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Abstract 

 
Koi Herpesvirus (KHV), a species-specific DNA virus of the family 
Herpesviridae, is responsible for mass mortalities of common carp (Cyprinus 
carpio carpio L.) throughout the world. KHV’s broad geographical distribution 
and relatively high mortality rate among infected fish, creates significant 
disposal issues when die-offs occur, especially taking into account the body 
burden of contaminants in the fish. In locales where adequate disposal facilities 
are unavailable, or are unable to accommodate additional loadings of 
contaminated fish carcasses, concerns regarding human and environmental 
health are raised. During the summer of 2008, residents of the Lake Simcoe 
Region of southern Ontario, Canada, were faced with a massive die-off of carp, 
infected with KHV. Carp within the Great Lakes and much of the world are 
known to bioaccumulate (and biomagnify) contaminants, such as, 
polychlorinated biphenyls (PCBs), pesticides (e.g., 
dichlorodiphenyltrichloroethane, DDT, and toxic metals (e.g., mercury). These 
contaminants have been associated with numerous adverse effects on both 
human and environmental health, and are thus of important considerations 
when planning for large-scale carcass disposal, following fish die-offs. 
Although suites of microbiological tests and water quality assessments are 
frequently conducted to identify causative factors during extensive fish-kills - 
assessments of relative contaminant burdens in the carcasses, which should 
dictate the most appropriate method of carcass disposal - are rarely performed. 
A case study on Snake Island, Lake Simcoe, Ontario was conducted to further 
examine the implications of this policy. Soil samples from two known disposal 
sites and three presumed control locations were sampled on Snake Island and 
sent to the Analytical Services Unit of Queen’s University for chemical analysis. 
Although none of the soil samples exceeded any legal guidelines in the present 
study, there is still concern as future die-offs of other fish species or piscivorous 
birds and the disposal of large numbers of carcasses may be an issue.    
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1.0 Introduction 

 
The ecological integrity of aquatic ecosystems throughout much of the world is being 

degraded by human activities, such as, land development, habitat destruction and 

pollution associated with urbanization (Fraser et al., 2003). In Canada, such 

anthropogenic activities in the Great Lakes region threaten the ecological integrity of 

these freshwater ecosystems. In Ontario, smaller water bodies like Lake Simcoe have 

multiple stressors simultaneously imposed on them, such as, surface water runoff from 

intensive agriculture, urbanization and land development; all of which are known to 

transport contaminants (e.g., persistent organic pollutants, POPs) to the aquatic 

environment (Ministry of the Environment, 2009). Historically, great concern at the 

international, national and local levels about both the distribution of POPs in the 

environment and the associated health effects for exposed biota has been noted; as 

POPs are known to bioaccumulate and bioconcentrate in exposed biota. However, little 

work has been done with respect to how contaminants in fish tissue can be transported 

from the aquatic ecosystem to the terrestrial ecosystem following mass die-offs and 

subsequent carcass disposal.   

 

In 2008, more than fifteen different water bodies between Peterborough, Lake Simcoe 

and Simcoe County (MNR, 2009) were faced with a die-off of common carp as a result 

of the species-specific Koi Herpesvirus (KHV) (also known as carp nephritis and gill 

necrosis virus, CNGV) (Perelberg et al., 2005) and cyprinid herpes virus-3 (CyHV-3)) 

(Minamoto et al., 2009). Although it remains unclear exactly how many carp died, 

conservative estimates of carcass volume range upwards of 13,000 fish (Garver et al., 

2010: 1244), and this estimate does not include the carcasses which were disposed of on 

private property or were left to decompose in situ.  The result was that approximately 

110 tonnes of carp were disposed of in waste management facilities throughout the 

region (MNR, 2009), which raised numerous concerns regarding the removal and 
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disposal of large volumes of fish over a relatively short period of time. Especially taking 

into account that the 2008 die-off followed a 2007 fish die-off in the Kawartha Lakes 

region of Ontario resulting in the disposal of 12,000-24,000 carp (MNR, April 2008; 1).  

 

Following the mass mortality of C. carpio in 2008, the Ontario Ministry of Natural 

Resources (MNR) advised residents to double-bag the carcasses for roadside pickup, so 

that carcasses could be disposed of as waste in municipal landfills (MNR, July 2008). 

The MNR advisories stated that as an alternative to waiting for municipal pickup to 

landfill the fish, the carcasses could be buried on a landowner’s property at a minimum 

depth of two feet (and also requested that people do not flush the fish down the toilet!) 

(MNR, May 2008). The MNR advisory clearly stated that “the virus does not affect 

humans” and that “carp infected with KHV are safe to eat and handle” (MNR, May 

2008).  

 

It is well documented by various Ontario government agencies that Ontario carp 

contain elevated levels of contaminants. The Ontario Ministry of the Environment 

(MOE) in association with the MNR have routinely published fish consumption 

guidebooks for Ontario anglers to minimize human exposure to contaminants through 

consumption of fish caught in Ontario. These advisories have been established in 

accordance with Health Canada’s tolerable daily intake (TDI) for contaminants 

(Gilbertson and Carpenter, 2004).  The “Guide to Eating Ontario Sport Fish” has 

consistently published advisories for carp from the Lake Simcoe watershed based on 

contaminants, such as, mercury, PCBs, and pesticides  (MOE, 2009; 103).  Such 

restrictive consumption advisories for carp in Lake Simcoe are fairly representative of 

those for many other lakes across Ontario, and beyond (Haenen et al., 2004; Matsui et 

al., 2008; MOE, 2009). 
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Consumption advisories for carp become more stringent as fish length increases, 

reflecting the bioconcentration potential of a relatively long-lived, benthivorous 

omnivore. In some Ontario lakes, carp consumption recommendations are restricted to 

very small, relatively young individuals, if consumption of carp of any size are not 

completely advised against (MOE, 2009; 106). Considering these Ontario agencies were 

aware (or should have been aware) that carp bioconcentrate contaminants, as indicated 

in their own government publications, the suggestion that carp infected with KHV were 

safe for human consumption or disposal on public property appears, at least in some 

cases, to be exercising insufficient precautions to protect human health and the 

environment. Acknowledging that human consumption of contaminated fish tissue is of 

great importance – this topic is beyond the scope of my thesis - my study will focus 

primarily on the toxicological considerations with respect to safe disposal of carp 

carcasses after die-offs.    

 

1.1 Background 

 

KHV outbreaks, such as the 2008 episode in Lake Simcoe, are not confined to Canadian 

waterways; these types of outbreaks are becoming a global phenomenon with 

occurrences being reported throughout Europe, South Africa, the United States and 

much of Asia (Haenen et al., 2004; Matsui et al., 2008). Presently, KHV has spread 

throughout much of the world and as a result, it has been recognized as one of the most 

significant pathogens to affect common carp and koi on a global scale (Maya et al., 2010; 

Michel et al., 2010a; Dong et al., 2011). KHV has significantly reduced both wild and 

farmed carp populations in numerous countries (Matsui et al., 2008; Uchii et al., 2011). 

Given the nature of this fish as a significant source of food for the human population, 

particularly within Asian regions, and its widespread distribution in freshwater 

ecosystems around the globe, the epidemic potential of this virus is a direct concern for 
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the financial stability, food security and ecological integrity of freshwater ecosystems 

throughout much of the world.  

 

In aquatic ecosystems, organisms are exposed to contaminants through water, food and 

sediment. The bioaccumulation of contaminants from water compounded with the 

bioconcentration of these substances through trophic amplification leads to an increase 

of contaminants in aquatic species. In many cases, age is considered an important factor 

for the accumulation of contaminants, especially for mercury and POPs (McIntyre and 

Beauchamp, 2007; 571). Bioaccumulation occurs when the total uptake of contaminants 

exceeds the rate that the contaminants are secreted or excreted from the body (572); 

over time, contaminant body burdens build up, resulting in higher concentrations in 

older individuals. Biomagnification, a term used to describe the increase in contaminant 

concentration in a species from the consumption of another organism (Gobas and 

Morrison, 2000; McIntyre and Beauchamp, 2007; 572), is an important consideration for 

the movement of contaminants in aquatic ecosystems, particularly with carp, which can 

scavenge decaying animal material already highly contaminated.  Generally, the longer 

the food chain, and higher the fat content of the species, the rate of biomagnification 

increases (Rasmussen et al., 1990; Bentzen et al., 1996; Guildford et al., 2008).  

 

It has been well documented that fish in Canadian waters harbor various legacy 

contaminants (e.g., POPs) associated with adverse human health outcomes. Fish from 

the Great Lakes and their tributaries frequently have relatively high body burdens of 

organic and inorganic contaminants (Gewurtz et al., 2009). These compounds generally 

enter waterways via industrial effluents, sewage runoff, inputs from agricultural 

practices (Giesy et al., 1997), combustion emissions, historical electric equipment, 

landfill sites, as well as numerous other point and non-point sources of pollution 

(Gewurtz et al., 2009). Carp are arguably one of the most contaminated (e.g., PCBs) 

freshwater fish species, due to a benthivorous and omnivorous diet  (Moermond et al., 
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2004).  Thus, the handling of large numbers of this species en mass during die-offs raises 

practical concerns pertaining to human and environmental health.  

 

The exact concentration of contaminants in fish from the Lake Simcoe region that have 

been disposed of in landfills, private and public property and on the First Nations Land 

of the Chippewas of Georgina Island remains unknown. However, using toxicological 

data provided by the MOE, it is possible to calculate relative contaminant loadings to 

estimate the relative risk associated with this disposal approach for a given site. A case 

study was conducted on Snake Island in Lake Simcoe, Ontario (land of the Chippewas 

of Georgina Island) to determine whether sites used to dispose carp during the 2008 

die-off contained detectable levels of mercury (inorganic and organic), pesticides (e.g., 

DDT) and other hazardous substances known to accumulate in fish tissue (PCBs).  
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2.0 Literature Review 

2.1 Global significance of carp fish  

2.1.1 Carp ecology 
 

The general vernacular “common carp” refers to a culmination of three separate kinds 

of wild carp, which originate from: Europe, East Asia (primarily Siberia) and Central 

Asia (Balon, 1995; 15).  Carp husbandry is not a novel phenomenon, but rather it has 

been a cultural tradition in eastern nations, particularly China for the past 2000 years 

(Balon, 1995; 8).  

 

Part of the reason why carp have been so successful at establishing themselves in new 

environments throughout the world is their highly prolific reproduction and rapid 

growth. Carp produce upwards of two million eggs per year, which hatch in 3 to 6 days 

(RBG, 1998; 3). Hatchlings can grow to a maximum size of 120 cm and live up to 40 

years of age (RBG Fish Fact Sheet 2001; 2). In optimal growing conditions (water 

temperatures between 23°C- 30°C, this species can grow 2 to 4 percent of their body 

weight per day (FAO, 2012).  A very hardy species (Johnson, 1954; Mark, 1966; Balon, 

1995; 27), carp can endure, among other things, low-oxygen levels (0.3-0.5 mg/L), 

temperature fluctuations, and waters with very high concentrations of saline (5%) 

(FAO, 2012; 2). Carp can also be transported outside of water in damp moss and can 

survive long periods of starvation (Balon, 1974; Balon, 1995; 27).  

 

Carp are benthivores and eat a variety of foods found primarily in sediment. As carp 

forage, they uproot plants searching for benthic prey, increasing water turbidity, while 

releasing dissolved nutrients such as nitrates and phosphates (Hoffman, 1995; 74). In 

the process, carp are exposed to hydrophobic contaminants, such as, PCBs, mercury 
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and pesticides, which adsorb to sediment and biomagnify in the fish as they are 

consumed. The preferred spawning grounds for the Lake Simcoe carp are located in the 

Holland Marsh, Cooks Bay, and in the weedy bays and slow rivers during May and 

June when the water starts to warm (MacCrimmon and Skobe, 1970; 72). The Holland 

Marsh for example acts as a reservoir of contaminants (e.g., DDT), as chemicals have 

been historically applied as pesticides or chemical fertilizers.  

 

2.2 History of carp in the Laurentian Great Lakes  

 

The ecological stability of aquatic ecosystems is greatly influenced and often threatened 

with the introduction of invasive species. The majority of exotic species in the 

Laurentian Great Lakes region were introduced during early European settlement in 

the 17th century (Mills et al., 1993; 2).  A resident of Orange County, New York was the 

first to introduce the common carp to North America in 1831. This resident had 

imported the fish (which was local to Eurasia) from France with the intention of 

propagating this species in his private ponds (DeKay 1842; Mills et al., 1993). Later, it 

was noted that carp were being deliberately released into the Hudson River where they 

were being caught by anglers. By 1879, several years after it was first introduced in 

private ponds, the United States Fish Commission released carp fry imported from 

Europe into the Great Lakes (Mills et al., 1993).  

 

During the 1880s, common carp were released in the Great Lakes as part of government 

stocking programs as well as by the deliberate release by local citizens (Emery, 1985; 

Mills et al., 1993; 3). It was the intention of the government and the local population to 

stock fish such as common carp in this water body, in order to establish a successful 

fishing industry which would compensate for the decline of the east coast fisheries 

(Emery, 1985; Mills et al., 1993; 42). Carp were officially introduced to Canada in 1881, 
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as part of a Lake Ontario hatchery project that aimed to produce inexpensive fish for 

consumption (McCrimmon, 1968; RBG, 1998; 3). By the 1890s, this plan backfired and 

carp quickly became considered a nuisance species because of their highly destructive 

habits, which threatened the success of more desired fish species (Krueger and May, 

1991; Mills et al., 1993; 42).  

 

2.3 History of carp in Lake Simcoe 

 

By the 19th century, millponds in the Holland River (at the south end of Lake Simcoe) 

were stocking carp that had been imported from Europe. The first carp believed to have 

entered Lake Simcoe occurred in 1896, when a Dam broke at Dyke’s Pond near 

Newmarket, Ontario (MacCrimmon and Skobe, 1970; 69). Lake Simcoe carp were noted 

for growing rapidly which developed a demand for carp as a food fish following their 

first introduction (MacCrimmon and Skobe, 1970; 69).  

 

Shortly thereafter in the early 1900s, the destructive nature of the carp became rather 

well known and this once desired species was no longer revered (MacCrimmon and 

Skobe, 1970; 69). By 1902, approximately six years after carp entered Simcoe, the 

spawning beds of the Maskinonge River were destroyed forcing many native fish 

species to move further up the Holland River to spawn. The loss of the wild rice beds, 

which had supported an array of waterfowl were almost completely destroyed, as a 

result of the introduction of carp (MacCrimmon and Skobe, 1970; 69).  

 

In 1909, the first commercial carp seine license was issued and by 1911, 462,406 lbs of 

fish was harvested (MacCrimmon and Skobe, 1970; 70). Around this time, the mirror 

carp, a genetically similar variation of the common carp was in demand for a short time. 

By 1912, the annual catch of carp decreased significantly to 123, 871 lbs (MacCrimmon 
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and Skobe, 1970; 70). This downward trend went as low as 84,452 pounds taken in 1918 

- and peaked again in 1923 with a reported catch of 347,409 lbs - and then proceeded 

again to decline (MacCrimmon and Skobe, 1970; 71).  

 

In 1928, a significant die-off of carp occurred requiring local authorities to remove dead 

fish from the shoreline (MacCrimmon and Skobe, 1970; 71).  Although the cause of the 

die-off was never officially determined, it was reported that not all carp were killed and 

fishing reports in 1928 and 1938 accounted for a catch of approximately 50,000 lbs of 

carp (MacCrimmon and Skobe, 1970; 72). Between 1910 and 1969, the commercial carp 

fishery in Lake Simcoe documented a total catch of 4,000,000 lbs (MacCrimmon and 

Skobe, 1970; 71). The amount of fish harvested outside of the monitored fishery remains 

unknown. Presently, it remains unknown as to what triggered the die-off and how the 

50,000 lbs of dead fish was disposed.  

 

2.4 Global importance of carp   

2.4.1 Carp in the aquaculture, food fish, trade industry  
 

Cyprinus carpio (L.) otherwise known as common carp, have become dispersed into 

many freshwater ecosystems around the world (Rahel, 2007; Matsui et al., 2008). Native 

to Eastern Europe and Central Asia, these non-indigenous North American fish have 

entered many waterways in Ontario, including the Great Lakes, where they were 

deliberately released in 1879 (Mills et al., 1993) and later detected in Lake Simcoe in 

1896 (Ministry of the Environment, 2009; 56). Known for their adaptability to new and 

often poor environments, Cyprinid fish (Cyprinidae family) such as carp, koi and 

goldfish exhibit a high tolerance level for changes in the water temperature as well as 

oxygen deprivation (Williams et al., 2008); therefore, they are able to successfully 

become established in foreign and often degraded environments. 
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Globally, aquaculture is the fastest growing source of animal protein producing 

upwards of 52.5 million tonnes per annum (FAO, 2010; Murray, 2012 in press) Carp are 

an important source of revenue in the world economy, representing approximately 

fourteen percent of the global freshwater fish production as of 2002 (FAO, 2012). In 

2004, estimates suggest that upwards of 3.3 million tons of carp were produced 

globally, with an annual increase of upwards of 10 percent per year (http://fao.org; 

Matsui et al., 2008). Because carp are farmed in numerous countries in large quantities, 

it is of particular economic value to understand the diseases which target this species as 

well as other related toxicological issues (Williams et al., 2008) that could pose threats to 

this industry. Because of the virulence of this virus, outbreaks of KHV are extremely 

detrimental to not only fish husbandry and related industries, but also to human and 

environmental health if carcasses are not appropriately disposed of.  

2.4.2 Current threats to carp species and  
 

Due to the extensive carp production and domestication worldwide, wild populations 

of common carp are thought to be either extinct or critically endangered (Balon, 1995; 

3). Feral progeny from cultured carp have spread throughout much of the world and 

though they are may not be genetically identical to their historical lineage, they have 

still managed to rapidly colonize expanses of freshwater ecosystems.  Due to the 

extremely high reproductive capacity of carp, they are recognized as “one of the most 

prolific freshwater fishes” (MacCrimmon and Skobe, 1970; 72).   
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2.5 Contaminant uptake in aquatic ecosystems 

2.5.1 Contaminant uptake in aquatic ecosystems 
 

Toxins have become integrated in global aquatic ecosystems through various processes 

such as atmospheric deposition, point sources of pollution, agricultural and road runoff 

(Allan, 1986; Canadian Council of Ministers of the Environment, 1995). The implications 

of exposure to various sediment-bound toxins has been documented and analyzed at 

both acute and chronic exposure levels in both laboratory (Thomas et al. 1986; Kosalwat 

and Knight 1987; Dawson et al. 1988; Long and Morgan 1990; Burton 1991, 1992; Burton 

et al. 1992; Lamberson et al. 1992; Canadian Council of Ministers of the Environment, 

1995) and field studies (Canadian Council of Ministers of the Environment, 1999) with 

focuses on various benthic species (plants and invertebrates) as well as benthivores.  

 

The bioaccumulation and biomagnification of sediment-bound contaminants in aquatic 

taxa has been well researched (Foster et al. 1987; Knezovich et al. 1987; Canadian 

Council of Ministers of the Environment, 1995: 5). Results suggest that sediments, as 

eloquently described by the Canadian Council of Ministers of the Environment (1995) 

“represent potentially significant hazards to the health of aquatic organisms and to the 

overall health of aquatic ecosystems”. Thus, the Canadian Council of Ministers of the 

Environment advocate the use of sediment quality guidelines (SQGs) to assess 

associated risk factors in various aquatic systems to protect organisms from exposure to 

such contaminants. Currently, there lacks adequate scientific literature to support 

SQG’s for all of Canada (Canadian Council of Ministers of the Environment, 1995), but 

they are being used in areas such as the Great Lakes to compare the historical 

contaminant concentrations to current values (CCME, 1999; Marvin et al., 2003).  
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2.5.2 Contaminant uptake in carp  
 

Carp are omnivorous fish that consume aquatic vegetation, decaying matter and 

benthic prey (Crivelli, 1981; Garcia-Berthou, 2001; Matsui et al., 2008). They use their 

jaws as shovels to dig into substrate and expose food detected by their sensory barbells, 

which they swallow whole and pass through the tooth-like structure in the back of their 

throat (Alderton, 2005).  According to Moermond et al (2004) carp accumulate PCBs 

typically in the following three ways: "uptake through invertebrate food, uptake from 

fast-desorbing fractions in ingested sediments and uptake from water". When carp feed, 

they both displace sediment (Scheffer et al., 2003, Moermond et al., 2004) and ingest 

sediment (Michelsen et al., 1994; Tolonen et al., 2000; Moermond et al., 2004), which can 

be approximated using the following contaminant uptake model developed by 

Moermond et al. (2004): 

  
dCfish= kabs,inCw+kass1,inCfood+kass2,inCsedfast - 
dt                                                                                  

 Cw - dissolved concentration of PCBs in water (μg/kg) 
 Cfish  - concentration of PCBs in fish (μg/kg) 
 Cfood- concentration of PCBs in invertebrate food (μg/kg) 
 Csedfast - concentration of fast-desorbing PCB concentration in sediment   
 (μg/kg) 
 
 

kabs,in (absorption rate constant from water (μg/kg-1 wet wt)/ (μg/kg x  L-1 x d)) 
kass1,in (assimilation rate from invertebrate food (μg X kg-1 wet wt / (μg x kg-1 x 
L-1 x d)) 
kass2,in (assimilation rate from sediment (μg X kg-1 wet wt / (μg x kg-1 x L-1 x d) 
(which is dependent on food ingestion rate king (kg x kg -1 x d-1) 
kexcr,out (excretion rate into water (d-1)) 
keges,out (ingestion rate with food (d-1)) 
kgrdil,out (growth dilution rate constant (d-1)) 

 
 (Moermond et al., 2004). 
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Much of the current technology and methods used to monitor contaminants in fish do 

not consider the ingestion of PCB-adsorbed sediment as a way of accumulating this 

toxin (Thomann et al., 1992; Hendricks et al., 2001; Moermond et al., 2004) and therefore 

many models are not effective in determining contaminants in benthivorous fish 

(Moermond et al., 2004). Great Lakes tributaries outside of Canadian jurisdictions, such 

as the Saginaw River in Michigan, indicate a similar presence of synthetic halogenated 

hydrocarbons (including PCBs, polychlorinated dibenzofurans (PCDFs) and 

polychlorinated dibenzodioxins (PCDDs)), which pose threats to both humans and 

wildlife (Allan et al., 1991; Brandon et al., 1991; Giesy et al., 1997).   

 

Currently PCBs and tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) cause the majority of 

the dietary restrictions of fish from the Great Lakes (Sonzogni and Swain, 1984; Maxim 

and Harrington, 1984; Sonzogni et al., 1991; Williams et al., 1992; Gilbertson, 1992; Giesy 

et al., 1997). Due to the high concentrations of POPs and heavy metals, the Saginaw 

River and Saginaw Bay have been categorized as areas of concern in the Great Lakes by 

the International Joint Commission (International Joint Commission, 1993; Giesy et al., 

1997). Similar cases have occurred in places like the Buffalo River, New York, where 

PCB isomers and other contaminants were found in amounts which exceeded the 

United States Food and Drug Administration’s guidelines for fish consumption 

(Loganathan et al., 1995). Advisories as such, indicate that PCB-contaminated carp and 

other fish species are not restricted to the Lake Simcoe watershed, but are also national 

and international concerns. Viruses such as KHV, that are responsible for mass 

mortalities of carp around the world, raise the issue of proper means of disposal for 

contaminated fish and other biota.  
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2.5.3 Biological vectoring of contaminants in salmon   
 

Semelparous and anadromous species such as salmon are more recently gaining 

attention as biovectors of persistent bioaccumulative contaminants (Blais et al., 2007; 

Baker et al., 2009). Salmon carcasses are integral to the nutrient balance in many 

freshwater ecosystems (Brickell and Goerging, 1970; Bilby et al., 1996; Lyle and Elliott; 

1998; O’Toole et al., 2006). Nonetheless, as seen in the case of sockeye salmon 

(Oncorhynchus nerka) on the west coast of Alaska for example, fish carcasses are 

contributing to contaminant loading in the environment (Krümmel et al., 2003). These 

salmon are bioaccumulating contaminants throughout their lifecycle - and releasing 

them into the environment as their bodies decompose following spawning activities – 

resulting in the transportation of contaminants from the Pacific Ocean to freshwater 

systems in Alaska, (Krümmel et al., 2003; O’Toole et al., 2006; 102). 

 

 In the ocean, where PCB concentration is less than 1 ng/L (Fisk et al., 2001; Iwata et al., 

1993; Krümmel et al., 2003), sockeye salmon are able to biomagnify PCBs to levels 

reaching 2,500 ng/g of lipid content (Schultz-Bull et al., 1998; Krümmel et al., 2003). 

Krümmel et al (2003) estimate that a spawning run of approximately one million 

Chinook salmon would lead to an increased PCB loading of 0.16 kg to the receptive 

freshwater ecosystem in which they will die (Krümmel et al., 2003; 255).  

 

Research conducted in the Credit River, a tributary of Lake Ontario, by O’Toole et al., 

(2006) raised similar concerns regarding the addition of salmon carcasses as ecosystem 

amendments because of the high contaminant levels Chinook Salmon are known to 

mobilize from Lake Ontario and transport to spawning grounds following their death 

(O’Toole et al., 2006; 111). O’Toole et al (2006) have estimated that an approximate 75g 

of total PCBs and 35g of total DDT compounds to enter the Credit River occur as a 
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result of Chinook Salmon tissue decay after spawning based on recent size and 

contaminant trends (O’Toole et al., 2006; 111).  

 

The implications of the bulk transfer of contaminants from salmon through oceanic to 

freshwater ecosystems can be further assessed by examining predatory species such as 

grizzly bears (Ursus arctos horribilis O.) and orcas/killer whales (Orcinus Orcas L.). Killer 

whales from the west coast of Canada, which almost exclusively consume salmon, have 

been noted for containing PCB concentrations of 146,300 ng/g (Ross et al., 2000; 

Krümmel et al., 2005; 7020).  

 

2.6 Contaminants in the Laurentian Great Lakes and Lake Simcoe fish  

 

Toxic equivalent (TEQ) quantification methods have been used for risk assessments and 

for developing regulations that indicate the relative risk for exposure to these 

compounds in relation to 2,3,7,8-tetrachlorodibenzo-p-dioxin  (TCDD) (WHO, 2000), the 

most toxic of these contaminants (Bhavsar et al., 2008). TEQ is limited in its risk 

assessment because it does not take into account the differences in the toxicokinetics of 

each of the congeners (WHO, 2000). The WHO has modified the TEQ assessment called 

WHO-TEF (van den Berg et al., 1998; van den Berg et al., 2006; Bhavsar et al., 2008), 

which takes into consideration the toxic equivalent factor using relative potencies 

(REP), which are more accurate for risk assessments (Finley et al., 2003; Bhavsar et al., 

2008). 

2.6.1 Fish consumption advisories 
 

Fish advisories in Ontario have been established for many of the persistent organic 

pollutants listed under the Stockholm Convention including: PCBs, pesticides (DDT, 

Toxaphene, Mirex), PCDDs, PCDFs (Stockholm Convention on Persistent Organic 
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Pollutants, 2008). In order to protect the health of fish eating individuals, a “Guide to 

Eating Ontario Sport Fish” is published every two years as part of a partnership with 

the Ministry of the Environment and Ministry of Natural Resources as reference for 

guide for fish contaminant levels and suggested dietary intake.  

 

Aside from the Laurentian Great Lakes, Lake Simcoe is the largest inland lake in 

Southern Ontario with an angling industry that generates upwards of $100 million 

dollars per year (Gewurtz et al., 2011). Carp consumption advisories in this area are 

issued for the following contaminants: Mercury, PCBs, mirex/photomirex and 

pesticides, dioxins, furans and dioxin-like PCBs (MOE, 2012; 4).  

2.6.2 Mercury (Hg)  
 

Mercury is a highly toxic metal naturally released from environmental sources, such as, 

geological features, forest fires, oceans and volcanoes (CCME, 2003).  Anthropogenic 

activities associated with the release of mercury include the burning of coal, waste 

incineration and manufacturing (ATSDR, 2011). While there are many forms of 

mercury, methylmercury (MeHg) is the most bioaccumulative and toxic (Wang et al., 

2004). Exposure to mercury via the consumption of contaminated fish has been 

associated with numerous adverse health effects including neurotoxicity (Gilbertson 

and Carpenter, 2004; 240).  Fish accumulate mercury primarily from their diet (Trudel et 

al., 2000 and Madenjian, Keir, Whittle, 2011) and through their gills via uptake of water 

(Madenjian et al., 2011).  

 

Methylmercury (MeHg) is created through the process of mercury methylation.  As a 

highly bioaccumulative contaminant that readily biomagnifies through food chains, 

MeHg typically enters organisms via their diet (Hall et al., 1997; Fowlie, Hodson and 

Hickey, 2008) and can be found typically, in the highest concentrations in larger and 
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older piscivorous species (Simoneau et al., 2005; Fowlie, Hodson and Hickey, 2008). 

Although Hg accumulates in aquatic sediments, sediment concentrations are low 

enough that few socio-ecological risks are associated with direct exposure to this matrix 

(Fowlie et al., 2008; 84). Pollutant levels in fish, according to Fowlie et al., (2008), more 

accurately represent the bioavailability of Hg (84) and therefore are more reliable 

indicators of Hg contamination in aquatic environments. Seasonal fluctuations of Hg 

concentrations in aquatic environments are important to consider when monitoring fish 

for contaminant guidelines (Fowlie et al., 2008; 84). Minamata disease and other 

“environmentally induced diseases” (Gilbertson and Carpenter, 2004; 242) further stress 

the need to understand chronic low-dose exposure to toxicants such as mercury.   

2.6.3 Polychlorinated Biphenyls (PCBs)  
 

Polychlorinated biphenyls are a group of contaminants potentially comprised of 209 

congeners that were originally produced in the United States, Germany, France, the 

United Kingdom, Japan, Spain and Italy (Berger et al., 2001). Presently, North Korea 

and Russia are still producing these compounds, which were banned in the United 

States in 1977 out of fear that these chemicals posed a threat to human health (Berger et 

al., 2001). According to the World Health Organization (WHO), PCBs have been 

designated as contaminants “in almost every component of the global ecosystem” 

(WHO, 1993: p.149; Berger et al., 2001).  PCBs are lipophilic contaminants that are 

readily absorbed (EPA, 1999: EPA-823-F-99-019) through the skin, lungs and 

gastrointestinal system (Tsuji et al., 2005). Because of the chemical stability of these 

compounds, PCBs bioaccumulate and persist both in biota and in the environment 

(Berger et al., 2001).  

 

PCBs enter waterways primarily by atmospheric deposition from up to 1609 km from 

the original source of pollution (Eisenreich et al., 1981; Suchan et al., 2004). Once 



18 

 

dispersed, PCBs accumulate in fat tissues of biota as they have low solubility in water 

(EPA, 1999; EPA-823-F-99-019) and many of these contaminants have been associated 

with detrimental human health outcomes (Suchan et al., 2004). The primary manner by 

which humans are exposed to PCBs is via diet, particularly the consumption of fish, fish 

products and locally harvested game (EPA, 1999; EPA-823-F-99-019).   

 

It is thought that the introduction of PCBs into the Great Lakes watershed began in the 

1930s (Tanabe, 1988; Bhavsar et al., 2007), but were not detected until 1968 (Veith, 1968; 

Li et al., 2009). Although the amount of PCBs entering the Great Lakes from point 

sources and atmospheric deposition has been reduced over the past decades, the 

amount of legacy PCBs persisting in the sediments is considered a significant source of 

contamination (Li et al., 2009). The accumulation, transportation, and reduction of 

previously deposited PCBs in sediments of the Great Lakes have been thoroughly 

underrepresented in academic literature (Li et al., 2009).  

 

Although PCBs are no longer in production in most countries, there is still widespread 

legacy contamination in sediments and biota (WHO, 2000). The WHO (2000, p.1) states 

that “the ability of PCBs to co-distil, volatize from landfills into the atmosphere 

(adsorption to aerosols with a particle size of <0.05-20 µm), and resist degradation at 

low incinerating temperatures, makes atmospheric transport the primary mode of 

global distribution” (WHO, 2000, 1). PCBs have been widely employed as dielectrics 

and heat exchange fluids because they are very versatile in many electrical and 

industrial applications. Their versatility comes from the fact that they are relatively fire 

resistant, conduct little electricity, have high thermal conductivity, are resistant to 

degradation caused by heat stressors and have low water solubility (WHO, 2000).  

 

Between 1970-1980, the input of PCBs in the Great Lakes declined rapidly (Baumann 

and Whittle, 1988; Jeremiason et al., 1994; Swackhammer, 2005; Bhavsar et al., 2007), 
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with very little detectable input in the 1990s (De Vault et al., 1996; Hickey et al., 2006; 

Bhavsar et al., 2007). Research conducted by Bhavsar et al. (2007) indicates that although 

the current PCB content of the Great Lakes is significantly less than it has been 

historically, there is still a potential health risk (Bhavsar et al., 2007). Research 

conducted by Li et al. (2009), indicates that the accumulation and input of PCBs 

annually in the sediments of the Great Lakes is approximately 30% less than it was in 

the 1980s, which is a decrease from 420 tons (Eisenreich, 1987, Li et al., 2009) to the 

current 300 ± 50 tons (Li et al., 2009).  

 

Li et al. (2009) order the Great Lakes commencing with the lake with the highest inputs 

as follows: Lake Erie → Lake Ontario → Lake Michigan → Lake Huron → Lake 

Superior. Lake Ontario has shown the most obvious decrease since the 1980s. It is 

assumed that the decrease in Lake Ontario has occurred as a result of “gradient-induced 

upward and downward diffusions through the sediment column, as well as in situ PCB 

degradation” (Li et al., 2009; 142). The lateral movement of contaminants in lakes is 

assumed to be consistent with the movement and suspension of sediments (Li et al., 

2009). It is believed that the congener distribution throughout the sediment is most 

likely a result of the changes in both sales and production of the chemical (Li et al., 

2009). Other factors influencing the gradual breakdown and dispersal of the most 

frequently persistent PCB congeners is anaerobic reductive dechlorination which occurs 

when microbial dehalorespiration is initiated by the aggregation of large quantities of 

halogenated compounds (Li et al., 2009; 145).   

 

In order to quantify the amount of PCBs present in sediment and approximate the PCB 

inventory or total amount per determined unit area, sediment coring as described by Li 

et al. (2009) is suggested. Also, a thorough inventory of wave movements is 

recommended since the movement of water along the basin of the lake can move and 

re-suspend particles (Li et al., 2009). PCBs become dispersed through lake ecosystems 
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by adhering to sediments, which are deposited onto the basin of the water body 

(MacDonald et al., 1993), where they can become a concern to aquatic health (Bhavsar et 

al., 2007). The lipophilicity of the contaminant increases with a higher level of 

chlorination (WHO, 2000) and congeners with lower chlorination are more volatile 

(WHO, 2000). In non-industrial areas believed to be free of contamination, ambient air 

levels of PCBs were detected at 0.02 ng/m3 in contrast to heavily industrialized areas, 

where levels exceeding 650 µm/m3 (WHO, 1993; WHO, 2000). Research conducted in 

the United States indicated that 92% of detectable PCBs were in vapour form (WHO, 

1993; WHO, 2000). In order to test for PCBs in vapour phase, biomonitors, such as plant 

foliage, are recommended by the WHO (WHO, 2000) and should be considered as part 

of the risk assessment.  

 

The general public is most commonly exposed to PCBs through food, particularly fish 

(WHO, 2000). The World Health Organization’s (WHO) tolerable monthly intake of 

dioxins, furans and PCBs is 70 picograms per kg of body weight (based on the 

“cumulative exposure to dioxins and furans from all sources including food and 

water”) (WHO, 2004). Due to the fact that many contaminants have been legislated and 

are no longer in production, sediments throughout the world, as described by 

Moermond et al. (2004), have in many cases become sinks for lipophilic contaminants 

(Moermond et al., 2004; 4503). Risk assessments in aquatic ecosystems therefore need to 

consider the remobilization of sediment-bound hydrophobic contaminants in order to 

determine the potential risks these compounds pose to the biotic community 

(Moermond et al., 2004; 4503).  

2.6.4 Dichlorodiphenyltrichloroethane (DDT) and pesticides 
 

Dichlorodiphenyltrichloroethane (DDT) is a synthetic persistent organochlorine 

pesticide once widely used in agricultural applications to limit the infestation of insects 
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(ATSDR, 2011), as well as a means to eradicate malaria and other vector-borne diseases 

in endemic countries (WHO, 2007; EPA, 2012). Though the production of the substance 

is highly controlled by the International Stockholm Convention on Persistent Organic 

Pollutants (Stockholm Convention on Persistent Organic Pollutants, 2008), and banned 

in many countries, the World Health Organization (WHO) asserts that at present, there 

are no other alternatives that are as efficient and economically viable to combat these 

diseases by targeting the vector of the disease (WHO, 2007).  

 

Dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD) 

are DDT metabolites created via microbial action in soil (ATSDR, 2011). Lipophilic, 

these substances adhere to sediment, bioaccumulate, and can interact with plant and 

animal receptors (ATSDR, 2011). Health concerns associated with exposure to these 

chemicals include effects on embryonic development, mutagenic effects, and DDT is 

recognized as a probable carcinogen (EPA, 2012). The majority of the population is 

exposed to DDT and its metabolites via food, primarily the consumption of fish (Health 

Canada, 2007).  

 

2.7 Koi herpesvirus (KHV) 

2.7.1 Global significance and current status of Koi herpesvirus (KHV) 
 

Cyprinid herpesvirus-3, CyHV-3 or Koi Herpesvirus (KHV), part of the Herpesviridae 

family (Aoki et al., 2007; Uchii et al., 2011) is a herpesvirus that induces a species-

specific disease in Cyprinus carpio carpio L. (Honjo et al., 2011 in press) responsible for 

mass mortalities of carp throughout the world. Koi Herpesvirus (KHV), also known as 

carp interstitial nephritis and gill necrosis virus (CNGV) (Pikarsky et al., 2004; Ronen et 

al., 2003; Ilouze et al., 2006a) and Cyprinid herpes virus-3 (CyHV-3) (Waltzek et al., 2005 

Ilouze et al., 2006) was first isolated in 1998 in the United States (Pokorova et al., 2005) 
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after confirmed reports of outbreaks both in Israel and the USA (Hedrick et al., 2000). 

This species-specific herpesvirus is an extremely contagious pathogen that has spread 

extensively throughout the world (Perelberg et al., 2005) targeting exclusively common 

carp (Sadler, Marecaux and Goodwin, 2008; 71). KHV is vectored through water and 

can therefore be spread in areas with low carp density (Matsui et al., 2008). Research 

conducted by Minamoto et al., (2009) in Lake Biwa, Japan, clearly indicates that once 

KHV has entered a body of water, the virus will remain in the aquatic system for a 

significant amount of time (Minamoto et al., 2009).   

 

KHV has caused massive die-offs of farmed ornamental and common carp in fish farms 

(Perelberg et al., 2005) and die-offs throughout Europe, South Africa, the United States 

and Asia (Haenen et al., 2004; Matsui et al., 2008). Between 2000-2004, the aquaculture 

industry in Israel alone lost $3 million annually from fish deaths associated with KHV 

(Perelberg et al., 2005; 3401). Research conducted by Matsui et al., (2008) indicates that 

KHV may be the first viral disease targeting freshwater environments that has had a 

severe global impact resulting in the death of massive fish populations. Lack of KHV 

testing equipment and methods in the aquatic environment continues to hinder 

ecologists' progress in better understanding the disease (Matsui et al., 2008).  

 

Although little is known about how the virus initially spreads, it has been widely 

accepted that the primary mode of KHV dissemination occurs as a result of the 

introduction of healthy looking infected carp or koi to naïve populations (Matsui et al., 

2008). It is suspected that a significant factor in the rapid spread of the disease is 

associated with the widespread trade of carp both as ornamental and food fish 

(Perelberg et al., 2005). It is relatively unknown as to how the virus is spread (Minamoto 

et al., 2009), but it is assumed that transmission occurs through the feces of infected carp 

into the environment (Haramoto et al., 2007), where it is spread to other carp. In order 

for the virus to multiply, water temperatures need to be between 15-25°C (Gilad et al. 
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2003; Haramoto et al., 2007) and it is for this reason that there are no outbreaks in the 

winter months.  

Although there are no outbreaks in the winter, the virus is able to remain active in the 

water long enough to cause an outbreak in the following spring (Haramoto et al., 2007). 

KHV and other viruses can attach to solid material in the aquatic ecosystem by 

adhering to debris and by becoming mixed in the growing material, and the virus is 

able to remain active and collect in shellfish (Landry et al., 1983, Matsui et al., 2008). 

Epifaunal shellfish are consumed by carp and koi in freshwater systems and therefore, 

it is assumed that there is a direct correlation between the accumulation of KHV in 

shellfish species and carp infections (Matsui et al., 2008), making detection of the virus 

extremely difficult in aquatic environments.  

 

There are two standard methods to detect KHV. The first method is by clinical 

observation which looks for histopathological indications of infection, such as, lesions 

on the skin and on internal organs (Gray et al., 2002), gill necrosis and proliferation 

(Pokorova, 2005; Hedrick et al., 2000; Gray et al., 2002; Matsui et al., 2008). Other 

physical symptoms (e.g., discoloration, hyper-production of mucus or behavioural 

changes (e.g., loss of appetite, erratic swimming, an increase in respiration frequency; 

Hedrick et al., 2000; Gray et al., 2002; Matsui et al., 2008) are also used in initial 

assessment. It is assumed that the virus’ primary entry route into the host is via dermal 

contact (Costes et al., 2009), which is consistent with changes in the mucus layer of the 

skin; thus increasing susceptibility to secondary infections (Adamek et al., 2013). As 

indicated by Matsui et al. (2008), these symptoms are not unique to KHV and therefore 

detection of the virus or viral DNA (using forms of DNA amplification and enzyme-

linked immunosorbent assays) is necessary to definitely identify KHV infection (Matsui 

et al., 2008; 1264).  
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Methods to determine the presence of KHV in the natural environment have not been 

extensively developed (Matsui et al., 2008). Microporous filters can be used to test 

samples in water and sediment, and the available molecular biological tests are able to 

detect minute quantities of viral DNA (Matsui et al., 2008). Where testing experiences 

the most significant obstacle is the extraction of concentrated amounts of KHV from 

large bulk samples (Matsui et al., 2008) and in this case, especially where the virus is 

assumed to be in low concentrations. TaqMan PCR system (operating in real-time) was 

developed to quickly test for KHV (Gilad et al., 2004; Haramoto et al., 2007).  

 

Koi which survive outbreaks of KHV often become carriers of the virus and transmit 

KHV to naïve koi which ultimately leads to another outbreak of the disease once 

conditions are adequate (St-Hilaire et al., 2005; Sadler, et al., 2008; 71). Although KHV is 

a species-specific virus, research conducted by Sadler, Marecaux and Goodwin (2008) 

reveals that even long after an outbreak of KHV, exposed Carassius auratus (L.) 

(common goldfish) tested positive for the CyHV-3 genome. Though this does not 

explicitly prove that goldfish are definite carriers of the virus, it suggests that there is a 

need to test other species that are in contact with C. Carpio, which could ultimately 

vector the disease.  

 

CyHV-3 is no longer detectable in water after three days without a host (Shimizu et al., 

2006; Uchii et al., 2011) suggesting that in water, free floating CyHV-3 has a relatively 

short lifespan. For fish species such as carp, which aggregate in order to spawn, the 

incidence of disease transmission is believed to increase (Uchii et al., 2011).  It was noted 

by Uchii et al (2011; 245) that breeding season coincides with warmer water 

temperatures of 15-25°C (Barus et al., 2002; Uchii et al., 2011) that are ideal for the 

propagation of the virus (Gilad et al., 2003; Uchii et al., 2011). In areas with high 

turbidity (which is often where spawning activities occur) and elevated concentrations 

of chlorophyll (as common to eutrophic sites), the virus adheres to both inorganic and 
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organic particles where it avoids predation and degradation (Minamoto et al., 2009).  

The relationship between chlorophyll and turbidity indicate that in nutrient-rich areas, 

KHV is more prevalent.   

 

The largest recorded KHV outbreak to date was in 2004 in Lake Biwa, Japan where 

between 60-80% of the carp population (approximately 100,000 carp) was decimated 

(Matsui et al., 2008; Uchii et al., 2011). As a means of disposal, carp bodies were 

incinerated with other garbage and then buried in a pit (Professor Toshifumi Minamoto, 

Kobe University, pers. Comm.). Uchii et al (2011) have noted that there have been 

confirmed cases of carp die-offs in Japan as a result of the virus, though none as severe 

as the case of Lake Biwa (Uchii et al., 2011; 224). KHV has been detected in the winter 

months when water temperature is below 10°C which suggests that even outside of the 

known virus reproductive temperature, carp are actively excreting (via feces) or re-

suspending KHV that had been attached to sediment through their benthivorous 

foraging activities (Minamoto et al., 2009). Host cell temperature outside of the 

optimum range of 15-25°C exhibit minimal virus replication (Gilad et al., 2003; Uchii et 

al., 2011).   

 

The fact that the majority of the fish killed in the Lake Biwa outbreak were adults 

greatly supports this theory as it is the sexually mature carp that would be exposed to 

the infection while breeding in large groups (Uchii et al., 2009). Uchii et al (2011) 

detected CyHV-3 in significantly higher concentrations in mating versus non-mating 

sites suggesting that spawning areas become “hot-spots” for infection transmission by 

accumulating the virus during the breeding process (Uchii et al., 2011; 249). Other 

factors considered to contribute to disease susceptibility include temporary immunity 

suppression induced by the increase in sex hormones in the spring (Watanuki et al., 

2002; Uchii et al., 2011).  
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2.7.2 Koi herpesvirus outbreaks in southern Ontario (2007-2008) 
 

Peterborough, Lake Simcoe, Simcoe County and fifteen additional water bodies 

experienced a mass carp die-off during the summers of 2007 and 2008 (MNR, 2009). It 

was determined that the primary etiological agent responsible for the widespread 

mortalities was KHV (Perelberg et al., 2005) and CyHV-3 (Minamoto et al., 2009). The 

removal and disposal of large volumes of fish over a relatively short period of time 

raises various practical, financial and health concerns.  

 

Conservative estimates of carcass volume during the outbreak affecting Lake Simcoe 

suggest that upwards of 13,000 fish were disposed of in 2008 (Garver et al., 2010: 1244), 

not considering the thousands, which were disposed of on private property or were left 

to decompose in situ.  Estimates suggest 110 tonnes of carp were disposed of in waste 

management facilities throughout the region (MNR, 2009). The 2008 die-off was a 

continuation of the 2007 incident that affected the Kawartha Lakes region resulting in 

the disposal of 12,000-24,000 carp (MNR, April 2008; 1).  

 

In order to help facilitate the removal of fish waste, the Ontario Ministry of Natural 

Resources (MNR) issued a series of recommendations and fact sheets which instructed 

residents to double-bag the carcasses for roadside pickup, where they would be 

disposed of as waste in municipal landfills (MNR, July 2008). The MNR 

recommendation advisories stated that as an alternative to municipal waste collection, 

fish carcasses could be buried on a landowner’s property at a minimum depth of two 

feet. The MNR also requested that people do not flush the fish down the toilet!) (MNR, 

May 2008). The MNR advisory clearly stated that “the virus does not affect humans” 

and that “carp infected with KHV are safe to eat and handle” (MNR, May 2008).  
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Although the zoonotic potential for KHV is assumed to be quite low, (Walster, pers 

comm.), and this virus may not be a direct concern for humans as stated by the MNR 

(May 2008), other toxicological and bacteriological concerns are raised.  

 

2.8 Aquatic animal health  

2.8.1 Fish epizootics and mass die-offs 
 

Although relatively little is known about the transmission of infectious animal diseases 

in the wild, this phenomenon is now considered as one of the most significant threats to 

biological diversity worldwide (Daszak et al., 2000; Smith et al., 2009; Uchii et al., 2011). 

In recognition of this, countries such as Canada have developed initiatives such as The 

National Aquatic Animal Health Program to address concerns pertaining to diseases 

which threaten the health of Canadian aquatic environments and the revenue it 

generates in domestic and foreign markets.  

 

The National Aquatic Animal Health Program (NAAHP) is a partnered initiative 

between Fisheries and Oceans Canada and the Canadian Food Inspection Agency. The 

mandate of the NAAHP is to “protect Canada’s aquatic resources by preventing the 

introduction or spread of infectious diseases in wild or farmed aquatic animals” (DFO, 

2011).  In addition, the NAAHP acts in accordance with the World Organization for 

Animal Health (OIE), whose aim is to protect animal health at a global level by 

monitoring, mitigating and limiting the spread of infectious diseases (OIE, 2013).  

 

The Centre for Aquatic Animal Health Research and Diagnostics (CAAHRD), as part of 

Fisheries and Oceans Canada, acts as a scientific research base providing diagnostics 

and expertise in support of programs such as the NAAHP and other regional aquatic 

health initiatives (DFO, 2011). The goal of this program is to mitigate the movement of 
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fish diseases and ensure they are not spread via fish or fish-based products within 

Canada or our trading partners (DFO, 2011).  

 

Though Canada has programs to monitor the spread of exotic and endemic fish 

diseases, and in some cases has bilateral monitoring programs established (as in the 

case of Viral hemorrhagic septicemia virus, DFO, 2011), what fails to be recognized is 

the need for a standardized disposal procedure that includes both pathogenic and 

toxicological tests to ensure that the handling and end processing of the dead fish do 

not induce long-term concerns for human and environmental health.  

 

2.8.2 Animal disposal  

 
In Canada, it is the responsibility of the individual province or territory to dispose of 

wild animal carcasses. Although support is offered at the Federal level through 

organizations such as the Canadian Food Inspection Agency (CFIA) who advises 

provincial or territorial staff how to effectively implement disposal legislation and 

practices and Environment Canada, Provincial Natural Resources and Ministries of the 

Environment are chiefly responsible. Regulations for the disposal of farmed animal 

carcasses, products and by-products are under provincial and territorial jurisdictions. 

CFIA ultimately acts as a body of knowledge and expertise to assist and ultimately 

approve the disposal plan in accord with its Foreign Animal Disease Emergency 

Response Program (FADERP) (CFIA, 2012).  

 

The CFIA has developed infrastructure to aid in the detection, prevention, containment 

and eradication of foreign animal diseases in Canada (CFIA, 2012). In the event of an 

outbreak requiring rapid and immediate intervention, this authority can call both 

provincial and local governments and invested stakeholders to assist in the 
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implementation of procedures which work to avoid potentially devastating losses to the 

agri-food industry at large (OMAFRA, April 7, 2011). In the case of an Emergency, 

provincial ministerial roles are outlined in the Emergency Management Ontario (EMO) 

and Civil Protection Act (Emergency Management Ontario, 2006-2009).  

 

The Foreign Animal Disease Emergency Response Plan (FADERP) was developed out 

of a partnership between the CFIA, EMO and OMAFRA (Ontario Ministry of 

Agriculture Food and Rural Affairs) as a means to:  

 

i. clearly align terminology with the Provincial Emergencies Response Plan (PERP) 
ii. to augment CFIA’s disease control capability with the provincial emergency management 

system  
      (Adapted directly from OMAFRA, April 7, 2011).  

 
In essence, the FADERP outlines the involvement of various organizations that follow 

the lead of the CFIA in the event of a highly contagious foreign animal disease in 

Ontario. EMO and OMAFRA’s roles as “provincial emergency coordination agencies” 

and other involved agencies are also described (OMAFRA, April 7, 2011). Within this 

act, a foreign animal disease refers to “a range of biological threats (that are not normally 

found in Canada) to livestock, poultry and wildlife” (OMAFRA, April 7, 2011).  

 

In Ontario for example, a wild fish die-off is initially investigated by the Ontario 

Ministry of Natural Resources  (OMNR) and Environment Canada. If the cause of death 

is determined to be related to a disease regulated by the CFIA, these authorities are 

required under the Health of Animals Act and Health of Animals Regulations to report 

back to the CFIA who in turn conducts their own follow up investigations. The CFIA 

has the authority to investigate any disease outbreak that threatens Canadian aquatic 

resources (CFIA, 2012). If the die-off is believed to have occurred as a result of pollution 

then it is Environment Canada who continues with the investigation and all other 
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causes of death are followed up by the OMNR. If KHV proves to be enzootic in wild 

carp populations, then disease control activities may not be necessary (Klotins, CFIA 

pers. Comm.).  

 

The following diseases are listed by the CFIA as reportable diseases. There is a legal 

responsibility to anyone who suspects an outbreak of these diseases to contact the CFIA 

immediately due to the inherent ecological and economic risk factor (CFIA, 2013):  

 

- Koi herpesvirus disease  

- Spring viraemia of carp  

- Viral haemorrhagic septicaemia 
 (CFIA, 2013).  

2.8.3 Fish disposal 
 

Though suites of histopathological tests and water quality assessments are frequently 

conducted during large fish-kills, what needs to be further developed is a suite of 

standardized contaminant tests to quantify the relative chemical loading contained in 

the fish carcasses to safely and effectively determine the most precautious method of 

disposal. The United States Environmental Protection Agency (EPA) for example has 

clearly indicated that fish are significant sources of toxicants, specifically mercury. The 

EPA has also set forth stringent regulations on the handling and disposal of mercury 

products, none of which has any mention of fish (EPA, 2012).  

 

During mass die-offs of fish in Canada and particularly Ontario, the associated cleanup 

and disposal responsibilities are often points of contention between authorities, local 

municipalities, homeowners and cottagers. Issues pertaining to the logistics of carp 

removal (cost, resources, labour, disposal facility allocation) can delay the removal of 

carcasses and cause unrest with local residents. In addition, the invasion of scavenger 

species, such as, fish eating birds adds further complexity, especially in cases when they 
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too die as a result of consuming the contaminated fish and require subsequent disposal 

as well. In 2011, Nottawasaga Bay experienced a die-off of fish and waterfowl as a result 

of a Botulism E. epidemic, which required the removal of over 1,000 birds, many of 

which were transported to the local waste facility (John Cooper, Fish and Wildlife 

Services , pers. Comm.).  Lake Erie also experienced a widespread fish kill the following 

year when tens of thousands of carcasses washed up on shore. A rapid change in 

temperature and steep decline in oxygen levels are thought to be the primary factors 

responsible for the mass mortalities, with dead fish and piscivorous birds littering 

approximately 40 km of Lake Erie shoreline (Brennan, 2012).  

 

Ontario Regulation 105/09 under the Food and Safety and Quality Act (2001) outlines 

the appropriate disposal method for deadstock off of farming operations. Fish are 

neither listed in Reg. 105/09 nor Reg. 106/09 (Nutrient Management Act- Disposal of 

Dead Farm Animals) as a species of dead animal to be treated and disposed of as 

deadstock (Reg. 105/09 Section 2:1, Reg. 106/09 Section 2:1-7). In these Acts, the 

handling, disposal and inspection of deadstock is limited to a list of specific individuals 

(Reg. 105/09 Section 3:5). Those who satisfy the list of criteria, who are therefore 

regarded as “certain persons” have a series of disposal options outlined under Section 7 

which include the following options for non-farmed animals as indicated in the Act 

105/09 (none of which outline the proper creation of disposal pits, or the handling of 

dead fish): 

  
 Disposal Options: 

7.  (1)  A custodian shall, in accordance with the relevant requirements set out 

in this Regulation, dispose of deadstock by, 

A. using the services of a licensed collector; 

B. delivering it to a disposal facility; 

C. delivering it to an approved waste disposal site; or 

D. delivering it for the purposes of a post mortem activity to a 
veterinarian who agrees to accept the responsibilities of a custodian 
with respect to the deadstock. 
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(Ontario Regulation 105/09 made under the Food Safety and Quality Act, 2001).  
 
Though landfills are often selected due to their relatively low-cost and simplistic design, 

they have the potential to pollute the environment (Butt et al., 2008; 962). Producing 

solid, liquid and gaseous waste, landfills as a means of waste disposal raise significant 

concerns pertaining to management of waste and its potential adverse effects on the 

landscape. Leachates and emissions from landfills are capable of polluting the 

atmosphere, lithosphere and hydrosphere, and therefore poses a hazard to human and 

environmental health (Butt et al., 2008; 952).  

 

In order to sufficiently protect human and animal health when dealing with dead 

animals, proper disposal practices are necessary (Kalbasi et al., 2005; Xu et al., 2008; 

Akdeniz et al., 2010).  In North America, the primary disposal method used for 

mortalities was rendering (converting animal by-products into useable materials) prior 

to the bovine spongiform encephalopathy (BSE) outbreak which raised concerns 

pertaining to the long-range transportation of “pathogen-contaminated carcasses” 

(Stanford et al., 2007; Wilkinson, 2007; Benson et al., 2008; Guan et al., 2008; Glanville et 

al., 2009; Guan et al., 2009; Stanford et al., 2009; Xu et al., 2009; Akdeniz et al., 2010; 

1981).   

 

Research conducted by Akdeniz et al (2010) indicated that biologically secure barriers 

are needed during emergency composting scenarios to limit the risk of disease 

transmission and reduce the survival time of pathogens. Though the focus of their 

research was primarily epidemiological, the same concerns apply with regards to 

handling fish with elevated contaminants. The risk of contracting a communicable 

disease poses a greater threat at the immediate or shortly thereafter contact with the 

carcass than the long-term implications pertaining to chronic exposure to persistent 

contaminants. Though authorities may more commonly overlook concerns pertaining to 
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chemical exposure, it is no less valid than the initial epidemiological risks identified by 

health agencies.     

 

Active disposal piles used for carcasses should be left undisturbed in order to reduce 

aerosol transmission of pathogens (Ahn et al., 2008a., Ahn et al., 2008b; Akdeniz et al., 

2010; 1981). This knowledge should also be applied to cases where communicable 

diseases are not detected so to limit the movement of volatile contaminants such as 

some PCBs congeners and mercury. The tools needed to effectively handle, monitor and 

limit disease transmission in emergency disposal situations have not been sufficiently 

developed (Akdeniz et al., 2010), nor have they been to mitigate the movement of 

contaminants out of disposal sites into the environment. 

 

It is unlikely that biologically and chemically secure barriers were employed in any of 

the disposal sites on private or public property during the 2008 carp die-off, and 

therefore it can be assumed that there is no medium in place to retain leachate. Also, if 

the decaying carcasses were not immediately disposed of, secondary infections could 

have set in as well. In order to adequately sanitize the composted material, a consistent 

temperature of 70°C or above must be reached (Butt et al., 2008; 386) and again, it is 

unlikely that the carcasses disposed as compost were sufficiently sterilized.  

2.8.4 Botulism and communicable diseases 
 

Seasonal die-offs of fish and other species in the Great Lakes region are not uncommon. 

Outbreaks of botulism in this locale have been responsible for large die-offs of fish and 

bird species, but so far have not been associated with any outbreaks of botulism in 

humans (MNR October 24, 2011). Botulism is induced by the ingestion of the bacterium 

Clostridium botulinum, which is naturally occurring in aquatic sediments (MNR October 

24, 2011).  Of the seven recognized types of Botulism, only four are noted to induce 
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human botulism: A, B, E and F. The other types, primarily C and D are responsible for 

mammalian, avian and fish botulisms (WHO Fact Sheet N° 270; August 2002), and G is 

found in soils.  Botulism E., unlike some species-specific viruses, is a public health 

concern as it is transferable from fish to humans via direct contact as well as 

consumption (WHO Fact Sheet N° 270; August 2002).  

During the fall of 2011, there was a large fish die-off as a result of a Botulism E. 

outbreak in Ontario. According to John Cooper from Fish and Wildlife Services (pers. 

comm., 2012), reports began emerging from MNR sources regarding the death of 8 

sturgeon and one carp in south-eastern Georgian Bay. Throughout October, these 

reports continued as the number of reported deaths increased to approximately 120 fish 

of five species. Waterfowl such as the Canada Goose (Branta canadensis) and six other 

species were also being reported dead in the general area of Parry Sound North to 

Collingwood. By October 22nd, thousands of dead birds were washing up along the 

South East shorelines of Nottawasaga Bay. Two days later, the Provincial Park Staff 

removed approximately 1000 dead birds from Wasaga Beach Provincial Park.  

According to the Fish and Wildlife Services (John Cooper, Fish and Wildlife Services 

pers. comm, 2012). , 70% of the birds were long-tailed ducks, 20% grebes (both pied-

billed and red-necked species), and the remainder was a mix of common loons, white-

winged scoter, ring-billed bull and herring gulls. Throughout the remainder of October, 

20 dead lake sturgeon, carp, common carp and a Canada Goose were also reported by 

the Wasaga Beach Provincial Park. The carcasses from this epizootic were taken to the 

Wasaga Beach Municipal waste site for disposal (John Cooper, Fish and Wildlife 

Services pers. comm, 2012).  

The disposal of birds and fish on private land is the responsibility of the individual 

property owner (MNR October 24, 2011).  To assist residents with the removal of 

carcasses, the MNR (via Fish and Wildlife Services) developed a fact sheet for the 
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general public that included the following:  

To dispose of dead fish or birds along your shoreline  
• You are responsible for disposing of dead birds and fish on your property.  
• Bury them or dispose of them in the garbage.    
• Wear rubber gloves or cover your hands with plastic bags while handling the carcasses, and 
dispose of the gloves or bags in the garbage.    
• Wash your hands thoroughly with soap and water after handling the carcasses.   
• Wash any tool that came into contact with the animal with a disinfectant.    
(MNR October 24, 2011).  

Diseases such as KHV, VHS or spring Viraemia of carp which are suspected to be a 

threat to aquatic ecosystems are sent to federally (Government of Canada) regulated 

laboratories which test for a variety of reportable and notifiable diseases (CFIA, 2012).  

In Canada, the federal government is responsible for monitoring the movement of fish 

domestically and abroad (CFIA). VHS has been confirmed in Lake Simcoe as a 

freshwater virus capable of infecting 28 species of fish (MNR, December 2011).  

The issue of aquatic and semi-aquatic animal disposal is not limited solely to cases 

involving disease outbreaks, nor are cases limited to natural landscapes. Recently, 

concerns were raised about the discovery of mass graves at the famous Marineland 

attraction in Niagara Falls, Ontario. Currently, the Ontario Ministry of the Environment 

is investigating the burial sites used for various porpoises, pinnipeds, ruminants, and 

other large terrestrial mammals. Their inquiry is assessing whether there has been, or 

will likely be, adverse impacts on soil, groundwater and nearby watercourses from 

what is assumed to be large, unlined, untreated graves (Diebel and Casey, 2012).   
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3.0 Objectives and Rationale:  

 

3.1 Objectives 

 
The purpose of this study is to determine whether or not sites used for the disposal of 

carp carcasses in the Lake Simcoe KHV die-off were a human or environmental health 

concern as a result of contaminant loading. In order to effectively assess the 

implications of these disposal sites in the environment, the following objectives were 

established.  

 
1. To quantify the concentration of contaminants left in the pits after carp carcasses 

had decomposed.  
2. To assess, based on the level of contamination, whether or not Ontario’s current 

fish disposal practices are adequate in protecting human health and the 
ecological integrity of affected and neighbouring communities. 

3. To develop a case study to evaluate the effectiveness of various response 
strategies to future aquatic pandemics involving large die-offs of potentially 
contaminated biota. 

 

3.2 Rationale 

 
Carp are a sentinel species known to bioaccumulate and bioconcentrate contaminants. 

As such, a mass die-off like the one involving KHV raises concerns regarding the 

movement of aquatic toxicants to terrestrial ecosystems via the transportation and 

disposal of contaminated carcasses.  
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4.0 Methodology  

4.1 Field Methods 

4.1.1 Soil sample collection and extraction  
 

Georgina Island Reserve N0 33A, located in the south end of Lake Simcoe, Ontario is 

comprised of three islands; Snake, Fox and Georgina (see Figure 1). Owned and 

managed by the Chippewas community, these lands are inhabited by the Chippewas 

First Nations community and seasonal cottagers. Permission to conduct research was 

granted by the Band and conducted in a manner as to respect the cultural, aesthetic and 

ecological value of the landscape.  

 

During the summer of 2008, the shorelines of these islands were inundated with carp 

carcasses as a result of the Koi Herpesvirus outbreak. Although each of the three islands 

were faced with disposal issues pertaining to the abundance of dead fish, Snake Island 

was chosen as a case study due to its accessibility to the mainland, seasonal as opposed 

to year round inhabitation, minimal infrastructure, and because it was assumed that the 

limited development on the island would be reflected in negligible background 

contaminant levels. There are 227 leased cottages on Snake Island (Chippewas of 

Georgina Island, n.d.), which are seasonably occupied and left vacant over the winter 

months.  

 

In order to dispose of the fish carcasses on Snake Island, four pits were mechanically 

created using a Bobcat™ skid-steer at the time of the die-off by members of the band 

and island curators. The disposal sites were neither capped nor lined and therefore the 

contents were susceptible to predation and dispersal throughout the environment. At 

the time of the die-off, the pits were left open for a minimum of five days before the soil 

was backfilled into the holes and the contents were left untreated.  
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Due to financial and temporal constraints, only two of the four sites were sampled. The 

two sites chosen for sampling were the most easily identifiable in the landscape, 

characterized by deep depressions outlining the peripheral circumference of the pit. A 

standardized deterministic random design technique was employed in order to capture 

representative samples of the site. Though other methods such as the geostatistical 

approach as per described by the Environmental Sciences Group (1999) could have been 

used, given the relatively small size of the pits and obvious landscape markers, it was 

decided that this method was the most applicable. In addition, a total of three randomly 

selected control sites were randomly selected along the south half of the island in order 

to assess background contaminant levels.  

 

In order to determine if these sites were actual disposal sites, the center of pits were 

exhumed with a manual coring auger 50 cm below the surface to remove what was 

assumed to be backfill. It was generally at this depth that bone matter was discovered 

and collected for further analysis. Once evidence of bones and fish matter was located, 

digging ceased so not to disturb the site and reduce the amount of disruption of the soil 

and to restrict the volatilization of contaminants. Bone material was collected and the 

coring commenced in what was believed to be the center of the pit. Control sites were 

selected in relatively undisturbed areas and were sampled in the same manner as the 

disposal pits.  

 

The first series of samples were taken at the following intervals; 30 cm, 60 cm, 90 cm 

and 120 cm using a manual coring auger. This instruments’ ability to penetrate coarse 

substrate without disturbing the land for safety, ecological and aesthetic reasons made 

this piece of equipment the most effective non-mechanized form of sampling for the 

island. When sites were revisited approximately one year after the initial sampling 

period, a mechanical auger was used to sample the same sites at the same depths 
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because the ground was relatively impenetrable from the onset of frost and 

commencement of winter.  

 

Sampling of the first batch of soil was conducted two years after the die-off and was 

analyzed for PCBs using a semi-quantitative immunoassay method. This method was 

determined to be inaccurate giving false positives, due to matrix interference; thus, a 

quantitative method was employed that measured for a suite of POPs in the soil. 

Subsequently, the sites were re-sampled in the same manner in the following year, and 

three new control sites were selected, as the initial control sites were no longer 

locatable.  

 

During the soil collection process, it was discovered in site one that there was rotting 

carp remains. These particular carcasses were disposed of in double lined garbage bags 

within the pits and as a result, the contents had not fully decomposed. Two tissue 

samples were extracted from the site using a trowel at a depth of 90 cm. The carp tissue 

samples were treated with the same quality control as soils.  

4.1.2 Quality control 
 

Between each sample, the augers were washed in an acetone  (Comet Chemical 

Company Ltd., 100% concentration) bath (waste collected and disposed of according to 

handling procedure for organic solvents) to reduce cross-contamination between sites. 

Samples were double wrapped and sealed in whirlpack bags, labeled and packaged in a 

cooler with icepacks to maintain a constant temperature of approximately 4°C to reduce 

biological activity until they were placed in a freezer prior to laboratory analysis. 

Samples were taken commencing with the first extraction in the center and then 

outwardly at a 90° angle to the right from the first sample, 1 meter from the center. This 

was repeated in a clockwise formation repeating the same 90° angle for a total of four 
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samples originating from the center. Protective eyewear, boots, gloves and facemasks 

were worn for the sampling to reduce exposure to volatile and lipophilic compounds 

that could potentially be in the soil.  

4.1.3 Worm sample collection and extraction  
 

Earthworms are often used as sentinel species for quantifying the bioavailability of 

organic chemicals in soil because i) they live in close contact with the soil, ii) they have 

a thin permeable membrane through which contaminants can pass, iii) they also 

consume a significant amount of soil as part of their diet (Jager et al., 2005). Because 

each species of earthworm interacts differently with soil, the contaminant uptake varies 

between organisms (Jager et al, 2005). Earthworms (likely Lumbricus sp., but not 

definitively identified), were collected at each of the sites where soils were obtained to 

estimate contaminant bioavailability. This species of invertebrate was chosen for 

examination because it was common to all sites, simple to collect and most importantly 

because it is known to bioaccumulate organic contaminants in soil.   

 

Within the drilosphere (the portion of the soil which is most influenced by earthworms) 

(Brown et al., 2000; Hickman and Reid, 2008), contaminants, once sorbed to organic 

material and soil particles, can become mobilized through contact with earthworms 

(Verma and Pillai, 1991; Gevao et al., 2001; Hickman and Reid, 2008) and subsequent 

bioturbation. The effects of earthworms in contaminated soils differ depending on the 

species (Jager et al, 2005), the particular compound in the site as well as the 

physiochemical properties of the soil (Hickman and Reid, 2008). Pheretima posthuma 

exposed to DDT have been reported to release sorbed fractions (Verma and Pillai, 1991), 

in contrast to to E. fetida exposed to PCB congener Aroclor 1248, which proved to be 

highly bioaccumulative due to digestive related processing (Tharakan et al., 2006).  
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Earthworm samples were taken from the two disposal pits that were sampled in order 

to determine whether or not these species were acting as biological vectors mobilizing 

the contaminants from the soil into the environment. Worms were collected using a 

trowel and stored in sealed and labeled whirlpack bags. (Worms were collected to a 

maximum depth of 120 cm). The second series of collection was conducted late in late 

December at which point worms were difficult to locate and were assumed to have 

migrated down into the soil horizon for overwintering.   

4.1.4 Shipping and handling of samples  
 

Soil and worm samples were handled and shipped to the Analytical Services Unit 

Laboratory of Queen’s University, Kingston, ON. Soil samples were frozen until 

shipment. Earthworms were rinsed in distilled water, and following a 24-hour 

depuration period on moist paper towel to ensure full excretion of gut contents. Worms 

were  then frozen in tinfoil and sealed in whirlpack bags and frozen until shipment at -

20ºC. Worms were depurated so that contaminant levels reflected their tissues rather 

than the soil in their guts. Worm and soil samples were sent to the laboratory in an 

insulated container with icepacks to ensure that temperature remained constant and did 

not thaw during the shipping process. Once received, samples were homogenized for 

analyses. (Other tissue samples that were obtained in the disposal sites were 

inseparable from soil and therefore homogenized in the lab for analysis).  

 

4.2 Laboratory Methods 

 

The samples were contracted to the Analytical Services Unit at Queen’s University in 

Kingston, Ontario. (See Appendix for detailed methods).  
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5.0 Results 

 
Contaminant levels in the disposal pits were lower than the estimated loading value calculated from data 
obtained from the Ontario Ministry of the Environment- Sport Fish Contaminant Monitoring Program. 
There was no clear pattern associated with the dispersal of the various chemicals through the soil 
horizons. In the case of PCBs, all soil samples were below the detection limit and detectable in the carp 
tissue and composite worm samples (0.2 µg/g). Both total mercury and total DDT levels were 
significantly more elevated than PCB concentrations, however no legal thresholds were exceeded in any 
of the three tested mediums.  
 

Table 1: Laboratory results for soils 

 ∑DDT (ng/g)a PCB (µg/g)b ∑Hg (ng/g)c 

     
Control 1      
0-30 cm 92.8 <0.1 67.5 
30-60 cm 110.6 <0.1 57.3 
60-120 cm 78.00 <0.1 36.8 
       
Control 2       
0-30 cm <0.1 <0.1 59.2 
30-60 cm <0.1 <0.1 31.8 
60-120 cm <0.1 <0.1 10.4 
    <0.1  
Control 3       
0-30 cm 43.40 <0.1 163 
30-60 cm 6575.40 <0.1 449 
60-120 cm 3692.30 <0.1 398 
       
Site 1      
0-30 cm 48.80 <0.1 81.2 
30-60 cm 15.20 <0.1 41.5 
60-120 cm 6.40 <0.1 27 

       
Site 2      
0-30 cm 3.00 <0.1 56 
30-60 cm 46.90 <0.1 47 
60-120 cm 111.60 <0.1 42.8 
    
    
(Sample size of 250 g) 
a ∑DDT: 2,4- DDE, 4,4-DDE, 2,4- DDD, 4,4-DDD, 2,4-DDT, 4,4-DDT 
b PCB: Aroclors 1221, 1232, 1242, 1248, 1254, 1260 
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Table 2: Laboratory results for carp tissue 

 
 
Table 3: Laboratory results for worms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

c ∑Hg: Combined organic and inorganic forms of mercury 
All samples were analyzed at the Analytical Services Unit at Queens University, Ontario, 
Canada.  

 % Lipida ∑DDT (ng/g)b PCB (µg/g)c ∑Hg (ng/g)d 
     
Tissue 1  5 401.40 <0.1 53.1 

Tissue 2  2.6 75.90 <0.1 51.8 
     
(Sample size of 50 g) 
a % lipid determined using gravimetric determination 
b ∑DDT: 2,4- DDE, 4,4-DDE, 2,4- DDD, 4,4-DDD, 2,4-DDT, 4,4-DDT 
c PCB: Aroclors 1221, 1232, 1242, 1248, 1254, 1260 
d ∑Hg: Combined organic and inorganic forms of mercury 
All samples were analyzed at the Analytical Services Unit at Queens University, Ontario, Canada.  

 ∑DDT (ng/g)a PCB (µg/g)b 

   
Control Worms 1 134.30 <0.2 
Control Worms 2 <5.0 <0.2 
      
Worms Site 1 16.00 <0.2 
Worms Site 2 112.00 <0.2 
   
(Composite sample size of 150 g) 
a ∑DDT: 2,4- DDE, 4,4-DDE, 2,4- DDD, 4,4-DDD, 2,4-DDT, 4,4-DDT 
b PCB: Aroclors 1221, 1232, 1242, 1248, 1254, 1260 
All samples were analyzed at the Analytical Services Unit at Queens 
University, Ontario, Canada.  
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6.0 Discussion 

6.1 Contaminant loading from carp carcasses to terrestrial ecosystems  

 

The contaminants measured in the present study were not detectable at elevated 

concentrations in situ four years after their burial. It is assumed that following fish 

decomposition, microbial action and predation by detrivores such as worms act as 

vehicles for the remobilization of these substances. Assumed receptors for the 

contaminants are groundwater and biota though it remains inconclusive as for how 

much each are receiving and where these substances migrate thereafter. Based on MOE 

data, a loading of 200 carp to each site would not exceed legal contamination 

thresholds. Mass disposal pits at the municipal scale if unlined and uncapped could 

potentially exceed these guidelines.  

 
 
Table 4: Soil Quality Guidelines for the Protection of Env. and Human Health 

Chemical 
Agriculture 

(mg/kg dry weight) 
Residential/ Parkland 
(mg/kg dry weight) 

Estimated loading 
for 200 carp 

(mg/kg) 

      

Mercury 6.6 6.6 0.4 

PCBs 0.5 1.3 0.002 

DDT (total) 0.7 0.7 0.015 

     

CCME Soil Quality Guidelines for the protection of Environmental and Human 
Health 
* Calculated based on 2001 pre-die-off contaminant concentrations for Lake Simcoe 
carp (MOE, 2012) on an assumption of 200 fish carcasses per site 
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6.2 PCB Degradation 

 

Given that PCBs are extremely persistent and they have only been in situ within burial 

pits since the summer of 2008, it is highly unlikely that lower soil concentrations than 

loading estimates would predict is primarily due to degradation, but it may well be a 

factor worthy of future study as factors modifying the attenuation of PCBs in 

organically enriched soils and sediments is largely unknown (Li et al., 2009).  

 

In the Great Lakes for example, anaerobic dechlorination and dissolution into water are 

two significant factors affecting PCB persistence (Li et al., 2009).  In Lake Michigan for 

example, other factors such as the deep burial of contaminated sediment are also 

considerations for the decrease in PCB concentration (Li et al., 2009). Li et al. (2009) 

concluded that “even if PCB degradation was widespread and substantial, the ultimate 

elimination of PCBs from the Great Lakes by nature may take decades or centuries to 

complete” (p. 146).  

 

6.3 Disposal policy ramification suggestions 

 

Ramifications to disposal policies are suggested in order to ensure that areas used for 

fish disposal following die-offs do not become dumping grounds for hazardous waste 

and that human and environmental health are sufficiently protected from contaminant 

exposure. Future research is needed in order to accurately map the movement of these 

substances in disposal pits immediately following die-offs because the bioavailability of 

certain toxins decreases as time progresses from when the contaminant first entered the 

soil (Alexander, 2000; Jager et al. 2005; 293).  
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7.0 Future Recommendations 

7.1 The Future of KHV and similar outbreaks 

 

With technological developments and rampant globalization, the rapid transportation 

of alien aquatic species is becoming a growing concern (Minchin, 2007). Considering the 

development of these new technologies and the growth in the fish trade industry, it is 

probable that the risk of KHV infection is increasing (Pokorova et al., 2005). Although 

not all carp will contract the virus, C. carpio that survive an outbreak of KHV develop 

CyHV-3 antibodies and later become carriers (Uchii et al., 2009); thus, retaining the 

virus in carp populations to produce disease once conditions are adequate. It is 

probable that there are carp in Lake Simcoe and its tributaries with acquired immunity, 

enabling the spread of the virus to infect other fish and cause another mass die-off. In 

order to ensure that humans and environmental health is not compromised, a thorough 

risk assessment is in order to ensure a precautionary disposal procedure so as not to 

contaminate land and exposed biota with various pollutants.  

 

7.2 Areas of future research 

 

The case study of Snake Island can serve as a preliminary study from which further 

investigations could be conducted. Future sample collection should be conducted 

immediately following die-offs to map the dispersal regime of the contaminants 

through the ecosystem. Also, worm samples should be taken immediately following 

decomposition in the warmer season so to ensure an adequate collection of biota for 

analysis. The movement of lipophilic contaminants, PCBs for example, is highly 

influenced by soil’s physical properties such as pH, moisture content and organic 

matter in addition to the substances’ (congener’s) chemical properties (CCME, 3). In 
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order to have better accounted for this, these parameters should also be considered in 

future research.  

Temporal and financial restraints greatly limited the number of samples that were 

analyzed.   
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8.0 Concluding Remarks 

 
The absence of detectable contaminants in the disposal pits suggests that the carcasses 

did not exhibit relatively high body burdens of the contaminants measured in the 

present study and/or contaminants have moved from the initial site into the 

environment. Potential receptors for the contaminants are assumed to be groundwater, 

the atmosphere, biota and humans.  These factors have been overlooked by the demand 

for the timely and effective removal of carp carcasses. Future cases of fish die-offs are 

opportune events that need to be effectively monitored, with the movement of 

contaminants in terrestrial environments via bulk transport from disposed carcasses 

examined. Additional research is suggested to further analyze the implementation of 

fish disposal policies that take into consideration the bulk transport of legacy 

contaminants from improperly disposed fish carcasses. 

It has also come to our attention that local residents should be informed of the potential 

health risks associated with the handling of carcasses (considering both disease and 

toxicological threats) as this may influence where and whether or not they dispose of 

carcasses on their private properties or consult other disposal options. Ramifications to 

disposal policies are suggested in order to ensure that areas used for fish disposal 

following die-offs do not become dumping grounds for hazardous waste and that 

human and environmental health are sufficiently protected from chronic low-dose or 

acute contaminant exposure.  

It has become apparent that fish have been overlooked as vectors of contaminants by 

regulatory bodies in Ontario and in cases where large quantities of fish mass requires 

disposal, concerns pertaining to larger health related issues are raised. This study is an 

important pilot project in demonstrating the necessity for future aquatic pandemic 

response plans to account for the potential transfer of contaminants from aquatic to 
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terrestrial environments via improperly devised disposal sites on both private and First 

Nations land. 
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Appendices  

 

Appendix 1.0: Sample site descriptions 

a- Site One: (Lat: 44.310685 Lon: -79.477484) 
 
The first sampled site was located approximately two meters from the center of the foot 

path Nahwuhyee Meekun. The site was estimated to be 120-200 cm deep and was 

mechanically created (estimations based on the depth that bones were discovered at). 

Though the initial exhuming of the site could have led to the volatilization of some 

chemicals, it was necessary to ensure that the pit was in fact located. The reputability of 

the locations is subject to human error and therefore as a precautionary measure, it was 

determined that it was necessary to locate fish matter before sampling. Also, taking into 

consideration leaching and the inversion of soil atop the mound, the corer would not be 

able to penetrate deep enough to enter the pit if it was deeper than 120 cm. This site had 

an abundance of fish matter, which was collected into whirlpack bags using a sterile 

stainless steel trowel. The bags were taken into the laboratory to be photographed and 

retained for future testing. The soil was extremely compacted and had a clay texture 

with large rocks that impeded digging. 

b- Site Two: (Lat: 44.309786 Lon: -79.486384) 
 
The second site used for sampling was manually created by a long-time resident of 

Snake Island on their property as following instructions of the MNR. The pit was dug 

approximately 120-140 cm deep as the MNR had instructed. In order to sample, it was 

necessary to dig down 30 cm to locate bone matter. Once this depth was reached and it 

became evident that the pit had been located, samples were taken in the same pattern as 

they were in the previous sites. Fish remains were also collected and brought into the 

laboratory.   
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c- Site Three: (Lat: 44.309786 Lon: -79.486384) 
 
The third site was also mechanically created approximately 1 m from another footpath 

on the island. This site remained exposed as bone fragments and fish skeletons were 

visible atop the rocky terrain. Bones and fish remains were gathered, however little soil 

or organic matter was present. Unlike the other sites, this disposal area remained an 

open dumping ground for fish and therefore the carcasses were left exposed to 

scavengers and subsequently predation. This site had minimal soil to sample and 

therefore was not during the second series of sampling, as it was not considered to be 

representative of disposal pits.  

d- Site Four: (Lat: 44.316336 Lon: -79.483407) 
 
The fourth site was not as visually apparent as the other locations. There was a large 

depression in the earth, however the location was only an estimation based on 

anecdotal evidence. There was a definite stench to the area and the soil was a lot 

moister than the other locations. This site is located approximately six meters from a 

well-traveled footpath. Bones were not located at a depth of 80 cm anywhere in the area 

within a 4-meter radius. The site was still sampled for the initial examination however; 

it was not opened for further investigation after the first samples were retrieved 

because the assumed size was larger than what could be investigated without 

significant landscape alteration and significant excavation.   

 

Appendix 2.0: Analysis 

 
While detectable concentrations of pesticides, mercury and PCBs were confirmed in soil 

and worms adjacent to burial pits, legacy contamination at sites presumed to be 

controls precluded meaningful comparisons. Using data obtained by the MOE, the 
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following trends associated with contaminant loading and percent decrease, bulk 

loading and body burden can be concluded.  

Appendix 2.1: Mercury (Hg) Analysis 
 

Following the 2008 die-off, 13 carp collected live from Lake Simcoe in August, were 

sampled in order to determine approximate body burden contaminant levels.  These 

fish contained an average mercury concentration of 0.071666667 µg/g, approximately 

73% lower than the 0.2645 µg/g average of the 2001 samples (MOE data). This 73% 

decrease in mercury concentration is consistent with the fact that a large percentage of 

the Lake Simcoe carp population was annihilated as a result of the KHV outbreak. 

Surviving carp sampled in 2008 after the die-off were substantially smaller on average 

than those sampled in 2001(1878.5 g as opposed to 7712.5) which is consistent with the 

reduced mercury body burden as would be expected in smaller carp.  

 

Using the reference conditions prior to the die-off, it can be assumed that given the 

mean 2001 mercury body burden of 0.2645 µg/g, and mean sampled carp size of 7712.5 

g, the average carp has approximately 2039.9 µg of mercury or 2 mg of mercury per fish. 

Soil quality guidelines as developed by the CCME state an inorganic mercury 

concentration limit of 6.6 mg/kg dry weight for agricultural, residential and parkland 

areas (CCME Soil Quality Guideline Summary Table, 6). With such factors considered, 

mercury contained within 4 fish with an average body burden of 2 mg, if concentrated 

by decay/leachate into soil above an aquitard of about 1 kg, would exceed these 

guidelines that have been developed as a means to protect environmental and human 

health.  

 

For arguments sake, if approximately 200 average size fish (2001 reference size) were 

placed in a pit for disposal then 200 fish X an approximate mercury burden of 2 mg/fish 
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would be equivalent to a 400 mg (0.4 g) loading of mercury to the site. If we extrapolate 

this to cover an approximate 20,000 carp (to consider both the carp accounted for in the 

landfills and that which was either disposed of on private property or left to decompose 

in situ) that died as a result of the outbreak then it can be assumed that approximately 

40, 000 mg or 40 g of mercury was loaded into the Lake Simcoe region via the 

contaminated carp carcasses.   

 

Though it remains hypothetical, if the assumption is that 200 fish buried at each site 

then approximately 40.8 grams of mercury were added. If we multiply the average carp 

size (7712.5g) X the estimated number of carp at each site (200) then we have a total 

mass (prior to backfill) of 1542500 g (or 1542.5 kg) fish carcasses deposited in each 

location. If we assume the pits are backfilled with a quarter of the volume of the 

carcasses to cover the large mass of bodies and fill the spaces in between, then we can 

assume 1542500 g (1542.5 kg) / 4 = 385625 g (385.625 kg) of soil was added to the pits. 

As the organic fish matter decomposes and becomes integrated into the soil, the initial 

soil mercury loading concentration can be estimated using the following equation: 

407991.250 µg (carp matter)/ 1542500 g (soil) = 0.2645 mg/kg. From the samples 

analyzed in the lab, the highest detected Hg soil concentration was 81.2 ng/g 

(equivalent to 0.0000812 mg/kg) suggesting there was no barrier to Hg moving off site, 

either by leaching or biota movements. 

Appendix 2.2: Polychlorinated Biphenyl (PCB) and DDT Analysis 
 

Hg percent values indicated the largest decline from all compounds from the 2001 fish 

data to that recorded in 2008 after the die-off. PCB levels also indicated a relatively high 

decrease whereas DDT levels did not result in a significant change. Where Hg levels 

really stood out from the other contaminants was the estimated body burden levels 

where it recorded 40.8 gram burden compared to a 0.014824967 g DDT burden.  
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Appendix 3.0: Mercury percent decrease calculations: 

 
Percent decrease was calculated as follows:    
 
% decrease= [(2001 AVG ∑Hg concentration- 2008 AVG ∑Hg concentration)/   
   2001 AVG ∑Hg concentration)] x 100 
% decrease= [(0.2645-0.071666)/ 0.2645] x 100 
% decrease = 72.9 
 
AVG ∑Hg= average total Hg concentration for sampled fish in the given year  
 

Appendix 3.1: Mercury body burden calculations: 
 
Mean Hg body burden = 0.2645 µg/g 
Average carp mass (using reference size 2001 samples) = 7712.5 g 
Estimated number of carp= 200 
 
∑Hg loading= mean body burden X average carp mass X estimated number    
of carp  
∑Hg loading = 0.2645 µg/g X 7712.5 g X 200 
∑Hg loading = 407991.250 µg or 40.8 g 
 

 

Appendix 4.0: PCB percent decrease: 

 
% decrease= [(2008 AVG ∑PCB concentration- 2001 AVG ∑PCB concentration)/   
 2001 AVG ∑PCB concentration)] x 100 
% decrease= [(242-77.69)/242] x 100 
% decrease = 68% 
 
AVG ∑PCB= average total PCB concentration for sampled fish in the given year  
 
*AVG ∑PCB= average total PCB concentration for sampled fish in the given year 
(Average was calculated based on the total of number sampled in that season as the 
number of fish sampled for each contaminant varies each year. For example, in 2001, 10 
fish were sampled for PCB while 13 were sampled in 2008. PCB content was analyzed 
comparing ∑PCB values (ng/g) as opposed to individual congeners (pg/g) as the 
sampled congeners were not consistent between samples, however a total PCB level 



55 

 

was and to maintain consistency between samples, this figure was used for comparison 
purposes).  
 

Appendix 4.1: PCB body burden calculations: 
 
Body Burden= AVG 2001 carp mass X 2001 AVG ∑PCB 
  = 7712.5 g X 242 ng/g 
  = 1866425 ng 
  = 0.0018 g per fish  
 

 

Appendix 5.0: DDT percent decrease calculations 

 
∑DDT= op-DDT+ pp-DDD + pp-DDT + (DDT+ Metabolites) 
 
AVG ∑DDT= average total DDT concentration for sampled fish in the given year  
 
% decrease= [(2008 AVG ∑DDT concentration- 2001 AVG ∑DDT concentration)/  
    2001 AVG DDT concentration)] x 100 
% decrease= [(192.22-150.15)/ 192.22] x 100 
% decrease = 22% 
 
*AVG ∑DDT= average total DDT concentration for sampled fish in the given year 
(Average was calculated based on the total of number sampled in that season as the 
number of fish sampled for each contaminant various each year. For example, in 2001, 9 
fish were sampled for DDT while 13 were sampled in 2008).  

Appendix 5.1: DDT body burden calculations 
 
Body Burden= AVG 2001 carp mass X 2001 AVG ∑DDT 
  = 7712.5 g X 192.22 ng/g 
  = 1482496.7 ng 
  = 0.014824967 g  
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Appendix 6.0: Percent Decrease and Estimated Body Burden for Lake Simcoe Carp 

(2001, 2008) 

Chemical Percent Decrease (%) 
 

Estimated Body Burden (g) 

Hg* 73 40.8 

PCB* 68 0.0018 

DDT** 22 0.014824967 

 
* AVG ∑Hg= average total Hg concentration for sampled fish in the given year 
**AVG ∑PCB= average total PCB concentration for sampled fish in the given 
year 
 
***AVG ∑DDT= average total DDT concentration for sampled fish in the given 
year  
-For example, in 2001, 9 fish were sampled for DDT while 13 were sampled in 
2008).  
(Source: Ministry of the Environment, 2012) 

 
To better contrast the correlation between size and body burden, the largest sampled 

carp was 13300 grams and the smallest 120 grams. Below contrasts their contaminant 

concentrations: 

 

Appendix 7.0: Lake Simcoe Common Carp Samples 

  
Size (g) 

 
∑Hg (µg/g) 

 
∑DDT (ng/g) 

 
∑PCB (ng/g) 

Largest 
sampled Lake 
Simcoe carp 

13300 
 

0.5 
 

435 440 

Smallest 
sampled Lake 
Simcoe carp 

120 0.03 16 20 

(Source: Ministry of the Environment, 2012)  
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Figure 1: Context Map 
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Figure 2: Cyprinus carpio found on the shore of Snake Island during the koi 
herpesvirus die-off. 

 
(Photo credit: Kira Cooper, 2008)
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Figure 3: Cyprinus carpio found floating during the koi herpesvirus die-off. 

 
(Photo credit: Kira Cooper, 2008)
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Figure 4: Cyprinus carpio left outside of garbage can by Island Grove parking lot 
(mainland directly across from Snake Island). 

 
(Photo credit: Kira Cooper, 2008) 
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Figure 5: Cyprinus carpio carcass left on Lake Simcoe shoreline 

 
(Photo credit: Claire Malcomson, 2008) 
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Figure 6: Cyprinus carpio spine collected from disposal site 1 during soil collection 

 
(Photo credit: Kira Cooper, 2008) 
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Figure 7: Cyprinus carpio in Lake Simcoe summer 2012 

 
(Photo credit: Kira Cooper, 2008) 
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Immunoassay methods 

 

A Hach Pocket ColorimeterTM II Test Kit was used for the initial round of semi-
quantitative PCB analysis. The detectable ranges for this instrument are between 1 ppm, 
5 ppm, 10 ppm, 50 ppm. This instrument was chosen as it is a cost-effective and rapid 
detection method to determine whether or not the pits used to dispose carp carcasses 
had exceeded the legal contamination limit of 50 ppm PCB. Soil samples were stored at 
-20ºC prior to analysis to ensure a constant temperature and to reduce any microbial 
interaction that could interfere with chemical readings. When sampling commenced, 
soils were homogenized using a sterile mortar and pestle, and placed in sterilized glass 
jars until analyzed.  
 
Soil extraction: The following steps were conducted in accordance with the protocols 
provided with the Hach Pocket ColorimeterTM II Test Kit (see Hach Pocket 
ColorimeterTM II Test Kit Immunoassay Instruction Manual 59574-88) commencing at 
section 3 (Procedure for PCB in soil). Testing commenced with a 5 g aliquot of each soil 
sample added into an extraction vial where one scoop (HACH provided) of sodium 
sulfate was added. 10 mL of soil extractant (from HACH) was then added to the 
mixture, which was capped and shaken for one minute. 1.0-1.5 mL was removed from 
the mixture using a disposable pipette and deposited into a filtration barrel to screen 
out sediment through the microporous screen.  
 
Immunoassay testing: The following steps were conducted according to the protocol 
provided for the Hach Pocket ColorimeterTM II Test Kit (see Hach Pocket 
ColorimeterTM II Test Kit Immunoassay Instruction Manual 59574-88) commencing at 
section 3.4 (procedure for soil extracts). Antibody cuvettes were labeled and placed in 
the provided Hach rack for storage. 0.5 mL of Diluent solution was pipetted into each 
cuvette using a precision pipet. Calibrator was then added to the cuvettes using a 
wiretrolTM pipet (new pipet tip was used for each sample to ensure there was no cross-
contamination). A quantity of 50 µg of both calibrator and sample was used for samples 
testing for PCBs between the range of 1ppm and 5 ppm and 10 µg for tests in the 10 
ppm and 50 ppm range.   
 
Immediately following the addition of calibrator and sample, 0.6 mL of PCB enzyme 
conjugate were added to each cuvette and a 10 minute reaction was started. After ten 
minutes, the rack was mixed for 30 seconds (Hach, p. 2-3) and then another 5-minute 
reaction time was started. After the second reaction time, the rack was mixed one final 
time.  Contents were then discarded and disposed of in accordance with proper 
laboratory methods and cuvettes were forcibly rinsed with deionized water. 0.5 mL of 
Color Developing Solution was added to the empty cuvettes for a 5-minute reaction 
time.  After the reaction time had lapsed, 0.5 mL of Stop Solution was added in the 
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same order that the Color Developing Solution was added. One cuvette was labeled and 
filled with deionized (DI) water to serve as a zeroing cuvette to calibrate the machine. 
Upon calibration, cuvettes were added one at a time into the colorimeter, covered with 
the protective shield and readings were then recorded accordingly.  
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Analytical Services Unit  

 
(Direct source: Analytical Services Unit, Queen’s University) 
 
Methods 
 
Analysis of Polychlorinated Biphenyls (PCBs) in soil……………………………….. 
Analysis of Chlorinated Pesticides in soil……………………………………………. 
Analysis of Mercury…………………………………………………………………… 
Earthworm Analysis……………………………………………………………………  
Tissue Samples………………………………………………………………………….. 
 
 
Analysis of Polychlorinated Biphenyls (PCBs) in Soil, Paint and Concrete Samples 
 
Analyses were conducted by the Analytical Services Unit, Queen’s University, 
Kingston, Ontario. Each sample was clearly labelled and stored at low temperatures in a 
secured area before and after analysis. 
 
All samples were spiked with an aliquot of decachlorobiphenyl (DCBP), a surrogate 
standard, prior to analysis by gas chromatography (GC) with electron capture detection 
(ECD). Samples were extracted with dichloromethane, using an orbital shaker or 
soxhlet apparatus. Extracts were concentrated using a rotoevaporator and the solvent 
was exchanged to hexane before cleanup of the sample, by passing the hexane 
containing the PCBs through a Florisil column. 
 
Extraction Method 
All samples were thoroughly homogenized before sampling for the analysis. Soil 
samples were subsampled for determination of wet/dry weight ratio. 
 
Accurately weighed samples of wet soil (10 g) to which DCBP, sodium sulphate (40 g) 
and Ottawa sand (20 g) were added, were extracted 3 times for 20 minutes with 50 mL 
of dichloromethane on an orbital shaker. Alternatively accurately weighed samples of 
soil (10 g), paint (1 g) and concrete (1 g) to which DCBP, sodium sulphate (40 g) and 
Ottawa sand (20 g) were added, were extracted by soxhlet for 4 to 6  hours at 4 - 6 cycles 
per hour using 250 mL of dichloromethane.  
 
The extract was then concentrated by rotoevaporation to approximately 1 mL, and 5 mL 
of hexane was added and again evaporated to 1 mL. This was repeated twice more, 
resulting in 1 mL of hexane solvent, which was then applied to a Florisil column for 
cleanup. The column was thoroughly rinsed with hexane and the eluent containing the 
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PCBs diluted to 10.0 mL. A GC vial (2 mL) was then filled and the sample analyzed by 
GC/ECD. 
 
GC/ECD Analysis 
Each sample was analyzed using an Agilent 6890 or 7890 gas chromatograph equipped 
with a 63Ni electron capture detector (GC/ECD), a SPBTM-1 fused silica capillary column 

(30 m, 0.25 mm ID x 0.25 m film thickness). The chromatographic conditions were as 

follows: Sample volume - 1 L, splitless injection, initial temperature – 100 C for 2 min; 

ramp – 10 C/min to 150 C, 5C/min to 300 C; final time 5 minutes. Carrier gas used 
was helium with a flow rate of 2 mL/min. Nitrogen was used as a makeup gas for the 
ECD. 

All values were reported as ppm (g/g) on a dry weight basis. 
 
Analysis of Chlorinated Pesticides in Soil Samples 
 
Overview 
Soil samples were analyzed for chlorinated pesticides by gas chromatograph with an 
electron capture detector (GC/ECD) and in some cases by gas chromatography with a 
mass spectrometer as a detector (GC/MS) operated in SIM mode after Soxhlet 
extraction and sample cleanup using SPE chromatography. 
 
Sample Preparation and Extraction 
Samples contained in Whirlpaks were thoroughly homogenized before weighing. Wet 
soil (10 - 15 grams) was transferred to a clean glass thimble, mixed thoroughly with 
sodium sulphate and Ottawa sand, and spiked with the surrogate, decachlorobiphenyl 
(DCBP) prior to extraction. A subsample was taken to determine the wet/dry weight 
fraction of the soil. The samples were Soxhlet extracted with 250 mL of dichloromethane 
for 4 hours (2-3 cycles per hour). Blank extracts received only DCBP, Ottawa sand and 
sodium sulphate. Control samples were run by spiking either pesticide-free soil or a 
blank with 1 of 2 chlorinated pesticide mixtures, each prepared independently from the 
other. 
   
Sample Cleanup 
The extract was concentrated by rotoevaporation to approximately 1 mL, and 5 mL of 
hexane was added and again evaporated to 1 mL. This was repeated twice more. The 
extract was quantitatively transferred and applied to a Florisil extraction column. The 
column was rinsed with hexane into a volumetric flask to a volume of 10.0 mL to create 
fraction 1. Dichloromethane was then applied to the same Florisil tube and a second 
10.0 mL collected to create fraction 2. This latter fraction was rotoevaporated to 
approximately 1 mL and the solvent exchanged to hexane as described above and made 
up to a final volume of 10 mL.  A GC vial (2 mL) of each fraction was filled and the 
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samples analyzed by GC/ECD. Either fraction may be analyzed by GC/MS if 
interfering compounds such as PCBs were present. 
 
Analysis by GC/ECD 
Each sample was analyzed using an HP 6890 gas chromatograph equipped with a 63Ni 
electron capture detector (GC/ECD), an SPBTM-1 fused silica capillary column (30 m, 

0.25 mm ID x 0.25 m film thickness) and the HPChem station software. Carrier gas was 
helium at a flow rate of 2 mL/min. Nitrogen was used as a makeup gas for the ECD. 
GC/MS analysis used the following: an HP 5890 Series II Plus gas chromatograph 
equipped with an HP 5972 Mass selective detector, a PTETM-5 fused silica capillary 

column (30 m, 0.25 mm ID x 0.25 m film thickness) and the HPChem station software. 
One characteristic ion plus the retention times for each target compound and surrogate 
were used for identification. All results are expressed as nanograms of pesticide per 
gram dry weight of soil (ppb). 
 
Hg Analysis Summary 
The method uses cold vapour atomic absorption spectrophotometry.  The particular 
instrumentation (DMA-80) allows for direct measurement and has been designed to 
meet the criteria outlined in US EPA Method 7473.   Very small quantities of liquid or 
solid sample are required with little or no preparation.  Measurements are made of the 
total mass of mercury in a test portion and the range of the measurement capability is 
from 0.05 ng to 600 ng. 
 
Solid samples are weighed and liquid samples are measured volumetrically into boats 
(quartz or nickel). Viable sample volumes range from 100 μl to a maximum boat 
capacity of 500 μl.  The boats enter a chamber in the instrument where the sample is 
first dried and then thermally decomposed in a continuous flow of oxygen.  The 
combustion products are carried off in the oxygen flow and are then further 
decomposed in a hot catalyst bed.  Mercury vapors are trapped on a gold amalgamator 
tube and are subsequently desorbed for spectrophotometric quantitation at 254 nm.  
Long and short path length cells enable the measurement of low range (0.05 – 35 ng) 
and high range (35 – 600 ng) mercury contents respectively.  
 
An  ICP-AES, ICP MS (PlasmaCAL) stock standard of 1000 ppm Hg is used to make the 
working stocks and calibration standards.  For soil and sediment analyses, a reference 
material such as MESS 3, Cabbage, or SS2 is included with each batch of samples 
(minimum 1 in 20 samples).  An aqueous QC (or calibration check sample) is also 
included in all runs and is prepared from a source of Hg different from that used for the 
calibration standards.  The aqueous QC is diluted to a concentration mid-range with 
respect to the assay standards.   
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Earthworm Analysis  

All earthworm samples were prepared for analysis within 24 hrs of removal 
from soil. Live earthworms were washed under running water and patted dry. 
They were then placed onto moist paper towels inside whirlpacks and left 
for 48 hours, to allow for full depuration of gut contents. After 
depuration, post-depuration wet weight (g) was recorded and the earthworms 
were placed in a vented drying oven set at 25ºC for 12 h. Following 
dehydration, earthworm dry weight (g) was recorded. The dehydrated 
earthworms were then placed into clean whirlpacks and stored at – 15ºC 
until analysis.   
 
 
 
 
 
 


