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Abstract 

This thesis presents a novel state estimation structure, a hybrid extended Kalman filter/Kalman 

filter developed for a skid-steered, six-wheeled, ARGO® all-terrain vehicle (ATV). The ARGO 

ATV is a teleoperated unmanned ground vehicle (UGV) custom fitted with an inertial 

measurement unit, wheel encoders and a GPS. In order to enable the ARGO for autonomous 

applications, the proposed hybrid EKF/KF state estimator strategy is combined with the vehicle’s 

sensor measurements to estimate key parameters for the vehicle. Field experiments in this thesis 

reveal that the proposed estimation structure is able to estimate the position, velocity, orientation, 

and longitudinal slip of the ARGO with a reasonable amount of accuracy. In addition, the 

proposed estimation structure is well-suited for online applications and can incorporate offline 

virtual GPS data to further improve the accuracy of the position estimates. The proposed 

estimation structure is also capable of estimating the longitudinal slip for every wheel of the 

ARGO, and the slip results align well with the motion estimate findings. 
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Chapter 1.  

Introduction 

Unmanned Ground Vehicles (UGVs) have gained a lot of popularity in recent years and have far-

reaching applications ranging from the use of UGVs in collecting soil samples on Mars to being 

deployed in military missions. UGVs are primarily either teleoperated by an operator or are 

autonomous. In the case of teleoperated UGVs in military applications, the complete attention of 

the operator as well as some form of high-bandwidth remote video are required to ensure the 

UGV performs its tasks fittingly [1]. Autonomous UGVs, on the other hand, are not limited by 

these requirements. Autonomous UGVs are equipped with various sensors, hardware and 

software systems enabling them to perform tasks in static and dynamic environments reliably, 

mostly without an operator [1]. 

The ARGO autonomous UGV system presented in this thesis is a six-wheel drive, skid-

steered, ARGO all-terrain vehicle (ATV) custom-fitted with a GPS, wheel encoders, an inertial 

measurement unit (IMU), steering actuators and a Netbook PC, for use in military reconnaissance 

applications in off-road environments. The ARGO UGV system is teleoperated, and the proposed 

state estimator developed in this rotation lays the groundwork for the future-development of an 

autonomous ARGO UGV capable of localization, map-building and navigation in unstructured 

environments.  

State estimation or probabilistic state estimation, is at the core of most robust 

autonomously controlled systems today [2].  This approach maintains the probability densities of 

states over time [3]. These calculated probability densities can be influenced by sensor 

measurements, control inputs, prediction models and their probabilistic uncertainties [2]. Some of 

the early work that adopted probabilistic state estimation in mobile robots was applied to 

autonomous museum tour robots [4,5] and autonomous office robots [6]. Additionally, state 
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estimation algorithms such as the Kalman Filter (KF) or the Extended Kalman Filter (EKF) can 

be used in conjunction with sensors to derive estimates from parameters that cannot directly be 

measured with sensors [3]. For example, parameters such as wheel slip, lateral/longitudinal 

velocities and the angular rates at the center of gravity of the vehicle are a few of the many 

parameters essential in autonomous UGV work or in simultaneous localization and mapping 

(SLAM).  

SLAM, is a class of problems in which a mobile robot creates a spatial map of its 

surroundings, while simultaneously localizing itself within the created map [7]. The integration of 

a light detection and ranging (LIDAR) sensor on a UGV such as the ARGO can be utilized in 

order to enable SLAM. A LIDAR sensor can be used in acquiring 2D or 3D point clouds of data 

[8]. Spatial 2D or 3D maps can be generated from point cloud data using map generation 

algorithms. The scan matching approach [9,10] and the maximum likelihood approach [11,12], 

are the two most predominant categories of such algorithms for constructing maps using LIDAR 

[13].  

Moreover, reliable and robust path planning systems [14,15] are also important in 

autonomous vehicles [16]. These systems generate a path for the vehicle to traverse through the 

created map and the vehicles path following system navigates the vehicle on its planned path 

while accounting for the vehicle dynamics and path constraints [17,18]. On that note, the use of 

‘Lyapunov techniques’ are a popular approach in path following problems for skid-steered 

vehicles [19,20] and mobile robots [21]. 

To keep the vehicle on course its path, adjustments to the vehicles control actuators must 

continuously be made [16]. The vehicles path following system communicates with the actuators 

that operate the vehicles motion based on the position, velocity, heading angle, and wheel torque 

information extracted from the vehicles sensors and the vehicle model via state estimators. An 

improvement in the vehicles sensors and/or the vehicle model translates into improvements in the 

accuracy and reliability of the estimated states and the control of the vehicle. In [18], the use of a 

real time kinematic (RTK)-differential global positioning system (DGPS) instead of a stand-alone 

DGPS coupled with dead-reckoning techniques resulted in substantial improvements in 

autonomous driving accuracy. Alternatively, improvements to the vehicle model can be made to 

achieve improved autonomous control as well; it has been envisioned that a critical part in 
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developing more sophisticated vehicle control systems in the future depends on obtaining more 

up-to-date and accurate vehicle dynamics information [22]. 

The use of a dynamic model in autonomous UGVs enables accurate motion predictions in 

unstructured outdoor environments that consist of changes in elevation, terrain and require 

frequent changes in acceleration [23]. The vehicle model used for the ARGO in this thesis adopts 

a differential drive kinematic model from [24] to approximate the motion of the vehicle. The 

kinematic model is used in mapping the wheel velocities to the vehicle velocities, and is an 

important component in developing a vehicle dynamic model [23].  

Wheeled and/or tracked skid-steered vehicles are popular in off-road mobile robot 

applications due to their simple mechanical configuration, improved manoeuvrability and traction 

[25]. Early work in the dynamics of wheeled and tracked skid-steered vehicles in [26-28] 

demonstrated the complexity of this traction scheme because the wheels (or tracks) roll and slide 

at the same time, making it difficult to develop the kinematic and dynamic equations [23]. The 

major difficulty in modelling this type of vehicle stems from the complex wheel terrain 

interaction [23], as such, approximations of these non-linear relationships are necessary for 

mobile robot applications [23,29-31]. [32] presents a fresh perspective to skid-steer vehicles by 

describing how the effects of the centrifugal force must be taken into consideration, especially 

when skid-steered vehicles perform turns at high speeds with a small turning radius. Other 

literature related to robot dynamics in four-wheeled differentially driven robots is presented in 

[33]; where a dynamic model is developed to account for wheel skidding with the use of a model-

based nonlinear controller for accurate vehicle control.  

A composite rigid-body robot dynamics algorithm is presented in [34], where the rigid-

body dynamic equations have been presented in a way that makes it easy for one to process the 

dynamic equations using software tools. In [25] and [35], a simplified approach is presented for 

developing models that can provide accurate pose and motion estimates in autonomous 

navigation and control applications. [36] presents robust controllers called 'sliding-mode 

controllers' that account for the sliding phenomena exhibited by skid-steer vehicles. In [37], a 

sliding mode controller combined with a proportional-integral-derivative (PID) controller is 

proposed as a control strategy for the braking system of an eight-wheel drive ARGO vehicle, and 

the issues related to developing such control strategies is presented in [38].  
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A pre-cursor to the development of a dynamic model is a driveline model. A commonly 

used nonlinear mathematical model of a four-cylinder spark ignition engine is presented in [39]. 

Simplified models for other driveline components such as the clutch, transmission, propeller 

shaft, and final drive differential are presented in [40] in an off-road truck example. The 

fundamental components, configurations and kinematics of a continuously variable transmission 

(CVT) are presented in [41], where the wheel speed control problem for a vehicle equipped with 

a CVT is considered. The dynamic model of a vehicle transmission system is presented in [42] 

using a graphical modelling approach. The driveline of a eight-wheel drive ARGO vehicle was 

formulated, modelled, simulated, and validated experimentally in [43]. 

Moreover, accurate estimation of slip parameters is necessary for developing advanced 

localization and navigation strategies [44]. [44] proposes a vision-based approach to estimating 

slip, whereas, [45] suggests a simplified state estimator approach. In [46], details on a simulation 

platform to develop and model the longitudinal and lateral control laws for a skid-steered mobile 

robot are presented. [47] proposes a fuzzy-logic based navigation system that can correct wheel 

slippage using an IMU and wheel encoders on a Mars Rover robot platform. In this thesis, a 

similar approach in calculating slip for a skid-steered UGV is taken. The existing estimation 

methods in the literature are not suited for the design of a state observer strategy for a skid-

steered ARGO UGV. Thus, a thorough analysis that consolidates the ARGO’s motion, orientation 

and longitudinal slip is needed for the design of such a state observer. To address this issue, this 

thesis offers the following key contributions: 1) a thorough analysis of an ARGO’s position, 

velocity, orientation and wheel slips while driving through experimental tracks arranged 

according to the SAE double-lane change, slalom and fishhook maneuvers, 2) the development of 

an online-ready hybrid EKF/KF state estimation technique that estimates the above stated 

parameters for an ARGO, 3) a virtual GPS point generation algorithm that can be used to adjust 

position estimates using a GPS sensor.  

The novel contributions in this thesis pertaining to the longitudinal slip estimation and 

state observer development is essential for motion planning and control in future dynamic 

modelling and SLAM research using the ARGO platform.  
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The rest of this thesis is organized as follows: 

Chapter 2: State Estimation Fundamentals 

This chapter presents background information on state estimation, and touches on key 

concepts such as: the state of a robot, probabilistic generative laws, belief distribution, the Bayes 

Algorithm, and Gaussian filters. The material presented in this chapter has been primarily 

adopted from [2]. 

Chapter 3: ARGO Motion Modelling 

The end goal of this chapter is to present a general overview of the ARGO and develop a 

simple model that can describe the motion of the vehicle. This chapter is broken down into three 

main sections: ARGO platform, longitudinal slip and kinematic model.  

The novel contributions presented in this chapter pertain to the method by which the 

longitudinal slips of all six wheels on the ARGO are calculated. 

Chapter 4: State Estimation 

This chapter presents details on the proposed hybrid EKF/KF for the ARGO vehicle, and 

it is split into three sections: the structure of the proposed state estimator, the extended Kalman 

filter and the Kalman filter. 

The novel contributions presented in this chapter pertain to the EKF/KF state estimator 

strategies used in estimating the ARGO’s motion, orientation, and longitudinal slip, and the 

virtual GPS point generation algorithm that can be used to further adjust the position estimates 

generated by the EKF.  

Chapter 5: Experiments 

This chapter is split into three sections, and presents details on experimental setup and 

findings for the ARGO vehicle while it performs the double-lane change, slalom and fishhook 

maneuvers. 

The novel contributions presented in this chapter are the thorough analysis of the 

ARGO’s position, velocity, orientation and wheel slips while it is performing the three 

maneuvers. 

Chapter 6: Conclusions and Future Work 

Chapter 6 concludes the thesis and discusses the future work. 
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Chapter 2. 

State Estimation Fundamentals [2] 

This chapter presents a discussion on the fundamentals of state estimation. Section 1 introduces 

the concept of the ‘state’ of a robot, Section 2 describes some of the probabilistic generative laws 

that play an important role in developing state estimation algorithms, Section 3 discusses the 

concept of belief distributions in state estimation, Section 4 presents the Bayes Algorithm; which 

is the algorithm at the heart of all state estimation algorithms, and Section 5 expands the Bayes 

Algorithm to Gaussian Filter applications, and describes the basic structure of a Kalman filter.  

2.1. The State of a Robot 

The environment or the world that a robot interacts with is connected with the robot through a 

dynamical system, and this dynamical system possesses an internal state, which the robot keeps 

track of while it interacts with its environment. The robot can acquire information about its 

environment using its sensors; however, these sensors are noisy and there are many parameters 

important to the robot that cannot be sensed directly. Additionally, the robot can influence its 

environment through its actuators, except, the effect of doing so is often unpredictable.  

As a consequence, the robot must maintain an internal belief regarding the state of its 

environment, thus, one can think of state as the collection of all aspects of the robot and its 

environment that are important to how the robot interacts in its environment in the near future. In 

simple terms, the state variables for a robot are a set of variables that tell the robot information 

about itself and its environment. 
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State variables can give the robot information like its position, velocity, orientation and 

whether or not its sensors are functioning, or information about its environment, e.g.; the distance 

to an object that is being tracked by the robot, whether or not there is an obstacle in front of the 

robot and where the robot is located with respect to a map that it has generated of its 

surroundings. Additionally, a robot may also keep track of its measurements (camera images of 

its environment), and control actions (velocity of robot in its environment). 

A state can be defined continuously or discretely, and is called a state space. An example 

of a state defined continuously (or represented by a continuous state space) is the robot pose 

(location/orientation) in a particular coordinate system. Similarly, an example of a discrete or 

binary state variable (or a state represented in a discrete state space) is a model of a broken 

sensor. A state space that contains both continuous and discrete state variables is a hybrid state 

space.  

A robot may keep track of all measurements and control actions which generate two sets 

of data: 

1) Measurement data – provides information about a momentary state of the 

environment or the robot (e.g. camera images) 

2) Control data – provides information on the change of state variables in the 

environment (e.g. velocity of the robot) 

In state estimation and probabilistic robotics, measurement data is represented as ��, and 

control data is represented as an input ��.  
2.2. Probabilistic Generative Laws 

The evolution of state and measurements are governed by probabilistic laws; where state 

information ��, measurement data ��, and control data �� are generated stochastically. One might 

think that  

 �(��|��:�
�, ��:�
�, ��:�)  (1) 
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where the current state �� of a robot is a distribution of the initial state ��:�
�, previous 

measurement data ��:�
�, and current control inputs ��:�. However, ��
� is a sufficient statistic of 

all previous states and measurements as shown in Equation (2). 

The state transitional probability and measurement probability in probabilistic robotics 

are two probability distributions when combined together, can describe the complete statistical 

system of the robot and its environment. The state transitional probability can be represented as 

 �(��|��:�
�, ��:�
�, ��:�	) = �(��|��
�, ��) (2) 

where ��
� are all previous states of the robot and �� new control input. The state transitional 

probability in (2) specifies how environment state variables evolve over time as a function of 

robot controls.  

On the other hand, the measurement probability specifics the probability of 

measurements generated from the environment. It is presented as 

 �(��|��:�
�, ��:�
�,��:�) = �(��|��) (3) 

Furthermore, the measurement probability in (3), is especially useful if one wants to 

model the process by which measurements from sensors are generated.  

2.3. Belief Distribution 

Belief for a robot reflects its internal knowledge about the state of its environment. There are 

states that cannot be directly measured, e.g., a robots pose might be �� = (15.1	�, 11.5	�, 0.855	���), where the pose (��) is the x, y position and the yaw of the 

robot in some global coordinate system. Therefore, a state such as pose, is not directly 

measureable, even with the use of a sensor such as a GPS. A state such as the pose of the robot 

must be inferred from various data-sets collected by the robot through its sensors and control 

inputs. 

Moving forward, beliefs are represented through conditional probability distributions, in 

which, a belief distribution is assigned to each possible hypothesis with regards to the true state. 
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Belief distributions are posterior probabilities over state variables that are conditioned on the 

available data, represented as 

 ���(��) = �(��|��:�, ��:�) (4) 

where ���(��) is the posterior probability; which is the probability distribution over the state �� at 

time �, condidioned on all past measurements ��:� and all past controls ��:�. 
A posterior can also be calculated before incorporating �� and after control input �� is 

executed. This is denoted as 

 �������(��) = �(��|��:�
�, ��:�) (5) 

where �������(��) predicts the state at time �, based on the previous state posterior, before 

incorporating the measurement at time �. In context of applications involving filtering, (5) is 

known as the prediction update, and calculating ���(��) from �������(��) is called correction, or 

measurement update as discussed in the next section. 

2.4. Bayes Algorithm 

The general algorithm for calculating beliefs is the Bayes Algorithm or the Bayes Filter. It 

calculates the belief distribution ���(��) from measurement and control data recursively. The 

Bayes Filter is presented in Table 2.1, followed by a line by line explanation of the filter. 

Table 2.1. Bayes filter algorithm. 

	 Bayes	FilterBayes	FilterBayes	FilterBayes	Filter	(���(��
�), �� 	, ��):	1.	 ()�	���	���)	2.	 �������(��) = +�(��|��, ��
�) ∙ ���(��
�) ∙ ��}	3.	 ���(��) = /(�(��|��) ∙ �������(��))	4.	 �1�	()�	
5.	 �����1	���(��)	
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The inputs to the Bayes Filter are: the belief at ��
�, and the most up to date 

measurement data �� and control data ��.  
The Bayes Filter Algorithm in Table 2.1 has two parts: the prediction update in Line 2 

and the measurement update in Line 3. 

1) In the prediction update step, the control input data is integrated into the belief by 

applying the sum of two distributions, namely; the probability (�(��|��
�, ��) that 

the control inputs will induce a transition from ��
� to ��, and the prior belief 

(���(��
�)).  
2) The measurement update multiplies �������(��) with the probability that the 

measurement �� may have been observed. This is done for every hypothetical 

posterior state ��. The resultant product is generally not a probability and may 

not integrate to one. Therefore, it must be normalized, as indicated by /.  

In Line 5, after the update rules are applied recursively to calculate the belief at �� from ���(��
�), ���(��) is finally calculated.  

2.5. Gaussian Filters 

Gaussian filters are another form of recursive state estimators and share the same basic concepts: 

• Beliefs are taken as multivariate normal distributions. 

• These multivariate normal distributions are a set of distributions characterized by two 

parameters: a mean (2) and a covariance (Σ). 

Representing the posterior by a Gaussian means that the posterior distribution is unmoral 

(one maxima), because of the Gaussian distribution. As such, the posterior is focused around a 

true state with a small margin of uncertainty. 

2.5.1. Kalman Filter 

A Kalman filter (KF) is used for filtering and prediction in Linear Systems, whereas, the extended 

Kalman filter (EKF) is used in Non-Linear Systems. 
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In the KF, beliefs are computed for continuous states. At time �, the belief is represented 

by mean 2� and covariance Σ�. Table 2.2 shows the KF algorithm followed by a line by line 

explanation of the algorithm. 

Table 2.2. Kalman filter algorithm. 

	 KalmanKalmanKalmanKalman				FFFFilterilterilterilter	(2�
�, 7�
�, �� 	, ��):	
1.	 2̅� = 9� ∙ 2�
� + ;� ∙ ��	

	2.	 7�� = 9� ∙ 7�
� ∙ 9�< + =�	
3.	 >� = 7� ∙ ?�<(?� ∙ 7�� ∙ ?�< +@�)
�	
4.	 2� = 2̅� + >�(�� − ?� ∙ 2̅�)	
5.	 7� = (B − >� ∙ ?�)7�	
5.	 �����1	2� , 7�	

The input to the KF algorithm depicted in Table 2.2 is the belief at time � − 1, 

represented by the mean  (2�
�) and covariance (Σ�
�). To update these parameters, the KF 

requires the most recent measurement (��) and control (��) data. The output from the algorithm is 

the belief at time �, represented by the latest 2� and Σ�. 
In Lines 1 and 2, the predicted belief �������(��) represented by 2̅� and Σ�� is calculated. This 

belief is calculated before the measurement �� is incorporated. The matrices 9� and ;� represent 

the state and control matrices used in incorporating the latest control inputs ��, and =� is the 

system noise matrix. 

In Line 3 through 5, the belief �������(��) is transformed into the desired belief ���(��) by 

incorporating the measurement ��. The Kalman gain >� calculated in Line 3, specifies the degree 

to which �� is incorporated into the new state, where ?� is the matrix representing the 

measurement model and @� is the measurement noise matrix. Line 4 adjusts the mean according 

to the measurement, the predicted mean and the Kalman gain. And in Line 5, the updated 

covariance of the posterior belief is calculated, adjusting for the information gain from the 

measurement. 
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In the next chapter of this thesis, the ARGO vehicle’s platform is presented, followed by 

the formulation of the longitudinal slip and kinematic models used in developing the state 

estimation strategy.  
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Chapter 3. 

ARGO Motion Modelling 

In this chapter, background information on the ARGO vehicle platform and the motion model are 

presented. Section 1 presents a thorough discussion on the ARGO vehicle’s configuration and the 

assumptions pertaining to the vehicle’s model, Section 2 details the longitudinal slip model 

developed for the ARGO, and Section 3 develops the kinematic model for the vehicle. 

3.1. ARGO Platform 

The vehicle platform used for this research is an ARGO ATV. This vehicle has six driving wheels 

(three on each side), seats two people, is powered by a small 18 HP gasoline engine, weighs about 

450 kg, and is a skid-steered vehicle.  

The ARGO has been equipped with a Microstrain® 3DM-GX2 IMU, a Garmin® 18x 

LVC GPS, Grayhill® 63R128 optical rotary encoders (with a resolution of 128 pulses per 

revolution) mounted on two of the rear wheels of the vehicle, a Compaq Netbook PC running 

Ubuntu® version 11.10 and an open-source real-time operating system called ‘Robot Operating 

System (ROS) Electric’. Figure 3.1 shows the locations of the sensors, actuators, and other 

hardware on the vehicle. 
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Figure 3.1. ARGO structure: hardware, sensors and actuators. 

There is an Arduino microcontroller-based board mounted near the PC on the vehicle. 

This board basically functions as a Data Acquisition System (DAQ); labelled as PC/DAQ in 

Figure 3.1. This board allows the PC to connect to the actuators and encoders via USB, enabling 

the PC to operate the brake and throttle actuators, providing full control of the vehicle operation.  

The brake and throttle actuators have been mechanically coupled to the brake and throttle 

assemblies on the vehicle, respectively. Two linear actuators are used to actuate the left and right 

brakes of the vehicle, and a single high torque servo motor actuates the throttle assembly on the 

vehicle’s engine. 

The vehicle is teleoperated through a Bluetooth joystick that has been paired with a 

Bluetooth device on the PC, allowing wireless drive-by-wire operation of the ARGO. 

The PC on-board the vehicle communicates with all of the hardware on the vehicle and is 

used to run the state estimation algorithm proposed in this thesis. 

The assumptions made while developing the kinematic model for the ARGO are as 

follows: 1) the ground contact patch between the wheels and the ground is taken to be a single 

point located at the center of the ground contact patch, 2) the vehicle’s six wheels always stay in 

contact with the ground, 3) the wheels on either left or right side of the vehicle drive at the same 
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speed, 4) the radius of all wheels is the same and constant, 5) the vehicle has a fixed mass or 

payload. 

In Figure 3.2, 1,..,6 are labels for the six wheels on the vehicle, �C and DC are the axes of 

the vehicle in the body frame at the center of gravity of the vehicle (CG), EF  is the yaw-rate, and GH and IH are the axes of the inertial reference frame, and JH (not shown) is in the upwards 

direction. In this thesis, the excitations experienced by the vehicle in the JH axes are insignificant; 

however, it will be important in future work with the ARGO UGV. For simplicity, the orientation 

of the IMU mounted at the CG is the orientation used for the vehicle in the body frame.  

 

Figure 3.2. A top-view schematic of the skid-steered ARGO vehicle showing the body and inertial 

reference frames. 

3.2. Longitudinal Slip 

In this Section, a review of the braking mechanism of the ARGO is needed because it is important 

in establishing the procedure needed to calculate slip.  

One of the most interesting aspects of this vehicle is its ability to take turns at a very 

small turn-radius. A differential connected to the vehicle’s gearbox splits the torques from the 

gearbox to the two driving shafts of the differential [43]. The driving shafts of the differential are 

attached to a left and right brake disc which are connected to the wheels [43]. Engaging the left or 

right brake causes the brake callipers to engage the brake discs and initiate a left or right turn, 

respectively. For example, in making a sharp left turn, the driver would engage the left brakes of 

the vehicle. Which would lock all of the wheels on the left side of the vehicle (wheels 1, 2, 3 in 
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Figure 3.2), and all of the power from the engine would be transferred to the wheels on the right 

side of the vehicle (wheels 4, 5, 6 in Figure 3.2). 

Longitudinal slip is a phenomenon that affects a pneumatic tire when a driving torque is 

applied to it [32]. When this driving torque is applied, a tractive force is developed at the ground 

contact patch of the tire [32]. Consequently, the tire treads in front of and within the ground 

contact patch are subjected to compression, and the side-wall of the tire undergoes shear 

deformation [32]. Due to these momentary physical changes, the distance travelled by a tire is 

reduced while its subject to a driving torque [32]. Therefore, the longitudinal slip is a percentage 

value that compares the linear speed of a tire against its angular velocity. For example, in an icy 

situation, a tire may experience 100% slip if it is rotating at high angular velocity, yet the linear 

speed of the tire is zero [32]. 

Prior to developing the longitudinal slip expression for the ARGO, the CG of the vehicle 

must be calculated. The CG in the �C − DC plane is calculated by first placing the ARGO on four 

wheel scales and acquiring the weight distribution of the vehicle at its four corners (wheels 1, 3, 4 

and 6 in Figure 3.2). The weight distribution of the vehicle is acquired based on the case where 

two passengers with a cumulative weight of 330 lbs, are seated inside of the vehicle. With the 

added weight of the two passengers, the vehicle is easier to steer. 

After measuring the placement of the wheel scales, the center of mass formula is used to 

locate the CG. The CG in the �C direction was provided by the ARGO manufacturer.  

The location of the CG is found to be on the centreline of the vehicle (width-wise) and 

near the wheel-center for wheels 4 and 5 as shown in Figures 3.2 and 3.3. 

The velocity of the vehicle’s CG in the inertial frame is denoted as K	LM	N. The orientation-

rates of the vehicle are represented by the rate of change of the three Euler angles: yaw-rate (EF ), 
pitch-rate (OF) and roll-rate (PF ). 
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Figure 3.3. A schematic of the distances from the center of gravity of the vehicle to the contact points of the 

various wheels. 

Q�, 	QR, 	QS in Figure 3.3 are the distances from the wheel centers to the CG for wheels 1 

or 4, 2 or 5, and 3 or 6, respectively, and T represents the distance between parallel wheel 

contact points.  

Given the vehicle’s velocity at its CG in the inertial frame (K	LM	N) and its yaw-rate (EF ), the 

velocity of the wheel centers for all left and right side wheels in the GH direction can be calculated 

as follows: 

 KUVW�X	 =	KLMXN − YR ⋅ EF  (6) 

 K[\M]�X	 =	KLMXN + YR ⋅ EF  (7) 

Similarly, the velocity of the wheel centers for a given wheel in the IH direction is also 

calculated in (8)-(10). Wheels 1/4, 2/5, and 3/6 share the same wheel centers; so calculated 

velocities for these wheels have been combined: 

 K̂ _,`	 =	KLMaN + Q� ⋅ EF  (8) 
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 K̂ b,c	 =	KLMaN − QR ⋅ EF  (9) 

 K̂ d,e	 =	KLMaN − QS ⋅ EF  (10) 

The resultant velocities of the wheel centers in the inertial frame are denoted as K\, (f = 1, . . ,6). Using (6)-(10), the velocities in the GH and	IH directions are known, and the resultant 

wheel center velocity can then be found as 

 K\ 	 =	hKijR + K̂ jR (11) 

Since the wheels on the left-side of the vehicle rotate at the same angular velocity and the 

wheels on the right-side at the same velocity as well (assumption 3 in Section 1), the longitudinal 

slip can be calculated as follows: 

 k\	 =	lj⋅[mnoop
	qj		lj⋅[mnoop  (12) 

where the wheel angular velocities denoted as r\, (f = 1, . . ,6), are obtained directly from 

the wheel encoders, k\ (f = 1, . . ,6) represents the longitudinal slip of every wheel on the vehicle, 

and �s]VVU represents the radius of a free-rolling wheel. 

Since the slip value is a percentage ranging from 0-100%; positive or negative depending 

on tractive or braking effort, respectively, the calculated slip must be constrained as [45]: 

  k\ ∈ [−1,1]  (13) 

Equation (13) is critical in ensuring the slip calculations do not produce abnormal values 

due to erroneous IMU or encoder data. 

3.3. Kinematic Model 

The kinematic model of the ARGO is used for estimating the vehicle states that cannot directly be 

measured by the on-board sensors. 
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The vehicle orientation defined by its yaw (E), pitch (O), and roll (P) Euler angles are 

estimated using the angular velocities obtained from the IMU. The angular velocity 

measurements are represented in the body frame. The accelerations of the vehicle are also 

expressed in the body frame. On the other hand, the velocity and position data retrieved from the 

encoders and GPS are both expressed in the inertial frame. 

In order to describe the vehicle kinematics in the inertial frame, a relationship that 

transforms the vehicles orientation from the body frame to the orientation in the inertial frame 

must be developed. To do this, a rotation about �C is necessary, then about DC and finally, about �C. An additional rotation of w 2x  about JH is also necessary to produce a resultant rotation matrix 

that orients the vehicle correctly in the inertial frame. This rotation matrix is represented as  

 =CH = yzOzE −zP{E + {P{OzE {P{E + zP{OzEzO{E zPzE + {P{O{E −{PzE + zP{O{E−{O {PzO zPzO | ∙ > (14) 

where > is a placeholder variable described as 

 > = yz(w 2⁄ ) −{(w 2⁄ ) 0{(w 2⁄ ) z(w 2⁄ ) 00 0 1| (15) 

where zE refers to cos	E and {E refers to {f1E. The position and velocity vectors in the inertial 

frame are 

 �H = ��iH , �̂ H , ��H�< (16) 

 KH = �KiH , K̂ H , K�H�< (17) 

The IMU provides six inputs to the state estimator; the vehicles accelerations and angular 

velocities in the body frame: 

 9C = �9�C, 9�� , �9�C − ���< (18) 

 rC = �r�C, r�� , r�C�< (19) 
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It is worth nothing that the effects of gravity are directly accounted for in (18) by 

subtracting the acceleration in JH by the gravitational constant G. The accelerations and angular 

velocities retrieved from the IMU are used to calculate state estimates for the vehicles position, 

velocity, orientation, and orientation-rate. The state and input vectors to the state estimator are 

defined as follows: 

 � = ��H , KH , E, O, P, EF , OF , PF �< (20) 

 � = [9C , rC]< (21) 

The rates of change for the vehicles motion can be described by the following equations 

[48]: 

 �HF = KH (22) 

 KHF = =CH (9C) − � (23) 

  EF = l��⋅�\���l��⋅L���L���   (24) 

 OF = r�� ⋅ z){P − r�� ⋅ {f1P (25) 

 PF = r�� + �r�� ⋅ {f1P + r�� ⋅ z){P���1O (26) 

where � is the gravitational constant parallel to the JH axes.  

In the next chapter, a step-by-step walk-through of the hybrid EKF/KF architecture is 

presented. 
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Chapter 4. 

State Estimation 

In this chapter, details are presented on the state observer that is used in estimating the following 

twelve states (20): �H , KH , E, O, P, EF , OF  and PF . �H and KH represent the position and velocity of the 

vehicle in the inertial frame, respectively (see (16), (17), (22)), E, O, P are the Euler angles that 

define the ARGO’s orientation, and EF , OF , PF  are the rates of change for the ARGO’s orientation.  

Section 1 presents the structure of the proposed estimator which is a hybrid EKF/KF, and 

the reasoning behind proposing such a structure. Sections 2 and 3 provide the details of the hybrid 

EKF/KF state estimator strategy and the governing equations. 

4.1. Structure of the Proposed Estimator 

The state estimation algorithm developed in this rotation uses a hybrid EKF/KF design approach 

to achieve accurate state estimates. The justifications for this design approach are as follows: 
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1) High end GPS sensors (military grade) are capable of providing precise position 

(centimeter accuracy) and velocity data to a state estimator for mobile robots or in 

automotive applications at a high cost ($20000-$40000 CAD) [18]. However, the use of a 

military-grade GPS on a smaller off-road vehicle like the ARGO is not feasible due to 

cost. On the other hand, a commercial-grade GPS cannot provide accurate enough 

position and velocity estimates especially in autonomous navigation where vehicle 

localization and SLAM application are required [18]. Hence, the approach taken in this 

thesis uses a commercial-grade GPS alongside other sensors (which is a more standard 

sensing approach for this category of off-road vehicles), for accurate state estimation for 

the ARGO. Accurate state estimation is a prerequisite to application of localization and 

mapping methods when the ARGO platform is expanded to enable autonomous driving. 

2) The GPS sensor used in this work receives position data at a frequency of 0.5 Hz, while 

the proposed state estimator is designed for frequencies of 50 Hz (real-time). This means 

the position data received from the GPS are always two seconds old. Hence, if this two 

second old GPS data was integrated into the state estimator without processing the data to 

correct for this lag, the state output will fluctuate back and forth because it will attempt to 

fuse the late GPS position read-out with the current position of the vehicle (obtained from 

other sensors such as an IMU or wheel encoders). This effect is shown in Figure 4.1 with 

a state estimator that does not account for the GPS lag. 
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Figure 4.1. State estimate - IMU/encoder data fused with GPS data. 

3) Figure 4.1 shows the state output when delayed GPS data is fused with IMU/encoder 

data. As the ARGO travels on a given trajectory, the IMU/encoders provide the most up-

to-date position data for the vehicle. As soon as a GPS measurement is available, the state 

estimator attempts to fuse this measurement data with the IMU/encoder data, thus, the 

state outputs will fluctuate to account for the GPS data (as seen in Figure 4.1), this is 

because the GPS data that has just been received, is outdated and provides old position 

estimate data.   

4) It is most desirable to design a state estimator that could fairly accurately (+/- two meters) 

track the position of an ARGO only using an IMU and wheel encoders. The reason that 

these two sensors (IMU/encoders) have been chosen is because they are easy to 

incorporate into the vehicle and are fairly simple to acquire data from. The goal in this 

rotation is to build a state estimator that is modular and separates the IMU/encoder 

estimation algorithm from the integration of the GPS sensor. The reason being, if the 

position outputs from the IMU/encoder estimator do not produce accurate enough results 

for a particular application, the modular GPS state estimator can be added to improve the 

accuracy of position state estimates. 
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5) The EKF algorithm in the proposed structure shown in Figure 4.2 has been designed for 

real-time/online applications but not the KF. So, if in a particular application the GPS 

sensor and the KF estimator are not used, then the EKF algorithm can be used online. 

Therefore, the proposed hybrid EKF/KF estimator is flexible and ready for both offline 

and online use. The hybrid EKF/KF architecture is depicted in Figure 4.2. 

 

Figure 4.2. Structure of the proposed hybrid EKF/KF state estimator. 

Figure 4.2 illustrates the use of the IMU and encoders as the input and measurements to 

the EKF state estimator, respectively. The resultant outputs from the EKF are state estimates of 

the position (�H), velocity (KH), orientation angles (E, O, P), rate of change of the orientation 

angles (EF , OF , PF ), and the longitudinal slip of the ARGO. Figure 4.2 also shows that the position of 

the ARGO can further be corrected using the KF algorithm by taking the position estimates from 

the EKF (G��� , I���) as an input and the GPS sensor data as the measurement to produce a 

corrected state estimate of the vehicles position (GH , IH).  
As shown in (24)-(26), the kinematic model of the ARGO has nonlinear terms making it 

necessary to adopt a nonlinear observer such as an EKF as the initial state estimator. Correcting 

the position estimates of the EKF using the GPS sensor data is a linear mapping, consequently 

resulting in the use of a KF in the second stage of the estimation structure in (Figure 4.2). 
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4.2. Extended Kalman Filter 

The state variables for the EKF are the position, velocity, orientation and orientation rates in the 

inertial frame, expressed as �H , KH , E, O, P, EF , OF , PF . The accelerations (9�C , 9�� , 9�C) and angular 

velocities (r�C, r�� , r�C) from the IMU are considered as the inputs to the EKF (i.e., (21)). 

Similarly, position (GH , , IH) and velocity (GFH , IFH) data from the wheel encoders are treated as the 

measurements to the KF. The generalized nonlinear state and measurement equations, 

respectively, are as follows [49]: 

 �� = ((��
�; ��; ��) (27) 

 �� = ℎ(��; ��)  (28) 

where �� and �� represent the state and measurement vectors at the time step k, ((⋯ ) and ℎ(⋯ ) 
are the system and measurement functions, �� is the input to the system, �� and ��are the system 

and measurement noise. The state and measurement estimates, in terms of their probability 

distributions are presented as [49] 

 �̅� = ((��
�, ��, 0) (29) 

 ��̅ = ℎ(��, 0)  (30) 

Furthermore, the Gaussian system and measurement noise with zero mean are given as 

[49] 

 �(��) = �(0, @�) (31) 

 �(��) = �(0, =�)  (32) 

4.2.1. System and input models 

The state and input vectors as well as the prediction equations can be written, respectively, as  

 �� = �GH�, IH�, JH�, GFH�, IFH�, JFH�, E�, O� , P� , EF�, OF�, PF��< (33) 
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 �� = �9�C�, 9���, 9�C�, r�C�, r���, r�C��< (34) 

 ((��) = �(iN�, (̂ N�, (�N�, (iF N�, ( F̂ N�, (�FN�, (��, (��, (��, (�F �, (�F �, (�F ��< (35) 

The system (9�) matrix is given as 

 9� =   BS (BS)Δ¢ 0S×S 0S×S0S×S BS 0S×S 0S×S0S×S 0S×S BS (BS)Δ¢0S×S 0S×S ¤ 0S×S ¥ (36) 

 ¤ = 	 y0 � �0 0 z0 � �| (37) 

where Δ¢ is the loop rate of the EKF (50 Hz or 0.02 s), ¤, �, �, z, �, and � are place-holder 

variables expressed as 

 � = �r�� sin�(�¦§_� + r�� cos�(�¦§_��{�z	((�¦§_) ⋅ tan	((�¦§_)  (38) 

 � = l�� ¨©ª«W¬¦§_­L��(W®¦§_) − l�� ª¯°«W¬¦§_­L��(W®¦§_)  (39) 

 z = −r�� sin�(�¦§_� − r�� cos�(�¦§_� (40) 

 � = �r�� sin�(�¦§_� + r�� cos�(�¦§_��{�zR	((�¦§_)  (41) 

 � = �r��cos	((�¦§_) − r��sin	((�¦§_)���1	((�¦§_)  (42) 

 Next, the input (;�) matrix is given as 

 ;� =   0S×S 0S×S(=CH )Δ¢ 0S×S0S×S 0S×S0S×S ± ¥ (43) 
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 ± = 	 y( 0 ²ℎ 0 f³ 1 ´| (44) 

where ±, (, ², ℎ, f, ³ and ´ are place-holder variables, described as 

 ( = ª¯°«W¬¦§_­¨©ª«W®¦§_­ (45) 

 ² = ¨©ª«W¬¦§_­¨©ª«W®¦§_­ (46) 

 ℎ = cos�(�¦§_� (47) 

 f = −sin�(�¦§_� (48) 

 ³ = sin�(�¦§_� ⋅ tan�(�¦§_� (49) 

 ´ = cos�(�¦§_� ⋅ tan�(�¦§_� (50) 

The yaw, pitch and roll rate prediction equations in (35) introduced in (24)-(26), are now 

expressed in a discretized form as 

 (�F ¦ = l��ª¯°	(W¬¦§_)�l��¨©ª	(W¬¦§_)¨©ª	(W®¦§_)  (51) 

 (�F ¦ = r��cos	((�¦§_) − r��sin	((�¦§_)  (52) 

 (�F ¦ = r�� + �r��sin	((�¦§_) + r��cos	((�¦§_)�tan	((�¦§_)  (53) 

where (�F ¦represents the predicted yaw-rate at the time instant ´ and (�F ¦§_ represents the 

predicted yaw-rate at the previous time step; the same notation applies for the pitch and roll rates. 

The discretized prediction equations for the yaw, pitch, and roll angles are 

 (�¦ =	(�¦§_ + ΔT ∙ (�F ¦ (54) 
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 (�¦ = (�¦§_ + Δ¢ ∙ (�F ¦  (55) 

 (�¦ = (�¦§_ + Δ¢ ∙ (�F ¦  (56) 

where Δ¢ is the sampling time for the estimation algorithm (set at 0.02	{). Next, the discretized 

prediction equations for the velocities in the inertial frame are given by 

 (iF N� =	(iF N�
� + ΔT ⋅ =CH �,�..S ∙ 9C�..S,� (57) 

 ( F̂ N� =	( F̂ N�
� + ΔT ⋅ =CH R,�..S ∙ 9C�..S,� (58) 

 (�FN� =	(�FN�
� + ΔT ⋅ =CH S,�..S ∙ 9C�..S,� (59) 

where (iFN� is the predicted velocity in the GH axes at the time instant k and (iFN�
�represents the 

predicted velocity in the previous time step; the same notation applies for the velocities in the IH 
and JH axes. =CH �,�..S is the first row of the rotation matrix in (14); the same notation applies for 

the second and third rows of the rotation matrix. Similarly, 9C�..S,� is the 3 × 1 acceleration 

vector from (18).  

Lastly, the discretized prediction equations for the position of the ARGO in the inertial 

frame are as follows: 

 (iN� =	(iN�
� + ΔT ⋅ (iF N� (60) 

 (̂ N� =	 (̂ N�
� + ΔT ⋅ ( F̂ N� (61) 

 (�N� =	(�N�
� + ΔT ⋅ (�FN� (62) 

where (iN� and (iN�
� are the predicted positions of the ARGO in the GH axes at the current and 

previous time steps, respectively. The same notation applies for the positions in the IH and JH 
axes. 
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4.2.2. Measurement model 

The measurements for the EKF are the position and velocity measurements from the wheel 

encoders in the GH and IH axes. The position measurements are calculated as [24] 

 ℎiN� = ℎiN�
� + ΔT ⋅ «lp�l¶R ­ �s]VVU ⋅ cos�(�¦� (63) 

 ℎ^N� = ℎ^N�
� + ΔT ⋅ «lp�l¶R ­ �s]VVU ⋅ sin	((�¦)  (64) 

where ℎiN� is the measured position in the GH axes at the time instant ´, ℎiN�
�represents the 

same position at the previous time step. The same notation applies for the measured position in 

the IH axes. rU and r[ represent the measured angular velocities from the left and right wheel 

encoders, respectively. The measurement equations for the velocities in the GH and IH axes are 

 ℎiNF � = ]XN¦
]XN¦§_·¸  (65) 

 ℎ F̂ N� = ]aN¦
]aN¦§_·¸  (66) 

where ℎiNF � and ℎ^NF � represent the measured velocity at time step k in the GH and IH axes, 

respectively. The measurement matrix (¹�) in an EKF, aids in comparing the prediction estimates 

against the measured data is 

 ¹� =  1 0 0 0 0 00 1 0 0 0 00 0 0 1 0 00 0 0 0 1 0
0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0¥ (67) 

4.2.3. Extended Kalman filter algorithm 

The system model equations in the previous two sections can be re-written as a set of time update 

equations as part of the proposed EKF algorithm [49]. The state prediction (�̅�∗) and covariance 

prediction (��∗) steps of the algorithm are as follows: 
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 �̅�∗ = ((��
�, ��, 0) (68) 

 ��∗ = 9� ⋅ ��
� ⋅ 9�< + @� (69) 

where �̅�∗  is the predicted state estimate in terms of its probability distribution, ��∗ is the 

covariance estimate, ��
� and ��
� are the state and covariance estimates of the previous time 

step and @� is the system/input noise covariance adapted from [49] as 

 @� = {D{���_1)f{� + ;� ⋅ input_noise ⋅ ;�< (70) 

where {D{���_1)f{� and f1���_1)f{� are the covariance matrices that were found empirically 

as 

 {D{��m_noise = 5 ∙ [B�R] (71) 

 f1���_noise =
¾¿¿
¿¿¿
À0.5	�/{2 0 0 0 0 00 0.5	�/{2 0 0 0 00 0 0.5	�/{2 0 0 00 0 0 1	���/{ 0 00 0 0 0 1	���/{ 00 0 0 0 0 1	���/{ÂÃÃ

ÃÃÃ
Ä
(72) 

The Kalman gain (>�) equation is represented as 

 >� = ��∗ ⋅ ¹�<(¹� ⋅ ��∗ ⋅ ¹�< + =�)
� (73) 

where =� is the measurement noise covariance matrix found empirircally as 

 =� =  0.1	� 0 0 00 0.1	� 0 00 0 0.1	�/{ 00 0 0 0.1	�/{¥ (74) 

The state (�̅�) and covariance (��) update equations are finally obtained as 

 �̅� = �̅�∗ + >���� − ℎ(�̅�∗ , 0)� (75) 
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 �� = (B − >� ⋅ ¹�)��∗(B − >� ⋅ ¹�)< + >� ⋅ =� ⋅ >�< (76) 

The proposed EKF uses the Joseph form of the covariance update equation (76). This 

equation is a more computationally-stable form of the original covariance update equation [49]. 

4.3. Kalman Filter 

The state variables for the KF are GH and IH as shown in Figure 4.2. The position estimates from 

the EKF (GÅÆÇ, IÅÆÇ) are treated as the inputs to the KF and the GPS position data (GÈÉÊ, IÈÉÊ) 

are treated as the measurements in the KF design. A discretized version of the Kalman filter 

adapted from [2,49] is used in this work, and the generalized state and measurement equations are 

given as 

 �� = 9� ⋅ ��
� + ;� ⋅ �� + Ë� (77) 

 �� = ?� ⋅ �� + Ì� (78) 

where �� and �� represent the state and measurement vectors at the time step ´, ��
� the state at 

the previous time step, 9� and ;� are the system and input matrices, �� is the input to the system, Ë� and Ì� are the system and measurement noise, respectively. The state and measurement 

estimates, in terms of their probability distributions are taken to be 

 �̅� = 9� ⋅ ��
� + ;� ⋅ �� (79) 

 ��̅ = ?� ⋅ �� (80) 

The Gaussian system/input and measurement noises with zero mean for the KF are taken 

as 

 �(Ë�) = �(0, @�) (81) 

 �(Ì�) = �(0, =�) (82) 
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4.3.1. System and input models 

The state and input vectors are as follows: 

 �� = �GH�, IH��< (83) 

 �� = �G���¦ , I���¦�< (84) 

where G���¦ and I���¦ represent the output from the EKF in the GH and IH axes, respectively. 

Since the KF simply fuses the position estimates obtained from the EKF with the GPS data, the 

system (9�) and input (;�) matrices are designed as 

 9� = �0 00 0� (85) 

 ;� = �1 00 1� (86) 

4.3.2. Measurement model 

This section presents details on how raw latitude/longitude GPS measurements are converted into 

usable measurement data for the proposed KF algorithm. 

The Equirectangular approximation from [50] is the approach taken to convert the 

latitude/longitude location of the ARGO into a location described in Cartesian coordinates. The 

Equirectangular approximation assumes the Earth is a sphere and ignores its ellipsoidal effects in 

order to convert latitude/longitude data to Cartesian data. The Equirectangular approximation is 

as follows: 

 �ÈÉÊ� = Δ�)1² ⋅ cos(���) ⋅ (6.371 × 10Î) (87) 

 DÈÉÊ� = Δ��� ⋅ (6.371 × 10Î) (88) 
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where �ÈÉÊ� and DÈÉÊ� are the GPS coordinates of the vehicle, Δ�)1² and Δ��� represent the 

change in longitude and latitude (radians), respectively, and 6.371 × 10Î is the spherical radius 

of the Earth in meters. 

Before these values can be used as a measurement in the KF, they must be multiplied by 

a rotation matrix to express them in the inertial frame – this is illustrated in Figure 4.3. 

 

Figure 4.3. GPS data representation in the inertial frame. 

The primary difference between GPS data in the inertial frame from data that is not is, the 

non-inertial data appears in quadrant three. Since the inertial frame in this work lies in quadrant 

one of the Cartesian coordinate plane, the non-inertial data must be adjusted. Therefore, the non-

inertial GPS coordinates of (87) and (88) are adjusted as follows: 

 ��ÏH� = Ðz(E\�\�) −{(E\�\�){(E\�\�) z(E\�\�) Ñ ⋅ Ð�ÈÉÊ�DÈÉÊ�Ñ (89) 

where z(E\�\�) and  {(E\�\�) are short for cosE\�\�and sin	E\�\�, respectively, E\�\�	is the angle 

obtained empirically by setting the straight-line components of the inertial frame GPS data in 

Figure 4.3 to coincide with the GH axes. The resultant ��ÏH�  vector is finally presented as  

 ��ÏH� = �GÈÉÊ¦ , IÈÉÊ¦�< (90) 
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where GÈÉÊ¦ and IÈÉÊ¦ are the final rotated GPS coordinates in the GH and IH axes. Furthermore, 

the measurement matrix (?�) is simply taken as 

 ?� = �1 00 1� (91) 

Equations (87)-(90) are used in conjunction with a virtual GPS point generation 

algorithm described in the next subsection, and (91) is used in the state update step of the KF 

algorithm. 

4.3.2.1. Virtual GPS point generation algorithm 

In this Section, the virtual GPS point generation algorithm is introduced. This algorithm is an 

efficient approach in resolving the delayed GPS data problem mentioned in Chapter 4, Section 1. 

This algorithm assumes that every two consecutive GPS points are connected by a straight line 

(as depicted in Figure 4.3). The equations for every straight line connecting two GPS data points 

are used to generate virtual GPS data points.  

With this algorithm, the offline KF can be operated at a high loop-rate, allowing the 

position data from the EKF to be fused with available virtual GPS data. The basic form of the 

virtual GPS point generation algorithm is shown in Table 4.1 followed by a line by line 

explanation of the algorithm. 
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Table 4.1. Virtual GPS point generation algorithm. 

	 VVVVirtual	GPS	irtual	GPS	irtual	GPS	irtual	GPS	PPPPointointointoint				GGGGenerationenerationenerationeneration				AlgorithmAlgorithmAlgorithmAlgorithm	�GH¦∗ , GÈÉÊ	, IÈÉÊ�:	1.	 	GLÙ[[V�� = GH¦∗ 	2.	 f(	�GÈÉÊj < GLÙ[[V�� ≤ GÈÉÊjÜ_�	3.	 {	(f = f + 1)	}	
	 	4.	 f(	�0 < GLÙ[[V�� ≤ GÈÉÊj�		 {	
5.	 {�)�� = 	 �0 − IÈÉÊj�/�0 − GÈÉÊj�	6.	 ILÙ[[V�� = {�)���GLÙ[[V�� − GÈÉÊj� + IÈÉÊj	7.	 GÈÉÊÞj¶ = GLÙ[[V��	8.	 IÈÉÊÞj¶ = ILÙ[[V��	9.	 }	��{�f(	�GÈÉÊj§_ < GLÙ[[V�� ≤ GÈÉÊj�		 {	
10.	 {�)�� = 	 �IÈÉÊj§_ − IÈÉÊj�/�GÈÉÊj§_ − GÈÉÊj�	11.	 ILÙ[[V�� = {�)���GLÙ[[V�� − GÈÉÊj� + IÈÉÊj	12.	 GÈÉÊÞj¶ = GLÙ[[V��	13.	 IÈÉÊÞj¶ = ILÙ[[V��		 }		
14.	 return	GÈÉÊÞj¶ , IÈÉÊÞj¶ 	

There are three inputs to the algorithm shown in Table 4.1; GH¦∗ , GÈÉÊ and IÈÉÊ. GH¦∗  is the 

x-coordinate of the ARGO position estimated by the EKF; which is an input to the KF and is 

available after the state prediction step (95),  GÈÉÊ and IÈÉÊ are vectors containing the x and y 

coordinates of all GPS data received from the GPS sensor – it is assumed that this data is pre-

processed before the KF is initialized in the hybrid EKF/KF state estimator. 
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 In Lines 1 through 3 of the above algorithm, the predicted x-coordinate (GH¦∗ ) is 

compared against the current GPS x-coordinate and the next GPS x-coordinate; if the comparison 

returns true, the current set of consecutive GPS points cannot be used to generate virtual GPS 

points because GLÙ[[V�� cannot be bound by this set of GPS points. So, the next set of GPS data 

points must be used. As such, f is incremented up by one. 

Lines 4-8 in Table 4.1 represent the case where the first set of virtual GPS points are 

generated. Line 4 ensures that GLÙ[[V�� is a positive real value bounded by the inertial origin (0, 0) and the first GPS data point. Line 5 calculates the slope of a virtual line that connects the 

origin to the first GPS data point. This slope is then used to generate the y-coordinate of a virtual 

GPS data point when the x-coordinate is taken as GLÙ[[V�� and the x/y coordinates of the GPS 

data point are taken as the second point on the line. Lines 7 and 8 create a set of virtual GPS data 

points in the x and y coordinates.  

Lines 9-13 in Table 4.1 characterize the case where GLÙ[[V�� cannot be bound by the 

origin and the first GPS data point. As such, the bounds are changed so GLÙ[[V�� is now bound by 

the previous GPS data point and the current GPS data point in the x direction. The slope of a line 

that connects the two consecutive GPS data points is calculated in Line 10. Finally, Lines 11 

through 13 exhibit the use of the slope to generate the y-coordinate of the next virtual GPS data 

point, which is then saved in the appropriate set of variables.  

The algorithm presented in Table 4.1 assumes that GLÙ[[V�� ≥ 0, which means that the 

ARGO always faces forward (in the positive GH axes). In an exceptional case where the ARGO 

makes a 180° turn and begins driving in the opposite direction, the above algorithm still applies; 

although, changes must be made to the bounds on the if-statements in Lines 4 and 9. These 

changes must reflect: 

 GÈÉÊj < GÈÉÊj§_ (92) 

where the next GPS data point (GÈÉÊj)  is smaller than the previous data point (GÈÉÊj§_) with 

respect to the GH axes; whereas, the algorithm in Table 4.1 assumes the opposite to (92). 

Additionally, the proposed algorithm can also be used to calculate GLÙ[[V��, by replacing ILÙ[[V��	in lines 6 and 11; to account for the case when the vehicle moves only in the IH axes. 
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4.3.3. Kalman filter algorithm 

The system, input and measurement model equations in Sections 3.1 and 3.2 of this chapter are 

now presented as a set of discretized time update equations as a part of the KF algorithm adapted 

from [2,49]. The state prediction (�̅�∗) and covariance prediction (��∗) steps of the KF algorithm 

are as follows: 

 �̅�∗ = 9� ⋅ ��
� + ;� ⋅ �� (93) 

 ��∗ = 9� ⋅ ��
� ⋅ 9�< + @� (94) 

where ��
� and ��
� are the state and covariance estimates of the previous time step and @� is 

the input noise covariance matrix obtained empirically as 

  @� = �0.31	� 00 0.31	�� (95 

The Kalman gain (>�) equation is obtained as 

 >� = ��∗ ⋅ ?�<(?� ⋅ ��∗ ⋅ ?�< + =�)
� (96) 

where =� is the measurement noise covariance matrix described as 

  =� = �1	� 00 1	�� (97) 

The state (�̅�) and covariance (��) update equations are finally obtained as 

 �̅� = �̅�∗ + >�(�� − ?� ⋅ �̅�∗) (98) 

 �� = (B − >� ⋅ ?�)��∗(B − >� ⋅ ?�)< + >� ⋅ =� ⋅ >�< (99) 

The more computationally stable Joseph form of the covariance update equation from 

[49] has been used once again.  

This concludes the chapter on the hybrid EKF/KF architecture. In the next chapter, 

details on the experimental setup and findings are presented. 
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Chapter 5. 

Experiments 

Sections 1, 2 and 3 of this chapter present the discussion on the experimental setup and results for 

the double-lane change, slalom and fishhook experiments, respectively. 

5.1. Experimental Setup 

The loop-rate (frequency at which the state estimator updates at) for the hybrid EKF/KF 

algorithm is 50 Hz. The hybrid filter is used to estimate the ARGO vehicle’s state (33), which 

consists of the ARGO’s position, velocity, orientation, and orientation rates. The filter uses 

accelerations and angular velocities obtained from the IMU (34), position and velocity 

information from the wheel encoders (63)-(66) and latitude/longitude data from a GPS (87)-(90) 

in estimating vehicle states. 

All of the experiments were performed on a flat, dry, asphalt track, arranged in the 

double-lane change, slalom and fishhook maneuvers. Figure 5.1 shows the ARGO during one of 

these maneuvers. 
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Figure 5.1. ARGO vehicle and test rig. 

A set of markers were placed on the ground near the orange pylons for each experiment 

(Figure 5.1); these markers serve as the ground truth for the position estimates. During the 

experiments, the driver would maneuver the ARGO around the pylons and overtop the markers. 

Figures 5.2-5.4 show the general configuration of double-lane change, slalom, and fishhook 

maneuvers. 

 

Figure 5.2. Schematic of double-lane change maneuver. 
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Figure 5.3. Schematic of slalom maneuver. 

 

Figure 5.4. Schematic of fishhook maneuver. 
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The start location of each maneuver by the ARGO is indicated in Figures 5.2-5.4 as the 

inertial origin GH and IH. The red dots in Figures 5.2-5.4 represent the guiding pylons (orange 

pylons in Figure 5.1) used in guiding the driver through the double-lane change, slalom, and 

fishhook maneuvers. Moreover, these maneuvers were chosen based on their ability to ensure the 

ARGO vehicle operates under standardized driving scenarios to facilitate the collection of 

accurate estimation data. 

In the following sections, the estimated position, longitudinal slip, velocity, and 

orientation results for the three sets of experiments are presented.  

5.2. Double-lane Change Experiment 

This section details the performance of the proposed state observer from Figure 4.2, which is used 

to estimate the position, longitudinal slip, velocity and orientation of the ARGO during the 

double-lane change maneuver.  

5.2.1. Position estimates 

The generated position estimates by the EKF and the ground truth for the double-lane change 

maneuver are shown in Figure 5.5. The position results shown in Figure 5.5 are used as an input  

to the KF (see Figure 4.2), and are fused with GPS data in attempts to further improve the 

position estimates (Figure 5.7). 
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Figure 5.5. EKF position estimates – double-lane change experiment. 

The state plot shown in Figure 5.5 is the EKF’s estimate of the position of the ARGO 

based on the measurement data (obtained from encoders in (63)-(64)) and the prediction data 

(obtained from the IMU (60)-(62)); the prediction data is presented in Figure 5.6 separately due to 

the difference in scales and the large amount of error in the prediction data due to the double 

integration operation in (57)-(62). In state estimation, the prediction or input data plays the role of 

initiating the state estimation algorithm, even if the prediction estimates are erroneous, they can 

be adjusted by the measurement data. 

The ground truth data in Figure 5.5 is the true/driven path of the ARGO; as explained in 

Section 1 of this chapter. This terminology will be used consistently throughout the course of this 

chapter. 

Moreover, the state estimates in Figure 5.5 are combined with the measurement data and 

prediction data at the loop rate of 50 Hz, or every 0.02 seconds. The final output shown in Figure 

5.5 is a result of iterating through Equations (68)-(76) thousands of times at instances of 0.02 

seconds while the ARGO drives through the experimental maneuver.  

The measurement data in Figure 5.5 shows that the ARGO does not follow the ground 

truth completely since the measurement and the ground truth data do not match perfectly. This 

difference in the measurement and ground truth data is due to the inherent error in the wheel 
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encoders. The wheel encoders have a built-in error, and the effect of this error impacts the 

position and velocity measurement data because the encoders, just like many sensors, are 

impacted by noise and vibration. 

The state output data in Figure 5.5 is primarily influenced by the measurement data, and 

it is slightly influenced by the state prediction data shown in Figure 5.6. This has been done to 

ensure that if the measurement data becomes unavailable, the EKF can still produce state 

estimates for a short amount of time while the measurement data is unavailable. This feature has 

been added to increase the robustness of the EKF estimator for real-time performance. This 

design feature applies to all EKF position estimates. 

The amount of influence the measurement and prediction data have on the state output 

can be adjusted through tuning the EKF system/input noise covariance matrices (70)-(72), and the 

measurement noise covariance matrices (74). 

 

Figure 5.6. EKF state prediction – double-lane change experiment. 

The state prediction data shown in Figure 5.6 are inaccurate when compared to the 

ground truth data because of the double integration procedure in (57)-(62). The EKF has been 

designed to give a slight amount of influence to the prediction data and a large amount of 

influence to the measurement data. This has been done to ensure that if the measurement data 
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becomes unavailable, the EKF can still produce state estimates for a short amount of time while 

the measurement data is unavailable.  

The position estimates from the EKF are fused with GPS data using the proposed KF 

algorithm (Figure 4.2) to improve the accuracy of the position estimates; shown in Figure 5.7. 

 

Figure 5.7. KF position estimates – double-lane change experiment. 

The measurement plot in Figure 5.7 is obtained from the GPS, the input (or prediction) 

plot in this figure is the EKF position state estimates from Figure 5.5, the ground truth data is the 

same as that of Figures 5.5 and 5.6, and the state plot is the fusion of the measurement data and 

input data. 

Since the measurement data is less accurate, when compared to the input data in Figure 

5.7 (with respect to the ground truth), the measurement data is given a smaller influence when 

compared to that of the input/prediction data. This is because near the end of the experiment 

(when the vehicle has passed 35 meters in the horizontal direction in Figure 5.7), the 

measurement data is closer to the ground truth than the prediction data; however, this may not 

always be the case. As such, only a slight amount of influence was needed to draw the state 

estimates nearer to the ground truth. 
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The amount of influence of each data-set can be adjusted through the system/input noise 

covariance matrix for the KF in Equation (95) and the measurement covariance matrix in 

Equation (97). 

5.2.1.1. Position error analysis 

To quantify the error of the position estimates, the root-mean-square error (RMS) is used as a 

metric to evaluate the performance of the proposed filter. To do so, the position estimates output 

by each algorithm (EKF, KF) are compared to the ground truth measurements to calculate a value 

for each algorithm in the X and Y axes. The goal is to achieve position estimates that are within 

two meters accuracy.  

This error analysis is performed for the position estimates produced by the proposed 

hybrid EKF/KF because there is ground truth data available. Table 5.1 provides the data points 

used in calculating the RMS for the EKF and KF position estimates.  

Table 5.1. RMS data – double-lane change experiment. 

Ground Truth EKF State Estimates KF State Estimates 

X (m) Y (m) X (m) Y (m) X (m) Y (m) 

0.0 0.0 0.0 0.0 0.0 0.0 

4.0 0.0 4.0 0.0 4.0 0.3 

6.5 0.0 6.5 0.1 6.5 0.4 

9.0 0.0 8.2 0.2 8.6 0.5 

14.0 3.5 13.9 4.3 13.9 4.2 

20.5 3.5 20.5 3.9 20.5 4.2 

27.0 3.5 27.2 4.2 27.2 4.6 

32.0 0.0 32.3 0.2 32.7 0.5 

34.5 0.0 34.5 -0.7 34.5 -0.3 

36.5 0.0 36.7 -0.9 36.7 -0.8 
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The EKF and KF data shown in Table 5.1 were chosen based on the proximity of the 

state estimates to the ground truth data to achieve minimized RMS values. The RMS values have 

been summarized in Table 5.2.  

Table 5.2. RMS values – double-lane change experiment. 

RMS 

EKF-X (m) 

RMS 

EKF-Y (m) 

RMS 

KF-X (m) 

RMS 

KF-Y (m) 

0.30 0.52 0.27 0.60 

The RMS values in Table 5.2 are generally the same for the EKF and KF and hence, both 

proposed algorithms are equally as reliable. Although, the KF algorithm has less error in the X 

axes when compared to the EKF algorithm, the EKF algorithm outputs less error in its Y axes 

estimates.  

5.2.2. Longitudinal slip  

The results that will be presented in this subsection are for the rear wheels only; since both rear 

wheels have wheel encoders that provide accurate wheel angular velocities. According to the 

third assumption made in Chapter 3-Section 1, the longitudinal slip for the other four wheels can 

also be calculated but at the cost of a reduction in accuracy. The longitudinal slip of the two rear 

wheels during the double-lane change experiment (calculated in Equations (6),(7),(10)-(13)) is 

shown in Figure 5.8. 
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Figure 5.8. Longitudinal slip – double-lane change experiment. 

The slip values in Figure 5.8 were calculated using the estimated state from the EKF 

(prediction data in Figure 5.7 and state data in Figure 5.5). At the beginning of the experiment in 

Figure 5.8, the ARGO is moving in a straight line from �f��	 ≈ 19 − 24	{. Both of the wheel 

slips during this time period hover around a value of zero. The straight-line path in this figure is 

represented in Figure 5.7 when G	 ≈ 0 − 8	�.  

Next, the right wheel slip values begin to increase in the positive half-plane and the left 

wheel slip values show up slightly below zero in Figure 5.8 at �f��	 ≈ 24.5 − 28	{. These slip 

trends indicate that the vehicle is making a left turn; the right wheels are throttling forward 

(positive slip) and the left wheels are under braking (negative slip). This left turn is depicted in 

Figure 5.7 when G	 ≈ 8 − 13	�.  

At �f��	 ≈ 29	{, and �f��	 ≈ 29.5 − 31	{, Figure 5.8 shows two spikes in the data; left 

wheel slip show positive spikes and right wheel negative spikes. During the time period between 

the two spikes, Figure 5.8 shows both wheels hovering around a slip value of zero. These trends 

indicate that the ARGO has made two right turns, the first a quick turn and the second, a longer 

more pronounced turn. These turns are visible in Figure 5.7 at G	 ≈ 13	� and I ≈ 4	�. 

From Figure 5.8, it is evident that the right turn depicted in Figure 5.7 at G	 ≈ 13	� and I ≈ 4	�, was made possible by making two quick right turns. Additionally, in between these 

right turns, the ARGO rolled forward for a short amount of time as well. The remainder of the 
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slip values estimated in Figure 5.8 can be matched with the prediction estimates in Figure 5.7 in a 

similar manner.  

It is worth noting that Figure 5.8 shows both slip values trend towards negative one at the 

end of the experiment (�f��	 ≈ 43 − 53	{). This happens because at the end of the experiment 

the driver of the ARGO applies the brakes to both left and right wheels at the same time to bring 

the vehicle to an immediate stop. This action of both brakes being engaged at the same time and 

the vehicle coming to a stop causes the slip values to trend towards negative one. These affects 

can also be seen in the longitudinal slip results for the slalom and fishhook experiments in the 

following sections.  

5.2.3. Velocity estimates 

The estimated velocity of the ARGO in the X and Y directions is shown in Figure 5.9. 

 

Figure 5.9. Estimated velocity in X and Y – double-lane change experiment. 

The experimental hardware begins recording measurement data at �f�� = 20	{; this is 

when the state estimator begins generating state outputs and the measurement and state values 

change from a constant value of zero.  

The state and measurement velocity data are similar, although there is a slight visible 

offset in both the X and Y plots in Figure 5.9. The reason for this is the velocity state estimates 
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have been designed to be primarily influenced by the measurement data, with a slight amount of 

influence from the prediction estimates in Figure 5.10. 

 

Figure 5.10. Predicted velocity in X and Y – double-lane change experiment. 

The predicted velocity in X in Figure 5.10 is inaccurate due to an integration procedure in 

(57)-(59). The shape of the predicted velocity in Y observed in Figure 5.10 matches the general 

shape for the measured velocity in Y in Figure 5.9. The reason for this is the IMU was able to 

sense the accelerations in the Y axes well, since the vehicle experiences very pronounced 

accelerations in this direction since there is no suspension system on the vehicle to nullify these 

accelerations.  In result, the state estimates are closer to the measurement data; unlike the 

deviations observed in Figure 5.9 for the velocity in X state estimates.  

The velocity in X state estimates are offset from the measurement data in Figure 5.9 

because the difference in shapes of the predicted velocities and the influence assigned to them. To 

attain improved state estimates in X, one can tune the covariance parameters to reduce the 

prediction influence. 

5.2.4. Orientation estimates 

The estimated yaw, pitch, roll angles depicted in Figure 5.11 are calculated using (54)-(56).  
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Figure 5.11. Yaw, pitch, roll estimates – double-lane change experiment. 

It is worth noting that since the ARGO was driving on a flat surface, the pitch and roll 

angles generally do not change substantially, as shown in Figure 5.11. Any change seen in Figure 

5.11 for this data is negligible. The trend for the yaw angle looks similar to the estimated velocity 

in Y in Figure 5.11. This similarity is due to the fact that the measurement equations use the most 

up-to-date estimate of yaw to calculate the next set of position measurement estimates in (63)-

(66).  

The ground truth and estimated yaw is calculated from the ground truth and EKF position 

data in Table 5.1, respectively. Using this data, the RMS value for the yaw estimates can be 

calculated as 0.13 rad, or 7.66 deg. Figure 5.12 shows a graph exhibiting the RMS data used to 

calculate the RMS value for yaw. 
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Figure 5.12. Yaw estimate comparison – double-lane change experiment. 

Figure 5.12 shows that the RMS data of yaw angle estimates from the EKF are in close 

approximation to the ground truth values.  

The rates of change of yaw, pitch and roll for the ARGO during the double-lane change 

experiment is presented in Figure 5.13. 
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Figure 5.13. Estimated yaw, pitch and roll rates – double-lane change experiment. 

The yaw, pitch and roll rate estimates depicted in Figure 5.13 were calculated in (51)-(53) 

using the angular velocities obtained from the IMU in the X, Y and Z axes.  

The IMU located at the CG of the vehicle is mounted onto a bracket that is fixed to the 

chassis of the ARGO. While the ARGO is in motion, this bracket vibrates slightly in the Z 

direction. Due to this vibration, the pitch and roll rate estimates in Figure 5.13 exhibit noise in the 

data. However, this noise is consistent and small in magnitude, having little to no impact on the 

state estimates in the X-Y inertial plane. 

5.3. Slalom Experiment 

Similar to the double-lane change experiment, the position, longitudinal slip, velocity, and 

orientation estimates generated by the hybrid EKF/KF algorithm are now presented for the slalom 

experiment. 
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5.3.1. Position estimates 

The position estimates generated by the proposed EKF algorithm for the slalom maneuver is 

exhibited in Figure 5.14. 

 

Figure 5.14. EKF position estimates – slalom experiment. 

The state and measurement estimates in Figure 5.14 are considerably inaccurate after the 

midway point (G	 ≈ 28	�) in the slalom course. One reason why the inaccurate path is observed 

is due to driving error.  

The driver of the ARGO missed making the sharp turn at G = 30	� during this 

experiment because the ARGO is a difficult vehicle to maneuver. Hence, the driver ended up 

taking a wider turn and negatively affected the path results for the remainder of the experiment. 

Figure 5.14 also shows the state output data moving in the positive Y direction near the end of the 

experiment. This happens because the EKF algorithm fuses the measurement data with the 

prediction estimate data in Figure 5.15. 
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Figure 5.15. EKF prediction estimate – slalom experiment. 

The prediction estimate in Figure 5.15 trends towards quadrant two in the Cartesian 

coordinate plane. The EKF fuses this data with the measurement data to produce an state estimate 

that moves towards the positive Y direction near the end of the slalom experiment as seen in 

Figure 5.14. Using the KF algorithm, the GPS data is fused with the state outputs, as depicted in 

Figure 5.16. 
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Figure 5.16. KF position estimates – slalom experiment. 

The final state estimate from the KF shown in Figure 5.16 does not match the ground 

truth perfectly. Additionally, the measurement data does not follow the ground truth closely 

either.  

The RMS values are now calculated for the different estimates to analyse the amount of 

error realised by the position estimates. 

5.3.1.1. Position error analysis 

Table 5.3 provides the data points used in calculating the RMS data for the EKF and KF position 

estimates. 
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Table 5.3. RMS data – slalom experiment. 

Ground Truth EKF State Estimates KF State Estimates 

X (m) Y (m) X (m) Y (m) X (m) Y (m) 

0.0 0.0 0.0 0.0 0.0 0.0 

4.0 0.0 4.0 0.0 4.0 0.1 

9.8 1.1 9.8 1.1 9.7 1.4 

14.5 2.7 14.3 3.6 14.1 3.7 

19.0 4.8 18.9 4.0 18.9 4.5 

23.2 2.0 23.6 3.0 23.8 3.5 

27.5 -1.0 28.5 0.7 28.6 0.8 

30.4 -2.0 30.6 -0.5 30.6 -0.4 

35.0 0.5 40.7 -0.2 39.9 -0.1 

38.0 4.0 43.1 3.9 42.7 3.8 

43.5 3.9 47.0 7.3 47.2 7.2 

The EKF and KF data shown in Table 5.3 were chosen based on their proximity to the 

ground truth data to achieve minimal RMS values. The RMS values have been detailed in Table 

5.4. 

Table 5.4. RMSD values – slalom experiment. 

RMS 

EKF-X (m) 

RMS 

EKF-Y (m) 

RMS 

KF-X (m) 

RMS 

KF-Y (m) 

2.54 1.32 2.37 1.36 

The RMS values for both the EKF and KF algorithms in Table 5.4 show that the X axes 

have an error greater than the target error of two meters. Although, the KF algorithm exhibits an 

error in the X axes that exceeds the target value by only fifteen percent. The Y axes error for both 

algorithms is less than one meter.  
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Considering the poor RMS values in Table 5.4, the slalom track must be changed and the 

configuration of the slalom track as presented in this thesis is not a good measure for testing the 

estimator using the ARGO. The configuration of the slalom experiment presented in this thesis 

works well for a vehicle that is more nimble than an ARGO, since the ARGO is difficult to 

maneuver due to its skid-steered driving scheme. In the future, the slalom experimental setup 

should be changed so the turns are wider and more manageable for the ARGO’s driver.  

5.3.2. Longitudinal slip  

The longitudinal slip for the slalom experiment is shown in Figure 5.17. 

 

Figure 5.17. Longitudinal slip – slalom experiment. 

The longitudinal slip estimates in Figure 5.17 begin with a lot of noise seen in the data at 

the beginning of the experiment. This occurs when the ARGO is lifted into place by the driver to 

position the vehicle correctly at the beginning of the experiment. 

The wide left turn made at the midway point of the slalom experiment in Figure 5.16 is 

clearly represented in Figure 5.17 at �f��	 ≈ 40 − 47	{. During this time period, the right wheel 

slip stays consistently positive and the left wheel slip trends towards negative values; especially at �f�� = 48	{.  
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5.3.3. Velocity estimates 

The estimated and predicted velocities of the ARGO in the X and Y directions for the slalom 

experiment are shown in Figures 5.18 and 5.16. 

 

Figure 5.18. Estimated velocity in X and Y – slalom experiment. 

 

Figure 5.19. . Predicted velocity in X and Y – slalom experiment. 
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The measurement and state estimates for the velocities in Figure 5.18 are similar in trend 

until the end of the experiment, where the erroneous prediction data is fused with the 

measurement data. The prediction data in Figure 5.18 see the most integration error near the end 

of the experiment, thereby, negatively affecting the state results shown in Figures 5.18. 

5.3.4. Orientation estimates 

The estimated orientation angles during the slalom experiment are shown in Figure 5.20. 

 

Figure 5.20. Yaw, pitch, roll estimates – slalom experiment. 

It is worth noting that, near the end of the experiment in Figure 5.20 (�f��	 > 45	{), the 

pitch and roll angles show a significant change in value. A significant change of pitch and roll 

angles occurs when the bracket the IMU is attached to on the vehicle is accidentally touched. 

When this happens, the orientation of the IMU changes slightly, as such, so does the pitch and 

roll orientation estimates. 

Figure 5.21 compares the yaw estimate and yaw ground truth for the slalom experiment. 
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Figure 5.21. Yaw estimate comparison – slalom experiment. 

It is evident from Figure 5.21 that the RMS data of yaw angle estimates from the EKF 

have a significant amount of deviation from the ground truth. The RMS value for the yaw 

estimate is 0.33 rad, or 19.39 deg.  

The yaw, pitch and roll rate estimates are depicted in Figure 5.22.  

 

Figure 5.22. Estimated yaw, pitch and roll rates – slalom experiment. 
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The yaw, pitch and roll rate estimates in Figures 5.22 look similar to those shown in 

Figure 5.13 for the double-lane change experiment; where the yaw rate estimates are noise-free 

and vary significantly in magnitude, and the pitch and roll rate estimates exhibit noise and are 

small in magnitude. 

5.4. Fishhook Experiment 

In this section, the present the position, longitudinal slip, velocity, and orientation estimates 

generated by the hybrid EKF/KF algorithm for the fishhook experiment. 

5.4.1. Position estimates 

The state and prediction position estimates generated by the EKF for the fishhook experiment are 

shown in Figures 5.23 and 5.24. 

 

Figure 5.23. EKF position estimates – fishhook experiment. 
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Figure 5.24. EKF prediction estimate – fishhook experiment. 

The prediction estimates shown in Figure 5.24 cause the state estimates at the end of the 

fishhook maneuver in Figure 5.23 to trend in the positive Y direction. Additionally, both 

measurement and state estimates are consistently dissimilar from the ground truth path in both 

figures.  

The KF state estimates for the fishhook experiment are shown in in Figure 5.25. 
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Figure 5.25. KF position estimates – fishhook experiment. 

The state estimates in Figure 5.25 match the ground truth measurements well. Whereas, 

both measurement and prediction estimates do not. The RMS analysis in the next section will 

provide a quantitative means to compare the accuracy of the position results. 

5.4.1.1. Position error analysis 

The RMS data is provided in Table 5.5 and the RMS values for each algorithm are shown in 

Table 5.6. 
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Table 5.5. RMS data – fishhook experiment. 

Ground Truth EKF State Estimates KF State Estimates 

X (m) Y (m) X (m) Y (m) X (m) Y (m) 

0.0 0.0 0.0 0.0 0.0 0.0 

3.0 0.0 3.0 0.1 3.0 -0.2 

13.0 1.0 12.9 2.2 13.2 0.1 

16.1 1.6 15.8 3.8 16.1 1.6 

18.7 3.3 18.5 6.7 18.6 3.6 

20.4 5.9 19.4 8.5 20.4 6.1 

21.0 9.0 20.0 10.7 21.1 9.0 

20.4 12.1 19.7 14.0 20.3 11.9 

18.7 14.7 18.8 15.9 18.7 14.9 

16.1 16.4 16.2 19.0 16.1 17.4 

13.0 17.0 12.9 21.5 12.9 18.8 

Table 5.6. RMS values – fishhook experiment. 

RMS 

EKF-X (m) 

RMS 

EKF-Y (m) 

RMS 

KF-X (m) 

RMS 

KF-Y (m) 

0.47 2.54 0.08 0.80 

There are significant differences in the RMS values for the EKF and KF algorithms in 

Table 5.6. In fact, the RMS values for the EKF in Y do not meet the target error of two meters. On 

the other hand, the RMS values for the KF indicate errors less than one meter. Thus, the KF 

algorithm greatly improved the position estimates for the fishhook experiment, when compared to 

the EKF results. 
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5.4.2. Longitudinal slip  

The longitudinal slip estimates for the fishhook experiment are shown in Figure 5.26. 

 

Figure 5.26. Longitudinal slip – double-lane change experiment. 

It is observed in Figure 5.26 that the slip for the right wheel trends to higher positive 

values as the ARGO drives through the fishhook course, whereas, the left wheel estimates trend 

toward increasingly negative values. At �f��	 ≈ 40 − 42	{, the ARGO goes in a straight line; 

this was done by the driver to keep the vehicle on the ground truth path.  

Additionally, a sharp right turn is observed in Figure 5.26 at �f��	 ≈ 46	{. This is visible 

in Figure 5.25 at G	 ≈ 8	� and I ≈ 18	�. 

5.4.3. Velocity estimates 

The estimated and predicted velocities of the ARGO in the X and Y directions for the fishhook 

experiments are shown in Figures 5.27 and 5.28. 
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Figure 5.27. Estimated velocity in X and Y – fishhook experiment. 

 

Figure 5.28. Predicted velocity in X and Y – slalom experiment. 

The measurement and state estimates in Figure 5.27 have similar trends to what was 

observed in the double-lane change and slalom experiments.  

5.4.4. Orientation estimates 

The estimated orientation angles during the fishhook experiment are shown in Figure 5.29. 



 

 67 

 

Figure 5.29. Yaw, pitch, roll estimates – fishhook experiment. 

It is evident from Figure 5.29 that the ARGO has made a complete turn since the yaw 

angle estimate changes drastically from �f��	 ≈ 30	{ − 45	{. The pitch and roll angle estimates 

stay relatively unchanged through the course of the experiment.  

Figure 5.30 depicts the yaw angle estimate compared against the ground truth value in the 

Y direction using the RMS data from Table 5.5. This was done to keep the yaw comparison graph 

simple, since the ARGO’s motion through the fishhook experiment can be tracked completely in 

this direction (as seen in Figure 5.30). 
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Figure 5.30. Yaw estimate comparison – fishhook experiment. 

Figure 5.30 shows the yaw estimates track well with the ground truth in the Y direction, 

and the RMS value for this experiment is 0.21 rad, or 12.00 deg.  

Figure 5.31 depicts the rates of change for the orientation estimates.  

 

Figure 5.31. Estimated yaw, pitch and roll rates – slalom experiment. 
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Once again, the yaw, pitch and roll rate estimates in Figures 5.31 look similar to those 

shown in Figure 5.13 and 5.22 for the double-lane change and slalom experiments; where the yaw 

rate estimates are noise-free and exhibit significant change in magnitude, and the pitch and roll 

rate estimates exhibit noise and are small in magnitude. 

This concludes the discussion on the experimental results, and the next chapter draws the 

conclusions for this thesis. 
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Chapter 6. 

Conclusions and Future Work 

This thesis presented a hybrid EKF/KF state estimator designed for a skid-steered ARGO UGV. 

The development of a state estimation approach that can estimate the ARGO’s motion, velocity, 

orientation and wheel slips using an IMU, wheel encoders and a GPS sensor was presented.  

The hybrid EKF/KF state estimator is modular: it estimates the ARGO’s position, 

velocity, longitudinal slip, and orientation parameters. Initially, these parameters are estimated 

using an IMU/encoder with the EKF algorithm. The position estimates from the EKF algorithm 

can further be adjusted based on GPS data using the KF algorithm.  

This separation between the two state estimation techniques (EKF, KF) allows the EKF 

part of the hybrid state estimator to run in real-time and as such, it is online-ready. The KF is used 

offline, and only in applications when an improvement in position accuracy is required and 

reliable GPS data is available. 

Additionally, the hybrid EKF/KF state estimator was tested with experimental data 

gathered from experiments that were arranged in the double-lane change, slalom and fishhook 

maneuvers. The position estimates generated by the proposed algorithm were compared against 

ground truth measurements for each of these experiments and so were the yaw estimates. Using 

the proposed state estimator, the motion of the ARGO was tracked within one meter for the 

double-lane change experiment and within three meters for both slalom and fishhook 

experiments; which showcases the capability of the proposed methodologies in estimating the 

states with a reasonable accuracy.  
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In this thesis, an approach for estimating the longitudinal slip for every wheel on the 

ARGO is also presented. The slip results reported align well with the motion estimate results 

from the state estimator and give more insight into how the ARGO’s skid-steering drive-scheme 

affects its driveability through the experimental scenarios. The longitudinal slip estimation 

method proposed in this thesis will serve as a stepping stone for future dynamic modelling and 

application of SLAM for autonomous navigation of the ARGO UGV. 

For future work, the instrumentation on the ARGO will be enhanced with the addition of 

a LIDAR sensor. The LIDAR must be installed on the front of the vehicle and configured to 

communicate with the on-board ROS system on the ARGO’s Netbook PC. 

With the LIDAR fully integrated onto the vehicle, extensions to the hybrid EKF/KF 

algorithm will also be made to include a localization algorithm for SLAM purposes. This entails, 

changing the measurement model for the EKF to update the position of the vehicle according to 

markers or features around the vehicle that the LIDAR will sense. The velocity and yaw estimates 

of the vehicle can be obtained from this data as well. The encoders on the vehicle can be used to 

provide the prediction estimates for the position and velocity of the EKF algorithm and the IMU 

can be used to provide yaw prediction estimates to the EKF.  

The longitudinal slip estimates can be combined with a dynamic model in a path planning 

technique that enables the ARGO to generate a path based on a map generated by the LIDAR. 

The path planning technique also includes a steering controller for the vehicle which will also 

need to communicate with the ROS system on-board the ARGO. 

Field experiments must be conducted in unstructured environments to improve the 

precision, accuracy robustness of the autonomous ARGO UGV. 
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