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Abstract 
 

Docosahexaenoic acid (DHA) is an omega-3 highly unsaturated fatty acid that plays an 

important role in fetal brain development.  The fetal demand for DHA appears to be met 

by placental transport and various maternal physiological adaptations.  Estrogen, which is 

elevated during pregnancy, is associated with increased DHA biosynthesis, but estrogen 

is also implicated in the synthesis of phospholipids, specifically the regulation of 

phosphatidyl ethanolamine methyltransferase (PEMT) that methylates phosphatidyl 

ethanolamine (PE) to form phosphatidyl choline (PC).  PE in various tissues is typically 

enriched in DHA relative to PC, but PC is the dominant phospholipid in plasma.  The 

conversion of PE to PC by PEMT as a potential mechanism to mobilize maternal DHA to 

plasma for placental transport was examined in diets that mimic human fatty acid intakes 

with and without DHA as well as in a standard rat chow diet low in DHA.  Rats were 

examined at baseline, day 15 and day 20 of pregnancy, and 7 days post partum. The 

accumulation of fatty acids into lipid fractions in maternal plasma and liver were 

determined with DHA in PC increasing dramatically at day 20, particularly in plasma. 

PEMT mRNA expression was increased at day 15 and PEMT liver protein tended to be 

increased at day 20 of pregnancy.  In addition, increased dietary DHA appeared to be 

associated with increased expression of PEMT suggesting DHA hepatic concentrations 

may be upregulating PEMT by a substrate feed forward mechanism.  Given the 

supporting role of PEMT in mobilizing DHA, and the extent of the increase of DHA in 

plasma PC during the last stages of pregnancy, other mechanisms are likely involved that 

remain to be elucidated.  
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Chapter 1 
 

Introduction 
 
 Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid (PUFA) known to 

have an important role in fetal neuronal development, and the fetus is dependent on 

maternal supply (Larque et al., 2006). Evidence indicates that pregnant women in Canada 

do not meet the dietary recommendations for DHA intake (Denomme et al. 2005). Sex is 

associated with different fatty acid profiles, including, DHA in various tissues in both 

humans (Geppert et al., 2009; Metherel et al., 2009) and rat models (Kitson et al., 2012). 

More specifically, estrogen has been hypothesized to regulate the function of various 

proteins involved in lipid metabolism, such as elongases and desaturases that are 

responsible for the de novo synthesis of PUFA (Kitson et.al. 2012).  Estrogen levels rise 

during pregnancy (Yoshinaga et al. 1969) and DHA has also been shown to increase in 

maternal plasma, especially during the third trimester of pregnancy when estrogen levels 

are at their peak (Stark et.al. 2005). Additionally, evidence suggests that there is 

preferential deposition of PUFA, especially Arachidonic acid (ARA) and DHA, in fetal 

tissues during pregnancy (Larque et al. 2006). 

Plasma PUFA are generally found in triacylglycerols (TAG) and phospholipids; 

however, long chain PUFA, such as DHA and ARA, tend to concentrate in the 

phospholipids (Stark, 2008).  Plasma phospholipids are predominantly composed of 

phosphatidylcholine found in lipoproteins (Christie, 1989). Phosphatidylcholine (PC) is 

synthesized through the Kennedy pathway, or by phosphatidylethanolamine (PE) 

methylation through phosphatidylethanolamine methyltransferase (PEMT). Estrogen has 

been shown to up-regulate the PE methylation pathway (Resseguie et al. 2007).  PE 
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typically has higher DHA content than PC (Kitson et al., 2013), Therefore methylation of 

PE to form PC could be a mechanism to increase the DHA content of PC. Up-regulating 

the PE methylation pathway during pregnancy through estrogen action could be a mean 

to increase maternal plasma DHA levels to make DHA more readily available for uptake 

by the fetus.  Additionally, PEMT activity is affected by the intake of specific fatty acids 

(Clandinin et al. 1994); therefore, understanding the effect of dietary intake of DHA 

during pregnancy using a diet with a fatty acid profile that resembles the fat intake of 

humans on PEMT activity is essential to fully characterize the mechanisms involved in 

mobilizing maternal DHA stores to plasma during pregnancy. 

The aim of this thesis is to understand the role of PEMT during pregnancy on 

maternal DHA in various lipid pools during different dietary fatty acid intakes. A 

pregnant rat model was used to determine the effect of pregnancy on PEMT expression 

and activity. Rats were bred, and upon confirmation of pregnancy, they were placed 

either on a diet that mimics the typical western diet, with or without additional DHA, or 

remained on a chow control diet. The expression of PEMT was measured in maternal 

liver at various stages of pregnancy, and in post partum by determining mRNA and 

protein levels, as well as enzyme activity. Additionally, plasma and liver phospholipid 

fatty acid composition was determined to characterize the shift in PC and PE fatty acid 

composition during pregnancy. Understanding the mechanisms of DHA delivery to the 

fetus, the role of maternal diet, and maternal adaptations to increase the bioavailability of 

DHA for fetus delivery, form an important base to determine maternal DHA 

requirements in order to establish evidence based recommendations to support pregnancy 

and fetal development.  
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Chapter 2 

Biochemical foundations 

 

2.1 DHA Role in Fetal Development 

Several randomized controlled clinical trials have indicated a positive effect of 

DHA supplementation on brain development as reviewed previously (Innis, 2007), while 

the effect of low DHA intake on retinal electrophysiology and visual acuity is established 

in non-human primates (Neuringer et al. 1988). In particular, the third trimester of human 

pregnancy appears to be a critical phase of DHA incorporation into neural tissues 

(Martinez 1992). The vulnerability of nervous system to DHA deficiency relates to the 

physiological structure of the brain; 60% of brain matter is composed of fat (Kurlak et al. 

1999), and DHA is one of the most abundant fatty acids in neurons, especially in 

neuronal membranes and vesicles of the synapse (Breckenridge et al. 1972). 

Incorporation of DHA into the phospholipids in the bilayer membranes is thought to 

increase their viscosity, allowing for more efficient signal transduction (Breckenridge 

1972). Other physiological effects are produced by metabolites synthesized from DHA. 

N-docosahexaenoylethanolamide (DEA) is a synaptogenic DHA metabolite that acts as a 

mediator of DHA induced synaptogenesis and hippocampal neuronal growth (Kim et al. 

2011). The effect of DHA and DHA derived synaptogenic mediators has only been 

demonstrated in neuron cell cultures from 18-day-old mice embryos (Cao et al., 2009) 

Pregnancy is generally associated with hyperlipidemia: the significant increase in 

plasma fatty acids, hypothesized to be an adaptation to facilitate the availability of 

essential fatty acids for the growing fetus (Hachey, 1994; Warth et.al. 1975). 
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Additionally, the relative amount of DHA in maternal bloodstream is also shown to 

increase during pregnancy, especially in the plasma phospholipids fraction (Otto et al. 

2001).  DHA is shown to increase by almost 50% in plasma phospholipids, while other n-

3 fatty acids increase by only 20% (Postle, et al. 1995). DHA is also selectively 

transported through the placenta, and deposited in fetal tissue through specific placental 

fatty acid delivery mechanisms (Larque et al. 2011). Increased DHA biosynthesis from 

18:3n-3 (Burdge and Calder. 2006) is a possible mechanism to meet fetal DHA demand; 

however, the mobilization of DHA to the maternal circulation from other tissues is 

another possibility that is relatively understudied.   The effect of dietary intake of DHA 

and other essential fatty acids during pregnancy has been shown to affect maternal fatty 

acid metabolism, as well as tissue composition of the fetus (Childs et.al. 2010). 

Examining maternal intake of essential fatty acids during pregnancy is important, 

especially since the majority of Canadian women eat low levels of DHA during 

pregnancy (Denomme et.al. 2005). 

2.2 Overview of Phospholipids 

Phospholipids are differentiated based on the characteristic polar head group 

attached to the glycerol molecule. The major phospholipid classes include phosphatidyl-

ethanolamine (PE), phosphatidylcholine (PC), phosphatidylinositol (PI), 

phosphatidylserine (PS), and sphingomyelin. PC followed by PE constitutes the majority 

of phospholipids in the lipid bilayer in cellular membranes of eukaryotes. PC is 

predominantly found on the outer layer, while PE is concentrated in the inner layer 

(Christie 1989). In plasma, phospholipids are mainly located in the monolayer membrane 

of lipoproteins, and constitute of almost 99% PC and lyso-phosphatidylcholine (lysoPC) 
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(Christie, 1989). In contrast, erythrocytes in blood have lipid bilayers and therefore 

contain significant amounts of both PE and PC. PI and PS occur in lower concentrations 

in lipid membranes. However, PI is a metabolically important phospholipid, which is 

highly abundant in brain tissue (almost 10% of total phospholipids in the brain) (Holub 

et.al. 1970)  

2.3 De novo synthesis of Phospholipids (Kennedy Pathway; Figure 2.1) 

Phospholipids are synthesized in various locations within the cell, including the 

cytosol, endoplasmic reticulum, and the mitochondrial inner membrane (Vance and 

Vance, 2004). The first step is the addition of an acyl group from acyl-CoA to sn-

glycerol-3-phosphate by sn-glycerol-3-phosphate acyltransferase (GPAT) to form 1-acyl-

sn-glycerol-3-phosphate, also known as lyso-phosphatidic acid (lysoPA). Two main 

isoforms of GPAT have been characterized, which are encoded by different genes, and 

are localized in different locations within the cell. One GPAT isoform is limited to the 

mitochondrial outer membrane, while the second isoform is located in the endoplasmic 

reticulum (Vance and Vance, 2004). The mitochondrial isoform of GPAT is known 

utilize saturated acyl CoAs, while the endoplasmic reticulum isoform does not have such 

specificity. Consequently, the mitochondrial GPAT is thought to be responsible for the 

high proportion of saturated fatty acids in the sn-1 position of the glycerol-3-phosphate 

backbone. Phosphatidic acid (PA) is then formed through the acylation of the sn-2 

position of lysoPA by the action of acyl-CoA:1-acyl-sn-glycerol-3-phsophate 

acyltransferase (AGPAT), which preferentially utilizes unsaturated fatty acyl CoAs. The 

resultant PA can then be used as a substrate for the synthesis of phosphatidylglycerol and 

phosphatidylinositol, but PA can also be dephosphorylated by phosphatidic acid 
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phosphatase to form diacylglycerol (DAG). DAG can then be used to synthesize PE and 

PC, in addition to triacylglycerol (TAG). 

 

2.4 PE Synthesis 

PE comprises 20-40% of the phospholipids in the membranes of mammalian 

cells.  It is biosynthesized through two main pathways: the CDP-ethanolamine pathway, 

and the PS decarboxylation pathway, originally described by Kanfer and Kennedy in 

1964 (Kanfer and Kennedy, 1964). In the latter pathway, PS is transferred from the ER, 

where it is synthesized, to the mitochondrial inner membrane, where it is converted to PE 

by the action of PS decarboxylase (Shiao et al., 1995) However, evidence suggests that 

the route of PE synthesis is tissue dependent with the CDP-ethanolamine pathway being 

the main pathway in mammalian hepatocytes (Sundler and Akesson 1975; Tijburg et al. 

1989) and heart (Zelinski and Choy 1982).  The first step in the CDP-ethanolamine 

pathway is the phosphorylation of ethanolamine by ethanolamine-kinase in the cytoplasm 

forming P-ethanolamine. This step is followed by the conversion of P-ethanolamine to 

CDP-ethanolamine, in a reaction catalyzed by CTP: phosphoethanolamine 

cytidylyltransferase or ethanolamine phosphate cytidylyltransferase (ET). This is 

believed to be the rate-limiting step of the CDP-ethanolamine pathway, and is therefore 

subject to cellular regulation. In the final step, the CDP-ethanolamine is converted to PE 

by the action of CDP-Ethanolamine phosphotransferase, which is a membrane-bound 

protein in the endoplasmic reticulum that attaches the phosphoethanolamine to a DAG. 

CDP-Ethanolamine phosphotransferase appears to prefer DAG containing DHA in the 

sn-2 position as a substrate (Yamashita et al. 1997). In fact, DHA may have a potential 
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effect on phospholipids synthesis, since it was shown to elevate PE synthesis in 

hepatocytes (Sundler et. al. 1974). 

2.5 PC Synthesis 

PC is biosynthesized through two pathways: the CDP-choline pathway that is 

parallel to the CDP-ethanolamine pathway for PE synthesis, and the PE methylation 

pathway 

2.5.1 PC synthesis through Kennedy Pathway 

The CDP-Choline pathway utilizes choline that is acquired from diet (Best and 

Huntsman 1932). The first step in the CDP-choline pathway is the rapid phosphorylation 

of choline upon its entry to the cell by choline kinase in the cytoplasm to form P-choline. 

The P-choline is then converted to CDP-choline in a reaction catalyzed by 

CTP:phosphocholine cytidylyltransferase (CT). As in the PE synthesis pathway, the 

formation of the CDP intermediate is believed to be the rate-limiting step of the CDP-

choline pathway, and subject to cellular regulation. For example, the inter-conversion of 

CT between its soluble, inactive form and its active, membrane-bound form influences 

PC biosynthesis (Vance and Pelech 1984). CDP-choline is converted to PC by the action 

of CDP-Choline phosphotransferase: an important membrane-bound protein in the 

endoplasmic reticulum, which attaches the phosphocholine head group to a DAG 

molecule. 

2.5.2 PC synthesis through PEMT Pathway 

While the former pathway tends to dominate, the latter PE methylation pathway 

has been demonstrated to be responsible for the synthesis of 30%-40% of PC in 
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hepatocytes (Sundler and Akesson 1975; DeLong et al. 1999: Reo et al. 2002). Choline is 

essentially a tri-methylated ethanolamine where the three methyl groups are attached to 

the amine group (Figure 2.1). Consequently, the conversion of PE to PC requires three 

methylation reactions that are catalyzed by one enzyme, phosphatidylethanolamine-N-

methyltransferase (PEMT) (Ridgway and Vance 1988).  Evidence shows that phospho-

methyl-ethanolamine (PME) and phospho-dimethyl-ethanolamine (PDE), the products of 

the first and second methylation steps, respectively, have an inhibitory effect on their 

own formation indicating a negative feedback mechanism.  PEMT is found to be active in 

microsomal membranes and mitochondria-associated membranes (MAM).  MAM are a 

part of the endoplasmic reticulum that is highly rich in enzymes involved in lipid 

biosynthesis (Cui et al.1993). Each step in the methylation pathway utilizes methyl 

groups from methionine, and produces S-adenosylhomocysteine as a byproduct that 

ultimately gets converted to homocysteine. In fact, the activity of PEMT has been 

hypothesized as a mechanism to regulate homocysteine concentrations in the plasma 

(Robinson 2001). Since PC synthesized from the PEMT pathway utilizes PE as a 

substrate, the fatty acyl distribution of PE derived PC species should reflect PE 

synthesized by the Kennedy pathway rather than PC synthesized by the CDP-choline 

pathway. Indeed, evidence shows that PC synthesized by the PEMT pathway was 

predominantly enriched with 16:0 and 18:0 at the sn-1 position, and DHA at the sn-2 

position (Pynn et al. 2011).  

2.6 Phospholipid Fatty Acid Remodeling (Lands’ Cycle) 

Eukaryotes maintain specific fatty acid distributions in the phospholipids of cell 

membranes. Saturated and monounsaturated fatty acids are more likely to be esterified at 
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the sn-1 position, while polyunsaturated fatty acids are predominantly esterified at the sn-

2 position. Glycerophospholipids that are formed through the Kennedy pathway 

(described above) undergo remodeling by subsequent rounds of de-acylation/acylation 

reactions, also known as the Lands’ cycle (Lands, 1958; reviewed in Shindou et.al. 2009). 

The composition of fatty acyls at the sn-2 position is altered through the specific and 

regulated actions of A2 phospholipases (PLA2s) and lyso-phospholipidstransferases 

(LPLATs). There are numerous forms of LPLATs that are thought to be responsible for 

the variety in phospholipids species that differ in the polar phosphate head group as well 

as the fatty acyl attached to their glycerol backbone. The form of active LPLAT is largely 

tissue dependent.  For instance, lyso-phosphatidylcholine-acyl transferase 1 (LPCAT1) is 

highly expressed in lungs and shows preference for utilizing 18:2-CoA or 18:3-CoA 

when remodeling PC, while LPLAT3 is ubiquitous in tissues, and shows higher activity 

towards 20:4-CoA and 18:2-CoA.  The same applies for lyso-phosphatidylethanolamine- 

acyl-transferases (LPEAT), where different forms of LPEAT have different specificities 

for the fatty acyls utilized during PE remodeling (Reviewed in Kitson et.al. 2012). The 

end result is that PC synthesized by the Kennedy pathway is enriched in mono (PC 

16:0/18:1) and di-unsaturated (PC 16:0/18:2) fatty acids. At the same time, PE 

synthesized through the same pathway is specifically enriched in 16:0 and 18:0 at the sn-

1 position, and 20:4n-6 and 22:6n-3 at the sn-2 position (Pynn et al. 2011). The reason 

these fatty acids are not incorporated directly in the Kennedy pathway could be related to 

the essential nature of 18:2 and DHA. If the pathway of phospholipid de novo synthesis 

required DHA or arachidonic acid, the process could be compromised if these fatty acids 

were not available in the diet.  
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2.7 DHA, PEMT and Methyl Nutrients 

The PEMT pathway and the CDP-choline pathway are the main two pathways 

known to produce phosphatidylcholine. The majority of the choline the supplies the 

CDP-choline pathway for PC synthesis is acquired through the diet; however, choline 

requirements in humans can be partially met through the PEMT pathway for PC 

biosynthesis (da Costa et al, 2011). Consequently, PEMT activity can be influenced by 

choline intake, as well as various other methyl nutrients, such as methionine, vitamin B12, 

and folic acid (Hoffman et al. 1981). 

PEMT knockout mice put on choline deficient diet rapidly develop significant 

liver damage (Walkey et al. 1998). Even when supplied a choline sufficient diet, PEMT 

knockout mice showed diminished concentrations of DHA and arachidonic acid in 

plasma PC. In humans, plasma PC content of DHA is directly correlated with PEMT 

activity, especially when choline dietary intake is low (da Costa et al. 2011). This further 

supports the physiological importance of PEMT in modulating plasma phospholipid fatty 

acid composition. Dietary choline intake, however, has no effect on DHA content of PC- 

in pregnant women during the third trimester of pregnancy (West et al., 2013). While 

various dietary factors can regulate PEMT, it appears that hormones are also involved in 

PEMT regulation. In particular, estrogen may influence PEMT activity through direct and 

indirect mechanisms (Hartz et al. 2006).  The effect of different dietary levels of DHA on 

PEMT activity has not been examined previously. 

2.8 Hormonal and Pregnancy Effects on PEMT Activity 

Estrogen has been shown to have significant effects on PEMT activity in both 

human and mouse hepatocytes (Young 1971).  Potential estrogen response element 
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motifs have been identified on the PEMT gene promoter region and treating hepatic cell 

cultures with estrogen at doses mimicking concentrations in humans (0-100nmol/L) 

significantly up-regulates mRNA expression and enzyme activity of PEMT (Resseguie et 

al. 2007). Treatment of rat anterior pituitary membranes with estrogen for 4 days resulted 

in an increase in Vmax of PEMT for each methylation step, while the Km remained 

consistent, indicating an increased concentration of PEMT protein (Drouva et al. 1986).  

With elevated estrogen levels during pregnancy, there is increased activity of PEMT and 

an increase in the rate of methylation of PE to PC (Gwee and Sim, 1979). It is 

hypothesized that the increased PEMT activity during pregnancy is an evolutionary 

mechanism developed to protect choline stores and decrease the risk of choline 

deficiency during pregnancy.  However, the conversion of PE (which tends to be higher 

in DHA) to PC (a principal component of lipoproteins) may also be a mechanism to 

mobilize maternal DHA for placental transport to the fetus. 

In addition to elevations in estrogen, pregnancy is also associated with increased 

insulin production. Insulin sensitivity remains unchanged during early pregnancy 

(Catalano et al., 1993) but decreases during the third trimester. While insulin is known to 

be lipogenic, the direct effect of insulin and insulin resistance on PEMT activity remain 

unclear, and may be tissue dependent (Hoffman et al.1981; Cabrero et al., 1986; Hartz et 

al. 2006; Tashiro et al., 1983; Panagia et al., 1990). 

 

2.9 Placental Fatty Acid Transport (figure 2.2) 

The placenta plays a major role in delivery fatty acids to the fetus, especially 

those that are essential for fetal development, such as arachidonic acid (20:4n-6) and 
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docosahexaenoic acid (DHA). The placental tissue takes up free fatty acids circulating in 

the maternal plasma by specific fatty acid carriers, as well as passive diffusion (Haggarty, 

2002). However, the majority of fatty acids in the plasma are in the form of TAG and 

phospholipids. To accommodate that, the placenta expresses lipoprotein lipase, which 

hydrolyzes triacylglycerols into free fatty acids. Phospholipids can be broken down and 

taken up by placental tissue through the action of extracellular phospholipase A2 type II, 

which is responsible for 80% of placental phospholipase activity (Rice et al., 1998). In 

addition, plasma phospholipids can deliver fatty acids to the placenta through the action 

of endothelial lipase, which has high phospholipase activity (Larque et al., 2010). 

Endothelial lipases mainly hydrolyze phospholipids in the monolayer of lipoproteins, but 

they have been also shown to utilize TAG (Lidegaard et al., 2005). The role of these 

proteins in placental transfer and uptake of fatty acid remains unclear. The free fatty acids 

released in the maternal plasma are then transported via fatty acid translocase fatty acid 

transport protein (FATP), and plasma membrane fatty acid binding protein (FABPpm) 

through the placenta and into the fetal circulation (Hanebutt etl al. 2008). Six FATP 

genes have been identified in human and mouse genomes, and the placenta is shown to 

express two forms of this protein: FATP-1 and FATP-4. (Hanebutt et al., 2008). The 

existence of multiple forms of FATP in placental tissue remain unexplained, but the 

expression of FATP-1 appears to be affected by DHA intake in maternal diet (Larque et 

al. 2006). 
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Figure 2.1: The Kennedy pathway for PE and PC synthesis (adapted from by Gibellini 

and Smith, 2010) 
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Figure 2.2: Placental lipid fractions breakdown and fatty acids transfer (adapted from 

Larque et al. 2011). FATP, Fatty acid transport protein; FAT, fatty acid translocase; 

FABPpm, fatty acid binding protein on plasma membrane; LPL, placental lipoprotein lipase; 

EL, endothelial lipase; R, lipoprotein receptor; PLA2, phospholipase A2; FFA, free fatty acids; 

TAG, triacylglycerols; PL, phospholipids. 
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Chapter 3 
	  

Pilot study to examine the fatty acid composition of phospholipids in blood of 

women during pregnancy and postpartum 

 

3.1 Methods 

 As a pilot study, three pregnant women were recruited and blood samples were taken 

during the third trimester of pregnancy and at 4 months post partum. Diet was neither 

assessed, nor controlled. Tissue lipids of plasma and erythrocytes were extracted 

according to Folch et al., using 2:1 chloroform:MeOH (v/v) (Folch et al. 1957).  Prior to 

extraction, 10ug of 17:0 standard was added to each sample in the form of 

diheptadecanoyl-sn-glyercol-3-phosphocholine and diheptadecanoyl-sn-glyercol-3-

phosphoethanolamine (Sigma Aldrich).  Individual phospholipids in the lipid extracts 

were isolated using thin layer chromatography (TLC).  In TLC, a silica coated glass plate 

serves as the stationary phase. The sample is applied to the bottom of the plate, the origin, 

and placed in a glass tank that contains a liquid mobile phase at a level below the origin.  

A mixture of liquid solvents is used as the mobile phase, with varying composition 

depending on the nature of the sample and the separation desired. As the mobile phase is 

drawn upwards by capillary action, components of the sample move upwards at different 

rates. The separation of the components is based on polarity, interaction with the 

stationary phase particles, and their solubility in the mobile phase (Christie, 1989).  

Samples can be separated into major lipid classes including phospholipids, 

triacylglycerols, cholesterol esters, and free fatty acids. In addition, the major classes can 

be separated into subclasses; for example, the phospholipids fraction can be separated 
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into PC, PE, PI, PS, lyso-phosphatidylcholine, and sphingomyelin fractions. Internal 

standards, such as 1,2-diheptadecanoyl-sn-glyercol-3-phosphocholine (850360P, Avanti 

Polar Lipids Inc, Alabaster, AL) and diheptadecanoyl-sn-glyercol-3-

phosphoethanolamine are used to allow for quantification. Analysis of the fatty acid 

composition of isolated lipid classes is then determined by GC as described above.  

 For this experiment, TLC H-plates (Fisher Scientific) were activated for an hour 

prior to use. Each plate was scored into 6 equal width lanes, where one of the lanes were 

reserved for a running standard, containing the phospholipids of interest. Total lipid 

extract from each sample was dissolved in 50 µl of chloroform and applied to the base of 

each lane with the use of a syringe. The plate was developed in a solvent mixture 

containing chloroform:MeOH:propanol:KCl (0.25% w/v):triethylamine 

(37.5:11.25:31.25:7.5:22.5, vol/vol) in a TLC tank with a filter paper. Once developed 

and dried, the plate was sprayed with 2,7- dichlorofluorescein in methanol to visualize 

the bands. Individual phospholipids bands were scraped off the plate, and lipids were 

extracted using a modified Folch procedure (Folch et al. 1957). TLC extracts were 

transesterified using 14% BF3-Methanol for one hour at 95°C to generate fatty acid 

methyl esters. Finally, the methyl esters were separated and analyzed using GC/FID, 

where the internal standards were used to quantify individual fatty acids of interest. Data 

from 10 non-pregnant female controls with low DHA status generated from a previous 

study were also examined (Patterson, 2012). 
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3.2 Statistical analysis 

A paired samples t-test was used to analyze all fatty acid differences in maternal 

plasma phospholipids in pregnancy and at 4 months post partum. An independent t test 

was used to analyze the differences in phospholipid fatty acids profiles when comparing 

to non-pregnant controls.  

 

3.3 Results 

Maternal Plasma Composition 

In general, there was a decrease in the relative amount of DHA in PC, but it did 

not reach statistical significance (3.77 ± 0.85	  % during pregnancy compared with 2.65 ± 

0.24	  % at 4 months post partum and 2.81 ± 0.68	  % in non-pregnant controls, Table 3.1).  

In addition, 18:0 in plasma PC decreased in relative concentration during pregnancy 

compared with 4 months post partum and non-pregnant controls (11.01 ± 0.64% in 

pregnancy compared with 14.65 ± 1.51% and 15.85 ± 3.91% for 4 months post partum 

and non-pregnant controls, respectively). Palmitic acid relative concentration appeared to 

increase during pregnancy (31.99 ± 0.44 %) compared with 4 months post partum (26.51 

± 2.31 %) and non-pregnant controls (25.07 ± 1.17%).	  

As for plasma PE, 16:0, 18:0, and 20:4n-6 all appeared to be higher in pregnancy 

and post-partum as compared with non-pregnant controls (Table 3.2). DHA relative 

concentration in PE appeared to be elevated in pregnancy compared with 4 months post 

partum and non-pregnant controls, but the difference was only statistically significant 

compared to non-pregnant controls (3.8 ± 0.57% in pregnancy compared to 2.65 ± 0.24% 

and 1.57 ± 0.66 at 4 months post partum and non-pregnant controls, respectively).  Based 
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on these pilot results, assuming the standard deviation is constant, with 80% power, and 

α=0.5, the number of participants required to achieve statistical significance for DHA 

content in PC and PE between pregnancy and 4 months postpartum is 10. 

The results of this pilot study show a strong trend of increased plasma PC DHA 

levels during pregnancy. The levels of saturated fatty acids, such as 16:0 and 18:0 also 

changed during pregnancy, which may indicate a change in phospholipid metabolism 

during pregnancy. Evidence suggests an increase in overall plasma PC levels, which may 

be caused by up-regulating the PEMT pathway. The effects of dietary intake of DHA 

were not accounted for in this study, and need to be considered in follow-up studies. 
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Table 3.1: Relative percent fatty acid composition of plasma PC during pregnancy 
and in non-pregnant controls 
Name Control Pregnant Post partum 
C 14:0 0.52 ± 0.12 0.71 ± 0.09 0.64 ± 0.31 
C 16:0 25.07 ± 1.17 31.99 ± 0.44 26.51 ± 2.31 
C 18:0 15.85 ± 3.91 11.01 ± 0.64 14.65 ± 1.51 
C 20:0 0.18 ± 0.09 0.18 ± 0.05 0.18 ± 0.09 
C 22:0 0.20 ± 0.09 0.43 ± 0.16 0.22 ± 0.13 
C 23:0 0.32 ± 0.12* 0.15 ± 0.07 0.41 ± 0.15 
C 24:0 0.23 ± 0.09 0.36 ± 0.15 0.30 ± 0.13 
SFA 43.74 ± 5.45 46.71 ± 1.22 43.69 ± 3.6 

    C 14:1 0.04 ± 0.04 0.08 ± 0.04 0.05 ± 0.03 
C 16:1 0.38 ± 0.16 0.86 ± 0.42 0.40 ± 0.04 
C 18:1n-7 1.64 ± 0.41 1.22 ± 0.10 1.73 ± 0.15 
C 18:1n-9 12.33 ± 3.8 9.87 ± 0.80 12.74 ± 3.67 
C 20:1n-9 0.23 ± 0.08 0.21 ± 0.04 0.22 ± 0.08 
C 22:1n-9 0.24 ± 0.17 0.42 ± 0.19 0.29 ± 0.15 
C 24:1n-9 0.21 ± 0.1* 0.54 ± 0.19 0.41 ± 0.21 
MUFA 15.09 ± 3.84 13.23 ± 1.42 15.85 ± 3.46 

    C 18:2n-6 19.90 ± 4.10 18.31 ± 1.18 22.54 ± 3.28 
C 18:3n-6 0.11 ± 0.05 0.11 ± 0.07 0.09 ± 0.05 
C 20:2n-6 0.30 ± 0.08 0.32 ± 0.03 0.58 ± 0.17 
C 20:3n-6 2.54 ± 0.82 2.97 ± 0.43 3.36 ± 0.28 
C 20:4n-6 9.65 ± 1.82 6.65 ± 1.73 7.50 ± 1.20 
C 22:2n-6 0.20 ± 0.15 0.09 ± 0.09 0.20 ± 0.12 
C 22:4n-6 0.62 ± 1.31 0.24 ± 0.07 0.25 ± 0.13 
C 22:5n-6 0.31 ± 0.13 0.40 ± 0.14 0.38 ± 0.14 
N-6 33.57 ± 4.54 29.09 ± 1.8 34.92 ± 2.86 

    C 18:3n-3 0.25 ± 0.07* 0.46 ± 0.01 0.39 ± 0.14 
C 20:3n-3 0.11 ± 0.06 0.15 ± 0.11 0.26 ± 0.18 
C 20:5n-3 0.87 ± 0.51 0.80 ± 0.29 0.51 ± 0.07 
C 22:5n-3 0.80 ± 0.17* 0.56 ± 0.04 0.57 ± 0.12 
C 22:6n-3 2.81 ± 0.68 3.77 ± 0.85 2.65 ± 0.24 
N-3 4.84 ± 1.07 5.74 ± 0.90 4.38 ± 0.54 

    HUFA 17.66 ± 2.00 15.54 ± 2.13 15.49 ± 0.91 
PUFA 38.41 ± 4.81 34.83 ± 2.25 39.29 ± 3.32 
Total 137.07 ± 20.14 212.22 ± 45.65 168.09 ± 43.55 
Mean +/- SD,. *Significantly different compared to pregnancy by paired samples t-test or independent t-
test: p<0.05.  
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Table 3.2: Relative percent fatty acid composition of plasma PE during pregnancy 
and in non-pregnant controls 
Name Control Pregnant Post partum 
C 14:0 1.90 ± 0.36* 2.66 ± 0.26 1.66 ± 0.42 
C 16:0 15.35 ± 4.23* 23.92 ± 1.17 8.22 ± 1.20 
C 18:0 19.71 ± 7.20* 24.64 ± 2.11 10.75 ± 2.58 
C 20:0 0.62 ± 0.22 0.53 ± 0.09 0.56 ± 0.09 
C 22:0 0.94 ± 0.40 1.85 ± 0.62 0.58 ± 0.16 
C 23:0 0.87 ± 0.41 1.25 ± 0.50 0.84 ± 0.38 
C 24:0 0.99 ± 0.28* 1.60 ± 0.31 0.92 ± 0.49 
SFA 42.61 ± 11.54* 62.63 ± 1.52 24.05 ± 3.89 

    C 14:1 0.12 ± 0.04* 0.37 ± 0.11 0.06 ± 0.01 
C 16:1 0.21 ± 0.20 0.42 ± 0.12 0.15 ± 0.05 
C 18:1n-7 0.75 ± 0.43 0.61 ± 0.17 0.64 ± 0.06 
C 18:1n-9 22.98 ± 23.10 7.73 ± 0.88 58.22 ± 5.02 
C 20:1n-9 0.38 ± 0.19 0.37 ± 0.11 0.43 ± 0.08 
C 22:1n-9 1.45 ± 0.91 1.81 ± 0.32 0.89 ± 0.65 
C 24:1n-9 0.88 ± 0.48 0.80 ± 0.24 0.69 ± 0.12 
MUFA 26.86 ± 22.22* 12.36 ± 1.23 61.14 ± 4.31 

    C 18:2n-6 5.00 ± 2.99 5.02 ± 1.07 6.64 ± 1.58 
C 18:3n-6 0.23 ± 0.22 0.21 ± 0.13 0.09 ± 0.01 
C 20:2n-6 0.35 ± 0.15 0.41 ± 0.26 0.30 ± 0.14 
C 20:3n-6 0.69 ± 0.42* 1.04 ± 0.16 0.53 ± 0.43 
C 20:4n-6 4.26 ± 2.72 6.15 ± 2.11 1.77 ± 0.50 
C 22:2n-6 0.62 ± 0.25 0.45 ± 0.15 0.76 ± 0.44 
C 22:4n-6 1.02 ± 0.89* 0.51 ± 0.05 0.81 ± 0.42 
C 22:5n-6 0.72 ± 0.46 0.75 ± 0.12 0.48 ± 0.19 
N-6 12.89 ± 6.26 14.54 ± 1.94 11.38 ± 0.07 

    C 18:3n-3 0.52 ± 0.36 0.44 ± 0.11 0.28 ± 0.12 
C 20:3n-3 0.47 ± 0.30 0.56 ± 0.20 0.32 ± 0.25 
C 20:5n-3 0.63 ± 0.27 0.65 ± 0.16 0.55 ± 0.19 
C 22:5n-3 1.24 ± 0.94 1.06 ± 0.51 1.01 ± 0.16 
C 22:6n-3 1.57 ± 0.66* 3.80 ± 0.57 1.00 ± 0.13 
N-3 4.43 ± 1.75* 6.50 ± 0.78 3.17 ± 0.63 

    HUFA 10.60 ± 5.75* 14.51 ± 1.32 6.47 ± 1.54 
PUFA 17.32 ± 7.60* 21.04 ± 1.30 14.54 ± 0.70 
Total 68.42 ± 18.94 50.16 ± 1.34 42.36 ± 17.83 
Mean +/- SD,. *Significantly different compared to pregnancy by paired samples t-test or independent t-
test: p<0.05 
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Chapter 4 

Rationale	  hypotheses	  and	  objectives 

 

4.1 Rationale  

Docosahexaenoic acid (DHA), an omega-3 fatty acid, plays an important role in 

fetal brain development. Evidence suggests multiple maternal physiological adaptations 

in order to deliver DHA to the fetus (De Vriese et al 2003).  Hormones such as estrogen, 

which is elevated during pregnancy, can increase DHA biosynthesis, but may also 

increase lipids that contain DHA, such as phospholipids in maternal plasma.  

Estrogen increases PEMT expression and activity in isolated hepatocytes 

(Resseguie et al. 2007), and in maternal liver in pregnant rats (Gwee and Sim 1979), 

where activity of PEMT was shown to increase at day 6 of pregnancy.  PEMT catalyzes 

the methylation of PE to form PC in the liver. The PEMT pathway of PC biosynthesis is 

thought to be a mechanism to regulate choline levels, especially when choline demands 

are high, such as during pregnancy. However, PEMT may have a potential role in 

regulating plasma PC fatty acid composition, as PE and the resulting PC synthesized by 

the PEMT pathway are predominantly enriched with 18:0 and DHA. The dominant 

phospholipid in plasma is PC located in circulating lipoproteins that can supply fatty 

acids for fetal transport.  Therefore, PEMT may be involved in mobilizing DHA stores to 

maternal plasma in order to increase its availability to the developing fetus. 

The effects of DHA intake on PEMT expression and activity during pregnancy 

were examined. To our knowledge, the research in this area has focused on the effect of 

choline intake on the PEMT pathway, whereas the role of DHA intake is not well 
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understood. Understanding the dynamics and the mechanisms involved in this pathway 

would provide the basis for dietary recommendations for essential fatty acids such as 

DHA, and advance our understanding of hormonal regulation of fat metabolism. The use 

of a dietary manipulation in rat models in combination with the DHA treatment is 

important considering that 20% of pregnant women in Canada do not consume DHA 

(Denomme et al. 2005). Given that fatty acids can influence PEMT expression, we used a 

rodent diet with a fatty acid profile that mimics the intakes of North Americans, known as 

the Typical Western Diet (TWD). The new TWD was recently developed by Harlan 

based on the 2007-2008 National Health and Nutrition Examination (Hintze et al., 2012) 

and the use of the total Western diet (TWD) in a rat pregnancy study is a novel approach 

in nutritional research.  

 

4.2 Objectives 

The objects of this thesis are to elucidate the role of PEMT and associate it with 

changes in DHA and phospholipid levels in pregnant rats. Rats were bred, and upon 

confirmation of pregnancy, were placed on either a DHA supplemented, or DHA 

deficient Total Western Diet. An additional group of dams were fed with a regular chow 

diet, to serve as a control group. The genetic expression of PEMT in maternal liver was 

examined at the mRNA level, and liver protein levels of PEMT were measured by 

immunoblotting. Additionally, we examined the effects of DHA intake on plasma and 

liver phospholipid fatty acid composition in pregnant rats. Total fatty acids profile of 

plasma and liver tissue, in addition to the fatty acid composition of PC and PE in 

maternal plasma and liver, were determined using gas chromatography.  
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4.3 Hypotheses 

1- PEMT mRNA expression, protein levels, and activity will be increased during 

pregnancy. 

2- Feeding total Western diet (TWD) supplemented with DHA will decrease PEMT 

mRNA expression, protein levels, and enzymatic activity in maternal liver. 

3- Concentrations of 18:0 and DHA in plasma and liver PC will be increased during 

pregnancy relative to baseline and post partum indicating increased PC formed 

from PE. 

4- Providing DHA to pregnant rats will increase DHA and 16:0 in plasma and liver 

PC indicating a decreased role of PEMT in producing DHA enriched PC.   
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Chapter 5 
  

Pregnant Rats model study- PEMT analysis 
 

5.1 Study Design 

All animal procedures were approved by the University of Waterloo Animal Care 

Committee and are in accordance with the guidelines of the Canadian Council on Animal 

Care. A total of 82 Sprague Dawley rats were purchased (72 female rats at 7 weeks of 

age, and 10 male rats at 6 months of age). The 10 male rats were only used for breeding 

purposes, and were not involved in the study. Rats were bred on campus, and upon 

confirmation of pregnancy, pregnant female rats were assigned to either 1) a high DHA 

Total Western Diet (TWD-DHA+) which consists of 1.3% DHA in total fatty acids  2) a 

Total Western Diet with no DHA but omega-3 sufficient (TWD-DHA-) or 3) a typical 

chow rodent diet, throughout 21 days of pregnancy. Diets were purchased from Harlan 

Laboratories (TD.110424 New Total Western Diet; 8640 Teklad 22/5 Rodent Diet) 

(Table 6.1). Pregnant rats (n=6 from each of the three diet groups at each time point of 

pregnancy) were sacrificed at day baseline (non-pregnant rats after 7 days of dietary 

intervention) 15 and 20 of pregnancy, and 7 days postnatal. Pregnant rats were sacrificed 

by exsanguination following anesthesia, using isoflurane, after an overnight fast. 

Maternal blood, liver, heart, brain, and placenta were collected.  Fetuses obtained from all 

time points were also sacrificed immediately after separation from the mother by 

decapitation using sharp scissors, while pups from 7 days postnatal were sacrificed by 

exsanguination following anesthesia using isoflurane. Fetal tissues were collected and 

stored for analyses for fatty acid analysis.  The collected brains, livers, and placentas 

were flash frozen in liquid nitrogen and stored at -80°C for fatty acid composition 
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analyses, mRNA expression, and Western blots and activity assays for 

phosphatidylethanolamine-N-methyltransferase (PEMT).  

5.1.1 Assessing PEMT Gene Expression 

The mRNA expression was determined by quantitative real-time PCR (qRT-

PCR).  Reverse-transcriptase real-time PCR is a technique used to amplify a specific 

sequence of RNA. The first step is to isolate RNA from samples, which is then reverse-

transcribed to cDNA for more stability. Trizol reagent, containing RNAse inhibitor, was 

used to isolate RNA from cells. Chloroform was then added in order to separate RNA 

from other cellular components. Spinning the Trizol layer using a micro-centrifuge 

pelleted RNA. The RNA pellet was then washed with ethanol and dissolved in deionized 

water. Following that, agarose gel electrophoresis with ethidium bromide was performed, 

which insured the integrity of isolated RNA prior to cDNA synthesis. The concentration 

of the samples was then confirmed using absorbance at 260 nm, while the 260/280 ratios 

were used to determine sample purity, as determined by a NanoDrop spectrophotometer. 

Only RNA samples with high purity (260/280 ratio above 1.90) were used for subsequent 

cDNA synthesis by reverse transcriptase. Primers were designed for PEMT through 

Primer-BLAST program on the NCBI website and ordered from Sigma-Aldrich (5’-

CCCAGCTTTGTGGCGGCTGT-3’). A mix containing the PEMT primer and SYBR 

green, a special fluorescent dye that binds to double-stranded DNA used to visualize the 

amplification of a sequence in real time, was added to the cDNA templates. qRT-PCR 

was performed using the following set of conditions: initial incubation at 95°C for 10 

min, followed by 40 cycles of 95°C and 60°C, which resulted in the amplification of the 

target sequence. The qRT-PCR data was expressed relative to glyceraldehyde-3-
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phosphate dehydrogenase gene (GAPDH) (used as a house keeping reference gene during 

pregnancy) (Rekawiecki, et al. 2012).  

PEMT protein levels were determined by immunoblotting as described previously 

(Kitson et al., 2012). Tissue samples were homogenized in a buffer containing complete 

protease inhibitor tablets (0.25mol/L sucrose, 0.01mol/L tris-HCl, 0.01mol/L MgCl2, 

2.5mmol/L DTT). Protein quantification was completed using a bicinchoninic acid 

procedure.  Twenty µg of the protein was then resolved on a 12.5% SDS-PAGE gel and 

transferred to a polyvinylidene fluoride membrane.  Next, 5% milk was used to block the 

membranes in TBS with 0.5% (v/v) Tween (TBST) over night at 4°C. The membranes 

were then incubated with primary antibodies for PEMT (Donated by Professor Dennis 

Vance, University of Alberta) (1:1000 dilution) for 2h at room temperature.  Following 

incubation, the membranes were washed with TBST, incubated again for 1hr at room 

temp with horseradish peroxidase-conjugated secondary antibody (rabbit anti-goat, Santa 

Cruz Biotechnology, 1:8000 dilution), and washed again. The proteins were treated with 

Enhanced Chemiluminescence Western Blotting Detection Reagents and visualized on a 

Chemigenius 2 Bioimaging System using Genesnap software v 7.07.  Finally, the 

molecular weights of proteins, equal protein loading, and adequate transfer of protein to 

membrane were confirmed using ponceau staining and blotting for ß actin. 

5.1.2 Determining the Enzyme Activity of PEMT  

A liver PEMT activity assay was performed as described by Ridgway and Vance 

(Ridgway and Vance, 1998). To assess activity, we used 50 µg of protein homogenized in 

Tris-HCl/L (pH 9.2) and 5 mm DTT buffer/L (Sigma). Samples were incubated with 200 

µmol S-adenosyl-L-methionine/L containing 0.5µCi S-adenosyl-L-[methyl-3H] 

methionine (55.70 Ci/mmol) and 0.4 nmol exogenous phosphatidyl di-methyl-
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ethanolamine /L (P2; Avanti Polar Lipids).  The reaction was carried out for 60 minutes 

at 37°C, when it is stopped by adding ice cold CHCL3:MeOH:1 N HCL (100:50:1, 

vol/vol). Samples vials were vortexed, followed by the addition of 1 ml of 0.1M KCL in 

50% MeOH wash solution. Samples were centrifuged, and the top layer was discarded. 

Finally, samples were dried under nitrogen flow, and resuspended in 60 µl of chloroform. 

A portion of the chloroform phase (20µl) was applied to a silica gel TLC/ G plate 

(ANALTECH, cat. 01011), and the plate was developed in CHCL3:MeOH:Acetic acid: 

H2O (50:30:5:2,vol:vol).  Liquid Scintillation spectro-photometry was used to determine 

disintegrations per minute from [3H]-PC in TLC bands.  

5.1.3 Determining 17β-estradiol concentrations  

ELISA kits were ordered from Cayman Chemical (Ann Arbor, MI) (Estradiol EIA 

Kit, Cayman Chemical Item Number 582251) for the determination of plasma 17β-

estradiol concentrations of the baseline non-pregnant as well as the pregnant animals. 

17β-estradiol was extracted from 500 µl of plasma with methylene chloride, and 

reconstituted in 200 µl of EIA buffer. For each assay, 50 µl of samples and the 

appropriate volume of standards were loaded to the 96-well plate in duplicate. Two wells 

were designated each for blanks, total activity, non-specific binding and maximum 

binding. The concentration of estradiol was measured by exposing the plates to 420 nm 

wavelength, where the wavelength reading of each well was compared to the standard 

curve. 

5.2 Statistical Analysis  

Rats were divided among twelve groups based on diet and pregnancy (Three diets 

× 4 pregnancy time points). A one-way ANOVA test was used to analyze differences in 

fatty acids, mRNA, and protein at different stages of pregnancy in rat models. Data are 
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presented as mean ± standard deviation. Statistical significance was determined at α=0.5 

via a Tukey post hoc test. 

5.3 Results 

5.3.1 Food Intake and Body Weight 

Average caloric intake increased significantly in the 7 days post partum group for 

all diets (p < 0.05) and there were no other differences (Figure 5.1)  

Bodyweight increased steadily throughout pregnancy, and reached its highest at 

day 20 (p < 0.05) (Figure 5.2). There was no significant difference in bodyweight across 

diets at any time point (p >0.05). 

 5.3.2 Plasma Estradiol 

There was no significant difference between baseline, 15 days of pregnancy, and 

7 days post partum plasma estradiol levels. Hormone levels increased significantly at 20 

days of pregnancy compared to baseline, 15 days pregnancy, and 7 days post partum, in 

all diets (p < 0.05) (Figure 5.3). The high fat diet (either TWD+DHA or TWD DHA 

deficient) had no significant effect on plasma estradiol levels at any of the time points (p 

≥ 0.05).  

5.3.3 PEMT Gene mRNA Expression 

 At baseline, PEMT mRNA expression was lowest in the chow fed group. This 

was significantly different than the TWD without DHA, but not the TWD with DHA.  

Day 15 was associated with increases in mRNA expression especially in the animals fed 

diets without DHA (342-375 % increase from baseline, p < 0.05) but muted when DHA 

was in the diet (172% increase from base line, p =0.05).  PEMT mRNA expression 
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decreased significantly from day 15 at day 20 of pregnancy (74-90 % decrease), and 7 

days post partum (88-91% decrease) in all diet groups, (Figure 5.4-A). 

  

5.3.4 PEMT Protein Levels  

 PEMT protein expression tended to gradually increase throughout pregnancy 

peaking at day 20 and then decreasing with postpartum (Figure 5.4-B). In the chow-fed 

rat the difference between baseline and day 20 was significant, while day 15 levels were 

intermediate, and PEMT returned to baseline levels at 7d postpartum.  In TWD without 

DHA, the increase in PEMT over time was not significantly higher than baseline, but the 

day 15 and day 20 PEMT levels were significantly higher than 7d postpartum. In the 

TWD with DHA, PEMT levels tended to be higher than the other diets with significantly 

higher levels at baseline and 7 d postpartum.  The PEMT increase at d20 in the TWD 

+DHA was significantly higher than at d15, but was not significantly different than 

baseline or 7d postpartum.  Additionally, the PEMT at d20 of the TWD+DHA was 

significantly higher than the d20 PEMT in the TWD – DHA group. 

 

5.3.5 PEMT Enz Activity 

PEMT enzymatic activity increased significantly during pregnancy in all dams 

(Figure 5.4-C). However, the time point of pregnancy where PEMT activity reached its 

peak was different between diet groups.  Liver PEMT activity increased significantly at 

day 15 of pregnancy in both Chow and DHA deficient diet fed dams. PEMT activity 

decreased significantly at day 20 of pregnancy in chow fed dams, but not in DHA 

deficient diet fed dams. High DHA diet fed dams had significantly lower liver PEMT 
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activity at day 15 of pregnancy compared to chow and DHA deficient diet fed dams, but 

the enzyme activity increased significantly at day 20 of pregnancy. Animals from all diet 

groups had significantly lower PEMT activity at 7 days post partum. 
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Table 5.1 Relative Percent fatty acid composition analysis of TWD and chow diets 
Name TWD-DHA+ TWD-DHA- Chow 
C 16:0 19.52 ± 0.03 20.24 ± 0.04 13.63 ± 0.06 
C 18:0 9.03 ± 0.01 9.70 ± 0.02 2.18 ± 0.33 
SFAs 33.32 ± 0.04 34.31 ± 0.10 17.35 ± 0.26 

    C 16:1 1.20 ± 0.01 1.17 ± 0.01 0.88 ± 0.01 
C 18:1n-9 37.12 ± 0.05 36.94 ± 0.02 21.03 ± 0.05 
MUFA 40.79 ± 0.03 40.69 ± 0.04 23.73 ± 0.01 

    C 18:2n-6 20.85 ± 0.01 20.73 ± 0.01 49.69 ± 0.22 
C 22:5n-6 1.58 ± 0.01 1.89 ± 0.01 0.02 ± 0.01 
N-6 22.79 ± 0.02 23.04 ± 0.07 50.01 ± 0.18 

    C 18:3n-3 1.87 ± 0.01 1.88 ± 0.01 5.72 ± 0.09 
C 22:6n-3 1.14 ± 0.02 n.d. 0.22 ± 0.01 
N-3 3.11 ± 0.04 1.96 ± 0.01 6.19 ± 0.07 

    HUFA 2.96 ± 0.04 2.08 ± 0.08 0.69 ± 0.05 
PUFA 25.90 ± 0.06 25.00± 0.06 56.20 ± 0.25 
n.d, not detected  
 
 
 
Table 5.2 Nutrient composition of TWD and Chow diets 
Ingredient (g/kg) TWD DHA+ TWD DHA- Chow 
L-Cystine 3 3 3 
Cellulose 50 50 39 
Choline bitartrate 2.5 2.5 2.38 
TBHQ, antioxidant 0.014 0.014 0 
Kcal/g 3.7 3.7 3.0 

TWD Diet Formulation 
Corn starch 378.186 378.186  
Maltodextrin 132 132  
Sucrose 100 100  
Casein 200 200  
Corn oil 70 70  
Mineral mix, AIN-93G-
MX (94046) 48 48  

DHASCO oil 
(40% DHA) 17 0  

Macronutrients Breakdown (% Weight) 
Protein 17.7 17.7 22 
Carbohydrate 59.2 59.2 40.6 
Fat 7.2 7.2 5.5 
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Figure 5.1 Daily average Food intake pattern of dams fed with a 1.3% DHA Total 
Western Diet (DHA+), DHA deficient Total Western Diet (DHA-) or a chow diet (Chow) 
during pregnancy. Time points labeled with * are significantly different from baseline, 15 
days pregnancy and 7 days postpartum by Tukey’s post hoc test (p<0.05) following 
significant F-value by one-way ANOVA. 
 
 

 
Figure 5.2 Average body weight of dams fed a 1.3% DHA Total Western Diet (DHA+), 
DHA deficient Total Western Diet (DHA-) or a chow diet (Chow) during pregnancy. 
Time points labeled with * are significantly different from baseline, 15 days pregnancy, 
and 7 days postpartum by Tukey’s post hoc test (p<0.05) following significant F-value by 
one-way ANOVA. 
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Figure 5.3 Plasma Estradiol concentrations of  rats on a 1.3% DHA Total Western Diet 
(DHA+), DHA deficient Total Western Diet (DHA-) and chow diet (Chow) throughout 
pregnancy and post-partum. *Significantly different than other time points within a diet 
by Tukey’s post hoc test (p<0.05) following significant F-value by one-way ANOVA. 
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Figure 5.4 Pregnancy Effect on phosphatidylethanolamine methyl transferase 
(PEMT) expression in maternal liver: (A) Fold difference in mRNA gene expression of 
PEMT in non-pregnant female rats and dams placed on a 1.3% DHA Total Western Diet 
(DHA+), DHA deficient Total Western Diet (DHA-) and chow diet (Chow) as identified 
by qPCR.(B)  Fold difference in protein expression of PEMT in non-pregnant female rats 
and dams placed on a 1.3% DHA Total Western Diet (DHA+), DHA deficient Total 
Western Diet (DHA-) and chow diet (Chow) as identified by densitometric analysis of 
representative immunoblots (Shown below the figure). (C) Fold difference in the enzyme 
activity of PEMT in non-pregnant female rats and dams placed on a 1.3% DHA Total 
Western Diet (DHA+), DHA deficient Total Western Diet (DHA-) and chow diet (Chow) 
as indicated by the radio-enzymatic activity assay. Values with different superscripts are 
significantly different within the same diet, while values with different numbers are 
different within the same time point. Significance is determined by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA. 
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Chapter 6 

  
Pregnant Rats model study- fatty acids analysis 

 
 
6.1 Methods 

6.1.1 Extraction of plasma and liver total lipids 

Tissue samples, including pups’ whole bodies, were pulverized under liquid 

nitrogen, and stored at -80°C until analyzed. Fatty acids were extracted from pulverized 

tissues according to Folch’s procedure (Folch, 1957), using 2:1 (v/v) 

chloroform:methanol. The chloroform:methanol solution contained an internal standard 

(22:3n-3 ethyl ester, Nu-Chek Prep Inc, Elysian, MN) for quantitation of fatty acid 

concentrations by GC/FID analysis. Sodium phosphate buffer (0.5 ml) was added before 

centrifuging to separate the mixture into two layers, so the chloroform bottom layer 

(containing lipids) could be collected. The collected chloroform was dried under 

nitrogen, and 1ml of BF3 in methanol and 0.3 ml of hexane were added in preparation for 

the trans-esterification reaction. The samples were heated for one hour at 90 °C, and then 

allowed to cool to room temperature. One ml of hexane and 1ml of ultrapure water were 

added to each sample, briefly vortexed and centrifuged to separated the mixture into two 

layers. The top organic layer was collected, dried under nitrogen, and reconstituted in an 

appropriate volume of hexane for final analysis on GC/FID. 

6.1.2 Thin layer chromatography of plasma and liver phospholipids 

Maternal plasma and liver phospholipids were separated into PC, PE, PI, PS, lyso-

phosphatidylcholine, and sphingomyelin fractions. Internal standards, such as 1,2-

diheptadecanoyl-sn-glyercol-3-phosphocholine (850360P, Avanti Polar Lipids Inc, 
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Alabaster, AL) and diheptadecanoyl-sn-glyercol-3-phosphoethanolamine were used to 

allow for quantification (see Ch4, Section 1 for details)  

 

6.1.3 Fatty acid determination by GC 

Fatty acid methyl esters dissolved in hexane were separated by fast gas 

chromatography (Stark and Salem, Jr., 2005). Sampled were analyzed using a Varian 

3900 gas chromatograph coupled with a DB-FFAP 15 m × 0.10 mm injected dose × 0.10 

µm film thickness, nitroterephthalic acid modified, polyethylene glycol, capillary column 

(J&W Scientific from Agilent Technologies, Mississauga, ON, Canada), and used 

hydrogen as the carrier gas. A volume of 2 µL of each sample was introduced by a Varian 

CP-8400 auto-sampler into the injector, with a split ratio of 200:1. Initial temperature was 

maintained at 150°C for 0.25-minute, followed by a 35°C/min ramp to 200°C. This was 

followed by an 8°C/min ramp to 225°C with a 3.2-minute hold, and then an 80°C/min 

ramp up to 245°C with a 15-minute hold at the end. The flame ionization detector (FID) 

temperature was maintained at 300°C with air and nitrogen make-up gas flow rates of 

300 and 25 ml/min, respectively. Sampling frequency was set to 50 Hz. Individual fatty 

acid peaks were identified using Galaxie software (version 1.9.3.2) by comparison to a 

reference mixture of fatty acids (GLC-462, Nu-Chek Prep Inc), and peaks areas were 

quantified relative to the internal standard (17:0 in PC or PE, Avanti Polar Lipids, Inc). 

Fatty acid results are presented qualitatively as relative weight % of total fatty acids. 
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6.2 Results 

6.2.1 Fatty Acid Composition of plasma lipids (Appendices A-C)  

 The concentration of the sum of fatty acids in plasma total lipids, PC, and PE 

increased significantly at day 20 of pregnancy, followed by a significant decrease at 7 

days post partum. Within the general increase in the concentration of fatty acids, the 

relative percent (rel%) of  HUFA decreased significantly at day 20 in plasma TLE, as 

well as in plasma PE in rats fed TWD-DHA+. The rel% of HUFA with 22 carbons, 

especially DHA, increased significantly at day 20 of pregnancy in plasma total lipids in 

animals fed chow and TWD-DHA+, as well as the PC and PE fractions of animals in all 

diet groups (figures 6.1, 6.3). The rel% of 22 carbon HUFA, including DHA, decreased 

significantly at 7 days post partum in all diet groups, in plasma total lipids, plasma PC, 

and plasma PE of chow fed animals and animals fed TWD-DHA-.  To the contrary of 

DHA, arachidonic acid (20:4n-6) rel% decreased significantly at day 20 pregnancy in 

plasma total lipids and plasma PC, but not plasma PE. However, arachidonic acid rel% 

did decrease in plasma PE but only at 7 days post partum.  

In both TWD groups, the rel% of PUFA decreased throughout pregnancy and up 

to 7 days post partum in plasma total lipids and in plasma PC, and at 7 days post partum 

in plasma PE the TWD-DHA- fed animals. However, this decrease in the PUFA 

percentage was a result of decreases in n-6 PUFA, and not n-3 PUFA. The percentage of 

n-3 PUFA in plasma PC increased up to day 20 of pregnancy in plasma total lipids in 

chow and TWD-DHA+ fed animals, and in plasma PC. N-3 PUFA rel % in plasma total 

lipids and plasma PC and plasma PE at 7 days post partum decreased compared with day 

20 of pregnancy in all diet groups (p<0.05). 
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The percentage of palmitic acid (16:0) increased in relative concentration at day 

20 of pregnancy in plasma total lipids and plasma PC in all diet groups (p < 0.05). While 

stearic acid (18:0) increased significantly in absolute concentration in plasma total lipids 

and plasma PC at day 2, it decreased in percentage in all diet groups (p < 0.05).  Contrary 

to plasma total lipids and plasma PC, stearic acid relative percent in plasma PE increased 

significantly at day 20 pregnancy in chow and TWD-DHA+ fed animals.  

6.2.2 Fatty acid composition in liver lipids (Appendices D&E) 

 Unlike in maternal plasma, maternal liver PC and PE total fatty acids did not 

change during pregnancy or at 7 days postpartum. PC PUFA relative percent decreased 

significantly at 7 days post partum in TWD-DHA- fed rats (p < 0.05), but did not change 

in liver PE. HUFA relative percent did not change from baseline and during pregnancy in 

either liver PC or liver PE, but decreased significantly at 7 days postpartum in liver PC, 

only in TWD fed animals. Within the HUFA pool, PC and PE 22:5n-3, 22:4n-6, and 

22:5n-6 relative percent increased significantly at 20 days of pregnancy in all diet groups. 

However DHA relative percent in liver PC and PE increased in TWD-DHA+ and chow 

fed animals (p < 0.05) (figures 6.2,6.4), but not in TWD-DHA- fed animals (p > 0.05). 

All 22 carbons HUFA relative percent decreased significantly at 7 days post partum in 

both TWD fed animals (p < 0.05). N-3 fatty acids relative percent increased significantly 

at 20 days of pregnancy in liver PC, as well as liver PE in TWD-DHA+ and chow fed 

animals, before returning to baseline levels at 7 days post partum. Contrary to that trend, 

n-6 fatty acids relative percent decreased significantly at day 20 of pregnancy in liver PC, 

and liver PE in TWD-DHA+ and chow fed animals, before they increased back to 

baseline values at 7 days post partum.  
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Palmitic acid (16:0) relative concentration increased significantly in relative 

concentration at day 20 of pregnancy in liver PC in all diet groups, and in liver PE in 

chow fed animals, before returning to baseline levels at 7 days post partum. On the other 

hand, stearic acid relative concentration decreased significantly at day 20 of pregnancy in 

liver PC in all diet groups and liver PE in chow and TWD-DHA- fed animals; liver PC 

18:0 relative percent returned to normal levels in both TWD-DHA- and chow fed 

animals, but not in TWD-DHA+ fed animals.  

6.2.3 Fatty acid composition in whole-body fetuses (Appendix F) 

Total fatty acids in whole body fetuses at day 15 and day 20 gestations were 

significantly lower than in 7-day-old pups.  There was no significant difference in the 

absolute concentrations of total fatty acids between diets at 15 days and 20 days 

gestation, but at 7 days post partum, the pups from mothers fed TWD diets had 

significantly higher total fatty acid concentrations as compared with pups from chow-fed 

mothers (figure 6.5).  Within this increased fatty acid content of the pups from the TWD 

mothers, MUFA percentages were significantly higher in the 7-day-old pups as compared 

with 15-d and 20-d fetuses.  The 7 day-old pups from TWD fed mothers had a 

significantly larger body mass than those from chow fed mothers (Figure 6.6).   

The percentage of n-3 PUFAin the fetuses increased significantly at day 20 

gestation from dams fed both TWD-DHA+ and chow fed groups, but not TWD-DHA- 

which was largely a reflection of changes in fetal/pup DHA percentages.   
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Figure 6.1 Percentage of individual fatty acids in rat plasma PC. Each point represents 
the mean for plasma samples (n =18 for baseline and 20 days pregnancy; n=17 for 15 
days pregnancy and 7 days post partum) at each time point from non-pregnant female rats 
and dams placed on a chow diet. Values with different superscripts are significantly 
different by Tukey’s post hoc test (p<0.05) following significant F-value by one-way 
ANOVA. 
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Figure 6.2 Percentage of individual fatty acids in rat liver PC. Each point represents the 
mean for liver samples (n =18 for baseline and 20 days pregnancy; n=17 for 15 days 
pregnancy and 7 days post partum) at each time point from non-pregnant female rats and 
dams placed on a chow diet. Values with different superscripts are significantly different 
by Tukey’s post hoc test (p<0.05) following significant F-value by one-way ANOVA. 
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Figure 6.3 Percentage of individual fatty acids in rat plasma PE. Each point represents 
the mean for plasma samples (n =18 for baseline and 20 days pregnancy; n=17 for 15 
days pregnancy and 7 days post partum) at each time point from non-pregnant female rats 
and dams placed on a chow diet. Values with different superscripts are significantly 
different by Tukey’s post hoc test (p<0.05) following significant F-value by one-way 
ANOVA. 
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Figure 6.4 Percentage of individual fatty acids in rat liver PE. Each point represents the 
mean for liver samples (n =18 for baseline and 20 days pregnancy; n=17 for 15 days 
pregnancy and 7 days post partum) at each time point from non-pregnant female rats and 
dams placed on a chow diet. Values with different superscripts are significantly different 
by Tukey’s post hoc test (p<0.05) following significant F-value by one-way ANOVA. 
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Figure 6.5 Absolute concentrations of fetuses’ whole body fatty acids. Each column 
represents the mean for whole body fetus samples (n =18 for 20 days pregnancy; n=17 
for 15 days pregnancy and 7 days post partum) at each time point from dams placed on a 
high DHA TWD (TWD-DHA+), DHA Deficient TWD (TWD-DHA-) or chow diet. 
Values with “*” are significantly different by Tukey’s post hoc test (p<0.05) following 
significant F-value by one-way ANOVA. 
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Figure 6.6 Average pups body weight at 7 days post partum. Each column represents the 
mean for pup body weight from dams placed on a a high DHA TWD (TWD-DHA+), 
DHA Deficient TWD (TWD-DHA-) or chow diet (n = 60 for TWD-DHA+ ; n=56 for 
TWD-DHA-, and n=80 for chow). Values with “*” are significantly different by Tukey’s 
post hoc test (p<0.05) following significant F-value by one-way ANOVA. 
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Chapter 7 
 

Discussion 
 

7.1 Discussion 

As hypothesized, PEMT mRNA expression, protein levels, and enzyme activity 

were increased with pregnancy.  The expression of PEMT mRNA increased significantly 

at day 15 of pregnancy in all diet groups, before decreasing dramatically at day 20 and 7 

days post partum, while protein PEMT levels tended to be increased at day 20.  A dietary 

effect was observed, with dietary DHA resulting in decreased PEMT mRNA expression 

at day 15. Despite this decrease in mRNA expression, PEMT protein levels increased at 

day 20 of pregnancy in both high DHA diet and chow fed animals, and PEMT activity 

increased significantly at day 20 of pregnancy in high DHA diet fed animals. This trend 

suggests a time delay between PEMT mRNA expression and actual protein production in 

maternal liver during pregnancy. The higher protein expression and activity of PEMT in 

rats fed TWD-DHA+ as compared with rats fed TWD-DHA- at day 20 of pregnancy 

suggests a positive effect of high DHA intake on PEMT protein expression that was not 

expected.  It is possible that PEMT has a preference for PE high in unsaturated fatty acids 

(Le Kim et al., 1971); therefore, DHA intake could alter the fatty acid composition of 

liver PE, which could affect the rate of PE methylation to PC. 

Concentrations of DHA in liver and plasma PC increased at 20 days of pregnancy 

relative to baseline and post partum as hypothesized, but 18:0 levels decreased 

significantly in relative percentage at that time point. Higher DHA intake of pregnant rats 

increased the protein expression of PEMT at day 20 of pregnancy and increased DHA 

incorporation into PC in plasma and liver, which fits our hypothesis.  The levels of 16:0 
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in plasma PC were similar to the increases observed in DHA with pregnancy, but dietary 

DHA did not appear to have an effect.  Dietary DHA increased DHA in PC as expected. 

The effect of estrogen on PEMT expression has been reported by several studies, 

and an estrogen response element (ERE) has been identified ~ 7.5 kb from transcription 

start site B, TSS (+1) in the PEMT promoter region in both humans and mice (Resseguie 

et al. 2007; Resseguie et al. 2011). The significant increase in estrogen levels that were 

observed at day 20 of pregnancy may explain the significant increase in PEMT protein 

expression and enzymatic activity at that time point. However, the highest level of PEMT 

mRNA occurred at day 15 in all diet groups, and its activity peaked at day 15 in chow 

and DHA deficient diet fed animals, while plasma estrogen levels peaked at day 20. Our 

data suggest that estrogen could be preventing the degradation of PEMT mRNA 

transcripts, but no evidence of such interaction has been documented in previous studies.  

Estrogen has been previously shown to affect general protein synthesis and degradation 

rates in bovine satellite cells (Sollo et al. 2010) and there have been reports of a 

functional interaction between estradiol stimulated estrogen receptor α (ERα) expression 

and protein degeneration via proteasomes (Tsai et al. 2004). There were no differences in 

estrogen levels between rats on different diets (TWD vs. chow); therefore, the effect of 

TWD (high fat diet) on PEMT protein expression was not caused by a change in serum 

estrogen levels. 

Increased protein expression of PEMT at day 20 of pregnancy in maternal liver 

was accompanied by a general increase in DHA relative percent in plasma PC. However, 

there is strong evidence of general lipogenesis occurring at day 20 of pregnancy, an 

expected adaptation during pregnancy to supply the fetus with sufficient energy (Smith et 
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al. 1998). Total fatty acid concentrations increased significantly in all plasma pools at day 

20 of pregnancy, while liver PC and PE showed no significant changes in total fatty 

acids. The occurrence of hyperlipidemia in maternal plasma at 20 days of pregnancy 

meant that the majority of fatty acids that were examined, and not only DHA, showed 

significantly higher concentrations at that time point compared to baseline, 15 days of 

pregnancy, and 7 days post partum. However, looking at the relative concentrations of 

fatty acids reveals differential response of specific fatty acids. DHA percentages 

increased significantly in plasma PC and plasma PE, in all diet groups at day 20 of 

pregnancy. Despite the significant increase of DHA percentages in plasma phospholipids 

in DHA deficient diet fed animals at day 20 of pregnancy, the difference was not 

significant when looking at the total plasma lipids pool. This suggests either a potential 

decrease of DHA levels in other plasma lipid fractions such as triacylglycerols (TAG), or 

a dilution of this increase in DHA content by other fatty acids in the remaining plasma 

lipid fractions. Other fatty acids, including palmitic acid (16:0) and HUFA with 22 

carbons, showed similar trends as DHA. DPA n-6 (22:5n-6) was increased 10-times in 

plasma PC at 20 days pregnancy as compared with baseline and 15 days of pregnancy in 

all diet groups, which is in agreement with a recent report (Childs, 2010). The increase of 

DPA n-6 was particularly large in the DHA deficient diet fed animals suggesting a 

potential increase in maternal delta 6 desaturase activity (D6D) to meet the fetal demands 

for DHA (Nakamura and Nara, 2003), but limited available n-3 PUFA substrates. 

Contrary to DHA, ARA (20:4n-6) and stearic acid (18:0) relative percent 

decreased in plasma PC and total lipids at day 20 of pregnancy, but not in plasma PE. PC 

synthesized de novo through the Kennedy pathway, should contain high levels of 16:0 
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and 20:4n-6, while PC from the PEMT pathway should mimic fatty acid profile of PE, 

which contains high levels of 18:0 and DHA. The increase in DHA levels in plasma PC 

observed could not be fully attributed to PEMT activity despite the significant increase in 

PEMT mRNA at day 15 of pregnancy, and protein expression at day 20 of pregnancy. 

The concentration of 18:0 in plasma PC was significantly higher at day 20 of pregnancy, 

but its concentration relative to other fatty acids was decreased at that time point. It 

appears that de novo PC synthesis through the Kennedy pathway is increased at day 20 of 

pregnancy, based on the higher content of palmitic acid (16:0) relative to other fatty acids 

in plasma PC. These results are in agreement with previous reports in pregnant rats 

(Childs et al. 2012, Burdge et al. 1994) and in the developing guinea pig (Burdge et al. 

1993). Additionally, the fatty acid composition results suggest that ARA in the sn-2 

position of plasma PC molecules is being replaced by DHA. This needs to be confirmed 

with lipidomic analysis, to characterize the acyl chain composition of plasma PC at the 

sn-1 and sn-2 positions. 

Other possible mechanisms for changing maternal plasma PC fatty acid 

composition are changes to the phosphatidic acid (PA) substrate pool. Such effects have 

been previously reported in dams, where increased diacylglycerol (DAG) substrate 

availability combined with increased CDP enzymes activities were related to increased 

liver PC and PE synthesis (Burdge et al. 1994). As pregnancy carries a number of 

metabolic and regulatory changes associated with altered endocrine hormonal levels, the 

metabolism of fatty acids also changes. Evidence suggests that long chain PUFA 

synthesis is significantly increased during pregnancy (Burdge and Calder. 2006) likely 

due to increased desaturases and elongases activities associated with female sex (Kitson 
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et.al. 2012; Kitson et al. 2013). The increase of plasma and liver DPA n-6 levels suggests 

that D6D activity is increased in late pregnancy, especially when the dams are fed a diet 

deficient in DHA that has been proposed to act as a classic feedback inhibitor (Kitson 

et.al. 2010).  With increased PUFA synthesis, incorporation into PA would potentially be 

increased due to mass action effect, which would subsequently affect the fatty acid 

composition of the resulting PC and PE synthesized. The increase in PUFA synthesis 

during pregnancy cannot account for the dramatic increase in plasma DHA levels 

between day 15 and day 20 of pregnancy. It is possible that specific mechanisms 

mobilize maternal DHA into the plasma during pregnancy. Adipose tissue has been 

proposed as a source of 18:3n-3 during pregnancy (Childs et.al.2012). However, DHA is 

largely associated with protein (Stark and Patterson, 2012) and skeletal muscle appears to 

be the largest reserve of DHA (Lin and Salem, 2007). While there is little data on the 

effect of pregnancy on maternal whole body muscle mass, spinal muscular atrophy has 

been reported during pregnancy (Schonborn et al. 1992). Muscular atrophy during 

pregnancy could result in the mobilization of fatty acids stores in muscle tissue to the 

blood stream for placental transport, or for reassembly into plasma phospholipids in the 

maternal liver.  

Specific remodelling of de novo synthesized PC and PE could also be responsible 

for the shift in maternal plasma PC fatty acid composition. The synthesis of PC typically 

results in 16:0 in the sn-1 position.  The 16:0 can be replaced with 18:0 species (Tijburg 

et al. 1991), but this conversion is reduced at 21 days pregnancy, resulting in increased 

appearance of 16:0/DHA PC species (Burdge et al. 1994). The increased levels of 16:0 

and DHA, and the concurrent reduction of 18:0 and 20:4n-6 levels that we observed in 
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plasma and liver PC presently, agree with these previous findings. The detailed 

mechanism of acyl remodeling in phospholipids remains to be fully understood.  We 

hypothesize that pregnancy may also be up-regulating a phospholipase/acyltransferase 

reaction specific for 16:0 PC and DHA. 

The fatty acid composition of fetuses and pups whole body lipids helped to 

elucidate trends in selective fatty acids transport to the fetus from maternal blood stream 

via the placenta. Our results suggest a marked increase in DHA delivery to the fetus at 

day 20 of pregnancy in all diet groups, while other HUFA did not show a similar trend, 

which has been previously reported (Dutta-Roy, 2000). This trend is hypothesized to be 

an evolutionary mechanism to supply the fetus with a sufficient amount of DHA 

necessary to meet the demands of fetal brain development that occurs at this critical stage 

in pregnancy (Neuringer et.al. 1988). The fetal accretion of DHA was especially high 

when the mothers were fed a diet high in DHA (TWD-DHA+), as compared with those 

fed with a DHA deficient diet (TWD-DHA-) or chow. As expected, total fatty acids 

content increased significantly at 7 days post-partum as the pups grew in size. However, 

total fatty acids in pups of mothers on the two TWD diets were significantly higher than 

those whose mothers consumed chow diet despite similar caloric intake at that time point, 

This trend could be either related to the higher fat content of the TWD diet, or due to a 

potential effect of the maternal diet on the nutrient density of their breast milk. Breast 

milk samples were not collected presently, but should be examined in the future. 

One limitation to this study is the difference between human and rat brains in 

terms of fetal development and neurogenesis. Rat pups are born underdeveloped 

neurologically, particularly the olfactory bulbs, hippocampus, and cerebellum (Altman 
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and Bayer, 1979) relative to humans.  Contrary to rat brains, human brains develop at a 

higher rate prenatally, and human infants are born with well developed granular neurons 

(Bayer et.al. 1993).  Therefore, since DHA demand is at its highest during brain growth 

spurt (Innis, 2007; Neuringer et al. 1988), the spike in maternal plasma DHA occurs 

during the third trimester of pregnancy in women, whereas the brain growth spurt 

continues postpartum in rats (Bayer et.al. 1993).  This could explain the slight decrease in 

plasma DHA reported in humans (Wijendran, et al. 1999), which does not occur in rats, 

presently. 

The TWD diet used contained significantly higher levels of fat as compared to 

standard rodent chow that appear to have affected the outcomes of this study, and is 

considered a limitation in interpreting the effect of dietary DHA.  PEMT is regulated by 

fat intake (Clandinin et al. 1994; Bremer et al. 1961), and increased dietary fat intake is 

associated with higher blood cholesterol levels that also affect PEMT expression and 

activity (Keelan et al. 1994).  This rodent diet was chosen because it contains types of 

fatty acids in similar proportions as the diet of Western societies and, therefore, the 

addition of DHA to the diet would resemble a DHA supplementation regime.  Another 

limitation that was not accounted for with the diets was the effect of insulin on maternal 

metabolism during pregnancy. Maternal high fat intake not only influences maternal 

insulin response, but it was also recently associated with insulin resistance in the 

offspring (Murabayashi et.al. 2013) .Gestational phase insulin resistance is also common 

during the last phase of pregnancy, and insulin is hypothesized to affect PEMT activity, 

although this effect is not entirely clear (Hoffman et al.1981; Cabrero et al., 1986; 

Tashiro et al., 1983; Pangia et al., 1990).  
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7.2 Conclusion 

Pregnancy triggers various maternal adaptations through multiple mechanisms to 

facilitate the transport and accumulation of fatty acids to and by the fetus. DHA levels in 

plasma PC rat dams increase during pregnancy compared to baseline and post partum 

levels. Higher DHA intake of pregnant rats increases the protein expression and activity 

of PEMT at the end of gestation, and increases DHA incorporation into PC in plasma and 

liver. While PEMT appears to be involved in influencing the fatty acid composition of 

plasma PC, the particularly large increase in DHA content in plasma PC during the late 

stages of pregnancy indicates other mechanisms such as selective acyl remodeling of PC, 

and PC de novo synthesis could also be involved.  PEMT seems to have a supporting role 

in mobilizing maternal DHA into plasma. 

Future studies should focus on elucidating the mechanism of DHA incorporation 

into phospholipids in the Kennedy pathway for phospholipid synthesis, as well as Lands’ 

cycle for phospholipid acyl remodeling. Microarrays could be used to relate the 

differences in gene expression to different stages in pregnancy, especially to compare day 

15 and day 20. Microarrays provide an analytical advantage in that the gene expression of 

many genes can be examined at once, thereby providing a highly efficient method for 

studying gene expression. Based on the results obtained from the microarray, the specific 

genes would be targeted for subsequent analysis with RT-PCR and western blotting. 

MS/MS based lipidomics analyses could also be pursued to confirm specific 

phospholipid acyl species, such as 16:0/DHA PC or 18:0/DHA PC. This information 

could provide definitive answers to confirm whether phospholipid remodeling is indeed a 

major contributor to the change in maternal phospholipid composition during pregnancy.  
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  The essential nature of omega-3 fatty acids during the late stages in pregnancy has 

long been demonstrated, and DHA levels have been shown to increase during critical 

stages of fetal development. Through this research, we elucidated specific mechanisms of 

DHA mobilization to maternal plasma during pregnancy. PEMT was found to be up-

regulated in late pregnancy, but its up-regulation does not appear to be the only 

pregnancy adaptation contributing to maternal plasma DHA levels. Higher DHA intake 

during pregnancy was also found to increase PEMT expression, which a novel 

observation. According to our knowledge this is the first use of total western diet for 

rodent models in pregnant rats that could allow better insights on DHA intake during 

pregnancy in the North American population.  This research, combined with our dietary 

intervention, is a step forward in understanding the effects of pregnancy on PUFA 

metabolism and related fetal outcomes, and could be used in the future to help determine 

DHA requirements and define intake recommendations.  
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Appendix A. Plasma Total Lipids 

Table A.1.  Relative percent of fatty acids in plasma total lipids in chow fed rats at 
baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.32 ± 0.02 0.30 ± 0.11 0.26 ± 0.03 0.29 ± 0.01 
C 16:0 14.64 ± 0.64a 16.15 ± 0.76a 20.38 ± 1.14b 15.81 ± 1.53a 
C 18:0 15.58 ± 1.11a 13.68 ± 1.42a 8.58 ± 0.96b 13.83 ± 1.96a 
C 20:0 0.11 ± 0.02a 0.08 ± 0.01b 0.06 ± 0.02b 0.08 ± 0.01b 
C 22:0 0.24 ± 0.02a 0.17 ± 0.05ab 0.07 ± 0.02c 0.15 ± 0.04b 
C 24:0 0.59 ± 0.02a 0.39 ± 0.11b 0.18 ± 0.02c 0.42 ± 0.10b 
SFAs 32.20 ± 0.75a 31.15 ± 1.11ab 29.79 ± 1.17b 30.94 ± 1.02ab 
     
C 14:1 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 16:1 0.63 ± 0.14a 0.68 ± 0.17 0.72 ± 0.14 0.69 ± 0.15 
C 18:1n-7 1.14 ± 0.06a 1.27 ± 0.06ab 1.37 ± 0.06b 1.36 ± 0.08ab 
C 18:1n-9 5.76 ± 0.43a 8.92 ± 1.67ab 11.34 ± 0.96b 10.77 ± 2.21ab 
C 20:1n-9 0.06 ± 0.01 0.09 ± 0.02 0.11 ± 0.03 0.12 ± 0.04 
C 22:1n-9 0.20 ± 0.03a 0.13 ± 0.02ab 0.04 ± 0.01c 0.06 ± 0.04bc 
C 24:1n-9 0.36 ± 0.04a 0.27 ± 0.08a 0.07 ± 0.02b 0.26 ± 0.08a 
MUFAs 8.18 ± 0.42 11.38 ± 1.74 13.67 ± 1.06 13.3 ± 2.29 
     
C 18:2n-6 18.11 ± 1.78a 21.00 ± 3.21ab 22.68 ± 1.38b 21.43 ± 2.30b 
C 18:3n-6 0.39 ± 0.03a 0.69 ± 0.18a 0.63 ± 0.05a 1.18 ± 0.20b 
C 20:2n-6 0.12 ± 0.02a 0.14 ± 0.02a 0.22 ± 0.03b 0.19 ± 0.02b 
C 20:3n-6 0.26 ± 0.02a 0.27 ± 0.06a 0.25 ± 0.04a 0.52 ± 0.07b 
C 20:4n-6 34.10 ± 1.03a 27.03 ± 3.74b 19.19 ± 1.63c 24.27 ± 3.57bc 
C 22:2n-6 0.05 ± 0.01a 0.04 ± 0.01ab 0.02 ± 0.01c 0.02 ± 0.01bc 
C 22:4n-6 0.22 ± 0.02a 0.35 ± 0.11a 1.3 ± 0.23b 0.33 ± 0.05a 
N-6 53.44 ± 1.04a 49.77 ± 0.95ab 45.88 ± 1.16b 48.55 ± 1.37ab 
     
C 18:3n-3 0.48 ± 0.03a 0.72 ± 0.33b 1.09 ± 0.1c 0.48 ± 0.2a 
C 20:3n-3 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 20:5n-3 0.57 ± 0.08a 0.89 ± 0.35b 0.61 ± 0.20ab 0.83 ± 0.15ab 
C 22:5n-3 0.43 ± 0.03a 0.61 ± 0.10a 1.49 ± 0.23c 0.86 ± 0.14b 
C 22:6n-3 3.12 ± 0.13a 4.23 ± 0.75a 6.25 ± 1.01b 3.21 ± 0.49a 
N-3 4.61 ± 0.12a 6.47 ± 0.56b 9.45 ± 0.89c 5.39 ± 0.58ab 
     
HUFA 38.90 ± 1.11a 33.66 ± 4.29ab 30.71 ± 1.79b 30.65 ± 3.90b 
PUFA 58.05 ± 0.99 56.25 ± 1.05 55.33 ± 0.76 53.94 ± 1.45 
Total 208.50 ± 13.58a 288.01 ± 80.75a 502.49 ± 90.87b 319.38 ± 97.11a 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA.  
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Table A.2. Relative percent of fatty acids in plasma total lipids in high DHA diet 
(TWD DHA+) fed rats at baseline, during pregnancy, and 7 days post partum  

Name baseline 15 days 20 days 
7 days  

post partum 
C 14:0 0.45 ± 0.05a 0.61 ± 0.07b 0.58 ± 0.05ab 0.66 ± 0.10b 
C 16:0 15.96 ± 0.69a 18.10 ± 0.96ab 21.42 ± 0.92c 19.80 ± 1.73bc 
C 18:0 15.61 ± 0.46a 14.27 ± 0.57ab 10.30 ± 0.93c 12.20 ± 1.07bc 
C 20:0 0.10 ± 0.01a 0.09 ± 0.01a 0.06 ± 0.01b 0.08 ± 0.01ab 
C 22:0 0.24 ± 0.02a 0.22 ± 0.02a 0.07 ± 0.01b 0.13 ± 0.03c 
C 24:0 0.56 ± 0.04a 0.42 ± 0.06b 0.16 ± 0.02c 0.30 ± 0.07bc 
SFA 33.52 ± 0.44 34.31 ± 0.92 32.89 ± 0.78 33.64 ± 1.12 

     C 14:1 0.03 ± 0.01a 0.05 ± 0.01b 0.03 ± 0.01a 0.04 ± 0.01ab 
C 16:1 0.90 ± 0.11a 1.16 ± 0.19ab 1.12 ± 0.25ab 1.50 ± 0.28b 
C 18:1n-7 1.12 ± 0.06a 1.20 ± 0.07ab 1.41 ± 0.11bc 1.60 ± 0.13c 
C 18:1n-9 8.47 ± 0.68a 13.01 ± 1.91ab 18.36 ± 2.66bc 21.09 ± 5.18c 
C 20:1n-9 0.06 ± 0.01a 0.08 ± 0.03ab 0.14 ± 0.03b 0.10 ± 0.04ab 

C 22:1n-9 0.24 ± 0.02a 0.18 ± 0.04a 0.07 ± 0.04b 0.06 ± 0.04b 
C 24:1n-9 0.37 ± 0.07ac 0.43 ± 0.05a 0.11 ± 0.02b 0.26 ± 0.10c 
MUFA 11.20± 0.73a 15.93 ± 2.32ab 21.24 ± 2.92bc 24.67 ± 5.43c 

     C 18:2n-6 16.67 ± 0.72 15.84 ± 0.61 14.26 ± 0.48 16.20 ± 1.76 

C 18:3n-6 0.28 ± 0.04a 0.43 ± 0.09ab 0.64 ± 0.14bc 0.89 ± 0.25c 
C 20:2n-6 0.08 ± 0.01 0.08 ± 0.02 0.11 ± 0.02 0.08 ± 0.01 

C 20:3n-6 0.31 ± 0.04a 0.26 ± 0.05a 0.15 ± 0.02b 0.31 ± 0.03a 
C 20:4n-6 30.36 ± 1.55a 23.72 ± 2.09b 16.70 ± 1.89c 17.4 ± 5.41bc 
C 22:2n-6 0.04 ± 0.01a 0.05 ± 0.01b 0.02 ± 0.01c 0.03 ± 0.01ac 
C 22:4n-6 0.17 ± 0.01a 0.18 ± 0.04a 0.46 ± 0.12b 0.11 ± 0.04a 
C 22:5n-6 0.13 ± 0.02a 0.13 ± 0.04a 0.74 ± 0.25b 0.09 ± 0.03a 
N-6 48.04 ± 0.98a 40.70 ± 1.64b 33.07 ± 1.73c 35.09 ± 4.89c 

     C 18:3n-3 0.40 ± 0.05 0.47 ± 0.07 0.50 ± 0.08 0.31 ± 0.05 

C 20:3n-3 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

C 20:5n-3 0.62 ± 0.10ab 0.77 ± 0.10a 0.39 ± 0.11b 0.59 ± 0.13ab 
C 22:5n-3 0.25 ± 0.02a 0.36 ± 0.10a 0.62 ± 0.11b 0.22 ± 0.05a 
C 22:6n-3 4.91 ± 0.41a 6.08 ± 0.69b 9.58 ± 1.12c 3.69 ± 1.28a 
N-3 6.19 ± 0.45a 7.7 ± 0.76b 11.1 ± 1.04c 4.82 ± 1.32d 

     HUFA 36.77 ± 1.27a 31.53 ± 2.72ab 28.66 ± 3.00bc 22.39 ± 6.64c 
PUFA 54.23 ± 0.83a 48.40 ± 2.13b 44.18 ± 2.66bc 39.91 ± 5.98c 
Total 221.71 ± 13.56a 196.38 ± 24.91a 508.76 ± 165.81b 238.65 ± 23.31a 

Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA.   
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Table A.3. Relative percent of fatty acids in plasma total lipids in DHA deficient diet 
(TWD DHA-) fed rats at baseline, during pregnancy, and 7 days post partum  

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.39 ± 0.06a 0.54 ± 0.04b 0.58 ± 0.06b 0.67 ± 0.11b 
C 16:0 14.52 ± 1.19a 16.85 ± 0.50b 21.27 ± 0.79c 18.41 ± 2.16b 
C 18:0 16.32 ± 0.93a 14.86 ± 0.94ab 9.58 ± 0.52c 12.95 ± 2.16b 
C 20:0 0.09 ± 0.01a 0.09 ± 0.01a 0.05 ± 0.01b 0.08 ± 0.01a 
C 22:0 0.23 ± 0.03a 0.21 ± 0.03a 0.07 ± 0.01b 0.11 ± 0.04b 
C 24:0 0.52 ± 0.06a 0.44 ± 0.04a 0.17 ± 0.03b 0.27 ± 0.13b 
SFA 32.63 ± 0.81 33.58 ± 1.01 31.96 ± 0.88 33.02 ± 0.22 

     C 14:1 0.02 ± 0.01a 0.04 ± 0.01b 0.04 ± 0.01b 0.04 ± 0.01b 
C 16:1 0.70 ± 0.17a 1.20 ± 0.14b 1.40 ± 0.18b 1.52 ± 0.42b 
C 18:1n-7 1.10 ± 0.06a 1.30 ± 0.09ab 1.43 ± 0.05b 1.73 ± 0.31c 
C 18:1n-9 7.79 ± 0.92a 13.19 ± 0.67b 21.20 ± 1.48c 22.91 ± 6.11c 
C 20:1n-9 0.05 ± 0.01a 0.11 ± 0.04ab 0.12 ± 0.03b 0.12 ± 0.04b 
C 22:1n-9 0.22 ± 0.05a 0.19 ± 0.06a 0.04 ± 0.01b 0.05 ± 0.02b 
C 24:1n-9 0.36 ± 0.05ac 0.41 ± 0.04a 0.11 ± 0.02b 0.24 ± 0.13c 
MUFA 10.27 ± 1.12a 16.46 ± 0.62b 24.32 ± 1.57c 26.62 ± 6.63c 

     C 18:2n-6 15.63 ± 0.83 15.02 ± 1.01 14.93 ± 0.89 14.07 ± 1.16 
C 18:3n-6 0.39 ± 0.02a 0.63 ± 0.09a 1.06 ± 0.17b 1.34 ± 0.26b 
C 20:2n-6 0.08 ± 0.01 0.08 ± 0.01 0.10 ± 0.02 0.09 ± 0.01 
C 20:3n-6 0.27 ± 0.03a 0.18 ± 0.02ab 0.11 ± 0.01b 0.26 ± 0.06a 
C 20:4n-6 34.46 ± 2.38a 27.24 ± 1.29b 17.31 ± 1.78c 19.6 ± 7.26c 
C 22:2n-6 0.03 ± 0.01ab 0.04 ± 0.01b 0.01 ± 0.01c 0.03 ± 0.01ac 
C 22:4n-6 0.22 ± 0.01a 0.23 ± 0.05a 0.68 ± 0.11b 0.16 ± 0.03a 
C 22:5n-6 0.29 ± 0.04a 0.32 ± 0.12a 2.23 ± 0.48b 0.35 ± 0.07a 
N-6 51.38 ± 1.60a 43.76 ± 0.72b 36.44 ± 1.30c 35.89 ± 6.15c 

     C 18:3n-3 0.36 ± 0.03 0.46 ± 0.04 0.51 ± 0.04 0.22 ± 0.07 
C 20:3n-3 Not detected 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 20:5n-3 0.40 ± 0.04 0.37 ± 0.07 0.25 ± 0.07 0.23 ± 0.04 
C 22:5n-3 0.36 ± 0.03a 0.36 ± 0.07a 0.61 ± 0.06b 0.30 ± 0.04a 
C 22:6n-3 3.41 ± 0.28a 3.71 ± 0.3a 3.94 ± 0.35a 1.63 ± 0.73b 
N-3 4.54 ± 0.27a 4.90 ± 0.32a 5.32 ± 0.33a 2.39 ± 0.69b 

     HUFA 39.42 ± 2.58a 32.42 ± 1.42ab 25.13 ± 2.14bc 22.54 ± 8.09c 
PUFA 55.92 ± 1.81a 48.66 ± 0.94b 41.76 ± 1.49c 38.28 ± 6.83c 
Total 233.29 ± 26.33a 185.55 ± 19.98a 588.21 ± 64.92b 233.04 ± 50.12a 

Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA. 
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Table A.4. Concentration of fatty acids in plasma total lipids in chow fed rats at 
baseline, during pregnancy, and 7 days post partum (µg/100µl plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.67 ± 0.06 0.86 ± 0.32 1.32 ± 0.20 0.95 ± 0.33 
C 16:0 30.99 ± 2.10a 47.50 ± 15.45a 103.58 ± 18.59b 52.45 ± 21.04a 
C 18:0 33.02 ± 3.36 39.18 ± 8.06 43.15 ± 4.86 43.41 ± 5.82 
C 20:0 0.23 ± 0.04 0.22 ± 0.05 0.31 ± 0.09 0.24 ± 0.05 
C 22:0 0.50 ± 0.04a 0.46 ± 0.07ab 0.36 ± 0.06b 0.47 ± 0.10ab 
C 24:0 1.25 ± 0.11a 1.10 ± 0.22ab 0.91 ± 0.05b 1.31 ± 0.24a 
SFA 68.21 ± 4.68a 90.38 ± 23.63a 150.86 ± 21.99b 99.95 ± 27.02a 
     
C 14:1 0.03 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.03 ± 0.01 
C 16:1 1.36 ± 0.38 2.00 ± 0.79 3.70 ± 1.25 2.34 ± 1.27 
C 18:1n-7 2.41 ± 0.21a 3.71 ± 1.01a 7.03 ± 1.58b 4.40 ± 1.30a 
C 18:1n-9 12.17 ± 0.56a 26.81 ± 11.41ab 58.29 ± 15.57b 36.76 ± 19.58ab 
C 20:1n-9 0.14 ± 0.01a 0.26 ± 0.08a 0.59 ± 0.23b 0.38 ± 0.15ab 
C 22:1n-9 0.42 ± 0.07a 0.37 ± 0.07ab 0.19 ± 0.06b 0.20 ± 0.14b 
C 24:1n-9 0.76 ± 0.11a 0.75 ± 0.10a 0.36 ± 0.06b 0.79 ± 0.15a 
MUFA 17.31 ± 1.01a 33.97 ± 13.27ab 70.22 ± 18.45b 45.01 ± 22.25ab 
     
C 18:2n-6 38.32 ± 4.04a 62.14 ± 22.62ab 114.97 ± 18.44c 71.25 ± 28.85b 
C 18:3n-6 0.83 ± 0.09a 2.12 ± 1.13ab 3.22 ± 0.88b 3.98 ± 2.16b 
C 20:3n-6 0.55 ± 0.06a 0.75 ± 0.15a 1.29 ± 0.32b 1.65 ± 0.33b 
C 20:2n-6 0.26 ± 0.04a 0.39 ± 0.08ac 1.12 ± 0.39b 0.61 ± 0.17c 
C 20:4n-6 72.29 ± 6.14 77.51 ± 18.14 97.96 ± 22.43 76.38 ± 12.23 
C 22:2n-6 0.11 ± 0.02a 0.10 ± 0.01ab 0.09 ± 0.02ab 0.06 ± 0.01b 
C 22:4n-6 0.47 ± 0.05a 0.99 ± 0.33a 6.68 ± 1.94b 1.07 ± 0.42a 
C 22:5n-6 0.39 ± 0.06a 0.78 ± 0.33a 8.19 ± 1.98b 2.05 ± 0.84a 
N-6 113.22 ± 8.06a 144.78 ± 39.2a 233.53 ± 43.97b 157.05 ± 43.53a 
     
C 18:3n-3 1.01 ± 0.08a 2.20 ± 1.26a 5.53 ± 1.04b 1.69 ± 1.19a 
C 20:3n-3 0.02 ± 0.01a 0.03 ± 0.02a 0.07 ± 0.01b 0.02 ± 0.01a 
C 20:5n-3 1.22 ± 0.24a 2.67 ± 1.33ab 3.22 ± 1.73b 2.74 ± 1.02b 
C 22:5n-3 0.92 ± 0.09a 1.77 ± 0.45ab 7.71 ± 2.54c 2.78 ± 0.89b 
C 22:6n-3 6.60 ± 0.45a 12.22 ± 3.38a 31.36 ± 4.37b 10.15 ± 2.01a 
N-3 9.77 ± 0.76a 18.89 ± 5.31a 47.88 ± 8.26b 17.37 ± 4.86a 
     
HUFA 82.45 ± 6.91a 96.72 ± 22.92a 156.48 ± 32.27b 96.84 ± 16.67a 
PUFA 122.99 ± 8.73a 163.67 ± 44.31a 281.41 ± 50.99b 174.42 ± 48.11a 
Total 208.50 ± 13.58a 288.01 ± 80.75a 502.49 ± 90.87b 319.38 ± 97.11a 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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 Table A.5. Concentration of fatty acids in plasma total lipids in high DHA diet 
(TWD DHA+) fed rats at baseline, during pregnancy, and 7 days post partum 
(µg/100µl plasma)  

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 1.01 ± 0.14a 1.20 ± 0.12a 3.08 ± 1.26b 1.60 ± 0.36a 
C 16:0 35.74 ± 2.21a 35.95 ± 4.25a 111.38 ± 39.12b 48.41 ± 8.84a 
C 18:0 35.00 ± 2.70a 28.37 ± 3.39a 52.21 ± 12.78b 29.48 ± 2.01a 
C 20:0 0.21 ± 0.02a 0.18 ± 0.01a 0.30 ± 0.09b 0.19 ± 0.02a 
C 22:0 0.53 ± 0.06a 0.43 ± 0.05ab 0.35 ± 0.07b 0.32 ± 0.06b 
C 24:0 1.26 ± 0.13a 0.83 ± 0.09b 0.82 ± 0.16b 0.72 ± 0.15b 
SFA 75.09 ± 4.50a 68.14 ± 7.08a 169.61 ± 53.3b 81.87 ± 9.97a 
     
C 14:1 0.07 ± 0.02a 0.09 ± 0.02a 0.17 ± 0.09b 0.09 ± 0.02a 
C 16:1 2.01 ± 0.29a 2.37 ± 0.49a 6.07 ± 3.13b 3.67 ± 0.99ab 
C 18:1n-7 2.52 ± 0.24a 2.38 ± 0.35a 7.39 ± 2.78b 3.89 ± 0.57a 
C 18:1n-9 18.92 ± 1.14a 26.04 ± 5.86a 98.63 ± 46.51b 51.93 ± 16.39a 
C 20:1n-9 0.13 ± 0.01a 0.17 ± 0.06a 0.73 ± 0.37b 0.25 ± 0.09a 
C 22:1n-9 0.54 ± 0.03a 0.35 ± 0.07b 0.32 ± 0.17bc 0.15 ± 0.09c 
C 24:1n-9 0.84 ± 0.17a 0.86 ± 0.10a 0.54 ± 0.10b 0.63 ± 0.18ab 
MUFA 25.05 ± 1.43a 31.90 ± 7.16a 113.87 ± 52.83b 60.64 ± 17.67a 
     
C 18:2n-6 37.29 ± 1.46a 31.51 ± 3.88a 74.06 ± 25.52b 39.55 ± 6.88a 
C 18:3n-6 0.62 ± 0.09a 0.87 ± 0.26a 3.34 ± 1.32b 2.17 ± 0.69ab 
C 20:2n-6 0.18 ± 0.03a 0.17 ± 0.05a 0.59 ± 0.31b 0.20 ± 0.03a 
C 20:3n-6 0.68 ± 0.07 0.53 ± 0.14 0.77 ± 0.28 0.75 ± 0.11 
C 20:4n-6 68.17 ± 7.24ac 47.25 ± 7.40ab 84.10 ± 18.26c 41.42 ± 10.5b 
C 22:2n-6 0.09 ± 0.01 0.09 ± 0.02 0.09 ± 0.02 0.06 ± 0.01 
C 22:4n-6 0.38 ± 0.02a 0.36 ± 0.11a 2.46 ± 1.22b 0.26 ± 0.09a 
C 22:5n-6 0.30 ± 0.04a 0.25 ± 0.08a 3.64 ± 0.98b 0.20 ± 0.07a 
N-6 107.72 ± 8.22a 81.02 ± 10.69a 169.03 ± 46.44b 84.62 ± 9.4a 
     
C 18:3n-3 0.88 ± 0.09a 0.93 ± 0.20a 2.68 ± 1.32b 0.76 ± 0.13a 
C 20:3n-3 0.02 ± 0.01a 0.02 ± 0.01a 0.05 ± 0.02b 0.02 ± 0.01a 
C 20:5n-3 1.38 ± 0.22 1.53 ± 0.23 2.13 ± 1.02 1.42 ± 0.32 
C 22:5n-3 0.57 ± 0.03a 0.73 ± 0.25a 3.19 ± 1.10b 0.53 ± 0.11a 
C 22:6n-3 11.00 ± 1.03a 12.11 ± 2.06a 48.19 ± 10.36b 8.80 ± 2.47a 
N-3 13.86 ± 1.11a 15.32 ± 2.47a 56.25 ± 13.62b 11.53 ± 2.37a 
     
HUFA 82.50 ± 7.65a 62.78 ± 9.80a 144.53 ± 32.19b 53.35 ± 12.52a 
PUFA 121.58 ± 8.76a 96.34 ± 12.87a 225.28 ± 59.96b 96.15 ± 10.92a 
Total 221.71 ± 13.56a 196.38 ± 24.91a 508.76 ± 165.81b 238.65 ± 23.31a 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table A.6. Concentration of fatty acids in plasma total lipids in DHA deficient diet 
(TWD DHA-) fed rats at baseline, during pregnancy, and 7 days post partum 
(µg/100µl plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.92 ± 0.11a 1.02 ± 0.08a 3.47 ± 0.50b 1.61 ± 0.51a 
C 16:0 34.18 ± 3.93a 31.73 ± 3.99a 127.54 ± 14.19b 44.57 ± 14.3a 
C 18:0 38.50 ± 4.82a 27.98 ± 3.81a 57.24 ± 4.20b 30.17 ± 3.77a 
C 20:0 0.20 ± 0.02a 0.18 ± 0.03a 0.31 ± 0.03b 0.19 ± 0.01a 
C 22:0 0.53 ± 0.10a 0.39 ± 0.06bc 0.40 ± 0.03c 0.26 ± 0.04b 
C 24:0 1.24 ± 0.23a 0.82 ± 0.12bc 1.01 ± 0.11c 0.61 ± 0.19b 
SFA 76.89 ± 7.53a 63.21 ± 7.79a 191.46 ± 17.99b 78.63 ± 17.19a 
     
C 14:1 0.06 ± 0.01a 0.08 ± 0.01a 0.24 ± 0.05b 0.10 ± 0.04a 
C 16:1 1.64 ± 0.36a 2.25 ± 0.29a 8.39 ± 1.58b 3.74 ± 1.62a 
C 18:1n-7 2.60 ± 0.30a 2.44 ± 0.25a 8.57 ± 1.01b 4.15 ± 1.32a 
C 18:1n-9 18.25 ± 1.84a 24.82 ± 3.18a 127.75 ± 21.85b 56.22 ± 23.57b 
C 20:1n-9 0.13 ± 0.02a 0.20 ± 0.06a 0.69 ± 0.20b 0.28 ± 0.12a 
C 22:1n-9 0.52 ± 0.08a 0.35 ± 0.08ab 0.21 ± 0.08bc 0.13 ± 0.06c 
C 24:1n-9 0.86 ± 0.17a 0.76 ± 0.08ab 0.62 ± 0.1ab 0.53 ± 0.21b 
MUFA 24.07 ± 2.34a 30.93 ± 3.44a 146.50 ± 24.17b 65.19 ± 26.43a 
     
C 18:2n-6 36.81 ± 3.72a 28.33 ± 4.28a 89.72 ± 12.82b 33.76 ± 9.10a 
C 18:3n-6 0.93 ± 0.13a 1.19 ± 0.21ab 6.41 ± 1.46c 3.28 ± 1.3b 
C 20:2n-6 0.19 ± 0.02a 0.15 ± 0.02a 0.62 ± 0.20b 0.20 ± 0.04a 
C 20:3n-6 0.63 ± 0.04 0.34 ± 0.05 0.63 ± 0.08 0.62 ± 0.19 
C 20:4n-6 81.72 ± 13.19a 51.09 ± 4.63b 103.35 ± 10.7a 44.59 ± 10.49b 
C 22:2n-6 0.08 ± 0.02 0.08 ± 0.02 0.09 ± 0.01 0.07 ± 0.02 
C 22:4n-6 0.52 ± 0.06a 0.44 ± 0.09a 4.09 ± 0.98b 0.38 ± 0.10a 
C 22:5n-6 0.68 ± 0.12a 0.59 ± 0.19a 13.50 ± 3.53b 0.82 ± 0.22a 
N-6 121.56 ± 16.28a 82.21 ± 8.38a 218.41 ± 23.13b 83.71 ± 11.97a 
     
C 18:3n-3 0.84 ± 0.09a 0.87 ± 0.14a 3.10 ± 0.53b 0.53 ± 0.22a 
C 20:3n-3 0.01 ± 0.01a 0.02 ± 0.01a 0.04 ± 0.01b 0.02 ± 0.01a 
C 20:5n-3 0.95 ± 0.17 0.69 ± 0.15 1.51 ± 0.49 0.55 ± 0.19 
C 22:5n-3 0.85 ± 0.12a 0.67 ± 0.14a 3.67 ± 0.47b 0.74 ± 0.25a 
C 22:6n-3 8.12 ± 1.48a 6.94 ± 0.68a 23.52 ± 2.26b 3.69 ± 1.10a 
N-3 10.77 ± 1.76a 9.20 ± 0.95a 31.84 ± 2.98b 5.52 ± 1.08a 
     
HUFA 93.48 ± 14.97a 60.79 ± 5.20ab 150.31 ± 16.2c 51.40 ± 11.80b 
PUFA 132.33 ± 18.01a 91.41 ± 9.21a 250.25 ± 25.69b 89.22 ± 12.89a 
Total 233.29 ± 26.33a 185.55 ± 19.98a 588.21 ± 64.92b 233.04 ± 50.12a 
Values with different superscripts are significantly different by Tukey’s post hoc test (p<0.05) following 
significant F-value by one-way ANOVA 
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Appendix B. Plasma PC  

Table B.1. Relative percent of fatty acids in plasma PC in chow fed rats at baseline, 
during pregnancy, and 7 days post partum  

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.41 ± 0.22 0.56 ± 0.13 0.69 ± 0.09 0.74 ± 0.18 
C 16:0 16.86 ± 0.99a 18.35 ± 1.46a 26.76 ± 1.73b 18.32 ± 0.66a 
C 18:0 25.46 ± 2.33a 28.88 ± 2.18ab 21.55 ± 1.02c 29.64 ± 1.65b 
C 20:0 0.18 ± 0.04 0.15 ± 0.07 0.13 ± 0.01 0.20 ± 0.06 
C 22:0 0.25 ± 0.08a 0.14 ± 0.05b 0.10 ± 0.02b 0.10 ± 0.02b 
C 24:0 0.22 ± 0.04 0.20 ± 0.08 0.24 ± 0.04 0.17 ± 0.05 
SFA 43.92 ± 1.26a 49.27 ± 2.34b 51.06 ± 1.73b 50.47 ± 2.18b 

     C 14:1 0.05 ± 0.01a 0.04 ± 0.01a Not detected b 0.03 ± 0.01ab 
C 16:1 0.58 ± 0.17 0.74 ± 0.17 0.78 ± 0.12 0.64 ± 0.09 
C 18:1n-7 1.49 ± 0.12a 1.25 ± 0.11ab 1.12 ± 0.1b 1.42 ± 0.17a 
C 18:1n-9 9.54 ± 6.09a 4.30 ± 0.92b 4.43 ± 0.31ab 6.54 ± 1.02ab 
C 20:1n-9 0.36 ± 0.25 0.13 ± 0.05 0.10 ± 0.02 0.12 ± 0.01 
C 22:1n-9 0.20 ± 0.04ab 0.27 ± 0.07a 0.10 ± 0.03b 0.23 ± 0.03ab 
C 24:1n-9 0.24 ± 0.04 0.26 ± 0.17 0.05 ± 0.03 0.10 ± 0.03 
MUFA 12.49 ± 6.38a 7.02 ± 0.99ab 6.59 ± 0.25b 9.09 ± 1.14ab 

     C 18:2n-6 15.78 ± 2.34a 12.56 ± 1.53b 11.46 ± 1.85b 14.42 ± 1.93ab 
C 18:3n-6 0.74 ± 0.81 0.23 ± 0.07 0.10 ± 0.02 0.15 ± 0.02 
C 20:2n-6 0.26 ± 0.08a 0.18 ± 0.02b 0.16 ± 0.02b 0.24 ± 0.03a 
C 20:3n-6 0.41 ± 0.11a 0.37 ± 0.0ab 0.22 ± 0.03b 0.78 ± 0.08c 
C 20:4n-6 18.04 ± 3.56a 19.54 ± 1.23a 11.61 ± 2.05b 15.22 ± 1.78ab 
C 22:2n-6 0.13 ± 0.09 0.12 ± 0.07 0.07 ± 0.05 0.07 ± 0.02 
C 22:4n-6 0.32 ± 0.08a 0.23 ± 0.06a 0.61 ± 0.06b 0.33 ± 0.07a 
C 22:5n-6 0.30 ± 0.04a 0.33 ± 0.12a 3.36 ± 0.43b 0.99 ± 0.32a 
N-6 35.98 ± 4.91a 33.57 ± 1.72a 27.60 ± 2.68b 32.20 ± 3.06ab 

     C 18:3n-3 0.18 ± 0.10 0.10 ± 0.02 0.12 ± 0.02 0.08 ± 0.01 
C 20:3n-3 0.05 ± 0.01 0.08 ± 0.05 0.04 ± 0.01 0.02 ± 0.01 
C 20:5n-3 0.21 ± 0.08a 0.16 ± 0.07ab 0.08 ± 0.01b 0.11 ± 0.02ab 
C 22:5n-3 0.84 ± 0.15a 0.80 ± 0.11a 1.17 ± 0.12b 1.36 ± 0.27b 
C 22:6n-3 5.69 ± 0.86a 6.89 ± 1.45a 12.67 ± 1.13b 5.69 ± 0.95a 
N-3 6.98 ± 1.03a 8.03 ± 1.45a 14.09 ± 1.09b 7.26 ± 1.17a 

     HUFA 25.86 ± 4.62 28.41 ± 2.48 29.77 ± 1.5 24.50 ± 2.46 
PUFA 42.96 ± 5.84 41.60 ± 2.44 41.69 ± 1.71 39.46 ± 2.98 
Total 106.81 ± 34.92a 106.13 ± 27.14a 184.00 ± 35.52b 179.90 ± 20.84b 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table B.2. Relative percent of fatty acids in plasma PC in high DHA diet (TWD 
DHA+) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 16:0 17.40 ± 0.68a 18.05 ± 1.46a 24.54 ± 2.14c 21.09 ± 1.10b 
C 18:0 27.99 ± 0.59a 29.93 ± 1.49a 23.77 ± 1.66b 28.06 ± 1.68a 

C 20:0 0.18 ± 0.02a 0.19 ± 0.06ab 0.12 ± 0.02a 0.28 ± 0.07b 

C 22:0 0.20 ± 0.05a 0.15 ± 0.06ab 0.09 ± 0.02b 0.15 ± 0.06ab 

C 24:0 0.31 ± 0.08 0.24 ± 0.07 0.22 ± 0.03 0.26 ± 0.14 
SFA 47.09 ± 1.14a 51.24 ± 1.24b 50.73 ± 0.88ab 53.23 ± 1.65b 
     
C 16:1 0.72 ± 0.14 1.24 ± 0.20 0.88 ± 0.46 1.11 ± 0.32 
C 18:1n-7 1.33 ± 0.10a 1.03 ± 0.06b 1.04 ± 0.11b 1.30 ± 0.19a 
C 18:1n-9 6.69 ± 1.02 6.06 ± 1.59 5.62 ± 1.06 10.07 ± 2.70 
C 20:1n-9 0.21 ± 0.09 0.14 ± 0.07 0.10 ± 0.03 0.09 ± 0.03 
C 22:1n-9 0.26 ± 0.08a 0.43 ± 0.18b 0.09 ± 0.02c 0.32 ± 0.07ab 
C 24:1n-9 0.21 ± 0.07 0.22 ± 0.18 0.05 ± 0.03 0.17 ± 0.11 
MUFA 9.50 ± 0.97 9.19 ± 2.14 7.78 ± 1.11 13.15 ± 2.51 
     
C 18:2n-6 14.75 ± 0.68a 10.79 ± 0.77bc 8.34 ± 0.69c 12.58 ± 1.87ab 

C 18:3n-6 0.15 ± 0.02 0.20 ± 0.12 0.08 ± 0.04 0.17 ± 0.07 
C 20:2n-6 0.21 ± 0.01a 0.13 ± 0.04b 0.08 ± 0.01b 0.11 ± 0.02b 

C 20:3n-6 0.51 ± 0.08a 0.47 ± 0.08a 0.22 ± 0.03b 0.52 ± 0.12a 

C 20:4n-6 17.69 ± 0.6a 15.67 ± 2.79ac 10.30 ± 1.09b 11.87 ± 2.38bc 
C 22:2n-6 0.09 ± 0.01 0.13 ± 0.12 0.06 ± 0.02 0.08 ± 0.05 

C 22:4n-6 0.35 ± 0.04a 0.16 ± 0.05b 0.34 ± 0.10a 0.12 ± 0.03b 
C 22:5n-6 0.20 ± 0.06a 0.16 ± 0.06a 1.62 ± 0.43b 0.14 ± 0.05a 
N-6 33.94 ± 0.70a 27.71 ± 2.53b 21.05 ± 0.28c 25.58 ± 2.18bc 
     
C 18:3n-3 0.13 ± 0.02 0.09 ± 0.06 0.09 ± 0.04 0.16 ± 0.21 
C 20:3n-3 0.07 ± 0.05 0.07 ± 0.08 0.03 ± 0.01 0.04 ± 0.04 
C 20:5n-3 0.19 ± 0.03a 0.17 ± 0.04ab 0.06 ± 0.02b 0.19 ± 0.10a 
C 22:5n-3 0.49 ± 0.02ab 0.50 ± 0.13ab 0.72 ± 0.10a 0.30 ± 0.04b 
C 22:6n-3 8.25 ± 0.89ac 10.39 ± 0.98a 18.75 ± 1.31b 5.86 ± 1.84c 
N-3 9.14 ± 0.90a 11.23 ± 0.91a 19.65 ± 1.31b 6.55 ± 1.62c 

     

HUFA 27.75 ± 1.08ab 27.60 ± 3.2a 32.04 ± 1.18a 19.03 ± 3.74b 

PUFA 43.09 ± 0.81a 38.94 ± 2.84a 40.70 ± 1.13a 32.12 ± 3.09b 

Total 107.63 ± 20.35a 93.06 ± 23.54a 197.99 ± 25.67b 129.25 ± 32.39a 

Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table B.3. Relative percent of fatty acids in plasma PC in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.35 ± 0.08a 0.69 ± 0.18ab 0.87 ± 0.19b 1.11 ± 0.20b 
C 16:0 15.73 ± 0.83a 17.06 ± 0.95a 23.64 ± 0.85c 19.82 ± 0.78b 
C 18:0 27.36 ± 3.57a 31.15 ± 0.88b 23.27 ± 1.06c 29.26 ± 1.98ab 
C 20:0 0.16 ± 0.02ab 0.13 ± 0.04a 0.12 ± 0.04a 0.25 ± 0.05b 
C 22:0 0.19 ± 0.07 0.11 ± 0.05 0.10 ± 0.05 0.12 ± 0.03 
C 24:0 0.21 ± 0.05 0.19 ± 0.05 0.21 ± 0.04 0.2 ± 0.06 
SFA 44.38 ± 2.71a 50.41 ± 0.99b 49.56 ± 1.85b 52.38 ± 2.30b 
     
C 14:1 0.03 ± 0.02ab 0.05 ± 0.03a Not detected b 0.07 ± 0.02a 
C 16:1 0.69 ± 0.25 1.07 ± 0.37 0.68 ± 0.20 0.82 ± 0.29 
C 18:1n-7 1.30 ± 0.10ab 1.11 ± 0.09a 1.15 ± 0.09a 1.44 ± 0.18b 
C 18:1n-9 8.09 ± 4.01 5.33 ± 1.09 7.53 ± 1.20 9.95 ± 1.04 
C 20:1n-9 0.41 ± 0.31a 0.08 ± 0.03b 0.08 ± 0.03b 0.09 ± 0.01b 
C 22:1n-9 0.19 ± 0.06ab 0.32 ± 0.10a 0.10 ± 0.04b 0.31 ± 0.04a 
C 24:1n-9 0.31 ± 0.26 0.16 ± 0.07 0.08 ± 0.07 0.12 ± 0.03 
MUFA 11.04 ± 4.21 8.14 ± 1.68 9.64 ± 1.32 12.8 ± 1.27 

     C 18:2n-6 13.16 ± 1.39a 10.59 ± 1.31ab 8.69 ± 0.57b 12.1 ± 2.14a 
C 18:3n-6 2.09 ± 3.02a 0.16 ± 0.02b 0.15 ± 0.08b 0.24 ± 0.07ab 
C 20:2n-6 0.17 ± 0.03a 0.09 ± 0.01b 0.09 ± 0.02b 0.11 ± 0.01ab 
C 20:3n-6 0.43 ± 0.11a 0.33 ± 0.03ab 0.19 ± 0.03b 0.45 ± 0.06a 
C 20:4n-6 19.76 ± 3.22a 20.41 ± 4.18a 13.37 ± 1.31b 15.95 ± 1.78ab 
C 22:2n-6 0.08 ± 0.06 0.08 ± 0.02 0.05 ± 0.04 0.06 ± 0.02 
C 22:4n-6 0.35 ± 0.05a 0.25 ± 0.08ac 0.68 ± 0.11b 0.17 ± 0.03c 
C 22:5n-6 0.45 ± 0.09a 0.53 ± 0.25a 5.7 ± 1.45b 0.64 ± 0.09a 
N-6 36.48 ± 1.66a 32.43 ± 3.36ab 28.93 ± 1.13b 29.72 ± 2.63b 

     C 18:3n-3 0.22 ± 0.21 0.08 ± 0.03 0.09 ± 0.07 0.07 ± 0.03 
C 20:3n-3 0.04 ± 0.01 0.04 ± 0.03 0.03 ± 0.02 0.02 ± 0.01 
C 20:5n-3 0.22 ± 0.11a 0.10 ± 0.03b 0.05 ± 0.01b 0.09 ± 0.03b 
C 22:5n-3 0.62 ± 0.09a 0.59 ± 0.14a 0.89 ± 0.09b 0.46 ± 0.06a 
C 22:6n-3 6.20 ± 0.82ac 7.61 ± 0.93ab 9.99 ± 1.82b 3.01 ± 0.83c 
N-3 7.30 ± 0.90a 8.41 ± 1.04a 11.05 ± 1.83b 3.65 ± 0.81c 

     HUFA 28.06 ± 4.32a 29.85 ± 3.23a 30.91 ± 2.86a 20.80 ± 1.96b 
PUFA 43.78 ± 2.41a 40.84 ± 2.57a 39.98 ± 2.76a 33.37 ± 2.04b 
Total 124.17 ± 23.53a 96.30 ± 29.76a 215.91 ± 24.9b 135.38 ± 15.97a 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table B.4. Concentration of fatty acids in plasma PC in chow fed rats at baseline, 
during pregnancy, and 7 days post partum (µg/100µl plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.51 ± 0.49 0.62 ± 0.29 1.25 ± 0.13 1.32 ± 0.28 
C 16:0 18.35 ± 7.08a 19.79 ± 4.88a 49.11 ± 6.9b 33.17 ± 2.68c 
C 18:0 26.89 ± 6.71a 31.28 ± 7.88a 40.02 ± 8.7ab 53.93 ± 7.64b 
C 20:0 0.20 ± 0.12a 0.16 ± 0.04a 0.24 ± 0.03ab 0.36 ± 0.1b 
C 22:0 0.28 ± 0.18 0.15 ± 0.05 0.18 ± 0.04 0.18 ± 0.03 
C 24:0 0.23 ± 0.05a 0.20 ± 0.03a 0.44 ± 0.07b 0.31 ± 0.06ab 
SFA 47.06 ± 14.70a 53.32 ± 13.14a 94.09 ± 15.21b 91.62 ± 10.4b 
     
C 14:1 0.06 ± 0.03a 0.05 ± 0.02ab Not Detected 0.06 ± 0.02a 
C 16:1 0.59 ± 0.15 0.77 ± 0.06 1.42 ± 0.23 1.15 ± 0.09 
C 18:1n-7 1.63 ± 0.65a 1.35 ± 0.31a 2.07 ± 0.46ab 2.57 ± 0.32b 
C 18:1n-9 11.94 ± 12.56 4.83 ± 2.45 8.25 ± 2.03 11.76 ± 1.29 
C 20:1n-9 0.45 ± 0.51 0.14 ± 0.03 0.18 ± 0.04 0.21 ± 0.01 
C 22:1n-9 0.22 ± 0.08a 0.27 ± 0.02a 0.17 ± 0.03a 0.42 ± 0.05b 
C 24:1n-9 0.25 ± 0.08 0.25 ± 0.11 0.09 ± 0.04 0.18 ± 0.05 
MUFA 15.17 ± 13.93 7.68 ± 2.77 12.22 ± 2.53 16.36 ± 1.27 
     
C 18:2n-6 16.4 ± 2.83ab 13.41 ± 2.62a 21.55 ± 7.15bc 26.15 ± 4.22c 
C 18:3n-6 0.75 ± 0.8 0.27 ± 0.16 0.18 ± 0.05 0.27 ± 0.05 
C 20:2n-6 0.27 ± 0.05ab 0.19 ± 0.04a 0.31 ± 0.08b 0.43 ± 0.06c 
C 20:3n-6 0.42 ± 0.07a 0.40 ± 0.1a 0.41 ± 0.08a 1.41 ± 0.20b 
C 20:4n-6 18.74 ± 4.01 21.43 ± 6.61 22.01 ± 7.30 27.82 ± 5.76 
C 22:2n-6 0.13 ± 0.08 0.12 ± 0.07 0.12 ± 0.07 0.13 ± 0.03 
C 22:4n-6 0.33 ± 0.04ac 0.25 ± 0.06a 1.13 ± 0.24b 0.60 ± 0.18c 
C 22:5n-6 0.31 ± 0.08a 0.35 ± 0.12a 6.19 ± 1.26b 1.82 ± 0.77a 
N-6 37.35 ± 6.03a 36.42 ± 9.47a 51.88 ± 14.65ab 58.63 ± 9.77b 
     
C 18:3n-3 0.19 ± 0.09 0.11 ± 0.02 0.22 ± 0.09 0.15 ± 0.04 
C 20:3n-3 0.05 ± 0.02 0.08 ± 0.05 0.08 ± 0.03 0.04 ± 0.01 
C 20:5n-3 0.22 ± 0.05 0.16 ± 0.04 0.16 ± 0.05 0.21 ± 0.04 
C 22:5n-3 0.86 ± 0.09a 0.85 ± 0.16a 2.19 ± 0.51b 2.48 ± 0.69b 
C 22:6n-3 5.91 ± 1.01a 7.52 ± 2.39a 23.17 ± 2.73b 10.43 ± 2.63a 
N-3 7.23 ± 1.10a 8.72 ± 2.54a 25.81 ± 3.35b 13.3 ± 3.31a 
     
HUFA 26.85 ± 5.15a 31.05 ± 9.06a 55.32 ± 11.69b 44.8 ± 9.21ab 
PUFA 44.58 ± 7.04a 45.14 ± 11.65a 77.69 ± 17.86b 71.92 ± 11.86b 
Total 106.81 ± 34.92a 106.13 ± 27.14a 184.00 ± 35.52b 179.90 ± 20.84b 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table B.5. Concentration of fatty acids in plasma PC in high DHA diet (TWD 
DHA+) fed rats at baseline, during pregnancy, and 7 days post partum (µg/100µl 
plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.46 ± 0.09a 0.82 ± 0.03a 1.42 ± 0.45ab 1.96 ± 1.21b 
C 16:0 18.71 ± 3.06ac 16.70 ± 3.49a 48.91 ± 6.83b 27.78 ± 7.67c 
C 18:0 30.20 ± 5.55a 28.20 ± 7.93a 47.60 ± 8.24b 36.54 ± 8.16ab 
C 20:0 0.20 ± 0.04a 0.17 ± 0.02a 0.24 ± 0.05ab 0.37 ± 0.14b 
C 22:0 0.21 ± 0.03 0.13 ± 0.02 0.18 ± 0.04 0.19 ± 0.05 
C 24:0 0.33 ± 0.06ab 0.21 ± 0.03a 0.43 ± 0.1b 0.32 ± 0.14ab 
SFA 50.69 ± 8.49a 47.79 ± 11.15a 101.33 ± 14.23b 69.61 ± 16.72a 
     
C 14:1 0.05 ± 0.01ab 0.05 ± 0.01ab 0.01 ± 0.01a 0.08 ± 0.05b 
C 16:1 0.76 ± 0.10a 1.13 ± 0.17ab 1.83 ± 1.24b 1.42 ± 0.47ab 
C 18:1n-7 1.44 ± 0.27ab 0.96 ± 0.22a 2.07 ± 0.34b 1.72 ± 0.53b 
C 18:1n-9 7.32 ± 2.16 5.41 ± 0.71 11.18 ± 2.17 13.38 ± 5.88 
C 20:1n-9 0.24 ± 0.11 0.12 ± 0.03 0.19 ± 0.06 0.11 ± 0.02 
C 22:1n-9 0.27 ± 0.06ab 0.37 ± 0.09bc 0.17 ± 0.03a 0.41 ± 0.07c 
C 24:1n-9 0.23 ± 0.10 0.17 ± 0.11 0.09 ± 0.05 0.20 ± 0.09 
MUFA 10.34 ± 2.57ab 8.22 ± 0.80a 15.56 ± 3.23b 17.35 ± 6.30ab 
     
C 18:2n-6 15.89 ± 2.81 10.1 ± 2.55 16.60 ± 1.97 16.44 ± 4.55 
C 18:3n-6 0.16 ± 0.05 0.16 ± 0.06 0.16 ± 0.08 0.21 ± 0.05 
C 20:2n-6 0.23 ± 0.03a 0.12 ± 0.03b 0.17 ± 0.02ab 0.14 ± 0.02ab 
C 20:3n-6 0.54 ± 0.06ab 0.44 ± 0.13a 0.43 ± 0.03ab 0.66 ± 0.14b 
C 20:4n-6 19.19 ± 4.29 15.23 ± 6.32 20.70 ± 4.44 15.64 ± 4.59 
C 22:2n-6 0.10 ± 0.03 0.11 ± 0.09 0.11 ± 0.04 0.09 ± 0.03 
C 22:4n-6 0.37 ± 0.05ab 0.15 ± 0.03a 0.69 ± 0.22b 0.15 ± 0.06a 
C 22:5n-6 0.21 ± 0.05a 0.14 ± 0.04a 3.20 ± 0.79b 0.17 ± 0.05a 
N-6 36.69 ± 7.23 26.44 ± 8.78 42.06 ± 5.95 33.49 ± 8.03 
     
C 18:3n-3 0.14 ± 0.03 0.08 ± 0.03 0.17 ± 0.07 0.16 ± 0.15 
C 20:3n-3 0.07 ± 0.04 0.06 ± 0.05 0.06 ± 0.01 0.05 ± 0.03 
C 20:5n-3 0.21 ± 0.03 0.15 ± 0.03 0.12 ± 0.04 0.23 ± 0.12 
C 22:5n-3 0.53 ± 0.10a 0.46 ± 0.12a 1.43 ± 0.29b 0.40 ± 0.13a 
C 22:6n-3 8.96 ± 2.35a 9.85 ± 3.24a 37.25 ± 3.55b 7.96 ± 3.67a 
N-3 9.92 ± 2.46a 10.60 ± 3.29a 39.04 ± 3.75b 8.80 ± 3.60a 
     
HUFA 30.09 ± 6.69a 26.48 ± 9.72a 63.88 ± 7.72b 25.25 ± 8.09a 
PUFA 46.61 ± 9.51a 37.05 ± 11.98a 81.10 ± 9.22b 42.29 ± 11.24a 
Total 107.63 ± 20.35a 93.06 ± 23.54a 197.99 ± 25.67b 129.25 ± 32.39a 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table B.6. Concentration of fatty acids in plasma PC in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum (µg/100µl 
plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.45 ± 0.16a 0.63 ± 0.06ab 1.89 ± 0.41c 1.54 ± 0.37bc 
C 16:0 19.70 ± 3.83ac 16.31 ± 4.21a 51.34 ± 4.82b 27.17 ± 2.77c 
C 18:0 33.96 ± 6.72a 30.27 ± 9.72a 50.51 ± 4.59b 40.16 ± 5.03ab 
C 20:0 0.20 ± 0.05ab 0.12 ± 0.01a 0.26 ± 0.07ab 0.35 ± 0.09b 
C 22:0 0.25 ± 0.12a 0.10 ± 0.01b 0.21 ± 0.08ab 0.16 ± 0.02ab 
C 24:0 0.27 ± 0.08a 0.17 ± 0.02a 0.46 ± 0.07b 0.27 ± 0.05a 
SFA 55.3 ± 9.77a 48.61 ± 14.13a 107.54 ± 8.59b 71.88 ± 8.18ab 
     
C 14:1 0.04 ± 0.03ab 0.04 ± 0.01ab Not Detected 0.09 ± 0.03b 
C 16:1 0.89 ± 0.45a 0.97 ± 0.15ab 1.44 ± 0.31b 1.10 ± 0.35ab 
C 18:1n-7 1.62 ± 0.27ac 1.07 ± 0.31a 2.51 ± 0.42b 1.98 ± 0.27bc 
C 18:1n-9 10.38 ± 6.06ab 4.96 ± 0.97a 16.41 ± 3.35b 13.73 ± 2.5ab 
C 20:1n-9 0.54 ± 0.47a 0.07 ± 0.01b 0.16 ± 0.05ab 0.13 ± 0.02ab 
C 22:1n-9 0.24 ± 0.09a 0.29 ± 0.02a 0.21 ± 0.08a 0.42 ± 0.04b 
C 24:1n-9 0.41 ± 0.41 0.14 ± 0.04 0.17 ± 0.13 0.16 ± 0.03 
MUFA 14.16 ± 6.8 7.56 ± 1.37 20.94 ± 3.53 17.61 ± 2.77 
     
C 18:2n-6 16.29 ± 2.61ab 10.23 ± 3.33a 18.91 ± 2.4b 16.5 ± 2.74ab 
C 18:3n-6 2.88 ± 4.27a 0.15 ± 0.03b 0.32 ± 0.14ab 0.34 ± 0.12ab 
C 20:2n-6 0.21 ± 0.04a 0.08 ± 0.02b 0.20 ± 0.03a 0.14 ± 0.01ab 
C 20:3n-6 0.51 ± 0.07ab 0.31 ± 0.10a 0.42 ± 0.04ab 0.62 ± 0.14b 
C 20:4n-6 24.58 ± 5.71 20.65 ± 9.54 29.15 ± 4.72 22.02 ± 4.47 
C 22:2n-6 0.11 ± 0.09 0.07 ± 0.02 0.11 ± 0.07 0.08 ± 0.03 
C 22:4n-6 0.43 ± 0.08a 0.22 ± 0.02a 1.49 ± 0.35b 0.24 ± 0.06a 
C 22:5n-6 0.55 ± 0.13a 0.47 ± 0.14a 12.53 ± 3.85b 0.89 ± 0.22a 
N-6 45.56 ± 8.35ab 32.20 ± 12.8a 63.13 ± 9.03b 40.83 ± 6.37a 
     
C 18:3n-3 0.30 ± 0.30 0.07 ± 0.02 0.18 ± 0.13 0.09 ± 0.05 
C 20:3n-3 0.05 ± 0.02 0.04 ± 0.02 0.07 ± 0.04 0.02 ± 0.01 
C 20:5n-3 0.27 ± 0.15a 0.09 ± 0.03b 0.12 ± 0.03b 0.12 ± 0.04b 
C 22:5n-3 0.77 ± 0.11a 0.55 ± 0.14a 1.93 ± 0.29b 0.64 ± 0.14a 
C 22:6n-3 7.76 ± 1.89a 7.19 ± 1.62a 21.99 ± 6.00b 4.18 ± 1.38a 
N-3 9.15 ± 2.22a 7.94 ± 1.74a 24.29 ± 6.17b 5.06 ± 1.44a 
     
HUFA 34.93 ± 8.01a 29.53 ± 11.20a 67.71 ± 13.04b 28.74 ± 5.57a 
PUFA 54.71 ± 10.41a 40.13 ± 14.4a 87.43 ± 14.91b 45.89 ± 6.74a 
Total 124.17 ± 23.53a 96.30 ± 29.76a 215.91 ± 24.9b 135.38 ± 15.97a 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Appendix C. Plasma PE 

Table C.1. Relative percent of fatty acids in plasma PE in chow fed rats at baseline, 
during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 2.47 ± 2.48 2.14 ± 0.34 2.29 ± 0.16 2.87 ± 0.53 
C 16:0 15.18 ± 5.29 15.11 ± 1.45 17.38 ± 1.50 18.79 ± 1.02 
C 18:0 23.86 ± 5.51a 33.44 ± 2.74b 34.60 ± 2.80b 38.38 ± 2.37ab 
C 20:0 0.42 ± 0.09 0.40 ± 0.11 0.44 ± 0.05 0.53 ± 0.04 
C 22:0 0.48 ± 0.15 0.38 ± 0.14 0.50 ± 0.06 0.30 ± 0.03b 
C 24:0 0.90 ± 0.46 0.66 ± 0.23 0.60 ± 0.08 0.40 ± 0.04 
SFA 45.54 ± 7.37a 55.48 ± 1.14b 60.62 ± 3.26b 65.69 ± 1.47 

     C 14:1 0.09 ± 0.05 0.16 ± 0.06 0.01 ± 0.01 0.10 ± 0.04 
C 16:1 2.92 ± 1.67 3.50 ± 0.40 1.94 ± 0.11 2.23 ± 0.47b 
C 18:1n-7 1.13 ± 1.08 0.57 ± 0.11 0.59 ± 0.22 0.50 ± 0.05ab 
C 18:1n-9 18.46 ± 8.23a 7.86 ± 1.15ab 9.86 ± 2.64ab 5.91 ± 1.23 
C 20:1n-9 0.36 ± 0.31ab 0.65 ± 0.18a 0.27 ± 0.08b 0.25 ± 0.07ab 
C 22:1n-9 0.59 ± 0.21ab 1.33 ± 0.28a 0.40 ± 0.14b 0.92 ± 0.14ab 
C 24:1n-9 0.71 ± 0.20 0.59 ± 0.26 0.35 ± 0.07 0.35 ± 0.12b 
MUFA 24.33 ± 7.13a 14.75 ± 1.28ab 13.48 ± 2.65b 10.27 ± 1.34b 

     C 18:2n-6 4.37 ± 1.36 3.58 ± 0.87 2.71 ± 0.40 2.86 ± 0.57 
C 18:3n-6 2.81 ± 4.07 0.48 ± 0.14 0.22 ± 0.02 0.44 ± 0.07a 
C 20:2n-6 0.28 ± 0.13 0.24 ± 0.14 0.09 ± 0.01 0.11 ± 0.02 
C 20:3n-6 0.40 ± 0.22a 0.50 ± 0.08a 0.23 ± 0.05a 0.92 ± 0.08 
C 20:4n-6 14.27 ± 4.8 18.26 ± 2.40 15.63 ± 1.47 13.83 ± 1.88b 
C 22:2n-6 0.34 ± 0.20 0.38 ± 0.15 0.16 ± 0.06 0.20 ± 0.04 
C 22:4n-6 0.50 ± 0.23 0.45 ± 0.13 0.36 ± 0.08 0.44 ± 0.12a 
C 22:5n-6 0.76 ± 0.43 0.56 ± 0.30 0.82 ± 0.20 0.36 ± 0.07 
N-6 23.73 ± 5.69 24.45 ± 1.73 20.22 ± 1.81 19.16 ± 1.90ab 

     C 18:3n-3 0.69 ± 0.67 0.35 ± 0.13 0.26 ± 0.06 0.29 ± 0.07b 
C 20:3n-3 0.28 ± 0.17 0.29 ± 0.17 0.24 ± 0.05 0.11 ± 0.03 
C 20:5n-3 0.70 ± 0.34a 0.29 ± 0.08ab 0.08 ± 0.02b 0.14 ± 0.05 
C 22:5n-3 0.75 ± 0.35 0.66 ± 0.22 0.53 ± 0.11 0.73 ± 0.16b 
C 22:6n-3 1.26 ± 0.22a 1.84 ± 0.33ab 3.16 ± 0.67b 1.53 ± 0.15 
N-3 3.68 ± 0.84 3.44 ± 0.65 4.27 ± 0.65 2.81 ± 0.25b 

     HUFA 18.91 ± 6.22 22.86 ± 2.38 21.05 ± 1.36 18.07 ± 2.3 
PUFA 27.41 ± 6.43 27.89 ± 1.80 24.49 ± 1.73 21.97 ± 2.14 
Total 17.68 ± 10.20 12.18 ± 1.87 21.43 ± 1.17 18.97 ± 3.36 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table C.2. Relative percent of fatty acids in plasma PE in high DHA diet (TWD 
DHA+) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 1.66 ± 0.63 2.49 ± 0.34 3.06 ± 0.52 2.88 ± 0.40 
C 16:0 15.58 ± 2.98a 17.30 ± 0.81ab 17.07 ± 1.56a 24.56 ± 6.55b 
C 18:0 20.97 ± 4.78a 32.49 ± 1.75b 30.13 ± 3.49b 34.20 ± 6.78b 
C 20:0 0.61 ± 0.22 0.47 ± 0.04 0.44 ± 0.03 0.58 ± 0.11 
C 22:0 0.78 ± 0.33 0.46 ± 0.11 0.41 ± 0.14 0.38 ± 0.08 
C 24:0 1.26 ± 0.76a 0.72 ± 0.15ab 0.38 ± 0.10b 0.52 ± 0.27ab 
SFA 43.22 ± 5.44a 57.61 ± 1.13b 57.63 ± 3.48b 66.85 ± 0.65b 

     C 14:1 0.26 ± 0.13a 0.22 ± 0.02a 0.01 ± 0.01b 0.12 ± 0.02ab 
C 16:1 3.35 ± 1.79 4.50 ± 0.36 2.70 ± 0.82 2.66 ± 0.82 
C 18:1n-7 0.93 ± 0.32 0.55 ± 0.03 0.74 ± 0.20 0.65 ± 0.28 
C 18:1n-9 21.57 ± 10.07a 9.26 ± 0.91b 13.17 ± 3.77ab 7.93 ± 2.81b 
C 20:1n-9 0.46 ± 0.18 0.63 ± 0.15 0.26 ± 0.06 0.37 ± 0.23 
C 22:1n-9 0.94 ± 0.51ab 1.50 ± 0.10a 0.43 ± 0.14b 1.09 ± 0.22ab 
C 24:1n-9 0.92 ± 0.62a 0.60 ± 0.12ab 0.27 ± 0.12b 0.33 ± 0.14ab 
MUFA 28.64 ± 8.71a 17.34 ± 1.13b 17.61 ± 4.25b 13.21 ± 2.08b 

     C 18:2n-6 4.68 ± 1.46a 2.30 ± 0.19b 2.79 ± 0.68ab 1.69 ± 0.19b 
C 18:3n-6 0.47 ± 0.23 0.45 ± 0.09 0.29 ± 0.12 0.35 ± 0.07 
C 20:2n-6 0.50 ± 0.25a 0.23 ± 0.09ab 0.07 ± 0.03b 0.09 ± 0.04b 
C 20:3n-6 0.48 ± 0.28 0.53 ± 0.09 0.25 ± 0.05 0.49 ± 0.14 
C 20:4n-6 9.24 ± 4.43 15.22 ± 1.87 14.36 ± 2.00 9.62 ± 2.59 
C 22:2n-6 0.59 ± 0.36 0.37 ± 0.08 0.15 ± 0.12 0.22 ± 0.05 
C 22:4n-6 1.14 ± 0.79a 0.38 ± 0.07b 0.20 ± 0.04b 0.27 ± 0.13b 
C 22:5n-6 1.13 ± 0.68a 0.47 ± 0.17ab 0.37 ± 0.10b 0.34 ± 0.10ab 
N-6 18.23 ± 3.36 19.94 ± 1.68 18.47 ± 1.72 13.07 ± 3.20 

     C 18:3n-3 0.56 ± 0.27 0.32 ± 0.06 0.30 ± 0.22 0.24 ± 0.10 
C 20:3n-3 0.41 ± 0.24 0.29 ± 0.20 0.17 ± 0.10 0.10 ± 0.04 
C 20:5n-3 0.95 ± 0.54a 0.26 ± 0.07b 0.13 ± 0.08b 0.13 ± 0.01b 
C 22:5n-3 1.27 ± 0.64a 0.46 ± 0.13b 0.36 ± 0.14b 0.50 ± 0.10ab 
C 22:6n-3 2.48 ± 1.32ab 2.07 ± 0.39a 3.64 ± 1.07b 2.21 ± 0.56ab 
N-3 5.67 ± 2.83 3.40 ± 0.34 4.60 ± 1.42 3.18 ± 0.75 

     HUFA 17.11 ± 5.3 19.68 ± 1.96 19.47 ± 2.80 13.66 ± 3.54 
PUFA 23.90 ± 4.65 23.34 ± 1.84 23.07 ± 2.31 16.25 ± 3.93 
Total 13.65 ± 11.06ab 11.06 ± 1.09a 23.40 ± 2.72b 19.03 ± 2.78ab 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table C.3. Relative percent of fatty acids in plasma PE in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 1.84 ± 0.47 2.81 ± 0.33 2.33 ± 0.28 3.40 ± 0.53 
C 16:0 16.21 ± 3.34a 17.22 ± 1.40ab 16.65 ± 1.11ab 23.05 ± 3.5b 
C 18:0 25.69 ± 3.34a 30.86 ± 2.48ab 34.49 ± 1.32b 32.59 ± 3.14ab 
C 20:0 0.55 ± 0.20 0.54 ± 0.10 0.43 ± 0.07 0.62 ± 0.16 
C 22:0 0.79 ± 0.51 0.61 ± 0.09 0.44 ± 0.11 0.43 ± 0.12 
C 24:0 1.07 ± 0.66 0.87 ± 0.23 0.49 ± 0.13 0.56 ± 0.16 
SFA 48.10 ± 3.99a 57.11 ± 1.74b 59.70 ± 2.30b 64.62 ± 5.64b 

     C 14:1 0.23 ± 0.14a 0.24 ± 0.05a 0.02 ± 0.03b 0.16 ± 0.05ab 
C 16:1 3.11 ± 0.60ab 4.66 ± 0.76a 2.03 ± 0.80b 2.59 ± 0.53ab 
C 18:1n-7 1.04 ± 0.50 0.63 ± 0.08 0.61 ± 0.11 0.82 ± 0.36 
C 18:1n-9 18.30 ± 7.04 10.26 ± 2.17 10.11 ± 1.70 11.57 ± 4.40 
C 20:1n-9 0.37 ± 0.20ab 0.70 ± 0.22a 0.19 ± 0.03b 0.19 ± 0.03b 
C 22:1n-9 0.84 ± 0.41a 1.73 ± 0.79b 0.44 ± 0.08a 0.92 ± 0.21a 
C 24:1n-9 0.71 ± 0.43 0.55 ± 0.12 0.29 ± 0.17 0.43 ± 0.15 
MUFA 24.73 ± 6.37a 18.85 ± 2.59ab 13.74 ± 1.79b 16.72 ± 4.66ab 

     C 18:2n-6 4.18 ± 1.83 2.32 ± 0.33 2.19 ± 0.18 2.89 ± 1.36 
C 18:3n-6 1.40 ± 2.63 0.49 ± 0.08 0.27 ± 0.08 0.35 ± 0.10 
C 20:2n-6 0.56 ± 0.36a 0.16 ± 0.05b 0.08 ± 0.02b 0.07 ± 0.05b 
C 20:3n-6 0.37 ± 0.18 0.50 ± 0.12 0.24 ± 0.07 0.44 ± 0.11 
C 20:4n-6 13.17 ± 3.78ab 14.64 ± 2.42ab 16.20 ± 1.43a 8.74 ± 1.68b 
C 22:2n-6 0.63 ± 0.54a 0.32 ± 0.07ab 0.14 ± 0.04b 0.15 ± 0.07ab 
C 22:4n-6 0.89 ± 0.49 0.50 ± 0.11 0.44 ± 0.07 0.24 ± 0.04 
C 22:5n-6 0.91 ± 0.47ab 0.62 ± 0.2a 1.43 ± 0.41b 0.28 ± 0.12a 
N-6 22.11 ± 4.26a 19.55 ± 2.46ab 21.00 ± 1.83a 13.15 ± 2.41b 

     C 18:3n-3 0.43 ± 0.15 0.28 ± 0.06 0.22 ± 0.04 0.23 ± 0.05 
C 20:3n-3 0.36 ± 0.21 0.29 ± 0.11 0.16 ± 0.05 0.12 ± 0.03 
C 20:5n-3 0.72 ± 0.41a 0.30 ± 0.11ab 0.07 ± 0.05b 0.15 ± 0.06b 
C 22:5n-3 1.17 ± 0.78a 0.54 ± 0.16ab 0.45 ± 0.10ab 0.36 ± 0.10b 
C 22:6n-3 1.49 ± 0.33a 1.31 ± 0.16a 2.81 ± 0.56b 1.14 ± 0.23a 
N-3 4.17 ± 1.62 2.72 ± 0.43 3.72 ± 0.56 2.00 ± 0.4 
     
HUFA 19.08 ± 5.16ab 18.69 ± 2.29ab 21.82 ± 2.14a 11.46 ± 2.16b 
PUFA 26.28 ± 4.97a 22.27 ± 2.46ab 24.72 ± 2.19a 15.15 ± 2.73b 
Total 13.18 ± 5.37ab 11.18 ± 1.19a 22.07 ± 1.95b 19.71 ± 1.95ab 
Values with different superscripts are significantly different by Tukey’s post hoc test (p<0.05) 
following significant F-value by one-way ANOVA  
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Table C.4. Concentration of fatty acids in plasma PE in chow fed rats at baseline, 
during pregnancy, and 7 days post partum (µg/100µl plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.5 ± 0.71 0.27 ± 0.06 0.50 ± 0.02 0.55 ± 0.11 
C 16:0 2.91 ± 2.22 1.87 ± 0.34 3.78 ± 0.38 3.62 ± 0.56 
C 18:0 4.00 ± 1.57a 4.16 ± 0.83a 7.54 ± 0.92b 7.47 ± 1.59b 
C 20:0 0.07 ± 0.03 0.05 ± 0.01 0.09 ± 0.01 0.10 ± 0.02 
C 22:0 0.08 ± 0.02ab 0.05 ± 0.01a 0.11 ± 0.02b 0.06 ± 0.01ab 
C 24:0 0.13 ± 0.03 0.08 ± 0.02 0.13 ± 0.02 0.08 ± 0.01 
SFA 8.03 ± 4.1a 6.87 ± 0.99ab 13.19 ± 1.23c 12.70 ± 2.1ac 
     
C 14:1 0.01 ± 0.01ab 0.02 ± 0.01a Not Detected 0.02 ± 0.01a 
C 16:1 0.43 ± 0.15 0.43 ± 0.07 0.42 ± 0.04 0.42 ± 0.07 
C 18:1n-7 0.25 ± 0.32 0.07 ± 0.02 0.13 ± 0.04 0.09 ± 0.01 
C 18:1n-9 3.86 ± 3.94 0.99 ± 0.26 2.12 ± 0.45 1.13 ± 0.24 
C 20:1n-9 0.08 ± 0.09 0.08 ± 0.01 0.06 ± 0.02 0.05 ± 0.02 
C 22:1n-9 0.09 ± 0.02a 0.16 ± 0.01ab 0.09 ± 0.03a 0.18 ± 0.05b 
C 24:1n-9 0.12 ± 0.05 0.07 ± 0.02 0.08 ± 0.02 0.07 ± 0.03 
MUFA 4.85 ± 4.13 1.83 ± 0.33 2.91 ± 0.42 1.97 ± 0.30 
     
C 18:2n-6 0.75 ± 0.46 0.45 ± 0.15 0.59 ± 0.09 0.55 ± 0.14 
C 18:3n-6 0.79 ± 1.54 0.06 ± 0.01 0.05 ± 0.01 0.09 ± 0.02 
C 20:2n-6 0.04 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 
C 20:3n-6 0.06 ± 0.01a 0.06 ± 0.01a 0.05 ± 0.01a 0.18 ± 0.04b 
C 20:4n-6 2.29 ± 0.68 2.28 ± 0.56 3.4 ± 0.43 2.72 ± 0.77 
C 22:2n-6 0.05 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 
C 22:4n-6 0.07 ± 0.01 0.05 ± 0.01 0.08 ± 0.02 0.09 ± 0.04 
C 22:5n-6 0.11 ± 0.04ab 0.07 ± 0.03a 0.18 ± 0.05b 0.07 ± 0.02a 
N-6 4.16 ± 2.55 3.05 ± 0.62 4.40 ± 0.54 3.76 ± 0.96 
     
C 18:3n-3 0.17 ± 0.28 0.04 ± 0.01 0.06 ± 0.01 0.06 ± 0.02 
C 20:3n-3 0.04 ± 0.01 0.03 ± 0.02 0.05 ± 0.01 0.02 ± 0.01 
C 20:5n-3 0.10 ± 0.03a 0.04 ± 0.01b 0.02 ± 0.01b 0.03 ± 0.01b 
C 22:5n-3 0.11 ± 0.02 0.08 ± 0.02 0.11 ± 0.03 0.14 ± 0.05 
C 22:6n-3 0.22 ± 0.12a 0.23 ± 0.06a 0.69 ± 0.14b 0.30 ± 0.07a 
N-3 0.64 ± 0.38ab 0.42 ± 0.06a 0.93 ± 0.15b 0.55 ± 0.13ab 
     
HUFA 3.00 ± 0.77a 2.84 ± 0.59a 4.58 ± 0.46b 3.55 ± 0.98ab 
PUFA 4.80 ± 2.93 3.47 ± 0.65 5.33 ± 0.55 4.31 ± 1.09 
Total 17.68 ± 10.2 12.18 ± 1.87 21.43 ± 1.17 18.97 ± 3.36 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table C.5. Concentration of fatty acids in plasma PE in high DHA diet (TWD 
DHA+) fed rats at baseline, during pregnancy, and 7 days post partum (µg/100µl 
plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.20 ± 0.11a 0.28 ± 0.07ab 0.73 ± 0.16b 0.58 ± 0.15ab 
C 16:0 2.27 ± 2.14 1.95 ± 0.28 4.07 ± 0.62 4.99 ± 2.10 
C 18:0 2.8 ± 1.81a 3.64 ± 0.21a 7.17 ± 1.22b 6.64 ± 0.68b 
C 20:0 0.07 ± 0.03 0.05 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 
C 22:0 0.08 ± 0.02 0.05 ± 0.02 0.10 ± 0.03 0.07 ± 0.01 
C 24:0 0.12 ± 0.01 0.08 ± 0.02 0.09 ± 0.03 0.10 ± 0.04 
SFA 5.87 ± 4.17a 6.48 ± 0.71a 13.7 ± 1.64b 13.24 ± 2.12b 
     
C 14:1 0.03 ± 0.01a 0.02 ± 0a Not Detected 0.02 ± 0.01a 
C 16:1 0.35 ± 0.11a 0.51 ± 0.09ab 0.63 ± 0.15b 0.53 ± 0.18ab 
C 18:1n-7 0.16 ± 0.20 0.06 ± 0.01 0.18 ± 0.06 0.13 ± 0.08 
C 18:1n-9 3.92 ± 5.06 1.04 ± 0.15 3.16 ± 1.05 1.62 ± 0.82 
C 20:1n-9 0.06 ± 0.03 0.07 ± 0.02 0.06 ± 0.02 0.07 ± 0.04 
C 22:1n-9 0.09 ± 0.02a 0.17 ± 0.02bc 0.10 ± 0.03ab 0.21 ± 0.01c 
C 24:1n-9 0.08 ± 0.03 0.07 ± 0.02 0.06 ± 0.03 0.06 ± 0.02 
MUFA 4.72 ± 5.37 1.96 ± 0.28 4.20 ± 1.17 2.66 ± 0.83 
     
C 18:2n-6 0.77 ± 0.90 0.26 ± 0.04 0.67 ± 0.20 0.33 ± 0.02 
C 18:3n-6 0.05 ± 0.03 0.05 ± 0.01 0.07 ± 0.03 0.07 ± 0.01 
C 20:2n-6 0.05 ± 0.01a 0.03 ± 0.01b 0.02 ± 0.01b 0.02 ± 0.01b 
C 20:3n-6 0.05 ± 0.02a 0.06 ± 0.01ab 0.06 ± 0.01ab 0.09 ± 0.020b 
C 20:4n-6 1.29 ± 0.99a 1.70 ± 0.17a 3.4 ± 0.52b 1.85 ± 0.19a 
C 22:2n-6 0.05 ± 0.02 0.04 ± 0.01 0.04 ± 0.02 0.04 ± 0.01 
C 22:4n-6 0.10 ± 0.03a 0.04 ± 0.01b 0.05 ± 0.01b 0.05 ± 0.02b 
C 22:5n-6 0.11 ± 0.03 0.05 ± 0.02 0.09 ± 0.03 0.07 ± 0.01 
N-6 2.49 ± 1.65 2.24 ± 0.2 4.39 ± 0.56 2.52 ± 0.21 
     
C 18:3n-3 0.06 ± 0.02 0.04 ± 0.01 0.07 ± 0.06 0.05 ± 0.01 
C 20:3n-3 0.04 ± 0.01 0.03 ± 0.03 0.04 ± 0.02 0.02 ± 0.01 
C 20:5n-3 0.1 ± 0.03a 0.03 ± 0.01b 0.03 ± 0.02b 0.03 ± 0.01b 
C 22:5n-3 0.13 ± 0.05a 0.05 ± 0.02b 0.09 ± 0.04ab 0.10 ± 0.01ab 
C 22:6n-3 0.25 ± 0.03a 0.23 ± 0.03a 0.88 ± 0.33b 0.43 ± 0.07a 
N-3 0.57 ± 0.07a 0.38 ± 0.04a 1.11 ± 0.43b 0.62 ± 0.07a 
     
HUFA 2.07 ± 1.00a 2.20 ± 0.18a 4.63 ± 0.87b 2.63 ± 0.27a 
PUFA 3.06 ± 1.67ab 2.62 ± 0.23a 5.50 ± 0.89b 3.14 ± 0.27ab 
Total 13.65 ± 11.06ab 11.06 ± 1.09a 23.40 ± 2.72b 19.03 ± 2.78ab 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table C.6. Concentration of fatty acids in plasma PE in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum (µg/100µl 
plasma) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.25 ± 0.14 0.32 ± 0.06 0.52 ± 0.08 0.70 ± 0.18 
C 16:0 2.25 ± 1.21ab 1.96 ± 0.21a 3.74 ± 0.39ab 4.76 ± 1.15b 
C 18:0 3.41 ± 1.43a 3.50 ± 0.33a 7.75 ± 0.67b 6.63 ± 0.70b 
C 20:0 0.07 ± 0.04a 0.06 ± 0.01a 0.10 ± 0.02ab 0.13 ± 0.04b 
C 22:0 0.09 ± 0.03 0.07 ± 0.01 0.10 ± 0.03 0.09 ± 0.03 
C 24:0 0.12 ± 0.03 0.10 ± 0.02 0.11 ± 0.04 0.11 ± 0.04 
SFA 6.43 ± 2.77a 6.48 ± 0.51a 13.42 ± 1.21b 13.24 ± 2.13b 
     
C 14:1 0.02 ± 0.01a 0.03 ± 0.01a Not Detected 0.03 ± 0.01a 
C 16:1 0.40 ± 0.13 0.53 ± 0.11 0.47 ± 0.21 0.53 ± 0.15 
C 18:1n-7 0.15 ± 0.12 0.07 ± 0.01 0.14 ± 0.02 0.17 ± 0.09 
C 18:1n-9 2.53 ± 1.45 1.19 ± 0.34 2.27 ± 0.39 2.35 ± 0.96 
C 20:1n-9 0.04 ± 0.02 0.08 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 
C 24:1n-9 0.08 ± 0.02 0.06 ± 0.01 0.07 ± 0.04 0.09 ± 0.03 
MUFA 3.34 ± 1.61 2.16 ± 0.44 3.09 ± 0.51 3.41 ± 1.05 
     
C 18:2n-6 0.56 ± 0.29 0.27 ± 0.05 0.49 ± 0.07 0.59 ± 0.30 
C 18:3n-6 0.25 ± 0.51 0.06 ± 0.01 0.06 ± 0.02 0.07 ± 0.01 
C 20:2n-6 0.06 ± 0.03a 0.02 ± 0.01b 0.02 ± 0.01b 0.01 ± 0.01b 
C 20:3n-6 0.04 ± 0.01a 0.06 ± 0.01ab 0.05 ± 0.02ab 0.09 ± 0.02b 
C 20:4n-6 1.75 ± 0.92a 1.67 ± 0.39a 3.64 ± 0.44b 1.77 ± 0.22a 
C 22:2n-6 0.06 ± 0.03 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 
C 22:4n-6 0.10 ± 0.02a 0.06 ± 0.01b 0.10 ± 0.02a 0.05 ± 0.01b 
C 22:5n-6 0.10 ± 0.02a 0.07 ± 0.02a 0.32 ± 0.10b 0.05 ± 0.02a 
N-6 2.92 ± 1.38ab 2.23 ± 0.42a 4.73 ± 0.60b 2.66 ± 0.31ab 
     
C 18:3n-3 0.06 ± 0.04 0.03 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 
C 20:3n-3 0.04 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 
C 20:5n-3 0.08 ± 0.02a 0.03 ± 0.01b 0.02 ± 0.01b 0.03 ± 0.01b 
C 22:1n-9 0.09 ± 0.01a 0.19 ± 0.08b 0.10 ± 0.02a 0.18 ± 0.02b 
C 22:5n-3 0.13 ± 0.04a 0.06 ± 0.01b 0.10 ± 0.03ab 0.07 ± 0.02ab 
C 22:6n-3 0.18 ± 0.05a 0.15 ± 0.02a 0.63 ± 0.13b 0.23 ± 0.02a 
N-3 0.49 ± 0.08ab 0.31 ± 0.02a 0.84 ± 0.15b 0.40 ± 0.04a 
     
HUFA 2.42 ± 0.92a 2.13 ± 0.37a 4.91 ± 0.65b 2.31 ± 0.23z 
PUFA 3.41 ± 1.42a 2.54 ± 0.41b 5.56 ± 0.72a 3.06 ± 0.33ab 
Total 13.18 ± 5.37ab 11.18 ± 1.19a 22.07 ± 1.95b 19.71 ± 1.95ab 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Appendix D. Liver PC  

Table D.1.  Relative percent of fatty acids in liver PC in chow fed rats at baseline, 
during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.45 ± 0.17 0.49 ± 0.26 0.49 ± 0.13 0.4 ± 0.09 
C 16:0 17.59 ± 0.58a 17.40 ± 0.99a 26.3 ± 1.22b 17.19 ± 1.00a 
C 18:0 28.95 ± 1.17a 28.71 ± 1.26a 19.67 ± 1.42b 28.06 ± 0.77a 
C 20:0 0.08 ± 0.02 0.08 ± 0.02 0.07 ± 0.02 0.06 ± 0.01 
C 22:0 0.09 ± 0.05 0.07 ± 0.04 0.08 ± 0.04 0.05 ± 0.02 
C 24:0 0.08 ± 0.05 0.09 ± 0.07 0.11 ± 0.02 0.10 ± 0.03 
SFAs 48.98 ± 2.39 47.37 ± 1.24 47.47 ± 0.76 46.95 ± 1.36 

     C 14:1 0.01 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 0.01 ± 0.01 
C 16:1 0.27 ± 0.03 0.43 ± 0.13 0.36 ± 0.11 0.32 ± 0.07 
C 18:1n-7 1.35 ± 0.08ab 1.27 ± 0.12ab 1.14 ± 0.09a 1.49 ± 0.17b 
C 18:1n-9 4.86 ± 1.24 5.05 ± 0.87 6.14 ± 1.05 6.72 ± 1.16 
C 20:1n-9 0.10 ± 0.03ab 0.08 ± 0.03a 0.07 ± 0.01a 0.14 ± 0.03b 
C 22:1n-9 0.22 ± 0.10a 0.17 ± 0.10ab 0.14 ± 0.08ab 0.09 ± 0.03b 
C 24:1n-9 0.13 ± 0.08 0.13 ± 0.11 0.08 ± 0.03 0.06 ± 0.02 
MUFA 10.78 ± 0.86a 10.37 ± 0.89ab 8.39 ± 0.60b 11.06 ± 1.18ab 

     C 18:2n-6 0.25 ± 0.03a 0.35 ± 0.08a 0.31 ± 0.04a 0.61 ± 0.12b 
C 18:3n-6 0.17 ± 0.04 0.17 ± 0.02 0.19 ± 0.02 0.21 ± 0.02 
C 20:2n-6 0.33 ± 0.05a 0.29 ± 0.05ab 0.16 ± 0.01b 0.61 ± 0.08c 
C 20:3n-6 25.34 ± 1.59a 24.39 ± 1.42a 16.61 ± 1.06b 22.24 ± 1.08a 
C 20:4n-6 0.05 ± 0.02 0.08 ± 0.08 0.05 ± 0.01 0.04 ± 0.01 
C 22:2n-6 0.20 ± 0.05a 0.20 ± 0.07a 0.55 ± 0.04b 0.23 ± 0.05a 
C 22:4n-6 0.17 ± 0.03a 0.27 ± 0.15a 3.00 ± 0.40b 0.89 ± 0.23a 
C 22:5n-6 37.30 ± 1.97a 36.13 ± 1.69a 29.26 ± 1.60b 35.88 ± 1.53a 
N-6 0.10 ± 0.01 0.12 ± 0.04 0.14 ± 0.01 0.10 ± 0.02 

     C 18:3n-3 0.03 ± 0.02 0.02 ± 0.02 0.05 ± 0.02 0.01 ± 0.01 
C 20:3n-3 0.17 ± 0.04 0.19 ± 0.04 0.15 ± 0.03 0.23 ± 0.03 
C 20:5n-3 0.53 ± 0.11a 0.67 ± 0.11a 1.06 ± 0.11b 1.10 ± 0.11b 
C 22:5n-3 5.98 ± 10.01a 7.51 ± 1.23a 13.31 ± 1.4ob 6.07 ± 0.23a 
C 22:6n-3 5.82 ± 2.58a 8.52 ± 1.28b 14.71 ± 1.33c 7.52 ± 0.23ab 
N-3 31.76 ± 1.69 33.55 ± 2.36 34.89 ± 1.48 30.25 ± 2.28 

     HUFA 6.99 ± 1.28 7.18 ± 1.15 7.96 ± 1.18 8.87 ± 1.19 
PUFA 43.11 ± 1.67 44.65 ± 2.28 43.98 ± 1.54 43.39 ± 1.64 
Total 31.82 ± 5.26 35.60 ± 5.20 33.36 ± 14.22 42.05 ± 15.84 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 



	  

	   74 

Table D.2. Relative percent of fatty acids in liver PC in high DHA diet (TWD 
DHA+) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.62 ± 0.13 0.55 ± 0.13 0.61 ± 0.15 0.55 ± 0.13 
C 16:0 18.19 ± 1.68a 17.61 ± 1.7a 24.14 ± 2.17b 19.96 ± 1.88a 
C 18:0 26.09 ± 6.12ab 29.36 ± 1.19a 22.59 ± 1.69b 24.08 ± 2.01b 
C 20:0 0.08 ± 0.02 0.08 ± 0.01 0.08 ± 0.03 0.06 ± 0.01 
C 22:0 0.10 ± 0.04 0.08 ± 0.05 0.09 ± 0.02 0.05 ± 0.02 
C 24:0 0.12 ± 0.04 0.10 ± 0.06 0.08 ± 0.03 0.09 ± 0.02 
SFA 48.38 ± 1.14 48.37 ± 1.41 48.21 ± 1.82 46.10 ± 0.69 

     C 14:1 0.03 ± 0.02 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 
C 16:1 0.27 ± 0.06a 0.51 ± 0.06b 0.41 ± 0.2ab 0.43 ± 0.13ab 
C 18:1n-7 1.22 ± 0.08a 1.13 ± 0.1a 1.06 ± 0.11a 1.54 ± 0.24b 
C 18:1n-9 5.58 ± 1.39a 6.26 ± 1.25a 6.84 ± 1.4a 9.8 ± 2.05b 
C 22:1n-9 0.24 ± 0.05a 0.18 ± 0.06ab 0.13 ± 0.03ab 0.11 ± 0.02b 
C 20:1n-9 0.09 ± 0.02 0.07 ± 0.03 0.07 ± 0.01 0.10 ± 0.02 
C 24:1n-9 0.18 ± 0.07a 0.14 ± 0.08ab 0.07 ± 0.02ab 0.06 ± 0.01b 
MUFA 7.65 ± 1.48a 8.34 ± 1.37a 8.6 ± 1.41a 12.03 ± 2.22b 

     C 18:2n-6 9.83 ± 0.33a 8.98 ± 0.73a 5.93 ± 0.91b 10.39 ± 2.00a 
C 18:3n-6 0.20 ± 0.06a 0.21 ± 0.04a 0.23 ± 0.05a 0.61 ± 0.28b 
C 20:2n-6 0.11 ± 0.04 0.09 ± 0.03 0.1 ± 0.01 0.09 ± 0.02 
C 20:3n-6 0.36 ± 0.09ac 0.33 ± 0.05a 0.15 ± 0.03b 0.47 ± 0.12c 
C 20:4n-6 23.89 ± 1.40a 22.38 ± 1.83ab 16 .00± 1.21c 20.47 ± 2.44b 
C 22:2n-6 0.05 ± 0.02 0.08 ± 0.08 0.04 ± 0.01 0.02 ± 0.01 

C 22:4n-6 0.18 ± 0.03ab 0.13 ± 0.09a 0.29 ± 0.08b 0.06 ± 0.02ac 
C 22:5n-6 0.16 ± 0.10a 0.11 ± 0.05a 1.30 ± 0.36b 0.10 ± 0.03a 
N-6 34.78 ± 1.44a 32.32 ± 1.75a 24.03 ± 1.37b 32.22 ± 1.44a 

     C 18:3n-3 0.09 ± 0.04 0.07 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 
C 20:3n-3 0.03 ± 0.01 0.05 ± 0.07 0.04 ± 0.02 0.01 ± 0.01 
C 20:5n-3 0.15 ± 0.04a 0.26 ± 0.04ab 0.12 ± 0.02a 0.41 ± 0.24b 
C 22:5n-3 0.35 ± 0.12a 0.31 ± 0.06a 0.58 ± 0.09b 0.27 ± 0.05a 
C 22:6n-3 7.40 ± 1.19a 9.63 ± 0.55b 17.41 ± 1.29c 7.41 ± 2.31a 
N-3 8.03 ± 1.08a 10.33 ± 0.53a 18.22 ± 1.28b 8.16 ± 2.17a 

     HUFA 32.53 ± 0.99ab 33.21 ± 1.98a 35.89 ± 1.79a 27.78 ± 5.61b 
PUFA 42.81 ± 1.11 42.64 ± 1.91 42.25 ± 1.54 40.38 ± 2.37 
Total 28.92 ± 6.52 32.61 ± 6.23 38.49 ± 4.06 29.37 ± 6.40 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table D.3.  Relative percent of fatty acids in liver PC in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.60 ± 0.09 0.46 ± 0.12 0.69 ± 0.09 0.61 ± 0.09 
C 16:0 17.42 ± 1.15a 16.02 ± 0.87a 23.87 ± 0.73b 18.04 ± 0.75a 
C 18:0 28.69 ± 1.58a 30.66 ± 0.75a 21.44 ± 1.57b 25.20 ± 1.15a 
C 20:0 0.09 ± 0.03 0.06 ± 0.01 0.07 ± 0.02 0.06 ± 0.02 
C 22:0 0.09 ± 0.03 0.07 ± 0.01 0.11 ± 0.04 0.07 ± 0.02 
C 24:0 0.10 ± 0.02 0.09 ± 0.01 0.13 ± 0.03 0.11 ± 0.02 
SFA 47.82 ± 1.60 47.57 ± 1.07 46.89 ± 0.98 45.55 ± 0.56 

     C 14:1 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
C 16:1 0.27 ± 0.05 0.40 ± 0.12 0.44 ± 0.12 0.48 ± 0.11 
C 18:1n-7 1.31 ± 0.04a 1.16 ± 0.08a 1.21 ± 0.06a 1.61 ± 0.18b 
C 18:1n-9 6.81 ± 1.48ab 5.78 ± 1.52a 9.23 ± 1.13bc 11.02 ± 1.86c 
C 20:1n-9 0.09 ± 0.01ab 0.06 ± 0.01a 0.08 ± 0.02ab 0.12 ± 0.02b 
C 22:1n-9 0.21 ± 0.05 0.18 ± 0.05 0.16 ± 0.06 0.13 ± 0.04 
C 24:1n-9 0.12 ± 0.02 0.11 ± 0.02 0.08 ± 0.02 0.07 ± 0.02 
MUFA 8.87 ± 1.50a 7.73 ± 1.56a 11.24 ± 1.26ab 13.49 ± 2.07b 

     C 18:2n-6 9.17 ± 0.74a 8.37 ± 1.35ab 7.01 ± 0.53b 8.79 ± 0.88ab 
C 18:3n-6 0.23 ± 0.02a 0.29 ± 0.05a 0.43 ± 0.08a 0.95 ± 0.16b 
C 20:2n-6 0.10 ± 0.01 0.07 ± 0.01 0.09 ± 0.02 0.09 ± 0.02 
C 20:3n-6 0.35 ± 0.06a 0.22 ± 0.04b 0.13 ± 0.01b 0.43 ± 0.08a 
C 20:4n-6 24.99 ± 1.68a 26.26 ± 0.93a 18.95 ± 1.99b 23.41 ± 2.08a 
C 22:2n-6 0.05 ± 0.01 0.06 ± 0.03 0.06 ± 0.03 0.03 ± 0.01 
C 22:4n-6 0.19 ± 0.04a 0.15 ± 0.01a 0.54 ± 0.07b 0.13 ± 0.03a 
C 22:5n-6 0.27 ± 0.10a 0.42 ± 0.18a 4.07 ± 1.08b 0.68 ± 0.07a 
N-6 35.35 ± 1.38a 35.84 ± 1.04a 31.28 ± 1.27b 34.51 ± 1.79a 

     C 18:3n-3 0.09 ± 0.02 0.07 ± 0.03 0.07 ± 0.01 0.05 ± 0.02 
C 20:3n-3 0.02 ± 0.01 0.02 ± 0.01 0.06 ± 0.03 0.02 ± 0.01 
C 20:5n-3 0.12 ± 0.06 0.10 ± 0.03 0.11 ± 0.01 0.17 ± 0.04 
C 22:5n-3 0.39 ± 0.08a 0.42 ± 0.06a 0.72 ± 0.06b 0.48 ± 0.09a 
C 22:6n-3 5.79 ± 0.49ac 7.27 ± 0.43a 8.39 ± 0.84ab 3.90 ± 1.07c 
N-3 6.41 ± 0.46ab 7.87 ± 0.4a 9.34 ± 0.89ac 4.62 ± 1.00b 

     HUFA 32.13 ± 1.78ab 34.85 ± 1.28a 32.95 ± 1.06ab 29.21 ± 2.98b 
PUFA 41.76 ± 1.54ab 43.71 ± 0.98a 40.61 ± 0.99ab 39.12 ± 2.54b 
Total 32.87 ± 4.00 37.07 ± 5.81 37.50 ± 5.34 32.10 ± 3.61 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table D.4. Concentration of fatty acids in liver PC in chow fed rats at baseline, 
during pregnancy, and 7 days post partum (µg/mg) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.14 ± 0.04 0.17 ± 0.06 0.15 ± 0.04 0.17 ± 0.06 
C 16:0 5.62 ± 0.70 6.24 ± 0.98 8.78 ± 3.73 7.27 ± 2.73 
C 18:0 9.33 ± 1.84ab 10.29 ± 1.45ab 6.63 ± 2.83a 11.92 ± 4.57b 
C 20:0 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 
C 22:0 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 
C 24:0 0.03 ± 0.02 0.03 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 
SFA 15.81 ± 3.38 16.95 ± 2.11 15.87 ± 6.61 19.88 ± 7.43 
     
C 14:1 Not Detected 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 16:1 0.09 ± 0.02 0.15 ± 0.04 0.12 ± 0.08 0.14 ± 0.06 
C 18:1n-7 0.44 ± 0.09ab 0.46 ± 0.10ab 0.38 ± 0.16a 0.62 ± 0.19b 
C 18:1n-9 1.53 ± 0.31a 1.80 ± 0.38ab 2.00 ± 0.70ab 2.84 ± 1.13b 
C 20:1n-9 0.03 ± 0.01a 0.03 ± 0.01a 0.02 ± 0.01a 0.06 ± 0.01b 
C 22:1n-9 0.07 ± 0.03 0.06 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 
C 24:1n-9 0.04 ± 0.02 0.04 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 
MUFA 2.21 ± 0.32a 2.56 ± 0.46ab 2.6 ± 0.94ab 3.73 ± 1.37b 
     
C 18:2n-6 3.46 ± 0.62a 3.75 ± 0.78a 2.82 ± 1.23b 4.78 ± 2.27a 
C 18:3n-6 0.08 ± 0.01a 0.12 ± 0.02a 0.1 ± 0.05a 0.26 ± 0.12b 
C 20:2n-6 0.05 ± 0.01a 0.06 ± 0.01ab 0.06 ± 0.03ab 0.08 ± 0.02b 
C 20:3n-6 0.10 ± 0.02a 0.11 ± 0.03a 0.05 ± 0.02a 0.27 ± 0.15b 
C 20:4n-6 8.18 ± 1.79 8.79 ± 1.57 5.59 ± 2.47 9.41 ± 3.46 
C 22:2n-6 0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 
C 22:4n-6 0.06 ± 0.02a 0.07 ± 0.02a 0.19 ± 0.09b 0.09 ± 0.03a 
C 22:5n-6 0.06 ± 0.02a 0.10 ± 0.05a 1.04 ± 0.55b 0.36 ± 0.08a 
N-6 12.02 ± 2.44 13.02 ± 2.31 9.88 ± 4.42 15.27 ± 6.04 
     
C 18:3n-3 0.03 ± 0.01 0.04 ± 0.01 0.05 ± 0.02 0.04 ± 0.02 
C 20:3n-3 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 20:5n-3 0.05 ± 0.02 0.07 ± 0.02 0.05 ± 0.03 0.10 ± 0.05 
C 22:5n-3 0.17 ± 0.05a 0.24 ± 0.06ab 0.36 ± 0.18b 0.46 ± 0.16cb 
C 22:6n-3 1.92 ± 0.45a 2.71 ± 0.65ab 4.54 ± 2.19b 2.55 ± 0.87a 
N-3 1.78 ± 0.76a 3.07 ± 0.70ab 5.01 ± 2.40b 3.17 ± 1.10ab 
     
HUFA 10.15 ± 1.35 12.09 ± 2.21 11.84 ± 5.44 12.82 ± 4.95 
PUFA 13.80 ± 1.91 16.09 ± 2.88 14.89 ± 6.75 18.44 ± 7.14 
Total 31.82 ± 5.26 35.60 ± 5.20 33.36 ± 14.22 42.05 ± 15.84 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table D.5. Concentration of fatty acids in liver PC in high DHA diet (TWD DHA+) 
fed rats at baseline, during pregnancy, and 7 days post partum (µg/mg) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.19 ± 0.08 0.18 ± 0.02 0.24 ± 0.06 0.16 ± 0.03 
C 16:0 5.49 ± 1.30a 5.71 ± 0.87a 9.40 ± 1.42b 5.88 ± 0.90a 
C 18:0 8.57 ± 1.59 9.69 ± 2.12 8.78 ± 1.21 7.27 ± 2.21 
C 20:0 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
C 22:0 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
C 24:0 0.04 ± 0.02 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 
SFA 14.56 ± 2.83 15.83 ± 2.84 18.76 ± 2.38 13.75 ± 3.04 
     
C 14:1 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 Not Detected 
C 16:1 0.08 ± 0.03 0.17 ± 0.04 0.15 ± 0.07 0.13 ± 0.03 
C 18:1n-7 0.37 ± 0.06 0.37 ± 0.06 0.41 ± 0.05 0.45 ± 0.07 
C 18:1n-9 1.65 ± 0.36 2.02 ± 0.40 2.68 ± 0.72 2.84 ± 0.41 
C 20:1n-9 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 
C 22:1n-9 0.07 ± 0.02a 0.06 ± 0.02ab 0.05 ± 0.02ab 0.03 ± 0.01b 
C 24:1n-9 0.05 ± 0.02a 0.04 ± 0.02ab 0.03 ± 0.01ab 0.02 ± 0.01b 
MUFA 2.27 ± 0.42 2.69 ± 0.45 3.37 ± 0.76 3.49 ± 0.43 
     
C 18:2n-6 2.95 ± 0.52 2.97 ± 0.69 2.30 ± 0.43 3.01 ± 0.36 
C 18:3n-6 0.06 ± 0.01a 0.07 ± 0.02a 0.09 ± 0.02ab 0.18 ± 0.07b 
C 20:2n-6 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 
C 20:3n-6 0.11 ± 0.02 0.11 ± 0.03 0.06 ± 0.01 0.14 ± 0.03 
C 20:4n-6 7.16 ± 1.19 7.43 ± 1.82 6.19 ± 0.57 6.20 ± 2.09 
C 22:2n-6 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 22:4n-6 0.05 ± 0.01ab 0.04 ± 0.01a 0.11 ± 0.04b 0.02 ± 0.01a 
C 22:5n-6 0.05 ± 0.03a 0.03 ± 0.01a 0.50 ± 0.16b 0.03 ± 0.01a 
N-6 10.43 ± 1.7 10.70 ± 2.46 9.31 ± 0.87 9.61 ± 2.13 
     
C 18:3n-3 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
C 20:3n-3 0.01 ± 0.01ab 0.01 ± 0.01ab 0.02 ± 0.01b Not Detected 
C 20:5n-3 0.05 ± 0.02a 0.09 ± 0.02ab 0.05 ± 0.01a 0.12 ± 0.07b 
C 22:5n-3 0.11 ± 0.04 0.10 ± 0.02 0.23 ± 0.05 0.08 ± 0.02 
C 22:6n-3 2.24 ± 0.62a 3.17 ± 0.64a 6.74 ± 0.58b 2.30 ± 1.27a 
N-3 2.43 ± 0.64a 3.39 ± 0.66a 7.05 ± 0.62b 2.52 ± 1.28a 
     
HUFA 9.77 ± 1.71 10.98 ± 2.46 13.90 ± 1.01 8.54 ± 3.68 
PUFA 12.85 ± 2.24 14.09 ± 3.09 16.37 ± 1.21 12.13 ± 3.33 
Total 28.92 ± 6.52 32.61 ± 6.23 38.49 ± 4.06 29.37 ± 6.40 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table D.6. Concentration of fatty acids in liver PC in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum (µg/mg) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.20 ± 0.04 0.18 ± 0.07 0.26 ± 0.05 0.20 ± 0.03 
C 16:0 5.82 ± 0.83a 5.96 ± 0.66a 9.08 ± 1.45b 5.88 ± 0.45a 
C 18:0 9.57 ± 1.23 11.49 ± 1.88 8.13 ± 1.31 8.25 ± 1.13 
C 20:0 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
C 22:0 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 
C 24:0 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 
SFA 15.96 ± 1.98 17.79 ± 2.6 17.81 ± 2.61 14.89 ± 1.58 
     
C 14:1 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 001 
C 16:1 0.09 ± 0.02 0.16 ± 0.07 0.17 ± 0.05 0.16 ± 0.04 
C 18:1n-7 0.44 ± 0.05 0.43 ± 0.04 0.46 ± 0.07 0.53 ± 0.09 
C 18:1n-9 2.28 ± 0.56a 2.20 ± 0.84a 3.50 ± 0.61b 3.59 ± 0.66b 
C 20:1n-9 0.03 ± 0.01a 0.02 ± 0.01a 0.03 ± 0.01ab 0.04 ± 0.01b 
C 22:1n-9 0.07 ± 0.02 0.07 ± 0.02 0.06 ± 0.02 0.04 ± 0.02 
C 24:1n-9 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
MUFA 2.96 ± 0.61 2.93 ± 0.95 4.26 ± 0.71 4.4 ± 0.77 
     
C 18:2n-6 3.05 ± 0.33 3.07 ± 0.20 2.67 ± 0.48 2.87 ± 0.41 
C 18:3n-6 0.08 ± 0.01a 0.11 ± 0.02a 0.16 ± 0.04a 0.31 ± 0.04b 
C 20:2n-6 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 
C 20:3n-6 0.12 ± 0.02 0.08 ± 0.01 0.05 ± 0.01 0.14 ± 0.02 
C 20:4n-6 8.36 ± 1.31 9.86 ± 1.81 7.22 ± 1.46 7.68 ± 1.27 
C 22:2n-6 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 
C 22:4n-6 0.06 ± 0.01a 0.06 ± 0.01a 0.20 ± 0.02b 0.04 ± 0.01a 
C 22:5n-6 0.09 ± 0.03a 0.16 ± 0.10a 1.52 ± 0.38b 0.22 ± 0.03a 
N-6 11.80 ± 1.54 13.39 ± 1.86 11.89 ± 1.82 11.3 ± 1.52 
     
C 18:3n-3 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
C 20:3n-3 0.01 ± 0.01a 0.01 ± 0.01a 0.02 ± 0.01b 0.01 ± 0.01a 
C 20:5n-3 0.04 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.06 ± 0.01 
C 22:5n-3 0.13 ± 0.03 0.15 ± 0.01 0.27 ± 0.05 0.16 ± 0.03 
C 22:6n-3 1.94 ± 0.32ab 2.73 ± 0.57ab 3.18 ± 0.56a 1.28 ± 0.41b 
N-3 2.14 ± 0.33ab 2.96 ± 0.58ab 3.55 ± 0.61a 1.52 ± 0.41b 
     
HUFA 10.74 ± 1.61 13.09 ± 2.48 12.52 ± 1.81 9.58 ± 1.65 
PUFA 13.95 ± 1.83 16.35 ± 2.43 15.43 ± 2.28 12.82 ± 1.85 
Total 32.87 ± 4.00 37.07 ± 5.81 37.50 ± 5.34 32.10 ± 3.61 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Appendix E. Liver PE 

Table E.1. Relative percent of fatty acids in liver PE in chow fed rats at baseline, 
during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.75 ± 0.32ab 0.63 ± 0.20ab 0.92 ± 0.28a 0.43 ± 0.13b 
C 16:0 15.56 ± 1.62a 15.67 ± 2.02a 20.27 ± 0.81b 15.45 ± 0.41a 
C 18:0 29.70 ± 2.31a 31.22 ± 3.54a 23.20 ± 1.13b 27.75 ± 0.77a 
C 20:0 0.14 ± 0.04a 0.10 ± 0.02ab 0.14 ± 0.03a 0.05 ± 0.01b 
C 22:0 0.12 ± 0.03ab 0.13 ± 0.08ab 0.17 ± 0.07a 0.06 ± 0.02b 
C 24:0 0.13 ± 0.05 0.13 ± 0.07 0.19 ± 0.06 0.14 ± 0.03 
SFA 47.68 ± 0.89a 48.47 ± 1.31a 46.77 ± 1.53ab 45.11 ± 0.45b 

     C 14:1 0.03 ± 0.01 0.03 ± 0.02 0.06 ± 0.03 0.02 ± 0.01 
C 16:1 0.13 ± 0.02a 0.46 ± 0.35ab 0.86 ± 0.49b 0.29 ± 0.09a 
C 18:1n-7 1.02 ± 0.11ab 0.84 ± 0.11ab 0.73 ± 0.15a 1.05 ± 0.14b 
C 18:1n-9 6.65 ± 2.58 3.94 ± 1.02 9.26 ± 3.64 6.83 ± 1.55 
C 20:1n-9 0.12 ± 0.05 0.07 ± 0.03 0.09 ± 0.02 0.12 ± 0.02 
C 22:1n-9 0.40 ± 0.10a 0.34 ± 0.12a 0.40 ± 0.11a 0.15 ± 0.05b 
C 24:1n-9 0.20 ± 0.09 0.17 ± 0.13 0.16 ± 0.06 0.10 ± 0.02 
MUFA 8.53 ± 2.69 5.89 ± 1.57 11.58 ± 3.85 8.58 ± 1.68 

     C 18:2n-6 5.98 ± 1.07a 4.48 ± 0.24ab 2.86 ± 0.42b 5.64 ± 0.97a 
C 18:3n-6 0.16 ± 0.04a 0.14 ± 0.06a 0.09 ± 0.03a 0.28 ± 0.03b 
C 20:2n-6 0.12 ± 0.04 0.13 ± 0.03 0.13 ± 0.03 0.16 ± 0.02 
C 20:3n-6 0.29 ± 0.03a 0.29 ± 0.06a 0.12 ± 0.03b 0.58 ± 0.10c 
C 20:4n-6 21.57 ± 3.21a 23.31 ± 3.07a 13.24 ± 1.20b 21.27 ± 1.58a 
C 22:2n-6 0.10 ± 0.05ab 0.13 ± 0.07a 0.09 ± 0.04ab 0.04 ± 0.01b 
C 22:4n-6 0.54 ± 0.09a 0.56 ± 0.12a 1.07 ± 0.11b 0.68 ± 0.08a 
C 22:5n-6 0.25 ± 0.06a 0.44 ± 0.25ac 3.95 ± 0.71b 1.42 ± 0.39c 
N-6 29.01 ± 3.29a 29.48 ± 2.81a 21.54 ± 1.66b 30.09 ± 2.18a 

     C 18:3n-3 0.21 ± 0.10 0.13 ± 0.03 0.16 ± 0.05 0.09 ± 0.03 
C 20:3n-3 0.05 ± 0.02ab 0.07 ± 0.05ab 0.11 ± 0.04a 0.02 ± 0.01b 
C 20:5n-3 0.24 ± 0.07ab 0.25 ± 0.05ab 0.11 ± 0.02a 0.37 ± 0.09b 
C 22:5n-3 1.09 ± 0.26a 1.27 ± 0.19a 1.27 ± 0.19a 2.20 ± 0.23b 
C 22:6n-3 11.22 ± 2.16a 13.77 ± 2.35ab 17.46 ± 1.82b 12.47 ± 1.07a 
N-3 12.81 ± 1.92a 15.49 ± 2.44ab 19.11 ± 1.88b 15.14 ± 1.33a 

     HUFA 35.25 ± 3.82 39.96 ± 1.58 37.32 ± 3.61 38.83 ± 1.81 
PUFA 41.82 ± 3.33 44.97 ± 1.31 40.65 ± 3.40 45.22 ± 1.99 
Total 10.05 ± 1.49 14.33 ± 2.59 10.69 ± 5.01 16.64 ± 9.68 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table E.2. Relative percent of fatty acids in liver PE in high DHA diet (TWD 
DHA+) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.92 ± 0.37 0.77 ± 0.19 0.68 ± 0.20 0.68 ± 0.13 
C 16:0 15.22 ± 1.03ab 14.96 ± 0.54ab 17.32 ± 1.32a 14.51 ± 0.94b 
C 18:0 28.97 ± 2.66 30.16 ± 0.87 26.79 ± 1.74 27.75 ± 1.95 
C 20:0 0.12 ± 0.05 0.10 ± 0.02 0.10 ± 0.04 0.07 ± 0.02 
C 22:0 0.13 ± 0.05 0.12 ± 0.02 0.13 ± 0.01 0.10 ± 0.03 
C 24:0 0.14 ± 0.03 0.13 ± 0.03 0.13 ± 0.03 0.16 ± 0.03 
SFA 46.81 ± 2.25 46.99 ± 1.07 47.00 ± 0.31 44.99 ± 1.12 

     C 14:1 0.05 ± 0.06 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0 
C 16:1 0.12 ± 0.04a 0.66 ± 0.12b 0.45 ± 0.23ab 0.49 ± 0.16ab 
C 18:1n-7 0.85 ± 0.26ab 0.60± 0.07a 0.60 ± 0.05a 1.04 ± 0.21b 
C 18:1n-9 7.09 ± 3.42 5.99 ± 2.35 7.85 ± 2.81 8.39 ± 2.38 
C 20:1n-9 0.11 ± 0.06 0.07 ± 0.01 0.08 ± 0.02 0.12 ± 0.02 
C 22:1n-9 0.38 ± 0.11a 0.29 ± 0.06ab 0.39 ± 0.16a 0.18 ± 0.05b 
C 24:1n-9 0.23 ± 0.07 0.20 ± 0.07 0.11 ± 0.03 0.42 ± 0.67 
MUFA 8.93 ± 3.75 7.89 ± 2.49 9.54 ± 3.09 10.73 ± 2.34 

     C 18:2n-6 4.75 ± 2.06a 2.87 ± 0.76b 1.84 ± 0.34b 3.57 ± 0.80ab 
C 18:3n-6 0.12 ± 0.04a 0.09 ± 0.03a 0.05 ± 0.01ab 0.25 ± 0.04b 
C 20:2n-6 0.08 ± 0.03 0.07 ± 0.01 0.09 ± 0.01 0.06 ± 0.02 
C 20:3n-6 0.25 ± 0.03ac 0.21 ± 0.02a 0.10 ± 0.02b 0.33 ± 0.08c 
C 20:4n-6 19.72 ± 2.72a 18.19 ± 1.50a 13.41 ± 0.73b 18.56 ± 1.60a 
C 22:2n-6 0.08 ± 0.03 0.09 ± 0.02 0.05 ± 0.02 0.05 ± 0.01 
C 22:4n-6 0.45 ± 0.06ac 0.30 ± 0.05ab 0.59 ± 0.10c 0.26 ± 0.06b 
C 22:5n-6 0.27 ± 0.23a 0.19 ± 0.06a 1.83 ± 0.30b 0.21 ± 0.04a 
N-6 25.73 ± 2.73a 22.01 ± 1.51ab 17.96 ± 0.50b 23.29 ± 2.29a 

     C 18:3n-3 0.33 ± 0.44a 0.10 ± 0.03ab 0.11 ± 0.02ab 0.06 ± 0.02b 
C 20:3n-3 0.05 ± 0.03 0.09 ± 0.02 0.07 ± 0.01 0.05 ± 0.02 
C 20:5n-3 0.19 ± 0.03ab 0.34 ± 0.07ac 0.10 ± 0.01b 0.49 ± 0.27c 
C 22:5n-3 0.68 ± 0.23 0.58 ± 0.08 0.69 ± 0.12 0.53 ± 0.05 
C 22:6n-3 15.16 ± 3.51a 21.17 ± 1.72b 23.87 ± 2.04b 17.91 ± 1.67a 
N-3 16.41 ± 2.98a 22.29 ± 1.72bc 24.84 ± 2.08c 19.03 ± 1.54ab 

     HUFA 36.78 ± 5.43 41.07 ± 2.54 40.66 ± 2.62 38.34 ± 1.21 
PUFA 42.14 ± 3.53 44.29 ± 2.25 42.80 ± 2.51 42.32 ± 1.71 
Total 10.89 ± 0.77 17.37 ± 3.78 13.92 ± 2.39 11.71 ± 1.73 
Values with different superscripts are significantly different by Tukey’s post hoc test (p<0.05) 
following significant F-value by one-way ANOVA  
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Table E.3.  Relative percent of fatty acids in liver PE in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.93 ± 0.14 0.68 ± 0.17 0.91 ± 0.28 0.52 ± 0.09 
C 16:0 15.73 ± 0.65a 13.37 ± 0.63b 16.26 ± 1.98a 13.75 ± 0.26a 
C 18:0 28.42 ± 0.91ab 32.34 ± 2.86a 27.39 ± 3.03b 28.15 ± 0.66ab 
C 20:0 0.12 ± 0.03 0.10 ± 0.01 0.11 ± 0.03 0.06 ± 0.01 
C 22:0 0.13 ± 0.02 0.13 ± 0.08 0.16 ± 0.07 0.07 ± 0.03 
C 24:0 0.16 ± 0.02 0.16 ± 0.05 0.19 ± 0.06 0.19 ± 0.03 
SFA 47.04 ± 0.71a 47.36 ± 2.19a 46.26 ± 0.54ab 44.13 ± 0.97b 

     C 14:1 0.04 ± 0.01 0.03 ± 0.02 0.05 ± 0.02 0.02 ± 0.01 
C 16:1 0.21 ± 0.12a 0.53 ± 0.24ab 0.67 ± 0.34b 0.38 ± 0.08ab 
C 18:1n-7 0.93 ± 0.07ab 0.67 ± 0.05a 0.72 ± 0.04a 1.20 ± 0.22b 
C 18:1n-9 8.28 ± 2.89 6.34 ± 3.34 8.80 ± 1.56 7.98 ± 0.70 
C 20:1n-9 0.14 ± 0.01a 0.07 ± 0.03b 0.09 ± 0.02ab 0.12 ± 0.01ab 
C 22:1n-9 0.43 ± 0.07a 0.31 ± 0.08ab 0.34 ± 0.07a 0.16 ± 0.03b 
C 24:1n-9 0.35 ± 0.33 0.22 ± 0.13 0.11 ± 0.03 0.14 ± 0.09 
MUFA 10.43 ± 2.81 8.24 ± 3.62 10.82 ± 1.81 10.04 ± 0.6 

     C 18:2n-6 4.44 ± 0.38a 3.05 ± 0.5ab 2.35 ± 0.49b 3.91 ± 0.45ab 
C 18:3n-6 0.15 ± 0.02a 0.12 ± 0.04a 0.09 ± 0.04a 0.34 ± 0.05b 
C 20:2n-6 0.08 ± 0.01 0.07 ± 0.03 0.09 ± 0.03 0.07 ± 0.01 

C 20:3n-6 0.25 ± 0.03ac 0.17 ± 0.01ab 0.10 ± 0.02b 0.32 ± 0.08c 
C 20:4n-6 20.31 ± 2.03a 22.00 ± 2.63a 15.91 ± 2.79b 24.14 ± 1.13a 
C 22:2n-6 0.08 ± 0.01ab 0.12 ± 0.03a 0.08 ± 0.02ab 0.05 ± 0.01b 
C 22:4n-6 0.52 ± 0.09a 0.5 ± 0.06a 1.14 ± 0.15b 0.56 ± 0.09a 
C 22:5n-6 0.46 ± 0.17a 0.79 ± 0.35ac 7.07 ± 1.51b 1.72 ± 0.36c 
N-6 26.29 ± 2.18a 26.82 ± 2.12ab 26.82 ± 1.86ab 31.11 ± 1.78b 

     C 18:3n-3 0.22 ± 0.08 0.10 ± 0.03 0.13 ± 0.05 0.06 ± 0.02 
C 20:3n-3 0.07 ± 0.02ab 0.09 ± 0.06a 0.10 ± 0.05a 0.02 ± 0.01b 
C 20:5n-3 0.16 ± 0.04 0.14 ± 0.02 0.10 ± 0.01 0.27 ± 0.07 
C 22:5n-3 0.83 ± 0.23a 0.86 ± 0.13ab 1.00 ± 0.11ab 1.23 ± 0.28b 
C 22:6n-3 12.70 ± 1.54 15.64 ± 1.47 13.59 ± 0.80 11.79 ± 1.53 
N-3 13.96 ± 1.36 16.84 ± 1.51 14.91 ± 0.81 13.37 ± 1.27 

     HUFA 35.29 ± 2.67 40.20 ± 2.72 36.37 ± 7.37 40.05 ± 1.14 
PUFA 40.26 ± 2.41 43.66 ± 2.23 41.73 ± 1.88 44.48 ± 1.21 
Total 11.18 ± 2.93 19.23 ± 8.60 14.67 ± 2.58 11.90 ± 1.84 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table E.4. Concentration of fatty acids in liver PE in chow fed rats at baseline, 
during pregnancy, and 7 days post partum (µg/mg) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.10 ± 0.03 0.09 ± 0.03 0.09 ± 0.03 0.07 ± 0.03 
C 16:0 1.68 ± 0.28 2.24 ± 0.37 2.19 ± 1.04 2.59 ± 1.47 
C 18:0 2.91 ± 0.55 4.52 ± 1.10 2.49 ± 1.13 4.68 ± 2.8 
C 20:0 0.02 ± 0.01ab 0.01 ± 0.01ab 0.01 ± 0.01ab 0.01 ± 0.01b 
C 22:0 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 
C 24:0 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 
SFA 4.87 ± 0.87 6.99 ± 1.25 5.00 ± 2.23 7.58 ± 4.36 
     
C 14:1 0.01 ± 0.01 Not Detected 0.01 ± 0.01 Not Detected 
C 16:1 0.02 ± 0.01a 0.07 ± 0.05ab 0.08 ± 0.03b 0.05 ± 0.02ab 
C 18:1n-7 0.11 ± 0.01 0.12 ± 0.02 0.08 ± 0.03 0.17 ± 0.09 
C 18:1n-9 0.83 ± 0.23 0.55 ± 0.12 1.01 ± 0.5 1.09 ± 0.50 
C 20:1n-9 0.02 ± 0.01ab 0.01 ± 0.01a 0.01 ± 0.01a 0.02 ± 0.01b 
C 22:1n-9 0.04 ± 0.01 0.05 ± 0.01 0.04 ± 0.02 0.02 ± 0.01 
C 24:1n-9 0.02 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 
MUFA 1.04 ± 0.24 0.83 ± 0.19 1.24 ± 0.56 1.37 ± 0.62 
     
C 18:2n-6 0.69 ± 0.06 0.65 ± 0.12 0.32 ± 0.16 0.96 ± 0.66 
C 18:3n-6 0.02 ± 0.01ab 0.02 ± 0.01ab 0.01 ± 0.01a 0.05 ± 0.03b 
C 20:2n-6 0.01 ± 0.01a 0.02 ± 0.01ab 0.01 ± 0.01a 0.03 ± 0.01b 
C 20:3n-6 0.03 ± 0.01a 0.04 ± 0.01a 0.01 ± 0.01a 0.10 ± 0.06b 
C 20:4n-6 2.05 ± 0.4 3.39 ± 0.93 1.43 ± 0.71 3.61 ± 2.27 
C 22:2n-6 0.01 ± 0.01a 0.02 ± 0.01b 0.01 ± 0.01ab 0.01 ± 0.01a 
C 22:4n-6 0.06 ± 0.01 0.08 ± 0.02 0.12 ± 0.06 0.11 ± 0.06 
C 22:5n-6 0.03 ± 0.01a 0.06 ± 0.04a 0.44 ± 0.27b 0.23 ± 0.12ab 
N-6 2.89 ± 0.44 4.28 ± 1.03 2.36 ± 1.20 5.09 ± 3.16 
     
C 18:3n-3 0.04 ± 0.03a 0.02 ± 0.01ab 0.02 ± 0.01b 0.02 ± 0.01b 
C 20:3n-3 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 Not Detected 
C 20:5n-3 0.02 ± 0.01a 0.04 ± 0.01ab 0.01 ± 0.01a 0.07 ± 0.06b 
C 22:5n-3 0.12 ± 0.03a 0.18 ± 0.05a 0.14 ± 0.07a 0.38 ± 0.23b 
C 22:6n-3 1.05 ± 0.23 1.99 ± 0.46 1.92 ± 1.04 2.14 ± 1.32 
N-3 1.24 ± 0.24 2.24 ± 0.5 2.10 ± 1.12 2.60 ± 1.61 
     
HUFA 3.36 ± 0.68 5.79 ± 1.23 4.09 ± 2.15 6.62 ± 4.09 
PUFA 4.13 ± 0.67 6.51 ± 1.34 4.45 ± 2.31 7.69 ± 4.76 
Total 10.05 ± 1.49 14.33 ± 2.59 10.69 ± 5.01 16.64 ± 9.68 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table E.5. Concentration of fatty acids in liver PE in high DHA diet (TWD DHA+) 
fed rats at baseline, during pregnancy, and 7 days post partum (µg/mg) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.10 ± 0.02 0.13 ± 0.04 0.09 ± 0.03 0.08 ± 0.02 
C 16:0 1.72 ± 0.05 2.62 ± 0.56 2.41 ± 0.32 1.72 ± 0.33 
C 18:0 3.15 ± 0.26 5.29 ± 1.21 3.77 ± 0.80 3.28 ± 0.64 
C 20:0 0.01 ± 0ab 0.02 ± 0.01a 0.01 ± 0.01ab 0.01 ± 0.01b 
C 22:0 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 
C 24:0 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 
SFA 5.19 ± 0.31 8.24 ± 1.86 6.59 ± 1.15 5.32 ± 0.99 
     
C 14:1 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 001 Not Detected 
C 16:1 0.01 ± 0.01a 0.12 ± 0.03b 0.06 ± 0.03ab 0.06 ± 0.01a 
C 18:1n-7 0.09 ± 0.02 0.10 ± 0.02 0.08 ± 0.02 0.12 ± 0.03 
C 18:1n-9 0.76 ± 0.15 1.04 ± 0.43 1.08 ± 0.35 0.99 ± 0.29 
C 20:1n-9 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 001 0.01 ± 0.01 
C 22:1n-9 0.04 ± 0.01ab 0.05 ± 0.01a 0.06 ± 0.03a 0.02 ± 0.01b 
C 24:1n-9 0.03 ± 0.01 0.04 ± 0.02 0.02 ± 0.01 0.05 ± 0.09 
MUFA 0.96 ± 0.16 1.38 ± 0.48 1.31 ± 0.40 1.27 ± 0.32 
     
C 18:2n-6 0.43 ± 0.04 0.50 ± 0.15 0.26 ± 0.08 0.41 ± 0.03 
C 18:3n-6 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.01 
C 20:2n-6 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 20:3n-6 0.03 ± 0,01 0.04 ± 0.01 0.01 ± 0.01 0.04 ± 0.01 
C 20:4n-6 2.07 ± 0.26 3.17 ± 0.66 1.89 ± 0.38 2.17 ± 0.32 
C 22:2n-6 0.01 ± 0.01a 0.02 ± 0.01b 0.01 ± 0.01a 0.01 ± 0.01a 
C 22:4n-6 0.05 ± 0.01 0.05 ± 0.02 0.08 ± 0.02 0.03 ± 0.01 
C 22:5n-6 0.02 ± 0.01a 0.03 ± 0.02ab 0.25 ± 0.03b 0.03 ± 0.01a 
N-6 2.63 ± 0.31 3.83 ± 0.75 2.52 ± 0.48 2.72 ± 0.33 
     
C 18:3n-3 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 
C 20:3n-3 0.01 ± 0.01a 0.02 ± 0.01b 0.01 ± 0.01ab 0.01 ± 0.01a 
C 20:5n-3 0.03 ± 0.01a 0.06 ± 0.01a 0.01 ± 0.01b 0.05 ± 0.03ab 
C 22:5n-3 0.06 ± 0.01 0.10 ± 0.02 0.10 ± 0.03 0.06 ± 0.01 
C 22:6n-3 1.78 ± 0.11a 3.73 ± 1.03b 3.36 ± 0.72bc 2.13 ± 0.51ac 
N-3 1.89 ± 0.12a 3.92 ± 1.06b 3.49 ± 0.75ab 2.26 ± 0.51a 
     
HUFA 4.03 ± 0.37 7.20 ± 1.72 5.71 ± 1.16 4.52 ± 0.78 
PUFA 4.52 ± 0.4 7.75 ± 1.77 6.02 ± 1.21 4.98 ± 0.78 
Total 10.89 ± 0.77 17.37 ± 3.78 13.92 ± 2.39 11.71 ± 1.73 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table E.6. Concentration of fatty acids in liver PE in DHA deficient diet (TWD 
DHA-) fed rats at baseline, during pregnancy, and 7 days post partum (µg/mg) 

Name baseline 15 days 20 days 
7 days 

post partum 
C 14:0 0.10 ± 0.04ab 0.13 ± 0.03a 0.14 ± 0.04a 0.06 ± 0.02b 
C 16:0 1.79 ± 0.51 2.85 ± 1.49 2.46 ± 0.41 1.66 ± 0.27 
C 18:0 3.26 ± 0.75a 6.21 ± 2.57b 3.98 ± 0.87ab 3.40 ± 0.53a 
C 20:0 0.01 ± 0.01ab 0.02 ± 0.01a 0.02 ± 0.01a 0.01 ± 0.01b 
C 22:0 0.01 ± 0.01ab 0.02 ± 0.01a 0.02 ± 0.01a 0.01 ± 0.01b 
C 24:0 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 
SFA 5.37 ± 1.38 9.37 ± 4.06 6.87 ± 1.26 5.33 ± 0.86 
     
C 14:1 Not Detected 0.01 ± 0.01ab 0.01 ± 0.01b Not Detected 
C 16:1 0.03 ± 0.02a 0.11 ± 0.03b 0.12 ± 0.04b 0.05 ± 0.01a 
C 18:1n-7 0.11 ± 0.03 0.17 ± 0.13 0.11 ± 0.02 0.14 ± 0.04 
C 18:1n-9 0.94 ± 0.66 1.29 ± 0.52 1.32 ± 0.31 0.96 ± 0.16 
C 20:1n-9 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 22:1n-9 0.05 ± 0.02a 0.05 ± 0.02a 0.05 ± 0.01a 0.02 ± 0.01b 
C 24:1n-9 0.04 ± 0.03 0.04 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 
MUFA 1.18 ± 0.73 1.70 ± 0.64 1.63 ± 0.35 1.21 ± 0.20 
     
C 18:2n-6 0.52 ± 0.17 0.96 ± 1.11 0.35 ± 0.09 0.47 ± 0.05 
C 18:3n-6 0.02 ± 0.01 0.04 ± 0.04 0.01 ± 0.01 0.04 ± 0.01 
C 20:2n-6 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 
C 20:3n-6 0.03 ± 0.01 0.04 ± 0.02 0.01 ± 0.01 0.04 ± 0.01 
C 20:4n-6 2.33 ± 0.37a 4.57 ± 2.61b 2.23 ± 0.38a 2.90 ± 0.39ab 
C 22:2n-6 0.01 ± 0.02a 0.02 ± 0.01b 0.01 ± 0.01a 0.01 ± 0.01a 
C 22:4n-6 0.06 ± 0.01a 0.08 ± 0.02a 0.17 ± 0.04b 0.07 ± 0.02a 
C 22:5n-6 0.06 ± 0.01a 0.14 ± 0.06a 1.06 ± 0.23b 0.20 ± 0.03a 
N-6 3.04 ± 0.57 5.86 ± 3.76 3.86 ± 0.60 3.73 ± 0.45 
     
C 18:3n-3 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 
C 20:3n-3 0.01 ± 0.02ac 0.02 ± 0.01b 0.02 ± 0.01ab Not Detected 
C 20:5n-3 0.02 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.03 ± 0.01 
C 22:5n-3 0.10 ± 0.02 0.15 ± 0.01 0.15 ± 0.03 0.14 ± 0.02 
C 22:6n-3 1.42 ± 0.25 2.64 ± 0.27 2.10 ± 0.48 1.44 ± 0.39 
N-3 1.58 ± 0.29 2.85 ± 0.27 2.30 ± 0.52 1.63 ± 0.39 
     
HUFA 4.04 ± 0.65a 7.65 ± 2.64b 5.45 ± 1.62ab 4.83 ± 0.78ab 
PUFA 4.62 ± 0.84 8.72 ± 3.79 6.16 ± 1.08 5.36 ± 0.81 
Total 11.18 ± 2.93 19.23 ± 8.60 14.67 ± 2.58 11.90 ± 1.84 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Appendix F. Pups whole body Total Lipids 

Table F.1.  Relative percent of fatty acids in whole body pups of chow fed rats 
during pregnancy, and 7 days post partum  

Name 15 days 20 days 
7 days 

post partum 
C 14:0 2.04 ± 0.24a 2.26 ± 0.18a 4.59 ± 1.19b 
C 16:0 26.74 ± 0.73a 26.27 ± 0.73a 22.08 ± 0.82b 
C 18:0 14.53 ± 0.65a 13.05 ± 0.16a 9.14 ± 1.89b 
C 20:0 0.28 ± 0.08 0.26 ± 0.01 0.19 ± 0.05 
C 22:0 0.16 ± 0.03a 0.38 ± 0.04b 0.23 ± 0.07ab 
C 24:0 0.20 ± 0.06a 1.05 ± 0.05b 0.65 ± 0.22b 
SFA 45.47 ± 0.74a 43.99 ± 0.70ab 42.03 ± 1.30b 

    C 14:1 0.03 ± 0.02 Not detected 0.03 ± 0.01 
C 16:1 2.61 ± 0.14a 2.72 ± 0.26a 0.99 ± 0.11b 
C 18:1n-7 3.54 ± 0.16a 3.42 ± 0.15a 2.03 ± 0.21b 
C 18:1n-9 15.90 ± 0.88 15.14 ± 0.42 15.81 ± 1.26 
C 20:1n-9 0.32 ± 0.07 0.22 ± 0.01 0.28 ± 0.03 
C 22:1n-9 0.40 ± 0.24 0.23 ± 0.05 0.09 ± 0.03 
C 24:1n-9 0.26 ± 0.08 0.33 ± 0.03 0.17 ± 0.07 
MUFA 23.44 ± 0.87a 22.19 ± 0.79ab 19.66 ± 1.13b 

    C 18:2n-6 3.49 ± 0.29a 7.46 ± 0.70b 18.06 ± 2.25c 
C 18:3n-6 0.25 ± 0.05a 0.18 ± 0.02a 0.38 ± 0.08b 
C 20:2n-6 0.36 ± 0.13a 0.34 ± 0.09a 0.76 ± 0.06b 
C 20:3n-6 0.52 ± 0.09a 0.71 ± 0.09b 1.08 ± 0.07c 
C 20:4n-6 13.88 ± 0.78a 11.49 ± 0.10a 8.61 ± 2.00b 
C 22:2n-6 0.10 ± 0.03 0.14 ± 0.09 0.05 ± 0.02 
C 22:4n-6 2.96 ± 0.30a 1.93 ± 0.08b 1.44 ± 0.29b 
C 22:5n-6 1.57 ± 0.23a 1.14 ± 0.12a 0.44 ± 0.15b 
N-6 23.13 ± 0.81a 23.39 ± 0.81a 30.84 ± 0.89b 

    C 18:3n-3 0.09 ± 0.06 0.21 ± 0.09 0.76 ± 0.24 
C 20:3n-3 0.06 ± 0.02 0.03 ± 0.02 0.06 ± 0.01 
C 20:5n-3 0.12 ± 0.08a 0.16 ± 0.04ab 0.25 ± 0.04b 
C 22:5n-3 0.26 ± 0.12a 0.46 ± 0.07a 1.03 ± 0.11b 
C 22:6n-3 2.61 ± 0.23a 4.34 ± 0.56b 2.57 ± 0.68a 
N-3 3.15 ± 0.29a 5.21 ± 0.72b 4.67 ± 0.53b 

    HUFA 21.98 ± 1.10a 20.26 ± 0.71a 15.48 ± 3.23b 
PUFA 26.28 ± 0.82a 28.59 ± 1.42a 35.50 ± 1.22b 
Total 8.24 ± 1.29 11.30 ± 2.27 33.44 ± 11.97 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA  
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Table F.2. Relative percent of fatty acids in whole body pups of high DHA diet 
(TWD DHA+) fed rats during pregnancy, and 7 days post partum  

Name 15 days 20 days 
7 days 

post partum 
C 14:0 2.23 ± 0.26a 2.48 ± 0.09a 4.56 ± 0.72b 
C 16:0 26.55 ± 0.3a 25.06 ± 0.51a 20.96 ± 0.66b 
C 18:0 13.94 ± 0.44a 13.22 ± 0.37a 6.89 ± 0.88b 
C 20:0 0.25 ± 0.09a 0.30 ± 0.08a 0.10 ± 0.04b 
C 22:0 0.14 ± 0.07a 0.35 ± 0.10b 0.09 ± 0.04a 
C 24:0 0.15 ± 0.05a 0.79 ± 0.11b 0.20 ± 0.13a 
SFA 45.44 ± 0.66a 43.60 ± 0.77a 38.23 ± 0.64b 

    C 14:1 0.03 ± 0.01a 0.03 ± 0.01a 0.12 ± 0.02b 
C 16:1 2.65 ± 0.15a 2.60 ± 0.12a 1.54 ± 0.19b 
C 18:1n-7 3.59 ± 0.10a 3.38 ± 0.15a 2.29 ± 0.14b 
C 18:1n-9 17.12 ± 1.03a 16.81 ± 1.14a 30.33 ± 1.83b 
C 20:1n-9 0.38 ± 0.05a 0.25 ± 0.04a 0.51 ± 0.04c 
C 22:1n-9 0.24 ± 0.13 0.33 ± 0.13 0.07 ± 0.02 
C 24:1n-9 0.23 ± 0.09a 0.44 ± 0.14b 0.09 ± 0.04a 
MUFA 24.81 ± 1.09a 24.12 ± 1.34a 35.06 ± 1.79b 

    C 18:2n-6 3.19 ± 0.27a 6.35 ± 0.40b 12.69 ± 0.35c 
C 18:3n-6 0.19 ± 0.03a 0.18 ± 0.03a 0.32 ± 0.05b 
C 20:2n-6 0.31 ± 0.08a 0.31 ± 0.04a 0.65 ± 0.05b 
C 20:3n-6 0.52 ± 0.08a 0.72 ± 0.06b 0.85 ± 0.05b 
C 20:4n-6 12.62 ± 0.51a 11.00 ± 0.38a 4.16 ± 1.24b 
C 22:2n-6 0.13 ± 0.08a 0.06 ± 0.03ab 0.03 ± 0.01b 
C 22:4n-6 2.56 ± 0.16a 1.67 ± 0.12b 0.83 ± 0.21b 
C 22:5n-6 1.21 ± 0.13a 0.69 ± 0.15b 0.11 ± 0.05c 
N-6 20.73 ± 0.81 20.99 ± 0.71 19.63 ± 1.34 

    C 18:3n-3 0.07 ± 0.03 0.15 ± 0.07 0.59 ± 0.07 
C 20:3n-3 0.07 ± 0.03 0.05 ± 0.02 0.04 ± 0.01 
C 20:5n-3 0.10 ± 0.05a 0.21 ± 0.05b 0.19 ± 0.02b 
C 22:5n-3 0.27 ± 0.07a 0.29 ± 0.09ab 0.48 ± 0.13b 

C 22:6n-3 3.60 ± 0.35a 6.00 ± 0.54b 2.65 ± 0.81a 
N-3 4.11 ± 0.31a 6.70 ± 0.61b 3.95 ± 0.91a 

    HUFA 20.96 ± 0.96a 20.64 ± 0.51a 9.32 ± 2.46b 
PUFA 24.85 ± 1.08ab 27.70 ± 0.89a 23.59 ± 2.23b 
Total 8.90 ± 0.84a 9.96 ± 0.57a 94.03 ± 35.11b 

Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table F.3. Relative percent of fatty acids in whole body pups of DHA deficient diet 
(TWD DHA-) fed rats during pregnancy, and 7 days post partum 

Name 15 days 20 days 
7 days 

post partum 
C 14:0 2.40 ± 0.37a 2.33 ± 0.32a 4.86 ± 1.00b 
C 16:0 26.50 ± 0.97a 25.77 ± 0.69a 20.94 ± 1.52b 
C 18:0 13.87 ± 0.89a 12.93 ± 0.40a 6.46 ± 0.82b 
C 20:0 0.25 ± 0.07a 0.27 ± 0.05a 0.10 ± 0.02b 
C 22:0 0.20 ± 0.17a 0.44 ± 0.07b 0.07 ± 0.02a 
C 24:0 0.26 ± 0.44a 0.89 ± 0.06b 0.18 ± 0.06a 
SFA 44.98 ± 1.03a 43.31 ± 1.11a 38.13 ± 2.43b 

    C 14:1 0.04 ± 0.01a 0.02 ± 0.01a 0.12 ± 0.02b 
C 16:1 2.68 ± 0.09a 2.69 ± 0.16a 1.55 ± 0.29b 
C 18:1n-7 3.54 ± 0.17a 3.44 ± 0.18a 2.25 ± 0.16b 
C 18:1n-9 17.06 ± 0.66a 17.56 ± 1.46a 31.48 ± 1.25b 
C 20:1n-9 0.35 ± 0.04a 0.26 ± 0.05a 0.53 ± 0.10b 
C 22:1n-9 0.34 ± 0.20 0.31 ± 0.08 0.06 ± 0.01 
C 24:1n-9 0.16 ± 0.13ab 0.32 ± 0.07a 0.09 ± 0.03b 
MUFA 24.52 ± 0.67a 24.77 ± 1.67a 36.21 ± 1.30b 

    C 18:2n-6 3.75 ± 1.32a 6.19 ± 0.53b 12.76 ± 0.4c 
C 18:3n-6 0.22 ± 0.04 0.25 ± 0.09 0.31 ± 0.05 
C 20:2n-6 0.29 ± 0.05a 0.30 ± 0.08a 0.66 ± 0.10b 
C 20:3n-6 0.49 ± 0.10a 0.63 ± 0.05a 0.81 ± 0.09b 
C 20:4n-6 12.96 ± 1.06a 11.69 ± 0.93a 4.36 ± 1.02b 
C 22:2n-6 0.11 ± 0.06 0.08 ± 0.06 0.03 ± 0.01 
C 22:4n-6 2.65 ± 0.43a 2.05 ± 0.19b 0.99 ± 0.39b 
C 22:5n-6 1.63 ± 0.30a 1.85 ± 0.30a 0.30 ± 0.03b 
N-6 22.10 ± 0.92ab 23.04 ± 1.24a 20.24 ± 1.78b 

    C 18:3n-3 0.14 ± 0.07 0.15 ± 0.01 0.58 ± 0.05 
C 20:3n-3 0.09 ± 0.03a 0.03 ± 0.01b 0.04 ± 0.01b 
C 20:5n-3 0.09 ± 0.02 0.09 ± 0.05 0.16 ± 0.01 
C 22:5n-3 0.20 ± 0.10a 0.21 ± 0.12a 0.49 ± 0.10b 
C 22:6n-3 2.71 ± 0.59a 3.43 ± 0.41a 0.90 ± 0.21b 
N-3 3.22 ± 0.68 3.90 ± 0.35 2.17 ± 0.26 

    HUFA 20.82 ± 1.27a 19.98 ± 1.27a 8.06 ± 1.79b 
PUFA 25.33 ± 1.53ab 26.95 ± 1.35a 22.41 ± 2.04b 
Total 8.15 ± 1.20a 9.96 ± 0.22a 97.29 ± 19.46b 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table F.4. Concentration of fatty acids in whole body pups of chow fed rats during 
pregnancy, and 7 days post partum (µg/mg) 

Name 15 days 20 days 
7 days 

post partum 
C 14:0 0.17 ± 0.01 0.27 ± 0.03 1.68 ± 0.88 
C 16:0 2.32 ± 0.38 3.13 ± 0.64 7.66 ± 2.93 
C 18:0 1.26 ± 0.22a 1.55 ± 0.29ab 2.96 ± 0.54b 
C 20:0 0.02 ± 0.01a 0.03 ± 0.01a 0.06 ± 0.01b 
C 22:0 0.01 ± 0.01a 0.04 ± 0.01b 0.07 ± 0.01c 
C 24:0 0.02 ± 0.01a 0.12 ± 0.02b 0.20 ± 0.03c 
SFA 3.94 ± 0.64 5.24 ± 1.00 14.47 ± 5.21 
    
C 14:1 Not Detected Not Detected 0.01 ± 0.01 
C 16:1 0.23 ± 0.04 0.32 ± 0.07 0.35 ± 0.15 
C 18:1n-7 0.31 ± 0.05 0.41 ± 0.08 0.68 ± 0.19 
C 18:1n-9 1.37 ± 0.15a 1.80 ± 0.36a 5.55 ± 2.35b 
C 20:1n-9 0.03 ± 0.01 0.03 ± 0.01 0.10 ± 0.04 
C 22:1n-9 0.03 ± 0.02 0.03 ± 0.01 0.03 ± 0.01 
C 24:1n-9 0.02 ± 0.01a 0.04 ± 0.01ab 0.05 ± 0.01b 
MUFA 2.02 ± 0.25 2.64 ± 0.52 6.84 ± 2.73 
    
C 18:2n-6 0.30 ± 0.03a 0.89 ± 0.20a 6.42 ± 2.87b 
C 18:3n-6 0.02 ± 0.01 0.02 ± 0.01 0.14 ± 0.07 
C 20:2n-6 0.03 ± 0.01a 0.04 ± 0.01a 0.26 ± 0.10b 
C 20:3n-6 0.04 ± 0.01a 0.08 ± 0.01a 0.37 ± 0.12b 
C 20:4n-6 1.21 ± 0.23a 1.37 ± 0.28a 2.76 ± 0.44b 
C 22:2n-6 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 
C 22:4n-6 0.26 ± 0.06a 0.23 ± 0.04a 0.47 ± 0.10b 
C 22:5n-6 0.14 ± 0.04 0.14 ± 0.04 0.14 ± 0.02 
N-6 2.01 ± 0.36a 2.79 ± 0.57a 10.58 ± 3.68b 
    
C 18:3n-3 0.01 ± 0.01a 0.03 ± 0.01a 0.28 ± 0.17b 
C 20:3n-3 0.01 ± 0.01a Not Detected 0.02 ± 0.01b 
C 20:5n-3 0.01 ± 0.01a 0.02 ± 0.01a 0.09 ± 0.04b 
C 22:5n-3 0.02 ± 0.01a 0.05 ± 0.01a 0.34 ± 0.10b 
C 22:6n-3 0.23 ± 0.04a 0.52 ± 0.17a 0.82 ± 0.11b 
N-3 0.27 ± 0.04a 0.63 ± 0.20a 1.55 ± 0.41b 
    
HUFA 1.91 ± 0.36a 2.42 ± 0.56a 5.01 ± 0.91b 
PUFA 2.28 ± 0.40a 3.42 ± 0.76a 12.13 ± 4.09b 
Total 8.24 ± 1.29 11.30 ± 2.27 33.44 ± 11.97 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table F.5. Concentration of fatty acids in whole body pups of high DHA diet (TWD 
DHA+) fed rats during pregnancy, and 7 days post partum (µg/mg) 

Name 15 days 20 days 
7 days 

post partum 
C 14:0 0.21 ± 0.02a 0.26 ± 0.02a 4.57 ± 1.99b 
C 16:0 2.49 ± 0.24a 2.62 ± 0.18a 20.47 ± 8.00b 
C 18:0 1.30 ± 0.12a 1.38 ± 0.09a 6.46 ± 1.87b 
C 20:0 0.02 ± 0.01a 0.03 ± 0.01a 0.09 ± 0.01b 
C 22:0 0.01 ± 0.01a 0.04 ± 0.01b 0.08 ± 0.01c 
C 24:0 0.01 ± 0.01a 0.08 ± 0.01b 0.16 ± 0.03c 
SFA 4.25 ± 0.43a 4.55 ± 0.29a 37.19 ± 13.98b 
    
C 14:1 Not Detected Not Detected 0.11 ± 0.05b 
C 16:1 0.25 ± 0.03a 0.27 ± 0.01a 1.53 ± 0.69b 
C 18:1n-7 0.34 ± 0.03a 0.35 ± 0.01a 2.19 ± 0.76b 
C 18:1n-9 1.60 ± 0.15a 1.75 ± 0.08a 29.96 ± 12.6b 
C 20:1n-9 0.04 ± 0.01a 0.03 ± 0.01a 0.49 ± 0.19b 
C 22:1n-9 0.02 ± 0.01a 0.03 ± 0.01ab 0.06 ± 0.01b 
C 24:1n-9 0.02 ± 0.01a 0.05 ± 0.02b 0.08 ± 0.01c 
MUFA 2.32 ± 0.20a 2.51 ± 0.09a 34.54 ± 14.28b 
    
C 18:2n-6 0.30 ± 0.04a 0.66 ± 0.07a 12.34 ± 4.64b 
C 18:3n-6 0.02 ± 0.01a 0.02 ± 0.01a 0.32 ± 0.16b 
C 20:2n-6 0.03 ± 0.01a 0.03 ± 0.01a 0.63 ± 0.21b 
C 20:3n-6 0.05 ± 0.01a 0.08 ± 0.01a 0.82 ± 0.29b 
C 20:4n-6 1.18 ± 0.14a 1.15 ± 0.08a 3.73 ± 0.72b 
C 22:2n-6 0.01 ± 0.01a 0.01 ± 0.01a 0.02 ± 0.01b 
C 22:4n-6 0.24 ± 0.01a 0.17 ± 0.02a 0.77 ± 0.21b 
C 22:5n-6 0.11 ± 0.02a 0.07 ± 0.02a 0.10 ± 0.02b 
N-6 1.94 ± 0.20a 2.19 ± 0.18a 18.72 ± 6.16b 
    
C 18:3n-3 0.01 ± 0.01a 0.02 ± 0.01a 0.58 ± 0.22b 
C 20:3n-3 0.01 ± 0.01a 0.01 ± 0.01a 0.04 ± 0.01b 
C 20:5n-3 0.01 ± 0.01a 0.02 ± 0.01a 0.18 ± 0.06b 
C 22:5n-3 0.03 ± 0.01a 0.03 ± 0.01a 0.43 ± 0.08b 
C 22:6n-3 0.34 ± 0.05a 0.63 ± 0.08a 2.36 ± 0.37b 
N-3 0.39 ± 0.05a 0.70 ± 0.10a 3.59 ± 0.72b 
    
HUFA 1.96 ± 0.21a 2.16 ± 0.17a 8.42 ± 1.71b 
PUFA 2.33 ± 0.25a 2.90 ± 0.25a 22.31 ± 6.87b 
Total 8.9 ± 0.84a 9.96 ± 0.57a 94.03 ± 35.11b 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA 
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Table F.6. Concentration of fatty acids in whole body pups of DHA deficient diet 
(TWD DHA-) fed rats during pregnancy, and 7 days post partum (µg/mg) 

Name 15 days 20 days 
7 days 

post partum 
C 14:0 0.21 ± 0.05a 0.24 ± 0.03a 5.02 ± 1.98b 
C 16:0 2.27 ± 0.26a 2.70 ± 0.12a 21.26 ± 5.73b 
C 18:0 1.18 ± 0.11a 1.36 ± 0.06a 6.40 ± 0.75b 
C 20:0 0.02 ± 0.01a 0.03 ± 0.01a 0.10 ± 0.01b 
C 22:0 0.02 ± 0.02a 0.05 ± 0.01b 0.07 ± 0.01c 
C 24:0 0.03 ± 0.05a 0.09 ± 0.01b 0.17 ± 0.03c 
SFA 3.86 ± 0.49a 4.54 ± 0.18a 38.65 ± 10.07b 
    
C 14:1 Not Detected Not Detected 0.12 ± 0.05b 
C 16:1 0.23 ± 0.03a 0.28 ± 0.02a 1.59 ± 0.55b 
C 18:1n-7 0.30 ± 0.04a 0.36 ± 0.02a 2.24 ± 0.28b 
C 18:1n-9 1.47 ± 0.25a 1.84 ± 0.17a 31.62 ± 6.00b 
C 20:1n-9 0.03 ± 0.01a 0.03 ± 0.01a 0.52 ± 0.06b 
C 22:1n-9 0.03 ± 0.02a 0.03 ± 0.01ab 0.06 ± 0.01b 
C 24:1n-9 0.01 ± 0.01a 0.03 ± 0.01a 0.09 ± 0.01b 
MUFA 2.11 ± 0.33a 2.60 ± 0.2a 36.35 ± 6.83b 
    
C 18:2n-6 0.33 ± 0.18a 0.65 ± 0.05a 12.8 ± 2.35b 
C 18:3n-6 0.02 ± 0.01a 0.03 ± 0.01a 0.32 ± 0.11b 
C 20:2n-6 0.03 ± 0.01a 0.03 ± 0.01a 0.65 ± 0.07b 
C 20:3n-6 0.04 ± 0.01a 0.07 ± 0.01a 0.81 ± 0.10b 
C 20:4n-6 1.11 ± 0.11a 1.22 ± 0.08a 4.27 ± 0.51b 
C 22:2n-6 0.01 ± 0.01a 0.01 ± 0.01a 0.03 ± 0.01b 
C 22:4n-6 0.22 ± 0.03a 0.22 ± 0.02a 0.96 ± 0.24b 
C 22:5n-6 0.14 ± 0.04a 0.19 ± 0.03a 0.30 ± 0.04b 
N-6 1.90 ± 0.31a 2.41 ± 0.10a 20.14 ± 2.7b 
    
C 18:3n-3 0.01 ± 0.01a 0.02 ± 0.01a 0.59 ± 0.16b 
C 20:3n-3 0.01 ± 0.01a Not Detected 0.04 ± 0.01b 
C 20:5n-3 0.01 ± 0.01a 0.01 ± 0.01a 0.16 ± 0.04b 
C 22:5n-3 0.02 ± 0.01a 0.02 ± 0.01a 0.48 ± 0.05b 
C 22:6n-3 0.24 ± 0.08a 0.36 ± 0.04a 0.88 ± 0.11b 
N-3 0.28 ± 0.09a 0.41 ± 0.04a 2.15 ± 0.27b 
    
HUFA 1.78 ± 0.23a 2.09 ± 0.12a 7.89 ± 0.92b 
PUFA 2.18 ± 0.40a 2.82 ± 0.11a 22.29 ± 2.96b 
Total 8.15 ± 1.20a 9.96 ± 0.22a 97.29 ± 19.46b 
Values with different superscripts are significantly different by Tukey’s post hoc test 
(p<0.05) following significant F-value by one-way ANOVA	  
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