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Abstract 

Thermite reactions were well studied in the past few decades; however, implementation 

of these reactions with nanoscale components is a new interest for today’s researchers both for 

military and civil industries. Nanothermites are mixtures of a metal fuel and a metal oxide, 

undergoing a redox reaction while heated, and generating a large amount of energy (heat/thrust) 

which can reach combustion temperatures above 3000K. Aluminum is commonly used as the 

fuel because of its abundance, easy handling, high reactivity and benign products. By using 

nano-sized components, the surface energy, contact area, and mixing homogeneity increase. 

These properties result in greatly improved reactivity and propagation rate as well as easier 

ignition compared to traditional thermites, which make them attractive as advanced propellants, 

pyrotechnics, and heat and thrust generators. They also find civil applications such as joining. 

Here, the application of nanothermites for joining metal to ceramic/glass is investigated. To 

approach this goal, composites of nanothermite modified by Copper powder were developed for 

the first time and their related properties were studied to find the best composition for joining. 

These energetic composites can be applied where a localized heat source is required. The 

advantage of using nanothermite for joining is its fast reaction, high energy density and liquid 

products that can wet surfaces. In this research, the reaction products were studied by X-Ray 

Diffraction spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray 

spectroscopy. The overall thermite reaction corresponding to the Al-NiO nanothermite was 

found producing the AlNi phase in a fuel-rich mixture. The microstructures of these reaction 

products showed the formation of a composite made from copper, AlNi and AlNi/Al2O3 spheres 

in an Al2O3 matrix. On the other hand, the influences of the fuel (Al) to oxidizer (NiO or CuO) 

mass ratio and the amount of Cu additive, on the ignition temperature and energy release were 



iv 

 

characterized using Differential Scanning Calorimetry. It was found that both parameters do not 

affect the ignition temperature significantly but change the energy release dramatically. 

Furthermore, according to these results, (Al-33%NiO)-50%Cu was selected and applied to join 

dissimilar materials such as copper, alumina-silica and glass. As a proof of concept, joint cross-

sections were studied by SEM-EDAX revealing that the alumina phase produced by this reaction 

was joined to the glass/ceramic, while the metal phase wetted the metallic surfaces. Therefore, 

this composite was introduced as a good interlayer for dissimilar metal/ceramic surfaces.  
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CHAPTER 1  

Introduction 

1.1. Thermite  

Thermite is an energetic mixture of a metal fuel and an oxide undergoing a redox reaction 

to produce a more stable oxide
1,2

. While ignited, the reaction between the fuel and oxidizer 

produces a large amount of heat and thrust depending on the type of reactants. The mixture was 

discovered and named “thermite” by German chemist, Hans Goldschmidt
3
, in 1895 while trying 

to produce very pure metals. The metal (fuel) can be aluminum, magnesium, titanium, zinc, 

silicon or boron. Aluminum, because of its high affinity for oxygen, is the most commonly used 

fuel in thermites
4
. The abundance, easy handling, high reactivity, benign products and high 

boiling temperature (2792 K) of aluminum are its other advantages as a fuel over other metals. It 

is the third abundant element (after oxygen and silicon) and the most abundant metal in the 

earth’s crust. Being exposed to oxygen, an oxide layer is formed around the core aluminum 

protecting it from further oxidation and makes its storage and handling easier and safer. The 

common metal oxides used in thermite reactions include Fe2O3
5–7

, CuO
8–19

, MoO3
12,20,21

, 

WO3
12,22,23

 Bi2O3
12,24,25

 NiO
26,27

, etc. Thermite reactions are highly exothermic and can rise 

temperatures above 3000 K
1,28,29

. Appendix A presents a list of thermite reactions with their 

thermodynamic properties, such as adiabatic flame temperature (AFT), amount of gas 

production, and heat of reaction. A typical thermite reaction is as follows: 

Metal oxide + Aluminum → Metal + Auminum oxide + Heat   (R1-1)   
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1.2. Thermite welding 

Thermite welding, also called as aluminothermic welding, is a low-cost type of fusion 

welding process according to German institute of standardization (DIN 1910
30

). In this process, 

the parts to be welded are put together in an enclosed sand mould with a defined gap between the 

faces and are preheated to a suitable temperature. The thermite mixture of aluminum and metal 

oxide is placed in a highly refractory magnesite funnel above the mould and is ignited with a 

special igniter
31

. The reaction is exothermic generating a large amount of heat, which increases 

the temperature up to 2450°C. The aluminum reduces the metal oxide, producing pure metal and 

aluminum oxide. At the high temperature of about 2450°C, the metal is liquid and the oxide is 

extremely hot and they separate due to their different densities (Tboiling of Al=2519°C, and Tboiling 

of Fe=2862°C). The liquid metal flows through the bottom of the funnel while the oxide 

accumulates on the top
31

. The preheated base metal parts are then welded together by pouring the 

molten metal into the mould
30

.  Figures 1-1 and 1-2 show a schematic and a real picture of the 

thermite welding process respectively.  

 

Figure 1-1 Schematic thermite welding apparatus- From the reference 
31
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Figure 1-2 Thermite welding of railways- From the reference 
32

 

 

The most historical and well known thermite material, composed of aluminum and Fe2O3 

powder, has been used to weld railway tracks as shown in Figure 1-2. This reaction is as follows: 

   
 

 
        

 

 
                  (R1-2) 

1.3. Motivation 

A cost-effective, well known process, thermite welding has been used in the railway 

industry for several decades. However, the conventional thermite welding process requires large 

activation energy and a huge setup, making it inconvenient for use in small areas. Therefore, it 

sparks the idea of using an improved version of thermite material to join small parts in micro and 

nano-scale systems. Therefore, the nanothermites are considered as the improved version of the 

conventional thermites. They have a great potential for material and component joining purposes 

when there is a need to achieve localized energy generation and molten metal in space-limited 

situations. For example, in packaging micro-electronics interconnections and joining silicon and 

metal components in solar cells, a localized energy source is desired near the joint in order to 

avoid exposure of the entire component to high temperatures. 
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In this regard, after studying various thermite compositions in the relevant literature, Al-

NiO was chosen for further study due to its low gas generation and high heat of reaction.  

1.4. Objective 

The objective of this thesis is to investigate synthesis and characterization of Al-NiO and 

Al-CuO nanothermite composites in order to find a nanothermite composition which can be 

successfully used in nano and micro-joining applications. According to this goal, thermo-

chemical analysis of the aforementioned composites, along with detailed analysis of reactants 

and products composition and microstructures, were focused in this thesis. This thesis also 

presents preliminary results of joining dissimilar materials by the use of the selected composite.  

1.5. Thesis organization 

The outline of this thesis is as following. Chapter 2 briefly reviews the relevant literature 

on synthesis, characterization, and application of thermite reactions.  In this chapter I reviewed 

the ignition and combustion of thermites as well as their thermal behaviour and phase analysis. 

The application of thermites for joining is more emphasized amongst their other applications. 

Chapter 3 explains the experimental procedures and configurations used during the course of this 

project. Chapter 4 involves characterization of the Al + NiO nanothermite during synthesis and 

after completion of the reaction, while Chapter 5 focuses on results of synthesis and 

characterization of copper added nanothermites, including the thermal and microstructural 

analysis. Chapter 6 introduces a novel joining method being applied to join metal to 

glass/ceramic and includes the relevant results and discussion. Finally, Chapter 7 summarizes the 

results and conclusions and suggests the future work on this topic.  
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CHAPTER 2  

Literature Review 

This chapter reviews the background information and the relevant literature in the area of 

nanothermite synthesis and characterization methods, and applications. The thermite reaction 

was introduced in Chapter 1. In this chapter, first the differences between the nanoscale and 

bulk-scale thermite are highlighted. Afterwards, the literature on nanothermite synthesis of 

various compositions is reviewed, which outlines the preparation methods, chemical 

compositions, and geometric structures of nanothermites. The characterization literature includes 

a review of the debate on ignition mechanism along with the review of the role of important 

factors in determining combustion rate. Afterwards, the literature on identification of reaction 

products, thermodynamic and kinetic analysis of the nanothermite reactions is reviewed. At the 

end, the traditional thermite joining is explained and the relevant works on the use of 

nanothermites for joining are reviewed. 

2.1. Nanothermites versus conventional thermites 

Compared to monomolecular energetic materials such as TNT (trinitrotoluene), RDX 

(research department explosive) and HMX (high melting explosive), thermites have higher 

combustion energy density as shown in Figure 2-1
33

 . However, conventional thermites have 

lower energy release rates since the mass transport rate depends on the granulometry of the 

precursors and therefore limits the energy release rate
2
. To increase the energy release rate of 

thermite materials to the level of monomolecular materials, one should decrease the mass 

transfer path as much as possible. This is how the use of thermite material in nano-scale began to 

overcome the limitations of conventional thermites.  
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Figure 2-1 Mass and volumetric energy density of example thermites compared to common explosives; From 

Fischer and Grubelich 
33

 

 

Thermites with reactant particle dimensions less than 100 nm are considered 

nanothermites. Compared to conventional thermites, nanothermites possess higher energy release 

rates, enhanced reactivity
34

, and lower ignition temperature
24,26,28

. Nanoparticles have much 

higher surface area compared to micron sized thermites. By decreasing the particle size, the ratio 

of surface/volume increases. Consequently, the surface energy increases. Smaller particle size 

also improves the contact area and mixing homogeneity. These properties result in greatly 

improved reactivity and propagation rate as well as easier thermal ignition than traditional 

thermites, making them attractive as advanced propellants, pyrotechnics, and heat and thrust 

generators. On the other hand, nanothermites are of interest in civil applications such as 

micro/nano-joining and energy generation devices for MEMs due to their small size, high energy 
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density, and tunable reaction parameters, for example, ignition temperature and reaction rate. 

Following is a review on the preparation approaches of nanothermites. 

2.2. Preparation of nanothermite composites 

2.2.1. Mixing methods 

This section reviews and classifies different approaches to prepare nanothermite 

composites.  

Powder mixing 

 The most common method to prepare reactive nanomaterials is mixing the reactant 

nanostructures using an ultrasound bath. In this method, Al nanoparticles are mixed with oxide 

nanopowders in a bath of isopropanol
12,24

, hexane
7,12,24,35

, or another liquid using high intensity 

ultrasound actuators. The liquid is then evaporated and a dried powder is achieved. The major 

challenge with this method is assessment of mixing quality. In a review by
36

 it is shown that 

most assessment techniques for mechanically mixed nano-powders are based on imaging a small 

area of the mixed powder. This imaging should be repeated for many parts of the sample powder 

in order to achieve a reliable assessment. The mixing quality becomes more critical when the 

morphology of the nanopowders to be mixed is different. In most cases, oxide nanopowders are 

not spherical or uniaxial. They are usually in the shape of nanorods or flakes. Therefore, taking 

an image which is a good representative of the mixture is often challenging since larger particles 

such as flakes might shield the smaller particles. Furthermore, while the mechanical mixing 

method works very well in laboratory scale, it is challenging to scale it up since the mixing 

quality decreases by increasing the batch size
2
.  

Sol-gel  

Sol-gel method was proposed as an alternative to mechanical mixing by several 

papers
7,37–40

. This process makes a matrix of oxide material with metal nanoparticles filling in 
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the pores of the matrix. Hydrated metal salts are used as precursors and propylene oxide is used 

as gelation agent. In the process of making reactive nanomaterials, the metal nanopowder is 

added to the solution just before the gelation happens.  Then the fluid in the pores is removed 

either by slow evaporation or by supercritical extraction with CO2. Using various silane additives 

helped to further functionalize the oxide matrix
41

. A very intimate mixing is achieved using this 

process however, it has some disadvantages including: high porosity of the final product which is 

not desirable for some applications, the type of materials which can be gelled is limited, it is 

difficult to scale it up since the metal nanopowder needs to be introduced to the solution at a very 

specific stage.  

Self-assembly 

Another approach introduced in the recent years, is self-assembly of aluminum 

nanoparticles on functionalized nanosized oxide particles
8,42

. This method will produce ordered 

structures with better properties and higher combustion rate compared to conventionally mixed 

powders. In this method, Al nanoparticles arrange around the outer surface of a functionalized 

oxide nanorod or fill the pores of a mesoporous oxide material. As an example, Al-CuO nano 

composite was achieved by functionalizing CuO nanorods by applying a polymer, poly(4)-vinyl 

pyridine (P4VP). The Al nanoparticles then self-assembled on the functionalized nanorods and 

the decorated nanorods became ordered
8
. In a similar approach, Al-Fe2O3 nanothermites were 

prepared. A porous Fe2O3 was synthesized using micelles sol-gel synthesis by addition of 

surfactants. Using surfactants in the synthesis process caused in an ordered structure of pores. In 

this study a reference sample was also synthesized without the use of surfactants and the pores 

were not as ordered as the surfactant assisted Fe2O3 synthesis. Both oxide samples were mixed 

with Al nanoparticles and their combustion rates were compared. The ordered sample showed 

higher combustion rate. The ordered structures offer better control of reaction properties and 
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combustion rates. Cheng et al.
5
 compared the reaction kinetics of self-assembled and solvent-

based nanothermite mixtures of Al-Fe2O3 and concluded that self-assembled nanothermites 

enhanced the reaction kinetics more strongly than simple physical solvent mixed samples. Self-

assembled nanothermites had a much higher contact area between the fuel and oxidizer and, 

therefore, a higher propagation rate, etc. since the increased intimacy between the fuel and the 

oxidizer significantly enhanced the solid-state diffusion between the reactants. The drawbacks of 

this method are the high cost of oxide preparation the high porosity of the material. Additionally, 

the functionalizing agents remain in the structure, reducing the energy density of the 

nanothermite composite.  

Layered vapor deposition 

Another interesting method of nanothermite synthesis is preparing them in layers of 

nanosized films. Nanosized films of reactive materials are coated on top of each other by vacuum 

deposition. Ma et al.
43

 introduced Al-Ni multilayer films with each layer to be 60-300 nm thick. 

The Al and Ni nano layers were deposited by alternate electron beam evaporation of Al and Ni 

on a glass substrate coated by photo resist at pressure of      torr. In order to achieve a free-

standing film, the photo resist was dissolved after deposition of Al and Ni layers. The authors 

reported rapid Self-propagating High temperature Synthesis (SHS) reaction which resulted in 

production of Al3Ni2, Al3Ni, and Al. Barbie and Weihs registered a patent
44

 with systematic 

development of this method. Extensive research was done following it
45–50

. The multilayer foils 

were originally developed for joining applications
45–47

, however they later attracted interest as 

energetic components and their reaction details were further studied
48–50

. Al-CuO multilayer foils 

were also developed and characterized
49,50

. 

Arrested reactive milling 
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Arrested reactive milling
51–55

 is the only top to bottom method of preparing thermite 

nanocomposites. In this method, coarse reactant particles are mixed and ball-milled. During such 

process, the self-sustaining exothermic reaction occurs inside the milling vessel by mechanical 

ignition. In order to obtain reactive nanocomposites, the milling process is interrupted just before 

the self-sustaining reaction initiates. This specific time is identified by preliminary experiments 

for small batches and numerical modeling for large samples
56

. This method results in fully-dense 

micron-sized composite particles with nanoscale mixed components. In this approach, the 

reaction initiation time is a limiting factor for mixing reactants. This time depends on milling 

parameters such as temperature, batch size, and mass ratio of sample to the milling media
2
.  

2.2.2. Composition and structure 

Various nanothermite compositions are widely used based on different applications. The 

difference is basically in the type and structure of the oxidizer and the mixing geometry.  

Following are most commonly used nanothermite compositions listed and relative characteristics 

are reviewed.  

Al-CuO 

Umbrajkar et al.
15

, Al/CuO nanothermite composite was integrated by mixing Al and 

CuO micron sized particles in a shaker mill. After 1 hour of milling in the presence of 8 ml 

hexane, a well-mixed nanothermite composite was achieved with a low ignition temperature of 

about 400K. The activation energy and reaction enthalpy were calculated and 4 steps were 

elucidated in the reaction kinetics
15

. In another study, by Ohkura et al.
9
 a uniform structure of 

Al/CuO core-shell nanowires was synthesized. The CuO nanowires were grown uniformly by 

annealing Cu foils and were used as templates for Al nanoparticles deposition. The Al 

nanoparticles were subsequently sputtered on the CuO nanowires to form Al shells on the CuO 

core nanowires. The uniformity of this structure was higher than np/np mixtures and had lower 
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activation energy accordingly
9
. In a different method, Chowdhury et al.

57
 used a mixture of 

oxide-passivated Al np and CuO nps with average diameter of 50 nm to study the effect of oxide 

shell thickness on the ignition behavior of the nanothermite. Increasing the thickness of the oxide 

shell led to an increase in the ignition delay time, suggesting that the reaction is governed by 

diffusion of Al and oxygen atoms through the oxide shell
57

. Wang et al.
16

 studied the mixture of 

nitrocellulose passivated Al nanoparticles and 12 nm diameter CuO nanoparticles to determine 

the effect of the fuel/oxidizer mass ratio on the reaction products. The study showed that a fuel 

rich composition results in the formation of Al2O3 and pure Cu
16

.  

Al-Fe2O3 

Menon et al.
58

 studied the effects of structural parameters on reaction characteristics of an 

Al-Fe2O3 thin film nanothermite. This structure was achieved by processing Fe nanowires 

formed in a nano-porous alumina template. The alumina template was etched to achieve a 

composite of Fe2O3 nanowires embedded in a thin Al film shown in Figure 2-4.  

This method can also be used to produce fuel nanowires embedded in thin oxide films. It 

enables nano-scale control over the structural parameters such as nanowire diameter and packing 

density, which will affect reaction parameters such as flame temperature and burn rate. Menon et 

al. have shown that the dimensions and spacing of the nanowire/thin film nanothermite 

composite strongly affect the ignition properties.
58
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Figure 2-2  Array of Fe2O3/Al nanowire-thin film- From Menon et al.
58

 

In 2009, Shimojo et al.
59

 used a molecular dynamics simulation to investigate the fast 

diffusion mechanism for ignition of Al/Fe2O3 in the interface of Al and Fe2O3(diffusion of metal 

and oxygen atoms).  

Al- AgIO3 

Sullivan et al.
60

 studied the reaction of Al-AgIO3 thermite, which has potential biocidal 

applications. They determined that the oxidizer first decomposed to AgI, O2 and O ions. This 

composition resulted in enhanced pressurization compared to Al-CuO and Al-Fe2O3 because of 

Iodine gas release in addition to Oxygen.
60

 

Al-MoO3 

Son and Pantoya et al.
57,61

 studied the effects of particle size and composition (mixture 

ratio) on the ignition and reaction of nanoscale Al-MoO3 composites using SEM, SANS and 

SAXS. They found SANS to be most useful for this characterization. According to their results, 

sample with smaller Al nanoparticle size exhibited a lower ignition temperature (~40°C) than the 

sample with larger Al nanoparticle size. On the other hand, their study showed that even small 

changes in the stoichiometry of the mixture, influenced the propagation rate and pressurization 
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rate. When the reaction propagation rate increased, the pressurization rate increased as a 

consequence 
61

. 

Al-WO3 
12,22,23

 Al-Bi2O3 
12,24,25

, and Al-NiO 
26,27

 are other compositions of interest. The 

compositions discussed above are the most common of those used for nanothermites. They have 

been integrated to different structures such as nano-laminar
62,63

, foil geometry 
45,47,49,64

, nano-

honeycomb 
27

, core-shell nanowires
9
, and nanoparticle-nanoparticle as well as nanoparticle-

nanowire
16

 mixtures.  

2.3. Reaction characteristics 

2.3.1. Ignition mechanism 

The ignition of thermite reactions can be initiated by various methods. These methods 

include ignition by electrical power, laser radiation, impact
65

 or combustion wave from a 

chemical reaction
66–69

. The ignitability of thermite reactions is primarily influenced by physical 

and chemical stability of the reactants
70

. In this case, oxide reactants are categorized by 

Chernenko et al.
70

 into two groups based on their stability: chemically stable oxides and 

chemically unstable oxides. The first group is further divided to two groups: (1) physically stable 

oxides (while heated don’t evaporate, sublime, or fuse); (2) physically unstable oxides. 

Chemically unstable oxides are also divided to two groups: (3) oxides which decompose and 

release oxygen upon heating; (4) oxides which further oxidize into higher oxides upon heating in 

air atmosphere. For class (1) oxides such as NiO, TiO2, Cr2O3, Al2O3, Ta2O5, and Nb2O5, the 

oxide remains inert until the moment of ignition. In this case, the oxidation of Al with 

atmospheric oxygen initiates the combustion. Oxides in class (2), i.e. B2O3, MoO3, and WO3 

which either melt or sublime at temperatures below ignition temperature, may enhance the 

reaction rate upon heating by creating liquid or vapor oxide phases. If the oxide is volatile, the 
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reaction between Al and the vapor oxide can initiate the reaction. In the case of class (3) oxides, 

(i.e. V2O3, CrO3, Li2O2, and BaO2), the oxygen released from decomposition of oxides can 

initiate the combustion. As an example, CrO3 decomposes at 170°C and releases oxygen which 

causes the ignition of reaction at this temperature. Class (4) oxides such as FeO and CuO, further 

oxidize in the air and the heat released from this oxidation process may help initiate the 

combustion reaction by rising the temperature to the ignition temperature
1,70

.  

When it comes to Al stability, the Al phase and condition of the oxide layer become 

important. The stability of the Al nanoparticles strongly depends on the interaction between the 

core aluminum and the passivating oxide shell. This interaction becomes much more important, 

with the knowledge of their fairly different properties, such as melting temperature and thermal 

expansion coefficient. The melting temperature of Aluminum is around 660°C, which is well 

below the melting temperature of Al oxide (2072°C), making it complicated to determine what 

exactly happens while heating the nanoparticles. Unlike conventional thermites with ignition 

temperatures much higher than the melting temperature of Al, nanothermites are ignited at 

temperatures very close to the Al melting point. This causes a debate on the ignition mechanism 

of nano aluminum while rapidly heated. This reaction mechanism was previously investigated by 

many researchers
23,57,71–79

 but yet not fully elucidated. There are two main mechanisms proposed 

for the reaction of Al nanoparticles with oxides while rapidly heated.  

The first one is referred to as “melt dispersion”
71–74

 mechanism which suggests that the 

core aluminum melts rapidly and its volumetric expansion induces a large stress on the alumina 

shell which at a critical point causes the shell to shatter suddenly and the core alumina releases 

out in the form of small droplets of molten alumina with high velocity. The other proposed 

mechanism is called “diffusion”
57,75–77

 mechanism and argues that during the rapid heating of Al 
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nanoparticles, the Al core melts 
71,80

 and induces some stress on the oxide shell and diffuses 

through the shell. However, the exact diffusion mechanism is still unknown.  

Recently, Firmansyah et al.
78

 conducted a more detailed investigation on the 

microstructural behavior of the oxide shell during the ignition of Al nanoparticles in support of 

the diffusion mechanism. Based on their results from High-temperature X-ray diffraction 

analysis, it was observed that the nanoaluminum lattice expands under tension at room 

temperature, and after being heated to about 300°C it passes through a zero-strain state. After 

passing the melting temperature of bulk aluminum, the aluminum lattice expands without any 

constraint. The authors attributed this contrary observation to be a result of the inhomogeneous 

phase transformation of amorphous alumina to the crystalline phase. The new inhomogeneous 

alumina phase is more ductile due to the presence of weak points of amorphous-crystalline 

interfaces, which results in no constraint expansion of core aluminum and the shell thickening as 

a result of diffusion processes of Al cations and O anions. This ductile shell absorbs the pressure 

built in the Al core. 

In an earlier publication, Rai et al.
80

 suggested that the Al oxide phase changes with 

temperature are the key factor in the ignition of Al nanoparticles. The stability of the oxide shell 

was tested using a hot-stage transmission electron microscope (TEM). The results show that 

around the melting temperature of bulk aluminum, the oxide shell ruptures and liquid aluminum 

flows out of the particle. This was explained by the increased tension in the oxide shell due to the 

high mismatch in the thermal expansion constants (CTE) of aluminum core and aluminum oxide 

shell. From their observations, the oxide shell on the Al nanoparticle ruptures by increasing 

temperature and releases the liquid aluminum which instantly ignites and reacts with oxygen.  
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2.3.2. Combustion of thermite composites 

Experimental studies have proven that combustion rate of thermite reactions depends on 

several factors such as reactant particle size
81,82

, inert diluent additives
69,82

, powder compact 

density
81

, centrifugal force
83,84

, and ambient gas pressure
85,86

. Here, we review the role of these 

factors on combustion rate of thermite composites. 

Particle size: In general, increasing the reactant’s particle size reduces the reaction rate. 

This was shown in a work by Balakir et al
82

 reporting that Al particles larger than 100 µm are 

difficult to ignite. Furthermore, as it was discussed in 2.1 decreasing the particle size to 

nanoscale has significant effects on the reaction properties including the reaction rate. When it 

comes to nanoscale, the particle size distribution and the morphology become important factors 

as well. In nanoscale powders, agglomeration is a common problem making it difficult to 

measure the particle size distribution precisely. However, various methods were utilized in the 

recent years to introduce one-factor to demonstrate the particle size and morphology distribution. 

As a good example of these methods is BET (Branuauer-Emmett-Teller) measurement of surface 

gas absorption
87–89

 by the powder which can be interpreted to the active surface area of the 

sample powder and eventually be translated to a one-number particle size. All related studies 

conclude that in identical conditions, the higher the surface area, gives the higher reaction rate.  

Aluminum nanoparticles are the key components of a nanothermite composition. In most 

cases, the Al nanoparticles are coated with a thin oxide shell which prevents them from further 

oxidation. Figure 2-2 shows a TEM image of an Al nanoparticle. The Al core and the thin Al2O3 

shell can be distinguished in this image. The oxide shell is usually about 2-5 nm thick
2
.  By 

decreasing Al particle size, particle temperature equilibrates to the ambient temperature and 

becomes uniform all over the particle more quickly. Therefore, for nanoparticles, the particle 
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temperature is very sensitive to the ambient temperature changes. Figure 2-3 shows the burning 

times of Al nanoparticles compared to micron-sized Al particles
90

. Burning time of micron-sized 

particles is less dependent of the surrounding gas temperature
91

. In case of nanoparticles, we see 

that the results of Park et al. show much higher burning time compared to Parr et al. These 

discrepancies are due to the high effect of surrounding gas temperature on the burning rate of 

nanoparticles. 

 

Figure 2-3 TEM image of an oxide passivated Al nanoparticle; From Puszynski et al.
92

 

 

The results for Parr et al. were obtained by injection of Al nanoparticles into a gas burner 

with a very high temperature. Park et al.
93

 and Rai et al.
80

 studied the burning rate in a flow 

reactor on a high-temperature particle laden air flow. After a defined reaction time, the 

composition of particles was determined by a particle mass spectrometer. Then, the percent 

conversion and reaction rate were measured accordingly. From these studies, the authors 

concluded that the oxidation process occurred in condensed phase and was a diffusion limited 

process where the reactants passed through the oxide shell. Below the melting point of 

Aluminum, the oxidation process is based on diffusion of oxygen through the oxide layer; 
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however, in temperatures higher than melting point of Al, both Al and O diffuse through the 

oxide shell resulting in a faster oxidation. Since Parr et al. injected the nanoparticles into high 

temperature gases both the Al and O ions diffuse through the oxide shell and result in lower 

burning time compared to the results from Park et al.  

 

Figure 2-4 Al particle burning times as a function of particle diameter
90,94

 

 

Inert diluent additives: Adding inert diluents to the powder mixture, results in lower 

combustion rate due to less heat generation and longer diffusion path for the reactants
82,95

. 

Additionally, different diluents decrease the reaction rate differently. This is due to the different 

properties of the diluents such as heat capacity and thermal conductivity
69,82

.  

Powder compact density: The effect of compact density on the combustion rate was 

investigated by Dubrovin et al.
81

, by studying composites of Cr2O3, iron ore and Al for various 

iron ore particle sizes. The authors presented these results in Figure 2-5. For low densities of the 

mixture (roughly <2 (g/     ), the combustion rate decreases by increasing the density. 
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Dubrovin et al.
81

 attributed this to the effective thermal conductivity of the compact which was 

also found to be a function of compact density with similar dependence
96

. 

 

Figure 2-5 Combustion rate as a function of density for energetic composites of Cr2O3, iron ore and Al with 

iron ore particle sizes of (1) 57, (2) 50, (3) 40 µm
81

  

 

For densities higher than the minimum point on the graph, the combustion rate increases 

by increasing the compact density
81

. 

Centrifugal force: In studies by Serkov et al.
83

 and Karataskov et al.
84

, centrifugal force 

was suggested to enhance the combustion rate of thermites. Centrifugal force is defined as the 

ratio of centrifugal acceleration (a) to gravitational acceleration (g). Serkov et al.
83

 studied a 

composite which all of its components were in molten state at combustion temperature. They 

showed that by increasing the acceleration force from 0 to 895 (a/g), reaction rate increases from 

5 (mm/s) to 28 (mm/s) which is about 6 times higher than the initial rate. The authors suggested 



20 

 

that the centrifugal force helped the molten Al to penetrate the pores of the unreacted mixture 

ahead of the combustion wave
83

. 

Inert ambient pressure: Dependance of combustion rate on ambient pressure is 

different for different thermite compositions. It is mostly associated with the presence of gaseous 

phase in the reaction
1
. When the combustion temperature is higher than the boiling temperature 

of the reactants or products gaseous phases will be generated. This gas generation is influenced 

by the ambient pressure. If the ambient pressure is low, the vaporized phase leaves the reaction 

and results in lower combustion temperature, thus lowers the combustion rate as a consequence. 

Some thermites such as Al-Fe2O3-Al2O3 were proven to act independent of pressure changes at 

pressures above 1 atm
1
. However, in vacuum range, boiling temperature of some reactants (such 

as Al) decrease and becomes lower than the combustion temperature, resulting in evaporation 

and decrease in combustion rate. In such cases, by increasing the ambient pressure, the reaction 

rate increases as shown in Figure 2-6
1
. Similarly, nanoscale Al has a lower boiling temperature 

than bulk Al making it more sensitive to ambient pressure changes.  

 

Figure 2-6 Effect of pressure on combustion rate of Al-Fe2O3-Al2O3 thermite under vacuum; From the 

reference 
1
 

 

In another study by Wang
97

 Mg-B2O3-C was tested in Argon atmosphere. The results 

showed that in pressures of 1-13 atm, the combustion rate increased with increasing the pressure.  
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At 30-150 atm, the combustion change remained constant, but at high pressure 

atmosphere (200-1020 atm), combustion rate decreased by increasing the pressure. The author 

explained that in low pressure range, pressure increase reduces the reactant evaporation and loss. 

For pressures higher than 200 atm, the amount of heat loss to surrounding gas increases due to 

the increased density and thermal conductivity of the Argon gas. This heat loss results in lower 

combustion temperature and therefore, lower combustion rate
97

. 

2.3.3. Thermal analysis 

Nanothermites have been studied to measure their thermal behavior such as ignition 

temperature, reaction enthalpy, and activation energy
24

 and product compositions. The latter can 

be predicted by the theory of minimization of free energy. Thermal analysis has also led to 

prediction of adiabatic flame temperatures (AFT) and amount of gas generation. Table 2-1 shows 

some of the important thermodynamic properties of select thermite reactions. The full table is 

presented in appendix A. 

Table 2-1 Thermodynamic properties of selected thermite reactions-reproduced from Puszynski et al. 
24

 

Thermite reaction Q, cal/g Q, cal/cm
3 Gas generation 1 

atm, g gas/g mixture 
Tad, K 

2Al + Fe2O3   2Fe + Al2O3 945.4 3947 0.0784 3135 

2Al + Bi2O3   2Bi + Al2O3 505.1 3638 0.894 3319 

2Al + MoO3   Mo + Al2O3 1124 4279 0.2473 3688 

2Al + WO3    W + Al2O3 696.4 3801 0.1463 3253 

2Al + 3CuO   3Cu + Al2O3 974.1 4976 0.3431 2843 

  

One of the most common ways to measure reaction enthalpies is Differential Scanning 

Calorimetry (DSC). A schematic picture of a DSC machine is shown in figure 2-7. This machine 

has a sample holder and a reference material. The chamber is heated by a pre-set heating rate and 

the heat flow required to keep the sample and reference in the same temperature is recorded.  
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Figure 2-7 Schematic figure of DSC chamber; From the reference 
98

 

 

The resulted graph shows the heat flow versus temperature or time. During heating, the 

sample may undergo endothermic or exothermic transitions. Enthalpy of reaction can be 

calculated by integrating the area under the heat flow-temperature graph. A sample DSC graph is 

shown in Figure 2-8. The direction of exothermic reaction is usually shown in the corner of the 

diagram and the opposite direction peaks indicate endothermic reactions. In Figure 2-8, an 

exothermic reaction is shown. The onset temperature for this reaction is 435°C which is called 

ignition temperature. The reaction reaches its peak at 527°C and is completed at 575°C. The area 

under the peak indicates the absolute value of the heat of the reaction as shown in the figure. The 

adiabatic flame temperature (AFT) is the maximum flame temperature resulting from an 

adiabatic combustion process, and is measured theoretically. A list of AFT values for thermite 

reactions can be found in Appendix A.
29
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Figure 2-8 Example DSC diagram; the exothermic peak shows an exothermic reaction. Heat of 

reaction is calculated from the area under the peak. 

 

2.3.4. Microstructure and phase analysis 

The reaction kinetics of nanothermite reactions is of interest, when it comes to predicting 

the products and detailed steps of the reactions. Phase analysis methods such as XRD, are 

usually combined with thermal analysis results to study the reaction kinetics of thermite 

reactions. DSC/TGA results show the endothermic and exothermic reactions indicating phase 

changes at certain temperature. While combined with XRD or EDAX, the reaction pathways are 

predictable.  

As an example, Wang et al.
16

 studied the mixture of nitrocellulose passivated Al 

nanoparticles and 12 nm diameter CuO nanoparticles to determine the effect of the fuel/oxidizer 

mass ratio on the reaction products. The study showed that a fuel rich composition results in the 
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formation of Al2O3 and pure Cu
16

. The authors have suggested 2 steps for the Al/CuO reaction. 

First,  

At 570°C:  

          
 

 
      

 

 
            (R2-1) 

Then at 800-900°C:  

                          (R2-2) 

And finally at 900-1000°C:  

         
 

 
                  (R2-3) 

Umbrajkar et al. 
15

 and Schoenitz et al. 
99

 studied Al/CuO and Al/MoO3 reactions 

respectively using the similar technique. In general, the products of nanothermite reactions were 

found to be mainly aluminum oxide (Al2O3) and a metal or metal alloy
1,2

. Formation of the metal 

alloy depends on the flame temperature and duration as well as the size of precursors. Based on 

these parameters, a wide range of alloys and intermetallic compounds can be achieved as 

products. Accordingly, specific thermite reactions can be designed in order to produce specific 

compounds. This process is called reactive sintering which is one of the interesting applications 

of thermites. As an example, AlNi, which is an attractive structural material, was synthesized by 

heating Al/Ni thermite under high pressure condition
100

. There is also an amount of gas 

generated depending on the reactant type. Gas generation from the thermite reactions is mainly 

attributed to the formation of vapors of metals (such as Cu, Fe and Ni), the elemental oxygen (formed 

from the decomposition of the oxidizer), the gas of metal oxides if the combustion temperature is 

high enough, and other gaseous reaction products. While the metal vapor forms at a temperature 

which is above the boiling temperature of the metal, the release of elemental oxygen from the 

decomposition of the oxidizer component of MICs can be significant as well. 
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2.4. Applications 

From the time that Goldschmidt
3
 discovered thermite reactions, bulk thermite composites 

were being used in various applications. These applications included: preparation of metals and 

alloys
101–104

, centrifugal coating
105

, material synthesis
97,104,106

, welding
107,108

, and etc. By 

development of thermites in nanoscale, their applications were brought to another stage ranging 

from developing and designing nano-initiators
18

, micro-thrusters
109–111

, micro-propellants
112,113

, 

and rocket fuel
109,112,114

 to their application in cancer therapy
115

. This thesis mostly focuses on the 

potential application of nanothermites in joining and welding where high amount of energy release 

and presence of molten state are preferred116. 

2.4.1. Joining 

There is an extensive work done on the use of micron-sized thermites for joining application 

but there is little literature on the use of nanothermites. However, the lower activation energy for 

ignition of nanothermites and therefore, easier ignition, is the advantage of using nanothermite over 

bulk thermite. In chapter 1, the traditional thermite welding process was described to better 

understand and suggest the effectiveness of thermite reactions for advanced joining applications. In 

this section, we review the available literature on the use of thermite reactions for joining of both 

similar and dissimilar materials. In 1986 Miyamoto et al.
117

 used a pressurized combustion 

reaction to produce ceramic-to-metal welds of Mo-TiB2-Mo and Mo-TiC-Mo. Ti powder was 

mixed with B or C and the mixture was pressed between two Mo surfaces. The mixture was then 

electrically ignited and the exothermic reaction resulted in formation of TiB2 and TiC welded to 

Mo at the interfaces. Weld strengths were measured to be 20-40 MPa and ~10 MPa for Mo-TiB2-

Mo and Mo-TiC-Mo couples respectively. In a research by Pascal et al.
118

 Al and Ni mixture was 

used to weld superalloy substrates. The process is referred to as self-propagating high-
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temperature synthesis (SHS) joining. By heating the Al+Ni mixture to 920 K, an exothermic 

reaction starts and forms AlNi. The released heat of the reaction rises the temperature to above 

melting temperature of NiAl (1950K). This heat also causes surface melting of the substrate, 

which wetted the contact surfaces. As a result, an Al-rich Ni-base superalloy was formed at the 

interfaces. Bahrami et al.
119

 used a mixture of micron-sized particles of Al-CuO-Ni, with a fuel-

rich composition, to join Al 1100 sheets. The process was done under a uniaxial pressure of 9 

MPa. A good weld was achieved with mean shear strength of 27 MPa which was much higher 

than that of diffusion welded samples (8.05 MPa) and by 30% close to that of the base metal (Al 

1100). The authors measured the heat affected zone to be 750 µm thick in each side of the weld. 

SEM and XRD results confirmed the joint to be composed of an Al-matrix composite reinforced 

by Al3Ni2, Al7Cu4Ni and Al2O3 phases. Due to the high-strength joint achieved, this process was 

found to be a good potential for welding of non-refractory materials. Swiston et al.
64

 used Al/Ni 

in multilayer foil geometry to join bulk metallic glass through a self-propagating exothermic 

reaction. They suggest that both the foil thickness and the applied pressure, affect the weld 

strength. The authors reported shear strengths as high as 480MPa. The reaction was activated by 

applying electrical potential of 30 V to the foils.  

Al-Ni 
45–47,119–121

 was commonly used as an energetic material for joining, however, its 

price is much higher than Al-metal oxide composites. Accordingly, I focused on the use of 

Al/NiO as a good candidate for joining application during the course of this thesis. 
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CHAPTER 3  

Synthesis, Preparation and Characterization Methods  

This chapter explains the experimental procedures and methods for synthesis, preparation 

and characterization of Al-NiO and Al-CuO nanothermite samples. 

3.1. Reactants 

The nanothermite samples were prepared by mixing reactants of various types and 

nanostructures. The detailed information for each reactant used in preparation of the above 

nanothermites is provided in this section. 

3.1.1. Al nanoparticles 

Aluminum nanoparticles with diameter of 50-120 nm were purchased from Sigma-

Aldritch. The nanoparticles had a 5 nm thick oxide shell. By assuming the averaged nanoparticle 

diameter of 80 nm, this shell thickness indicates the content of Al of about 60%. The oxide shell 

would protect the Al nanoparticles from further oxidation however it is essential to keep the Al 

nanoparticles away from the moisture to minimize further oxidation and reduction in active 

content of Al, so the Al nanoparticles were safely stored in an air-tight bottle in an argon (Ar) 

filled glovebox. 

3.1.2. CuO nanowires 

Copper oxide nanowires were made hydrothermally based on a template free solution 

route introduced by Lu et al.
122

. First, solutions of 1 M KOH and 7 M NH3 were prepared 

separately in deionized (DI) water. Then, a solution of 0.1 M CuSO4 was prepared by dissolving 

798 mg of anhydrous copper sulfate (CuSO4) in 50 ml of DI water. The solution was put on a 

hotplate-stirrer and was stirred rigorously using a magnetic stir bar. 20 mL of the 1 M KOH 
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solution was added to the beaker using an Eppendorf digital pipette. It was stirred for an 

additional 3 minutes, then, 7.5 mL of the 7 M NH3 was added to the beaker using the digital 

pipette slowly and stirred rigorously for another 3 min. The color of the solution turned to 

turquoise blue at this stage and Cu(OH)2 nanostructure started to form. The beaker was then 

sealed by parafilm and aged for 12 hours. Then the precipitates were filtered by a filter paper 

with 0.2 µm pore size and washed 2 times by DI water slowly to allow the Cu(OH)2 to form a 

thin layer on the paper. The paper was then opened and dried in a convection oven at 50° C for 1 

hour. Then the filtrate was peeled off the paper carefully and put in an alumina cup. It was then 

heated in a furnace at 375°C for 4 hours and the blue Cu(OH)2 nanowires turned into black CuO 

nanowires. Finally the black product was ground in an alumina mortar to form a fine powder of 

CuO nanowires. The produced nanowires were stocked in a sealed glass bottle for later use. 

Figure 3-1 shows an SEM image of the as-produced CuO nanowires. Their diameter is 12-15 nm 

and their length is in the range of few microns. 

 

Figure 3-1 SEM image of as produced CuO nanowires; From the reference 
123
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3.1.3. NiO nanowires 

The NiO nanowires were synthesized in a conceptually similar way to CuO nanowires. 

First, NiOH nanostructures were formed at 120°C in a weak alkaline solution when Ni(NO3) 

reacted with a Ni source. NiO nanowires were then grown by annealing NiOH nanostructures at 

500°C for 1 hour in air. Figure 3-2 shows an SEM image of the as-produced NiO nanowires. 

Their diameter is about 12-15 nm and their length is in the range of few microns. 

 

Figure 3-2 SEM image of the as produced NiO nanowires; From the reference 
124

 

 

3.2. Nanothermite preparation 

To prepare nanothermite mixtures, different amounts of Al nanoparticle, metal oxide and 

in some cases, other additives such as copper micron powder (Cu, spherical, d=8-10 µm) were 

used. The copper micron powder was purchased from Sigma Aldritch. In order to choose these 

amounts, first the equivalence ratio (ɸ) was varied and tested on hot-plate as explained in section 

2-3-1. After finding the ratio associated with the most energetic mixture, various amounts of Cu 

micron powder were added to the most energetic mixture of Al and oxidizer.  

The weight ratios of the oxidizer (NiO/CuO) in these composites were used to calculate 

the fuel to oxidizer equivalence ratio ɸ, defined in this study by  
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where (F/O)act is the measured mass ratio of the fuel to oxidizer and (F/O)stoi is the 

stoichiometric ratio calculated from the following thermite reaction between Al and NiO:  

2Al + 3NiO   Al2O3 + 3Ni   ΔHr = 3.4 kJ/g   (R3-1) 

And the following reaction between Al and CuO 

2Al + 3CuO   Al2O3 + 3Cu      (R3-2) 

In this study, the equivalence ratios were calculated from the mass ratio of Al 

nanoparticles to oxidizer nanowires by taking into account the mass of the alumina shell. For this 

purpose the content of Al in Al nanoparticles was assumed as 60%. This treatment is rather 

rough due to the assumption of the averaged particle diameter and the uniform shell thickness.  

Table 3-1 shows the compositions of samples prepared. After accurately weighing the 

precursors, they were poured in a 50 ml beaker and 10 mL of isopropanol was added to the 

beaker. The mixture was stirred carefully with a spatula in order to break the granulated clusters 

and was then put in a bigger beaker (200 mL) with 20 ml water in it. The larger beaker was then 

put in an ultrasonic bath for about 3 hours until complete evaporation of the solvent. The 

remaining powder was in the form of granulates and some paste stuck to the wall of the beaker. 

This mixture was then scraped carefully from the beaker’s wall using a small spatula and let dry 

completely at room temperature for 5-6 hours. Then, granulates were broken down with a spatula 

very carefully to reach the consistency of a loose powder. This powder was pressed in a stainless 

steel die with diameter of 3 mm and height of 5 mm to make nanothermite pellets with diameter 

of 3 mm and height of 0.7 mm.  
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The prepared samples were characterized by several methods to determine their structural 

properties before and after reaction as well as their thermal and physical behaviors during 

reaction.  

 

Table 3-1 The compositions of nanothermite mixtures studied in this thesis 

Sample # Composition Al/oxidizer 

(mass) 

Equivalence 

ratio (ɸ) 

Cu (% mass) 

1 Al-NiO 1.62 4 0 

2 Al-NiO-Cu 0.24 0.6 50 

3 Al-NiO-Cu 0.60 1.5 50 

4 Al-NiO-Cu 1.62 4 50 

5 Al-NiO-Cu 1.62 4 60 

6 Al-NiO-Cu 1.62 4 80 

7 Al-CuO-Cu 1.53 4 75 

8 Al-CuO-Cu 1.53 4 77.5 

9 Al-CuO-Cu 1.53 4 80 

 

3.3.  Characterization 

3.3.1. Feasibility test on hot-plate 

The as-produced pellets were initially tested on a hotplate at 500°C to observe the optical 

emission and reaction rate. This preliminary characterization was only a qualitative test by 

observing the light emission from the sample by bare eye and the ratios mentioned in Table 3-1, 

were selected from a wide range of compositions after the initial test on hot plate. These 

compositions were found to be the most effective in terms of light emission and controllability. 



32 

 

3.3.2. Thermal analysis (DSC) 

For further quantitative characterization of nanothermite samples, thermal analysis was 

conducted using a STA machine combining a differential scanning calorimeter (DSC) and 

thermo-gravimetric analysis (TGA). For these DSC tests, samples were weighed (with about 10-

25 mg) before placing into the chamber. These tests were performed in a NETZSCH STA 409 

PG/PC simultaneous thermal analysis (STA) machine shown in Figure 3-3. In order to eliminate 

reactions with oxygen and nitrogen from the air, a sapphire reference and argon atmosphere were 

used. The heating rate was set to 10 K/min. The experimental data was analyzed by the 

NETZSCH Proteus Analysis software and used to determine the energy release and the onset 

temperature of ignition. 

 

Figure 3-3 Netzsch STA machine used for thermal analysis-From the reference 
125
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In DSC diagrams, exothermic peaks are an indication of the thermite reaction. The 

ignition temperature was achieved by finding the onset temperature of the reaction peak. The 

reaction enthalpy was calculated by integrating the area under the reaction peak by the software. 

Appendix B shows an example of a DSC test result analyzed by the Proteus analysis software. A 

typical graph was also explained in Chapter 2.  

3.3.3. X-Ray Diffraction (XRD) 

To determine the compositions of reaction products and their microstructures, DSC 

processed samples were examined by XRD, SEM and EDAX to determine the final products of 

the thermite reaction. The XRD patterns were captured using a Rigaku SA-HF3 (1.54 Å Cu Kα) 

x-ray source equipped with an 800 µm collimator, operating at an excitation voltage of 50 kV, 40 

mA current and 2 kW power, shown in Figure 3-4.  

 

Figure 3-4 X-Ray Diffraction equipment for phase analysis of samples-From CAMJ lab
126
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3.3.4. Secondary Electron Microscope (SEM) 

In order to characterize the reactants and reaction products, both unreacted and DSC 

processed pellets were studied by Scanning Electron Microscope (SEM), and Energy Dispersive 

X-ray Spectroscopy (EDAX). Prior to SEM imaging, the samples were 10 nm gold coated. 
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CHAPTER 4  

Characterization of Al Nanoparticle/NiO Nanowire 

Composites 

This chapter is a preliminary investigation of Al-NiO nanothermite composite. The 

samples are studied by SEM during the preparation process. After completion of the exothermic 

reaction, the products are studied by SEM, EDAX and XRD to identify the produced phases. 

These results, combined with thermo-chemical characterization and MD modeling of the 

nanothermite reaction, were published as a journal paper titled “Characterization of 

thermochemical properties of Al nanoparticle and NiO nanowire composites”
127

 in collaboration 

with other researchers. 

4.1. Introduction 

Metastable intermolecular composites (or MICs) have drawn much attention recently in 

developing reliable and high performance power generation systems due to their nano-sized 

components which allow for tuning of the ignition temperature, reaction propagation rate and 

volumetric energy density
2,19,20,128–130

. Applications include gas generators, micro-heaters, micro-

thrusters, micro-detonators, micro-initiators
26

, and combustion joining. Gasless thermite 

reactions are desired for the later application since the thrust generated from the gas production 

disturbs the joining process and results in cracks and defects. Gas generation from the thermite 

reactions is mainly attributed to the formation of vapors of metals (such as Cu, Fe and Ni), the 

elemental oxygen (formed from the decomposition of the oxidizer), the gas of metal oxides if the 

combustion temperature is high enough, and other gaseous reaction products. While the metal 

vapor forms at a temperature which is above the boiling temperature of the metal, the release of 
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elemental oxygen from the decomposition of the oxidizer component of MICs can be significant 

as well. Recently Sullivan and Zachariah characterized the reaction mechanism of a variety of 

MICs
131

 and they found that, while most oxidizers such as CuO and SnO2 decompose before the 

thermite reactions occur, which possibly indicates solid-state reactions, the decomposition of 

Fe2O3 becomes rate-limiting for igniting its thermite reaction. More investigations are needed in 

order to understand the cause of these different ignition mechanisms. Among the bulk scale 

thermite reactions, the Al-NiO system was reported to produce less gas 
132

. Theoretically, the gas 

(vapor and oxygen) generation from the Al/NiO thermite is about 2% of the gas produced from 

the Al/CuO thermite and is much lower than other comparable thermite systems. It is therefore 

worthwhile to investigate the properties of the corresponding MIC made of the Al and NiO 

nanostructures. The research objectives of this work were to synthesize and characterize the 

microstructures of the powder type Al nanoparticle and NiO nanowire MIC and to investigate its 

products.  

In literature there are few research papers on characterizing the Al/NiO based 

composites. Recently an Al/NiO MIC was developed on a silicon substrate 
27

 for fabricating a 

two-dimensional geometry. The process started from the thermal oxidation of a Ni film to form a 

NiO honeycomb. Then an Al layer was coated onto this honeycomb using the thermal 

evaporation. The produced Al/NiO MIC exhibited a low ignition temperature and improved 

interfacial contact area between Al and NiO. The energy release per mass data was reported but 

the method for determining that data was not reported. In that same study the fabrication method 

was developed with the presence of a silicon substrate and may not be suitable for other 

previously mentioned applications. A more detailed investigation on thermo-chemical behaviors 

and product microstructures of the powder type Al/NiO MIC is highly desired. Thermal behavior 
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of the nanothermite and its heat production is of extreme importance for its candidacy for joining 

applications, as a promising thermite reaction for combustion joining, should have enough 

energy density to melt the adjacent surfaces upon ignition. 

The reaction properties of a powder MIC depend on the particle size, shape, morphology 

and microstructure of its fuel and oxidizer components. A variety of metal-oxide nanostructures 

have been fabricated and implemented in developing high energy density MICs, which take the 

forms of nanospheres 
133

, nanowires 
9,134

, nanofibers 
135

, and nanorods 
10,136

. Usually the fineness 

(or particle sizes) and bulk density of these oxidizers and the degree of their intermixing and 

interfacial contacting with the Al nanoparticles are among the critical factors which influence the 

ignition mechanism 
134,137

. A recent study showed that the use of CuO nanowires resulted in 

better mixing between the fuel and oxidizer components of MIC and subsequently facilitated a 

low-temperature ignition 
134

. Their measurements demonstrated the pressurization rate from a 

composite of Al nanoparticles and porous CuO nanowires was about ten times of that from the 

Al nanoparticle and CuO nanoparticle MIC. Other means such as the fabrication of the core-shell 

nanostructures 
9,138–140

 and intermetallic multilayers 
129,141–143

 were recently developed to enhance 

the energetic properties of MICs. And the core/shell nanowire based thermites indeed exhibited 

an improved mixing homogeneity and low activation energy 
9
. In this study, an effective 

preparation method to improve intermixing between two components was first developed. And 

then the reaction products were examined by the electron microscopy and x-ray diffraction in 

order to identify their chemical compositions and microstructures.  

4.2. Experimental 

The Al-NiO samples were prepared as mentioned in Chapter 2. Due to safety 

requirements, the pure Al-NiO samples were sent to a collaborating group in Ottawa to conduct 
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the thermal analysis tests. To determine the compositions of reaction products and their 

microstructures, three Al/NiO pellets with Φ = 4 were heated in argon to 150°C, 450°C and 

800°C on a hotplate. These experiments were performed in a glove box and the processed pellets 

were then examined by SEM, EDAX and XRD. For SEM imaging, the samples were 10 nm gold 

coated. The XRD patterns were captured using a Rigaku SA-HF3 (1.54 Å Cu Kα) x-ray source 

equipped with an 800 μm collimator, operating at an excitation voltage of 50 kV, 40 mA current 

and 2 kW power as explained in Chapter 2.  

4.3. Results and discussion  

Figure 4-1 shows three SEM images of the mixed Al nanoparticles and NiO nanowires 

composite before (a) and after (b and c) mixing in ultrasound bath. Figure 4-1(a) demonstrates 

the sizes of Al nanoparticles (about 80 nm) and the diameter (about 20 nm) and length (about 1.5 

μm) of NiO nanowires after mixing two components. These distinct images of two components 

show a poor dispersion of nanoparticles in the network of nanowires. After the solution was 

sonicated and dried, Al nanoparticles were able to decorate on NiO nanowires, as shown in 

Figure 4-1(b). A higher resolution SEM image shown in Figure 4-1(c) demonstrates the 

nanowire branches beneath the Al nanoparticles. This process was expected to significantly 

increase the contact area between two components improving thermite performance.  
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Figure 4-1 SEM images of the Al nanoparticle and NiO nanowire composites before (a) and after (b and c) 

sonication. Scale bar: 100 nm in (a), 2 μm in (b) and 100 nm in (c). 

a) 

b) 

c) 

Al NPs 

NiO NWs 



40 

 

 

Figure 4-2 XRD patterns measured from the reaction product of Sample 1, Al-NiO (ɸ=4) 

 

The XRD analysis was performed on the reaction products of an Al-NiO sample after DSC test. The 

sample was a fuel rich MIC with ɸ = 4. As shown in Figure 4-2, the chemical compositions were 

identified as Ni, Al, AlNi and Al2O3. Note that the identification of Al2O3 using XRD is evidential 

from the previous study
144

. In addition to those solid products, gaseous species such as O2 possibly 

was formed as well. It is interesting to reveal the production of AlNi from the Al/NiO MIC. As a 

comparison, the formation of Ni was shown with lower and fewer XRD peaks, while Al still existed 

as a relatively large amount. Based on these observations, the following reaction was responsible  

5Al + 3NiO → 3AlNi + Al2O3   ΔHr = 3.2 kJ/g   (R4-1)  
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Note that in this study, the Φ = 4 MIC contained abundant Al nanoparticles and thus made the 

reaction (R4-1) feasible. Note that the propagation of (R4-1) does not necessarily require the 

completeness of (R3-1), since the decomposition of NiO may occur first and be followed by the 

reaction between Al and Ni. A further study on elementary reactions related to (R3-1) and (R4-1) is 

needed in order to gain more insights on this issue. To further characterize these microstructures of 

the products, the SEM and EDAX analyses were performed on the same product examined by XRD. 

Figure 4-3 shows two typical structures observed from the Φ = 4 MIC: (a) a sphere which was rich in 

Ni and Al; and (b) a bunch of Al2O3 crystalline structures. The co-existence of Ni and Al in the 

sphere is possibly in the form of AlNi.  

 

 

Figure 4-3 SEM images and respective EDX patterns obtained from the reaction products of Sample 1, Al-NiO 

(ɸ=4). 
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4.4. Conclusions 

In summary, the Al/NiO MIC was prepared using the NiO nanowires synthesized hydrothermally 

with an average diameter of about 20 nm and a length of a few microns. A fuel rich sample with 

equivalence ratio of Φ = 4 was studied. The sonication process of 20 minutes helped produce the 

well dispersed Al nanoparticles which were decorated on the NiO nanowires. The chemical 

compositions and microstructures of these MICs were examined using XRD, SEM and EDAX, 

which showed the evidence of the AlNi phase, together with the Al, Ni and Al2O3, from the fuel rich 

Al/NiO MICs.  
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CHAPTER 5  

Thermo-Chemical Characterization of an Al 

Nanoparticle and NiO Nanowire Composite Modified 

by Cu Powder 

In this chapter, thermo-chemical properties of the Al nanoparticle and NiO nanowire 

composites modified by the micro-sized copper additive were investigated experimentally. Their 

onset temperatures of ignition and energy release data per mass were characterized using 

differential thermal analysis measurements. These microstructures and chemical compositions of 

reaction products were analyzed using scanning electron microscopy, energy dispersive X-ray 

spectroscopy and X-ray diffraction. The fuel-rich Al/NiO/Cu composites produced two types of 

metallic spheres. Copper spheres were formed from melting and solidification of the copper 

additive, while AlNi composite spheres were identified by the energy dispersive X-ray 

spectroscopy and X-ray diffraction analyses. It was found that the amount of the copper additive 

did not significantly influence the onset temperature of thermite peaks, but caused a dramatic 

change in energy release. The aforementioned ignition and energetic properties were compared 

with those from the Al nanoparticle and CuO nanowire composites. The content of this chapter 

was presented in a paper submitted in March 2013 titled “Thermo-Chemical characterization of 

an Al nanoparticle and NiO nanowire composite modified by Cu powder”. 

5.1. Introduction 

In a vast range of Al/metal-oxide nanocomposites which have been investigated with 

their potential applications in advanced manufacturing 
26,27

, the Al/NiO composite shows its 
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advantage due to its low gas generation, confirmed by the data shown in Table 5-1, which is 

preferable for achieving a localized heat management 
145

. For some applications an inert metal 

can be added into the MIC, which provides an extra heat absorber for adjusting the heat transfer 

rate. The objectives of this study were to fabricate and characterize a powder type MIC 

composed of Al nanoparticles and NiO nanowires and to investigate the role of the copper 

additive in tuning the onset temperature of ignition and energy release of the produced MIC.  

 

Table 5-1 The adiabatic flame temperature (AFT), amount of gas/vapor production, melting point (Tmelting) and 

boiling (Tboiling) temperature of the produced metal from a variety of thermite systems 
29

  

Composition 

AFT 

(°C) 

Gas production 

(moles gas/100 g) 

Tmelting  (°C) Tboiling (°C) 

Al + CuO 2570 0.5400 1085 2562 

Al + NiO 2914 0.0108 1455 2913 

Al + Fe2O3 2862 0.1404 1538 2862 

Al + Bi2O3 3046 0.4731 271.5 1564 

Al + WO3 2980 0.1434 3422 5555 

Al + MoO3 3415 0.2425 2623 4639 

 

The gas (vapor and oxygen) generation from the Al/NiO thermite is about 2% of the gas 

produced from the Al/CuO thermite and is much lower than other comparable thermite systems. 

The production of less gas, in combination with the localized heat generation and adsorption, is 

desirable for the material joining purpose which requires less component vibration and little flow 

disturbance 
116

. And recently the Al/Ni bimetallic thermite has been developed in performing 

material bonding and component joining 
46,120

. Thus, a throughout investigation on the synthesis 
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and thermo-chemical characteristics of the Al/NiO nanostructured composites is needed in order 

to further explore the applications of MICs in manufacturing and other civil industries. The 

thermite reaction of the Al/NiO system was shown before as Reaction (R3-1). 

Although the thermodynamic properties of this reaction are well known for bulk Al/NiO 

MICs, very few research articles are available on demonstrating the thermo-chemical properties 

of the nano-structured Al/NiO composites. Recently an interesting Al/NiO geometry was 

reported for developing an energetic material on the silicon substrate 
27

. That process included 

producing a two-dimensional NiO nano-honeycomb using the thermal oxidation of a Ni thin film 

and depositing an Al layer onto this honeycomb by thermal evaporation. The energetic material 

produced from that method showed several advantages such as a low ignition temperature, 

enhanced interfacial contact area, reduced aluminum oxidation and easier integration into a 

microsystem. The reported fabrication technology, however, was developed with the presence of 

a silicon substrate and has not been investigated for these applications including joining and 

bonding. It is expected that the structure of these honeycombs is not suitable for joining of 

micro-meter sized components such as electronic wires. A powder type MIC is more desirable 

for the joining purpose due to its easy delivery to the processing site and flexibility in changing 

the fuel/oxidizer equivalence ratio and the concentration of the additive by mixing. 

In order to achieve high-quality joining, energy production from the thermite reaction and 

heat management at the bonding location close to the joint are two key parameters and need to be 

carefully addressed. In this study a copper additive was added into the Al nanoparticle and NiO 

nanowire composite in order to modify the reaction and thermal properties of the system. This 

additive plays a few roles. First, the addition of copper into the thermite system provides a heat 

sink which absorbs sufficient heat from the thermite reaction and prevents the quick heat transfer 
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from the reaction site. Without the copper powder, heat is easily transferred to the surroundings 

by means of conduction and convection and energy available for joining will be reduced. 

Secondly, since the melting point of copper (1085°C) is much lower than the flame temperature 

of the Al/NiO thermite (2914°C), the added copper powder will melt into liquid which is 

essential for facilitating the joining process. The presence of the copper in the composite 

however modifies the concentrations of the Al and NiO in the system and hinders the reaction 

propagation. In addition, copper may reduce the interfacial contact area between the Al and NiO 

components. Nevertheless, the addition of copper powder in the Al/NiO MIC provides a method 

to tune the thermite reaction rate, change the heat transfer path and eventually optimize the MIC 

for the joining application.  

This study focused on the preparation and characterization of well-dispersed Al 

nanoparticles and NiO nanowires for producing a powder MIC. The fuel rich composites were 

investigated in order to optimize the effective use of the available surface area of NiO nanowires. 

The microstructures of Al/NiO reaction products were studied using SEM (scanning electron 

microscopy), XRD (X-ray diffraction) and SEM-EDX (energy-dispersive X-ray spectroscopy) 

analysis. DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis) tests 

were performed to qualify the influences of the equivalence ratio and copper additive on the 

onset temperature and energy release data.  

5.2. Experimental 

Al-NiO-Cu and Al-CuO-Cu nanothermite samples were prepared in accordance to the 

method indicated in chapter 2. The copper micro-powder with a diameter range of 5-8 µm was 

used as the additive. The selection of the micro-sized copper powder aimed at reducing the effect 
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of the interfacial contact area between two nano-sized reactants. The compositions indicated in 

Table 3-1 were employed except sample 1.  

The onset temperature of ignition and energy release were investigated using the DSC 

data. To determine the compositions of reaction products and their microstructures, the 

Al/NiO/Cu and Al/CuO/Cu pellets with Φ = 4 and the amount of 80% copper additive were 

heated in argon to 150°C, 450°C and 800°C. These experiments were performed in a glove box 

and the processed pellets were then examined by SEM, EDAX and XRD.  

5.3. Results and discussions 

5.3.1. Microstructures of reactants 

Figure 5-1 shows two SEM images of an unreacted Al/NiO composite (a) before and (b) 

after ultrasound mixing with Φ = 4. It is important to maximize the interfacial contact between 

two reactants when the solid-state reactions are investigated. In Figure 5-1(a) these NiO 

nanowires were found in bundles and were not mixed well with the agglomerated Al 

nanoparticles. Figure 5-1(b) shows, after ultrasound mixing, NiO nanowires were decorated with 

Al nanoparticles and their interfacial contact surface area was expected to increase dramatically. 

This characteristic is extremely important in improving the ignition performance of nanothermite 

composites 
26

. On the enlarged image in Figure 5-1(b), some NiO nanowires were broken into 

shorter segments due to ultrasound mixing. This shortening process might slightly enhance the 

reactivity of these oxidizer nanowires thanks to their increased surface area.  
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Figure 5-1 SEM images of the Al/NiO composites: (a) before ultrasound mixing; (b) after ultrasound mixing. 

The insert in (b) shows the shortened nanowires. 

 

5.3.2. Microstructures of products 

Figure 5-2 shows three SEM images of the reacted Al/NiO/Cu, shown in 5-2(a) and (b), 

and Al/CuO/Cu, shown in 5-2(c), composites for Φ = 4 and with the 80% copper additive. 

Figures 5-2(a) and (b) were images taken from the different locations in the same sample. These 

composites were heated to 800°C. These two images show that, together with the accompanying 

EDAX data, the products from the Al/NiO and Al/CuO thermite reactions formed micron-sized 
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spheres which were embedded in a porous Al2O3 matrix. Figures 5-2(a) and (b) reveal two 

different types of spheres. From the EDAX pattern shown in Figure 5-3(a), which was taken 

from the sphere (with the size of 30 µm) shown in 5-2(a), the compositions of this sphere were 

identified as Cu, O, Al and Ni. The atomic ratios of these elements are listed in Table 5-2. These 

data, supported by the XRD measurement, suggest the sphere is mainly composed of copper with 

some fraction of Al2O3. The signal from Ni is quite small. The ‘dotted’ sphere in Figure 5-2(b) 

will be discussed later in this paper. Figure 5-2(c) shows a sphere (with the size of 8 µm) formed 

from the Al/CuO/Cu composite. Its EDAX pattern, shown in Figure 5-3(b), identifies the 

elements of Cu, O and Al. Their atomic ratios are listed in Table 5-2 as well. These data indicate 

the formation of a copper rich sphere. The above analysis based on Figures 5-2 and 5-3 suggests, 

the average size of metallic spheres produced from the Al/NiO/Cu composite (30 µm) was much 

bigger than those spheres produced from the Al/CuO/Cu composite (8 µm). The formation of the 

liquid sphere during the thermite reaction will be discussed later on. The larger size of these 

spheres produced from the Al/NiO/Cu composite can be attributed to the less gas production and 

greater energy release from its thermite reaction. The Al/NiO/Cu composites produced the other 

type of spheres, as discussed later. 
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Figure 5-2 SEM images of the metal spheres produced from the thermite reactions of the Al/NiO/Cu 

composite (a and b) and the Al/CuO/Cu composite (c). (a) and (b) were taken from the same sample. Φ=4 with 

80 % copper. 

A

l2O3 
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Figure 5-3 EDAX patterns of metallic spheres produced from the thermite reactions: (a) for Figure 5-2-a: 

Al/NiO/Cu; (b) for Figure 5-2-c: Al/CuO/Cu. 

 

 

Table 5-2 Elemental compositions of the spheres formed from the Al/NiO/Cu and Al/CuO/Cu composites.  

Φ=4 with 80 % copper 

Element Al/NiO/Cu (atomic %) Al/CuO/Cu (atomic %) 

Cu 49.41 67.63 

O 29.29 28.19 

Al 19.33 4.19 

Ni 1.96 --- 
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The XRD patterns were obtained from these two Al/NiO/Cu and Al/CuO/Cu composites 

for  Φ = 4 and with 80% copper additive, after they were processed at different temperatures 

(150°C, 450°C and 800°C) in Argon. These results are shown in Figure 5-4. Figure 5-4(a) shows 

that after the pellets of Al/NiO/Cu composites were heated at 150°C and 450°C, the phase of 

Al2O3 was not identified in the processed samples. Instead, Al, NiO and Cu phases were present 

and confirm no reaction occurred at these two temperatures. When the pellet was heated at 

800°C, however, these phase peaks of Al and NiO disappeared and the new phases of Al2O3 and 

AlNi appeared. Note that the identification of Al2O3 using XRD is evidential from the previous 

study [32]. Figure 5-4(a) clearly shows that for the prepared Al/NiO composite, the thermite 

reaction did not occur when the temperature was lower than 450°C. Figure 5-4(b) shows the 

XRD patterns from the processed Al/CuO/Cu composites. It is stable at the room temperature. 

When the Al/CuO/Cu composite was heated up to 800°C, the thermite reaction occurred and the 

product of Al2O3 was detected. 
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Figure 5-4 The XRD patterns of these composites processed at different temperatures: a) Al/NiO/Cu; 

b) Al/CuO/Cu. Φ=4 with 80 % copper 

 



54 

 

It was interesting to find out after the thermite reaction of the Al/NiO/Cu composite 

occurred, AlNi was produced from the Φ = 4 sample. The formation of the AlNi phase from the 

thermite reaction of fuel-rich Al/NiO composites was investigated using the following reaction 

5Al + 3NiO = Al2O3 + 3AlNi   ΔHr = 3.2 kJ/g   (R4-1)  

which is preferred when the molar ratio of Al/NiO is large. In this study, the Φ = 4 composites 

shown in Table 3-1 contained abundant Al nanoparticles and thus made the reaction (R4-1) more 

feasible than (R3-1). Note that the propagation of (R4-1) does not necessarily require the 

completeness of (R3-1), since the decomposition of NiO may occur first and be followed by the 

reaction between Al and Ni. A further study on elementary reactions related to (R3-1) and (R4-1) 

is needed in order to gain more insights on this issue. Since the ΔH value is calculated on mass 

base, (R4-1) results in a smaller value of J/g than (R3-1). The formation of AlNi was not 

reported previously from the characterization of Al/NiO nanothermites. A former study tested on 

a fuel lean Al/NiO (a) (b) composite and therefore the oxidizer NiO was still present in the 

product, which confirmed the reaction (R3-1) 
27

. In comparison, only one thermite peak was 

observed in this study, as shown later in Figure 5-6, which implies the overlap of Reaction (R4-

1) and (R3-1). Indeed these two reactions may occur at the same onset temperature assuming the 

rate limiting process is the delivery of Al atoms to the oxidizer through either diffusing or 

cracking the shell. The formation of the AlNi phase from the Al/Ni system was confirmed 

previously. Zhu et al. observed the formation of the AlNi phase from the micron sized Al-Ni 

thermite powder when the system temperature reached above 1000°C 
100

. They explained the 

formation of AlNi through a process consisting of several steps in an Al rich environment: NiAl3 

is first formed at 750°C form the Al-Ni system, and then Ni2Al3 is formed at 900°C, and finally 

AlNi appears at 1050°C. In this study the formation of these copper spheres, shown in Figure 5-
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2, indicated the local temperature was once above the melting point of copper (1085°C). This 

suggests a possibly similar process to Zhu et al. Figure 5-4(b) compares different compositions 

of the processed Al/CuO/Cu composites at room temperature and 800°C. It shows that after the 

pellet was heated at 800°C, the thermite reaction of the Al/CuO/Cu composite produced Al2O3, 

Cu2Oand Al4Cu9. Note the amount of copper additive and the combustion temperature played 

roles in forming these products. Figure 5-4 confirms both Al/NiO and Al/CuO composites were 

ignited when the temperature was heated up to 800°C. 

Figure 5-5 shows a high-resolution SEM image of the sphere shown in Figure 5-2(b). 

This sphere appeared quite differently from the sphere shown in Figure 5-2(a), although they 

were from the same sample. It has a diameter of about 20 µm, which is close to the other sphere, 

and both resulted from the higher combustion temperature from the Al/NiO/Cu composite which 

generates more liquid copper. The EDAX was performed at three locations shown as a, b, and c 

on this SEM image and the measured atomic spectra are shown in Figure 5-5. Table 5-3 lists the 

identified elements corresponding to these locations of a, b and the matrix c, respectively. The 

atomic ratios suggest that the big sphere shown in Figure 5-5 was a composite of AlNi and 

Al2O3. And more specifically, the darker area indicates the Al-rich (Al2O3) phase and the 

brighter area indicates the AlNi phase. This sphere was embedded in the porous Al2O3 matrix 

(location c). The SEM-EDAX analysis further confirms the occurrence of the reaction (R4-1) 

from the fuel rich composites. 
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Figure 5-5 High-resolution SEM image of the sphere produce from the Al/NiO/Cu composite and EDX patterns 

associated to it. 
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Table 5-3 Compositions of the different phases corresponding to the sphere shown in Figure 4-5 These 

locations of a, b and c are indicated in Figure 5. 

Element 

Location a 

(Atomic %) 

Location b 

(Atomic %) 

Location c 

(Atomic %) 

Al 26.36 42.88 55.02 

Ni 52.98 16.49 3.54 

O 16.66 37.14 40.32 

Cu 4 3.49 1.12 

 

5.3.3. Onset temperature and energy release 

Figure 5-6 shows the DSC data measured from three Al/NiO/Cu composites with the 

different equivalence ratios of 0.6, 1.5 and 4, respectively. The mass fraction of copper was 50% 

in all of these composites. For each curve, there was a clearly observed single exothermic peak 

corresponding to the thermite reaction. The ignition temperatures were determined from these 

curves by referring to the onset temperatures of the aforementioned exothermic peaks. Their 

values for these equivalence ratios of 0.6, 1.5 and 4 were measured as 493.1°C, 490.4°C and 

486.5°C respectively. Note that the more fuel (Al nanoparticles) available in the composite 

caused a slightly decrease in the onset temperature, possibly due to the better contact between the 

fuel and oxidizer when more nanoparticles were present in the composite. The difference of 

these ignition temperatures are however quite small and all are below the melting temperature of 

bulk Al (660°C). The energy release per mass of the composite (Eʹ, in J/g) was calculated using 

the DSC software by integrating the area under the exothermic peak (as shown in the DSC 

diagram). Note that this mass for the DSC data included the mass of the fuel, oxidizer and copper 
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additive. The following equation was used to calculate the energy release per mass of the pure 

nanothermite (E, in J/g) by taking into account the role of Al2O3 shell on Al nanoparticles 

     
                

          
      (5-1)                          

                       

                             

Figure 5-6 (a) The DSC data of these Al/NiO/Cu composites with different equivalence ratios, Tignition was 

set as the onset temperature of the exothermic peak; (b) The energy release per mass of nanothermite E 

calculated from the composites with different equivalence ratios  
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The values of E, shown in Figure 5-6(b), were expected to be smaller than the energy 

release per mass from the combustion of pure Al/NiO nanothermite (3400 J/g 
27

), since the 

presence of copper provided a heat sink, which absolutely influenced the measured energy 

release value.  

Note that the values of E measured from this study increased with the increasing 

fuel/oxidizer ratio. This behavior can be explained by the following considerations. First, the 

DSC measurements were conducted in a non-adiabatic condition therefore the energy release per 

mass cannot be simply referred to the reaction enthalpy of the thermite reaction. Secondly, the 

mass used in this study was relatively small (with a few mg) which could cause some 

discrepancy in both mass and energy measurements. Thirdly, the effect of copper additive cannot 

be excluded.  

Figure 5-7(a) shows the effects of the copper additive on the DSC curves from the 

Al/NiO/Cu composites with Φ = 4. Generally for these composites, the exothermic peaks 

appeared at about 450-550°C on the DSC curves and the onset temperatures (i.e., the onset 

temperatures) of these curves were in the range of 487-496°C. Slightly increasing onset 

temperatures were observed when the copper amount was changed from 50% to 80%, which 

may result from the interference of the copper additive with the effective contact between the 

fuel and oxidizer. The difference was however quite insignificant and indicates the less influence 

of the micro-sized copper additive on the thermite reaction of nanothermites. The values of 

energy release per mass of nanothermite E decrease significantly with the increasing copper 

amount, as shown in Figure 5-7(b). This indeed confirms the heat sink role of the copper 

additive. More copper in the composite will absorb more heat and the composite system will 

therefore release less heat to the surroundings (and thus in DSC less heat flow was required). 
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During the experiments, the heat absorbed by the copper power was utilized in melting the 

copper powder and caused the formation of large copper rich spheres shown in Figure 5-2. More 

copper amount in the composite should produce more copper spheres and thus consume more 

heat. 

                         

                           

Figure 5-7 a) The DSC diagram of these Al/NiO/Cu composites with different amounts of copper; b) The 

dependence of the energy release per mass with the copper amount. Φ=4 
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It is interesting to compare the onset temperatures and energy release per mass values of 

the Al/NiO/Cu and Al/CuO/Cu composites, because the latter produces the pure copper 

component from its thermite reaction which may be beneficial to the copper-copper material 

joining. Figure 5-8 (a) shows the DSC measurements on the Al/CuO/Cu composites for Φ = 4 

but with different amounts of the copper additive.  

  

                             

Figure 5-8 a) The DSC diagram of these Al/CuO/Cu composites for Φ=4  with different amounts of copper; b) 

The dependence of the energy release values with the copper amount. 
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The DSC curves show a consistent temperature range of these exothermic peaks which 

correspond to the thermite reactions between Al nanoparticles and CuO nanowires. The 

measured onset temperatures are 491.2, 484.7 and 488°C for the 75% Cu, 77.5% Cu and 80% Cu 

amounts, respectively. These values are very consistent and show an independence of the onset 

temperature of these Al/CuO/Cu composites on the copper additive. In addition, these onset 

temperatures measured from the Al/CuO/Cu composites are close to the values measured from 

the Al/NiO/Cu composites, which may suggest the same ignition mechanism of two composites. 

Figure 5-8(b) shows the measured E values for three Al/CuO/Cu composites. Again the energy 

release per mass of nanothermite (E) decreased significantly when (b) the copper amount was 

increased. And for the Al/CuO/Cu composites mixed with a larger amount of copper additive 

(>70%), the effect of the copper additive on the change in its energy release per mass is more 

significant due to the additional influence of copper which directly participates in the thermite 

reaction and subsequently affects the reaction rate. With the same amount of the copper additive 

in these Al/NiO/Cu and Al/CuO/Cu composites, larger liquid spheres formed from the thermite 

reaction will feasible a better material joining quality by wetting well the surfaces and forming a 

brazing layer 
100,116

. As shown earlier in Figures 5-2 and 5-5, the Al/NiO/Cu composites 

produced larger copper spheres than the Al/CuO/Cu composites, due to their greater energy 

release per mass which was utilized to melt the copper powder. The Al/Ni/CuO composites 

produced the AlNi spheres as well, as shown in Figure 5-5. Generally speaking, the availability 

of liquid metals relates to these gas-phase species produced from a thermite reaction, which 

include vapors of metals (such as Cu and Ni from the Al/CuO and Al/NiO thermites), the 

elemental oxygen (formed from the decomposition of the oxidizer), and other gaseous reaction 
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products 
27

. A throughout investigation is needed for better understanding the size dependence of 

the metal spheres on these chemical and physical processes.                        

5.4. Conclusions  

In summary, experimental investigations were performed in order to characterize the 

produced microstructures of the Al nanoparticle and NiO nanowire composites and understand 

how the copper additive would affect the onset temperature and the energy release. Two types of 

metallic spheres were found from the thermite reaction of these composites and were identified 

as the copper rich spheres and the AlNi composite ones. The formation of AlNi was confirmed 

by the XRD and EDAX analyses, which suggests that for the fuel rich composites, the thermite 

reaction directly produced the AlNi phase. It was found as well that the amount of the copper 

additive did not significantly change the onset temperature but brought about a large influence to 

the energy release data. In comparison, the Al/CuO/Cu nanothermites produced smaller metal 

spheres.  



64 

 

CHAPTER 6  

Nanothermites for Joining Applications 

6.1. Introduction 

Nanothermite materials have found special applications in joining specially for joining of 

dissimilar materials. The attractive factor encouraging the use of these materials for joining is 

their high energy density and therefore high flame temperature as a self-propagating heat source. 

As indicated in Appendix A, the adiabatic flame temperature of thermite reactions can reach 

above 3000K making it capable of melting metals, which is beneficial for joining application. In 

this chapter, the use of Al-NiO-Cu nanothermite composite for joining was investigated. The Al-

NiO was chosen as the primary reaction owing to its low gas generating property since the gas 

production causes defects in the joining process. A composite of Al-NiO-Cu with Φ=4 and 50% 

Cu introduced in chapter 5 as a good candidate for joining, was used a joining interlayer. The 

aim of this chapter is to show the capability of this composite to bond dissimilar materials. 

Example joints are provided and the microstructure and chemical composition of joint cross 

sections are tested to ensure the feasibility and quality of the joining process. Glass, ceramic and 

copper substrates were used. Further mechanical testing is needed to measure the joint strength 

and related future work is proposed in chapter 7. 

6.2.  Experimental  

6.2.1. Base materials 

Water-white microscopic glass slides with dimensions of 1 26 75 mm were used as 

base material. The slides were washed with acetone and DL water to remove any oil and 
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contamination on the surface. As another base material, alumina-silica sheets were cut to 50 50 

mm squares and were washed with acetone and DL water before joining.  

Also, 50 and 250 µm thick copper wires were used to be joined to the glass substrate 

using the nanothermite composite. The wires were cut to 150 mm long and were washed in nitric 

acid and DL water to remove any contamination and oxide.  

Nanothermite pellets with composition of Al-NiO-Cu (Φ=4 and 50%Cu) were prepared 

according to chapter 2. The pellets had diameter of 3 mm and thickness of 0.7 mm. 

6.2.2. Joining setup 

In the first stage, a nanothermite pellet was tested on an alumina-silica substrate. First the 

substrate was heated to 500°C on hot-plate and then the pellet was placed on it. Then the hot-

plate was turned off and the substrate was let cool down to the room temperature. 

In the second stage, a Cu wire was placed between the nanothermite pellet and the 

substrate. The objective was to join the Cu wire to substrate utilizing the heat and molten metal 

released from the nanothermite reaction. The copper wire was loosely taped to the glass slide 

with a paper tape and the nanothermite pellet was placed on top of the copper wire. The fixture 

was then put on a hotplate preheated to 500°C and a small spatula was used to apply pressure on 

the pellet to keep it in place against the vibration from the reaction and let it touch the surface. 

Figure 6-1 shows a schematic picture of the joining setup. The hot plate was then turned off and 

the fixture was cooled down at the room temperature. The paper tapes were then removed (if not 

fully burnt in the high temperature) and the joint samples of copper wire and glass slide were 

cross-sectioned and mounted in epoxy. The mounted sample was grinded to 5000 grid and 

polished by 25µm diamond paste. Optical microscope (OM), SEM, and EDAX were used to 

further study the cross-sectioned samples.  
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Figure 6-1 Schematic setup for joining copper wire to glass/ceramic substrate 

 

6.3. Results and discussion 

Figure 6-2(a) shows the optical microscope image of a glass substrate after igniting 

nanothermite on it. Products of nanothermite reaction joined to the glass surface and metal 

spheres were formed on the surface confirming that the metal has liquefied in the high flame 

temperature of the reaction and has shaped into spheres to minimize its surface energy. These 

liquid metal spheres wet the glass surface and are beneficial for joining. On the other hand, from 

chapter 4 we know that the products of nanothermite reaction include Al2O3, and liquid AlNi and 

Cu phases. In addition to molten metal, Al2O3 was formed during the reaction and the OM 

images suggested that this phase made a strong bond to the glass substrate. Figure 6-2(b) is an 

optical microscope image of a 50 µm copper wire joined to a glass substrate. The sphere shown 

in the dotted circle is a metal alloy sphere produced by nanothermite reaction. This sphere 

worked as a soldering/brazing material between copper wire and glass substrate.  
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Figure 6-2 Optical microscope image of glass substrate and nanothermite after ignition (a) nanothermite 

products stuck to glass surface (b) Copper wire joined to glass substrate with metal-alloys soldering/brazing 

layer produced by nanothermite reaction 

 

More reliable proof of the joint is shown in Figure 6-3(a), (b) and (c) emphasizing that 

the joint is strong enough to hold the weight of glass substrate while holding the copper wire 

with tweezers. Figure 6-3 shows the glass-copper joining setup (a) before and (b)-(c) after the 

reaction. 
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Figure 6-3 Images of glass to copper joint before (a) and after (b)-(c) the ignition- After the reaction, the glass, 

copper wire, and the reacted nanothermite are bond together. 

 

The joint cross-section of the bonded sample was studied by SEM and is shown in Figure 

6-4. AlNi, while the matrix in the left side is Al2O3. The joint between the copper wire and 

nanothermite product seems to have fewer defects compared to the joint between the copper wire 

and the glass side. However, a strong bond was seen in between the nanothermite product and 

glass substrate which caused a good mechanical bonding of the copper wire to the glass 

substrate. It is suggested that if an adequate pressure was applied during the ignition, the quality 

of the bonds would greatly improve.  
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Figure 6-4 SEM image of joint cross-section of glass and copper wire 

 

The nanothermite pellet was also tested on an alumina-silica substrate and a strong joint 

was achieved between the nanothermite product and the substrate. The joint cross-section was 

studied by SEM and EDAX which is shown in Figure 6-5. The elemental analysis done by 

EDAX is listed in Table 6-1 for the points a, b, and c which are shown in Figure 6-5.  

 
Figure 6-5 SEM image of joint cross-section of nanothermite product and alumina-silica substrate 
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In Figure 6-5, area (a) shows the alumina-silica with the chemical composition listed in 

Table 6-1. Phases (b) and (c) are products of thermite reaction which are well joined to the 

substrate. According to Table 6-1, phase (b) is mostly composed of metals with high 

concentration of Cu. Phase (c), with the dominant elements of Al and oxygen, is a porous matrix 

of Al2O3.  

 

Table 6-1 EDAX elemental analysis (atomic %) of points a-b-and c shown in Figure 5-7  

Point O Al Ni Cu Si Na Mg Ti K P 

A 49.55 12.40 0.17 0.30 31.64 2.05 0.69 1.00 0.28 0.88 

B 7.32 8.13 18.42 64.78 1.35 __ __ __ __ __ 

C 45.51 45.04 2.77 3.60 0.13 __ __ __ __ __ 

 

It is evident that the nanothermite product is an interpenetrating network of Al2O3 and 

metallic phase. As mentioned before, the metallic phase is molten in the high temperature of the 

reaction and wets the adjacent surfaces, creating a strong bond. Moreover, the similar nature of 

Al2O3 and alumina silica as ceramics makes them likely to bond together during the 

nanothermite reaction. Figure 6-6, which is a lower magnification SEM picture of the same joint 

cross-section in Figure 6-5, shows that the Al2O3 phase in the nanothermite product was also 

joined to the alumina-silica substrate.  
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Figure 6-6 SEM image of joint cross-section of nanothermite product and alumina-silica substrate (low 

magnification) 

 

6.4. Conclusion 

The Al-NiO-Cu composite with Φ=4 and 50% copper, was experimentally tested for 

joining application on glass and alumina silica substrate. Results from optical microscopy, SEM 

and EDAX showed that this composite while ignited, sticks to the glass and ceramic surfaces and 

is capable of joining dissimilar surfaces together. The combination of liquid metal phase and 

Al2O3 ceramic phase makes the products of this nanothermite composite to be a very interesting 

material for advanced joining purposes.  
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CHAPTER 7  

Conclusions and Future Work 

In this thesis, I tried to find a good nanothermite composition to be used in joining 

applications. Al-NiO reaction was chosen due to its lower gas generation amongst other thermite 

systems. In preliminary studies, Al-NiO nanothermite composites with various equivalence ratios 

(Φ) of Al nanoparticles and NiO nanowires were synthesized and tested in order to select the 

equivalence ratio associated with the most functional composition. The factors considered in this 

selection were the light emission, and controllability. As a result, Al-NiO with Φ=4 was found to 

be most functional. This composite was then further studied by SEM, EDAX, and XRD to 

characterize the structure and chemical composition of the reactants and the products of the 

reaction. SEM results showed that ultrasound mixing of the reactant powders resulted in more 

homogeneous mixing. The products of Al-NiO composite with Φ=4 were found to be Al2O3 and 

AlNi.  

In order to utilize the above composite for joining application, it was needed to limit the 

heat transfer to the air and keep the generated heat close to the joining area. Therefore, copper 

micron powder was used as an additive in the mixture to act as a heat sink, increase the burning 

duration, and decrease the vibration caused by the high thrust from the pure Al-Ni composite. 

The Al-NiO-Cu composite was compared to an Al-CuO-Cu mixture. SEM results of the reaction 

products in these two composites revealed that the Al-NiO-Cu produced larger liquid metal 

phases. This result was further supported by thermal analysis of the Al-NiO-Cu and Al-CuO-Cu 

composites by differential scanning calorimetry in chapter 5.  
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Moreover, the SEM observations combined with EDAX and XRD results showed that the 

fuel-rich Al/NiO/Cu composites produced two types of metallic spheres. Copper spheres were 

formed from melting and solidification of the copper additive, while AlNi composite spheres 

were identified by the energy dispersive X-ray spectroscopy and X-ray diffraction analyses. 

Furthermore, it was found that the amount of the copper additive did not significantly influence 

the onset temperature of thermite peaks, but caused a dramatic change in energy release. The 

aforementioned ignition and energetic properties were compared with those from the Al 

nanoparticle and CuO nanowire composites. 

The Al-NiO-Cu composite with Φ=4 and 50% copper, was experimentally tested in 

joining application. Results from optical microscopy, SEM and EDAX showed that this 

composite while ignited, sticks to the glass and ceramic surfaces and is capable of joining 

dissimilar surfaces together. The combination of liquid metal phase and Al2O3 ceramic phase 

makes the products of this nanothermite composite to be a very interesting material for advanced 

joining purposes. In summary: 

Conclusions 

• Al/NiO and Al/CuO energetic composites were developed using the NiO/CuO nanowires 

with an average diameter of about 12 nm and a length of a few microns.  

• The sonication process of 2 hours helped produce the well dispersed Al nanoparticles 

which were decorated on the NiO nanowires.  

• Copper filler was added to Al (np)/NiO (nw) and its chemical composition and 

microstructure were investigated. Two types of metallic spheres were found from the 

thermite reaction of these composites and were identified as the copper rich spheres and 

the AlNi composite ones.  
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• The chemical compositions and microstructures of these composites were examined 

using XRD, SEM and EDAX, which showed the evidence of the AlNi phase from the 

fuel rich Al/NiO composites. In comparison, the Al/CuO/Cu nanothermites produced 

smaller metal spheres. 

• Ignition temperature of Al-NiO-50%Cu nanothermites with Φ=0.6, 1.5, and 4 were 

measured to be 493.1°C, 490.4°C, and 486.5°C respectively, which showed negligible 

dependence of the ignition temperature on the equivalence ratio (Φ). 

• Energy release of the Al-NiO-50%Cu nanothermites was found to be increasing by 

increasing the equivalence ratio. The energy release for the mixture with Φ=4 was 

measured to be 1012 J/g. 

• The amount of the copper additive did not significantly change the onset temperature but 

brought about a large influence to the energy release data. 

• The ignition temperature for Al-CuO-Cu was measured to be 484-491°C and independent 

of copper amount. However, the energy release of this composite, decreased by 

increasing the copper amount. 

• The Al-NiO-Cu composite with Φ=4 and 50% copper, was selected for joining 

application. 

• Results from optical microscopy, SEM and EDAX showed that this composite while 

ignited, joins to the glass and ceramic surfaces and is capable of joining dissimilar 

surfaces together.  

• The combination of liquid metal phase and Al2O3 ceramic phase makes the products of 

this nanothermite composite to be a very interesting material for advanced joining 

purposes.  
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Future work 

Further investigations are strongly encouraged in future to utilize this unique composite 

as an interlayer for joining dissimilar materials. The low cost ignition process and self-

propagating reaction of this material is its other advantage as an interlayer for joining of 

dissimilar materials. Although some joining experiments are done in Chapter 6 using this 

nanothermite composite, further experiments with better conditions seem necessary to prove the 

promising effect of Al-NiO-Cu nanothermite composite. It is suggested to apply pressure during 

the joining to achieve more reliable joints. Joint strength testing experiments are also strongly 

suggested.  
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APPENDICES 

Appendix A 

Table 1- reproduced from Fischer and Grubelich et al.
29

  

reactants 
Adiabatic reaction 

temperature (K) 

 

 
Gas production Heat of reaction 

Constituent g/cm
3
 

w/o phase 

changes 

W phase 

changes 

State 
Intermetallic 

product 

Moles 
gas per 

100 g 

G gas 

per g 

-Q, 

cal/g 

-Q 

cal/cm
3
 

2Al+3AgO 6.085 7503 3253 l-g gas 0.7519 0.8083 896.7 

2Al+3Ag2O 6.386 4941 2436 liquid l-g 0.4298 0.4636 504.8 

2A1+B2O3 2.524 2621 2327 s-l solid 0 0 780.7 

2AI+Bi203 7.188 3995 3253 l-g gas 0.4731 0.8941 506.1 

2Al+3CoO 5.077 3392 3201 liquid l-g 0.043 0.0254 824.7 

8AI+3Co3O4 4,716 3938 3201 liquid l-g 0.2196 0.1294 1012 

2A1+Cr2O3 4.19 2789 2327 s-l liquid 0 0 622 

2AI+3CuO 5.109 5718 2843 liquid l-g 0.54 0.3431 974.1 

2AI+3Cu2O 5.28 4132 2843 liquid l-g 0.1221 0.0776 575.5 

2Al+Fe2O3 4.175 4382 3135 liquid l-g 0.1404 0.0784 945.4 

8AI+3Fe3O4 4.264 4057 3135 liquid l-g 0.0549 0.0307 878.8 

2AI+3HgO 8.986 7169 3253 l-g gas 0.5598 0.9913 476.6 

10AI+3I2O5 4.119 8680 >3253* gas gas 0.6293 1 1486 

4AI+3MnO2 4.014 4829 2918 liquid gas 0.8136 0.447 1159 

2AI+MoO3 3.808 5574 3253 l-g liquid 0.2425 0J2473 1124 

10Al+3Nb2O5 4.089 3240 2705 liquid Solid 0 0 600.2 

2AI+3NiO 5.214 3968 3187 liquid l-g 0.0108 0.0063 822.3 

2Al+Ni2O3 4.045 5031 3187 liquid I-g 0.465 0.2729 1292 

2Al+3PbO 8.018 3968 2327 s-l gas 0.4146 0.8591 337.4 

4Al+3PbO2 7.085 6937 3253 l-g gas 0.5366 0.9296 731.9 

8Al+3Pb3O4 7.428 5427 3253 l-g gas 0.4215 0.8466 478.1 

2Al+3PdO 7.281 5022 3237 liquid l-g 0.6577 0.6998 754.3 

4Al+3SiO2 2.668 2010 1889 solid liquid 0 0 513.3 

2AI+3SnO 5.54 3558 2876 liquid l-g 0.107 0.127 427 

4Al+3SnO2 5.356 5019 2876 liquid l-g 0.2928 0.3476 686.8 

lOAl+3Ta205 6.339 3055 2452 liquid solid 0 0 335.6 

4Al+3TiO2 3.59 1955 1752 solid liquid 0 0 365.1 

I6AI+3U3O8 4.957 1406 1406 solid solid 0 0 487.6 

10AI+3V2O5 3.107 3953 3273 l-g liquid 0.0699 0.0356 1092 

4AI+3WO2 8.085 4176 3253 l-g solid 0.0662 0.0675 500.6 

2Al+WO3 5.458 5544 3253 l-g liquid 0.1434 0.1463 696.4 
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Appendix B 

DSC graph for Al-NiO (Φ=4) in Argon 
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Appendix C 

Additional SEM images of nanothermite composites 

SEM pictures of various nanothermite composites in different conditions are presented here. 

Following table explains the specific condition for each set of figures presented in this appendix.  

Image 

set # 
Composition 

Equivalence 

ratio 

Cu 

mass 

Heat 

source 

Preparation 

method 

Sample 

form 

1 Al-NiO 4 0 ___* 
Manual 

mixing/dry 

Loose 

powder 

2 Al-NiO 4 0 ___ Ultrasound 
Loose 

powder 

3 Al-NiO-Cu 4 50 ___ Ultrasound 
Loose 

powder 

4 Al-NiO-Cu 4 50 ___ Ultrasound Pellet 

5 Al-NiO-Cu 4 50 DSC Ultrasound pellet 

6 Al-NiO-Cu 4 80 DSC Ultrasound Pellet 

7 Al-NiO-Cu 4 33 Flame Ultrasound 
Loose 

powder 

8 Al-NiO-Cu 4 33 Flame Ultrasound 
Loose 

powder 

9 Al-CuO-Cu 4 50 ___ 
Ultrasound 20 

min 

Loose 

powder 

10 Al-CuO-Cu 4 77.5 Hot plate ultrasound pellet 

11 Al-CuO-Cu 4 80 DSC Ultrasound Pellet 

12 Al-NiO-Sn 4 80% Sn DSC Ultrasound pellet 

13 
Al-Fe2O3-

Sn 
4 80%Sn DSC Ultrasound pellet 

*These samples were not heated and images show the composites before reaction. 

 

 

 



93 

 

Additional SEM images of nanothermite composites 

 

Image set 1 
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Additional SEM images of nanothermite composites 

 

Image set 2 
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Additional SEM images of nanothermite composites 

 

Image 3              Image 4 

 

  
Image set 5 
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Additional SEM images of nanothermite composites 

  

 

Image set 6 
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Additional SEM images of nanothermite composites 
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Additional SEM images of nanothermite composites 

  

 

Image set 7 

   
Image set 8 

 



99 

 

Additional SEM images of nanothermite composites 

 

Image set 9 
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Additional SEM images of nanothermite composites 

 

Image set 10 
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Additional SEM images of nanothermite composites 

  

 

Image set 11 
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Additional SEM images of nanothermite composites 

 

Image set 12 
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Additional SEM images of nanothermite composites 

    

  
Image set 13 
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Appendix D 

DSC and TGA graphs of Al-NiO-Sn
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Appendix E 

Additional SEM images of joint cross-sections 

 

Image 14 SEM image of nanothermite/alumina-silica ceramic joint cross-section; Nanothermite reaction 

products are at the right side and the alumina-silica ceramic is at the left side 
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Additional SEM images of joint cross-sections 

 

 

Image set 15 SEM images of nanothermite/Cu wire/glass joint cross section 

 


