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Abstract 

Large amounts of hydrocarbon reserves are trapped in fractured reservoirs where fluid flux is 

far more rapid along fractures than through the porous matrix, even though the volume of the 

pore space may be a hundred times greater than the volume of the fractures.  These are 

considered extremely challenging in terms of accurate recovery prediction because of their 

complexity and heterogeneity.  Conventional reservoir simulators are generally not suited to 

naturally fractured reservoirs’ production history simulation, especially when production 

processes are associated with large pressure and temperature changes that lead to large 

redistribution of effective stresses, causing natural fracture aperture alterations.  In this case, 

all the effective processes, i.e. hydraulic, thermal and geomechanical, should be considered 

simultaneously to explain and evaluate the behavior of stress-sensitive reservoirs over the 

production period.  This is called thermo-hydro-mechanical (THM) coupling. 

In this study, a fully coupled thermo-hydro-mechanical approach is developed to simulate the 

physical behavior of fractures in a plane strain thermo-poroelastic medium.  A hybrid 

numerical method, which implements both the finite difference method (FDM) and the 

displacement discontinuity method (DDM), is established to study the pressure, temperature, 

deformation and stress variations of fractures and surrounding rocks during production 

processes.  This method is straightforward and can be implemented in conventional reservoir 

simulators to update fracture conductivity as it uses the same grid block as the reservoir grids 

and requires only discretization of fractures. 
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The hybrid model is then verified with couple of analytical solutions for the fracture aperture 

variation under different conditions.  This model is implemented for some examples to 

present the behavior of fracture network as well as its surrounding rock under thermal 

injection and production.  The results of this work clearly show the importance of rate, aspect 

ratio (i.e. geometry) and the coupling effects among fracture flow rate and aperture changes 

arising from coupled stress, pressure and temperature changes.  The outcomes of this 

approach can be used to study the behavior of hydraulic injection for induced fracturing and 

promoting of shearing such as hydraulic fracturing of shale gas or shale oil reservoirs as well 

as massive waste disposal in the porous carbonate rocks.  Furthermore, implementation of 

this technique should be able to lead to a better understanding of induced seismicity in 

injection projects of all kinds, whether it is for waste water disposal, or for the extraction of 

geothermal energy. 
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Chapter 1 

Introduction 

1.1  Petroleum Geomechanics 

In the last three decades, there has been an increasing emphasis on the importance of 

geomechanics in petroleum engineering.  In reservoir management, geomechanics plays a role as 

a multidisciplinary aspect among the various other engineering specialties (geology, 

thermodynamics, and fluid flow).  In fact, the term “geomechanics” is often applied very broadly 

to describe a wide range of reservoir phenomena.  Some of the reservoir engineering challenges 

involving geomechanics include (Figure  1.1): 

 Wellbore stability during drilling and open hole completion 

 Reservoir compaction and surface subsidence 

 Sand production 

 Behavior of naturally fractured reservoirs 

 Integrity of completions during production (casing failures) 

 Hydraulic fracturing 

 Thermal fracturing with cold fluids 

 Coal bed methane production 

 Drilling cuttings reinjection 
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Numerical modelling of such processes is complex, first because of the complexity of the 

physics involved, and second because of the structurally complicated geometry of the reservoir 

and cap rock.  This kind of modelling has been historically carried out in three separate areas: 

 Reservoir simulation which consists of multiphase flow modeling and heat transfer in a 

porous medium; 

 Geomechanical modelling that computes the deformation of the rocks as a consequence of the 

hydrocarbon exploitation activities such as production, injection, thermal recovery and so on; 

and, 

 Fracture mechanics and fractured media behaviour which are important in stress-sensitive 

reservoirs such as naturally fractured reservoirs and in cases dealing with fracture propagation 

and geometry [Settari and Walters, 2001] 

 

Figure  1.1. Reservoir engineering problems involving geomechanics [reproduced from www.slb.com]. 
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Rapid progress in computer technology in recent years has allowed the tackling of numerically 

more challenging problems associated with non-linear materials and multiphase flow as well as 

the simulation of fractured rock mass behaviour.  Because of the complexity of the solutions for 

multiphase flow and geomechanics models themselves, the solution of the coupled problem is 

even more complicated and needs further study to improve accuracy, convergence, and 

computing efficiency.  In particular, researchers have been debating which coupling approach is 

best for computing fluid-solid interactions, and for which cases.  The term ‘interaction’ is 

understood here as the mechanical force effect rather than the effect of any associated chemical 

reactions [Tran et al., 2002]. 

1.2  Naturally Fractured Reservoirs 

A significant amount of oil and gas reserves - more than 60% of the world’s proved conventional 

oil reserves as well as 50% of the world’s proved gas reserves
1
 - are found in carbonate rocks 

which are mostly naturally fractured (Figure  1.2).  Fractures are planar discontinuities which 

occur in different scales from microscopic to macroscopic and kilometer sized features and are 

due to deformation or digenesis.   

As a definition,  Narr  et al. (2006)  proposed that “all reservoirs should be considered fractured 

until proven otherwise…”, but this seems extreme in the case of high permeability 

unconsolidated sandstones where, if fractures exist, their impact on flow is negligible.  

Nelson (2001) proposed the following classification for naturally fractured reservoirs based on 

the positive effect of fractures on reservoir transport properties (Figure  1.3): 

                                                 
1
 Schlumberger Market Analysis, 2007 
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Type I - Fractures provide the essential porosity (i.e. storage capacity) and flow capacity in a 

reservoir where matrix porosity and permeability are low. In this type of reservoir, fracture 

characteristics are the dominant parameters for reservoir evaluation and few producing wells are 

required to deplete the reservoir. 

 

 

Figure  1.2. World distribution of carbonate reservoirs [reproduced from BP Statistical Review, 2008 & 

Schlumberger Market Analysis, 2007] 

Type II - Rock matrix has higher porosity whereas fractures provide the essential flow capacity 

in a reservoir. In this case, cross-flow between fractures and matrix and rate control are the key 

parameters, with production rate controlled by fractures. Monitoring fracture behavior is 



 

 

 5 

important during water flooding processes and to assess the effect of large drawdowns which 

may lead to greater fracture closure and flow reduction. 

Type III - The fractured reservoir is already economically producible (high porosity and 

permeability in the matrix) and the fractures provide an assist and tend to define the reservoir’s 

flow property anisotropy. 

Type IV – Fractures, perhaps partially filled with cementing agents, act as baffles and barriers to 

flow in an already producible reservoir and reduce the drainage and sweep efficiency. 

 

Figure  1.3. Naturally fractured reservoir classification [reproduced from Nelson, 2001] 
 

Characterization of naturally fractured reservoirs (NFRs) is important for reservoir management 

because fractures behave differently than the rock matrix.  In a fractured reservoir, for example, 

easily accessible fluids are stored in fractures, leading to rapid recovery at the early stage of 

exploitation, followed by a precipitous decline in production.  Also, fracture behavior dominates 
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production and injection activities, and fracture flux is affected strongly by changes in pore 

pressure, temperature, saturation, as well as effective stress. 

Fracture connectivity and conductivity is perhaps the most important flow properties of naturally 

fractured reservoirs.  Conductivity is a strong function of fracture aperture (k  w
2
) and the 

aperture is highly sensitive to the effective stress across the fracture as well as pore pressure, 

temperature and saturation.  Pore pressure changes (Δp) arise as a result of production or 

injection of fluids from various wells, and temperature changes (ΔT) arise from injection of 

fluids that may be colder or hotter than the reservoir temperature.  During enhanced oil recovery 

using steam injection, for example, fluid temperatures may be 250-300°C greater than the initial 

reservoir temperature.  ΔT leads to thermoelastic strains, which in turn cause effective stress 

changes (Δσ′).  The magnitude of the stresses induced by large ΔT values is huge, far higher than 

the initial in situ effective stresses at the typical depths involved (300-800 m in Alberta). 

This stress-dependent permeability effect may dominate the flow behaviour in fractured 

reservoirs.  It is also important in unconsolidated reservoirs with high matrix porosity and 

permeability, as well as consolidated reservoirs with low matrix permeability and porosity which 

require a dynamic model of permeability changes for better reservoir characterization [Davies 

and Davies, 2001].  Unless these changes are understood and analyzed, predictive modeling 

based on physical processes is not possible (excepting curve-fitting to history, which is not fully 

physical modeling).  These effects are usually ignored or simplified (i.e. linear behavior) in 

conventional oil reservoirs, an assumption that may be sufficient in some cases (e.g. a dense un-
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fractured quartzite reservoir), but is not appropriate for NFR’s.  Hence, coupled Δp, ΔT and Δσ′ 

effects must be considered for fractured reservoirs.  

 

1.3 THM Coupling in Naturally Fractured Reservoirs 

The word coupling refers to combined analysis of interacting physical processes that have in the 

past been treated separately.  For example, in the case of fluid flow in fractured media, input of 

hot or cold fluids changes the stresses, altering the fracture apertures, which affects the 

conductivity and thus the flow rate and temperature changes.  This type of feed-back loop is 

characteristic of coupled processes. 

Conventional non-coupled reservoir simulators calibrated empirically through history-matching 

are not appropriate for modeling the simultaneous interaction among effective stress, pressure 

and temperature in a reservoir, as they consider pore compressibility as the only geomechanical 

parameter for simulation and assume permeability and porosity as static or pressure-dependent 

variables.  These assumptions are insufficient because fracture conductivity is a strong function 

of effective stress and temperature as well as pressure.  Parameter impacts on both reservoir 

characterization and simulation processes should be considered via a thermo-hydro-mechanically 

(THM) coupled approach for simulations that are more physically correct and thus more likely to 

be properly calibrated (Figure  1.4). 
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Figure  1.4. Basic mechanisms of coupled THM processes in fractured reservoirs [Lanru and Xiating, 

2003] 

The level of Δσ′-Δp-ΔT coupling can be classified into three different categories: (i) explicit, (ii) 

iterative, and (iii) fully-coupled.  The most robust method is the fully-coupled approach, where 

the momentum conservation, fluid mass conservation, and energy conservation governing 

equations are solved simultaneously.  To our knowledge, there is no commercial fully-coupled 

simulator yet and most of the effort has been toward iterative coupling between existing fluid 

flow and geomechanical simulators, where coupling parameters are sent back and forth between 

the simulators until convergence.  This approach does not require so much code development 

and will produce the same results as a fully coupled approach if both use sufficiently tight 

convergence tolerances for iterations [Settari and Walters, 2001].  Some of the advantages and 

disadvantages of different coupling approaches are presented in Table  1.1. 
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Table  1.1. Advantages and disadvantages of coupling techniques [Jalali and Dusseault, 2011] 

 

1.4 Hybrid Numerical Models 

The main idea of any numerical method is to replace the problem with an approximate problem 

which is more easily solved, with the solution as close as possible to the true solution.  A variety 

of numerical methods have been used to model THM coupled problems.  Among them, hybrid 

models, which are defined as a combination of different numerical methods, are quite popular 

among modelers as they benefit from all numerical methods that are involved. However, the 

computational load is heavy and displacement continuity and stress equilibrium at the interfaces 

are concerns. 

1.5 Goals of the Thesis 

Moving toward an approach which could clarify the physics of thermo-hydro-mechanical 

processes in naturally fractured reservoirs is the main goal of this study.  In this case, the ideal 

approach would be explicit representation of fractures in a fractured reservoir, especially in the 

Approach Advantage Disadvantage

Explicit 
Coupling

 Effective and time-saving for
subsidence problems

 Flexible and straightforward

 One-way coupling for geomechanics
 Stability and accuracy

Iterative 
Coupling

 Flexible in the case of numerical
methods

 It is possible to couple conventional
reservoir simulators (e.g. ECLIPSE,
TOUGH2, STARS) with geomechanical
modules (e.g. FLAC, UDEC, VISAGE) .

 Require large number of iterations (1st

order convergence)
 Relatively small jumps in pore volume

can be handled

Full 
Coupling

 The most stable approach
 Preserves 2nd order convergence
 Reliable and a benchmark for other

coupling methods

 Difficult to couple existing modules
and softwares

 Require more code development
 Slower than other coupling techniques
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sensitive areas such as near the wellbore, and then calculation of the effect of pressure, 

temperature, and deformation on fracture properties (i.e. aperture) to update the reservoir 

properties such as matrix and fracture porosity and conductivity.  As mentioned before, there is 

no commercial fully coupled simulator in the industry that can consider the behavior of fractures 

explicitly under thermal injection and production.  Furthermore, for realistic simulation, it is 

necessary to consider the opening, shearing and dilation of natural fractures during injection and 

production activity. 

To reach this goal, a coupling approach between fluid-flow and geomechanics in a non-

isothermal continuum will be considered in order to model the influence of production activities 

such as fluid production, injection, or thermal recovery, on fractures within a linear poroelastic, 

isotropic and homogeneous medium.  For this purpose, a finite difference method (FDM) is 

combined with a displacement discontinuity method (DDM), which is an indirect boundary 

element method, to model the influence of reservoir activities. 

In the following chapters, thermo-poroelasticity, its governing equations and the required 

conservation equations are reviewed in  Chapter 2; a brief review of different numerical methods 

for fracture reservoir modeling followed by a description of displacement discontinuity method 

are presented in  Chapter 3; combination of the finite difference method with a thermo-

poroelastic displacement discontinuity method is introduced in  Chapter 4; several analytical 

verifications and a comparison between poroelastic, thermoelastic and thermo-poroelastic 

behavior of a single fracture are presented in  Chapter 5; several applications of this method are 
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described and demonstrated in  Chapter 6; and conclusions and recommendations are made 

in  Chapter 7.  
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Chapter 2 

Thermo-poroelasticity 

The coupled response of geomaterials to man-made perturbations (e.g. cold water injection, 

steam injection, and hydraulic fracturing) cannot be predicted by considering each process 

separately, although this is part of the process of understanding coupling.  A THM model is 

needed to study the two-way interactions among temperature (T), pressure (H) and deformation 

(M), a problem rendered far more complex when fractures are included because many 

ambiguities remain associated with the thermal, hydraulic and mechanical response of fractures 

under coupled circumstances.  THM coupling is defined via the fundamental coupling principles 

of thermo-poroelasticity which can be defined as the combination of two-way coupling of 

thermoelasticity (TM) and poroelasticity (HM). 

Thermo-poroelasticity describes the coupling of pore pressure, temperature, stress and 

deformation in a deformable, fluid-saturated porous medium via combining the energy 

conservation equation with Fourier’s law, the fluid mass conservation equation with Darcy’s law 

and the linear momentum conservation equation with Hooke’s law.  In order to represent a 

thermo-poroelasticity model, four sets of governing equations should be defined as below: 

 Constitutive equations 

 Force equilibrium equations 

 Fluid diffusion equations 

 Heat entropy balance 
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It is worthwhile to describe some definitions about porous media here.  Based on Coussy (2004), 

a fluid-saturated porous media consists of a matrix and a porous space, with the latter usually 

interconnected and filled by a fluid (effective porosity).  The matrix is composed of solid 

material as well as some occluded porosity which is not an effective porosity and it may be 

saturated with fluid.  In another approach, a porous medium is a combination of two continua, 

i.e. the skeleton continuum and the fluid continuum (Figure  2.1).  The skeleton is composed of 

the matrix and connected porous space without any fluid, whereas the fluid continuum contains 

saturated porous space with fluid without any matrix. 

 

Figure  2.1. Porous medium as the superposition of skeleton particle and fluid particle in an infinitesimal 

volume [reproduced from Coussy, 2004]. 
 

2.1  Literature Review 

In the beginning of 18
th

 century, Gough introduced thermoelasticity through the concept of 

material temperature changes due to stretching and Weber (1830) formularized the thermoelastic 

effect.  Schiffman (1971) introduced heat transfer into Biot’s poroelastic concepts, and the 

governing equation of thermoelastic consolidation was provided by Booker and Savvidou 

(1985).  They considered only conductive flux, not convection, which is the mechanism of heat 
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transfer via fluid flow.  In 1978, Aktan and Farouq Ali worked on induced thermal stresses due 

to hot water injection and introduced the thermoelastic stress-strain relationship.  Hojka et al. 

(1993) solved the convection and conduction-coupling problem for a plane strain borehole in 

analytical form.  They showed the stress and temperature distributions around the borehole for 

some steady-state flow cases without heat loss to bounding strata. 

The fundamentals of poroelasticity are based on the original concept of effective stress and one-

dimensional consolidation for incompressible solid grains formulated by Terzaghi in 1925.  

Thereafter, Biot (1941) investigated the coupling between stresses and pore pressure in a porous 

medium and developed a generalized three-dimensional theory of consolidation with the basic 

principles of continuum mechanics including mineral compressibility, the “Theory of 

Poroelasticity” [Geertsma, 1966].  Biot’s theory and published applications are oriented more 

toward rock mechanics than fluid flow so it is less compatible with conventional fluid-flow 

models (without geomechanics consideration) in terms of concept understanding, physical 

interpretation of parameters (e.g., rock compressibilities), and computer code implementation. 

Skempton (1954) derived a relationship between the total stress and fluid pore pressure under 

undrained initial loading through the so-called Skempton pore pressure parameters A and B.  

Geertsma (1957) gave a better insight to the relationship among pressure, stress and volume, 

clarifying the concept of compressibility in a porous medium and van der Knaap (1959) extended 

his work to nonlinear elastic geomaterials such as dense but uncemented sands.  Geertsma (1966) 

applied Biot’s theory to subsidence problems in petroleum engineering, perhaps the first loosely 

coupled flow-geomechanics analysis published.   
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Nur and Byerlee (1971) proved that the effective stress law proposed by Biot is more general and 

physically sensible than that proposed by Terzaghi, although Terzaghi understood clearly the 

limitations of the assumptions he had to make in the 1920’s to solve practical engineering 

problems in clay consolidation (one-dimensional analysis, ignoring fluid and mineral grain 

compressibility, etc.).  In other developments relevant to coupled flow-stress problems, 

Ghaboussi and Wilson (1973) introduced fluid compressibility into classic soil mechanics 

consolidation theory, and Rice and Cleary (1976) showed how to solve poroelasticity problems 

by assuming pore pressure and stress as primary variables instead of displacements as employed 

by Biot. 

2.2  Equations of State and Constitutive Equations 

As mentioned before, three physical laws known as equations of state as well as constitutive 

equations for stress, pressure and temperature are required to describe the physical behavior of a 

thermo-hydro-mechanical model.  In this section a brief review of Hooke’s law, Darcy’s law and 

Fourier’s law is given as well as the constitutive equations for calculating the total stress, fluid 

content and specific entropy variation in porous media. 

2.2.1  Hooke’s law 

In reality, the stress-strain behavior of rocks is quite complicated and some assumptions and 

simplifications are usually considered to estimate the behavior of rocks with reasonable 

simplicity.  The most commonly used assumption for the stress-strain relationship of rocks is 

linear elasticity that considers the strain tensor as a linear function of stress tensor.  This is a 

reasonable assumption for the rock behavior under (small) incremental stress changes.  Also it is 
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assumed that the stress is not dependent on the rate of strain changes and the history of strains.  

Considering stress and strain as second order tensors with six components each in three-

dimensional coordinates, the stress-strain relationship for a linear isotropic elasticity, which is 

known as Hooke’s law, can be written as: 

vol2 , 1,2,3ij ij ijG i j   σ ε            (2.1) 

where ij and ij are total stress and linearized strain tensors, G is shear modulus,  is Lamé’s 

first parameter, vol is the volumetric strain (vol=x+y+z) and ij is the Kronecker delta that is 

defined as: 

0 for

1 for
ij

i j

i j



 


 

The two indices for stress and strain correspond to the three principle directions (i.e. x, y and z or 

1, 2 and 3) and are used to describe these tensors of which the first index describes the plane on 

which the stress or strain acts, whereas the second index shows the direction of the stress or 

strain.  12, for example, corresponds to the total stress acting on the x-plane toward the y-

direction. 

2.2.2  Darcy’s law 

Viscous single phase fluid flow in porous media is usually described by Darcy’s law, which 

relates the fluid volume flow rate to pore pressure gradient ignoring the gravity effect, as below: 

f f A A p


   
k

Q q               (2.2) 
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where Q
f
 and v

f
 are volumetric fluid flow rate and fluid flux vector (known as Darcy’s velocity) 

per unit time flowing through a surface, respectively. A is the surface through which the fluid 

flows,  is the fluid dynamic viscosity, k is the second rank intrinsic permeability tensor and p 

is the pore pressure gradient.  The permeability tensor is usually symmetric (i.e. kxy=kyx). 

Darcy’s low is valid for laminar and viscous flow in a continuum.  In laminar flow, velocity is 

proportional to the first power of the hydraulic gradient (Poiseuille’s law), and this criterion can 

be quantified using the Reynolds number that gives a measure of the ratio of inertial forces to 

viscous forces and is defined as 

f

f
Re

d




q
               (2.3) 

Here f is the fluid density, |q
f
| is the magnitude of Darcy’s velocity and d is the characteristic 

length.  Based on experimental data, flow regimes with Re less than 1 can be considered as 

Darcian flow, which is the assumed case for porous media flow [Bear, 1988]. 

2.2.3  Fourier’s law 

Fourier in 1822 formulated an empirical relationship between the heat conduction rate and 

temperature gradient in the direction of heat flow by introducing the thermal conductivity as 

below: 

h h

TA A T   Q q k               (2.4) 

where Q
h
 and v

h
 are the volumetric heat flow rate and heat flux vector per unit time, 

respectively, kT is the second rank thermal conductivity tensor and T is the temperature 

gradient.  The thermal conductivity tensor is also symmetric (i.e. kT xy=kT yx). 
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Thermal conductivity of a porous medium depends on temperature, pressure, pore fluids 

composition, mineralogy and geometric microstructure [MacGillivray et al., 1996].  In a fluid-

saturated porous medium containing solid and fluid phases with an identical temperature, an 

equivalent thermal conductivity can be defined for the whole medium.  The equivalent thermal 

conductivity tensor kT b is composed of the isotropic thermal conductivity of the porous medium 

term neglecting the fluid flow (kT b = (1-ϕ)kT s + ϕkT f), and a macro-conductivity term which 

arises due to the fluid velocity heterogeneity [Castelletto, 2010].  Here the subscripts b, s, and f 

correspond to bulk, solid and fluid, respectively. 

2.2.4  Constitutive Equations 

Three constitutive equations are required to describe an isotropic and homogeneous saturated 

elastic porous material under small strain and laminar fluid flow conditions.  This is done by 

combining the isothermal hydromechanical governing equations introduced by Biot [1941] with 

a non-isothermal term considering the thermal expansion due to temperature changes.  Three 

conjugate pairs (six variables in total) are implemented to describe a thermo-poroelastic system, 

which are 

 Total stress  and linearized strain ; 

 Pore pressure p and fluid content m; 

 Temperature T and specific entropy . 

The fluid content is defined as fluid volume per unit volume of the porous medium [Rice and 

Cleary, 1976] and the specific entropy is the entropy of the porous medium per unit volume 

[McTigue, 1986].  These conjugate pairs are scalar variables except for the total stress and strain 
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which are both second rank tensors with six independent components each.  The classical 

continuum mechanics sign convention is considered for stresses, i.e. tensile stress is positive 

whereas compressive stress is negative.  For strains, elongation is positive whereas shortening is 

negative.  Pore pressure compression is considered as positive in this study for consistency. 

Considering strain, pore pressure and temperature as independent variables, total stress, fluid 

mass content and specific entropy variation, which are assumed as dependent variables, can be 

rewritten as [Coussy, 2004]: 

v sol b2ij ij ij ij ijG p K T                      (2.5a) 

vol 0 f s

b

( )m p T
BK


                    (2.5b) 

 b s vol 0 f s 0 f 0 s

0

1
( ) ( )K p C C T

T
                         (2.5c) 

In (2.5), Kb is the skeleton bulk modulus,  (=1-Kb/Ks) is Biot’s effective stress coefficient, B is 

the Skempton’s pore pressure coefficient, ϕ0 is the initial porosity, s and f are the volumetric 

thermal expansion coefficients of solid and fluid, T0 is the absolute temperature and Cf and Cs are 

the fluid and rock specific heat, respectively. 

Some assumptions were considered in the derivation of the constitutive equations.  In Eq. 2.5a, it 

was assumed that temperature variations do not change the porosity (ϕ0), so the volumetric 

skeleton thermal expansion coefficient was replaced by the solid thermal expansion coefficient.  

In Eq. 2.5b, the last term on the right-hand side reflects changes in the fluid content due to 

temperature changes at constant volumetric strain and pressure, which required considering pore 



 

 

 20 

and fluid thermal expansion coefficients.  Applying the constant porosity assumption in this 

term, the solid thermal expansion coefficient can be used.  Finally the last term in Eq. 2.5c 

corresponds to the volumetric specific heat that can be defined as a combination of both solid 

and fluid volumetric specific heat [Palciauskas and Domenico, 1982; McTigue, 1986; Coussy, 

2004; Ghassemi and Zhang, 2004]. 

2.3  Balance Laws 

Three conservation governing equations which govern the hydromechanical system in a non-

isothermal condition will be described in this section.  These equations are the force equilibrium 

equation for stress and deformation, the fluid diffusion equation for pore pressure and the heat 

entropy balance to estimate temperature propagation. 

2.3.1  Linear Momentum Conservation Equation 

The force-equilibrium equation for a porous medium arises as a direct result of the linear 

momentum conservation equation which states that the linear momentum variation of an 

arbitrary portion of a continuum over time is equal to the resultant force acting on that 

considered portion (i.e. tractions and body forces) in the following form: 

i ij j i
V S V

d
v dV n dS b dV

dt
                  (2.6) 

Assuming a quasi-static condition (no inertial forces) and using the surface integral conversion 

into the volume integral, the static force-equilibrium equation can be written as: 

, 0ij j ib                  (2.7) 



 

 

 21 

In Eqs. 2.6 and 2.7, S and V are the surface area and volume of the control volume, respectively, 

ni is the unit vector in i-direction,  is the bulk density of medium ( = ϕf + (1 – ϕ)s), vi is the 

velocity vector in the i-direction and bi is the solid body force.  It should be noted that Einstein 

tensorial notation has been adopted in these formulations. 

Applying the constitutive equation (2.5a) into Eq. 2.7 while neglecting body forces yields: 

vol,. , b s ,2 0ij j i i iG p K T                    (2.8) 

Using the relationship between strains and displacements (ij=1/2(ui,j+uj,i)), Eq. 2.8 leads to 

Navier-type force equilibrium equations: 

, , , s b ,( ) 0i jj j ji i iGu G u p K T                   (2.9) 

2.3.2  Fluid Mass Conservation Equation 

Conservation of fluid mass for a control volume without any chemical reaction stipulates that the 

fluid mass variation over time in a control volume is equal to the net mass flow through the 

control surface, which has the following form: 

 f ff
f f s. q

t

 
 


  


q            (2.10) 

The first term on the left hand side is the fluid mass content (f.ζ) variation over time, whereas 

the first term on the right hand side is the net mass flow and the second term is the source/sink 

mass flow rate (f.q
f
s), for which a positive sign corresponds to injection into the control volume 

and a negative sign is associated with fluid withdrawal from the control volume. 
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Applying the constitutive equation for the fluid content (Eq. 2.5b) and Darcy’s law for the fluid 

flux vector (Eq. 2.2) while assuming a constant fluid density over time leads to 

f

vol, , 0 f s , p , s

1
( )t t t iip T p q

M
       κ          (2.11) 

where p (=k/) is the mobility tensor and M is the Biot’s modulus (Biot denotes it by Q) which 

is a measure of the amount of fluid that can be forced into the rock under constant rock volume 

and temperature [Biot, 1941].  In an isothermal continuum with a rigid and undeformable rock, 

Eq. 2.11 reduces to the typical diffusion equation in hydrology and petroleum engineering as: 

f

, , s

f

t ii

k
p p q

c
              (2.12) 

where cf is the fluid compressibility and c
f 
= k/ϕcf is the hydraulic diffusivity. 

2.3.3  Energy Conservation Equation 

In writing the energy conservation equation, the porous medium is assumed to be an open 

system, i.e. the control volume may exchange fluid mass with the outside through deformation 

[Berchenko, 1998].  Also it is assumed that viscous dissipation, radiative effects and work 

(energy loss) due to pressure changes are negligible [Bejan and Kraus, 2003].  Considering no 

heat transfer between solid and fluid phases (i.e. parallel heat conduction), heat transfer in solid 

and fluid phases can be written as 

hs
s s T s s g f s(1 ) (1 ) .( ) (1 ) ( )

T
C k T q h T T

t
   


        


       (2.13) 

f hf
f f f f f T f f g s f.( ) ( )

T
C C T k T q h T T

t
   


       


q        (2.14) 
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Here, Cs and Cf are the solid specific heat and fluid specific heat at constant fluid pressure, 

respectively, q
h

g is the rate of heat generation per unit volume and h is the heat transfer 

coefficient between solid and fluid phases.  As shown in Eq. 2.14, a convective term (which 

contains fluid velocity) is required for the fluid heat transfer calculation.  In a steady-state heat 

transfer case, solid and fluid temperatures in each control volume at a specific time are identical, 

but in the case of transient heat flow, the solid temperature lags behind the fluid temperature 

(Figure  2.2) [Hojka et al., 1993].  However, it is acceptable for most cases such as the current 

study to assume that solid and fluid phases are in local equilibrium (i.e. Ts = Tf = T).  In this case, 

Eqs 2.13 and 2.14 can be added together as 

f h

b b f f T b g.( )
T

C C T k T q
t

 


    


q          (2.15) 

where [Bejan and Kraus, 2003] 

b b s s f f(1 )C C C                 (2.16) 

T b T s T f(1 )k k k               (2.17) 

h h h

g b g s g f(1 )q q q               (2.18) 

By introducing the heat capacity ratio (ϑ = bCb / fCf), Eq. 2.15 can be written as  

h

g bT

f

f f

. .( )
qT

T c T
t C





    


q           (2.19) 

where c
T 

= kT b/fCf  is the thermal diffusivity of the saturated porous medium. 



 

 

 24 

 

Figure  2.2. Steady state and transient heat transfer around a borehole during hot fluid injection 

[reproduced from Hojka et al., 1993] 

2.4 Chapter Summary 

This chapter described the fundamental governing equations of thermo-hydromechanical 

coupling of a non-isothermal fully saturated poroelastic medium.  For this purpose a brief review 

of the physical laws and constitutive equations was given, followed by the development of the 

three conservation partial differential equations (Eqs. 2.9, 2.11, and 2.19) that require solving 

together in a fully coupled approach. 
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Chapter 3 

Displacement Discontinuity Method 

3.1  Numerical Methods for Fractured Reservoirs Modeling 

The main idea of any numerical method is to replace the problem with an approximate problem 

which is easier to solve with the solution being as close as possible to the original (or “real”) 

solution.  A variety of numerical methods has been used to model THM coupled problems 

(Figure 3.1). 

In numerical methods, a continuum is usually subdivided into a finite number of domains 

(elements, block-averaged nodes …) with finite degrees of freedom and simplified mathematical 

behaviour.  To solve the discretized problem numerically, the following criteria should be 

satisfied: 

 The physical statement of the problem must be expressed by the appropriate governing 

partial differential equations for the physics being considered, and, 

 The continuity condition at interfaces between adjacent elements must be satisfied. 

 

Figure  3.1. Fractured rock mass representation using different numerical methods [reproduced from Jing, 

2003] 
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In the case of fractured reservoir modeling, two different approaches have been used in the 

literature, continuous and discontinuous (discrete) methods.  In the following, some of the 

numerical techniques used in each category are described.  Among these methods, the 

displacement discontinuity method, which is an indirect boundary element approach, has been 

chosen to simulate the fracture behavior, and is therefore described in greater detail than other 

methods. 

3.1.1  Continuous Methods 

3.1.1.1 Finite Difference Method (FDM) 

The Finite Difference Method (FDM) is based on finding an approximate solution for partial 

differential equations (PDEs) using a finite number of points (i.e. grid points, mesh points or net 

points).  In this case, each derivative is replaced with an approximate differential formula based 

on the Taylor’s series expansion and then the PDE is converted to a set of algebraic system 

equations which relate the values of unknown variables (i.e. pressure, temperature, displacement) 

at each grid point [Aziz & Settari, 1979].  The solution of this algebraic system of equations by 

considering the applied boundary conditions of the problem will satisfy the governing PDEs as 

well as the specified boundary conditions. 

Fractures cannot be modeled explicitly in FDM, as it requires continuity of the governing 

equations between neighboring grid points.  However it is possible to introduce weakness zones 

with a certain specified thickness that cannot permit opening and must remain attached to the 

neighboring nodes [Jing, 2003].  Also, Caillabet et al. (2000) and Granet et al. (2001) 

implemented special elements, known as fracture elements, to model fluid flow (Figure  3.2).  In 
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their approach, fracture thickness is taken into account for the fluid flow calculation but not in 

the geometrical representation of the problem, as the fracture thickness is negligible compared to 

the matrix block size. 

 

Figure  3.2. Real and geometrical fracture element representation [reproduced from Granet et al., 2001] 
 

3.1.1.2 Finite Element Method (FEM) 

The Finite Element Method (FEM) is based on a piecewise representation of the solution in 

terms of specified basis functions.  FEM consists of three fundamental steps, which are: domain 

discretization, local approximation, and global matrix assembly and solution.  The problem’s 

domain is discretized into a finite number of subdomains (finite elements) with a regular shape 

and fixed number of nodes.  The field variables are then written as a trial function of its nodal 

value in a polynomial form (i.e. weak form).  Appropriate test functions are multiplied by the 

weak form of the governing equations, and then integrated over each element.  The results are 

then assembled into a global matrix, and by solving the linear system of equations, the value of 

the field variables at each integration point is determined. 

Much work has been done during the last 40 years to represent rock fractures in the FEM method 

because of its generality and ability to accommodate non-linear properties and relationships (e.g. 

k = ƒ(σ′) or E = ƒ(σ′)).  Goodman et al. (1968) proposed a zero thickness joint element in which 

the normal and shear stresses and the deformations normal to and along the fractures are related 
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through constant normal and shear stiffness values (Kn and Ks).  The zero thickness assumption 

(i.e. large aspect ratio) may lead to some numerical ill-conditioning in the global matrix. 

Zienkiewicz et al. (1970) introduced a six-point small thickness fracture element by adding two 

more nodes in the middle of the element.  Adding more nodes allows the element to be curved, 

increasing the efficiency of FEM to model problems with complex geometries.  Ghaboussi and 

Wilson (1973) implemented aspects of plastic behaviour in a finite thickness FEM fracture 

element and Desai et al. (1984) proposed a thin-layer element that used a special constitutive law 

for contact and frictional sliding.  Buczkowski and Kleiber (1997) implemented an interface 

element model for contact mechanics applications with an orthotropic friction based on the 

theory of plasticity (Figure  3.3).  Nevertheless, these methods cannot be used to model large-

scale fracture opening, sliding and complete detachment (opening) because of the basic 

continuum assumption of FEM. 

 

Figure  3.3. FEM fracture elements by (a) Goodman et al. (1968), (b) Ghaboussi and Wilson (1973), (c) 

Zienkiewicz et al. (1970) and (d) Buczkowski and Kleiber (1997) [reproduced from Jing, 2003] 
 

3.1.1.3 Boundary Element Method (BEM) 

Unlike finite difference and finite element methods, which require discretizing the whole region 

of the problem, in the Boundary Element Method (BEM) only the boundary of the region is 
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discretized.  A known or calculated solution of a simple singular problem is used to build up the 

numerical solution for the whole mass by satisfying the boundary condition at each boundary 

element.  BEM solutions can be summarized as: 

1. Boundary discretization with a finite number of elements, 

2. Approximation of the local solution at boundary elements via shape functions, 

3. Evaluation of boundary influence coefficients, 

4. Application of boundary conditions and solution of the linear system of algebraic equations, 

5. Evaluation of field variables inside the domain at a specified number of points. 

BEM methods can be classified into direct and indirect methods.  In the direct formulation, 

calculated deformation and stresses have a clear physical meaning, whereas there is no explicit 

physical meaning for the displacements and tractions in the indirect formulation, they are 

expressed as fictitious source densities [Jing, 2003]. 

In direct BEM, fractures are modeled by assuming two opposite surfaces along the fracture 

plane, expect at the fracture tips where special tip elements have to be used to address 

mathematical singularities such as those associates with a sharp fracture tip.  An alternative for 

fracture modeling is the Displacement Discontinuity Method (DDM), which is an indirect 

method.  This method was first proposed by Salamon (1963, 1968) for tabular mine simulation 

and further developed by Crouch and Starfield (1983).  It is based on integrating the analytical 

solution of a constant displacement discontinuity (DD) over a finite line segment embedded 
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within an infinite or semi-infinite elastic solid that can be orthotropic in properties, with the 

orthotropy oriented with the DD line segment. 

3.1.2  Discontinuous Methods 

3.1.2.1 Discrete Element Method (DEM) 

In the Discrete Element Method (DEM) two types of mechanical behavior are considered: those 

of the discontinuities (the contacts) and those of the solid materials (the blocks or matrix).  The 

analysis domain is treated as a combination of rigid or deformable (using FDM or FEM) matrix 

blocks and the contacts among them which are identified and updated during the simulation.  As 

a result, the main difference between DEM and continuum methods is that in DEM the pattern of 

the contacts changes continuously, whereas in continuum methods the pattern is fixed [Jing, 

2003]. 

Cundall and Hart (1989) identified five main classes of DEM codes: 

 Distinct Element Programs assume rigid or deformable matrix blocks as well as deformable 

contacts among blocks.  Time-marching is done explicitly in each time step to calculate the 

motion in the model to define the new set of contacts between blocks.  Some of the 

representative codes are UDEC, 3DEC, PFC [ITASCA solution] and DIBS [Walton, 1980]. 

 Modal Methods use a modal superposition to deal with deformable blocks, which is suitable 

for loosely packed discontinua and dense packing simulation.  Hocking et al. (1985) 

implemented this method in their code, CICE. 
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 Discontinuous Deformation Analysis (DDA) is similar to DEM for the block and contact 

deformation, except it assumes an iterative scheme of time-marching as well as superposition 

of strain modes.  A representative code is DDA by Shi (1989). 

 Momentum-exchange Methods assume rigid contacts and matrix blocks.  During a collision, 

momentum is exchanged between two contacting bodies, and it also is possible to model 

frictional sliding [Hahn, 1988] 

 Limiting Equilibrium Methods consider a rigid system of blocks and use vector analysis to 

evaluate the movement of blocks in the fractured system.  Some examples include work done 

by Goodman and Shi (1985) and Warburton (1981). 

3.1.2.2 Discrete Fracture Network (DFN) Method 

Discrete Fracture Network (DFN) approaches consider fluid flow and transport phenomena in a 

discrete connected fractured media.  The two key factors in DFN models are fracture geometry 

and transmissivity.  DFN is a strong approach for fluid flow and transport simulation in areas 

which thermal and mechanical processes are not significant, such as in shallow fractured 

aquifers.  It is difficult to model heat flow and mechanical deformation using DFN, so these 

phenomena must be analyzed and approximated with another parallel method.  Most applications 

of DFN models focus on fracture conductivity characterization, fracture influence on flow, and 

near-field studies such as around a wellbore or tunnel [Jing, 2003]. 

Advantages and disadvantages of possible numerical methods which can be implemented to 

simulate fractured reservoirs have been summarized in Table  3.1. 
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Table  3.1. Advantages and disadvantages of possible numerical methods for coupled simulation of 

naturally fractured reservoirs 

 

3.2 Elastic Displacement Discontinuity Method 

The displacement discontinuity method is an indirect boundary element method developed by 

Crouch & Starfield in 1983 (based upon the original formulation by Salamon in the 1960’s) 
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which uses the analytical solution for the displacement field arising from a finite line segment in 

an infinite body subjected to a constant displacement discontinuity.  This method was developed 

for thin planar underground excavations, and then used for modeling faults, fractures and tabular 

reservoirs, as well as other cases with a large aspect ratio. 

From a physical point of view, the displacement discontinuity can be envisioned as a line 

fracture where the opposing fracture surfaces have been displaced in different directions relative 

to each other (shear or normal displacement).  This relative displacement may have any specified 

distribution along the fracture such as constant, linear, and quadratic; in this study a constant 

relative displacement is considered over the fractures (i.e. the displacement discontinuities). 

As a numerical method, in this approach the fracture is discretized into N boundary elements 

with displacement discontinuities.  Based on the analytical solution of a single and constant 

displacement discontinuity, a numerical solution can be derived using the superposition of the 

effects of all the N boundary elements. 

In a two-dimensional infinite elastic solid with a finite line segment fracture, displacement 

discontinuities in the x and y directions are defined as the displacement difference between two 

sides of the fracture segment.  Assuming a line fracture elongated from –a to +a along the x-axis 

(y=0), two surfaces can be distinguished in positive (y=0
+
) and negative (y=0

-
) sides.  Based on 

this assumption, x- and y-displacements undergo a constant change crossing from one side to 

another which are described as Dx and Dy as below (Figure  3.4): 

x x x

y y y

( ,0 ) ( ,0 )

( ,0 ) ( ,0 )

D u x u x

D u x u x

 

 

 

 
             (3.1) 
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Based on Eq. 3.1, Dx and Dy are positive as illustrated in Figure 3.4; i.e., positive Dy is associated 

with fracture closure and a negative value with fracture opening.  It is assumed that the fracture 

has a finite thickness (aperture), small with respect to its length, to avoid overlapping the two 

surfaces for a positive value of Dy. 

 

Figure  3.4. Constant displacement discontinuity components Dx and Dy [reproduced from Crouch and 

Starfield, 1983] 
 

For deformation and stress in the infinite elastic solid as a function of constant displacement 

discontinuities and the geometry of fracture, Crouch proposed [Crouch, 1976]: 

x x , , y , ,

y x , , y , ,

2(1 ) (1 2 )

(1 2 ) 2(1 )
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 

            

           

          (3.2) 
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



         

         

         

           (3.3) 

The function f(x,y) in Eqs. 3.2 and 3.3 is the integral solution of Kelvin’s problem for plane 

strain conditions: 
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f (x, y) =
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The derivatives of function f(x,y) which has been used in Eqs. 3.2 and 3.3 are 
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        (3.5) 

Displacement and stress are continuous everywhere in the infinite body.  The only case that 

requires explicit evaluation is along the line y = 0.  Based on the above equations, displacement 

is continuous for |x| > a on y = 0, but have a constant discontinuity (Dx and Dy) for |x| < a.  Stress 

is singular and discontinuous at x = a, but are continuous everywhere else along y = 0.  Also 

based on Eqs. 3.3, the normal stress (xx and yy) on y = 0 is dependent only on Dy whereas the 

shear stress xy is dependent only on Dx.  The fundamental solutions for a constant Dn and Ds in 

an elastic medium are presented in  0 A. 
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This method is suitable for modeling of isotropic and homogeneous impermeable fractured rocks 

in the case where there is no appreciable leak-off off the fluids flowing along the fractures into 

the matrix blocks.    

3.3 Poroelastic Displacement Discontinuity Method 

Carvalho (1990) proposed the fundamental solution of induced stress and pore pressure for a 

two-dimensional infinite porous media based on the theory of poroelasticity.  This concept was 

developed more by other authors such as Tao et al. (2011).  In this case, the effect of fluid 

pressure changes can be added to the elastic DDM solution to come up with the fundamental 

solutions for pore pressure, stress and displacement.  The effect of fluid flow changes is 

considered in the formulation via introducing a fluid source strength term defined as the interface 

flow rate along the fracture (Figure  3.5), i.e. 

x x x

y y y

f

fs int

( ,0 ) ( ,0 )

( ,0 ) ( ,0 )

D u x u x

D u x u x

Q q

 

 

 

 



             (3.6) 

where Qfs is the strength of fluid source, q
f
int in the interface fluid flow rate per unit length and 

width of fracture.  It should be noted that Qfs is positive when there is a fluid flow from the 

fracture into the matrix (fluid leak-off). 

As mentioned in  Chapter 2, the governing equations 2.9 and 2.11 must be solved simultaneously 

(a fully coupled solution) to estimate pore pressure, stress and displacement in the domain under 

consideration.  This can be done numerically using the definition of discontinuities in Eq. 3.6 and 

applying the initial conditions as well as inner and outer fracture boundary conditions as below: 
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Initial conditions 

0
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        (3.7) 

Boundary conditions 

Inner B.C.: 
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        (3.8) 

Outer B.C.: 
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

   

  

        (3.9) 

 

Figure  3.5. Constant displacement discontinuities and fluid source strength components [modified after 

Crouch and Starfield, 1983] 
 

In these equations, p0 is the initial pore pressure, Dn and Ds are the normal and shear 

displacement discontinuities (Dy and Dx in Eq. 3.6), and the ‘ini’ subscript specifies that it is an 

initial value.  The inner boundary conditions in these equations correspond to the applied 
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constraint in the fracture, whereas the outer boundary conditions are defined by the in-situ 

conditions far from the fracture surfaces in the unaffected zone (the “far-field” conditions). 

To solve the poroelastic governing equations, Carvalho (1990) proposed the superposition of 

induced displacement, stress and pore pressure calculated using two separate boundary 

conditions as follows: 

 Constant fluid source strength without any displacement discontinuities, i.e. 

f

int fs x x y y, ( ,0 , ) ( ,0 , ) 0, ( ,0 , ) ( ,0 , ) 0q Q u x t u x t u x t u x t         

 Constant displacement discontinuities without any fluid source, i.e. 

f

x x s y y n int( ,0 , ) ( ,0 , ) , ( ,0 , ) ( ,0 , ) , 0u x t u x t D u x t u x t D q         

The fundamental solutions for constant Qfs, Dn and Ds over an element segment are given in  0, 

respectively.  Knowing these fundamental solutions, the pore pressure, displacement and stress at 

any point (x,y) can be estimated with the functions defined below: 

Induced pore pressure 

dn ds qf

n s fs( , , ) ( , , ) ( , , ) ( , , )p x y t p x y t D p x y t D p x y t Q          (3.10) 

Induced displacement 

dn ds qf

x x n x s x fs

dn ds qf

y y n y s y fs

( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

u x y t u x y t D u x y t D u x y t Q

u x y t u x y t D u x y t D u x y t Q

  

  
       (3.11) 

 

 

Induced stress 
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dn ds qf

xx xx n xx s xx fs

dn ds qf
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  

  

  

       (3.12) 

3.4 Thermo-poroelastic Displacement Discontinuity Method 

A heat conduction singular solution was added to the poroelastic displacement discontinuity 

method to construct a thermo-poroelastic approach by Berchenko (1998).  Later on, this concept 

was further developed by different authors such as Ghassemi and Zhang (2004).  The same 

approach, which was implemented in the case of adding a fluid source to the classic elastic DD 

solution, is adopted here to address the simulation of temperature variations in the medium.  In 

this case a heat source strength term is added to the poroelastic DD solutions to specify the 

amount of heat exchange between the fracture and the surrounding rock, as indicated below 

(Figure  3.6): 

x x x

y y y

f

fs int
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hs int

( ,0 ) ( ,0 )
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 

 

 





           (3.13) 

where Qhs is the strength of heat source and q
h

int is the interface heat flow rate per unit width and 

length of fracture.  It is assumed that the interface heat flow rate is positive when there is a heat 

flow from the fracture into the matrix, i.e. when the fracture fluid is warmer than the adjacent 

rock. 
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Figure  3.6. Constant displacement discontinuities and fluid and heat source strength components 

[modified after Crouch and Starfield, 1983] 
 

The fundamental solution for the heat source strength is based on the heat conservation equation 

(Eq. 2.15) without the heat convection term (second term on the left hand side).  It can be seen 

that temperature is not fully coupled to stress and pressure changes, as there are no 

geomechanical and hydraulic terms in Eq. 2.15.  In the case of geomechanical coupling, the 

effect of volumetric strain on temperature variation is usually negligible, however the effect of 

temperature on stress and deformation changes is considered.  For the fluid-heat coupling, 

convective heat transfer is not considered in the fundamental solution, whereas the heat variation 

effect on fluid flow in considered.  It will be seen later that heat convection mechanism is only 

considered in the fracture network.  This is a reasonable assumption for impermeable or low-

permeability rocks with highly conductive fractures, such that the fluid velocity in fractures is 

much higher (100-1000 order) than the rock matrix. 

Similar to Carvalho’s work (Ibid.), the temperature effect is superimposed with the poroelastic 

boundary conditions as below: 
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 Constant heat source strength without any displacement discontinuities and fluid source: 

h f

int hs x x y y int, ( ,0 , ) ( ,0 , ) 0, ( ,0 , ) ( ,0 , ) 0, 0q Q u x t u x t u x t u x t q          

 Constant fluid source strength without any displacement discontinuities and heat source: 

f h

int fs x x y y int, ( ,0 , ) ( ,0 , ) 0, ( ,0 , ) ( ,0 , ) 0, 0q Q u x t u x t u x t u x t q          

 Constant displacement discontinuities without any fluid and heat sources: 

f h

x x s y y n int int( ,0 , ) ( ,0 , ) , ( ,0 , ) ( ,0 , ) , 0, 0u x t u x t D u x t u x t D q q          

The fundamental solutions for the constant heat source strength Qhs over an element segment are 

given in Appendix D.  Now it is possible to write the final form of the induced pressure, 

temperature, displacements and stresses as the superposition of all the displacement 

discontinuities and sources as below: 

Induced temperature 

qh

hs( , , ) ( , , )T x y t T x y t Q            (3.14) 

Induced pore pressure 

dn ds qf qh

n s fs hs( , , ) ( , , ) ( , , ) ( , , ) ( , , )p x y t p x y t D p x y t D p x y t Q p x y t Q         (3.15) 

Induced displacement 

dn ds qf qh

x x n x s x fs x hs

dn ds qf qh

y y n y s y fs y hs

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

u x y t u x y t D u x y t D u x y t Q u x y t Q

u x y t u x y t D u x y t D u x y t Q u x y t Q

   

   
     (3.16) 

Induced stress 

dn ds qf qh

xx xx n xx s xx fs xx hs

dn ds qf qh

yy yy n yy s yy fs yy hs

dn ds qf

xy xy n xy s xy fs

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

x y t x y t D x y t D x y t Q x y t Q

x y t x y t D x y t D x y t Q x y t Q

x y t x y t D x y t D x y t Q

    

    

   

   

   

   qh

xy hs( , , )x y t Q

     (3.17) 
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3.5 Chapter Summary 

In this chapter, a brief review on the existing numerical methods for solving the thermo-

hydromechanical governing equations was given.  Some of the advantages and disadvantages of 

each method were summarized.  Among all these methods, a hybrid FDM-DDM method was 

selected for this study which appears to be most suitable for discrete fractures in an infinite 

poroelastic medium.  Displacement discontinuity method is an indirect boundary element method 

which accounts for the presence of fractures by introducing displacement discontinuities and 

fluid and heat sources in the fracture.  The fundamental solutions required to estimate these 

discontinuities and sources in each fracture segment were presented.  Pressure, temperature, 

stress and displacement at any arbitrary point in the medium (except the fracture tips) can be 

estimated using the superposition of the effect of all these discontinuities, fluid and heat sources.  

  



 

 

 43 

Chapter 4 

Thermo-Hydro-Mechanical Coupling using Hybrid FDM-DDM 

Model 

4.1 Introduction 

Hybrid numerical methods are defined as the combination of different numerical methods in a 

way that hopefully reaps the benefits from all the combined methods, but at the price of an 

increment in computational time.  It is common to couple a continuous method (e.g. finite 

difference method, finite element method) with a discontinuous method (e.g. discrete element 

method, displacement discontinuity method) to model the presence of discontinuities (e.g. 

fractures or openings) in a continuous medium. 

In this study, the finite different method (FDM) is coupled with the displacement discontinuity 

method (DDM).  DDM is an indirect boundary element method as it involves discretization only 

of the boundary of the fractures, which is a suitable approach for infinite or semi-infinite 

problems.  FDM is implemented to simulate the fluid and heat transfer in the fracture, which is 

applied as the internal boundary condition to DDM to estimate the pore pressure, temperature, 

displacement and stress in the rock matrix blocks adjacent to the fractures.  The whole concept of 

this hybrid model is summarized in Figure  4.1. 

The superposition of the displacement discontinuity method as well as the time marching scheme 

chosen is described in this section.  A brief review of relevant fracture mechanics is undertaken 

to clarify the stress-displacement relationships of fractures under opening and closure.  The fluid 

and heat flow formulation in the fracture is presented and the finite difference form of these 
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equations is described.  Finally the displacement discontinuity equations, fracture mechanics 

laws and fluid and heat flow finite difference schemes are integrated to form a system of 

equations. 

 

Figure  4.1. Fluid-rock interaction in a fractured thermo-poroelastic media [modified after Asgian, 1988] 
 

4.2  Two-Dimensional Constant Displacement Discontinuity Solution for 

Multiple Fracture Segments in a Thermo-poroelastic Medium 

4.2.1  Influence Coefficients 

The fundamental solutions for pressure, temperature, displacement and stress for a fracture 

segment were presented in  Chapter 3.  In this section, those fundamental solutions are 

generalized for multiple fracture segments and a time marching scheme is added to the DDM 

formulations. 

In the DDM approach, a fracture can be discretized into N fracture segments, and any segment 

has four degrees of freedom in a thermo-poroelastic medium, i.e. normal and shear displacement 
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discontinuities, heat source strength and fluid source strength.  Induced pressure, temperature, 

displacement and stress at any point z at specific time t in the medium (including the fracture 

segments) can be estimated as a linear combination of all the fracture segments’ discontinuities 

and strengths as specified below 

qh

hs 

1

( , , ) ( , , )
N

z z j j

j

T x y t T x y t Q


             (4.1) 

dn ds qf qh

n s fs hs 

1 1 1 1

( , , ) ( , , ) ( , , ) ( , , ) ( , , )
N N N N

z z j j j j j j j j

j j j j

p x y t p x y t D p x y t D p x y t Q p x y t Q
   

           (4.2) 

dn ds qf qh

x x n x s x fs x hs 

1 1 1 1

dn ds qf

y y n y s y fs 

1 1 1

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

N N N N

z z j j j j j j j j

j j j j

N N N

z z j j j j j j

j j j

u x y t u x y t D u x y t D u x y t Q u x y t Q

u x y t u x y t D u x y t D u x y t Q

   

  

   

  

   

   qh

y hs 

1

( , , )
N

j j

j

u x y t Q



     (4.3) 

dn ds qf qh

xx xx n xx s xx fs xx hs 

1 1 1 1

dn ds qf

yy yy n yy s yy 

1 1

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , )

N N N N

z z j j j j j j j j

j j j j

N N

z z j j j j j

j j

x y t x y t D x y t D x y t Q x y t Q

x y t x y t D x y t D x y t Q

    

   

   

 

   

  

   

  qh

fs yy hs 

1 1

dn ds qf qh

xy xy n xy s xy fs xy hs 

1 1 1 1

( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

N N

j j j

j j

N N N N

z z j j j j j j j j

j j j j

x y t Q

x y t x y t D x y t D x y t Q x y t Q



    

 

   



   

 

   

 

Here, xz and yz are the coordinates of the field point z in local coordinates of (xj,yj),    and   are 

the distances to the midpoint of the influencing fracture segment j (for the case of constant DD) 

and the field point z, in the x- and y-directions, respectively. 

One must know the values of the discontinuities and source strengths prior to the estimation of 

pressure, temperature, displacement and stress in the medium.  To achieve this, Eqs. 4.1-4.4 can 

be written for the fracture segments for which the values of stress, displacement, pressure and 

temperature changes can be estimated (using fracture mechanics laws as well as fluid and heat 

(4.4) 
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flow finite difference equations).  The normal and shear stresses plus induced pressure and 

temperature in the i
th

 fracture segment with the orientation of i with respect to the x-axis can be 

expressed as the superposition of the effect of all fracture segments’ discontinuities and strengths 

as following (Figure  4.2): 

s s n fs hs 

1 1 1 1

n s n fs hs 

1 1 1 1

s n fs hs 

1 1 1 1

hs 

1

N N N N

i ij j ij j ij j ij j

j j j j

N N N N

i ij j ij j ij j ij j

j j j j

N N N N

i ij j ij j ij j ij j

j j j j

N

i ij j

j

A D B D C Q E Q

F D H D L Q M Q

p N D O D R Q S Q

T U Q





   

   

   



   

   

   



   

   

   



          (4.5) 

where Aij, Bij, Cij, Eij, Fij, Hij, Lij, Mij, Nij, Oij, Rij, Sij, Uij are the influence coefficients of the 

influencing fracture segment j on the influenced fracture segment i [Carvalho, 1990; Berchenko, 

1998; Ghassemi and Zhang, 2004; Tao, 2010].   

These influence coefficients in Eq.4.5 are related to the fundamental solutions for discontinuities 

and strengths.  In the case of fluid and heat source strengths, the related influence coefficients are 

identical to the fundamental solutions as the pressure and temperature are scalar parameters and 

their values do not change in different directions and coordinate systems.  This is not the case for 

influence coefficients related to the stress and displacements.  As the fundamental solutions are 

calculated in the local coordinates of the influencing segment (j), it is required to do some stress 

transformation from the local coordinates (xj,yj) to the other local coordinates (xi,yi).  The 

required formulation for coordinate transformation can be found in Appendix E.   
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Figure  4.2. Influence of the j
th
 fracture element on the i

th
 fracture element in a thermo-poroelastic medium 

 

Based on the discussion above, the influenced coefficient can be written as the fundamental 

solution as below: 

 

 

ds ds ds 2 2

yy xx xy

dn dn dn 2 2

yy xx xy

( , , ) ( , , ) ( , , ) sin cos ( , , ) cos sin

( , , ) ( , , ) ( , , ) sin cos ( , , ) cos sin

( , , )

ij j j ij ij j ij ij

ij j j ij ij j ij ij

ij

A x y t x y t x y t x y t

B x y t x y t x y t x y t

C x y t

      

      



 
    
 

 
    
 

  

 

qf qf qf 2 2

yy xx xy

qh qh qh 2 2

yy xx xy

( , , ) ( , , ) sin cos ( , , ) cos sin

( , , ) ( , , ) ( , , ) sin cos ( , , ) cos sin

j j ij ij j ij ij

ij j j ij ij j ij ij

x y t x y t x y t

E x y t x y t x y t x y t

     

      

 
   

 

 
    
 

 

ds 2 ds ds 2

xx xy yy

dn 2 dn dn 2

xx xy yy

qf

xx

( , , ) ( , , )sin 2 ( , , )sin cos ( , , ) cos

( , , ) ( , , )sin 2 ( , , )sin cos ( , , ) cos

( , , ) ( , ,

ij j ij j ij ij j ij

ij j ij j ij ij j ij

ij j

F x y t x y t x y t x y t

H x y t x y t x y t x y t

L x y t x y

      

      



  

  

 2 qf qf 2

xy yy

qh 2 qh qh 2

xx xy yy

)sin 2 ( , , )sin cos ( , , ) cos

( , , ) ( , , )sin 2 ( , , )sin cos ( , , ) cos

ij j ij ij j ij

ij j ij j ij ij j ij

t x y t x y t

M x y t x y t x y t x y t

     

      

 

  

       (4.6) 
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ds

dn

qf

qh

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

ij j

ij j

ij j

ij j

N x y t p x y t

O x y t p x y t

R x y t p x y t

R x y t p x y t









 

qh( , , ) ( , , )ij jU x y t T x y t  

where ij=i - j,    (= xi - xj) and   (= yi - yj) are the distance between the midpoint of the 

influencing fracture segment j and the influenced fracture segment i in x- and y-direction, 

respectively. 

4.2.2  Time Marching Scheme 

Formulations of induced pressure, temperature, displacement and stress are only space-

dependent (Eqs. 4.1-4.5).  In practical applications, DDM solutions are also time-dependent as 

fluid and heat sources and displacement discontinuities change over time.  In this case, a time 

marching scheme shown in Figure  4.3 is usually adopted and the influence of the entire previous 

source strengths’ and discontinuities’ increments are superimposed to the solution of the current 

time step as below: 
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1 1 1 1 1 1 1 1
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1 1 1 1
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

      (4.7) 

Here, n is the number of the current time step, N is the number of fracture segments, and tc is the 

time interval counter.  The following conventions are adopted in this study to present the DDM 

formulations.  The model starts from the initial time t0 with constant or variable time steps.  

Thermal, hydraulic and geomechanical unknowns such as pressure, temperature, normal and 

shear stresses and fracture aperture are estimated at each specific time step (t1, t2, …, tn).  The 

displacement discontinuities, fluid and heat source strengths as well as pressure and temperature 

variation (p and T) are assigned to different time intervals (1, 2, …, n).  Based on 

Figure  4.3, the time duration l, which is defined as tn-tn-l, is the accumulative time interval value 

for discontinuities and strengths calculation.  In this study, the italicized subscript corresponds to 

the fracture segment number (spatial component), whereas the italicized superscript presents the 

time step number (temporal component), for example 1i is the value of  in i
th

 fracture segment 

during the last time interval tn-tn-1.   
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Figure  4.3. Time marching scheme for continuous fluid and heat sources and displacement 

discontinuities. 
 

Based on Eq. 4.7, the induced pressure, temperature and stresses variation with respect to the 

initial value (based on n=tn-t0) can be calculated using the superposition of current and previous 

discontinuities and strengths variation during each time interval.  Thus, Eq. 4.7 can be rearranged 

based on the known and unknown values as: 
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       (4.8) 

The left hand side of Eq. 4.8 represents the combination of unknown variables whereas the right 

hand side is known.  As it can be seen, there exist 8N unknowns and 4N equations that can be 

converted into 6N unknowns and 6N equations by estimating the boundary conditions on the 

fracture wall, i.e. n, s, p, and T. 

4.3  Fracture Mechanics 

The mechanical behavior of fractured rocks is complex and usually influenced by a variety of 

factors such as rock elastic properties (Young’s modulus and Poisson’s ratio), interface friction 

(un-weathered and weathered friction angle), surface adhesion (cohesion and UCS), surface 

roughness (JRC), and the presence of fluids and debris at interfaces. 

Based on the stress state, three different types of fracture behavior are noted (Figure  4.4).  Mode 

I describes a symmetric fracture opening (with respect to x-z plane) under a normal tensile stress.  
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Mode II corresponds to fracture slip (in x-direction normal to the fracture front) under in-plane 

(co-directional) shear stress.  Mode III denotes the fracture tearing (in z-direction tangential to 

fracture front) as a result of out-of-plane shear stress. 

 

Figure  4.4. Three different fracture opening types [reproduced from Gross & Seelig, 2006]. 
 

4.3.1 Fracture Normal and Shear Stiffnesses 

Various empirical relationships between normal and shear stress and displacements of the 

fracture plane have been proposed.  Goodman (1976) proposed a hyperbolic relation between 

normal effective stress (n) and fracture closure (Dn): 

n
n n0 n0 n n max

n max n
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D
R D D

DD
  

 
     

 
          (4.9) 

where n0 is the initial effective normal stress, Dn max is the maximum closure and parameters R 

and t are experimentally determined.  Bandis et al. (1983) proposed an alternative form of Eq. 

4.10 for a small initial stress condition (Figure  4.5). 

n
n

n n na
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  


            (4.10) 

where n is the effective stress, and an and bn are constant parameters which are defined based on 

the limiting values of effective normal stress as below 
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Eq. 4.10 can be re-written based on maximum closure and initial normal stiffness: 

n max n0 n
n

n max n

. .D

D

K D

D
  


            (4.11) 

 

Figure  4.5. Normal and shear fracture deformation under normal and shear stress conditions. (a) axial 

displacement and (b) fracture closure under normal stress, (c) shear deformation vs. shear stress under 

different normal stresses [reproduced from Bandis et al., 1983] 

 

The value of fracture normal stiffness can be estimated at any effective stress level of n, based 

on initial normal stiffness and maximum closure as below: 
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         (4.12) 

Based on the above empirical equation, an increase in the effective stress (i.e. fracture closure) is 

associated with a normal stiffness increment until it becomes infinity.  In this case, the fracture 

behavior is dependent on the fracture aperture state and normal stiffness.  On the other hand, 

when the effective stress decreases (i.e. fracture opening), fracture normal stiffness reduces until 
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it reaches zero.  In this case, the fracture behavior is very sensitive to the elastic properties of the 

ambient rock mass [Rutqvist, 1995]. 

For shear displacement, non-linear behavior is usually expressed via hyperbolic functions.  

Kulhaway (1975) proposed the following relationship between shear stress (s) and displacement 

(Ds) for the pre-peak range of the shearing phase: 

s
s

s s sDa
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b
 


                        (4.13) 

where constants as and bs are defined as below 
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In the above formulation, s max is the peak shear stress and Ksi is the initial shear stiffness of a 

fracture. 

Barton et al. (1985) used the concept of mobilized roughness to describe the shear behavior of a 

fracture.  To quantify shear stress, a mobilized roughness coefficient (JRCmob) is used which is a 

function of fracture properties such as normal load, fracture length, current shear displacement 

and shear displacement history [UDEC Manual].  For the mobilized shear strength (s mob) for 

any shear displacement they suggested: 

 s mob n mob n rtan log /JRC JCS                (4.14) 

where JCS is the joint compressive strength and r is the residual friction angle. 
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Clearly, the complexity of fracture displacement in real cases requires the acceptance of a great 

degree of empiricism, and calibration of real cases will always be necessary because of this 

complexity and the uncertainty of the geometrical disposition and individual properties of an 

array of fractures. 

In this study, the modified Barton-Bandis model is implemented to estimate the fracture normal 

stiffness.  In this manner the same formulation for fracture closure is used for the case of 

injection into the fracture network, which is associated with fracture opening.  This behavior is 

associated with fracture normal stiffness decreasing until it approaches zero when the effective 

stress becomes zero (Figure  4.6).  It should be noted that in this theory it is assumed that the 

tensile strength of the fracture is negligible and also the effect of fracture scale is not considered. 

 

Figure  4.6. Normal and shear fracture stiffness variation under normal and shear stress changes. 
 

A linear relationship between shear stress and shear deformation is considered prior to the peak 

shear stress that corresponds to constant fracture shear stiffness.  The peak shear stress is 

estimated based on the Mohr-Coulomb criterion for cohesionless rocks (i.e. s max = n tanf).  
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Due to the complexity of the fracture behavior beyond the peak shear stress, zero fracture shear 

stiffness is assumed here (Figure  4.6). 

4.3.2 Shear Dilation 

Fractures are influenced by pore pressure and temperature variation especially under injection 

processes.  In this situation, the dominant failure mechanism is slippage beyond a threshold 

pressure.  The shear slippage is associated with fracture dilation normal to the fracture surface, 

which can occur at a pressure less than the minimum horizontal stress (Figure  4.7).  This 

phenomenon is called shear dilation and is defined as the displacement normal to the fracture 

surface during shear slip along a non-planar fracture plane.  Shear dilation is a low-effective-

stress phenomenon more likely if there are high in situ differential stresses.  Injection processes 

lead to the lowering of effective stresses, which essentially leads to a frictional strength reduction 

[Dusseault & Collins, 2008].  There are some required geomechanical properties for the 

occurrence of shear dilation such as high rock strength, high deviatoric stress, brittle rock with a 

tendency towards plastic deformation (i.e. low Poisson’s ratio and high Young’s modulus), low 

strength of rock fabric, and the existence of natural rock fractures. 

During the shearing of a fracture, the asperities of the fracture surface slide over each other and 

cause the dilation normal to the fracture surfaces which is associated with the fracture aperture 

increment.  Barton et al., (1985) quantified the shear dilation effect by introducing the 

relationship between shear displacement and normal displacement of the fracture as  

n dilation s tanD D               (4.15) 
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Dn dilation is the fracture deformation due to shear dilation and  is the dilation angle.  The 

negative sign in Eq. 4.15 corresponds to fracture opening as a result of positive shear 

deformation.  Dilation angle is negative in compression whereas it is positive in dilation.  Barton 

et al. (1985) suggested an empirical relationship for shear dilation angle as a function of physical 

properties of fracture surface as below 

n

1
log

2

JCS
JRC



 
  

 
           (4.16) 

In this study, only a constant and small dilation angle is implemented in the model because of the 

complexity of dilation behavior under different stress conditions. 

 

 

Figure  4.7. Fracture aperture variation caused by shear displacement [reproduced after Rahman et al., 

2002] 
 

4.4  Fluid Flow in the Fractures 

Much work has been done to study fluid flow behavior in fractures including laboratory work on 

fluid flow in natural and induced fractures, in-situ fracture studies in the field, and numerical 

methods [Louis, 1969; Iwai, 1976; Detournay, 1980; Witherspoon et al., 1981; Elsworth, 1984].  



 

 

 58 

Fluid flow in fractures can be modeled by considering fractures as parallel plates within which 

the volumetric flow rate is proportional to the pressure gradient [Asgian, 1988]. 

Consider a representative part of a single fracture with a constant elemental length of x, unit 

thickness, and constant aperture of w over the elemental length for a specific time.  The pressure 

diffusion equation for the one-dimensional transient single phase fluid flow along the x-axis is 

derived based on the fluid mass conservation equation as below: 

 

Figure  4.8. Single phase fluid flow in a representative fracture model 
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           (4.17) 

where f is the fluid density, q
f
x is the Darcy velocity in the x-direction, q

f
s is the source/sink 

term with the dimension of volumetric flow rate per unit elemental length x and unit thickness.  

The first term in the left hand side represents the net flow passing through the elemental length 

of the fracture, the first term on the right hand side is the mass storage variation over time and 

the second term is the source/sink term.  The negative sign in the last term corresponds to fluid 

withdrawal from the fracture, whereas a positive sign represents injection into the fracture. 
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Expanding the mass storage time derivative using the definition of isothermal fluid 

compressibility (cf) and fluid thermal expansion coefficient (f) and considering a constant fluid 

density over the elemental length of the fracture, the above equation can be re-written as: 

 f f
f f f f f f

w w p T w
w w c

t t t t t t

 
    

      
           

       (4.18) 
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         (4.19) 

Based on the assumption of laminar flow (small Reynolds number), the fracture intrinsic 

conductivity could be defined using the cubic law [Witherspoon et al., 1980] which implies that 

the Darcy velocity be described as 

2
f

x
12

w p
q

x


 


             (4.20) 

The source/sink term in the pressure diffusion equation consists of two terms; one of them is 

natural and the other one is induced.  The natural source/sink term is the fluid leak-off from the 

fracture into the surrounding rocks when the fracture pressure is more than the matrix pressure 

and flow will be in the other direction when the fracture is under depletion.  The induced part of 

the source/sink term occurs due to fluid production or injection into the fracture.  In this 

formulation, a fluid injection process is assumed, so the source/sink term has the following 

components: 

f f f

s int injq q q   
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where q
f
int is the interface flow rate between fracture and matrix per elemental fracture length 

and unit thickness and q
f
inj is the injection flow rate per elemental length and unit thickness. 

Substituting the above equations into Eq. 4.19 results in 

3 2
f f

f f int inj212

w p p T w
wc w q q

x t t t




   
    

   
         (4.21) 

This equation is the general form of the one-dimensional fluid diffusion equation in a fracture.  

The left hand side shows the net flow rate in the fracture, the first term on the right hand side is 

the fluid volume variation due to compression or expansion, the second term represents the fluid 

volume changes as a result of temperature variation, the third term is the fluid volume changes 

due to fracture deformation, the fourth term is the interface flow rate into the surrounding rocks, 

and the last term is the fluid injection rate per fracture elemental length and unit thickness. 

It can be assumed that aperture changes are equal to the normal displacement discontinuity 

variations.  In this case the displacement discontinuities form of the pressure diffusion equation 

has the following form: 

3 2
f fn

f f int inj212

Dw p p T
wc w q q

x t t t



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    
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        (4.22) 

 

4.5  Heat Flow in Fractures 

Most studies on heat transfer in porous media and fractures have been done in enhanced 

geothermal systems where water is circulated in the natural and man-made fractures in low 

permeability igneous and metamorphic hot rocks to extract geothermal energy [Hayashi et al., 

1999; Ghassemi et al., 2005]. 
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Heat transport in a fracture and its interaction with surrounding rocks can be studied using the 

energy conservation equation for the fluid and rock in the representative fracture segment.  

Again, consider the same control volume as for fluid flow.  The heat transfer equation for one-

dimensional transient heat flow along the x-axis is derived based on the heat conservation 

equation: 

 

Figure  4.9. Heat flow in a representative fracture model 
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where Q
h
 is the heat flow rate, Vf is the fluid volume, Cf is the specific heat of fluid and Q

h
s is the 

heat source/sink term.  Subscripts “cond” and “conv” correspond to conduction and convection 

heat transfer, respectively. 

In Eq. 4.23, the first term on the right hand side is the net conductive heat flow (transferred 

energy by heat flux) and the second term is the net convective heat flow (transferred energy by 

mass flux).  The first term on the right hand side is the variation of fluid energy over time and the 

second term is the source/sink term.  It should be noted that heat radiation is assumed to be 

negligible.  Applying the definitions of heat conduction and convection and dividing the equation 
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by the elemental fracture length x for a unit thickness fracture, the heat transfer equation can be 

written as 

2
f hf f

T f f s2
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C wTT T
k w C q w q

x x t


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         (4.24) 

where kT is the thermal conductivity, q
f
x is the Darcy velocity in the x-direction and q

h
s is the heat 

source/sink term per unit thickness and elemental length x.  In this formulation, thermal 

conductivity, Darcy velocity, and fluid specific heat are assumed to be constant over time.  

Expanding the fluid energy time derivative using the definition of isothermal fluid 

compressibility (cf) and fluid thermal expansion coefficient (f) and considering a constant fluid 

density over the elemental length of the fracture, the above equation can be re-written as: 
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This equation is the general form of one-dimensional heat transfer equation in a fracture.  The 

first term on the left hand side term shows the heat conduction and the second term is the heat 

convection, the first term on the right hand side is the internal energy variation due to 

temperature changes, the second term represents the internal energy changes due to compression 

or expansion, the third term is the internal energy changes as a result of fracture deformation 

(normal displacement discontinuity), the fourth term is the interface heat flow rate into the 
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surrounding rocks and the last term is the heat source rate per fracture elemental length and unit 

thickness. 

Assuming a constant fracture aperture and fluid density over time results in the conventional 

one-dimensional heat transfer equation in the following form: 

2
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T f f f f int s2 x

T T T
k C q C q q

x x t
 

  
   
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         (4.26) 

4.6  Fully Coupled Finite Difference - Displacement Discontinuity Model 

Based on the discussion in Section  4.3, the normal and shear displacement discontinuities are 

related to the normal and shear stresses on the fracture plane through the fracture normal and 

shear stiffnesses as below: 
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In Eq. 4.27, it is assumed that the fracture is at an equilibrium state under the in-situ stress prior 

to the injection/production process.  This implies that the in-situ stresses do not change the 

fracture’s aperture at the initial time step.  Normal and shear stresses in Eq. 4.8 can be replaced 

by the expressions in Eq. 4.27, to reduce the problem to 2N unknowns: 
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In Eq. 4.28, pi
t0

 and Ti
t0

 are the pressure and temperature at time step zero which are the initial 

pressure and temperature in the rock. 

The modified version of pressure and temperature diffusion equations (Eq. 4.22 and 4.25) can 

also be added to Eq. 4.28 (refer to Appendix F), to come up with 6N equation and 6N unknowns, 

which are pressure, temperature, fluid and heat source strengths, and normal and shear 

displacement discontinuities in each fracture segment: 
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Eq. 4.29 is the final form of the governing equation for a two-dimensional hybrid finite 

difference-displacement discontinuity method in a thermo-poroelastic medium.  The 

displacement discontinuity equations (first four equations) are linear, whereas the heat and fluid 

diffusion equations are non-linear, i.e. aperture and Darcy velocity, which are unknown in the 

new time step, also appear in the coefficients of the pressure and temperature terms. 

This non-linearity can be handled using different methods such as a simple iteration method, a 

direct iteration method, and the Newton-Raphson method.  In the simple iteration method, the 

aperture and Darcy velocity (iteration’s unknowns) from the previous time step are used in the 
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current time step.  In the direct iteration method, the iterations’ unknowns are calculated 

iteratively until the difference between two successive values is less than a specific tolerance; in 

this method the values from the previous time step are used as the initial guesses for the 

unknowns.  The Newton-Raphson method to estimate the iteration’s unknown uses a tangent 

approach similar to the direct method, but with faster convergence.  In this study, both simple 

iteration and direct iteration methods are applied to Eq. 4.29 to estimate the fracture’s unknowns.  

The simple iteration form of Eq. 4.29 has the following form: 
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where wi
tn

 and q
f
x
tn

 have been substituted by wi
tn-1

 and q
f
x
tn-1

.  The left hand side of Eq. 4.30 

contains the unknowns whereas all the parameters on the right hand side are known.  Integrating 

all these equations together results in a 6N linear system of equations that can be solved for the 

unknowns using common solution methods such as Gaussian elimination.  A 66 part of the 

whole matrix for the fracture segment i is shown in Eq. 4.31: 

         (4.31) 

where COFp and COFT are the pressure and temperature coefficients that were presented in Eq. 

4.30. 

Solving Eq. 4.30 will give an estimate of the unknowns for each fracture segment.  Using this 

estimation, it is possible to estimate displacement, stress, pressure and temperature on the 

fracture plane and the surrounding rock using Eq. 4.7.  Both pressure and temperature can be 

estimated using the diffusion equations as well as fluid and heat source equations that should be 

identical as all these equations are solved simultaneously. 

The following assumptions are considered in the FDM-DDM hybrid solution: 
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 Linear elastic, isotropic and homogenous porous medium; 

 Quasi-static condition with no inertial forces; 

 Plane strain condition; 

 Single phase transient fluid flow under a Darcian flow condition without any 

gravitational forces; 

 No chemical reaction during the fluid and heat flow; 

 No viscous dissipation, radiative effect and work (energy loss) due to pressure change; 

 Thermal local equilibrium between solid and liquid phase; 

 Constant porosity, thermal expansion coefficient, thermal conductivity, fluid density, and 

fluid viscosity; 

 Heat conduction is the only heat transfer mechanism in the rock where heat convection is 

also considered to model the heat propagation in the fracture network; 

 Effect of volumetric strain on temperature variation is negligible; 

 Modified Barton-Bandis is implemented to estimate the fracture normal stiffness. Tensile 

strength of the fracture is negligible and the effect of fracture scale is not considered; 

 Constant fracture shear stiffness is considered prior to peak shear stress.  Beyond the 

peak shear stress, zero fracture shear stiffness is assumed; 

 Constant dilation angle due to the complexity of dilation behavior under different stress 

conditions. 
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4.7 Chapter Summary 

In this chapter the structure of the hybrid FDM-DDM model was presented.  For this purpose, 

the equations for displacement discontinuities as well as fluid and heat source strengths were 

presented using the fundamental solutions described in Chapter 3.  The behavior of fractures was 

quantified using the fracture parameters such as normal and shear fracture stiffness and shear 

dilation angle.  The implicit finite difference form of the fluid and heat governing equation in the 

fracture network was also presented in this chapter.  In order to have a fully coupled approach, 

all the displacement discontinuities equations and finite difference governing equations were put 

together to construct a matrix with size 6N by 6N where N is the number of fracture segments in 

the problem.  
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Chapter 5 

Model Verification 

Analytical or semi-analytical solutions are the preferred initial approach in any engineering 

analysis.  Analytical solutions permit direct physical insight of problems and quick estimation of 

unknowns.  Although there are some closed-form solutions for coupled stress-flow problems in 

the literature, THM coupled problems cannot be evaluated properly using analytical or semi-

analytical solutions.  Dusseault (2008) summarized some of the drawbacks of analytical or semi-

analytical solutions of coupled problems as below: 

 These type of solutions can only consider a limited degree of coupling (e.g. Wang and 

Dusseault (2003) coupled solution for tangential stress calculation around a wellbore), 

 A linear constitutive law is usually implemented (e.g. elasticity), 

 Simple loading behavior is used (e.g. uniform pressure changes, single well), 

 Simple geometry (e.g. plane strain, plane stress, axisymmetric), 

 Homogeneous and isotropic, 

 Constant boundary conditions (e.g. constant far field stresses, constant flux or pressure at 

wellbore face). 

Closed form solutions are usually a good benchmark for numerical solutions and can be used for 

model verification.  Based on this, several analytical solutions has been chosen to verify the 

existing FDM/DDM model.  At the beginning of this chapter, four closed form solutions for the 

elastic, poroelastic and thermoelastic medium are implemented to validate the displacement 
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discontinuity part of the existing model.  It follows then by a simple comparison between 

poroelastic, thermoelastic and thermoporoelastic model for a single horizontal fracture that one 

may understand the behavior of the fracture under all these conditions. 

5.1  Uniform Pressurization of a Single Fracture in an Elastic Medium 

Sneddon (1951) proposed an analytical solution for the opening of a single fracture under a 

uniform fluid pressure in an elastic medium.  In the derivation, he assumed the plane-strain 

condition which can be implemented to estimate the fracture aperture in a horizontal plane 

perpendicular to the vertical axis of the fracture.  Based on his formulation, the fracture under a 

uniform pressure will have an elliptical cross-section which is given by the formula,

2 2

n y y

2 (1 )
( ) ( ,0 ) ( ,0 )

P
D x u x u x a x

G

  
               (5-1) 

 

Figure  5.1. Uniformly pressurized fracture 
 

where Dn is the normal displacement discontinuity (amount of fracture closure) and P is the 

uniform fracture pressure. 
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A constant pressure of 1 MPa is applied to a fracture with a length of 10 meters and the amount 

of fracture opening along the fracture is plotted in Figure  5.2 in a dimensionless form.  In this 

example, DDM results are shown for three different fracture segment sizes: 0.5 m (20 segments), 

0.25 m (40 segments), and 0.125 m (80 segments).  As it can be seen, a good match is obtained 

between numerical and analytical solutions, even though there is an overestimation for all three 

numerical results close to fracture tips.  Also, increasing the number of segments moves the 

numerical results toward the analytical solution [as shown by Crouch, 1976]. 

 

Figure  5.2. Numerical and analytical solutions of the fracture opening under a uniform pressurization in 

an elastic medium (= 0.25, P/G = 0.0025). 
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5.2  Uniform Pressurization of a Single Fracture in a Poroelastic Medium 

5.2.1  Load Decomposition Solution 

Detournay and Cheng (1991) decomposed the behavior of a uniformly pressurized fracture in a 

poroelastic medium with fluid leak-off between fracture and surrounding rocks into two 

boundary conditions, one for the stress loading (mode I) and the other for pressure loading (mode 

II).  The transient behavior of the fracture under these two loading conditions can be summarized 

as below: 

Mode I loading 

Mode I corresponds to the stress loading by applying a constant normal stress to the fracture 

plane.  The boundary conditions of the fracture under this loading can be written as 

n ( , ) H( ) ( , ) 0x t P t p x t                (5-2) 

where n and p are the normal stress and pressure on the fracture plane and H(t) is the Heaviside 

step function.  The initial conditions for the both loading type are zero stress and pore pressure 

everywhere. 

At early time, right after applying the normal stress inside the fracture, an undrained elastic 

behavior becomes dominant.  The fracture opening can be estimated using Sneddon’s elastic 

solution with an undrained Poisson’s ratio.  This undrained behavior reverts to drained behavior 

over time as the fracture opens and the loading induced pressure gradually disappears.  

Sneddon’s solution with the drained Poisson’s ratio describes the amount of fracture opening as 

the long-term solution. 
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2 2 2 2u
n n

:                                               :

2 (1 ) 2 (1 )
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P P
D x a x D x a x

G G
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      (5-3) 

Based on Eq. 5-3, the long term aperture is greater than the short-term aperture, which is one of 

the characteristic of poroelastic materials as they become softer when drained [Detournay and 

Cheng, 1991]. 

To verify the DDM model, a 10-meter horizontal fracture (Figure  5.1) is an anisotropic medium 

without any in-situ stresses is uniformly pressurized with 1 MPa.  The amount of fracture 

opening over the fracture length is depicted in Figure  5.3 in terms of normalized length and 

normal displacement discontinuities with respect to the fracture half length. 

 

Figure  5.3. Numerical and analytical solutions of the fracture opening for the stress loading mode along 

the fracture length (= 0.25, u = 0.35, P/G = 0.0025). 
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A good correspondence between the analytical solution for drained and undrained conditions and 

the DDM model is obtained.  As was observed also in Figure  5.2, the DDM solution 

overestimates the amount of fracture opening as one moves toward the fracture tips. 

The evolution of fracture aperture over time (for a one year period) at the center of the fracture 

(x=0), which also corresponds to the maximum opening in Eq. 5-3, is drawn in Figure  5.4.  In 

this figure, a normalized time based on the hydraulic diffusivity is adopted.  As the poroelastic 

medium becomes softer over time, the fracture aperture increases from the undrained asymptotic 

value at early time to the drained one.  The overestimation of the numerical solution in 

comparison with Sneddon’s solution is apparent in this figure; it is less than five per cent.  

\  

Figure  5.4. Fracture aperture opening over time in the middle of a single fracture under the stress loading 

mode (= 0.25, u = 0.35, P/G = 0.0025). 
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Mode II loading 

At early time, exactly after application of pressure in the fracture, the pressure starts to propagate 

into the surrounding rocks under a one-dimensional flow mechanism perpendicular to the 

fracture walls.  The step pressure does not induce any aperture changes at early time.  With time 

increments, the fracture starts to close as the fracture pressure propagates into the surrounding 

rocks and results in the poroelastic dilation of the rocks around the fracture. 

2 2u
n n

u

:                                               :

3 ( )
             ( ) 0 ( )

(1 )

Short - term Long - term

P
D x D x a x

BG

 




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

      (5.4) 

The fracture closure profile along the fracture length and fracture closure profile over time in the 

middle of the fracture under pressure loading is shown in Figure  5.5 and Figure  5.6, respectively.   

 

Figure  5.5. Numerical and analytical solutions of the fracture opening for the pressure loading mode 

along the fracture length (= 0.25, u = 0.35, P/G = 0.0025). 
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Figure  5.6. Fracture aperture closure over time in the middle of a single fracture under the pressure 

loading mode (=0.25, u=0.35, P/G=0.0025). 
 

There is a noticeable difference between the long-term numerical and analytical solutions for the 

fracture closure under pressure loading.  This difference happens as the elastic coupling between 

pore pressure and stress is assumed to be negligible for the derivation of the analytical solution 

of the pressure loading mode [Detournay and Cheng, 1993] and represents the complete drainage 

of pore pressure in the infinite medium at infinite time.  This error has been observed in similar 

works such as Vandamme et al. (1989) and Zhang (2004). 

Mode I and II can be combined together to understand the behavior of an elastic fracture in a 

poroelastic medium (Figure  5.7and Figure  5.8 ). 

Based on Figure  5.7 and Figure  5.8, the fracture aperture increases when a constant pressure is 

applied in the fracture.  At early time, an instantaneous fracture opening occurs as a result of 

undrained behaviour of the poroelastic medium that is reduced over time until it reaches a 
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drained behavior with eventual complete equilibration of the pore pressure in the surrounding 

rocks.  The difference between analytical and numerical solution for long term behavior can also 

be seen here. 

 

Figure  5.7. Numerical and analytical solutions of the fracture opening for mode I+II loading along the 

fracture length (= 0.25, u = 0.35, P/G = 0.0025). 

5.2.2  Haimson’s Solution 

Haimson (1968) modified Sneddon’s solution for the fracture aperture estimation in a poroelastic 

medium by adding the normal induced displacement as a result of fluid leak-off into the 

surrounding rocks.  He used the analogy between thermoelasticity and poroelasticity to derive 

the leak-off induced displacement from the thermoelastic displacement solution suggested by 

Olesiak and Sneddon (1959) in an infinite elastic medium as 

2 2
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2 2(1 2 )
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where the second term in the bracket represents the fracture aperture reduction due to the fluid 

leak-off into the rock mass adjacent to the fracture.  It was assumed that fluid flow into the rock 

is steady-state, which is equivalent to the long-term solution of Detournay and Cheng’s mode 

I+II.  A comparison between the amounts of fracture opening along the fracture length calculated 

using the Haimson’s formulation, Detournay and Cheng’s solution (Mode I+II) and the DDM 

model developed herein is presented in Figure  5.9. 

 

Figure  5.8. Fracture aperture variation over time in the middle of a single fracture under the mode I+II 

loading (= 0.25, u = 0.35, P/G = 0.0025). 



 

 

 80 

 

Figure  5.9. Numerical and analytical solutions of the fracture opening using the Haimson and 

Detournay& Cheng’s solution along the fracture length (= 0.25, u = 0.35, P/G = 0.0125, = 0.8). 
 

As seen in this figure, a good correspondence between Haimson’s solution and the DDM results 

is obtained.  The previously mentioned difference between the DDM results and Detournay and 

Cheng’s solution is visible again in Figure  5.9. 

5.3  Uniform Cooling of a Single Fracture in a Thermoelastic Medium 

In this section, the effect of uniform cooling of a fracture on the fracture opening in a 

thermoelastic medium is considered (Figure  5.10).  For this purpose, it is assumed that the initial 

temperature of a 400-meter fracture is 80°C colder than the surrounding rocks.  Zhang (2004) 

proposed the following formulation for the long-term maximum fracture opening as a result of a 

constant T temperature changes: 
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n max

2 (1 )

3

sLD T
 

                (5.6) 

 

Figure  5.10. Uniform cooling of fracture 
 

Figure  5.11 indicates that the fracture starts to open as soon as the cold temperature is applied, 

and at late time (one year in this example) it is approaching an asymptotic value which is shown 

by the red dashed line (Zhang’s solution).  The difference between the analytical and numerical 

solution is about 7 percent at this time increment, and the numerical solution is continuing to 

converge to the asymptotic value.  The same result would be obtained using a thermoporoelastic 

approach as the cooling effect induces a pressure reduction in the surrounding rocks, not the 

fracture surface [Zhang, 2004]. 

5.4  Single Fracture Behavior under Different Cases 

The FDM/DDM model is implemented in this section to simulate the behavior of a single 

fracture and the adjacent rock for three different cases: 

 A poroelastic case where an isothermal fluid in injected in the middle of a fracture at a 

constant rate. 
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 A thermoelastic case in which a constant temperature source is applied in the middle of the 

fracture. 

 A thermo-poroelastic case which is a combination of the poroelastic and thermoelastic cases, 

i.e. a cold fluid is injected at a constant rate in the middle of the fracture. 

 

Figure  5.11. Fracture aperture variation over time in the middle of a single fracture under the uniform 

cooling (= 0.25, T = -80°C, s = 2.410
-7

1/°C, G =400 MPa). 

 

Thermal, hydraulic and geomechanical parameters are assumed to be identical in all the cases 

analyzed (Table  5.1), and a comparison between different cases is done in the last section, 

presenting the effect of pressure, temperature and their combination on the fracture and 

surrounding rocks.  It should be mentioned here that large rock porosity (25%) has been used in 

the examples in this study, which is more than the typical porosity of the carbonate rocks (5-

10%).  The only purpose to choose this high value was to present the physical behavior of 
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fractures that could be representative of massive produced water disposal in highly porous 

carbonate rocks dominated by fracture flow. 

5.4.1 Poroelastic case 

In this section, an isothermal viscous fluid is injected in the middle of a 40-meter vertical 

fracture at a constant rate of 210
-6 

m
3
/s for 10 hours.  In this case, it is reasonable to model the 

problem with a plane strain assumption in the horizontal plane perpendicular to the injection well 

axis. 

Table  5.1. Thermal, hydraulic and geomechanical properties of the single fracture and adjacent rock for 

three different cases: poroelastic, thermoelastic and thermo-poroelastic.  

 

 

In-situ stresses are anisotropic, with the minimum horizontal stress (yy) equal to 20 MPa and 

perpendicular to the fracture plane and the maximum horizontal stress (xx) equal to 30 MPa 

along the fracture plane.  For simplicity, xx and yy will be referred to as horizontal and vertical 

stresses in the two-dimensional plane strain model.  Fracture pressure and fracture aperture 

profiles along the fracture, as well as a pore pressure propagation map after 10 hours fluid 
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injection, are shown in Figure  5.12.  As time increases, the fluid starts to propagate in the 

fracture faster than the rock as a result of the higher fluid conductivity of the fracture.  This 

transient pressure propagation is converted to a steady state flow in the fracture and an isobaric 

regime becomes dominant along the fracture as the pressure front reaches the fracture tips 

rapidly.  This behavior explains the fracture pressure profile with a maximum of 11.36 MPa at 

the injection point (x=0).  This pressure increment increases the fracture aperture to a maximum 

value of 0.178 mm, which is equivalent to 2700 Darcy.  The fracture aperture decreases toward 

the fracture tips. 

 

Figure  5.12. Fracture pressure profile (red line), fracture aperture profile (green line), and pore pressure in 

the surrounding poroelastic medium after 10 hours of fluid injection. 
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Pore pressure in the permeable rock around the fracture increases and the isobars will have an 

approximately elliptical shape elongated along the fracture length as a result of the isotropic and 

homogeneous rock properties. 

In-situ effective stresses as well as shear stresses and displacements after 10 hours of fluid 

injection are depicted in Figure  5.13.  As the fracture opens, it pushes the surrounding rock away, 

which causes a positive displacement above and in the right hand side of the fracture and a 

negative displacement on the bottom left hand side.  Horizontal and vertical displacements are 

symmetrical with respect to vertical and horizontal straight lines passing through the injection 

point.  The shape of horizontal displacement is almost circular, whereas the vertical displacement 

spreads along the fracture and the maximum values occur close to the injection point. 

Vertical and horizontal effective stresses around the injection point decrease as the pore pressure 

increases in the surrounding rock, even though the total stresses increase slightly as a result of 

rock compression.  Because of conservation of momentum (conservation of stress for 

equilibrium), this stress reduction is compensated by an increase of stress moving away from the 

center of fracture.  For the effective horizontal stress (xx), this increment mostly occurs above 

and under the fracture, whereas for the vertical effective stress (yy), it occurs at the sides of 

fracture.  The rate of stress reduction for vertical effective stress is more than for horizontal 

effective stress, which is the driving mechanism for propagation along the fracture as soon as the 

vertical effective stress exceeds the tensile strength of the fracture tips.  Most of the shear 

stresses occur above and under the fracture tips as the difference between horizontal and vertical 

stresses reaches a maximum in that region. 
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Figure  5.13. Horizontal and vertical displacements and effective stresses as well as shear stress maps 

around a pressurized fracture in a poroelastic medium. 
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5.4.2 Thermoelastic case 

In this case, a heat source is applied in the middle of the single fracture with a temperature of 

30°C which is 50°C colder than the initial temperature of the fracture wall and its surrounding 

rock.  It is assumed that there is no fluid flow in the fracture and no fluid leak-off from the 

fracture into the rock.  Based on this assumption, the only heat transfer mechanism in the 

medium is heat conduction, which is a slower mechanism in comparison to heat convention.  The 

other model properties are identical with the previous case (Table  5.1).   

As expected, the cold front propagates slowly and it only affects the area adjacent to the heat 

source in 10 hours of cold injection (Figure  5.14).  As the result, only the fracture aperture near 

the injection point is affected, showing an abrupt increase of 0.41 mm (14000 mD).  The 

influenced cold area around the fracture is almost circular as a constant value for heat diffusion 

in all directions was assumed for this problem.  The radius of the influenced area is almost one 

meter with a minimum temperature of 45°C.  The cold temperature will propagate over time 

symmetrically in both the fracture and the rock over time and the existence of the fracture will 

not affect the heat propagation speed in the rock. 

Figure  5.15 depicts the induced displacements and stresses as a result of cooling the injection 

point in the middle of the single fracture.  Cooling is usually associated with rock shrinkage and 

stress reduction in the influenced medium.  These effects can be seen in horizontal and vertical 

displacements.  As we expect, the rock starts to shrink toward the injection point and shows a 

symmetric but reverse displacement with the smaller influenced zone in comparison with the 

poroelastic case.  The displacement contours are almost circular without any influence from the 

fracture pattern as a result of the isotropy and homogeneity of the thermoelastic medium. 
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The horizontal and vertical effective stresses are reduced in the cold area from their initial values 

of 22 MPa and 12 MPa, respectively (the green area in the effective stress maps in Figure  5.15).  

The stress compensation occurs at the top and bottom of the cold region for the horizontal 

effective stress and at the sides for the vertical effective stress.  The shear stresses also develop 

mainly at the sides of injection area as the temperature changes has not reached to the fracture 

tips.  It should be noticed here that the sign of shear stresses is different than the poroelastic case.  

Here the rock shrinks in the cold region whereas in the poroelastic case the rock compresses as a 

result of fracture opening and pore pressure increases in the region adjacent to the fracture. 

 

Figure  5.14. Fracture temperature profile (blue line), fracture aperture profile (green line), and 

temperature map in the surrounding thermoelastic rock after 10 hours of cold fluid injection. 
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Figure  5.15. Horizontal and vertical displacements and effective stresses as well as shear stress maps 

around a fracture with a heat source (colder than the surrounding rock) in a thermoelastic medium. 
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5.4.3 Thermo-poroelastic case 

In this part a combination of both poroelastic and thermoelastic cases is considered to study the 

behavior of fracture and rock under cold fluid injection in the middle of fracture at a constant 

rate.  As there is fluid flow in the fracture, convection is also assists conduction to transfer heat 

in the fracture.  Heat conduction is still the only thermal propagation driving force in the rock.  

The thermal, hydraulic and mechanical properties of the model were shown in Table  5.1. 

Based on Figure  5.16, pressure increases in the fracture and its surrounding rocks in amanner 

similar to the poroelastic problem.  The maximum pressure in the fracture is 11.26 MPa which is 

0.1 MPa less than the pressure at the injection point in the poroelastic model.  This difference 

occurs as a result of cooling the fracture and increasing the fracture aperture with a magnitude of 

0.317 mm (8500 Darcy) in comaprison with the fracture aperture at injection point in the 

poroelastic case which was 0.178 mm (2700 Darcy). 

As heat convection assists the heat conduction process, temperature propagates much faster in 

the fracture in comparison with the thermoelastic problem.  As can be seen in Figure  5.16, the 

fracture temperature reduces to the injection temperature for a distance of 6.5 meters away from 

injection point.  This temperature reduction increases the fracture aperture more than the 

poroelastic case whereas it is possible to recognize the cold part of fracture from the aperture 

profile where shows more fracture opening from the temperature effect than the pressure effect.  

As the convective heat propagates faster in the thermoporoelastic case than the thermoelastic 

one, more rock around the fracture cools down as this cold region spreads along the fracture, 

giving a different shape than the thermoelastic problem. 
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Figure  5.16. Fracture pressure profile (red line), fracture temperature profile (blue line), fracture aperture 

profile (green line), pore pressure map (left) and temperature map (right) in the surrounding rock after 10 

hours of cold fluid injection in a thermo-poroelastic medium. 
 

Horizontal and vertical displacements are responding as a combination of both cases, i.e. the 

rocks close to the cold region are shrinking (thermal effect) whereas the rocks far away from the 

cold area are pushing away from the fracture (hydraulic effect).  The magnitude of thermally 

induced displacements is more than the hydraulic one and over time as the heat front moves from 

the injection point toward the fracture tips, the thermal displacements move toward the hydraulic 

displacements.  This is in agreement with the fact that a pressure front usually moves faster than 

a heat front, so the induced effect of each process is also time dependent, i.e. the hydraulic effect 

can be considered as the early time effect, whereas the thermal effect usually becomes dominant 

at a later time.  As the direction of thermal and hydraulic displacements are opposite to each 

other in this problem, a zero displacement contour can be recognized in each time step between 

the thermal and hydraulic induced displacements.  This contour expands over time and its shape 

is controlled mostly by the isothermal contours. 
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Horizontal and vertical effective stresses reduction in Figure  5.17 mostly occurs as a result of 

cold fluid injection.  It was mentioned for the poroelastic case that the rate of stress reduction for 

vertical effective stress is more than horizontal effective stress, which is the driving mechanism 

for fracture propagation along the fracture as soon as the vertical effective stress reaches the 

tensile strength of the fracture tips.  This is not the scenario for the thermoporoelastic case, as the 

thermal effects mask the hydraulic effect (mostly for horizontal effective stress) and as can be 

noted in Figure  5.17, the reduction rate of horizontal effective stress is more than for the vertical 

effective stress.  This could lead to generation of secondary fractures perpendicular to the main 

fracture, increasing the surface area for heat exchange, which will affect the heat exchange and 

hydraulic response behavior prediction of the fractured medium. 

The effect mentioned above is visible in Figure  5.18, which shows the horizontal and vertical 

stress map.  The maximum reduction rate for horizontal and vertical stresses is 3.56 MPa and 

0.34 MPa, respectively. 

Returning to Figure  5.17, shear stresses occur at the cold fluid front in the rock and their 

direction shows that the thermal effect is the dominant mechanism.  It is worthwhile to mention 

that even the shape of induced shear stress by pressure and temperature propagation is different.  

Poroelastic induced shear stresses are more spread out than for the thermoelastic case. 
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Figure  5.17. Horizontal and vertical displacements and effective stresses as well as shear stress maps 

around a cold pressurized fracture in a thermo-poroelastic medium. 



 

 

 94 

s 

Figure  5.18. Horizontal and vertical stresses as well around a cold pressurized fracture in a thermo-

poroelastic medium. 

 

5.4.4  Comparison of poroelastic, thermoelastic and thermo-poroelastic models 

Three different cases were studied in the previous sections and the pressure, temperature, 

displacements, and effective stress maps were shown.  It was also noted that the 

thermoporoelastic case is a combination of both poroelastic and thermoelastic cases but 

considering also the effect of thermal convection in the formulation, which is not considered in 

the thermoelastic problems.  In this section, a comparison of these three cases is attempted using 

different profiles for the parameters of interest.  For this purpose, a 200-meter horizontal profile 

two meters above the fracture is considered because the horizontal profile can show more 

parameters changes above a horizontal fracture in a plane strain cross-section. 

The pressure profile does not contain the thermoelastic case as it was assumed that no fluid flow 

took place into the rock matrix in that model.  Also, the poroelastic profile does not exist in the 

temperature representation as it was assumed to be isothermal (Figure  5.19). 

Vertical StressHorizontal Stress
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Figure  5.19. Pore pressure and temperature profiles along a 200-meter horizontal line located 2 meters 

above the fracture for 3 different cases, i.e. poroelastic (blue line), thermoelastic (red line), and 

thermoporoelastic (green line). 

 

As mentioned for the thermoporoelastic case, the amount of pressure increase is less than for the 

poroelastic case, and this is visible in Figure  5.19.  The maximum difference occurs above the 

injection point, about 0.1 MPa. 

The thermoporoelastic case also shows more heat propagation than the thermoelastic one, even 

though heat conduction is the only heat transfer mechanism in the rock.  This difference in heat 

propagation (about 8°C for the point above the injection point in the profile) occurs as the 

fracture cools down faster in the presence of heat convection and the superposition of all heat 

source strengths affects the surrounding rock more than the case without any convective terms.   

In the case of displacements, hydraulic fracture opening moves the rock away from the fracture 

which is shown by positive values for ux for the positive x and negative values for ux for the 

negative x (Figure  5.20).  This behavior is opposite for the thermal fracture opening as a result of 

rock contraction in the heat influenced region.  The poroelastic profile for ux shows a 

combination of both processes with amplification of the thermal effect as a result of heat 
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convection.  The same behavior with a different pattern can be seen for the vertical displacement 

(uy), i.e. a positive value for the pressure effect and a negative value for the temperature effect. 

 

Figure  5.20. Displacement profiles along a 200-meter horizontal line located 2 meters above the fracture 

for 3 different cases, i.e. poroelastic (blue line), thermoelastic (red line), and thermoporoelastic (green 

line). 

 

Figure  5.21 presents the vertical and horizontal effective stresses as well as shear stress profiles 

for the three different cases.  Effective stress decreases when the pressure increases, which is the 

case for the poroelastic profiles, even though total horizontal and vertical stresses increase 

slightly as a result of fracture opening and compression of the surrounding rocks.  For the 

thermoelastic case, in the absence of pore pressure, vertical effective stress decreases as the rock 

shrinks more vertically (y-direction referred to Figure  5.20), which is associated with a small 

increase in the horizontal effective stress.  Vertical effective stress shows the combination of 

both other cases where the mechanism’s transient zone is apparent with a change in the slope of 

the effective vertical stress (green line at fracture tips in the vertical effective stress profile). 
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Figure  5.21. Stress profiles along a 200-meter horizontal line located 2 meters above the fracture for 3 

different cases, i.e. poroelastic (blue line), thermoelastic (red line), and thermoporoelastic (green line). 
 

The behavior of horizontal effective stresses for the thermoporoelastic case is a bit different.  It 

expects that above the injection point the effective stress increases (similar to the thermoelastic 

problem), but due to the fact that the profile is so close to the fracture, the two positive peaks are 

added together and this shape is constructed.  To check this explanation, the horizontal effective 

stress along five different profiles with various elevations are estimated and compared together 

in Figure  5.22.   
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Figure  5.22. Effective horizontal stress profiles along a 200-meter horizontal profile with different 

elevations above a single fracture in a thermoporoelastic medium. 
 

Shear stress profiles with different cases show different behaviors as well, i.e. 

poroelastic shear stresses occur at the fracture tips whereas when temperature 

differences are introduced into the model, higher shear stress with different directions 

at the heat front are induced with respect to the poroelastic case. 

5.5 Chapter Summary 

In this chapter, the hybrid FDM-DDM model was verified with some existing analytical 

solutions such as Sneddon’s solution and Detournay and Cheng’s solution.  It was shown that 

there is a good correspondence between numerical and analytical solutions.  Also the behavior of 

a single fracture in anisotropic in-situ stress conditions for different scenarios, i.e. poroelastic, 

thermoelastic and thermo-poroelastic, was studied and the pore pressure, temperature, 
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deformation and stresses were compared.  As a result of cold fluid injection, fracture aperture 

increases as a consequence of two mechanisms: pore pressure increment reduces the effective 

stress acting at fracture planes that is associated with an increment in fracture normal 

displacement discontinuity and rock shrinkage as a result of cooling the rock.  Based on the 

results, the pore pressure effect is dominant at early time after injection initiation, whereas the 

temperature effect becomes dominant at later time as the temperature propagation is slower than 

pressure propagation in the rock.   
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Chapter 6 

Model Application 

The FDM-DDM hybrid model is implemented in this chapter to study the behavior of a thermo-

poroelastic medium under injection/production processes with different fracture network 

configurations.  At the end of this chapter, a sensitivity analysis is done to describe the response 

of the medium to the variation of some thermal, hydraulic and geomechanical properties of the 

fracture and rock. 

6.1  Isothermal Fluid Injection into an Orthogonal Fracture Network 

The FDM/DDM model is used in this section to model the behavior of an orthogonal fracture 

network under the isothermal injection of a compressible fluid for two different cases: isotropic 

in-situ stress and anisotropic in-situ stress.  This comparison is done to show that fluid tends to 

flow perpendicular to the minimum in-situ stress as it is easier to open the fracture in this 

direction.  For this purpose, 11 fractures in the x-direction and 10 fractures in the y-direction are 

assumed with an identical fracture spacing of 20 meters (Figure  6.1).  For the isotropic case, both 

horizontal and vertical stresses are identical to 30 MPa, whereas for the anisotropic case, the 

horizontal stress and vertical stress are 50 MPa and 30 MPa, respectively.  The hydraulic and 

geomechanical properties of these models can be found in Table  6.1.  All the properties are 

identical for both models, except the fracture normal stiffness in the anisotropic model which is 

60 GPa/m for the fractures in the x-direction and 100 GPa/m for the y-direction fractures as a 

result of the anisotropy of the in-situ stresses.  This assumption is in agreement with the 

definition of fracture normal stiffness [Goodman, 1974].  An isothermal fluid with a constant 
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compressibility (cf = 710
-4

 MPa
-1

) and dynamic viscosity ( = 1 cP) is injected at a constant rate 

(qinj = 10
-4

 m
3
/sec) for 30 hours. 

 

 

Figure  6.1. 180 by 200 m
2
 fracture network with an injection source in the middle of fracture network 

under the isotropic (left) and anisotropic (right) in-situ stress conditions 

 

Table  6.1. Geomechanical and hydraulic properties of the orthogonal fracture network and surrounding 

rock 
 

 

First the isotropic stress model is considered in this section, followed by the anisotropic one.  

Figure  6.2 depicts the fluid and fracture aperture variation in the fracture network after 30 hours 

of fluid injection into the middle of the model (point C in Figure  6.1).  The width of fracture 

elements is chosen based on the fracture aperture after 30 hours of injection.  As expected, 
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pressure propagates symmetrically around the injection point with a maximum value of 16.16 

MPa that increases the fracture aperture at the injection point to 0.128 mm (1400 Darcy).  These 

numbers indicate the high sensitivity of fracture aperture on pressure in the fractures, as only 

1.16 MPa increase in pressure is associated with seven times increment in fracture conductivity 

from the initial condition (w0=0.05 m, kf0=200 Darcy). 

 

Figure  6.2. Fracture fluid pressure (left) and fracture aperture (right) variation after 30 hours of fluid 

injection under isotropic in-situ stress condition 
 

As a result of fluid injection into the fractures, the pore pressure in the rock also increases, 

following the pattern of fracture network.  The amount of pressure increment in the rock is much 

less than the fracture network as a result of the large conductivity difference between them.  This 

behavior is shown in Figure  6.3 that depicts the pore pressure map after 12 and 30 hours of the 

initiation of fluid injection into the medium. 

The symmetry of pressure propagation in the rock is visible in this figure.  It is also found that 

the pressure has not affected all the rock blocks between the fracture sets after 12 hours.  After 
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30 hours all the blocks are affected by the injection well, expect the middle of the blocks at the 

corners of the fracture network which does not show any pressure increment.   

 

Figure  6.3. Pore pressure variation after 12 (left) and 30 (right) hours of fluid injection under isotropic in-

situ stress condition 

 

Fluid injection also disturbs the rock stresses around the fractures, especially effective stresses.  

Horizontal and vertical effective stresses and shear stress in the rock are shown in Figure  6.4.  

Both horizontal and vertical effective stresses decrease in the medium as the pore pressure 

increases, even though there is a slight increment in the rock stresses as a result of fracture 

opening and rock hardening.  The affected area of horizontal effective stress is more than the 

vertical one in the middle of the fracture network; the same behaviour was seen in the case of the 

single fracture problem in a poroelastic medium (Figure  5.13).  Shear stresses are mostly 

developing at the corner of the fracture network as a result of pore pressure increases and the 

forces pushing the rock outward.  In this case, the upper left corner is displaced counter-

clockwise (positive shear stress) whereas the right upper corner is rotated clockwise (negative). 
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Figure  6.4. Horizontal and vertical effective stress as well as shear stress maps in the surrounding rock of 

a cubical fracture network after 30 hours of fluid injection under isotropic in-situ stress condition 

 

In the case of anisotropic in-situ stress, fluid propagates horizontally faster as the minimum in-

situ stress is vertical and opens up the horizontal fractures more than the vertical ones 

(Figure  6.5).  Fracture aperture at the injection point after 30 hours of injection is estimated to be 

equal to 0.18 mm (2600 Darcy which is more than tenfold increase with respect to the initial 

fracture conductivity 200 Darcy) where the fracture fluid pressure is 16.26 MPa.   
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Figure  6.5. Fracture fluid pressure (left) and fracture aperture (right) variation after 30 hours of fluid 

injection under anisotropic in-situ stress condition 

 

The highest fracture opening in the vertical fractures occurs in the fractures ambient to the 

injection point (point B in Figure  6.1) where the fracture pressure and aperture are equal to 16.08 

MPa and 0.066 mm (360 Darcy), respectively.  The maximum aperture in the x-direction except 

for the injection point is equal to 0.14 mm (1600 Darcy) for a pressure increase of 1.15 MPa at 

point D in Figure  6.1.  These values show that the existence of anisotropy in in-situ stresses and 

fracture normal stiffnesses affects the fluid propagation and fracture aperture significantly.   

Pore pressure propagation in the surrounding rock is also affected by in-situ stress anisotropy, 

especially after 30 hours of the injection initiation based on the Figure  6.6.  The anisotropic 

behavior of pore pressure is not that significant in the pressure map at 12 hours as the pressure 

has not reached the fracture boundaries. 
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Figure  6.6. Pore pressure variation after 12 (left) and 30 (right) hours of fluid injection under isotropic in-

situ stress condition 

 

The same plot as Figure  6.4 is shown in Figure  6.7 for the stresses at 30 hours.  The effective 

stresses are more elongated in the x-direction as the pressure increment rate is higher in this 

direction.  Also, the shear stresses are extended slightly away from the injection point along the 

y-axis as the horizontal fractures open more in the anisotropic case in comparison with the 

isotropic one. 

Five points are selected here and their fracture pressure and aperture evolution over time for both 

isotropic and anisotropic cases are compared.  These five points are specified by A-E in 

Figure  6.1 where point C is the injection point.  The pressure variation over time for these points 

is depicted in Figure  6.8.  A seven-hour time lag is observed for the pressure rise in point A and 

E as they are located 90.55 and 80 meter away from the injection point C.  For the isotropic case, 

the pressure evolution at points B and D are identical as they are located in the same fracture 

distance (cumulative length of fractures) from point C.   
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Figure  6.7. Horizontal and vertical effective stress as well as shear stress maps in the surrounding rock of 

a cubical fracture network after 30 hours of fluid injection under isotropic in-situ stress condition 
 

The pressure increment in the anisotropic stress condition is more than for the isotropic case for 

all the points except point A which is located in the vertical fracture far away from the injection 

point.  This pressure difference between the two cases occurs as the amount of total energy for 

opening fractures for the anisotropic stress condition in this problem is more than for the 
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isotropic case as one of the in-situ stresses was increased to apply the stress anisotropy to the 

model. 

 

 

Figure  6.8. Fracture pressure evolution over time for five specified point in the fracture network for two 

in-situ stress conditions: isotropic and anisotropic. 

 

These pressure changes induce similar fracture opening behavior to the considered points as 

shown in Figure  6.9.  The only discrepancy in the behavior of pressure and aperture happens in 

point B.  Fracture aperture at this point for both cases is less than point D, which has the identical 

pressure as for the isotropic case.  This phenomenon occurs as the fracture aperture increment at 

the injection point increases the stress locally in the surrounding blocks, especially the upper 

block which is also the adjacent block to point B.  The normal stress difference between points B 

and D is about 0.04 MPa after 30 hours of injection. 
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Figure  6.9. Fracture aperture evolution over time for five specified point in the fracture network for two 

in-situ stress conditions: isotropic and anisotropic. 

 

A local peak pressure at point C after 3.5 hours of injection initiation can be observed in 

Figure  6.8 which is associated with an abrupt fracture aperture increment.  This phenomenon 

demonstrates a transient flow from the fracture into the rock.  Before this peak, most of the fluid 

flow occurs in the fracture network and after reaching the peak, fluid penetration occurs into the 

matrix at the injection point, which is followed by a local pressure decrement.  To prove this 

claim, the pressure growth in the injection point (point C) over time for different matrix 

permeabilities is shown in Figure  6.10.  The abrupt pressure increase at early time disappears 

when the matrix permeability increases, showing that the fluid leak-off occurs gradually for the 

high permeability rock (10 mD in the case of Figure  6.10). 
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Figure  6.10. Fracture pressure evolution over time at the injection well for different rock permeabilities. 
 

6.2 Thermal Fluid Injection into an Orthogonal Fracture Network 

In this section, a viscous fluid with a temperature of 50°C colder than the initial temperature in 

the fracture network and rock (T0 = 80°C) is injected to the fracture network in Figure  6.1 with an 

anisotropic in-situ stress condition.  Hydraulic and geomechanical properties for this example are 

the same as section  6.1 (Table  6.1) and the thermal properties of the fluid and rock are shown in 

Table  6.2.  Fracture pressure, aperture and temperature in the fracture network after 30 hours of 

cold fluid injection are presented in Figure  6.11. 

Table  6.2. Thermal properties of the orthogonal fracture network and surrounding rock 
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Figure  6.11. Pressure (a), temperature (b) and aperture (c) maps of fracture network after 30 hours of cold 

fluid injection 

The pressure starts to propagate in the fractures as soon as injection starts and as can be seen in 

Figure  6.11.a, it tends to propagate in the x-direction more than the y-direction as it is easier for 

the pressure to open the fracture in the x-direction because of the lesser perpendicular stress 

(yy<xx) and normal fracture stiffness in comparison with the vertical fractures.  The same 

behavior is visible also for heat flow in the fracture network.  As heat convection is much faster 

than heat conduction and is controlled by the fluid velocity in the fracture network, the injection 
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fluid cools down the fracture network and its surrounding rock in the x-direction more than in the 

y-direction.  The change in temperature (-30°C) affects almost the whole fracture network except 

for the four corners of the network, which are not also affected much by the fluid injection 

process, but they nonetheless show a pressure reduction as the result of thermoelastic rock 

shrinkage.  This effect is more visible in the displacement maps of the rock mass.  An abrupt 

fracture aperture increment occurs at the injection fracture segment as a result of both pressure 

increase and temperature reduction (rock shrinkage).  The fracture aperture in segments with the 

yellow color in the temperature map has a slight reduction as well as in the fracture pressure that 

represents the temperature front in the fracture network. 

In order to see the effect of injection on the fracture network rock blocks, pressure, temperature, 

displacement and stress are calculated using the displacement discontinuity method (Figure  6.12 

and Figure  6.13). 

 

Figure  6.12. Pressure and temperature propagation maps in the rock around the fracture network after 30 

hours of cold fluid injection. 
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Pressure propagates almost symmetrically in the whole mass with a small tendency to flow more 

in the x-direction rather than vertically, as this is the more favorable path for flow in the fractures 

(Figure  6.12).  The pressure front in the rock is visible (light blue), followed by a pressure 

reduction in the rock as the result of rock shrinkage.  Temperature propagates much more slowly 

in the rock than within the fractures as heat conduction is the only heat transfer mechanism 

within the rock blocks.  In Figure  6.12, the cooling effect has not yet reached the middle of any 

rock blocks.  The amount of temperature reduction at the intersection of fractures is more than in 

the rock close to the injection point.  This happens because of the methodology used in the 

displacement discontinuity method, i.e. temperature is estimated as the superposition of all 

influenced segments based on their distance, leads to a greater effect at the intersections.  This 

spurious artifact could be empirically corrected in future realizations of this coding.  

Figure  6.13 shows the displacements, effective stresses and shear stresses in the rock around the 

fracture network.  As a result of cooling, the rock blocks should start to shrink, and the data in 

the horizontal (x-direction) and vertical (y-direction) displacement maps confirm this.  This 

thermal effect is dominant in the cold region and compensates the pressure effect that pushes the 

rock away from the fracture network.  In the injection area, as the pore pressure increases, both 

horizontal and vertical effective stresses diminish from their initial values (xx = -38 MPa,yy = 

-18 MPa), however this effect is suppressed by the temperature effect that reduces (more than 

fivefold with respect to pressure effect) the horizontal and vertical stresses (both total and 

effective) adjacent to the horizontal and vertical fractures, respectively.   
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Figure  6.13. Displacements, effective stresses and shear stress maps in the rock around the fracture 

network after 30 hours of cold fluid injection. 
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This effect was reported by Perkins and Gonzalez (1985) and is sketched in Figure  6.14.  Based 

on their work, cold fluid injection into a reservoir that is almost impermeable is accompanied by 

the development of hydraulically induced fracturing perpendicular to the minimum horizontal 

stress [Hubbert and Willis, 1957], arising from the cooling of the rock surrounding the fracture 

(Case 1).  If the injection process is continued with a high flow rate, the fracture extends to a 

greater distance and changes the shape of the cooled region to an ellipse with the long axis lying 

parallel to the fracture orientation.  This elongation affects the thermal stress variation by 

reducing the stress parallel to the fracture plane more than the stress perpendicular to the fracture 

surface (i.e. 2 > 1 in Case 2).  In this case, the difference between the principal stresses 

around the fracture drops until all stresses approach the same value.  More injection into this 

fracture causes the stress parallel to the fracture to diminish less than the perpendicular one, i.e. 

secondary fractures perpendicular to the primary fracture will initiate as the effective stresses 

parallel to the fracture near the central injection point drop well below the injection pressure 

(Case 3).  In Case 3, for a homogeneous case, the dominant fracture will propagate from the 

injection point where the pressures are the highest, but depending on the geometry, the fracture 

toughness and the pressure losses within the fracture, other secondary fractures will propagate at 

other locations along the cooled fracture [Perkins and Gonzalez, 1985]. 

 

Figure  6.14. Schematic plan view of cooled region around a vertical fracture for three different injection 

conditions [reproduced after Perkins and Gonzalez, 1985] 
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Returning to Figure  6.13, shear stresses are the largest at the thermal front where an abrupt 

displacement occurs as a result of rock shrinkage. 

6.3 Thermal Fluid Injection and Extraction from a Brick-Shaped Fracture 

Network 

In this section, a combination of injection and production fluid sources is considered in a brick-

shaped fracture network.  It is assumed that a cold fluid (20˚C) is injected with a constant rate of 

10
-4

 m
3
/s in the upper left part of the network (point I in Figure  6.15) for four days with an initial 

temperature of (70˚C) and fluid is extracted with half the rate of fluid withdrawal (i.e. 5×10
-5

 

m
3
/s) from point P.  The initial fracture aperture and maximum fracture closure are assumed to 

be 0.1 mm and 50 µm, respectively.  Other hydraulic, thermal and geomechanical properties are 

identical with Table  6.1 and Table  6.2. 

 

Figure  6.15. Schematic representation of the brick-shaped fracture network model 
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Injection causes an increase in the fracture pressure and in the surrounding rock, whereas the 

fluid production reduces the pressure.  In this example, at early time the difference of pressure 

between injection and production points is high; however, this difference decreases over time as 

the injection rate is twice the production rate and the total pressure in the fracture and rock 

increases.  This effect is depicted for both the fracture network and the surrounding rock in 

Figure  6.16 and Figure  6.17. 

 

Figure  6.16. Pressure propagation in the fractures after 1 day (left) and 4 days (right) of cold fluid 

injection and extraction from a brick-shaped fracture network. 

 

Figure  6.17. Pressure propagation in the rock after 1 day (left) and 4 days (right) of cold fluid injection 

and extraction from a brick-shaped fracture network. 
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After 4 days of fluid injection, the minimum fracture pressure is equal to 15.28 MPa whereas the 

rock at the lower right part of the fracture network in Figure  6.17 has a pressure less than the 

initial pore pressure in the model (< 15 MPa).  This pressure reduction occurs as a result of fluid 

extraction prior to the pressure front reaching the production point.  After that, the pressure 

reduction is compensated from the fractures rather than the surrounding rock as it is more 

convenient for the fluid to transfer through the fracture network.  As the average fracture 

pressure is increasing over time, it will compensate for the rock pressure reduction. 

The pressure influenced area around the injection point is smaller than that around the production 

source, even though the injection rate is double the production rate.  This phenomenon happens 

as a result of cold fluid injection and rock cooling around the injection source changing the 

fracture aperture (Figure  6.18 and Figure  6.19).  After 4 days, the injected fluid cools down the 

entire fracture network and the thermally induced stress changes in the fracture network 

attenuate. 

 

Figure  6.18. Temperature propagation in the fractures after 1 day (left) and 4 days (right) of cold fluid 

injection and extraction from a brick-shaped fracture network. 
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The production processes affect the fracture aperture in the manner shown in Figure  6.20.  

Fracture aperture increases in the cold and injection influence area and drops in the production 

influence regions.  In Figure  6.20, it is also shown that at the end of each fracture set, an abrupt 

increase in the fracture aperture occurs as the rock outside of the fracture network starts to cool 

down and the amount of rock shrinkage in more than the small blocks among the fracture sets. 

 

Figure  6.19. Temperature propagation in the rock after 1 day (left) and 4 days (right) of cold fluid 

injection and extraction from a brick-shaped fracture network. 

 

Figure  6.20. Aperture propagation in the fractures after 1 day (left) and 4 days (right) of cold fluid 

injection and extraction from a brick-shaped fracture network. 
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In all of the simulation results, a gentle tendency for pressure and temperature to flow 

horizontally can be seen as a result of lowered in-situ stress and fracture normal stiffness in the 

vertical direction. 

6.4 Fluid Extraction from a non-Orthogonal Fracture Network 

To study the effect of shear dilation on fracture behavior, a non-orthogonal fracture network is 

considered in this section.  Two fracture sets intersecting at 53° are assumed in a poroelastic 

medium with a production source in the middle of model.  An anisotropic in-situ stress condition 

is considered with two different combinations (Figure  6.21); case 1 where the acute angle is 

oriented in the direction of minimum stress (i.e. yy=min) and case 2 where the acute angle is 

oriented in the direction of maximum stress (i.e. yy=max). 

 

Figure  6.21. Schematic representation of an inclined fracture network with a production source in the 

middle for two different in-situ stress configurations. 
 

Fluid is produced at a constant rate of 10
-5

 m
3
/s for five days from the poroelastic medium; other 

model properties are listed in Table  6.3. 
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The normal stresses on the fracture segments for case 1 and 2 are 28 MPa and 22 MPa, 

respectively.  The absolute value of shear stress for both cases is identical to 4 MPa (refer to 

Appendix E).  Considering the initial pressure (16 MPa), the fracture segments in case 1 have not 

reached the Mohr-Coulomb criterion, whereas all the fracture segments in case 2 have already 

passed the yield criterion and are yielded.  Based on Section  4.3.1, the shear stiffness for 

fractures in case 2 is zero as the fractures are already yielded and it is easier for the fractures to 

move laterally and increase the shear displacement discontinuities as well as the fracture 

aperture. 

Table  6.3. Geomechanical and hydraulic properties of the non-orthogonal fracture network and 

surrounding rock 

 

For case 1, fluid extraction reduces the fracture pressure identically in the fracture network as the 

fracture conductivity is five orders more than the rock permeability and fracture network is the 

main fluid source in the system (Figure  6.22).  This pressure reduction also affects the fracture 

apertures, reducing them mostly in the fracture segments inclined away from the production 

point (Figure  6.22.b).  As the fracture segments have not reached the yield point in case 1, 

fracture shear stiffness controls the shear displacement discontinuities and the contribution of 

shear dilation to fracture opening is negligible (Figure  6.23).  A non-zero shear displacement 
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discontinuity occurs in the fracture segments inclined toward the production point as a result of 

fluid extraction and increases the fracture aperture slightly in comparison with the fracture 

segments inclined away from the fracture network’s center. 

 

Figure  6.22. Fracture’s pressure (a) and aperture (b) maps of the inclined fracture network after 5 days of 

fluid extraction for in-situ stress configuration of case 1. 

  

Figure  6.23. Shear displacement discontinuities of the inclined fracture network after 5 days of fluid 

extraction for in-situ stress configuration of case 1. 
 

Considering case 2 with a maximum in-situ stress in the vertical direction, the average fracture 

pressure is slightly smaller than the case 1, as a result of shear dilation effects that increase the 
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aperture in the yielded fracture segments (Figure  6.24).  Based on the direction of fracture 

planes’ movement, the matrix blocks tend to move toward the production point.  In this situation, 

most of the displacement occurs at the corner of the fracture network that shows the maximum 

amount of fracture opening. 

 

Figure  6.24. Fracture’s pressure (a) and aperture (b) maps of the inclined fracture network after 5 days of 

fluid extraction for in-situ stress configuration of case 2. 
 

The magnitude of shear displacement discontinuities for case 2 is more than ten-fold the value of 

Ds for case 1 as a result of fracture yielding (Figure  6.25). 

 

Figure  6.25. Shear displacement discontinuities of the inclined fracture network after 5 days of fluid 

extraction for in-situ stress configuration of case 2. 
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6.5 Sensitivity Analysis 

It is worthwhile to investigate the effect of thermal, hydraulic and geomechanical properties on 

the thermo-hydro-mechanical behavior of fractures.  In this case, a 40-meter single fracture 

(similar to section  5.4) is assumed and the sensitivity of the fracture response on the variation of 

some influenced parameters under a constant rate of cold fluid injection is analyzed.  The 

properties of the fracture and surrounding rock are presented in Table  6.4. 

Table  6.4. Geomechanical and hydraulic properties of the fracture network and surrounding rock 

 
 

6.5.1 Fracture Aperture 

The default initial fracture aperture in the model (0.1 mm) is compared with four other fracture 

apertures to study the effect of initial fracture aperture on the fracture’s pressure, temperature, 

and aperture variation under cold fluid injection.  The results are depicted in Figure  6.26.  In the 

case of fracture pressure, increasing the initial fracture aperture increases the fracture pressure, 

but decreases the fracture pressure variation along the fracture, i.e. the fracture’s pressure for the 

case of w=0.5 mm along the fracture’s length is identical.  This effect reduces the velocity of 
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fluid in the fracture, causing a reduction in thermal convection process.  This effect can be seen 

in the temperature profile, as the cold fluid propagates faster when the initial fracture aperture 

decreases.  The rate of fracture aperture increment decreases by increasing the initial fracture 

aperture.  To see this effect, the relative fracture aperture with respect to the initial fracture 

aperture is shown in Figure  6.26.  The amount of maximum fracture opening with respect to the 

initial fracture aperture increases dramatically by decreasing the initial fracture aperture. 

 

Figure  6.26. Fracture pressure, temperature, and aperture after 10 hours of injection for different initial 

fracture aperture. 
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6.5.2 Fracture Normal Stiffness 

As mentioned in Section  4.3.1, a hyperbolic relationship based on the Barton-Bandis approach is 

adopted in this study.  In this section, the effect of different initial fracture normal stiffness for 

the single fracture case is shown in Figure  6.27.  As expected, increasing the fracture normal 

stiffness induces more constraint against opening of the fracture planes, and this increases the 

fracture pressure, especially at the injection point.  This fracture pressure increment accelerates 

the thermal convection process; it can be seen in Figure  6.27 that the thermal front for the highest 

initial fracture normal stiffness is slightly ahead of the other thermal fronts.  

 

Figure  6.27. Fracture pressure, temperature, and aperture after 10 hours of injection for different fracture 

normal stiffness. 



 

 

 127 

6.5.3 Fluid Compressibility 

It seems that fluid compressibility does not have a significant effect on the thermo-hydro-

mechanical behavior of the fracture model considered (Figure  6.28).  A subtle change in fracture 

pressure using different fluid compressibilities is visible, but temperature and fracture aperture 

are not influenced by the variation of fluid compressibilities in the range of values considered. 

 

Figure  6.28. Fracture pressure, temperature, and aperture after 10 hours of injection for different fluid 

compressibility. 
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6.5.4 Fluid Viscosity 

Fluid viscosity has a major contribution to the fracture’s behavior, especially on pressure and 

aperture.  Based on Figure  6.29, fracture pressure increases as the fracture viscosity goes up, 

associated with fracture opening.  The influence of viscosity on fracture aperture is significant, 

and increasing the fluid viscosity reduces the mobility of fluid in the fracture, which affects the 

fluid velocity and slows down the thermal convection process in the fracture. 

 

Figure  6.29. Fracture pressure, temperature, and aperture after 10 hours of injection for different fluid 

viscosity. 
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6.5.5 Matrix Permeability 

Matrix permeability controls the rate of fluid penetration from the fracture into the rock matrix.  

Low fracture conductivity corresponds to a lesser amount of fluid transfer between fracture and 

matrix, and this increases the fracture pressure and temperature.  Increasing the matrix 

permeability reduces the fracture pressure and aperture.  Based on Figure  6.30, a high transfer 

rate between fracture and matrix reduces the fluid velocity in the fracture, and that induces a 

reduction in the rate of cooling of the fracture by thermal convection. 

 

Figure  6.30. Fracture pressure, temperature, and aperture after 10 hours of injection for different matrix 

permeability. 
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6.5.6 Thermal Conductivity 

The thermal conductivity of the rock surrounding the fracture also affects the fracture’s pressure, 

temperature and aperture.  Based on Figure  6.31, an increase in thermal conductivity reduces the 

fracture pressure.  This behavior is expected as increasing the rock’s thermal conductivity cools 

down a larger area around the fracture and increases the fracture aperture and reduces the 

fracture aperture.  It also increases the thermal front propagation slightly. 

 

Figure  6.31. Fracture pressure, temperature, and aperture after 10 hours of injection for different rock’s 

thermal conductivity. 
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6.5.7 Injection Temperature 

In this comparison, the effect of injection temperature on the behavior of the fracture is 

considered.  The fracture undergoes isothermal, hot and cold temperature injection with respect 

to the initial temperature in the fracture and rock (Figure  6.32).  Cooling down the fracture 

increases the rock aperture as a result of rock shrinkage that induces a pressure reduction in the 

fracture.  On the other hand, hot fluid injection reduces the fracture aperture in association with a 

pressure increase. 

 

Figure  6.32. Fracture pressure, temperature, and aperture after 10 hours of injection for different 

injection’s temperature. 
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The amount of fracture closure and opening for a constant cold and hot temperature is not 

constant as a Barton-Bandis model is adopted in this simulation, i.e. the fracture normal stiffness  

The amount of fracture closure and opening for a constant cold and hot temperature is not 

constant as a Barton-Bandis model is adopted in this simulation, i.e. the fracture normal stiffness 

increases as the normal stress on the rock goes up and the fracture aperture reduces.  This effect 

can be seen in Figure  6.32 for fracture aperture variation.  Also, the stress transfer mechanism 

along the fracture is shown in this figure. 

6.6 Chapter Summary 

This chapter presented the response of fracture networks under different situations using the 

hybrid FDM-DDM model.  The effect of in-situ stress on fluid propagation in the fracture 

network was studied and it was shown that fluid tends to open the fractures perpendicular to the 

minimum in-situ stress direction. 

When a cold fluid is injected into the fracture network, the effect of cooling becomes dominant 

over time in the near field.  This cooling is associated with stress reduction, especially in the 

horizontal and vertical direction for the horizontal and vertical fractures, respectively.  This 

behavior is in a good agreement with the work of Perkins and Gonzalez (1985). 

Moreover, the effect of shear dilation on fracture opening during the fluid extraction was 

presented.  Under the fracture’s yield condition, the fracture shear stiffness becomes zero and a 

shear displacement is induced in the fractures.  This shear displacement is converted to a normal 
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displacement (fracture opening) using the dilation angle which is calculated based on the fracture 

surface properties. 

At the end, a sensitivity analysis on some hydraulic, thermal and geomechanical properties was 

presented and the effect of all these properties on the fracture’s pressure, temperature and 

aperture was compared.   
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

Geomechanics has become a major consideration for scientists and engineers in different fields 

such as oil and gas, geothermal, and nuclear waste disposal during the last two decades because 

of stress changes and displacements that can lead to induced seismicity, enhanced permeability, 

thermally induced fracturing, changes in fracture network properties, and so on.  In the oil and 

gas industry, the coupled stress-flow-displacement considerations become significant in the 

simulation of stress-sensitive reservoirs such as poorly compacted rocks (e.g. North Sea chalk 

and high porosity oil sands) and naturally fractured reservoirs (e.g. fractured carbonates, shale 

gas and shale oil deposits). 

The behavior of naturally fractured reservoirs (NFRs) during production processes is completely 

different than conventional reservoirs because of the dominant effects of fractures on fluid flux, 

with attendant issues of fracturefabric complexity and lithological heterogeneity.  Most 

unconventional simulators cannot handle the geomechanical effects in the reservoir and 

surrounding rock mass properly as they usually consider pore compressibility as the only 

geomechanical parameter for the reservoir simulation, and may not even calculate the stresses 

arising from the reaction of the surrounding rock mass to the volume changes taking place in the 

reservoir.  In this case the necessity of a coupled approach between the thermal, hydraulic and 

geomechanical mechanisms in order to realistically estimate the behavior of the medium to the 

injection is crucial. 
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To achieve a suitable level of coupling, a thermo-hydro-mechanical coupling approach was 

introduced in this study implementing the finite difference method and displacement 

discontinuity method together.  The model is then verified with some analytical solutions that 

estimate the amount of fracture opening under elastic, poroelastic and thermoelastic conditions.   

The key contribution of this work is to develop and enable a fully coupled THM model for some 

of the complexities of a fracture network, using the concepts listed below: 

 A modified Barton-Bandis fracture stiffness model is applied in the model, especially for the 

case of fluid injection that is associated with normal stress reduction at fracture planes. 

 The effect of shear dilation is introduced to the model and the results for a non-orthogonal 

fracture model clearly demonstrated the importance of this effect on fracture aperture, 

especially for the yielded fractures.  A constant dilation angle was introduced to the model, 

but it is possible to use a non-constant value as a function of normal effective stress as well as 

fracture properties such as JCS and JRC. 

 The finite difference discretization for fluid and heat flow was adjusted to accommodate the 

displacement discontinuity method as the dimensions of their solutions are different., i.e. for 

this study, the DDM solution is one dimensional where FDM solution is two dimensional. 

 The results of the numerical solution demonstrated that in the case of an anisotropic in-situ 

stress condition, pressure and temperature tend to flow perpendicular to the minimum in-situ 

stress, as it is easier to open the fracture in this direction. 
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 Time dependency of THM effects were observed in this study.  Due to the fact that the 

pressure front always moves faster than the heat front in fracture flow, the induced effect of 

each production process is also time dependent, i.e. hydraulic effects can be considered as the 

early time effect in fracture flow, whereas the thermal effect usually becomes dominant at 

later time. 

 It was also shown that the effect of cooling suppresses the fluid injection effect in the near 

field especially in the case of displacements.  Both horizontal and vertical effective stresses 

are reduced as a result of cold fluid injection; however, the reduction rate of horizontal and 

vertical stresses in the rocks adjacent to the horizontal and vertical fractures are more than in 

other places, which is in agreement with Perkins and Gonzalez (1985). 

The results of this work clearly show the importance of rate, aspect ratio (i.e. geometry) and the 

coupling effects among fracture flow rate, aperture changes arising from coupled stress, pressure 

and temperature changes.  When a problem becomes this complex (and this problem is relatively 

regular, homogeneous and isotropic in terms of fracture fabric and rock mass parameters), details 

of rock mass behavior may evade intuition and this means that the results of modeling must be 

scrutinized extremely carefully to make sure the results are reasonable.  The effects of fracture 

dilation from cooling and pressure in an anisotropic stress field can easily lead to large 

concentrations of shear stress and different locations in the rock mass reaching the hydraulic 

fracture condition (pinj > σ3 + F, where F is a scale-dependent fracture toughness factor), or 

exceeding the slip condition in natural fractures, leading to shear, dilation, and permanent 

increases in permeability (self-propping) [Dusseault et al., 2011].  These results have a direct 
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bearing on hydraulic injection for induced fracturing and promoting of shearing, such as 

hydraulic fracturing of shale gas or shale oil reservoirs using liquid N2 or CO2, or even just the 

long-term injection of cooler flood water into a fractured carbonate to increase oil recovery.  

Furthermore, these results should be able to lead to a better understanding of induced seismicity 

in injection projects of all kinds, whether it is for waste water disposal, or for the extraction of 

geothermal energy. 

7.2 Recommendations 

Possible future work for the further study is as follows: 

 It is possible to extend the current model into a three dimensional model that increases the 

number of degrees of freedom by one. 

 Fracture propagation can be added to the current model using the implementation of a 

combination of quadratic and square root elements for displacement discontinuities and 

source strengths. 

 The amount of energy release as a result of fracture propagation and fracture rupture can be 

calculated for induced seismicity investigation as a result of fluid injection/extraction from the 

fractures. 

 Two-phase or three-phase fluid flow can be added to consider the behavior of fractured 

reservoirs accurately in the case of water flooding, CO2 injection and so on. 

 Fluid flow in the fracture network can be improved considering the fluid volume balance at 

fractures’ intersection by estimating the pressure at nodal values. 
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 Due to the presence of intersecting fractures in the model, an equivalent porous medium 

considering the fracture network and the surrounding rock can be considered to be a better 

estimation for the fluid pressure in the matrix block. 

 A non-constant porosity, fluid viscosity, fluid density and rock thermal conductivity can be 

added to the model to consider the dependency of these parameters to stress, pressure and 

temperature. 

 The effect of secondary mineralization can be introduced to the fluid and heat conservation 

equations by considering a contact porosity that is defined as the open fracture surface area 

over the total fracture area 
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Appendix A 

Fundamental Solution for a Unit Continuous Displacement 

Discontinuity in an Elastic Medium 

Considering a fracture segment with a length of 2a elongated in the x-direction (Figure A-1), the 

fundamental solutions for stress and displacement in the influenced point (x,y) can be written as a 

function of distance from influencing point (x,0) and geomechanical properties of rocks as 

below [Crouch and Starfield, 1983]: 

 

Figure A-1. Schematic representation of a single fracture for displacement discontinuity formulations  
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Induced stress for normal displacement discontinuity 
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Induced displacement for shear displacement discontinuity 

ds

x 2

1
2(1 )arctan

4 (1 )

x a

x a

x xy
u

y r


 





    


  
  
  

          (A-7) 

2

dn

y 2

1
(1 2 ) ln

4 (1 )

x a

x a

y
u r

r


 





    


 
 
 

           (A-8) 

Induced stress for shear displacement discontinuity 

2 3

ds

xx 4

3

2 (1 )

x a

x a

G x y y

r


 






  



 
 
 

            (A-9) 

2 3

ds

yy 4
2 (1 )

x a

x a

G x y y

r


 






 



 
 
 

          (A-10) 

3 2

ds

xy 4
2 (1 )

x a

x a

G x xy

r


 






 



 
 
 

          (A-11) 

  



 

 

 149 

Appendix B 

Fundamental Solution for a Unit Continuous Displacement 

Discontinuity in a Porous Medium 

The fundamental solutions for pressure, stress and displacement in the influenced point (x,y) can 

be written as a function of distance from influencing point (x,0) and geomechanical and 

hydraulic properties of rocks as below [Vandamme et al., 1989; Carvalho, 1990]: 
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Induced displacement for shear displacement discontinuity 
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Induced stress for shear displacement discontinuity 
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Appendix C 

Fundamental Solution for a Unit Continuous Fluid Source in a 

Porous Medium 

The fundamental solutions for pressure, stress and displacement in the influenced point (x,y) can 

be written as a function of distance from influencing point (x,0) and geomechanical and 

hydraulic properties of rocks as below [Vandamme et al., 1989; Carvalho, 1990]: 
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Induced stress for fluid source 
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Appendix D 

Fundamental Solution for a Unit Heat Source in a Porous Medium 

The fundamental solutions for temperature, pressure, stress and displacement in the influenced 

point (x,y) can be written as a function of distance from influencing point (x,0) and thermal, 

geomechanical and hydraulic properties of rocks as below [Berchenko, 1998; Zhang, 2004]: 
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Appendix E 

Coordinate Transformation 

In displacement discontinuity method, we are dealing with pore pressure, temperature, 

displacement and stress in different coordinate systems i.e. fracture local Cartesian coordinates 

as well as global Cartesian coordinates.  As the pore pressure and temperature are scalars, the 

orientation of coordinate systems does not change their value. However, coordinate 

transformation is required for the displacement and stress.  In the following the coordinate 

transformation between local and global Cartesian systems are described. 

Displacement transformation 

Based on Figure E-1, the local displacements (u  ,u ) can be transformed to the global 

displacements (ux,uy) using the following relationships: 
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y x y
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Figure E-1. Transformation of displacements 
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The inverse transformation (i.e. global to local coordinate systems) is 
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The general form of the mentioned displacement transformation from local coordinate system 

(xj,yj) with the directional angle j to the local coordinate system (xi,yi) with the directional angle 

i has the following form: 

cos sin
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where ij = i - j . 

Stress transformation 

Stress transformation can be calculated using the normal and shear stress on a plane that its 

outward normal makes the angle  with the local ȳ-axis.  The normal and shear stress in Figure 

E-2 can be written using the local stresses as below: 
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Using this definition, local stresses can be transformed to the global stresses by considering 

different values for angle  as below: 
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Here is the stress transformation from local Cartesian coordinate system to the global Cartesian 

coordinate system: 
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The inverse transformation (i.e. global to local coordinate systems) has the following form: 
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Figure E-2. Transformation of stresses 

The general form of the stress transformation from local coordinate system (xj,yj) with the 

directional angle j to the local coordinate system (xi,yi) with the directional angle i has the 

following form: 
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where ij = i - j . 

In displacement discontinuity method, it is required to transform the local stresses in a local 

coordinate (xj,yj) with a directional angle j into the normal and shear stresses in another local 

coordinate (xi,yi) with directional angle i.  This transformation can be done using the following 

formulation: 

2 2
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Appendix F 

Fluid and Heat Flow Discretization in Fracture Network 

Single Phase Fluid Flow in Fracture Network 

The one-dimensional fluid diffusion equation (Eq. 4.22) can be solved numerically via different 

techniques such as finite difference method.  The discretization of this equation requires three 

points for one dimensional solution.  In the case of the fracture network showed in Figure F-1, 

each fracture element is connected with six fracture elements and using the conventional finite 

difference discretization for this setup is not feasible.  For this case, mass conservation equation 

is implemented again and the discretization is done for a specific time step as below: 

 

Figure F-1. Fracture segments location in the considered fracture network 
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where Ai-jl is the cross sectional area between element i and jl, q
f
i-jl is the Darcy velocity of flow 

between element i and jl and M is the fluid mass changes of element i.   
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In order to calculate the flow rate between two fracture elements with different elemental size 

and aperture, an averaging concept should be implemented on transmissibility and cross 

sectional area based on the transmissibility averaging concept introduced by Aziz and Settari 

(1979).  In this case, let’s assume two adjacent fracture elements (i and j) with different aperture 

and elemental length (Figure F-2).  The flow rate between i and j is 

 

Figure F-2. Averaging of transmissibility [modified after Aziz and Settari, 1979]  
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where Ai and Aj are the cross sectional area of the elements i and j, respectively, which are not 

identical due to different fracture aperture and pint is the pressure at the interface.  Applying a 

unit width in this equation: 
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The flow rate between these two elements can be written as the pressure difference of two 

elements by elimination of interface pressure and introducing a mean value for 
f
: 

f f ( )i j i j j iQ p p     

Comparing Eqs. F-2 and F-3, results  
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            (F-4) 

Therefore, 
f
i-j is the harmonic mean value of 

f
i and 

f
j. 

Based on the harmonic value for transmissibility between two fracture elements, Eq. 4.21 for a 

unit fracture thickness and a specific time step t can be written as: 

1 1 1 1

6
f f

1 f f 1 fs 1 inj

1

2 2 2 2n n n nt t t t

i jl jl i i i i i i i i i i i

l

p p a w a w c p a w T a Q q
      



                  (F-5) 

where pi
tn

 represents the fracture pressure of element i at time step n, 1 is the time duration 

between last time step and current time step (last time step).  The temperature effect of pressure 

propagation (third term on the right hand side of Eq. F-5) can be neglected as its value is almost 

negligible in comparison with the other terms.  Substituting aperture changes with normal 

displacement discontinuities of the last time step, Eq. F-5 can be written as 

11 1f f f

1 1 f n 1 fs f 1 inj

1 1

2 2 2 2 .n n n n n

nc nc
t t t t t

i jl jl i jl i i i i i i i i i i

l l

p a w c p a D a Q a w c p q
    

 

 

 
           

 
      (F-6) 

The left hand side of Eq. F-6 represents the pressure of i
th

 and jl
th

 fracture segment, normal 

displacement discontinuity changes and interface flow rate from fracture into the surrounding 

rock, all at the current time step which are unknowns.  The right hand side of the equation 

contains known parameters that include the pressure of the i
th

 fracture segment form the previous 

time step and the volume of injected fluid during the last time step. 
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Heat Flow in Fracture Network 

The same procedure for the fluid flow in the considered seven-point fracture network model is 

applied for the heat transfer via implementation of energy conservation equation for the specific 

time step: 

   
6

h f h

1

i jl i jl f x i jl f i jl f i s

l

A q q A C T T MC T Q  



     
          (F-7) 

where M is the fluid mass in the considered control volume.  Applying harmonic heat 

transmissibility (
h
) and an arithmetic cross-sectional average for a unit thickness fracture 

segment: 

     
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where: 

Harmonic heat transmissibility:  
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Arithmetic cross-sectional mean: h

2
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w w



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Expanding the right hand side of the heat conservation equation will result in 
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Substituting aperture changes with normal displacement discontinuities of the last time step, the 

Eq. F-9 can be re-written as 
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The left hand side of Eq. F-10 represents the temperature of i
th

 and jl
th

 fracture segment, pressure 

of the i
th

 fracture segment, normal displacement discontinuity changes and interface heat flow 

rate from fracture into the surrounding rock, all at the current time step which are unknowns.  

The right hand side of the equation contains known parameters that include the pressure and 

temperature of the i
th

 fracture segment form the previous time step and the amount of heat 

injected fluid during the last time step. 

Based on the above formulation, the effect of density and normal displacement discontinuity 

changes over time are negligible, so Eq. F-10 can be simplified as 
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