in generalizability. A feature
search was used to determine a good set of SVM features and is shown in Fig 4.4.
The feature search only considered 21 scenes from the full 61 scene dataset to reduce
computation time. The subset of 21 scenes is presented in Table 4.1 and contains
a variety of ice conditions including winter, melt, summer, and freeze-up seasons.
Even with the signi�cant scene count reduction, the execution time for the search
was about four days. Execution time of the feature search is less critical because
the search is performed o�ine and only needs to be done once. However, shortening
the computation time contributed to an accelerated algorithm development process
while still maintaining adequate operational performance.
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Figure 4.4: Feature search for SVM model. This is a forward feature search through
172 features minimizing leave-one-out error.
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Table 4.1: Scenes used for feature search. The scenes encompass many ice condi-
tions including winter, melt, summer, and freeze-up seasons.

Scene ID

20100418
20100426
20100510
20100524
20100605
20100623
20100629
20100712
20100721
20100730
20100807
20100816
20100907
20100909
20101003
20101021
20101027
20101114
20101120
20101206
20101214
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The type of search used was a forward feature search [17] minimizing the 21
scene average LOO error. The feature search was used to select a subset of the 172
features in an initial feature set. All features were computed on both HH and HV
images. The initial feature set included simple pixel intensities, local averages and
maximum intensities in 5 by 5 and 25 by 25 pixel windows. Many GLCM features
were included as well because they were found to pro�ciently di�erentiate between
ice types and water [8]. The most signi�cant concern when using GLCM features
is the large amount of computation time required, however this issue is adequately
mitigated by using a previously developed accelerated GLCM algorithm [10]. The
GLCM measures used were:

• ASM: applied second moment

• CON: contrast

• COR: correlation

• DIS: dissimilarity

• ENT: entropy

• HOM: homogeneity

• INV: inverse moment

• MU: mean

• STD: standard deviation

A number of di�erent GLCM window and isotropic displacements were computed
for each measure:

Window Size [pixels] Displacement [pixels]

5 by 5 1
11 by 11 1
25 by 25 1
25 by 25 5
51 by 51 5
51 by 51 10
51 by 51 20
101 by 101 10
101 by 101 20

The forward feature search terminated with 28 selected features shown in Table
4.2 in the order in which they were selected. Of the 28 features selected only four
operated on the HV pol. A visual analysis of HH and HV pols suggests that the
HV pol contains more valuable intensity information and the HH pol provides more
textural information. Since it is well known that simple intensity cannot adequately
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Figure 4.5: Classi�cation error rates as more features are added to the feature set.
The �rst featured added to the feature set is a GLCM mean of the HV pol. The
�rst feature, when used alone, achieves an error rate of 13.02%. The second feature
selected in the feature search is a GLCM correlation of the HH pol, and when used
in conjunction with the �rst feature achieves an error rate of 12.63%. When all
28 features are used together the error rate is 6.63%. The �rst few features reduce
the error rate signi�cantly. At a feature set size of eight adding more features only
improves the error rate by tenths of a percent.

distinguish ice from water it is not surprising that many more HH texture features
than HV features were selected. Intensities are still important however, as six of
the top ten features compute either intensity or some sort of averaging in a window.
The error rate as each successive feature is added to the set is also shown in the
table as well as plotted in Fig. 4.5. The error rate is decreased most signi�cantly
when the feature set is small. As the feature set grows beyond eight features adding
additional features reduced the error rate by less than a tenth of a percent.

An example pixel-wise LOO SVM classi�cation using the 28 selected features for
the October 27 scene is displayed in Fig. 4.6. The SVM result is able to correctly
assign ice-water labels to most pixels. Pixels that are near ice-water boundaries are
more likely misclassi�ed. The labels assigned by the SVM also have some salt-and-
pepper-like noise due to a lack of spatial context. These limitations are overcome
by combining the glocal classi�cation described next.
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Table 4.2: List of 28 selected features in order of selection by forward feature search.
Error rate as more features are successively added to the feature set is shown in
rightmost column and plotted in Fig. 4.5.

# Pol Feature Error Rate [%]

1 HV GLCM MU 25 by 25 step 5 13.02
2 HH GLCM COR 51 by 51 step 5 12.63
3 HH GLCM MU 25 by 25 step 1 11.92
4 HH GLCM DIS 51 by 51 step 20 8.42
5 HH GLCM ASM 101 by 101 step 5 8.06
6 HH Intensity 7.65
7 HV Average 25 by 25 window 7.46
8 HH Average 5 by 5 window 7.20
9 HH GLCM DIS 51 by 51 step 5 7.17
10 HH GLCM MU 101 by 101 step 20 7.07
11 HH GLCM MU 25 by 25 step 5 6.96
12 HH GLCM ASM 51 by 51 step 5 6.93
13 HH GLCM ASM 101 by 101 step 20 6.89
14 HH GLCM MU 5 by 5 step 1 6.83
15 HV GLCM COR 25 by 25 step 5 6.79
16 HV GLCM COR 5 by 5 step 1 6.73
17 HH Average 25 by 25 window 6.64
18 HH GLCM STD 101 by 101 step 20 6.63
19 HH GLCM CON 101 by 101 step 20 6.63
20 HH GLCM CON 101 by 101 step 5 6.63
21 HH GLCM ASM 11 by 11 step 1 6.63
22 HH GLCM CON 11 by 11 step 1 6.63
23 HH GLCM CON 25 by 25 step 1 6.63
24 HH GLCM CON 25 by 25 step 5 6.63
25 HH GLCM CON 5 by 5 step 1 6.63
26 HH GLCM CON 51 by 51 step 10 6.63
27 HH GLCM STD 11 by 11 step 1 6.63
28 HH GLCM CON 51 by 51 step 20 6.63
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Figure 4.6: Pixel-wise LOO SVM classi�cation with ice-water labels of October 27,
2010 scene (Scene ID: 20101027). White: water. Grey: ice. Black: unclassi�ed.
Pixels on or near land, near image borders, or on image region boundaries are not
classi�ed by the SVM. Though the pixel-wise classi�cation provides valuable ice-
water labels, it lacks spatial context information as is evident by the noisy result
and poorly outlined ice-water boundaries.

4.4 Combination of Classi�ers: Glocal + SVM

The glocal classi�cation explained in Section 4.2 uses spatial context information
to provide a robust classi�cation with arbitrary class labels giving well identi�ed
ice-water boundaries. The SVM classi�cation explained in Section 4.3 is able to
provide the required ice-water labels using backscatter and texture information. We
combine these two complimentary algorithms to generate a �nal binary ice-water
classi�cation.

Di�erent combinations of classi�ers have previously been used with success on
SAR data [41]. Combinations of similar SVM+MRF classi�ers have also been devel-
oped, but for di�erent types of satellite data [40, 3, 13, 27, 46]. These SVM+MRF
classi�ers are discussed in Section 2.4. The glocal and SVM classi�cations are
uniquely and inherently combined using the IRGS framework. The regions for
IRGS are initialized from the glocal classi�cation result. The ice-water labels for
the regions are initialized using the SVM classi�cation result. The overall IRGS
energy function displayed in eq. 2.4 is modi�ed to incorporate the additional SVM
information as follows

E =
∑
i∈R

[VG(xi) + VS(xi)] +
∑
〈i,j〉ξ

VE(xi, xj) (4.3)

where the energy term VG() accounts for the Gaussian statistics of all regions R.
The energy term VE() scores the MRF clique potentials as edge strength between
connected regions or cliques ξ. The x terms denote current region labels which
are optimized to �nd the minimal overall energy. The new SVM energy term VS()
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accounts for the SVM label information on a per-region basis. The SVM energy
term is calculated for each region as:

VS(xi) = CS
∑
j∈Ωi

[1− δ (xi, pj)] (4.4)

pj SVM classi�cation label of pixel j (0 = water , 1 = ice)
Ωi set of pixels in region i
xi current label of region i (0 = water , 1 = ice)
CS tuning weight
δ() Dirac delta function
The Dirac delta function of the energy term evaluates to 1 whenever both argu-

ments are equal and 0 otherwise. The summation in the energy function counts all
the pixels in the region who's labels pj are not the same as the currently assigned
region label xi. High energy results when many pixel labels con�ict with the region
label, and when strong agreement exists between pixel labels and the region label
the energy is low. The inclusion of the energy term VS() has the e�ect of biasing
IRGS towards the labellings generated by the SVM classi�er while still maintaining
some in�uence from the Gaussian and edge strength terms. The in�uence of VS()
on the overall IRGS energy function is controlled by the tuning weight Cs which is
selected using empirical testing.

This �nal IRGS classi�cation combining glocal and SVM was run with two
classes to identify only ice and water. Results of this �nal classi�cation are shown
next.
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Chapter 5

Testing and Results

5.1 Overall Results

The combined classi�er was tested on all 61 scenes using an LOO testing scheme
and the results were compared against our detailed ground truths. The resulting
confusion matrix [39] entries for each scene are shown in Table 5.1. Some image
pixels were not included in these statistics such as areas of land, areas lacking
sensor data near image borders, and pixels on segmentation region boundaries. The
classi�cation accuracies for the data set are also shown in Table 5.1. The MAGIC
system attained an overall average classi�cation accuracy of 95.8%. The lowest
classi�cation accuracy occurred on the July 26, 2010 scene (Scene ID: 20100726) at
69.04% (shown later in Fig 5.3). Seven scenes had perfect classi�cations (Scene IDs:
20100418, 20100426, 201001120, 20101206, 20101214, 20110430, 20111121). These
scenes were mainly comprised of a single class with no ice-water mixing leading
to easier classi�cations. Of all the ice pixels in the data set 97.2% were classi�ed
correctly as ice and of all the water pixels 93.8% were classi�ed correctly as water.
A histogram of the classi�cation accuracies, presented in Fig. 5.1, shows that the
distribution of classi�cation accuracies is heavily weighted at high percentages and
has a tail towards lower percentages. Only two scenes had classi�cation accuracies
below 80%, and only six were below 90%. Two scenes from the data set have no
classi�cation statistics (Scene IDs: 20100816, 20111013) because the scenes are very
di�cult for even humans to interpret leaving no ground truth for an algorithm to
be compared against. The scene 20100816 is speci�cally analyzed in Section 5.2.

Table 5.1: Classi�cation confusion matrix tallies for all 61
scenes. Columns 2-5: true class/predicted class. Farthest
right column is accuracy percentage.

Scene ID ice/ice water/water ice/water water/ice %

20100418 6260105 0 0 0 100.00
20100426 6353751 0 0 0 100.00
20100510 6131265 258162 24376 15106 99.39
20100524 5555925 647726 22129 82727 98.34
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Scene ID ice/ice water/water ice/water water/ice %

20100605 5646913 0 0 46827 99.18
20100623 3926655 2072476 69151 31825 98.34
20100629 4511802 534951 144894 229422 93.10
20100704 3890930 1604946 944 26204 99.51
20100712 4715843 898954 246397 247416 91.92
20100719 3397073 1645727 117285 491383 89.23
20100721 3135627 2146542 111224 340462 92.12
20100726 2564477 1280370 931758 792224 69.04
20100730 2885209 2808890 244373 318584 91.00
20100806 1982669 3174060 307511 46676 93.57
20100807 1498534 4085618 186988 382525 90.75
20100816 NA NA NA NA NA
20100822 962768 4467757 77512 58071 97.56
20100829 1102687 4458510 494809 44251 91.16
20100907 0 5800642 0 12712 99.78
20100909 666491 5125252 167344 288135 92.71
20100927 0 5166842 0 672338 88.49
20100929 264275 5701840 45751 13567 99.02
20101001 0 5443729 0 28914 99.47
20101003 1410256 4568017 91416 115732 96.65
20101006 1528345 4379252 40218 9224 99.17
20101008 108497 5356617 6283 22027 99.48
20101013 3104941 2521180 448397 26970 92.21
20101014 0 5822952 0 109162 98.16
20101017 3210965 1346141 70382 850740 83.19
20101021 1252400 5085562 116999 76317 97.04
20101025 1504910 3737731 119519 106236 95.87
20101027 3640716 1938652 117699 194531 94.70
20101030 3568515 1221466 392024 77167 91.08
20101114 4867454 1003105 56585 236893 95.24
20101120 6245693 0 0 0 100.00
20101206 5631313 0 0 0 100.00
20101214 5880914 0 0 0 100.00
20110404 6351314 0 13194 0 99.79
20110418 6413314 0 33466 0 99.48
20110430 6220384 0 0 0 100.00
20110514 6237895 0 128923 0 97.98
20110530 5853051 189706 6722 19053 99.58
20110613 5987320 92663 17464 805 99.70
20110619 5659465 632243 10689 28440 99.38
20110626 5654142 704944 31282 50218 98.73
20110627 5681030 345927 87001 5164 98.49
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Scene ID ice/ice water/water ice/water water/ice %

20110709 3707524 2632010 5173 38946 99.31
20110710 4499308 1452921 28528 102142 97.85
20110720 3664242 2724413 11299 49069 99.06
20110725 3125155 3128457 101637 16752 98.14
20110811 2671216 3553044 16564 36237 99.16
20110817 1584890 4566107 40185 219004 95.96
20111005 1832395 4417450 141367 44843 97.11
20111006 10232 6299997 168 5136 99.92
20111013 NA NA NA NA NA
20111015 2431940 3616340 38857 102465 97.72
20111029 4613307 1745991 51660 1749 99.17
20111105 5661791 3905 27978 781181 87.50
20111106 3028317 2982835 3053 369510 94.16
20111113 2623149 2314882 325625 1027086 78.50
20111121 6133323 0 0 0 100.00

Total: 207052622 135707504 5772803 8892168 95.81
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Figure 5.1: A histogram of classi�cation accuracies for 60 scenes. All but two scenes
are above 80% accurate and all but six are above 90% accurate.

The total execution time for the MAGIC system to classify a 2500 by 2500
pixel scene is under 30 minutes which is well within the CIS requirement of 1 hour.
The processing times are scene dependent, but a typical breakdown is as follows.
The local autopolygon classi�cation takes about 2 minutes, IRGS glueing takes
10 seconds, the GLCM feature extraction takes about 15 minutes, and the �nal
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combined IRGS+SVM step takes around 10 minutes. About 2GB of memory are
required throughout the classi�cation process.

5.2 Speci�c Scene Analysis

The �nal classi�cation result for the October 27 scene, which was used previously
in this paper in Figs 3.2, 3.3, 4.2, 4.3, and 4.6 to demonstrate all steps of the ice
classi�cation system, is displayed in Fig 5.2. This scene has a variety of ice types
and water and is one of the more challenging scenes in the dataset. The MAGIC
system achieves a classi�cation accuracy of 94.70% on this scene. Some of the
erroneous labellings are caused by the thin ribbons of wispy ice and small amounts
of grease ice.

Figure 5.2: Final classi�cation of October 27, 2010 scene (Scene ID: 20101027).
Top left: HH pol. Top right: HV pol. Bottom left: SVM pixel-wise result. Bottom
right: �nal result. In this scene land is at the bottom left, ice consists of the top
third, and water is the dark area in the HV image. Classi�cation accuracy: 94.70%.
Refer to Appendix A for ground truth.

34



Of all 61 scenes MAGIC achieves the lowest accuracy of 69.04% on the July 26,
2010 scene shown in Fig 5.3. This is a complex scene with wispy ice and countless
small �oes. Since the pixel resolution for the downsampled images processed by
MAGIC is only 200m by 200m there is a strong possibility of imaging subpixel
ice �oes. The signi�cant ice and water mixing of this scene exacerbates this issue
with many ambiguous pixels containing both ice and water leading to classi�cation
inaccuracies.

Figure 5.3: Final classi�cation of July 26, 2010 scene (Scene ID: 20100726). Top
left: HH pol. Top right: HV pol. Bottom left: SVM pixel-wise result. Bottom
right: �nal result. Land is present in the bottom right corner. The top left corner
contains high concentration ice. The remainder of the scene consists of water with
di�ering concentrations of ice. Classi�cation accuracy: 69.04%. Refer to Appendix
A for ground truth.

A ground truth was never generated for the August 18, 2010 scene presented in
Fig 5.4. The upper third of this scene has weather conditions that make discrimi-
nation of ice from water very di�cult. As a result humans had low con�dence in
the ground truth generated for this scene. Leaving this scene out of the training
process helped ensure the quality of the training samples. A classi�cation result
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can still be generated for this scene, though the classi�cation statistics cannot be
computed without a ground truth to compare to. The scene captured October
13, 2011 (Scene ID: 20111013) was omitted from accuracy assessments for similar
reasons.

Figure 5.4: Final classi�cation of August 18, 2010 scene (Scene ID: 20100816). Top
left: HH pol. Top right: HV pol. Bottom left: SVM pixel-wise result. Bottom
right: �nal result. Land is present along the bottom. Above the land is a thorough
mixture of ice and water. This is the only scene of the data set with no ground
truth. This is because the complexity of the scene, attributed to ice-water, mixing
made mapping for humans very di�cult. As a result no classi�cation accuracy was
determined for this scene. Refer to Appendix A for ground truth.

The scene of October 21, presented in Fig 5.5, has a number of challenging
aspects. Some minor sections of grease ice exist in the upper left of the scene
which has markedly di�erent backscatter characteristics than most other types of
ice and appears very similar to calm water. These minor sections in this scene
are misclassi�ed as water. Another challenging aspect is the noticeable banding
artifacts most prevalent in the HV image appearing as about four vertical bands
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contributing false structure and misleading statistics to the image. The MAGIC
system e�ectively mitigates this issue with no noticeable e�ect on the �nal result.
A third, and most challenging aspect of this scene is the highly textured nature of
the water, likely a result of signi�cant wind roughening. Typically ice has a much
stronger texture response than water leading to confusion when water becomes
highly textured. Again the MAGIC system is robust to these phenomenon and
achieves a high classi�cation accuracy for this scene of 97.04%. The mutual bene�t
from the combination of the glocal and SVM classi�cations is also evident in this
scene. Along the right edge the SVM classi�er incorrectly identi�es sizable sections
of ice as water and many speckles of water as ice. Most of these classi�cation errors
are eliminated by the combined classi�er because they are not signi�cant enough
to a�ect the overall average label of the regions identi�ed in the glocal step.

Figure 5.5: Final classi�cation of October 21, 2010 scene (Scene ID: 20101021).
Top left: HH pol. Top right: HV pol. Bottom left: SVM pixel-wise result. Bottom
right: �nal result. There is no land in this image. The ice covers the top right
and a small section at the top left of the scene. The remainder is wind roughened
water. Classi�cation accuracy: 97.04%. Refer to Appendix A for ground truth.
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5.3 Identi�ed Limitations

The full data set testing revealed two limitations of the current system. One lim-
itation is the misclassi�cation of grease ice as water shown in Fig 5.5. Grease ice
has a very dark backscatter pro�le and a weak texture response, both of which
are properties more commonly found in water. This similarity with water leads
to poor class separability and corresponding classi�cation errors. Though robust
distinction of all types of ice from water is desirable, identi�cation of grease ice is
less of an issue than most other ice types. Grease ice is one of the �rst stages of new
ice growth and is a non-issue for navigational purposes because ships can easily cut
through its very thin and soupy consistency [4].

Subpixel ice �oes are another challenge for any classi�cation system. The 200m
by 200m pixel size makes it highly possible for a single pixel to contain both small
sub-resolution ice �oes and water. A binary ice or water label is insu�cient in such
cases and can result in misleading over or under estimation of ice concentrations.
The simplest solution to this problem would be to eliminate image downsampling
and use original image sizes with a resolution of 50m by 50m, though this would
increase computation time and still not address �oes smaller than 50m. Another
approach for dealing with subpixel �oes could be to estimate the ice concentrations
of each pixel. However, it remains to be seen whether issues attributed to subpixel
�oes are signi�cant enough to necessitate further development.

The region based approach of the MAGIC system permits simple correction of
some classi�cation errors. A large error attributed to more ambiguous ice signatures
on the November 6, 2011 scene is shown in Fig. 5.6. A large section of water above
the land is misclassi�ed as ice. This large section is contained within a single IRGS
region. By manually �ipping this large region along with two smaller regions (three
mouse clicks) the classi�cation accuracy for the scene can be increased from 94.16%
to 99.44% in less then a minute of manual processing time.
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Figure 5.6: Polygon correction. Scene ID: 20111106. Top left: HH. Top right: HV.
Mid left: ground truth. Mid right: pixel-wise classi�cation. Bottom left: initial
classi�cation result. Bottom right: corrected classi�cation result. Classi�cation
accuracy before: 94.16%. Classi�cation accuracy after: 99.44%. Manual processing
time <1min. (note: colour codes are not consistent. For mid row: white=ice,
grey=water, black=land. For bottom row: white=land, grey=ice, black=water).
Refer to Appendix A for ground truth.
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Chapter 6

Conclusion

6.1 Summary

Mapping ice locations in ocean bodies is crucial for several valuable activities in-
cluding maritime navigation and environmental science. CIS has traditionally gen-
erated ice maps using a manual process involving expert ice analysts' interpretation
of satellite imagery. CIS has expressed a desire for an automated system able to
process more scenes, in higher detail, and with less bias to augment the manual
process. The MAGIC classi�cation system presented in this thesis aimed to satisfy
this need.

The MAGIC system consists of three main steps: glocal, SVM, and SVM+MRF.
The glocal step hierarchically incorporates spatial context information into the clas-
si�cation process using the watershed algorithm at a local scale and the IRGS algo-
rithm at the global scale. The SVM works on a pixel-wise basis and computes true
ice-water labels primarily using GLCM texture features as inputs. The information
from the glocal and SVM steps is then combined in the SVM+MRF step by again
using the IRGS algorithm, but with a modi�ed energy function. The �nal result is
a region image with true ice-water labels.

The MAGIC system was able to overcome several key challenges inherent in
ice-water classi�cation of SAR imagery including very large scene sizes, speckle
noise, non-stationary statistics, and nonlinear class statistics. The MAGIC system
is capable of processing large 2500 by 2500 pixel scenes in less then 30 minutes
by using an e�cient region based MRF approach and a fast SVM classi�er. The
segmentation steps of the MAGIC system are able to greatly reduce the in�uence
of multiplicative speckle noise by modeling statistical properties of regions of pixels
instead of focusing on individual pixel intensities. The MAGIC system operates
on dual pol imagery incorporating the HH pol which contains valuable textural
information and the HV pol which is signi�cantly less a�ected by any incidence
angle e�ects. The highly nonlinear class statistics are modeled using GLCM texture
features and an SVM classi�er with a nonlinear RBF kernel.

Using these methods MAGIC is able to overcome signi�cant challenges and
achieve classi�cation accuracies adequate for operational performance. MAGIC
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was tested in an LOO manner on a 61 scene data set and attained an overall
classi�cation accuracy of 95.8%. MACIC achieved a classi�cation accuracy of 90%
or greater 88% of the time. Ice pixels were classi�ed correctly 97.2% of the time,
and water pixels were classi�ed with 93.8% accuracy. The MAGIC system is now
under consideration by CIS for operational implementation.

6.2 Future Work

Though MAGIC has solved key challenges and achieved adequate classi�cation
accuracies there are still many areas for improvement which are listed below.

Fast features. The feature search, explained in Subsection 4.3.1, made no con-
sideration for feature computation time. If two features were equally good at dis-
criminating ice and water the feature search would select between the two randomly,
even if one feature took signi�cantly longer to compute. The �nal feature set of
28 features used about 15 minutes of the total 25 minutes it took to process a
scene with the MAGIC system. The feature search could be modi�ed to optimize
a discrimination e�cacy per computation time metric. Another option could be to
consider adding features that are naturally fast to compute to the feature search
set (e.g. Haar-like features [26]). Faster feature computation could allow for faster
generation of classi�cation results, or for more detailed classi�cations in the same
amount of time. In the later case higher detailed classi�cation would help mitigate
the sub-pixel �oe issue identi�ed in Section 5.3.

Classi�cation con�dence. Currently the MAGIC system only outputs binary
values indicating the predicted ice-water class. Providing an estimate of the con�-
dence of those predictions would likely also be of value. Ice analysts could better
judge when to trust a computer classi�cation or when to override it with a manual
classi�cation. The con�dence information would also be valuable when incorpo-
rating the generated ice maps into other scienti�c models. Providing con�dence
estimates would likely require only minimal additional work as the SVM model
developed in this work has the capability to provide probabilistic outputs.

Ancillary features. Expert ice analysts typically use several information sources
in addition to SAR imagery to improve the accuracy of their predictions. Other
sources that could be explored include incorporating a previous day's classi�cations,
local weather predictions such as temperature and wind speed, and other imaging
modes such as optical or hyperspectral bands. Some information that exists within
the current data set that was not utilized includes incidence angle at each pixel,
lat/lon of each pixel, and distance from land.

Active and on-line learning. Generating accurate ground truths is a di�cult
and time consuming task. Active learning theory attempts to maximizing the accu-
racy of a classi�er using a minimal amount of purposefully selected training samples
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[36]. Active learning could greatly reduce the amount of time needed to generate
ground truth, especially for SAR scenes that contain signi�cant amounts of redun-
dant data. Moreover, since far fewer samples need to be labeled, the training data
could be of higher quality because the user has more time to dedicate to labeling
each sample. Another method that has potential to improve the performance of
a remote sensing classi�cation system is on-line learning [2]. Expert ice analysts
would likely review each automated classi�cation and could �x any errors using
something like the polygon correction algorithm shown in Section 5.3. The labeling
information from the corrected polygon could then be used to updated the classi�er
so similar mistakes are less likely in the future.

Ice typing. The goal of this thesis work was to discriminate between ice and
water, though a natural extension would be also to discriminate between the various
ice types. Signi�cant research has already been published on automated ice typing
methods, some of which is reviewed in Section 2.2. An ice typing algorithm could
avoid the di�cult problem of �rst separating the ice from the water by using the
MAGIC system as a preprocessing step.

New regions. In this thesis work the Beaufort Sea was the only area studied.
Automated ice-water discrimination algorithms have applications in numerous lo-
cations containing mixtures of water and ice. Many di�erent areas have been pre-
viously studied as shown in Table 2.3. The presented algorithm would likely work
to some degree on new areas, though di�erent ice formations and weather patterns
could cause confusion. It would be of interest to know the performance of this al-
gorithm on new regions, and whether region speci�c parameters and features could
improve performance.
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Appendix A

Full Data Set Classi�cation Result

Images

This appendix contains the �nal classi�cation results from the MAGIC system for
the full 61 scene data set.

Data set display format:

Scene ID

HH - Reduced to
625 by 625 pixels for
display purposes.

HV - Reduced to
625 by 625 pixels
and contrast

enhanced for display
purposes.

landmask - black:
land, white: other

groundtruth -
black: unclassi�ed,
grey: water, white:

ice
pixelwise SVM -
black: unclassi�ed,
grey: water, white:

ice

�nal result - black:
unclassi�ed, grey:
water, white: ice
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Appendix B

How to Generate Results in MAGIC

How to generate an SVM model

1. organize data set in LAN format

(a) ground truths for each image are also needed

(b) use GDAL for image format conversions if necessary http://www.gdal.

org/ogr/

2. con�gure path to data set in SVM section of MAGIC codebase

3. con�gure SVM feature search code to operate on correct number of scenes

4. compile MAGIC in release mode (debug mode is too slow for this)

5. run the exe and select SVM feature search

6. LOO SVM models for each scene are output to the exe directory

How to generate a �nal result

1. copy svm_model.svm to image directory (may have to rename svm �le)

2. run MAGIC exe

3. load dualpol LAN image

4. select HV pol

5. Segment/Classi�cation->Glocal->Create Autopolygons->Watershed based

(a) 12 by 12

6. wait to �nish (should take ~10 sec)

7. Segment/Classi�cation->Glocal->Set global labels
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(a) add 4 labels

8. Segment/Classi�cation->Segment Polygons and Save to Glue Later

(a) use only HV pol

9. wait to �nish (should take ~2 min)

10. click save

11. Segment/Classi�cation->Glue Previous Segmentation

(a) glue using IRGS

(b) 6 classes

(c) use only HV pol

12. wait to �nish (should take ~10 sec)

13. click save

14. Labeling->Ice/Water Labeling->IRGS regionbased Labeling

15. wait to �nish (should take ~25 min)

16. click save
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