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Abstract 

Cognitive radio networks have recently been proposed as a promising approach to 

overcome the serious problem of spectrum scarcity. Other emerging concept for innovative 

spectrum utilization is femtocells. Femtocells are low-power and short-range wireless access 

points installed by the end-user in residential or enterprise environments. A common feature 

of cognitive radio and femtocells is their two-tier nature involving primary and secondary 

users (PUs, SUs). While this new paradigm enables innovative alternatives to conventional 

spectrum management and utilization, it also brings its own technical challenges.  

A main challenge in cognitive radio is the design of efficient resource (spectrum) trading 

methods. Game and microeconomics theories provide tools for studying the strategic 

interactions through rationality and economic benefits between PUs and SUs for effective 

resource allocation. In this thesis, we investigate some efficient game theoretic and 

microeconomic approaches to address spectrum trading in cognitive networks. We propose 

two auction frameworks for shared and exclusive use models. In the first auction mechanism, 

we consider the shared used model in cognitive radio networks and design a spectrum trading 

method to maximize the total satisfaction of the SUs and revenue of the Wireless Service 

Provider (WSP). In the second auction mechanism, we investigate spectrum trading via 

auction approach for exclusive usage spectrum access model in cognitive radio networks. We 

consider a realistic valuation function and propose an efficient concurrent Vickrey-Clarke-

Grove (VCG) mechanism for non-identical channel allocation among r -minded bidders in 

two different cases.   

The realization of cognitive radio networks in practice requires the development of 

effective spectrum sensing methods. A fundamental question is how much time to allocate 

for sensing purposes. In the literature on cognitive radio, it is commonly assumed that fixed 
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time durations are assigned for spectrum sensing and data transmission. It is however 

possible to improve the network performance by finding the best tradeoff between sensing 

time and throughput.  In this thesis, we derive an expression for the total average throughput 

of the SUs over time-varying fading channels. Then we maximize the total average 

throughput in terms of sensing time and the number of SUs assigned to cooperatively sense 

each channel. For practical implementation, we propose a dynamical programming algorithm 

for joint optimization of sensing time and the number of cooperating SUs for sensing 

purpose. Simulation results demonstrate that significant improvement in the throughput of 

SUs is achieved in the case of joint optimization. 

In the last part of the thesis, we further address the challenge of pricing in oligopoly 

market for open access femtocell networks. We propose dynamic pricing schemes based on 

microeconomic and game theoretic approaches such as market equilibrium, Bertrand game, 

multiple-leader-multiple-follower Stackelberg game. Based on our approaches, the per unit 

price of spectrum can be determined dynamically and mobile service providers can gain 

more revenue than fixed pricing scheme. Our proposed methods also provide residential 

customers more incentives and satisfaction to participate in open access model.  
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Chapter 1 

Introduction 

1.1 Motivation 

The increasing usage of bandwidth-hungry wireless applications and services has fueled 

demands for radio spectrum. These resources are however fundamentally limited: First, the 

physical propagation mechanisms of radio waves restrict the range of usable frequencies. 

Second and perhaps more important reason is that virtually all usable radio frequencies have 

already been allocated to existing applications and services, leaving little spectrum for 

emerging and future wireless systems. This necessities innovative approaches for spectrum 

management and utilization.  

Some studies in early 2000’s [1] have pointed out underutilization for many parts of the 

licensed bands. In light of the imbalance between the spectrum scarcity and spectrum 

underutilization, the paradigm-shifting concept of “cognitive radio” was introduced by 

Mitola [2] as a promising solution for efficient spectrum utilization. By sensing and adapting 

to the wireless environment, a cognitive radio network is able to fill in the available spectrum 

holes of primary (licensed) users and serve its users without causing harmful interference to 

the licensed ones. An example for a cognitive network is IEEE 802.22 wireless regional area 

network (WRAN) standard published in July 2011 [3]. This standard aims to utilize the TV 

bands that remain largely unoccupied in many geographical areas.  

Another emerging concept for innovative spectrum utilization is femtocells. Femtocells 

[4] are low-power and short-range wireless access points installed by the end-user in 

residential or enterprise environments. They operate in licensed spectrum to connect legacy 

wireless devices to the cellular operator’s network through the end-user's broadband 
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connection. Due to the proximity between transmitter and receiver, femtocells can 

significantly lower the required transmit power enabling power savings and prolonging 

handset battery life. On the other hand, operators benefit from the femtocells as a method of 

offloading traffic from the macrocell base station. This will result in significant reductions in 

infrastructure and operational expenses. If indoor wireless usage can be absorbed into the IP 

backbone through femtocell deployment, the macrocell base station can further allocate its 

resources mainly to outdoor users resulting in a better overall user experience. Based on a 

report published in February 2013 by Small Cell Forum [5], [6], femtocell market as a win-

win solution for both end-users and operators will experience a significant growth over the 

next few years  

A common feature of cognitive radio and femtocells is their two-tier nature involving 

primary and secondary users (PUs, SUs). While this enables innovative alternatives to 

conventional spectrum management and utilization, it also brings its own technical 

challenges. A main challenge in cognitive radio is the design of efficient resource trading 

methods [7]. Based on the underlying technologies, resource can refer to frequency band, 

channel access time, transmission power etc. In this context, trading refers the process of 

selling and buying available resources in an incentive driven framework. In spectrum 

(resource) trading, the objective of PUs is to maximize their revenue by selling the available 

spectrum to SUs. On the other hand, the objective of SUs is to have access to the spectrum at 

a reasonable price while maximizing their satisfaction (i.e., maximizing the associated utility 

function). However, these objectives generally conflict with each other. Therefore, an 

optimal and stable solution in terms of price and allocated resources is required so that the 

revenue and utility are maximized, satisfying both the seller and the buyer [8].  

Femtocell network comprises of operator-installed Macrocell Base Stations (MBS) 

underlaid with short-range consumer-installed Femtocell Access Points (FAPs). This two-tier 
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network structure with cross-tier (between femtocell tier and macrocell tier) and co-tier 

(among femtocell tiers) interference differ significantly from the conventional cellular 

architecture that relies on the careful network planning. Operating in the same licensed band, 

femtocell tier will inevitably impact macrocell tier. Resource allocation in such an 

interference-limited environment poses itself as a major technical challenge for the femtocell 

network design. In femtocell networks, macrocell user equipments (MUEs) can improve 

indoor reception with better voice service coverage and higher data throughput with 

connection to the FAPs and use their resources. Therefore innovative pricing models should 

be designed to tempt users to participate in these types of communication.  

The problems of spectrum trading in cognitive networks and pricing in femtocells have 

attracted a growing attention in recent years. While some initial works rely on classical 

optimization [8], game theory and microeconomics theory provide some alternative 

mathematical tools for spectrum trading [8-9]. Game theory is a mathematical framework for 

the analysis of “conflict and cooperation between intelligent rational decision makers” [11]. 

It was originally introduced by Cournot in 1838 [12] and, since then, has been applied to 

various problems in a wide range of disciplines including economics, political science, 

philosophy, computer science, engineering,  etc [11]. It therefore emerges as a natural design 

methodology for resource allocation in wireless networks where there are different rational 

entities with different types of demands and has been used in the past for various problems in 

wireless system and network design, see e.g., [12–15]. Microeconomics theory is a branch 

of economics that studies the behavior of how the agents in a market1 make decisions to 

allocate limited resources2 [16-17]. Its origins go back to Bernoulli’s work in 1965 [19] and 

                                                 
1 A market consists of sellers and buyers of commodities or services with an efficient pricing scheme to 
maintain the stability of market [7]. 
2 A resource is any physical or virtual entity of limited availability that needs to be consumed to obtain a benefit 
from it. 



 

 4 

has also been applied to some engineering problems such as in risk-return evaluation, 

conflicting interests, etc. [20].  

In this thesis, we will investigate the strategic interactions between PUs and SUs through 

game theoretic and microeconomic approaches and propose solutions for spectrum trading, 

and pricing in two-tier networks such as IEEE 802.22 and femtocell networks with different 

access models.  

1.2 Spectrum Access Models in Two-Tier Networks 

In cognitive radio networks, spectrum management allows wireless systems to 

dynamically access/share the radio spectrum on a negotiated or an opportunistic basis. In 

exclusive-usage model, spectrum privileges are sold to commercial entities who have the 

right for exclusive usage under certain rules. Spectrum owner provides service to the PUs 

and sells the unused extra spectrum to the other wireless service providers (WSPs) for a 

specific period of time. If, within the leasing duration, the spectrum owner needs spectrum, it 

must wait until the end of lease period. Therefore in this model, cognitive systems do not 

need to sense or dynamically change the spectrum.  

In shared used model, on the other hand, the spectrum owned by a licensee is 

simultaneously shared by a non-license holder. Such sharing takes place without the PUs 

being aware of SUs. Therefore, the transmissions of SUs are expected to have minimal 

impact on PUs devices. In practice, this requires that SUs should continuously sense the 

spectrum, find opportunities for transmission, and vacant the spectrum if any PU wants to 

enter the spectrum. Therefore, the practical implementation of cognitive radio networks 

requires the development of effective spectrum sensing methods [21]. Spectrum sensing can 

be either performed by a single SU or a number of cooperating SUs. In the latter one which is 

named as “cooperative sensing”, SUs cooperatively perform spectrum sensing [2] and send 
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the sensing results to a data fusion center (DFC). The DFC combines the results and makes a 

decision. In the literature on cognitive radio, it is commonly assumed [7-12] that fixed time 

durations are assigned for spectrum sensing and data transmission. If SUs spend more time 

on spectrum sensing, the probability of missing PUs will be decreased, but that also reduces 

the time for data transmission. On the other hand, if they spend more time on data 

transmission and less time on spectrum sensing, the probability of missing PUs and 

interfering with them will increase and therefore the data throughput will decrease. 

Therefore, there is a fundamental tradeoff between sensing time and throughput of cognitive 

radio networks which will be further discussed within this thesis. 

In femtocell networks, both of the aforementioned models can be used. In exclusive 

usage model, MBS divides spectrums in two parts and allocates one part to the MUEs and 

the other to Femtocell User Equipments (FUEs). In this model, there is no interference 

between MUEs and FUEs. But inefficiency of spectrum utilization brings the fact that shared 

use model is more desirable in femtocell networks. In a femtocell network based on the 

shared use model, the spectrum is shared between the FUEs and MUEs. In this model, the 

FUEs can utilize spectrum with lower priority than MUEs. Therefore interference 

management becomes a critical design factor in the practice.  

Another type of access in femtocell networks can be defined based on closeness or 

openness of FAPs. In close access (CA), limited number of users such as family members or 

friends can connect to the FAP. On the other hand, it is possible to have open access (OA) 

where all customers of the operator have the right to make use of any FAP. The use of OA in 

fact reduces the interference problems encountered in the case of CA. Indeed, all nearby 

MUEs would be authorized to connect to any FAP, reducing thus the negative impact of the 

femtocell tiers on the macrocell network. In this case, the MUEs are always connected to the 

strongest server (either macro or femto), avoiding cross-tier interference. As a result, the 
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overall throughput of the network increases. OA is therefore advantageous from the operator 

point of view.  

From the user point of view, CA is obviously preferred who will have full control over 

the list of authorized users. However, some surveys indicate that OA might be an attractive 

business model for home market conditioned that competitive pricing is offered [4]. Hybrid 

access (HA) methods are also discussed to reach a compromise between the impact on the 

performance of subscribers and the level of access that is granted to non-subscribers. 

Therefore, the sharing of FAPs resources between subscribers and non-subscribers needs to 

be finely tuned. Otherwise, subscribers might feel that they are paying for a service that is to 

be exploited by others. The impact to subscribers must thus be minimized in terms of 

performance or via economic incentives. With a proper pricing model, deploying OA or HA 

model is more beneficial for network operators than CA. 

1.3  Microeconomics Theory and Its Applications in Two-Tier Networks 

Microeconomics theory provides some effective pricing schemes to maintain the 

stability of the market. There are two types of markets in terms of the number of sellers. 

Monopoly market is the simplest market structure when there is only one seller. Oligopoly 

market is the case when there are multiple sellers and multiple buyers in the market. The 

sellers compete with each other independently to achieve the highest revenue by controlling 

the quantity or the price of the supplied commodity. Spectrum trading in two-tier network 

can be modeled as a monopoly or oligopoly market based on the number of PUs. When there 

is a single PU as a seller and several SUs as buyers, monopoly market is used. Oligopoly 

market is used when there exist several PUs and several SUs.  

An efficient pricing scheme derived from microeconomics theory should satisfy both 

buyers and sellers side. Market equilibrium and auction theory are the two popular pricing 



 

 7 

schemes used for resource trading [9]. In recent studies [22]–[27], they have been applied to 

spectrum trading problem in cognitive radio networks and femtocells. The market 

equilibrium gives the spectrum price and allocated spectrum size for which spectrum demand 

equals to spectrum supply. At the market equilibrium, the profit of the seller and the 

satisfaction of the buyer(s) are maximized [22], [23]. An example of this approach for 

spectrum trading is presented in [28], where hierarchical bandwidth sharing in a cognitive 

radio network is considered. In [23], Dusit et.al proposed market equilibrium as a pricing 

scheme for spectrum sharing in cognitive radio network and compared this method with 

competitive and cooperative pricing in terms of revenue for service provider and satisfaction 

of buyers.  

Auction theory provides another framework for resource trading problems. An auction is 

a process used to obtain the price of a commodity with an undetermined value [19]. Sellers 

use auctions to improve revenue by dynamic pricing based on buyer demands. Buyers benefit 

since auctions assign resources to buyers who value them the most. There are different kinds 

of auctions such as English auction, sealed bid first price auction, sealed bid second price 

auction (Vickery auction), double auction [29]. In the English auction, the minimum price is 

set by the auctioneer. Then, a bidder submits a bid higher than the minimum price to the 

auctioneer. Each bidder may observe the bids from other bidders and competes by increasing 

its bidding price. Thereafter, the bidding price is continuously increased until the bidder with 

the highest bidding price wins the auction. In a sealed-bid auction, all bidders submit sealed 

bids independently. The auctioneer opens the bids and determines the winning bidder whose 

bidding price is the highest. For the winning bidder, the price to pay the auctioneer becomes 

its bidding price (i.e., first-price auction) or the second highest bidding price (i.e., second-

price auction or Vickrey auction). In a double auction, multiple buyers bid to buy 

commodities from multiple sellers. 
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In [24], Vickrey auction and English auction are used for allocating unused spectrum 

bands to SUs based on a guaranteed quality-of-service (QoS) assuming time-variant number 

of SUs and PUs. In [7], a hierarchical spectrum trading model is presented to analyze the 

interaction among the secondary service providers, TV broadcasters, and SUs. Furthermore, 

a double auction with a joint spectrum bidding and service pricing model is proposed among 

multiple TV broadcasters and secondary service providers who sell and buy the radio 

spectrum. In [25], spectrum auction mechanisms are investigated when multiple units of 

spectrum are available and the demand from SUs exceeds the available spectrum. Sequential 

and concurrent auctions are further studied. In the sequential auction, all the bidders submit 

their bids for all the channels simultaneously while in the concurrent auction the channels are 

auctioned one after another. In [26], the spectrum allocation is modeled as a sequential 

dynamic game and a pricing-based distributive collusion-resistant spectrum allocation is 

proposed. 

In [30], user incentives for the adoption of femtocells and their resulting impact on 

network operator revenues are studied. The work in [29] models a monopolist network 

operator who offers two models of access (shared use and exclusive usage) to a population of 

users with linear valuations for the data throughput. It further compares the revenue from 

these two models and demonstrates that shared use yields revenue comparable or higher than 

that in exclusive usage. In another work on femtocells [31], the Dutch auction is used for the 

design of sub-channel and power allocation scheme when femtocell users co-exist with 

OFDMA macrocell users. In [32], Vickrey-Clark-Grove (VCG) auction is proposed as the 

pricing scheme for OA femtocells. In [33], a reverse auction (one-buyer-multiple-sellers) 

framework is proposed based on VCG mechanism for access permission trading between 

wireless service provider and private femtocell owners.  
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1.4 Game Theory and Its Applications in Two-Tier Networks 

A classical optimization problem consists of a single objective under a set of constraints. 

while in a game model, several entities are involved with different interests [8]. The solutions 

of the game should satisfy all of the entities. A game has three fundamental components: A 

set of players, a set of strategies, and a set of payoffs for a given set of actions [17]. Players 

are the entities who make the decisions. Strategies are a set of rules to make a decision that 

defines an action for a player. Payoff (or revenue) of a player shows the satisfaction level of a 

player for a given strategy. The satisfaction of the players is usually shown by a utility 

function. In game theory, steady-state conditions are known as Nash equilibrium. Nash 

equilibrium is a set of strategies, one for each player, such that no player has incentive to 

unilaterally change his/her action.  

Based on the cooperation between players, a game can be categorized in two groups as 

non-cooperative and cooperative games [9]. In a non-cooperative game, each player acts as 

an individual rational entity to maximize its payoff and make decisions independently. But in 

cooperative games, all players in a group act as a single entity. They do not have any 

competition between each other and do aim to maximize the total revenue of group. There 

are also other types of game that have been extensively used for resource allocation in 

cognitive radio networks such as Cournot game [34], Bertrand game [35], Stackelberge 

game, dynamic/repeated game [36], stochastic game [37], bargaining game [15], coalition 

game [38], game with learning [39].  

In [30], the evolution and the dynamic behavior of SUs are modeled using the theory of 

dynamic game. Deterministic and stochastic models are used as dynamic evolutionary 

games. It is assumed in [29] that a SU does not have any intention to influence the decision 

of other SUs in the future and PU uses an iterative algorithm for strategy adaptation using the 
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local information of that PU and information available to that PU from the SUs. In [40], a 

solution for joint sub-channel assignment, adaptive modulation, and power control for a 

multi-cell multi-user OFDMA cognitive radio network is proposed using a distributed non-

cooperative game. A virtual referee is introduced to improve the performance of the Nash 

equilibrium points. This referee can modify the rule of the resource competition game for 

efficient resource sharing. In [41], an optimum channel and power allocation scheme is 

proposed based on the Nash bargaining solution for an OFDMA cognitive radio network. 

This paper takes into account limits on the total interference for each PU as well as the 

minimum SNR requirement for SUs. In [23], three different pricing models (namely, market-

equilibrium, competitive, and cooperative pricing models) are investigated for spectrum 

allocation in cognitive radio networks.  

Game theory has been also applied to some femtocell design problems. In [36], a utility-

based non-cooperative game is proposed for femtocell signal-to-interference-noise-ratio 

(SINR) adaptation. The adaptation forces stronger femtocell interferers to obtain their SINR 

equilibriums closer to their minimum SINR targets, while femtocells causing smaller cross-

tier interference obtain higher SINR margins. In [42], a game theoretic approach is used to 

design decentralized resource allocation mechanisms for FAPs. In [43], a unique and fair 

Pareto1 optimal operation is proposed for femtocell networks under certain minimum QoS 

requirements using Nash bargaining solution. 

1.5 Sensing Throughput Trade-off in Cognitive Radio Network 

As earlier noted in Section 1.2, the realization of cognitive radio networks in practice 

requires the development of effective spectrum sensing methods. A fundamental question is 

                                                 
1  An outcome of a game is Pareto optimal if there is no other outcome that makes every player at least as  
well off and at least one player strictly better off. That is, a Pareto Optimal outcome cannot be improved 
upon without hurting at least one player. 
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how much time to allocate for sensing purposes. In fact, there exists a basic tradeoff between 

sensing time and throughput of cognitive radio networks which will be further discussed 

within this thesis. This tradeoff problem has been first investigated for non-cooperative 

spectrum sensing in [44] to find the optimal sensing time so as to maximize the total average 

throughput of a cognitive radio network over Rayleigh fading channels. In [45], [46], the 

optimization of the sensing time is pursued to maximize the total outage probability for the 

SUs, respectively, over Rayleigh and Nakagami fading channel. In [47], the optimum sensing 

time is derived to maximize the SUs throughput under the Markovian traffic assumption for 

SUs and limited interference for PUs.  

This tradeoff problem is revisited in [44], [48]–[50] in the context of cooperative 

spectrum sensing. For sensing purposes, the spectrum can be divided into several channels 

and sensing can be performed separately for each channel. Particularly, in [44], Liang and 

Zheng assume a fixed number of SUs which sense each channel and send the results to the 

DFC for the final decision. Under this assumption, they derive the optimum sensing time. In 

[48], Peh et al. assume k-out-of-M  rule with a fixed M (i.e., the number of SUs) and 

optimally calculate k  (i.e., the minimum number of SUs required to decide about channel 

occupancy) and sensing time to maximize the throughput of SUs. In [50], Zhang et al. 

calculate the minimum required number of SUs in cooperative spectrum sensing to achieve a 

target error bound. In [49], Peh et al. propose a method to jointly optimize sensing time and 

power allocation to maximize the throughput of SUs. In [51],  Zaheer et al. formulate the 

sensing throughput trade-off for distributed cognitive radio as a coalition formation game 

under probability of detection constraint. In [52], Wang et al. propose an evolutionary game 

to calculate the optimal time for decentralize spectrum sensing to maximize throughput of 

SUs. 
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The channel models in the above works [44], [48]–[50] are either quasi-static or symbol-

by-symbol independent. Specifically, in [49], a quasi-static Rayleigh fading channel is 

considered and the channel coefficients are assumed constant over all the received signal 

samples. In [48], it is assumed that fading changes from one symbol to another 

independently. In [44], the sensing time frame (i.e., slot) is divided into several mini-slots, 

which each mini-slot consists of multiple samples and the samples are from different 

symbols. The channel coefficient is assumed to be constant for each mini-slot and varies 

from one mini-slot to the other one independently. In [50], the sensing channel is assumed as 

time-invariant during the sensing process. These are simplifying assumptions about channel 

coefficients for mathematical tractability, but not realistic for most mobile scenarios.  

1.6   Outlines and contributions 

The outlines and original contributions of our work in each chapter are as follows: 

In Chapter 2, we address spectrum trading for cognitive radio networks with shared used 

model. Majority of the literature on spectrum trading have so far assumed the exclusive-

usage model, see e.g. [7], [8], [24], [25]. Instead, we consider the shared used model in the 

context of IEEE 802.22 WRAN and aim to design a spectrum trading method via auction 

approach. In the shared used model, SUs perform the sensing of PU spectrum in order to 

detect the vacant spectrum. Spectrum sensing is a crucial function for such opportunistic 

spectrum access. Existing works on spectrum trading [8], [24], [26], [53] via auction theory 

typically assume that the environment is “risk”-free1 [54], but this is highly unrealistic due to 

the non-ideality of spectrum sensing. However, to the best of our knowledge, there is no 

spectrum trading method specifically designed for the shared used model considering the 

effects of imperfect spectrum sensing. 

                                                 
1 In auction theory, risk refers to the unexpected variability or volatility of returns. 
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In light of these, the first specific contribution is to design a spectrum trading method to 

maximize the total satisfaction for the buyers (SUs) and revenue for the Wireless Service 

Provider (WSP) taking into account sensing errors. We assume that SUs do not have GPS 

and Internet to access to the online TV database for spectrum opportunities and need to 

perform sensing1. In our design, we consider the risk of imperfect spectrum sensing which 

causes the SUs miss the presence of licensed users and interfere with them. Taking into 

account this risk, we first propose a multi-unit sequential sealed-bid first-price auction to 

optimize the payoff of each SU. Then, we derive an expression for the total revenue of WSP 

and maximize it by optimizing the sensing time. 

In Chapter 3, we return our attention on spectrum sensing which is a crucial mechanism 

for cognitive networks. Recall that Chapter 2 discusses tradeoff between sensing time and 

revenue and calculates the optimum sensing time to maximize the revenue of service 

provider. Chapter 3 discusses tradeoff between sensing time and throughput of SUs over 

time-selective channels. For time-selective fading channels, we derive an expression for the 

total average throughput of SUs each of which is equipped with energy detectors for 

cooperative sensing assuming different decision rules. In this derivation, we calculate the 

probability of detection and false alarm through a modified version of the central limit 

theorem (CLT) for correlated variables. Based on the derived throughput expression, we 

formulate an optimization problem in terms of sensing time and the number of SUs assigned 

to sense each channel. In terms of sensing time, it is a non-linear programming problem 

which can be solved using numerical methods. On the other hand, the problem in terms of the 

number of SUs is an integer programming problem. Based on this two dimensional 

                                                 
1 These are defined as “sensing-only TV band devices” by the Federal Communication Commissions (FCC) 
[55]. 
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optimization problem, we propose an algorithm to jointly optimize sensing time and the 

number of cooperating SUs. 

Another challenge in cognitive radio networks is the spectrum trading problem for 

concurrent non-identical channel allocation which is pursued in Chapter 4. In the current 

literature on spectrum auctions [7], [25], [29], [56], [57], the valuation functions used for the 

bidders are somehow unrealistic. In this chapter, we propose a realistic valuation function 

which each channel has different values for different bidders; this leads to non-identical 

channels. In [25], [58], some methods for non-identical channel cases are investigated, but 

their proposed methods are not efficient. In all of them, single-minded bidders are assumed 

indicating that each bidder is willing to buy only one channel and other channels have zero 

values for the bidders and the losers do not have the chance of revisiting the remainder 

available channels. To address this issue, we consider r -minded bidders each of which can 

bid for r>1 bundles of channels in each round of auction, but is allowed to win at most one of 

these bundles. Another important issue that we want to address in this chapter is truthfulness1 

or incentive compatibility of combinatorial auction mechanism when the problem of 

determining auction outcomes is NP-hard.  

In the light of above discussions, our main contributions in this chapter can be therefore 

summarized as follows: We first propose a novel realistic valuation function for the SUs 

which depends on delay-sensitive traffic (e.g., voice or video) and delay-insensitive traffic 

(e.g., e-mail or file transfer) as well as the capacity of each available channel. This function is 

proportional to the channel capacity and the weighted summation of data traffic types. 

Instead of the commonly assumed single-minded bidders, we assume that the SUs are r -

minded bidders and design an efficient VCG-based auction mechanism. In our scheme, each 

                                                 
1 If an auction mechanism has the property that each user should submit their true valuation if he/she wants to                    
maximize his/her utility function, it is called truth-telling algorithm [59]. 
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bidder can bid for r  bundles of channels in each round of auction, but each bidder is allowed 

to win at most one of these bundles. Two cases are assumed: In case 1, the SUs are r -minded 

but they can submit bid only for single channels. In case 2, the SUs are r -minded and they 

can submit bid for bundles of channels. We show that the first case is solvable in polynomial 

time but in the other one, the problem of determining auction outcomes is NP-hard. We 

propose two sub-optimal methods for solving this problem, namely greedy algorithm and 

randomized rounding linear programming (LP) relaxation. Due to the sub-optimal nature of 

solutions in case 2, VCG mechanism is not truthful anymore and the SUs can lie to maximize 

their utilities. To address this, we further propose an auction mechanism with limited 

truthfulness property, based on an iterative greedy algorithm. 

In Chapter 5, we return our attention on femtocell networks. The current market in 

femtocell network is mainly geared towards CA femtocells [60]. To enable the wide 

deployment of OA femtocells, innovative pricing models with incentives for residential 

femtocell users are required that will be pursued in this chapter. We consider oligopoly 

market and propose novel utility functions for the FAPs and MBSs which include 

requirements of OA femtocell networks. We take into account discounts for the FAPs which 

serve the other MUEs and dynamically set the price of spectrum different from earlier works 

assuming fixed pricing. Therefore, based on our defined utility function, FAPs have more 

incentives to participate in OA networks. We further propose four methods of pricing for 

oligopoly market based on market equilibrium, Bertrand game, multiple-leader-multiple-

follower Stackelberg game and cooperative game. Among these four methods, we show that 

the approach on market equilibrium brings more revenue than the others for the FAPs. On the 

other hand, the pricing scheme with the cooperative game has the best revenue for the MBSs.  

We further provide comparisons with fixed pricing schemes [61] and demonstrate the 

superiority of our proposed schemes in terms of revenues.  
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In Chapter 6, we first provide the conclusion of research work done so far and then 

discuss some future directions. 
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Chapter 2 

Spectrum Trading for Risky Environments in IEEE 802.22  

Cognitive Networks 

 

2.1  Introduction 

In this chapter, we consider the shared used model and design a spectrum trading 

method to maximize the total satisfaction for the buyers (SUs) and revenue for the WSP 

taking into account sensing errors in TV bands. We first propose a multi-unit sequential 

sealed-bid first-price auction to optimize the payoff of each SU. Then, we derive an 

expression for the total revenue of WSP and maximize it by optimizing the sensing time. Our 

results demonstrate that the proposed auction-based spectrum trading method brings better 

revenue than its counterparts in [25], [29]. 

2.2 System Model  

We consider a cognitive radio network which operates in TV bands and involves the 

point-to-multipoint communication between a Base Station (BS) and N SUs.  Under the 

assumption of the shared used model, SUs and BS are responsible for sensing and finding 

opportunities in the spectrum and avoiding to make interferences with the PUs (i.e., TV 

channels).   

There are two hypotheses for detection; namely 0H  and 1H  as the absence or the 

presence of the PUs, respectively. Due to the imperfect nature of spectrum sensing to identify 

the spectrum opportunities, we assume that there are some risks in the presence estimation of 

the PUs. Four types of probability associated with imperfect sensing can be defined:  
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1) Probability of false detection ( 1 0(H | H )fP P= ),  

2) Probability of miss ( 0 1(H | H )mP P= ),  

3) Probability of correct detection ( 0 0(H | H )uP P= ) when PU does not exist,  

4) Probability of detection when PU exists ( 1 1(H | H )dP P= ). 

We model the traffic of the SUs with a Markov process [62] as illustrated in Fig.2.1. The 

channel states are represented by 0 (busy) and 1 (idle). To reflect the effect of sensing, we 

consider four states, namely “idle-true”, “idle-false”, “busy-true”, and “busy-false”. For 

example, the state of “idle-true” indicates that the channel is decided to be idle when it is 

actually in idle state. If it is decided to idle when it is actually in busy state, this is named as 

“idle-false”. State transitions are based on the transition probabilities g  and a  in the two 

states Markov process and probabilities of detection and false alarm. 

 

 

Figure  2.1 Markov chain model 
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Let ( )idleP j  denote the probability of the channel being in the idle state at the beginning 

of the thj  time interval. Furthermore, let ( )s
idleP j  denote the probability of being in the idle 

state during the thj  time interval. The latter takes into account sensing results acquired 

within the thj  time interval. Based on whether the channel is sensed as idle or busy, we have 
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where 

      1 1 1 {1,2,...}s s
idle idle idlejP j P P j j        .                                               (2.2) 

If the channel is sensed as idle, the auction will be held for that channel and risk related 

information ( )s
idleP j  is announced to the SUs for their biddings. On the other hand, if the 

channel is sensed as busy, no auction will be held.  

2.3 Proposed Auction Mechanism 

In this section, we propose a sealed-bid first-price auction1 to optimize the payoff of 

each SU. In this auction type, the highest bidder wins and pays the amount he/she bids. This 

auction can be carried out either in concurrent or sequential version. Sequential version has 

better revenue for the auctioneer and bidders in the auctions with non-identical items [29]. 

Since the non-identical channels is considered, we can assume that channel conditions (such 

as noise, fading and interference) will change independently in each round of auction. 

Furthermore, we assume that the traffic of SUs will change independently from one round to 

                                                 
1 Sealed-bid second-price auction is rarely used in practice because of the possibility of cheating by the seller 
[8], [29]. With the fear of cheating, a second price auction may become less profitable than a first price auction 
for non-cheating and fair seller. 
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another round. Therefore we assume that the SUs cannot use the history of the previous 

rounds of auction for their biddings in the future round of auction. 

At the beginning of each time frame, the BS determines the channels and the amount of 

time that SUs should sense. After sensing period, each SU sends the sensing results to the BS 

using a single bit which represents the state of each channel (0 for busy and 1 for idle). The 

BS makes the final decision about the channel availability and calculates the associated risk 

for each channel based on (2.1) and (2.2). At the beginning of each round of auction, the BS 

announces the available channel and associated risk. SUs calculate their biddings and send 

them to the BS. The BS allocates the channel to the highest bidder. Since our proposed 

auction method is sequential, this process is iterated in multiple rounds. Considering the data 

rates supported in IEEE802.22, it can be shown that the required time for transmission of 

overhead information is negligible in comparison to the sensing time [3]. Since the bidding 

strategy and winner determination of the auction can be calculated in polynomial time, the 

proposed spectrum trading method has a linear computational complexity with ( )O N where 

N  is the number of bidders. 

In our proposed method, the bidder’s payoff can be expressed as 

if max & risk does not occur

0 if max

( ) if max & risk occur

i i i j
i j

i i j
i j
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i j

x b b b

b b
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                                                          (2.3) 

where ix  is the valuation of the thi  bidder (i.e., the maximum amount that the thj  bidder is 

willing to pay for the channel), ib  is the bid of the thi  bidder, and ( )ih x  is the valuation of the 

thi  bidder in the presence of interference.  

We assume ( )i ix C D T      where C  denotes the channel capacity, iD  is the data 

traffic of the thi  bidder, T  is the length of transmission frame (i.e., the total time for sensing 
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and data transmission), and   is the sensing time1. The maximum channel capacity between 

SUs and BSs is denoted by maxC  and the maximum data traffic of SUs is defined by maxD . In 

the case of interference, the channel capacity for the SUs is smaller than channel capacity 

with no interference, therefore we have ( )ih x < ix .  

Fix a bidder, say the first one 1x  without losing generality, and let 1Y  denote the highest 

order statistics, i.e. 1 2max( ,..., )NY x x , among 1N-  remaining bidders 2 3, ,..., Nx x x . 

Clearly, for all y , 1
1( ) ( )N

iG Y y F x y     where G (.) and (.)F  respectively denotes the 

cumulative distribution function (cdf) of 1Y  and ix . Based on our assumptions for the 

distribution of parameters, the distribution of x  is assumed2 as ( )F x . Therefore the 

probability density function (pdf) of 1Y  can be calculated as  

  1
( ) ( 1) ( ) ( )

N
g x N f x F x

                                                                                                 (2.4) 

where ( )f x  is the pdf of x . In our proposed method, the expected payoff for an SU is given 

by 

    ( ) ( ) 1 ( ) ( ) G( )s s
R idle idlem x P j x b P j h x b x      .                                                      (2.5) 

The optimal bidding of bidders is a function of their valuations. Let ( )R xb  denote the 

optimal bidding function (strategy). It can be calculated by the maximizing ( )Rm x  with 

respect to b , i.e., 
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                                     (2.6) 

where  .   stands for the derivative operation. After some mathematical manipulations, (2.6)

can be rewritten as 
 

                                                 
1 In this section, we assume that sensing time is fixed. In the next section, we further discuss its optimal choice 
to maximize the revenue. 
2 We ignore index i in the following for the sake of presentation simplicity. 
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 ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )s s
R R idle idlex g x x G x P j x P j h x g x        .                                           (2.7) 

 

Therefore, the optimal bidding function is obtained as 

 
0

1
( ) ( ) (1 ( )) ( ) g( )

G( )

x s s
idle idleR x P j y P j h y y dy

x
                                                             (2.8) 

2.4 Sensing-Revenue Trade-off  

In the previous section, we have proposed an auction mechanism to optimize the payoff 

of each SU under the assumption of a given fixed sensing time. In this section, we will first 

calculate the total revenue of WSP and then maximize it by optimizing the sensing time. 

Fixed time durations are typically assigned for spectrum sensing and data transmission. 

This is obviously not the optimal solution. If the SUs spend more time on spectrum sensing, 

the probability of missing PUs decreases, but this reduces the time for data transmission and 

therefore the payment of SUs to the WSP decreases. On the other hand, if they spend more 

time on data transmission and less time on spectrum sensing, the probability of missing PUs 

and interfering with PUs will increase. This will decrease the bidding and payment of SUs to 

the WSP. Hence, there is a trade-off between sensing time and revenue that we will discuss 

in the following. 

SUs are mainly interested in the channels that are underutilized, such as channels with 

0.5idleP  . On the other hand, the total probability of detection ( dP ) is usually more than 0.7 

[44] and the total probability of false alarm ( fP ) is usually small ( 0.3 ). Under the 

assumption of these typical values, it is possible to ignore (1 ( )) ( )s
idleP j h y  in (2.8) and 

approximate it as  

0
( )

( )

1
( ) ( )

x s
idleR x

G x
P j yg y dy   .                                                                                            (2.9) 

The expected revenue of the WSP from an SU can be then calculated as  
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 
0

( )E E ( ) ( ) E ( ) ( )
x s

idleRxm G x x P j yg y dy                                                                     (2.10) 

where the expectation is with respect to the variable y . This yields 

  max max ( )

0
( )E ( ) ( )(1 ( ))

C D T s
idlexm P j yg y F y dy


  .                                                               (2.11) 

The total average revenue of auctioneer is the summation of the payments of N SUs to 

the auctioneer, therefore is given by    Total ( ) ( )E Ex xm N m . Here, we will maximize the 

total average revenue with respect to sensing time subject to adequate protection given to the 

PUs. Therefore, this problem can be formulated as 

 Totalmax E ( )

s.t , 0d d

m x

P P T


  
                                                                                                     (2.12) 

where dP  is the minimum probability of detection that the BS needs to achieve to protect the 

PUs in the thi  channel. For a given sensing time  , if we have two probability of detection 

values, say dP  and 1
dP  ( 1

d dP P ), it can be shown that 
1

Total TotalE ( , ) E ( , )d dm x P m x P       . 

Therefore we can conclude that the optimal solution of (2.12) occurs when constraint d dP P  

is at equality.  

Modifying the constraint and replacing (2.4), (2.5) and (2.11) in (2.12), we can rewrite it 

as 
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 .                                (2.13) 

In (2.13), the probability of miss and the probability of false detection are respectively 

given by [55, Eqs. (13), (14)] 1m dP P   and   1( , ) ( ) 2 1f d sP Q Q P f       , 

where   is the threshold for the detector,   is the SNR for the received signal from PU, sf  

is the sampling frequency and  .Q  is Gaussian Q function. The above problem in (2.13) is a 
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nonlinear optimization problem and can be solved by numerical methods such as interior 

points method [8].  
 

2.5  Numerical Results 

In this section, we provide Monte-Carlo simulation results to demonstrate the 

effectiveness of the proposed auction model. In our simulations, we use the notation of 

“currency unit (CU)” instead of any particular currency. We assume that the number of 

available channels for bidding is 10 and the number of bidders is between 11 and 30. The 

channels will be sensed cooperatively by SUs and BS and each channel will be sensed by one 

SU. Also we assume that the sensing results are sent honestly to the BS by the SUs. PU 

traffic model is modeled by a two-state Markov model with 0.8g =  and 0.2a = . We 

assume that bandwidth of each channel is 6 MHz. The sampling frequency is the same as 

signal bandwidth. The fading channel coefficients between SUs and BS are Rayleigh 

distributed and noise has normal distribution with zero mean and 1s = . The traffics of SUs 

are assumed to follow a Poisson distribution with a mean of 50 Kb/s. The length of 

transmission frame is 100 ms.  

In Fig. 2.2, we present the performance (i.e., average payoff of bidders) for the proposed 

auction mechanism assuming different values of mP . As a benchmark, we include the 

performance of the conventional auction method for the sealed-bid first-price auction. In the 

conventional method, the SUs select their bidding strategy without considering any 

uncertainties in the valuation of channels [25]. It is observed that the proposed bidding 

strategy outperforms the conventional one in a risky environment. The payoff of bidders by 

our proposed method is at least two times and, in the best case, five times more than that can 

be obtained from the conventional one. It is also observed that when the number of SUs 
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increases, average payoff of the SUs decreases. This decrease is due to the decreasing chance 

of winning for the bidders and also increases in the amount of bids.  

  

 

 

Figure  2.2 Average payoff for the SUs 

 

Fig. 2.3 illustrates the revenue of the auctioneer for the proposed auction method in 

terms of sensing time. We assume 15N  SUs and 0.1mP = . It is observed that the revenue 

of auctioneer is a convex function of the sensing time and there is an optimal (in terms of 

revenue maximization) sensing duration. For the given numerical values, this is found to be 

8.5 ms in our case. Fig. 2.4 illustrates the throughput of SUs in terms of sensing time. It is 

observed that the throughput is maximized for 33.5 ms. This clearly shows that the optimal 
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sensing time that maximize the revenue of auctioneer and throughput of SUs are different 

from each other.  

 

Figure  2.3 Revenue of the auctioneer in terms of sensing time for the proposed auction 

model. 
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Figure  2.4 Throughput of SUs in terms of sensing time for the proposed auction model. 

 

Fig. 2.5 illustrates the revenue of auctioneer in terms of the number of SUs for the 

proposed auction method assuming a) different values of fixed sensing time                       

( 10 ms and 25 ms  ), b) optimized sensing time calculated from (2.13) to maximize the 

revenue, and c) optimized sensing time to maximize the throughput when the SUs are 

cooperating with each other. It is observed that the total revenue of auctioneer with optimized 

sensing time calculated from (2.13) outperforms the other two. The revenue of auctioneer in 

this case is respectively 5% and 25% more than that can be obtained from cases (a) and (c) 

while the throughput for the SUs is about 5% and 15% less. This indicates that maximizing 

throughput is not necessary to get the maximum revenue. 
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Figure  2.5 Total revenue of auctioneer in terms of the number of SUs for different sensing 

times. 
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Chapter 3                                                                      

Sensing-Throughput Tradeoff in Cognitive Radio Networks with 

Cooperative Spectrum Sensing over Time-Varying Fading Channels 

3.1 Introduction 

In Chapter 2, we have addressed spectrum trading problem for shared use spectrum 

access model in IEEE 802.22. Specifically, we have considered the risk of imperfect 

spectrum sensing and proposed a sequential first price auction mechanism. In our proposed 

auction, the bidders calculate the optimum bidding to maximize their payoff given the risk of 

imperfect sensing. We have discussed about sensing-revenue tradeoff and calculated the 

optimum sensing time to maximize the revenue of auctioneer. As demonstrated, the optimal 

sensing time that maximizes the revenue of auctioneer and throughput of SUs are different 

from each other.  

In Chapter 3, we now assume a fixed time for sensing and data transmission in shared 

use spectrum access model. In this chapter, we want to address sensing-throughput tradeoff 

in cognitive radio networks with cooperative spectrum sensing. The revenue of the service 

provider is out of scope of this chapter and our focus is on maximizing the throughput of SUs 

subject to limited interference with PUs. In this chapter, we consider a correlated fading 

channel model with the well-known Jakes model for power spectral density [55]. Under this 

channel model, we formulate the optimum tradeoff problem between sensing time and 

throughput. We further take into account the fact that each SU cannot sense all the channels 

and assume that each SU can be assigned for the sensing of a particular channel at a time and 

this assignment is done on a dynamic basis. Therefore, the number of SUs assigned for 

sensing of a particular channel will be determined dynamically based on the detection 

performance of PUs and the channel capacity of SUs in each channel.  
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3.2 System Model  

We consider a cognitive radio network with L  SUs and one DFC. There are K channels 

( L K ) to be sensed cooperatively by the SUs and the hard decision results will be sent to 

the DFC for the final decision. As the spectrum sensing is a time consuming task, we assume 

that each SU can sense only one channel during the sensing period. The assignment of SUs to 

each channel is made on a dynamical basis by the DFC. During sensing time in each time 

frame, the SUs are responsible to sense the assigned channels. The assigned channels to SUs 

can be changed from one time frame to the other one by the DFC. 

There are two hypotheses for detection; namely 0H  and 1H  as the absence or the 

presence of the PUs, respectively. When the PU signal is present, the received sampled signal 

at the thi  SU can be written as 

( ) ( ) ( ) ( ), 1,2,...,i i iy n h n s n u n n N                                                                                   (3.1) 

where ( )s n  is a rectangular M-QAM modulated signal and N is the number of received 

signal samples. Signal samples are assumed to be independent identically distributed (i.i.d.) 

random variables with zero mean and variance of 2 2E | ( ) | ss n      [44]. The noise samples, 

( )iu n  are assumed to be circularly symmetric complex Gaussian (CSCG) i.i.d. random 

variables with zero mean and variance of 
2 2E | ( ) |i uu n     . In (3.1), ( )ih n  represents the 

fading coefficient and is modeled by a complex Gaussian random variable with zero mean 

and variance of 2 2E | ( ) |i hh n     . Let R ( )ih n  and I ( )ih n  denote real and imaginary parts of 

the fading coefficient. ( )ih n  can be therefore written as  

    R I( ) Re ( ) Im ( ) ( ) ( )i i i i ih n h n j h n h n jh n    .                                                                (3.2) 

The autocorrelation function for the real/imaginary part of channel coefficients is defined as  

def

( ) E ( ) ( ) E ( ) ( )R R I I
i i i i il h n h n l h n h n l            .                                                                (3.3) 
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It should be further noted that R ( )ih n  and I ( )ih n  are independent of each other. The 

corresponding Doppler (PSD) is obtained taking the Fourier transform of the correlation 

function. For the Jakes model [55] under consideration, we have   

   
 2

1 1
F ( ) = S , | |

1
i i d

d
d

l f f f
f f f

  


                                                                  (3.4) 

where df  is the Doppler frequency. 

3.3  Sensing Statistics 

In cognitive radio networks, the frame structure consists of two main parts. The first part 

is for sensing and the second one is for data transmission. Let T denote the length of the 

frame (i.e., the total time required for sensing and transmission purposes) and assume that 

T   is allocated for sensing. We assume that each SU employs an energy detector to 

measure the received signal power during the sensing period. Let sf  denote the sampling 

frequency. The number of received samples is therefore given by sN f  . The decision test 

statistics for energy detector is expressed as 

2

1

1
( ) | ( ) |

N

i i
n

y y n
N 

   .                                                                                                         (3.5) 

If N is large enough, the Probability Density Function (PDF) of ( )iy  under hypothesis 

0H  can be approximated with Gaussian distribution with mean 2
0 u   and variance 

 2 4 4
0 1 / E | ( ) |i uN u n      based on the CLT [44]. Since ( )iu n  is CSCG, it can be shown 

that 4 4| ( ) |E 2i u
u n      and  2 4

0 1 / uN  . The probability of false alarm is then given by 

0 2
( , ) Pr( ( ) | H ) 1f i s

u

P y Q f
   


  
         

                                                              (3.6) 

where   denotes the threshold of the energy detector employed at the thi  SU and  .Q  is the 

complementary distribution of the standard Gaussian [63].  
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Under hypothesis 1H , since the channel coefficients ( )ih n  are correlated, ( )iy n  are 

correlated to each other, 1, 2,...,n N and the CLT cannot be used in a straightforward 

manner. For the correlated case, we use a modified version of the CLT [64]. 

Theorem 3.1 (Central Limit theorem for Correlated Sequences) [64]: Let { }nx  be a 

stationary and mixing1 sequence of random variables satisfying a CLT condition such that  

1)  E ,nx n                                                                  (3.7) 

2)   2Var ,nx n                                                                                              (3.8) 

3)    2
1

2

lim Var 2 Cov , ,
n

n i
n

i

n x x x V n




       .                                              (3.9) 

Then, a central limit theorem applies to the sample mean nx  

d
nx

n Z
V

  
 

                                                                                                               (3.10) 

where Z  is standard normal random variable and 
d

  indicates convergence in distribution.  

This theorem indicates that the CLT holds for correlated random variables but with 

different variance than the independent case. In Appendix A, we prove that the received 

samples ( )iy n  satisfy the three conditions stated in (3.7)-(3.9) and therefore, following 

(3.10), ( )iy  can be approximated as a normal random variable with mean   21 u   and 

variance of 

 
 

4
2 2 4 4 2
1

1

3 3 7 2
1 2 1

5 1

N
u

s h i
i

M

N NM

     


  
      
    

                                                   (3.11) 

                                                 
1 The sequence is said to be “mixing” if the states are asymptotically independent, i.e., as the times between the 
measurements increase to infinity, the observed values of the measurements at those times become independent 
[64]. 
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for large values of N. In the above,   is the average received SNR at each SU and is given as 

2 2 2
h s u   . 

The probability of detection under hypothesis 1H  can be now calculated as  

 
 

1

2

2 2

1

( , ) Pr( ( ) | H )

            1
3 3 7

1 2 2 1
5 1

d i

s

Nu

i
i

P y

f
Q

M

M

  

 


  


  

 
 
 
                  



.                              (3.12) 

The probability of false alarm can be written as  

 
 

1 2 2

1

3 3 7
( , ) ( ) 1 2 2 1

5 1

N

f d i s
i

M
P Q Q P f

M
      



                   

                      (3.13) 

where dP  denotes the target probability of detection.  

In cooperative sensing, after each SU makes its individual decision denoted by iD , it 

sends its result to the DFC. Here, 1iD   means that there is a PU detected in the channel and 

0iD   means that no PU is detected. The DFC can employ OR-rule, AND-rule or majority 

logic rule [21]. Let  ,dP    and  ,fP    respectively denote the probability of detection 

and false alarm for each SU. The detection and false alarm probability of cooperative 

spectrum sensing (i.e.,  , ,d k   and  , ,f k  , respectively) for different decision rules 

are calculated as  

 
 

   
/2

1 1 ( , ) , for OR rule

( , , ) ( , ) , for AND rule

1 ( , ) ( , ) , for majority logic rule

k

d

k

d d

k
k i i

d d
ki

P

k P

k
P P

i

 

   

   

  


  
 


     


   .                    (3.14) 
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 
 

   
/2

1 1 ( , ) , for OR rule

( , , ) ( , ) , for AND rule

1 ( , ) ( , ) , for majority logic rule

k

f

k

f f

k k i i

f f
i k

P

k P

k
P P

i

 

   

   


  


  

 


     


   .                    (3.15) 

3.4 Problem Formulation for Sensing-Throughput Tradeoff    

The total average throughput is given by 

 
1

, ,
K

i
T i i i

i

R R k 


                                                                                                            (3.16) 

where  , ,i
i i iR k   is the average throughput for the thi  channel , 1, 2,...,i K . For the 

calculation of (.)iR , we need to consider two cases based on whether DFC makes a correct 

decision or not. In the first case, the DFC truly detects the absence of PUs. The second case 

is that the DFC misses the presence of PUs. Let  0 , ,i
i i iR k   and  1 , ,i

i i iR k   denote the 

corresponding throughput for the ith channel. They are given by 

    0 0 0, , (H ) 1 1 , ,i i i
i i i i f i i iR k C P T k

T

       
 

                                                          (3.17) 

    1 1 1, , (H ) 1 1 , ,i i i
i i i i d i i iR k C P T k

T

       
 

                                        (3.18) 

where 0
iC   and 1

iC   denote the channel capacity of the thi  channel under hypothesis 0H  and 

1H , respectively. 0(H )iP  and 1(H )iP  are the probabilities of the PU being absent or present 

in the thi channel, respectively. Therefore the average throughput of the SUs from the thi

channel is  

     0 1, , , , , ,i i i
i i i i i i i i iR k R k R k       .                                                                         (3.19) 

SUs are mainly interested in the channels that are underutilized, such as channels with 

0(H ) 0.5iP  . On the other hand, the probability of detection for cooperative spectrum 
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sensing ( d ) is usually more than 0.7 and  1 0.3d  [44]. But the probability of false 

alarm for cooperative spectrum sensing ( f ) is usually small ( 0.3 ) and therefore 

1 0.7f  . Thus it is possible to ignore  1 , ,i
i i iR k   in (3.19) and approximate (3.19) as 

   0, , , ,i i
i i i i i iR k R k    . This will yield 

 0
1

, ,
K

i
T i i i

i

R R k 


 .                                                                                                        (3.20) 

In our work, we want to maximize the average total throughput of SUs with respect to 

the optimization variables, namely sensing time ( i ), the number of SUs ( ik ) and detection 

threshold ( i ). Therefore we can write this optimization problem as  

 
, ,

1

max , ,
i i i

K
i

i i ik
i

R k
 

 

                                                                                                            (3.21) 

 
1

s.t. i) , ii) 0 , iii) 1 , iv) , ,
K

i
d d i i ii i i

i

P T k K k Lk  


     
                                                              

where i
dP  is the minimum probability of detection that the DFC needs to achieve to protect 

the PUs in the thi  channel. i
dP  can take different values in each channel based on the activity, 

power and sensitivity of PUs.  

Lemma: Optimal solution of (3.21) occurs when the first constraint is at equality for all 

decision rules.  

Proof: For a given ik  and i , we may choose a detection threshold 0
i  which satisfies 

0( )i i
d dP  . We may also choose a detection threshold 1 0

i i   such that 1 0( ) ( )i i
d d   . 

Obviously from (3.13), we can conclude that    0 1
i i

f f   . However, we observe from 

(3.17) that    0 1 0 0
i i i iR R   and, therefore,    1 0

i i i iR R  . Hence, it proves that (.)iR  will 

be maximized only if ( , , ) i
d i i i dk P   . When the first constraint in (3.21)  is an equality in 

all decision rules for any given pair of i , ik , we are able to determine a threshold from 

(3.22) to satisfy  , , i
d di i i

Pk    which is given by 
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 

 
 

 

2 2

1 1
2 1

3 3 7
1 2 2 1

5 1
1 1 1i

N

i
i

i k
i u d

s

M

M
Q P

f

  

  





                  
  

 
 
 


.              (3.22) 

Using the Lemma, the problem formulation in (3.21) can be rewritten as  

 
,

1

1

ˆmax ,

s.t. i) 0 , ii)1 , iii)

i i

K
i

i i
k

i

K

i i i
i

R k

T k K k L










    




                                                                   (3.23) 

where ˆ ( , )i
i iR k  denotes the value of  , ,i

i i iR k   with the threshold i  chosen by (3.22). 

The resulting problem is a two dimensional optimization problem whose solution will be 

pursued in the following section. 

3.5 Proposed Solution 

In the first step, we will optimize the sensing time for a given i ik k  . For each channel, 

we find the optimal value of sensing time ( *
i ) that maximizes the throughput of SUs in the 

thi  channel. The optimization problem is given as 

   0 0
ˆmax ( ) , (H ) 1 1 ( )

s.t 0

i i
i

i i i i i
i i i f ik k

i

R R k C P T
T

T



  





    
 

 


  

                                        (3.24) 

where ( )f i  is the  ,f i ik  . We will prove that ( )i
iR   is a unimodal function in the 

range of 0 i T   for a given i ik k  . If ( )i
iR   is a unimodal function, then ( )i

iR   

monotonically increases within the range of *0 i i    while it decreases within the range of

*
i i T   . Hence  *i

iR  is the only local maximum in the range of 0 i T  .  
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Theorem 3.2 (Unimodal Function): If ( )i
iR   satisfies the following three conditions in the 

range of 0 i T   for a given i ik k   then ( )i
iR   is a unimodal function. 

1) (0) 0,i
i i iR k k     .                                                                                          (3.25) 

2) ( ) 0,i
i i iR T k k     .                                                                                         (3.26) 

3) *unique i , which *( ) 0,i
i i i iR k k      .                                                        (3.27) 

In Appendix B, we prove that ( )i
iR   satisfies (3.25)-(3.27) for majority logic rule, also this 

proof can be extended for OR-rule and AND-rule.  

Each channel should be sensed by at least one SU, therefore there are L K  

optimization problems to find *
i  given different values of SUs for each channel. These 

optimization problems can be solved by bisection search method, or Newton’s method [65]. 

In total, we should solve ( )L K K  optimization problem to find all *
i . The second step of 

our solution involves finding the optimal allocation of SUs to sense the channels with 

optimum *
i  (that we have calculated in the previous step). Therefore the optimization 

problem in the second step is given by 

 
*

*
0 0

1

1

( )
max (H ) 1 1 ( ( ), )

s.t
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K
i i i i
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i

K

i
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k
C P T k k
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k L

 




 
  

 








.                                                           (3.28) 

Let *( )i ik  denote the optimum sensing time when ik  SUs sense the thi  channel. There 

are ( 1)!/ (( 1)!( )!)L K L K    cases to search and find the optimum allocation of SUs. When 

L  and K  are small numbers, it is possible to carry out exhaustive search. But it is infeasible 

for large values as the total number of cases increase exponentially. For example, for 10K   

and 40L  , there are more than 62 10  cases.  

As an alternative to exhaustive search, we model (3.28) as a multiple choice knapsack 

problem (MCKP) [66] (commonly studied in combinatorial optimization) and propose a 
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solution with low computational complexity for this step. Given a set of items each with a 

weight and a value, the original knapsack problem determines the count of each item to 

include in a collection so that the total weight is less than or equal to a given limit and the 

total value is as large as possible [67]. The difference of MCKP from the original knapsack 

problem is that in MCKP, there are multiple classes of items and exactly one item must be 

taken from each class. We will use dynamic programming for the solution of (3.28). The 

main idea is first to break down a complex problem into simpler sub-problems, then find 

solutions for the sub-problems and finally combine these solutions to reach the overall 

solution. 

In our case, we want to assign SUs to the channels as to maximize the total average 

throughput. In an analogy to the MCKP, K  different sets represent K  different channels and 

the total weight of knapsack represents the total number of SUs (i.e., L ). The weight of the 

thi  item in the thj  set is the number of SUs assigned to sense the thj  channel and the value of 

the item is the throughput calculated from (3.24). In the first step of our proposed solution, 

we calculate the throughput for any possible allocation of SUs to each channel; therefore we 

know all the weights and all the values for the set of items. In the second step, we will solve 

the MCKP using dynamic programming. 

Eq. (3.28) can be rewritten in the form of MCKP as 
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1 1
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1 1
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                                                           (3.29) 
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where ,i jR  is the throughput of the SUs in the thi  channel when j  SUs are assigned for 

sensing of the channel. ,i ja  will be 1 if j  SUs assigned for the sensing of the thi  channel, 

otherwise set to 0.  The second constraint ,1
1

L K

i ji
a




  means that at least one SU should be 

assigned for the sensing of each channel. The first constraint ,1 1

K L K

i ji j
ja L



 
   indicates 

that the total number of SUs for the sensing of the channels is L .  

Based on (3.29), we propose a dynamic programming algorithm for solving our MCKP. 

The steps of the algorithm are provided in Table 3.1. In the first step, we initialize three 

matrices, namely V (valuation), a  (assignment) and Index  with the size of ( )K L K´ - . In 

first step, we solve the knapsack problem for 1i = (i.e., the number of sets) and different 

number of SUs (i.e., the weight in knapsack problem) for 1 j L K£ £ - . In the second step, 

we use ( ) ( )( ) ( )max 1,1: , : 1 :1 , 1V i j R i j V i j- + - > -  to find ( , )V i j and ( , )Index i j  for 

each i  and j . Therefore we find ( , )V K L K-  (which is the optimum value of (3.29)) and 

( , )Index K L K-  in this step. In the third step, we use backward induction to find ( , )a i j  for 

each channel. Specifically, we start from ( , )Index K L K- ; if ( , ) 0Index K L K- >  then 

( , ( , )) 1a K index K L K- =  which means that the thK  channel  should be sensed by a number 

of SUs i.e., ( , )index K L K- . After that we use ( , ); 1;j j Index i j i i= - = -  to update the 

parameters i , j  and find the number of sensing SUs for other channels. 
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Table  3.1 Proposed algorithm for MCKP 

 

3.6 Numerical Results 

In our simulation study, we assume a cognitive radio network with different number of 

SUs and channels for sensing. The bandwidth of each channel is 6 MHz. The sampling 

frequency is the same as signal bandwidth. The received SNR from PUs signals varies in 

each channel and its mean takes values within the range of 25 dB and 0 dB. The inactivity 
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probability of PUs is 0( ) 0.5P H  . The target probability of detection for each channel is  

0.99i
dP  . The frame length is assumed to be 100 ms . Our simulation study consists of two 

parts. In the first part, we focus only on one channel and illustrate the results for sensing-

throughput tradeoff over time-selective channels. In the second part of our study, we 

demonstrate the results for jointly optimizing the number of assigned SUs and the sensing 

time for all channels. 

 

 

Figure  3.1 Throughput of SUs in terms of sensing time 

 

Fig. 3.1 illustrates the throughput of SUs for a single channel in terms of sensing time 

assuming OR-rule, AND-rule and majority logic rule. We consider 10L   SUs and 

normalized Doppler values of 210d sf T   and 410d sf T  . It is observed that the throughput 

of SUs is a unimodal function of the sensing time and there is an optimal (in terms of 
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throughput maximization) sensing duration which can be calculated from (3.17).  It is further 

observed that the optimal sensing time increases when the normalized Doppler value 

decreases. The SUs need more time for sensing because the channel coefficients are more 

correlated with decreasing Doppler value.  

 

 

Figure  3.2 Throughput of SUs in terms of the number of SUs  

 

Fig. 3.2 demonstrates the relationship between the throughput and the number of SUs 

under the assumption that optimal sensing duration is used. In this simulation, we have 

1 40L  , 210d sf T   and use (3.17) to optimize the sensing time. We observe that the 

throughput increases with the increasing number of SUs as expected since the probability of 

false alarm decreases.  
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Figure  3.3 Optimum sensing time of SUs over single channel in terms of SNR 

 

In Fig. 3.3, we demonstrate the optimum sensing time versus the SNR of SUs. We 

consider 10L   SUs and normalized Doppler values of 210d sf T   and 410d sf T  . The 

optimum sensing time decreases with the increasing SNR of SUs as a result of the 

improvement in detection performance of SUs due to this SNR increase. With increase in 

Doppler value, the channel coefficients are less dependent on each other and the detection 

performance is improved, therefore there is less time required to maximize the throughput in 

the same SNR. It can be also observed that OR-rule is more resistant to the channel 

selectivity in comparison to the other two methods. 
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In Fig. 3.4, we demonstrate the throughput of SUs versus the SNR of SUs over a single 

channel. We consider 10L   SUs and normalized Doppler values of 210d sf T   and 

410d sf T  . The throughput of SUs increases with the increasing SNR of SUs similar to what 

is observed for the sensing time in Fig.3.3. With increase in Doppler value, the channel 

coefficients are less correlated and there is more temporal diversity available for the 

detection of PUs. This therefore results in an increase in the throughput of SUs.  

 

 

Figure  3.4 Optimum Throughput for SUs over single channel in terms of SNR 
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In the second part of our simulation, we assume a cognitive radio with 40 SUs and 10 

channels. We jointly optimize the number of assigned SUs and the sensing time based on 

(3.23) to maximize the total throughput of the network. In Fig. 3.5, we investigate the effect 

of time selectivity on the throughput of SUs assuming majority logic rule. We demonstrate 

the results for time varying Rayleigh fading channels with Doppler values of 110- , 210-  , 

310-  and further include the results for symbol-by-symbol independent Rayleigh fading 

channel as a benchmark [48].  For 310d sf T  , the channels coefficients are highly dependent 

on each other. Among the Doppler values considered, the worst detection performance and 

throughput of SUs is observed in this case. When the Doppler value increases to 210d sf T  , 

the dependency of the channel coefficients decreases. This indicates a decrease in the 

variance of decision statistic ( )iy , therefore the detection performance is improved in 

comparison to 310d sf T  . For 110d sf T  , the channel coefficients are less correlated to 

each other and it is observed that the throughput of SUs in this case converges to the 

throughput of SUs over symbol-by-symbol independent Rayleigh channel. 

In Fig 3.5, we have jointly optimized sensing time ( i ) and the number of SUs ( ik ) based 

on (3.23). Now, in Fig. 3.6 we demonstrate that the joint optimization of these two variables 

will indeed outperform when we optimize only one of the variables in each part and fix the 

other one. We assume 210d sf T   and consider the following two semi-optimal 

benchmarking methods: 

 Method A (Fixed SU number and optimized sensing time): We assume that the 

number of SUs for each channel is fixed and identical and only the sensing time is 

optimized.  

 Method B (Fixed sensing time and optimized SU number): We assume a fixed 

sensing time and optimize the number of SUs. 
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We observe that the joint optimization yields a throughput gain around 10% for some 

SNRs in comparison with method A. In method A, each channel will be sensed by 4 SUs. For 

Method B, we assume that sensing time occupies 25% and 10% of total time frame. It can be 

seen that our proposed method outperforms Method B. We observe that the joint 

optimization yields a throughput gain of around 15% and 25% related to method B which the 

sensing time is 10% and 25% of total time frame, respectively.    

 

 

Figure  3.5 Throughput of SUs over time varying channels with different Doppler values. 
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Figure  3.6 Throughput of SUs for the proposed method 
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Chapter 4 

Spectrum Trading for Concurrent Non-Identical Channel Allocation 

in Cognitive Radio Networks  

 

4.1  Introduction  

In Chapter 2, we have proposed the spectrum trading using a multi-unit sequential sealed-

bid first-price auction for the shared used access model in cognitive radio. We have assumed 

that the channels are non-identical and the value of each channel can be determined by the 

channel capacity, data demand of SUs, and data transmission time. In sequential auction, the 

channels are auctioned one after each other and each SU can submit one bid at the time, 

while in concurrent auction the bidders submit their bids simultaneously for the channels. 

Therefore concurrent auction needs less time and information overhead for holding auction 

than the sequential auction. In this chapter, we aim to design a spectrum trading for non-

identical channel allocation using concurrent auction mechanism with exclusive usage 

spectrum access model.  

An important question faced by a licensee is how to allocate the spectrum rights to the 

SUs in an optimal manner, i.e., to ensure maximum revenue for the PUs and maximum 

satisfaction for SUs. Different SUs have different estimation about the value of available 

channels. Since the license holder does not know the values that bidders attach to the 

channels, auctions [7], [8], [25], [29], [56], [57], [68]  provide an efficient mechanism for the 

licensee to get higher revenue than that is obtainable via static pricing. Auctions are also 
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beneficial for the bidders, since, in general, they assign commodities to the bidders who 

value them most.  

In the current literature on spectrum auctions [7], [29], [56], [57], the valuation functions 

used for the bidders are somehow unrealistic. In [56] and [25], Kasbekar et al. and Sengupta 

et al. have considered a uniform distribution for the valuation function of the bidders. 

However, in practical systems, the channel conditions and quality of service (QoS) 

requirements of each user are different and therefore the channels have different and non-

identical values for SUs.  In [68], a non-uniform valuation function has been proposed which 

takes into account the channel capacity; however only one type of data traffic is considered 

in this function ignoring the possibly different QoS requirements. In this chapter, we will 

consider a realistic valuation function based on not only channel capacity, but also delay 

sensitive and delay-insensitive data traffics of SUs. 

Another common assumption in the current literature on spectrum auctions is that all 

bidders are single-minded. It means that the bidders have non-zero valuation function for 

only one bundle of channels. Moreover, the losers do not have the chance of revisiting the 

remaining available channels. Such an assumption about bidders for non-identical channels is 

not efficient, since the chance of winning for the bidders will decrease despite of the existing 

unused channels for sale. From the auctioneer side, there are unused channels causing 

inefficiency in channel utilization and, therefore, revenue degradation. To address this issue, 

we consider r -minded bidders each of which can bid for r>1 bundles of channels in each 

round of auction, but is allowed to win at most one of these bundles. 

Another important issue that we want to address in this chapter is truthfulness1 or 

incentive compatibility of combinatorial auction mechanism. To date, Vickrey-Clarke-Grove 

                                                 
1 If an auction mechanism has the property that each user should submit their true valuation if he/she wants to                    
maximize his/her utility function, it is called truth-telling algorithm [59]. 
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(VCG) mechanism is the only general method in which bidders should reveal their true 

valuation to maximize their utility function or social welfare1 function. VCG mechanisms are 

however required to compute the optimum outcomes of auction to be truthful. When there 

are r -minded bidders with bid submission for more than one bundle of channels or when 

there are single minded bidders with more than two channels in each bundle, the problem of 

determining auction outcomes is NP-hard and there is not an optimum solution for these 

cases. This problem should be solved by sub-optimal solutions therefore the VCG 

mechanism is not truthful anymore. One of the open problems is to find sub-optimal 

solutions which are truthful when the problem of determining auction outcomes is NP-hard. 

In [59], Nissan et al. have proposed two VCG-based2 truthful sub-optimal solutions for 

single-minded bidders using the so-called second chance mechanism. In [69], Lavi et al. have 

introduced a sub-optimal solution for NP-hard VCG mechanism for single minded bidders 

which is truthful in expectation3. In [70], Lehman et al. have demonstrated that there is a 

simple truthful greedy algorithm for single-minded bidders and further proven that there is 

not any payment scheme for the greedy algorithm with r -minded bidders to make it truthful 

in general. To address this problem, we impose some restrictions for the bidders and propose 

a weaker concept of truthfulness for r -minded bidders.  

4.2 System Model and Problem Formulation  

We consider a cognitive radio network with N  SUs. Assume the availability of M (

N ) non-identical channels that the primary network wants to sell to the SUs.  Let 

 1 2, , ..., NM
     be the set of all possible ways in which the M  non-identical channels 

                                                 
1 The social welfare is the sum of utilities of all bidders for the specific channel allocation.   
2 VCG-based mechanism is a mechanism that uses the suboptimal algorithm for determining the outcomes and              
calculates the payment of bidders based on VCG. 
3 Truthfulness in expectation is a weaker concept than deterministic truthfulness [69]. 
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can be allocated to N  SUs. Let  1 2K , K ,..., Kj N
  , 1, 2,..., Nj M , denote a subset of   

and each of its elements corresponds to a particular channel allocation. Therefore, each 

element therein  1 2K , ,...,i mk k k , 1, 2,...,i N , represents the set of channels in the bundle 

allocated to the thi  bidder and m  is the number of channels in a bundle.  

We denote K( )i iV  as the valuation function or utility of the thi  SU for the channel 

allocation K i j   (i.e., the value that it conjectures or expects to derive from the allocation 

when it submits the bids). Note that the valuation function of the thi  SU is simply expressed 

as  i kV , 1 k M   if the channel allocation K i  consists of only one channel. The profit of 

the thi  SU is given by K K( , , ) ( )i i i i i i iu p V V p   where ip  is the payment that the thi  SU 

makes to the auctioneer for the channel allocation K i . Let (K )iiB  denote the bid of the thi  

SU for the channel allocation K i , i.e., the amount of money that the thi  SU is willing to pay 

if the allocation K i j   is chosen. The auctioneer determines the channel allocation and the 

payment ip .  

The design of an auction can be formulated as an optimization problem to maximize 

either revenue or social welfare. The social welfare [10] is the sum of the utilities of all 

bidders from the allocation and therefore defined as 1
(K )

N

i ii
VSW  . Furthermore, let *Ki  

denote the channel allocation that maximizes the revenue of the auctioneer, given the bids 

(.)iB , 1,…,i= N . That is, *Ki  satisfies 

*

1 1

(K ) (K ) K .
N N

i i i i i
i i

B B
 

                                                                                        (4.1) 

For a truthful auction mechanism, the net utility of the thi  bidder for any possible 

bidding is maximized when it sets (K ) (K )i i i iB V , K i  [58]. Therefore, in a truthful 

auction mechanism such as VCG, since (.)iB  is the announced valuation of bidders to the 

auctioneer, *Ki  obtained from (4.1) will also maximize the social welfare of the bidders. Let 
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*K j  denote the allocation that would have maximized the social welfare if the thj  bidder did 

not participate in the auction. That is, *K j  satisfies 

* *

1, 1,

(K ) (K ) K .
N N

i j i i i
i i j i i j

B B
   

                                                                                  (4.2)                              

Under the VCG mechanism, the payment made by SU to the auctioneer is given by 

* *

1, 1,

(K ) (K )
N N

j i j i i
i i j j i j

p B B
   

    .                                                                                     (4.3) 

The implementation of the VCG mechanism requires the calculation of *Ki  and *K -j , 

1,...,j N . *Ki  can be found by using a combinatorial optimization algorithm for the channel 

allocation problem stated in (4.1), and *K -j  can be found by running the same algorithm on 

the set of bidders ignoring the thj  bidder.  

We consider two cases in which r -minded SUs can submit bid either only for single 

channels or for bundles of channels. For case 1, let ,1 ,2 ,, , ...,i i i i Mb b bB      be the bidding 

vector (with r  non-zero elements) of the thi  bidder where ,i jb  is its bid for the thj  channel. 

For case 2, let 1 1 1 1
,1 ,2 ,, , ...,i i i i rb b b   B  be the r -tuple bidding vector of the thi  bidder where 1

,i jb  

denotes its bid for the thj  bundle of channels. Furthermore, let  , ,1 ,2 ,, ,...,i j i i i Ms s sS  be an 

M -tuple vector including the channels for which the thi  bidder submits bid as its thj bid. 

The SUs have their own valuation for the channels and this valuation mainly depends on 

the capacity of the channel and traffic of SUs. The ergodic capacity of the thj  channel for the 

thi  SU is given by [8] 

 2 2
i, j j i, j i, j i, j i, jC = ln 1+G | h | P σ                                                                                        (4.4)                             

where j  is the bandwidth of the thj channel and i, jP  is the signal power of the thi  SU in the 

thj channel. In (4.4), i, jG  and i, jh  represent, respectively, the path loss and the fading 

coefficient of the thj  channel between the thi  SU and Base Station. The fading coefficients 



 

 53 

are modeled as complex Gaussian with zero mean and unit variance, leading to Rayleigh 

fading model. The additive noise is modeled by a complex zero-mean Gaussian random 

variable with a variance of 2
i, jσ  which follows a uniform distribution between min max

2 2σ ,σ    

for each SU. Besides channel capacity, the valuation of a channel for SUs depends on their 

data traffics. We assume that data packets arrive to the SUs following a Poisson distribution 

with mean d  for delay-sensitive traffic and o  for delay-insensitive traffic ( d o  ) [29].  

In this case, r -minded bidders can bid for single channels. Based on the channel 

capacity and traffic of SUs, we propose a valuation function for the single-item bidding as 

   
 

1 2 , ,

1 , ,

,

if

( ) if

0 if

d o d o
i i i k i i i k

d d d o
i i i k i i k i i

d
i k i

Q D Q D C D D C

V k Q D C D C D D

C D

   
   




                                                  (4.5) 

where d
iD and o

iD  denote the required data rates of the SUs for transmitting , respectively, 

delay-sensitive and delay-insensitive data traffic. We assume that data packets arrive to the 

SUs following a Poisson distribution with mean d  for delay-sensitive traffic and o  for 

delay-insensitive traffic ( d o  ) [56]. Therefore, d
iD and o

iD  are respectively functions of 

d  and o  . Furthermore, let 1Q  and 2Q   1 2Q Q  denote the valuation coefficients of, 

respectively, delay-sensitive and delay-insensitive data. 1 2Q Q  shows that delay-sensitive 

data has higher valuation than delay-insensitive data for the SUs. Based on this difference in 

the valuation, the SUs should pay more to the auctioneer if they want to transmit delay-

sensitive data. We assume that two traffic types are independent from each other and also 

independent from channel capacity. 

In this case, the auctioneer asks bidders to submit at most r  bids for the available single 

channels, therefore each bidder submits an r -pair bid vector. As discussed above, we use 

VCG as the auction mechanism. Since VCG is truthful when it is solved optimally, each user 
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should submit its true valuation to maximize its social welfare. If there are more than r  non-

zero channel valuations for a bidder, the bidder submits the r  most valuable channels to 

maximize its valuation function since each bidder can submit only r  bids.  

Define the matrix  1 2; ; ...; NB B B B  of size N M which contains all the biddings. 

The thi  row of this matrix represents the bidding of the thi bidder and the thj  column 

represents all the biddings for the thj  channel. Let M NA  denote an assignment matrix with 

each of its element ,i ja  being 0 or 1. If the thi  bidder wins the thj  channel, ,i ja  is set to one, 

otherwise zero. The channel allocation can be now stated as an optimization problem as 

     

, ,
1 1

, , ,
1 1

arg max

s.t. i) 0,1 ,  ii) 0,1 ,  iii) 0,1

N M

i j i j
i j

N M

i j i j i j
i j

a b

a a a

A  

 

  



 
.                                                    (4.6)                              

In the above, the second constraint means that the thj  channel can be allocated to at 

most one bidder. The third constraint indicates that each bidder can win at most one single 

channel. This problem can be modeled as a bipartite maximum weighted matching 

(BMWM)1 problem [71], [72] and be efficiently solved by sequential algorithms such as 

Hungarian algorithm [73].  

4.2.1 Case 2: r -minded bidders with bundle channel auction  

In the previous sub-section, we have assumed that if the channel capacity is less than 

SU’s delay-sensitive data traffic demand (i.e., ,
d

i k iC D ), the bidder assigns zero value to the 

channel. In this sub-section, we assume that bidders have the bundling capability of two or 

more channels. Each of these channels is supposed to have lower capacity than the data 

demand of bidders, but their aggregate capacities are equal or more than the demand. The 

                                                 
1 A weighted bipartite graph (or bi-graph) is a graph whose vertices can be divided into two disjoint sets such 
that every edge connects a vertex in one set to another set and the edges are weighted [71]. 
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maximum number of the channels that can be bundled in a bid is denoted by m  and is 

determined by the auctioneer, (1 m M  ).  

The valuation function for a bundle of channels is given by 

 
 

|K | |K |

1 2 , , ,
1,2,..,|K |K 1 1

|K |

(K ) if max ( )
i i

i
i

i

d o d o
i i i i i j i j i i i j

j
j j

m

V Q D Q D C C D D C
  



                                  (4.7)

                       
 

where (K )i iV  is the valuation of the thi  bidder for the bundle of channels K i . Each bidder 

can place r  bids and each bid consists of at most m  channels. The cardinality of K i  is less 

than or equal to m  (i.e., | K |i m ).  

In this case, bidders make their valuations for a single channel based on (4.5) and for a 

bundle of channels on (4.7). As there is no budget constraint in our problem formulation, the 

bidders can submit bids for m  most valuable bids. Let K i, j  denote the subset of the channels 

as the thj  bid of the thi  bidder. The elements of ,i jS  are given by 

,
,,

1
if K

| K |

0 o.w

i j
i ji j

j
s

  



                                                                         (4.8) 

where | K |i, j  is the number of channels in the bid. For example if there are 5 channels for 

sale and the first bidder wants to submit a bundled bid as its first bid consists of channels 1,2 

and 4, the  1,1 1 3,1 3,0,1 3,0S  . The matrix ,1 ,2 ,; ;... ;i i i i rS S S S     of size r M  

represents all channels that the thi bidder wants to submit bid for them. Let iA  denote an M -

tuple assignment vector where each element ,i ja  is either 0 or 1. When the thi  bidder wins the

thj  channel, ,i ja is set to one, otherwise zero. The channel allocation problem in case 2 can 

be now formulated as 
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       
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 .                (4.9) 

Here, the first constraint means that the thj  channel can be allocated to at most one 

bidder. The second constraint involves A ST
i i  which is an r -tuple vector whose elements take 

the value of either 0 or 1. It imposes that the thi  bidder can only win the channels for which it 

has submitted bidding. The third constraint  1 0,1T
i i rIA S   checks that each bidder can only 

win at most one bundle.   

The problem in (4.9) is, in general, NP-hard and not solvable in polynomial time. There 

have been some efforts in the literature for a solution in some special cases. Particularly, in 

[58], for 1r  , 2m  , it was solved by maximum weighted matching in a graph. In [74], we 

have considered 2r  , 2m  , modeled the problem as a 3-uniform hyper-graph1 and 

proposed a greedy algorithm for finding a suboptimal channel allocation to the bidders. For 

2r  , 2m   under consideration, the problem in (4.9) is NP-hard and can be modeled by 

maximum weighted matching in hyper-graphs. This so-called “set packing” problem has 

been studied in the context of combinatorial optimization and is one of the Karp’s NP-

complete problems [58].  

Theorem 4.1: The allocation problem among r -minded bidders is NP-hard or the 

decision problem of whether the optimal allocation has social welfare of at least q  ( q  is a 

non-negative real number) is NP-complete 

Proof:  See Appendix C. 

                                                 
1 A hyper-graph is a generalization of a graph, where an edge can connect any number of vertices. 
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4.3  Sub-Optimal Solutions for Case 2 

In the following subsections, we propose two approaches based on greedy algorithm 

[70] and randomized rounding of LP relaxation algorithm [69] to find sub-optimal solutions 

for our NP-hard problem. The prominent characteristics of these two approaches are good 

approximation factor and being near-optimal despite of their computational simplicity.  

4.3.1 Greedy Algorithm 

Greedy algorithm [70] is a heuristic approach which involves finding the local optimum 

at each stage which can be an approximation of the global optimum. Here, we propose a 

simple greedy algorithm to find a sub-optimal solution for case 2 with an approximation 

factor of  max 1/ ,1/m M . We model our problem as a weighted hyper-graph and the 

solution is to find the maximum weighted matching in this hyper-graph. A norm of a hyper-

edge ie  is denoted by  ( ) 1
l

i i in e w v  and is called “average bid per channel” for the thi

bid. Here, iw is the weight of thi  hyper-edge which is equal to the amount of submitted bid 

for K i , iv  is the number of vertices of thi hyper-edge which is equal to | K | 1i   , and l  is a 

constant factor ( 0l  ).  

Our proposed greedy algorithm selects the highest norm of hyper-edge in each step and 

deletes all vertices inside the hyper-edge and other hyper-edges that have joint vertices with 

the selected hyper-edge until there is not any non-zero hyper-edge left. The proposed greedy 

algorithm steps can be then summarized as follows: 

Step 1: Compute the norm of all hyper-edges and sort them in descending order. Then go 

to step 2. 

Step 2: Select the hyper-edge with the highest norm and allocate items inside this hyper-

edge to the bidder who placed this bid. Then go to step 3. 



 

 58 

Step 3: Delete all hyper-edges that have any joint vertices with the selected hyper-edge in 

the step 2. Delete all vertices belonging to the selected hyper-edge. Then go to step 4. 

Step 4: If there is any hyper-edge with non-zero norm, go to step 2, otherwise end.  

The proposed algorithm can be solved in ( log( ))O n n  where n is the total number of 

bids. 

Theorem 4.2: The approximation factor of the proposed greedy algorithm with norm 

1 2l   is  max 1/ ,1/m M .  

Proof: See Appendix D 

Since our auction mechanism is VCG-based, the payment of each winner bidder should 

be calculated based on (4.3). The key part to calculate the payment of the 
th

j bidder (i.e., jp ) 

is to find *

1,
(K )

N

i ij i j
B

   and *

1,
(K )

N

i jj i j
B   . *Ki  can be found via the greedy algorithm for 

the channel allocation problem stated in (4.1), and *K -j  can be found by running the same 

algorithm on the set of the bidders ignoring the thj  bidder. Therefore the payment of the 
th

j

bidder can be calculated as * *

1, 1,
(K ) (K )

N N

i j i ij j i j j i j
B Bp       .  

 

4.3.2 Randomized Rounding Relaxed LP (RRRLP) Algorithm 

In the relaxed version of problem formulation in (4.9), each element of matrix A  can be 

in the interval [0,1] . Therefore we can reformulate (4.9) as  

1

, 1 ,
1

arg max

s.t i) 1,   ii) 1,   iii) 1,   iv)0 1

i
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T T

i i i
i

N
T T

i j i i i i r i j
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a I a
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A S B

A S A S






    




   .                                 (4.10) 

The re-formulated problem given by (4.10) is a LP problem that can be solved by 

simplex method or interior points [75]. The output of the relaxed LP problem provides an 

upper bound for the total social welfare and is not necessarily integral; therefore rounding the 
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fractional solution can be used to obtain an integral feasible solution. Different methods of 

rounding have been proposed in the literature [75]. In this section, we will use randomized 

rounding (RR). The basic idea of this method is to use the probabilistic method to convert an 

optimal LP solution to a valid solution of the original problem. As the value of each 

assignment is less than 1, a probability equal to this number can be assigned to each 

fractional solution, i.e., if this value for the thj  bid of the thi bidder is ,i ja , the channel will be 

allocated to the thj  bidder with the probability , ,( )i j i jP a a . Since in RR method, all 

fractional solutions of (4.10)  have the chance of rounding, this method is fairer related to the 

bidders than the other rounding algorithms [69].   

The steps of our proposed RRRLP can be therefore summarized as follows: 

Step 1: Relax the integrality constraints in (4.9) and solve the relaxed LP version of the 

problem in (4.10). Then go to step 2. 

Step 2: Sort all the bids in decreasing order based on their fractional solution ,i ja . Then 

go to step 3. 

Step 3: Allocate the desired bundle to the bidder with the highest level in step 2 based on 

the probability value that comes from the relaxed LP solution. Then go to step 4. 

Step 4: Delete all the bids of winner bidder and all the bids that have joint item with the 

allocated channel. Then go to step 5. 

Step 5: If there is any non-zero bid or any channel is left, go to step 3. Otherwise end. 

Because of randomized nature of this algorithm, it is possible that the integral solution of 

this algorithm might be far from the LP fractional solution. However, based on the 

probability distribution of this technique, the probability of being far from the optimal 

solution is so small and it can be shown that the performance of this algorithm is near 

optimal.  
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For the payment calculation of the RRRLP algorithm, similar to the greedy algorithm 

discussed in the previous sub-section, first we need to find *Ki  and *K -j . For the RRRLP 

method, *Ki  can be found by running the RRRLP algorithm to solve the outcome 

determination problem of auction stated in (4.1), and *K -j  can be found by running the same 

algorithm on the set of bidders ignoring the thj  bidder. Finally, jp can be calculated using 

(4.3).   

4.4 Truthful Iterated Greedy Algorithm for Case 2 

The main challenge about VCG mechanism is that it should be calculated optimally to 

be truthful. Since our problem is NP-hard for case 2, it cannot be optimally solved. In the 

previous section, two sub-optimal methods have been proposed to solve this problem but 

these methods ruin the truthfulness property of the VCG payment.  

In [70], Lehman et al. have identified four properties for an auction mechanism to be 

truthful. Based on these properties, they have designed a new truthful payment method for 

single-minded bidders that satisfies these properties. They have further shown that there is 

not any payment method to make an auction truthful for r -minded bidders [70]. To alleviate 

this problem, we will use a weaker concept of truthfulness for bidders with some restrictions. 

Particularly, we will consider myopic bidders1 and show that it is possible to design a truthful 

auction for myopic complex bidders.  

When the bidders are myopic, they cannot gain any information from the previous 

rounds of auction. Such an assumption can be easily justified in our case: Since the bidders 

are SUs and the items for sale are channels, we can assume that channel conditions (such as 

noise, fading and interference) will change independently in each round of auction. 

Therefore, bidders are not able to use the information from previous rounds. Furthermore, we 

                                                 
1 A bidder who disregards future auctions in a sequential setting is called myopic bidder. 
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assume that traffic of SUs will change independently from one round to another round; 

therefore SUs do not have any estimation about the demand of other SUs.  

The complexity of the algorithms for determining auction outcomes can be decreased 

through the employment of some iterative techniques. Another advantage for iterative 

outcome determination algorithm is that our problem can be reduced from r -minded bidders 

to single minded bidders. In [76], it has been shown that if the output of an iterative auction 

is computed optimally in each iteration, it will be truthful. On the other hand, if the outcome 

determination will be greedy in each iteration but satisfies monotonicity and participation 

property it will be truthful for myopic bidders [70]. 

Definition: An outcome determination algorithm has monotonicity property if a bidder 

i  is granted a bundle with bid K i , it is also granted each bundle K Ki i    with norm i in n  . 

Participation property ensures that the bidder will not lose by participating in the 

auction.  It indicates that the winning bidder’s payment should not be more than its submitted 

bid. In our outcome determination algorithm, the bids of all bidders are sorted based on their 

average bid per item or norm of each bid. In each iteration of the algorithm, a most valuable 

bid of each bidder is selected for use in the current iteration. After each iteration, all bids 

used in this iteration, all bids of winning bidders, and all bids that have joint item with the 

winning bids are deleted. Iterations continue until there is no item or no bid left. The steps of 

our proposed truthful iterated greedy algorithm can be therefore summarized as follows: 

Step 1: Sort r  bids of each bidder based on their norms in descending order.                         

Then go to step 2. 

Step 2: Pick the most valuable bid of each bidder. Then go to step 3. 

Step 3: Apply the proposed greedy algorithm in sub-section 4.3.1 and determine the 

winning bidders. Then go to step 4. 
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Step 4: Payment of each bidder should be determined based on the employed payment 

method (See below for further discussions) Then go to step 5.  

Step 5: Delete all the bids of winner bidder and all bids of other bidders that have joint 

items with the winner bid. If there is any channel or any bid left, go to step 2, else end. 

For the payment, we use a modified version of the payment method in [70]. In this 

method, we find the most valuable bid that has at least one joint item with the winning bids. 

Let ( )Ln j denote this bid. If the number of items in winning bid is | K |j , the winning bidder 

should pay | K | ( )j Ln j . In the original payment method of [70], all bids are considered in 

payment determination. In our modified version, the payment of each bidder will be 

determined by the participant bids in each iteration, not all bids. Therefore, the payment of 

each bidder is affected by at most one bid of other bidders used in each iteration. With this 

method of payment and under the assumption of myopic bidders, we can model r -minded 

bidders as single minded bidders. 

Proposition: The proposed iterated greedy algorithm for the myopic bidders is truthful. 

Proof: The proposed modified payment method guarantees that the payment of the 

bidders is always less than the submitted bid. In our proposed iterated greedy method, the 

winners in each iteration will be determined based on the most valuable bids with the highest 

norms. For the payment calculation of the winner bidder in each iteration, first we find the 

most valuable bid that has at least one joint item with the winning bid of bidder in the same 

iteration. It is clear that the selected bid (which has joint item with the winning bid) has less 

norm than the norm of winning bid; otherwise, this bid should have been selected as the 

winning bid. Therefore, we can conclude that our proposed payment method satisfies the 

participation property.  

Based on the monotonicity definition, an outcome determination algorithm has the 

monotonicity property if a bidder i  is granted a bundle with the bid K i  and the norm in , it 
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will be granted each bundle K Ki i   with the norm i in n  . Therefore for the monotonicity 

proof, it is sufficient to show that if this bidder submits bundle K i  (i.e., K Ki i  ) with 

i in n   instead of the bundle K i , it should also win bundle K i . The greedy algorithm works 

based on the highest norms. The bidder i  was winner with norm in  for the bundle K i , 

therefore it means that the bundle K i  with norm in  was among optimal bids with the highest 

norms. If the bidder i  submits a bid for bundle K i  with norm in , since its norm in  is bigger 

or equal than in  , therefore we can conclude that in  is among optimal bids with the  highest 

norms and also it has no conflicts with bids with higher norms since the bidder i  was winner 

with the bid K i . Therefore the bidder i  is also the winner for the bundle K i . Since the 

iterated greedy algorithm satisfies the monotonicity and the participation property for the 

myopic bidders, the proposed algorithm is truthful.  

In addition to the truthfulness property, there are two advantages of our proposed 

algorithm in comparison with the VCG auction. First, the complexity of our problem is less 

than that of VCG mechanism.  Second, when the VCG mechanism is solved by a sub-optimal 

algorithm, rationality of the bidders may not be satisfied but in our proposed algorithm, the 

payment of the bidders are always less than the bidders submission and therefore their 

rationality are satisfied.  

  

4.5  Simulation Results 

In this section, we provide Monte-Carlo simulation results to demonstrate the 

effectiveness of the proposed auction framework and compare it with previous methods [57], 

[68] in terms of total social welfare, revenue of the auctioneer, and profit of bidders. In our 

simulations, we use the notation of “currency unit (CU)” instead of any particular currency. 
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We assume that all channels have a bandwidth of 6 MHz. For data traffic of SUs, we assume 

1o  Mbps and 0.5d  Mbps.  

In Fig. 4.1, we illustrate the average auctioneer revenue versus the number of bids r  for 

case 1. We assume that the number of channels is M =10 and the number of bidders are 

11 16N£ £ . We see that the average revenue increases when the number of bids increases. 

This indicates that the efficiency of the spectrum utilization is better for 1r  , because there 

is not any unused channel. It is also observed that the auctioneer’s revenue saturates for 

7r  . On the other hand, the overhead information caused by bidder’s submissions increases 

with the increasing number of submitted bids. Therefore we can prevent the increase in 

overhead information by fixing r  at the saturation point which is 7r =  in our simulation. It 

is also observed from Fig. 4.1 that the auctioneer’s revenue increases as the number of 

bidders increases from 11 to 16. This increase is a result of the increasing competition 

between bidders and increasing in amount of their bids. Since the outcome determination of 

auction is optimum in case 1, the auction mechanism in case 1 is truthful.  
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Figure  4.1 Average revenue of the auctioneer in case 1, i.e., the SUs are r -minded but they 

can submit bid only for single channels.  

 

 In Fig. 4.2,  we illustrate the average auctioneer revenue versus the number of bids r  

for case 2 and compare the performance of proposed greedy, RRRLP and truthful greedy 

algorithms (See Section 4.3 and 4.4). We assume that the number of channels is M =10 and 

the number of bidders is N = 19. As discussed in Section 4.4, the RLP algorithm provides an 

upper bound for the revenue of auctioneer and is included here as a benchmark. We further 

include the performance of the greedy algorithm proposed in [70] as a competing scheme. It 

can be observed that the RRRLP method outperforms greedy and truthful greedy method in 
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terms of auctioneer’s revenue. The performance of our RRRLP and greedy algorithms are 

also better than the greedy algorithm in [70]. It can be also observed that the greedy 

algorithm in [70] outperforms the truthful greedy algorithm in terms of auctioneer revenue. 

Specifically, the approximation factors for the RRRLP, the greedy algorithm, the truthful 

greedy algorithm are 75%, 65% and 30%, respectively, while the approximation factor for 

the greedy algorithm in [70] is 55%. 

 

 

Figure  4.2 Average revenue of auctioneer in case 2, i.e., the SUs are r -minded and they can 

submit bid for bundles of channels. 
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In Fig. 4.3, we illustrate the total social welfare for case 2. We assume that the number 

of channels is M =10 and the number of bidders are N = 19. Similar to Fig. 4.2, RLP 

provides an upper bound on the performance of methods under consideration. RRRLP 

performs the best followed by the proposed greedy algorithm, greedy algorithm in [70] and 

the proposed truthful iterated greedy algorithm.   

 

 

Figure  4.3 Average total social welfare in case 2. 
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close to the number of channels, i.e., 10 in our simulation. When the number of bidders are 

14, 15 and 16, the average profit of bidders degrades in parallel to the increase in r . 

Because, the spectrum is fully utilized therefore with increasing r , the payment of bidders 

increases due to more competitors for each channel and the profit of them (that is the 

difference between valuation and payment) decreases.  

  

 

Figure  4.4 Average revenue of bidders in case 1. 
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average profit of bidders degrades with the increase of number of bids. We also observe that 

the truthful greedy algorithm outperforms RRRLP and greedy algorithms in terms of profit 

for the bidders. Since in truthful greedy algorithm, bidders submit their true valuation to 

maximize their profit, the bidder gains more revenue than two other methods.  It should be 

also noted that the complexity of truthful iterated greedy algorithm is less than greedy and 

RRRLP algorithm. 

  

 

Figure  4.5 Average revenue of bidders in case 2. 
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Chapter 5                                                                         

Pricing for Open Access Oligopoly-Market Femtocell Networks   

5.1 Introduction  

The current market in femtocell networks is mainly geared towards close access (CA) 

femtocells [60]. To enable the wide deployment of open access (OA) femtocells, innovative 

pricing models with incentives for residential femtocell users are required that will be 

pursued in this chapter. In [30], Shetty at al. study the impacts of user incentives on the 

revenue of a femtocell operator in CA model. In [61], the economic aspects of openness of 

femtocells compared with close femtocells is studied. This paper considered the monopoly 

market which is the simplest market structure when there is only one seller in the system. 

Some papers [5], [61] propose fixed pricing strategy for open access femtocells, but fixed 

pricing has some drawbacks such as the lack of economic incentives for femtocells and 

revenue degradation for mobile service provider. In [77], Duan et al. investigate the 

economic incentive for the cellular operator to add femtocell service on the top of its existing 

macrocell service. They model the interaction between cellular operator in a monopoly 

market and users as a Stackelberg game. They showed that the operator choose to only 

provide femtocell service if femtocell service has full spatial coverage. In [32], VCG auction 

is proposed as the pricing scheme for open access femtocells. In [33], a reverse auction (one-

buyer-multiple-sellers) framework is proposed based on VCG mechanism for access 

permission trading between wireless service provider and private femtocell owners.  

In our work, we assume oligopoly market [8] where there exist multiple sellers and 

multiple buyers. The sellers compete with each other independently to achieve the highest 

revenue by controlling the quantity or the price of the supplied commodity. The oligopoly 

market is more realistic to use in femtocell networks because there are different mobile 



 

 71 

service providers in practice. The providers should involve residential customers to share 

their spectrum by innovative policies in pricing and QoS warranties. In this regard, 

interaction of users and mobile service providers play a vital role in the OA femtocell 

networks. From the user point of view, CA is obviously preferred by residential customers 

who will have full control over the list of authorized users. However, some surveys indicate 

that OA might be an attractive business model for home market conditioned that competitive 

pricing is offered [4], [78]. Hybrid access (HA) methods are also discussed to reach a 

compromise between the impact on the performance of subscribers and the level of access 

that is granted to non-subscribers [78]. Therefore, the sharing of femtocell resources between 

subscribers and non-subscribers needs to be finely tuned. Otherwise, subscribers might feel 

that they are paying for a service that is to be exploited by others. The impact to subscribers 

must thus be minimized in terms of performance or via economic incentives. With a proper 

pricing model, deploying of an OA or HA model is more beneficial for network operators 

than CA model by providing an inexpensive way to expand their network capacities by 

leveraging third-party backhaul for free.  

5.2 System Model and Problem Formulation 

Consider a wireless cellular network consisting of N  macro base stations (MBSs) and 

several femtocell access points (FAP).  The macro user equipments (MUEs) are served by N  

MBSs from different mobile service providers. In the literature, Homogenous Spatial Poisson 

Process (HSPP) is widely used to statistically model the locations of FAPs and MUEs [79]. 

In our work, we consider Clustered Spatial Poisson Process (CSPP) for FAPs and MUEs 

(See Fig.5.1.a) which is more realistic in practical scenarios. In Fig.5.1, the blue points are 

FAPs and the green points are MUEs. In Fig.5.1.a, the FAPs with CSPP distribution form a 
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cluster represented by the red circle. It is assumed that the FAPs inside each cluster can be 

controlled by a controller. 

 
a. Clustered Spatial Poisson Process (CSPP) 

 
b. Homogenous Spatial Poisson Process (HSPP) 

Figure 5.1 Geographical distribution of FAPs under HSPP and CSPP assumptions. 

 

In CSPP model, we have some clusters of femtocells in macrocell layer with HSPP 

distribution and there is a random number of femtocells distributed identically within each 

cluster area. This assumption is particularly realistic for urban residential areas in which 

several FAPs exist clustered in apartment buildings. Denote 2H RÌ as the interior of a 

reference hexagonal macrocell C  of radius CR . The cellular users (i.e., MUEs) are distributed 

on 2R according to a CSPP CW of intensity Cl . On the other hand, locations of FAPs are 

assumed to form a CSPP fW  with intensity fl . Each femtocell includes a Poisson distributed 

population of actively transmitting femtocell user equipments (FUEs) with mean fU in a 

circular coverage area of radius fR , f CR R  [79]. 

Since the distribution of FAPs follows CSPP, they can be grouped for cooperation in a 

macrocell layer and the available channels can be divided among FAPs of each group. The 
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same channels can be used by another group of the FAPs in a macrocell with far enough 

distances between each other. Consider a two-tier LTE system and assume that FAPs can be 

grouped with respect to their intra-channel coefficients and geographical location to each 

other (i.e., FAPs with high channel gain between each other and distances less than a certain 

threshold can be categorized in the same group). Resource allocation, scheduling and other 

signaling of FAPs with MBSs can be carried out via the controller. We also assume that 

MBS’s antenna is sectorized, therefore the available channels for FAPs in each sector would 

be different from those in other sectors (See Fig.5.2). 

 
 

 

Figure 5.2 Cellular network underlaid with femtocell network 

 

To determine the available channels, we assume that FAPs are equipped with spectrum 

sensing ability and perform cooperative sensing. This method avoids the overhead required 

for periodical MBS announcements if spectrum sensing is carried out by MBSs. Therefore 
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FAPs find their suitable channels based on their requirements and send their requests to the 

controller of group. The controller collects and sends their request to the MBSs.  

5.3  Pricing Schemes  

In our work, we assume OA model in which any user can access to any femtocell. The 

use of OA FAPs at home in fact reduces the interference problems caused by CA FAPs. 

Indeed, all nearby users would be authorized to connect to any femtocell, reducing thus the 

negative impact of the femtocell tier on the macrocell network. In this case, the MUEs are 

always connected to the strongest server (either macrocell or femtocell), avoiding cross-tier 

interference. As a result, the overall throughput of the network increases. OA is therefore 

advantageous from the operator point of view. 

In OA femtocell networks, the unit price of spectrum should be determined dynamically 

because of different demand and supply from femtocell and macrocell sides. In this case, the 

femtocell users have good incentives to participate in OA model and the service providers 

can maximize their revenue. In previous works [61], fixed pricing is suggested for OA that is 

not desirable by residential users and they do not have any tendency to use this model. 

As we mentioned in the first chapter, the design of the pricing model can be considered 

as a spectrum trading problem and microeconomics and game theory provide a set of 

powerful mathematical tools for the analysis of spectrum trading problem. In the following 

sub-sections, we propose pricing models for OA femtocells based on market equilibrium, 

Bertrand game, multiple leader multiple follower Stackelberg game and Cooperative game. 

5.3.1  Market Equilibrium 

In market equilibrium approach used in microeconomics, the profit of the seller and the 

satisfaction of the buyer(s) are maximized. The amount of commodity that the seller is 
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willing to supply to the market is indicated by a supply function. The supplied quantity is a 

function of price p and denoted by ( )S p  [8]. On the buyer side, the amount of commodity 

that the buyer is willing to buy from the market is defined by a demand function denoted by 

( )D p . In general, the amount of supply from the seller is an increasing function of price 

while the demand for a commodity in the market is a decreasing function of price. Given the 

demand and supply functions in a market, the market-equilibrium price is given by the price 

for which the supply equals the demand, i.e., ( ) ( )S p D p= .  

In our case, the negotiation on price and the size of allocated spectrum between the 

FAPs and MBS is performed through a controller (it could be a server which has control 

interfaces to both MBSs and FAPs). We categorize FAPs in groups with respect to their 

channel gains and geographical locations. All FAPs of a specific group submit their spectrum 

requirements to the controller. The controller checks the spectrum availability and unifies all 

demands into one demand and submits them to MBSs. MBS determines the price for per unit 

of spectrum based on its supply function and returns this price to the controller. Then the 

controller allocates demanded spectrum to each FAP. We assume that the maximum demand 

of a FAP is limited and each FAP can access to a limited number of channels. Furthermore, it 

is assumed that the sum of demands of FAPs for spectrum is less than a fraction of the 

available spectrum because MBS should also serve other MUEs that request services but not 

serviced by the FAPs. Spectrum demand of FAPs can be determined using their utility 

function. The utility function of all FAPs can defined as [80]. 

2

1 1

1
( (1 ) 2

2

N N

i i i i i i i i i i i i j
i i i j

u C Ab C b p C d p b b v b b
= = ¹

é ù
ê ú- + - - +ê ú
ë û

å å åb) =                                        (5.1) 

where b is the vector of shared spectrum from all MBSs with FAPs, i.e., [ ]1 2, , ..., Nb b bb =  , 

N is the number of MBSs, and iC is the fraction of spectrum that is used for FUEs. The 
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reason for the power 2 for ib  in (5.1) is that it makes the utility function concave. (1 )iC- is 

the fraction of spectrum that is used for MUEs. ip  is the unit price for spectrum from thi  

MBS. iA  is the spectral efficiency for FUEs served by FAPs and is a function of signal-to-

noise ratio (SNR) and targeted error rate performance. MBS pays to FAPs i id p  (as the unit 

price of spectrum for serving of MUEs by FAPs) where id  is a fixed coefficient and 

0 1v£ £  is another coefficient [81] which shows the substitutability. Specifically, if 0v = , 

the FAPs cannot switch among frequency spectra, while if 1v = , the FAPs can switch 

among frequency spectra freely. 

The demand function for spectrum which belongs to the thi MBS can be calculated by 

( )
(1 ) ,  {1,2,..., }i i i i i i i i j

j ii

U
C A C p C d p b v b i N

b ¹

¶
= - + - - - Î

¶ å
b

 .                                 (5.2) 

Solving this linear system with N equations, we find  

( )
( ) ( )( )

( )

( )( )( )
( )

1 2
( ) (1 )

1 1 1

(1 )
1 1 1

i i i i i i i i

j j j j j j j
j i

N v
D C A C p C d p

v N v

v
C A C p C d p

N v v¹

+ -
= - + -

- + -

- - + -
+ - -å

p

.                                         (5.3) 

This shows the optimum amount of spectrum that MBSs want to sell with price vector p . 

The demand function for the thi service provider can be separated in two parts; one part that 

is dependent on ip and the other part that is dependent on the price of others [... ... ]i jp- =p , 

j i¹ . The demand function can be therefore written as  

( )i i i j j i
j i

D X p Y p l
¹

= + +åp                                                                                                 (5.4) 

where iX , jY and il  are some constant coefficients. The revenue of the thi  MBS from selling 

spectrum to the FAPs can be calculated by [22] 

( )( )
2

( ) (1 ) ( ) (1 )i i i i i i i i i i i i i i i i i iR p C p b C d p b M w b k C b k M w bé ù= - - + - + - - - -ë û               (5.5) 
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where iw  is the total spectrum available for the thi  MBS to be allocated to the MUEs and 

FAPs. Power coefficient in the last term of (5.5) makes the utility function concave. iM , 

1, 2,...,i N=  are the spectral efficiencies of MUEs served by the thi  MBS. ik  is the spectral 

efficiency for MUEs inside the group area served by FAPs. (1 )i i iC b k-  is the revenue of 

MBSs from MUEs which are serviced by the FAPs. i i iC p b  is the payment of FAPs to the 

MBSs based on their usage from spectrums. (1 )i i i iC d p b-  is the amount of discounts that 

MBSs should give to the FAPs for providing services to MUEs. Since the spectrum 

efficiency for the MUEs served by FAPs is more than that of MUEs served by MBS                         

( i ik M> ) therefore the term ( )( )
2

i i i ik M w bé ù- -ë û  represents the performance degradation of 

MUEs users served by MBS. The supply function can be calculated from 

( )
( ) ( )2

(1 ) (1 ) 2 0i
i i i i i i i i i i i i

i

R
C p C d p M k C k M w b

b

¶
= - - - + - - - - =

¶
p

   .                     (5.6) 

By solving (5.6), ( )iS p  can be calculated as  

( )
( )

2

2

(1 ) (1 ) 2
( )

2
i i i i i i i i i i i

i

i i

C p C d p M k C k M w
S

k M

- - - + - - -
=

-
p  .                                         (5.7) 

The supply function for the thi service provider can be separated in two parts; one part 

that is dependent on ip and the other part is a constant. Therefore it can be rewritten as 

( )i i i iS V p q= +p                                                                                                                   (5.8) 

where is and iq  are constant coefficients. The market-equilibrium solution will be then 

defined as the price *
ip  at which spectrum supply equals spectrum demand given by 

* *( ) ( )i iS D=p p . To calculate the prices for the market equilibrium, we should solve 

following set of linear equation system using (5.4) and (5.8), i.e,  

, , {1,2,..., }i i j j i i i i
j i

X p Y p l V p q i j N
¹

+ + = + Îå  .                                                            (5.9) 

*
ip  can be calculated as (See Appendix E) 
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   .                                 (5.10) 

To have a market equilibrium, for all i , we should have * 0ip > .  
 

5.3.2 Bertrand Game  

In the market equilibrium pricing scheme, there is no competition between players or 

agents. By using a competition scheme between players, it is possible to increase the 

revenues with respect to the previous scheme. In our model, players are different MBSs 

which provide service to both FAPs and MUEs and aim to maximize their revenue. In 

Bertrand game, all MBSs first choose their prices for the spectrum and announce them to the 

customers (i.e., FAPs). The FAPs send their demands to the MBSs using their controllers. 

The best strategy for each MBS is maximizing its revenue given the spectrum price of other 

MBSs. In a Bertrand game, the solution depends mainly on the substitutability of the 

spectrum. If the spectrum from the different MBSs are identical (i.e., the homogeneous case), 

then they are said to be fully substitutable. On the other hand, if the commodities are 

different, the spectrum may be partly substitutable or may be completely unsubstitutable.  

In the homogenous case, since the FAPs can buy spectrum from any one of MBSs, 

therefore FAPs will always select the MBS with the lowest price. In this case, it can be 

proven that there is a unique Nash equilibrium in which the prices charged by all MBSs are 

identical. The revenue of a MBS can be calculated by the utility function of a MBS in (5.5) 

that comes from profit of selling spectrum to FAPs and MUEs. This game can be solved by 
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Nash equilibrium using the best response function. The best response function of the thi MBS 

given the spectrum price of other MBSs is defined as 

( ) arg max ( , )
i

i i i i i
p

B R p- =p p .                                                                                             (5.11) 

The Nash equilibrium of this game is denoted by the vector * *[... ...]ip=p  where 

* *( )i i ip B= p . *
ip  is the vector of the best response of other player except i . For calculation 

of the Nash equilibrium, we should solve the set of equations 0i iR p¶ ¶ =  for all i . The size 

of shared bandwidth in (5.5) is replaced by the demand of femtocells ( )iD p . The revenue 

function of thi  MBS can defined as  

( )( )
2

( ) ( ) (1 ) ( )

( ( )) (1 ) ( ) ( )

i i i i i i i i

i i i i i i i i i i

R C p D C d p D

M w D k C D k M w D

= - -

é ù+ - + - - - -ë û

p p p

p p p
 .                          (5.12) 

Solving 0i iR p¶ ¶ = yields the Nash equilibrium. The Nash equilibrium can be achieved by 

solving following linear equations: 

( )

[ ] ( )2

( (1 ) ) ( )

            ( (1 ) ) (1 ) 2 ( )
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i i i i
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i i i i i i i i i i i i
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C C d D
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¶

+ - - + - - + -
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p

p

                      (5.13) 

(5.13) can be rewritten as 

{ }0, , 1,2,...,i i j j i
i j

A p Z p e i j N
¹

+ + = Îå                                                                       (5.14)

where iA , jZ and ie  are respectively given by 

( )2 22( (1 ) ) 2i i i i i i i iA C C d X k M X= - - + -  .                                                                     (5.15) 

( )( )2
( (1 ) ) 2j i i i i i i j

i j

Z C C d k M X Y
¹

= - - + -å  .                                                               (5.16) 

( )( ) ( )2
( (1 ) ) 2 (1 )i i i i i i i i i i i ie C C d k M X l k C M X= - - + - + - -  .                                     (5.17) 

 Since there are N  service providers, we have N  linear equations to solve and calculate ip , 

{ }1, 2,...,i NÎ . Based on the lemma in the Appendix E, we can solve (5.14) as 
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.(5.18) 

To have Nash equilibrium for the bargaining game for all i , we should have 0ip > . 

 

5.3.3 Multiple Leader Multiple Follower Stackelberg Game 

In multiple leader multiple follower (MLMF) Stackelberg game, there are some service 

providers (called as “leaders”) who enter the market sooner than the other service providers, 

therefore they determine the prices of spectrum sooner than the others. Therefore the other 

service providers (called as “followers”) should determine their prices after the leaders 

determine the price of spectrum. In the Stackelberg game, since the leaders will make the 

decision before the followers, the followers will choose their optimal strategy based on the 

observed strategy chosen by the leader. Consequently, the solution of this game is a set of 

strategies where the profit of the leader is maximized and the followers choose their best 

responses. 

In a Stackelberg game, the solution which maximizes the profit of the leader is defined 

as the Stackelberg equilibrium. The Stackelberg equilibrium can be obtained by backward 

induction. In backward induction, the best response of the follower is first obtained. Then, 

from this best response of the follower, the leader optimizes its strategy to achieve the 

highest profit. We assume that there are I leaders and N I-  followers in the system. In our 

case, MBSs { }1, 2,...,i N I= -  are followers and MBSs { }1,...,i N I N= - + are leaders. 

Based on the backward induction, first we should calculate the price of followers in terms of 

price of leaders. Mathematically speaking, we need to calculate 0i iR p¶ ¶ =  for 
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{ }1, 2, ...,i N I= -  and calculate [ ]1 2, , ..., N Ip p p -  in terms of the price of leaders, i.e.,

1, ...,N I Np p- +
é ùë û . Then we can calculate price of leaders by 0i iR p¶ ¶ =  for 

{ }1,...,i N I N= - + . Therefore, based on the Stackelberg equilibrium, leaders will have 

more flexibility to determine the price of spectrum and therefore will gain more revenue than 

the followers.  

To calculate price of followers in terms of price of leaders, first we should use (5.11) to 

calculate price of service providers{ }1, ...,I N+ . Therefore if we use same method in the 

previous sub-section, the linear equations for calculating price of followers are given by 

{ } { }
1

0, 1,2,..., , , 1, 2,...,
I

i i j j i k k
i j k

A p Z p e Z p k I i j I I N
¹ =

+ + + = Î Î + +å å                 (5.19) 

where iA , jZ  and ie  are respectively given by 

( )2 22( (1 ) ) 2i i i i i i i iA C C d X k M X= - - + -  .                                                                     (5.20) 

( )( )2
( (1 ) ) 2j i i i i i i j

i j

Z C C d k M X Y
¹

= - - + -å  .                                                               (5.21) 

( )( ) ( )2
( (1 ) ) 2 (1 )i i i i i i i i i i i ie C C d k M X l k C M X= - - + - + - -  .                                     (5.22) 

In (5.19), kp  , {1,..., }k IÎ  are the price of leaders and considered to be constant 

coefficients. Therefore, the price of followers in terms of the price of leaders can be 

calculated as 
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        (5.23) 

We can rewrite the price of followers as 
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where ie¢  and iZ ¢  are respectively given by 

( )

( )( )

2

1

1

1 1

1

1
    

1

i
i iN

ii i i i

i i i

j
iN

i j i i i j j

i i i

Z
e e

ZA Z X Z
A Z

Z
e

Z X Z X Z
A Z

=

¹

=

é ù
ê úæ öê ú÷ç ÷ç¢ ê ú= - ÷ç ÷ê úç- ÷ç -è øê ú+
ê ú-ë û

æ ö÷ç ÷ç- ÷ç ÷ç ÷- - ÷çè ø+
-

å

å
å

                                                                (5.25) 

( )

( )( )

2

1

1

1 1

1

1
   

1

i
i iN

ii i i i

i i i

j
iN

i j i i i j j

i i i

Z
Z Z

ZA Z X Z
A Z

Z
Z

Z X Z X Z
A Z

=

¹

=

é ù
ê úæ öê ú÷ç ÷ç¢ ê ú= - ÷ç ÷ê úç- ÷ç -è øê ú+
ê ú-ë û

æ ö÷ç ÷ç- ÷ç ÷ç ÷- - ÷çè ø+
-

å

å
å

 .                                                              (5.26) 

Then we can calculate the price of spectrum for the leaders with the following linear 

equations: 

 

( ) ( ) { }0, , 1, 2,...,i i i j j j i i
i j

A Z p Z Z p e e i j I I N
¹

¢ ¢ ¢+ + + + + = Î + +å                             (5.27) 

where we have defined the parameters in (5.19) and (5.24). Therefore the price for the leader 

can be calculated as  



 

 83 

( )
( )

( )( ) ( )

2

1

1

1 1

1

1
    , , {1, 2,..., }

1

i
i j jN

i ii i i i i

i i i

j j
j jN

i j i i i i i j j j

i i i

Z
p e e

Z ZA Z Z X Z
A Z

Z Z
e e i j I

Z Z X Z Z X Z Z
A Z

=

¹

=

é ù
ê úæ öê ú÷ç ÷çê ú ¢= - +÷ç ÷ê ú¢ ç¢ ++ - ÷ç -è øê ú+
ê ú-ë û

æ ö¢+ ÷ç ÷ç ¢- + Î÷ç ÷¢ ç+ ¢ ¢ ÷- - - - ÷çè ø+
-

å

å
å

.    (5.28) 

To have NE for the MLMF Stackelberg game for all i , we should have 0ip > .  

 

5.3.4 Cooperative Game  

In the Cooperative Game, the service providers try to cooperate with each other and 

maximize the total profit of all service providers. Therefore the optimization problem can be 

stated as 

1

max ( )

subject to :  0

0

N

i
i

i i

i

R

b w
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


p

p

                                                                                                        (5.29) 

where the total revenue of all service providers can be represented by 
1

( )
N

i
i

R

 p . Also 

0 i ib w   can be rewritten as 0 ( )i iD w p . Therefore (5.29) can be solved using 

Lagrangian multiplier method. The Lagrangian can be expressed as 

1 1 1 1

( ) ( ) ( ( ) ) ( ( ))
N N N N

i j j k k k l l
i j k l

R p D w D  
   

         p p p p                                        (5.30) 

where j , k  and l  are the Lagrangian multipliers for the constraints 0ip   and 

0 i ib w  , respectively. 
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5.4 Information Exchange Protocol and Price Determination  

In this section, we study the information exchange protocol among service providers, 

controllers and FAPs. The full information about the system such as spectrum price of other 

service providers or demand function of FAPs may not be available for the service providers; 

therefore there are some limitations for the price determination in practice. In a cellular 

network, the service providers may not know about the type of demand function of FAPs or 

not be aware of parameters within the demand function of FAPs. Furthermore, in Bertrand 

game, the service providers may not be able to see the price and profit of other service 

providers. In MLMF Stackelberg game, the leaders may not be aware of supply function of 

the followers.  In cooperative game, the service providers may only reveal their profit to the 

others and not the details of their profit (e.g., the number of FAPs that they have served). 

Therefore the service providers need to learn about the behavior of other players through the 

history of network and also need to use learning to gradually reach the solution for the 

system. 

Since the FAPs will not be directly involved in the process of price determination, they 

should send their requirements to the controllers. Therefore in each cluster, the FAPs submit 

their demands to the controller based on the required bandwidth of their users and the 

required bandwidth of MUEs served by the FAPs. The controllers unify the demand of 

different clusters together. Some solutions have been proposed for this problem in [82], [83], 

[84].  

For the market equilibrium method, the stable price in the market is determined when the 

amount supply and demand become equal to each other. Therefore the price determination in 

the market can be carried out gradually through multiple steps to minimize the difference 

between spectrum supply and demand. In this case, at the initial step, each service provider 
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determines the price of spectrum i.e. [0]ip  and announces it to the controllers. Based on their 

demand function and the announced price for the spectrum, the controller determines the 

amount of spectrum that the FAPs want to buy from each service provider i.e., ( [0])iD p  and 

announces it to the service providers. Based on the difference between demand and supplied 

spectrum, the service providers determine the price of next step and announce it to the 

controllers. It is given by 

[ ] [ 1] ( ( [ 1]) ( [ 1]))i i i i ip t p t D t S p ta= - + - - -p                                                                 (5.31) 

where a  is a learning coefficient. This process will be continued until the difference 

between supply and demand function will be zero. 

In the Bertrand game, the service providers do not have access to the price of other 

service providers and they can only use local information and spectrum demands of FAPs. 

Therefore, in this case, each service provider initializes the price of spectrum at [0]ip  and 

announces it to the FAPs. FAPs respond to the service providers with their required 

spectrum. The service providers should estimate the marginal profit function and, based on 

the received demand from FAPs, determine the price for the next step. Therefore, the price 

for the nest step can be determined as 

( )
[ ] [ 1] i

i i
i

R
p t p t

p
a
æ ö¶ ÷ç ÷= - + ç ÷ç ÷ç ¶è ø

p
 .                                                                                           (5.32) 

To calculate ( )i iR p¶ ¶p , service providers should track the change in demand of FAPs for 

small change in price. Therefore ( )i iR p¶ ¶p  can be calculated as  

( [ ]) (..., [ ] ,...) (..., [ ] ,...)

[ ] 2
i i i i i

i

R t R p t R p t

p t

e e
e

¶ + - -
=

¶
p

                                                          (5.33) 

where e  is a small number such as 310- . 
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In cooperative game, the total profit of all service providers should be maximized. In this 

case, the initial price is announced by each service provider to the controllers and they 

respond to these prices based on the demand of FAPs. Then the service providers 

communicate between each other to estimate the total marginal profit function and use this 

together with demands of FAPs to determine the price for the next step. Therefore the price 

in next step can be expressed as  

1

( [ ])
[ 1] [ ]

[ ]

N

i
i

i i
i

R t
p t p t

p t
a =

æ ö÷ç¶ ÷ç ÷ç ÷ç ÷+ = + ç ÷ç ÷¶ç ÷÷ç ÷ç ÷çè ø

å p
.                                                                                  (5.34) 

To estimate 1
( [ ]) [ ]

N

i ii
R t p t

=
¶ ¶å p , similar to the Bertrand game, the service providers can 

observe the marginal total profit for a small variation in price i.e. e . 

 

1 1 1

( [ ]) (..., [ ] ,...) (..., [ ] ,...)

[ ] 2

N N N

i i i i i
i i i

i

R t R p t R p t

p t

e e

e
= = =

¶ + - -
»

¶

å å åp
 .                                       (5.35) 

In MLMF Stackelberg game, there are two groups of service providers. The first group 

determine the price of spectrum sooner than the other group. In this case, the initial price 

[0]ip  is announced by the leaders to the FAPs and then FAPs respond to the leaders with 

their demands. After this process, the followers announce their initial price to the controllers 

and get their responses for the spectrum demand. The price determination for the next step is 

the same as that in Bertrand Game with the difference that we have two steps in each round 

on information exchange. First, the leaders send their prices to the FAPs, get their responses, 

estimate the individual marginal function and select their prices for the next step, and then 

the followers do the same things as the leaders.  
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5.5 Simulation and Numerical Results 

In the simulations, we consider a macrocell system with two MBSs from two different 

service providers. We assume that both of these MBSs are located at the center of a 

hexagonal cell. The total frequency of each MBS is 30 MHZ. The distribution of FAPs and 

MUEs are assumed to be CSPP with 10f  , 5C  , respectively. The FAPs are categorized 

in the groups based on their distances from each other. The spectrum efficiency values of 

both service providers 1M , 2M  are assumed between 2 to 5 bit/sec/Hz. The spectrum 

efficiency values of FUEs and MUEs iA , ik  served by FAPs are assumed between 2 to 10 

bit/sec/Hz. The required bandwidth of all FAP should be less than 80% of total bandwidth of 

each service provider. 1C , 2C are assumed 0.7 and 0.8, respectively, which means that 0.7 

and 0.8 of total selling bandwidth to FAPs are used for serving FUEs by FAPs. The 

substitutability coefficient for FAPs is assumed 0.7v= .  

In Fig.5.3 we show the supply and demand function with respect to the offered price 

from the first service provider. We observe that the demand function is a decreasing function 

of offered price and the spectrum supply is an increasing function of offered price. The 

market equilibrium price is the point that supply and demand are equal together. It can be 

also shown that market equilibrium price exists or does not exist for some FAPs or MBS 

requirements.  
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Figure 5.3 Supply and demand functions in terms of price for service provider 1. 

 

Fig.5.4 shows the best response of the service providers in the case of Bertrand game 

and MLMF Stackelberg game. The intersection of best responses curves shows the Nash 

equilibrium for Bertrand game. The location of Nash equilibrium is dependent on the 

requirements of FAPs and MUEs as well as their demands. In the MLMF Stackelberg game, 

it is assumed that the first service provider is the leader and sets the price of spectrum sooner 

than the other second service provider. It can be observed that the Stackelberg equilibriums 

for two service providers are different from Nash equilibrium in Bertrand game. In the 

Stackelberg game, competition between service providers is less than Bertrand game and 

leaders tend to set higher prices than the Bertrand game, since the followers have to set their 
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prices after the leaders. Therefore, it can be seen that the prices in MLMF Stackelberg game 

are more than those in Bertrand game.  
 

 

Figure 5.4 Bertrand Game and MLMF Stackelberg game 

 

Fig.5.5 shows the best response of the service providers in the case of cooperative game. 

In a cooperative game, all the service providers cooperate with each other to maximize the 

total revenue; therefore the price for the spectrum is more that all previous cases. In 

application, to implement this type of pricing, service providers should communicate with 

each other to reach Nash equilibrium. 
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Figure 5.5 Nash Equilibrium for Cooperative game 

 

Fig.5.6 shows the total revenue of service providers from FAPs based on fixed pricing 

[61], market equilibrium, Bertrand game, MLMF Stackelberg game and cooperative game 

for OA. It can be observed that our proposed methods outperform fixed pricing in terms of 

revenue for service provider. It can be seen that the total revenue of service providers in 

cooperative game is more than that in other methods. The total revenue of service providers 

in market equilibrium is less than other three methods in OA, since there is neither 

competition nor cooperation between service providers. In the market equilibrium scheme, 

the service providers are not aware of existence of each other and try to satisfy the demand 

from FAPs. In this scheme, the service providers try to maximize the satisfaction of FAPs. In 
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competition between each other and try to set the unit price for spectrum to maximize their 

revenue. But in Stackelberg game, the per unit price is more than the Bertrand game, 

therefore the revenue of service providers are more than the Bertrand game.  

 

 

Figure 5.6  Total profit of service providers from different methods 

 

In Fig.5.7, we investigate effect of spectrum substitutability (v) on the spectrum price. 

We set all specifications of two service providers the same as each other. For 0v = , the 

FAPs cannot change its operating spectrum but when 1v = , the FAPs can switch between 

service providers freely. It can be observed that with increasingv, the spectrum price for the 

first service provider decreases in all four proposed methods. It is also observed that the 

spectrum price has the highest value for all values of v under cooperative game and has the 
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Stackelberg game have the same price as the cooperative game, since the FAPs cannot switch 

between service providers, therefore there is no competition between service providers. For 

1v = , the level of competition between service providers are high and service providers 

should decrease the spectrum prices to attract more FAPs.  
 

 

Figure 5.7  Spectrum price in terms of spectrum substitutability (v) 
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Chapter 6 

Conclusions and Future Work 

In this chapter, we first provide the conclusion of research work done so far, then 

provide some future research directions.  

6.1 Conclusions 

Cognitive radio and femtocell networks are two emerging concepts for innovative 

spectrum utilization. A common feature of cognitive radio and femtocells is their two-tier 

nature involving primary and secondary users. Two main challenges in two-tier networks is 

the design of efficient resource allocation and pricing methods which we have addressed in 

this thesis.  

In Chapter 2, we have considered the spectrum trading problem for shared used model in 

cognitive radio networks. We have designed a multi-unit sequential sealed-bid first-price 

auction taking into accounts risks due to imperfect sensing. We have derived an expression 

for the total revenue of WSP and maximized it by optimizing the sensing time. Our 

numerical results have demonstrated that the proposed bidding strategy outperforms the 

conventional one (i.e., designed ignoring any risk) in a risky environment. For some typical 

values of probability of miss and number of SUs, it was found out that the payoff of bidders 

by our proposed method is at least two times and in best case, five times more than that can 

be obtained from the conventional one. Our results have further revealed that maximization 

of throughput is not necessary to get the maximum revenue. 

In Chapter 3, we have investigated the sensing-throughput tradeoff in a cognitive radio 

network with cooperative sensing over time varying fading channels. First, we have derived 

an expression for the total average throughput of the SUs each of which is equipped with 

energy detectors. Then we have formulated a throughput optimization problem and solved 
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this based on a two-step algorithm. The first step involves the calculation of the optimal 

sensing time based on a non-linear programming problem. The second step involves finding 

the optimum number of SUs for each channel to maximize the total throughput. The 

numerical results demonstrate that our proposed method based on joint optimization of the 

sensing time and the number of sensing SUs for each channel over conventional cases than in 

which either the sensing time is fixed or the number of sensing SUs is fixed. 

In Chapter 4, we have considered the spectrum trading problem for non-identical 

channels under the assumption of exclusive usage model in a cognitive radio network. We 

have proposed a realistic valuation function for the SUs which depends on delay-sensitive/-

insensitive traffic as well as the capacity of each available channel. Instead of the commonly 

assumed single-minded bidders, we have assumed r -minded SU bidders and designed an 

efficient VCG-based auction mechanism. In our scheme, each bidder can bid for r  bundles 

of channels in each round of auction, but each bidder is allowed to win at most one of these 

bundles. We have investigated two cases: In the first case, the SUs are r -minded but they can 

submit bid only for single channels. In the second case, the SUs are r -minded and they can 

submit bid for bundles of channels. We have shown that the first case is solvable in 

polynomial time but in the other one, the problem of determining auction outcomes is NP-

hard. We have proposed two sub-optimal methods for solving this problem, namely greedy 

algorithm and randomized rounding linear programming (LP) relaxation. In the numerical 

results, we have demonstrated that the revenue of auctioneer increases with the increasing 

number of bidders and submitted bids. The average profit of bidders also increases with the 

increasing number of submitted bids when the number of bidders is around the number of 

channels. When the number of bidders is two times or more than number of channels, the 

average profit of bidders degrades with the increase in the number of submitted bids. Due to 

the sub-optimal nature of solutions in the second case, VCG mechanism is not truthful 
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anymore and the SUs can lie to maximize their utilities. To address this, we have proposed an 

auction mechanism with limited truthfulness property, based on an iterative greedy 

algorithm.  

In Chapter 5, we have introduced pricing schemes for OA femtocell networks. 

Specifically, we have proposed four dynamic pricing schemes based on market equilibrium, 

Bertrand game, multiple-leader-multiple-follower Stackelberg game and cooperative game. 

In the first scheme, service providers are not aware of each other and try to satisfy the 

demand of FAPs. In this scheme, satisfaction and incentive of FAPs to participate in OA 

model are maximized. In Bertrand game, service providers compete with each other to 

determine the price of spectrum. In this scheme, the revenue of service providers are more 

and the satisfaction of FAPs are less than previous scheme. In multiple-leader-multiple-

follower Stackelberg game, there are some service providers who enter femtocell market 

sooner that the others and they can set the price of spectrum before the others which they 

called leaders and other service providers called followers should set the spectrum price after 

them. In cooperative game, the service providers try to maximize the total revenue of all of 

them. We have compared the performance of our schemes and shown that the cooperative 

game outperforms the other methods in terms of revenue for service providers. On the other 

hand, we have demonstrated that the pricing scheme based on market equilibrium outperform 

other methods in terms of FAP satisfaction. 

 

6.2 Future Works 

Based on the discussion in Chapter 2, we have assumed that all available channels have 

the same risks, therefore same risks are taken account for all of them in optimal bidding 

calculation. In cases where the detection and false alarm probabilities are different for 
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underlying channels, these derivations need to be revisited. On the other hand, we have not 

considered the chance of PUs who enter the channels during the SUs transmission. This can 

be further considered as another practical constraint. 

In auction mechanism, the SUs are selfish and they aim to maximize their profit. They 

may cheat or collude in the spectrum auction if profitable, which ruins the auction and 

therefore the auction mechanisms should be resistant to bidders collusion.  In Chapter 3, we 

have proposed truthful auction mechanism for non-identical channel allocation. In truthful 

auction mechanism, the bidders prevent from lying about their valuation, but they can 

collude together to maximize their profit. Therefore it would a good idea to extend the 

auction mechanism in chapter 3 to a collusion resistant and truthful auction for non-identical 

channel allocation. 

To ensure minimal impact on the performance of the existing MBSs, femtocell network 

needs to be designed with smart resource allocation and interference management strategies. 

As we mentioned in chapter 1, towards this overall purpose, game theory can be used as a 

natural design methodology for resource allocation in such an interference-limited 

environment where there are different rational entities with different types of demands. Two 

different game-theoretic approaches can be considered for different scenarios based on the 

availability of information exchange between two tiers in femtocell networks. Non-

cooperative game-theoretic approach can be used for a deployment scenario where there is 

no information exchange between femtocell and macrocell tiers, but information exchange is 

allowed between nearby FAPs. Also a bargaining game formulation can be used in situations 

where we can assume some information exchange between femtocell and macrocell tiers 

along with the femtocell-to-femtocell information exchange.   
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Appendix A                                                                   

Proof of Theorem 3.1 

In this Appendix, we will show that three conditions in (3.7)-(3.9) are satisfied in our 

case. In the following, without loss of generality, we ignore index i  for simplicity. 

1) Condition in (2.7): For this condition, we need to show that the mean value of 2| ( ) |y n  

takes finite values. Replacing (3.1) within, we have  

2 2 2E | ( ) | E | ( ) ( ) ( ) | ( 1) uy n h n s n u n                                                                            (A.1) 

2
h , 2

s  and 2
u  have limited values, therefore (2.7) is satisfied. 

2) Condition in (3.8): For (3.8), we need to show that the variance of 2| ( ) |y n  takes finite 

values. Replacing (3.1) within, we have 

2

2 2 4 4 4 2 2 2 2

| |
Var | ( ) | = E | ( ) | E | ( ) | E | ( ) | ( )h s uy

y n h n s n u n                     .                     (A.2) 

In our case, ( )is n  is a rectangular M-QAM modulation signal with zero mean and 

variance 2
s .  Therefore, we have  

4 43 3 7
E | ( ) |

10 1i s

M
s n

M


         
.                                                                                         

(A.3) 

Inserting 4 4E | ( ) | 2i hh n     , 4 4E | ( ) | 2i uu n      and (A.3), we have  

 
 2

2 4 2

| |

3 3 7
1 2 1

5 1
uy

M

M
   

  
     
    

.                                                                          (A.4) 

Since the SNR and noise power have limited values, it can be concluded that 2

2

| |y
   . 

Therefore the second condition given by (2.8) is satisfied. It should be noted that this 

condition can be satisfied with any type of limited energy signal and limited noise power. 

3) Condition in (3.9): We need to show that  
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2

2 2 2

| |
2

lim Var[ ( )] 2 Cov | (1) | ,| ( ) |
N

yN
i

N y y y i V




                                                           (A.5) 

takes finite values. Since we have already shown that 2

2

| |y
  is limited, it is sufficient to prove 

that the second summation term is finite. We first focus on a single term inside the 

summation, i.e.,   

2 2 2 2

2 2

Cov | ( ) | ,| ( ) | E | ( ) ( ) ( ) | | ( ) ( ) ( ) |

                                  E | ( ) ( ) ( ) | E | ( ) ( ) ( ) |

y i y j h i s i u i h j s j u j

h i s i u i h j s j u j

        
        

    .                             (A.6) 

Since ( )s n , ( )u n , and ( )h n  are assumed independent of each other and have zero mean, 

it is straightforward to show that (A.6) can be simplified as 

 2 2 2 2 2 2 2 2Cov | ( ) | ,| ( ) | E | ( ) | | ( ) | E | ( ) | | ( ) | E | ( ) | E | ( ) |y i y j s i s j h i h j h i h j                    .  (A.7) 

Replacing ( ) ( ) ( )R Ih i h i jh i   in (A.7) and noting that ( )Rh i , ( )Ih i  are independent 

from each other, (A.7) can be rewritten as 

2 2 4 4 2
( )Cov | ( ) | , | ( ) | s h j iy i y j                                                                                             (A.8) 

where ( ) E ( ), ( ) E ( ), ( )R R I I
j i h i h j h i h j          . Based on Parseval equality, we have 

2 2

1
( ) | S( ) |

n
n f df



 
  , where S( )f  is Doppler PSD function. The integration of 

Doppler PSD under Jakes model within the range of  ,d df f  yields infinity. However, in 

simulations, a truncated Jakes model is commonly used to avoid the singularities at the edges 

[101], [102]. Through truncation of the channel impulse response, we have  

 2

1 1
, 0

1

d

d

f

df d
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f f f








 

   


 .                                                                              (A.9) 

Therefore, we can conclude that we have 
4 4 2

1
lim

N

s h iiN
  


   for the truncated version 

of Jakes model.  
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Appendix B                                                                   

Proof of Theorem 3.2 

In this Appendix, we show that three conditions in (3.25)-(3.27) are satisfied for majority 

logic rule, therefore ( )i
iR   is unimodal in the range of 0 i T  . In the following, without 

loss of generality, we ignore index i  in the following equations for simplicity. 

1) Condition in (3.25): First we need to obtain ( )R     which is given as: 

 0 0

( )
( ) (H ) 1 ( ) 1 f

fR C P T


   


   
          

                                                 (B.1) 

where ( )f     can be calculated as  

   2 12( ) ( )
2 (1 ( )) ( )

2

kk kf f
f f

k P
k P P
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 
 

 
     

  
           

 
 
                                         (B.2) 

where 

 2

( ) exp
28

fP
   



        
 

                                                                        (B.3) 

sf   and,  

 
 

1 2 2

1
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( ) 1 2 2 1
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d i
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M
Q P

M
   



 
     
  


.                                                       (B.4) 

At 0  , ( )fP      , and hence ( )f      for majority logic rule. Therefore 

( ) 0R      and the first condition is satisfied. 

2) Condition in (3.26): At T  , we obtain  0 0( ) (H ) 1 ( )fR C P        . For 

0 ( ) 1fP    ( ) 1f   , therefore ( ) 0R      and the second condition is satisfied. 
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3) Condition in (3.27): Set ( ) 0R      and after simplifications we have 
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   

/2 1 2/2/2 1

0

8
2ln (1 ( )) ( , )

2

k
k ii k

f f
i

k
P P

ik
k T

k

      

 

         



  
  

   
                  








       (B.5) 

Eq. (3.27) is satisfied if the right hand side (RHS) and the left hand side (LFS) of (B.4) 

intersect each other only once in the range of 0 T  . It can be shown that RHS is 

monotonically decreasing for   | 0,0L T          and monotonically 

increasing for   | 0,0H T         . It can be further shown that LHS is 

monotonically decreasing for 0 T   and decreasing rate of LHS is faster than the RHS.   

If RHS and LFS intersect in the L  region, it is impossible for them to intersect more 

than once in L  region because LHS is decreasing at a faster rate than RHS. Since RHS is 

increasing in H  region, RHS and LHS cannot intersect with each other if they have 

intersected in L region.  

If RHS and LHS do not intersect in the L  region, they must intersect with each other in 

H  region. Since RHS is monotonically increasing and LHS is monotonically decreasing in 

this region, therefore they can intersect only once with each other. Hence, we show that if 

LHS and RHS intersect with each other in either L  or H , they can intersect only once 

with each other and therefore (3.27) is satisfied. 
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Appendix C                                                                   

Proof of Theorem 4.1 

This appendix provides the proof of Theorem 4.1. Assume a hyper-graph  ( , ),G = B W E  

that consists of two disjoint sets of vertices denoted by B  and W . Here, B  is the set of 

bidders that each bidder is represented by a vertex. W is a set of channels each of which is 

represented by a vertex. When a bidder wants to bid for a bundle of channels, we take into 

account an edge consisting the vertex of the bidder in set B  and vertices of the channels in 

set W . For example, assume that there are 4 bidders and 3 channels for sale and each bidder 

can submit 2 bids, the bidding of bidders can be represented as illustrated in Fig. C.1. 

Determining the optimal allocation among bidders involves finding a collection of disjoint 

sets that has the maximum total weight. Now assume a set Z of winners with disjoint 

elements, the social welfare obtained by Z is exactly the size of this set.  It follows that an 

independent set with the weight of at least q  exists if and only if the social welfare of the 

optimal allocation is at least q . This concludes NP-hardness proof.  

 

Fig. C.1 Modeling r-minded bidders in case 2 
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Appendix D                                                                       

Proof of Theorem 4.2 

This appendix provides the proof of Theorem 4.2. Assume that we model the auction 

mechanism with a hyper-graph consisting of M N  vertices which they can be divided in 

two separate sets. The number of hyper-edges is rN and the maximum cardinality of each 

hyper-edge is m . Let iW  and  | K | 1i is    denote weight and the number of items in each 

hyper-edge. The norm of each hyper-edge is given by i i in W s . Assume that the 

optimum solution for this problem is iopt i opt
WSWF   and the solution of greedy algorithm 

is gr i gr iSWF W . We need to show that the following inequality holds: 

 min ,opt grSWF SWF m M   .                                                                                        (D.1) 

First, we will prove opt grSWF SWF M  , then show that  opt grSWF SWF m  holds. 

Without loss of generality, we assume that there is no common hyper-edge in optimum and 

greedy solutions. If there are any hyper-edges in common in two solutions, the common 

hyper-edge and vertices can be removed and the new problem becomes similar to the original 

one. By doing some algebraic computation for greedy solution, we have 

2 2
gr i i i

i gr i gr

SWF W n s
 

    .                                                                    (D.2) 

By applying the Cauchy-Schwarz inequality for optimum solution, we obtain 

2
opt i i i i i

i opt i opt i opt i opt

SWF W n s n s
   

       .                                                 (D.3) 

Noting that ii opt
S  is the total number of items allocated optimally to the bidders and 

therefore it is bounded by M ,  we can conclude  

2
opt i i

i opt i opt

SWF n s
 

    .                  (D.4) 
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Now, we need to show that 
2 2
i i ii opt i gr

n n s
 

  . We have assumed that there is no 

joint bid between optimum and greedy algorithm. This means that if a hyper-edge or a bid i  

from optimal solution is considered within the execution of greedy algorithm, it cannot be 

entered in the partial allocation already built. This implies that there is an item that has been 

already allocated in the partial greedy solution. Therefore there is a bid j  in greedy 

algorithm with j in n  and that item also belongs to bid j . In optimal solution, there are at 

most is  different bids associated with bid j  of greedy algorithm, since the sets of items 

requested by two different bids of optimal solution do not have any intersection. If we 

assume that jop  is the set of hyper-edges or bids of optimal solution that are associated with 

bid j , we can write 

2 2

j

i j j
i op

n n s


   .                                                               (D.5) 

Therefore we can conclude 
2 2
i i ii op i gr

n n s
 

   from (D.5) and the first part of theorem 

is proven.  

For the second part, based on the above explanation, we conclude that 
j

i j ji op
n n s


 . From 

the definition of norm, we have i i in W s , therefore 
j

i j ji op
n s W


 . The number of 

items in a bid is m  at most, thus m M . By the same conclusion as in (D.5), we have 

ii i gri op
Wn m 

  .                                                                                                                           

On the other hand, we have opt i ii opt i opt
SWF W m n

 
    and iopt i op

nSWF m                          

therefore we conclude that  min ,opt grSWF SWF m M . If 1 2l   it can be shown that 

the approximation algorithm will be  max 1/ ,1 /m M .   
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Appendix E                                                                        

Solving Linear Equations in (5.9) 

In this appendix, we want to solve set of linear equations in (5.9). (5.9) can be rewritten in 

matrix form as 



1 1 2 1 1 1

1 2 2 2 2 2

1 2

N

N

N N N N N

X V Y Y p l q

Y X V Y p l q

Y Y X V p l q

é ù é ù é ù- -
ê ú ê ú ê ú
ê ú ê ú ê ú- -ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú- -ë û ë û ë û




     
 

A p Q

 .                                                           (E.1) 

Therefore to solve (E.1), first we should calculate 1-A . There is a lemma in [103] for 

calculation of 1-A .  

Lemma: If we can write matrix A = G + H  where G is non-singular and H  has rank of 

one.  

( ) 11 1 1 11

1 g
-- - - -= -

+
A = G + H G G HG                                                                           (E.2) 

where 1( )g tr -= HG . 

We can write G and H  as  

1 1 1 1 2

2 2 2 1 2

1 2

0 0

0 0
,

0 0

N

N

N N N N

X V Y Y Y Y

X V Y Y Y Y

X V Y Y Y Y

é ù é ù- -
ê ú ê ú
ê ú ê ú- -ê ú ê ú= ê ú ê ú
ê ú ê ú
ê ú ê ú- -ë û ë û

 
 

       
 

G H =  .             (E.3) 

Therefore 1-A  can be calculated as N N´  matrix which the elements on the diagonal of 

matrix are 

( )
1

2

1

1 1

1

i
ii N

ii i i i i i

i i i i

Y
a

YX V Y X V Y
X V Y

-

=

æ ö÷ç ÷ç= - ÷ç ÷ç- - ÷ç - -è ø+
- -å

 .                                                 (E.4) 
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The other elements of 1-A  are 

( )( )
1

1

1
,

1

j
ij N

k i i i j j j

k k k k

Y
a i j

Y X V Y X V Y
X V Y

-

=

æ ö÷ç ÷ç=- ¹÷ç ÷ç ÷- - - - ÷çè ø+
- -å

                                    (E.5) 
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