
Node-Weighted Prize Collecting
Steiner Tree and Applications

by

Sina Sadeghian Sadeghabad

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2013

c© Sina Sadeghian Sadeghabad 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The Steiner Tree problem has appeared in the Karp’s list of the first 21 NP-hard
problems and is well known as one of the most fundamental problems in Network Design
area. We study the Node-Weighted version of the Prize Collecting Steiner Tree problem.
In this problem, we are given a simple graph with a cost and penalty value associated with
each node. Our goal is to find a subtree T of the graph minimizing the cost of the nodes
in T plus penalty of the nodes not in T . By a reduction from set cover problem it can be
easily shown that the problem cannot be approximated in polynomial time within factor
of (1− o(1)) lnn unless NP has quasi-polynomial time algorithms, where n is the number
of vertices of the graph.

Moss and Rabani claimed an O(log n)-approximation algorithm for the problem using
a Primal-Dual approach in their STOC’01 paper [81]. We show that their algorithm is
incorrect by providing a counter example in which there is an O(n) gap between the dual
solution constructed by their algorithm and the optimal solution. Further, evidence is given
that their algorithm probably does not have a simple fix. We propose a new algorithm which
is more involved and introduces novel ideas in primal dual approach for network design
problems. Also, our algorithm is a Lagrangian Multiplier Preserving algorithm and we
show how this property can be utilized to design an O(log n)-approximation algorithm for
the Node-Weighted Quota Steiner Tree problem using the Lagrangian Relaxation method.

We also show an application of the Node Weighted Quota Steiner Tree problem in
designing algorithm with better approximation factor for Technology Diffusion problem, a
problem proposed by Goldberg and Liu in [48] (SODA 2013). In Technology Diffusion, we
are given a graph G and a threshold θ(v) associated with each vertex v and we are seeking
a set of initial nodes called the seed set. Technology Diffusion is a dynamic process defined
over time in which each vertex is either active or inactive. The vertices in the seed set
are initially activated and each other vertex v gets activated whenever there are at least
θ(v) active nodes connected to v through other active nodes. The Technology Diffusion
problem asks to find the minimum seed set activating all nodes. Goldberg and Liu gave an
O(rl log n)-approximation algorithm for the problem where r and l are the diameter of G
and the number of distinct threshold values, respectively. We improve the approximation
factor to O(min{r, l} log n) by establishing a close connection between the problem and
the Node Weighted Quota Steiner Tree problem.

iii

Acknowledgements

I would like to express my sincere gratitudes to my supervisors Professor Jochen Könemann
and Professor Laura Sanitá for their invaluable guidance, continues support and excellent
supervision. I would also like to thank Professor Chaitanya Swamy and Professor Ricardo
Fukasawa for spending the time to read this thesis and for their insightful comments.

iv

Table of Contents

List of Figures vii

List of Algorithms viii

1 Introduction 1

1.1 Edge-Weighted Steiner Tree problems . 2

1.2 Node-Weighted Steiner Tree Problems . 4

1.3 Generalized Steiner Network Problems and Special Graphs 5

1.4 Overview of The Thesis . 7

2 Node-Weighted Prize Collecting Steiner Tree 9

2.1 Integer Programming Formulation . 10

2.2 Counterexample to Moss-Rabani’s Algorithm 12

2.3 Algorithm . 14

2.3.1 FindSubTree . 17

2.3.2 CVtx . 21

2.4 Analysis . 22

2.4.1 Correctness . 22

2.4.2 Bounding The Cost of The Phase Tree 23

2.4.3 Approximation Factor Guarantee 27

2.5 LMP Algorithm . 33

v

3 Applications 36

3.1 Node-Weighted Quota Steiner Tree Problem 36

3.2 Technology Diffusion Problem . 42

3.2.1 Problem Definition . 43

3.2.2 Previous Result and Our Contributions 44

3.2.3 O(r. lg(n))-Approximation Algorithm 45

3.2.4 O(l. lg(n))-Approximation Algorithm 48

3.2.5 Complexity . 51

4 Future Work 53

References 56

vi

List of Figures

2.1 Counterexample to Moss-Rabani’s algorithm. 12

2.2 Embedded moats in NW-PCST algorithm. 17

2.3 Inside procedure FST . 21

2.4 Inside procedure CVtx(Sd, zd, d) . 22

2.5 The chain of CVtx calls . 25

vii

List of Algorithms

1 PrizeCollectingSteiner(G(V,E), c, π,r) . 18
1 PrizeCollectingSteiner (continued) . 19
2 FST(S, L) . 19
3 CVtx(S, z, d) . 20
4 SelectSeedSet1(G, {θ1, . . . , θl}) . 47
5 SelectSeedSet2(G, {θ1, . . . , θl}) . 50

viii

Chapter 1

Introduction

In the Steiner Tree problem, given a graph G = (V,E) and a subset S of vertices, called
the terminals, and a cost function c : E(G) → R, we are looking for the minimum cost
subtree T spanning all terminals:

min
subtree T of G:S⊆V (T)

c(T),

where c(T) =
∑

e∈E(T) c(e). The non-terminal vertices V \ S of the graph are referred to
as the Steiner vertices.

The Steiner Tree problem is one of the most fundamental problems in Network Design
and Complexity Theory for its real world application [3, 69, 55, 91, 35] and also due to its
theoretical importance. The origin of the Steiner Tree problem goes back to the problem
raised and solved by J. Steiner in the beginning of the 19th century: given 3 points in the
Euclidean plane, find a minimum length network connecting these points. This problem
was generalized to n points in the plane by Jarńık and Kössler [67] and named Euclidean
Steiner Tree problem and later the edge-weighted network version of the problem in graphs
was proposed by Hakimi in 1971 [63] which we know as the classic Steiner Tree problem
described above.

The Steiner Tree problem is also the natural generalization of the well known minimum
spanning tree problem (where S = V) but unlike this problem, most variants of Steiner
Tree problem are known to be NP-hard. The Steiner Tree problem itself appeared in
Karp’s original list of 21 NP complete problems [71], motivating much research on the
design of approximation algorithms for it. Here we provide a brief review of different
variants of Steiner Tree problem relevant to this thesis. We focus on hardness results and
approximation algorithms found for each problem.

1

1.1 Edge-Weighted Steiner Tree problems

The original Steiner Tree problem, as defined above was defined only with edge costs.
There is a simple 2-approximation algorithm for the problem: given the set S of terminals,
the algorithm constructs a complete graph H with vertex set S such that the weight of
each edge is the length of shortest path between its end points in G. Then, a minimum
spanning tree is found in H and converted to a Steiner Tree in original graph by replacing
each edge with its corresponding shortest path. The proof of approximation guarantee was
given in [43] by Gilbert and Polak in 1968.

In 1990, Zelikovsky showed that we can obtain better than 2 approximation factor
for the problem by announcing a 11/6-approximation algorithm [96]. Subsequently, many
improvements were gradually attained for the problem; a 1.746-approximation algorithm
by Berman and Ramaiyer in 1992 [14] was followed by a 1.693-approximation algorithm
again by Zelikovsky in 1996 [95]. Then, a 1.667-approximation algorithm by Prömel and
Steger [85, 86] and a 1.644-approximation algorithm by Karpinski and Zelikovsky [72] were
proposed in 1997. In 1999 a 1.598-approximation algorithm was designed by Hougardy
and Prömel [65] and then improved to 1 + ln 3

2
≈ 1.55 by Robins and Zelikovsky [88] in

2005.

The best known approximation factor for the problem is currently a ln 4 ≈ 1.39-
approximation algorithm found by Byrka et al. [22]. There is still a big gap between
the bound and the best inapproximability result for the problem which is a lower bound
of 96/95 due to Chleb́ık and Chleb́ıková [31]. Many of the works mentioned above are
inspired by a general Primal Dual framework proposed by Goemans and Williamson for
network design problems. Their method is capable of solving a broad range of network
design problems with approximation factor of 2 (see [46] or [47] for specific characterization
of these problems).

Prize Collecting Steiner Tree Problem (PCST). In the Prize Collecting Steiner Tree
problem, we are allowed to violate the requirement of spanning a terminal v by paying a
penalty π(v). In other words, instead of a set of terminals, we are given penalty values
for all vertices and our objective function is to find a subtree minimizing the total cost of
selected tree plus penalty of the nodes excluded from the tree. It is easy to see that this is a
generalization of the classic problem. We may assume the penalty of the Steiner nodes are
zero while the penalty of terminals are infinity to obtain an instance of the classic problem.

The prize collecting Steiner Tree problem was first introduced by Balas [9] and the first
approximation algorithm for the problem was found by Beinstock et al. with approximation
factor of 3 [18]. Geomans and Williamson gave a 2-approximation algorithm for edge

2

weighted version of PCST [46, 47] using their general primal dual framework. The LP
formulation underlying this algorithm is well known to have an integrality gap of ≈ 2,
and hence, their result is tight. The result of Geomans and Williamson was the best
approximation factor for PCST for 17 years until in 2009, Archer, Bateni, Hajiaghayi and
Karloff discovered a (2− ε)-approximation algorithm for the problem [3] breaking through
the LP integrality gap barrier.

Quota Steiner Tree Problems. The Quota Steiner Tree (QST) problem is a general-
ization of the k-Minimum Spanning Tree (k-MST) problem. In k-MST, given a graph and
edge costs, we are asked to find the minimum cost subtree of size k. In the Quota Steiner
Tree problem, we have vertex profits in addition to edge costs and a quota value Q and we
are asked to find a minimum cost subtree with total profit at least Q.

The first constant factor approximation algorithm for k-MST problem was given by
Blum, Ravi and Vempala in 1996 [19]. Garg gave a 3-approximation as well as a simple
5-approximation algorithm for k-MST [40], improving the previous bound. Later in 1998,
Arya and Ramesh improved the factor to 2.5[6]. Currently, the best known result is a
2-approximation found by Garg [41].

In [69], Johnson, Minkoff and Phillips showed that any α-approximation algorithm for
k-MST problem can be extended to an α-approximation algorithm for Quota Steiner Tree
problem, hence, obtaining 2.5-approximation algorithm for the problem (and therefore
using Garg’s result in 2005, it leads to a 2-approximation). They also showed how to
obtain a (5 + ε)-approximation algorithm for Budgeted Steiner Tree problem from Garg’s
3-approximation algorithm, where we are asked to find a subtree of maximum profit with
a given bounded cost.

Chudak, Roughgarden and Williamson [32] present a general technique for approximat-
ing partial variants of optimization problems. They showed that this task often reduces to
obtaining a Lagrangian Multiplier Preserving (LMP) algorithm for prize-collecting version
of the problem. Specifically, they showed that Garg’s 5-approximation algorithm can be ex-
plained as a simple Lagrangian Relaxation (LR) method using Goemans and Williamson’s
2-approximation algorithm [46] for Prize Collecting Steiner Tree problem as a subroutine
which possesses the LMP property. They also obtain a 5-approximation algorithm for k-
Steiner Tree problem from Geomans and Williamson’s algorithm using the same technique.
k-Steiner Tree problem is a special case of Quota Steiner Tree problem where profits are
zero or one.

An LMP α-approximation for a prize collecting problem is an algorithm finding a
solution F such that

απ(F) + c(F) ≤ αOPT,

3

where π and c are the penalty and cost functions, respectively, and OPT is the cost plus
penalty of the optimal solution.

Although the approximation guarantee of the aforementioned work is not the theoret-
ically best known result, the technique is of particular interest in our work to solve the
Node-Weighted Quota Steiner Tree. The LMP property has been also used previously in
the works of Arya and Ramesh [6] and Arora and Karakostas [5] for k-MST and also in
the recent work of Archer et al. [3] for Prize Collecting Traveling Salesman and Prize
Collecting Steiner Tree problems.

1.2 Node-Weighted Steiner Tree Problems

In the Node-Weighted Steiner Tree problem (NW-ST), the cost function is defined on
vertices instead of edges. It is easy to see that the node-weighted version of the problem
generalizes the edge-weighted version. Unlike the edge-weighted version, the node-weighted
version is much harder. By a simple reduction from Set Cover problem, we can show that
NW-ST cannot be approximated up to (1− o(1)) lnn [37].

NW-ST has a 2 lnn approximation algorithm due to Klein and Ravi [74]. They use
a combinatorial approach to obtain their approximation algorithm. However, the general
primal dual approach of Goemans and Williamson [47] can be also used to prove the
approximation guarantee. Guha et al. give a primal dual analysis of Klein and Ravi’s
approximation algorithm that shows the solution of the algorithm is not only within O(lg n)
from the optimal integral solution but also within O(lg n) factor of the optimal fractional
solution of a natural LP [55].

The Node-Weighted Prize Collecting Steiner Tree (NW-PCST) and Node-Weighted
Quota Steiner Tree (NW-QST) problems are defined similar to those of edge-weighted
versions. Both problems were first studied by Moss and Rabani in [81]. They claimed
to solve NW-PCST with a primal dual LMP algorithm of log(n)-approximation factor.
However, there is a fundamental flaw in their algorithm: the monotone one-shot dual
growing procedure employed by their algorithm can be shown to produce dual solution of
insufficient value. There is no known such primal dual algorithm for set cover problem and
therefore it does not seem that their algorithm have a simple fix. We will define monotone
one-shot dual growing procedure more precisely in next chapter.

In this thesis we present a new and inherently different LMP algorithm for NW-PCST.
Moss and Rabani’s solution for NW-QST problem relies on their prize collecting algorithm
but uses the prize collecting algorithm in a black-box manner using a tree packing method

4

and its LMP property. Their algorithm for the quota problem is thus valid using our new
LMP algorithm for prize collecting problem. We also show in section 3.1 how to use the
Lagrangian Relaxation method to solve NW-QST with our LMP algorithm for NW-PCST
problem.

1.3 Generalized Steiner Network Problems and Spe-

cial Graphs

Here we briefly review some results for generalizations of the Steiner Tree problem as well
as some results for planar and Euclidean variants of the problem. The focus here is on the
problems with recent progresses; the reader is referred to [57] for a thorough survey.

Steiner Forest Problem. In the Steiner Forest problem, one is given a set of pairs of
vertices D and the problem is asking for a subgraph connecting each pair in D. It is clear
that the solution to this problem is a forest and the Steiner Tree problem is a special case
where the pairs all share a same fixed vertex. The Steiner Forest problem can be solved
using Goemans and Williamson’s primal dual algorithm [46] to obtain a 2-approximation
algorithm, or any of the algorithms in [2] or [45] for more general problems. Bern and
Plassmann proved that the problem does not admit a PTAS [16], however we know from
the Steiner Tree problem’s hardness that there is a 96/95-inapproximability lower bound
for the problem.

It is shown that Steiner Forest problem is NP-hard even in planar graphs [39]. Bor-
radaile showed that the Steiner Tree problem admits a polynomial time approximation
scheme (PTAS) in planar graphs [20] which has been also extended to a PTAS for Steiner
Forest problem by Bateni, Hajiaghayi and Marx [13]. The Node-Weighted Steiner Forest
(NW-SF) in planar graphs has been recently studied by Berman and Yaroslavtsev and they
gave a 2.4-approximation for the problem, while the APX-hardness of the problem is still
an open question.

Prize Collecting Steiner Forest Problem (PCSF). In [60], Hajiaghayi and Jain stud-
ied PCSF (also called Prize Collecting Generalized Steiner Tree) and proposed a 2.54-
approximation algorithm. Sharma and Swamy generalized their work in [90] and gave a
3-approximation algorithm for the case where connectivity constraints are arbitrary 0-1
functions and penalty function is submodular as well as a 2.54-approximation algorithm
based on LP rounding. Hajiaghayi and Nasri later showed how to obtain the same ap-
proximation guarantee (3) for Prize Collecting Steiner Forest via iterative rounding in [62]
and how to extend it to a 3-approximation algorithm for a Prize Collecting Survivable

5

Network Design Problem (described later) where there is a penalty equal to the violated
connectivity constraint of a pair.

Bateni et al. have studied the prize collecting version of the Steiner Tree and the
Steiner Forest on planar graphs. Particularly, they have shown that PCST admits a PTAS
in planar graphs while PCSF is APX-hard [10].

Gutner also gives a (3−4/n)-approximation for the Prize Collecting generalized version
of Steiner Forest problem in which we have sets {T1, . . . , Tk} and we have to connect the
vertices of each set or pay the penalty associated with the set. If the size of the sets are
all 2, this problem is the classic Steiner Forest problem [59]. Gupta et al. also studied a
game theoretic version of PCSF in [58].

For node-weighted version of the problem, Bateni et al. has recently found a log |D|-
approximation algorithm [12]. Demaine et al. also proved in [33] that Goemans and
Williamson’s primal dual algorithm for NW-ST is a 6-approximation in planar graphs. In
[80], Moldenhauer studies NW-SF in planar graphs and shows that Geomans-Williamson’s
algorithm has a tight approximation factor of 3. The author designs a new algorithm with a
18/7-approximation guarantee on planar graphs (an originally claimed 9/4-approximation
is later fixed in [15]). The state of the art result for the problem is a 2.4 approximation
found by Berman and Yaroslavtsev.

Variants of Steiner Forest Problem has been also studied in Euclidean spaces. The
Euclidean Steiner Tree and Steiner Forest problems are known to have PTASs [4, 79, 21].
Euclidean PCSF and Euclidean k-Steiner Forest problems have been also studied in [11].

k-Steiner Forest Problem. In k-Steiner Forest problem, we are given a set of commodity
pairs D and we are looking for the minimum forest satisfying at least k pairs of D. The
best current approximation factor for the problem is a O(min{

√
k,
√
n}) algorithm found

by Gupta et al. [56]. There is a reduction from k-densest subgraph to k-Steiner Forest
problem [60], therefore, finding sub-polynomial approximation factor for the problem seems
to be a hard task.

Survivable Network Design Problem. Survivable Network Design Problem (SNDP)
is a generalization of Steiner Forest problem in which, each pair of vertices (s, t) in D is
accompanied by a value r(s, t), called the connectivity constrained of (s, t). We are asked
to find a minimum cost subgraph such that each pair of vertices (s, t) in D are connected
by at least r(s, t) number of edge-disjoint paths. Same as Steiner Forest problem, we have
only edge costs in SNDP.

SNDP was studied by Goemans et al. in [45], they gave a 2 lg(k)-approximation for the
problem, where k is the maximum value among the connectivity constraints of the pairs

6

in D. Same approximation factor was given in [2] by Agrawal, Klein and Ravi for the case
where we are seeking a multiset of edges. Finally, Jain gave a 2-approximation algorithm
for SNDP in 2001 [66].

As mentioned, Hajiaghayi and Nasri gave a 3-approximation algorithm for prize col-
lecting version of SNDP (PC-SNDP) where there is a penalty equal to the violated con-
nectivity constraint of a pair. Nagarajan, Sharma and Williamson improved this result
to a 2.54-approximation for penalty functions linear in the violation of the connectivity
requirements. In the most recent work [61], PC-SNDP with a general penalty function was
studied. Namely, the authors designed a constant factor approximation algorithm for the
case where the penalty function for each pair is a monotone and submodular function.

Williamson et al. also studied a general version of SNDP in which there is a connec-
tivity constraint for each cut and gave a 2k-approximation where k is again the maximum
connectivity constraint [93]. Gabow et al. slightly improved the factor to 2k − 1 later in
[38].

Nutov considered the node weighted version of SNDP (NW-SNDP) and gave aO(k log(n))
approximation for the problem in general graphs [83]. Chekuri et al. improved this result
for planar graphs and minor-closed families of graphs to an O(k)-approximation algorithm
[27]. They also give a O(k2 log n) and O(k2) approximation algorithms in general graphs
and planar graphs, respectively, for prize collecting version of NW-SNDP[28].

Group Steiner Tree problem. Another interesting variation of Steiner Tree problem
is the Group Steiner Tree problem. In this problem, we are given some groups of nodes
and we are asked to find a minimum cost subtree covering at least one node from each
group. If the size of each group is one, this will be the original Steiner Tree problem and
so it is a generalization of the original problem. The best known approximation factor for
the Group Steiner Tree problem is O(log3 n) in general graphs and O(log2 n) in trees [42].
Demaine et al. improved this result to O(log poly log log n) in special case of planar graphs
where each group is the set of nodes on a face [33].

1.4 Overview of The Thesis

In the next chapter, we focus on the Node-Weighted Prize Collecting Steiner Tree problem.
First we exhibit an instance demonstrating a flaw in Moss-Rabani’s algorithm, then we
present our algorithm for the problem which is the main contribution of the thesis, stated
in the following theorem.

7

Theorem 2.5.1. There is an LMP O(log n)-approximation algorithm for the NW-PCST
problem.

In Chapter 3, we study the applications of the above result. As a direct theoretical
application, in section 3.1 we use the Lagrangian Relaxation method, similar to the work
of Chudak et.al. [32] to obtain the following result using our algorithm for Prize Collecting
problem.

Theorem 3.1.2. There is an O(log n)-approximation algorithm for Quota Node Weighted
Steiner Tree Problem.

In section 3.2 we focus on a problem proposed by Goldberg and Liu in [48] in social
network analysis. The formal definition of the problem as well as a brief review of the
related works are given in section 3.2. We present two algorithms for the problem, an
O(r log n)-approximation and an O(l log n)-approximation where r and l are the diameter
of the graph and number of different threshold values.

Theorems 3.2.5 and 3.2.8. There are O(r log n)- and O(l log n)-approximation algo-
rithms for Technology Diffusion problem.

These results improves the O(rl log n)-approximation factor of Goldberg and Liu. Our
second algorithm uses the algorithm for Quota Steiner Tree problem as a subroutine. We
further show an equivalence of the Technology Diffusion problem to a special case of the
Node-Weighted Quota Steiner Tree problem. Finally, in the last part of the thesis the open
problems and possible future research are discussed.

8

Chapter 2

Node-Weighted Prize Collecting
Steiner Tree

In the Node-Weighted Prize Collecting Steiner Tree problem (NW-PCST), we are given a
graph G(V,E), a cost function c : V (G) → R and a penalty function π : V (G) → R

+ and
the goal is to find a subtree of the graph minimizing the total cost of the vertices spanned
by the tree plus the total penalty of the vertices not spanned in the tree. We study the
rooted version of the problem i.e. we are given a vertex r and we are asked to find the
optimal tree containing r, therefore our objective is to find

min
subtree T of G:r∈T

c(T) + π(V \ T),

Where π(S) =
∑

v∈S π(v) for all S ⊆ V . Moss and Rabani proposed a polynomial-time
algorithm for this problem and claimed that their algorithm is an O(log n)-approximation
[81], where n = |V |. However, there is a counter example for their algorithm which shows
the claimed bound is not correct. The counter example is an instance of the Set Cover
problem (the original problem from which the hardness for NW-PCST is derived). There
is a Θ(n) gap between the optimal solution and their the dual solution constructed by their
algorithm in this example. We will discuss this in section 2.2.

Moss and Rabani’s algorithm as well as the algorithm we propose for the problem use
a combinatorial Primal Dual approach. The previous algorithm uses a monotone single-
round dual growing procedure and they compare the algorithm’s output with a single dual
solution constructed during the algorithm. However, there is no known such single-shot
growing algorithm for the set cover problem. This is the main reason that we believe their

9

algorithm does not have a simple fix. In the other hand, our algorithm is much more
complex and involves multiple rounds of dual growing procedures and produces a feasible
dual solution for each.

2.1 Integer Programming Formulation

Let V ′ = V \ r. The NW-PCSTprobem can be formulated with the following IP formula-
tion.

min
∑
v∈V ′

c(v)xv +
∑
S⊆V ′

π(S)zS (P)

s.t.
∑
v∈Γ(S)

xv +
∑
U |S⊆U

zU ≥ 1 ∀S ⊆ V ′, (2.1)

xv +
∑
U |v∈U

zU ≥ 1 ∀v ∈ V ′,

xv ∈ {0, 1} ∀v ∈ V ′,
zS ∈ {0, 1} ∀S ⊆ V ′,

Here, x is the characteristic vector of the solution vertices, i.e. xv = 1 if vertex v is
in the solution and xv = 0, otherwise. By definition, xr is always 1. Note that in the
node-weighted version of problem, we are not concerned about the edges of the solution
tree; as long as the vertices of the solution tree T induce a connected subgraph in G, we
can choose any spanning tree of G[V (T)] as the solution tree, where V (T) is the set of
vertices of T and G[V (T)] denotes the graph induced by them. Thus, we only need to
ensure that the set of vertices characterized by vector x induce a connected subgraph.

The variable zU in P means the set U is excluded from the solution. We need this
variable to enforce the edge connectivity. For a set S ⊆ V ′, the function Γ(S) is defined
as the set of vertices adjacent to S but not in S. Therefore the connectivity constraint
(2.1) must ensure for every set S not containing r, either S is excluded from solution
(
∑

U |S⊆U zU ≥ 1) or there is an adjacent vertex of S included in the solution. In fact,
we can convert every optimal integral solution so that there is only one set U for which
zU = 1. This is a standard cut connectivity constraint, frequently used in IP formulation
of network design problems.

10

We can obtain the linear programming relaxation of (P) by replacing the integrality
constraints xv, zS ∈ {0, 1} with 0 ≤ xv, zS ≤ 1, then, the dual formulation of the relaxed
primal will be as follow:

max
∑
S∈V ′

yS +
∑
v∈V ′

pv (D0)

s.t.
∑

S|v∈Γ(S)

yS + pv ≤ c(v) ∀v ∈ V ′

∑
U⊆S

yU +
∑
v∈S

pv ≤
∑
v∈S

π(v) ∀S ⊆ V ′

y ≥ 0

p ≥ 0

Note that in the original problem, we may assume that each vertex has either zero
cost or zero penalty. The optimal solution’s cost is not less than the constant value∑

v∈V min{π(v), c(v)}. So by subtracting cost and penalty of each vertex v by the value
min{π(v), c(v)}, we only have shifted the value of optimal solution by a constant value and
therefore an approximation algorithm’s factor is preserved for the problem after this modi-
fication. The analogy of this is to set the variable pv in D0 to the fixed value min{π(v), c(v)}
for each vertex v.

To this aim, we call a vertex v an expensive vertex, if its cost is more than its penalty,
i.e. c(v) > π(v), and we call v a cheap vertex, otherwise. Now we can define the reduced
cost and reduced penalty cr(v) and π̄(v) of each vertex as c̄(v) = c(v) − min{π(v), c(v)}
and π̄(v) = π(v) − min{π(v), c(v)} and the value p(v) = min{π(v), c(v)}. After these
modifications, the new dual formulation becomes as follows, with the variable p eliminated:

max
∑
S⊆V ′

yS + p(V) (D)

s.t.
∑

S|v∈Γ(S)

yS ≤ c̄(v) v ∈ V (2.2)

∑
U⊆S

yU ≤
∑
v∈S

π̄(v) ∀S ⊆ V ′ (2.3)

y ≥ 0

11

(2, 0)
(0, n) (0, n) (0, n) (0, n)

(n+ 1, 0) (n+ 1, 0) (n+ 1, 0) (n+ 1, 0)

(0, n) (0, n) (0, n) (0, n)

. . .

. . .

. . .

r x

u1 u2 u3 un

v1 v2 v3 vn

w1 w2 w3 wn

Figure 2.1: Counterexample to Moss-Rabani’s algorithm.The value pairs on each node
demonstrates the cost and penalty of the node.

2.2 Counterexample to Moss-Rabani’s Algorithm

The algorithm of Moss and Rabani uses the same integer program and the relaxed dual
formulation (D) given in the previous section. They claimed that their algorithm finds
a feasible dual solution along with a tree such that the cost (plus penalty) of the tree is
within O(log n) factor of the total value of the dual solution constructed. Regardless of
how they construct the tree, in a counter example, we show that their algorithm returns a
dual solution with Ω(n) gap between the value of dual solution and optimal solution. This
clearly shows that their algorithm cannot provide an O(log n) approximate solution and
there is a mistake in their approximation guarantee proof.

Their algorithm constructs a dual solution as follows. Consider the connected compo-
nents in the graph induced by cheap vertices. Let these be in the family C. Starting with
an all-zero solution y, the algorithm continuously increases the values of yS for each S ∈ C
until either the inequality (2.3) or the inequality (2.2) gets tight, keeping the dual solution
always feasible. The dual value of a set containing the root vertex r is never increased.

In the first case, if S is the set for which the constraint is tight, the algorithm deactivates
C, meaning that the algorithm stops increasing dual value yS and moves S from C to a
collection C ′ of deactivated sets. In the second case, if ṽ is the vertex for which the constraint
(2.2) has become tight, the algorithm merges every set in C and C ′ adjacent to ṽ together

12

with ṽ and removes them from C and adds this newly merged component to C as a new
active component. The growing process continues until each set is either deactivated or
merged with the component containing r.

Figure 2.1 shows our counter example for Moss-Rabani algorithm. It consists of a
complete bipartite graph with vertex sets U = {u1, . . . , un} and V = {v1, . . . , vn}. Let
W = {w1, . . . , wn}. For each 1 ≤ i ≤ n, node vi is also attached to another vertex wi of
degree 1. We also have a root vertex r attached to u1 through a path of length two. The
vertices in U and W are cheap vertices and have cost zero and penalty n while the vertices
in V are expensive vertices with cost n + 1 and zero penalty. The vertex x connecting u1

to the root is also an expensive vertex with cost two.

Running the Moss-Rabani algorithm on this instance of the problem, the dual values
y{ui} and y{wi} increases uniformly for each 1 ≤ i ≤ n to value 1. Then the constraint (2.2)
gets tight for all vertices in V and therefore they are being merged with their adjacent
active sets, which are all sets containing single vertices from V and W . Then there will
be a single active set U ∪ V ∪W and the dual value of this new set increases for another
one unit till finally constraint (2.2) gets tight for x, the set merges the root vertex and the
algorithm terminates.

We observe that the dual solution found by the algorithm has total dual value O(n),
however, there is a feasible dual solution y∗ having y∗{wi} = n for all vertices in W and

y∗R = 0 for all other sets R. This dual solution has total dual value Θ(n2), so by weak
duality the optimal solution for NW-PCST problem also has value Ω(n2). This shows that
the Moss-Rabani’s dual solution cannot provide a O(log n) approximation algorithm with
the constructed dual solution.

The given counter example is actually an instance of Set Cover problem. It is also well
known that one-shot monotone uniform growing of the dual values does not produce an
O(log(n)) approximate dual solution for set cover problem. Therefore it is expected that
uniform growing of dual values does not provide an O(log(n)) for Steiner Tree problem as
well. This is the main reason that we believe the one-shot uniform growing is not the right
primal-dual approach for the problem.

Note that by one-shot monotone growing procedure, we mean an algorithm which
obtains a feasible dual solution only by increasing the dual values. Of course if we seek
solutions by allowing other modifications such as scaling or by using other approaches such
as finding multiple dual solutions, we may find feasible dual solutions with desired O(log n)
factor of optimal solution.

In [55] it is shown that there actually exists a monotone dual growing approach which
gives an O(log n) approximation algorithm for the classical Node-Weighted Steiner Tree

13

problem. The question is that why such approach fails for the Prize Collecting version?
We can explain this in our counter example. If we grow the dual values monotony, there
might be as O(n) many expensive vertices adjacent to each cheap vertex ui, so that the
dual value y{ui} of each cheap vertex contributes to the left hand side of O(n) of inequalities
of type (2.2).

This means that we may have expensive vertices in our final component connected to
the root with total cost of O(n) times the total dual value. This does not make a problem
in classic Node-Weighted Steiner Tree problem since the penalties are infinity: we have to
connect all terminal vertices. But in the Prize Collecting version, if we simply decide to
connect all of these expensive vertices as the Moss-Rabani’s algorithm does, we may pay
O(n) times the constructed dual solution.

This problem cannot be solved by simply branching the expensive vertices (which does
not connect any cheap vertex to other cheap vertices), as done by Moss-Rabani’s algorithm.
As in our counter example, there might be still some cheap vertices wi being actually
connected by these expensive vertices and the problem still remains. So the critical problem
here is that when to stop the growing and which expensive vertices covered in components
to include in our solution.

Our algorithm explained in the next section shows how we overcome this problem by
stopping the growing procedure early and how we use more involved procedures to construct
the tree after obtaining a dual solution. Our algorithm does not select all of the expensive
vertices in the components connecting a cheap vertex but only selects some carefully.

2.3 Algorithm

In this section we propose a different algorithm for NW-PCST problem. Our algorithm
works in phases and in each phase i, the algorithm constructs a feasible dual solution yi

for (D). The algorithm also maintains a tree Tr containing the root and incrementally
adds vertices to this tree in each phase. Let us denote V \ {r} by V ′. Starting with zero
values for yiS for all S ⊆ V ′, the phase i starts by increasing the dual values of sets in a
collection Ci, called the initial components. As we will prove later the sets in Ci are always
a collection of disjoint sets and no two of them are connected with an edge. The initial
components C1 in the first phase are the connected component of the graph induced by
cheap vertices and r, except the component containing r which forms Tr.

We grow all sets in Ci with same rate, i.e. the growing process is monotone. The
algorithm is careful that the dual values always form a feasible dual solution for D. The

14

component Tr is always inactive in the growing process and we never increase its dual
value. At the end of each phase i, except the last phase, the algorithm constructs a tree
T i connecting some (at least two) of the components in Ci. For the next phase, we first
set Ci+1 = Ci, then, all the initial components connected by T i are removed from Ci+1 and
replaced by a component formed by T i and all components that T i is connecting. Therefore
the set of initial components of phase i + 1 is determined by Ci and the tree T i found in
phase i.

We can describe the above process in each phase as process over time in which we
grow components uniformly with the same rate. In the rest of this section we are talking
about a single phase i. For ease of notation, we eliminate the superscript i whenever there
is no ambiguity. Let yτ be the dual solution at time τ in a phase i, and let Sτ be the
collection of all components with positive dual values, called the support of yτ . We call
every inclusion-wise maximal set S ∈ Sτ a moat. A moat S is called active if∑

U⊆S

yτU < π̄(S),

and inactive otherwise. Let Aτ denote the collection of active moats in phase i at time τ
and Iτ be the collection of inactive moats. Therefore, by definition, A0 = Ci and I0 = ∅.
Now we can define the notion of age of an initial component. For an initial component
C ∈ Ci we define the age of C at time τ as follows:

ageτ (C) = min{τ,
∑
v∈C

π̄(c)}.

The age of a component at time τ denotes the first time the component is inside an inactive
moat, if this has ever happened till time τ . Let us call a vertex v a tight vertex at a time τ if
the inequality (2.2) is tight for v. Note that cheap vertices are always tight. The algorithm
ensures that no two active moats are adjacent to a tight vertex at any time during a phase.
We will show this later in this section. This means at a time τ , for any moat S, there is
at most one initial component in Ci inside S which has age equal to τ and all other such
initial components have age less than τ . We call this initial component the core of S for
an active S. In other words, an initial component C ∈ Ci is the core of a moat S at time
τ , if C ⊆ S and C has the maximum age among all other initial components inside S.

We define the age of a moat S equal to age of its core. The notion of core is especially
important in the next step in explaining how we construct the tree T i. Now we are ready
to give more details about the growing process. In each phase i, we increase the dual value

15

yS of all sets S ∈ Aτ at time τ uniformly until one of the constrains of D becomes tight.
We ensure that yτ forms a feasible dual solution at any time τ during a phase. So either
of the following may happen during the growing process.

A. Inequality (2.3) becomes tight for a set S: we stop increasing the dual value of S and
S becomes an inactive component.

B. Inequality (2.2) becomes tight for a vertex v: we alter active components and check
the termination condition.

Phase i ends whenever all components are inactive or the termination condition (which we
will define later) is satisfied. In the former case, the algorithm terminates and phase i is
the last phase. In the later case, the algorithm constructs a subtree T i based on the dual
values yi found in the phase.

In case (A), the set S is moved from the set of active components Aτ to set of inac-
tive components Iτ . At this time, if there are no active components left, the algorithm
terminates, otherwise we simply continue growing the rest of the active components.

Now consider case (B). We say an initial component C ∈ Ci loads a vertex v, if at a
time τ , there exists an active component S ∈ Sτ with core(S) = C such that v ∈ Γ(S),
where Γ(S) = {u ∈ V \ S|∃x ∈ S : ux ∈ E} is the set of adjacent vertices of S. Let
Lτ (v) be the set of all initial components loading v at time τ or earlier. The termination
condition is as follows: the phase terminates at the earliest time τ that there is a tight
vertex ṽ such that ṽ ∈ Γ(Tr) or ∑

C∈Lτ (ṽ)

ageτ (C) ≥ 3

2
τ. (?)

At this time, we construct the tree T i, connecting the vertex ṽ to the core of all its
adjacent moats (either active or inactive) to form a new component. If ṽ ∈ Γ(T r), T i is
added to T r, otherwise it is added to Ci+1 as a new initial component for phase i+1. Later,
we will prove that the cost of tree T i is proportional to yτ , to guarantee our approximation
factor.

After construction of T i, we construct the initial components for the next phase. First
set Ci+1 to the set of all components in Ci not connected to T i (by connected we mean either
sharing a vertex or having a vertex adjacent to T i). Then, merge T i with all components
connected by T i together to form a new component and add this component to Ci+1.

16

The rest of this section will focus on explaining how the tree T i is being constructed.
We call the tree T i the phase tree. We first set T i = ({ṽ}, ∅) and gradually add vertices
to the phase tree using the procedures FindSubtree (abbreviated FST) and ConnectVertex
(abbreviated CVtx). The key property of T i is as follows: for every expensive vertex w ∈ T i,
we want all cores loading w to be connected by T i. This is done by starting with the single
vertex ṽ and using function FST. Given a set S and a set L ⊆ Γ(S), the job of FST(S, L)
is to find a subtree of S connecting vertices in L to core(S).

As expected, in the procedure of connecting the vertices in L to core(S), FST needs to
add some new expensive vertices to the phase tree, enforcing it to connect more cores to
the phase tree. Therefore, this function calls itself recursively to satisfy the mentioned key
property of the phase tree. Note that in recursion, we may encounter cases that a core is
loading more than one vertex in T i, however we do not call FST for each of those vertices
and a moat more than once, rather, we pass all those vertices (as the set L) in one call to
FST to make sure FST is called on each moat at most once during the algorithm.

ṽR

S

Figure 2.2: An adjacent moat to ṽ
(R) may be embedded in another
moat (S).

Let S1, . . . , Sk be the inclusion-wise maximal
moats adjacent to ṽ. We start construction of T i by
calling FST(S, {ṽ}) for all 1 ≤ i ≤ k. Note that dur-
ing the recursive calls of FST, there may be two moats
S and S ′ with different cores both loading a vertex in
L such that S ′ is embedded in S (see figure 2.2), in
this case, rather than directly calling FST(S, L) and
FST(S ′, L), we call FST(S, L) and FST(S ′, L′) will be
called recursively from FST(S, L) for a set L′ con-
taining some vertices of L. The reason is that there
may be other expensive vertices loaded by core of S ′,
which will be later added to T i and we should call
FST on S ′ only once passing all these vertices to the
procedure all in once. The comprehensive explana-
tion of these two procedures are given bellow. Algorithm 1 shows the pseudo code for the
whole algorithm.

2.3.1 FindSubTree

Consider the procedure FST(S, L). Whenever FST(S, L) is called during the algorithm,
L ⊆ Γ(S) by the specification of the algorithm. Let τ be the age the of set S at the end of
the phase. The graph HS is defined as follows. Start by the graph G[S ∪ L] and identify

17

Algorithm 1 PrizeCollectingSteiner(G(V,E), c, π,r)

C1 ← {S : S is a connected component not containing r
in the graph induced by cheap vertices and r}
Tr ← the connected component containing r in the graph induced by cheap vertices
and r.
Let i = 0 denote the phase number.
while Ci+1 6= ∅ do

i← i+ 1
Initialize yiS ← 0 for all S ⊆ V ′, Ai ← Ci, I i ← ∅, T i ← ∅ , τ i ← 0
while Ai 6= ∅ do

ε1 ← minv∈V \∪S∈Ai∪IiS{
c̄(v)−

∑
S⊆V |v∈Γ(S) y

i
S

|{S∈Ai:v∈Γ(S)}| }
ṽ ← the vertex minimizing the statement above
ε2 ← minS∈Ai{

∑
v∈S π̄(v)−∑R⊆S y

i
R}

ε← min{ε1, ε2}
τ i ← τ i + ε
yiS ← yiS + ε for all S ∈ Ai
ageτ (S)← ageτ (core(S))← τ i for all ∀S ∈ Ai and τ ≥ τ i

if ε = ε2 then
for S ∈ Ai : π̄(S) =

∑
R⊆S y

i
R do

Remove S from Ai and add it to I i
end for

else
N ← {inclusion-wise maximal S ∈ Ai ∪ I i : ṽ ∈ Γ(S)}
if
∑

C∈Lτi (ṽ) ageτ
i
(C) < 3

2
τ i and ṽ /∈ Γ(Tr) then

Remove all sets in N from Ai and I i
add {ṽ} ∪

(
∪R∈N R

)
to Ai

else
T i ← ({ṽ}, ∅)
for S ∈ N do

FST(S, {ṽ})
end for
break while

end if
end if

end while

18

Algorithm 1 PrizeCollectingSteiner (continued)

if T i 6= ∅ then
Ci+1 ← Ci \ {C ∈ Ci : C ⊆ T i}
if T i ∩ Γ(Tr) 6= ∅ then

Add vertices of T i to Tr
else

Add T i to Ci+1 as a new initial component
end if

else
return Tr

end if
end while
return Tr

Algorithm 2 FST(S, L)

Construct the auxiliary graph HS and compute the auxiliary costs cS
if |L| = 1 then

P ← L
else

Assume that L = {a, b} for some a, b ∈ Γ(S)
P ← a minimum cS cost a,b-shortest path in HS

end if
for each super vertex R ∈ HS : P ∩ Γ(R) 6= ∅ do

FST(R,P ∩ Γ(R))
end for
T i ← T i ∪ { original vertices in P}
z0 ← arbitrary vertex in core(S)
CVtx(S, z0, 0)
Ti ← Ti ∪ core(S)

19

Algorithm 3 CVtx(S, z, d)

Construct the auxiliary graph HS and auxiliary costs cS
T̂ ← Ti.
For every super vertex R ∈ V (HS) if R ∩ Ti 6= ∅, identify the vertices of R ∩ T̂ to super
vertex R in T̂
Q = q1 . . . ql ← a minimum cS cost shortest path from z to T̂ in HS

Ti ← Ti ∪ { original vertices in Q}
for super vertex R ∈ V (HS) \ V (T̂) : Q ∩ Γ(R) 6= ∅ do

FST(R,Γ(R) ∩Q)
end for
if ql = R is a super vertex then

CVtx(R, ql−1, d+ 1)
end if

each inclusion wise maximal inactive component R inside S to a vertex. We denote the
identified vertex corresponding to R by R as well and we call each identified vertex a super
vertex.

The graph HS may contain both vertices and super vertices, however the original ver-
tices except the ones in the core of S are all expensive vertices, since every cheap vertex
is included in an initial component as explained before. Moreover, since there are no two
adjacent moats anytime during the growing procedure, therefore no two super vertices are
adjacent. Also, all vertices included in any moat are tight, therefore all original vertices in
HS are also tight vertices.

We define the auxiliary cost cS(v) for each original vertex v in HS as follows:

cS(v) =
∑

U⊆S|v∈Γ(U),
core(U)=core(S)

yτU ,

and let cS(R) = 0 for each super vertex R and cS(v) = 0 for all v ∈ core(S). The procedure
FST(S, L) has two parts:

Part I. First, FST(S, L) connects the vertices in L by finding a subtree and adding it
to the phase tree. Recall that we always have |L| ≤ 2 (We will prove this in next section).
We find a path P in HS connecting vertices in L with minimum cS-cost i.e. minimizing∑

v∈P cS(v). If L = {a}, then the path P is simply the single vertex a, otherwise, P may
have super vertices. In the latter case, all expensive vertices are going to be added to the
phase tree and for each super vertex R ∈ P , we find a subtree in R connecting the two

20

adjacent vertices of R in P , say a′ and b′. Indeed, this is done by recursively calling the
procedure FST(R, {a′, b′}) for all such R and {a′, b′}.

a b

P

Q

z

R
a'

b'

a'

b'

z

R

(i) (ii)

a''

R'

Figure 2.3: (i) Inside procedure FST.
The core is appearing in small red
subset, the path P is shown in solid
and the path Q in stroke lines. The
white vertices are original expen-
sive vertices and the vertices shown
in red are the super vertices. (ii)
FST(R, {a′, b′}) is called recursively.

To maintain the key property of the phase tree
described before, we need to connect every initial
component in S loading a expensive vertex in P . So
for every super vertex R′ in HS adjacent to P , but
not in P , we call FST(R′,Γ(R′)∩P) recursively from
FST(S, L). All the expensive vertices of the subtree
found in FST(S, L) are added to the phase tree, and
therefore at the end, every core loading an expensive
vertex in the phase tree will be connected to the
phase tree as desired.

Part II. In the second part, the goal is to connect
the core of S to phase tree. Here we have already
added some vertices from S to the phase tree thus
we use another procedure, the CVtx, to connect an
arbitrary vertex z in core(S) to the phase tree. The
procedure CVtx takes a moat S, a vertex z ∈ S ∪
Γ(S) and a level index i (for analysis purposes) and
connects z to the phase tree by adding a subtree in
S to the phase tree and of course maintaining the
key property of the phase tree.

2.3.2 CVtx

Consider a procedure call CVtx(Sd, zd, d) where Sd is
a moat, zd is a vertex in Sd ∪ Γ(Sd) and d is the recursion level of the procedure call.
Similar to FST function, CVtx first constructs a graph HSd constructed as follows. Start
with G[Sd ∪ {zd} ∪ T i] and identify every inclusion wise maximal inactive component R at
time τ inside Sd to super vertex R, where τ is the age of Sd at the end of the phase.

Similarly, define cSd(v) to be the total load of moats with core core(Sd) for every original
expensive vertex in HSd and let cSd(v) = 0 for all super vertices or vertices in core(Sd).
First, CVtx finds a minimum cSd-cost path Qd in HSd from zd to T i. By T i we mean
the vertices and edges added to the phase tree at the point CVtx(Sd, zd, d) is called. The
expensive vertices in Qd will be added to the phase tree same as expensive vertices of path
P in FST. Let Sd+1 be the last (super or non-super) vertex of Qd (zd being the first vertex).

21

Note that here there are some super vertices containing some vertices of T , therefore the
last vertex of the path Qd may be a super vertex in HSd , or an original vertex of T i.

Sd
zd

zd+1

S00

S0

Sd \ TSd+1

v

u

Figure 2.4: Inside procedure
CVtx(Sd, zd, d).

If Sd+1 is a super vertex, then Sd+1 ∩ T i is not
empty, which means we have called the function
FST on set Sd+1 before. This is important since
as mentioned before, we do not want to call FST

on a moat more than once. In this case we call
CVtx(Sd+1, zd+1, d+ 1), where zd+1 is the second last
vertex in Qd. If Sd+1 is an original vertex, then
CVtx is not called from CVtx(Sd, zd, d). Similar to
the case for path P in FST, we have to call FST on
every super vertex S ′ in Qd to make a connected
subgraph connecting zd to the phase tree. Therefore
FST(S ′, Qd ∩ Γ(S ′)) is called recursively for all super
vertex in Qd if S ′ 6= Sd+1.

Also, there may be some super vertices S ′′ adja-
cent to some expensive vertices in Qd loading these
expensive vertices. Therefore, similarly we call FST(S ′′,Γ(S ′′)∩Qd) for these super vertices
as well, if S ′′ ∩ T i = ∅ (since we do not want to call FST on a most on which FST is called
before). However, the the only case that a moat intersecting with T i is loading an expen-
sive vertex in Qd is that the moat S ′′ is loading zd and not any other vertex in Qd. This
follows from the cSd-minimality of Qd: if not, the path is not minimal and we can shortcut
zd to obtain a shorter path to T i.

2.4 Analysis

2.4.1 Correctness

Here we first prove the correctness of properties we claimed in the previous section. It is
clear from the specification of FST and CVtx that the phase tree is a connected subtree
in each phase and since Tr is a tree incremented by phase trees adjacent to it in some
phases, Tr is also a connected subtree containing the root. However, we have to give
formal proofs for the two essential properties of the dual solution procedure calls which we
stated previously.

Proposition 2.4.1. In each phase, each component S ∈ Sτ has a unique core with respect
to the dual solution y found in the phase.

22

Proposition 2.4.2. The function FST is never called with a set L with cardinality more
than two.

The proof of first proposition is straightforward. It is clear that at the beginning of
the phase the proposition holds. Now consider the first time τ in which the proposition is
violated for a component S at a time τ . Note that S is formed at time τ , therefore there
is a vertex v in S which became tight at τ and S formed by merging v with its adjacent
moats. However, if there are two initial components (cores) in S with age τ at time τ , then
these two components were the cores of two moats adjacent to v before merging and so the
termination condition (?) was satisfied since v is being loaded at least 2τ , a contradiction.

Using the first proposition, now we can prove the second proposition. First note that
since every moat has a unique core, the specification of FST and CVtx given in the previous
section are valid. Consider each case the procedure FST is called:

Case 1. FST(S, L) is called from the main procedure. Then, L = {ṽ} and |L| = 1.

Case 2. FST(S, L) is called when S is a super-vertex in path P or Qd computed in either
another FST or CVtx respectively. In these case it is clear that |L| ≤ 2 since there
are at most two vertices adjacent to S in these paths and they are both minimum
cost paths (otherwise, we can shortcut at least one adjacent vertex of S in the
path out of three vertices, to obtain a shorter path)

Case 3. FST(S, L) is called when S is a moat loading a vertex in the paths P orQd computed
in the procedures FST or CVtx respectively. In this case, L = P ∩ Γ(S) (the case
for Qd is similar). As stated before, no two super vertices are adjacent, so all
vertices in L are expensive vertices. If |L| = 3 (or more), then we can shortcut the
vertex residing between the other two in the path and find a path with lower cost
containing S. Note that auxiliary cost of S is zero. Hence |L| ≤ 2 in this case as
well.

2.4.2 Bounding The Cost of The Phase Tree

Now we are ready to prove how we obtain the claimed approximation guarantee for our
algorithm. The sketch of the proof is as follows. We first prove that we can compute a
charging scheme Φ(C) for every initial component C to charge the cost of each phase tree
T i to some initial components connected by T i. Then, we prove that the total charge Φ(C)
of each initial component is within constant factor of its age at the end of the phase. Using

23

the fact that whenever an initial component is charged it is merged with some other initial
components, and using the special coefficient 3

2
τ in our termination condition, we prove

among all dual solutions computed during all phases, there is one dual solution such that
the total cost of Tr is within factor of log n of this dual solution.

As mentioned, we first need to prove that the cost of T i can be charged properly to
the initial components of phase i connected by T i. Assume that phase i finished at time
τ and yτ is the feasible dual solution for (D) computed till time τ in that phase. First
note that as discussed in previous section, all active and inactive moats are vertex-disjoint
at any time and no two of them are adjacent and so the collection Sτ forms a laminar
family i.e. every two moats are either vertex disjoint or one is completely embedded in
the other. Also it is clear by the definition of the algorithm, a procedure call FST on set
S never calls FST on another set S ′ ⊆ S more than once and the sub procedure calls are
called on disjoint inclusion-wise maximal inactive sets inside S, therefore FST is called at
most once during the phase on each set.

Consider a procedure call FST(S1, L). First, a path P is computed and then in a chain
of calls to procedures CVtx(S1, z1, 1), . . . , CVtx(Sm, zm,m), a series of paths Q1, . . . , Qm

are created to connect core(S1) to the phase tree, where m is the number of consecutive
recursive calls starting from FST(S1, L) (See figure 2.5). First we prove that for every moat
S ∈ Sτ , the CS-cost of any minimum path between any two vertices in HS is not greater
than ageτ (core(S)).

Lemma 2.4.3. For every moat S, the CS-cost of a minimum path P between any vertex
a ∈ core(S) and b ∈ V (HS) is at most ageτ (core(S)).

Proof. Let C = core(S). We use induction on cS-distance of b from C. It is clear that this
distance is the same for all vertices in C, since cS(v) = 0 for all vertices v ∈ C. Let disS(b)
be the cS-distance of b from C in HS. We also prove that if b is an expensive vertex, b gets
tight at time disS(b) and if b is a super-vertex b merges with a moat with core core(S) at
time disS(b) .

For every vertex in core(S), the statement is true, so consider a vertex b ∈ HS with
disS(b) > 0. Let b′ be the adjacent vertex of b with minimum disS(b′). First note that if
b is a super-vertex, then b′ is an original vertex and disS(b) = disS(b′) ≤ ageτ (S) and b
is merged with a moat with core C at the time b′ gets tight and we are done; so assume
that b is an expensive vertex. By induction hypothesis, b′ becomes tight (or similarly gets
merged with a moat with core C if b′ is a super-vertex) at time disS(b′) and b′ is the first
vertex among neighbors of b which gets tight. Before time disS(b′), none of the neighbors

24

of b are tight, therefore b is not adjacent to any moat with core core(S), however, at time
disS(b′), after b′ becomes tight, b becomes adjacent with a moat S ′ with core C.

Since the growing process is monotone and uniform, and at any time, b is being loaded
by exactly one moat with core core(S) (after time disS(b′)), the load of core(S) on b is
equal to the time span from the time that first neighbor of b becomes tight until b becomes
tight itself, which is by definition of auxiliary cost, equal to cS(b). So, b gets tight at time
disS(b′)+cS(b) and this is equal to disS(b), since by assumption b′ is the closest neighbor of
b to core(S) in terms of cS-cost. It follows that every vertex b gets tight at time disS(b), and
therefore disS(b) ≤ ageτ (C) since b joins a moat with core C at a time before C becomes
core of an inactive set.

S0

S2

S1

z0

z1

z2

C

TL

S3

Q0

Q1

Q2

Figure 2.5: The chain of CVtx calls
invoked from a call to FST. The
thick black lines indicate edges of
the tree TL constucted by FST.

Note that for every vertices a, b ∈ HS, the min-
imum cS-cost path is not longer than total of two
paths from a and b to core(S):

Remark 2.4.4. For every moat S, the CS-cost of
a minimum path P between any two vertices a, b ∈
V (HS) is at most 2ageτ (core(S)).

The previous lemma and the previous remark
shows that the reduced costs of paths P and Q1

in procedure calls FST(S1, L) and CVtx(S1, z1, 1), are
each bounded by 2ageτ (S1). These leads us to the
idea that we can charge the reduced costs of these
paths to C. Note that we can charge the auxiliary
cost, not the original cost, which means the cost of
each vertex will be charged to many cores, but we
know that for every expensive vertex w in T i, all
cores loading w are connected to the tree T i, and
cost of w is exactly the total loads of different initial
components on it. This is true because we only in-
clude tight vertices in the phase tree, i.e. the vertices
which their cost has been equal to the total load on
them.

The idea above is a key point in our charging
scheme success. However, these are not the only
costs we charge to the core of S1. More precisely, Φ(core(S1)) is total of the following
costs:

25

C1. The auxiliary cost cS1(P) of P in HS1 .

C2. The auxiliary costs cS1(Q1) + . . .+ cSm(Qm).

C3. The non-auxiliary costs of c̄(z2)−cS1(z2), . . . , c̄(zm)−cSm−1(zm), where zi is the second
last vertex of path Qi−1, 2 ≤ i ≤ m.

The exception here are the vertices z2, . . . , zm. But why do we charge their non-auxiliary
cost as well as auxiliary costs to core(S1)? Recall that we said zi is the possible vertex adja-
cent to a set intersecting the phase tree in the path Qi−1 in procedure CVtx(Si−1, zi−1, i−1)
and we did not call FST on sets intersecting the phase tree because we did not want to call
FST on a set more than once.

So the reason that non-auxiliary cost of zi is being charged to core(S1) is that z2, . . . , zm
are the only vertices for which we do not call FST on every set loading them in the process
of connecting core(S1) to the phase tree. Fortunately, as we will see in the following lemma,
the total non-auxiliary cost of these vertices does not exceed O(1).ageτ (S1) as desired.

Lemma 2.4.5. Φ(core(S1)) ≤ 7ageτ (S1).

Proof. Let C = core(S1). By remark 2.4.4, the auxiliary cost of path P is at most 2ageτ (C).
For bounding the value of C2, we first need to prove the following claim:

Claim. For any inclusion-wise maximal inactive sets S ′ inside another set S (either active
or inactive), ageτ (S ′) < ageτ (S)/2.

First note that since S ′ is inside S, it means that at a time τ ′, S ′ is joined with a moat S
with core C, or more precisely, at a time τ ′, there was a vertex v ∈ S that became tight
which was adjacent to S ′ and S. However, at time τ ′, the total load of S ′ and S on v was less
than 3

2
τ ′, otherwise the termination condition (?) was satisfied and the phase would have

finished. Moreover, S was active at time τ ′, so ageτ
′
(S) = τ ′ and ageτ

′
(S)+ageτ

′
(S ′) < 3

2
τ ′

it follows that ageτ
′
(S ′) < τ ′/2 ≤ ageτ (S)/2.

By lemma 2.4.3, cSi(Qi) is at most 2ageτ (Si) for all 1 ≤ i ≤ m since Qi it is a minimum
path in Si, so, cS1(Q1) + . . .+ cSm(Qm) is bounded by 2(ageτ (Si) + . . .+ ageτ (Sm)). Using
the above claim, we conclude that

cS1(Q1) + . . .+ cSm(Qm) ≤ 2ageτ (S1) + ageτ (S2) + . . .+
ageτ (Sm)

2m−1
≤ 4ageτ (S1),

and so C2 is bounded by 4ageτ (S1).

26

Claim. For every expensive vertex v inside HS for a moat S (either active or inactive),
c̄(v)− cS(v) ≤ ageτ (S ′)/2.

Note that v is a tight vertex so there was a time τ ′ that v become tight at time τ ′ and joined
a moat R with core core(C). So R is also adjacent to v. Since the phase did not finish
at time τ ′, the total age of cores in Lτ ′(v) is less than 3

2
τ ′ and since R does not become

inactive at time τ ′, ageτ
′
(R) = τ ′. It follows that total age of cores in Lτ ′(v)− {core(R)}

is at most τ ′/2, so c̄(v)− cS(v) ≤ τ ′/2 ≤ ageτ (S ′)/2 and the claim is proved.

Using the two claims above, we conclude that the non-auxiliary costs c̄(z2)−cS1(z2), . . . , c̄(zm)−
cSm−1(zm) decrease geometrically by factor of two and c̄(z2)− cS1(z2) ≤ ageτ (S1)/2, so C3
is bounded by ageτ (S1).

The final remark of this section is that for every initial component C included in the
phase tree, the total charge Φ(C) is bounded by constant factor of ageτ (C).

Also as we discussed, the cost of each vectex is charged to some cores loading it. This
proves that the total cost of the phase tree is bounded by the total charges of the cores
connected by the dual solution.

Corollary 2.4.6. In every phase i,

c̄(T i) ≤ O(1).
∑

C∈Ci:C∩T i 6=∅

Φ(C)

2.4.3 Approximation Factor Guarantee

In this section, we provide the proof of O(log n)-approximation factor for our algorithm.
We show that the tree Tr returned by our algorithm is bounded by O(log n) times one of
the dual values constructed during the algorithm in on of the phases. We actually prove
a stronger statement in order to obtain the LMP algorithm in next section. We will give
formal definition of LMP algorithm and the reason we prove this stronger statement.

For each feasible dual solution yi found in phase i, we construct a new decreased dual
solution yi from yi by setting the value of yiS to zero for each set S whose core is not
intersecting with final solution Tr (i.e. if S ∩ T = ∅) and we keep the rest of the values
unchanged. It is clear that since we have only decreased dual values and yi is a feasible
solution, yi is a feasible solution too. We show that the cost of the tree Tr is bounded by
O(log n) factor of one of the decreased dual solutions rather than the original dual solution.
This stronger result helps us in designing the LMP algorithm in the next section.

27

We show the claim by showing that there are l phases t1, . . . , tl during the algorithm,
(not necessarily distinct) such that the cost of the three Tr is bounded by the total of
decreased dual solution of these phases and l = O(log n):

c̄(Tr) ≤ O(
l∑

i=1

∑
S⊆V ′

yiS).

This clearly shows that by picking the largest dual solution among yt1 , . . . , ytl , we have
found the dual solution proving the existence of the desired dual solution.

From the previous section, we know that the cost of each phase tree T i is bounded by
the charges incurred to the cores connected by T i (corollary 2.4.6). Also it is clear that
if a core is connected by a phase tree it is merged with at least one another core or it is
connected to tree Tr, so it will never be charged again. So the total cost of Tr is less than
the charges of the initial components of different phases joined to Tr. Let us denote the set

of initial components in phase i joined the final tree Tr by Ci, i.e. Ci = {C ∈ Ci : C ⊆ Tr}.
Also, let Φ′(S) = Φ(S)/7 for avoiding constants during the proof. Therefore, it suffices to
show

∑
C⊆Tr

Φ′(C) = O(
l∑

i=1

∑
S⊆V ′

ytiS).

The proof steps are as follows. First we partition the initial components included in Tr
to l buckets based on their charged value. Then we show that there is a dual solution yti

for each of the buckets 1 ≤ i ≤ l such that the total charge of the components in bucket
i is bounded by total dual values of yti . To this aim, we define a potential function βj(i)
for each bucket j over phases, which is equal to ytj at the beginning of phase 1. Then, we
show that in each phase i, βj decreases by at least amount of the total charges of initial
components in phase i which are in bucket j.

Let Φ′max = maxC Φ′(C). A component C is assigned to a bucket j for 1 ≤ j < l if

Φ′max

2j
< Φ′(C) ≤ Φ′max

2j−1
,

and assigned to bucket l otherwise (when Φ′(C) ≤ Φ′max

2l−1). Observe that every component is
assigned to exactly one bucket and the bucker 1 is not empty. Our choice for dual solutions
yt1 , . . . , ytl is:

28

For each 1 ≤ j < l, let tj be the the first phase in which a component in bucket j is
charged. If no component is in bucket j, then let tj be any arbitrary phase index. Also, set
tl = t1.

Note that t1, . . . , tj are not necessarily distinct and we do not require as well. Recall that
l = O(log n). So it suffices to show that for each 1 ≤ j ≤ l the total charges of components
assigned to each bucket j is bounded by total dual values of solution ytj :

∑
C: assigned to bucket j

Φ′(C) ≤
∑
S⊆V ′

y
tj
S . (2.4)

Note that in our partitioning of components to buckets, the Φ′ charge of components
in each bucket differ at most by factor of two. More precisely, if we define bj = Φ′max

2j
, Φ′

charge of components are in range bj and 2bj in each bucket j. If a component C is charged
by value Φ′(C) in some phase, then the growing process has lasted at least for Φ′(C) time
units that phase. Also, in each phase the components are grown uniformly; this means
each other component C ′ is grown at least min{Φ′(C), π̄(C ′)} ≥ min{bj, π̄(C ′)}. Using the
fact that the total dual values of moats with core C ′ is at least Φ′(C), we conclude that the
value

∑
C∈Ci min{π̄(C), bj} is an upper-bound (within constant factor) for the Φ′ charge

of components charged between value bj and 2bj in a phase i. So this gives us the idea of
defining the potential function βj(i) for each bucket j and phase i:

βj(i) =
∑
C∈Ci

min{bj, π̄(C)}.

As noted before, the total charges of components in bucket j in phase i is O(βj(i)),
however, as we will prove in the rest of this section, the total charges of components in
bucket j in phase i does not exceed O(βj(i) − βj(i + 1)) too. This along with the fact
that βj is a always non-negative, proves that the potential value βj(tj) can bound the total
charges of component in bucket j for all phases.

Before proving the above claim, let us state a useful remark for our future proofs.

Remark 2.4.7. Let τ̄ i be the time when phase i terminates. If there is a component C ∈ Ci
which is assigned to bucket j, then τ̄ i ≥ ageτ̄

i
(C) ≥ Φ′(C) ≥ bj. Moreover, π̄(C) ≥ Φ′(C).

The proof directly follows from lemma 2.4.5 and definitions of bj and φ′. The following
lemma proves formally why βj(tj) does not exceed the dual solution ytj .

Lemma 2.4.8. βj(tj) ≤
∑

S y
tj
S .

29

Proof. By Remark 2.4.7 above, the time τ := τ̄ tj when phase tj terminates is at least

bj. So for every component C ∈ C
tj

we have that the age of C at time τ is equal to
min{π̄(C), τ} ≥ min{π̄(C), bj} and therefore,∑

S

y
tj
S ≥

∑
C∈Ctj

ageτ (C) ≥
∑
C∈Ctj

min{bj, π̄(C)} = βj(tj).

The following lemma proves correctness of the key idea we discussed above: the function
βj(i) decreases proportional to the charges assigned to components in bucket j in each phase
i. Note that no component is charged at last phase and we prove the statement for budget
l separately. The following lemma states the claim formally.

Lemma 2.4.9. Assume that for a bucket j < l, there are k components in Ci assigned to
bucket j in a phase i < m. Then,

βj(i)− βj(i+ 1) ≥ k

2
bj

Proof. Let τ be the time phase i finishes and T i be the subtree constructed in phase i.

Let C(T i) be the set of initial components in Ci connected by T i, i.e. C(T i) = {C ∈ Ci :
C ⊆ T i 6= ∅}. First note that βj(i) is a non-increasing function over i for a fixed j, since
in each phase, some components are replaced by their union (and possibly other vertices),
therefore it is easy to see that sum of min() functions does not increase. Therefore, if
k = 0, the statement holds.

Now assume that k ≥ 1. The only difference between Ci and Ci+1
is that the components

in C(T i) are removed from Ci+1
and instead, either T i is added to Ci+1

as a new component
or T i is added to Tr. In either case, we have,

βj(i)− βj(i+ 1) =
∑
C∈Ci

min{bj, π̄(C)} −
∑

C∈Ci+1

min{bj, π̄(C)}

≥
∑

C∈C(T i)

min{bj, π̄(C)} −min{bj, π̄(T i)}

Now we consider two cases depending on value of k.

If k > 1, let C ∈ Ci be any component assigned to bucket j. Then, π̄(T i) ≥ π̄(C) ≥
Φ′(C) ≥ bj, by Remark 2.4.7, and therefore:

βj(i)− βj(i+ 1) ≥
(∑
C∈C(T i):Φ′(C)≥bj

bj
)
− bj

30

≥ kbj − bj ≥ (k − 1)bj ≥
k

2
bj.

If k = 1, again π̄(T i) ≥ bj. Since k = 1, there is exactly one component C ∈ Ci merging
into T i that is assigned to bucket j, and we have π̄(C) ≥ Φ′(C) ≥ bj. Moreover, for every
C ∈ C(T i) we have min{π̄(C), bj} ≥ min{ageτ (C), bj} and since the phase termination
condition (?) is satisfied, we have:

βj(i)− βj(i+ 1) ≥
(

min{π̄(C), bj}+
∑

C∈C(T i)−C

min{π̄(C), bj}
)
− bj

≥ (bj +
∑

C∈C(T i)−C

min{ageτ (C), bj})− bj

≥ min{
∑

C∈C(T i)−C

ageτ (C), bj}

= min{
∑

C∈C(T i)

ageτ (C)− ageτ (C), bj}

≥ min{3

2
τ − τ, bj} ≥

1

2
bj ≥

k

2
bj

Note that for each component C ∈ Ci assigned to a bucket j, we have Φ′(C) ≤ 2bj.
Therefore, using the previous lemma, for each phase i and bucket j we also have,∑

C∈Ci: assigned to bucket j

Φ′(C) ≤ 4
(
βj(i)− βj(i+ 1)

)
(2.5)

Now using the above inequality and lemma 2.4.8, we can prove inequality 2.4. For a
bucket j < l, we have: ∑

C: assigned to bucket j

Φ′(C) =
m−1∑
i=1

∑
C∈Ci: assigned to bucket j

Φ′(C)

≤
m−1∑
i=1

4
(
βj(i)− βj(i+ 1)

)
= 4
(
βj(tj)− βj(m)

)
≤ 4

∑
S⊆V ′

y
tj
S .

31

It remains to prove the bound for bucket l. At the beginning of the algorithm we have
at most n components and in each phase (except the last phase) at least two of these
components are merged together, so we have at most 2n distinct component through out
the algorithm. For last bucket, recall that we chose tl = t1 and there is a component C ′

with Φ′(C ′) = Φ′max in first bucket, so
∑

S⊆V ′ y
tl ≥ Φ′max. Moreover, for each component

C in bucket l, we have Φ′(C) ≤ Φ′max

2l
≤ Φ′max

n/2
thus

∑
C: assigned to bucket j Φ′(C) =

∑m−1
i=1 ≤

2nΦ′max

n/2
≤ 4

∑
S⊆V ′ y

tl and we are done.

Using the discussion above, we proved that the total charges of components in each
bucket j is bounded by a dual solution ytj and we have log n buckets, so the maximum
dual solution among these is within O(log n) factor of total charges. Also, the cost of the
tree returned by algorithm is within constant factor of the total charges, so we have the
following upper bound for cost of tree.

Theorem 2.4.10. Let T be the tree returned by the algorithm and let y∗ be the dual solution
to (D) among y1, . . . , ym with maximum value. Then

c̄(T) ≤ O(lnn)
∑
S⊆V ′

y∗S.

Finally, we need to give an upper bound for penalty of the vertices excluded from
the final solution tree Tr returned by algorithm. This can be simply obtained by the
dual solution ym of the last phase of the algorithm. In the last phase, every moat gets
deactivated, and no two active components get merged (otherwise the phase termination
condition (?) would have been satisfied) so for each initial component C ∈ Cm, the total
dual solution of moats with core C is equal to π̄(C). Also, all cheap vertices in V ′ \ Tr
are included in one initial component in last phase, therefore we have the result shown in
following lemma.

Lemma 2.4.11. Let ym be the dual solution found in the last phase of the algorithm, then
every component S in support of this solution is disjoint from Tr and

π̄(V ′ \ Tr) ≤
∑
S

ymS

The approximation bound now follows.

Theorem 2.4.12. Let OPT be the value (cost plus penalty) of the optimal solution for
Prize Collecting Steiner Tree problem on an instance of the problem with n vertices, then,
Algorithm 1 finds a solution Tr such that c(Tr) + π(V ′ \ Tr) = O(lnn)OPT .

32

Proof. Recall that given a feasible solution y to the dual (D), setting pv = c(v) if v is
cheap, and pv = π(v) otherwise, yields a feasible solution (y, p) to the dual (D0). Using
weak duality together with Theorem 2.4.10 and Lemma 2.4.11, we have

c(T) + π(V ′ \ T) ≤
∑
v∈V ′

pv + c̄(T) + π̄r(V
′ \ T)

= O(lnn)OPT +OPT = O(lnn)OPT

2.5 LMP Algorithm

Suppose that we have an algorithm for a prize collecting problem such as NW-PCST
problem in which a solution to problem is a subset F of a set V (here set of vertices) and
there is a cost c(v) and π(v) associated to each element and. Suppose that the objective is
to minimize c(F)+π(V ′\F). A Lagrangian Multiplier Preserving (LMP) α-approximation
algorithm for such a prize collecting problem is an algorithm that finds a solution F for
the problem such that

c(F) + απ(V \ F) ≤ αOPT.

Obtaining an LMP algorithm is both essential for solving quota variant of the problem
and hard to obtain in comparison to a non-LMP α-approximation. We will define the
quota problem formally in the next section as an application of the NW-PCST problem
and will show how the LMP property of the NW-PCST algorithm help us in solving the
quota problem. In this section, we show how a simple approach can lead us to an LMP
O(lg(n))-approximation algorithm for NW-PCST problem from algorithm 1.

Theorem 2.5.1. There is an LMP O(log n)-approximation algorithm for the NW-PCST
problem.

Proof. Consider the following algorithm: Let π′(v) = 2π(v) − c(v) for every cheap vertex
v and π′(v) = π(v) for every expensice vertex v. Run the algorithm 1 for these values of
penalties and the original costs. Let T be the output of this run; return T as the result

Note that if we show the reduced penalties of the new instance of problem by π̄′,
then π̄′(v) = 2π̄(v) for every vertex. Suppose that 1 is an α-approximation algorithm for
NW-PCST problem. By theorem 2.4.10, we obtain a dual solution y∗, constructed in some
phase i of the algorithm which has a value within α factor of optimal solution. Let y be a

33

dual solution obtained from y∗ by setting the value yS for each component S ⊆ V ′ equal
to yS if core(S) ⊆ T and equal to 0 otherwise. We also showed that y is within α factor of
optimal solution, i.e.

c̄(T) ≤ α
∑

S⊆V ′:core(S)⊆T

yS. (2.6)

Let z be the dual solution found in the last phase of the algorithm, then by Lemma
2.4.11,

π̄′(V ′ \ T) = 2π̄(V ′ \ T) ≤
∑
S⊆V ′

zS. (2.7)

Claim. y′S = yS
2

+ zS
2

: S ⊆ V ′ is a feasible solution for the instance of the problem
with original penalties π.

Note that for constraint 2.2, for every vertex v ∈ V ′, we have∑
S|v∈Γ(S)

yS ≤ c̄(v),
∑

S|v∈Γ(S)

zS ≤ c̄(v)⇒
∑

S|v∈Γ(S)

y′S =
∑

S|v∈Γ(S)

yS + zS
2

≤ c̄(v),

therefore constraint 2.2 is satisfied by solution y′. So it suffices to prove that constraint
2.3 is satisfied too. Let C be the set of the initial components at the beginning of phase
i (in which solution y∗ was constructed) and D be the set of the initial components at
the beginning of the last phase (in which z was constructed). Each component in support
of y and z has a single core and the age of a component at the end of the phase is no
greater than reduced penalty of its core. Moreover, we know the core of each component
in support of y is contained in T , so for each S ⊆ V ′ we have,∑

R⊆S

y′R =
∑
R⊆S

(yR/2 + zR/2) =
∑
R⊆S

yR/2 +
∑
R⊆S

zR/2

≤
∑

C∈C:C⊆S∩V (T)

π̄′(C)/2 +
∑

D∈D:D⊆S

π̄′(D)/2

=
∑

C∈C:C⊆S∩V (T)

π̄(C) +
∑

D∈D:D⊆S

π̄(D)

34

Note that z is the last dual solution constructed by algorithm, so the set of cheap vertices
of every core in D is the union of the set of cheap vertices of some other cores in C. For
each component Y in support of y, coreȳ(Y) is merged into T at some phase. Moreover, all
components of the last phase of the algorithm get deactivated and none of them contain
any vertex of T , thus, none of them contains a core of a component in support of y. Hence,
no component in C which resides in S is appearing more than once in the summation above,
and so, ∑

R⊆S

y′R ≤
∑

C∈C:C⊆S

π̄(C) = π̄(S).

Therefore, the penalty constraint holds for S and the claim is proved.

Adding α lg(n) times the inequality (2.7) to the inequality (2.6), we get

c̄(T) + 2απ̄(V ′ \ T) ≤ α
∑
S⊆V ′

yS + α
∑
S⊆V ′

zS

≤ 2α
(∑
S⊆V ′

yS
2

+
∑
S⊆V ′

zS
2

)
= 2α

∑
S⊆V ′

y′S

⇒ c(T) + 2απ(V ′ \ T) ≤ 2α
(∑
S⊆V ′

y′S +
∑
v∈V ′

pv
)

≤ 2αOPT.

The last inequality follows from weak duality and the fact that (y′, p) is feasible solution
if pv = cv for cheap vertices and pv = π(v) expensive ones. So the algorithm given is an
LMP O(log n)-approximation algorithm since α = O(log n).

35

Chapter 3

Applications

3.1 Node-Weighted Quota Steiner Tree Problem

As a theoretical application of our algorithm for Node-Weighted Prize Collecting Steiner
Tree problem given in previous chapter, we discuss the quota version of the problem here.

Definition 3.1.1. Given a graph G, costs c(v) and profit π(v) for every vertex v ∈ V (G)
and a quota value Q ≥ 0, the Quota Node Weighted Steiner Tree problem (shortly the quota
problem) asks to find a minimum cost subtree of G with total profit not less than Q.

For a vertex r ∈ V (G), the rooted version of the problem is defined similarly, asking to
find a tree containing r. By iterating over all possible values for Q, we can solve the Prize
Collecting problem using an algorithm for the quota problem, preserving the approximation
factor. However, the other direction is not trivial. We observe that in order to solve the
quota problem using an algorithm for prize collecting problem, LMP property plays a key
role in the reduction.

In [32], Chudak et al., show that how a primal dual LMP approximation algorithm
for prize collecting network design problems, namely for the Edge Weighted version of
our Prize Collecting problem, can be used by a Langrangean Relaxation (LR) method
to obtain an approximation algorithm for the quota version of the problem (preserving
the approximation factor within a constant factor). Using a similar framework and our
LMP algorithm for NW-PCST, we give an O(lg n) approximation algorithm for the quota
problem.

36

Theorem 3.1.2. There is an O(log n)-approximation algorithm for Quota Node Weighted
Steiner Tree Problem.

Let us first formulate the quota problem with the following linear program.

min
∑
v∈V ′

c(v)xv (Quota)

s.t.
∑
v∈Γ(S)

xv +
∑
U |S⊆U

zU ≥ 1 ∀S ⊆ V ′,

xv +
∑
U |v∈U

zU ≥ 1 ∀v ∈ V ′,
∑
S⊆V ′

π(S)zS ≤
∑
v∈V ′

π(v)−Q (3.1)

xv ∈ {0, 1} ∀v ∈ V ′,
zS ∈ {0, 1} ∀S ⊆ V ′,

The differences between the formulation above and the linear program P for prize collecting
version are the added quota constraint 3.1 and that in prize collecting problem, we have
penalty values in our objective function whereas here we do not.

Assume that we ignore the quota constraint and we allow all the solutions to deviate
from the requested profit value Q and in return, incur a penalty equal to λ times the profit
deviation of the solution from the desired value Q for an arbitrary real value λ. Let Π =∑

v∈V ′ π(v). The profit deviation of a primal solution (x, z) is defined as
∑

S⊆V ′ π(S)zS −
(Π − Q), which is the difference between profit of the solution in comparison to Q (a
negative value if the solution has profit more than Q). This modification to our linear
program gives us the Lagrangian Relaxation of the quota problem:

37

min
∑
v∈V ′

c(v)xv + λ(
∑
S⊆V ′

π(S)zS − (Π−Q)) (LRQuota)

s.t.
∑
v∈Γ(S)

xv +
∑
U |S⊆U

zU ≥ 1 ∀S ⊆ V ′,

xv +
∑
U |v∈U

zU ≥ 1 ∀v ∈ V ′,

xv ∈ {0, 1} ∀v ∈ V ′,
zS ∈ {0, 1} ∀S ⊆ V ′,

Writing the dual of the LRQuota, we get the following linear program denoted by LRQuota-
D:

max
∑
S∈V ′

yS +
∑
v∈V ′

pv − λ(Π−Q) (LRQuota-D)

s.t.
∑

S|v∈Γ(S)

yS + pv ≤ c(v) ∀v ∈ V ′

∑
U⊆S

yS +
∑
v∈S

pv ≤
∑
v∈S

λπ(v) ∀S ⊆ V ′

y ≥ 0

p ≥ 0

Note that for any arbitrary λ, every solution (x, z) to the quota problem is a feasible
solution for the relaxed version, so the optimal solution for the LRQuota problem is a
lower bound for the quota problem. Therefore, by weak duality, the value of any solution
to the dual problem LRQuota-D is also not larger than the optimal solution of the quota
problem.

The dual formulation LRQuota-D differs from the dual of the price collecting problem
only in the constant value −λ(Π−Q) added to objective function, so if we give an instance
of the quota problem with penalty values π′(v) = λπ(v) for each v ∈ V ′, by the LMP
property of the prize collecting algorithm (theorem 2.5.1), it gives us a feasible solution T
with a dual solution (y, p) to LRQuota-D such that:∑

v∈T

cv + α(n)π′(V ′ \ T) ≤ α(n)(
∑
S⊆V ′

yS +
∑
v∈V ′

pv)

38

Where α(n) is a function of order lg n. For ease of notation let us denote the value∑
S⊆V ′ yS +

∑
v∈V ′ pv of the dual solution (y, p) by Y and denote V ′ \ T by T̄ . So we have:∑

v∈T

cv + α(n)λπ(T̄) ≤ α(n)Y. (3.2)

Subtracting α(n)λ(Π−Q) from both sides, we get:∑
v∈V ′

cv + α(n)λ(π(T̄)− Π +Q) ≤ α(n)(Y − λ(Π−Q))

≤ α(n)OPTQ, (3.3)

where the last inequality follows from the fact that the right hand side is the objective
function of the dual LP LRQuota-D multiplied by α(n). For every λ, the prize collecting
algorithm finds a feasible solution for the relaxed quota problem. If we can find a suitable
λ for which this solution has profit exactly equal to Q, then we have a feasible solution
for the original quota problem and we are done. However the solution may have profit less
than or greater than Q. If we run the prize collecting algorithm for the λ values equal to 0
and a value large enough we find two solutions with profit 0 and Π respectively. We may
assume that 0 ≤ Q ≤ Π, so there are always two values of λ, say λ1 and λ2 and by binary
searching we can make these two values close enough such that:

• The prize collecting algorithm gives us two solutions T1 and T2 and their correspond-
ing dual solutions (y(1), p(1)) and (y(2), p(2)) for the relaxed quota problem with λ
value equal to λ1 and λ2 respectively, such that π(T1) ≤ Q and π(T2) ≥ Q.

• λ2 − λ1 ≤ OPTQ
Π

.

Note that we do not need to know the exact value of the OPTQ, instead, we can continue
the binary search until λ2−λ1 is less than a value which is certainly less than OPTQ such as
the minimum non-zero cost of all vertices. We enumerate over all possible values of OPTQ
and continue as follows. At first, remove every vertex with node-cost distance more than
OPTQ from r. Clearly no such vertex exists in the optimal solution. Obtain two solutions
T1 and T2 for the relaxed quota prblem with the above properties and merge them as we
will explain later. Before getting to the merging procedure, we prove that a good convex
combination of the cost of the two solutions T1 and T2 is no greater than O(lg n)OPTQ.

Let a1 and a2 be two real values such that a1 + a2 = 1 and they are proportional to the
profit deviation of the solution T2 to the solution T1. More precisely, let

a1 =
π(T2)−Q

π(T2)− π(T1)
, a2 =

Q− π(T1)

π(T2)− π(T1)
.

39

Lemma 3.1.3. a1c(T1) + a2c(T2) ≤ O(lg n)OPTQ.

Proof. Since a1 +a2 = 1, the convex combination (a1y
(1) +a2y

(2), a1p
(1) +a2p

(2)) is a feasible
solution for LRQuota-D with λ equal to λ2 (note λ2 ≥ λ1) and therefore a1Y

(1) + a2Y
(2)−

λ2(Π−Q) ≤ OPTQ. By equation 3.2 we have:

a1c(T1) + a2c(T2)

≤ α(n)
(
a1Y

(1) + a2Y
(2) − (a1λ1π(T̄1) + a2λ2π(T̄2))

)
≤ α(n)

(
a1Y

(1) + a2Y
(2) − λ2(a1π(T̄1) + a2π(T̄2)) + (λ2 − λ1)π(T̄2)

)
By the definition of a1 and a2, we have a1π(T̄1)+a2π(T̄2) = a1(Π−π(T1))+a2(Π−π(T2)) =
Π−Q, so,

a1c(T1) + a2c(T2) ≤ α(n)
(
OPTQ + (λ2 − λ1)π(T̄2)

)
≤ α(n)

(
OPTQ +

OPTQ
Π

Π)

= 2α(n)OPTQ.

It only remains to show that given the trees T1 and T2, how to merge them to find a
tree with profit at least Q and cost O(lg n)OPTQ.

Our final solution consists of the vertices of T1 supplemented by some vertices of T2

with profit at least q = Q− π(T1). First, identify all of the vertices of T1 to a vertex r′ to
obtain a graph G′. Let T ′2 be the corresponding vertices of T2 in G′. Note that both T1

and T2 are connected subgraphs in G, so the vertices of T ′2, which are V (T1)\V (T2)∪{r′},
form a connected subgraph of G′ and also we have π(T ′2) ≥ π(T2) − π(T1) ≥ q. We call a

subgraph S cost-effective, if c(S)
π(S)
≤ c(T ′2)

π(T ′2)
. Starting with the cost-effective tree T ′ = V (T ′2) in

G′, continue the following procedure (which keeps T ′ a cost-effective connected subgraph)
while it changes the graph T ′:
Select an edge e from T ′ with non-leaf vertices at both ends, let S and R be the two
components of T ′ after removing the edge e. At least one of S or R are cost-effective. For
each cost-effective subgraph S or R, say S, do the following:

1. If π(S) ≥ q, remove R from T ′.

40

2. If π(S) < q, identify all vertices of S to a super node S and set the cost and the
profit of the super vertex S equal to the total cost and total profits of the vertices of
S, respectively.

It is easy to see that at the end, T ′ is a cost-effective star graph with profit at least q.

Lemma 3.1.4. There is a connected subgraph T ′′ of T ′ with profit at least q and cost at
most O(lg n)OPTQ.

Proof. If a set S is cost-effective, and has size no more than O(1)q, then by the previous
lemma and the definition of a cost-effective set we have:

c(S) ≤ π(S)
c(T ′2)

π(T ′2)
≤ O(1)q

c(T ′2)

π(T ′2)
≤ O(1)(Q− π(T1))

c(T ′2)

π(T ′2)

≤ O(1)(Q− π(T1))
c(T ′2)

π(T2)− π(T1)
≤ O(1)a2c(T

′
2)

≤ O(1)a2c(T2) = O(lg n)OPTQ.

During the procedure above, we never identify a subgraph to a super vertex if the
subgraph has profit more than q or if it is not cost-effective. Therefore, every super vertex
S is cost-effective and has cost O(lg n)OPTQ. Moreover, at the beginning, we removed
every vertex with cost more than OPTQ. So regardless of a vertex being an original vertex
or a super vertex, it does not have cost more than O(lg n)OPTQ.

If there is a vertex v in T ′ with profit at least q, the single vertex v is the desired
subgraph. Also, if the total profit of T ′ is not more than 2q, then since T ′ is cost effective
T ′ has cost O(lg n)OPTQ and we are done. Now suppose that every vertex has profit less
than q and T ′ has profit more than 2q, then T ′ has at leas 3 vertices. Suppose that T ′

consists of a vertex u of degree more than 1 and all other vertices in T ′ are leaves adjacent
to u. For an arbitrary vertex v ∈ V (T ′) \ {u}, by removing the edge uv from T ′, we have a
single vertex v and a star graph R with profit more than q (a star graph is a tree with only
one vertex of degree more than one). Since none of the cases 1 and 2 were applicable, R
is not cost-effective, hence {v} is cost-effective. By our arbitrary choice of v, we conclude
that every vertex in T ′ except u is cost-effective.

Consider an empty set U and add adjacent vertices of u in T ′ to U until U∪{u} induces
a subgraph of T ′ with profit at least q. Note that U does not have profit more than 2q
and it is cost effective. So by the arguments above, c(U ∪ {u}) = O(lg n)OPTQ and it is
connected and we are done.

41

Finally, if the supplemental subgraph T ′′ provided by the procedure above and previous
lemma is not connected to the root, add a minimum cost path P from root to T ′′. The
graph T1 ∪ T ′′ has profit at least q + π(T1) = Q and cost O(lg n)OPTQ and satisfies our
quota problem constraints. Note that P has cost at most OPTQ since we have removed
every vertex from the graph with node-cost distance more than OPTQ at the beginning.

3.2 Technology Diffusion Problem

This section is dedicated to study an application of the quota problem, particularly in
solving an optimization problem in the field of social network analysis. The problem itself
is important from a theoretical point of view since as we will show, it can not only be
solved using the quota problem, but also it is equivalent to a special case of the quota
problem. Here we first give a brief overview of the problems in the field and then define
the problem formally.

Consider a newly evolved technology being gradually propagated in a network based
on the word-of-the-mouth phenomenon in which each node’s utility in adoption of the
technology increases as the number of adopters in his community increases. This process
can be formulated as a dynamic process over time where each node is being influenced by
its acquaintances to migrate to the new technology. This approach has been the basis for
modeling propagation of a new product in viral marketing [34, 78], spread of information
and ideas in social networks [23, 30, 8, 89, 50] and in modeling the diffusion of a network
technology upgrade [70, 24, 68] and many other dynamic processes in networks.

In such a propagation process, the final number of adopters is mainly affected by two
factors: the underlying propagation mechanism, or how the individuals are being influenced
by others and the initial set of individuals who triggered the process. There have been
a vast study to model the propagation mechanisms in different contexts, for example in
[84, 24, 68, 70] dynamics of adoption of a new network technology has been studied or
[49, 73] studied the propagation of influence in social networks as an application of viral
marketing. Both in viral marketing and planning for deployment of a new technology,
influence maximization is one of the most natural optimization problems in the field: given
the underlying propagation mechanism, what is the smallest set of nodes to choose as the
early adopters of the technology so that at the end of the propagation process, they cause
the technology to become widely adopted?

Unfortunately, influence maximization problem has been proved to be a hard task in
majority of the proposed models [29, 26, 1]. Therefore, many have tried to design approx-
imation algorithms for different variations of the problems, e.g. [73] studied the Linear

42

Threshold and Independent Cascade models and [1, 51] studied combinatorial models of
the problem.

We focus on the problem of finding the minimum initial set of technology adopters
to make a technology de facto based on a model proposed by Goldberg and Liu ([48])
which captures the propagation model of communication technologies. Their model follows
the threshold models suggested by many studies such as the seminal work of Kempe,
Kleinberg and Tardos in 2003 ([73]) and others such as [24, 52, 53, 92]. However, while most
studies consider only the influence from one’s direct connections, Goldberg-Liu’s model is
motivated by the fact that in many real world scenarios, one’s decisions is impacted by
the total number of people who have adopted technology and are reachable through other
influenced users’ connections rather than number of direct acquaintances.

The Goldberg-Liu model targets a natural case lacking in the previous studies which is
evident in cases where the technology itself enhances the communication e.g. adoption of
ipv6 over ipv4 [54, 68], deployment of new security protocols over internet [84, 7, 44, 87]
and introducing a new mobile phone service or social networking application. Specifically,
in deployment of a new security protocol or enhancement in service quality over internet, a
node benefits from the enhanced connection with another node if there is a path between
these two such that all other internal nodes are implementing the new protocol or upgraded
to the new technology; the same measurement the Goldberg-Liu’s model uses as the utility
of the node in adopting the technology.

We are interested in finding an initial set of nodes leading to a complete adoption.
This can be justified in an upgrade from old technologies to new technologies such as
an upgrade from ipv4 to ipv6, since the goal is to reach a state in which every one has
adopted the new technology. The problem itself is also interesting from theoretical point
of the view as we will establish a close connection between the problem and the Node-
Weighted Quota Steiner Tree problem studied in previous chapter and also the submodular
Set Cover Problem.

3.2.1 Problem Definition

Let us give a more precise definition of the technology diffusion process and its affiliated
optimization problem. Given a network of individuals and connections between them as a
graph G(V,E) and a threshold function θ : V → Z, we want to select a subset A0 ⊆ V (G)
of initial nodes called the seed set, to be the set of early adopters of the technology. We
alternatively call a node who has adopted the technology as an activated node. For each
integer value t ≥ 0 representing time, let At be the set of activated nodes at time t. The

43

technology diffusion process is defined as follows: At time zero, the vertices in A0 are
active and all other vertices are deactivated. At each time t ≥ 1, a vertex v is active if
either it was active at time t − 1 or the size of the connected component containing v in
the induced subgraph by vertices in At−1 ∪ {v} is at least θ(v). The smallest t for which
a vertex v is activated is called the activation time of the vertex v. Note that we consider
the progressive propagation i.e. if one becomes activated, it will never change its state to
deactivated later.

The technology diffusion optimization problem is the problem of finding minimum car-
dinality seed set A0 that activates all of the vertices at the end of the process i.e. for some
t ≥ 0, At = V . Through this section, we assume OPT ⊆ V is an optimal solution for the
technology diffusion optimization problem in graph G and r is the diameter of the graph
G (the maximum distance between any two vertices in G) and θ : V → {θ1, . . . , θl} such
that θ1 < θ2 < . . . < θl ≤ |V | i.e. there are l distinct threshold values. Also, we assume
that for each θi (1 ≤ i ≤ l), there exists a vertex with threshold θi.

3.2.2 Previous Result and Our Contributions

Goldberg and Liu gave a reduction from set cover to the technology diffusion optimiza-
tion problem showing that asymptotically, a lg(n)-approximation algorithm is the best
achievable algorithm for the problem. In the same paper they propose an O(r.l. log n)-
approximation algorithm. We improve the approximation factor to O(min{r, l}. lg(n)) by
giving two algorithms, an O(l. log n)-approximation algorithm using the node-weighted
version of Quota Steiner Tree problem and an O(r. log n)-approximation algorithm based
on submodular set cover maximization problem.

While the algorithm proposed in [48] uses randomized LP rounding and needs to solve
an LP, both of our algorithms are based on combinatorial ideas and are simpler than the
previous one. We also give an inapproximability for the problem by providing a reduction
from Node-Weighted Quota Steiner Tree problem which is essentially a harder problem
than the set cover problem even for the case where we have only two threshold values.
This suggests that finding an O(log n)-approximation algorithm for the problem probably
requires substantially new ideas as to the best of our knowledge, there is no known O(log n)-
approximation algorithm for the Node-Weighted Quota Steiner Tree problem with more
than O(1) quota constraints.

44

3.2.3 O(r. lg(n))-Approximation Algorithm

In this section we give an O(r. log n)-approximation for the technology diffusion problem
using the submodular set covering problem. Let us first show a lower bound for the optimal
solution. Consider an initially activated set A0 of nodes and the technology diffusion
process started from A0. Suppose that we call the time span from starting point of the
process till the time there are θ2 − 1 active nodes is called the first phase, then the time
span the number of active nodes grows from θ2 nodes to θ3 − 1 is called the second phase
and so on.

Note that A0 must have at least θ1−1 nodes, otherwise, none of the nodes get activated.
Also, in each phase i, only nodes with threshold θi or less activate and at the end of phase
i, we must have at least θi+1 − 1 active nodes to be able to active nodes with greater
thresholds than θi. This gives us an idea to show a lower bound for A0. In each phase i,
assuming Si is the set of all nodes reachable from A0 by nodes with threshold at most θi,
then |Si| must be at least θi+1 − 1 for each 1 ≤ i < l.

For proving the above illustrated idea, we first define some notations. For each v ∈ V
and each threshold value θi, let Gθi

v be the subgraph induced by v and all vertices of G
with threshold at most θi, i.e.

Gθi
v = G[{v} ∪ {u|θ(u) ≤ θi}].

Where G[S] denotes the subgraph of G induced by vertices S. Note that Gθi
v may be

disconnected. Let Γ(θi, v) be the set of vertices of the connected component of Gθi
v con-

taining v. Note that, by definition, v ∈ Γ(θi, v). Similarly, for every S ⊆ V , define
Γ(θi, S) =

⋃
v∈S Γ(θi, v). Also, let θ0 = 0, so that Γ(θ0, S) = S for every S ⊆ V . Now, the

idea above can be stated formally as the following lemma.

Lemma 3.2.1. For every θi ∈ {θ0, . . . , θl−1}, |Γ(θi, OPT)| ≥ θi+1 − 1.

Proof. For a θi ∈ {θ0, . . . , θl−1}, assume that v is the first vertex (not in OPT) getting
activated with threshold more than θi and assume it activates at time t. Let OPTt−1 be
the set of vertices activated till time t − 1. By definition, OPTt−1 ⊆ Γ(θi, OPT). Also,
vertex v gets activated at time t, therefore there are at least θi+1−1 active vertices at time
t− 1 so |Γ(θi, OPT)| ≥ |OPTt−1| ≥ θi+1 − 1.

The following corollary follows directly from the previous lemma which gives the desired
lower bound on the size of the optimal solution.

45

Corollary 3.2.2. Let S be the minimum set satisfying

|Γ(θi, S)| ≥ θi+1 − 1 for all θi ∈ {θ0, . . . , θl−1}, (MT)

then, |OPT | ≥ |S|.

Our first algorithm also uses an idea similar the one used for proving the lower bound.
Suppose that we have found the optimal set S satisfying (MT). We show if we add some
additional vertices to S so that the induced subgraph of vertices in S form a connected
subgraph, then we have a set of initial vertices activating all vertices. First, we need
to show that finding a set satisfying constraints of (MT) is feasible in polynomial time.
Let us call the problem of finding the minimum set satisfying the (MT) constraints the
minimization problem (MT). A submodular set is defined as follows.

We use the Submodular Set Covering problem to solve (MT) problem.

Definition 3.2.3. Given a set U and a set function f : 2U → R, f is submodular, if
for every subsets A ⊆ B ⊆ U and every element e ∈ U , we have f(A ∪ {e}) − f(A) ≥
f(B ∪ {e})− f(B).

In other words, a set function is submodular if it has non-increasing marginal growth. In
Submodular Set Covering (SSC) problem, we are asked to find a minimum cardinality set
S with f(S) = f(U). The best achievable polynomial time approximation algorithm for
SSC problem is O(log(maxe∈U f({e})) and the famous greedy algorithm for set covering
problem has been proved to provide this approximation factor by Wolsey in [94]. We use
Wolsey’s result to show that there is an O(log n)-approximation algorithm for our (MT)
problem.

Theorem 3.2.4. There is an O(log n)-approximation algorithm for solving (MT).

Proof. For each 0 ≤ i < l, define function fi : 2V → R as

fi(D) = min{θi − 1, |Γ(θi+1, D)|}

for every D ⊆ V . Also define the function f : 2V → R as

f(D) =
l−1∑
i=0

fi(D).

46

It is easy to see that fi is a submodular function, so f is also a submodular function.
Therefore, we can solve this instance of SSC with universe set V with the greedy al-
gorithm to obtain a O(log n)-approximate solution D∗ using Wolsey’s algorithm ([94])
such that f(D∗) = f(V), since log(f(V)) ≤ log(n2) = O(log n). Observe that f(D∗) =∑l−1

i=0 min{θi+1 − 1, |Γ(θi, V)|} =
∑l−1

i=0(θi − 1), since Γ(θi, V) = V for all 0 ≤ i < l.
Therefore, |Γ(θi, D)| ≥ θi+1− 1 for all 0 ≤ i < l and D∗ is a feasible solution for (MT).

Using the previous theorem now we can prove there is an O(r. log n)-approximation
algorithm for technology diffusion problem. Algorithm 4 shows the pseudo code.

Algorithm 4 SelectSeedSet1(G, {θ1, . . . , θl})
S0 ← an O(log n)-approximate solution for (MT) problem for the instance
(G, {θ1, . . . , θl})
A0 ← S0

while G[A0] is not connected do
find a shortest path P connecting at least two connected components of G[A0]
A0 ← A0 ∪ V (P).

end while
return A0

Theorem 3.2.5. Algorithm 4 is an O(r. log n)-approximation algorithm for Technology
Diffusion problem, where r is the diameter of the graph.

Proof. First note that S0 is a O(log n) approximate solution for (MT) and by corollary
3.2.2, the size of minimum solution to (MT) is a lower bound for |OPT |, therefore, S0 ≤
O(log n)|OPT |. In each iteration of the while loop, the path P has at most r. Also, after
adding the vertices of the shortest path, the number of connected components of G[A0]
deacreases at least by one, so at most |S0| paths will be added to A0, hence |A0| ≤ r|S0| ≤
O(r. log n)|OPT |.

By induction on i, we prove starting from seed set A0, all vertices in Γ(θi,A0) will be
activated for all 1 ≤ i ≤ l. By definition of (MT) problem, Γ(θ0,A0) = |A0| ≥ θ1 − 1, and
G[A0] is connected, so every node adjacent to A0 with threshold θ1 gets activated, then the
nodes adjacent to these newly activated nodes with threshold θ1 and finally, every node in
Γ(θ1,A0) gets activated.

Now suppose every node in Γ(θi,A0) is activated for an i ≥ 1. Since inequality (MT)
is satisfied, Γ(θi,A0) ≥ θi+1 − 1. Similar to the case for i = 1, this means every node in

47

Γ(θi+1,A0) will be activated. At the end, all nodes in Γ(θl,A0) = V get activated, hence
A0 returned by algorithm 4 is a feasible solution for the technology diffusion problem.

3.2.4 O(l. lg(n))-Approximation Algorithm

As we will see in next section, the technology diffusion problem with only two threshold
values is equivalent to the Quota Steiner Tree problem discussed in previous chapter, this
intrigues us to look for more sophisticated algorithms to solve the problem. Specifically, it is
unlikely to be able to eliminate the factor r from the approximation factor of the algorithm
in previous section. In his section we give an O(l. log n)-approximation algorithm for the
problem using the Quota Steiner Tree algorithm we gave in section 3.1.

First we use a result from Goldberg and Liu [48] which states we can narrow down our
search space to seed sets inducing a connected activation sequence.

Definition 3.2.6. Consider a seed set A0. We say A0 induces a connected activation
sequence if there is a permutation of vertices v1, . . . , vn such that for all 1 ≤ t ≤ n, (i)
vertices v1, . . . , vt induce a connected subgraph, and (ii) if θ(vt) > t, then vt ∈ A0.

Similarly, we can define a seed set inducing a connected activation sequence as follows.
Consider an anchor vertex s (the vertex v1 in definition above) and a seed set A0. A
connected activation process starting at A0 is a process in which each vertex v not in A0

gets activated at time t, if v is adjacent to the connected component of the subgraph induced
by active vertices At containing s and this component has at least θ(v)− 1 vertices. So, in
a connected activation, we only consider the number of vertices in a connected component
of active vertices containing a specific vertex s to activate other vertices.

The following result from [48] by Goldberg and Liu is both interesting and insightful
for understanding the structure of seed sets inducing connected activation sequences and
help us achieve the O(l. log n)-approximation algorithm, therefore, we briefly summarize
the proof here.

Lemma 3.2.7. The size of the optimal seed set inducing a connected activation sequence
is at most twice the size of the optimal seed set.

Proof. Given an optimal activation sequence A0, we construct an activation sequence A′0
with size no more than 2|A0|, inducing a connected activation sequence. First let A′0 = A0

and consider a diffusion process starting from A0. Consider the vertices in the reverse

48

order they activate, say vn, . . . , v1, in which vn being the last vertex getting activated and
all vertices in A0 appearing in v1, . . . , v|A0|.

For a vertex vt, suppose S1, . . . , Sk are the set of vertices of connected components
adjacent to vt in the graph induced by active vertices in {v1, . . . , vt−1}. If |k > 1, then
add vt to A′0. We call such vertex vt a connector vertex. Now we claim that A′0 induces
a connected activation sequence. We can prove this by induction on number of vertices of
the graph G. If G has size 1, then clearly A′0 = A0. Assume that the statement is true for
every graph with size less than n and let G be a graph of size n.

Consider the order v1, . . . , vn that vertices activate in the diffusion process started from
A0 and let vt be the last connector vertex vt not in A0 and getting activated. Let S1, . . . , Sk
be the set of vertices of connected components adjacent to vt in the G[{v1, . . . , vt−1}].
Also, without loss of generality, assume that S1 has the largest cardinality among the sets
{S1, . . . , Sk}. Note that the connector vertices in each set Si is defined independent of all
vertices in V \ Si for all 1 ≤ i ≤ k. Therefore by induction hypothesis, the vertices in
A′0 ∩ S1 induce a connected activation sequence in S1.

Since S1 has the largest cardinality, v ∈ A′0 and each of S2, . . . , Sk induce a connected
subgraph and every vertex in Si \A′0 also gets activated by S1 ∪{v}, inducing a connected
activation sequence in S = {v} ∪

(
∪ki=1 S1

)
with an anchor vertex in S1. By assumption

there is no connector vertex in V \ S in activation sequence induced by A0, therefore after
activation of vertices in S, all activated vertices form a connected component containing
vertices of S, therefore A′0 induces a activation sequence activating S and all other vertices
afterwards.

It only remains to prove that |A′0| ≤ 2|A0|. There are at most |A0| connected compo-
nents of active vertices in A0 and in the diffusion process starting by A0, each connector
connects at least two components, therefore the total number of connector vertices is at
most |A0| and we have added at most |A0| vertices to |A′0|.

Our second algorithm finds a seed set inducing a connected activation sequence with an
anchor vertex s. The optimal solution then can be find by iterating over all vertices of the
graph as the anchor vertex. The key idea is to relate the connected activation sequence of a
seed set inducing a connected activation sequence anchored at s for each 1 ≤ i ≤ l to a sub
tree of the graph rooted at s, containing θi − 1 vertices. Consider a seed set A0 inducing
a connected activation sequence anchored at s and the first vertex v with threshold θi or
more getting activated. At the time t that v gets activated, there is connected component
S of active nodes containing s with at least θi− 1 vertices. In this component, every node
with threshold θi or more is included in A0. Now assume that the cost of each vertex with

49

threshold θi or more is one and cost of all other vertices are zero. Then, S contains a
subtree of θi − 1 vertices and the cost of the tree is the number of vertices in A0.

The algorithm finds l minimum cost subtrees rooted at s, each for a threshold θi sat-
isfying that ith subtree has at least θi − 1 vertices. Each subtree can be found by our
Node-Weighted Quota Steiner Tree algorithm from section 3.1. Also we prove the union
of the cost 1 vertices of all trees form a feasible solution for technology diffusion problem.
Algorithm 5 shows the pseudo code of our O(l. log n)-approximation algorithm.

Algorithm 5 SelectSeedSet2(G, {θ1, . . . , θl})
A0 ← ∅
for i = 1 . . . l do

For each v ∈ V , define wi(v) = 0 if θ(v) < θi and wi(v) = 1, otherwise
Ti ← an O(log n)-approximate tree for Steiner Quota Problem on G with costs wi

rooted at s and containing at least θi − 1 vertices
Add every vertex v in Ti with wi(v) = 1 to A0

end for
return A0

Theorem 3.2.8. Algorithm 5 finds an O(l log n)-approximate solution containing a vertex
s for the technology diffusion problem.

Proof. Let A∗0 be an optimal seed set inducing a connected activation sequence. First we
prove that the algorithm finds a seed set A0 such that |A0| ≤ O(l log n)|A∗0|, which together
with lemma 3.2.7 guarantees the approximation factor. In order to prove this bound we
prove for each 1 ≤ i ≤ l, the wi-cost of subtree Ti is not greater than O(log n)|Ar| by
showing that |Ar| contains vertices of cost 1 of a subtree rooted at s with at least θi − 1
vertex. Note that the algorithm adds the vertices with cost 1 to the tree in each iteration,
so the number of vertices added to A0 in iteration i is at most wi(Ti).

Consider the connected activation sequence started byA∗0 and for an arbitrary 1 ≤ i ≤ l,
assume that v is the first vertex not in A∗0 with θ(v) ≥ θi getting activated. Also assume
that v activates at time t. Since A∗0 induces a connected activation sequence, at time t, v is
adjacent to a connected component of active vertices containing s and at least θi−1 vertices.
Consider the subtree T ′i of this component containing s and at least θi − 1 vertices. Every
vertex with threshold θi or more in T ′i must be in A∗0, therefore, wi(T

′
i) ≤ |A∗0|. Since

Ti is an O(log n)-approximate minimum wi-cost subtree with θi − 1 vertices, therefore
wi(Ti) ≤ O(log n)wi(T

′
i) ≤ O(log n)|A∗0|, as desired.

50

It only remains to prove that A0 is a feasible solution. By induction on i, we prove
that every vertex in Ti activates at some time for each 1 ≤ i ≤ l. For i = 1, we have
w1(v) = 1 for every v ∈ V , therefore T1 ⊆ A0. Assume that the assertion is true for
Ti−1 which means at some time during the activation process, there exist at least θi−1 − 1
active vertices forming a connected component including s. Note that Ti also includes s
and induces a connected subgraph, so every vertex in Ti with threshold less than θi get
activated. However, the rest of the vertices in Ti are already added to A0, so all vertices in
Ti get activated at some point and the claim is proved. At the end, we have |Tl| ≥ θl − 1
active vertices that activate all vertices of graph.

3.2.5 Complexity

In previous section we saw how our algorithm utilizes the Node-Weighted Quota Steiner
Tree algorithm from section 3.1 to obtain an O(l. log(n))-approximation algorithm. Here we
show that any approximation algorithm for technology diffusion problem also can solve the
Node-Weighted Quota Steiner Tree problem with {0, 1} costs and unit penalties, preserving
the approximation factor.

There is a simple reduction from Set Cover problem to the Node-Weighted Quota
Steiner Tree problem with {0, 1}-costs and unit penalties, which shows the best approxi-
mation factor achievable for Quota Steiner Tree problem is O(log n) in polynomial time.
Goldberg and Liu proved the same for the Technology Diffusion problem by giving a re-
duction from Set Cover problem to Technology Diffusion problem. Our reduction gives
a more general hardness for Technology Diffusion problem and suggests the improvement
of the algorithms to o(min{r, l} log(n))-approximation probably needs an algorithm with
same approximation factor for Node-Weighted Quota Steiner Tree problem with l quota
constraints.

Assume that we have an instance of Quota Steiner Tree problem (G(V,E), c, π,Q), such
that π(v) = 1 and c(v) ∈ {0, 1} for all v ∈ V . We show that if we have an α-approximation
for technology diffusion problem, we can use this algorithm to give an O(α)-approximate
solution for this instance of Quota Steiner Tree problem. For each v ∈ V , define θ(v) = Q
if c(v) = 1 and θ(v) = 1 otherwise. Now compute a α-approximate solution A0 for (G, θ)
instance of technology diffusion problem. Let v be a vertex of cost Q which activates before
any other vertex of cost Q starting with seed set A0 and assume that v activates at time
t. Let At−1 be the set of active vertices at time t− 1 and let T be the set of vertices of the
connected component containing v in G[At−1 ∪ {v}].

Every vertex with threshold Q in T (except v) is in A0, therefore c(T) ≤ |A0|+1. Also,

51

T contains at least Q vertices since v is activated by vertices of T − v, so any spanning
tree of G[T] is a feasible solution for the given Quota Steiner Tree problem. This means
every solution A0 for technology diffusion problem gives us a feasible solution of the Node
Weighted Quota Steiner Tree problem with cost at most one unit more. Also in previous
section we proved that we can use a solution for Quota Steiner Tree problem to obtain a
solution with same cost for technology diffusion problem (with two thresholds), therefore
these two problems are equivalent.

52

Chapter 4

Future Work

We discussed the Node-Weighted Steiner tree problem, specifically its Prize Collecting and
Quota restricted generalizations and gave asymptotically tight solutions for the problems.
However there are still various open versions of the problem. Also, we improved the known
approximation factor for technology diffusion problem, and showed its close relation to
Steiner Network Problem. Here we list some of the possible future research directions in
these two areas.

Steiner Network Problems.

• We solved the Node-Weighted Quota Steiner Tree problem with asymptotically best
possible approximation factor, i.e. O(log n), however for its generalization, the k-
Steiner Forest problem, the best given approximation factor is

√
min{k, n} [56] while

there is only a reduction from k-densest subgraph to the problem which we know is
APX-hard and the best known approximation algorithm is aO(n1/4+ε)-approximation
for any constant ε [17]. Is it possible to improve this factor for k-Steiner forest to the
same one for densest k-subgraph? Or further, is it possible to give sub polynomial
approximation factor for both problems?

• For the edge weighted version of classic Steiner Tree problem the best known ap-
proximation algorithm is a 1.39 algorithm [22] while the largest inapproximability
result is 96/95. Filling this gap is probably the most important problem in the
field of network design problems. The gap is even larger between approximability of
Steiner Forest problem (currently 2) and the known inapproximability (96/95 from
inapproximability of Steiner Tree problem).

53

• Improving the 2.4 approximation algorithm of Berman and Yaroslavtsev for NW-ST
in planar graphs [15] is an open problem, particularly we do not know the problem
admits a PTAS in planar graphs or not.

• For the edge weighted PCST, Archer et al. have recently found a (2−ε)-approximation
algorithm, improving the approximation factor or inapproximability for the problem
is a big open question.

Technology Diffusion Problem

• We showed that the best achievable approximation factor for Technology Diffusion
problem is O(log n) and there are approximation algorithms with O(r log n) and
O(l log n) factors for the problem, where r and l are the maximum distance in the
graph and the number of distinct thresholds, respectively. Is it possible to show a
stronger inapproximability or design an O(log n)-approximation for the problem?

• We studied the complete propagation problem in our model of Technology Diffusion,
however, there are other standard problems studied in the field of influence propaga-
tion such as

� MAX-INF: given a number k, find a set of k initially activated vertices that
starting with them activate maximum number of vertices. On the other side
we may also have the problem of finding the minimum seed set activating at
least k vertices, however this problem can be easily reduced to the complete
propagation version by setting all threshold values larger than k + 1 equal to
k + 1.

� Weighted Variants: we considered the problem where each node has unit
cost. An interesting variation of the problem is to consider the case where each
node has a cost and we want to minimize the total costs of the selected nodes
in the seed set. Also one can consider influence weights for individuals, where
each node is activated if the total weight of activated nodes in its community
exceeds its threshold.

� Other Threshold Models: We considered deterministic arbitrary threshold
values, however in may cases the random threshold values are well justified
and shown to help finding better approximation factors, specifically the Linear
Threshold model of Kempe Kleinberg and Tardos (see [73]). One interesting
problem is to consider linear thresholds for technology diffusion problem.

54

� Special Graphs: There are well known properties of social network graphs
such as Power-Law degree distribution. Utilizing these properties may help to
find better approximation algorithms for the problem for real world graphs (see
[36] for example).

55

References

[1] E. Ackerman, O. Ben-Zwi, and G. Wolfovitz. Combinatorial model and bounds for
target set selection. Theoretical Computer Science, 411(44):4017–4022, 2010.

[2] Ajit Agrawal, Philip Klein, and R Ravi. When trees collide: An approximation algo-
rithm for the generalized steiner problem on networks. SIAM Journal on Computing,
24(3):440–456, 1995.

[3] Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Howard
Karloff. Improved approximation algorithms for prize-collecting steiner tree and tsp.
SIAM Journal on Computing, 40(2):309–332, 2011.

[4] Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling sales-
man and other geometric problems. Journal of the ACM (JACM), 45(5):753–782,
1998.

[5] Sanjeev Arora and George Karakostas. A 2+ ε approximation algorithm for the k-mst
problem. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, pages 754–759. Society for Industrial and Applied Mathematics, 2000.

[6] Sunil Arya and H. Ramesh. A 2.5-factor approximation algorithm for the k-mst
problem. Information Processing Letters, 65(3):117 – 118, 1998.

[7] I. Avramopoulos, M. Suchara, and J. Rexford. How small groups can secure in-
terdomain routing. Princeton University Computer Science Department, Tech. Rep.
TR-808-07, 2007.

[8] Eytan Bakshy, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts. Everyone’s
an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM
international conference on Web search and data mining, WSDM ’11, pages 65–74,
New York, NY, USA, 2011. ACM.

56

[9] Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–
636, 1989.

[10] M Bateni, Chandra Chekuri, Alina Ene, MohammadTaghi Hajiaghayi, Nitish Korula,
and Dániel Marx. Prize-collecting steiner problems on planar graphs. In Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1028–1049. SIAM, 2011.

[11] MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-
collecting steiner forest. Algorithmica, 62(3):906–929, 2012.

[12] Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Vahid Liaghat. Im-
proved approximation algorithms for (budgeted) node-weighted steiner problems. In
Automata, Languages, and Programming. 2013.

[13] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. Approx-
imation schemes for steiner forest on planar graphs and graphs of bounded treewidth.
Journal of the ACM (JACM), 58(5):21, 2011.

[14] Piotr Berman and Viswanathan Ramaiyer. Improved approximations for the steiner
tree problem. In Proceedings of the third annual ACM-SIAM symposium on Discrete
algorithms, pages 325–334. Society for Industrial and Applied Mathematics, 1992.

[15] Piotr Berman and Grigory Yaroslavtsev. Primal-dual approximation algorithms for
node-weighted network design in planar graphs. Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 50–60, 2012.

[16] Marshall Bern and Paul Plassmann. The steiner problem with edge lengths 1 and 2.
Information Processing Letters, 32(4):171–176, 1989.

[17] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vija-
yaraghavan. Detecting high log-densities: an o(n¼) approximation for densest
k-subgraph. In Proceedings of the 42nd ACM symposium on Theory of computing,
STOC ’10, pages 201–210, New York, NY, USA, 2010. ACM.

[18] Daniel Bienstock, Michel X Goemans, David Simchi-Levi, and David Williamson. A
note on the prize collecting traveling salesman problem. Mathematical programming,
59(1):413–420, 1993.

[19] Avrim Blum, R Ravi, and Santosh Vempala. A constant-factor approximation al-
gorithm for the k mst problem. In Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing, pages 442–448. ACM, 1996.

57

[20] Glencora Borradaile, Philip Klein, and Claire Mathieu. An o (n log n) approximation
scheme for steiner tree in planar graphs. ACM Transactions on Algorithms (TALG),
5(3):31, 2009.

[21] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. A polynomial-time approx-
imation scheme for euclidean steiner forest. In FOCS, pages 115–124, 2008.

[22] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An improved
lp-based approximation for steiner tree. In Proceedings of the 42nd ACM symposium
on Theory of computing, pages 583–592. ACM, 2010.

[23] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A measurement-driven
analysis of information propagation in the flickr social network. In Proceedings of the
18th international conference on World wide web, WWW ’09, pages 721–730, New
York, NY, USA, 2009. ACM.

[24] Haowen Chan, Debabrata Dash, Adrian Perrig, and Hui Zhang. Modeling adoptability
of secure bgp protocol. SIGCOMM Comput. Commun. Rev., 36(4):279–290, August
2006.

[25] C.L. Chang and Y.D. Lyuu. Spreading messages. Theoretical Computer Science,
410(27):2714–2724, 2009.

[26] C.L. Chang and Y.D. Lyuu. Bounding the number of tolerable faults in majority-based
systems. Algorithms and Complexity, pages 109–119, 2010.

[27] Chandra Chekuri, Alina Ene, and Ali Vakilian. Node-weighted network design in
planar and minor-closed families of graphs. Automata, Languages, and Programming,
pages 206–217, 2012.

[28] Chandra Chekuri, Alina Ene, and Ali Vakilian. Prize-collecting survivable network
design in node-weighted graphs. Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 98–109, 2012.

[29] N. Chen. On the approximability of influence in social networks. SIAM Journal on
Discrete Mathematics, 23(3):1400–1415, 2009.

[30] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for preva-
lent viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, KDD
’10, pages 1029–1038, New York, NY, USA, 2010. ACM.

58

[31] Miroslav Chleb́ık and Janka Chleb́ıková. The steiner tree problem on graphs: Inap-
proximability results. Theoretical Computer Science, 406(3):207–214, 2008.

[32] Fabián A Chudak, Tim Roughgarden, and David P Williamson. Approximate k-msts
and k-steiner trees via the primal-dual method and lagrangean relaxation. Mathemat-
ical Programming, 100(2):411–421, 2004.

[33] Erik Demaine, MohammadTaghi Hajiaghayi, and Philip Klein. Node-weighted steiner
tree and group steiner tree in planar graphs. Automata, Languages and Programming,
pages 328–340, 2009.

[34] Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge dis-
covery and data mining, KDD ’01, pages 57–66, New York, NY, USA, 2001. ACM.

[35] Karoline Faust, Pierre Dupont, Jérôme Callut, and Jacques Van Helden. Pathway
discovery in metabolic networks by subgraph extraction. Bioinformatics, 26(9):1211–
1218, 2010.

[36] MohammadAmin Fazli, Mohammad Ghodsi, Jafar Habibi, Pooya Jalaly Khalilabadi,
Vahab Mirrokni, and Sina Sadeghabad. On the non-progressive spread of influence
through social networks. LATIN 2012: Theoretical Informatics, pages 315–326, 2012.

[37] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652,
July 1998.

[38] Harold N Gabow, Michel X Goemans, and David P Williamson. An e cient ap-
proximation algorithm for the survivable network design problem. In Proceedings of
the Third MPS Conference on Integer Programming and Combinatorial Optimization,
pages 57–74, 1993.

[39] Michael R Garey and David S. Johnson. The rectilinear steiner tree problem is np-
complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

[40] Naveen Garg. A 3-approximation for the minimum tree spanning k vertices. In
Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on,
pages 302–309. IEEE, 1996.

[41] Naveen Garg. Saving an epsilon: a 2-approximation for the k-mst problem in graphs.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
STOC ’05, pages 396–402, New York, NY, USA, 2005. ACM.

59

[42] Naveen Garg, Goran Konjevod, and R Ravi. A polylogarithmic approximation algo-
rithm for the group steiner tree problem. In Proceedings of the ninth annual ACM-
SIAM symposium on Discrete algorithms, pages 253–259. Society for Industrial and
Applied Mathematics, 1998.

[43] E. Gilbert and H. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1–29, 1968.

[44] Phillipa Gill, Michael Schapira, and Sharon Goldberg. Let the market drive deploy-
ment: a strategy for transitioning to bgp security. SIGCOMM Comput. Commun.
Rev., 41(4):14–25, August 2011.

[45] Michel X Goemans, Andrew V Goldberg, Serge Plotkin, David B Shmoys, Eva Tar-
dos, and David P Williamson. Improved approximation algorithms for network design
problems. In Proceedings of the fifth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 223–232. Society for Industrial and Applied Mathematics, 1994.

[46] Michel X Goemans and David P Williamson. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[47] Michel X Goemans and David P Williamson. Approximation algorithms for NP-
hard problems, chapter The primal-dual method for approximation algorithms and its
application to network design problems, pages 144–191. In [64], 1996.

[48] S. Goldberg and Z. Liu. Technology diffusion in communication networks. arXiv
preprint arXiv:1202.2928, 2012.

[49] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look
at the underlying process of word-of-mouth. Marketing letters, 12(3):211–223, 2001.

[50] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks of
diffusion and influence. ACM Trans. Knowl. Discov. Data, 5(4):21:1–21:37, February
2012.

[51] A. Goyal, F. Bonchi, L.V.S. Lakshmanan, and S. Venkatasubramanian. Approxima-
tion analysis of influence spread in social networks. arXiv preprint arXiv:1008.2005,
2010.

[52] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Learning influence prob-
abilities in social networks. In Proceedings of the third ACM international conference
on Web search and data mining, WSDM ’10, pages 241–250, New York, NY, USA,
2010. ACM.

60

[53] M. Granovetter. Threshold models of collective behavior. American journal of soci-
ology, pages 1420–1443, 1978.

[54] R. Guérin and K. Hosanagar. Fostering ipv6 migration through network quality dif-
ferentials. ACM SIGCOMM Computer Communication Review, 40(3):17–25, 2010.

[55] Sudipto Guha, Anna Moss, Joseph Seffi Naor, and Baruch Schieber. Efficient recovery
from power outage. In Proceedings of the thirty-first annual ACM symposium on
Theory of computing, pages 574–582. ACM, 1999.

[56] Anupam Gupta, MohammadTaghi Hajiaghayi, Viswanath Nagarajan, and R Ravi.
Dial a ride from k-forest. ACM Transactions on Algorithms (TALG), 6(2):41, 2010.

[57] Anupam Gupta and Jochen Könemann. Approximation algorithms for network design:
A survey. Surveys in Operations Research and Management Science, 16(1):3–20, 2011.

[58] Anupam Gupta, Jochen Könemann, Stefano Leonardi, R Ravi, and Guido Schäfer.
An efficient cost-sharing mechanism for the prize-collecting steiner forest problem. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1153–1162. Society for Industrial and Applied Mathematics, 2007.

[59] Shai Gutner. Elementary approximation algorithms for prize collecting steiner tree
problems. Information Processing Letters, 107(1):39–44, 2008.

[60] Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner
tree problem via a new approach of primal-dual schema. In Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm, pages 631–640. ACM,
2006.

[61] MohammadTaghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, and Zeev Nutov.
Prize-collecting steiner network problems. Integer Programming and Combinatorial
Optimization, pages 71–84, 2010.

[62] MohammadTaghi Hajiaghayi and Arefeh Nasri. Prize-collecting steiner networks via
iterative rounding. LATIN 2010: Theoretical Informatics, pages 515–526, 2010.

[63] SL Hakimi. Steiner’s problem in graphs and its implications. Networks, 1(2):113–133,
1971.

[64] Dorit S Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing
Co., 1996.

61

[65] Stefan Hougardy and Hans Jürgen Prömel. A 1.598 approximation algorithm for the
steiner problem in graphs. In Proceedings of the tenth annual ACM-SIAM symposium
on Discrete algorithms, pages 448–453. Society for Industrial and Applied Mathemat-
ics, 1999.

[66] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica, 21(1):39–60, 2001.

[67] Vojtěch Jarńık and Miloš Kössler. O minimálńıch grafech, obsahuj́ıćıch n daných
bodu̇. Časopis pro pěstováńı matematiky a fysiky, 63(8):223–235, 1934.

[68] Youngmi Jin, Soumya Sen, Roch Guérin, Kartik Hosanagar, and Zhi-Li Zhang. Dy-
namics of competition between incumbent and emerging network technologies. In
Proceedings of the 3rd international workshop on Economics of networked systems,
NetEcon ’08, pages 49–54, New York, NY, USA, 2008. ACM.

[69] David S Johnson, Maria Minkoff, and Steven Phillips. The prize collecting steiner
tree problem: theory and practice. In Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms, pages 760–769. Society for Industrial and Applied
Mathematics, 2000.

[70] Dilip Joseph, Nikhil Shetty, John Chuang, and Ion Stoica. Modeling the adoption
of new network architectures. In Proceedings of the 2007 ACM CoNEXT conference,
CoNEXT ’07, pages 5:1–5:12, New York, NY, USA, 2007. ACM.

[71] RM Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, 1972.

[72] Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for the
steiner tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

[73] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’03, pages 137–146, New
York, NY, USA, 2003. ACM.

[74] Philip Klein and R Ravi. A nearly best-possible approximation algorithm for node-
weighted steiner trees. J. Algorithms, 19(1):104–115, 1995.

[75] J. Könemann, S. Sadeghian, and L. Sanità. An lmp o(log n)-approximation algorithm
for node weighted prize collecting steiner tree. 2012.

62

[76] J. Könemann, S. Sadeghian, and L. Sanità. An LMP O(log n)-Approximation Al-
gorithm for Node Weighted Prize Collecting Steiner Tree. ArXiv e-prints, February
2013.

[77] L Kou, George Markowsky, and Leonard Berman. A fast algorithm for steiner trees.
Acta informatica, 15(2):141–145, 1981.

[78] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral
marketing. ACM Trans. Web, 1(1), May 2007.

[79] Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric tsp, k-mst, and related
problems. SIAM J. Comput., 28(4):1298–1309, 1999.

[80] Carsten Moldenhauer. Primal-dual approximation algorithms for node-weighted
steiner forest on planar graphs. Automata, Languages and Programming, pages 748–
759, 2011.

[81] Anna Moss and Yuval Rabani. Approximation algorithms for constrained node
weighted steiner tree problems. In Proceedings of the thirty-third annual ACM sym-
posium on Theory of computing, pages 373–382. ACM, 2001.

[82] Chandrashekhar Nagarajan, Yogeshwer Sharma, and David Williamson. Approxima-
tion algorithms for prize-collecting network design problems with general connectivity
requirements. Approximation and Online Algorithms, pages 174–187, 2009.

[83] Zeev Nutov. Approximating steiner networks with node-weights. SIAM Journal on
Computing, 39(7):3001–3022, 2010.

[84] A. Ozment and S.E. Schechter. Bootstrapping the adoption of internet security pro-
tocols. In Proc. Fifth Workshop on the Economics of Information Security, 2006.

[85] Hans Prömel and Angelika Steger. Rnc-approximation algorithms for the steiner
problem. In STACS 97, pages 559–570. Springer, 1997.

[86] Hans Jürgen Prömel and Angelika Steger. A new approximation algorithm for the
steiner tree problem with performance ratio 5/3. Journal of Algorithms, 36(1):89–
101, 2000.

[87] J. Rexford and J. Feigenbaum. Incrementally-deployable security for interdomain
routing. In Conference For Homeland Security, 2009. CATCH’09. Cybersecurity Ap-
plications & Technology, pages 130–134. IEEE, 2009.

63

[88] Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree
approximation. SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005.

[89] M.G. Rodriguez and B. Schölkopf. Influence maximization in continuous time diffusion
networks. In 29th International Conference on Machine Learning (ICML), 2012.

[90] Yogeshwer Sharma, Chaitanya Swamy, and David P. Williamson. Approximation
algorithms for prize collecting forest problems with submodular penalty functions. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’07, pages 1275–1284, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics.

[91] Anand Srinivas, Gil Zussman, and Eytan Modiano. Mobile backbone networks–: con-
struction and maintenance. In Proceedings of the 7th ACM international symposium
on Mobile ad hoc networking and computing, pages 166–177. ACM, 2006.

[92] Thomas W. Valente. Social network thresholds in the diffusion of innovations. Social
Networks, 18(1):69 – 89, 1996.

[93] David P Williamson, Michel X Goemans, Milena Mihail, and Vijay V Vazirani. A
primal-dual approximation algorithm for generalized steiner network problems. Com-
binatorica, 15(3):435–454, 1995.

[94] L.A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385–393, 1982.

[95] Alexander Zelikovsky. Better approximation bounds for the network and euclidean
steiner tree problems. University of Virginia, Charlottesville, VA, 1996.

[96] Alexander Z Zelikovsky. An 11/6-approximation algorithm for the network steiner
problem. Algorithmica, 9(5):463–470, 1993.

64

	List of Figures
	List of Algorithms
	Introduction
	Edge-Weighted Steiner Tree problems
	Node-Weighted Steiner Tree Problems
	Generalized Steiner Network Problems and Special Graphs
	Overview of The Thesis

	Node-Weighted Prize Collecting Steiner Tree
	Integer Programming Formulation
	Counterexample to Moss-Rabani's Algorithm
	Algorithm
	FindSubTree
	CVtx

	Analysis
	Correctness
	Bounding The Cost of The Phase Tree
	Approximation Factor Guarantee

	LMP Algorithm

	Applications
	Node-Weighted Quota Steiner Tree Problem
	Technology Diffusion Problem
	Problem Definition
	Previous Result and Our Contributions
	O(r.lg(n))-Approximation Algorithm
	O(l.lg(n))-Approximation Algorithm
	Complexity

	Future Work
	References

