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Abstract

Antimicrobial peptides (AMPs) are relatively-short chain molecules that living organ-
isms use to defend themselves against a wide range of invading microorganisms such as
bacteria and viruses. They selectively bind to and kill microbes over host cells by permeabi-
lizing cell membranes or by inhibiting the biological functions of intra-cellular components.
Despite its significance in determining their cell selectivity, however, the cell-concentration
dependence of AMP’s membrane-perturbing activity has not been criticality examined.

In this thesis, we present a physical model for cell selectivity of AMPs, especially its
cell-concentration dependence. To this end, we use a coarse-grained model that captures
essential molecular details such as lipid composition (e.g., fraction of anionic lipids) and
peptide amphiphilicity and charge. In particular, we calculate the surface coverage of pep-
tides in the membrane-perturbing mode as a function of peptide and cell densities: those
that bind to the interface between lipid headgroups and tails. This allows us to extract
the minimum inhibitory concentration (MIC) and the minimum hemolytic concentration
(MHC) of the peptides. Our results show that both MIC and MHC increase as the cell den-
sity increases so that the peptide selectivity (given by MHC/MIC) decreases with increasing
cell density. Our results will help resolve conflicting interpretations of peptide-selectivity
experiments.
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Chapter 1

Introduction

1.1 Motivation and goals

During the last couple of decades, there has been a noticeable rise in bacterial resistance.

As a result, many antibiotics have become ineffective against an increasing number of

pathogenic microbes. Accordingly, much effort has been made to develop new antimicrobial

therapeutics. Antimicrobial peptides (AMPs) or their analogues have been considered as

promising candidates among others [2].

AMPs are key components of the innate immune system of almost all living organisms

from prokaryotes to humans [3]. While AMPs have constantly provided a first-line of de-

fence for the organisms against microbes and other invading pathogens, microbes have not

easily adapted to evade their lethal mechanism of action. In other words, AMP’s mech-

anism of action does not easily induce microbial resistance. Furthermore, these peptides

have a broad-spectrum antimicrobial activity. They have been shown to be active against

a wide range of bacteria, fungi, yeast, viruses, and even tumor cells. As a result, AMPs

are believed to have a great potential to solve the bacterial resistance problem, as they

present a novel class of antibiotics.

The antimicrobial or host defence peptides have stimulated considerable research not

only to understand the biology of the innate immune system, but also to design new
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therapeutic compounds [2, 4]. To date, a few AMPs, such as Pexiganan a magainin 2

analogue, have advanced to clinical trials [2]. The trials are, however, generally focused on

the topical application of these peptide therapeutics, because their cytotoxicity prevents

their direct injection into the bloodstream.

The main obstacle to the development of AMPs as therapeutics with systemic appli-

cations is that many natural AMPs are not highly selective between microbial and host

cells. For instance, well-studied peptides such as magainins, in spite of being active in

vitro, showed weak antimicrobial activity in animal models of infection [2]. As sufficiently

high doses needed to effectively kill the invading pathogens, they may kill the host cells.

“Good” AMPs should be both active (killing the microbes effectively) and selective (being

able to discriminate host cells).

Along this line, there have been many attempts to optimize the activity and selectivity

of AMPs by tuning their physiochemical properties such as peptide charge and hydropho-

bicity [5, 6, 7]. A comprehensive review can be found in Ref. [8]. Taheri-Araghi and Ha,

using a coarse-grained model of peptide-lipid systems, showed that antimicrobial activity

and selectivity of AMPs is optimized at a peptide charge Q̂ & 4 in a salt-concentration

dependent manner: the higher the salt concentration, the larger the Q̂ [9]. As pointed out

recently [8], however, it is not clear how cell concentrations are implicated in the selectivity.

Despite its significance, the cell selectivity has not been critically examined. In particu-

lar, how cell concentrations are implicated in the selectivity remains to be clarified. In this

thesis, we propose a physical model for cell selectivity of AMPs, which enables us to exam-

ine its dependence on cell concentrations. Obviously, partitioning of peptides among target

cells depends on the cell concentration, since different cells compete to recruit peptides. As

detailed in this thesis, this suggests that the activity and selectivity of AMPs diminishes

as the cell concentration increases. An important lesson of our studies presented here is

that cell selectivity analysis needs to be done with caution – with appropriate choices of

host and microbial cell concentrations.
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1.2 Antimicrobial peptides

AMPs are ubiquitously found in nature. All living organisms including animals, plants,

humans and bacteria use AMPs as part of their innate immunity to protect themselves

against the invading pathogenic microbes [10]. These gene encoded molecules are similar

to proteins in structure, however they are shorter in size (< 100 amino acids) and are

thus, so to speak, short proteins. The structural diversity among AMPs is so huge that

it is not easy to classify them based on their amino acid sequence. So far, more than

800 AMPs have been discovered, each with a different sequence [2]. Nevertheless, AMPs

are classified into four main classes based on the conformation they adopt upon binding

to lipid membranes: α-helical, β-sheet, loop, and extended peptides [11]. The first two

classes are the most abundant in nature. Examples include helical magainin and β- sheets of

tachyplesins isolated from the skin of the African clawed frog Xenopus laevis and horseshoe

crab hemolymph, respectively [12].

The physiochemical properties of proteins and peptides are related to the sequence

of the amino acids in their structure [13]. There are 20 standard amino acids in nature

with different characteristics, as listed in Table 1.1 (adapted from Ref [14]). Despite a

large sequence diversity, AMPs share some common characteristics such as a net positive

charge and amphiphilicity [8] . Their positive charge is due to the presence of several basic

residues in their structure such as lysine and arginine [10]. The cationic charge of AMPs is

known to be responsible for their cell selectivity toward microbes, because the membranes

of bacteria are more negatively charged than that of host cells.

AMPs have a distinct amphiphilic structure [10], that is, their sequence contains both

hydrophilic (polar) and hydrophobic (nonpolar) residues, located on opposite sides of the

molecule. The amphiphilicity of peptides enables them to interact effectively with lipid

membranes as they also have an amphiphilic structure. Indeed, hydrophobic interaction

between the hydrophobic face of the peptides and the hydrophobic core of the lipid mem-

brane is the dominant interaction between peptides and host cells [8]. In other words,

hydrophobicity of AMPs is one of the key parameters to control their cytotoxicity. Melit-

tin, discovered in bee venome, is more toxic to mamalian cells compared to magainin,
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Table 1.1: Amino acids and their physiochemical properties

Amino acid 3-letter name side-chain polarity net charge
Alanine Ala nonpolar 0
Arginine Arg polar +1

Asparagine Asn polar 0
Aspartic acid Asp polar -1

Cysteine Cys nonpolar 0
Glutamic acid Glu polar -1

Glutamine Gln polar 0
Glycine Gly nonpolar 0

Histidine His polar 0
Isoleucine Ile nonpolar 0
Leucine Leu nonpolar 0
Lysine Lys polar +1

Methionine Met nonpolar 0
Phenylalanine Phe nonpolar 0

Proline Pro nonpolar 0
Serine Ser polar 0

Threonine Thr polar 0
Tryptophan Trp nonpolar 0

Tyrosine Tyr polar 0
Valine Val nonpolar 0

which is believed to be due to its higher hydrophobicity. Several studies have also revealed

that reducing peptides hydrophobicity reduces their hemolytic activity [8, 15, 16].

1.2.1 Mechanism of action

In general, AMPs are known as bacteriocidal agents that kill the microbes as oppose to

bacteristatics, which just stop the growth of bacteria [10, 17]. Their cell-killing activity

is fast; some peptides such as magainin 2 and cecropin PI have been shown to kill the

bacteria in 15-90 minutes [17].

Despite extensive studies on AMPs, their exact microbial killing mechanism is not yet

clearly understood. However, it is known that they are pore formers that target the cyto-
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plasmic membrane of bacteria [10, 18]. Examples include magainin2, melittin, cecropin and

alamethicin. As discussed in reference [17], there are three main steps involved in bacterial

killing mechanism of AMPs: (i) attraction, (ii) attachment, (iii) membrane permeability.

Attraction

Peptides should be attracted to bacteria in order to kill them. In fact, this step is related

to one of the most significant features of antimicrobial activity of AMPs, known as cell

selectivity, the ability to recognize the bacteria in a crowd of host cells [10]. The under-

lying mechanism is electrostatic attraction between the peptides and the cell membranes

[17]. Peptides are typically positively charged. In contrast, the outer leaflet of the outer

membrane of bacteria is abundant in anionic lipids while host cells are almost neutral on

their outer layers [10]. Thus strong electrostatic attractions between the cationic peptides

and negatively charged bacterial membranes enables them to recognize bacteria as their

main target [19].

Attachment

Electrostatic interactions bring AMPs into close proximity of lipid bilayers. The distinct

amphiphilic structure of peptides then facilitates their hydrophobic binding to the cell

membrane [17]. They attach to the membrane to establish the hydrophobic interaction

between their hydrophobic side and the hydrophobic tails of lipids. According to the

thorough experiments of Huang et al. on interaction of AMPs with model membranes, there

are two binding modes for peptides on the membrane [20]. Their oriented circular dichroism

(OCD) studies showed that, at low peptide to lipid ratios P/L, peptides lie parallel to the

plane of the membrane [21]. They are indeed embedded in the interface between the

lipid headgroups and tails, and stretch the membrane as was observed in the membrane

thickness measurements [22]. They observed that membrane thickness reduces as the

concentration of the peptides increases [23]. Since the volume of the hydrophobic core of
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the membrane (lipid chains) is conserved, membrane thinning happens as a consequence of

its area stretch. Nevertheless, membrane thickness remains constant above some threshold

concentration of peptides P/L∗, which implies a different type of peptide-lipid interaction.

Furthermore, orientation of bound peptides changes above this threshold concentration,

and they are inserted perpendicular to the membrane (second binding mode)[22]. This

peptide reorientation is concomitant with the formation of transmembrane pores [22].

Membrane permeability

As the concentration of bound peptides increases, the peptide-induced stress in the mem-

brane also increases. Above the threshold P/L∗ the membrane is disrupted to relieve the

built-up tension. Although the exact membrane permeability activity of peptides is not

yet clear, some models have been proposed to explain how they disturb the membrane. In

what follows, we briefly discuss the models.

As summarized in reference [17], AMPs either form pores in the membrane or de-

teriorate the integrity of the membrane by micellization in a detergent-like way. Both

mechanisms eventually lead to cell death. Pore former peptides rupture the cell membrane

via two different types of pore: toroidal pores and barrel-stave pores [24]. Figure 1.1 shows

the different types membrane-disruption mediated by AMPs.

In toroidal pores, peptides are inserted perpendicularly into the membrane and induce

the lipid monolayers to bend continuously in such a way that the pore lumen is partly lined

by peptides and partly by lipid head groups [25]. In this type of pores, as seen in Fig. 1.1 the

charged (hydrophilic) side of the peptide faces the bilayer and lipid headgroups. Toroidal

pores are highly curved structures that are stabilized due to the presence of peptides in

the pore [26]. Magainin is one of the AMPs that forms toroidal pores in the lipid bilayer.

Magainin pores are large and each pore includes 4-7 magainins [17].

In contrast, there exists the barrel-stave pores, which are uniquely formed by the antimi-

crobial peptide alamethicin [17, 25]. These peptides align perpendicular to the membrane

and associate to form a bundle (much like a barrel of peptides), which is oriented parallel
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(a)

(b)

(c)

Figure 1.1: Illustration of different types of pores induced by α-helical peptides (adapted
from Ref. [1]) The hydrophilic side of the helical peptide is shown in blue and the hy-
drophobic side in orange. (a) In toroidal pores, the hydrophilic side of the peptide faces
the lipid bilayer and the hydrophobic side faces water. (b) In barrel-stave pores, the hy-
drophobic side of the peptide faces the lipid bilayer and the hydrophilic side is exposed to
water. (c) In the carpet model, the membrane is covered extensively by the peptides and
eventually micelles are created.

to the phospholipid tails. This transmembrane pore is lined by peptides only and, unlike

the toroidal pores, the hydrophilic regions of the peptides form the edges of the pore.

Barrel-stave pores are smaller than toroidal pores. The number of peptides in the pores is

estimated to be 3-11, depending on the bilayer lipid composition [17].

There is another AMP-induced membrane disruption mechanism called carpet model

[18]. In this model, peptides tend to reside parallel to the plane of the membrane. They

largely cover the surface of the membrane in a carpet-like manner. At high concentration

of peptides, they disintegrate the membrane and eventually form micelles similar to the

effect of detergents. Ovispirin is an AMP that uses this mechanism of action [17].
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(a) (b) (c)

Figure 1.2: Illustration of the different self-assembly structures of lipids. Once there is
enough lipids in solution, they self assemble in a shape-dependent manner: (a) The so-
called cylindrical lipids, such as PC, form bilayer, (b) inverted-cone shaped lipids like
lysolipids tend to form micelles, (c) cone-shaped lipids like PE form inverted micelles.

1.3 Cell membrane and lipid bilayer

Cells are the fundamental units of life. They are microscopically categorized into two

groups: prokaryotic and eukaryotic [13]. Bacteria are the best representatives of the first

group. The second group, eukaryotes, includes all the cells in animals, plants and fungi.

Prokaryotic cells are generally smaller than eukaryotes. In both types of cell there is a

membrane (cytoplasmic membrane) that encapsulates the cytoplasm and other intracellu-

lar components [27]. The membrane is mainly made of a lipid bilayer [13].

Lipids are amphiphilic molecules that consist of hydrophilic (polar) and hydrophobic

(nonpolar) components, usually referred to as lipid head group and lipid tails, respectively.

In aqueous solutions, they self-assemble into structures where the hydrophilic parts shield

the hydrophobic parts from water molecules. The preferred structure is determined by

size, shape, and the concentration of lipids [27]. As depicted in Fig. 1.2, it can be a lipid

bilayer, a micelle, or an inverted micelle. The most abundant lipids in all cell membranes
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are phospholipids. They have two fatty acid tails and also all of them have a phosphate

group in their headgroups. A schematic view of phospholipid molecules can be seen in

Fig. 1.2.

It is worth noting that the lipid curvature, which will be discussed in the third chapter,

is in fact related to the curvature of its preferred self-assembly. Lipids that tend to form

lipid bilayers are known to have a zero curvature. Positively and negatively curved lipids

prefer the micelle and the inverted micelle structures, respectively.

1.4 Bacteria

Bacteria along with eukaryotes and archae constitute the three major forms of life. They

are prokaryotic cells. Due to their small size, which is on the order of micrometers (µm),

they are often referred to as microorganisms. Based on their shapes, bacteria are divided

into three major groups: rods, spheres, and spirals.

As discussed previously, both bacteria and eukaryotes have a so-called cytoplasmic

membrane (lipid bilayer) that surrounds the cell. In eukaryotes, it is only this lipid bilayer

that separates the inside of the cell from the outside. However, in case of bacteria, there

is a cell wall on top the lipid membrane as well, which mainly acts as protection for the

cell. There are two major types of cell walls; based on the cell walls, bacteria are classified

into two groups: Gram-positive and Gram-negative [13]. A schematic view of different cell

walls is shown in Fig. 1.3. The so-called gram-staining property of bacteria is, in practice,

determined by their response to some test dyes.

For Gram-positive bacteria, the cell wall contains a thick layer of peptidoglycan, a

copolymer made of amino acids and sugars. Due to this peptidoglycan layer, they can

retain the violet dye used in gram-staining tests, and are thus called gram-positive.

The cell walls of gram-negative bacteria are made of an outer membrane as well as

a peptidoglycan layer. In other words, these bacteria have two membranes: the inner

membrane (cytoplasmic membrane) and the outer membrane (see Fig. 1.3). There is a

layer of peptidoglycan in between the two membranes which is thinner than that of the
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cytoplasmicI(inner)I
membrane

peptidoglycan

lipopolysaccarideI(LPS)

teichoicIacid

outer
membrane [

GRAM-POSITIVE GRAM-NEGATIVE

Figure 1.3: Schematic view of the membrane structure of Gram-positive and Gram-negative
bacteria. In both cases, there is a cytoplasmic membrane (inner membrane), which is
composed of phospholipids. However, Gram-negative bacteria have an outer membrane as
well, which its inner leaflet is made of phospholipids, while the outer leaflet is made of a
different type of lipids known as lipopolysaccharides.

gram-positive bacteria. Thus, they fail to retain the dye in the gram-staining procedure,

and are called gram-negative. The inner membrane is the plasma lipid membrane, mostly

made of phospholipids. The outer membrane has a somewhat different structure; the inner

leaflet is made of phospholipids, and the outer leaflet is comprised of another type of lipid

called lipopolysaccharide (LPS)[28].

Note that the main target of AMPs, in their microbe killing mechanisms, is the cyto-

plasmic membrane of bacteria. Thus, in the case of gram-positive bacteria, AMPs should

pass across the peptidoglycan layer to reach the membrane. For gram-negative bacteria,

however, they should pass across the outer membrane as well as the peptidoglycan layer

before they can interact with the cytoplasmic membrane.
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1.5 Overview of the thesis

The first chapter of this thesis is an introduction of the motivation and goals of this work.

It is then followed by a brief overview of antimicrobial peptides (AMPs), their mechanism

of action, structure of cell membranes, and bacteria.

In the second chapter, we describe the electrostatics for electrolyte solutions. The ana-

lytical tools to study the electrostatic interaction of such solutions, the Poisson-Botzmann

equation and its linearized form the Debye-Huckel equation, are discussed in this chapter.

The third chapter is dedicated to the coarse-grained semi-analytical model we devel-

oped to consider the implication of cell concentration in activity and selectivity of AMPs.

More specifically, using the Poisson-Boltzmann theory for charged surfaces, we study the

interaction of peptides with a demixable lipid membrane. We will discuss how considering

more than one lipid membrane, equivalent to considering a density of target cells, affects

the selective membrane-disruptive activity of AMPs. We then developed a single-binding

site approach to simulate peptide-membrane interactions. In this model, peptide bind-

ing is driven by a fixed binding energy and there is no interaction between the bound

peptides on the membrane. In the end, we compare the results of this model with the

results of the coarse-graining. Since the coarse-grained approach is mainly based on elec-

trostatic interactions, the comparison indicates the effect of electrostatic interactions in

the cell-concentration dependence of peptide activity and selectivity.
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Chapter 2

Electrostatics for electrolyte solutions

2.1 Poisson-Boltzmann theory

Electrostatic interactions play important roles in determining the structure and function of

biological systems in aqueous solution. For instance, the presence of multivalent counteri-

ons can induce condensation of negatively charged DNA molecules into ordered structures

[29]. In addition, electrostatic interactions often control molecular association between

charged objects. For instance, cationic antimicrobial peptides preferentially bind to mem-

branes carrying anionic lipids such as bacterial cell membranes [12]. The potency of these

peptides as therapeutic agents relies on this selectivity, as detailed in the next chapter.

In this chapter, we present Poisson-Boltzmann (PB) theory, a standard mean field ap-

proach to charged systems in an electrolyte solution. Here, our consideration is limited to

the simple case of a uniformly-charged surface interacting with mobile ions. Such a consid-

eration will be useful for developing an adequate theoretical approach to more complicated

systems introduced in the next chapter.

Any substance that dissolves into ions in a polar solvent like water is called an electrolyte

and the resulting ionic solution is called the electrolyte solution [30]. The electrostatic

interactions among charged molecules in an electrolyte solution are not solely determined
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by their direct Coulomb forces but are screened by the surrounding dissolved ions. An

anionic molecule, for instance, tends to be surrounded by cationic ions (e.g., Na+). The

anionic charge is thus “shielded” by an ionic cloud of opposite charge, forming the so-called

diffusive layer. As a result, the electric potential due to the anionic charge is screened and

weakened.

The equilibrium distribution of ions in solution is determined by the balance between

energy and entropy. In statistical mechanics, the distribution of the ions is obtained using

the Poisson-Boltzmann (PB) equation captures this at the mean-field level. It is a dif-

ferential equation that determines simultaneously the charge density and the electrostatic

potential at the same point inside the solution. It is basically derived from the Poisson

equation combined with the Boltzmann distribution function.

In electrostatics, the relation between the electric potential ψ(r) and the charge distri-

bution is given by the Poisson equation

∇2ψ(r) = −ρ(r)

ε0εw
=
−e
ε0εw

∑
i

zini (2.1)

where ρ(r) is the total charge density at r, ε0 the electric permittivity of vacuum and εw

the dielectric constant of the aqueous solution. The second equation describes the total

charge density in an electrolyte solution containing different ion species denoted by i. Each

ion has a number density of ni(r) and a charge of number −ezi with −e the electrostatic

charge and zi the charge (valence) number.

In statistical thermodynamics, ions in electrolyte solution are assumed to obey Boltz-

mann statistics. Thus, the density of ions at position r is related to the probability of

finding them at r which is given by Boltzmann factor.

ni(r) = n0
i exp(−eziψ(r)/kBT ) (2.2)

Where n0
i is the density of ion i at infinity (limr→∞ ψ(r) = 0). The exponential argument

indeed gives the electrostatic energy of the ith ion at r, with kB the Boltzmann constant

and T the temperature.
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By substituting ion distributions from Eq. 2.2 into the Poisson equation Eq. 2.1 we

obtain the well known Poisson-Boltzmann equation.

∇2ψ(r) =
−e
ε0εw

∑
i

zin
0
i exp(−eziψ(r)/kBT ) (2.3)

We can assume for simplicity that there is just one type of counterion with number density

of n+
0 and valence z+ and one type of co-ion with n−0 and z−. For such ionic solution the

PB equation is reduced to

∇2ψ(r) =
−e
ε0εw

(
z+n

+
0 exp(−ez+ψ(r)/kBT + z−n

−
0 exp(−ez−ψ(r)/kBT

)
(2.4)

In a 1:1 electrolyte solution such as NaCl, which is also the case in this thesis, we have

n+
0 = n−0 = n0 and z− = −z+ = −1. Eq, 2.4 is then further simplified as

∇2φ(r) = κ2 sinh[φ(r)] (2.5)

Where φ = eψ/kBT is the reduced electrostatic potential and κ is the inverse of Debye

screening length defined as κ2 = ( 1
λD

)2 = 8πe2n0/4πε0εwkBT . It is more common to write

κ2 = 8πlBn0 with lB the Bjeruum length defined as, lB = e2/4πε0εwkBT . In fact, the

Bjeruum length is the separation between two elementary charges in an ionic solution with

dielectric constant εw at which their electrostatic interaction is comparable to the thermal

energy.

2.2 The linearised PB equation: Debye-Huckel theory

When the charged bodies inside the solution are weakly charged (eψ(r)� kBT ) we can use

Taylor expansion to expand the PB equation Eq. 2.5 to the first order of φ i.e., sinh(φ) ≈ φ.

The resulting linearised form of the PB equation is known as the Debye-Huckel equation

∇2φ(r) = κ2 φ(r) (2.6)
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Here, φ(r) = eψ/kBT is the reduced potential, however, needless to say that the same

equation holds for the electric potential ψ(r) as well. This linear second order differential

equation is analytically solvable for different geometries. Let us consider the simple scenario

of an infinitely extended planar membrane with uniform surface charge density σ which

is depicted in Fig. 2.1. Due to the symmetric configuration of the membrane in the (x,

y) plane, the electric potential is just a function of z. Requiring zero potential at far

distances from the membrane (limr→∞ ψ(r) = 0), and a constant electric field on the

surface ∇ψ(0) = −σ/ε0εw, the solution of the Eq. 2.6 is

ψ(z) =
σ

ε0εwκ
exp(−κz). (2.7)

The effect of salt ions in the potential is seen through κ. Electrostatic potential is

exponentially decreasing due to the screening effect of the salt ions in the ionic solution.

As seen in Eq. 2.7, electrostatic interactions are effectively suppressed beyond the Debye

screening length (when κz > 1). The screening length is related to the salt concentration,

κ−1 = (8πlBn0)
−1/2. It varies from around 3 Å for 1 M of a (1:1) electrolyte (e.g., NaCl)

to about 1 µm for pure water (with H+ and OH− ions).

2.3 The Poisson-Boltzmann equation in planar geom-

etry

The Debye-Huckel theory is valid for low potential surfaces (smaller than 25 mV at room

temperature), but for highly charged surfaces the original PB equation (see Eq. 2.5) is

better suited than the DH theory. In general, the PB equation is a nonlinear equation

which is numerically solvable for different boundary conditions. It can, however, be solved

analytically for a planar geometry. As discussed in Ref. [31], the PB potential on the surface

of a planar membrane with surface charge density σ is given as

φ0 = 2 sinh−1
(

2 πσlB
κ

)
(2.8)
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 charges
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Figure 2.1: Charged membrane with negative surface charge density in a salty solution. The
planar membrane is infinitely extended in the (x, y) plane where its orthogonal cross section
normal to the y axis is illustrated here. Due to the presence of the charged membrane a
density profile of n±(z) is created for cations and anions. In the vicinity of the membrane,
the density of the counterions is increased while the density of the co-ions (like-charged
ions) is decreased.

where φ0 = eψ0/kBT is the reduced surface potential.

The advantage of having the surface potential is that we can now calculate the electro-

static free energy of the membrane F , using the so-called Debye charging process: in this

method, the free energy is given by the work that is done to charge up the membrane from

0 to its final surface charge density σ

F = A

∫ σ

0

ψ0(σ
′) dσ′ (2.9)

where ψ0 is the surface potential and A the area of the membrane. Using the surface

potential given in Eq. 2.8, the charging free energy per unit area of the planar membrane

is obtained as

Fe(σ) = σ φ0 −
κ

π lB

[
cosh

(
φ0

2

)
− 1

]
(2.10)

where Fe describes the total electrostatic free energy of a membrane which carries a surface
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charge density σ and is immersed in an ionic solution with screening length κ. Eq. 2.10

is one of the key equations throughout this thesis; in fact, it will be used to compute the

free energy of the membrane in our modelling . It is worth noting that entropy of the salt

ions and their contribution to the electrostatic energy is also incorporated in Fe. In other

words, calculation of the free energy using Debye charging method (Eq. 2.9) is equivalent

to the direct calculation of the membrane-solution system as

F =
ε0εw

2

∫
[∇ψ(r)]2dr + kBT

∫ [
n+ ln

n+

n0

+ n− ln
n−
n0

− (n+ + n− − 2n0)
]
dr (2.11)

Here, the first term gives the total electrostatic energy of the membrane-solution system

with ψ(r) the electric potential at r. The second term describes the entropy of the salt

ions. In this term, n+ (n−) is density of the cationic (anionic) ions and n0 density of the

salt ions far from the membrane at z = +∞ (ψ = 0 at z = +∞).

Equality of the two different methods to calculate the free energy given in Eq. (2.9)

and Eq. (2.11) can be easily shown using the DH theory. To do so, we consider a planar

membrane with low surface charge density similar to the one we already discussed in section

2.2, and calculate its free energy using DH theory in two alternative ways.

Let us first consider the Debye charging method. The DH potential for the planar

membrane in a salt solution is given in Eq. 2.7. The surface potential then reads ψ0(z =

0) = σ/(ε0εwκ). Substituting the surface potential into the charging free energy in Eq. 2.9

we have
FDC
A

=

∫ σ

0

σ

ε0εwκ
dσ =

σ2

2ε0εwκ
(2.12)

where FDC is the electrostatic charging free energy per unit area of the membrane.

Let us now compute the free energy of the planar membrane using the alternative

method given in Eq. 2.11; the two terms in the free energy (the electrostatic energy and

the entropy of the salt ions) are calculated separately. Using the DH potential for the

planar geometry in Eq. 2.7, the electrostatic energy of the system is given as

ε0εw
2

∫
[∇ψ(r)]2dr =

ε0εw
2
A

∫ ∞
0

[
− σ

ε0εw
exp(−κz)

]2
dz =

Aσ2

4ε0εwκ
(2.13)
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To calculate the entropy of the salt ions, we need to know their spatial distribution

(density as a function of position r). As discussed in Sec. 2.1, the density of the cations

and anions is related to their Boltzmann weight

n±(z) = n0 exp(∓eψ(z)/kBT ) (2.14)

where ψ(z) is the electric potential; here we use the DH potential in Eq. 2.7. Using

their number densities n±(z), the entropy of the salt ions is calculated as (the details of

the calculation is found in appendix A)∫ [
n+ ln

n+

n0

+ n− ln
n−
n0

− (n+ + n− − 2n0)
]
dr =

Aσ2

4ε0εwκ
(2.15)

The electrostatic free energy of the membrane-solution system is now obtained by sum-

ming up the electrostatic energy in Eq. 2.13 and the entropy of the salt ions in Eq. 2.15.

F

A
=

σ2

4ε0εwκ
+

σ2

4ε0εwκ
=

σ2

2ε0εwκ
(2.16)

which is equal to the free energy we computed using Debye charging method in Eq. (2.12).

This equality assures us that the contribution of the salt ions in free energy is included

in the charging free energy. In principle, we can expand this conclusion to the original

nonlinear PB theory and the charging free energy in Eq. (3.6).

It is worth noting that PB and DH theories rely on some important assumptions: i)

the solvent is considered as a continuous medium with a constant electric permittivity

(dielectric constant), ii) the finite size of the ions is ignored and they are assumed as

point charges, iii) the only interactions between charged bodies is taken to be Coulomb

interactions, iv) any dipole-dipole interaction is neglected, v) the density profile of all ions

ni(r) is a continuous function of r. Another significant note is that PB and DH approaches

neglect the local fluctuations of the charge densities and are thus called mean field theories.

These mean field approaches are, in general, good approximations at most physiological

conditions specially for monovalent ions. In the case of multivalent ions, however, the

18



mean field PB should be modified to account for charge-charge correlations because they

are important for multivalent ions.

In this thesis, we deal with a symmetric (1:1) electrolyte solution, but on the membrane

we consider lipid demixing which is a consequence of charge-charge correlation. In order to

incorporate the lipid demixing, we have adopted a non-trivial way within the PB framework

which will be discussed in greater detail in the next chapter.
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Chapter 3

Effect of cell concentration in activity

and selectivity of antimicrobial

peptides

3.1 Introduction

Many cationic peptides such as magainin 2 [26] and melittin [32] (two of the best studied

AMPs) kill bacteria in an all-or-none concentration-dependent manner by forming pores

on the bacterial membrane. But some peptides employ intracellular killing mechanisms

against microbes [17]. For instance, dermaseptin inhibits nucleic-acid synthesis [17]. Nev-

ertheless, membrane lytic peptides are of significant interest, because they use a non-specific

mechanism [12, 10] and thus do not easily induce bacterial resistance. Acquiring resistance

would require the “expensive” work of redesigning lipid membranes [10].

One significant feature of AMPs is their cell selectivity, which enables them to prefer-

entially bind to and kill microbes over the host cells [4, 12]. AMP’s cell selectivity is often

measured by the so-called therapeutic index: the ratio between their minimum hemolytic

concentration (MHC) and their minimum concentration at which bacterial growth is in-

hibited (MIC) [5]. The higher the therapeutic index, the more effective the AMP would
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be as an antibiotic. In general, peptide selectivity (therapeutic index) is improved by de-

creasing their hemolytic activity (higher MHC) or enhancing their bacterial activity (lower

MIC). Accordingly, there have been many attempts to find the parameters that control

the selectivity of AMPs (a comprehensive review can be found in [8]).

Despite its significance in determining the cell selectivity, however, the cell-concentration

dependence of AMP activity has not yet been criticality examined. As pointed out in ref-

erence [8], some confusion remains to be resolved, since the selectivity has often been

measured with different densities of host cells and bacteria. Host cell densities used in

some hemolytic assays are sometimes three orders of magnitude larger than those of bac-

teria [8]. As a result, the selectivity is overestimated. Therefore, a systematic under-

standing of how cell densities would affect the activity and selectivity of AMPs is highly

desirable. Here we offer guiding principles that underlie the cell-concentration depen-

dence of AMP’s membrane-perturbing activity and selectivity. To this end, we present a

coarse-grained model that captures such molecular details as lipid composition and peptide

amphiphilicity-charge.

In this work, the lipid composition of a membrane refers to a varying fraction of anionic

lipids. Cationic peptides interact with such a membrane electrostatically or hydrophobi-

cally. They can form a diffusive layer like multivalent cations or can insert into the interface

between headgroupds and lipid tails in a parallel orientation (with respect to the inter-

face); at high concentrations, they will eventually orient themselves perpendicularly to

form pores [22].

Despite uncertainties about AMP’s microbe-killing mechanisms, their interaction with

membranes deserves much consideration, since the membrane is the first barrier to cross.

Here the main focus is on clarifying how the electrostatic “discrimination” of cationic

AMPs between microbial and host cell membranes varies with cell densities, using the

aforementioned simplified model of peptide-membrane systems. Our effort will help un-

derstand experiments, especially with model membranes, and resolve conflicting views on

cell or membrane selectivity of AMPs [8].

In this chapter, we first develop a free energy approach to the model system and examine
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the effect of cell densities on the cell selectivity of AMPs. Results for MHC and MIC are

discussed in detail and the cell-density dependence of the selectivity is analysed.

3.2 Molecular model

Although the exact mechanism of action of AMPs has not been fully understood yet,

the main physiochemical properties of peptides required for bacterial discrimination and

membrane-disruption have been identified as follows.

i ) Cationic charge, The majority of AMPs possess high levels of cationic residues

in their primary amino acid sequence which enables them to strongly interact with

anionic membrane of bacteria [33]. This cationic charge is also the key tool for cationic

AMPs to specify the anionic membrane of bacteria in a crowd of host cells with almost

neutral membranes [10].

ii ) Amphiphilicity, Another common feature of AMPs is their amphiphilic structure

that is their amino acid sequence constitutes both polar (hydrophilic) and non polar

(hydrophobic) residues [33]. This structural feature gives antimicrobial peptides the

ability to interact more efficiently with the phospholipid membranes having also an

amphiphilic structure (hydrophilic lipid head group and hydrophobic tail).

We have captured these essential properties of AMPs in our coarse-graining. Our peptides

are characterized by a cationic charge Q, and their hydrophobicity is appreciated by a

hydrophobic energy (denoted as εI) contributing in the free energy of the system that is

discussed later in this chapter.

Peptides are modelled as positively charged disks on the membrane and as random coils

in bulk. In real lipid-peptide systems, peptides are unstructured in the electrolyte solution

and they are folded to a secondary structure (very often an α-helix) upon binding to the

membrane [34]. The reason is that binding of peptides to membranes is associated with an

environmental change from the aqueous medium (water) to the hydrophobic phase of lipids.
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Formation of an α-helix is generally easier in a hydrophobic environment than in water,

because water destabilizes the intra-molecular hydrogen bonds. Thus, peptide binding is

accompanied by a conformational transition, from random coil in water to an α-helix on

the membrane [35, 34]. In our coarse-graining, the tendency for helical structure formation

on the membrane is incorporated into the free energy gain for hydrophobic interaction with

lipid tails, εI , since both of them are promoted in a lipidic environment.

In our approach, the lipid membrane is considered as a two-dimensional binary fluid

mixture of anionic (e.g,. PG) and zwitterionic (neutral) lipids such as PC. Acidic lipids

carry one electrostatic charge, -e, and for simplicity all the lipids are assumed to have the

same head group area, al. Moreover, membrane proteins are not included in our coarse-

graining. The surface charge density of the membrane is determined by the average fraction

of anionic lipids denoted by ᾱ, that is more specifically, number of charged lipids/total

number of lipids (0 < ᾱ < 1). In the absence of bound peptides, neutral and charged

lipids are homogeneously mixed on the membrane. In this state, membrane is treated as a

surface with uniform charge density of σ = −e ᾱ/al with e the elementary charge and al the

lipid headgroup area. However, biomembranes are actually fluid mixtures of lipids where

lipids can move laterally in the plane of the membrane if needed. In the case of peptide

binding on the membrane, lipid mobility allows anionic lipids to migrate to the vicinity of

the cationic peptides. Thus, concentration of the charged lipids becomes higher in close

proximity of the bound peptide so as to optimize the electrostatic interaction strength

between the peptide and the membrane. This redistribution of lipids is known as lipid

demixing [36]. In our approach we have treated this lipid demixing in a non-trivial way

which will be elaborated later in this chapter.

The membrane is immersed in an ionic solution containing monovalent anions and

cations (e.g., Na+and Cl−), with dielectric constant εw. It is basically the dielectric constant

of water as the main component of this salty fluid. The electrolyte solution is in contact

with a salt reservoir such that the salt concentration in bulk is fixed at n0. Furthermore,

the solution contains both peptides and membranes at finite concentrations.

Our approach considers two modes of binding for peptides on the membrane: Surface

adsorption and hydrophobic insertion indicated by mode S and mode I, respectively. Pep-
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Figure 3.1: Illustration of peptides in different binding modes on the lipid bilayer. Pep-
tides in binding mode I are inserted into the interface between lipid head group and tails.
Peptides in binding mode S are electrically bound to the surface. In symmetric binding,
peptides are evenly distributed between the inner and outer monolayers.

tides in binding mode S, are just electrically bound to the membrane where they form a

diffuse layer. As shown in Fig. 3.1 they lie parallel to the plane of the membrane facing

their hydrophilic charged side to the polar head group of lipids. Peptides in the state I

are inserted into the lipid head group-tail interface exposing their hydrophobic part to the

hydrophobic core of the membrane.

The main focus of this thesis is on the peptides in binding mode I, because they have

a major role in the membrane disruption. They are inserted in the interface between lipid

head groups and hydrophobic tails and consequently induce mechanical deformation in the

membrane that, under the right conditions, leads to membrane rupture. Nevertheless, we

consider the electrically bound peptides (in binding mode S) as well, since they affect the

concentration of the peptides in binding mode I through energetics. Peptides in mode S

compete with those in mode I to attract anionic lipids to their vicinities. This competition

due to limited number of lipids on the membrane, as well as peptide-peptide repulsion

between the peptides in different binding modes, influences the density of membrane-

perturbing peptides (in mode I). Hence, the existence of peptides in binding mode S can
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not be neglected.

3.3 Free energy calculation and Wigner-Seitz Cell ap-

proximation

In order to calculate the free energy of our peptide-membrane system, we have used a

mean-field scheme where every bound peptide defines a circular cell, on the membrane,

and the total free energy is the summation of the free energy of individual cells. The total

number of the cells is equal to the number of the bound peptides on the membrane.

As evidenced in experimental works, the density of bound peptides is typically high

enough that peptide-peptide interactions cannot be neglected [37, 38]. In fact, once there

are a large number of peptides on the membrane, there is accordingly a stiff ‘competition’

between bound peptides to attract anionic lipids to their vicinities. Since the membrane

is not an unlimited source of anionic lipids, the aforementioned competition results in

an effective repulsion between like-charged peptides on the membrane. In order to mini-

mize the electrostatic repulsion, peptides are believed to form a hexagonal lattice on the

membrane [9]. Following the same idea, we have adopted a hexagonal lattice model for

peptides bound onto the lipid bilayer. Based on this assumption, peptides on the mem-

brane, regardless of the binding mode they are in, define a two-dimensional Wigner-Seitz

cell (WSC) with radius R as depicted in Fig. 3.2. However, considering a circular WSC for

peptides on the membrane is justified by the fact that biological membranes are actually

fluid, and bound peptides can move on the plane of the membrane (especially when lipid

tails are at the liquid phase) [9]. Therefore, any bound peptide on the lattice, on average,

experiences a radially symmetric distribution of other bound peptides on the membrane

which is captured in a round WSC for each peptide.

The Wigner-Seitz cell model has been widely used to describe the distribution of charged

particles on charged surfaces. May, et al. have used such a cell model to describe the

protein-protein and protein-lipid interactions of charged proteins (modelled as charges

spheres) on the mixed lipid membranes [39]. Taheri-Araghi and Ha have also used this

25



method to consider the interactions of disk-shaped peptides (model of cationic AMPs)

with each other and with the lipid membrane [9]. Considering the WS cell scheme for the

distribution of charged peptides on the membrane is an approximation which is valid in

two limiting cases: when the surface density of bound peptides is so low or when there are

a large number of them on the membrane. In the former, peptide-peptide interactions are

negligible and the system is reduced to a single peptide on the membrane. For such systems,

there is no constraint on the arrangement of the bound peptides and any geometrical

distribution works fine for the peptides on the membrane. At very high surface density of

peptides, lateral interactions between peptides on the membrane are pronounced and they

tend to arrange themselves into a hexagonal lattice on the membrane. In the intermediate

level, however, accuracy of the cell model is reduced due to the lateral fluctuations of the

bound peptides.

Here, we have adopted a semi-analytical approach to compute the free energy. More

specifically, we use an analytical method to calculate the free energy of the WSC as a

function of its radius R and peptide-membrane parameters.

In our cell model, each WS cell contains a uniformly charged disk (model of a peptide)

with radius Rp at its center (see Fig. 3.2). The thickness of the peptides is suppressed,

and in fact our approach can be extended to other geometries provided the thickness is

neglected. The disk peptide is either adsorbed on the surface or inserted into the lipid

headgroup-tail interface. All the cells, regardless of the binding mode of the peptide at

their center, have the same area, Aws, defined as

Aws =
1 + σI AP
σI + σS

(3.1)

where, AP is the area expansion per inserted peptide, and σI(σS) the area density of

the peptides in binding mode I (S). Insertion of the membrane perturbing peptides (in

binding mode I) at the interface between lipid headgroups and tails stretches the membrane

analogous to the effect of an external tensile force, which will be elaborated later in this

chapter. The membrane area increase is related to the density of peptides in binding

mode I, ∆A/A = σI AP , with A the area of the membrane. In other words, if all the
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Figure 3.2: Illustration of peptides hexagonal lattice on the surface (top view)

bound peptides are in binding mode S (σI = 0), the area of the membrane will not change

compared to that of the bare membrane (no bound peptide). However, the induced area

expansion is evenly distributed within the whole plane of the membrane and thus the

area of the WSC, for all bound peptides, is defined as the the total stretched area of the

membrane divided by the total number of bound peptide as it is seen in the Eq. (3.1). Note

that Aws is not only a function of the total number of bound peptides but also the fraction

of peptides in binding mode I. The more peptides in binding mode I, the higher the degree

of membrane expansion and consequently the larger the area of each WS cell would be.

The only difference between cells with peptides at different binding modes is in their

total number of lipids. There are more lipids in a cell consisting of a surface adsorbed

peptide than that of an interface inserted one (in mode I). The reason is that penetration

of the peptide in binding mode I to the lipid headgroup-tail interface will push away the

surrounding lipids as schematically shown in Fig. 3.3

It is worth noting that in the cell model, peptide-peptide electrostatic repulsion on the

membrane have been taken into account in the radius of the WSC, R2 = Aws/π, explained

as follows. Energetically unfavourable repulsion interactions have a negative effect on

27



Lipids
(A) (B)

 Peptide

Figure 3.3: Illustration of peptide binding modes on the membrane (side view): (A) mem-
brane inserted (binding mode I), (B) surface adsorbed (binding mode S).

peptide binding. In other words, the higher the inter-peptide electrostatic repulsion, the

lower the number of bound peptides would be on the membrane which, according to the

Eq. (3.1), corresponds to a larger radius for the WS cells. Therefore, smaller radii for the

cells imply weaker repulsive interactions between bound peptides.

Our cell model also considers lipid rearrangement upon peptide binding, which is dis-

cussed in detail in the next section.

3.3.1 Lipid demixing

Membranes are fluid mixtures of anionic lipids which can move in the plane of the mem-

brane and respond to peptide binding. When a cationic peptide binds to the membrane,

anionic lipids are affected by its electric field and, because of their mobility, move to-

wards the bound peptide to neutralize its charge and minimize the energy of the system.

As discussed previously, this electrostatically-driven lipid rearrangement in the vicinity of

bound peptides is called lipid demixing. Deviation of lipids from their homogeneous dis-

tribution, in lipid demixing process, is accompanied by an entropy penalty. The extent of

lipid rearrangement around the bound peptide is indeed determined by the balance of the

electrostatic energy gain and the entropy penalty of lipid demixing. In membranes with
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very low surface charge density (e.g., ᾱ = 0.05) the demixing entropy penalty of lipids

dominates the electrostatic energy gain especially for peptides with low charge density and

thus lipid demixing is not very pronounced. In contrast, for membranes with higher charge

density where for instance 20 percent of lipids are charged, lipid demixing has a significant

role in peptide binding [39].

In our approach, as illustrated in Fig. 3.4, we assume that each WS cell is divided into

two main regions: (i) Zone 1 consisting of the bound peptide and surrounding lipids with

total area of As and α1 fraction of anionic lipids. (ii) The second region, zone 2, which

constitutes lipids only with α2 ratio of anionic to neutral lipids.

If lipids are ideally mixed and the local charge modulation of lipids around the bound

peptides is neglected, α1 and α2 will be the same and equal to the average fraction of

charged lipids ᾱ. However, in the presence of lipid demixing, electrostatic migration of

anionic lipids towards the bound peptide yields a higher fraction of charged lipids in the

vicinity of the peptide, i.e., α1 > α2. Nevertheless, these two quantities are not totally

independent of each other and are found by minimization of the free energy subject to the

constraint that the total number of charged lipids in each WS cell is conserved:∫
Aws

(αi − ᾱ) da = 0 (3.2)

This integral is carried over the surface of the WSC. However, the lower limit depends on

the binding mode of the peptide at the centre of the cell, which is 0 or Ap for adsorbed and

inserted peptides, respectively. In the above integral, ᾱ is the average fraction of charged

lipids and αi indicates the fraction of anionic lipids in each zone, i.e., (i = 1, 2). Note that

αi of each region depends on the binding mode of the peptide as well, such that considering

the α1 as the independent variable, α2 is outputted from the above constraint, as follows

α2I =
ᾱ (Aws − Ap)− α1I (As − Ap)

Aws − As

α2S =
ᾱ Aws − α1S As

Aws − As
(3.3)
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(A) (B)
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Zone 2Zone 1 Zone 2 Zone 1 Zone 2

Figure 3.4: Schematic view of zone 1 and zone 2 of the WSC in the semi-analytical calcula-
tions. (A) The peptide at the center of the WS cell is interfacially bound to the membrane
(binding mode I). (B) The bound peptide is adsorbed onto the surface (binding mode S).
There are less number of lipids in Zone 1 for a peptide in the binding mode I compare to
that of in the binding mode S.

Here, α2I (α2S) is the ratio of charged lipids in zone 2 of a WSC with a peptide at its center

in binding state I (S). As is the area of the zone 1 and Ap is the area occupied by a bound

peptide.

The area of the zone 1, As, is in principle determined by the peptide area and the

area occupied by the surrounding lipids that effectively interact with the peptide. The

area of this effective interaction region around the bound peptide, is read from the two-

dimensional Debye screening length which was introduced by Velazquez and Blum [40]:

κ−12 = al/2πlBᾱ, with al the lipid head group area, lB the Bjerrum length and ᾱ the

average fraction of anionic lipids. Based on their theory, only lipids within this screening

length interact with the bound peptide effectively. Therefore, for a disk-like peptide of

area Ap = πR2
p, zone 1 has the area of As = π(Rp + κ−12 )2.

All WS cells, irrespective of the binding mode of the peptide, have the same area for the

zone 1, As, but different number of neutralizing lipids in this zone. Insertion of a peptide

into the membrane would naturally push away the lipids and thus there are less lipids in

the zone 1 of a WSC with a peptide in binding mode I compared to that of a peptide in

binding mode S. Consequently, charge neutralization is stronger for the latter as seen in

the Fig. 3.4.

For a bound peptide with cationic charge Q, the charge density of the zone 1 depends
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on the peptide binding mode as following

σ1S =
Q

As
− α1S

al

σ1I =
Q

As
− α1I (As − Ap)

al As
(3.4)

where, σ1S (σ1I) is the charge density of the zone 1 (in units of e) of a WS cell containing

a peptide in binding mode S (I) and al is the lipid head group area.

Planar charge density (in units of e) of the zone 2 which basically constitutes the bare

membrane reads

σ2i = − α2i

al
(3.5)

where α2i is the fraction of anionic lipids in the second zone. As described in Eq. 3.3, it is

defined based on the binding mode of the peptide at the centre of the cell (i= I, S).

Given the charge density of both regions, we can compute the electrostatic free energy

per unit area of each zone using the Poisson-Boltzmann expression for a uniformly charged

surface. This electrostatic energy that was already discussed in chapter 2 has the following

form

Fe(σ) = σΨ0 −
κ

π lB

[
cosh

(
Ψ0

2

)
− 1

]
(3.6)

with Ψ0 the electrostatic potential on the surface defined as

Ψ0 = 2 sinh−1
(

2πσlB
κ

)
(3.7)

The starting point in our semi-analytical calculations is the total free energy of the WS
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cell, Fws, that is written as

Fws
kBT

= As Fe(σ1) + (Aws − As)Fe(σ2) + εI δIi

+ L1

[
α1 lnα1 + (1− α1) ln(1− α1)

]

+ L2

[
α2 lnα2 + (1− α2) ln(1− α2)

]
. (3.8)

The first two terms describe the electrostatic free energy of the WS cell where the

electrostatic charging energy of each zone is given by Eq. (3.6). For WS cells containing a

peptide in binding mode I, there is a free energy gain associated with hydrophobic insertion

of the peptide, which is denoted by εI in the third term. This is indeed the parameter

that controls hydrophobic binding of peptides in our model. There is a delta function in

the third term because for those peptides that are electrically bound to the membrane,

i.e., i = S, there is no hydrophobic energy contribution to their binding energy. The last

two terms account for the entropy contribution of lipid rearrangement around the bound

peptide, with L1 (L2) the total number of lipids in zone 1 (2).

Note that the entropy of salt ions and their contribution to the electrostatic energy

is taken into account in the free energy of the WS cell, Fws, through the charging free

energy of each zone, Fe (the relevant discussion is found in Sec. 2.3). Moreover, there is

no contribution from the hydrophobic region of the bilayer and charged particles on the

other side of the membrane in our free energy. In fact, in our calculations, the interior

of the membrane is decoupled from the electrolyte solution, and electric field does not

penetrate into the hydrophobic core of the membrane. This assumption is valid as long as

εoil/εw � d/λD. The thickness of the lipid bilayers, d, is about 40 Å and their dielectric

constant εoil is around 2. In our system, the membrane is embedded in an electrolyte

solution with dielectric constant εw = 80. The Debye length (λD) is taken to be 10 Å

as it is the typical screening length under physiological conditions. For such choice of

parameters the decoupling condition is fulfilled. Thus, we can simplify the calculations by
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presuming that there is no interaction between the peptides and salt ions in one side of the

membrane and the other ions and charged particles on the other side of the membrane.

This is equivalent to treating the membrane as an infinitely thick insulator where we can

safely ignore the effect of dielectric discontinuity and the free energy associated with the

lipids and ions on the other side of the membrane.

In our mean field scheme, the free energy of a peptide on the membrane is given by the

WS cell free energy, Fws, however the adsorption or insertion free energies are calculated

with respect to the free energy of the peptide in bulk

F = Fws − Fp (3.9)

where Fp is the free energy of the peptide in bulk, which will be described in Sec. 3.3.2.

Using the free energy of a WS cell with a peptide in binding mode I (S), we can obtain the

corresponding insertion (adsorption) free energy.

Peptides in bulk are modelled as random coils in our approach. Next section is dedicated

to this part of our modelling.

3.3.2 Random coil peptides in ionic solutions

Peptides are basically polymers with amino acids as their building blocks, or monomers.

However, charged polymers (that is the case for cationic peptides) belong to a specific

category of polymers known as polyelectrolytes. When dissolved in a polar solution like

water, these charged polymers (peptides) adopt a random coil structure basically because

of the feasibility of the hydrogen bond formation with water molecules.

The main difference between charged polymers (polyelectrolytes) and neutral polymers

is in the electrostatic interactions that are absent in the latter, but play an important role

in energetics of the former. In the case of positively charged polymers such as our cationic

peptides, the Coulomb repulsion between the charges along the chain tends to expand it.

However, this coil expansion is opposed by the entropy that prefers a compact structure

with more configurational degrees of freedom. The size of the polyelectrolyte chain is then
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determined by the balance of electrostatic interactions and entropy. For polyelectrolytes

in an ionic solutions, there is also electrostatic interactions between the back bone charges

and the salt ions of the solution. Salt ions promote chain compaction by screening the like

charges and thus reducing their electrostatic repulsion. In fact, in the absence of salt ions,

highly charged polymers will adopt a fully extended conformation in solution.

Let the polyelectrolyte molecule have N monomeric units each with length b. In the

Kuhn formalism of polyelectrolytes that we are going to use here, N is the number of Kuhn

segments and b is the Kuhn length. Monomer-monomer interactions in real polymers can

be ignored beyond this length [41]. That is, real polymers can be treated like an ideal

freely jointed chain if they are considered as a collection of N Kuhn segments each with

length b. The polyelectrolyte is carrying a cationic charge Q and is immersed in a (1:1)

electrolyte solution with Debye length λD.

The free energy of this cationic coil in the ionic solution consists of three main terms:

1) configurational entropy of the chain, 2) attractive interactions between polymer charges

and counterions, 3) electrostatic repulsion between the cationic charges on the polymer.

Fcoil = Fconf + Fatr + Frep (3.10)

The configurational entropy of the polyelectrolyte coil is a function of its size which is

expressed by the end-to-end distance, Ree, as following [42]

Fconf =
3

2
kBT

R 2
ee

Nb 2
(3.11)

where kB is the Boltzmann constant and T is the temperature.

Electrostatic interactions are computed within Debye-Huckel framework. Following

Ref. [43] we use a simplifying assumption to calculate the electrostatic interactions that

is more valid at high salt concentrations. For not too low salt concentration where the

Debye screening length is small compared to the dimension of the polymer, we can assume

that each charge on the chain is surrounded by a cloud of counterions in the form of a

sphere of Debye radius. We can now apply the Debye charging method to compute the
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electrostatic interaction of charges with their surrounding counterions. In other words,

we charge up our polymer in the ionic solution to its final charge Q and calculate the

corresponding charging free energy. Note that the salt ions in the ionic solution are not

involved in the charging process. As polymer is charging, the counterion spheres, which

are also called ionic atmospheres in the DH theory, are formed around the back bone ions

[44]. The free energy related to the formation of each ionic atmosphere is indeed the Debye

charging energy of a point charge in an ionic solution which is known in the DH theory

[45]. Therefore, the second term in the free energy of the coil Fcoil is given as

Fatr = − Qκe2

8πε0εw
(3.12)

where κ is in the inverse of Debye length, e the elementary charge and εw the dielectric

constant of the salt solution. This free energy in units of kBT can be written as a function

of Bjerrum lengh lB = e2/(4πε0εwkBT ) as following Fatr/kBT = −Qκ lB/2.

The repulsive interactions between backbone charges are now screened due to the pres-

ence of the ion atmospheres. These intrachain interactions are calculated for a fixed end-

to-end distance. Let us consider the i-th and j-th charge on the polyelectrolyte that are m

segments apart along the chain. Within the DH theory, their repulsive energy is given as

u ij
kBT

=
lB exp (−κ rij)

rij
(3.13)

where rij is the variable distance between the charges dependent on the molecular config-

uration. However, for any two pair of charges on the polymer we should take an average

on all the possible values of r to find their average interaction energy

ū ij =

∫ ∞
0

W (r;Ree,m)uijdr (3.14)

with W (r;Ree,m) the distribution function for the probability of having a distance r

between two charges that are m Kuhn segments apart along a chain with end-to-end

distance Ree. The total repulsive energy of the polyelectrolyte is now obtained by summing
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up the contributions from all possible pair of charges (the detailed derivation can be found

in Ref. [43]). Thus, the last term in Fcoil is written as

Frep
kBT

=
Q2 lB
Ree

ln
(

1 +
6Ree

κNb2

)
(3.15)

Including all the three contributions, the total free energy of the charged coil per units

of kBT is
Fcoil(Ree)

kBT
=

3

2

R 2
ee

Nb 2
− Qκ lB

2
+
Q2 lB
Ree

ln
(

1 +
6Ree

κNb2

)
(3.16)

This energy is just a function of polymer end-to-end distance, Ree. The equilibrium

size of the polymer (given by R eq
ee ) is found by minimization of the free energy in Eq. 3.16

with respect to R ee. The free energy of the polymer at equilibrium will then be Fcoil(R
eq
ee)

which is indeed the peptide free energy in bulk Fp that we have used in Eq. 3.9

3.3.3 Total free energy of the peptide-membrane system

So far we have calculated the electrostatic free energy of a WS cell containing a peptide,

as well as the free energy of a peptide in bulk, however peptide binding is associated with

some other effects that are not included in the WSC energy in Eq. 3.8. One of these effects

that does not depend on the electrostatic interactions is the mechanical deformation of

the membrane induced by bound peptides. In our approach, peptides in binding state S

that are just adsorbed to the head group of lipids, unlike those that bind to the interface,

do not induce any mechanical deformation to the membrane. Peptides in binding state I

that are inserted at the interface between the head group of lipids and their hydrocarbon

chains will then introduce an extra area to the interface, AP , which is concomitant with

a local deformation in the membrane. When bound to the interface, the peptides push

the lipids away and form gaps underneath in the hydrocarbon core of the membrane (see

Fig. 3.1). Lipid tails bend toward the hydrophobic side of the peptide to fill the gap,

and consequently there is a local membrane thinning and bending. The corresponding

range of local deformations has been estimated to be ξ = (16h2KC/KA)1/4 where h is the

36



hydrocarbon thickness of the lipid bilayer, KC the bending modulus and KA the stretch

modulus [46]. If peptide spacing (distance between bound peptides that is 2R in our

model) is smaller than the range of deformations (ξ), the local deformations by individual

peptides on the membrane overlap. In this limit, the membrane thickness decreases almost

uniformly or equivalently the membrane area increases almost uniformly.

In our calculations, we assume the uniform membrane deformation induced by peptide

binding, which is justified by the high concentration of peptides on the membrane. Intro-

ducing AP as the area increase due to binding of one peptide in the I state, the fractional

area stretch in the membrane is then written as ∆A/A = σI AP . The area expansion

induces a stress to the membrane similar to that of an external tensile force. In fact,

the peptide-mediated area expansion could be considered as a tension on the membrane

[21, 20]. The peptide-induced tension on the membrane is sometimes called an internal

tension, simply because it is not due to an external force [46]. Analogous to an external

tension the internal tension in the membrane is defined as τ = KA ∆A/A = KAσIAP
[21]. The relevant deformation energy per unit area of the membrane is then written as

Fstretch/A = 1/2 τ∆A/A = 1/2KA(σIAP )2. This elastic energy contribution is also going

to be included in the total free energy of our membrane-peptide system.

Including all the effects, the total free energy change of the peptide-lipid system upon

binding, per unit area, is expressed as,

∆F

kBT
= σI FI + σS FS +

1

2
KA (σIAP )2

+

[
σI ln(σIAp) + σS ln(σSAp) + (σM − σI − σS) ln

(
1− σI + σS

σM

)]

+
1

NtA

[(
Np −NtA (σI + σS)

)
ln
[(
Np −NtA (σI + σS)

)
vp/V

]
−
(
Np −NtA (σI + σS)

)]
− Fref (3.17)
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where Fref , the free energy of the reference state, is written as

Fref = Fe(σ0) +
1

al

[
ᾱ ln ᾱ + (1− ᾱ) ln(1− ᾱ)

]
+

1

NtA

[
Np ln

(Np vp
V

)
−Np

]
(3.18)

The first two terms in Eq. 3.17 give the total charging free energy per unit area of the

membrane covered by bound peptides; σI and σS are the planar density of the peptides

in surface adsorbed and inserted state, respectively, and FI(FS) the insertion (adsorption)

free energy defined in Eq. 3.9. The third term describes the membrane elastic energy that is

basically the energy cost for peptide insertion. In this term, KA is the area stretch modulus

of the bilayer, and AP the area expansion per each peptide in binding mode I, which

is equal to Ap or Ap/2 for the symmetric and asymmetric peptide binding, respectively

(this is discussed in detail in Sec. 3.4.2). In the fourth term, translational entropy of the

bound peptides is expressed through a two-dimensional lattice model where, Ap is the

area occupied by a bound peptide and σM = 1/Ap the planar density of binding sites

for peptides on the membrane. The fifth term accounts for the configurational entropy

contribution of free peptides to the free energy; here Nt is the total number of target cells

(either host cell or bacterium), A the area of each target, Np the total number of peptides

in the peptide-lipid system, V the total volume, and vp the volume of a peptide in bulk.

In order to calculate the entropy of peptides in bulk we have used a 3D lattice model

similar to the one used for peptides on the membrane. Furthermore, we have considered a

dilute solution of peptides in bulk, since the concentration of peptides is typically low in the

solution (∼ µM) [33]. Entropy of the solutes in a dilute solution has the well-known form of

S/kBT = N ln(c)−N with N the total number of solutes and c their volume fraction in the

solution. Applying the same entropy to our peptides in the electrolyte solution, N would

be the total number of free peptides and c the volume fraction of free peptides in bulk,

that is the total volume occupied by peptides in bulk/total volume of the system. When

the solution is not connected to a peptide reservoir similar to our system, the number of

free peptide and subsequently their volume fractions is not conserved. Binding of peptides

to the targets will reduce the number of free peptides in the solution. In our approach, the

total number of bound peptides in equilibrium is expressed as NtA (σI+σS) where σI(σS) is
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the equilibrium density of peptides in binding mode I(S) on the cell membranes. Therefore,

the number of peptides that remain free in the solution would be Nfree = Np−NtA (σI+σS)

with Np the total number of peptides in the system.

In Eq. 3.17, the reference energy is subtracted from the total free energy of the system

to give us ∆F . In our approach, the reference state is assumed to be the one in which there

are no peptides on the membranes, i.e., all the peptides are free in bulk. In the free energy

of the reference state defined in Eq. 3.18, the first term is the electrostatic free energy of

the bare membrane that is treated like a flat surface carrying a uniform charge density of

σ0 = −ᾱ/al (in units of e). Electrostatic free energy of this charged surface denoted by

Fe(σ0) follows Eq. 3.6. The second term gives the translational entropy associated to the

lipid mixture of the membrane, with ᾱ fraction of anionic lipids to neutral ones. The last

term accounts for the entropy of the peptides which are all free in the ionic solution in

the reference state. Note that electrostatic energy of each peptide in the reference state

is already included in the adsorption and insertion energies, FS and FI , respectively, in

Eq. 3.17.

Note that in our approach, as seen in the Eq. 3.17, there is no interaction between the

target cells. Furthermore, different types of cells are considered separately (i.e., all the

cells in the solution are similar and, for instance, carry the same fraction of anionic lipids

ᾱ).

The total free energy of the peptide-membrane system in our model, Eq. 3.17, is actually

a function of four independent variables, σI , σS, α1I and α1S. The equilibrium value of

these variables is found by minimization of the free energy, which was accomplished using

the MATLAB’s optimization toolbox: FMINCON and FMINSEARCH functions.
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3.4 Results and Discussions

3.4.1 Binding isotherms

Minimization of the free energy gives us the equilibrium density of the peptides on the mem-

brane in different binding modes, i.e., σI , σS. However our main focus is on the peptides

in binding mode I that have a major effect in membrane perturbation. More particularly,

we calculate the surface coverage of peptides inserted into the interface between the lipid

head groups and their tails that is denoted by P/L and is defined as the total number of

peptides in binding mode I divided to the total number of lipids on the membrane.

In our calculations, the parameters of the peptide-membrane system are chosen as

follows. Independent of the type of the membrane and peptide, we always have T = 300

K, V = 1L, KA = 0.578 kBT/Å
2, λD = 10 Å, and εw = 80. For the peptide parameters,

we have used the typical values for Melittin which is a well characterized antimicrobial

peptide with Q = 6, and εI = −14 kBT . The volume of the peptides in bulk is given by

the size of the random coils (Sec. 3.3.2) as vp = Ree
3 = 33 3Å3.

Two different sets of parameters have been used for the membranes, corresponding

to two different types of target cells. To mimic the bacterial membrane we use ᾱ = 0.3

(a typical value for a bacterial membrane), al = 71, and Ap = 162, and for the host

cell membrane we have ᾱ = 0.05, al = 74, and Ap = 246. The values of al and Ap

are taken from Ref. [22], where the interaction of Melittin with model membranes was

considered. In the bacterial membrane, the average headgroup area of lipids is smaller

than that of the host cells due to abundance of PE (Phosphatidylethanolamine), which is

the principle phospholipid in bacterial membrane [24] and has a smaller headgroup than PC

(phosphatidylcholine) [47] the principle lipid in the membrane of host cells. The different

values of Ap (the area occupied by peptide on the membrane) for different targets is justified

by the dehydration effect [22]. Normally the polar headgroup of lipids are surrounded by

water molecules which are not tightly bound and are released from the headgroup region

when a peptide is embedded in the membrane. Thus the area occupied by the peptide on

the membrane is related to this dehydration effect: the more enhanced dehydration results
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in the smaller area occupied by the bound peptide. In the bacterial membrane with smaller

lipid headgroup area, more water molecules are released by peptide binding, which leads

to a smaller value for Ap.

Cationic antimicrobial peptides are known to use the compositional difference between

bacterial and host cell membranes to discriminate between them [10, 12]. In the plasma

membrane of bacteria, which is the main target of AMPs, the outer layer is abundant in

anionic lipids whereas in the plasma membrane of host cells, most of the anionic lipids

are in the inner layer facing the interior of the cell. Accordingly, stronger electrostatic

attraction between cationic peptide and negatively charged membrane of bacteria helps

them to differentiate between host cells and bacteria in order to kill the right one. We

have also considered different surface charge densities for the two types of membranes

modelled here. In the bacterial mimicking membrane, thirty percent of the lipids are

negatively charged i.e., ᾱ = 0.3 and the host cell- mimicking membrane carries a number

of anionic lipid (ᾱ = 0.05) that yield a weak negative surface charge density [9]. As

the first step to investigate the antimicrobial activity and selectivity of Melittin, we have

considered its binding isotherms on different membranes as shown in Fig. 3.5. The molar

ratio of membrane-perturbing peptides in binding mode I to lipids, P/L, is higher on the

bacterial membrane than on the host cell membrane which indeed reveals the selective

membrane-disruption activity of the peptide. Here, we have chosen the target cell density

to be Ct = 5× 105 cells/mL which is a typical cell density in bacterial assays [8], however,

peptide selectivity can be shown for other target densities as well.

To investigate the effect of cell density on peptide binding, as one of the main goals

of this thesis, we have produced binding isotherms for a range of cell densities which are

consistent with those used in the relevant experimental works [8]. Fig. 3.6 and Fig. 3.7

illustrate our results for the bacterial and host cases, respectively. For any target density,

at very large concentration of peptides in bulk, i.e., Cp � Ct, binding isotherms converge

to that of a single target case . Indeed, when there are lots of peptides in the solution,

binding on one cell membrane is not affected by the presence of other cells as if we just

had one single membrane. However, if we decrease the concentration of peptides in the

solution, at some point cells start to ‘see’ each other, that is binding on one cell diminishes
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Figure 3.5: The molar ratio of membrane-embedded peptides (in binding mode I) P/L, a
good measure of membrane perturbing activity of AMPs, as a function of concentration of
peptides in bulk Cp for peptide charge Q = 6. Higher binding of peptides on the bacterial
membrane with ᾱ = 0.3 compare to that of the host cell with ᾱ = 0.05 is seen in this
figure, which reflects the selective antimicrobial activity of the peptide.

the amount of free peptides for other cells, and thus binding is lowered sharply and goes

to zero for small peptide concentrations.

The effect of cell density on peptide binding is better seen when we fix the peptide

concentration and change the density of target cells . The result is separately displayed in

Fig. 3.8. Our model shows that concentration of target cells Ct does affect peptide binding.

According to our free energy formalism, Eq. 3.17, this is an entropic effect which is seen if

the total number of peptides is fixed in the system. In fact, target density affects peptide

binding by influencing the amount of free peptides. Introducing a density of cells to the

solution is equivalent to reducing the number of “available” free peptides for each cell;

there is a ‘competition’ between cells to attract peptides, recalling that the total number

of peptides is fixed in the solution. Due to this competition, the molar ratio of bound

peptides to lipids on the membrane P/L is lower in a multi-target system than in a single-
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Figure 3.6: The molar ratio of the membrane-disrupting peptides (in binding mode I)
to lipids P/L as a function of peptide concentration in bulk Cp, for ᾱ = 0.3 (typical for
a bacterial membrane), peptide charge Q = 6 and various bacterial cell densities Cb as
specified in the figure. By increasing the cell density, binding starts at a higher peptide
concentration. The binding isotherm of the single target case (one cell in the solution)
is also included for comparison. For any cell density, at very high peptide concentration
when Cp � Cb, binding follows the behaviour of the single target case.
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Figure 3.7: P/L as a function of peptide concentration in bulk Cp, for the host cell mem-
brane ᾱ = 0.05, peptide charge Q = 6 and various host cell densities Ch as specified in
the figure. Similar to the bacterial membrane case: by increasing the cell density, binding
starts at a higher peptide concentration. The binding isotherm of the single target case
(one host cell in the solution) is also included. For the first three choices of the cell density,
binding is similar to the single target cell (plots lie on top of each other). Nevertheless,
binding isotherms of all the cell concentrations, in general, converge to that of the single
cell case at high concentrations of peptides.
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target one. At very low densities (Ct � Cp), however, there is no competition between

cells and binding on target cells does not significantly reduce the number of free peptides

in bulk. Thus, P/L does not change by cell density and is equal to that of a single target

case exposed to Cp concentration of peptides in solution. Nevertheless, by increasing the

number of cells, at some density they start to see each other, which is where the inter-

cell competition starts. Subsequently, peptide binding is decreased by increasing the cell

densities and ultimately goes to zero at very high densities of target cells. As seen in the

Fig. 3.8, the onset of peptide binding attenuation depends on the bulk concentration of

peptide; It occurs at a higher cell density, for larger values of bulk peptide concentration.

In addition, as expected, for a fixed cell density, the larger the Cp the higher the P/L would

be.
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3.4.2 Asymmetric binding of peptides

When electrostatically attracted to the membrane, peptides first bind to the outer leaflet

of the lipid bilayer. However, their amphiphilicity allows them to have hydrophobic in-

teraction with the core of the membrane, which indeed facilitates translocation of the

bound peptides to the inner leaflet of the bilayer and if finally, peptide distribution will be

symmetrized between the two leaflets [48, 24]. Our calculations so far correspond to this

extreme symmetric binding of peptides, which is usually the case in experimental works

that study stacks of parallel lipid bilayers with bound peptides [22]. However, we have also

attempted to make binding isotherms related to the initial asymmetric binding of peptides

on the membrane to see how symmetrization influences peptide activity.

In order to simulate the asymmetric binding of peptides, we needed to make some

changes to our model. We believe that the elastic energy of the membrane is defined

differently based on the symmetry of peptide binding. In asymmetric binding, there are

no peptides in the inner layer and all the peptides bind to the outer layer. In this case, the

mechanical deformation of the membrane induced by peptide binding is shared between the

two monolayers which is explained as follows. Insertion of peptides at the interface between

lipid headgroups and tails stretches the membrane, however in the asymmetric binding, this

will be accompanied by the expansion of lipids in the inner layer as well. This energetically

unfavourable lipid expansion in the inner layer is balanced with the compression of lipids in

the outer layer such that, in the end, the membrane area is stretched by AP/2 per inserted

peptide. Accordingly, the mechanical deformation term in the free energy of the system

would be altered as 1/2KA (σIAp/2)2. This is indeed analogous to a one dimensional

system of two identical parallel springs each with length x0 which are coupled to each

other such that any compression or expansion in one them will directly affect the length of

the other one too. Now if an object of length L is added to one of them, the final stretched

length of the two strings will be x = x0 + L/2.

By conserving the total number of lipids, the reduced area per lipids in the outer layer

is estimated to be a ′l = al (1 − σI Ap/2). Therefore, in asymmetric binding analysis, we

will use this shrunk headgroup area instead of al in our free energy in Eq. 3.17. Note that
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Figure 3.9: P/L as a function of bulk concentration of peptides Cp, for peptide charge Q
= 6, ᾱ = 0.3 and Ct = 5× 105 cells/mL. In the symmetric binding, there are less number
of peptides to lipids on the outer layer, compared to the asymmetric case.

we always consider binding of peptides on the outer layer (although it is not an issue in

symmetric binding, because peptide concentration is the same on both layers).

In addition, since peptides just bind on the outer layer in the asymmetric binding, the

total number of peptide binding sites on the membrane is half of those in the symmetric

binding. Accordingly, the membrane area A will be altered to A/2 in the asymmetric bind-

ing. Plugging all the aforementioned changes to the free energy of the peptide-membrane-

solution system in Eq. 3.17, and minimizing it ( similar to what we did for the symmetric

binding), we have made binding isotherms for the asymmetric binding of Melittin on the

membranes. Fig. 3.9 shows our results. In the symmetric binding case, distribution of

peptides between the two monolayers along with a higher elastic energy of the membrane

results in a lower number of bound peptides to lipids, P/L, in the outer layer compared

with the asymmetric binding of peptides. In both cases, however, P/L is saturated for

large concentrations of peptides in bulk. The saturation value in the asymmetric binding

is almost twice as much as in the symmetric one.
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3.4.3 Peptide selectivity: therapeutic index

The main feature of antimicrobial peptides is that they selectively rupture the membrane of

bacteria over that of host cells. In this section we consider the effect of target concentration

on peptide selectivity or more specifically on the peptide therapeutic index.

Therapeutic index is a good measure of peptide selectivity which is defined as MHC/MIC

where MHC is the minimum haemolytic concentration of the peptide for the host cells and

MIC its minimum inhibitory concentration for the bacteria. MIC and MHC are, in fact,

the bulk concentrations of the peptides at which they effectively rupture the membrane of

bacteria and host cells, respectively.

It has been observed in experiments that AMPs are inactive against their targets below

a threshold concentration on target membranes, which we denote by P/L∗ [20, 22]. In

other words, for P/L below P/L∗ no pore was observed on the membrane, but as P/L

exceeds P/L∗ transmembrane pores appeared on the membrane [22]. Thus, there seems to

be a correspondence between the two critical peptide concentrations described as follows

[33]. Regarding the antibacterial activity of the peptides, if the total concentration of the

peptides in solution is around MIC, (i.e., Cp ≈ MIC ), the concentration of the peptides on

the membrane is close to the threshold concentration, that is P/L ≈ P/L∗, and a similar

thing applies when the targets are host cells for which MIC is substituted by MHC.

In what follows, we use our binding isotherms and the aforestated relation between the

threshold concentrations of the peptides to calculate their therapeutic index. Given the

P/L∗ for bacteria and host cells, we can exploit our results in figures 3.6 and 3.7 to extract

the corresponding peptide concentration in bulk which is MIC or MHC respectively, and

thus compute its therapeutic index. However, the question is now how should we select

P/L∗ for different targets? More particularly, is the peptide threshold surface coverage

required for rupture the same for the membrane of bacterial and host cells?

To answer this question, we should figure out if the the lipid compositional differences

between the membrane of bacteria and host cells can affect the threshold rupture concen-

tration of the peptide P/L∗.
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3.4.4 Lipid packing shape and threshold surface coverage

A universal characteristic of membrane-lytic antimicrobial peptides is their cooperativity

that is independent of their mode of action, a threshold concentration P/L∗ is required for

their activity below which no significant effect can be seen [20, 33]. They are, therefore,

said to disrupt the membrane in a so called all-or-none concentration dependence manner

[16].

On the correlation between the peptide critical concentration P/L∗ and lipid composi-

tion, our first question was how do charge properties of the membrane affect the rupture

concentration of peptides? The answer of this question was found in the work of Weiprecht,

et al. [49]. They studied the interaction of the cationic peptide PGLa with neutral and

negatively charged model membranes and showed that membrane charge will just affect

the initial binding of the peptides. In fact, by excluding the electrostatic interactions and

focusing on the surface concentration of the peptides instead of their bulk concentrations,

they obtained the same threshold concentrations for peptides on both anionic and neutral

membranes. Thus, it appears that P/L∗ does not depend on the charge of the membrane.

Nevertheless, Huang did more systematic analysis to explore the lipid dependence of

collective activities of AMPs. His group studied the interaction of different AMPs with

model membranes of various lipid compositions and measured the threshold P/L∗ of the

peptides via different experimental methods [22, 21]. Their measurements showed that

the peptide concentration required for membrane rupture P/L∗ does depend on the lipid

composition of the membrane. More specifically, they studied model membranes with

different concentrations of positively curved lipids (lysoPC) or negatively curved ones (PE)

and observed that peptide threshold concentration P/L∗ is larger for membranes consisting

of higher amounts of negatively curved lipids (lipid curvature was described in Sec. 1.3)

[22]. This was consistent with the earlier observations where addition of PE inhibited

formation of toroidal pores by magainin and melittin while addition of lysoPC facilitated

their formation [26, 19]. The idea was that lipid curvature correlates with the curvature of

the pore, and thus formation of toroidal pores with a mean positive curvature is facilitated

by lipids of positive curvature (lysoPC) and is prevented by lipids of negative curvature
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(PE). However, Huang et al. observed the same lipid dependence for both melittin (with

toroidal pores) and alamethicin (with barrel-stave pores) systems [22]. This interesting

observation therefore shows that the effect of lipid curvature on pore formation must be

through something other than the pore curvature because alamethicine pores are known

to have a zero curvature.

Based on the large extent of research on the widely studied AMPs alamethicin, melit-

tin, magianin and protegrin, Huang proposed a two-state model to explain the collective

antimicrobial activity of peptides which indeed enabled him to clarify the lipid dependence

of P/L∗ as well [20].

According to his model, there are two binding states for peptides on the membrane:

surface state S with energy level −ES and pore state P with energy level −Ep, where,

in general ES > Ep (i.e., the surface state is more stable than the pore state) [20]. Not

to be confused with our binding model of peptides, the surface state here refers to the

membrane perturbing peptides (equivalent to our binding mode I). In fact, surface adsorbed

peptides are not considered in this model since they have a minor impact on membrane

perturbation. When the concentration of peptides is below the threshold concentration, all

the bound peptides occupy the surface state where they are embedded in the membrane

and concomitantly increase the membrane area. This energetically unfavourable membrane

area stretch is assumed to be equivalent to a membrane tension that scales with P/L.

Therefore, a positive term which increases with P/L is added to the energy level of the S

state. Peptide binding then increases the energy level of the S state and eventually, once

the concentration of the peptides on the surface reaches the threshold P/L∗, the energy

level of surface state becomes higher than that of the pore state. Consequently for P/L

above P/L∗, all the excessive peptides will directly go to the pore state, that now has a

lower energy than the S state, and contribute to pore formation.

Within his two-state model, Huang has obtained the threshold concentration as P/L∗ =

(ES−EP )/KA(A2
p/al)(1−β), where KA is the area stretch modulus of the lipid bilayer, Ap

the membrane area expansion per bound peptide (in the S state), al the area of the lipid

headgroup and β is a parameter that determines the contribution of pores in the membrane

thickness [20, 22]. Measuring all the above experimental parameters related to P/L∗ and
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analysing the data, his group eventually found the underlying reason of lipid dependence

of P/L∗. Regardless of the type of peptide, a strong correlation was observed between the

variations of P/L∗ and the membrane thinning effect quantified by Ap [22]. The smaller

the Ap, the larger the threshold concentration P/L∗ is for both type of pores. Thus, Ap is

a dominant factor in determining the lipid dependence of P/L∗.

Membrane thinning measurements for various peptide-lipid systems show thatAp strongly

depends on the lipid composition. It is smaller in membranes with higher amounts of neg-

atively curved lipids [22]. As a result, the higher the concentration of lipids of negative

curvature in the membrane, the larger number of peptides are required for membrane

disruption (a larger P/L∗).

The lipid dependence of Ap is believed to be due to the lipid dehydration effect of

peptide binding. When peptides bind to the membrane, some water molecules are released

from the headgroup region of lipids and thus reduce the area expansion by the peptides.

For negatively curved lipids, where their headgroups have a smaller cross sectional area

than their hydrocarbon chains such as PE (see Sec. 1.3), there are more water molecules

surrounding the headgroups compare to positively curved lipids. Therefore, more water

molecules are released from the headgroup of negatively curved lipids by peptide binding

than from the positively curved ones. Consequently addition of PE to the membrane

decrease Ap whereas addition of LysoPC (a positively curved lipid) increases it [22].

Huang et al. studies indeed shed light on a universal effect of lipid spontaneous cur-

vature on the pore formation activity of AMPs. During their extensive studies on AMPs,

they also measured significant parameters of various peptide-lipid systems that are related

to pore formation. We have also used some of their melittin-lipid parameters in this thesis.

We can now answer the question about the difference between the threshold concen-

tration of AMPs on the host cells and bacterial membrane. According to the universal

curvature effect of lipids and the fact that PE (with negative curvature) is the principal

phospholipid in bacteria while in the host cells PC (with zero curvature) is the main lipid

constitution, we conclude that the threshold peptide concentration P/L∗ is larger for the

bacterial membranes than host cells.
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In our model, we have implicitly captured the lipid curvature difference between the

membranes of host cells and bacteria through a parameter, Ap, that represents the area

occupied on the membrane by bound peptides. The degree of membrane mechanical de-

formation induced by peptide binding is also quantified by Ap, in our approach. The

membranes of bacteria are rich in PE while the host cell membranes are abundant in

PC, thus according to the curvature effect of lipids, peptides are better accommodated in

the former. We have taken into account this difference by choosing a smaller Ap on the

membrane of bacteria than that of host cells.

Huang’s group has measured P/L∗ of the Melittin on PC and PC/PE model membranes

[22] that are the commonly-used lipid compositions to mimic the host cell and bacterial

membrane, respectively. Using their experimental parameters, we take the threshold con-

centration of Melittin to be P/L∗ = 1/48 on the bacterial membrane and P/L∗ = 1/99 on

the host cell membrane [22].

Given the threshold concentration P/L∗ of the peptide on the membrane, we can now

use our binding isotherms, as shown in the Fig. 3.10, to extract the corresponding bulk

values which are indeed MHC and MIC.

Doing the binding calculations for varying cell densities enabled us to elicit MIC and

MHC for different cell densities. Fig. 3.11 depicts our results for MIC and MHC as a

function of cell density. Both MHC and MIC increase with increasing cell density. This

concentration-dependence activity of AMP can be understood as follows: since the total

number of peptides is conserved, peptide biding is influenced by cell density. The higher

the cell density, the fewer bound peptides (this was already shown in Fig. 3.8, and the

relevant discussion is found in the Sec. 3.4.1). Therefore, at a higher cell density, more

peptides in bulk will be required in order for P/L to reach the threshold value P/L∗ for

membrane disruption. Consequently, MIC and MHC are higher at higher cell densities.

For minimum hemolytic concentration MHC, we considered two different cases: (1)

host cells have the same area as the bacteria, (2) area of the host cells, AH , is larger than

that of the bacteria,AB, by a factor of 17. In the first case, we have chosen the target areas

as AH = AB = 12 × 10−12m2, which is twice the surface area of E. coli. The factor two
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Figure 3.10: (a) Extraction of MIC for peptide charge Q = 6 and various densities of
bacteria. (b) Extraction of MHC for various densities of host cells and peptide charge Q
= 6. In both cases, we have used the experimental data for P/L∗.
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Figure 3.11: (a) MHC as a function of cell density for peptide charge Q = 6 and two choices
of cell area as specified in the figure. (b) MIC as a function of cell density for Q = 6 and
target membrane area AB = 12× 10−12.

is needed for the symmetric binding of peptides on the membrane, because peptides bind

onto both leaflets of the lipid bilayer. However, in reality host cells (red blood cells) are

larger than bacteria. The surface area of a red blood cell is of the order of 10−10m2. Thus,

we did calculations for a more realistic situation as well, where AH = 17AB. Fig. 3.11

shows MHC as a function of cell density for the two different choices of cell area.

MHC increases by increasing the host cell area for the same reason as it increases by

increasing the cell density. In fact, in our multi-target analysis, increasing either of the cell

surface area or number of the cells increases the total number of peptide binding sites (given

by NtA), and thus produces the same effect. In principle, in our model (see Eq. 3.17) we

can combine these two parameters into just one parameter which is equivalent to reducing

our multi-cell system to a single cell with a large area of A = NtA. Therefore, increasing

the cell area has the same effect in our calculations as increasing the cell density. Thus,

in our area basis analysis, instead of increasing the area we can increase the cell densities

accordingly. More specifically, in Fig. 3.11, we can obtain either of our MHC curves from

the other one by rescaling the x axis (cell densities).

Using the results for MHC and MIC, it is now possible to investigate the effect of cell
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Figure 3.12: MHC/MIC, a good measure of peptide selectivity, as a function of cell con-
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(b) Host cells have a fixed cell density NH while bacterial density is varying. Regardless
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density on peptide therapeutic index defined as MHC/MIC. Fig. 3.12 displays our results

for peptide selectivity (MHC/MIC) as a function of cell concentration. We have chosen

the density of different target cells in two different ways: (1) density of both host cells

and bacteria is the same, (2) density of host cells is fixed and bacterial concentration

varies. The second density profile is closer to reality, because it is the concentration of

bacteria that changes depending on the degree of infection, and host cells have almost a

fixed concentration. As shown in the Fig. 3.12, for both choices of cell densities, peptide

selectivity is influenced by cell densities; it decreases as the concentration of cells increases.

In addition, peptide selectivity (MHC/MIC) is higher for a higher host cell area. The

reason is that MHC increases by increasing the area of host cells as seen in Fig. 3.11.

To understand the underlying reason for this decreasing behaviour of peptide selectivity

by cell density, we repeated our calculations within the simpler Langmuir binding model

for the interaction of peptides with the membranes. This model is described in detail in

the Appendix B. In the Langmuir binding model, peptide binding is driven with a binding

energy w which is dependent on the type of the targets; it is larger on the bacterial

membrane than host cells. Analogous to what we did in our full analysis, we calculated

the molar ratio of bound peptides to lipids P/L as a function of bulk concentration of

peptides for different targets. MHC and MIC were then extracted from the binding curves

for varying cell densities. Fig. 3.13 depicts the results for MIC and MHC as a function

of cell density. Both MIC and MHC increase as cell density increases. The reasoning is

exactly the same as the one given for the results in Fig. 3.11, since this model also considers

a fixed number of peptides.

In the end, peptide selectivity (MHC/MIC) was computed for different cell densities.

The results are illustrated in Fig. 3.13c. Analogous to our previous approach, the ratio

MHC/MIC, which is the measure of peptide selectivity, decreases by increasing the cell

density. In order to find out how the choice of peptide threshold concentration P/L∗

affects this cell concentration dependence of peptide selectivity, we did the calculations

for various choices of P/L∗. More specifically, the peptide threshold concentration on the

bacterial membrane P/L∗B is chosen to be either similar to that on the host cell P/L∗H or

different. As shown in the Fig. 3.13c, regardless of the choice of P/L∗, peptide therapeutic
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Figure 3.13: Cell concentration dependence of peptide selectivity within the Langmuir
binding model: (a) MHC as a function of cell density for different choices of peptide
threshold concentration P/L∗ as specified in the figure. (b) MIC as a function of cell
density for the two different values of P/L∗. (c) MHC/MIC as a function of cell density
for different choices of P/L∗ on the membranes as specified in the figure.
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index (MHC/MIC) decreases as cell density increases. At very high densities, however,

it reaches a plateau. The value of this plateau is determined by the choice of P/L∗: For

the same threshold concentration on bacterial membrane and host cell, it occurs at 1.

Otherwise, it happens at a different value depending on the choice of P/L∗.

In an attempt to understand the reason of the cell concentration dependence of peptide

selectivity, we carefully tracked the changes of MIC and MHC by varying the cell density.

As shown in the Fig. 3.14, we observed that for a fixed P/L∗ the gap between the two

P/L curves, which is in fact the difference between MIC and MHC, does not significantly

change by changing the cell density. Note that in the figure the log scale falsely gives the

appearance of significant change in δ. However, as shown in the Fig 3.15, using a linear

scale, it is easily seen that the gap remains the same for various cell concentrations. Thus

peptide therapeutic index can be expressed as MHC/MIC = (MIC + δ)/MIC, where δ is

fixed and does not depend on the cell density. Therefore, the cell-concentration dependence

of the MIC determines the cell concentration dependence of the ratio. As shown in the

Fig. 3.13b, MIC increases as cell density increases and as a result the ratio, which measures

the peptide selectivity, decreases by increasing the cell density. However, at high cell

densities where MIC� δ, the ratio converges to one.
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Figure 3.14: P/L as a function of Cp for two different targets: microbe (w = −25.32), and
host cell (w = −19). Peptide binding on two targets is compared for a few choices of cell
densities Ct. The gap between the curves δ does not change by increasing the cell density.
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Figure 3.15: (a) Zoom-in plot of Fig. 3.14a for cell density Ct = 6 × 102 cells/mL. (b)
Zoom-in plot of Fig. 3.14e for cell density Ct = 6× 106 cells/mL. Regardless of the cell
density the gap between the two curves is of the order of 10−5µM

Comparison of the results from the single-binding site model with those from the coarse-

graining indicated the effect of electrostatic interactions in the cell-concentration depen-

dence of peptide selectivity. Fig. 3.16 depicts MHC/MIC as a function of cell density,

computed from two different models. As shown in the figure, except for the very low

concentrations, there is good agreement between the results of the two models. Thus,

electrostatic interactions do not affect the decreasing behaviour of peptide selectivity by

cell density. As seen in the figure, they just cause saturation of the peptide selectivity at

low concentrations.

Because of the good agreement between the two models, the reasoning originally pro-

posed for the decreasing trend of peptide selectivity for the Langmuir binding model can

be extended to the full analysis.
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Figure 3.16: MHC/MIC as a function of cell density from two different models: the full
analysis based on electrostatic interactions and the Langmuir binding model.

3.5 Summary and Conclusion

To summarize, we presented a physical model for the cell concentration dependence of

AMP’s activity and cell selectivity. We accomplished this by developing a theoretical model

that considers a few pronounced interactions of peptides with lipid bilayers. To investigate

the effect of cell density on antimicrobial activity of the peptides, we first calculated the

molar ratio of the membrane perturbing peptides, those that are bound to the interface

between lipid head group and tail, for various peptide and cell densities. This enabled

us to extract the required components to calculate the peptide selectivity: The peptides’

minimum hemolytic concentration (MHC) and their minimum concentration that inhibits

the growth of bacteria MIC. We showed that both MIC and MHC increase as cell density

increases. An increase of MIC means that the peptide activity diminishes as cell density

increases. Peptide selectivity was then studied by computing the peptide therapeutic index

defined as therapeutic index = MHC/MIC for various cell densities. Our results showed

that peptide selectivity is also affected by the cell density; selectivity decreases as cell
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density increases.

To discover more about the cell concentration dependence of antimicrobial activity

of AMPs, we considered a single-binding site model for the interaction of peptides with

the membranes. In this model, many body interactions and peptide-induced mechanical

deformation were turned off, and peptides interacted with the membranes only through

a fixed binding energy; binding energy was higher on the bacterial membrane than on

the host cells. Interestingly, we achieved the same cell concentration dependence for the

peptide selectivity using this model. The agreement between the two models led us to

the conclusion that the decrease of peptide selectivity with increase of cell density is a

general feature of peptide-membrane systems; regardless of the nature of the interactions,

the different binding affinity of the peptides for the targets results in a decreasing trend

for cell selectivity as a function of cell density.

According to our results, cell selectivity is not an intrinsic feature of antimicrobial

peptides as it is attenuated by increasing the cell concentration. Some peptides may even

lose their selectivity at very high cell concentrations. Therefore, cell selectivity analysis

needs to be done with caution as choosing the wrong host and microbial cell concentrations

would result in an inaccurate estimation of the peptide selectivity.
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Appendix A

Entropy of the salt ions interacting

with a charged surface in a (1:1)

electrolyte solution

In an electrolyte solution, the entropy of the salt ions is given as follows

Fent = kBT
[ ∫ [

n+ ln
n+

n0

+ n− ln
n−
n0

− (n+ + n− − 2n0)
]
dr (A.1)

where kB is the Boltzmann constant, T the temperature, n+(n−) the density of cations

(anions), and n0 the density of salt ions far from the membrane.

As discussed in chapter 2, the density of the salt ions obeys the Boltzmann distribution

n±(r) = n0 exp(∓e ψ(r)/kBT ) (A.2)

where e is the electrostatic charge, and ψ(r) the electrostatic potential at position r.

In the case of a weakly charged surface in the solution, the electrostatic potential

and consequently the density of the ions is obtained using the Debye-Huckel theory. As
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discussed in Sec. 2.2, the electrostatic potential is written as

ψ(z) =
σ

ε0εwκ
exp(−κz) (A.3)

where σ is the surface charge density, ε0 the electric permittivity of vacuum, εw the dielectric

constant of the aqueous solution, and κ the inverse of the Debye length. In fact, symmetry

of the planar geometry reduces the system to 1-dimension, where the electric potential and

the ion densities are only a function of the vertical distance from the surface denoted by z

(n±(z), ψ(z)).

Here, we postpone using the functional form of the potential until the end of the

calculation as it would not be clean to substitute it at the beginning. Thus, using the ion

densities in Eq. A.2, the entropy in is computed as

Fent = An0kBT
[ ∫ ∞

0

2
eψ(z)

kBT
sinh(

eψ(z)

kBT
)dz +

∫ ∞
0

[
− 2cosh(

eψ(z)

kBT
) + 2

]
dz
]

(A.4)

where A is the surface area.

In the case of a weakly charged surface, eψ(z)/kBT � 1, Eq. A.4 can be further simpli-

fied by using the Taylor expansion of the hyperbolic functions. We keep the approximation

to the second order of ψ.

Fent = An0kBT
[ ∫ ∞

0

2(
eψ(z)

kBT
)2dz −

∫ ∞
0

(
eψ(z)

kBT
)2dz

]
= An0kBT

∫ ∞
0

(
eψ(z)

kBT
)2dz

= An0kBT

∫ 0

ψ0

(
eψ

kBT
)2(− 1

κψ
)dψ

=
An0e

2ψ2
0

2kBTκ
=

Aσ2

4εwε0κ
(A.5)

Note that in the third line, we have changed the variable of integration. In the last line

two substitutions have been used: the surface potential ψ0 = σ/ε0εwκ using Eq. A.3 and

κ2 = 8πn0e
2/(4πεwε0kBT ).
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Appendix B

Langmuir binding model

In this model, which is in virtue similar to the Langmuir adsorption model [30], peptide

binding is driven by a fixed binding energy indicated as w. There is no interaction between

the bound peptides on the membrane. In addition, the total number of peptides in the

solution is fixed; there is no peptide reservoir and thus binding on the membranes decreases

the concentration of free peptides.

The chemical potential of the peptides bound to the membrane, µb, is then written as

µ b = kBT
[
w + ln

( σAp
1− σAp

)]
(B.1)

where kB is the Boltzmann constant, T the temperature, w the binding energy, σ the

area density of the bound peptides, and Ap the area occupied by a bound peptide. The

second term describes the translational entropy of the bound peptides, which is obtained

by considering a 2D lattice model; the membrane is assumed to be like a 2D lattice with

the total number of peptide binding sites defined as S = A/Ap, where A is the membrane

area. Indeed, σAp gives the area density of the filled binding sites.

In this model, we consider a dilute solution of peptides and cells. Thus, there is no in-

teraction between the free peptides or between the cells. Note that the electrostatic energy

of each free peptide is subsumed in its binding energy. Thus, we have only translational
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entropy associated with the free peptides and their chemical potential has the form

µf = kBT ln[(Cp − CtσA)vp] (B.2)

where Cp is the total concentration of the peptides in the solution, Ct the concentration of

the target cells, A the area of each cell, and vp the volume of a free peptide.

Balancing the two chemical potentials, we obtain a Langmuir-like binding equation

σAp =
(Cp − CtAσ)K

1 + (Cp − CtAσ)K
(B.3)

with K the binding constant defined as K = vp exp(−w/kBT ). Here, the concentration

of free peptides in bulk, which is given inside the parentheses of the equation, is indeed

dependent on the number of bound peptides because the total number of peptides is con-

served.

In order to find σ as a function of Cp, we should solve the Eq. B.3 for σ which results

in the following equation

− CtAK Apσ
2 +

(
Ap +K ApCp + CtAK

)
σ − CpK = 0 (B.4)

It is worth noting that there are two solutions for Eq. B.4, however, our desired solution

is the one that fulfils σ 5 1/Ap, i.e., σ can not be larger than the area density of the

peptide binding sites on the membrane. To rewrite the Eq. B.4 as a function of ratio of

bound peptides to lipids P/L, we just need to make the following conversion everywhere

σ = (P/L) 1/al, where al is the lipid head group area.

In this model, w is the only parameter which depends on the type of the target. Peptides

have a higher binding energy w on the bacterial membrane than on host cells because

of stronger electrostatic interactions with the former. We have obtained w for different

targets by fitting the P/L from Eq. B.4 to the binding isotherms we obtained from the

coarse-grained approach. The result is as follows; for the bacterial membrane w = −25.32,

and for the host cell w = −19.
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Appendix C

The MATLAB Code used in the

project

clc

clear a l l

global Q a l alph kapain Cp ap apef lb rp

Eps = 8.85 e−12;

T = 300 ;

Kb = 1.38∗1 e−23;

Dw = 80 ;

NA = 6.023∗1 e +23;

e = 1 .6 e−19;

lb = e ˆ2∗1 e +10/(4∗pi∗Eps∗Dw∗Kb∗T) ;

kapain = 10 ; %Angstrom

C 0 = 1/( kapain ˆ2 ∗8∗pi∗ lb ) ;

%Me l i t t i n
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a l = 71 ; %74 , 65

ap = 162 %246 , 314

apef = ap ; %symmetric b ind ing

%ape f = ap/2 f o r asymmetric b ind ing

SM = 1/ap ;

alph = 0 . 3 ; %0.05

Q = 6 ;

rp = sqrt ( ap/pi ) ;

lambda = a l /(2∗pi∗ lb ∗alph ) ;

As = pi ∗( rp+lambda ) ˆ2 ;

%Host

%s i n g l e t a r g e t

%c p = [ 0.0001 0.00012 0.0002 0.0003 0.0005 0.0007 0.001 0.005

0.01 0.03 0.05 0.1 0.3 0 .7 0 .9 1 3 4 5 7 9 10 15 20 30 40 50

60 70 80 90 100 200 300 400 500 600 700 800 900 1000 2000

3000]

%N h = 6e2 − 6e5

%c mic = [ 1e−4 1.2 e−4 2e−4 3e−4 5e−4 7e−4 1e−3 2e−3 3e−3 4e−3 5e

−3 7e−3 0.01 0.03 0.05 0.1 0.3 0 .7 0 .9 1 3 4 5 7 9 10 15 20 30

40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000

2000 3000]

%N h = 6e6

%c mic = [ 1e−4 2e−4 3e−4 5e−4 7e−4 1e−3 2e−3 3e−3 4e−3 5e−3 7e−3
0.01 0.014 0.017 0.023 0.026 0.03 0.04 0.05 0.1 0.3 0 .7 0 .9 1
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3 4 5 7 9 10 15 20 30 40 50 60 70 80 90 100 200 300 400 500

600 700 800 900 1000 2000 3000]

%N h = 6e7

%c mic = [ 7e−4 1e−3 2e−3 3e−3 4e−3 5e−3 7e−3 0.01 0.014 0.017

0.023 0.026 0.03 0.04 0.05 0.07 0.1 0.13 0.17 0.2 0.32 0.35

0.4 0 .5 0 .6 0 .7 0 .9 1 3 4 5 7 9 10 15 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900 1000 2000 3000]

%N h = 6e8

%c mic = [0 .017 0.023 0.026 0.03 0.04 0.05 0.07 0.1 0.13 0.17 0.2

0.32 0.35 0.4 0.5 0.6 0.7 0.9 1 1.3 1.5 2 2.5 2.6 3 .7 3 .8 4 5

7 9 10 15 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700

800 900 1000 2000 3000]

%N h = 6e9

%c mic = [ 0 . 1 0.13 0.17 0.2 0.32 0.35 0.4 0 .5 0 .6 0 .7 0 .9 1 1.3

1 .5 2 2.5 2 .6 3 .7 3 .8 4 5 7 9 10 15 20 30 35 37 40 43 45.8 46

50 60 70 80 90 100 200 300 400 500 600 700 800 900 1000 2000

3000]

%Bacter ia

%s i n g l e t a r g e t

%c mic = [1 e−6 3e−6 6.7 e−6 9.854 e−6 1.2 e−5 2.34 e−5 3.5 e−5 5e−5
8.876 e−5 1e−4 3.788 e−4 6e−4 9e−4 1e−3 3e−3 9e−3 2e−2 4e−2

6e−2 0.1 0.3 0.5 0.7 1 3 6 8 10 20 30 50 60 80 100 ] ;

%N b = 6e2 , 6e3 , 6e4

c mic = [ 1 e−6 3e−6 6 .7 e−6 9 .854 e−6 1 .2 e−5 2 .34 e−5 3 .5 e−5 5e−5
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8 .876 e−5 1e−4 3 .788 e−4 6e−4 9 .9101 e−4 3.79094 e−3 9.82101

e−3 2.05505 e−2 4 .5557 e−2 6.25669 e−2 9.73273 e−2

0.143712 0.203657 0.279167 0.372308 0.485207

0.620045 0.779055 0.964523 1.17878 1 .4242 1.70321

2.01826 2.37187 2.76657 3.20495 3 .6 6 7 8 10 20 30 40

50 60 80 90 100 ] ;

%N b = 6e5

%c mic = [ 4e−6 5e−6 8e−6 1.2 e−5 2.34 e−5 3.5 e−5 5e−5 6e−5 8.876

e−5 1.3 e−4 2e−4 3.788 e−4 5e−4 6e−4 9.9101 e−4 1.3 e−3 1.5 e−3 2

e−3 3e−3 3.79 e−3 9.82101 e−3 2.05505 e−2 4.5557 e−2
6.25669 e−2 9.73273 e−2 0.143712 0.203657 0.2 0.372308

0.485207 0.620045 0.779055 0.964523 1.17878

1.4242 1.70321 2.01826 2.37187 2.76657 3.20495

3.68961 4.22322 4.80845 5.44803 6.14471 6.90127

7.72052 8.60531 9.55852 10.583 15.4534 20 30 40 50 60

70 80 90 100 ] ;

%N b = 6e6

%c mic = [2 e−5 5e−5 8.876 e−5 1.3 e−4 2e−4 3.788 e−4 6.2 e−4 8e−4
9.9101 e−4 1.3 e−3 2.2 e−3 3.79094 e−3 5e−3 6e−3 7e−3 8e−3 9.82101

e−3 1e−2 2e−2 3e−2 4.5557 e−2 6.25669 e−2 9.73273 e−2
0.143712 0.203657 0.279167 0.372308 0.485207

0.620045 0.779055 0.964523 1.17878 1.4242 1.70321

2.01826 2.37187 2.76657 3.20495 3.68961 4.22322

4.80845 5.44803 6.14471 6.90127 7.72052 8.60531

9.55852 10.583 15.4534 20 30 40 50 60 70 80 90 100 ] ;

%N b = 6e7

%c mic = [1 e−4 1.3 e−4 2e−4 3e−4 8e−4 1e−3 2e−3 3e−3 5e−3 7e−3 8e
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−3 1e−2 1.3 e−2 2e−2 3e−2 4.5 e−2 6.25669 e−2 7.1 e−2 8e−2 9

e−2 0.1 0.12 0.143712 0.203657 0.279167 0.372308

0.485207 0.620045 0.779055 0.964523 1.17878 1.4242

1.70321 2.01826 2.37187 2.76657 3.20495 3.68961

4.22322 4.80845 5.44803 6.14471 6.90127 7.72052

8.60531 9.55852 10.583 15.4534 20 30 40 50 60 70 80 90

100 ] ;

%N b = 6e8

%c mic = [2 e−3 3e−3 5e−3 7e−3 8e−3 1e−2 1.5 e−2 2e−2 4e−2 5.2 e−2
6.1 e−2 7e−2 9.7 e−2 0.143712 0.203657 0.279167 0.372308

0.485207 0.55 0.620045 0.65 0.779055 0.964523 1.17878

1.4242 1.70321 2.01826 2.37187 2.76657 3.20495

3.68961 4.22322 4.80845 5.44803 6.1 6.9 7.72052

8.60531 9.55852 10.583 15.4534 20 30 40 50 60 70 80 90

100 ] ;

%N b = 6e9

%c mic = [ 2e−2 3e−2 4e−2 7e−2 0.143 0.2 0.27 0.37 0.48 0.6 0.7

1 1.3 1 .7 2 .1 2 .5 2 .7 3 3.9 5 .2 5 .8 6 .8 7 .6 8 9 10.583

15.4534 20 30 40 50 60 70 80 90 100 ] ;

%no demixing

%op t i ons = opt imse t ( ’MaxFunEvals ’ , 1 e4 , ’MaxIter ’ , 1e6 , ’TolX ’ , 1e

−12, ’TolFun ’ , 1e−12) ;

% l i p i d demixing

opt ions = opt imset ( ’ Display ’ , ’ i t e r ’ , ’ Algorithm ’ , ’ i n t e r i o r−point ’ ,

’ In i tBarr ie rParam ’ , 0 . 1 , ’ TolCon ’ , 1e−6, ’ MaxFunEvals ’ ,5 e3 , ’

MaxIter ’ , 1e6 , ’TolX ’ , 1e−10, ’ TolFun ’ , 1e−10) ;
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%x0 = [1 e−6; 1e−9]; %fo r a lph = 0.05 and Eps i lon = −14

x0 = [ 2 e−6; 6e−7; 0 . 5 ; 0 . 3 ] %for N b = 6e2−6e5
%x0 = [1 e−6; 6e−8; 0 . 5 ; 0 . 3 ] %6e6

%x0 = [7 e−7; 7e−8; 0 . 5 ; 0 . 3 ] ; %6e7

%x0 = [7 e−7; 8e−9; 0 . 5 ; 0 . 3 ] %6e8

%x0 = [8 e−11; 5e−12; 0 . 5 ; 0 . 3 ] %6e9

L = length ( c mic ) ;

for n = 1 :L

Cp = c mic (n) ∗(1 e−6)∗NA∗(1 e−27) ; % bu l k pep t i d e concen t ra t i on

(1/Angsˆ3)

%no l i p i d demixing

%[ x , f v a l ] = fminsearch (@( x ) l i p i d ( x ) , x0 , op t i ons ) %no l i p i d

demixing

% l i p i d demixing

[ x , f va l , e x i t f l a g ] = fmincon (@( x ) energy ( x ) , x0 , [ ( As−apef ) As 0

0 ] , [ 1 ] , [ ] , [ ] , [ 0 ; 0 ; 0 ; 0 ] , [SM;SM; 1 ; 1 ] , ’ c o n s t r a i n t ’ , opt i ons )

%x0 = [ x (1) , x (2) , x (3) , x (4) ] ;

%x0=[x (1) , x (2) ] ;

P L(n , 1 ) = c mic (n) ;

P L(n , 2 ) = x (1) ∗ a l

end
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dlmwrite ( ’ P L . txt ’ , P L , ’ d e l i m i t e r ’ , ’\ t ’ , ’ p r e c i s i o n ’ , 6)

X = c mic ;

plot (X, P L ( : , 2 ) )

ylabel ( ’ P L ’ , ’ f o n t s i z e ’ ,12 , ’ f ontwe ight ’ , ’ b ’ )

xlabel ( ’ cp ’ , ’ f o n t s i z e ’ ,12 , ’ f ontwe ight ’ , ’ b ’ )
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C.1 The function to calculate the free energy of the

peptide-membrane system

function G = l i p i d ( x )

global Q a l alph ap Cp apef

Eps = 8.85 e−12;

T = 300 ;

Kb = 1.38∗1 e−23;

Dw = 80 ;

NA = 6.023∗1 e +23;

e = 1 .6 e−19;

lb = e ˆ2∗1 e +10/(4∗pi∗Eps∗Dw∗Kb∗T) ;

kapain = 10 ; %Angstrom

C 0 = 1/( kapain ˆ2 ∗8∗pi∗ lb ) ;

Ac = 6e8 ; %Bacterium sur f a ce area in aangstromˆ2

Ah = 1e10 ; %Host c e l l s u r f a c e area in aangstromˆ2

ap = 162 ; %246 , 314

apef = ap ; %symmetric b ind ing

%ape f = ap/2 f o r asymmetric b ind ing

a l = 71 ; %74 , 65

alph = 0 . 3 ; %0.05

Q = 6 ;

%Magainin

%vp = 2512; %V=314∗8 Aˆ3

%Me l i t t i n

vp = 33ˆ3 ;
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V = 1e27 ; % t o t a l volume in Angstromˆ3

Ct = 6e4∗1e−24; %c e l l d en s i t y ( c e l l s /(Aˆ3)

A = 2∗Ac ; %symmetric b ind ing

%A = Ac %Asymmetric b ind ing

KA = 0 . 5 7 8 ; %KbT/Aˆ2

SM = 1/ap ;

%FE = ( x (1) ∗WSIND( x )+x (2) ∗WSSND( x ) ) ; %wi thout l i p i d demixing

FE = x (1) ∗WSI( x (1 ) , x (2 ) , x (3 ) )+x (2) ∗WSS( x (1 ) , x (2 ) , x (4 ) ) ; %with

l i p i d demixing

ME = (1/2) ∗KA∗(x (1 ) ∗ apef ) ˆ2 ;

% with pep t i d e r e s e r v o i r

%EntG = x (1) ∗ l o g ( x (1) ∗ap/( cp∗vp ) ) + (SM−x (1)−x (2) )∗ l o g (1−(( x (1)+x
(2) )/SM) ) + x (2) ∗ l o g ( x (2) ∗ap/( cp∗vp ) ) ;

% wi thout p ep t i d e r e s e r v o i r

Ent b = x (1) ∗ log ( x (1 ) ∗ap ) + (SM−x (1 )−x (2 ) )∗ log (1−((x (1 )+x (2) ) /SM)

) + x (2) ∗ log ( x (2 ) ∗ap ) ;

Ent f = (1/(V∗Ct∗A) ) ∗( V∗(Cp−Ct∗A∗(x (1 )+x (2) ) )∗ log ( (Cp−Ct∗A∗(x (1 )

+x (2) ) )∗vp ) − (Cp∗V−Ct∗V∗A∗(x (1 )+x (2) ) ) − (Cp∗V∗ log (Cp∗vp )−Cp∗
V) ) ;

;

EntC = Ent b + Ent f ;
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%F re f e rence

S 0 = −alph / a l ;

Ps = 2∗asinh (2∗pi∗S 0∗ lb ∗kapain ) ;

Fm = S 0∗Ps − ( cosh ( Ps /2)−1)/( kapain∗pi∗ lb ) ;

Entm = ( alph∗ log ( alph )+(1−alph )∗ log(1−alph ) ) / a l ;

%magainin

%E co i l = [0 .1755 1.1663 2.7428 4.7889 7.2350

10.0339 13.1510 16.5596 20.2384 24 . 1697 ] ;

% me l i t t i n

E c o i l = [ 0 . 0 3 5 2 0 .7136 1 .8818 3 .4487 5 .3573

7 .5683 10.0524 12.7872 15.7544 1 8 . 9 3 9 2 ] ;

Fp = ( x (1)+x (2) )∗E c o i l (Q) ;

F r e f = Fp + Fm + Entm ;

G = FE + ME + EntC − F r e f ;
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C.2 The function to calculate the WSC free energy

function FWSI = WSI(J , S ,K) %membrane−i n s e r t e d p ep t i d e s

global Q alph a l ape f ap

Eps = 8.85 e−12;

T = 300 ;

Kb = 1.38∗1 e−23;

Dw = 80 ;

NA = 6.023∗1 e +23;

e = 1 .6 e−19;

lb = e ˆ2∗1 e +10/(4∗pi∗Eps∗Dw∗Kb∗T) ;

kapain = 10 ; %Angstrom

C 0 = 1/( kapain ˆ2 ∗8∗pi∗ lb ) ;

rp = sqrt ( ap/pi ) ;

x (1 ) = J ;

x (2 ) = S ;

a l f p = K;

Aws = (1+x (1) ∗ apef ) /( x (1 )+x (2) ) ;

lambda = a l /(2∗pi∗ lb ∗alph ) ;

As = pi ∗( rp+lambda ) ˆ2 ;

%Zone1

Sigp = Q/As − a l f p ∗(As−ap ) /( a l ∗As) ;

ps ip = 2∗asinh (2∗pi∗Sigp∗ lb ∗kapain ) ;

F1 = Sigp∗ ps ip − ( cosh ( ps ip /2)−1)/( kapain∗pi∗ lb ) ;

Ent1 = ( a l f p ∗ log ( a l f p )+(1−a l f p )∗ log(1− a l f p ) ) / a l ;
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%zone2

a l f = ( alph ∗(Aws−ap )−a l f p ∗(As−ap ) ) /(Aws−As) ;

s i g = −a l f / a l ;

p s i = 2∗asinh (2∗pi∗ s i g ∗ lb ∗kapain ) ;

F2 = s i g ∗ p s i − ( cosh ( p s i /2)−1)/( kapain∗pi∗ lb ) ;

Ent2 = ( a l f ∗ log ( a l f )+(1− a l f )∗ log(1− a l f ) ) / a l ;

eh = −14; %hydrophobic energy

FWSI = As∗F1 + (Aws−As)∗F2 + Ent1 ∗(As−ap ) + Ent2 ∗(Aws−As) + eh ;

function FWSS = WSS(D,B,N) %sur face−adsorbed p ep t i d e s

global Q As alph a l ape f ap

Eps = 8.85 e−12;

T = 300 ;

Kb = 1.38∗1 e−23;

Dw = 80 ;

NA = 6.023∗1 e +23;

e = 1 .6 e−19;

lb = e ˆ2∗1 e +10/(4∗pi∗Eps∗Dw∗Kb∗T) ;

kapain = 10 ; %Angstrom

C 0 = 1/( kapain ˆ2 ∗8∗pi∗ lb ) ;

rp = sqrt ( ap/pi ) ;

x (1 ) = D;

x (2 ) = B;
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a l f p = N;

Aws = (1+x (1) ∗ apef ) /( x (1 )+x (2) ) ;

lambda = a l /(2∗pi∗ lb ∗alph ) ;

As = pi ∗( rp+lambda ) ˆ2 ;

%Zone1

Sigp = Q/As − a l f p / a l ;

ps ip = 2∗asinh (2∗pi∗Sigp∗ lb ∗kapain ) ;

F1 = Sigp∗ ps ip − ( cosh ( ps ip /2)−1)/( kapain∗pi∗ lb ) ;

Ent1 = ( a l f p ∗ log ( a l f p )+(1−a l f p )∗ log(1− a l f p ) ) / a l ;

%zone2

a l f = ( alph∗Aws−a l f p ∗As) /(Aws−As) ;

s i g = −a l f / a l ;

p s i = 2∗asinh (2∗pi∗ s i g ∗ lb ∗kapain ) ;

F2 = s i g ∗ p s i − ( cosh ( p s i /2)−1)/( kapain∗pi∗ lb ) ;

Ent2 = ( a l f ∗ log ( a l f )+(1− a l f )∗ log(1− a l f ) ) / a l ;

FWSS = As∗F1 + (Aws−As)∗F2 + Ent1∗As + Ent2 ∗(Aws−As) ;
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