
Cache Coherency for Symmetric Multiprocessor

Systems on Programmable Chips

by

Austin Hung

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

c©Austin Hung 2004

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Rapid progress in the area of Field-Programmable Gate Arrays (FPGAs) has led to the availabil-

ity of softcore processors that are simple to use, and can enable the development of a fully work-

ing system in minutes. This has lead to the enormous popularity of System-On-Programmable-

Chip (SOPC) computing platforms. These softcore processors, while relatively simple com-

pared to their leading-edge hardcore counterparts, are often designed with a number of advanced

performance-enhancing features, such as instruction and data caches. Moreover, they are de-

signed to be used in a uniprocessor or uncoupled multiprocessor architecture, and not in a tightly-

coupled multiprocessing architecture. As a result, traditional cache-coherency protocols are not

suitable for use with such systems. This thesis describes a system for enforcing cache coherency

on symmetric multiprocessing (SMP) systems using softcore processors. A hybrid protocol that

incorporates hardware and software to enforce cache coherency is presented.

iii

Acknowledgements

This work was supported in part by the Science and Engineering Research Council (SERC) of

Canada Discovery Grant 203763-03 and by an Ontario Graduate Scholarship (OGS). I would

like to gratefully acknowledge the support provided by Altera Corporation, in the form of Nios

development boards and related software. In particular, my thanks go to Dr. Andrew Kennings

and Dr. William Bishop, without whom this work would not be. Finally, my thanks also go out

to, in no particular order, my family, Julie, and the Contraplex Systems group.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Field-Programmable Gate Arrays . 2

1.3 Custom Logic Versus Programmable Logic . 3

1.4 Multiprocessors-On-Programmable-Chips . 4

1.5 Statement of Thesis . 6

1.6 Thesis Contributions . 7

1.7 Outline of Thesis . 8

2 Multiprocessing 9

2.1 Symmetric Multiprocessing . 11

2.2 Cache . 14

2.2.1 Memory Coherency and Caches . 15

2.2.2 Memory Consistency . 17

2.3 Summary . 19

3 The Nios Processor and Avalon Bus 20

3.1 Nios Embedded Softcore Processor . 20

3.2 Nios Cache Memory . 25

v

3.3 Nios Interrupt Processing . 28

3.4 Avalon Bus . 34

3.5 Summary . 37

4 Prototype Cache Coherency Module 38

4.1 SMP Issues in Programmable Logic . 39

4.1.1 Uniquely Identifying Processors . 39

4.1.2 Comments on Cache Coherency with an Avalon Bus 40

4.2 Architecture . 41

4.3 Hardware Cache Coherency Module . 42

4.4 Interrupt Service Routine . 48

4.5 Software Requirements . 51

4.6 Design Flaws . 52

4.7 Summary . 56

5 Second-Generation Cache Coherency Module 57

5.1 Hardware Cache Coherency Module 2 . 57

5.1.1 Slave Interface Module . 60

5.1.2 Registers Module . 63

5.1.3 Bus Snooping Module . 64

5.2 Interrupt Service Routine 2 . 65

5.3 Summary . 67

6 Results and Analysis 68

6.1 Development Platform . 68

6.2 Shared-Memory Test . 70

6.3 Multi-Write Test . 72

vi

6.4 Results . 72

6.5 Analysis . 75

6.6 Summary . 80

7 Conclusions and Future Work 81

A System ISR Installer 84

B Prototype CCM VHDL 86

C Second-Generation CCM VHDL 90

D Shared-Memory Test Program 102

E Multi-Write Test Program 104

F Related Papers 107

vii

List of Tables

2.1 The Cache Coherence Problem in Multiprocessor Systems 16

3.1 Exception Vector Assignments . 30

3.2 UART ISR Latency for 33 MHz Clock . 33

4.1 Prototype CCM Registers . 48

6.1 Test Program Results . 73

6.2 No CCM SMPOPC System Device Usage . 73

6.3 Prototype SMPOPC System Device Usage . 74

6.4 Second-Generation CCM SMPOPC System Device Usage 74

6.5 Maximum Capacities of Altera FPGA Families 75

viii

List of Figures

2.1 Basic Architecture of a Typical N-Way SMP System 12

3.1 Nios Core Block Diagram . 21

3.2 Custom Logic and the Nios ALU . 26

3.3 Direct-Mapped Cache . 27

3.4 Nios Exception Handling Process . 30

3.5 Basic Structure of an Avalon Bus Module . 35

3.6 Avalon Multiplexers Routing Signals . 36

4.1 System Architecture with a Cache Coherency Module 43

4.2 Cache Coherency Protocol . 44

4.3 Prototype CCM Schematic . 45

4.4 Prototype CCM ISR . 49

4.5 Multiple Store Instructions with the Prototype CCM 54

5.1 Second-Generation CCM Schematic . 59

5.2 Avalon Bus Slave Port Module . 61

5.3 CCM Internal Registers Module . 63

5.4 Bus Snooping FIFO Module . 64

5.5 Second-Generation CCM ISR . 66

ix

6.1 Altera Nios Development Kit, Stratix Professional Edition 69

6.2 Critical Paths for Baseline Systems . 77

x

Chapter 1

Introduction

This thesis investigates the use of multiple processors in system-on-chip (SOC) systems when

targetting programmable logic devices (PLDs), specifically field-programmable gate arrays (FP-

GAs). The goal of the research described in this thesis is to qualify and analyze the problems

associated with implementing symmetric multiprocessor (SMP) systems on FPGAs. In particu-

lar, cache coherency is a major focus. Proof-of-concept and second-generation implementations

are presented.

1.1 Motivation

Recent advances in FPGA technologies have resulted in programmable devices with significantly

improved features and capabilities, including density, speed and functionality. Some of these

improvements include the following:

• Improved Performance - A state-of-the-art FPGA can be clocked at 250 MHz, with an

internal frequency of up to 500 MHz.

1

2 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

• Improved Capacity - A recently released FPGA family supports designs with up to 2.2 mil-

lion application-specific integrate circuit (ASIC) logic gates and 9,383,040 on-chip RAM

bits.

• Advanced Features - These features, including programmable phase-locked loops (PLLs),

digital signal processing (DSP) blocks, and diverse I/O capabilities, are embedded within

the fabric of the FPGA.

• User-Friendly CAD Tools - New releases of vendor computer-aided design (CAD) tools,

hardware description languages (HDLs), and graphical user interfaces (GUIs) have simpli-

fied the task of building entire systems of complex, reuseable, and custom digital circuits.

These advanced capabilities, coupled with configurability and falling costs, have rapidly in-

creased the popularity of FPGAs. The ability to generate custom systems for each application

and yet reuse the same hardware device is a compelling argument for the use of FPGAs. This is

true not just in research, but also in industry, which takes advantage of FPGAs not only to lower

costs, but also to gain the ability to easily and cheaply add fixes and new features to products

without requiring a product recall.

1.2 Field-Programmable Gate Arrays

Programmable logic represents the ultimate form of flexible hardware. Each PLD is a semi-

conductor that consists of memory and logic elements (LEs). The memory is configured with a

hardware design, which defines temporary physical connections that form complex digital cir-

cuits. Since the memory is writeable, the PLD can be configured with different designs over

and over again. FPGAs, in particular, are a subset of PLDs that can be programmed in the field.

Introduction 3

That is, reconfiguring an FPGA is not limited to the time and location of manufacturing or initial

programming. Field programmability even allows for remote programming facilities.

An FPGA is based on static random-access memory (SRAM) technology, which is high per-

formance, but also high cost (six transistors are required to implement each SRAM bit). SRAM

is volatile, and thus retains its contents only as long as it is powered. Some of the SRAM is

designed to be dedicated on-chip memory, but most of the memory serves to configure logic el-

ements and to define the interconnections between various logic elements. The configured logic

elements and their interconnections are what carries out the desired functionality, such as state

machines or arithmetic units.

Each logic element, though different for each FPGA vendor, typically contains a program-

mable four-input look-up table and a one-bit register. This table allows each logic element to

implement any four-input function. The output of the logic element is selectable between the

table or the register. Each vendor also adds other custom hardware to more efficiently implement

common functionality, such as adders1.

1.3 Custom Logic Versus Programmable Logic

Traditionally, due to the nature of custom logic versus programmable logic, FPGAs have been

cost-effective only in small volumes. ASICs incur a large initial capital cost, or non-recurring

engineering (NRE) cost, for a mask set, prototype wafers and respins. The NRE effectively

eliminates custom logic as an option for low-volume applications. On the other hand a small unit

price (a fraction of the cost of a PLD) combined with the amortization of capital costs over a large

number of units, make ASICs ideal for high-volume applications. Additionally, until recently,

1The variety in logic elements (sometimes labelled logic cells or configurable logic blocks, depending on the

vendor) often leads to varying methods for measuring the capacity of an FPGA [3] [19].

4 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

even moderately large or high-performance designs would not fit into an FPGA.

Today, it is possible to implement multi-million gate designs in a single programmable device

that take advantage of both readily available third-party intellectual property (IP) as well as hard

IP included within the FPGA itself. It has become relatively simple to build a large and highly

complex system-on-programmable-chip (SOPC) rather that developing an ASIC. The lengthy

design cycles, expensive software CAD tools and NRE costs associated with ASIC design can

be avoided. Additionally, programmable logic allows for an unprecedented amount of flexibility

since a single device can be reprogrammed to serve many different tasks, while an ASIC is only

designed to perform one task.

1.4 Multiprocessors-On-Programmable-Chips

The enhanced programmability and the larger capacities of modern FPGAs have made it possible

to create MultiProcessors-On-Programmable-Chip (MPOPC) systems that include either third-

party or vendor-provided proprietary softcore microprocessors2. Examples of vendor-provided

softcore processors include the Xilinx MicroBlaze [34] and the Altera Nios [10] softcore pro-

cessors. The configurability of softcore processors make them excellent candidates for MPOPC

systems.

Traditionally, multiprocessor systems have been implemented using discrete processors with

traces on a printed circuit board (PCB) serving as the physical interconnect. By embedding

softcore processors within an FPGA, no I/O resources are required to communicate with other

embedded modules (whether peripherals, custom logic, or other processors). An unprecedented

level of system-design flexibility is offered, as well as reductions in PCB requirements, power

2Some modern FPGAs include embedded hardcore processors, including Altera Excalibur [5] and Xilinx Virtex

II Pro [36] devices. The number of hardcore processors, however, is fixed and limited to a small quantity.

Introduction 5

consumption, and electro-magnetic interference (EMI) as discrete modules are coalesced into

one package [35].

MPOPC systems are generally tailored for particular computational tasks. Consequently,

the systems tend to be somewhat heterogeneous (i.e., processors are configured differently and

are individually tailored to specific tasks), although this is not always the case. The processors

in these systems also tend to be loosely coupled, or entirely independent, even in situations

where different processors share memory or a common bus. MPOPC systems are relatively new,

as traditionally each processor was implemented on a single FPGA and several FPGAs were

combined to create a multiprocessing system (much like their discrete custom-logic cousins).

Some examples of MPOPC systems include:

• A loosely coupled set of eight Altera Nios softcore processors on a single bus has been

used to perform LU matrix factorizations for power flow analysis [32].

• A parallel data system, controlled by a central instruction stream, with up to eighty-eight

custom processors taking advantage of on-chip hardware multipliers [23].

• A hardware-software co-configuration system developed to generate a multiprocessor Xil-

inx MicroBlaze system and standardized embedded real-time operating system. The sys-

tem uses four independent SRAM banks to support up to four or five softcores in a simple

shared-memory architecture processors. [31]

• SoCrates, a two-node distributed shared-memory machine. Each node consists of an

ARM7TDMI [27] clone and 8 kB of memory. [17]

6 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

1.5 Statement of Thesis

This thesis describes the design and development of an easy-to-use cache-coherent Symmetric-

Multi-Processor-On-Programmable-Chip (SMPOPC) system using vendor-provided IP. The goal

is to implement the system with a minimum of user intervention and without any invasive alter-

ations to the vendor-provided processor or bus. While other MPOPC systems provide relevant

information, no recent MPOPC systems use an SMP architecture with caches.

The salient features of vendor-provided softcores and bus interfaces that contribute to the

challenges in building an SMPOPC system and their corresponding solutions are highlighted. A

generic MPOPC system based on the SMP architecture was chosen since there was no particular

application in mind, and such an architecture offers a number of advantages, including:

• Softcore processors embedded into a single device represents an inexpensive way of in-

creasing the overall performance of an embedded system. The number of processors is

limited only by the device capacity.

• An N-way SMP architecture is flexible. Once a particular system is generated, any number

of applications can be developed; more time and effort can be spent on application devel-

opment rather than on generating hardware specialized to a particular task (which may not

necessarily result in performance gains compared to an enhanced software solution).

• Since a particular application is not specified, SMP potentially offers performance im-

provements on a fairly general class of computational tasks. Embedded systems in partic-

ular would benefit from an increase in computational power.

• Using a known architecture immediately implies that proven algorithms for various com-

putational tasks are available (e.g., in the case of the LU factorization [32], software algo-

rithms for SMP architectures are well-known).

Introduction 7

• An operating system can be relatively easily written, leveraging on the knowledge base of

known issues associated with SMP systems (e.g., Linux natively supports SMP systems).

Furthermore, existing SMP-oriented applications can be ported to new systems with little

or no alterations.

A major objective in the development of this system was to leverage the best features of

softcore processors and the available features of modern FPGA devices. The Nios processor

(and associated Avalon bus) was chosen due to its popularity (the Linux operating system has

been ported to run on Nios processors). Since it is vendor-provided, it is optimized for each of

the different families of Altera devices. Finally, the use of a vendor-provided softcore processor

implies excellent support, software and development tools.

The Nios processor supports the use of advanced on-chip memory to serve as cache to im-

prove system performance. Unfortunately, in an MPOPC system (especially in the context of

SMP), the use of individual caches for each processor raises issues; the Nios was not intended

to be used within the context of an SMP architecture and this created cache coherency issues.

Therefore, the issue of cache coherency in the context of the Nios softcore processor and the

Avalon bus is addressed. This task is accomplished with no disruption to the Nios processor and

Avalon bus designs. This implies the system can be used as an “add-on” to existing systems.

1.6 Thesis Contributions

This thesis makes the following contributions to the existing body of research:

• illustrates the challenges associated with implementing an SMPOPC system using vendor-

provided softcores and bus interfaces;

• describes a generic hybrid snooping cache-coherency protocol;

8 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

• describes two non-intrusive hardware-software solutions: a prototype that shows that cache

coherency can be maintained, but does not handle the case of multiple in-flight writes and

a second-generation module, which addresses the critical flaw of the prototype and offers

performance improvements with little additional hardware; and

• provides a performance analysis of a real cache-coherent SMPOPC system, showing that

there is little impact on the system clock frequency (does not contribute to the critical path)

while using few PLD resources to implement.

1.7 Outline of Thesis

Chapter 2 provides an introduction to multiprocessing, focussing on the area of symmetric multi-

processing, and discusses the issue of cache coherency in the context of SMP systems. Chapter 3

presents the Altera Nios softcore processor and associated Avalon bus, as well as the particu-

lar challenges they present when used in an SMP architecture. Chapter 4 describes an initial

proof-of-concept solution that shows that the challenges can be overcome. A more complete

second-generation design is presented in Chapter 5. Chapter 6 provides details on the develop-

ment platform used, as well as an analysis on the experimental results conducted on the system.

Finally, Chapter 7 concludes the thesis and outlines possible future research in this area.

Chapter 2

Multiprocessing

Modern small computers are dominated by uniprocessor systems. Uniprocessor systems feature

powerful microprocessors that scale in frequency to beyond 3.5 GHz. This currently provides

ample performance for all but the most demanding applications. The typical desktop user, run-

ning word processors, internet browsers, and audio/video applications, often has a hard time

presenting a serious load to the processor, even when these applications are used simultane-

ously. Cutting-edge computer games, science, industry, and some business applications, how-

ever, still benefit from additional computing power. One of the most effective ways to improve

performance beyond a single processor is to use multiple processors [22]. This is cost-effective,

as multiprocessor systems often have a better cost-performance ratio than a uniprocessor sys-

tem [33]. It is also significantly easier and less costly to add existing commodity processors,

rather than creating a custom processor. The cost of a single processor design can be amortized

when system vendors offer a wider range of computing platforms for applications with different

computational demands [30].

A number of multiprocessor architectures exist. Most mainstream architectures feature fewer

than one hundred processors [22]. Some supercomputer architectures incorporate thousands of

9

10 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

processors [37]. Some specialized scientific applications have lead to the design of vector proces-

sors, and their associated multiprocessing architectures. Comparing these various architectures

requires a taxonomy to better describe each alternative and the driving reasons behind each de-

sign. To this end, Flynn’s taxonomy of parallel computer architectures [20] is often used, and is

described below:

• Single instruction stream, single data stream (SISD) - This is a typical uniprocessor system.

A single set of instructions is executed using a single stream of data.

• Single instruction stream, multiple data streams (SIMD) - In this category, multiple pro-

cessors execute the same set of instructions on multiple data streams. Each processor

accesses its own data memory (multiple data), but there is one shared instruction memory

and a control processor, which directs the other processors by fetching and dispatching in-

structions. Typically, these systems are special purpose machines. Modern uniprocessors,

however, often include entire SIMD instruction sets, such as Intel’s MMX, SSE, SSE2,

and AMD’s 3DNow!. These SIMD instructions target multimedia and communications

applications, allowing uniprocessors to achieve new levels of performance by exploiting

parallelism inherent in these types of applications.

• Multiple instruction stream, single data stream (MISD) - No system of this nature has been

made commercially available. Example of applications include cryptographic processors

and multiple independent frequency filters operating on the same signal.

• Multiple instruction stream, multiple data stream (MIMD) - A MIMD system features

independent processors, each of which executes its own instructions and operates on its

own data. Typically, commodity off-the-shelf processors are used in such a system [22].

MIMD machines have emerged as the dominant category for general-purpose multiprocess-

ing. They can function equally well as single-user machines focusing on performing a single

Multiprocessing 11

task with high efficiency, or as a multiprogrammed machine simultaneously running any number

of tasks, or as some combination of the two [22]. Within the MIMD category, two architectures

exist: centralized shared-memory architectures, and distributed-memory architecture.

Centralized shared-memory computers typically support a small number of processors (usu-

ally fewer than sixty-four). If the number of processors is small, it becomes possible for an

interconnection network (often a bus) to provide uniform access to a single, centralized mem-

ory. Unfortunately, access to memory through a shared bus does not scale with the number

of processors and therefore the bus becomes a performance bottleneck [21]. This problem can

be somewhat mitigated through the use of cache (see Section 2.2). Symmetric multiprocessor

systems are the most popular implementation of the centralized shared-memory architecture.

For completeness, distributed-memory architectures are mentioned briefly. These systems

are often composed of self-contained computer systems (including one or more processors and

local memory). These systems are connected via a high-speed interconnection network (such as

Ethernet). Physically distributed memory allows the system to support a much larger number of

processors. The Earth Simulator project [37], for example, uses 640 processor nodes, with each

node including eight arithmetic processors and 16 GB of shared memory (for a total of 5120

processors and 10 TB of memory).

2.1 Symmetric Multiprocessing

MIMD symmetric multiprocessor systems are the most popular computer multiprocessor archi-

tecture. In an SMP system, a shared bus is used to interconnect processors to a single centralized

memory. Figure 2.1 gives a high-level architectural overview of a typical SMP system [22]. Bus

contention, combined with the additional operating system overhead required to coordinate mul-

tiple processors and the limited parallelism that can be achieved in applications, means that each

12 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

additional processor provides diminishing returns, as described by Amdahl’s Law [15]. The cost

of an SMP system is incremental over that of a uniprocessor system; the increased cost being the

additional processors and a slightly more expensive motherboard.

System Bus

Main memory I/O system

Processor 1

Cache

Processor 2

Cache

Processor N

Cache

Figure 2.1: Basic Architecture of a Typical N-Way SMP System

The symmetry is three-fold in the system, and encompasses the processors, the memory,

and I/O. All processors are functionally identical and are arranged in a flat hierarchy. That is,

there are no master-slave relationships or geometry that limits inter-processor communication to

particular processors. Memory symmetry refers to the ability of all processors to use the same

addresses to share the same address space. I/O is symmetric when all processors share access

to the same I/O subsystem, and any interrupt can be received by any processor. There are no

dedicated processors for handling interrupts or I/O in this model. Memory and I/O symmetry

are conducive to hardware scalability. The shared nature of symmetry helps to eliminate or

reduce potential bottlenecks in critical subsystems. Additionally, symmetry leads to software

Multiprocessing 13

standardization, as system developers can produce systems with differing numbers of processors

that can all execute the same binaries. [25]

Though functionally identical, it is common to differentiate between a bootstrap processor

(BSP) and an application processor (AP) [25]. This difference is only in effect during initializa-

tion and shutdown of the system, and is provided as a convenience. Any processor in the system

may be the BSP, and is typically determined by hardware, or a combination of hardware and

firmware. The role of the BSP entails initializing the system and booting the operating system

(OS). During this process, the APs (all other processors) are held in reset to avoid any conflict

that multiple uninitialized processors might cause.

To take advantage of multiple processors in an SMP system, both the operating system (if

present) and the application must support multiple processors. If the operating system is not SMP

aware, then only the BSP executes instructions, with the additional processors running idle. Most

consumer applications, such as word processors and games, are not written to take advantage of

multiple processors. These applications do not usually benefit from additional processors. The

user will still notice a performance increase if the system is multiprogrammed, since more than

one program can execute simultaneously (for example, a user could listen to music files while

reading e-mail). These applications are not written with SMP in mind since they would suffer

a performance loss on uniprocessor systems (their most common platform). The loss is caused

by the operating system overhead of switching between threads, which does not accomplish any

useful work on a single processor.

To truly take advantage of an SMP system, an application must be multithreaded. Scientific,

industrial, and business programs are often designed to run on multiple processors, explicitly

taking advantage of inherent parallelism in the application. Server applications and distributed

computing projects can also benefit greatly from additional processors.

14 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

2.2 Cache

As mentioned, access to memory through a shared bus does not scale with the number of pro-

cessors, therefore the bus becomes a performance bottleneck. This problem can be somewhat

mitigated through the use of one or more levels of cache, which is one feature that is frequently

used to increase processor performance, even in the uniprocessor case.

These caches are composed of fast memory that sit between the processor and the main mem-

ory to reduce latency by fulfilling repeated memory requests to the same location. Caches take

advantage of the spatial and temporal locality characteristics of executing code to store recently

used memory blocks. When the processor accesses memory that is cached, the cache is able to

supply the data and no transaction occurs on the shared memory bus (reducing contention on that

bus). Main memory is quite slow when compared to the speed of modern processors. A cache

helps the memory subsystem supply instructions and data at the rate the processor consumes

them.

Unfortunately, caching is not without its drawbacks. The speed of cache memory is a direct

result of the increased number of transistors used to implement each bit of storage. This precludes

designing a large amount of on-die cache for each processor, where it is the fastest and most

effective. This leads to most systems implementing a hierarchical memory subsystem. The

caches are fast and small memories. Memory devices become larger and slower going from the

processor to the main memory and beyond to magnetic hard drives, which is the largest and

slowest form of memory in the system.

When a processor writes to a memory block, the cache is designed to follow one of two

policies: write-through or write-back. The write-through policy specifies that on a write, contents

are written into the cache and to lower-level memory (either another cache level or physical

memory). In the write-back policy, the contents are written to cache, and are only written back

to lower levels when that cache line is replaced. While simpler to implement, the write-through

Multiprocessing 15

policy tends to cause main memory transactions that may have been avoided by a write-back

policy. Conversely, using a write-back policy effectively hides writes from main memory and the

rest of the system until cache line replacement.

The rest of this section deals with memory coherency and consistency, two concepts that

are important for correct operation of multiprocessor systems. The effect of caches on memory

coherency is also addressed.

2.2.1 Memory Coherency and Caches

A memory system is considered to be coherent if a read to an arbitrary memory address returns

the most recently written value. This definition, however, encompasses two aspects of memory

system behaviour: coherency and consistency. Writing correct shared-memory programs require

careful consideration of both aspects.

A coherent memory system exhibits three properties: preservation of program order, a co-

herent view of memory, and write serialization [22]. The preservation of program order simply

means that if a processor reads a memory location after writing to it, the written value is returned.

Coherent memory means that if a processor writes to a memory location that is followed by a

read by a different processor, then the written value is returned if the two accesses are sufficiently

separated and no other writes occur in between them. Write serialization means that if two writes

to the same memory address by two different processors occur, all processors in the system see

the writes occurring in the same order.

Cache memory leads to the problem of maintaining coherency in multiprocessor systems.

The problem is that the view of memory by different processors, through their caches, may be

different. That is, copies of shared data may reside in multiple caches, and when any processor

modifies the cached data, all other caches that contain that data will have the old, incorrect

value (affecting the second property of coherent memory systems). These other caches must be

16 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

informed of the change for proper operation of the program. [21]

Table 2.1 illustrates the cache-coherence problem. Suppose there are two processors with

write-through caches in a system. When processor A reads memory location X, it is stored in

processor A’s cache. The same occurs when processor B reads memory location X. If processor

B subsequently writes a different value to memory location X, then processor A’s cache will

contain a stale value for that location. If processor A reads location X again after processor B’s

write, it will retrieve stale data from the cache. [22]

Time Event Cache A Cache B Memory

0 1

1 CPU A reads X 1 1

2 CPU B reads X 1 1 1

3 CPU B writes X 1 0 0

Table 2.1: The Cache Coherence Problem in Multiprocessor Systems

There are two basic protocol classes for enforcing cache coherency: snooping and directory-

based [22]. Snooping protocols involve having processor caches monitor (snoop) the shared

memory bus for writes by other processors. If the processor’s cache contains the data being

written, the protocol can either invalidate its cache line (forcing a read to memory on the next

access) or update its contents. Example protocols include Write Once, Synapse N+1, Berkeley,

Illinois, and Firefly [16] [18]. In a directory-based protocol, a central directory tracks the sharing

status of blocks of physical memory. When a processor writes to a memory block, it secures

exclusive-write access to that block. Messages are passed in order to ensure that no stale memory

blocks exist in processor caches. Example directory protocols include the Dir1NB and Dir0B

schemes [2]. A careful analysis (see Section 4.1) of the Nios processor and Avalon bus in an

SMP configuration will show that neither of these two methods are feasible without making

Multiprocessing 17

invasive changes to either the processor or the bus structure. A hybrid cache coherency protocol

is developed instead.

2.2.2 Memory Consistency

Memory consistency refers to the rules that a particular computer system follows with respect to

the ordering of memory accesses (reads and writes). A memory consistency model provides a

formal specification to the programmer of how the memory system behaves. The model places re-

strictions on the values that can be returned by a read during shared-memory program execution,

and that behaviour restricts what hardware and software optimizations may be used. Defining

a memory consistency model is critical to ensuring correct operation of parallel shared-memory

programs. The model that applies to the final SMPOPC Nios system cannot be described until

the design and behaviour has been finalized, however a number of models are briefly described

here.

Since programs are executed sequentially, one would expect that a read would return the value

of the most recent preceding write. This is strict consistency, and is exhibited by uniprocessors

through preservation of program order (i.e., the order of execution as described by the program).

Multiprocessor systems with no cache and shared access to a memory bus also provide strict

consistency.

The sequential consistency model is a relaxed version of the strict model, wherein all memory

accesses are serialized (they execute one at a time, or atomically), and that operations from a

single processor appear to execute in program order [26]. This model is simple and behaves as

programmers expect from computers. This model, unfortunately, disallows many optimizations

in multiprocessors systems that are available in uniprocessor systems [1]. As a result, a number

of more relaxed models exist, many of which are used by real systems.

While some optimizations pose a challenge to the sequential model, adding a data cache

18 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

presents a new set of similar challenges. In particular, two issues present themselves: detecting

when a write is complete, to preserve program order between a write and following operations;

also, invalidating other caches in the system on a write is inherently non-atomic, making it harder

to make writes appear atomic. The first issue is solved by implementing a mechanism to ac-

knowledge the receipt of invalidation or update messages by target caches. Once all caches have

acknowledged the write, the processor issuing the write is notified and may continue execution.

The non-atomicity issue can be addressed by forcing write serialization when writing to the same

location, and by disallowing the read of a written value until all caches have acknowledged the

receipt of the invalidation or update message. [1]

Beyond the sequential consistency model lie other, more relaxed models. These models

relax specific program orderings, such as read after write (RAW) ordering, write after write

(WAW) ordering, or any access after a read (RWAR) ordering. Typically, models relaxing the

later orderings also relax the earlier orderings as well. Through order relaxation, two specific

abilities can be enabled: read others’ write early, and read own write early, wherein a processor

can read another processor’s or its own write (respectively) prior to full acknowledgement of the

write by all caches.

Relaxing RAW ordering defines when the writing processor is able to read the new value

after a write, with respect to same location serialization, and with respect to when the value is

visible to other processors. The common Intel x86 architecture relaxes both constraints, such that

a read can return the value of a write prior to being serialized or made visible to other processors.

Relaxing WAW ordering allows processors to pipeline or overlap writes to different memory

locations. Relaxing all program orders allow any memory operation to be reordered with the

following memory operation if they both access different memory locations.

Regardless of which orderings are relaxed, models provide safety net mechanisms that allow

the programmer to enforce program order when used. These often entail explicit serialization,

Multiprocessing 19

synchronization or fence instructions, or specific sequences of instructions that enforce program

order.

2.3 Summary

This chapter was an introduction to the area of multiprocessing, highlighting centralized shared-

memory symmetric multiprocessing systems. Cache memory was explained, and the problem

of cache coherency in multiprocessor systems was illustrated. Finally, memory consistency, an

important aspect for ensuring the correctness of parallel programs, was presented. In the next

chapter, the Altera Nios softcore processor and Avalon bus interface are examined in the context

of SMP systems.

Chapter 3

The Nios Processor and Avalon Bus

The Altera Nios processor and Avalon bus module are of central importance when analyzing

SMP Nios systems in the context of cache coherency. Both processor and bus are described

here, with a focus on the properties that are relevant to symmetric multiprocessing. A general

description of the Nios features and capabilities is provided, followed by an elaboration on cache

memory and interrupt processing. Details of the Avalon bus are presented in the remainder of

the chapter.

In reference to the Nios, the terms core, softcore, processor, microprocessor, and central

processing unit (CPU) are interchangeable. Interrupts and exceptions are also synonyms.

3.1 Nios Embedded Softcore Processor

The Nios embedded softcore processor is designed specifically for SOPCs. It is customizable

for a wide range of applications, and is optimized for Altera PLDs. The 32-bit Nios, when

combined with external flash program storage and large external main memory is a powerful

SOPC. Examples of the flexibility of the Nios are provided throughout this section.

20

The Nios Processor and Avalon Bus 21

Nios v3.0 features a single-issue five-stage pipeline reduced instruction set computer (RISC)

architecture. Figure 3.1 shows a block diagram of the Nios core. The pipeline implementation is

transparent to software.

ALU

Q

Q

Interrupt
Control

wait

irq

irq #

reset

clock

data out

address

read / write

ifetch

b yte enab le

6

32

Control

32

4

D

data in

32

Instruction
Decoder

Operand
Fetch

General-Purpose Processor
Register File

Clock
Enab le

Program
Counter

Figure 3.1: Nios Core Block Diagram [11]

The Nios is available in both 16-bit and 32-bit variants. The word size of each variant applies

to the data bus size, arithmetic logic unit (ALU) width, internal register width, and address bus

size. Both variants have a simple and complete instruction set that utilizes 16-bit instruction

words to reduce code size and bandwidth requirements.

The Nios instruction set architecture (ISA) is tailored to be generated from the popular C

and C++ high-level programming languages. The ISA includes a standard set of arithmetic and

logic operations. Bit operations, byte extraction, data movement, control flow and conditional

22 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

execution are also supported. The processor is little-endian and supports the following addressing

modes: 5- or 16-bit immediate, full or partial width register-indirect, and full or partial width

register-indirect with offset. The multiply instruction can be configured to be fully implemented

in hardware, partially in hardware, or fully in software, depending on the needs of the system

designer.

A large windowed register file is implemented within the Nios core. The window makes

thirty-two registers available at a time, and slides with a granularity of sixteen registers. These

registers are divided into four classes: eight registers each for the globals (%g), locals (%l), in-

coming parameters (%i), and outgoing parameters (%o). The system designer is able to select a

register file size of 128, 256, or 512 registers (providing eight, sixteen, or thirty-two register win-

dows, respectively), depending on anticipated need. The designer can optionally use the MFLAT

compiler option, where only thirty-two registers are available, with no windowing. Software

is then obliged to save register values to memory, increasing the average context switch time.

The worse case context switch time (i.e., saving all registers to memory), however, is constant

and significantly less than the run-time for the default register window overflow or underflow

interrupt service routine (ISR).

The Nios processor features a modified-Harvard memory architecture with separate data and

instruction-memory bus masters. Both control ports are implemented as Avalon bus masters.

The instruction bus-master is a read-only, 16-bit wide (the instruction word size), latency-aware

Avalon bus-master. It is used to fetch instructions to be executed by the Nios. The latency

awareness gives the Nios the ability to perform read operations to latent memory devices1. This

minimizes the impact of latent memory while increasing the operating frequency of the sys-

tem as a whole. The system designer is also able to store program instructions in high-latency,

non-volatile memories such as flash memory. The instruction master issues new read requests

1Latent memories have long access times compared to the system clock period.

The Nios Processor and Avalon Bus 23

prior to the completion of the previous read, using branch-not-taken branch prediction to provide

zero-latency speculative fetch addresses. A penalty is only assessed when the branch is taken

(mispredicted). The Nios ISA also specifies a single branch delay slot.

A Nios data master is sized according to the processor word size (16- or 32-bits). It per-

forms data reads and writes to memory, but also fetches interrupt vectors (see Section 3.3) from

the interrupt vector table during exception handling. In the context of data, the master is not

latency-aware since it is not useful to predict data addresses or continue execution before ac-

cess is complete [10]. The result is that accessing latent memories incurs wait states; assuming

no arbitration conflicts, single cycle accesses may only be achieved when using zero-wait-state

memory.

The Altera Nios provides the system designer with a number of feature-performance-size

trade-off customizations to better meet the requirements of the system. The system-development

software supports a set of four general preset configurations (standard features / average LE

usage, minimal features / minimal LE usage, full features / maximum LE usage, and standard

debug / average LE usage). These general preset configurations select a set number of specific

customizations, such as register file size and multiplier implementation mentioned above. Other

options available for customization include:

• The option to make the WVALID control register writeable for window pointer overflow and

underflow control (some operating systems require this feature). This option increases the

size of the CPU by approximately fifteen LEs.

• A pipeline implementation using more LEs (reducing stalls) or fewer LEs (increasing

stalls). This option implements a forwarding path from the output of the ALU to an input

of the ALU, eliminating stalls for certain data hazards. Approximately thirty-two LEs are

used, and there may be a reduction in system operating frequency.

24 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

• An instruction decoder implementation using LEs or on-chip memory.

• Support for rotate through carry (RLC/RRC) instructions. The provided software devel-

opment kit (SDK) compiler does not use these instructions. They are provided for user-

written assembly, and they require twelve to twenty-one LEs to implement.

• Support for interrupts and software traps. This is on by default, and generates interrupt

control signals and supporting hardware in the Nios core. This should only be disabled

when trying achieve the smallest Nios implementation possible. Safely disabling this op-

tion means that the designer knows that the software will not cause register window ex-

ceptions, will not execute TRAP instructions, and the system will not have any hardware

interrupt sources.

• Support for optional C/C++ libraries and subroutines:

– Catch spurious interrupts - a default interrupt handler is installed. Increases code size

and memory usage slightly.

– Call C++ constructors - used to initialize statically allocated C++ classes.

– Window pointer manager - to handle register window underflows. Can reduce code

size if the designer knows the software function call depth will not exceed the number

of register windows.

– Fast multiply - for purely software multiply implementations. Increases code size of

multiply subroutine.

– Small printf() - reduces code size (from 40 kB for a full implementation to 1 kB) when

floating-point support is not required. Integers, characters, and strings are supported

in the minimal implementation.

The Nios Processor and Avalon Bus 25

• An on-chip hardware debug module, which allows system designers to use hardware break-

points and tracing with additional software and/or hardware.

One feature of softcore processors that provides unprecedented extensibility over their hard-

core counterparts is custom instructions. That is, the Nios allows system designers to incorporate

custom logic directly into the processor’s ALU (as shown in Figure 3.2). This allows a designer

to accelerate time-critical software algorithms by implementing complex computational tasks as

single-cycle combinational or multi-cycle sequential operations. A designer may reduce a com-

plex and lengthy sequence of RISC instructions into a single custom instruction implemented

in hardware. The provided SDK includes facilities (C macros) for accessing custom instruction

hardware via special assembly stub instructions (USR0 - USR4). Further details regarding the

Nios CPU can be found in [10] and [11].

Of particular relevance to system development is (i) the Nios can take advantage of on-chip

memory for cache, (ii) its support of vectored exceptions including interrupts generated by ex-

ternal hardware, and (iii) its interface to the Avalon bus. It is important to note that the Nios was

not designed with cache coherency facilities for use in an SMP architecture when using on-chip

memory for cache.

3.2 Nios Cache Memory

A Nios core can be configured with optional single-cycle L1 instruction and data caches. The

designer may specify each cache to be from 1 kB to 16 kB in size (size must be a power of two).

Each cache is direct-mapped, such that the low bits of the memory address are used as an index

to the cache, as shown in Figure 3.3. Direct-mapped caches are simpler to implement and result

in a smaller hardware circuit, but have a smaller hit rate than fully-associative or set-associative

caches [22].

26 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

Nios Embedded Processor

T o FIFO, Memory , or Other Logic

+
-

&

<<

 >>

Out

A

A

Nios

ALU

B

B
C u stom

Logic

Figure 3.2: Custom Logic and the Nios ALU [4]

The Nios Processor and Avalon Bus 27

Figure 3.3: Direct-Mapped Cache [11]

The Nios data cache uses a write-through policy (meaning a full write request is made to

memory, in addition to the cache). The instruction cache does not support writes, since the

instruction master does not either. Furthermore, the data cache can be automatically bypassed

when performing a load instruction by preceding it with the prefix instruction PFXIO. This is

particularly useful when accessing Nios peripherals, as I/O operations should not be cached.

A Nios system requires instruction and data cache initialization and enabling before they can

be used. Initialization is achieved by invalidating every cache line. The Nios provides for this

facility via the write-only ICACHE and DCACHE control registers. These line-invalidate registers

invalidate the cache line corresponding to the memory address that is written to them. The

instruction and data caches each have an enable bit in the STATUS control register which must

be set, allowing for run-time cache enabling and disabling. A cache must be disabled prior to

using its line-invalidate register. Since the Nios cache does not have built-in automatic cache

28 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

coherency facilities, these line-invalidate registers are critical for informing a cache that another

processor has written data to cached memory.

Instruction and data caches are implemented using on-chip memory and a small amount of

support logic. Only relatively modern FPGAs contain the required memory resources to support

cache. Cache may only be used with 32-bit Nios processors, and only when targetting Altera

Cyclone, Cyclone II, Stratix, Stratix GX or Stratix II FPGAs. The only relevant features of the

cache in the context of coherency are the ability to invalidate individual cache lines and the use

of a write-through policy.

3.3 Nios Interrupt Processing

A Nios CPU supports up to sixty-four vector exceptions, including external hardware interrupts,

internal exceptions, and software TRAP instructions. There is a global interrupt enable bit in the

STATUS control register, as well as a 6-bit interrupt priority mask. Each vector number is its own

priority, with 0 being the highest priority and 63 being the lowest. The Nios provides precise

exception handling; that is, the interrupted program is restored to a state as if the exception had

not occurred.

Internal exceptions represent register window underflow or overflow, which occurs when too

many SAVE or RESTORE instructions are executed, respectively. Direct software exceptions call

exception handlers via the TRAP instruction. An immediate value encoded with the instruction

represents the exception number. Software exceptions are processed regardless of whether inter-

rupts are enabled or not, and regardless of the current interrupt priority.

External hardware interrupts are raised by driving a 6-bit interrupt number onto the Avalon

bus irq number signal and asserting the irq signal. The Avalon bus (see Section 3.4) uses

automatically generated connection logic that allows peripherals to simply assert a single irq

The Nios Processor and Avalon Bus 29

signal, which is decoded into the proper interrupt number and presented to the Nios. If interrupts

are enabled and the requested interrupt has a higher priority than the priority mask, then the

exception is handled. Interrupt priority 0, which is assigned to the hardware debug module, is

always handled, regardless of current priority or whether interrupts are enabled or not. External

interrupt sources should assert the irq signal until acknowledged by software (usually via a

register write). irq signal de-assertion prior to the beginning of interrupt processing results in

an ignored interrupt. In the case of multiple Nios masters, a slave peripheral’s interrupt is raised

on all processors that can master that peripheral (i.e., all processors connected to its slave port).

Figure 3.4 shows the Nios exception handling process. Once an interrupt request is received,

the current state (context) of the system is saved. This includes the following actions:

• Saving the STATUS register to the ISTATUS register.

• Opening a new register window (automatic and very low latency register saving).

• Disabling global interrupts in the STATUS register.

• Setting the interrupt priority mask in the STATUS register according to the current interrupt.

• Saving the program counter (PC) of the interrupted program to register %o7 (the last “out-

put” register of the current register window).

• Retrieving the address of the interrupt’s ISR from the interrupt vector table.

The interrupt vector table consists of sixty-four 4-byte entries (256 bytes total). Each entry

represents the starting address of the interrupt service routine (ISR, or sometimes exception han-

dler) for that interrupt number. The interrupt vector table may reside in random access memory

(RAM) or read-only memory (ROM), and its base address (VECBASE) is configurable. An in-

terrupt’s entry is calculated by multiplying the interrupt number by four to determine its offset,

30 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

Memory

Main Prog ram

ISR

V ector T able

Restore
Context

Sav e
Context

5

4

1

2

3

1. Sav e the current state (context)
2. Retriev e the ISR address from the v ector table based on the interrupt number.
3. J ump to the ISR routine and run to completion.
4. Restore sav ed context.
5. Resume prog ram.

Figure 3.4: Nios Exception Handling Process [9]

then adding the vector table base address. For example, interrupt #3 is located at memory ad-

dress VECBASE+ 3× 4 = VECBASE+ 12. Note that interrupt 0 (the hardware debug module) is

handled differently, and thus entry 0 in the interrupt vector table is unused. Table 3.1 defines the

vector table, where the first sixteen vectors are defined by Altera; the remaining forty-eight are

user-defined interrupt vectors (for software TRAP instructions or assigned to hardware modules

at system build time).

Vector Number Vector Offset (Hex) Assignment

0 000 Hardware debug module

1 004 Register window underflow

2 008 Register window overflow

3 - 5 00c - 014 GNUPro debugger

6 - 15 018 - 03c Reserved for future use

16 - 63 040 - 0fc Available vectors

Table 3.1: Exception Vector Assignments

The address returned from the interrupt vector table is loaded into the PC, and the ISR is

The Nios Processor and Avalon Bus 31

executed. The last instruction of the ISR is TRET, which indicates that the ISR is complete. This

causes the saved context to be restored and the interrupted program resumes execution.

The Nios supports nested exceptions, which allow higher priority exceptions to interrupt

lower priority exceptions. The same exception handling process occurs in this case, except that

the interrupted program is itself an exception. Nested exceptions are enabled by re-enabling

global interrupts within an ISR (recall that they are automatically disabled by the exception

handling hardware).

At this point, it is important to distinguish between two different types of ISRs that can be

implemented in a Nios system. They are categorized into simple and complex exception handlers.

A simple ISR has the following properties:

• It does not re-enable interrupts.

• It does not use SAVE, RESTORE, or TRAP instructions (either directly or by calling subrou-

tines that execute them).

• It does not alter the contents of registers %g0..%g7, or %i0..%i7. An ISR is always free to

use the %l0..%l7 and %o0..%o7 registers.

The first three properties ensure that the register window will not change, and therefore no

window overflows or underflows are possible. If they were possible, interrupts would need to be

re-enabled such that the overflow or underflow ISR may execute. The fourth condition exists so

that these registers will not be altered once the ISR is complete, as the interrupted code has direct

access to the %g and %i register series. This saves the routine from having to save and restore

any of those registers.

A complex exception handler violates one or more of the conditions listed above. Such

an ISR is necessary to allow nested interrupts or the execution of more complex code (such

32 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

as subroutines that SAVE, RESTORE, or TRAP). In addition to the context saving automatically

performed by the hardware, a complex ISR must also ensure the following:

• The contents of ISTATUS must be preserved before re-enabling interrupts (which automat-

ically overwrite its contents with STATUS).

• The current window pointer must be checked to ensure that re-enabling interrupts will

not cause a register window underflow (or it must take appropriate action to prevent an

underflow).

• The ISR must re-enable interrupts (after satisfying the first two conditions) before execut-

ing a SAVE or RESTORE instruction (directly or indirectly). This allows register window

overflow and underflow handlers to execute, if necessary.

• Prior to completion of the ISR, the contents of the ISTATUS, current window pointer, and

any used registers in the %g or %i series must be restored.

The Nios SDK provides generic facilities to easily write ISRs as normal C or C++ routines,

as opposed to Nios assembly. These facilities include two routines, nr installuserisr and

nr installuserisr2, which both install a user ISR to a specific interrupt number. Knowledge

of the Nios interrupt vector table and its use is not required to use these routines. The routines

allow the programmer to access normal facilities such as easily calling other functions.

The first routine passes an integer context argument, while the second additionally passes

the interrupt number and the interrupted PC. The second installer is useful for using the same

ISR for multiple interrupt sources. Installing an ISR in this fashion automatically makes it a

complex exception handler, as these routines wrap the ISR in a funnel assembly routine, which

essentially performs a full function call, as well as enabling interrupts prior to executing the ISR.

It is this funnel code that allows the ISR to be written like a normal routine. Unfortunately, the

The Nios Processor and Avalon Bus 33

funnel code also introduces complexity and latency when entering and exiting an ISR, thereby

increasing the run-time between the exception event and returning to normal execution. These

latencies are acceptable for many situations, such as a UART ISR. Altera’s simulation results for

such an ISR are reproduced in Table 3.2. Unfortunately, this is unacceptable for latency-critical

ISRs.

Item Time (µs) CPU Cycles

ISR entry latency 2.79 93

Running the ISR 3.21 107

ISR exit latency 1.92 64

Total 7.92 264

Table 3.2: UART ISR Latency for 33 MHz Clock [9]

The funnel code is composed of thirty-five assembly instructions prior to execution of the

ISR, and twenty-six assembly instructions upon returning from the ISR. This includes sixteen

and fourteen data memory accesses prior to and after ISR execution, respectively. ISRs that use

the provided installation routines are known as “user” ISRs.

In contrast to a user ISR, a “system” ISR does not use the funnel routine to setup register

windows and save register contents. When an exception occurs, the processor jumps directly to

the assembly routine, thus eliminating entry and exit latency, and shortening the overall execution

time spent servicing the interrupt. Hence, the cache coherency ISR was written as a system ISR.

Instead of utilizing the provided installation routines, a generic system ISR installer was written.

This code is listed in Appendix A.

34 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

3.4 Avalon Bus

The Avalon bus is a bus architecture that was designed to serve as the interconnection network

for a SOPC. To this end, the Avalon bus is a simple interface that specifies the signals between

master and slave ports, as well as the timing of the protocol. Besides simplicity, the Avalon

bus was designed to also use minimal logic resources within a PLD and to have synchronous

operation to avoid complex timing analysis issues [8]. When generating an SOPC system using

the Avalon bus, all interconnection logic is automatically generated by Altera’s SOPC Builder

tool. Configuration is performed using the easy-to-use SOPC Builder graphical user interface.

A traditional shared bus implementation uses a single tri-state bus in which master-slave

pairs are arbitrated. Any devices connected to the bus that are not participating in the current

transaction must not drive any values on the bus, using tri-state drivers in high-impedance mode.

This works well in traditional SMP systems because master and slave devices are physically

separate, located on self-contained PCBs or across backplanes. Designs use a shared set of bus

lines to conserve board space and the number of available I/O pins. Timing issues are also

simplified. A single bus becomes the bandwidth bottleneck, as only one transaction may occur

on the bus at a time. While most PLDs provide tri-state drivers for off-chip communication,

only some PLDs provide internal resources to support a limited internal three-state bus. As a

result, it is more common to use multiplexers to implement an arbitrated bus, as multiplexers are

supported by all PLDs.

The Avalon bus is a “switch fabric” used by Altera’s SOPC Builder to interconnect proces-

sors and other devices in a Nios embedded processor system [8], and is not actually a bus in the

traditional sense. Specifically, the Avalon bus is a point-to-point implementation of a “shared”

bus with support for simultaneous multiple bus masters [6]. In other words, there is a dedicated

connection from each potential bus-master to each of the slave devices that it can master. Al-

though each processor and device appears to connect to a real bus, there are no shared lines in

The Nios Processor and Avalon Bus 35

the system. This structure is illustrated in Figure 3.5 for an N-processor system.

Device 1

Device 2

Device 3

Device 4 Device 5

Processor 1 Processor 2 Processor N

Avalon
Bus

Module

MUX MUX MUX

MUX MUX

Figure 3.5: Basic Structure of an Avalon Bus Module

Consequently, the multi-master architecture increases system bandwidth by eliminating the

bottleneck of a single bus. System masters contend for individual slaves, not for the bus itself.

This technique is called slave-side arbitration, and it makes the protocol flexible enough for

high bandwidth peripherals. Slave-side arbitration means that any number of transactions may

occur simultaneously, as long as there is no contention for the same slave. If more than one

master requests the same slave, each master is granted access in turn, either in the default round-

robin fashion or using a configurable priority scheme. This arbitration is encapsulated within

the Avalon bus module, and is hidden from the system designer (though the arbitration rules

are configurable through SOPC Builder). Once access to a slave has been granted, Avalon bus

multiplexers feeds the appropriate signals to the slave. Figure 3.6 shows the use of multiplexers

in an example system of two masters and two slaves.

36 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

Master 1

Multiplexer

Request
Logic

Slave 1

Multiplexer

Arbitrator
Logic

Slave 2

Multiplexer

Arbitrator
Logic

Master 2

Multiplexer

Request
Logic

M1 Address, Write
Data & Control

M2 Address, Write
Data & Control

S1 Read Data & Control

S2 Read Data & Control

MRS

MRS

MSG

MSG

Figure 3.6: Avalon Multiplexers Routing Signals

As can be seen, the Avalon bus also specifies separate address, data, and control lines. This

provides an easy interface to on-chip user logic, avoiding the need to decode data and address

bus cycles. Additionally, the Avalon bus uses dynamic bus sizing. In other words, the address

and data busses to each slave peripheral are only as large as they need to be. For example, a slave

with only four accessible registers would have an address width of two. Dynamic bus sizing

means that the Avalon bus module also automatically handles data transfers between devices

of different data widths. Additionally, the Avalon bus module automatically handles wait-state

generation, latent transfers, and interrupt generation (as mentioned in Section 3.3).

Transactions on the Avalon bus may occur in byte, half-word, or word sizes (eight, sixteen,

or thirty-two bits, respectively). A transaction may begin immediately after another transaction,

with no clock cycles wasted, regardless of the master-slave pair. The protocol also defines bus

transactions for latency-aware peripherals, streaming peripherals, and multiple bus masters. Each

The Nios Processor and Avalon Bus 37

of these advanced transfer modes allow multiple units of data to be transferred during a single

bus transaction (reducing overhead when moving large amounts of data).

The Nios uses memory-mapped I/O to access memory and peripherals on the Avalon bus

(the Nios processor, associated slave peripherals and Avalon bus are collectively referred to as

the system module). The Nios uses the full 4 GB (32-bit) address space, presenting an address

that the Avalon bus module decodes into a slave select signal and an offset.

3.5 Summary

The preceding descriptions of the salient features of the Nios processor and Avalon bus interface,

coupled with the presentation of SMP systems in Chapter 2, allows for a careful analysis of the

issues facing the proper operation of an SMP Nios system. In the next chapter, these issues are

detailed and analyzed to develop a prototype SMP Nios system.

Chapter 4

Prototype Cache Coherency Module

Before an SMP Nios system can be implemented, the issues facing proper operation must be

raised and addressed. The greatest challenge to implementing a high-performance SMPOPC

system is enforcing cache coherency: typical softcore processors available for constructing such

a system are not designed with cache coherency in mind. Specifically, the bus architecture typi-

cally used in PLDs (such as the Avalon bus) effectively makes snooping impossible. Thus, other

features are required to achieve cache coherency. In this chapter, the problems facing proper

cache coherency enforcement are discussed, and a general system architecture addressing these

problems is outlined. Furthermore, an initial prototype cache coherency module (CCM) is de-

veloped as a proof-of-concept that cache coherency can be maintained in an SMP Nios system.

The goal of the CCM is to enforce cache coherency with a minimum of alterations to existing

vendor-provided IP. This requires a careful examination of the Nios and the Avalon bus module,

to understand which features will facilitate, and which features will hinder, cache coherency. It

is also advantageous to make the process of instantiating a cache coherent SMPOPC as seamless

and transparent to the user as possible, with little to no deviation from existing system generation

processes. This prototype serves as a proof-of-concept that the system can be easily modified to

38

Prototype Cache Coherency Module 39

enforce cache coherency.

4.1 SMP Issues in Programmable Logic

Symmetric multiprocessing on a programmable chip involves the implementation of multiple

softcore processors on a single programmable logic device. Modern programmable logic devices

provide sufficient resources (LEs and on-chip memory) to implement complex systems of 32-

bit softcore processors with cache support. Development tools such as SOPC Builder provide

direct support for implementing multiple softcore processors on a programmable chip. However,

development tools do not yet provide a way to automatically implement a functioning SMP

system.

SMPOPC systems are architecturally identical to their discrete SMP counterparts. This in-

cludes having identical processors, each with equal access to memory and I/O subsystems. In

an SMPOPC system, these requirements are fulfilled using the system-development tool to in-

stantiate processors with identical features. These processors must be specified to each have

a connection with equal arbitration priority to each I/O peripheral and memory device. Even

when fulfilling these requirements, two issues currently prevent full working of SMPOPC sys-

tems: (i) there is no way to uniquely identify the processors in a system, and (ii) enforcing cache

coherency. Cache coherency is the most significant barrier to symmetric multiprocessing on a

programmable chip. Custom hardware and software development is necessary to ensure cache

coherency.

4.1.1 Uniquely Identifying Processors

Some way to uniquely identify processors is needed, as a way to temporarily select a bootstrap

processor to execute global initialization on startup, and to allow operating systems to assign

40 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

processes and threads to specific processors. One aspect of global initialization is setting up

the shared interrupt vector table. Local per-processor initialization includes enabling interrupts,

setting the interrupt priority mask, clearing and enabling caches, etc. In traditional SMP systems,

a motherboard often identifies each processor according to the physical socket in which it resides.

In a PLD, however, physical sockets do not exist.

While the Nios processor does have a CPU ID control register, this read-only register returns

a code that is unique only to the particular version of the Nios. Therefore, each Nios of the same

version returns the same ID. Several solutions exist: (i) changing the value of the CPU ID control

register; (ii) adding a control register to the Nios; (iii) implementing a small ROM for each

processor, containing a unique processor ID (PID); and (iv) implementing a custom instruction

in each Nios to return a unique value.

The first two solutions do not fall within the goal of being non-invasive to the Nios. The

fourth solution is needlessly complicated for a simple problem that would consume one of only

four available custom instruction opcodes. Therefore, the ROM was chosen, since in addition to

being simple and non-invasive, it takes advantage of the Avalon bus architecture to make each

ROM accessible to only its corresponding processor. This exclusivity also allows all the ROMs

to be assigned the same address, thus conserving address space.

4.1.2 Comments on Cache Coherency with an Avalon Bus

The use of the Avalon bus (and other similar PLD bus architectures) effectively prevents the use

of bus snooping protocols to implement cache coherency, since the bus is not physically shared.

A non-trivial amount of hardware re-development would be necessary to build a device capable

of monitoring every set of primary bus connection points. These primary bus connection points

are denoted by ovals in Figure 3.5. Hence, cache coherency is a very relevant problem to solve

in this context. Rather than modify the tool used for system generation or modify the structure

Prototype Cache Coherency Module 41

of the Avalon Bus, another solution was sought, as described below.

4.2 Architecture

The first architectural design decision is whether to implement a snooping or a directory pro-

tocol. A directory protocol could be used, but it is not as effective as a snooping protocol for

small-scale systems, as message passing either requires a dedicated bus (high hardware cost), or

consumes additional bandwidth on the already-congested system bus. Either implementation re-

quires invasive changes to each Nios processor so that its cache can send, receive and understand

the directory protocol messages. Such a protocol would also incur a large hardware cost in the

form of the central directory.

Alternatively, a snooping protocol could be used. At the architectural level, there are a num-

ber of places that snooping hardware can be placed. The Nios processor implements a pair of

instruction and data caches with a write-through policy [11]. Traditionally, cache coherency is

enforced by creating a hardware module for each cache that monitors the processor’s memory

bus. This, unfortunately, is not possible due to the point-to-point nature of the Avalon bus (see

Section 4.1.2). Thus, a snooping architecture cannot be used.

An alternative is to add a slave peripheral to the system module to inform processors of a

memory write. Implementing cache coherency through a slave peripheral allows system devel-

opers to simply instantiate a CCM using the standard system generation GUI. It is also easy to

implement, as the Avalon bus is an interface specification with well-defined signals. This is, in

reality, a hybrid snooping protocol, that snoops the bus but uses a central “directory” to enforce

coherence. The slave peripheral can be given access to the relevant signals on various Avalon bus

interfaces. These interfaces can be standard interfaces to peripherals, such as on-chip RAM or a

memory controller, or special interfaces such as a tri-state bridge, which is used to communicate

42 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

with off-chip SRAM and flash memories.

Figure 4.1 shows the CCM in relation to a typical N-way SMP Nios system. The CCM must

be able to detect writes (typically by monitoring write enable signals), as well as read the address

bus. This allows the module to notify the processors of an address that has been written to, so

that the appropriate cache line can be invalidated.

The reason why the cache line must be invalidated, as opposed to updated (see Section 2.2) is

that the Nios has the native ability to invalidate particular cache lines, but not to update them. The

invalidation is performed by writing the appropriate address to specific control registers imple-

mented in each Nios processor. The invalidate policy was selected in the interest of minimizing

invasive changes to the system. The cache coherency protocol used is depicted by Figure 4.2.

The implementation of cache clearing through processor control registers requires that soft-

ware play a role in maintaining coherency. Due to the importance of maintaining coherency, the

software component was written in the form of a high-priority interrupt service routine. This is

a perfect match for the ability of a slave peripheral to raise interrupts. Thus, enforcing cache

coherency is a marriage of hardware and software.

4.3 Hardware Cache Coherency Module

The cache coherency module is responsible for detecting when a memory write has occurred,

and notifying processors of such an event. The VHDL code for the CCM hardware is listed in

Appendix B. Figure 4.3 shows the corresponding schematic diagram.

The Nios processor must have the ability to enable and disable the CCM. This is required as

there are situations where the CCM must not raise an interrupt (one situation is before initial-

ization is finished, where the caches are enabled and interrupt vector table is set). A single bit

CONTROL register is used to disable operation (highlighted by oval 3 in Figure 4.3). The CONTROL

Prototype Cache Coherency Module 43

Processor 1

Processor 2

C
ac

he

A
va

lo
n

B
us

Off-Chip Memory

Cache Coherency
Module (CCM)

On-Chip Memory
or Memory Controller

FPGA

Processor N

C
ac

he

Tri-State Bridge

Nios Peripherals
(UART, timers, PIO,

ROM, etc.)

C
ac

he

Snooping Signals

Snooping Signals

Figure 4.1: System Architecture with a Cache Coherency Module

44 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

Normal Execution

Write to
Shared

Memory?

Capture
Address

All Processors:
Invalidate Cache,

Acknowledge

All Processors
Acknowledged?

No Yes

Yes No

START

Figure 4.2: Cache Coherency Protocol

Prototype Cache Coherency Module 45

strobe_write

writedata[0]

internal_we

sram_base_address[31..22]

ext_ram_bus_writen

reg_status[N..0]

internal_writedetect

strobe_read

ad
dr

es
s[

0]
ad

dr
es

s[
1]

ext_ram_bus_address[22..0]

reg_control

ext_ram_bus_address[21..0]

flash_base_address[31..23]

NOT address[1]

1

2

3

4

VCCaddress[1..0] INPUT

VCCchipselect INPUT

VCCclk INPUT
VCCreset_n INPUT

VCCext_ram_bus_address[22..0] INPUT

VCCext_ram_bus_writen INPUT

VCCwrite_n_to_the_ext_sram INPUT

VCCwritedata[31..0] INPUT

VCCwrite_n INPUT

VCCread_n INPUT

irqOUTPUT

readdata[31..0]OUTPUT

CLRN

D
PRN

Q

DFF

instGND

AND2

inst14
AND2

inst15

NOT

inst16

NOT

inst17

PRN

CLRN

D

ENA

Q

DFFE

inst19

PRN

CLRN

D

ENA

Q

DFFE

inst20

AND2

inst22

MULTIPLEX
S
B
A

Y

21mux

inst23
PRN

CLRN

D

ENA

Q

DFFE

inst24

VCCAND2

inst26

NOT

inst27

BAND3

inst28

OR2

inst30

AND2

inst31

N
O

T

in
st

29

AND3

inst32

N
O

T

in
st

33

AND2

inst36

OR1

or_reduce

V
C

C

S0

D2

S1

D3

D0

INH1

D1

Q

MUX4

32-bit

MULTIPLEX
S
B
A

Y

21mux

address_mux

TITLE Prototype CCM
TYPE Block Diagram
DESIGNERAustin Hung
NUMBER 1.00 REV A
DATE <<unspecified>> SHEE

1
OF 1

Figure 4.3: Prototype CCM Schematic

46 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

register uses the system clock and reset signals, and is reset to logic ‘0’ (disabled). It is assigned

to register offset 0x01, and any processor may write any value to it.

Snooping the bus effectively requires the ability to detect a write transaction and capture the

corresponding memory address. The CCM accomplishes this task by snooping the write enable

and address lines on the bus of every memory device (recall that there is no single bus for all

devices in the system), and asserting a write detect signal (oval 1). If the CCM is enabled, the

write detect signal also causes the STATUS register (oval 2) to be set (one bit per processor in the

system). There are two types of devices to snoop: asynchronous off-chip memories and Avalon

bus slave interfaces.

For asynchronous off-chip memories using the Avalon tri-state bridge, the CCM implements

a write detect mechanism by asynchronously setting a D flip-flop when a write enable signal is

asserted. This flip-flop uses the system clock and reset signals. The input is tied to logic ‘0’,

such that the following rising clock edge resets the write detect. The setting of the flip-flop is

asynchronous because not all memory devices have a synchronous write enable signal. The tri-

state bus, for example, asserts the SRAM write enable in between rising edges of the clock. A

synchronous set would be unable to detect a write.

Conversely, for memories (on- or off-chip) that are accessed via an Avalon bus slave port

(i.e., on-chip RAM and off-chip synchronous dynamic RAM - SDRAM), the Avalon bus provides

a well defined synchronous interface to snoop. In this case, the write detect is simply a wire that

follows the synchronous Avalon write enable signal, saving a flip-flop.

The address lines are registered every clock cycle, using the write detect as a clock enable.

Using this timing guarantees that the proper address is registered for most memories, whether

synchronous or asynchronous, and regardless of technology. This is because the write enable sig-

nal typically triggers the write (asynchronously, or is read on a clock edge), and thus the address

must already be on the bus to comply with setup timings. One needs only refer to the device

Prototype Cache Coherency Module 47

timings of various memories to verify this behaviour. For example, AMD’s AM29LV065D [14]

asynchronous flash memory, IDT’s IDT71V416 [24] asynchronous SRAM memory, or Micron’s

MT48LC4M32B2 [28] synchronous SDRAM memory.

Thus, the ADDRESS register (oval 4) only records an address on the rising edge following a

detected write enable signal. The address lines, however, only provide the offset for the particular

memory device, which does not correspond to the address used by the processor and cache. The

address is converted to a useable form by being logically ORed with the memory device’s base

address prior to being registered in ADDRESS. The SOPC Builder tool requires that all peripheral

address spaces be aligned with the slave’s address range [7]. As a result, the low bits that the

slave’s offset might occupy are guaranteed to be 0, which allows the full address to be constructed

by a logical OR operation. Once an address is captured in the ADDRESS register, it is available

for processors to read so that the corresponding cache line may be properly invalidated.

One requirement of a Nios system is that each processor must acknowledge any interrupt

that it is servicing. The Nios processor acknowledges interrupts in an ISR, guaranteeing that

the ISR is being serviced. The CCM must track which processors have had the opportunity to

acknowledge the interrupt (and have therefore cleared their cache), and de-assert irq signal only

when all processors have completed the invalidate operation. The STATUS register serves just

such a purpose.

The N-bit STATUS register is a one-hot encoding of the processor ID (i.e., bit 0 corresponds

to processor 0, bit 1 corresponds to processor 1, etc.). N is the number of processors present

in the system. The register is logical OR reduced to produce an interrupt request signal (irq),

notifying all processors that a write has occurred. The irq signal is also masked by the CONTROL

register. A processor acknowledges the interrupt by writing the one-hot encoding of its PID,

thereby resetting the corresponding bit in STATUS. When all processors have acknowledged the

interrupt, the OR reduction causes the irq signal to be de-asserted. A read of the STATUS register

48 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

indicates which processors have not yet acknowledged the interrupt. With this acknowledgement

scheme, the hardware cost is incremental (i.e., only one additional flip-flop per processor). This

makes the system trivially scalable up to thirty-two processors, the data width of the CCM’s

Avalon bus interface.

The CCM includes miscellaneous hardware for reading and writing peripheral registers via

the Avalon bus interface. Table 4.1 describes these registers and their offsets.

Register Offset (Hex) Width (Bits) R/W

STATUS 00 N Read-write

CONTROL 01 1 Read-write

ADDRESS 02 32 Read-only

Table 4.1: Prototype CCM Registers

It should be noted that systems with greater than thirty-two processors can be supported with

minor changes to the CCM, at the cost of additional hardware. Each processor can instead write

its binary encoded PID to the STATUS register, which is in turn decoded to set the corresponding

bit in an internal N-bit register. The internal register may be of arbitrary length, since it is not

constrained by the width of the data bus.

4.4 Interrupt Service Routine

Figure 4.4 shows the assembly code for handling an ISR for the prototype CCM. The constants

na ccm, np ccmaddress, and na ccmstatus represent the base address of the CCM and the

register offsets for ADDRESS and STATUS, respectively. These constants have been defined in

include files.

Prototype Cache Coherency Module 49

1 nr_ccmisr: pfx %hi(0x20) ; MOVIA %l0,na_ccm
2 movi %l0,0x0
3 pfx %hi(0x80)
4 movhi %l0,0x10
5 pfxio %hi(0x0) ; address = na_ccm->np_ccmaddress;
6 ldp %l6,[%l0,np_ccmaddress]
7 rdctl %l5 ; nm_caches_disable();
8 movhi %l5,0x0
9 wrctl %l5

10 nop
11 pfx %hi(0xa0) ; nm_icache_invalidate_line(address);
12 wrctl %l6
13 pfx %hi(0xe0) ; nm_dcache_invalidate_line(address);
14 wrctl %l6
15 rdctl %l5 ; nm_caches_enable();
16 movhi %l5,0x3
17 wrctl %l5
18 nop
19 pfx %hi(0x0) : %l1 = _cpuid
20 movi %l1,0x0
21 pfx %hi(0xa0)
22 movhi %l1,0x00
23 movi %l5,0x1 ; %l5 = 1
24 ldp %l7,[%l1,0x0] ; %l7 = *_cpuid
25 ext16d %l7,%l1
26 lsl %l5,%l7 ; na_ccm->np_ccmstatus = 1 << (*_cpuid);
27 stp [%l0,np_ccmstatus],%l5
28 nr_ccmisr_loop: pfxio %hi(0x0)
29 ldp %l5,[%l0,np_ccmstatus]
30 skprz %l5
31 br nr_ccmisr_loop
32 nop
33 tret %o7

Figure 4.4: Prototype CCM ISR

50 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

The ISR begins by retrieving the memory address to be cleared from the CCM ADDRESS

register (lines 1–6). It then disables both caches (lines 7–10) and invalidates the appropriate

cache line (lines 11–14), and then re-enables the caches (lines 15–18). Finally, it acknowledges

the interrupt by writing the one-hot encoding of its PID to the CCM STATUS register (lines 19–

27), and spin locks (lines 28–32) until the STATUS register is fully cleared (which occurs when

all processors in the system have acknowledged the interrupt). Finally, the ISR returns to the

interrupted program.

The ISR for the prototype CCM is thirty-three instructions long. This includes three accesses

to the CCM’s Avalon slave port and one to the PID ROM. Accessing the PID ROM does not

cause any contention on the bus, since each processor has exclusive access to the memory over

an unshared bus.

The issue of self-modifying code now needs to be addressed. Self-modifying code consists of

a set of instructions that is modified by the software itself to achieve some task. The consequence

of allowing self-modifying code is that the separate instruction cache may now contain incoher-

ent instructions. As a result, the written memory may be either instructions or data, so both

caches must be invalidated (since there is no way to determine whether the written value repre-

sents an instruction or data). Prohibiting self-modifying code reduces the number of instructions

in the ISR by two (lines 11 and 12), and allows the instruction cache to remain enabled (which

results in performance improvements if any ISR code happens to be in the instruction cache).

As mentioned in Section 3.3, the Nios provides interrupt vectors 16 to 63 for the user, making

vector 16 the highest priority interrupt number available for the CCM to use, and that is the

number assigned to it. This is acceptable for the following reasons:

• The hardware debug module and internal hardware exceptions should have higher priority

over clearing the cache, thus interrupt vectors 0–2 may take precedence over the CCM.

• It is acceptable to allow a debugger to have higher priority to capture all system behaviour,

Prototype Cache Coherency Module 51

including any CCM ISRs, thus interrupt vectors 3–5 may take precedence over the CCM.

• The rest of the interrupts (6–15) are currently unused.

Thus, it is important that the system designer ensure that the CCM be given interrupt number

16 when configuring the system.

4.5 Software Requirements

The software requirements for maintaining cache coherency are quite simple. In general, they

involve creating an initialization barrier point after per-processor initialization for all APs (pro-

cessors not designated as the BSP). This causes the APs to wait until global initialization is

complete. This is similar to the Intel SMP method of holding APs in reset until the BSP has

completed initialization [25]. In this case, global initialization is comprised mainly of installing

the ISR and enabling the CCM.

If the default start per-processor initialization routine [12] is used, then the BSP must

also have a barrier to ensure that all APs have reached the initialization barrier point. This is

because the per-processor start routine performs some global initialization, such as clearing

the interrupt vector table. If the BSP installs the ISR (in the global initialization routine) before

all APs complete the start routine, an AP may clear the interrupt vector table, leading to the

spurious interrupt handler being called on a CCM exception, rather than the ISR. This second

barrier point can be implemented by a long busy-wait loop (the length of which scales with

the number of processors in the system). Alternatively, the programmer may elect to provide a

custom start routine with all its global initialization tasks moved to the global initialization

routine. This foregoes the need of a bootstrap barrier. In the tests used to validate the system,

the provided start routine is used. For production systems, however, it is recommended that a

more efficient custom routine be provided.

52 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

Finally, each Nios has frame and stack registers pointing to private per-processor stack mem-

ory. Since stacks are private, these pointers must be managed in such a way that processors do

not accidentally overwrite any private data in other processors’ stacks. This management is the

responsibility of the application or operating system.

4.6 Design Flaws

While this CCM prototype proves that it is possible to detect a write and invalidate cache lines

(see Chapter 6 for details), there are a number of flaws and inefficiencies related to this configu-

ration. One drawback is that all processors clear the specified cache line, whether it contains the

actual address or not (i.e., the Nios does not check the cache line tag before resetting the valid

bit). This is a limitation of the Nios processor and the way it clears the cache.

Another limitation is that since there is a single shared interrupt line to all processors, all pro-

cessors execute the ISR. This includes the writing processor. Additionally, the writing processor

will clear its cache, even though it contains the current and correct value. Thus, the next read

to that location causes a cache miss, increasing latency. This could be rectified by determining

which processor made the write and not setting its STATUS bit. Assuming the one-hot STATUS

register scheme is used, this would allow the ISR to check the appropriate STATUS bit and skip

the cache clearing stage if not set for that particular processor. This capability can be enabled

by snooping the internal, unpublished Avalon bus signals, however this may not be a good idea

as Altera does not guarantee any particular implementation for the internals of the Avalon bus

module.

The system memory bus becomes a bottleneck when an interrupt is raised as all the pro-

cessors in the system attempt to fetch the ISR code simultaneously, since the Avalon bus does

not provide facilities for serving multiple masters requesting the same address (broadcasting the

Prototype Cache Coherency Module 53

ISR). This leads to a long latency that scales with the number of processors since all processors

must acknowledge the interrupt before any can proceed. This can be mitigated by storing the

ISR code in multiple shared on-chip ROMs (enabling multiple simultaneous access to the ISR

code). The latency can be reduced by a factor of up to N by duplicating the ROMs, up to one for

each processor (since at that point the ROM is no longer shared).

The single shared CCM Avalon slave port may also be a bottleneck, as each processor must

access the CCM a minimum of three times per interrupt. This bottleneck may be mitigated or

eliminated by creating more identical slave ports that are shared among a smaller number of

masters (or even creating one port per Nios).

Finally, the major design flaw in the prototype CCM design is that it does not handle multiple

stores that are close together. Even though the CCM raises an interrupt as soon as it detects

a write, it does not consider multiple store instructions in a pipeline (instructions currently in

the pipeline are “in-flight”). An interrupt in the Nios system allows all in-flight instructions

to complete before executing the ISR, therefore a number of stores may execute prior to the

interrupt being serviced. With the prototype CCM, only one address is stored to the ADDRESS

register per interrupt. Thus, if multiple stores occur, only the most recent store is cleared from the

processor cache, which leads to cache coherency problems with the prior stores. A worst-case

test was written (see Appendix E) to expose the problem and quantify how many consecutive

stores could be executed before the interrupt routine was executed. Given a five-stage pipelined

design, the Nios should not complete more than five instructions before beginning instruction

fetches for the ISR. The resulting waveforms from the test are shown in Figure 4.5.

The waveform is the output of Altera’s SignalTap II embedded logic analyzer [13]. The

test platform is a dual Nios system, with SRAM serving as program and data memory. Mon-

itored signals include the off-chip tri-state bridge (address lines - ext addr, SRAM chipselect

- SRAM ce n, and SRAM write enable - SRAM we n), internal CCM signals (internal we and

54 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

Figure 4.5: Multiple Store Instructions with the Prototype CCM

Prototype Cache Coherency Module 55

internal writedetect), and CCM Avalon slave port signals (irq, chipselect, address,

read n, and readdata). The logic analyzer is triggered by the rising edge of the irq signal,

which indicates that the CCM has detected a write.

The upper waveform shows the first two of four writes to memory. Time is measured in

clock cycles. At times 132, 133, 134, and 136, store instructions are read from the instruction

cache. A write to SRAM address 0x0FF01C occurs at time 135, as indicated by the CCM’s

internal writedetect signal. At time 136, an interrupt is raised and the address on the bus

is captured. Further writes occur to SRAM addresses 0x0FF020, 0x0FF024, and 0x0FF028 at

times 138, 141, and 144, respectively. Recall that the Avalon bus provides decoding services,

and thus only offsets reach the selected peripheral or memory.

The lower waveform continues from the upper waveform, and shows the last two writes and

the Nios processors fetching from the CCM the address to be invalidated. At times 164 and

165, each of the two processors read the CCM ADDRESS register (at address 0x02), which returns

0x008FF028 (the full address of the written location). The rest of the ISR is executed, and at time

238 (not shown), irq is de-asserted. At the end of the ISR, only a single address, 0x008FF028

(offset 0x0FF028) has been invalidated. The first three addresses in the series have not been

invalidated, and the system has no record of those writes having occurred.

Though the CCM suffers from this critical problem, the prototype proves that cache co-

herency can be enforced in an SMP Nios system. Luckily, the problem can be resolved if all

the writes can be captured, instead of just the last one. That is the driving reason behind the

second-generation CCM.

56 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

4.7 Summary

This chapter has raised and addressed specific issues related to implementing an SMP Nios sys-

tem, including unique processor identification and cache coherency. A proposed architecture

for implementing a hybrid snooping protocol is described, and a prototype cache coherency

hardware-software solution is presented. This prototype was tested to prove that cache coherency

could be maintained, but failed to handled the case of multiple in-flight writes. Additionally, a

number of performance limitations were identified. In the next chapter, a second-generation

CCM design is presented to address the critical flaw and improve performance.

Chapter 5

Second-Generation Cache Coherency

Module

To address the major design flaw of the initial CCM prototype, a new module was designed.

While the system architecture shown in Figure 4.1 remains unchanged, the CCM internals are

vastly different. Consequently, the interrupt service routine was refined appropriately, while

the software requirements remain unchanged (since the basic operation of cache coherency en-

forcement remained static). In addition to addressing the major design flaw, a number of other

improvements were made to reduce cache clearing overhead.

5.1 Hardware Cache Coherency Module 2

Supporting a series of writes requires that each address in the series must be captured. As a

result, a single 32-bit ADDRESS register is no longer sufficient, and memory must be used instead.

A first-in-first-out (FIFO) memory with independent read and write ports is an ideal candidate

for storing multiple addresses. A write to the FIFO can be triggered by write detect circuitry

57

58 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

similar to that used in the prototype, while a read from the FIFO can be initiated by the Avalon

bus slave port circuitry. A FIFO can only write a single value at a time, while multiple writes

may occur due to the system instantiating a single Avalon bus for each memory device or bridge.

Thus, a FIFO is required for each interface.

In addition to fixing the critical flaw, other hardware changes could facilitate a reduction in

overhead when dealing with a CCM interrupt. For example, the Avalon bus slave port can be

reproduced to remove it as a source of contention as all processors rush to retrieve invalidation

addresses. New hardware circuits are needed to adapt the CCM to these changes.

The VHDL code for the second-generation CCM hardware is listed in Appendix C. Fig-

ure 5.1 shows the block diagram of the new CCM for a two-processor system with off-chip flash

and SRAM. Due to changes in operation and the replication of hardware, the overall design has

been highly modularized. The CCM is now composed of three main modules: Avalon bus slave

port modules (the two large blocks in the upper left of Figure 5.1), a central register module (the

block on the right), and bus snooping modules (the two bottom blocks).

Very little hardware exists outside the modules. The hardware that is outside the modules

serves a supporting role, typically for conversion and selection functions. First, each bus snoop-

ing module has an input that is the address that is being written. The memory device address

bus value is logically ORed with the memory device’s base address to calculate the real address.

Also, each snooping module has its own write detect register, which functions similar to the write

detect circuitry in the prototype CCM.

The all read signal is the logical AND of all address read signals from the slave interface

modules. A logic ‘1’ on the all read signal indicates that all processors have invalidated the

current address. When this signal is asserted and the CCM has been enabled, this asserts the

new address signal, which instructs the CCM to register the next address (if one is available)

into the ADDRESS register. If more than one snooping module has available addresses, then the

Second-Generation Cache Coherency Module 59

S
 =

 1
 =

>
 Y

 =
 A

cl
k

re
se

t_
n

m
0_

ad
dr

es
s[

31
..2

3]
m

0_
ad

dr
es

s[
31

..0
]

00
00

00
00

1
&

 e
xt

_r
am

_b
us

_a
dd

re
ss

[2
2.

.0
]

m
0_

ad
dr

es
s[

22
..0

]

V
C

C
s0

_
a

dd
re

ss
[1

..
0

]
IN

P
U

T

V
C

C
s0

_
ch

ip
se

le
ct

IN
P

U
T

V
C

C
cl

k
IN

P
U

T

V
C

C
s0

_
re

a
d_

n
IN

P
U

T

V
C

C
re

se
t_

n
IN

P
U

T

V
C

C
s0

_
w

ri
te

_
n

IN
P

U
T

V
C

C
s1

_
a

dd
re

ss
[1

..
0

]
IN

P
U

T

V
C

C
s1

_
ch

ip
se

le
ct

IN
P

U
T

V
C

C
s1

_
re

a
d_

n
IN

P
U

T

V
C

C
s1

_
w

ri
te

_
n

IN
P

U
T

V
C

C
s0

_
w

ri
te

da
ta

IN
P

U
T

V
C

C
s1

_
w

ri
te

da
ta

IN
P

U
T

V
C

C
e

xt
_

ra
m

_
bu

s_
a

dd
re

ss
[2

2
..

0
]

IN
P

U
T

V
C

C
w

ri
te

_
n_

to
_

th
e

_
e

xt
_

sr
a

m
IN

P
U

T

V
C

C
e

xt
_

ra
m

_
bu

s_
w

ri
te

n
IN

P
U

T

s0
_i

rq
O

U
TP

U
T

s0
_

re
a

dd
a

ta
[3

1
..

0
]

O
U

TP
U

T

s1
_i

rq
O

U
TP

U
T

s1
_

re
a

dd
a

ta
[3

1
..

0
]

O
U

TP
U

T

a
dd

re
ss

[1
..

0
]

cc
m

_
e

n
ch

ip
se

le
ct

cl
k

cl
k_

e
n

e
xc

e
pt

io
n_

st
a

tu
s_

bi
t

fif
o

_
st

a
tu

s_
bi

t
ne

w
_

a
dd

re
ss

re
a

d_
n

re
g_

a
dd

re
ss

[3
1

..
0

]
re

se
t_

n
w

ri
te

_n

a
dd

re
ss

_
re

a
d

co
nt

ro
l_

w
r_

st
ro

be
re

a
dd

a
ta

[3
1

..
0

]

cc
m

_
sl

a
ve

_
if

s0

a
dd

re
ss

[1
..

0
]

cc
m

_
e

n
ch

ip
se

le
ct

cl
k

cl
k_

e
n

e
xc

e
pt

io
n_

st
a

tu
s_

bi
t

fif
o

_
st

a
tu

s_
bi

t
ne

w
_

a
dd

re
ss

re
a

d_
n

re
g_

a
dd

re
ss

[3
1

..
0

]
re

se
t_

n
w

ri
te

_n

a
dd

re
ss

_
re

a
d

co
nt

ro
l_

w
r_

st
ro

be
re

a
dd

a
ta

[3
1

..
0

]

cc
m

_
sl

a
ve

_
if

s1

V
C

C

a
dd

rA
ck

a
dd

re
ss

_
in

[3
1

..
0

]
a

dd
re

ss
_

va
lid

cl
k

cl
k_

e
n

re
se

t_
n

a
dd

rR
dy

a
dd

re
ss

_
o

ut
[3

1
..

0
]

fif
o

_
fu

ll

cc
m

_
fif

o

m
0

a
ll_

re
a

d
cl

k
co

nt
ro

l_
w

r_
st

ro
be

fif
o

_
fu

ll
ne

w
_

a
dd

re
ss

qu
a

lif
ie

d_
ir

q
re

se
t_

n
se

le
ct

e
d_

a
dd

re
ss

[3
1

..
0

]
se

le
ct

e
d_

w
ri

te
da

ta

cc
m

_
e

n
e

xc
e

pt
io

n_
st

a
tu

s_
bi

t
fif

o
_

st
a

tu
s_

bi
t

re
g_

a
dd

re
ss

[3
1

..
0

]

cc
m

_
re

gs

in
st

1

G
N

D

A
N

D
2

a
ll_

re
a

d

O
R

2

co
nt

ro
l_

w
r_

st
ro

be

AND2

new_address

M
U

LT
IP

LE
X

SBA
Y

21
m

u

se
le

ct
e

d_
w

ri
te

da
ta

a
dd

rA
ck

a
dd

re
ss

_
in

[3
1

..
0

]
a

dd
re

ss
_

va
lid

cl
k

cl
k_

e
n

re
se

t_
n

a
dd

rR
dy

a
dd

re
ss

_
o

ut
[3

1
..

0
]

fif
o

_
fu

ll

cc
m

_
fif

o

m
1

P
R
N

C
L
R
N

D E
N
A

Q

D
F

F
E

m
0

_
a

dd
re

ss
_

va
lid

P
R
N

C
L
R
N

D E
N
A

Q

D
F

F
E

m
1

_
a

dd
re

ss
_

va
lid

N
A

N
D

2

m
0

_
w

ri
te

de
te

ct

N
A

N
D

2

m
1

_
w

ri
te

de
te

ct

OR2

fifo_full

NOT

flash_write

NOT

sram_write

O
R

2

m
0

_
a

dd
rA

ck

O
R

2

m
1

_
a

dd
rA

ck

OR2

qualified_irq

M
U

LT
IP

LE
X

SBA
Y

21
m

u

se
le

ct
e

d_
a

dd
re

ss

T
IT

L
E

C
ac

he
 C

oh
er

en
cy

 M
od

ul
e

T
Y

P
E

B
lo

ck
 D

ia
gr

am
D

E
S

IG
N

E
R A

us
tin

 H
un

g
N

U
M

B
E

R
1.

00
R

E
V

A
D

A
T

E
<

<
un

sp
ec

ifi
ed

>
>

S
H

E
E

1
O

F
1

G
N

D

Figure 5.1: Second-Generation CCM Schematic

60 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

selection logic chooses the address from the lowest snooping module number1. This selection

method is simple. Since all addresses get serviced during the same interrupt, priority is unim-

portant. If new address is asserted and an address is available (as indicated by the addrRdy

signal) then the addrAck signal is asserted for the chosen snooping module, which causes the

address to be placed into the ADDRESS register and the address read signal to be de-asserted.

Each snooping module indicates that it has available addresses by asserting its addrRdy signal.

The qualified irq signal is a logical OR of all addrRdy signals, indicating that one or more

snooping modules contains at least one address that has not yet been invalidated.

Selection logic also exists for writing to the CONTROL register. Given simultaneous writes to

this register (which is possible due to multiple slave interfaces), the logic simply chooses to write

the value from the lowest slave interface port number2. This scheme is used for its simplicity,

and also because writes to the CONTROL register should be rare, with simultaneous conflicting

writes practically impossible.

5.1.1 Slave Interface Module

The internals of the Avalon bus slave port module (hereby referred to as the slave interface) are

shown in Figure 5.2. This module serves as the interface between the Avalon bus and the internal

CCM registers. There is one slave interface for each Nios processor in the system, eliminating

bus contention when accessing the CCM. The slave interface has three functions:

1. to place the requested data on the bus,

2. to write to the CCM enable bit, and

3. to indicate when the master has read an address for invalidation.

1The snooping module numbers are assigned arbitrarily.
2Slave interface port numbers are also assigned arbitrarily.

Second-Generation Cache Coherency Module 61

reg_status[0]

address[1]
address[0]

reg_control[0]

reg_status[1]

re
g_

st
at

us
[3

1.
.2

]
re

g_
co

nt
ro

l[3
1:

1]

VCCaddress[1..0] INPUT

VCCccm_en INPUT

VCCchipselect INPUT

VCCclk INPUT

VCCclk_en INPUT

VCCexception_status_bit INPUT
VCCfifo_status_bit INPUT

VCCread_n INPUT

VCCreg_address[31..0] INPUT

VCCreset_n INPUT

VCCwrite_n INPUT

VCCnew_address INPUT
address_readOUTPU

control_wr_strobeOUTPU

readdata[31..0]OUTPU

PRN

CLRN

D

ENA

Q

DFFE

inst15

PRN

CLRN

D

ENA

Q

DFFE

inst16

AND2

inst17

AND2

inst18

NOT

inst19

NOT

inst20

GND

S0

D2

S1

D3

D0

D1

Q

MUX4

selected_readdata[31..0]

AND2

inst23OR2

inst24

NOT

inst25

TITLE CCM Slave Interface Module
TYPE Block Diagram
DESIGNERAustin Hung
NUMBER 1.00 REV A
DATE <<unspecified>> SHEET

1
OF 1

Figure 5.2: Avalon Bus Slave Port Module

62 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

The slave interface module includes hardware for interfacing to the Avalon bus, similar to that

of the prototype CCM. The internal CONTROL and STATUS registers, however, have been moved to

the centralized register module to avoid unnecessary duplication. A read from the registers uses

the central register as a source. A control wr strobe signal indicates a write to the CONTROL

register and simple priority logic in the CCM writes to the central register.

Instantiating a slave interface for every processor not only eliminates a potential bottleneck,

but also allows a redesign of the interrupt acknowledgement. Recall that the prototype CCM used

one-hot encoded N-bit STATUS register, which was OR reduced to produce an interrupt request.

Having one port per processor, however, allows each port to track the acknowledgement state of

each processor individually, without a central register. Moreover, the interrupt acknowledgement

can be done automatically and passively by detecting ADDRESS register reads. This new passive

acknowledgement scheme reduces the ISR length by nine instructions (including the PID access).

Also, this scheme is even more scalable than the prototype scheme, as no change is required to

support more than thirty-two processors, and each subsequent slave interface is incremental in

hardware costs. The additional hardware required is small because port replication eliminates the

Avalon slave arbiters since each bus is now point-to-point, instead of having N:1 multiplexers and

the associated arbitration logic.

An address read register serves as a partial acknowledgement signal. In reality, it acknowl-

edges the address (that is, the current address has been read by the processor, and the next address

is needed from an address FIFO). On a system reset, this register is set to logic ‘1’, indicating that

an address is requested. If the new address signal is asserted, indicating an address is available,

the register is reset until such a time as the processor reads the ADDRESS register. An interrupt

continues until all addresses have been acknowledged by all processors.

Second-Generation Cache Coherency Module 63

5.1.2 Registers Module

The new CCM design saves hardware by using a central register architecture, rather than repli-

cating registers in each of the slave interfaces. This module, shown in Figure 5.3 simply contains

four registers: the 32-bit ADDRESS register, which holds the current address to invalidate; the

fifo status bit and exception status bit signals, which together form the STATUS regis-

ter; and the ccm en bit, which represents the CONTROL register.

VCCall_read INPUT

VCCclk INPUT

VCCcontrol_wr_strobe INPUT

VCCqualified_irq INPUT

VCCreset_n INPUT

VCCselected_address[[31..0] INPUT

VCCselected_writedata INPUT

VCCfifo_full INPUT

VCCnew_address INPUT

ccm_enOUTPUT

exception_status_bitOUTPUT

fifo_status_bitOUTPUT

reg_address[31..0]OUTPUTPRN

CLRN

D

ENA

Q

DFFE

inst15

PRN

CLRN

D

ENA

Q

DFFE

inst17

PRN

CLRN

D

ENA

Q

DFFE

inst18

PRN

CLRN

D

ENA

Q

DFFE

inst19

OR2

inst20

AND2

inst21

OR2

inst22

AND2

inst23 TITLE CCM Registers Module
TYPE Block Diagram
DESIGNERAustin Hung
NUMBE 1.00 REV A
DATE <<unspecified>> SHEE

1
OF 1

Figure 5.3: CCM Internal Registers Module

The ADDRESS register is written to by address selection logic in the parent module, and is read

by all the slave interface modules. A new address is written into this register when all processors

64 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

have acknowledged the current address.

The fifo status bit is an OR reduction of all the error signals from bus snooping modules,

indicating that at least one FIFO has reached or exceeded capacity. The exception status bit

indicates the interrupt status of the CCM, and directly drives the irq signals of each slave inter-

face. If the CCM is enabled, then this bit is set when a bus snooping module detects a write, and

is reset only when all addresses captured have been acknowledged (i.e., all FIFOs are empty).

Finally, the ccm en bit is set when a processor enables the CCM (as described in 5.1.1. It is

cleared on system reset and when the processor disabled the CCM.

5.1.3 Bus Snooping Module

The bus snooping modules are responsible for capturing the addresses of writes to memory de-

vices. One module is instantiated for each internal memory device (on-chip RAM, for example),

and for each off-chip memory interface (SRAM or flash on the tri-state bus, for example). The

module internals are shown in Figure 5.4.

VCC
addrAck INPUT

VCC
address_in[31..0] INPUT

VCC
address_valid INPUT

VCC
clk INPUT

VCC
clk_en INPUT

VCC
reset_n INPUT

addrRdyOUTPUT

address_out[31..0]OUTPUT

fifo_fullOUTPUT
clk
clk_en
fifo_read
fifo_wr_data[31..0]
fifo_write
flush_fifo
inc_pending_data
reset_n

fifo_datavalid
fifo_full

fifo_rd_data[31..0]

a_fifo_module

inst9GND

TITLE CCM FIFO Module
TYPE Block Diagram
DESIGNERAustin Hung
NUMBER 1.00 REV A
DATE <<unspecified>> SHEE

1
OF 1

Figure 5.4: Bus Snooping FIFO Module

A bus snooping module is composed primarily of an instantiated Altera 32-bit wide FIFO

module, which stores the captured addresses. The bus snooping module essentially renames

Second-Generation Cache Coherency Module 65

signals into a more semantically convenient form. Upon a detected write (the address valid

signal is asserted), the FIFO captures the address on the bus. Since the FIFO is no longer empty,

the FIFO’s datavalid signal is asserted, indicating that an address exists to be invalidated (this

signal is renamed to addrRdy). When all processors have acknowledged the current address, then

the logic selects a FIFO from which to draw the new address, causing a read (via the addrAck

signal) to occur on the selected FIFO. When all FIFOs are empty, all addrRdy signals are logic

‘0’, indicating no more addresses remain and the interrupt has been handled.

This leads to the question of what depth FIFO should be used. Given the worst-case scenario

of up to four pipelined writes per processor (see Section 4.6), a FIFO depth of 4×N is required

to guarantee that no writes will be lost. In practice, since the instruction mix is typically only

15% writes to memory, a system designer could reduce the depth of the FIFOs reasonably safely

to save embedded memory bits in the FPGA. If a smaller FIFO capacity is not sufficiently large,

the fifo full signal could be used to indicate that a write may have been lost, thus prompting

all processors in the system to invalidate every line in the appropriate cache(s).

5.2 Interrupt Service Routine 2

Due to the changes in the CCM architecture, the ISR must change as well. Figure 5.5 shows the

new ISR code listing. The first major change is to accommodate the new passive acknowledge-

ment scheme. Since an acknowledge occurs automatically upon reading the ADDRESS register, it

is possible to avoid accessing the PID, decoding it and writing to STATUS register. As a result, a

savings of nine instructions (lines 26 through 34 of the old ISR) is realized.

In the prototype ISR, the algorithm disabled the relevant caches, retrieved from the CCM a

single address to be invalidated, invalidated the appropriate cache line(s), re-enabled the cache(s)

and waited for all processors to acknowledge the interrupt. The new CCM, however, can provide

66 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

1 nr_ccmisr: rdctl %l5 ; nm_caches_disable();
2 movhi %l5,0x0
3 wrctl %l5
4 nop
5 pfx %hi(0x20) ; MOVIA %l0,na_ccm
6 movi %l0,0x0
7 pfx %hi(0x80)
8 movhi %l0,0x10
9 nr_ccmisr_loop: pfxio %hi(0x0) ; address = na_ccm->np_ccmaddress;

10 ldp %l6,[%l0,np_ccmaddress]
11 pfx %hi(0xa0) ; nm_icache_invalidate_line(address);
12 wrctl %l6
13 pfx %hi(0xe0) ; nm_dcache_invalidate_line(address);
14 wrctl %l6
15 pfxio %hi(0x0) ; check CCM STATUS register, bit 0
16 ldp %l5,[%l1,np_ccmstatus]
17 skp0 %l5,0x0
18 br nr_ccmisr_loop
19 nop
20 rdctl %l5 ; nm_caches_enable();
21 movhi %l5,0x3
22 wrctl %l5
23 nop
24 tret %o7

Figure 5.5: Second-Generation CCM ISR

Second-Generation Cache Coherency Module 67

multiple addresses to be invalidated during a single interrupt. As a result, the new ISR must be

restructured accordingly. The new ISR now disables and re-enables the relevant cache(s) outside

the loop. Inside the loop, the ISR continually retrieves addresses and invalidates them until all

addresses have been acknowledged by all processors. The assembly instructions required to exe-

cute these tasks have not changed from the original ISR, they have simply been re-ordered. The

new ISR is only twenty-four instructions long (twenty-two if self-modifying code is disallowed).

5.3 Summary

This chapter has presented a second-generation cache coherency module that, in addition to

enforcing cache coherency, also addresses the fatal flaw of the prototype module. This second-

generation module was tested to prove that that it can handle the case of multiple writes. In

the next chapter, the validation of each CCM design is described, and the impact on the overall

system of including each CCM design is examined.

Chapter 6

Results and Analysis

In this chapter, the computing platform used to develop the CCM module is described. The

results of the tests used to validate operation of the CCM modules are presented, as is the impact

of the CCM on hardware resources and performance.

6.1 Development Platform

Altera provides a number of different development kits to aid users in the design of embedded

systems, in particular SOPC systems featuring the Altera Nios softcore processor. The cache

coherent N-way SMP systems were developed developed on a Nios Development Kit, Stratix

Professional Edition, pictured in Figure 6.1.

This development board features a Stratix EP1S40 FPGA, with a capacity of up to 41,250

logic elements (LEs) and 3,423,744 bits of on-chip memory. In addition to the Stratix device, the

development board includes the following features:

• a 50 MHz system clock (via socketed oscillator) or external clock input,

68

Results and Analysis 69

Figure 6.1: Altera Nios Development Kit, Stratix Professional Edition

70 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

• SRAM (1 MB in two banks of 512 kB, 16-bit wide, 2×IDT71V416 chips),

• SDRAM (16 MB, 32-bit wide, 1×MT48LC4M32 chip),

• flash (8 MB, 1×AM29LV065D chip),

• a Type I CompactFlash connector,

• a 10/100 Mbit/s Ethernet PHY/MAC controller and RJ-45 connector,

• two serial connectors (RS-232 DB9 port),

• two 5 V-tolerant expansion/prototype headers and a 16×2 LCD module,

• two Joint Test Action Group (JTAG) connectors,

• mictor connector for debugging,

• four user-defined push-button switches,

• eight user-defined LEDs, and

• a dual 7-segment LED display.

Test systems were compiled using Altera’s Quartus II v3.0SP2 design software and the SOPC

Builder system development tool, v3.02 Build 245. Nios embedded processor design toolkit v3.1

was used to generate the softcore(s) in each of the systems.

6.2 Shared-Memory Test

To verify that the system was in fact enforcing cache coherency, a simple program utilizing

shared memory was written using the GCC development toolset provided by Altera. One pro-

cessor was arbitrarily designated as a BSP for the purposes of the test. The program begins by

Results and Analysis 71

performing the default start-up initialization (the start routine), which includes enabling in-

terrupts and initializing the cache. All processors but the BSP are forced to synchronize on a

single locking variable (initialized to 0) in shared memory. Any global initialization can then be

executed, such as initializing the interrupt vector table and enabling the cache coherency mod-

ule. At the end of the global initialization, the BSP sets the locking variable to 1. When set,

all processors may continue execution of the program. This implements the initialization barrier

mentioned in Section 4.5. Since the APs spin on the lock, the contents of the lock are stored in

each data cache. If cache coherency is not enforced, then the processors never proceed past the

barrier. Conversely, if the system is fully functional, then the processors are released from the

lock when the BSP writes a 1 and the CCM invalidates the shared-memory address. This test is

referred to as the “shared-memory” test. A code listing for this test can be found in Appendix D.

Note that this test does not expose the critical flaw, as there are no cases of multiple writes in the

pipeline.

A pass for the shared-memory test requires that when the CCM is enabled, all processors

should continue past the synchronization point, as indicated by console messages containing the

ID number of each processor. When the CCM is disabled, only the BSP prints its message, since

it has the correct lock contents in its cache, while the APs are stuck in the lock. A fail indicates

that the write by the BSP is not propagated to the APs. It is expected that all uniprocessor systems

should pass this test, as cache coherency is not an issue in such systems. Any multiprocessor

systems that are not equipped with either CCMs are expected to fail this test, proving that cache

coherency is a problem. Both the prototype CCM systems (denoted by CCM-1) and the second-

generation CCM systems (denoted by CCM-2) should pass, showing that the CCM modules

behave as expected.

72 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

6.3 Multi-Write Test

A second test, hereby referred to as the “multi-write” test, exposes the critical flaw from the

original CCM design, and verifies that the flaw has been resolved. The test is similar to the

shared-memory test, but blocks of assembly code have been added to ensure that multiple writes

are present in the processor pipeline. Since other processors load these shared memory values

into cache prior to the writes, the system is considered fully functional only if all the new values

are seen by all processors. The code listing for this test can be found in Appendix E.

For the multi-write test, a pass requires that when the CCM is enabled, all processors read the

appropriate values for the memory addresses that are written to by consecutive store instructions.

A read of an old value for any memory location by any processor is considered a failure. It is

expected that all uniprocessor systems and CCM-2 equipped systems pass this test, showing that

the critical multi-write flaw has been addressed by the CCM-2 design. Multiprocessor CCM-1

systems are expected to fail this test due to the flaw.

6.4 Results

The shared-memory test program was executed twice on each system, once with the CCM en-

abled, and once with it disabled (to ensure that the expected difference in results were due to

the operation of the CCM). The systems tested were 1-, 2-, 4-, and 8-processor SMPOPC sys-

tems in three classes: without a CCM, with the prototype CCM (CCM-1), and with the second-

generation CCM (CCM-2).

Table 6.1 shows the results of the testing. As can be seen the results match those expected,

indicating that the developed CCM-2 module is able to fully enforce cache coherency in a Nios

SMPOPC system.

Tables 6.2, 6.3 and 6.4 outline the usage statistics for the EP1S40 Stratix FPGA when config-

Results and Analysis 73

Number of Shared-Memory Test Multi-Write Test

Nios Cores No CCM CCM-1 CCM-2 No CCM CCM-1 CCM-2

1 Pass Pass Pass Pass Pass Pass

2 Fail Pass Pass Fail Fail Pass

4 Fail Pass Pass Fail Fail Pass

8 Fail Pass Pass Fail Fail Pass

Table 6.1: Test Program Results

ured with the baseline Nios system, in 1-, 2-, 4-, and 8- processor configurations without a CCM,

with a CCM-1, and with a CCM-2, respectively. Each Nios was instantiated in its default con-

figuration, with the exception of the addition of 1 kB instruction and data caches. The baseline

system consisted of a standard set of slave peripherals in the system module, including an 8-bit

universal asynchronous receiver-transmitter (UART), an Avalon tri-state bridge to communicate

with SRAM and flash, the CCM (if appropriate) and one 2×8 PID ROM for each processor.

Number of Logic Elements On-chip Memory Frequency

Nios Cores Usage % Usage % (MHz)

1 2,791 6% 46,224 1% 102.24

2 5,563 13% 92,448 2% 86.85

4 11,278 27% 184,896 5% 68.42

8 23,541 57% 369,792 10% 61.49

Table 6.2: No CCM SMPOPC System Device Usage

The EP1S40 FPGA can be populated with much more than eight Nios processors, or a large

amount of additional logic (custom instructions or other hardware). Only a maximum of 10%

74 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

Number of Logic Elements On-chip Memory Frequency

Nios Cores Usage % Usage % (MHz)

1 2,841 6% 46,224 1% 99.45

2 5,710 13% 92,448 2% 85.35

4 11,613 28% 184,896 5% 69.89

8 24,260 58% 369,792 10% 60.85

Table 6.3: Prototype SMPOPC System Device Usage

Number of Logic Elements On-chip Memory Frequency

Nios Cores Usage % Usage % (MHz)

1 2,861 6% 46,480 1% 100.16

2 5,790 14% 92,960 2% 83.44

4 11,708 28% 185,920 5% 69.66

8 24,302 58% 371,840 10% 61.74

Table 6.4: Second-Generation CCM SMPOPC System Device Usage

Results and Analysis 75

of the on-chip memory bits was used, thus there are plenty of resources for increasing the cache

sizes up to 4 kB or 8 kB. The resources of the largest FPGA device in the four Altera FPGA

families capable of implementing Nios caches are listed in Table 6.5. It is clear that even the

low-cost Cyclone family is capable of being configured with a four-way Nios system and that

the largest FPGA Altera offers may be able to support up to thirty-two Nios processors in an

SMP configuration.

Family Device Logic Elements Memory (bits)

Stratix II EP2S180 179,400 9,383,040

Stratix I EP1S80 79,040 7,427,520

Cyclone II EP2C70 68,416 1,152,000

Cyclone EP1C20 20,060 294,912

Table 6.5: Maximum Capacities of Altera FPGA Families

6.5 Analysis

It is important to determine what hardware resources are required to enforce cache coherency

through the addition of a CCM. This is important because a hardware intensive solution makes

the SMPOPC architecture less worthwhile, as the CCM consumes LEs and memory resources

at the expense of other functional logic. This additional logic may also contribute to the critical

path, thus slowing down the overall system. The following comparisons between the device

usage of the prototype and second-generation cache coherency modules against the baseline

system shows that implementing a CCM has only a small incremental cost in hardware resources.

CCM-1 required an increasing number of LEs per system processor as the number of proces-

sors increased, largely due to the increasing complexity of the single Avalon slave port arbitrator.

76 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

The CCM cost starts at fifty LEs for one processor, increasing to approximately ninety LEs per

processor for an eight-way system, for a total of 719 additional LEs (1.7% of the 1S40’s total

LEs). No embedded memory bits were used, and the frequency varied against the baseline sys-

tem from -2.72% to +2.14%, well within the noise margin of the synthesis and place and route

CAD tools.

CCM-2 also required an increasing number of LEs per system processor as the number of

processors increased. The CCM cost starts at seventy LEs for one processor, and reaches a

peak at 113.5 LEs per processors in a two-way system, and finally shrinks to 95.125 LEs per

processor in the eight-way system. The second-generation CCM also requires 4×32 = 128 bits

per memory interface per processor for a full depth FIFO (this may be reduced by the designer if

it is determined it is safe to do so). Again, the frequency varies against the baseline system from

-3.93% to +1.81%.

The number of embedded memory bits used did not exceed 11% of the total number of bits

available in the 1S40. It is clear that on-chip memory can be used for other things, such as

storing important and frequently used portions of program memory (such as the CCM ISR or the

interrupt vector table), or implementing a level-2 cache to reduce memory access latency.

It should be noted that, while the frequency of the system almost decreases exponentially as

the number of processors in the system is doubled, the CCM does not affect the frequency in any

significant way. The frequency of the cache coherency enabled systems varied by a magnitude of

less than 4% (usually 2% or less) when compared to the baseline system. Figure 6.2 illustrates

the critical paths for baseline (no CCM) 1-, 2-, 4-, and 8-processor systems, as identified by the

default timing analysis performed by the Quartus II design software. The logical critical path is

shown in light gray, while the segments of the critical path are shown in white.

The critical path in the uniprocessor system is composed of eight segments, originating from

the processor to an address line of the external tri-state bus. The critical paths of the multipro-

Results and Analysis 77

Figure 6.2: Critical Paths for Baseline Systems

78 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

cessor systems are very similar to each other, and are composed of nine, twelve, and thirteen

segments, respectively, originating from the tri-state bus arbitrator to an address line of the exter-

nal tri-state bus. In the multiprocessor systems, the critical path is composed of more segments

due to the addition of more processors, which add to the arbitration logic and multiplexers of the

Avalon bus. Timing analysis of systems with a CCM shows that the CCM is not a part of the

critical path, and thus any decrease in system clock frequency can not be attributed to the CCM.

The performance numbers were obtained using the default configurations and optimizations

for the Nios and Quartus II design software. The degradation of clock frequency as the number

of processors increases is a consequence of the place and route tools. If performance is an issue,

it may be improved by utilizing additional Quartus options and optimizations that are disabled

by default. If even greater performance is desired, then the designer may spend some effort in

hand-placing portions of the system within the FPGA.

Finally, the appropriate memory consistency model must be determined. Consider that the

Nios, a simple scalar pipelined processor, statically schedules instructions. As a result, though

up to five instructions may be simultaneously in-flight, only one instruction is executed at a time,

and instructions are not re-ordered by hardware. Moreover, the Nios completes a memory access

before the next instruction executes. Finally, a Nios optionally supports a data cache with a

write-through policy. Therefore a single Nios system fully supports a strict memory consistency

model.

An instantiated SMP Nios system, conversely, does not support the strict model. Consider

instead how the characteristics of an SMP Nios system with enforced cache coherency affect

the program order and write atomicity requirements explained in Section 2.2.2. The presence of

cache allows a processor to write a value, followed by a read to that new value, prior to the write

completing (i.e., prior to all other processors invalidating their cache). This relaxation is called

read-own-write-early.

Results and Analysis 79

With respect to program order, an SMP Nios system can be said to follow program order,

given that instructions are statically scheduled. Though the Nios does not execute the instruction

following a write until the memory transaction is complete, this does not include any cache

invalidations that may be required. To this end, the ISR provides a real acknowledgement for

writes, but in the meantime, processors continue to execute in-flight instructions at the time the

CCM raises an interrupt. This can lead to the following situation where a processor B has already

cached memory location Y, but can not read Y before memory location X has a certain value.

If processor A writes to memory location Y, followed by a write to X, then processor B may

see the write to X and proceed to read Y. Since location Y is cached and the read instruction is

in-flight, processor B will read Y before it can be invalidated, causing the old, incorrect value to

be returned.

Avoiding the problem involves forcing processor A to wait until processor B has invalidated

Y prior to writing X. Unfortunately, this can not be accomplished with the Nios architecture and

a CCM module. Instead, the problem can be solved one of two ways. The first is by placing

synchronizing writes three or more instructions after the data write (causing the synchronizing

write to be located either as the last instruction prior to ISR execution, or after ISR execution,

guaranteeing that the synchronizing read will not succeed prior to the old cache data being inval-

idated). The second is by forcing such data reads to bypass the cache entirely by using the GCC

volatile keyword or PFXIO assembly instruction.

An SMP Nios system also makes writes appear atomic. Write atomicity has two require-

ments: that all processors see writes to the same location in the same order (write serialization),

and that a written value cannot be read by another processor unless all processors read the same

value. The first condition is enforced by the nature of cache coherency, since all processors are

forced to execute the same ISR at the same time, and thus all processors have a uniform view of

memory writes. The second condition is also satisfied by the ISR, since the ISR is essentially

80 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

uninterruptible, thus no read can occur prior to all processors invalidating their cache.

Since writes appear atomic, if write serialization can be enforced, then the SMP Nios system

follows the sequential consistency model. Furthermore, such a system supports the read own

write early relaxation. Alternatively, since the solution to the program order problem is not nec-

essarily a desirable solution, a relaxed WAW ordering can be used instead of a sequential model.

The only difference between using the sequential model and the relaxed WAW model is the se-

mantics of memory behaviour. A programmer can choose to use either of the two models. The

choice and understanding of the chosen model affects the semantics, and therefore correctness,

of a parallel shared-memory program.

6.6 Summary

This chapter has described the platform on which cache coherent Nios SMPOPC systems were

developed. The results of validation testing were presented, and the impact of the two CCM

designs were assessed. The resulting cache coherent system was analyzed to develop a mem-

ory consistency model. The next chapter presents the conclusions drawn from this thesis and

discusses possible future work.

Chapter 7

Conclusions and Future Work

This thesis presents the development and validation of a generic, N-way SMP Nios system with

enforced cache coherency. Creating a working SMP system using Altera’s SOPC Builder system

development tool is easy, and requires only the addition of processor IDs, and cache coherency

enforcement if caches are used. The solution to the cache coherency problem requires few addi-

tional resources, has minimal affect on overall system performance, is unique due to the limited

Nios uniprocessor model and the point-to-point nature of the Avalon bus, and is scalable and

affordable. Furthermore, this solution is readily adaptable to similar systems with write-through

cache, cache line invalidation or update facilities, and a well-specified bus interface.

The prototype cache coherency module suffered from a fatal flaw for cases of additional

writes occurring after the original exception event due to processor pipelining. The second-

generation CCM was able to eliminate this flaw by implementing a memory to capture all in-

flight write addresses.

A drawback to the prototype CCM as presented is a processor blocking time that scales with

the number of processors in the system, as they all contend to access the CCM. The solution to

this drawback, as implemented in the second-generation CCM, involves building a slave port for

81

82 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

each processor to allow all processors to simultaneously access the CCM during the ISR. This

is analogous to adding read ports to the CCM. This design makes the system far more scalable

(does not run into the 32-bit STATUS register limitation, as each port tracks the status of its master

processor) with little to no additional hardware, as point-to-point access to the Avalon slave ports

are arbitration free.

A similar situation faces both the prototype and second-generation CCMs, as all processors

rush to read the ISR when an interrupt is raised. This is somewhat mitigated if the ISR happens to

be in the Nios instruction cache and self-modifying code has been disallowed (so the instruction

cache remains enabled during the ISR itself). The problem could potentially be eliminated by

storing the ISR code in an on-chip ROM, which would reduce access latency. A single shared

ROM still has the problem of contention, however, so the ROM may be duplicated so that only

a few processors share a ROM, or even so that each processor has exclusive access to its own

ROM (similar to the PID ROM). Another advantage of having ISR ROMs is that the instruction

cache may be disabled during ISR execution, saving the ISR instructions from replacing program

instructions in the cache. This is effective because it reduces the miss rate on the instruction cache

once the program resume execution, and because the instruction cache does not reduce latency

when compared to accessing an on-chip ROM.

Future work focuses on increasing system efficiency in a number of ways. For example, a

level-2 cache can be built into the module, taking advantage of fast on-chip memory to further

reduce access times and contention for the memory bus. Also, for single writes, the module

could determine which processor wrote the address, and thus allow that processor to continue

execution without interruption (or have a foreshortened ISR). Similarly, the CCM could track

the current addresses that are contained in each processor’s cache, avoiding unnecessary cache

clearing in the case that a processor has not cached the address currently being invalidated.

Finally, the CCM could be made to include hardware synchronization primitives as function-

Conclusions and Future Work 83

ality separate from cache coherency enforcement. A simple test-and-set or fetch-and-increment

primitive could easily be implemented, as processor accesses to the CCM bypass any caches (via

the PFXIO instruction), and the CCM represents a single point of control for the shared variable.

After writing the proper libraries to take advantage of this feature, this would allow processors to

perform atomic, single-instruction synchronization functions (a read to the CCM could automat-

ically set or increment a synchronization register). Alternatively, other hardware synchronization

methods [29] could be incorporated into the CCM.

Appendix A

System ISR Installer

This assembly code installs a system ISR (the routine directly pointed to in the interrupt vector

table). A system ISR cannot easily call other routines, and traps are disabled. Contrasted this

with user ISRs, which are normal routines with normal facilities. The only difference between a

user ISR and a normal routine is that it can only be interrupted by a higher priority interrupt. The

reason a system ISR is used is to avoid Altera’s default user ISR funnel code, which performs

additional unnecessary tasks, such as decrementing the register window and saving registers to

the stack. As a result, the funnel code leads to relatively high-latency interrupts. Since the CCM

ISR routine must be very fast, and does not require normal routine facilities, the user funnel can

be avoided. Instead, the CCM ISR uses whatever resources are automatically provided to all

interrupts by the hardware itself: free access to register %o0-%o5 and %l0-%l7. Since the CCM

ISR does not require that many registers, and SAVE and RESTORE instructions are not used, the

register window will not underflow or overflow.

1 .include "excalibur.s"
2 .text
3 .global nr_installsystemisr
4 .global nr_ccmisr
5
6 ;--
7 ; void nr_installsystemisr(int trapNumber, nios_isrhandlerproc3 *trapProc);
8 ;
9 ; Description: Install a trap routine

84

System ISR Installer 85

10 ; Input: %o0 = trap number
11 ; %o1 = trap handler routine
12 ; Output: none
13 ; Side Effects: %g0 & %g1 altered
14 ; CWP Depth: 0
15 ;
16
17 .ifdef __nios32__
18 .equ nmul,2
19 .else
20 .equ nmul,1
21 .endif
22
23 .equ _ISRManagerDebugging_,0
24
25 nr_installsystemisr:
26 MOV %g0,%o0 ; %g0 = Trap Number
27 LSLI %g0,nmul ; %g0 = offset into vector table
28
29 MOVIA %g1,nasys_vector_table ; %g1 -> vector table
30 ADD %g1,%g0 ; %g1 -> entry for this trap in table
31
32 ST [%g1],%o1 ; install the handler routine last
33
34 JMP %o7 ; return
35 NOP ; delay slot

Appendix B

Prototype CCM VHDL

This VHDL code represents the prototype CCM module for a dual-processor Nios system with

external asynchronous SRAM and flash on the tri-state bus. The only difference between the

CCM module for different number of processors is the NUM NIOS generic parameter in line 8,

which is set to the number of Nios processors in the system.

1 library altera_vhdl_support;
2 use altera_vhdl_support.altera_vhdl_support_lib.all;
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6
7 ENTITY ccm IS
8 GENERIC(NUM_NIOS : integer:= 2);
9 PORT(-- Avalon slave port

10 signal address : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
11 signal chipselect : IN STD_LOGIC;
12 signal clk : IN STD_LOGIC;
13 signal read_n : IN STD_LOGIC;
14 signal reset_n : IN STD_LOGIC;
15 signal write_n : IN STD_LOGIC;
16 signal writedata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
17 signal irq : OUT STD_LOGIC;
18 signal readdata : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
19
20 -- external tri-state bus signals
21 signal ext_ram_bus_address : IN STD_LOGIC_VECTOR(22 DOWNTO 0);

86

Prototype CCM VHDL 87

22 signal ext_ram_bus_writen : IN STD_LOGIC;
23 signal write_n_to_the_ext_sram : IN STD_LOGIC
24);
25 END ccm;
26
27
28 ARCHITECTURE europa OF ccm IS
29 SIGNAL internal_we : STD_LOGIC;
30 SIGNAL internal_writedetect : STD_LOGIC;
31 SIGNAL strobe_read : STD_LOGIC;
32 SIGNAL strobe_write : STD_LOGIC;
33 -- interrupt driver, address 0x00
34 SIGNAL reg_status : STD_LOGIC_VECTOR(NUM_NIOS-1 DOWNTO 0);
35 -- interrupt enable/disable, address 0x01
36 SIGNAL reg_control : STD_LOGIC;
37 -- byte address store, address 0x02
38 SIGNAL reg_address : STD_LOGIC_VECTOR(31 DOWNTO 0);
39 SIGNAL read_mux_out : STD_LOGIC_VECTOR(31 DOWNTO 0);
40 SIGNAL address_mux : STD_LOGIC_VECTOR(31 DOWNTO 0);
41 BEGIN
42
43 -- write detect signal for crossing into a synchronous domain
44 process (clk, reset_n, internal_we) begin
45 if reset_n = ’0’ then
46 internal_writedetect <= ’0’;
47 elsif internal_we = ’0’ then
48 internal_writedetect <= ’1’;
49 elsif clk’event and clk = ’1’ then
50 internal_writedetect <= ’0’;
51 end if;
52 end process;
53
54 strobe_read <= chipselect AND NOT read_n;
55 strobe_write <= chipselect AND NOT write_n;
56 -- STATUS REGISTER: interrupt status bit
57 process (clk, reset_n) begin
58 if reset_n = ’0’ then
59 reg_status <= (OTHERS => ’0’);
60 elsif clk’event and clk = ’1’ then
61 if std_logic’((strobe_write AND
62 to_std_logic(address = "00"))) = ’1’ then
63 reg_status <= reg_status AND
64 NOT writedata(NUM_NIOS-1 DOWNTO 0);
65 elsif std_logic’(internal_writedetect) = ’1’ AND
66 reg_control = ’1’ then

88 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

67 reg_status <= (OTHERS => ’1’);
68 end if;
69 end if;
70 end process;
71
72 -- CONTROL REGISTER: bit 0 is the interrupt enable bit
73 process (clk, reset_n) begin
74 if reset_n = ’0’ then
75 reg_control <= ’0’;
76 elsif clk’event and clk = ’1’ then
77 if std_logic’(strobe_write AND
78 to_std_logic(address = "01")) = ’1’ then
79 reg_control <= writedata(0);
80 end if;
81 end if;
82 end process;
83
84 -- ADDRESS REGISTER
85 process (reset_n, clk) begin
86 if reset_n = ’0’ then
87 reg_address <= x"00000000";
88 elsif clk’event AND clk = ’1’ then
89 if internal_writedetect = ’1’ AND reg_control = ’1’ then
90 reg_address <= address_mux;
91 end if;
92 end if;
93 end process;
94
95 -- Combinational register reads (read_wait_states = "0")
96 read_mux_out <= A_EXT(reg_status, 32) WHEN address = "00" else
97 A_REP(reg_control, 32) WHEN address = "01" else
98 reg_address WHEN address = "10" else
99 x"FFFFFFFF";

100 readdata <= read_mux_out when strobe_read = ’1’ else
101 x"00000000";
102
103 -- Combinational address mux
104 address_mux <= A_WE_StdLogicVector(
105 (std_logic’(write_n_to_the_ext_sram) = ’1’),
106 "00000000" & (("0" & ext_ram_bus_address)
107 OR "100000000000000000000000"),
108 "000000000" & ((ext_ram_bus_address
109 OR "00000000000000000000000")));
110
111 internal_we <= ext_ram_bus_writen AND write_n_to_the_ext_sram;

Prototype CCM VHDL 89

112 irq <= or_reduce(reg_status) AND reg_control;
113
114 END europa;

Appendix C

Second-Generation CCM VHDL

This VHDL code represents the second-generation CCM module for a dual-processor Nios sys-

tem with external asynchronous SRAM and flash on a tri-state bus. A ccm slave if component

is instantiated for each Nios processor in the system, and a ccm fifo component (and associ-

ated top-level signals and registers) is instantiated for each memory device to be supported. This

code has been formatted to better fit these pages, and Altera’s autogenerated VHDL for the FIFO

megafunction IP block has been removed (though the component interface remains).

1 library altera_vhdl_support;
2 use altera_vhdl_support.altera_vhdl_support_lib.all;
3
4 library ieee;
5 use ieee.std_logic_unsigned.all;
6 use ieee.std_logic_1164.all;
7 use ieee.std_logic_arith.all;
8
9 entity ccm_slave_if is

10 port (
11 -- inputs:
12 signal address : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
13 signal ccm_en : IN STD_LOGIC;
14 signal chipselect : IN STD_LOGIC;
15 signal clk : IN STD_LOGIC;
16 signal clk_en : IN STD_LOGIC;
17 signal exception_status_bit : IN STD_LOGIC;
18 signal fifo_status_bit : IN STD_LOGIC;

90

Second-Generation CCM VHDL 91

19 signal new_address : IN STD_LOGIC;
20 signal read_n : IN STD_LOGIC;
21 signal reg_address : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
22 signal reset_n : IN STD_LOGIC;
23 signal write_n : IN STD_LOGIC;
24 -- outputs:
25 signal address_read : OUT STD_LOGIC;
26 signal control_wr_strobe : OUT STD_LOGIC;
27 signal readdata : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
28);
29 end entity ccm_slave_if;
30
31 architecture europa of ccm_slave_if is
32 signal address_rd_strobe : STD_LOGIC;
33 signal reg_control : STD_LOGIC_VECTOR (31 DOWNTO 0);
34 signal reg_status : STD_LOGIC_VECTOR (31 DOWNTO 0);
35 signal selected_read_data : STD_LOGIC_VECTOR (31 DOWNTO 0);
36 begin
37
38 process (clk, reset_n)
39 begin
40 if reset_n = ’0’ then
41 readdata <= "00000000000000000000000000000000";
42 elsif clk’event and clk = ’1’ then
43 if std_logic’(clk_en) = ’1’ then
44 readdata <= selected_read_data;
45 end if;
46 end if;
47 end process;
48
49 address_rd_strobe <= (chipselect AND NOT read_n) AND
50 to_std_logic(((address = "00")));
51 control_wr_strobe <= (chipselect AND NOT write_n) AND
52 to_std_logic(((address = "11")));
53 reg_status <= "000000000000000000000000000000" &
54 (Std_Logic_Vector’(A_ToStdLogicVector(fifo_status_bit) &
55 A_ToStdLogicVector(exception_status_bit)));
56 reg_control <= "0000000000000000000000000000000" &
57 (A_TOSTDLOGICVECTOR(ccm_en));
58 selected_read_data <=
59 (((A_REP(to_std_logic(((address = "00"))), 32) AND reg_address)) OR
60 ((A_REP(to_std_logic(((address = "10"))), 32) AND reg_status))) OR
61 ((A_REP(to_std_logic(((address = "11"))), 32) AND reg_control));
62
63 process (clk, reset_n)

92 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

64 begin
65 if reset_n = ’0’ then
66 address_read <= ’1’;
67 elsif clk’event and clk = ’1’ then
68 if std_logic’(clk_en) = ’1’ then
69 if std_logic’(new_address) = ’1’ then
70 address_read <= ’0’;
71 elsif std_logic’(address_rd_strobe) = ’1’ then
72 address_read <= ’1’;
73 end if;
74 end if;
75 end if;
76 end process;
77
78 end europa;
79
80
81 library altera_vhdl_support;
82 use altera_vhdl_support.altera_vhdl_support_lib.all;
83
84 library ieee;
85 use ieee.std_logic_unsigned.all;
86 use ieee.std_logic_1164.all;
87 use ieee.std_logic_arith.all;
88
89 entity ccm_regs is
90 port (
91 -- inputs:
92 signal all_read : IN STD_LOGIC;
93 signal clk : IN STD_LOGIC;
94 signal control_wr_strobe : IN STD_LOGIC;
95 signal fifo_full : IN STD_LOGIC;
96 signal new_address : IN STD_LOGIC;
97 signal qualified_irq : IN STD_LOGIC;
98 signal reset_n : IN STD_LOGIC;
99 signal selected_address : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

100 signal selected_writedata : IN STD_LOGIC;
101 -- outputs:
102 signal ccm_en : OUT STD_LOGIC;
103 signal exception_status_bit : OUT STD_LOGIC;
104 signal fifo_status_bit : OUT STD_LOGIC;
105 signal reg_address : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
106);
107 end entity ccm_regs;
108

Second-Generation CCM VHDL 93

109 architecture europa of ccm_regs is
110 signal internal_ccm_en : STD_LOGIC;
111 signal internal_fifo_status_bit : STD_LOGIC;
112 begin
113
114 process (clk, reset_n)
115 begin
116 if reset_n = ’0’ then
117 reg_address <= "00000000000000000000000000000000";
118 elsif clk’event and clk = ’1’ then
119 if std_logic’((new_address AND internal_ccm_en)) = ’1’ then
120 reg_address <= selected_address;
121 end if;
122 end if;
123 end process;
124
125 process (clk, reset_n)
126 begin
127 if reset_n = ’0’ then
128 internal_fifo_status_bit <= ’0’;
129 elsif clk’event and clk = ’1’ then
130 if std_logic’((NOT internal_fifo_status_bit AND
131 internal_ccm_en)) = ’1’ then
132 internal_fifo_status_bit <= fifo_full;
133 end if;
134 end if;
135 end process;
136
137 process (clk, reset_n)
138 begin
139 if reset_n = ’0’ then
140 exception_status_bit <= ’0’;
141 elsif clk’event and clk = ’1’ then
142 if std_logic’(internal_ccm_en) = ’1’ then
143 if std_logic’(qualified_irq) = ’1’ then
144 exception_status_bit <= ’1’;
145 elsif std_logic’(all_read) = ’1’ then
146 exception_status_bit <= ’0’;
147 end if;
148 end if;
149 end if;
150 end process;
151
152 process (clk, reset_n)
153 begin

94 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

154 if reset_n = ’0’ then
155 internal_ccm_en <= ’0’;
156 elsif clk’event and clk = ’1’ then
157 if std_logic’(control_wr_strobe) = ’1’ then
158 internal_ccm_en <= selected_writedata;
159 end if;
160 end if;
161 end process;
162
163 fifo_status_bit <= internal_fifo_status_bit;
164 ccm_en <= internal_ccm_en;
165
166 end europa;
167
168
169 library altera_vhdl_support;
170 use altera_vhdl_support.altera_vhdl_support_lib.all;
171
172 library ieee;
173 use ieee.std_logic_unsigned.all;
174 use ieee.std_logic_1164.all;
175 use ieee.std_logic_arith.all;
176
177 entity ccm_fifo is
178 port (
179 -- inputs:
180 signal addrAck : IN STD_LOGIC;
181 signal address_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
182 signal address_valid : IN STD_LOGIC;
183 signal clk : IN STD_LOGIC;
184 signal clk_en : IN STD_LOGIC;
185 signal reset_n : IN STD_LOGIC;
186 -- outputs:
187 signal addrRdy : OUT STD_LOGIC;
188 signal address_out : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
189 signal fifo_full : OUT STD_LOGIC
190);
191 end entity ccm_fifo;
192
193 architecture europa of ccm_fifo is
194 component a_fifo_module is
195 port (
196 -- inputs:
197 signal clk : IN STD_LOGIC;
198 signal clk_en : IN STD_LOGIC;

Second-Generation CCM VHDL 95

199 signal fifo_read : IN STD_LOGIC;
200 signal fifo_wr_data : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
201 signal fifo_write : IN STD_LOGIC;
202 signal flush_fifo : IN STD_LOGIC;
203 signal inc_pending_data : IN STD_LOGIC;
204 signal reset_n : IN STD_LOGIC;
205 -- outputs:
206 signal fifo_datavalid : OUT STD_LOGIC;
207 signal fifo_full : OUT STD_LOGIC;
208 signal fifo_rd_data : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
209);
210 end component a_fifo_module;
211
212 signal internal_addrRdy : STD_LOGIC;
213 signal internal_address_out : STD_LOGIC_VECTOR (31 DOWNTO 0);
214 signal internal_fifo_full : STD_LOGIC;
215 begin
216
217 the_a_fifo_module : a_fifo_module
218 port map(
219 fifo_rd_data => internal_address_out,
220 fifo_datavalid => internal_addrRdy,
221 fifo_full => internal_fifo_full,
222 fifo_wr_data => address_in,
223 clk_en => clk_en,
224 inc_pending_data => ’0’,
225 fifo_write => address_valid,
226 clk => clk,
227 fifo_read => addrAck,
228 reset_n => reset_n,
229 flush_fifo => ’0’
230);
231
232 addrRdy <= internal_addrRdy;
233 fifo_full <= internal_fifo_full;
234 address_out <= internal_address_out;
235
236 end europa;
237
238
239 library altera_vhdl_support;
240 use altera_vhdl_support.altera_vhdl_support_lib.all;
241
242 library ieee;
243 use ieee.std_logic_unsigned.all;

96 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

244 use ieee.std_logic_1164.all;
245 use ieee.std_logic_arith.all;
246
247 entity ccm is
248 port (
249 -- inputs:
250 signal clk : IN STD_LOGIC;
251 signal ext_ram_bus_address : IN STD_LOGIC_VECTOR (22 DOWNTO 0);
252 signal ext_ram_bus_writen : IN STD_LOGIC;
253 signal reset_n : IN STD_LOGIC;
254 signal s0_address : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
255 signal s0_chipselect : IN STD_LOGIC;
256 signal s0_read_n : IN STD_LOGIC;
257 signal s0_write_n : IN STD_LOGIC;
258 signal s0_writedata : IN STD_LOGIC;
259 signal s1_address : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
260 signal s1_chipselect : IN STD_LOGIC;
261 signal s1_read_n : IN STD_LOGIC;
262 signal s1_write_n : IN STD_LOGIC;
263 signal s1_writedata : IN STD_LOGIC;
264 signal write_n_to_the_ext_sram : IN STD_LOGIC;
265 -- outputs:
266 signal s0_irq : OUT STD_LOGIC;
267 signal s0_readdata : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
268 signal s1_irq : OUT STD_LOGIC;
269 signal s1_readdata : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
270);
271 end entity ccm;
272
273 architecture europa of ccm is
274 component ccm_slave_if is
275 port (
276 -- inputs:
277 signal address : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
278 signal ccm_en : IN STD_LOGIC;
279 signal chipselect : IN STD_LOGIC;
280 signal clk : IN STD_LOGIC;
281 signal clk_en : IN STD_LOGIC;
282 signal exception_status_bit : IN STD_LOGIC;
283 signal fifo_status_bit : IN STD_LOGIC;
284 signal new_address : IN STD_LOGIC;
285 signal read_n : IN STD_LOGIC;
286 signal reg_address : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
287 signal reset_n : IN STD_LOGIC;
288 signal write_n : IN STD_LOGIC;

Second-Generation CCM VHDL 97

289 -- outputs:
290 signal address_read : OUT STD_LOGIC;
291 signal control_wr_strobe : OUT STD_LOGIC;
292 signal readdata : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
293);
294 end component ccm_slave_if;
295
296 component ccm_regs is
297 port (
298 -- inputs:
299 signal all_read : IN STD_LOGIC;
300 signal clk : IN STD_LOGIC;
301 signal control_wr_strobe : IN STD_LOGIC;
302 signal fifo_full : IN STD_LOGIC;
303 signal new_address : IN STD_LOGIC;
304 signal qualified_irq : IN STD_LOGIC;
305 signal reset_n : IN STD_LOGIC;
306 signal selected_address : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
307 signal selected_writedata : IN STD_LOGIC;
308 -- outputs:
309 signal ccm_en : OUT STD_LOGIC;
310 signal exception_status_bit : OUT STD_LOGIC;
311 signal fifo_status_bit : OUT STD_LOGIC;
312 signal reg_address : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
313);
314 end component ccm_regs;
315
316 component ccm_fifo is
317 port (
318 -- inputs:
319 signal addrAck : IN STD_LOGIC;
320 signal address_in : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
321 signal address_valid : IN STD_LOGIC;
322 signal clk : IN STD_LOGIC;
323 signal clk_en : IN STD_LOGIC;
324 signal reset_n : IN STD_LOGIC;
325 -- outputs:
326 signal addrRdy : OUT STD_LOGIC;
327 signal address_out : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
328 signal fifo_full : OUT STD_LOGIC
329);
330 end component ccm_fifo;
331
332 signal all_read : STD_LOGIC;
333 signal ccm_en : STD_LOGIC;

98 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

334 signal clk_en : STD_LOGIC;
335 signal control_wr_strobe : STD_LOGIC;
336 signal exception_status_bit : STD_LOGIC;
337 signal fifo_full : STD_LOGIC;
338 signal fifo_status_bit : STD_LOGIC;
339 signal internal_s0_readdata : STD_LOGIC_VECTOR (31 DOWNTO 0);
340 signal internal_s1_readdata : STD_LOGIC_VECTOR (31 DOWNTO 0);
341 signal m0_addrAck : STD_LOGIC;
342 signal m0_addrRdy : STD_LOGIC;
343 signal m0_address_in : STD_LOGIC_VECTOR (31 DOWNTO 0);
344 signal m0_address_out : STD_LOGIC_VECTOR (31 DOWNTO 0);
345 signal m0_address_valid : STD_LOGIC;
346 signal m0_fifo_full : STD_LOGIC;
347 signal m1_addrAck : STD_LOGIC;
348 signal m1_addrRdy : STD_LOGIC;
349 signal m1_address_in : STD_LOGIC_VECTOR (31 DOWNTO 0);
350 signal m1_address_out : STD_LOGIC_VECTOR (31 DOWNTO 0);
351 signal m1_address_valid : STD_LOGIC;
352 signal m1_fifo_full : STD_LOGIC;
353 signal new_address : STD_LOGIC;
354 signal qualified_irq : STD_LOGIC;
355 signal reg_address : STD_LOGIC_VECTOR (31 DOWNTO 0);
356 signal s0_address_read : STD_LOGIC;
357 signal s0_control_wr_strobe : STD_LOGIC;
358 signal s1_address_read : STD_LOGIC;
359 signal s1_control_wr_strobe : STD_LOGIC;
360 signal selected_address : STD_LOGIC_VECTOR (31 DOWNTO 0);
361 signal selected_writedata : STD_LOGIC;
362 begin
363
364 clk_en <= ’1’;
365 s0 : ccm_slave_if
366 port map(
367 address_read => s0_address_read,
368 control_wr_strobe => s0_control_wr_strobe,
369 readdata => internal_s0_readdata,
370 address => s0_address,
371 new_address => new_address,
372 clk_en => clk_en,
373 chipselect => s0_chipselect,
374 read_n => s0_read_n,
375 fifo_status_bit => fifo_status_bit,
376 write_n => s0_write_n,
377 ccm_en => ccm_en,
378 clk => clk,

Second-Generation CCM VHDL 99

379 reset_n => reset_n,
380 reg_address => reg_address,
381 exception_status_bit => exception_status_bit
382);
383
384 s1 : ccm_slave_if
385 port map(
386 address_read => s1_address_read,
387 control_wr_strobe => s1_control_wr_strobe,
388 readdata => internal_s1_readdata,
389 address => s1_address,
390 new_address => new_address,
391 clk_en => clk_en,
392 chipselect => s1_chipselect,
393 read_n => s1_read_n,
394 fifo_status_bit => fifo_status_bit,
395 write_n => s1_write_n,
396 ccm_en => ccm_en,
397 clk => clk,
398 reset_n => reset_n,
399 reg_address => reg_address,
400 exception_status_bit => exception_status_bit
401);
402
403 the_ccm_regs : ccm_regs
404 port map(
405 fifo_status_bit => fifo_status_bit,
406 ccm_en => ccm_en,
407 reg_address => reg_address,
408 exception_status_bit => exception_status_bit,
409 selected_writedata => selected_writedata,
410 selected_address => selected_address,
411 new_address => new_address,
412 control_wr_strobe => control_wr_strobe,
413 qualified_irq => qualified_irq,
414 fifo_full => fifo_full,
415 clk => clk,
416 all_read => all_read,
417 reset_n => reset_n
418);
419
420 m0_address_in <= "000000000" & ((ext_ram_bus_address OR
421 "00000000000000000000000"));
422 process (clk, reset_n, ccm_en, ext_ram_bus_writen)
423 begin

100 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

424 if reset_n = ’0’ then
425 m0_address_valid <= ’0’;
426 elsif ext_ram_bus_writen = ’0’ AND ccm_en = ’1’ then
427 m0_address_valid <= ’1’;
428 elsif clk’event and clk = ’1’ then
429 if std_logic’(ccm_en) = ’1’ then
430 m0_address_valid <= ’0’;
431 end if;
432 end if;
433 end process;
434
435 m0 : ccm_fifo
436 port map(
437 addrRdy => m0_addrRdy,
438 fifo_full => m0_fifo_full,
439 address_out => m0_address_out,
440 address_in => m0_address_in,
441 clk_en => ccm_en,
442 addrAck => m0_addrAck,
443 clk => clk,
444 reset_n => reset_n,
445 address_valid => m0_address_valid
446);
447
448 m1_address_in <= "00000000" & ((("0" & (ext_ram_bus_address)) OR
449 "100000000000000000000000"));
450 process (clk, reset_n, ccm_en, write_n_to_the_ext_sram)
451 begin
452 if reset_n = ’0’ then
453 m1_address_valid <= ’0’;
454 elsif write_n_to_the_ext_sram = ’0’ AND ccm_en = ’1’ then
455 m1_address_valid <= ’1’;
456 elsif clk’event and clk = ’1’ then
457 if std_logic’(ccm_en) = ’1’ then
458 m1_address_valid <= ’0’;
459 end if;
460 end if;
461 end process;
462
463 m1 : ccm_fifo
464 port map(
465 addrRdy => m1_addrRdy,
466 fifo_full => m1_fifo_full,
467 address_out => m1_address_out,
468 address_in => m1_address_in,

Second-Generation CCM VHDL 101

469 clk_en => ccm_en,
470 addrAck => m1_addrAck,
471 clk => clk,
472 reset_n => reset_n,
473 address_valid => m1_address_valid
474);
475
476 all_read <= s0_address_read AND s1_address_read;
477 new_address <= exception_status_bit AND all_read;
478 s0_irq <= exception_status_bit;
479 s1_irq <= exception_status_bit;
480 control_wr_strobe <= s0_control_wr_strobe OR s1_control_wr_strobe;
481 fifo_full <= m0_fifo_full OR m1_fifo_full;
482 qualified_irq <= m0_addrRdy OR m1_addrRdy;
483 m0_addrAck <= m0_addrRdy AND new_address;
484 m1_addrAck <= m1_addrRdy AND new_address;
485 selected_address <= A_WE_StdLogicVector((std_logic’(((m0_addrRdy))) = ’1’),
486 m0_address_out, m1_address_out);
487 selected_writedata <= A_WE_StdLogic((std_logic’(((s0_control_wr_strobe))) =
488 ’1’), s0_writedata, s1_writedata);
489 s0_readdata <= internal_s0_readdata;
490 s1_readdata <= internal_s1_readdata;
491
492 end europa;

Appendix D

Shared-Memory Test Program

This C code represents a shared-memory program that tests for cache coherency. A single pro-

cessor is (arbitrarily) designated as the bootstrap processor (BSP). The BSP waits until all other

application processors (APs) have loaded the value of the synch shared variable into the cache

(via read), and begin to busy-wait loop on synch. The BSP then proceeds to perform global

initialization, which entails installing the CCM ISR and enabling the CCM module. Finally, it

writes to synch allowing APs to begin execution. If cache coherency is maintained, then the

write to synch is propagated to all APs and they are able to exit the busy-wait loop and print

their PID to the console. If CCM does not enforce coherency (or the CCM module disabled or is

not present in the system), then the APs will always be stuck in the loop, and only the BSP will

print its PID.

1 #include "nios.h"
2 #include <stdio.h>
3
4 #define BOOT_CPU 0
5 #ifdef na_ccm_s0
6 #define na_ccm na_ccm_s0
7 #define na_ccm_irq na_ccm_s0_irq
8 #endif
9

10 void global_initialize(int cpuid);
11
12 const char *_cpuid = (char *)na_cpuid_cpu0;

102

Shared-Memory Test Program 103

13 int *synch = (int *)0x008FF014;
14
15 int main(void) {
16 int context = *_cpuid;
17
18 /* pre-load caches */
19 (*synch) = 0;
20
21 printf("%d\n", context);
22 global_initialize(context);
23
24 /* AP synchronization point */
25 while((*synch) == 0) {
26 nr_delay(1000); printf("-%d", context);
27 }
28
29 nr_delay(100);
30 printf("+%d\n", context);
31
32 while(1) {;}
33
34 return 0;
35 }
36
37 /* global_initialize: setup that must be performed by only the BSP */
38 void global_initialize(int cpuid) {
39 if(cpuid == BOOT_CPU) {
40 #ifdef na_ccm
41 /* FIXME: This nr_delay is to "synchronize" the system...
42 * allow all APs in the system to get to the while loop
43 * before proceeding. The delay value scales with the
44 * number of processors in the system. */
45 nr_delay(5000);
46
47 /* install CCM ISR */
48 nr_installsystemisr(na_ccm_irq, nr_ccmisr);
49
50 /* enable CCM */
51 na_ccm->np_ccmcontrol = 1;
52 #endif
53
54 /* synchronize system */
55 (*synch) = 1;
56 }
57 }

Appendix E

Multi-Write Test Program

This C code represents a shared-memory program that tests for multi-write cache coherency. This

test program is largely based on the shared-memory test program, with the addition of a second

write immediately after the write to the synchronizing shared variable synch. Alternatively, the

program can include fourteen writes, to guarantee the worst-case scenario where all in-flight

instructions are writes. The waveform in Figure 4.5 is the result of this worst-case scenario.

The multiple in-flight writes expose the problem with the prototype CCM, as the CCM mod-

ule will detect the first write, but only capture the most recent consecutive write prior to the

execution of the first ISR instruction. As a result, the cache line for the synch variable is not

invalidated if the CCM does not support capturing multiple writes, and APs will not continue

past the busy-wait loop. A CCM that does support multiple writes (as the second-generation

CCM design should) will allow APs to break the loop and print their PIDs.

1 #include "nios.h"
2 #include <stdio.h>
3
4 #undef WORST_CASE
5 #define BOOT_CPU 0
6 #ifdef na_ccm_s0
7 #define na_ccm na_ccm_s0
8 #define na_ccm_irq na_ccm_s0_irq
9 #endif

104

Multi-Write Test Program 105

10
11 void global_initialize(int cpuid);
12
13 const char *_cpuid = (char *)na_cpuid_cpu0;
14 int *synch = (int *)0x008FF014;
15
16
17 int main(void) {
18 int context = *_cpuid;
19 int i;
20
21 /* pre-load caches */
22 (*synch) = 0;
23 *(synch + 1) = 0;
24
25 printf("%d\n", context);
26 global_initialize(context);
27 global_initialize(context);
28
29 /* AP synchronization point */
30 while((*synch) == 0) {
31 nr_delay(1000);
32 if(*(synch + 1) == 0) printf("-%d", context);
33 else printf("*%d", context);
34 }
35
36 printf("+%d\n", context);
37
38 while(1) {;}
39
40 return 0;
41 }
42
43
44 /* global_initialize: setup that must be performed by only the BSP */
45 void global_initialize(int cpuid) {
46 static int i = 0;
47 if(cpuid == BOOT_CPU) {
48 #ifdef na_ccm
49 /* FIXME: This nr_delay is to "synchronize" the system...
50 * allow all APs in the system to get to the while loop
51 * before proceeding. The delay value scales with the
52 * number of processors in the system. */
53 nr_delay(5000);
54

106 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

55 /* install CCM ISR */
56 nr_installsystemisr(na_ccm_irq, nr_ccmisr);
57
58 /* enable CCM */
59 na_ccm->np_ccmcontrol = i;
60 #endif
61
62 /* synchronize system */
63 (*synch) = i;
64
65 #ifndef WORST_CASE
66 /* a second consecutive write to memory */
67 asm("stp [%0,0x1],%1 \n", : : "r" (synch), "r" (i));
68 #else
69 /* worst-case: maximum in-flight writes to memory */
70 asm("stp [%0,0x1],%1 \n stp [%0,0x2],%1 \n \
71 stp [%0,0x3],%1 \n stp [%0,0x4],%1 \n \
72 stp [%0,0x5],%1 \n stp [%0,0x6],%1 \n \
73 stp [%0,0x7],%1 \n stp [%0,0x8],%1 \n \
74 stp [%0,0x9],%1 \n stp [%0,0xA],%1 \n \
75 stp [%0,0xB],%1 \n stp [%0,0xC],%1 \n \
76 stp [%0,0xD],%1 \n stp [%0,0xE],%1 \n" \
77 : \
78 : "r" (synch), "r" (i));
79 #endif
80
81 i = 1;
82 }
83
84 }

Appendix F

Related Papers

The following papers were accepted for publishing as a result of the work described in this thesis.

[1] Austin Hung, William Bishop, and Andrew Kennings. Enabling Cache Coherency for N-

Way SMP Systems on Programmable Chips. In Proceedings of the 4th International Con-

ference on Engineering of Reconfigurable Systems and Algorithms, Las Vegas, Nevada,

USA, June 2004. CSREA Press. To appear.

107

Bibliography

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared Memory Consistency Models: A Tu-

torial. Technical Report WRL-TR 95/7, Digital Western Research Laboratory, Palo Alta,

California, September 1995.

[2] Anant Agarwal, Richard Simoni, John L. Hennessy, and Mark Horowitz. An evaluation of

directory schemes for cache coherence. In Proceedings of the 15th International Sympo-

sium on Computer Architecture, pages 280–289, June 1988.

[3] Altera Corporation. Out with Gate Counts, In with Logic Elements. Press Release, April

24, 2001.

[4] Altera Corporation. Custom Instructions for the Nios Embedded Processor. Application

Note AN-188-1.2, Altera Corporation, San Jose, California, September 2002.

[5] Altera Corporation. Excalibur Device Overview. Data Sheet DS-EXCARM-2.0, Altera

Corporation, San Jose, California, May 2002.

[6] Altera Corporation. Simultaneous Multi-Mastering with the Avalon Bus. Application Note

AN-184-1.1, Altera Corporation, San Jose, California, April 2002.

[7] Altera Corporation, San Jose, California. SOPC Builder PTF File Reference Manual,

September 2002.

108

Bibliography 109

[8] Altera Corporation, San Jose, California. Avalon Bus Specification Reference Manual, July

2003.

[9] Altera Corporation. Implementing Interrupt Service Routines in Nios Systems. Application

Note AN-284-1.0, Altera Corporation, San Jose, California, January 2003.

[10] Altera Corporation. Nios 3.0 CPU. Data Sheet DS-NIOSCPU-2.1, Altera Corporation, San

Jose, California, March 2003.

[11] Altera Corporation, San Jose, California. Nios Embedded Processor 32-Bit Programmer’s

Reference Manual, January 2003.

[12] Altera Corporation, San Jose, California. Nios Embedded Processor Software Development

Reference Manual, March 2003.

[13] Altera Corporation. Using SignalTap II Embedded Logic Analyzers in SOPC Builder Sys-

tems. Application Note AN-323-1.0, Altera Corporation, San Jose, California, September

2003.

[14] AMD. Am29LV065D. Data Sheet 25262, Advanced Micro Devices, Inc., Sunnyvale,

California, June 2004.

[15] Gene Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Com-

puting Capabilities. In AFIPS Conference Proceedings, number 30, pages 483–485, 1967.

[16] James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation Using a

Multiprocessor Simulation Model. ACM Transactions on Computer Systems, 4(4):273–

298, November 1986.

110 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

[17] Mikael Collin, Raimo Haukilahti, Mladen Nikitovic, and Joakim Adomat. SoCrates - A

Multiprocessor SoC in 40 days. In Conference on Design, Automation and Test in Europe,

Munich, Germany, March 2001.

[18] Susan J. Eggers. Simulation Analysis of Data Sharing in Shared Memory Multiprocessors.

Ph.D. Thesis, University of California, Berkeley, April 1989.

[19] Bradly Fawcett. PLD Capacity and “Gate Counting”. XCell, 23, Q4 1996.

[20] M. J. Flynn. Very High-Speed Computing Systems. In Proceedings of the IEEE, num-

ber 54, pages 1901–1909, December 1966.

[21] Carl Hamacher, Zvonko Vranesic, and Safwat Zaky. Computer Organization. McGraw-

Hill, Inc., New York, New York, fifth edition, 2002.

[22] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kaufmann Publishers, Inc., San Francisco, California, second edition,

1996.

[23] Raymond Hoare, Shenchih Tung, and Katrina Werger. An 88-Way Multiprocessor within

an FPGA with Customizable Instructions. In Proceedings of the 18th IEEE International

Parallel and Distributed Processing Symposium, page 258b, Sante Fe, New Mexico, April

2004.

[24] IDT. 71V416S/L Data Sheet. Data Sheet DSC-3624/09, Integrated Device Technology,

Inc., Santa Clara, California, January 2004.

[25] Intel Corporation, Santa Clara, California. MultiProcessor Specification - Version 1.4,

1997.

Bibliography 111

[26] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multi-

process Programs. IEEE Transactions on Computers, 28(9):690–691, September 1979.

[27] ARM Ltd. Website. http://www.arm.com/.

[28] Micron Technology. MT48LC4M32B2 Data Sheet. Data Sheet 128MbSDRAMx32 G.p65,

Micron Technology, Inc., Boise, Idaho, September 2003.

[29] Bilge E. Saglam and Vincent J. Mooney III. System-On-A-Chip Processor Synchroniza-

tion Support in Hardware. In Proceedings of the Design, Automation and Test in Europe

Conference 2001, pages 633–639, Munich, Germany, March 2001.

[30] John Paul Shen and Mikko H. Lipasti. Modern Processor Design: Fundamentals of Super-

scalar Processors. McGraw-Hill, Inc., New York, New York, beta edition, 2003.

[31] Hiroaki Takada, Shinya Honda, Reiji Nishiyama, and Hiroshi Yuyama. Hardware/Software

Co-Configuration for Multiprocessor SoPC. In Proceedings of the IEEE Workshop on

Software Technologies for Future Embedded Systems, pages 7–8, Hakodate, Japan, May

2003.

[32] X. Wang and S. G. Ziavras. Parallel Direct Solution of Linear Equations on FPGA-Based

Machines. In Proceedings of the 17th IEEE International Parallel and Distributed Process-

ing Symposium, pages 113–120, Nice, France, April 2003.

[33] David A. Wood and Mark D. Hill. Cost-Effective Parallel Computing. IEEE Computer,

28(2):69–72, 1995.

[34] Xilinx Incorporated. MicroBlaze RISC 32-Bit Soft Processor. Product Brief, Xilinx, Inc.,

San Jose, California, August 2002.

http://www.arm.com/

112 Cache Coherency for Symmetric Multiprocessor Systems on Programmable Chips

[35] Xilinx Incorporated. PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE De-

vices. Application Note XAPP213, Xilinx, Inc., San Jose, California, February 2003.

[36] Xilinx Incorporated. Virtex II Pro Platform FPGAs: Complete Data Sheet. Data Sheet

DS083, Xilinx, Inc., San Jose, California, December 2003.

[37] Kazuo Yoshida and Satoru Shingu. Research and Development of the Earth Simulator. In

Proceedings of the 9th ECMWF Workshop on the Use of High Performance Computing in

Meteorology, pages 1–13, 2000.

	Introduction
	Motivation
	Field-Programmable Gate Arrays
	Custom Logic Versus Programmable Logic
	Multiprocessors-On-Programmable-Chips
	Statement of Thesis
	Thesis Contributions
	Outline of Thesis

	Multiprocessing
	Symmetric Multiprocessing
	Cache
	Memory Coherency and Caches
	Memory Consistency

	Summary

	The Nios Processor and Avalon Bus
	Nios Embedded Softcore Processor
	Nios Cache Memory
	Nios Interrupt Processing
	Avalon Bus
	Summary

	Prototype Cache Coherency Module
	SMP Issues in Programmable Logic
	Uniquely Identifying Processors
	Comments on Cache Coherency with an Avalon Bus

	Architecture
	Hardware Cache Coherency Module
	Interrupt Service Routine
	Software Requirements
	Design Flaws
	Summary

	Second-Generation Cache Coherency Module
	Hardware Cache Coherency Module 2
	Slave Interface Module
	Registers Module
	Bus Snooping Module

	Interrupt Service Routine 2
	Summary

	Results and Analysis
	Development Platform
	Shared-Memory Test
	Multi-Write Test
	Results
	Analysis
	Summary

	Conclusions and Future Work
	System ISR Installer
	Prototype CCM VHDL
	Second-Generation CCM VHDL
	Shared-Memory Test Program
	Multi-Write Test Program
	Related Papers

