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Abstract

There are many causes of structural failure. One of the most important factors leading to material
failure is residual stress. This stress represents effects left in structures after processing or
removal of external loads including changes in shape and crystallite size. In aggregate, residual
stress changes the mechanical behaviour of materials. Various measurement techniques
encompassing destructive, semi destructive, and non-destructive testing can be used to measure

residual stresses.

Thin plates are common in engineering applications. This thesis analyzes residual stresses on
circular AISI 1020 steel alloy plates after removal of external loads using two-dimensional X-ray
diffraction. Two identical thin circular plates are used in this experiment; one of which is
statically loaded. The other plate is used as a control specimen. Residual stresses in the plates are
measured using two-dimensional X-ray diffraction and the measurements are compared to those
obtained using finite element analysis. It was found that experimentally measured residual stress
occurred due to manufacture processing. Also, modules A and B showed the external effect of
applying not enough to reach the plastic region to deform specimen 2 and obtain residual stress

results distribution.
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Chapter 1

Introduction

1.1 Motivation

There are many causes of failure in structures. One important effect on a material structure is
stress. This thesis focussed on residual stresses in thin plate structures. Residual stress is the
stress left in structures after the removal of external loads. There are two levels of residual
stresses, which are micro and macro. Residual stresses may occur in many manufactured

structures and components without external loading.

Internal stress or residual stress cannot be detected simply through visual observation. Therefore,
measurement techniques such as destructive, semi destructive and non-destructive testing, are
used to detect and measure residual stresses. Destructive testing completely damages the material
by cutting the sample into different parts. Semi destructive testing cuts a part of material to
calculate residual stresses. In non-destructive testing, residual stresses are measured without
damaging the material. Figure 1.1 shows some of these techniques, and Table 1.1 provides their
advantages and disadvantages [1]. One of the most important non-destructive testing techniques

1s X-ray diffraction.
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Figure 1:1: Residual stresses measurement techniques [1].

Table 1.1: Advantages and disadvantages of measurement techniques [1].

Technique Advantages Disadvantages
Diffraction Ductile material Lab-based Systems
Varied range of materials Expensive
Macro and Micro
Ultrasonic Very quick Limited resolution
Low cost Bulk measurements over whole
volume
Neutron Macro and Micro Offered by few facility

Diffraction

Lab-based system




Barkhausen Fast Only ferromagnetic materials
Noise High sensitivity to microstructure Need to separate the microstructure
effects especially in welds signal from that due to stress
Hole Drilling Very quick Semi destructive testing
Easy to use Limite to strain
Varied range of materials
Sectioning Wide range of materials Destructive testing
Inexpensive Limited to strain
Very quick
Synchrotron Improved penetration and resolution Offered by few facility
ofX-rays Lab-based systems
Very quick

Macro and micro

Expensive

This research focuses on measurement of residual stress using two-dimensional X-ray diffraction

and finite element analysis. These two techniques are very powerful and distinct, which makes it

a very challenging field of study.

In this thesis, there are five chapters: chapter 1 introduces two X-ray diffraction, chapter 2

defines residual stresses obtained using two-dimensional X-ray diffraction, chapter 3 describes

the LEPTOS software, chapter 4 covers the use finite element analysis to calculate residual

stresses, and chapter 5 provides the results and discusses them.

1.2 History ofX-rays

Wilhelm Conrad Rontgen discovered X-rays in 1895. In fact some textbooks refer to X-rays as

Rontgen radiation. He was honoured with the Nobel Prize for Physics in 1901 [2]. Unlike light,
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X-ray radiation has the ability to discover what the human eyes cannot see. Since then, X-ray
technology has developed to involve many research areas such as medical and engineering
applications. X-ray based study of crystals was introduced in 1912 by Max Von Laue. One of the
most important mathematical formulae governing X-ray was noticed by Bragg, namely Bragg's
law for which he was awarded the Nobel prize for Physics in 1915. The firstX-ray diffraction
was used by W. H. and W. L. Bragg. X-ray powder diffraction and other x ray diffraction types
collect data from one-dimensional diffraction lines. One-dimensional diffraction lines collect the
data with scanning point detectors or linear position-sensitive detectors (PSD) [3]. These types of
X ray diffraction are collected by conventional diffractometers [3]. Since 1999, two-dimensional
X-ray theory and application had been discovered. The X-ray diffraction is used for phase

identification, thin films, texture analysis, and stress measurement.

1.3 X-ray Radiation

X-rays refer to a region in the electromagnetic radiation spectrum that have a very short
wavelength compared to other electromagnetic waves as shown in Figure 1.2 [4]. X-ray radiation
wavelengths are on the order of one angstrom (A), which is equal to 10® cm [4]. As shown in
Figure 1.2, X-rays occur between Gamma- rays and ultraviolet. This type of light has the ability

to show the internal details of materials that other radiation cannot.
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Figure 1:2: Electromagnetic radiation spectrum [4].

1.4 X-ray Diffraction

When the X-ray incident beam reaches a specimen, the X-rays are reflected through diffraction.
This kind of diffraction is called elastic scattering. The atomic distribution in a specimen might
be disordered such as glass or ordered like single silicon [2]. The structure can by calculate by
the intensity, spatial distributions and diffraction pattern of the reflected X-rays. X-ray

diffraction is able to provide atomic distribution of any material.

1.5 Crystal Structure

The crystal X-ray diffraction pattern is able to show the geometry and structure of a crystalline

solid. The atomic arrangement is in lattice points in three —dimensions that compose of crystal



planes. The lattice planes are described by Miller indices, which is a set of three integers hkl [2].
The three axes (hkl) are described the orientations planes inside the crystal structure. Some

crystal structure reflection rules of X-ray diffraction are shown in Table 1.2 [5].

Table 1.2: Reflection rules of X-ray diffraction [5].

Crystal structure Diffraction does not occur for Diffraction occurs for
BCC h+ k+ [ = odd number h + k + [ = even number
FCC h, k, I can have both even h, k, | can be all even or all odd
and odd integer values numbers
HCP h+2k=73n,10dd (n — Integer) All other cases

1.6 Bragg's Law

Bragg law is one of the most important laws in X-ray diffraction due to the simplicity of its
description for the diffraction of X-rays by a crystal. This law explains the relation between
material structure and diffraction pattern. It also provides information on incident X-rays,
incident angle, and reflection angle, as shown in Figure 1.3. The gray spots are the atomic
positions in a strain-free crystal. The horizontal lines connecting them are the crystal planes in
the strain-free crystal. Where is dy is d- spacing, 8y Bragg angle, and ¢, strain direction. The
direction changing in dy and 0y is refer to d and 6. In X-ray diffraction Bragg's law is satisfied

when the diffraction peak is shifted.



Figure 1:3: Bragg law of strain measurement [2].

ni = 2dsinf (1)

Equation.1.1. Where A is the wavelength, n is an integer, (d-spacing) is the distance between
adjacent crystal planes, and 0, is the Bragg angle relative to the incident beam. The strain-free

crystal Bragg law is given by equation 1.2. [2]. Also, for a crystal with strain the Bragg law is

given by equation 1.3. [2].

(1.2)

2d0 sin 90 =/

Free Strain Bragg law [2].

2d sin§ = 4 (13)

Crystal with strain Bragg law [2].



However, the diffracted intensities I at a range of 20 angles is displayed as diffraction peak [2].
The peak diffraction represent as curved line with highest points which provide intensity
maximum, In.. The peak diffraction width measured by its full width at half maximum

(FWHM) is shown in Figure 1.4 [2].

FWHM

Imax

Figure 1:4: the peak diffraction shown Imax and (FWHM) at the Bragg angle 0 [2].

The peaks have many shapes fits for crystal planes found by the Bragg law. Bragg's law is
satisfied when the crystal has been rotated at various angles during the data collection; therefore,
to satisfy Bragg's law the crystal must be in the right orientation [2]. This technique used in the
Gandolfi camera is such that the crystal is rotated above an axis tilted 45° from the camera axis
[2]. “X-ray diffraction phenomena can also be explained in reciprocal space by the reciprocal

lattice and the Ewald sphere” [2].

1.7 The Ewald Sphere

The reciprocal lattice represents the crystal lattice in real space. The Ewald sphere explains the

relationship between the Bragg law condition and the reciprocal lattice. This method is a

8



formation that displays Bragg planes in the correct orientation to cause diffraction, as shown

Figure 1.5 [2].

P (hki)

Ewald sphere

d hLl% /

Figure 1:5: Ewald sphere [2].

Where 1/ A is the radius of the Ewald sphere. The incident beam starts at C at direction sy/ A and
ends at O. The diffracted beam s/ A starts at the point C and ends at point P. Therefore, the line
from O to P is the reciprocal lattice Hyy given. Both beams are at an angle 6 from a crystal
planes (hkl) with d-spacing of the crystal planes. Equation 1.4 gives the relationship between the
Ewald sphere and Bragg law. To satisfy the Bragg law, the reciprocal lattice point must be on the

Ewald sphere.

‘s—s()’ 2sin6 1
Al dhil (1.4)

Relationship between Ewald sphere and Bragg law [2].



1.8 Two-Dimensional X-ray Diffraction:

The two-dimensional collection of data with an area detector collect the data in less time and
provides more data points. The diffraction pattern gathered with an area detector provides a two-
dimensional look like a frame. The X-ray intensity becomes like an image diffraction pattern,
called a frame. The diffraction frame collected from a corundum powder is shown in Figure
1.6[2]. The two-dimensional X-ray diffraction system has an area detector, sample positioning
stage, X-ray source, X-ray optics, sample alignment and monitoring device with computer

control to analysis results, as shown in Figure 1.7[6]

Figure 1:6: Diffraction frames [2].

10



X-ray Generator

gl

Area Detector

=7

l

Goniometer and Sample Stage and Monitor
2

Figure 1:7: The two-dimensional X-ray diffraction system [6].

Sample Alignment

1.9 Rotations in Two-Dimensional X-ray Diffraction

Two-dimensional X-ray diffraction system consists of three geometry spaces, which are the
diffraction space, detector space, and sample space, and the basis of all three spaces coordinate
system are the X Yi Zp directions. The diffraction space represents the beam diffraction (26,
v). The detector space is collected the data in direction (D, o). There are many stages samples,
which is holding the sample for the experiment. The relation between theses spaces is shown in
Figure 1.8. There are two diffraction cones, in which one represents forward diffraction
(26<90°) and the other backward diffraction (26>90°), as shown in Figurel.9 [2]. The X- ray
beam direction is X, which also represents the rotation axis of the diffraction cones. On the
other hand, there are three rotation angles for sample spaces calculate by Eulerian geometry.

There are three angles in Eulerian geometry w (omega), { (psi), and ¢ (phi), as shown in Figure

11



1.9 [2]. The omega angle is fixed in geometric coordinates. However, it is important to assign the
coordinates S;, S, and S;  on sample due to analyze the diffraction results to the sample

orientation as shown in Figure 1.10. In addition, Bruker AXS GADDS (General Area Detector

Diffraction System) is shown in Figure 1.11.

Diffraction space

(26, 7)

crystal structure
and wavelength

Laboratory
coordinates

(Xp, Y, Zy)

geometry basis
for all three spaces

Detector space
(D, o)

pixel resolution and
angular coverage

Sample space

(o v, 0.X,Y, Z)

sample location
and orientation

Figure 1:8: diffraction space, detector space, and sample space [2].
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Figure 1:9: Two diffraction cones [2].

Figure 1:10: Three rotation axes in Xy Y1.Z;, coordinates. [2].
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Figure 1:11:Sample coordinates and Eulerian angles [2].

Figure 1:12: Coordinates S;, S,, and S; [2].
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Figure 1:13:Bruker AXS GADDS (General Area Detector Diffraction System) [2].
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Chapter 2

Residual Stress Measurement

2.1 INTRODUCTION

Crystallites in a material are changing shape or size because of elastic deformation caused by
external loads or in manufacturing process. These changes in the material are called residual
stresses. To calculate the residual stresses in each crystallite, the stresses are measured by the
change in lattice d-spacing in the crystallites. There are two kinds of stresses in material, either
tensile or compressive. Therefore, the d-spacing in the crystallite can be smaller or larger than
the stress-free sample. The diffraction peaks can be used to calculate the d-spacing from Bragg's
law. The residual stresses cannot be measured by X-ray diffraction [2]. Therefore, the residual
stresses can be calculated from strains using the Hooke's law [2]. The diffraction peak 20 shifts
can be use to calculate the residual stress from strain. Changing the orientations (w, y, ¢) leads to
measuring the residual stress from many diffraction peaks. The relationship between the stress
tensor and diffraction cone distortion collected with a two-dimensional data detector can be used
to solve the stress tensor with an area detector. The peak 20 shifts are measured along the
diffraction ring. However, the two-dimensional X-ray diffraction provides more data points than
one-dimensional X-ray diffraction peak, which requires less time for collection. There are three
categories of residual stresses relate to the scale of the grain size, as shown in Figure 2.1. The
first category is macroscopic residual stress oj, which is measured over a large grain area of
several millimeters. In addition, this stress can by measured by X-ray diffraction through the

shift of the Bragg peaks. The second category is microscopic stress oy, which is measured from
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one grain or a few. If the micro X-ray beam is very small as several grains, this category of
stress could shift the diffraction. The last category relates to the strains on severer nanometer Oyjj.
This category of stress cannot be collected from the shift of diffraction peaks, but it can collect
by the peak broadening lines [2]. In this thesis, the residual stress o7 evidenced by two-
dimensional X-ray diffraction of the macroscopic residual stress measured over a large grain area

of several millimeters is used in this research.

Figure 2:1: Three Kinds of residual stresses [2].

2.2 Stress Tensor

Stress measurement is calculated from the deformation force applied over unit area. The stress-
strain relationship is shown in Figure 2.2. Also, the force F can be applied to a horizontal area A,
of a body, as shown in Figure 2.2 (a). The force is classified by two components, which are F,,,
normal force and F;, tangential force. The external force is equal to the internal force. The
internal force is called stress. The nine stress components are shown in Figure 2.2 (b). The stress

can calculate from equation 2.1. The stress is a tensor of the second order. The normal stress
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ellipsoid and principal stresses components are shown in Figure 2.1(c). The strain factors on a

volume element are calculated from equation 2.2 and shown in Figure 2.1 (d).

(@) (®)

Tg=— 2.1)

Where is the normal force F,,, Aparea and stress o [2].

However, the nine stress components, corresponding on the coordinates S;, S;, and S; contains

given by equation 2.2 [7].
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g1 012 013 2.2)
gjj = | 021 02 023

031 032 033

The indices 1,2 and 3 might be stated as x, y and z, respectively. The two identical indices
represent normal stresses. The two mix indices represent shear stress. The stress tensor
measurement is second order. There are three normal stress components with the three axes of
the specimen coordinates. In addition, there are six shear components within the three axes of the
sample coordinates. The stresses states in a solid are six independent components as explained

below [2]. In stress analysis 03 does not equal zero, because it is in the surface normal direction.

Uniaxial stress:

All shear stresses factors are zero, but the normal stress is not zero.

op 00 0 0 0 00 0
=0 0 0fjorgj=10 o 0forgy=1{0 0 0
0 00 0 0 0 0 0 o3
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Biaxial:

The normal and shear stress factors are with in a plane, for instance, in the S;—S; plane. There is
no balancing force applied in the normal direction of the surface. This type of stress is the most
comment measured of stresses by X-ray diffraction, because of the limited permeation of X-rays

into the material.

on op 0
Ojj—= 1021 02 0
0O 0 0

Biaxial with Shear:

The normal and shear stress factors are not zero except 03. This type of stress analysis does not
need to measure free d-spacing. Also, the triaxial stress state is related to biaxial with shear.
However, there is a distinction between a biaxial with shear state and triaxial stress state due to
triaxial stress needing accurate stress-free d-spacing. Biaxial with shear stress in the surface

normal direction is zero, because of the low permeation of the X-ray.

g1 012 013
Ojj= (021 02 023

gy on 0
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Equibiaxial:

This is another type of the biaxial stress state where 0}, 02, equals 0. There are no shear factors
in the equibiaxial, but only normal stress component, which can occur in any direction within the
plane with same value. This stress state is especially used for shot peening and thin films.

equibiaxial occurs on the surface after surface treatment.

Triaxial:

Triaxial occurs only of metal parts or inside the solid body. This type cannot be calculated from
X-ray diffraction directly due to the limited penetration depth of X-rays. It can be measured by
layer removal method. This type can be calculated from high-energy X-rays, synchrotron
radiation, or neutron radiation. Also, the stress-free d-spacing must be known in order to measure

the triaxial stresses due to it being undetermined by measurement of the stress state.
011 012 0713

Ojj= |021 022 023
031 032 033
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Equitriaxial:

This is another type of triaxial stress state where o;;1, 022,033 equals o. Although there are no
shear components in the equitriaxial, there is only a normal stress component, which can occur in
any direction within the plane sharing the same value. This type of stress state occurs in solid
body with uniform forces over the surface of the body normal to any direction on the surface,
such as a solid body submerged in a fluid under pressure. As result, this type of stress is
indicated as the hydrostatic state [2]. For hydrostatic stresses, no phase transformation exists
because of pressure. While equitriaxial seems like a diffraction pattern from a crystal of the

same structure, it has a different unit cell size.
o 0 0
ogi=10 o 0
0 0 o

All these types of stress factors are formulated on the coordinates S;,S,, and S;. The stress tensor
can be formulated from Cartesian coordinates tilted away from coordinates with different stress
components. The three principal stresses, o1, O, and oy are axes of the ellipsoid without shear
stress as show in Figure2.2 (c). Also, the three principal stresses have assigned values in the
following order. In addition, the relation between the principal axis system and coordinate

system is shown in Figure 2.3.
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Figure 2:3: Relation between sample’s coordinate system and principal axes’ system (with

tensor ellipsoid) [8].

2.3 Strain Tensor

Strain is calculated from stress deformation of a structure. Therefore, strain is measured from a
change in the material, such as in the size or shape. Normal strains and shear strains are

analogous to normal stresses and shear stresses. Normal strain is given by equations 2.3.

23



ey = = — (2.3)

Where e, is the normal strain, original length of L, to the deformed length of L [2].

All strain components of tensor apparent on an elemental volume in coordinates S, S, and Ss as

shown in equations 2.4.

(611 &1 €13

(2.4)
6j = |61 €2 &3

| 631 63 €33

Normal strain is two identical volumes, and shear strain is two mixed volumes [2].

2.4 Elasticity and Hooke’s Law

The stress-strain relationships based on elasticity theory are used for measurement because
stresses cannot be calculated by X-ray diffraction. Therefore, the stress is measured from the
strains calculated from X-ray diffraction. The Hooke’s law for strain is used when the
deformation of a solid is within the elastic limit. Hooke’s law for the stress—strain relations are

given by equations 2.5 where Cjj are elastic stiffness coefficients [2].
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_ 2.5
0ij = Cijkiexl 22)

Generalized Hooke’s law stress—strain relations [2].

The uniaxial stresses state where only o1; do not equal zero Hooke’s law given by equations 2.6.

Where E is a constant called the Young’s modulus.

— (2.6)

Uniaxial Hooke’s law [2].

The equations 2.7 Hooke’s law gives the shear stress and the shear strain. Where Shear modulus

G, Young’s modulus E, Poisson’s ratio v, and for a homogeneous isotropic materials [2].

e =y = (2.7)

T
G
Hooke’s law shear stress and the shear strain [2]

2.5 X-Ray Elasticity Constants and Anisotropy Factor

The strain measurement uses elastic constants S; and 1/2S, for macroscopic X-ray diffraction,
which is given by equations 2.8. A macroscopic level is isotropic residual stress is done by
calculating the strain in crystal location to satisfy the Bragg condition.
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%Szz (147)/E and § =—v/E (2.8)

Elasticity Constants [2].

The (Arx) radiocrystallographic anisotropy element is a measure of the elastic anisotropy of the
diffracting crystallites [2]. Arx is between single crystal anisotropic element [9]. Some volumes

of Arx cubic materials are given in Table 2.1. Equation, 2.9 is another way to calculate Arx .

Table 2.1: Some volumes of Arx cubic materials [9].

Matenals Apx
Body-centered cubic (bec) Fe-base matenals 149
Face-centered cubic (fec) Fe-base matenals 1.72
Face-centered cubic (fee) Cu-base materials 109
Ni-base matenals (fcc) 152
Al-base matenals (fcc) 1.65
1 gi{#00}
Apx — 2 S5 (2.9)
222

Calculate Arx [2].

2.6 The sin? y Method

Stress measurements in polycrystalline materials can be done by the sin® ¢ method, which can

collect diffraction peaks of {hkl} by changing the  tilt angle orientation. Then, the slope of
26



hkl
S({y w}lll ) plot can be measured by a linear least squares fitting and the stresses are calculated

from the slope and the elastic constant [2]. Some different slopes of the sin” ¢ Method is shown
in Figure 2.4. First, the linear functions plot can be found if the principal (main) axes system is
not tilted versus the sample’s surface when oj3, and 0,3 are equal zero [8]. The elliptical
functions plot can be obtained when the principal axes’ system is tilted versus the sample’s
surface when 0;3 and 0,3 does not equal zero. The curved functions plot occurs in a strong stress
gradient perpendicular to the surface [9]. In the end, the oscillating plot function is wavy lines

that can appear of a texture material.

linear function elliptical function
aw i . .
shear stress
components
O3 Ox
. =0 . 2
sin’y \/ sin“y
0 0.25 0.5 0.75 1 0 0.25 05 0.75 1
curved (e. g. parabolic) funcﬁonl oscillating function (wavy line)
Ly stress gradient 1 surface aw Pie v
(,visible” by y-variation) ¥ |textured material
/ 4 {elastic constants
depend on Y-
S N and ¢-direction)
s 2 .
sin“y M smzv.p
0 0.25 05 0.75 1 0 0.25 0.5 0.75 1

Figure 2:4: Different plots of sin’ Y method [8].
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2.7 ¢ Tilt and Goniometer

The -tilt is an angle between the diffraction vector and the sample rotation (, ®, ¢) as shown
in Figure 2.5 [2]. The calculation of a stress by sin® ¥ method needs at least one 1 -tilt
measurement; however, the measurement of a stress tensor contains two rotation axes to obtain
the -tilt and ¢ rotation. The -tilt can be obtain by two modes which are iso-inclination and

side-inclination.

} w-axis

Diffractometer
plane
7 y-axis
».
et \ 11; K/

,.
2
0
@
[e
g
/

)
%
Q,
2

w-rotation

y-rotation

Figure 2:5: The 1 -tilt is achieved by rotation w axis ¢rotation and Yrotation [2].

2.8 Fundamental Equation for Stress Measurement

There are two cones, one is the diffraction cone and other is the diffraction vector cone, as shown
in Figure 2.6. The bright ring diffraction cones are without stress, as a result, the 20 angles can
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be constantan at y angles. However, the dark rings are the cross sections of the distorted
diffraction cones because of stresses. Therefore, 20 enhances as a function of y with sample
orientation w, 1, and ¢ which is 20 = 20(y,w,\p, ¢) [2]. This calculation is for the stress tensor.
Also, the lattice plane family {hkl} diffraction cone has a diffraction vector cone as shown in

Figure 2.6.

To measure a point on the diffraction ring P, is the analogous diffraction vector points to Py.

hkl
Therefore, the strain calculated by the 20 shift at point P is 8({y 00}111 b) 3 shown in equation

strain 2.10 [2].

i s ]
ok oy

% _ | (2.10)
€ (v,0,0,d) dy sin 2dysin 0

Where dy and 0, are the stress-free values and d and 0 are measured values from a point on the

diffraction ring corresponding to (y,m, 1, ¢).
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Figure 2:6: Stress Measurement [2].

For sample, the diffraction vector H and its unit vector hy in the laboratory coordinates are given
in Figure 2.7 based on Equation 2.11. The peak 20 shifts were measured along the diffraction

ring.

. cos26 —1
H=2"%__ —sin2#@siny
A A :
—sin28cosy 2.11)
h, —sin@
h :‘Z—‘: h, |=| —cos@siny
h, —cosédcosy

Where Diffraction vector is H and its unit vector hy [10].
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The residual stress was measured by the relationship between the stress tensor and the diffraction
cone distortion [9]. The diffraction intensity distributions in both 20 and y directions were
measured, along with the unit diffraction vector to be found with respect to the sample

coordinates.

Figure 2:7: Hy, unit vector of diffraction [9].

Equation 2.12 gives the transformation hs=A*h;, where the unit vector is hg of the diffraction
vector shows the sample geometrics S;, S,, and Ss as shown in Figure 2.8. The diffraction vector

is hy, can be calculated from the unit vector in coordinates.

Figure 2:8: Coordinates S;, S;, and S; with hg [10].
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h| [-sinosiysing-cosocosg coswsinysing-sinmcosp -cosysing| -sinf |

by |=| simosinycosg-cos@sing —coswsiny cos@-sinasing cosycosg | —cossiny | (2-12)

I, -Sin@cosy C0S (DCOSY/ sy | -costloosy |

Transformation hy= A*hy_

2.9 True Stress-Free Lattice d-Spacing

There is an error that can occur from the calculation. For instance, in the two-dimensional stress,
o33 are zero for the biaxial and biaxial with shear tensor with an estimate of dy or 20, which
cause an error. Therefor, any error in dy or 20 donated only to a pseudo-hydrostatic term opp. The
calculation of stresses change depends on the input dy or 26 values [2]. Pseudo-hydrostatic term
can be proven by Almen strip [2]. The Almen strip is a thin strip of metal sample used to
quantify the intensity of a shot peening process [2]. The strip is shot peened in a shot peening
chamber. In addition, when dy is the initial input, then the true dy or 26 can be calculated from

Oph by equations 2.13.

1-2 2.13
dy = dj, exp( Va'ph) @13)

w-1
fy = arcsin [sinﬁ’o exp (VT 0 ph)

True Stress-Free Lattice d-Spacing to Pseudo-hydrostatic term [2].
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2.10 Data Integration and Peak Evaluation

The data integration and peak is a means of estimating data points along deformed diffraction
rings at several specimen orientations. The data integration for residual stress evaluation is y-
integration over several defined segments. As a result, the diffraction ring indicates the
corresponding segments, as shown in Figure 2.9. An analytic function can fit the data points to a
model profile. Next, evaluating the data points can determine the peak position, with one data
point on the diffraction ring produced from each segment. The y-integration of the segments
produces diffraction profiles. Then, the 20 value is determined from each of the profiles [2].
According to the condition of the data frame, the segment size (Ay) and the number of segments
is chosen. A larger (Ay) is better due to more counts integrated. The 20 shift in the segment is

averaged. However, it is important to select the appropriate segment size the frames collect.

|
|
l

Ay | —|-

|
|
|
<

Chrb

Figure 2:9 Data integration for stress measurement [2].

33



In addition, the corrections on the integrated rings are performed during or before the peaks
calculation. Absorption correction removes the effect of the diffraction geometry and the
irradiated area on the calculated intensity distribution. The absorption depends on the incident
angle to the specimen and the returned angle from the specimen. The returned angle is a function
of y on each frame. The polarization influence is a function of y. Consequently, the correction for
absorption and polarization should be applied to the frame before integration. Also, background,
Ka,, and smoothing can apply to each frame. The background work calculates data points
around the thin curve and eliminates scattered intensity that does not contribute to the diffraction
profile. Smooth eliminates effect of counting statistics on the result of Background and Ka,.
There are the peak fitted position evaluated to a Gaussian, Cauchy (or Lorentz), Voigt, pseudo-
Voigt, and Pearson VII [2]. One of these fitting is the Pearson VII, which is fitted to a broad

range of line shapes a shown in Figure 2.10, with equation 2 .14.

Pix)

Figure 2:10:Pearson VII [2].
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Where W is the FWHM (full width half maximum) of the lines, M is a shape parameter, and H is

a scaling factor that determines the height of the peak [2].

2.11 Conventional Method and two-dimensional diffraction Method

Stress measurement by X-ray diffraction is founded by the strain measurements in several or a
single specimen orientation. Each strain calculation is estimated from the average d-spacing of
lattice planes {hkl} over several grains. The diffraction collected by (a) a point detector or (b) an
area detector is shown in Figure 2.11 [2]. The conventional method is to collect the data point by
a point detector, which measures only a few crystallite data points by the incident beam, hits the
specimen and diffracted beam collected by the point detector. However, a two-dimensional
diffraction system collects the diffraction rings of y angles by area detector. Consequently, two-
dimensional diffraction can collect more crystallites. In addition, a larger y angle is better due to

collection from more crystallites.

35



Figure 2:11: Diffraction collected by (a) a point detector or (b) an area detector [2].
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Chapter 3

LEPTOS

3.1 LEPTOS STRESS

LEPTOS is software designed to display, fit, and analyze data collected by X-ray diffraction. In
addition, LEPTOS uses the dynamical theory to simulate X-ray diffraction in various geometries
to calculate the data [8] it also has capabilities for analysis of wafer area mapping measurements
[8]. All the data analysis procedures can be managed by LEPTOS in fully automated script
mode. It gives an advantage of building a convenient and logical interface for data analysis.
LEPTOS was used in analysis phase identification, thin film, texture analysis, stress

measurement and others.

3.2 Residual Stress by LEPTOS software

LEPTOS STRESS calculates the residual stress measurements with 1, and 2-dimensional
detectors. Certain parameters should be considered such as material, Young’s modulus E, and
Poisson ratio. The Miller indices plane hkl must be chosen for Bragg reflection. The wavelength
of radiation anode element such as Ag, Mo, Co and others are chosen depending on the sample
material. The stress-free 20 in the vicinity of must be selected to represent double the Bragg
angle for the unstressed lattice plane. The X-ray elastic constants are calculated from S; and
12S,. The measure of the elastic anisotropy of a cubic material is Arx must be determined.

However, 1D curve and 2D stress frame is shown in Figure 3.1
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Figure 3:1: 1D and 2D Stress curve in LEPTOS [8].

3.3 Corrections and Peak Evaluation Methods

Corrections of both 1D and 2D stress measurements contain Absorption, Background,
Polarisation, Ka,, and Smoothing corrections applied to each measured curve in a stress object

and may be selected if needed as shown in Figure 3.2. The peak evaluation of both 1D and 2D

Stress LEPTOS can be selected as shown in Figure 3.3.
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Figure 3:2:Corrections [8].

e
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W

Figure 3:3: Peak Evaluation [8].

3.4 Two-dimension stress

The two-dimensional stress means evaluation of data consisting of the set of frames. After the
two dimensional detector collects the data points into to dimensional data frames or maps into
stress object. Then, LEPTOS is ready for evaluation of the sample stress status as shown in

Figure 3.4.
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Figure 3:4: Two-dimension stresses [8].

The Integration sets the wire frame change the integration area based on the corresponding
values of angles 2Theta start, 2Theta stop, Gamma start, and Gamma stop as shown in Figure 3.5

and Figure 3.6.
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Figure 3:5: Integration sets on the wire frame [8].
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Figure 3:6: Integration sets on the wire frame [8]
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3.5 Stress tensor

The stress tensor can be selected based on the type of measurement as shown in Figure 3.7. The
blue line is an unwrapped Debye ring calculated with the respect to the calculated stress tensor,
and the shadowed area designates the left and the right limits of the y angle scale, measured by
the detector. The sliders allow variation of the goniometer angles and detector distance to

estimate the segment of the measured Debye ring [8].
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Figure 3:7: Stress tensor [8]
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Chapter 4

Finite Element Analysis

4.1 Introduction

Finite Element Analysis (FEM) is a popular method used in technology due to its ability to
model and simulate various engineering and mathematical physics problems. Finite Element
Analysis obtains approximate solutions of many problems such as heat transfer, fluid flow,
physical displacement, and temperature. In finite element analysis, there are many equations for
various types and dimensions, which can be one- dimensional, two-dimensional and three-
dimensional structures. In addition, theses applications are trusses element, beams element, shell
element, and others as shown in Figure 4.1. FEM goal is to reduce cost of the structure and the
weight. There are various FEM software which are used to simulate various problems such as
Abaqus, Ansa, Comsol and others. In this thesis I focus on three-dimensional solid element by

Abaqus software.
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Figure 4:1: Structural components of FEM [11]

4.2 Three-dimensional solid

In a three-dimensional (3D) elastic solid, there is a volume V and a surface S, as shown in Figure
4.2. The shell of the solid is separated into two kinds of surfaces one surfaces is S¢, which the

external forces are set and other surface is Sy, which the displacements are set. In addition, the
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external load can apply by surface force f; and body force f;, in any direction in the volume of the
solid. The stress components can be at any point in on the surface of cubic volume as shown in

Figure 4.3. The stress components can be divided into normal stress and shearing stress.

Figure 4:2:Three-dimensional elastic solid [11].

\ 4

Figure 4:3:The stress components of cubic volume [11].
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The relationship between the stress and strain is the constitutive equation, which is the Hooke’ s

law term. For anisotropic materials is given by Equation 4.1 in the following matrix.

O —=C¢&
4.1)
Oxx Cl1 €12 €13 Ci4 C15 Ci6 Exx
Oyy n €3 4 5 6| |y
] Oz | _ €33 €34 €35 €36 €7z |
Oyz C44 €45 C46 €yz
Oy §y. C55 (56 Exz
| Oxy | B 66 | | Exy |

The constitutive equation [11].

Where ¢ is a matrix of material constants as shown below [11]

E(l-v) Ev 1= cp
. |
i) 2

=(

Where are E, Young’s modulus, v Poisson’s ratio and G shear modulus. The relationship

between these three constants is given below.

G=——
2(14v)
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4.3 Residual stress analysis by Abaqus

To predicate residual stress finite element analysis software package is needed to estimate
residual stresses. In this case, Abaqus software was used to estimate residual stresses. There are
some methods to obtain residual stress such as by Quasi-Static Analysis, initial
conditions, Moldflow interface files, or loading unloading step. Each of these methods is used
for different analysis. For instance, Moldflow with Abaqus is used to obtain the residual stress in
plastic flow of a material. However, in this research, loading and unloading step is used. There
are steps in module, which provides a suitable way to change the loading and boundary
conditions of the model. The residual stress occurs after plastic deformation. Therefore, the
residual stress can obtain by applying unloading step in module to obtain residual stresses.
However, in this research, elastic- plastic deformation was investigation to obtain the residual

stresses direction.
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Chapter 5

Results and Discussion

5.1 Introduction

In 2000, Almer, Cohen, and Moran investigated the effects of residual macro stresses and micro
stresses on fatigue crack initiation by using X-ray diffraction and finite element analysis to
predict fatigue crack initiation in the presence of residual stresses [14]. These researchers
identified residual stresses in notched 1080 steel samples. Residual stresses were investigated by
press-fitting operations and pre-straining, and crack initiation was observed through high-cycle
fatigue analysis. Internal stress and strain behaviour was found in the vicinity of the initiation
sites by using finite element analysis. Almer, Cohen, and Moran created micro beam X-ray
diffraction to measure residual macro stresses in different phases of 1080 steel alloy, and found
that the macro stresses were relaxed, thereby affecting the beginning of cracking. They claimed
that the micro stresses would disappear during fatigue test [14]. The researchers used one-
dimensional X-ray diffraction as well as a multi-purpose finite element program written by Prof.

R. L. Taylo for mounding test [14].

Since then, further research analysis of residual stress has been completed on stamped valves by
X-ray diffraction and finite elements method [15]. In 2006, Martins, Cardoso, Fraymann, and
Button analyzed residual stresses in stamped valves by X-ray diffraction and finite element
method. They used a sin2 y method one-dimensional X-ray diffraction to calculate the residual
stresses in small areas of the stamped valves. The researchers mounded some parts of the

stamped valves by MSC Superform version 2004 code. Results were then compared with
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simulation. In addition, fatigue tests were completed which analyzed endurance bench by
applying alternate reverse bending on dynamical valves [15]. Finally, Martins et al. claimed that
the residual stresses resulting from the fatigue tests proved the validity with finite element

analysis.

In 2010, Robinson, Tanner, Truman, and Wimpory investigated residual stress using Neutron
diffraction testing with FEM Abaqus software package to measure and predict machining
induced redistribution of residual stress in the Aluminium alloy 7449 [16]. A heat treatment was
performed with cold water immersion quenching before precipitation hardening, and high
magnitude residual stresses were calculated in the material of two blocks. One block was milling
to thickness while the other block measured without external effect. The researchers used non-
destructive testing Neutron diffraction to measure the residual stress and compared both results
for both blocks. Arising distortions were also calculated using a coordinate measuring machine
[16]. In addition, a moulding was completed using finite element analysis Abaqus to compare the
result with the experiment Neutron diffraction testing. Robinson et al. claimed that the results

generally agree with each method [16].

In 2004, Anderoglu used one-dimensional X-ray diffraction to analyze residual stresses [17].
SS316 stainless steel samples were investigated along with residual stresses analysis using
Bruker-AXS GADDS 2D Powder and Single-crystal X-Ray Diffractometer. Eight samples of
residual stresses were analyzed and results were compared in different angle orientation with a
biaxial model being used to obtain the residual stress. The researcher claimed that the change

angle orientation gives different residual stresses analysis [17].
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In 2012 Yuting and Junyi did simulations of residual stress induced by waterjet peening using
Abaqus [18]. Two different methods were used to calculate residual stresses with a quasi-static
analysis and transient dynamic analysis using 2D and 3D modules. The researchers stated that
residual stresses differed between each loading and unloading step. The results in quasi-static

analysis and transient dynamic analysis differed between two- and three-dimensional [18].

Overall, most research calculated residual stresses by using different non-distractive testing.
However, thin plates are common in engineering applications. This thesis analyzes residual
stresses in AISI 1020 steel alloy cold rolled manufacture processing plates. Two identical thin
circular plates are used in this experiment; one of which is statically loaded. The other plate is
used as a control specimen. Residual stresses in the plates are measured using two-dimensional
X-ray diffraction and the measurements are compared to those obtained using finite element
analysis. It was found that experimentally measured residual stress occurred due to manufacture
processing. Also, modules A and B showed the external effect of applying not enough to reach
the plastic region to deform specimen 2 and obtain residual stress results distribution. The two
specimens were thin annular desks with dimension of: 0.79 mm thickness, 38 mm outside
diameter, and 25 mm inside diameter. One plate was loaded with a static compressive load of
26.689 KN, referred to as specimen 2 as shown in Figure5.1. The mechanical and physical

material properties of AISI 1020 steel alloy cold rolled plates are given in table 5.1 [19].
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Table 5.1: Material properties of AISI 1020 steel alloy cold rolled plates [19].

Physical Properties Metric nglis! omments
Density 181 glec 0.264 [b/in?
Mechanical Properties Metric English Comments
Hardness, Brinell 121 121
Hardness, Knoop 140 140 Converted from Brinell hardness.
Hardness, Rockwell B 68 68 Converted from Brinell hardness.
Hardness, Vickers 126 126 Converted from Brinell hardness.
Tensile Strength, Uttimate 420 MPa 60900 psi
Tensile Strength, Yield 350 MPa 50800 psi
Elongation at Break 15% 15% [n 50 mm
Reduction of Area 40% 40%
Modulus of Elasticity 205GPa 29700 ksi Typical for steel
Bulk Modulus 140 GPa 20300 ksi Typical for steel
Poissons Ratio 0.2 0.29
Machinability 65 % 85 % Based on AISI 1212 steel. as 100% machinability
Shear Modulus 80.0 GPa 11600 ksi Typical for steel

Figure 5:1: Compressive machine.
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5.2 Bruker LEPTOS software

The residual stresses calculation on the two, thin, circular plates was analyzed with Bruker
LEPTOS software [8]. In the experiment, the input material is iron (Fe) with a Young’s modulus
of E = 205 GPa and a Poisson ratio of v = 0.29. The Miller indices plane is hkl (211) for Bragg
reflection. Co-Ka, radiation was used to avoid Fe fluorescence. The stress-free 20 in the vicinity
of 99.6° was double the Bragg angle for the unstressed lattice plane. The X-ray elastic constants
of steel alloy 1020 were calculated -1.271E -6 for S; and 5.811E-6 forl2S, using equation.2.8
[2]. The measure of the elastic anisotropy of a cubic material is 1 Arx. The biaxial model was

chosen to calculate residual stresses, as given by equation 2.2 [2].

5.3 Frame preparation

After data collection, the residual stresses were calculated by using the VANTEC-500 detector as
shown in Figure 5.2. The frames required preparation prior to final calculation. Corrections were
applied to each measured curve in stress, if needed. In the experiment, the background work
calculated five data points around the curve and eliminated the scattered intensity that does not
contribute to the diffraction profile. Absorption is one example because it eliminates the
diffraction intensity, as is polarization, because it affects the calculation of the positions of
absolute peaks. The Ko, line 0.5 was used for the intensity ratio. Smoothing was used to
eliminate the effect of counting statistics on the results of the background and Ka,.The peak
position was evaluated using Pearson VII, which is used to fit a broad range of line shapes as

shown in Figure 2.10 and equation 2.16.
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Figure 5:2: VANTEC-500 detector [10].

5.4 Experimental test

The thin, solid lines shown in Figures 5.3 to 5.8 represent data integration over diffraction
frames. The diffraction solid line ring was measured from the lattice plane family (211). The
total integration region was given by 20, began at 101.5° and ended at 97.5°, and y began at
-73.9°and ended at -106.2° for stress analysis. Ay was 10°. Figures 5.3 to 5.8 show examples of
different frame samples with the same orientation: (a) illustrates the data collection scheme for
stress data points collected at m omega 50° constant, 41 psi angles at (15, 40, 65, 80), and 13 ¢
phi at (65, 110, 155, 200, 80, 103, 126, 172, 195, 80, 98, 116, 134). Both samples had a pseudo-
hydrostatic term o, standard error of 0.0+18.8, and the final dy = 0.1171 nm and 26 was 99.64°.
For the first sample, the residual stresses were 071 = 240 + 24 MPa and 0y, = 252.54+21.224 MPa.

Therefore, these results indicate a slightly higher standard error with a principal stress tensor of
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o1 = 263.224 MPa and oy = 229.324 MPa. For the second loaded sample, the residual stresses
were 011= 285 £ 20 MPa and 05, = 219.3+20.424 MPa. Therefore, these results indicate a

significantly higher standard error with principal stress tensor of o7 = 285.424 MPa and oy =

218.924 MPa.

fPhi155.0
15.0

Figure 5:4: Frames orientation (o 50,y 15, ¢ 65,110,155,200) for specimen 2.
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Figure 5:6: Frames orientation (® 50, y 40, ¢ 80,103,126,149,172,195) for specimen 2.

As a result, the thin solid lines represent data integration over a diffraction frame shown in
specimen 2, and the residual stress distribution is higher than in specimen 1. However, not all
frames can have data integration calculated in the experiment, some frames had insufficient data
points as show in Figure 5.7 and Figure 5.8. These frames orientation did not satisfy Bragg’s
law. This experiments were done at McMaster University in chemistry department X-ray lab,

and more information about the experiment is provided in Appendix A and B.
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Figure 5:8: Frames orientation (w 50,y 80, ¢ 83,98,113,128,143,158,173,188) for specimen

2.

5.5 The finite element analysis

Finite element analysis code Abaqus, version 6.12 [12], was used to predict the residual stress
distribution in specimen # 2. Modules A and B proved the amount of pressure which was
needed to get residual stress distribution. A three-dimensional element model of the circular steel

plate was modeled using A three-dimensional solid elements. Material response was assumed to

56



be isotropic and to follow elastic-plastic deformation and undergo strain hardening during plastic
deformation. The elastic material properties were set to Young’s modulus of E = 205 GPa and a
Poisson ratio v = 0.29. The plastic stress-strain relationship was described using four points on
the curve adopted as shown in Figure 5.9 [12]. True stress and true strain volume are given in
table 5.1. The mesh of the plate was made of hex 3D solid elements (type C3D8R) as shown
Figure 5.10. For module A, a uniform compressive pressure of 41.5 MPa was applied on the top
surface of the plate. However, for module B, a uniform compressive pressure of 300 MPa was
applied on the top surface of the plate. For both modules, displacement was constrained to zero
in Z directions of the bottom plate as shown in plate Figure 5.11. The model followed Abaqus

standard procedure to predict residual stress.

1000
~ 900 |

800
g 700 1
600
600 1

400  /

§ 300 |/
200 ¢ o ABNT 1020 Steel
100 |

—A—- As rolled
— Asrolled, regression
O As drawn, experimental

-/

0O 01 02 03 04 05 06 07 08 09 10 11 12 13
Strain

Figure 5:9: The plastic stress-strain relationship curve [20].
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Table 5.2: The plastic stress- strain volume [12].

Yield Stress (MPa) Plastic Strain
250 0.0
350 0.1
550 0.2
600 0.3
700 0.4
750 0.5
800 0.6

Figure 5:10:Mesh elements.
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Figure 5:11: Uniform pressures with boundary condition.

5.6 Finite Element Analysis Results

After the specimen was loaded and the load removed, the residual stresses were determined. For
module A, a uniform compressive pressure of 41.5 MPa was not enough to obtain any residual
stress results distribution as shown in Figure 5.12 and 5.13. In Figure 5.13 results did not obtain
any residual stress. Therefore, module B was used to get residual stress distribution. The residual
stress results distribution is shown in MPa terms of Von Mises, loaded and unloaded results are

shown in Figure 5.14, 5.15 respectively.
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S, Mises

(Avg: 759)
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01
+4.150e+01

Figure 5:12: Module A, loading Von Mises result.

S, Mises

(Avg: 759%)
+1.617e-09
+1.571e-09
+1.524e-09
+1.478e-09
+1.432e-09
+1.385e-09
+1.339e-09
+1.293e-09
+1.246e-09
+1.200e-09
+1.153e-09
+1.107e-09
+1.061e-09

o "..'
:,."'(., ’Q.‘. 25
Vo 0’0’

Figure 5:13: Module A , unloading Von Mises result.
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S, Mises
(Avg: 759)
+2.825e+02

+2.7382+02

S, Mises

(Avg: 759%)
+3.19%e+00
+2.992e+00
+2.786e+00
+2.57%e+00
+2.373e+00
+2.166e+00
+1.960e+00
+1.753e+00
+1.547e+00
+1.340e+00
+1.134e+00
+9.272e-01
+7.207e-01

Figure 5:15: Module B, unloading Von Mises result (residual stress).
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5.7 Discussions and Conclusion

In this study the effect of residual stress distribution on a thin, circular plate was investigated.
The main objective of this study was to compare residual macro stresses on two steel cold-rolled
alloys of AISI 1020 specimens, which were loaded and unloaded using two-dimensional X-ray
diffraction. For specimen unloading 1, the residual stresses using two-dimensional X-ray
diffraction were o) = 240 + 24 MPa and oy, = 252.5+21.224 MPa. In addition, for specimen 2
which was loaded by uniform compressive pressure of 41.5 MPa, the residual stresses were 011=
285 £ 20 MPa and 0,5, = 219.3£20.424 MPa. As a result, the differences in residual stresses in
the thin, circular plates between specimens 1 and 2 could have occurred because of the external
load of 41.5MPa, which added to o;; specimens 2. However, specimens 1 and 2 had high
residual stress distribution due to cold rolled manufacturing processing. Specimen 2 could differ
from specimen 1 due to external load; however, the external load of 41.5 MPa was not enough

itself to reach the plastic region.

Therefore, comparing modules A and B proved finite element analysis. In module A,
compressive pressure of 41.5 MPa was applied in specimen 2, which was not enough to deform
and reach the plastic region; therefore, no residual stress was found. Consequently, the amount of
pressure was increased for module B to 300 MPa to reach plastic region and to obtain residual

stress distribution.

In short, applying compressive pressure of 41.5 MPa was not enough in itself to obtain residual
stress; therefore, the residual stress in the experiment was due to cold rolled manufacturing

processing and not because of external load. In order to obtain residual stresses due to external
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load rather than manufacturing processing, the researcher must increase the amount of pressure

at least to 300 MPa for specimen 2.

Notably, a three-dimensional finite element model was used rather than a two-dimensional
model because it covered all geometrical effects. Also, the three-dimensional finite element
model had the ability to predict the pressure on the top surfaces of the specimens rather than on

their edges.

This work conducted an analysis of the residual stress effect on a material, and the effect of an
external loading on a material was shown. There are two identical thin circular plates in this

research, which analyzed the effect of residual stress.

5.8 Future work

In addition to this work the fatigue test may be used to estimate the fatigue life of the material.
Also, instead of using a statics load to the specimen, another external effect can be applied such
as a heat treatment, welding effect, dynamic loaded and other can investigate. In addition, two-
dimensional X-ray diffraction was used to analyze residual stress a the macro level, by which a
synchrotron source can provide more accurate information about residual stress [1]. In addition,
instead of solid plate used in experiment, a thin film can be investigated or other type of

specimens.
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Appendix A

Residual stresses specimen 1

09/10/2012 10:56:56 AM

Project: Stress_2D an

Operator:
Sample:
Site:
Sample
Material | H K L' Wavelength ' 2Theta  Poisson® Young @ S1 1282 | Ax

Fe 211 | Co-Kat 99.699 0.280 « 220264 -1.271E-6 5.811E-6 1.000
hi )

Integration: 2 Thetha start: 101.5 2 Thetha stop: 97.5
Gamma start: -73.9 Gamma stop: -106.2
Subregions: 10 Step: 0.1
Peak 20
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Measured: Peak Evaluation Method: Stress Model: Pseudo-Hydro:
01-Jul-2012 Pearson VI Biaxial 0.0+188
Normal:
252.5 +21.2
Shear:
-4
Corrections: Absorption , Background (5 ), Polarisation , Smooth , K alpha 2 (0.50)

Stress Tensor:  240.0 +24.0 -15.8+19.0 |-+
158+ 19.0 2525 +21.2 -+
- 4 - - -l - 4 -l-

Principal Stress Tensor: Sigmal: 2632  Sigmall: 229.3  Sigmalll: -

Stress Orientation: 124.2 34.2 /-
34.2 55.8 -
90.0 90.0 -I-
d0:0.1171 nm 2 thetha 0: 99.6410
Data: Segments: Omega: Phi: Psi: Gamma: 2Thetha: Rejection:
Acusail2f_292-000-0000 50.0 65.0 15.0 -75.505 99.699

-78.739 99.701
-81.973 99.712
-85.207 99.692
-88.441 99.704
-91.674 99.712
-94.908 99.663
-98.142 99.692
-101.376 99.686
-104.610 99.682
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Acusail2f_292-000-0001

Acusail2f_292-000-0002

Acusail2f_292-000-0003

50.0

50.0

50.0

110.0

155.0

200.0

66

-15.505
-18.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-15.505
-18.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

-15.505
-18.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682



Acusail2f_293-000-0000

Acusail2f_293-000-0001

Acusail2f_293-000-0002

50.0

50.0

50.0

80.0

103.0

126.0

40.0

40.0

40.0
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-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682



Acusail2f_293-000-0003

Acusail2f_293-000-0004

Acusail2f_293-000-0005

50.0

50.0

50.0

149.0

172.0

195.0

40.0

40.0

40.0
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-75.505
-78.739
-81.973
-86.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682



Acusail2f_294-000-0000

Acusail2f_294-000-0001

Acusail2f_294-000-0002

50.0

50.0

50.0

80.0

98.0

116.0

65.0

65.0

65.0

69

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682



Acusail2f_294-000-0003

Acusail2f_294-000-0004

Acusail2f_294-000-0005

50.0

50.0

50.0

134.0

152.0

170.0

65.0

65.0

65.0

70

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682



Acusail2f_294-000-0006

Acusail2f_295-000-0000

Acusail2f_295-000-0001

50.0

50.0

50.0

188.0

83.0

9.0

65.0

80.0

80.0

71

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682



Acusail2f_295-000-0002

Acusail2f_295-000-0003

Acusail2f_295-000-0004

50.0

50.0

50.0

128.0

143.0

80.0

80.0

80.0

72

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682



Acusail2f_295-000-0005

Acusail2f_295-000-0006

Acusail2f_295-000-0007

50.0

50.0

50.0

158.0

173.0

188.0

80.0

80.0

80.0

73

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

99.699
99.701
99.712
99.692
99.704
99.712
99.663
99.692
99.686
99.682

10



Appendix B

Residual stresses specimen 2

09/10/2012 10:49:58 AM
Project: Stress_2D

Operator:
Sample:
Site:
Sample
Material | H K L' Wavelength | 2Theta  Poisson’ Young = S1 1282 Anx
Fe 211

Integration:

Co-Kat 99.699 0.280 | 220264

-1.271E-6| 5.811E-6 1.000
Pt ' IPhi ‘

2 Thetha start: 101.5 2 Thetha stop: 97.5
Gamma start: -73.9 Gamma stop: -106.2
Subregions: 10 Step: 0.1
Peak 20

74



Measured:
01-Jul-2012

Peak Evaluation Method:
Pearson VII

Corrections: Absorption, Background (5 ) , Polarisation , Smooth , K alpha 2 (0.50)

Stress Tensor:  285.1 +20.0 -48+158 -
-48+158 219.3+20.4 -/
-t - £ -1+ -

Principal Stress Tensor: ~ Sigmal: 2854  Sigmall: 2189
Stress Orientation: 4.1 859 /-
94.1 4.1 -
90.0 90.0 -

d0:0.1171 nm

Data: Segments: Omega: Phi:
Acusailtf_296-000-0000  50.0 65.0

2 thetha 0: 99.6375

I+ 1+ I+

Sigmalll: -/-

Psi:

Stress Model:
Biaxial
Normal:
285.1+20.0
Shear:
- -
Gamma: 2Thetha:
-75.505 99.721
-78.739 99.691
-81.973 99.701
-85.207 99.693
-88.441 99.694
-01.674 99.693
-04.908 99.683
-08.142 99.683
-101.376 99.680
-104.610 99.674

75

Rejection:

Pseudo-Hydro:
00+18.1



Acusail1f_296-000-0001

Acusail1f_296-000-0002

Acusail1f_296-000-0003

500

50.0

50.0

110.0

155.0

200.0

150

15.0

15.0

76

-15.505
-18.739
-81.973
-85.207
-88.441
-01.674
-04.908
-98.142
-101.376
-104.610

-15.505
-18.739
-81.973
-85.207
-88.441
-01.674
-94.908
-98.142
-101.376
-104.610

-15.505
-18.739
-81.973
-86.207
-88.441
-91.674
-94.908
-08.142
-101.376
-104.610

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674



Acusail1f_297-000-0000

Acusail1f_297-000-0001

Acusail1f_297-000-0002

50.0

50.0

50.0

80.0

103.0

126.0

40.0

40.0

40.0

77

-75.506
-78.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

-75.506
-78.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

-75.506
-78.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674



Acusail1f_297-000-0003

Acusailtf_297-000-0004

Acusail1f_297-000-0005

50.0

50.0

50.0

149.0

1720

195.0

40.0

40.0

40.0

78

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

-15.505
-78.739
-81.973
-86.207
-88.441
-01.674
-04.908
-98.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-94.908
-08.142
-101.376
-104.610

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674



Acusail1f_298-000-0000

Acusail1f_298-000-0001

Acusail1f_298-000-0002

50.0

50.0

50.0

80.0

9.0

116.0

65.0

65.0

65.0

79

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-04.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-04.908
-08.142
-101.376
-104.610

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674



Acusailtf_298-000-0006

Acusailtf_29-000-0000

Acusail1f_299-000-0001

50.0

50.0

50.0

188.0

83.0

98.0

65.0

80.0

80.0

80

-15.505
-18.739
-81.973
-§5.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-15.505
-18.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-15.50
-18.739
-§1.973
-85.207
-§8.441
-91.674
-94.908
-98.142
-101.376
-104.610

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.604
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674



Acusail1f_298-000-0003

Acusail1f_298-000-0004

Acusail1f_298-000-0005

50.0

50.0

50.0

134.0

152.0

170.0

65.0

65.0

65.0

81

-75.505
-78.739
-81.973
-85.207
-88.441
-91.674
-94.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

-75.505
-78.739
-81.973
-85.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

99.721
99.691
99.701
99.693
99.6%4
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.6%4
99.693
99.683
99.683
99.680
99.674



Acusail1f_299-000-0002

Acusail1f_299-000-0003

Acusail1f_299-000-0004

500

500

500

1130

1280

1430

80.0

80.0

80.0

-75.505
-78.739
-81.973
-85.207
-88.44
-91.674
-94.908
-08.142
-101.376
-104.610

-75.505
-18.739
-81.973
-85.207
-88.441
-91.674
-94.908
-98.142
-101.376
-104.610

-75.505
-18.739
-81.973
-85.207
-88.441
-91.674
-94.908
-08.142
-101.376
-104.610

82

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674



Acusailf_299-000-0005

Acusailf_299-000-0006

Acusailtf_299-000-0007

500

500

50.0

158.0

173.0

188.0

80.0

80.0

80.0

83

-75.505
-18.739
-81.973
-86.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

-75.505
-18.739
-81.973
-86.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

-75.506
-18.739
-81.973
-86.207
-88.441
-01.674
-04.908
-08.142
-101.376
-104.610

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674

99.721
99.691
99.701
99.693
99.694
99.693
99.683
99.683
99.680
99.674
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