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Abstract

Many of the existing ambient modal identification methods based on vibration data process

information centrally to calculate the modal properties. Such methods demand relatively

large memory and processing capabilities to interrogate the data. With the recent advances

in wireless sensor technology, it is now possible to process information on the sensor itself.

The decentralized information so obtained from individual sensors can be combined to

estimate the global modal information of the structure. The main objective of this thesis

is to present a new class of decentralized algorithms that can address the limitations stated

above.

The completed work in this regard involves casting the identification problem within

the framework of underdetermined blind source separation (BSS). Time-frequency trans-

formations of measurements are carried out, resulting in a sparse representation of the

signals. Stationary wavelet packet transform (SWPT) is used as the primary means to

obtain a sparse representation in the time-frequency domain. Several partial setups are

used to obtain the partial modal information, which are then combined to obtain the global

structural mode information.

Most BSS methods in the context of modal identification assume that the excitation

is white and do not contain narrow band excitation frequencies. However, this assump-

tion is not satisfied in many situations (e.g., pedestrian bridges) when the excitation is a

superposition of narrow-band harmonic(s) and broad-band disturbance. Under such condi-

tions, traditional BSS methods yield sources (modes) without any indication as to whether

the identified source(s) is a system or an excitation harmonic. In this research, a novel

under-determined BSS algorithm is developed involving statistical characterization of the

sources which are used to delineate the sources corresponding to external disturbances ver-

sus intrinsic modes of the system. Moreover, the issue of computational burden involving

an over-complete dictionary of sparse bases is alleviated through a new underdetermined
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BSS method based on a tensor algebra tool called PARAllel FACtor (PARAFAC) decom-

position. At the core of this method, the wavelet packet decomposition coefficients are

used to form a covariance tensor, followed by PARAFAC tensor decomposition to separate

the modal responses. Finally, the proposed methods are validated using measurements

obtained from both wired and wireless sensors on laboratory scale and full scale buildings

and bridges.
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Chapter 1

Introduction

1.1 General Introduction

System identification is an inverse problem, where the primary purpose is to extract system

information from measurements. System identification is necessary to undertake tasks such

as: (i) to assess the condition of an existing structure to carry out either the performance or

safety functions, (ii) to identify and quantify the onset of damage due to extreme hazards

such wind-storms, earthquakes, or due to in-service loads and, (iii) for model validation

and model updating. In system identification involving dynamically sensitive structures,

the system properties such as the natural frequencies and modes are derived using the

spectral information regarding the input excitation and the output responses. In many

large civil structures, measurement of excitations can be prohibitively difficult, whereas

outputs can be measured relatively easily through an a collection of sensors. Extracting

system information through the knowledge of output alone is referred to as ambient system

identification, or Blind Identification (BI). A majority of BI algorithms in the literature

are geared towards centralized processing of measurement data, i.e., processing all the

measurement data together in a centralized location. This is both capital-intensive as well

1



as computationally expensive. Furthermore, the centralized architecture in these methods

do not allow us to fully harness the capabilities of next generation wireless sensors. The

main objective of this research proposal is to develop novel BI algorithms specifically

tailored to harness the power and flexibility of decentralized processing in wireless sensor

networks.

Wireless sensor
(data acquisition &

local data processing)

Central processor
(Minimal global data processing)

Wireless
transmission

Transducer (data acquisition)

Cables

Central processor

(a) (b)

(Global data processing)

(data transmission)

Figure 1.1: Data sensing system, (a) wired network and (b) wireless network

Measurements are an integral component of the system identification process. Tradi-

tionally, a measurement system comprises of a large array of sensors distributed throughout

the structure. These sensors are connected to a central processing unit via cables, and de-

pending on the size of the structure they can be quite long and expensive to install (as shown

in Fig. 1.1(a) and Fig. 1.2). This results in a large amount of data communication and

processing at a single location, thereby requiring massive storage, power, bandwidth and

computational effort [96]. Despite its robustness, the trade-offs in such a centralized scheme

are high cost, massive computations, and installation time. In the event of an earthquake
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or other extreme events, the wired links are prone to damage, and hence can result in inter-

rupted data transmission. Advances in wireless technology and embedded processing have

resulted in relatively cheap wireless smart sensor networks (WSSNs) (as shown in Figure

1.1(b)). With on-board processing capability, these devices provide a superior alternative

to the traditional wired sensing systems [136, 22, 79, 82, 151, 78, 141, 152, 26, 122, 156, 116].

Most of the system identification algorithms in the literature are geared towards cen-

tralized batch processing [53, 139, 57, 21, 23, 96]. In other words, the algorithms use the

information gathered from all the sensors simultaneously and process them in an unified

fashion. Hence, studies utilizing these algorithms for WSSNs have basically used only the

wireless capability of WSSNs, without harnessing the processing capability of the sensors

[82, 39, 102, 160, 122, 159, 156, 121, 36, 76, 58]. There have been a few attempts to de-

centralize the aforementioned algorithms to suit WSSNs [160, 159, 122, 121]. However,

the process is fraught with computational complexity. There is a clear need to develop

new algorithms that are specifically geared towards decentralized implementation, thereby

harnessing the local sensor processing capabilities in addition to the wireless transmission

of data.

Figure 1.2: Instrumentation issues in wired sensing [56]

At the core of the methods to be proposed for decentralized processing are a pow-

erful class of methods grounded in the concepts of information theory, known as Blind

Source Separation (BSS). Unlike purely matrix-decomposition based methods, these meth-
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ods (called sparse-BSS) allow the user more control and pre-processing ability to handle

vibration data. In doing so, it allows us to overcome the main problem in decentralized

processing, namely the issue of underdetermined source separation (described later in sub-

sequent chapters). Other issues pertinent to structures such as the issue of narrowband

excitations (e.g., pedestrians in lightweight bridges) are also addressed in this work.

1.2 Objectives

The main objectives of the current research are summarized as follows:

• Develop new algorithms for modal identification of structures, specifically tailored to

suit decentralized implementation in wireless networks.

• Address and overcome the mathematical complexities involved in the identification

using a truly decentralized implementation.

• Demonstrate the proposed techniques by applying them to both laboratory and full-

scale structures.

1.3 Assumptions

The key assumptions in the proposed methods are summarized as follows:

• The system is linear and the law of modal superposition is valid.

• The modes are assumed to be normal and complex modes are not considered.

• The excitation is assumed to be wide-band in nature. However, this condition is

relaxed in Chapter 4 where narrow-band disturbances are included within the source

of excitation.
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• It is assumed that the external disturbance harmonics are well separated from the

resonant frequencies of the system. Thereby the effect of resonance is excluded.

1.4 Organization

This thesis contains seven chapters and is organized as follows:

1. Chapter 1 provides a brief introduction to the basic ideas of this thesis, along with

a summary of research objectives.

2. A detailed background on the various methods of system identification, specifically

related to modal identification is presented in Chapter 2. Traditional modal iden-

tification methods are reviewed first, followed by the more recent ones which belong

to the family of BSS methods. The concept of decentralized sensing network is re-

viewed next. During the course of relevant literature review, the basic demerits of

the traditional and modern modal identification methods as applied to decentralized

sensing are highlighted to underscore the importance of the proposed research.

3. Chapter 3 presents the theoretical development of a new BSS method for structural

system identification using partial measurements. The method is developed based on

concepts of sparsity with the aid of wavelet packet transform and principal component

analysis. The proposed method is illustrated with the aid of a numerical example.

4. A novel sparse BSS method is developed in Chapter 4 to delineate modal harmon-

ics in the presence of narrowband external harmonics. Time-series analysis based

statistical characterization is employed to separate the disturbance harmonics from

the sparse wavelet packet coefficients and retain the modal responses.

5. In order to increase the computational efficiency of the proposed sparse BSS method

presented in Chapters 3 and 4, a novel tensor algebra based tensor decomposition
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in conjunction with sparse BSS method is proposed in Chapter 5. The proposed

method is illustrated with a suite of simulation models.

6. Chapter 6 presents experimental validation of the proposed decentralized modal

identification methods using ambient vibration data from UCLA Factor building and

a pedestrian bridge located in Montreal, Canada. The details of the wireless sensor

network is presented first followed the identification results.

7. Finally, the main conclusions from this work are discussed in Chapter 7. Several

recommendations for extending the present work are also discussed. Finally, a list of

publications resulting from this work are included.
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Chapter 2

Background

In this chapter, several popular system identification techniques are reviewed in the context

of modal identification of structural and mechanical systems. The conventional methods

are presented first, followed by the more recent ones belonging to the family of Blind

Source Separation (BSS) methods. Basic ideas and key features of these methods are

discussed, followed by their merits and demerits in the context of the decentralized system

identification. A brief overview of wireless sensor networks is introduced, and their recent

applications in the field of system identification are reviewed.

2.1 Traditional System Identification Methods

Since early 1970’s, various modal identification techniques [84] have been developed for

structural and mechanical systems. Most of these methods operate either in the time or

in the frequency domain. Gradual technical developments in these methods progressed

from single-input single-output (SISO) systems to single-input multiple-output (SIMO)

systems and finally to the general case of multiple-input multiple-output (MIMO) systems.

Various popular time domain methods are reviewed first, followed by the frequency domain
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techniques.

Of all the time-domain methods [125, 53, 61, 139, 57, 4], complex exponential (CE)

algorithm based on Prony’s method [125] is perhaps the first important parametric iden-

tification technique for a SISO system. The basic premise of this method is to extract

frequencies and damping from a uniformly sampled signal using impulse response functions

(IRFs) by creating a series of damped complex exponentials, or sinusoids. A combination

of CE algorithm with least-squares (LSCE) is available for SIMO systems [4].

Extending the concept of Prony’s method, Ibrahim time domain (ITD) method [53] was

proposed for SIMO systems. Instead of using the IRFs, the ITD method uses free accelera-

tion responses to estimate the modal parameters. However, this method is computationally

expensive and the appropriate choice of model order is one of its key prerequisites. The

ITD method in conjunction with random decrement technique (RDT) [9] was implemented

for the modal identification of structural systems [74]. Poly-reference CE technique [4] was

formulated as an extension of the LSCE algorithm. This was perhaps the first general

identification technique for a MIMO system. This method reduces the possibility of mode-

missing when a node of the structure is excited.

Eigensystem realization algorithm (ERA) [61] was developed based on the general state-

space description using the IRFs of a linear dynamic system. This algorithm is an extension

of system realization theory. The modal parameters are estimated using the eigen-value

decomposition of the Hankel matrix formed by the IRFs. However, the method is limited

by the need to obtain free or impulse responses of the structures, which is not always

feasible in civil engineering applications due to size, safety concerns and the continuous

presence of ambient vibrations. To overcome this limitation, Natural Excitation Technique

(NExT) [57] was developed. This technique demonstrates that, when forced vibration

data are available the cross-correlation functions between the response measurements and

a single reference measurement satisfies the homogeneous differential equation of motion
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and therefore, can be treated as free responses. In the recent-past, NExT in conjunction

with ERA was successfully applied for structural system identification [21, 23, 96].

Stochastic Subspace Identification (SSI) method, developed in the early to mid 1990′s

[139, 140], provides a powerful means of output-only system Identification. Linear stochas-

tic state space system is used as the framework of the SSI method. This method performs

particularly well when the number of outputs is relatively large [123]. However, this tech-

nique is computationally expensive and time consuming. The use of stability diagrams and

modal assurance criteria further affect its suitability for onboard processing in a decentral-

ized setting. The separation between numerical and stabilized frequencies may require a

great deal of expertise and user discretion, which is cumbersome for on-line applications.

Unlike time domain techniques, frequency domain methods [111, 153, 17] are based

on frequency response functions (FRFs). Ewins-Glesson method and rational fraction

polynomial based method [111] were primary developed for SISO systems. The SIMO

based frequency domain technique was proposed using the concept of differential FRF. In

the same year, another classical method such as power spectral density (PSD) based peak

picking (PP) [153] was developed. However, this technique was found to be inaccurate,

especially in estimating the mode shapes and damping ratios.

A new frequency domain technique, called frequency domain decomposition (FDD)

[17] was developed to resolve the difficulties encountered in peak picking, while retaining

the advantages of the classical PP method. This technique is user-friendly in terms of

simplicity and processing speed. However, due to averaging of temporal information, often

some details are discarded. In case of heavily damped systems with closely spaced modes,

there is a possibility of obtaining unreliable damping estimates. Moreover, picking peaks is

a subjective task. The classical FDD was extended [19] to identify symmetrical structures

with closely-spaced modes, however the user-discrimination and standard issues associated

with FFTs are still present.
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In most modal identification methods, the excitation is assumed to be broadband

[91, 7, 92, 106, 6, 32, 90, 110]. This means that the identified sources are certain to

belong to the modal harmonics. However, if disturbances themselves contain narrow-band

frequencies, the excitation harmonics are also identified along with the structural modes.

Such a presence of excitation harmonics in structural vibration measurements occur in me-

chanical systems with rotating machineries, e.g., engines, motors, windmills and turbines

[8, 106, 108], in civil structures such as gravity dams comprising of turbines and generators

[6], human-induced narrow-band vibrations in pedestrian bridges [11, 38, 98, 55], and when

dynamic interactions with surrounding structures exist in buildings [110]. The issue of ex-

citation harmonics contaminating ambient vibration results has previously been dealt with

in the literature, e.g., [91, 92, 106, 6, 32, 90, 110]. The harmonic frequency is assumed to be

known a priori in many of these methods [91, 92, 106, 6]. Recently, an algorithm applied to

the random decrement method was proposed in the context of delineating harmonics from

modal components [90]. The conditional probability density function is used to estimate

the harmonic sources by the author, and was shown to perform well within the random

decrement framework. Delineating excitation harmonics from source harmonics has also

been dealt with in the context of signal processing [120, 154], where a modified principal

component analysis is introduced. The underlying architecture in all these methods in-

volves batch processing of sensor measurements, i.e., in a centralized architecture, where

the number of measurements is more than the number of sources to be identified. This

requires the measurements from a number of sensors to be processed together in order to

identify the modes. To the knowledge of the author this problem has not been addressed

in decentralized settings.
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2.1.1 Drawbacks and Limitations of the Traditional methods

1. Most of the traditional techniques are based on the premise that the sensor mea-

surements are available at all key locations, and the data are processed centrally

(a few variations exist, which will be discussed later). In such methods, the cost

of instrumentation and processing increases with the increase in sensor density and

complexity of the algorithms. Moreover, it is not always feasible to achieve full mea-

surements due to cost and installation reasons in the traditional sensing system, or

due to communication issues in WSSNs.

2. One of the key pre-requisites of previously described identification algorithms (ITD

and SSI) is the model order pre-selection. In order to achieve a suitable model

order, additional information in terms of stability charts and modal assurance criteria

are needed. This process is computationally expensive and time consuming, and

hence not suitable for on-line implementations. Over-determination of model order

generates spurious modes, which is a serious issue when dealing with noisy response

data.

3. While computationally faster and user-friendly, FDD method is unable to perform

well in high damped systems with closely spaced modes. This situation commonly

arises in flexible tall structures equipped with supplemental devices such as tuned

mass dampers (TMDs). Due to averaging of the temporal information, some details

are implicitly discarded. Moreover, the peak peaking technique in FDD is a subjective

task and requires a great deal of user experience.

4. Majority of output-only modal identification methods (e.g., ITD, SSI and FDD)

assume that the underlying excitation is white and does not contain narrow band

excitation frequencies. However, this assumption is not satisfied in many practical sit-

uations when the excitation is a superposition of narrowband harmonic(s) and broad-
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band disturbance, e.g., rotating machinery fixed to flexible structures, human incited

vibration in pedestrian bridges, or dynamic interaction with surrounding structures.

Due to contamination of such external harmonics, it becomes difficult to delineate

narrowband harmonics from the inherent modal responses of structures.

2.2 Modern Schemes in Inverse Problems

In last decade, significant advances in information theory and signal processing have led

to the development of powerful system identification and time-frequency analysis tools.

Empirical Mode Decomposition (EMD) [50] is a versatile signal processing algorithm that

has shown significant promise in the area of output only system identification of structures

in non-stationary environments [147, 146, 46, 113, 135]. EMD reduces a signal into intrinsic

mode functions (IMFs) that admit a well-behaved Hilbert transform [50]:

r̈p(t) =
m∑
j=1

cpj(t) + εp(t) (2.1)

in which cpj(t) for j = 1, 2, ....,m are the m IMFs of the free acceleration response r̈p(t) of

any dynamical system and εp(t) is the residue. The power of EMD lies in its decomposition

capability, even in non-stationary environments, in an adaptive manner without the need

of choosing a predetermined basis. Recently, a new ensemble EMD (EEMD) [144] was

proposed to eliminate the need for prior intermittency selection criteria, which is a source

of difficulty in the original EMD.

Blind Source Separation (BSS) is a powerful tool that is extensively used in speech and

audio processing [28]. BSS allows for a set of linearly mixed sources (static or convolutive)

to be recovered solely from their observed mixtures. Interestingly, this is achieved without

any knowledge about the mixing process [13, 52, 28], thereby eliminating the need of

any system information except the output. This concept was utilized in inverse problems
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related to ambient structural system identification [7, 62, 109, 44, 45, 46, 48, 47]. A brief

description of various approaches based on BSS are reviewed in the next section.

2.3 Blind Source Separation

The separation of original source waveforms from their observed mixtures, without the

knowledge of system information and the sources, is known as BSS. For most applications,

the sources are related to mixtures by simple linear mixing models. This principle is

illustrated in Fig. 2.1. Depending on the specific application, the mixing processes of the

unknown input sources may have different mathematical or physical models. In general,

there are two ways to represent the mixing of sources: (a) static or instantaneous and

(b) dynamic or convolutive. In both the instantaneous and convolutive mixture models,

BSS methods aim to recover the un-mixing matrix and the corresponding sources using

the information contained in x only, without knowing the mixing system. Hence, the term

blind is commonly used.

s
(Unknown

sources)

A
(Mixing matrix)

x
(Output)

W
(Un-mixing matrix)

s
(Estimated

sources)

Physical mixing Inverse problem (identification)

Figure 2.1: Illustration of BSS

13



Instantaneous mixing

The instantaneous mixing model is the most rudimentary model where sources arrive in-

stantly at the sensors but with differing signal intensities, and is expressed as:

x (k) = As (k)

ŝ (k) = y (k) = Wx (k)

 (2.2)

• s (k) = {sj (k)} j = 1, 2, ......ns actual sources (system input)

• x (k) = {xi (k)} i = 1, 2, ......nm sensor measurements (system output)

• y (k) = {yj (k)} j = 1, 2, ......ns estimated sources

• nm and ns are the total number of measurements (sensors) and sources respectively.

• A = [aij]nm×ns is the instantaneous mixing matrix

• Wns×nm is the un-mixing matrix, which is obtained by the pseudo-inverse of A (if

nm > ns) or by a matrix inversion of A (if nm = ns)

Eq. 2.2 represents the static mixing problem (xi(t) =
∑ns

j=1 aijsj(t)), which does not

explicitly use time properties. Therefore, it is not necessary for the sources and the outputs

to be a function of time.

Convolutive mixing

In the instantaneous mixing case, an important assumption is that there are no time delays

involved in the mixing of independent signals. This model is useful for certain applications

such as modal identification using wired sensors, but becomes unrealistic when applied

elsewhere, e.g., acoustic environments, wireless channels [132, 100, 72]. An obvious case

in which it is necessary to account for time delays in signal mixing is in the separation
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of speech signals recorded in a real environment. Sound wave propagation is relatively

slow and the waves are subject to reflections so that time delays are introduced in the

mixing process. To separate sources mixed in this fashion, a technique called convolutive

BSS [60, 150, 100, 101, 117] was developed which extends the standard instantaneous BSS

model by treating signal mixing as a convolution, allowing time delays to be accounted for.

A convolutive model can be of two types echoic or anechoic.

An echoic convolutive mixture can be expressed as:

xi(t) =
ns∑
j=1

(∫ ∞
∞

aij(τ)sj(t− τ)dτ

)
(2.3)

Eq 2.3 represents a dynamic problem where the sources and the outputs have well defined

time properties and the coefficients of the un-mixing system are essentially the coefficients

of a deconvolution filter (e.g., finite impulse response (FIR) filter). It is obvious that the

instantaneous mixing model is a special case of the convolutive model, where the filter

coefficients are constrained to be proportional to delta function aij(t) = aijδ(t). Compared

to the echoic (full convolutive) model, anechoic mixture model linearly combines time-

shifted and scaled versions of the sources, without permitting multiple occurrences of the

same source in the mixture. These models are equivalent to convolutive models for which

the filter kernels are constrained to the form aij(t) = aijδ(t − τij) [101], resulting in the

equation:

xi(t) =
ns∑
j=1

aijsj(t− τij) (2.4)

In time domain, it is similar to the instantaneous mixing model but now the source signals

are shifted by the delay terms. Thus the anechoic mixing model describes the convolution

of each source signal with a simple delay and attenuation term, i.e., this model describes

the propagation of source signals upon single non-dispersive paths to each of the sensors

and neglects the existence of any reflective paths (as in the echoic model). A summary of
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various linear operators and mixing matrix components specific to the different types of

mixing cases of blind source separation is presented in Table 2.1. For the purposes of this

thesis, we will restrict ourselves to the instantaneous mixing model.

Table 2.1: Linear operator and mixing parameters of different types of BSS mixing

Mixing Linear operation Mathematical model Mixing coefficient

Instantaneous Matrix multiplication x(t) = As(t) aijδ(t)

Anechoic Delay x(t) = A ∗ s(t) aijδ(t− τij)
Echoic Convolution x(t) = A ∗ s(t)

∑L
k=1 a

k
ijδ(t− τ kij)

At present, there exists a variety of BSS algorithms for the instantaneous mixing model

depending on their potential applications, such as in speech processing, digital communi-

cation, or biomedical processing [28]. They can be categorized using the following three

properties.

1. Second-order (temporal structure) or higher-order (mutual information) statistics of

sources.

2. Sparse representation of sources achieved through transformations (typically, time-

frequency).

3. Tensor decomposition based source separation.

The first category belongs to non-sparse methods, the second one to sparse methods

[100], whereas the last one involves a powerful multi-linear algebra tool, i.e., parallel factor

(PARAFAC) decomposition [43, 24, 20]. The non-sparse methods are usually implemented

when nm ≥ ns, and primary based on statistics of the signals. On the other hand, un-

derdetermined problems (nm < ns) are pursued with the aid of sparse methods, and is

based on the structure of the mixtures. The PARAFAC BSS methods are applicable to

both over-determined as well under-determined problems with some restrictions. In non-

sparse methods, the higher order statistics based independent component analysis (ICA)
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[52] exploits the marginal non-Gaussianity and statistical independence of sources with-

out using the time structure of sources. On the other hand, second order statistics-based

second-order blind identification (SOBI) [13] utilizes multiple co-variance matrices of the

responses, for the case when the sources are spatially uncorrelated but temporally corre-

lated [28]. Recently, the concept of BSS has been extended to the ambient system identi-

fication of structural systems [7, 109, 62, 44, 45, 48, 47]. A brief overview of non-sparse,

sparse, and PARAFAC BSS methods is presented next followed by the recently developed

BI [46, 48, 47, 112, 149, 148] techniques for structural systems.

2.3.1 Non-sparse BSS

Independent component analysis (ICA) is one of the most popular non-sparse BSS methods

in the literature [31, 12, 52]. This method assumes that the observed data are linear com-

binations of statistically independent (or as independent as possible) sources. The sources

are termed as independent components (IC’s), and the ICA basis vectors are the ICA

modes, which are linearly independent. The independence is measured by an information-

theoretic cost function such as minimization of mutual information [31] or maximization

of entropy [12] or maximization of non-gaussianity [52]. In terms of application, ICA is

simple and straight forward. It has been observed that ICA fails to perform adequately in

the presence of even relatively small amounts of damping [62, 45].

Second order BI (SOBI) [13] based methods use the time information contained in

the signals, as opposed to treating them as mere random variables, as in ICA. If the

ICs are time signals, they usually contain a much better defined structure than ordinary

random variables. For example, the auto-covariances for several time lags have well-defined

statistics. The SOBI family of methods do not make any prior assumptions regarding

statistical independence or non-gaussianity of sources. They rely purely on second-order

temporal statistics. The basic assumptions include full rank of the matrix A, existence of
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autocorrelation function of the sources, spatial non-correlation of the sources, stationarity

of the sources, and the presence of independent noises.

SOBI estimates the mixing matrix using simultaneous diagonalization of several co-

variance matrices with different time lags. The performance of SOBI in identifying simple

systems has been clearly demonstrated [109, 155]. SOBI holds lot of promises in modal

identification in presence of moderate to high damping. Unlike higher-order statistics based

ICA, second-order statistics based SOBI is much more simpler to implement. However the

performance of SOBI is affected by the presence of low energy modes. A prior knowledge

of noise covariance is one of the prerequisites of SOBI, which could be difficult to achieve

in practical applications.

An extension of SOBI —Modified Cross-Correlation method (MCC) —was developed

[44, 45] in order to eliminate the short-comings of the traditional SOBI method. MCC

method deviates from SOBI in two key respects: (i) whereas SOBI method operates di-

rectly on the responses (measurements) x(t), the MCC method operates on the correlation

of the responses (vector, r(t)) calculated at all time lags; (ii) whereas the diagonalization

procedure in SOBI involves several time-lagged covariance matrices of the responses, co-

variance matrices obtained from multiple non-overlapping windows are used in the MCC

method [44]. As in SOBI, the noise variance needs not be known a priori, which is an

additional advantage in using the MCC method [45]. Recently an improved version of

SOBI is proposed [112] by the author indue to earthquake applications.

A key assumption in the MCC method is that the number of outputs is greater or equal

to the number of identifiable modes. In order to address this issue, a hybrid approach

combining the MCC with the EMD was proposed [47, 48]. This is accomplished in two

stages; (i) extracting the intrinsic mode functions (IMFs) using the EMD and, (ii) treating

the IMFs as pseudo-sources in an iterative procedure within the framework of the MCC

method. The major advantage of this approach is that the estimated mode-shape matrix is

18



Non-sparse BSSTime-Frequency

SOBI
FFT

STFT EMD
WT

WT+MCC

Low energy modes

Closely-spaced modes

Instantaneous mixing

EMD+MCC Modified

Nonstationary excitation

Convolutive mixing

Time delays

FFT-complex
ICA

STFT-ICA

Highly-damped modes

WT-ICA

Damage detection

Hybrid methods

MCC ICA

SOBI

Partial measurements

Figure 2.2: Summary of non-sparse BSS methods

square and spatially dense. However, an initial estimate for the mixing matrix is assumed

using shape functions that satisfy the prescribed boundary conditions for the problem, and

this estimate is adjusted iteratively based on an energy criterion [47].

Another hybrid approach [46] in conjunction with the EMD and the MCC was recently

proposed for blind identification in special cases of structures equipped with TMDs. In

this approach, EMD is first utilized to separate the closely-spaced modes, and then the

remaining modes are separated using MCC method. However, this approach uses an

interpolation based technique for estimating the mode shapes, which is cumbersome to

implement on WSSNs. Recently another family of hybrid BSS methods employing ICA are

proposed in conjunction with time-frequency transformation to deal with highly-damped

modes [149] and time-varying systems [148]. All the hybrid non-sparse BSS methods are

summarized in Fig. 2.2.
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2.3.2 Sparse BSS

Estimating modal information for the full-rank case of Eq. 2.2 is well-known [13, 7, 62,

45, 46, 112, 149, 148]. The BSS problem applied in the context of partial measurement

results in the under-determined case, i.e., nm < ns (i.e., A is non-square) [15, 158, 66, 2].

Hence, A is non-invertible, and estimating W and s is fraught with difficulties. One

way to deal with the under-determined case is to assume that under frequency or time-

frequency transformations, the signals can be transformed using a sparse basis (sources).

Consequently, when the sources are sparse, a majority of data will be aligned along the

direction of basis vectors, where the directions of the maximum data density will yield the

partial modal information. Therefore the essence of the sparse approach is the identification

of line of orientation vectors (also termed as basis vectors) from the mixtures.

Clustering using topographic maps [51] is a popular approach in sparse BSS methods.

In image processing, feature detection techniques [75] using Hough transform have also

been used to locate line of orientations. The estimation of mixing matrix and sources of

speech signal was achieved [158] based on maximum a posteriori and maximum likelihood

estimation. A fuzzy-C-means clustering approach [157] was also used to exploit sparseness

of speech in the wavelet domain. This multi-scale method provides a number of different

classes of coefficients that represent the same signal. The selection of the most appropriate

class is determined by the sparsity of the coefficients. Kernel based L1 norm minimization

approach [33] is another clustering approach for the speech signals. Recently, several

algorithms for achieving sparsity in the transformed domain, such as wavelet transforms

[66, 73] and short-time Fourier transform (STFT) [2, 3], have been proposed. All these

algorithms are primarily developed for image or acoustic signals.

The essence of sparse separation is to perform identification in a transformed signal

space (e.g., Fourier, wavelet) such that the sources are rendered sparse by the transforma-

tion, with at most one source active at any time [15, 158]. Notion of sparsity can be easily
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Figure 2.3: Notion of sparsity

understood through a simple example as shown in Fig. 2.3, where two signals namely

impulse and sine wave are considered. It is seen that the impulse function is sparse in the

time domain with a non-zero value only at t = 0. On the other hand, the sine wave is dense

in time domain. However when we transform the sine wave from time to the frequency

domain, it appears to be sparse in frequency domain. Therefore the notion of sparsity can

be achieved through an appropriate time-frequency transformation.

Sparsity is typically difficult to achieve in ambient system identification problems. For

very lightly damped and flexible structures, sparsity is difficult to realize. Furthermore, low

energy and substantial measurement noise present difficulties in delineating in the Fourier

domain. Unlike image or speech signals, damping in the structural response introduces an

additional level of complexity. Hence, several clustering techniques developed in speech

processing literature [15, 73, 2, 100, 65] cannot be used directly for the problem of ambient

system identification. Recently, a time-frequency decomposition procedure based on STFT

to achieve sparsity was proposed in the literature [3]. This algorithm was subsequently
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applied to structural system identification [25] with good results. In this paper, the authors

search the time-frequency space to determine the coordinate where only one source is

active. The eigen-value decomposition of the spectral data at this instant then allows

them to calculate the partial mixing coefficients. For low frequency systems, achieving

sparsity may be computationally expensive; the next section on PARAFAC is relevant in

this context.

2.3.3 PARAFAC Decomposition

When a signal is expressed as a multi-dimensional array, then its tensor representation

allows the use of multi-linear algebra tools, which is more powerful than linear algebra

tools [124]. A vector t = ti ∈ <n1 is a first-order tensor, whereas a matrix T = tij ∈ <n1×n2

is second-order tensor. In general a pth order tensor is written as:

T = tijk...p ∈ <n1×n2×n3×....×np (2.5)

A third-order tensor is primarily decomposed into a sum of outer products of triple

vectors as shown in Fig. 2.4 [124]:

a1

b1

c1

+ a2

b2

c2

+ b b b aR

bR

cR

T

Figure 2.4: Tensor decomposition
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T =
R∑
r=1

ar ◦ br ◦ cr ⇐⇒ T ijk =
R∑
r=1

airbjrckr (2.6)

where ◦ represents outer product and i ∈ [1 I], j ∈ [1 J] and k ∈ [1 K]. This is termed as a

trilinear model of T, T = [[A,B,C]], where the matrices are given by A = (a1, a2, ...., aR),

B = (b1,b2, ....,bR), and C = (c1, c2, ...., cR). Therefore, Eq. 2.6 represents the summa-

tion of R rank-1 tensors or PARAFAC components that are needed to fit the tensor.

PARAFAC components are usually estimated by minimization of the quadratic cost func-

tion:

g(a, b, c) = ‖T−
R∑
r=1

ar ◦ br ◦ cr‖2 (2.7)

This technique was introduced in two different works; canonical decomposition (CAN-

DECOMP) [24] or parallel factor analysis (PARAFAC) [43]. The algorithms fitting the

PARAFAC model are usually classified in three main groups [138]: (a) alternating least

squares (ALS), which updates only a subset of parameters at each step; (b) derivative-

based methods; which seeks an update for all the parameters simultaneously by successive

approximations, and (c) direct or non-iterative approaches. Out of these, ALS method

has several advantages, including easier implementation, guaranteed convergence, and bet-

ter handling capability of higher order tensors [138]. Finally the algorithm finds a tensor

T̂ =
∑R

r=1 ar ◦ br ◦ cr such that Eq. 2.7 is satisfied. A unique decomposition is obtained

if the following Kruskal condition [68] is satisfied:

kA + kB + kC ≥ 2R + 2 (2.8)

where kA, kB and kC are the k−rank of the matrices A, B and C respectively (k-rank

is defined as maximum number k such that every set of k columns of the matrix is linearly

independent [68]). PARAFAC decomposition can be used within the context of sparse BSS

to reduce the computational burden associated with source separation, as will be described
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in later chapters.

2.4 Sensor Networks

Sensors are the key components in the distributed identification methods being proposed

here. Traditional sensors are wired with physical connections between the sensing unit

and the data acquisition system. Recent developments in the area of MEMS and wireless

technologies have resulted in self-contained distributed wireless networks. In the present

section, traditional centralized sensing systems and the more recent smart decentralized

(distributed) sensing systems are reviewed within the context of BI.

2.4.1 Traditional Centralized Sensing System

Most of the popular system identification methods [53, 139, 57, 74, 21, 147, 23, 83, 96]

described in previous sections utilize measurements that are simultaneously collected from

a dense array of sensors, and processed centrally off-line. In such a setting, all the key loca-

tions on the structure are instrumented with sensors, and connected to a central processing

unit using coaxial cables. This setup involves a global processing unit, called a centralized

data repository (CDR). This centrally off-line wired sensing system is commonly known

as centralized (global) sensing system [78, 96]. In this system, measurements are collected

first by the data acquisition system at sensor nodes, then transmitted simultaneously to

the CDR from all the sensors using cables. Finally, the central processor performs the data

processing tasks.

In large civil structures, using long cables to communicate sensor measurements to the

central processor involve high cost, labor-intensive installations and time [122]. Moreover,

the central processor deals with the global measurement of all sensors, thereby requir-

ing massive storage, power, bandwidth and computational effort [96]. In locations with
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extreme weather conditions as in North America, the cost associated with large scale mon-

itoring systems is generally higher as a result of their size and the need to place cables

in weatherproof conduits [78]. As reported in some studies, nearly 25% of the total sys-

tem cost and 75% of the total installation time can be attributed to cable installations

[130]. For a large inventory of systems, such as a portfolio of bridges, alternate means

of rapid modal assessment is required, one that can be performed rapidly with minimum

installation effort.

2.4.2 Modern Decentralized Sensing Systems

Wireless Smart Sensor Networks

Recent advances in Micro-Electro-Mechanical system (MEMS) has enabled low cost wire-

less smart sensor networks (WSSNs) to be seriously considered as an attractive alternative

to wired data acquisition systems. In fact, a WSSN is an intense network consisting of

intercommunicating tiny computers equipped with MEMS sensors. Each tiny computer

represents a node of the network and is denoted as sensor nodes or motes. The com-

munication within the network is established using powerful radio frequency transmission

protocols.

A typical wireless sensing unit primarily includes three subsystems [80, 143] (see Fig.

2.5).

1. The sensing interface (converts an analog signal to digital form).

2. Computational core, or an on-board microprocessor (digital data processing and local

storage).

3. Wireless communication system (data transmission with other sensors or a data

server).
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(a) (b) 

Sensing interface 

(sensor board) 

Sensing interface 

on top of the core 

Wireless communication 

system (radio-antenna) 

Computational core 

(microprocessor) 

Figure 2.5: Three subsystems of a wireless sensor (a) sensing interface, core and wireless
communication system, (b) assembly of three subsystems

In particular, a sensor node in WSSN performs the local data acquisition, data process-

ing, and communication with other nodes in the network and a central base station (see

Fig. 2.6).

A variety of commercially available motes (i.e., micaZ [102, 54], wireless modular mon-

itoring system (WiMMS) [81, 82, 26, 159], Narada sensors [133], iMote2 [121, 76] or Lotus

motes [89, 119]) have been recently used in several structural health monitoring applica-

tions. WSSNs can remedy the cabling problem of the traditional monitoring system and

significantly reduce the maintenance cost associated with cabling [130]. Therefore, WSSNs

provide a promising alternative to traditional wired sensor networks. However, WSSNs face

a unique set of challenges, often not found in traditional wired networks. The advantages

and the challenges in using WSSNs are discussed in the ensuing sections.
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Wireless sensor
(data acquisition &

local data processing)

Central processor

Wireless
transmission

Sensing interface
(with analog-to-digital converter)

Computation core
(with tiny micro-processor)

Wireless communication
(with radio-frequency protocol)

Subsystems of wireless sensor

Figure 2.6: Key elements of WSSNs

Decentralized Sensor Networks

If one were to simply replace all the wired sensors with wireless units, then the data

collection procedure changes; however, it has little or no effect on the processing algorithms

and their use. While the use of wireless sensors in this setting is still attractive, it will

be particularly advantageous if one were to use either just a fraction of the number of

sensors and concatenate the information gathered from each set up, or to undertake local

processing at the sensor level. The latter is made possible in WSSNs, as they are equipped

with an onboard computing facility to enable local data processing within the network. The

on-broad processor allows smart sensors to make decisions, perform computations, and save

data locally. By conducting a portion of the computation at the sensor level, the volume of

communication within the network is reduced, while retaining useful information. Either

the use of limited sensors in multiple setups, or local processing, involves a decentralized
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(a)

Global data processing

Local data acquisition

(b)

Local data acquisition and
data processing

(Minimal global data processing)

Central processor

Intermediate cluster

Sensor node

(c)

Local data acquisition and
data processing

Intermediate data
processing

Figure 2.7: Various sensing system [121]: (a) centralized sensing system, (b) independent
data processing, (c) coordinated computing strategy

architecture and most of the existing algorithms either need to be substantially modified,

or need to be replaced with a decentralized system.

Various strategies [130, 136, 81, 22, 77, 151, 39, 93, 160, 122, 159, 156, 121, 36, 76, 58] of

decentralized sensing systems have been implemented within the framework of SHM. One of

them, popularly named as independent data processing (as in Fig. 2.7(b) [136, 22, 82, 99]),

utilizes the local sensor nodes to process data, thus reducing the amount of data transferred

throughout the network. However the spatial information is lost, thereby the mode shape

cannot be extracted. Another decentralized approach is based on a coordinated computing

strategy [39] to capture the local information. In this scheme (as in Fig. 2.7(c)), the

network is divided into hierarchial communities in which the nodes within each community

communicate with each other. Communication between each community is conducted
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through a manager node. Similar types of coordinated computing strategies [93] have been

implemented using the Imote2 sensor platform for damage detection. From Fig. 2.7(b) and

(c), it is quite clear that local communication between fewer sets of wireless sensors imposes

another challenge in identification within the context of BI, namely the underdetermined

problem.

Recent wireless sensors have onboard processors that allow us to automate some of

the SHM procedures [80]. This type of data interrogation presents several benefits. For

example, reduced costs of these sensors allow for large-scale deployment. While, central-

ized processing in such cases would mean managing enormous amounts of data, on-board

processing of measurement data can be an effective means to manage and minimize this

effort. Furthermore, local data processing can be more energy efficient than transmitting

raw time-history data wirelessly, which needs relatively large power. For example, accord-

ing to [81] the amount of power consumed by the wireless sensor to perform on-board FFT

and communicating just the peak frequencies is only 2% of the energy needed to transmit

the original time series.

Recently, significant effort has been geared towards the development of on-board pro-

cessing of WSSNs. The Cooley-Tukey implementation of the FFT has been successfully

embedded and validated in the computational core of a wireless sensing unit [81] in instru-

mented structures. Lynch et al. (2004) [82] proposed embedding the complete AR-ARX

time series method of damage detection in a wireless sensing unit for autonomous execu-

tion. The methodology allows sensor nodes to be computationally independent so that they

can collect raw time-history records and generate results without node-to-node interaction

or the exchange of time-history data. Recently, another decentralized method of detecting

damage using a network of motes installed in a structural system has been proposed [22].

Once the modal frequencies and modal signal energy contributions are calculated using

FFT at each sensor location, they are wirelessly transferred to a centralized data reposi-

tory. Using on-board data compression by discrete wavelet transform, time histories are
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then transmitted [82] through the wireless channels.

While most of the decentralized schemes [82, 39, 102, 160, 122, 159, 156, 121, 36, 76, 58]

were developed for SHM, comparatively little effort is devoted for modal identification

[160, 159, 122, 121]. The sequential decentralized sensing system in conjunction with a

suite of conventional system identification methods (i.e., peak picking (PP) method, ran-

dom decrement technique (RDT) and frequency domain decomposition (FDD) method)

[160] is perhaps the first attempt in this regard. However this approach requires a linear

network topology and may result in substantial accumulation of error in the global mode

shapes. The decentralized technique in conjunction with FDD demands significant amount

of memory as compared to PP method, which is a major constraint in WSSNs. Moreover,

the accuracy of the results are sensitive to the choice of the topology. Recently stochastic

optimization method is proposed in the parallel processing of data on WSSNs to efficiently

utilize the distributed resources [159] of WSSNs. An automated hierarchial decentral-

ized approach in conjunction with eigensystem realization algorithm [122] and stochastic

subspace identification [121] was leveraged to reliably estimate modal parameters. How-

ever, these approaches involve several least-squares iterations, which is computationally

expensive. These computations increase with increasing number of target modes and with

increasing number of overlapping sensor groups. to address the issue of decentralized iden-

tification based on the principles of Blind Source Separation (BSS) [7, 115, 118] is presented

and implemented in a pedestrian bridge at Montreal.

2.4.3 Challenges in decentralized modal identification

The following set of challenges are unique to decentralized modal identification.

1. Availability of partial measurements: In the framework of distributed sensing,

various local sensor nodes communicate with each other or respond to an intermediate
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cluster node, which finally communicate with the central node. Therefore, interme-

diate cluster nodes execute the communications between few or partial local sensors

before transferring the data to a central node. From a modal identification point of

view, the interaction between partial sensors to estimate the structural modes intro-

duces a challenging mathematical problem, known as the underdetermined problem.

Unlike full-rank problem, non-sparse BSS approaches or traditional methods (e.g.,

least-squares) are incapable of dealing with the under-determined problem. Hence,

new methods need to be developed to handle this issue.

2. Presence of narrowband excitation: Most BSS methods in the context of modal

identification assume that the excitation is white and does not contain narrow band

excitation frequencies. However, this assumption is not satisfied in many situations

when the excitation is a superposition of narrow-band harmonic(s) and broad-band

disturbance, e.g., rotating machinery fixed to flexible structures, human induced vi-

bration in pedestrian bridges, or dynamic interaction with surrounding structures.

Under such conditions, traditional BSS methods (such as SOBI) yield sources (modes)

without any indication as to whether the identified source(s) is a system or an exci-

tation harmonic.

3. Computational issues: Tiny motes pose serious limitations to on-board processing.

Most of the motes carry low power processors with limited storage and computation

capabilities. New methods need to be computationally efficient such that low-cost

wireless sensors can be utilized.

4. Autonomous implementation: User-intervention in decentralized implementation

can be cumbersome and sometimes not possible. Hence, algorithms need to be simple

and to a large extent, autonomous.
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2.5 Summary

This chapter presented a survey of various traditional and modern system identification

methods, followed by a brief introduction to WSSNs. The BSS based methods perform

significantly better or similar to several existing time and frequency methods; this has been

verified independently in the published literature. While the advantages of BSS methods

is clear when applied to traditional batch processing algorithms, their advantage when

applied within the context of WSSNs remains to be seen. Furthermore, WSSNs pose a

unique set of challenges both physically as well as mathematically. These issues remain to

be solved within the context of BSS methods.
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Chapter 3

Sparse Blind Source Separation

In this chapter, a new decentralized algorithm is presented, geared towards modal identi-

fication using multiple sensor setups. The algorithm is based on the concept of sparsity,

where measurement signals are transformed from time to the time-frequency domain. It is

assumed that the model is one of static instantaneous mixing. In the transformed domain,

the signals are expressed using a sparse basis, where the sources are referred to as the

bases. The chapter is organized as follows. An introduction to the proposed method is

presented first wherein the general problem is cast in a BSS framework. The formulation

of the proposed algorithm is presented next, followed by a numerical study using a 5-DOF

building example.

3.1 Introduction

Previous research in our group has resulted in several powerful algorithms based on BSS

[45, 46, 48, 47, 112]. These methods are primarily geared towards the case of full-rank or

over-determined modal identification. Extending these methods to the case of decentral-

ized WSSNs is not straight-forward. Specifically, the case of decentralized implementation
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results in a non-square mixing matrix as the number of available measurements is sig-

nificantly lower than the number of identifiable modes. In this chapter, all these issues

are addressed using the concept of sparsity, employing time-frequency transformations,

followed by statistical signal processing operations.

3.1.1 Background on Sparsity

Sparsity can be explained by considering the two-dimensional case of Eq. 2.2, which in an

expanded form is as follows: x1(k)

x2(k)

 =

 a11 a12

a21 a22

 s1(k)

s2(k)

 (3.1)

In this example, if we assume that only one of the sources s1 is present, then Eq. 3.1

can be expressed as:  x1(k)

x2(k)

 = s1(k)

 a11

a21

 (3.2)

¡in such a situation, a plot of x1 versus x2 results in the direction vector of partial

mixing matrix coefficients. However, achieving sparsity directly in the time domain is

difficult. In the simplest case, transformation into the frequency domain results in a sparse

representation. For example, the time-domain and frequency domain transformations for a

linear mixture of two harmonic signals with additive Gaussian noise are shown in Fig. 3.1.

The line of orientation corresponding to the two harmonic sources are clearly realized in the

frequency domain scatter plot. The aim of sparse approach is to perform transformations

from the original signal space to a transformed space such that the sources are sparse,

with at most one source active at any time. Although, in this example, a straight-forward

Fourier transformation enabled the separation of partial mixing coefficients, the presence

of noise and low-energy sources makes delineation difficult.
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Figure 3.1: Sparsity under transformation
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In the context of structural dynamics, the mixing coefficients and sources correspond to

the modal matrix and modal responses, respectively. Let us consider a linear, lumped-mass

and classically damped ns DOF structural system, subjected to an excitation force, F(t).

Mẍ(t) + Cẋ(t) + Kx(t) = F(t) (3.3)

where, x(t) is a vector of displacement coordinates at the DOF. The solution to Eq. 3.3

can be written in terms of an expansion of vibration modes. In matrix form,

x = Φq =
ns∑
l=1

φlql(t) (3.4)

where, x ∈ <nm×N is the trajectory matrix composed of the sampled components of x,

q ∈ <ns×N is a matrix of the corresponding modal coordinates, and Φnm×ns is the modal

transformation matrix or the mode shape matrix. Note the similarity between Eq. 3.4

and Eq. 2.2. Under the conditions where the modal coordinates are mutually uncorrelated

with non-similar spectra, the normal coordinates can be regarded as the most uncorrelated

sources [7]. Thus, the modal coordinates q are a special case of general sources s with time

structure, and the mixing matrix is the mode-shape matrix. Therefore, exploiting sparsity

to extract the modal information essentially comprises of transformations that render only

one mode to be active at any time. This is undertaken using wavelet packet transforms

(WPT), as discussed next. In the present study, the stationary WPT (SWPT) of the noisy

mixtures at different scale levels are used to sparsify the signal.

3.1.2 Wavelet Transform

Wavelet Transform (WT) provides a useful way of representing signals through the use of

basis functions that satisfy certain properties of linear vector spaces in <3. It has found

significant use in structural applications [40, 69, 64, 49, 128]. The use of sinusoidal basis
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in the Fourier transform (FT) does not allow a meaningful representation of the non-

stationary response of system response, thus limiting its application to ambient system

identification. As the Fourier basis functions are localized only in frequency, an alternative

to accommodate the time information was introduced via the short-time Fourier transform

(STFT). However, due to the fixed nature of the windows used in STFT, resulting time

and frequency resolutions are considerably limited. Analogous to Hiesenberg’s uncertainty

principle, it is impossible to achieve good time and frequency resolutions, simultaneously.

This motivated the development of an alternative transform, namely WT, which provides

better time-frequency representation of the signals in a multi-resolution framework.

The wavelet basis, due to its smoothness, compactness, rapid decaying characteristics

and vanishing higher order moments, provides a sparse representation of vibration mea-

surements. Under such transformations, the useful information content of the signal is

retained, while the unnecessary contributions from noise are discarded. This provides bet-

ter time-frequency representation of the signals, and makes them more localized, compact,

smooth and noise free [142]. The WT of a signal y(t) is a linear transform defined as [85]:

wjk(y) =
1√
j

∞∫
−∞

y(t)ψj∗k (t) dt (3.5)

where the function ψ is commonly known as the mother wavelet and ∗ stands for com-

plex conjugation. j and k denote scale and translation parameters, respectively. Therefore,

WT decomposes a signal y(t) using basis functions that are primarily scaled and translated

versions of the mother wavelet. WT can be performed as redundant and non-redundant ver-

sions. Discrete wavelet transform belongs to the former category, while continuous wavelet

transform and stationary wavelet transform belong to the latter. A brief background of

various WTs is presented next.
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Continuous Wavelet Transform

Continuous wavelet transform (CWT) of a signal y(t) is mathematically defined as:

cjk(y) =

∫ ∞
−∞

y(t)ψ∗
(
t− k
j

)
dt (3.6)

The inverse continuous wavelet transform (ICWT) is defined as :

y(t) =
1

Cψ

∞∫
−∞

∞∫
−∞

1√
|j|
cjk(x)ψ∗

(
t− k
j

)
dkdj

j2
(3.7)

Where Cψ is defined as :

Cψ =

∫ ∞
−∞

|ψ(ω)|2

|ω|
dω<∞ (3.8)

Eq. 3.8 —known as the admissibility condition —restricts the class of functions that can

represent wavelets. In addition, the CWT satisfies following regularity conditions [85].

∫ ∞
−∞

ψ(t)dt = 0∫ ∞
−∞
|ψ(t)|2dt <∞ (3.9)

The CWT as described so far has two features that makes it difficult to use directly in the

form of Eq. 3.6. The first is redundancy. The CWT is calculated by shifting a continuously

scalable function, not necessarily orthogonal, over a signal and calculating the correlation

between them. The wavelet coefficients thus obtained are highly redundant. Another

problem is that the CWT has no analytical solution for most of the functions, and only

numerical ones can be obtained. Hence, fast algorithms are needed to exploit the full

capabilities of WT.
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Discrete Wavelet Transform

Discrete wavelet transform (DWT) is an orthogonal WT which takes care of the redundancy

aspect of the CWT, thereby facilitating easy computation of WTs, and is defined as:

djk(y) = 〈y(t),
1

2j/2
ψ(

t

2j
− k)〉 =

1

2j/2

∞∫
−∞

y(t)ψ∗(
t

2j
− k) dt =

1

2j/2

∞∫
−∞

y(t)ψj∗k (t) dt (3.10)

The transform is computed at discrete values on a grid corresponding to dyadic values

yǫV3
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Vector sub-space: V3 = V0 ⊕W0 ⊕W1 ⊕W2

Vj ⇒ Vector sub-space corresponding to scale level j

Wj ⇒ Orthogonal vector (wavelet) sub-space of Vj

⊕ ⇒ Orthogonal sum of vector sub-spaces

(j = 2)

(j = 1)

(j = 0)

Figure 3.2: Multi-resolution analysis

of scales (2j) and translations (k), where k, j ∈ Z2 i.e., integers. A signal y(t) can be

expressed in terms of wavelet coefficients djk as:

y(t) =
∑
j

∑
k

djkψ
j
k (3.11)
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The basis function ψ and its integer translates ψ(t−k) satisfy the condition of orthogonal-

ity using the framework of multi-resolution as shown in Fig. 3.2. For fast implementation,

the integration procedures are replaced by successive application of filter banks [85]. Imple-

mentation of DWT to any signal involves simultaneous low-pass (LP) and high-pass (HP)

filtering operations using appropriate filters, known as quadrature mirror filters (QMF).

The coefficients resulting from these filtering operations are known as approximation

and detail coefficients. However, since half of the frequencies of the signal have now been

removed, half of the samples can be discarded according to the Nyquist criterion. The

filter outputs are then down-sampled by a factor 2 [85]. For example, as shown in the Fig.

3.3(a), the DWT of signal x(n) containing N data points, is performed up to scale level,

j = 2. Data length of the approximate (ajd) and detail coefficients (djd) at scale level j, are

reduced by a factor 2j. The data length of the decomposition coefficients becomes N/2

and N/4 at the decomposition level 1 and 2, respectively. Ljd and Hj
d represent the LP and

HP filters at the jth scale level of DWT. Details of the DWT implementation are beyond

the scope of this work and the readers are referred to seminal works [85] on the topic for

details.

Although non redundant, the fundamental drawback of the discrete wavelet transform is

non-invariance in time. To see this, let the shifted version of the signal y(t) signal y(t−tm)

be considered. For shift k the time invariance would imply : djk{y(t− tm)} = djk+tm
{y(t)}.

Substituting djk{y(t − tm)} in the Eq. 3.10 and replacing the integral by summation, the

following expressions are obtained :

djk {y(t− tm)} ≈ 2
−j/2
∑
n

y(n−m)ψ(2−jn− k)

= 2
−j/2
∑
n

y(n)ψ(2−jn− {k −m2−j})

≈ dj
k−m2−j{y(t)} (3.12)
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Figure 3.3: Filter bank implementation (a) DWT, (b) SWT

Where, m signifies the discrete value corresponding to the time point tm. This means that

the wavelet coefficients of a time shifted signal, say y(t − τ), are not delayed versions of

the transform of the original signal. That is:

djk(y(t− τ)) 6= djk−τ (y(t)) (3.13)

Eq. 3.13 clearly shows the time non-invariance of DWT. The invariance issue shown above

can be addressed through a redundant version of the DWT, as explained in the following.
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Stationary Wavelet Transform

Consider the following transform, known as the stationary wavelet transform (SWT), of

y(t) [95, 35].

wjk(y)
∆
=

〈
y(t)

∣∣∣∣ 2
−j/2ψ

(
t− k

2j

)〉
=

1

2
j/2

∫ ∞
−∞

y(t)ψ∗
(
t− k

2j

)
dt (3.14)

The basic idea of the SWT is similar to the DWT. The time sequence whose transform

is to be carried out is applied through appropriate high and low pass filters to produce two

sequences at the next level. But unlike the DWT, the filtered sequences are not decimated,

rather filter coefficients of the jth scale level are up-sampled to form their counterparts at

(j + 1) level. Hence the filtered sequences have the same length as the original sequence

irrespective of the scale level. The implementation of the SWT is illustrated in Fig. 3.3(b).

The most important property of the SWT is time-invariance. Considering again, the

shifted version of the signal y(t) signal y(t − tm) and substituting wjk{y(t − tm)} in Eq.

3.14, the following expressions are obtained:

w j
k {y(t− tm)} ≈ 2

−j/2
∑
n

y(n−m) ψ(2−jn− 2−jk)

= 2
−j/2
∑
n

y(n) ψ

(
n− {k −m}

2j

)
≈ w j

k−m {y(t)} (3.15)

which means that the coefficients of a delayed signal are a time shifted version of those

of the original signal. Unlike DWT, SWT retains its time structure and therefore does

not affect the sample size. This is an important property that is utilized in the proposed

method. This is illustrated using the following examples.
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Change in sample length − DWT vs. SWT

• Numerical illustration − mixture of sine waves

A mixture of two sine waves is considered with ω = 1.0 Hz and ω2 = 3.5 Hz. A white

Gaussian noise (WGN) with SNR = 10 is added and the noisy mixture is shown in Fig.

3.4. The sampling frequency is 200 Hz and the total data length is 2048.
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Figure 3.4: Mixture of sine waves and noise

DWT and SWT are performed up-to a scale level of 6. db5 is chosen as the wavelet

basis. The approximate coefficients at each scale level (aj) are shown in Fig. 3.5. It is

noted that the sample length of aj decreases by a factor 2j in case of DWT, whereas it

remains unchanged in SWT. In order to see the effect of change in the data length, the

approximate coefficients at the last scale level, a0 as obtained using DWT and SWT are

compared. a0 contains the sine wave with ω1 = 1.0 Hz. As shown in Fig. 3.6, there is
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significant deterioration in the time structure of a0 in the case of DWT, however SWT

retains the original time structure of the sine wave.
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Figure 3.5: DWT and SWT coefficients of the noisy mixture

• Numerical illustration − response of a building model

The roof acceleration of an example building is considered. A WGN with SNR = 10

is added and a similar analysis is performed using DWT and SWT, as described in the

previous section. The DWT and SWT are performed up-to a scale level 6 as in Fig. 3.7.

db5 is chosen as the wavelet basis. In order to see the effect of change in the data length,

the approximate coefficients at the last scale level, a0, are compared between DWT and

SWT. a0 contains the source corresponding to ω1 = 0.91 Hz. As shown in Fig. 3.8, there

is a significant deterioration in the time structure of a0 in the case of DWT, however SWT

retains the original time structure of the source.
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Figure 3.6: Comparison of last scale level coefficient of DWT and SWT of the noisy mixture

3.1.3 Wavelet Packet Transform

In the filter-bank implementation of WT, the low frequency coefficients of jth level are

decomposed into low and high frequency coefficients at the next level, while the high fre-

quency coefficients of the jth level remain un-filtered. Thus, the resolution of WT is rather

poor in the high-frequency content of the signal, as it does not offer sufficient sub-bands.

Hence, WT is not suitable for discriminating signals containing poorly excited non-sparse

high and/or intermediate frequencies commonly occurring in structural applications [131].

The wavelet packet transform (WPT) [30, 142, 107] is an extension of WT that offers a

complete level-by-level decomposition, where both the details as well as the approximations

are filtered. As a result, the information in both the low and high frequency sub-bands are

captured. Both the redundant version of DWT, stationary wavelet transform (SWT) and

the DWT can be implemented in the form of packet transforms.
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Figure 3.7: The DWT and SWT coefficients of the roof acceleration

Although non-redundant, DWT creates artifacts around the discontinuities of the input

signal [29] and is shift-variant. Moreover, the length of the signal reduces with increasing

scale levels. Therefore the time resolution reduces significantly at higher scale levels. This

could pose a serious issue while dealing with non-stationary ambient vibration data, as

well as in estimating the damping of the time series of the modal responses. Unlike DWT,

SWT has the important shift-invariance property and the original time structure which is

particularly useful for modal analysis, specially for estimation of modal damping. If SWT

is implemented in the form of packets, all the sub-bands are shift-invariant and each sub-

band provides a shiftable description of signal at a specific scale, which is similar to SWT

[95]. In doing so, this improves not only the frequency resolution, but also maintains the

temporal resolution. Thus the stationary WPT (SWPT) is adopted as the time-frequency

tool for the present study. The details of the SWPT are explained next.
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Figure 3.8: Comparison of the last scale level coefficient of DWT and SWT of the roof
acceleration

WPT is an extension of the wavelet transform and can be carried out by a generalization

of the pyramidal algorithm [30, 107]. A wavelet packet is a triple-index function ψj,vk (t),

where j, k and v can be interpreted as scale, shift and frequency parameter [142, 85, 126]

and a SWPT basis is represented as [107]:

ψj,vk (t) =
1

2j
ψv
(
t− k

2j

)
(3.16)

where ψ1,0(t) = φ(t) and ψ1,1(t) = ψ(t) represent the scaling (father) and wavelet (mother)

function respectively. At a given scale level j, a binary tree as shown in Fig. 3.9 can be

formed using the basis functions, ψj,vk (t), whose nodes are indicated by the scale level, j

and the frequency parameter, v = 0, 1, 2, ...., (2j − 1). The wavelet packet coefficients at

each node (j, v) are written as:

wj,vk (y)
∆
=

〈
y(t)

∣∣∣∣ 2
−j/2ψv

(
t− k

2j

)〉
=

1

2
j/2

∫ ∞
−∞

y(t)ψv
(
t− k

2j

)
dt (3.17)
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Figure 3.9: SWPT binary tree: Indexing of ψj,v at different j and v

The wavelet packet component signal yj,v(t) at each node (j, v) (the component associ-

ated with each node of the binary tree shown in Fig. 3.9) can be expressed as a linear

combination of wavelet packet basis functions ψj,vk (t):

yj,v(t) =
∑
k

wj,vk ψj,vk (t) (3.18)

At a jth level of decomposition, the original signal y(t) can be represented as the summation

of all wavelet packet component signals, yj,v:

y(t) =
2j−1∑
v=0

yj,v =
2j−1∑
v=0

∑
k

wj,vk ψj,vk (t) (3.19)

Thus, the WP is a generalization of wavelets in that each frequency band of the wavelet

spectrum is further sub-divided into finer frequency bands by using the dyadic scale de-

composition.
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3.2 Details of the Proposed Algorithm

Having explained the underlying principles of time-frequency transformations using SW-

PTs, the details of the algorithm as applied to the case of decentralized identification is

explained next. Please note that a decentralized implementation results in the underdeter-

mined case, i.e., nm < ns (i.e., A is non-square). Hence, A is non-invertible, and estimating

W and s through conventional BSS tools is not possible. Hence, as explained previously,

when the sources are sparse, the majority of the data will be aligned along the direction of

basis vectors, and the directions of the maximum data density will then yield the partial

mixing coefficients [115, 118].

Assuming the measurements can be represented in the form expressed in Eq. 3.4, The

measured signal at the ith sensor location can be expressed as:

xi(t) =
ns∑
l=1

Ailsl(t) i = 1, 2, ...., nm (3.20)

where i and l are the sensor and source index respectively.

In case of partial measurements corresponding to qth and rth sensors (nm = 2 and

nm < ns; xm = {xq, xr}T ), we get:

xq(t) =
ns∑
l=1

Aqlsl(t)

xr(t) =
ns∑
l=1

Arlsl(t) (3.21)

Considering the orthogonal wavelet decomposition of the sources using Eq. 3.18, we

can express the individual source signal in terms of its decomposition coefficients:

sj,vl (t) =
∑
k

ej,vk,lψ
j,v
k (t) l = 1, 2, ...., ns (3.22)
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where j, k, and v represent scale, shift, and frequency index respectively. ej,vk,l denotes the

wavelet packet coefficient of lth source at a specific node (j, v). ψ(t) is the chosen mother

wavelet. Similarly, ith component of the measurement xm can be also expressed as:

xj,vi (t) =
∑
k

f j,vk,iψ
j,v
k (t) i = 1, 2, ...., nm (3.23)

where f j,vk,i represents the wavelet packet coefficient of the ith sensor at a specific node (j, v).

Considering the wavelet packet coefficients of the responses measurements and sources

at any specific node (j, v), inserting Eq. 3.22 and 3.23 in Eq. 3.20, and finally applying

the orthogonality condition for wavelets, we get:

f j,vk,i (t) =
ns∑
l=1

Aile
j,v
k,l(t) (3.24)

From the definition of WPT, the coefficients at highest scale level (j = s, where s is the

last, or highest scale level) are most likely to be mono-component and thereby sparse in

nature [66]. The appropriate choice of s depends on the sampling rate and the lowest

frequency content of the signal. Thus when s is properly chosen, and only the coefficients

corresponding to the highest scale level are considered, various coefficients of the sth scale

level contain the sparse modal responses and high frequency noise components. Thus,

assuming the existence of only lth source component in the f s,vk,i , Eq. 3.24 becomes:

f s,vk,i (t) = Aile
s,v
k,l (t) i = 1, 2, ...., nm (3.25)

Above expression relates the SWPT coefficient of ith sensor response with the SWPT

coefficient of lth source (modal response). Therefore, following the same logic for i = q and

i = r in Eq. 3.21, the partial mixing matrix coefficient of qth floor normalized w.r.t the rth
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floor can be obtained as:

f s,vk,q
f s,vk,r

=
Aqle

s,v
k,l (t)

Arle
s,v
k,l (t)

=
Aql
Arl

= |âql|; l = 1, 2, .....ns (3.26)

Then âql =
Aql
Arl

represents the estimated normalized mixing matrix coefficient of lth mode

at qth DOF. In this way, the normalized partial mixing matrix coefficients are estimated

using the SWPT coefficients of the partial sensor measurements at the highest scale level

of WPT decomposition.

It is plausible that the wavelet packet coefficients originating from higher values of v

indicate noise, and contain lower energy compared to the physical structure modes. In

order to get rid of these coefficients, one might consider only those coefficients that have

significant amount of energy, and thereby maximizing the sparsity of the response data.

This can be implemented using any standard thresholding technique [29, 41]. In the current

research, a thresholding based on average root-mean-square (RMS) value of the coefficients

is utilized. The coefficients with RMS value less than the average RMS value (µRMS) of all

coefficients are discarded and the remaining coefficients are retained for further analysis.

This noise removal process makes the algorithm fast and efficient and at the same time

does not ignore coefficients with significant energy contributions.

Filter banks established out of the wavelet packets have overlapped frequency contents

due to imperfect digital filtering operation [37, 85]. This creates the possibility of having

multi-component sources in the WPT coefficients at the last scale level. However, Eq. 3.25

and Eq. 3.26 are legitimate only when the coefficients comprises of mono-component sig-

nals. In order to detect the mono-component sources in the wavelet coefficients, principal

component analysis (PCA) [59] is performed using these coefficients. This enables the de-

termination of the direction of maximum variance of the coefficients. PCA is an orthogonal

transformation that converts a N × p data matrix X to a matrix M, by combining the
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vectors of X according to the linear relationship:

MT = PXT (3.27)

where P is the transformation matrix, which represents the direction of maximum possible

residual variance in the measured variables, while maintaining orthonormality with the

transformed vectors.

However, imperfect filtering will result in mode mixing of wavelet coefficients (at the

highest scale level). Assuming a mode mixing of nm sources, Eq. 3.25 in the matrix vector

form as:

f s,vα = Aes,vα (3.28)

Multiplying both sides by fTα and taking the mathematical expectation on both the

sides, we obtain:

E{f s,vα fTs,vα } = AE
[
es,vα eTs,vα

]
AT (3.29)

Using Eq. 3.29, we have:

Rf (0) = ARe(0)AT (3.30)

PCA is an orthogonal transformation in which Rf(0) = (1/N)(
N∑
k=1

fs,vα (k)fTs,vα (k)) is diag-

onalized using singular value decomposition, Rf (0) = Vfs,vα Λfs,vα VT
fs,vα

, where Vfs,vα are the

eigenvectors of the co-variance matrix of f s,vα . Then, the classical linear transformation

expressed as:

f s,vpα (k) = VT
fs,vα

f s,vα (3.31)

PCA results into the major and minor principal components (PC), principal directions

and their respective variances (σ2
1 and σ2

2). The ratio of major and minor variances is

defined as the condition number (CN) [59]. In the present study, the reciprocal of the

conditional number (RCN) as defined below is utilized as a parameter to identify the
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mono-component coefficients.

RCN =
σ2

2

σ2
1

(3.32)

A relatively small value of RCN (RCN� 1) indicates mono-component coefficients.

However, if the coefficients are multi-component, the minor PC will exhibit significant

variance. Eq. 3.26 is strictly true for the mono-component coefficients containing lower

value of RCN. Therefore, the principal direction of the WPT coefficients at last scale level

with small RCN values yields the partial matrix. If the number of target modes is nt,

the coefficients with first nt lowest RCN values are selected as sources. The advantage

of using PCA lies in the fact that the corresponding major principal component readily

yields the dominant modal response, from which the natural frequency and damping of

the corresponding mode are estimated. This procedure is repeated for two sensor measure-

ment locations at-a-time with a common reference sensor. The partial mixing coefficients

obtained in each subset of measurements are concatenated to yield the complete modal

mixing matrix.

The key steps involved in the proposed method are shown using a flowchart in Fig.

3.10 [115]. The steps in Fig. 3.10 are repeated for two sensors at-a-time and the partial

modal information are then concatenated to yield the complete modal information.

Once the modal responses are identified, the modal frequencies and damping are esti-

mated from the SWPT coefficients by treating them as single-degree-of-freedom systems.

Due to the shift-invariance property of SWPT coefficients [95], the time structure of SWPT

coefficients i.e., the modal responses, are unaffected. Modal frequencies are identified by

using the Fourier transform of the modal responses as selected by the proposed method.

For the damping estimation, autocorrelation functions of the modal responses are first es-

timated. Modal damping is then identified by fitting an exponential decay to the relative

maxima of the auto-correlation function [69, 127]. Subsequently, the partial mode shape

coefficients Φ2×ns are estimated using Eq. 3.26 by utilizing the relevant SWPT coefficients
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Figure 3.10: Flowchart of the proposed method

containing the modal responses.

3.2.1 Complete modal information synthesis from partial mode

information

Calculating the partial mixing coefficients from two sensors (corresponding to the qth and

rth measurement channels) has been explained so far. This process can be repeated using a

fixed or movable common reference sensor location, which is the essence of the decentralized
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sensing concept. Few example topologies [160, 122, 115] for the decentralized network using

a 5-DOF building (used subsequently in the numerical example section) are depicted in

Fig. 3.11.

Figure 3.11: Various topologies for decentralized implementations: (a) topology-1 (fixed
common reference), (b) topology-2 (movable common reference), (c) topology-3 (movable
common reference)

In topology-1 (T1), there are a total of four sensor groups, with a common reference

sensor fixed at the 5th floor. As shown in Fig. 3.11, each group denoted by Si contains

two measurements processed at a time, S1(5 − 4), S2(5 − 3), S3(5 − 2) and S4(5 − 1).

On the other hand, topology-2 (T2) and topology-3 (T3) do not have a common reference

sensor between for all the groups, but only between two adjacent ones. If φ̂Sii,j represents

the estimated mode shape coefficient at the ith DOF of jth mode φj in the Si setup, then
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φ̂j is simply the union of the partial mode shape coefficients, φ̂Sii,j from each group (Si):

φ̂j =

Sg⋃
Si=1

φ̂Sii,j (3.33)

where, Sg is the total number of groups. Finally the complete mode shape matrix is

obtained using Φ = [φ̂1|φ̂2|...|φ̂j|...|φ̂ns ]. The accuracy of the estimated mode shape matrix

is evaluated by comparing them with the theoretical modes using the Modal Assurance

Criterion (MAC), defined by [84]:

MACi =
(ψTt,iψe,i)

2

(ψTt,iψe,i)(ψ
T
t,iψe,i)

(3.34)

where ψt,i and ψe,i represent the theoretical and the estimated ith mode shape vectors,

respectively.

3.3 Numerical Study

In order to demonstrate the proposed method, simulations are performed on a 5-storey

shear-beam structure model [115]. The state-space model for this system subjected to an

external disturbance vector w is given by:

ẋ = Ax + E w

y = C̃x (3.35)

Here, the vector x is a vector of states, and the vector y represents the output vector,

which is governed by C̃ matrix. The matrix E governs the location of the excitation on

the structure. The system matrix A is constructed using M, C and K matrices. For

the example building, the lumped weight of each floor is assumed to be 19.2 kN, and the

56



damping is assumed to be 2% critical in all modes. The natural frequencies are obtained

as 0.91, 3.37, 7.11, 10.66 and 12.73 Hz. The mode shape matrix (normalized with respect

to top floor) for the building is given by:



1.00 1.00 1.00 1.00 1.00

0.82 −0.087 −1.29 −2.52 −3.39

0.59 −0.91 −0.87 1.81 5.43

0.34 −1.02 1.23 0.94 −5.84

0.11 −0.48 1.35 −2.86 4.84


(3.36)

The 5-DOF building (ns = 5) model is excited by the zero-mean unit variance Gaussian

white noise at all floor levels. Only 5th and 4th floor responses (nm = 2), x5(t) and x4(t) are
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Figure 3.12: Fourier Spectra of the partial responses

used to estimate the partial mixing matrix (A2×5). Fig. 3.12 shows the plots of the Fourier

spectrum (FS) of the floor responses with added measurement noise having signal-to-noise

ratio (SNR) of 100.

The SWPT is first performed on the two floor responses up to scale level s = 6. The
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Figure 3.13: LP-wavelet packet coefficients of measurements at various scale levels

maximum scale level is selected based on the sampling frequency of the signal and the

magnitude of the lowest frequency content of the measurement. db5 wavelet basis is chosen

for the analysis. Fig. 3.13 shows the wavelet packet transform of the measurement signals

at the 5th and 4th floor levels, x5(t) and x4(t), and shows the first low-pass (LP) coefficient

at each scale level, f j,vi , where v = 0, j = 1 − 6 and i = 4, 5. It is seen that the lowest

frequency content become dominant at higher scale levels, whereas the high-pass (HP)

coefficients successively contain the higher frequency waveforms and noise.

Fig. 3.14 shows the plots of the fourier spectra (FS) of x5(t), and the FS of the

corresponding wavelet coefficients, F j,0
i (ω), where j = 1 − 6 and i = 5. It is quite clear

that the signals are more sparse (in its sources) with increasing scale. The high frequency

noise is filtered until scale level 3, o. The 4th and 5th frequency sources are filtered at scale

level 4. Proceeding to examine all the other LP/HP coefficients at this scale level, the 4th

or the 5th mode, or both, can be then be estimated. The 3rd source is filtered at the scale

level 5 in a similar fashion. Thus, examining other LP/HP coefficients at this scale level,

the 3rd, 4th and 5th modes can be located, and this process repeated.
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Figure 3.14: The normalized FS of x5(t) and f j,05 (t) at various scale levels

The coefficients at highest scale level (m = 2s = 64) of decomposition are used to

estimate the mixing matrix coefficients. Out of these, the coefficients containing low-

energy noisy components are rejected using a thresholding criterion based on RMS values

[115]. The RMS values of the coefficients corresponding to x5(t) and x4(t) are shown in

Fig. 3.15. The average (µRMS) of all the RMS values is shown using a dotted horizontal

line in Fig. 3.15. The values of µRMS are obtained as 0.022 and 0.021 for x5(t) and x4(t)

respectively. The total number of coefficients with RMS values greater than µRMS, are

10 and 11 in x5(t) and x4(t) respectively. To include all the significant energy coefficient

pairs from both the floors, 11 coefficient pairs (i.e., higher of the two values 10 and 11) are

included.

PCA is then undertaken using the 11 SWPT coefficient pairs. Two typical cases of

coefficient pairs and their FS are shown in Fig. 3.16. For example, Fig. 3.16 shows the

plots of f 6,0
i (t) and f 6,12

i (t) for i = 4 − 5. From the Fourier spectra, it can be observed

that f 6,0
i (t) is nearly mono-component, while f 6,12

i (t) contains a mixture of modes. The
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Figure 3.15: RMS values of the last scale level coefficients of x5(t) and x4(t) (SNR=100)
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Figure 3.16: PCA of the SWPT coefficients, at v = 0 and v = 12

principal directions and the variances of the major and minor PCs are shown in Fig. 3.16.

The corresponding RCN values are 0.0006 and 0.11 for f 6,0
i (t) and f 6,12

i (t), respectively. A

lower value of RCN (� 1) in f 6,0
i (t) indicates a nearly mono-component signal, and hence

it is indicative of a structural mode. On the other hand, a higher value of RCN indicates

mode mixing in f 6,12
i (t), and is therefore discarded. Therefore the coefficients with smaller

value of RCN are the most plausible candidate for the structural mode. If the number

of desired target modes is nt, then the coefficients with first nt lowest RCN values can

be selected as sources. In this example, the number of target modes is 5 and thus the
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coefficients with first five lowest RCN are retained as the sources.

The major principal direction, or the slope of the major principal axis of f 6,0
i (t) (m1 =

0.82) are the normalized partial mixing matrix coefficients corresponding to i = 4−5. The

resulting major and minor PCs of f 6,0
i (t) are shown in Fig. 3.17. The natural frequency

(ω) and damping (ξ) corresponding to the first mode are computed based on curve fitting

the auto-correlation function of the major PC.
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5 and f 6,0

4

This procedure is repeated for all the selected coefficients. Fig. 3.18 shows the major

principal directions and the corresponding principal components for the 5 modes. The

identification results are presented in Table 3.1. The absolute percentage error between

the estimated and the theoretical values for the mixing matrix coefficients are presented as

well. It can be seen that the absolute percentage error in all the modes is less than 5.8%

for SNR= 100.
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Figure 3.18: Major principal components of 5 modes

Construction of the full mixing matrix from partial mixing coefficients

Calculating the partial mixing coefficients from two sensors (corresponding to the 5th and

4th floor responses) has been explained thus far. This process can be repeated using a fixed

or movable common reference sensor location, which is the essence of the decentralized

sensing concept. The identification results for the first mode shape are illustrated in Tables

3.2, 3.3 and 3.4 for T1, T2 and T3 cases, respectively. φj,1 and φ̂j,1 represents the true and

estimated mode shape coefficient at the jth DOF of φ1. As shown in Eq. 3.33, φ̂j,1 is simply

the union of the partial mode shape coefficients, φ̂Sij,1 from each group (Si).

In this example, T1 is selected for illustration purposes. This identification process

is shown schematically in Fig. 3.19. Repeating the analysis described earlier yields 2 × 5

normalized partial mixing coefficient matrices A3j, A2j and A1j, for each group. This matrix

is spatially sparse, yet dense in frequencies, as it includes all the modes of the system. On
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Table 3.1: Details of the identification results (SNR = 100)

j RCN ωj ξj A4j = m1 Φ4j % error

1 0.0006 0.91 2.08 0.82 0.82 0.0
2 0.0187 3.39 1.98 −0.092 −0.087 5.7
3 0.0059 7.10 1.96 −1.29 −1.29 0.0
4 0.0088 10.65 1.95 −2.50 −2.52 0.8
5 0.0049 12.75 1.97 −3.31 −3.39 2.3

Table 3.2: Estimation of φ1 using T1 with SNR = 10

j φj,1 φ̂S1
j,1 (5− 4) φ̂S2

j,1 (5− 3) φ̂S3
j,1 (5− 2) φ̂S4

j,1 (5− 1) φ̂j,1
5 1.0 1.0 1.0 1.0 1.0 1.0
4 0.82 0.82 − − − 0.82
3 0.59 − 0.59 − − 0.59
2 0.34 − − 0.34 − 0.34
1 0.11 − − − 0.12 0.12

the other hand, if existing methods such as ERA are used, the maximum theoretically

obtainable modes with two sensors is two. In this respect the proposed method is capable

of identifying nearly all the dominant modes of the system, even with two sensors, which

is the main advantage. Since all of the matrices are normalized with respect to the 5th

floor location, the partial mixing matrices can be concatenated to yield the full mixing

matrix. The MAC numbers obtained using Eq. 3.34 are greater than 0.98 for all the five

modes. The calculated mode shapes are relatively insensitive to noise (reflected by the

relatively high MAC values) even for SNR as high as 10 (as shown in Table 3.5). This can

be attributed to the inherent de-noising capability of the wavelet filter-bank.

3.4 Summary

In this chapter, a new modal identification technique specifically tailored for decentralized

processing was presented. The main advantage of the proposed method lies in the fact

that only the data collected from a few sensors need to be processed at-a-time. The

63



Table 3.3: Estimation of φ1 using T2 with SNR = 10

j φj,1 φ̂S1
j,1 (5− 4) φ̂S2

j,1 (4− 3) φ̂S3
j,1 (3− 2) φ̂S4

j,1 (2− 1) φ̂j,1
5 1.0 1.0 − − − 1.0
4 0.82 0.82 1.0 − − 0.82
3 0.59 − 0.72 1.0 − 0.59
2 0.34 − − 0.58 1.0 0.34
1 0.11 − − − 0.41 0.12

Table 3.4: Estimation of φ1 using T3 with SNR = 10

j φj,1 φ̂S1
j,1 (5− 4− 3) φ̂S2

j,1 (3− 2− 1) φ̂j,1
5 1.0 1.0 − 1.0
4 0.82 0.82 − 0.82
3 0.59 0.59 1.0 0.59
2 0.34 − 0.58 0.34
1 0.11 − 0.21 0.12

measurements are sparsified using SWPT. Then, the principal components are calculated,

which then yields the partial mixing matrix coefficients and the modal responses. The use of

SWPT makes the proposed method robust to measurement noise. Partial mixing matrices

are used to build the complete mode shape information. Unlike several popular ambient

system identification methods, the proposed method yields partial mixing coefficients that

are dense in frequencies. This is a significant advantage over many existing decentralized

methods proposed in the literature. Numerical results show that the proposed method is

effective in identifying the dominant modal characteristics of typical framed structures.
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Figure 3.19: Sensor configuration to estimate the global mode shapes

Table 3.5: Effect of noise level in MAC numbers

j SNR = 100 SNR = 20 SNR = 10

1 1.0 1.0 1.0
2 0.998 0.984 0.98
3 1.0 0.99 0.99
4 1.0 1.0 0.99
5 0.999 0.988 0.98
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Chapter 4

Sparse BSS under narrowband

sources

In this chapter, the framework of decentralized identification explained previously is ex-

tended to the case when narrow-band external excitations are present on the structure.

Most modal identification schemes assume that the excitation is white and does not con-

tain narrow band excitation frequencies. However, this assumption is not satisfied in many

flexible structures where the excitations are a superposition of narrow-band harmonic(s)

and broadband disturbances, e.g., rotating machinery fixed to flexible structures, human in-

duced vibration in pedestrian bridges, or dynamic interaction with surrounding structures.

Under such conditions, traditional BSS methods (such as SOBI) yield sources (modes)

without any indication as to whether the identified source(s) is a system or an excitation

harmonic. In such cases, the decentralized algorithm is augmented with a statistical char-

acterization of the identified sources using residual bootstrap technique, which enables us

to delineate the harmonic sources from physical modes of the structure. The performance

of the algorithm is illustrated using a numerical study, which is the same test-bed used in

the previous chapter.
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4.1 Introduction

The issue of excitation harmonics contaminating ambient vibration results has previously

been dealt with in the literature, e.g., [91, 92, 106, 6, 32, 90, 110]. In almost all cases,

the harmonic frequency is assumed to be known a priori. The closest in concept to the

method to be proposed here is an algorithm applied to the random decrement method

proposed by [90]. The author used the conditional probability density function to estimate

the harmonic sources. This was shown to perform well within the random decrement

framework. Delineating excitation harmonics from source harmonics has also been dealt

within the context of BSS [120, 154], where a modified principal component analysis is

introduced in the whitening step of BSS. The underlying architecture in all these methods

involves batch processing of sensor measurements, i.e., in a centralized architecture, where

the number of measurements is more than the number of sources to be identified. This

requires the measurements from a number of sensors to be processed together in order to

identify the modes. Unlike this approach, here a decentralized approach is presented to

deal with the issue of narrow-band harmonics in the measurements.

The key steps in the proposed method are as follows. First, a sub-set of raw vibrations

are transformed using SWPT. This results in a sparse transformation of the signal (dense

representation in the frequency domain) in the individual sub-bands in the decomposition.

Then, the statistical characteristics of the SWPT coefficients are utilized to identify the

modal parameters. First, the cross-correlation coefficient is computed over the SWPT

coefficient pairs between two measurement channels containing the modal responses to

identify the mono-component sources. Kurtosis is used as an indicator to identify the

mono-component sources containing the modal responses and to delineate the sources cor-

responding to the excitation harmonics. Finally, the standard deviation of selected mono-

component coefficients pairs are used to estimate the mode shape coefficients. The natural

frequency and damping are estimated based on the time structure of the mono-component
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wavelet coefficients. In order to quantify the uncertainty in the estimates, a residual boot-

strap technique [34, 161] is employed. This allows us to quantify the uncertainty in the

estimates, which is especially useful when dealing with experimental data of small sample

sizes.

4.2 Background

When harmonic disturbances are mixed in broad-band excitations (broad-band with re-

spect to the structure frequencies), these disturbances will directly feed-through to the

sources, which are then identified as source components in the BSS results. Since the pro-

cess of BSS is blind to scaling and permutation of sources (and modes), it is not obvious

which ones are the physical sources versus the spurious ones. In order to address this issue,

the probabilistic features of the sources are estimated and then used to delineate modal

sources from the excitation sources, as discussed next.

4.2.1 Statistical characterization of sources

Statistical characterization of modal responses play key role in the delineation process.

According to classical Wold’s decomposition theorem [97], any time series data can be

considered as the summation of deterministic (yd) and random component (yr):

y(t) = yd(t) + yr(t) (4.1)

The deterministic part consists of periodic excitations coming from several possible sources,

that can generalized as yd =
∑p

i=1 yd0,i sin(ωit), where p is the number of periodic com-

ponents in the excitation. On the other hand, the stochastic component yr(t) =
∑q

i=1 yr,i

arises due to wind or earthquake like random excitations, where q is the number of stochas-
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tic excitations. The random excitation is primarily characterized using probabilistic sense

(say, a zero-mean Gaussian distribution).

Due to stochastic nature of the excitation, the structural response becomes inherently

a random variable. Response of a single-degree-of-freedom dynamical system subjected to

the excitation y(t) as in Eq. 4.1 can be expressed as:

x(t) = xd(t) + xr(t) (4.2)

where xd(t) =
∑p

i=1 xd,i(t) =
∑p

i=1 xd0,i sin(ωit + φi) is the contribution by the determin-

istic component. When the time t is not precisely specified and arbitrary in nature, the

analytical PDF of xd,i(t) can be expressed as [97]:

p(xd,i) =
1

π
√
x2
d0,i
− x2

d,i

− xd0,i ≤ xd,i ≤ xd0,i (4.3)

The p(xd,i) has two distinct peaks and yields a bath-tub curve with a value of infinity at

xd,i = ±xd0,i. On the hand hand, xr(t) =
∑q

i=1 xr,i =
∑q

i=1

∫ t
−∞ h(t)∗yr,i(t) is the stochastic

component of the response, where h(t) is the impulse response function. It can be shown

that if yr,i(t) is a Gaussian process, then xr,i(t) is also a gaussian process with bell-shaped

distribution [97]:

p(xr,i) =
1√
2πσ

exp

(
−(xr,i − µ)2

2σ2

)
(4.4)

where, µ and σ are the mean and standard deviation of xr,i. Therefore, by looking into the

shape (i.e, bath-tub curve, bell-shaped or bi-modal curve) of the PDF of the response, the

type of excitation (i.e, periodic, random or mixture of them respectively) can be identified

[18]. In order to quantify the normality of the response, kurtosis (κ) can be used as one of

the indicator,

κx = E

[(
x− µ
σ

)4
]

(4.5)
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It may be noted that κx = 3.0 for Gaussian data such as xr(t), which is the response of

the SDOF system under random excitation primarily containing the modal responses. On

the other hand, for deterministic harmonic data such as xd(t), which is the response of

the SDOF system under harmonic excitation containing mainly the excitation component,

κx = 1.5 [97]. When both the harmonic and random data is mixed together, 1.5 ≤ κx ≤ 3.0.
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Figure 4.1: PDF of the response

In order to illustrate this concept, a SDOF system is used as an example. The natural

frequency of the system is assumed to be 0.16 Hz. Three types of excitations are used: (a)

Gaussian white noise (q = 1) (WN), (b) harmonic (p = 1) with a frequency of 0.6 Hz, (c)

mixture of (a) and (b). The Fourier spectra and the PDF of the response are shown in

Fig. 4.1. It is seen that the response x(t) follows the bell-shaped Gaussian PDF (with a κ

value of 3.0), which is the modal response with a frequency of 0.16 Hz. On the other hand,

the x(t) having a bath-tub PDF (with a κ value of 1.5) contains the harmonic excitation

at a frequency of 0.6 Hz. In the case of mixed excitation, a bi-modal behavior is obtained
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with a κ value of 2.2. Though in real measurements these numbers may not be exact, the

overall idea can be used as a good indicator to identify the structural modes amongst the

narrow band sources that are extracted using the system identification method. This is

the key idea of the algorithms to be explained next.

4.2.2 Residual bootstrap technique

While dealing with practical data, especially in decentralized settings, the sample sizes are

generally small to achieve good statistical characterization of the identified sources. The

bootstrap technique [34] (a re-sampling method) allows us to overcome this limitation.

Bootstrap is more computationally efficient in that unlike the Monte Carlo technique ex-

periments need not be repeated. Rather, it involves re-sampling already acquired results,

which is attractive in situations dealing with system identification where repeating experi-

ments can be expensive and time-consuming. Bootstrapping has also been implemented in

the context of uncertainty quantification in system identification methods such as random

decrement method and sub-space methods [14, 63, 145].

The original intent of bootstrap was to deal with small sample sizes of independent and

identically distributed data. Let Υ = {Y1, Y2, ...., Yn} represent a collection of n indepen-

dent and identically distributed numbers drawn randomly from an unknown distribution

P . Let δ be an unknown parameter of P which needs to be derived from the sample Υ

(e.g., mean, standard deviation). In its non-parametric version, a new sample with re-

placement from Υ is generated so that each Y ∗i has probability 1
n

of being equal to any

one of the Y ∗j and the new sample is called a bootstrap sample Υ∗i = {Y ∗1 , Y ∗2 , ...., Y ∗n }

[34, 161]. An estimate of the unknown parameter δ̂∗i is obtained from Υ∗i . When we repeat

such bootstrapping for i = 1, 2, ..., B, where B is the number of bootstrapping, an accurate

statistical estimate of δ such as mean, variance or confidence intervals can be obtained

from {δ∗1, δ∗2, ...., δ∗B} [42]. For example, the variance σ2
δ̂

of the unknown parameter δ̂ can
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be estimated by:

σ2
δ̂

=
1

(B − 1)

B∑
i=1

(δ̂∗i −
1

B

B∑
j=1

δ̂∗j )
2 (4.6)

Vibration measurements are time-correlated data for which the independence assump-

tion in traditional bootstrap is not valid. There are basically two approaches presented

in the literature to overcome this issue. The first method is known as the moving-block

method and the second is known as bootstrapping residuals method [14]. The moving-block

method has been used in the literature in the context of modal parameter uncertainty es-

timation [63, 145], and it involves partitioning a data set into n blocks, and treating these

blocks of data as satisfying independence assumption. It is obvious that this method re-

quires a prior knowledge of the correlation structure to determine n, and could suffer from

end-effects if the blocks are randomly concatenated. Alternatively, in the residual method,

an auto-regressive moving average (ARMA) model [103, 16] is fitted to the data. This

model consists of a deterministic auto-regressive part and random residuals or innovation

components. The ARMA model which relates the output yt with input at is expressed in

the following form:

yt − φ1yt−1 − φ2yt−2 − .....− φpyt−p = at − θ1at−1 − θ2at−2 − .....− θqat−q (4.7)

Using B operator, Eq. 4.7 can be expressed as:

(1− φ1B − φ2B
2 − .....− φpBp)yt = (1− θ1B − θ2B

2 − .....− θqBq)at

φ(B)yt = θ(B)at (4.8)

where φ(B) and θ(B) contain the AR (auto-regressive) and MA (moving average) pa-

rameters respectively. at is the zero-mean identically and independently distributed (IID)

sequence characterized by its variance, σ2
a. The AR part of order p describes the system

dynamics while MA part of order q is related to external disturbances. Since the residuals
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at are white [103, 16], the residual sequence can be bootstrapped instead of the raw data.

This is the approach taken in this algorithm.

The main parameters in representing vibration data using ARMA models are the model

orders p and q, and the associated parameters, φ(B) and θ(B). As will be discussed in

the next section, bootstrap results will be used not only to quantify the uncertainty in

the parameter estimates, but also to delineate the sources. Hence, it is important to

implement a model with low p and q, which is not possible using raw vibration data.

Hence, the wavelet coefficients at various scale levels will be bootstrapped, since these are

nearly mono component and hence yield low model orders p = 2, q = 1 [5, 94]. φ(B) and

θ(B) are estimated using Maximum Likelihood Estimation [103, 16].

Once the model parameters are estimated, the residual sequence is estimated as â =

θ̂(B)−1φ̂(B)Υ using the inverse expression of Eq. 4.8. Since â is IID, bootstrapping

can be performed to generate a bootstrap innovation â∗1 by re-sampling â1, â2, â3, ...., âN

with replacement from the estimated residual sequence, â. Subsequently the bootstrapped

modal response Υ∗1 is estimated using Υ∗1 = φ̂(B)−1θ̂(B)a∗1 as in Eq. 4.8. In doing so,

the statistical measures δ∗1 such as the standard deviation and kurtosis for the bootstrap

samples can be estimated with better confidence using Υ∗1.

4.3 Details of the Algorithm

The measurement at the ith degree-of-freedom (i = 1, 2, ..., nm) of Eq. 3.4 can be expressed

as

xi(t) =
ns∑
r=1

ψirqr(t) (4.9)
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Consistent with the notation of BSS for the static mixtures case in Eq. 2.2, we can write

the measurement at the ith location:

xi(t) =
ns∑
l=1

Ailsl(t) i = 1, 2, ...., nm (4.10)

Considering the wavelet packet decomposition of the sensor responses and the sources at

any specific node (j, v), and finally applying the orthogonality condition [107] for wavelets,

Eq. 4.10 yields [115]:

f j,vk,i (t) =
ns∑
l=1

Aile
j,v
k,l(t) i = 1, 2, ...., nm (4.11)

Considering only the highest level coefficients (j = s), the coefficients at the sth scale

level contain both the sparse modal responses and the high frequency noise components. At

the last scale level, assuming only one source is active in each sub-band after decomposition,

Eq. 4.11 can be written as:

f s,vk,i (t) = Aile
s,v
k,l (t) i = 1, 2, ...., nm (4.12)

Eq. 4.12 relates the SWPT coefficients of ith measurement with the SWPT coefficients

of the sparse lth source. Therefore, following the same logic for i = q and i = r in Eq. 4.12,

the partial mixing matrix coefficients of qth sensor measurement normalized with the rth

measurement is:
f s,vk,q
f s,vk,r

=
Aqle

s,v
k,l (t)

Arle
s,v
k,l (t)

=
Aql
Arl

= aql; l = 1, 2, .....ns (4.13)

Then, aql =
Aql
Arl

represents the estimated normalized mixing matrix coefficient of the
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lth mode at the qth DOF. Therefore, we get:

f s,vk,q = aqlf
s,v
k,r (4.14)

If we pre-multiply both side with fTs,vk,q and take the expectation both sides, Eq. 4.14 can

be simplified as:

σfs,vk,q = |aql|σfs,vk,r

|aql| =
σfs,vk,q
σfs,vk,r

(4.15)

where, σfs,vk,i is the standard deviation of f s,vk,i . In order to estimate the sign of aql, the

cross-correlation coefficient (ρ) between f s,vk,q and f s,vk,r can be used. We know that

ρfs,vk,q ,f
s,v
k,r

=
E[f s,vk,q .f

Ts,v
k,r ]

σfs,vk,q × σfs,vk,r
=

aql.σ
2
fs,vk,r

|aql|σfs,vk,r .σfs,vk,r
= ±1 (4.16)

Thus the cross-correlation coefficient with a value of ±1.0 indicates the presence of a

mono-component source. Further, the absolute value of the mixing coefficient aql can be

estimated using Eq. 4.15 and the sign of ρ (i.e., |ρ|
ρ

) in Eq. 4.16 can be used to estimate

the true value of aql.

aql =
|ρfs,vk,q ,fs,vk,r |
ρfs,vk,q ,f

s,v
k,r

σfs,vk,q
σfs,vk,r

(4.17)

Using this procedure, the normalized partial mixing matrix coefficients can be estimated

using SWPT coefficients of partial sensor measurements at the highest scale level. A

thresholding criteria based on average root-mean-square (RMS) value of the coefficients

can be used to retain coefficients with significant energy [115].

Filter banks constituted out of the wavelet packets have overlapped frequency contents

due to imperfect filtering [115]. This sometimes leads to multi-component sources in the
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WPT coefficients. However, Eq. 4.12 and Eq. 4.13 are valid only when the coefficients are

mono-component signals. In order to identify the mono-component sources in the wavelet

coefficients, the cross-correlation between f s,vk,q and f s,vk,r is used, and if more than one source

is detected, such coefficients are discarded. For the simple case consisting of a mixture of

two sources (l = m,n) present in f s,vk,i as in Eq. 4.11,

f s,vk,r = Arme
s,v
k,m + Arne

s,v
k,n (4.18)

f s,vk,q = Aqme
s,v
k,m + Aqne

s,v
k,n

Since es,vk,m and es,vk,n are uncorrelated, i.e., E[es,vk,m.e
Ts,v
k,n ] = 0, the cross-correlation of the

coefficients yields,

ρfs,vk,q f
s,v
k,r

=
E[f s,vk,r .f

Ts,v
k,q ]

σfs,vk,r .σf
s,v
k,q

=
E[(Arme

s,v
k,m + Arne

s,v
k,n).(Aqme

s,v
k,m + Aqne

s,v
k,n)]√

(A2
rmσ

2
es,vk,m

+ A2
rnσ

2
es,vk,n

)
√

(A2
qmσ

2
es,vk,m

+ A2
qnσ

2
es,vk,n

)
(4.19)

the above expression can be simplified as:

ρfs,vk,q ,f
s,v
k,r

=
ArmAqmσ

2
es,vk,m

+ ArnAqnσ
2
es,vk,n√

(A2
rmσ

2
es,vk,m

+ A2
rnσ

2
es,vk,n

)
√

(A2
qmσ

2
es,vk,m

+ A2
qnσ

2
es,vk,n

)
(4.20)

Since m 6= n,

ρfs,vk,q ,f
s,v
k,r
6= ±1 (4.21)

Thus, the cross-correlation of the coefficients can be used as an indicator for source mixing.

When there is no mode mixing, ρfs,vk,q ,f
s,v
k,r
→ ±1 as in Eq. 4.16. On the other hand

ρfs,vk,q ,f
s,v
k,r
6= 1 when mode mixing is present, as in Eq. 4.21.
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4.3.1 Delineating excitation sources from modal harmonics and

generating bootstrap estimates

As described in the background section, kurtosis contains information regarding the nature

of the underlying density of the identified sources. For a sample realization, this is given

by:

κx = E

[(
x− µ
σ

)4
]

(4.22)

A value close to 3 indicates modal sources, while lower values indicate the presence

of harmonic excitation frequency. Once a source containing modal response is detected,

then Eq. 4.17 is utilized to estimate the partial mode shape matrix. However, in order to

estimate the statistical measures such as kurtosis and standard deviation of the underlying

density function, a sufficiently large sample size is required. In order to circumvent this

issue, several bootstrapped samples are generated using the residual bootstrap method

described in the background section. The 98% confidence interval of kurtosis obtained

from bootstrapping is used to delineate the excitation harmonics from modal harmonics.

The bootstrap procedure is implemented as follows. First, the measurements are trans-

formed to the wavelet domain using SWPT. Γq = {f s,vk,q}N×1 and Γr = {f s,vk,r}N×1 correspond

to the SWPT of the measurements from two sensors (i = q, r). Then, using ARMA (2,1)

modeling of the coefficients, the innovations of SWPT coefficients are estimated. The boot-

strap samples Γ∗q,1 and Γ∗r,1 are obtained by using the bootstrap innovations as illustrated

in the background section and then the unknown parameters are estimated δ∗1 = σfs,vk,i , κf
s,v
k,i

for i = q, r. This step is repeated for m = 1, 2, 3, ..., B, where B is the number of bootstrap

samples, which then yields the required parameter statistics.
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4.3.2 Estimation of modal parameters

Once the modal responses are identified, the modal frequencies and damping are estimated

from the SWPT coefficients by treating them as single-degree-of-freedom systems. Due

to the shift-invariance property of SWPT coefficients [95], the time structure of SWPT

coefficients i.e., the modal responses, are unaffected. Modal frequencies are identified by

using the Fourier transform of the modal responses as selected by the proposed method.

For the damping estimation, autocorrelation functions of the modal responses are first

estimated. Modal damping is then identified by fitting an exponential decay to the relative

maxima of the auto-correlation function [69, 127]. Subsequently, the partial mode shape

coefficients Φ2×ns are estimated using Eq. 4.17 by utilizing the relevant SWPT coefficients

containing the modal responses. Finally the full modeshape matrix is obtained by using

Eq. 3.33 employing the decentralized architecture.

The key steps involved in the algorithm (for two measurement channels) are listed below

for estimation of modal parameters.

Key steps of the proposed algorithm

• Obtain two channels of measurements, xq and xr.

• Perform SWPT for these measurements, up to scale level s, which yields f s,vk,q and

f s,vk,r for v = 1− 2s.

• Apply the energy-based thresholding criteria to eliminate the SWPT coefficients as-

sociated with noise.

• Estimate the cross-correlation coefficient between the SWPT coefficient pairs, and

retain only those coefficients with |ρ| → ±1 which are mono-component sources.

• Perform the residual-based bootstrap technique to each SWPT coefficient pair, and

estimate the statistics of standard deviation and kurtosis.
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• Use 98% confidence interval of kurtosis to detect excitation harmonics amongst the

mono-component sources and discard them.

• Estimate the modal frequencies and damping from the mono-component sources.

Eq. 4.17 is then used to estimate the normalized mixing matrix coefficients and

subsequently the partial mixing matrix Φ2×ns is formed.

The above steps are repeated for two measurements at-a-time, and the results from each

intermediate step are combined to yield the complete modal information by utilizing Eq.

3.33.

4.4 Numerical Study

The same 5-DOF example (ns = 5) used previously is excited by a zero mean unit variance

Gaussian white noise at all the floor levels. In addition to the white noise, a harmonic

frequency 5.1 hz is added to the excitation. This harmonic is well-separated from the

resonant frequencies of the structure. Fig. 4.2 shows the Fourier spectra of the response

at the 5th and the 4th floors contaminated with a measurement noise containing a SNR of

100. Please note that these values are arbitrary, and other frequencies yield similar results.

The SOBI method [13] is first employed to extract the mixing matrix using all the floor

responses. Due to presence of harmonics, SOBI, which is based on the assumption of white

noise inputs, is unable to separate out the sources. Fig. 4.3 shows a significant amount

of mode mixing in the separated sources using SOBI, which leads to significant estimation

errors in the mixing matrix (modes).

The proposed method is then applied to the partial measurements. Two response

measurements at the 5th and the 4th floors are processed using SWPT up to scale level

s = 6. The maximum scale level is selected based on the sampling frequency (fs) of 100 Hz
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Figure 4.2: Fourier spectrum of the response

and the magnitude of the lowest frequency (fl) of the signal (0.91 Hz). For this example,

this leads to s = 6 (f = 100
26

= 1.56 Hz> 0.91 Hz). db5 wavelet basis is chosen, though

other orthogonal bases such as Symlet also produce consistent results. The coefficients

at the last scale level (2s = 64) of decomposition are used to estimate the partial mixing

matrix. Of these, the coefficients containing low-energy noisy components are discarded

using a thresholding criterion based on RMS values [118].

In order to identify the modal parameters from SWPT coefficients, the sample proba-

bility density of the selected SWPT coefficients of x5(t) and x4(t) are used. Fig. 4.4 shows

the details of the identification using the information of PDF of f 6,v
5 and f 6,v

4 . The first two

columns of Fig. 4.4 show the PDF of SWPT coefficients f 6,v
i for v = 0, 2, 4 and 5 for i = 5

and i = 4 respectively. In these sub-figures κ and σ represent the kurtosis and standard

deviation of the corresponding PDF respectively. The third column shows the Fourier

spectra of the coefficients, where the cross-correlation (i.e., ρ) of the SWPT coefficients

and the resulting mode shape coefficient are reported. It can be seen that the PDF of f 6,v
i
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Figure 4.3: Fourier spectrum of the separated sources using SOBI

with v = 0 and 5 have the value of κ close to 3.0, which corresponds to belonging to a

system mode. The absolute value of cross-correlation ρ5,4 for those coefficients close to 1.0

implies a mono-component source, which can be considered as a modal response. The ratio

of their standard deviation yields the mode shape coefficient and the sign of ρ determines

the sign of the mode shape coefficients. In this fashion, the mixing coefficients can be

estimated repeatedly using Eq. 4.17. For example, f 6,0
5 and f 6,0

4 have ρ value of +0.99 and

standard deviation of 0.41 and 0.335 respectively, for which φ4,j becomes 0.335
0.41

= +0.82.

On the other hand, f 6,5
5 and f 6,5

4 have a ρ value of −0.99 and standard deviation of 0.062

and 0.156 respectively, for which φ4,j is computed as 0.156
0.062

= −2.51.

Although the PDF of f 6,4
i has the value of κ close to 3.0, the cross-correlation between

f 6,4
5 and f 6,4

4 is −0.72 (|ρ| 6= 1). It implies that the coefficients contain mode mixing which

is evident from the associated Fourier spectrum and thus it is rejected to be considered as a
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Figure 4.4: Details of identification using the PDF of f 6,v
5 and f 6,v

4

modal response. The PDF of f 6,2
i has the value of κ << 3.0, which implies that the source

is an excitation harmonic which is then discarded from further analysis. It can be seen that

the coefficient f 6,2
i accurately separates the excitation harmonic with a frequency of 5.1

Hz. The results are finally summarized for all coefficients containing the modal response

in Table 4.1.

Uncertainty quantification

As mentioned earlier, the estimates of the probabilistic measures such as standard de-

viation, kurtosis, and the cross-correlation coefficients are key ingredients for the modal

parameter estimation procedure. In the following, the uncertainty in estimating these quan-
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Table 4.1: Details of the identification results

j ρ6,v
5,4 ωj ξj av4,j =

σ6,v
4

σ6,v
5

A4j = (+/−)av4,j Φ4j % error

1 0.999 0.91 2.07 0.82 0.82 0.82 0.0
2 −0.997 3.39 1.99 0.093 −0.093 −0.087 5.8
3 −0.991 7.10 1.97 1.288 −1.288 −1.29 0.16
4 −0.992 10.65 1.96 2.51 −2.51 −2.52 0.8
5 −0.993 12.75 1.97 3.32 −3.32 −3.39 2.1

tities from limited measurement data is undertaken using the residual bootstrap method

presented in the previous section. The residuals of the ARMA model corresponding to the

last scale level for several sub-bands v are treated as IID. Fig. 4.5 shows typical SWPT

coefficients f 6,5
5 (containing modal response with a frequency of 10.65 Hz) and the esti-

mated distribution of its standard deviation and kurtosis (with 98% confidence interval)

resulting from the bootstrapping process. The first and second statistic of the standard

deviation is 0.062 with a coefficient of variation cv of 3.1%. The mean value of kurtosis is

obtained as 2.97 with lower confidence limit (LCL) of 2.94 and and upper confidence limit

(UCL) of 3.0. Since the 98% confidence interval of kurtosis includes a value of 3.0, the

corresponding SWPT coefficients are used for the modal parameter estimation as shown

in Fig. 4.4 corresponding to f 6,5
i=5.

Once the modal responses are identified, the natural frequency and damping are esti-

mated using time structures of the corresponding SWPT coefficients. For example, SWPT

coefficient f 6,5
5 as shown in first plot of Fig. 4.5, is a modal response which is identified in

Fig. 4.4. The associated modal frequency is estimated as 10.65 Hz. In order to estimate the

modal damping, the auto-correlation function of f 6,5
5 is utilized. The best-fit exponential

envelope of the auto-correlation function yields a damping of 1.98% which closely agrees

with the theoretical damping value (2%) of the associated mode.

Calculating the partial mixing coefficients from two sensors (corresponding to the 5th

and 4th floor responses) has been explained thus far. This process can be repeated using a
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Figure 4.5: Typical bootstrapping results of f 6,5
5

fixed or movable common reference sensor location, which is the essence of the decentralized

sensing concept (explained in Chapter 3). Partial mixing matrix coefficients so obtained

can be concatenated using Eq. 3.33. The identification results for the first mode shape are

summarized in Table 4.2 using topology T1 of previous chapter.

Table 4.2: Estimation of φ1 using a typical topology with SNR= 10

j φj,1 φ̂S1
j,1 (5− 4) φ̂S2

j,1 (5− 3) φ̂S3
j,1 (5− 2) φ̂S4

j,1 (5− 1) φ̂j,1
5 1.0 1.0 1.0 1.0 1.0 1.0
4 0.82 0.82 − − − 0.82
3 0.59 − 0.58 − − 0.58
2 0.33 − − 0.34 − 0.34
1 0.11 − − − 0.12 0.12

Details of the identified natural frequencies and damping are also reported in Table 4.3.
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Table 4.3: Identified modal parameters under various noise levels

True values SNR=100 SNR=20 SNR=10

j ωj ξj ω̂j ξ̂j MAC ω̂j ξ̂j MAC ω̂j ξ̂j MAC

1 0.91 2.0 0.91 2.07 1.0 0.91 2.09 1.0 0.91 2.1 1.0
2 3.37 2.0 3.39 1.99 0.99 3.35 1.99 0.984 3.35 1.98 0.98
3 7.11 2.0 7.10 1.97 1.0 7.10 2.02 0.99 7.12 2.03 0.99
4 10.66 2.0 10.65 1.96 0.99 10.67 2.04 0.99 10.64 2.07 0.99
5 12.73 2.0 12.75 1.97 1.0 12.75 1.96 0.99 12.77 1.96 0.99

4.4.1 Presence of multiple harmonics

So far, the presence of a single harmonic was considered. This is extended further to the

case where multiple harmonic excitation sources are present. As an illustration, a total of

three harmonics with frequencies 2.0, 5.1 and 8.5 Hz are added the broadband excitation

at all the floor levels. The excitation frequencies are chosen in such a way that they are

well-separated from the natural frequencies of the structure. Fig. 4.6 shows the Fourier

spectra of the response at the 5th and 4th floors. The details of identification are presented
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Figure 4.6: Fourier spectrum of the response

in Fig. 4.7. The kurtosis values of the coefficients f 6,1
i , f 6,3

i and f 6,7
i are significantly less
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than 3.0 and hence discarded as candidates for excitation harmonics, a feature that is also

evident from their respective Fourier transforms. The remaining coefficients are primarily

the sources corresponding to system harmonics, and are used for the estimation of modal

parameters as explained in previous section. Fig. 4.7 shows two typical coefficients f 6,0
i and

−2 0 2
0

0.5

1

1.5

p
(f

6
,0

i
) κ1 = 2.99,σ1 = 0.41

−2 0 2

κ2 = 2.99,σ2 = 0.335

0 5 10 15
0

0.2

0.4

 

 

True Source
ρ5,4 = 0.99,φ4,j = 0.82

i = 5
i = 4

−0.4 −0.2 0 0.2
0

0.5

1

1.5

p
(f

6
,3

i
) κ1 = 1.63

−0.2 0 0.2

κ2 = 1.75

0 5 10 15
0

0.2

0.4
Excitation

−0.5 0 0.5
0

0.5

1

1.5

p
(f

6
,2

i
) κ1 = 3.02,σ1 = 0.225

−0.1 0 0.1

κ2 = 2.99,σ2 = 0.021

0 5 10 15
0

0.1

0.2

F
6
,v

i
(ω

)

True Source
ρ5,4 = −0.99

φ4,j = −0.093

−0.5 0 0.5
0

0.5

1

1.5

p
(f

6
,1

i
) κ1 = 1.61

−0.2 0 0.2

κ2 = 1.56

0 5 10 15
0

0.2

0.4

Excitation

−0.4 −0.2 0 0.2
0

0.5

1

1.5

f
6,v
i=5

p
(f

6
,7

i
) κ1 = 1.59

−0.5 0 0.5

f
6,v
i=4

κ2 = 1.60

0 5 10 15
0

0.5

1

ω, Hz

Excitation

Figure 4.7: Details of identification using the PDF of f 6,v
5 and f 6,v

4 under the presence of
multiple harmonics

f 6,2
i that have kurtosis values of nearly 3.0, in fact they are the modal responses containing

the structural frequencies of 0.91 and 3.39 Hz, respectively. The proposed method as

described in the earlier section is then employed to estimate the modal parameters. For

example, f 6,2
5 and f 6,2

4 have a ρ value of −0.99 and standard deviation of 0.225 and 0.021
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respectively, for which φ4,j becomes 0.021
0.225

= −0.093. This example shows that the procedure

described in this paper can be extended to the case of multiple disturbance harmonics

embedded along with structural modes, provided their frequencies are well separated.

4.5 Summary

A decentralized ambient modal identification method that can satisfactorily delineate the

modal sources when narrow band harmonics are present in the excitations, was presented

in this chapter. The algorithm is based on the principle of sparse blind source separation

using stationary wavelet packet transforms. The main advantage of the proposed approach

is in its decentralized architecture, with as few as two sensors at a time used for mode

shape construction. In this method, prior information regarding the excitation harmonic

frequency is not required, and is estimated along with the modal frequencies. The bootstrap

approach allows the estimation of key statistics using limited measurements, which has

potential in situations where repeating experiments is cumbersome. Due to the filter bank

implementation of wavelet transforms, the proposed method is robust to measurement

noise and other extraneous frequencies. Through an example simulation study, it was

shown that the method works well when single or multiple harmonics are present, as long

as the disturbance frequencies are well separated from the structural modes.
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Chapter 5

Parallel Factor Decomposition for

Compact Sparse Decentralized BSS

In the previous chapters decentralized BSS algorithms geared towards ambient modal iden-

tification with and without the presence of narrow-band harmonics was presented. One of

the central aspects of these methods is the use of time-frequency transformations employ-

ing SWPT. In many applications, however, the redundant SWPT can be computationally

intensive depending on the bandwidth of the signals and the sampling frequency of the vi-

bration measurements. The rather large volume of data to be handled even in such decen-

tralized situations with limited sensors creates significant computational burden. This issue

of computational burden is alleviated here, which is based on a tensor algebra tool called

PARAllel FACtor (PARAFAC) decomposition [43, 24, 20]. The basic principle behind

this approach is that PARAFAC enables source separation in wavelet packet coefficients

with considerable mode mixing, thereby relaxing the conditions to generate over-complete

mono-component bases, thus reducing the computational burden. The proposed method

is validated using a series of numerical simulations.
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5.1 Introduction

In the decentralized approach employing SWPT, an appropriate choice of the scale level

is critical. This depends on the sampling frequency and the lowest modal frequency of

underlying system. As many civil structures exhibit low frequencies (many less than 1 Hz),

the number of decomposition levels required to achieve mono-component sources is large.

In such cases, if the required scale level can be reduced, this could mean a substantial

savings in the computation burden, especially for very low frequency systems. Stated

differently, the challenge is to delineate all the frequencies at a higher scale level (instead

of the last scale level). This is attempted using a tensor algebra tool called PARAllel

FACtor (PARAFAC) [70, 71] as explained next.

The PARAFAC decomposition of a higher-order tensor is an extremely powerful tensor

algebra tool that has achieved significant popularity in multiple disciplines [124]. When

a signal is a multi-dimensional array, its tensor representation allows us to use multi-

linear algebra tools. The basic working of PARAFAC is as follows. A general tensor is

first decomposed into a sum of rank-1 tensors. A rank-1 tensor is commonly defined as

outer products of triple vectors and it is termed as a PARAFAC component [43, 24, 20].

Therefore, PARAFAC decomposition of a tensor of R rank results in R such PARAFAC

components, that are to be estimated. Several forms of PARAFAC decomposition enriched

with strong uniqueness properties exist in the literature [68, 129, 138, 71]. Recognizing

that the two-dimensional covariance matrices of vibration measurements at several lags can

be formulated as a third-order tensor, PARAFAC has the potential for separating sources,

which are the vibration modes of a flexible structure.

The main advantage of using PARAFAC is that establishing a single framework is pos-

sible in order to tackle modal identification problems involving both the over-determined

and the under-determined source separation cases. Whereas standard SOBI techniques

require the presence of full sensor measurements, a PARAFAC-based sparse BSS (PSBSS)
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method, as we will see later, is able to relax this requirement due its strong uniqueness

condition. In an unified framework with BSS, PARAFAC can be interpreted as a de-

composition technique that directly yields freely decaying auto-correlation vectors of the

modal responses. This yields a single and unique interpretation for both under-determined

and full measurement situations as well as over-determined cases. In a relevant study,

PARAFAC was recently used in conjunction with Bayesian model updating method [1]

to estimate modal parameters. In contrast, this research work addresses this problem

within the context of decentralized implementation, which, in addition to noise robust-

ness, separability of closely-spaced modes and low-energy modes, was not studied in the

aforementioned work. The source separation capability of PARAFAC is further enhanced

by the use of stationary wavelet packet transform . The PARAFAC components explicitly

yield the mode shapes, and the auto-correlation functions of the resulting modal responses

yield the corresponding frequencies and damping.

5.2 Background

The methodology presented here needs a brief background on PARAFAC. In this section,

a brief background of PARAFAC decomposition is discussed, before going into the details

of the algorithm.

5.2.1 PARAFAC Decomposition

When a signal is expressed as a multi-dimensional array, then its tensor representation

allows the use of multi-linear algebra tools, which is more powerful than linear algebra

tools [124]. A vector t = ti ∈ <n1 is a first-order tensor, whereas a matrix T = tij ∈ <n1×n2
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is second-order tensor. In general a pth order tensor is written as:

T = tijk...p ∈ <n1×n2×n3×....×np (5.1)

The simplest three-dimensional tensor is a 2 × 2 × 2 tensor which can be visualized as a

parallelepiped (as shown in Fig. 5.1(a)). Like matrices, a tensor is defined by its higher

t111 t121

t211 t221

t112 t122

t212 t222

i

j

k

(a) (b)

(c) (d)

Figure 5.1: (a) Block representation of a 2 × 2 × 2 tensor, tijk, tensor fibers (b) mode-1
fibers, (c) mode-2 fibers, and (d) mode-3 fibers

order fibres, mode-1 (column) fibres (t:jk), mode-2 (row) fibres (ti:k) and mode-3 (tube)

fibres (tij:) as shown in Fig. 5.1 (b)-(d). They are obtained by fixing any two of the

three indices. A tensor is also represented by a matrix by rearranging its elements which
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is commonly known as matricization or unfolding [124]. For a three-dimensional tensor,

three types of matricization can be formed by fixing any one of the indices of a tensor,

i.e., horizontal (ti::), lateral (t:j:) and frontal (t::k) which form the slices of three respective

modes. For example, mode-1 slices comprise of two horizontal slices and it is described as:

T(1) =

 t1::

t2::

 =

 t111 t121 t112 t122

t211 t221 t212 t222

 (5.2)

Along the same lines, mode-2 and mode-3 can be expressed as:

T(2) =

 t111 t211 t112 t212

t121 t221 t122 t222

 (5.3)

and

T(3) =

 t111 t121 t211 t221

t112 t212 t122 t222

 (5.4)

respectively. Eqs. 5.2, 5.3 and 5.4 represent mode-1, mode-2 and mode-3 matricizations,

respectively. It may be noted that the term mode here is associated with the notion of

tensor matricization [124] and it should not be confused with the notion of structural modes.

While considering the product of tensor and matrix, one has to decide the dimension of the

tensor and accordingly, matricization plays an important role [124]. The n-mode product

of a tensor with a matrix A is defined below [124]:

P = T×n A⇔ P(n) = AT(n) (5.5)

where each n-mode fiber of T is multiplied by the matrix A to compute n-mode fiber of

the resulting tensor P.

A three-way tensor is primarily decomposed into a sum of outer products of triple

vectors as shown in Fig. 5.2 [124]:
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Figure 5.2: Tensor decomposition

T =
R∑
r=1

ar ◦ br ◦ cr ⇐⇒ T ijk =
R∑
r=1

airbjrckr (5.6)

where ◦ denotes the outer product and i ∈ [1 I], j ∈ [1 J] and k ∈ [1 K]. This is termed as a

trilinear model of T, T = [[A,B,C]], where the matrices are given by A = (a1, a2, ...., aR),

B = (b1,b2, ....,bR), and C = (c1, c2, ...., cR). Therefore, Eq. 5.6 represents the summa-

tion of R rank-1 tensors or PARAFAC components that are needed to fit the tensor.

PARAFAC components are usually estimated by minimization of the quadratic cost func-

tion:

g(a, b, c) = ‖T−
R∑
r=1

ar ◦ br ◦ cr‖2 (5.7)

This technique was introduced in two different works; canonical decomposition (CAN-

DECOMP) [24] or parallel factor analysis (PARAFAC) [43]. The algorithms fitting the

PARAFAC model are usually classified in three main groups [138]: (a) alternating least

squares (ALS), which updates only a subset of parameters at each step; (b) derivative-

based methods; which seeks an update for all the parameters simultaneously by successive

approximations, and (c) direct or non-iterative approaches. Out of these, ALS method has

several advantages, including easier implementation, guaranteed convergence, and better

handling capability of higher order tensors [138].
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Using ALS, the PARAFAC components A, B and C are estimated as follows.

A←− T(1)(C�B)(CTC ∗BTB)†

B←− T(2)(C�A)(CTC ∗ATA)†

C←− T(3)(B�A)(BTB ∗ATA)† (5.8)

where � indicates Khatri-Rao product. ALS is primarily consisting of following key steps

which exploits the simultaneous unfolding of three matrices:

• Fix A and B, solve for C

min
C
‖T− [[A,B,C]]‖2 ≡ min

C
‖T(3) −C(B�A)T‖2 (5.9)

• Optimal C is the least square solution:

C = T(3)(B�A)(BTB ∗ATA)† (5.10)

• Successively solve for each component of A, B and C

First, A and B are fixed, and C is solved using [124]:

min
C
‖T− [[A,B,C]]‖2 ≡ min

C
‖T(3) −C(B�A)T‖2 (5.11)

Optimal C is obtained using the following least-square solution:

C = T(3)(B�A)(BTB ∗ATA)† (5.12)

where, � indicates Khatri-Rao product. Given Aε<I×R and Bε<J×R, A �B is a matrix
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with IJ rows and R columns and is expressed as:

A�B =


a11 a12 · · · · · · a1R

a21 a22 · · · · · · a2R

...
... · · · · · · ...

aI1 aI2 · · · · · · aIR

�

b11 b12 · · · · · · b1R

b21 b22 · · · · · · b2R

...
...

...
...

bJ1 bJ2 · · · · · · bJR

 (5.13)

which is simplified as:

A�B =


a11b:1 a12b:2 · · · · · · a1Rb:R

a21b:1 a22b:2 · · · · · · a2Rb:R

...
...

...
...

aI1b:1 aI2b:2 · · · · · · aIRb:R

 (5.14)

where b:k represents kth column of B. Once C is estimated using Eq. 5.12, A and B are

solved successively using the following steps:

A←− T(1)(C�B)(CTC ∗BTB)†

B←− T(2)(C�A)(CTC ∗ATA)† (5.15)

Finally the algorithm finds a tensor T̂ =
∑R

r=1 ar ◦ br ◦ cr such that Eq. 5.7 is satisfied.

An unique decomposition is obtained if the following Kruskal condition [68] is satisfied:

kA + kB + kC ≥ 2R + 2 (5.16)

where kA, kB and kC are the k−rank of the matrices A, B and C respectively (k-rank is

defined as maximum number k such that every set of k columns of the matrix is linearly

independent [68]).
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5.3 Formulation

5.3.1 PARAFAC-only method (PBSS)

When all the measurements of Eq. 3.3 are available (i.e, nm ≥ ns), the covariance matrix

Rx(k) evaluated at time-lag k can be written as:

Rx(k) = E
{
x(n)xT (n− k)

}
= ARs(k)AT (5.17)

Rs(k) = E
{
s(n)sT (n− k)

}
(5.18)

For notational simplicity, the following definitions are used:

Rx1x2(k) = Rx
12k ⇐⇒ Rxixj(k) = Rx

ijk

Rs1(k) = Rs
k1 ⇐⇒ Rsl(k) = Rs

kl (5.19)

Eq. 5.17 can be expanded for x = {x1, x2, x3} as follows:


Rx

11k Rx
12k Rx

13k

Rx
21k Rx

22k Rx
23k

Rx
31k Rx

32k Rx
33k

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33



Rs
k1 0 0

0 Rs
k2 0

0 0 Rs
k3



a11 a21 a31

a12 a22 a32

a13 a23 a33


(5.20)

From Eq. 5.20, using the simplified notations as in Eq. 5.19, Rx1x2(k) = Rx
12k can be

expressed as:

Rx
12k = a11a21R

s
k1 + a12a22R

s
k2 + a13a23R

s
k3 (5.21)

which can be generalized for Rx
ijk as:

Rx
ijk = ai1aj1R

s
k1 + ai2aj2R

s
k2 + ai3aj3R

s
k3 =

3∑
r=1

airajrR
s
kr i, j = 1− 3; k = 1, 2, 3, ..., pk

(5.22)
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where pk is the total number of lags considered for the PARAFAC decomposition. For a

general ns-DOF system, Eq. 5.22 can be generalized as:

Rx
ijk =

ns∑
r=1

airajrR
s
kr ⇐⇒ Rx =

ns∑
r=1

ar ◦ ar ◦Rs
r (5.23)

Now, we can observe that Eqs. 5.6 and 5.23 are similar; hence, the mixing matrix can

be estimated by decomposing the third order tensor Rx into ns number of rank-1 tensors

(i.e., PARAFAC components). Using PARAFAC decomposition explained previously, the

resulting solutions yield the mixing matrix A = [a1, a2, a3, ....ans ] and the auto-correlation

functions of Rs
r for r = 1, 2, 3, ...ns, from which the natural frequency and damping corre-

sponding to each mode can be estimated.

In order to demonstrate the source separation using PARAFAC decomposition, a linear

mixture of two sine waves with frequencies 1.0 and 2.5 hz are considered.

x1 = s1 + s2

x2 = 1.5s1 + 4.5s2 (5.24)

Since the mixture contains two sources, rank-2 PARAFAC decomposition is employed to

extract the hidden harmonics from the mixtures. Fig. 5.3 shows the true harmonics, their

mixtures, and estimated sources ŝ. PARAFAC decomposition yields a1 and a2 as shown

in Fig. 5.3, from which the mixing matrix can be estimated by concatenating successively

normalized (say w.r.t x1) a’s:

A =
[
a1 a2

]
=

 1.404 1.027

2.11 4.622

⇔
 1 1

1.5 4.5

 (5.25)

As compared to a two-way array (matrix case), PARAFAC yields a unique decom-

position even if the rank is greater than the smallest dimension of tensor, i.e., nm < ns
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Figure 5.3: Typical source separation using PARAFAC

[71]. When B = A (comparing Eq. 5.6 and 5.23), a more relaxed uniqueness condition is

proposed [129] where the following inequality is satisfied:

ns(ns − 1)

2
=
nm(nm − 1)

4
[
nm(nm − 1)

2
+ 1]− nm!

(nm − 4)!4!
(nm){nm≥4} (5.26)

where,

(nm){nm≥4} = 0 nm < 4

(nm){nm≥4} = 1 nm ≥ 4 (5.27)

Using Eq. 5.26, an upper bound of source separability of PARAFAC decomposition can
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be computed, which is shown in Table 5.1 [129].

Table 5.1: Source separation capability of PARAFAC

nm 2 3 4 5 6 7 8 9 10

ns 2 4 6 10 15 20 26 33 41

An important factor that determines the source separation capability of PARAFAC is

the relative energy content of various modes amongst measurement channels [1]. For exam-

ple, in typical ambient vibration measurement cases, all the sources (i.e., modal responses)

might not have significant energy content that will allow easy delineation using traditional

BSS methods. In such cases, the direct application of PARAFAC (PBSS) method [113]

to noisy data with multiple low-energy modes is not likely to yield satisfactory results.

This issue is overcome using the noise robustness and separability properties of wavelet

transforms within the framework of sparse BSS.

5.3.2 PARAFAC-based Sparse BSS (PSBSS)

So far the discussion has been limited to cases where full measurements (nm > ns) are

available. When nm � ns, a PARAFAC decomposition based sparse BSS (PSBSS) method

can be implemented [114], which is a computational improvement of sparse BSS method

[115] described in the previous section.

Eq. 4.13, as discussed earlier, requires the application of wavelet packet decomposition

until the last scale level (j = s). A suitable choice of s however depends on − (a) sam-

pling frequency (fs) and (b) lowest modal frequency of structures (fl). fs values for civil

engineering structures commonly range from 100-500 Hz. Under such circumstances, using

dyadic decomposition of wavelets, the required scale level (2s = fs
fl

) becomes large (since

s is proportional to fs), which results in a large volume of wavelet packet coefficients that

need to be extracted and managed. Similar scenario occurs when some of the structural
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frequencies are not well-separated (which commonly occur in flexible light-weight struc-

tures, or in structures with tuned-mass-dampers), thereby requiring a relatively high scale

level for accurate source separation with fine resolution.

An obvious way to overcome this large computational burden is to limit the scale level

to a smaller number (j < s); however, this will result in significant mode-mixing amongst

structural frequencies. In order to overcome this issue, while limiting the scale level, the

strong identifiability property of PARAFAC is utilized as follows.

Consider the mode-mixing of num (nm ≤ num < ns) sources in the SPWT coefficients at

a scale level u (where, j = u << s). Eq. 4.12 in matrix vector form can be written as:

fu,vα = Aueu,vα (5.28)

Therefore, by utilizing the shift-invariance property of SWPT, the covariance matrix of

SWPT coefficients of the partial measurements fu,vα (i.e., Rfu,vα
(lk)) evaluated at time lag

(lk) can be written as:

Rfu,vα
(lk) = AuReu,v

α
(lk)Au

T (5.29)

Now, following a similar procedure in Eq. 5.17−5.23, this can be further simplified to the

following PARAFAC model of SWPT coefficients:

Rf =

num∑
r=1

au
r ◦ au

r ◦Re
r (5.30)

By comparing Eq. 5.30 and 5.23, we see that the third order tensor Rf can be decomposed

into num number of rank-1 tensors using PARAFAC. However, unlike the former case (i.e.,

Eq. 5.23) where ns sources (i.e., Anm×ns) are identified in a single step, in the latter case

(i.e., Eq. 5.30) only a subset of the partial mixing matrix (i.e., Anm×num) with num sources is
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estimated from nm SPWT coefficients at a given v. By using PARAFAC decomposition, the

resulting solutions yield a subset of the partial mixing matrix A = [au
1 , a

u
2 , a

u
3 , ....a

u
nu
m

]
nm×num

and the auto-correlation functions of Re
r for r = 1, 2, 3, ...num, from which the natural fre-

quency and damping of the respective mode can be estimated. By repeating this process for

other SPWT coefficients (i.e., for v = 0, 2, ..., (2u− 1)), the complete partial mixing matrix

(i.e., Anm×ns) of ns modes can be constructed and the natural frequency and damping for

ns modes can be estimated. It is important to to note that the source separation capability

of PARAFAC as guided by Table 5.1 is significantly improved when incorporated into the

framework of sparse BSS. In PBSS method, the uniqueness property of PARAFAC applies

throughout the full measurement setups. On the other hand, this property in the PSBSS

method is utilized only at the individual packet level. Therefore, the PSBSS method is

able to separate all the structural modes and the associated partial mixing matrix using a

limited number of sensors. In this way, the source separation capability of PARAFAC is

significantly improved and made applicable to under-determined situations.

So far, using the proposed method, a partial mixing matrix (i.e., Anm×ns) is obtained.

By repeating this exercise for successive setups as explained in section 2.1.3, the full mixing

matrix (i.e., Ans×ns) can be obtained. The key steps involved in the algorithm (for two

measurement channels at a time) are listed below for estimating the natural frequencies,

damping, and the partial mode-shape matrix.

• Obtain the partial measurements xq and xr.

• Perform SWPT for the measurements up to scale level u which yields fu,vk,q and fu,vk,r

for v = 0, 1, 2, ..., (2u − 1).

• Apply PARAFAC decomposition to the set of SWPT coefficients at each v to obtain

a subset of partial mode-shape Φ̄nm×num and the associated natural frequencies and

damping ratios.
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• Repeat the previous step for v = 0, 1, 2, ..., (2u−1) and estimate the complete partial

mixing matrix (i.e., Φ̄nm×ns).

• Eq. 3.33 is then used to estimate the complete mode-shape matrix coefficients (i.e.,

Φns×ns) by utilizing various measurement setups.

From the point of view of decentralized implementation, SWPT and thresholding can

be performed at an individual node (e.g., a wireless smart sensor node), and the remaining

steps can be completed at an intermediate stage, or centrally. Assuming each point is 2

byte short, the number of operations for SWPT at an individual node in its naive form

is
∑u

j=1 2j × 2 × N2, where u is the scale level (u < s), and N is the sample length. For

example, at level s = 4 decomposition with sample length of 5 sec at 100 Hz (N = 500),

there are 15 ×106 individual addition and multiplicative operations in the SWPT-PCA

method. On other hand, using PSBSS method, using u = 2 (< s = 4), the total number of

operations would be 3 ×106 which yields 80% reduction in the computational effort. The

memory requirement is governed by
∑u

j=1 2j × 2 × N . In the case of the above example

(i.e., u = s = 4 and N = 500), the memory requirement at each node will be 30 kB for

the SWPT-PCA method, whereas for the PSBSS method (i.e., u = 2) this is reduced to 6

kB. In terms of data transfer between nodes, only a fraction (m out of 2u as governed by

thresholding) of the wavelet coefficients are transmitted, therefore the total communication

load between two nodes is m×N × 2×nm. In this example, when m = 2(< 2u), N = 500,

and nm = 2, the amount of data transmitted is 4 kB.

5.4 Numerical Study

In this section, the methodology and the benefits of the proposed algorithm are demon-

strated using a simulation example. The direct application of PARAFAC decomposition

102



(i.e., PBSS method) is introduced to show how PARAFAC can be used for modal identi-

fication of civil structures. The PSBSS method is then verified using a the same example

used previously (5DOF) and the relative advantages over the PBSS method and SWPT-

PCA method [115] are discussed. In vibration signal processing, a suitable choice of scale

level in SWPT depends on the separation of frequencies; therefore the previous example

is subsequently equipped with a tuned-mass damper to show the advantage of the PS-

BSS method to perform identification in the presence of closely-spaced modes. Finally, a

10-DOF building model is used to demonstrate the sensitivity of the PSBSS method to

various sensor configurations, which is identified as one of the major bottlenecks of PBSS

method.

5.4.1 Application of PBSS method for the 5-DOF building

Simulations are first performed on a 5-storey shear-beam structure model [115]. White

Gaussian noise is used to excite the building at all its floor locations. PARAFAC decom-

position is performed for the 5 components using five floor measurements. The resulting

mixing matrix shows an average MAC number of 0.99 and the auto-correlation of the

sources are obtained as shown in Fig. 5.4, from which the natural frequencies and damp-

ing are estimated. The sources are estimated by multiplying the pseudo-inverse of mixing

matrix with the responses, and are shown in Fig. 5.5.

According to Table 5.1, a minimum 4 sensors are required to identify 5 sources. The

mode-shape identification results for full measurement as well as the partial measurement

cases are shown in Table 5.2. Results are compared for different noise levels, SNR of 100

and 10. It is observed that the MAC numbers decrease for the second and the fifth modes

for the higher noise level case, due to the low energy in the respective modes present

in the floor response measurements. Thus, it can be observed that the PBSS method

suffers from performance issues in the presence of low energy modes and measurement
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Figure 5.4: 5-DOF building: Rs
r using PARAFAC-only method

noise, especially for the partial measurement case. Additionally, an upper bound on the

number of sources that can be identified for the partial measurement case is limited by the

uniqueness or identifiability property enumerated in Table 5.1, which is a serious limitation

of the PARAFAC approach. These shortcomings are addressed using the proposed method

as demonstrated in the subsequent sections.

Table 5.2: Details of the identification results of 5-DOF building using PBSS method

MACi (SNR=100) MACi (SNR=10)

Mode (i) nm = 5 nm = 4 nm = 5 nm = 4

1 1.0 0.99 0.98 0.97
2 0.99 0.98 0.97 0.93
3 1.0 0.99 0.98 0.97
4 1.0 0.98 0.99 0.98
5 0.99 0.97 0.97 0.92
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Figure 5.5: 5-DOF building: Estimated source and their Fourier Transform using
PARAFAC-only method

5.4.2 Application of the PSBSS method for the 5-DOF building

In the previous example, all the five (or four) floor measurements are utilized for performing

source separation. In this example, we apply the new algorithm to estimate the modal

parameters using just 2 measurements. Two response measurements at the 5th and 4th

floors are processed using SWPT. The maximum scale level (i.e., s) is computed based on

the sampling frequency (fs) of 100 Hz and the lowest frequency (fl) of the signal (i.e., 0.91

Hz), and this leads to s = 6 (f = 100
26

= 1.56 Hz> 0.91 Hz). However, to demonstrate the

effectiveness of this approach at a lower scale level, we start with a scale level of 5 (i.e.,

u = 5) instead of s = 6, which later on will be reduced even further to s = 3. Due to

its orthogonality property, db5 is chosen for the analysis. The coefficients at the last scale

level (2u = 32) of decomposition are used to estimate the partial mixing matrix. Of these,
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the coefficients containing low-energy noisy components are discarded using a thresholding

criterion based on their energy values [115].

Fig. 5.6 shows that there is mode mixing in f 5,1
i (i.e., frequencies 0.91 and 3.37 Hz

are present at this scale). Rank-2 (R = 2) PARAFAC decomposition is then employed

for these pairs of SWPT coefficients. The resulting auto-correlation functions of the two

PARAFAC components are also shown in Fig. 5.6, from which the natural frequencies and

damping ratios are estimated. Similar exercise is repeated for all selected v and the partial

mode-shape matrix is formed. Repeating these steps for other measurement set-ups yields

the complete mode-shape matrix, according to Eq. 3.33 [115].
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Figure 5.6: 5-DOF Model: (left column) Mode mixing in SWPT coefficients at the lower
scale level (u = 5), (right column) Rs(τ) of the PARAFAC components of the SWPT
coefficients using the PSBSS method

Typical modal identification results for the 5-DOF building model using PSBSS method

comparing SWPT-PCA method are shown in Table 5.3, where MAC denotes the average
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MAC value for all the modes. It is noted that when the scale level is less than the required

scale level (i.e., j < s = 6), mixing occurs for the structural modes, which is difficult to

delineate using PCA-based SWPT method [115]. Thus the results are poor (MAC < 0.92).

On the other hand, with the strong identifiability property of PARAFAC, we are able to

separate the sources from their mixtures. From Table 5.3, using a lower scale level (i.e.,

u = 5) that generates only nc = 32 SPWT coefficients compared to 64 coefficients generated

by the SWPT-PCA method, similar performance can be achieved with MAC > 0.99. It

is also evident that nc (i.e., the number of SWPT coefficients at the u scale level) can be

further reduced to only 8 when nm is increased to 3, by utilizing the identifiability criteria

of PARAFAC given in Table 5.1. In this way, the proposed method reduces the level of

computational effort significantly, which is especially advantageous in decentralized modal

identification situations. On the other hand, a minimum of four measurements are needed

to identify the modal parameters for the 5-DOF model with 5 sources using the PARAFAC-

only method (as governed by Table 5.1). Therefore, it can be concluded that the source

separation capability of PARAFAC is significantly improved when adopted within the

framework of sparse BSS. Details of the estimated frequencies and modal damping ratios

are shown in Table 5.6.

Table 5.3: 5-DOF building: Performance of the PSBSS method

Case nm u nc Comments Source Separation

SWPT-PCA method 2 6 64 Imperfect filtering Success (MAC > 0.99)

SWPT-PCA method 2 5 32 Mode mixing of 2 sources Failure (MAC < 0.92)

PSBSS method 2 5 32 Mode mixing of 2 sources Success (MAC > 0.99)

PSBSS method 3 3 8 Mode mixing of 4 sources Success (MAC > 0.99)
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5.4.3 Application of the PSBSS method for a building equipped

with a tuned-mass-damper

Presence of closely-spaced modes and low energy modes are common in civil structures.

For example, such a situation occurs when there is a tuned mass damper (TMD), in near-

symmetric structures where there is very little separation in the lateral modes, or when

the vibration measurements of a high-rise building are contaminated with measurement

noise (higher modes typically carry very low energy relative to the main structural modes).

In such cases, SWPT-PCA method [115] requires a relatively high scale level to delineate

closely-spaced modes. In order to show the application of the proposed method for the

separation of closely-spaced modes using a lower scale level, an optimally designed TMD

is assumed at the roof of the 5-DOF model considered earlier. The weight of the TMD

is 2.74 kN, k = 77.8 N/cm, and c = 3.72 Ns/cm [46]. Due to the insertion of the TMD,

the first mode (i.e., 0.91 Hz) of the 5-DOF building is segregated into two closely-spaced

modes at frequencies 0.78 and 0.99 Hz.

For this example, based on the assumed sampling frequency (i.e., 100 Hz) and the

lowest frequency of the structure (i.e., 0.78 Hz), the required scale level for the SWPT-

PCA method is 7 (i.e., s = 7). However the proposed method can be applied at a scale level

of say, 6 (i.e., u = 6), which results in a reduction of the number of SWPT coefficients to

64 from 128. Fig. 5.7 shows the Fourier transform of the resulting SPWT coefficient pairs,

f 6,1
4 and f 6,1

5 . It can be seen that there is a significant amount of mode mixing due to the

presence of closely spaced modes resulting from this lower scale level selected. However,

when the PARAFAC decomposition of the resulting SPWT coefficients is performed, it

clearly separates the associated modes as shown in Fig. 5.7. The sub-set of partial mode-

shape matrix (nm = 2 and num = 2) can be estimated using the PARAFAC components as

given by Au in Fig. 5.7:
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Figure 5.7: 5-DOF with TMD: Source separation of SPWT coefficients of two responses
using Rank-2 PARAFAC decomposition

Au =

 0.52 0.61

0.42 0.5

⇔ Φ̄2×2 =

 1.0 1.0

0.8 0.82

 (5.31)

where Φ̄ is a sub-set of the partial mixing matrix (normalized) Φ2×5 corresponding to the

5th and 4th floor DOF, associated with the 1st and 2nd modes. Subsequently, the complete

partial mixing matrix (Φ2×5) is obtained by analyzing the key SWPT coefficient pairs at

v = 0, 1, 2, ..., 63 with significant energy contents. The complete mixing matrix is then

obtained by concatenating Φ2×5 different measurement set-ups with a common reference

DOF [115].

Increasing the number of measurements, using Table 5.1, the scale level can be reduced

further to 4. However, this results in mode-mixing from 3 sources. Fig. 5.8 shows the

Fourier transform of the resulting SPWT coefficient pairs, f 4,1
3 , f 4,1

4 and f 4,1
5 , which shows
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Figure 5.8: 5-DOF with TMD: Source separation of SPWT coefficients of three responses
using Rank-3 PARAFAC decomposition

that there is significant amount of mode mixing from 3 sources; however, the sources are

separated accurately using Rank-3 PARAFAC decomposition and the sub-set (Φ̄3×3) of

partial mixing matrix (Φ̄3×6) is obtained as follows:

Au =


−0.5 0.3 −0.37

−0.4 0.246 0.031

−0.28 0.183 0.33

⇔ Φ̄3×3 =


1 1 1

0.8 0.82 −0.0823

0.56 0.61 −0.9

 (5.32)

Similar results are shown in Fig. 5.9, where the SPWT coefficients (i.e., f 4,2
3 , f 4,2

4 and

f 4,2
5 ) at v = 2 contain a mixture of two structural modes and a noise component of 4.65 Hz.

Such noise components are easily eliminated based on their energy magnitude compared to

the physical structural modes. By concatenating the PARAFAC components of successive

SWPT coefficient pairs, the partial mixing matrix (Φ̄3×6) can be constructed. It may be
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Figure 5.9: 5-DOF with TMD: Source separation using the SPWT coefficients of three
measurements and PARAFAC decomposition

noted that according to Table 5.1, a maximum of 4 sources can be extracted from 3 sensors

using PARAFAC-only method. On the other hand, using the PSBSS method, it is possible

to identify all the 6 modes using just 3 sensors, which is a significant advantage.

The scale level for the ensuing analysis is further reduced to 3, where only 4 sensors

are assumed to be available. In doing so, the number of SPWT coefficients is further

reduced to 8. Fig. 5.10 shows the successful separation of 4 structural modes using the

proposed method. Table 5.4 shows the comparison of the proposed method for different

measurement cases. Details of the estimated frequencies and damping ratios are shown in

Table 5.6.
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Figure 5.10: 5-DOF with TMD: Source separation of SPWT coefficients of four responses
using Rank-4 PARAFAC decomposition

5.4.4 Application of the PSBSS method for a 10-DOF building

While the focus in the previous examples has been on partial mode estimation and its

transformation to a full mode shape matrix using successive measurement setups, the next

example demonstrates an approach to reduce the number of setups to achieve compa-

rable performance in terms of estimating the modal parameters. Primarily, one needs to

choose an appropriate sensor configuration [104] for modal identification using few measure-

ments. It is shown that the PSBSS method is relatively insensitive to sensor configuration

compared to the existing methods, which makes it advantageous for distributed sensing

applications, where the exercise of finding an appropriate topology may not be practical.

In this section, a comparative study is performed between the PARAFAC-only method

and the proposed method in selecting the suitable sensor configuration. For this purpose,

a high-rise building model with 10-DOF [10] is considered. Such a system with relatively
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Table 5.4: 5-DOF building with TMD: Performance of the PSBSS method

Case nm u nc Comments Source Separation

SWPT-PCA 2 7 128 Imperfect filtering Success (MAC > 0.99)

SWPT-PCA 2 6 64 mode mixing of 2 sources Failure (MAC < 0.93)

PSBSS 2 6 64 mode mixing of 2 sources Success (MAC > 0.99)

PSBSS 3 4 16 mode mixing of 3 sources Success (MAC > 0.99)

PSBSS 4 3 8 mode mixing of 5 sources Success (MAC > 0.98)

large number of possible locations for measurements will allow us to highlight the benefits

of the proposed algorithm. The lumped mass at all the floors is assumed to be mi = 1×105

kg, i = 1, 2, .., 10. The inter-story stiffness of all the floors are assumed to be ki = 180×106

N/m. The first six natural frequencies are 1.01, 3.01, 4.94, 6.75, 8.42 and 9.9 Hz. Fourier

spectra of typical floor responses are shown in Fig. 5.11. The spectra shows the presence

of 6 dominant modes within the frequency range of 0-10 Hz. Higher modes (after the

sixth) have relatively little energy content. It may be noted that some of the vibration

measurements, xi(t) (i.e., i = 3, 6, 9) exhibit relatively low energy in the 4th and 5th modes

respectively due to that fact that these locations are the nodes for those modes. The effects

of including such measurements are studied, and some important conclusions are included

in the discussion.

First, the PBSS method is used to extract the first 6 PARAFAC components using

rank-6 decomposition with 4 sensor measurements (as suggested by Table 5.1). However,

there are a total 10 possible locations, and we need to select four out of all the sensor

configurations (nsc) is 10C4 = 210. Ideally, one would determine the optimal location of

sensors prior to performing the identification task. However, in many situations practical

constraints may not allow one to predetermine such optimal locations and hence, one has

to rely on locations that are accessible, which may or may not be optimal. Hence, it is
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Figure 5.11: 10-DOF building: Fourier spectra of typical floor responses

useful to quantify the relative performance of PARAFAC-only method and the method

proposed here. For this purpose, a frequency-based performance index is introduced:

ωR =
1

nt

nt∑
l=1

ω̂l
ωl

(5.33)

where ωR is the average value of the ratio of the estimated (ω̂l) and true natural frequency

(ωl), for all the target modes (say, nt is the number of target modes which is six in the

present case). Therefore ωR = 1.0 means perfect source separation. Here, the mean and

standard deviation of ωR for each measurement case is used to evaluate the performance.

Table 5.5 shows that the performance of PBSS method deteriorates significantly with the
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reduction in the number of sensors. For example, when complete sensor measurements

Table 5.5: Performance of PBSS method using different sensor configurations

SNR=100 SNR=10

case nm nsc =10 Cnm µωR σωR µωR σωR

1 10 1 1.0 - 1.0 -

2 8 45 1.0 0.0 0.98 0.01

3 6 210 0.9 0.12 0.84 0.18

4 4 210 0.83 0.15 0.75 0.21

(i.e., nm = 10 and nsc = 1) are utilized, not surprisingly, µωR is 1. On the other hand,

when nm = 4 (which yields 210 number of possible sensor configurations), the performance

of PBSS method deteriorates to yield µωR value of 0.83 (for the lower noise level case).

Upon further examination of case-4, when the sensors correspond to locations 10−8−4−2,

they yield ωRµ+σ value of 0.98. On the other hand, ωRµ−σ (i.e., 0.68) results from a sensor

configuration consisting of 9 − 6 − 3 − 2 measurements. This is because the sensors are

located at 3rd, 6th and 9th floors, which contain structural frequencies with extremely

low energy content, as these locations represent nodes for the structural modes. Thus,

it is concluded that the quality of identification is dependent not only the number of

measurements, but also on the energy distribution of the key modes in these measurements.

Sensors corresponding to responses with low energy content in the key modes result in poor

source separation, a problem that is exacerbated in the higher measurement noise case.

Therefore, a suitable choice of sensor configuration is crucial for PARAFAC-only method

in identifying low-energy modes under the partial measurement case.

Now we proceed to the PSBSS method to examine its sensitivity to the selected sensor

configuration. For this purpose, we use the most critical previous sensor setup with 9 −

6− 3− 2 contaminated for measurement noise of SNR=10, where the PBSS method fails

to identify the modal parameters accurately and the performance is extremely sensitive
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Figure 5.12: 10-DOF building: Fourier transform of auto-correlation of estimated sources
using the PSBSS method

to the choice of sensor location. Fig. 5.12 shows the estimated sources using the PSBSS

method, which indicates that the sources are clearly identified with reasonable accuracy

(ωR = 1.0). Details of the estimated frequencies and damping ratios are shown in Table 5.6.

The performance of the proposed method is quite robust due to wavelet decomposition.

The subsequent PARAFAC-decomposition of the packet coefficients enables significant

improvement of under-determined source separation. Further, it may be noted that the

most critical sensor configuration was selected for demonstration, where some of the low

frequency modes have relatively low energy contribution. Thus it is concluded that the

performance of the proposed method is relatively robust to the exact choice of sensor

location, which makes it preferable for decentralized applications, especially where the
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exercise of finding a suitable topology may not be practical.

Table 5.6: Summary of the estimated natural frequency (ω) and damping (ξ) ratios for the
numerical models using the PSBSS method

5-DOF (nm = 2) 5-DOF+TMD (nm = 2) 10-DOF (nm = 4)

Mode ω (Hz) ξ(%) ω (Hz) ξ(%) ω (Hz) ξ(%)

1 0.91 [0.91]∗ 1.8 [2.0] 0.77 [0.78] 7.7 [7.67] 1.02 [1.01] 1.1 [1.0]

2 3.39 [3.37] 1.9 [2.0] 1.0 [0.99] 7.0 [7.2] 3.03 [3.01] 1.2 [1.0]

3 7.10 [7.11] 1.96 [2.0] 3.37 [3.37] 2.08 [2.16] 4.96 [4.94] 1.3 [1.4]

4 10.65 [10.66] 1.96 [2.0] 7.10 [7.11] 2.01 [2.03] 6.79 [6.75] 2.0 [1.8]

5 12.75 [12.73] 2.01 [2.0] 10.66 [10.66] 1.99 [2.0] 8.47 [8.42] 2.4 [2.2]

6 [*True values] 12.71 [12.73] 1.96 [2.0] 9.92 [9.9] 2.7 [2.5]

5.5 Summary

A novel decentralized ambient modal identification method is proposed that enhances the

performance of sparse BSS using PARAFAC decomposition. In the proposed method,

under-determined modal identification is solved within the framework of sparse BSS where

the redundant stationary wavelet packet transform is employed to generate an over-complete

dictionary of sparse bases. In order to reduce the computational effort, the tensor algebra

tool, PARAFAC, is utilized, which allows us to use a higher scale level that would be

possible based on the fundamental frequency of interest and the sampling frequency. It is

observed that the proposed PSBSS method successfully improves the upper bound of source

separation of PARAFAC, and is relatively insensitive to the choice of sensor configuration,

which makes it suitable for the decentralized modal identification. The proposed method

is validated using a series of numerical simulations. The results indicate that the proposed

method is robust to noise, sensor configuration, and requires significantly less computa-

tional overhead than in its native form, and hence has significant potential for ambient

modal identification problems in decentralized applications for civil infrastructure.
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Chapter 6

Experimental studies

This chapter is devoted to demonstrate the application of the algorithms developed in

the previous chapters to the vibration measurements obtained from three different sets of

experimental data: (1) lab-scale model, (2) UCLA Factor building, and (3) a pedestrian

bridge located at Brossard, Quebec, Canada.

6.1 Lab-scale experiment

The bench-scale two-storey model used to conduct experiments is shown in Figure 6.11.

The structural model consists of two floor weights, 140 N each. Flexural stiffness is provided

by four vertical L-shaped aluminium sections with a flange width and thickness of 1.30 cm

and 0.16 cm, respectively. The vertical separation of each floor is 70 cm. An electrodynamic

shaker as shown in Figure 6.1 is connected to the first floor level, and the floor accelerations

are recorded using low-frequency accelerometers at both the floor levels, in both directions.

A stinger is used to attach the shaker to the structure to impart the axial force, but protect

the model against excessive lateral movements, moment and torsion. The stinger used in

the test setup is a 3 mm diameter threaded steel rod with a length of 178 mm [46].
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Figure 6.1: Experimental Set-up

A mixture of broadband noise sampled from a normal distribution is added to a de-

terministic sine wave of frequency 4.0 Hz and applied to the structure using the shaker,

for a duration of 1 min. The acceleration data is sampled at 100 Hz and acquired using a

data acquisition system. The decentralized algorithms are implemented on the vibration

measurement data from two floors and the modal parameters are identified as illustrated

in Fig. 6.2. The bootstrap estimates of the statistical measures are reported in Fig. 6.2,

from which the modal responses are identified and subsequently the modes are estimated.

The excitation frequency with a frequency of 4.0 Hz is clearly eliminated as an unwanted
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frequency in f 5,5
i using the proposed method. The details of the modal identification are

tabulated in Table 6.1. The mode shapes are normalized with respect to upper floor, and

are shown in Fig. 6.3.
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1

Table 6.1: Details of the identification results

Mode, # ωn (Hz) ξn (%)

1 1.84 2.46
2 4.88 4.84
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Figure 6.3: Mode shapes of the experimental model

6.2 UCLA Factor building

In order to demonstrate the application of the proposed identification methods to full-scale

data [115, 114], recorded ambient responses from the University of California, Los Angeles,

UCLA Doris and Louis Factor building (UCLAFB) are utilized. A general layout of this

building is shown in Fig. 6.4, which houses several centers for the health sciences and other

biomedical facilities of UCLA.

This building is one of the most heavily instrumented buildings in North America, whose

vibration data in real-time is made available for researchers world-wide through a remote

data-base server. Designed and constructed in the late 1970s, the 17−story 216.5 ft high

building consists of a special moment resisting steel frames (SMFs) supported by concrete

bell caissons and spread footings. Following the 1994 Northridge earthquake, the building

was instrumented with an array of 72 Kinemetrics FB-11 uniaxial-accelerometers at the

floor levels including the basement and the sub-basement levels. Each level has two pairs
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of orthogonal sensors parallel to the NS and EW directions as shown in the Fig. 6.4. In

2003 a 24−bit network was installed to continuously record data, which managed to record

several minor earthquake events. Please refer to the details here [67, 123, 96, 44, 112].

The basic ideas proposed in this paper are implemented on the data recorded from the

UCLA Factor building (UCLAFB). With 72 state-of-the-art accelerometers, this building

is one of the most densely instrumented buildings in North America. Although the data

in this example was obtained using wired sensors, the data from two sensors are processed

at-a-time to calculate the partial mixing coefficients. The authors recognize that there are

issues such as loss of data that is unique to wireless implementation that are not present

in the wired data collection; however, such issues are considered beyond the scope of this

paper. Only 2 sensor measurements are used at-a-time to determine the partial mixing
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coefficients, and the proposed algorithm can be implemented in a decentralized wireless

setting, or in a mobile sensing application. These partial mixing coefficients are then

combined to yield the complete modal information. The UCLAFB is a particularly useful

test-bed for this study as the results obtained form the results can be compared against

published results for the same structure by independent researchers [67, 123, 96, 44, 112].

The focus of the current study is the algorithmic development, while the actual wireless

(or mobile) implementation is reserved for the second full-scale study.
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Figure 6.5: Roof acceleration of UCLAFB in NS direction

For the current identification study, floor accelerations recorded on September 28, 2004

at 10:15 AM PDT are used. Typical measured accelerations at roof is plotted in Fig. 6.5.

Sudden jump in the roof acceleration at t = 400 s indicates the occurrence of Parkfield

earthquake. The earthquake with Mw = 6.0 on the moment magnitude scale originated in

Parkfield, CA, epi-centered 163 miles from the UCLAFB. The peak acceleration recorded

at the roof of UCLAFB was 0.0025g. The first 400 seconds of ambient response data prior

to the earthquake is used for the present study.
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Table 6.2: Sensor locations

Case Sensor locations (floor levels) Time segments (sec)

1 16− 15− 14 1− 50
2 16− 13− 12 51− 100
3 16− 11− 10 101− 150
4 16− 9− 8 151− 200
5 16− 7− 6 201− 250
6 16− 5− 4 251− 300
7 16− 3− 2 301− 350
8 16− 1 351− 400

6.2.1 Application of the SWPT-PCA method

The estimation of partial mixing coefficients using the SWPT-PCA method [115] is em-

ployed first. Then, the partial mixing coefficients are combined to estimate the full mixing

matrix. The roof sensor is assumed to be the reference sensor. It is further assumed that

only 3 sensors are available at-a-time. Table 6.2 shows the successive estimation of partial

mixing coefficients, while the data obtained from non-overlapping time segments are used

for individual estimation cases. Total number of sensing cases is 8, with a 50 s data du-

ration for each individual case. The details of the sensor locations and the corresponding

time segments are shown in Table 6.2.

The proposed SPWT-based technique is applied in each of the eight individual cases.

db5 wavelet basis and a scale level 8 are chosen for the analysis. The number of target

mode, Nt is chosen as 6 in each of the 3 directions. Therefore the total number of desired

target mode is 18. The mean (µp) and coefficient of variation (COVp) of the estimated

frequencies (ω) and damping (ξ) of all the eight cases using the proposed method are listed

in Table 6.3. The results are compared with the model order-based Stochastic Subspace

Identification (SSI) technique as reported by others in the literature [123]. The estimated

frequencies are consistent with the values as reported in the literature [67, 96, 123, 44].

By concatenating the partial mixing coefficients obtained in each case, the normalized

124



Table 6.3: Identified ω and ξ of the UCLAFB from Parkfield ambient vibration data

Mode Shapes ω (Hz) ξ (%)

No Dir SSI µe COVe (%) SSI µe COVe (%)

1 EW 0.545 0.534 1.1 5.1 4.2 24.5
2 NS 0.588 0.579 1.7 8.3 4.6 34.2
3 Torsion 0.807 0.792 1.8 10.8 5.2 22.4

4 EW 1.63 1.67 1.6 2.1 2.8 15.3
5 NS 1.79 1.80 2.1 1.4 1.9 14.4
6 Torsion 2.48 2.48 1.5 2.9 3.6 25.9

7 EW 2.83 2.85 0.9 2.2 2.7 23.8
8 NS 3.06 3.07 1.7 1.3 2.2 14.3
9 Torsion 4.02 4.04 3.2 2.9 3.7 24.1

10 EW - 4.2 2.2 - 3.0 23.3
11 NS - 4.76 2.8 - 2.5 27.9
12 Torsion - 5.12 1.8 - 3.2 25.5

13 EW - 5.2 2.1 - 3.9 33.1
14 NS - 5.75 2.4 - 4.0 23.2
15 Torsion - 6.25 2.7 - 3.3 28.5

16 EW - 7.3 3.2 - 3.9 32.8
17 NS - 7.8 3.2 - 3.5 26.7
18 Torsion - 8.6 3.7 - 4.9 22.9

mode shape matrix is estimated for the first 18 modes. The mode shapes for the first nine

modes are shown in Fig. 6.6. The correlation between the vibration modes obtained using

the complete set of sensors-collected over the entire 400 sec duration and processed in a

batch mode-versus the estimated modes (using the decentralized algorithm) is calculated

using the modal assurance criterion (MAC) and shown in Fig. 6.7. In this case, data

from three sensors are processed at a time. In calculating the correlations, three cases are

considered: i) the entire data is processed in a decentralized fashion assuming that all the

sensors have access to the entire data, ii) the data is divided into non-overlapping seg-

ments of 50 sec and processed separately, and iii) the data is divided into non-overlapping
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Figure 6.6: 1st, 2nd and 3rd modes in EW, NS, and torsional directions

segments of 10 sec and processed. The partial mixing coefficients are calculated for the

non-overlapping (or overlapping for the first case) time segments and then concatenated.

From the results in Fig. 6.7, for the first two cases, the quality of identification is

consistent with those obtained using complete sensor data and processed in a batch mode.

Particularly noteworthy is that the first case (when the entire data is processed in a de-

centralized fashion) yields almost identical results with the case of centralized processing

using full sensor data. The performance of the algorithm deteriorates as the length of the

time segments is reduced in the non-concurrent cases. In the third case, i.e., when only 10

sec of data are used in the algorithm, the MAC numbers obtained only for the first three

modes are greater than or equal to 0.98. This means that the data length is a critical

parameter that needs to be selected carefully depending on the application. Longer data

segments yield better results, however it comes at the cost of higher computational and

transmission loads. These issues are reserved for future work.
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Figure 6.7: Results from the proposed method compared to the full sensor density case

6.2.2 Application of PSBSS method

The proposed technique is applied to the data obtained from each of the eight individual

groups. As with the numerical examples, db5 is chosen as the wavelet basis. Based on the

sampling frequency of 100 Hz and the lowest structural frequency of 0.53 Hz, a maximum

scale level of 8 was used (s = 8) in the SWPT-PCA method [115]. However, this scale level

produces 28 = 256 SWPT coefficient pairs for each of the three partial measurement set

ups. In this example, instead, a scale level of 5 is chosen, (u = 5), which results in only 32

SWPT coefficient pairs. Finally, PARAFAC is employed to extract the sources from these

measurements.

Fig. 6.8 shows the Fourier spectra of the SWPT coefficients of F 5,1
i obtained by pro-

cessing three floor measurements, i = 14, 15, 16 in the east-west direction. Multiple fre-

quencies are observed from this spectra of the SWPT coefficients. Fig. 6.8 shows the

127



0 1 2 3 4 5
0

5

10

15

20

25

30

F
5
,1

i
(ω

)

ω, Hz

 

 
i = 16
i = 15
i = 14

0 10 20 30

−2

0

2

R
s
1
(τ
)

 

 
ω = 0.531 Hz

0 10 20 30

−2

0

2

R
s
2
(τ
)

 

 
ω = 0.578 Hz

0 10 20 30

−2

0

2

R
s
3
(τ
)

τ

 

 
ω = 0.79 Hz

Figure 6.8: UCLAFB: Fourier spectra of the SWPT coefficients F 5,1
i and the identified

sources

separated sources using the the proposed method using PARAFAC decomposition with 3

components. It is evident from the aforementioned figure that the sources with frequencies

ω = 0.531, 0.578 and 0.79 Hz are clearly separated. Similar exercise is performed with

respect to the SWPT coefficients of F 5,2
i , whose Fourier spectra are shown in Fig. 6.9,

where the structural modes with frequencies 1.64, 1.8 and 2.52 Hz are identified.

The number of target modes nt is 5 in each of the 3 directions. Therefore, the total

number of desired target modes is 15. The mean (µe) and the coefficient of variation

(COVe) of the estimated frequencies (ω) and damping ratios (ξ) for all the eight cases

using the proposed method are listed in Table 6.4. The results are compared with the

data-driven stochastic subspace identification (SSI) technique and the results reports for

the same structure in the literature [67, 96, 115]. By concatenating the partial mixing

coefficients obtained in each case, the full mode shape matrix is estimated for 15 modes.
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Figure 6.9: UCLAFB: Fourier spectra of the SWPT coefficients F 5,2
i and the identified

sources

6.3 Wireless Sensor Applications

One of the main advantages in the decentralized methods proposed in this thesis is the

potential for application in wireless sensor networks. Though the algorithms are equally

applicable to wired applications, the possibility of implementing processing tasks (such

as SWPT) on the sensor itself makes these algorithms particularly attractive to wireless

implementation. A typical wireless sensing unit primarily includes three subsystems [121,

78]: the sensing interface (to receive and samples the measurements), computational core

or an on-board microprocessor (for digital data processing and local storage) and wireless

communication system (for data transmission with other sensors or network server). In

particular, a sensor node in WSSN performs the local data acquisition, data processing

and communication with other nodes in the network and a central base station. A variety
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Table 6.4: Identified ω and ξ of the UCLAFB from ambient vibration data using PSBSS
method

Mode Shapes ω (Hz) ξ (%)

No Dir SSI µe COVe (%) SSI µe COVe (%)

1 EW 0.545 0.531 0.9 5.1 4.1 22.5
2 NS 0.588 0.578 1.4 8.3 5.3 24.2
3 Torsion 0.807 0.790 1.5 10.8 7.2 22.4

4 EW 1.63 1.64 1.4 2.1 2.3 12.3
5 NS 1.79 1.80 1.9 1.4 1.8 12.4
6 Torsion 2.48 2.52 1.7 2.9 3.7 25.9

7 EW 2.83 2.84 1.1 2.2 2.6 21.8
8 NS 3.06 3.08 1.6 1.3 2.5 15.3
9 Torsion 4.02 4.05 3.1 2.9 3.5 24.3

10 EW - 4.21 2.1 - 3.2 22.3
11 NS - 4.74 2.4 - 2.5 23.9
12 Torsion - 5.09 1.7 - 3.5 25.6

13 EW - 5.22 2.0 - 3.9 24.4
14 NS - 5.71 2.6 - 4.1 24.2
15 Torsion - 6.23 2.9 - 3.8 27.5

of commercially available motes (i.e., micaZ [102, 54], wireless modular monitoring system

(WiMMS) [81, 82, 26, 159], Narada sensors [133], or iMote2 [121, 76]) have been recently

used in several structural health monitoring applications. In this thesis, Memsic’s Lotus R©

motes [89] are utilized for demonstration. It is important to note that the preprocessing

algorithms themselves were not implemented directly on the board; the motes were used

for their sensor and wireless data transmission functions only.

6.3.1 Softwares

The Lotus mote’s software platform consists of LotusView and Moteworks
TM

architectural

components [89]. LotusView is designed to create an interface between user and a deployed
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network of wireless sensors. It simplifies the deployment strategies of sensors and their real-

time monitoring capabilities by displaying and analyzing the incoming data collected by

the motes. On the other hand, Moteworks
TM

enables the development of custom sensor

application including programming the motes to perform a specific task. MoteConfig, a

graphical-user-interface of Moteworks
TM

, is finally used to upload the associated firmware

onto the motes and gateway.

Lotus motes are primarily programmed in Moteworks
TM

using XMesh/TinyOS firmware

[88]. XMesh
TM

[87] is MEMSIC’s multi-hop mesh networking protocol that has various

options including low-power listening, time synchronization, network-to-base and base-

to-network routing [87]. All the sensors and data acquisition boards are supported with

XMesh
TM

enabled applications based on TinyOS. TinyOS [137] is a lightweight operating

system with small memory footprint and therefore suited to the limited resources of wire-

less sensors, which finally makes the sensors cheaper, and robust along with deployment

simplicity. Such longevity, embedment and wireless communication enable the wireless

sensors different than traditional wired sensing system.

6.3.2 Lotus radio processor module

The Lotus mote (LPR2400) is an advanced wireless sensor node platform [86], consist-

ing of computational core, sensing interface and wireless communications. LPR2400 is

built around 100 MHz 32-bit ARM low-power Cortex M3 based micro-controller (core)

integrated with RF231 (ZigBee) IEEE 802.15.4 compliant radio (responsible for wireless

communication), which makes it suitable for large scale embedded applications featuring a

high level of integration and low power consumption. Contex micro-controller of LPR2400

has 512 kB of program memory, 64 kB of data memory (RAM), and 64 MB of external

flash memory. Its size is 76 × 34 × 7 mm (see Fig. 6.10(a)-(b)) and it weighs just 18

grams [86]. The Lotus platform integrates a 2.4 GHz on-board antenna which provides a
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Figure 6.10: (a) Top view and, (b) bottom view of LPR2400, (c) one single LPR2400 and
two LPR2400 motes with sensors MTS400 on top

nominal range of about 100 meters and supports 250 kbps (kilo bits per sec) data rate.

The design is modular and a single processor board can be configured to run the sensor

application and the network-to-radio communication stacks simultaneously. LPR2400 is

connected to the sensor using the sensing interface comprising of 51-pin expansion con-

nector that supports analog inputs, 10 bit analog-to-digital converter (ADC), and digital

interfaces such as I2C port, serial peripheral interface (SPI) and universal asynchronous

receiver/transmitter (UART). These interfaces make it easy to connect to a wide variety of

external peripherals. A detailed comparison of Lotus motes with different other commer-

cially available wireless sensors e.g., micaZ [102, 54], wireless modular monitoring system

(WiMMS) [81, 82], Narada sensors [133], or iMote2 [121, 76] are listed in Table 6.5.
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Table 6.5: Comparison of Lotus motes with other commercial motes

Specification MicaZ WiMMS Narada iMote2 Lotus

Clock speed 7.37 40 8 13-416 100
(MHz)

Processor ATMG128L Dual Atmel (8) ATMG128L XScale Cortex
(bits) (8) & PowerPC (32) (8) (32) M3 (32)

ROM (Bytes) 128K 448K 128K 32M 512K

RAM 4K 26K 4K (S) 256K (S) 64K (S)
(Bytes) 128K (F) 32M (SD) 64M (F)

Radio Type CC2420 RangeLAN 2 CC2420 CC2420 RF231

ADC (bytes) 10 16 16 − 10

Battery 2×AA 5×AA 5×AAA 3×AAA 2×AA

6.3.3 Sensor board

MTS400 sensor module [88] is connected to the Lotus motes (LPR2400) to acquire the

vibration measurements. It is primarily developed in conjunction with UC Berkeley and

Intel Research Labs [88]. The sensor board has several other sensing protocols in addition

to the accelerometer used in this study. The dual-axis accelerometer (ADXL202JE) is

rated to generate acceleration data with 2 mg resolution and 167 mV/g of sensitivity. The

MTS400 sensor board is connected to LPR2400 using 51-pin expansion connector as shown

in Fig. 6.10(c). These energy-efficient digital MEMS (micro electro mechanical systems)

sensors provide extended battery-life and performance wherever low maintenance field-

deployed sensor nodes are required. The detailed specification of MTS400 can be found in

Table 6.6 [88]. Data logging and display of the upcoming data is supported by Memsic’s

LotusView user interface [89]. For our instrumentation purposes, the sensor boards are

programmed such that it sends 20 samples per radio packet achieving a sampling rate of

140 Hz for individual sensors.
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Table 6.6: Specification of MTS400

Sensor type Analog devices ADXL202JE

Channels X (ADC1), Y (ADC2)

Range ±2g

Sensitivity 167 mV/g

Resolution 2 mg

Operating range (T ) −10o to 60o

6.3.4 Experimental verification

A laboratory experiment is conducted on a bench-scale two-storey model using the Lotus

wireless sensor network as shown in Fig. 6.11 (a). The Lotus wireless sensor motes (a

combination of LPR2400 and MTS400) are placed on the plane of the floor using the

mounts comprising of two aluminum angles, L12.5×12.5 mm as shown in Fig. 6.12(b)-(c).

As shown in Fig. 6.12(a), one Lotus mote (LPR2400) is attached to the Laptop which acts

as a gateway to receive data from the sensors. The top floor level of the model is excited by

a hammer impact, and the floor accelerations are recorded using both wired and wireless

sensors. Fig. 6.11(c) shows the comparison of the normalized Fourier spectra of the top

floor acceleration collected by wired and wireless sensor. The result shows the accuracy

of the wireless sensors in the data collection and confirms its suitability in the full-scale

modal identification [119].

The proposed methods [115, 118] are then applied to partial measurements. Two re-

sponse measurements at the 1st and the 2nd floors are processed using SWPT up to scale

level s = 4. db5 wavelet basis is chosen. The coefficients at the last scale level (2s = 16)

of decomposition are used to estimate the partial mixing matrix. Of these, the coefficients

containing low-energy noisy components are discarded using a thresholding criterion based

on RMS values [115].

In the next step, PCA is performed with the selected SWPT coefficient pairs, and the
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Wired sensor 

Figure 6.11: (a) Experimental set-up with wired and wireless sensors, (b) a close view of
attached wired and wireless sensors, (c) Fourier transform of the top floor acceleration

modal responses are identified. Fig. 6.13 shows the plots of f 4,0
i (t) and f 4,2

i (t) for i = 1−2.

From the Fourier spectra, it can be observed that f 4,0
i (t) and f 4,2

i (t) are nearly mono-

component. The principal directions of the major and minor PCs are shown in Fig. 6.13.

The corresponding RCN values are 0.001 and 0.007 for f 4,0
i (t) and f 4,2

i (t), respectively.

Such low value of RCN (� 1) in f 4,0
i (t) indicates a nearly mono-component signal, and

hence it is indicative of a structural mode. If the number of desired target modes is Nt,

then the coefficients with first Nt lowest RCN values can be selected as sources. In this

example, the number of target mode is 2 and thus the coefficients with first two lowest

RCN are selected as the sources. The details of the modal identification are tabulated in

Table 6.7. The mode shapes are normalized with respect to upper floor, and are shown in

Fig. 6.13.

Next, sparse BSS method employing statistical characterization of sources is imple-
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Figure 6.12: Wireless sensor kits (a) gateway (LPR2400), (b) sensor node
(LPR2400+MTS400), (c) sensor with mounts

mented on the data. In this regard, the sample probability density function (PDF) of the

selected SWPT coefficients of x1(t) and x2(t) are used. Fig. 6.13 shows the details of the

identification using the information of PDF of f 4,v
1 and f 4,v

2 . The second two columns and

rows of Fig. 6.13 show the PDF of SWPT coefficients f 4,v
i for v = 0 and 2 for i = 1, 2

respectively. In these sub-figures, κ and σ represent the kurtosis and standard deviation

of the corresponding PDF respectively. It can be seen that the PDF of f 4,v
i with v = 0

and 2 have the value of κ close to 3.0, which corresponds to belonging to a system mode.

The absolute value of cross-correlation ρ5,4 for those coefficients close to 1.0 implies a

mono-component source, which can be considered as a modal response. The ratio of their

standard deviation yields the mode shape coefficient and the sign of ρ determines the sign

of the mode shape coefficients. In this fashion, the mixing coefficients can be estimated

repeatedly using Eq. 4.17. For example, f 4,0
1 and f 4,0

2 have ρ value of +0.99 and standard
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Figure 6.13: Details of identification using the sparse BSS method

deviation of 0.09 and 0.16 respectively, for which φ4,j becomes 0.09
0.16

= +0.563. On the

other hand, f 4,2
1 and f 4,2

2 have a ρ value of −1.0 and standard deviation of 0.43 and 0.29

respectively, for which φ4,j is computed as 0.43
0.29

= −1.47. The identification results are

compared with the SSI method [140] and tabulated in Table 6.7.

Table 6.7: Details of the identification results of the lab-scale experiment

Mode #
SSI SBSS

MACω, Hz ξ(%) ω, Hz ξ(%)

1 1.84 2.38 1.84 2.46 1.0
2 4.87 2.5 4.88 2.46 0.99
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6.4 Brossard bridge

6.4.1 Structural description of the bridge

Free vibration measurements of a pedestrian bridge located in Brossard, Quebec, are used

to demonstrate the application of the proposed decentralized modal identification meth-

ods [115, 118]. MAADI (Most Advanced Aluminum Design and Inspection) Group from

Quebec designed this 44 m long × 4 m wide aluminum pedestrian pony truss bridge (see

Fig. 6.14) in Quebec. The bridge crosses Daigneault creek and connects a new subdivision

4
4

 m
 

1
1

m
 

1
1

m
 

1
1

m
 

(a) 

(b) (c) 

A 

B 

C 

Figure 6.14: Bridge geometry: (a) side view, (b) bottom view, (c) sensor locations

from Rue Claudel to a major transportation and commercial area on Rue Grande Allee

[134]. The truss extends approximately 2.8 m above the deck with a set of 254 mm square

box sections at the top and bottom of the railing forming the main girders. The diagonal

bracings are 152 mm box sections, and the lateral deck purlins are 203 mm box sections.
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Eleven scantlings, ranging from 63-127 mm wide and 127 mm tall run along the length of

the pressure-treated Southern yellow pine deck. The bridge is connected to a cast in-place

concrete shallow footing with slotted bolted connections. During the fall of 2012, the struc-

ture was instrumented with both wired and wireless sensors (see Fig. 6.15) to evaluate its

vibration performance.

(a) (b) 

Figure 6.15: Sensor types (a) wired (PCB Piezotronics), (b) wireless (Lotus motes)

6.4.2 Centralized data processing using wired sensors

For this purpose, PCB Piezotronics high-sensitivity seismic accelerometers are used. The

accelerometers have a frequency range of 0.07 − 300 Hz, a sensitivity of 10 V/g, and

measurement range of 0.5g (g = 9.81m/s2). The sensor’s signal output was continuously

recorded at a sampling rate of 500 Hz. Acceleration data was collected using a 12-channel

simultaneous data acquisition system with 16-bit ADC resolution. Total 12 sensors were
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installed at total 6 locations (as shown in Fig. 6.14(c)) with two sensors at each node for

measuring the vertical and lateral vibration. The sensors were installed on the top of the

each of the bottom girders, thus approximately 4 m apart.

The free vibration data under heel-drop impact are first collected using 12 channels

of sensors in centralized fashion and the system identification methods including second-

order blind identification (SOBI) [13] and stochastic subspace identification (SSI) [140] are

performed to estimate the modal parameters. Fig. 6.16(a) shows the Fourier transform of

a typical vertical acceleration data. As shown in Fig. 6.16(b), SOBI results into 4 mono-

component sources with frequencies 3.3, 5.9, 14.7, and 17.2 Hz respectively. However it

generates two other sources where there are mode-mixing of two sources respectively as

shown in Fig. 6.16(c). In fact, it is due to the presence of modes with low energy content.

The wired measurements are then analyzed using stochastic subspace identification (SSI)

method [140]. Fig. 6.17 shows the resulting stability diagram under various model orders

and the modal frequencies are then selected based on the clustered data points of SSI

results. Table 6.8 shows the details of the identification results from the SSI method and

the SOBI method. It can be seen that the mono-component sources as obtained from SOBI

match reasonably well with the frequencies obtained from SSI.

6.4.3 Decentralized system identification using wireless sensors

For the decentralized implementation of the proposed algorithm, Lotus wireless sensor

nodes [89] are employed. Two Lotus motes from Memsic were installed on the bottom

girders of the bridge (see Fig. 6.15(b)) at locations A, B and C of Fig. 6.14(b) respectively

in three successive setups.
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Figure 6.16: Typical vertical acceleration data: (a) FFT, and identification results using
SOBI (b) separated sources, (c) typical mode mixing in the sources

Free vibration test

The free-vibration data was collected in each setup under identical loading condition

namely heel-drop impact. The sensors acquired data for the motion in the same plane

as the circuit board. The short dimension was assigned to the vertical direction and the

long dimension was assigned to the lateral direction. Longitudinal response of the bridge

was not deemed necessary. Fig. 6.18 shows typical free vibration data as collected by one

of wireless sensor.

The proposed method (i.e., SWPT-PCA method) is then applied to the partial mea-

surements. Two response measurements at the 1st and the 4th DOF are processed using

SWPT up to scale level s = 5. db5 wavelet basis is chosen. The coefficients at the last

scale level (2s = 32) of decomposition are used to estimate the partial mixing matrix.

Of these, the coefficients containing low-energy noisy components are discarded using a

thresholding criterion based on RMS values [115]. The total number of coefficients with

RMS values greater than µRMS are 11 in x1(t) and x4(t), respectively. In the next step,
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Figure 6.17: Stability diagram and modal frequency selection using SSI method

PCA is performed with the 11 SWPT coefficient pairs. A typical case of coefficient pairs

and their Fourier spectra are shown in Fig. 6.19. For example, Fig. 6.19 shows the plots

of f 5,0
i (t) for i = 1− 4. From the Fourier spectra, it can be observed that f 5,0

i (t) is nearly

mono-component. The principal directions and the variances of the major and minor PCs

are shown in Fig. 6.19. The corresponding RCN value is 0.0008 for f 5,0
i (t). Therefore, a

low value of RCN (� 1) in f 5,0
i (t) indicates a nearly mono-component signal, and hence

it is an indicative of a structural mode. In fact, this is the first mode of the bridge with

a modal frequency value of 3.0 hz. Using the principle direction, the slope of major prin-

ciple axis is obtained as m1 = +1.47, which is the first mode shape ordinate at this DOF

respectively. If the number of desired target modes is Nt, then the coefficients with first

Nt lowest RCN values can be selected as sources. In this example, Nt = 10 and thus the

coefficients with first ten lowest RCN are selected as the sources. Fig. 6.20 and 6.21 show

the identified sources using the SWPT-PCA method.
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Figure 6.18: Typical free vibration data collected by wireless sensor and its Fourier trans-
form

Presence of narrow-band excitation

Next, the suitability of sparse BSS method [118] in the presence of narrow-band excitation

is pursued. For this purpose, a forced excitation was induced through continuous up-and-

down jumps, for 60 seconds at the mid span of the bridge at each setup. Fig. 6.22 shows

one typical forced vibration data. As shown in Fourier spectrum of the data, there is a

presence of a frequency of 1.8 Hz which primarily occurred due to such forced vibration.

The decentralized employing statistical characterization [118] is applied to delineate such

excitation frequency from the structural frequency.

In order to identify the modal parameters from SWPT coefficients, the sample prob-

ability density of the selected SWPT coefficients of x1(t) and x4(t) are used. Fig. 6.23

shows the details of the identification using the information obtained form the PDF of f 5,v
1

and f 5,v
4 . The first two columns of the Fig. 6.23 show the PDF of SWPT coefficients f 5,v

i

for v = 0, 1 and 8 for i = 1 and i = 4 respectively. The third column shows the Fourier

spectra of the coefficients, where the cross-correlation (i.e., ρ) of the SWPT coefficients
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Figure 6.19: Identification results of S1 using the SWPT-PCA method

and the resulting mode shape coefficients are reported. It can be seen that the PDF of

f 5,v
i with v = 1 and 8 have a value of κ close to 3.0, which corresponds to a system mode.

The absolute value of cross-correlation ρ1,4 for those coefficients is close to 1.0, implying

a mono-component source, which can be considered as a modal response. The ratio of

their standard deviations yields the mode shape coefficient and the sign of ρ determines

the sign of the mode shape coefficients. In this fashion, the mixing coefficients can be

estimated repeatedly using Eq. 4.17. For example, f 5,0
1 and f 5,0

2 have ρ value of +0.99 and

standard deviation of 0.068 and 0.1, respectively, for which φ4,j becomes 0.1
0.068

= +1.47.

On the other hand, f 5,8
1 and f 5,8

4 have a ρ value of 1.0 and standard deviation of 0.03 and

0.026 respectively, for which φ4,j is computed as 0.026
0.03

= 0.86. The PDF of f 8,0
i has the

value of κ << 3.0, which implies that the source is an excitation harmonic which is then

discarded from further analysis. It can be seen that the coefficient f 8,0
i accurately separates

the excitation harmonic with a frequency of 1.8 Hz. The results are finally summarized for

all coefficients containing the modal response in Table 6.8.
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Figure 6.20: Identified sources (s1 − s5) using SWPT-PCA method

6.5 Summary

In this chapter, the proposed decentralized methods are validated using laboratory studies

and full-scale examples. A full-scale validation was also undertaken on a pedestrian bridge

located in Quebec, using wireless sensors. The accuracy of modal identification using

the proposed decentralized algorithms favourably compare with those obtained from the

centralized algorithms employing wired sensors.
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Figure 6.21: Identified sources (s6 − s10) using SWPT-PCA method
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Figure 6.22: Forced vibration data (continuous ups-and-down jumping for 60 seconds) and
its Fourier transform
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Figure 6.23: Identification results using sparse blind source separation under excitation
harmonics

Table 6.8: Details of the identification results

Centralized sensing system Decentralized sensing system
(using full (wired) measurements) (using partial (w/L) measurements)

Mode #
SSI SOBI Sparse BSS

ω, Hz ξ (%) ω, Hz ξ (%) ω, Hz ξ (%) MAC

1 3.04 1.0 3.0 − 3.0 1.1 1.0
2 3.29 0.9 3.3 1.2 3.3 0.9 1.0
3 5.88 0.9 5.9 0.6 5.9 0.8 1.0
4 6.8 1.4 6.8 − 6.8 1.3 0.99
5 8.1 1.9 8.1 − 8.1 1.5 0.98
6 9.5 1.5 9.5 − 9.5 1.6 0.98
7 10.88 1.6 10.9 − 10.9 1.7 0.99
8 13.4 1.7 13.4 − 13.4 1.3 1.0
9 14.71 1.6 14.7 0.9 14.7 1.2 1.0
10 17.2 1.5 17.2 1.1 17.2 1.7 0.98
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Chapter 7

Summary, conclusions and

recommendations

7.1 Significant contributions

A suite of new sparse blind source separation algorithms have been developed in this thesis,

with special emphasis on decentralized ambient modal identification and computationally

efficient implementation. En-route, several milestones have been achieved. The key con-

tributions of this research are briefly summarized as follows:

1. Novel decentralized algorithms to infer global structure mode information using mea-

surements obtained using a small group of sensors at-a-time have been developed in

this dissertation.

2. A new decentralized approach to deal with narrow band excitations was developed.

3. A novel methodology using PARAFAC decomposition was developed to make the

algorithms computationally efficient.
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4. The algorithms were demonstrated using both numerical and experimental studies,

using both wired and wireless sensors.

5. Several peer-reviewed journal and conference articles (with some under review) have

either directly resulted from this work, or have used many of the principles developed

by the author in this thesis (see Appendix C).

7.2 Conclusions

Having highlighted the significant contributions of this dissertation, the central conclusions

in this dissertation are summarized as follows:

1. A novel modal identification technique specifically suitable for decentralized process-

ing is proposed. The main advantage of the proposed method is that only the data

collected from a few sensors need to be processed at-a-time. The partial mixing

coefficients so obtained in each step are dense in frequencies. There is no informa-

tion feedback at each intermediate stage, which allows for relatively minimal user

intervention and decentralized wireless implementation.

2. A decentralized ambient modal identification method that can satisfactorily delineate

the modal sources when narrow band harmonics are present in the excitations was

developed. The algorithm is based on the principle of sparse blind source separa-

tion using stationary wavelet packet transforms. In this method, prior information

regarding the excitation harmonic frequency is not required, and is estimated along

with the modal frequencies. The bootstrap approach allows the estimation of key

statistics using limited measurements, which has potential in situations where repeat-

ing experiments is cumbersome. Due to the filter bank implementation of wavelet

transforms, the proposed method is robust to measurement noise and other extra-

neous frequencies. Through numerical and experimental studies, it was shown that
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the method works well when single or multiple harmonics are present, as long as the

disturbance frequencies are well separated from the structural modes.

3. A novel decentralized ambient modal identification method is proposed that enhances

the performance of sparse BSS using PARAFAC decomposition. In the proposed

method, under-determined modal identification is solved within the framework of

sparse BSS where the redundant stationary wavelet packet transform is employed to

generate an over-complete dictionary of sparse bases. In order to reduce the compu-

tational effort, the tensor algebra tool, PARAFAC, is utilized, which allows us to use

a higher scale level that that would be possible based on the fundamental frequency of

interest and the sampling frequency. It is observed that the proposed PSBSS method

successfully improves the upper bound of source separation of PARAFAC, and is rel-

atively insensitive to the choice of sensor configuration, which makes it suitable for

the decentralized modal identification. The proposed method is validated using a

series of numerical simulations, followed by a full-scale study of the recorded mea-

surements obtained from the UCLA factor building during an earthquake event. The

results indicate that the proposed method is robust to noise, sensor configuration and

requires significantly less computational overhead than in its native form, and hence

has significant potential for ambient modal identification problems in decentralized

applications for civil infrastructure.

4. The proposed decentralized methods are validated using a new wireless sensor module

namely Lotus motes developed by Memsic. A full-scale validation is finally accom-

plished at a pedestrian bridge located in Montreal, Canada. The results show that

the proposed algorithms are sufficiently robust and are capable of truly decentralized

processing of measurements.
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7.3 Recommendations for future work

There are several possible extensions of the current research to assess the performance of

the decentralized modal identification in the domain of structural health monitoring.

1. During the course of current research, basic experimental framework for a new wire-

less sensor board, namely Lotus, was developed. Future work towards on-board pro-

cessing (including embedded filter-bank implementation) and real-time decision mak-

ing can be carried out within this framework. Various compressed sensing schemes

that have thus far been tested in simple experiments can be extended within this

framework for large applications. Finally, the basic ideas can be extended to online

monitoring and diagnostic systems.

2. The proposed algorithm as derived in this dissertation is based on the assumption

that the system has proportional damping. However this may not be valid for sev-

eral practical situations such as soil-foundation-structure systems. Future studies

could extend the decentralized modal identification to systems with non-proportional

damping. Sparse blind source separation in conjunction with complex valued parallel

factor decomposition can be employed in this regard.

3. Most of the BSS methods are attempted to perform modal identification for linear

systems with no damage. Recently vibration based damage detection (VBDD), orig-

inating as an offshoot of structural health monitoring, has shown to be a powerful

tool for damage diagnosis and prognosis, management and maintenance of modern

civil infrastructure. Future research can be directed towards decentralized VBDD

methods within the framework of wireless sensor networks. In this regard, both time

and frequency domain sparsity of the response can be exploited to detect the damage

signatures of the system.
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4. In the current research, the primary objective was geared towards decentralized con-

dition assessment of civil structures, e.g., buildings, towers and bridges. The basic

concept of the proposed research can be further extended to machine health as-

sessment, condition-based maintenance and to develop powerful fault diagnosis and

prognosis tools.
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Appendix A

Second-order blind identification

The basic framework of second-order-blind-identification (SOBI) [13] is the simultaneous

diagonalization of two covariance matrices Rx(0) and Rx(p) evaluated at the time-lag zero

and p, respectively:

Rx(0) = E
{
x(n)xT (n)

}
= ARs(0)AT (A.1)

Rx(p) = E
{
x(n)xT (n− p)

}
= ARs(p)A

T

where,

Rs(p) = E
{
s(n)sT (n− p)

}
(A.2)

The following three steps set up the essence of SOBI: whitening, orthogonalization,

and unitary transformation. Whitening is a linear transformation in which, Rx(0) =

(1/N)(
N∑
n=1

x(n)xT (n)) is first diagonalized using singular value decomposition, Rx(0) =

VxΛxVT
x where Λx and Vx are the eigenvalues and eigenvectors of the co-variance matrix

of Rx(0) respectively. Then, the standard whitening is realized by a linear transformation

expressed as,

x̄(n) = Qx(n) = Λ
− 1

2
x VT

x x(n) (A.3)
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Because of whitening, Rx(p) becomes Rx̄(p), which is given by the equation,

Rx̄(p) = (1/N)(
N∑
n=1

x̄(n)x̄T (n− p)) = QRx(p)QT (A.4)

Using the Eq. A.4 and Eq. A.1, we get

Rx̄(p) = QARs(p)A
TQT (A.5)

The above equation states that by diagonalizing the whitened covariance matrix at

a particular time-lag, the unitary matrix product QA can be determined, resulting in

the mixing matrix, A. This process of diagonalization is implemented numerically, and

typically involves jointly diagonalizing several covariance matrices at a given lag p [47].

The second step, called orthogonalization, is applied to diagonalize the matrix Rx̄(p) whose

eigen-value decomposition satisfies

Vx̄Rx̄(p)VT
x̄ = Λx̄ (A.6)

Since the diagonal matrix Λx̄ has distinct eigen-values, it is easy to see that the product

QA is a unitary matrix, and the mixing matrix can be estimated by the equation,

Â = Q−1Vx̄ = VxΛ
1/2
x Vx̄ (A.7)

where Â is the estimated mixing matrix of A. The problem now becomes one of unitary

diagonalization of the correlation matrix Rx̄(p) at one or several non-zero time lags. The

determination of the unitary matrix is carried out using a numerical procedure, commonly

known as joint approximate diagonalization [13]. Denoting V = QA, D = VT R̃x̄(p)V,
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the problem is one of finding the minimum of the performance index J given by,

J(V,p) =
∑
p

∑
1≤i 6=j≤n

∣∣Dp
ij

∣∣2 (A.8)

Then, the unitary matrix V corresponding to minimum J over fixed h iterations is said

to be an approximate joint diagonalizer [13]. Once Â is estimated, the sources ŝ can be

estimated using the pseudo-inverse of Equation 3.3:

ŝ = Â−1x (A.9)
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Appendix B

Modified SOBI for modal

identification under nonstationary

excitation

The standard SOBI method operates under the assumption of stationary excitation, and

therefore it is unable perform accurate modal identification when there is nonstationary

excitation such as earthquake. The method described [112] here is applicable to the case

when the the measurements and/or sources are second-order non-stationary, i.e., contain

time-varying variances. In this method, unlike multiple non-overlapping windows used in

MCC [44], the entire time sequence is successively trimmed by length s to construct several

overlapping windows as shown in Fig. B.1. The covariance matrix for the pth lag, for the

kth window (Tk), trimmed by length (k − 1)s, is evaluated as [112]:

R̂x(Tk, p) =
1

(N − nk)

N∑
n=nk+1

x(n)xT (n− p) = AR̂s(Tk, p)A
T (B.1)
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1st window (T1): R̂x̄(T1, 1), ...., R̂x̄(T1, p)

nn

x(n)
n1

2nd window (T2): R̂x̄(T2, 1), ...., R̂x̄(T2, p)
s

nn

x(n)
n2

....

kth window (Tk): R̂x̄(Tk, 1), ...., R̂x̄(Tk, p)
(k − 1)s

n

x(n)
nk

....

mth window (Tm): R̂x̄(Tm, 1), ..., R̂x̄(Tm, p)
(m − 1)s

n

x(n)
nm

Figure B.1: Formation of multiple covariance matrices at a lag p

For a stationary signal, R̂x(Tk, p) carry similar statistics regardless of Tk, whereas for a

non-stationary signal, the statistics depends on Tk. Using a similar procedure as in Eq.

A.3 and Eq. A.5, the whitened covariance matrix for Tk can be evaluated as:

R̂x̄(Tk, p) = QAR̂s(Tk, p)A
TQT (B.2)

If the non-stationary sources are temporally correlated, then R̂s(Tk, p) are nonsingular

diagonal matrices [27]. The second step, called orthogonalization, is applied to diagonalize

the matrix R̂x̄(Tk, p) and estimate the mixing matrix:

Â = Q−1Vx̄ = VxΛ
1/2
x Vx̄ (B.3)

where Â is the estimated mixing matrix of A. The problem now becomes one of unitary

diagonalization of the correlation matrix R̂x̄(Tk, p) at one or several non-zero time lags.

Eq. B.2 states that the whitened covariance matrix R̂x̄(Tk, p) at any non-zero time lag p is

diagonalized by the unitary matrix QA. The existence of the unitary matrix for any time
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lag p is guaranteed by Eq. B.2, and the determination of the unitary matrix is carried out

using a numerical procedure as explained next.

JAD for p time-lags for m windows

As seen in Eq. B.2, the problem of finding A is solved by unitarily diagonalizing R̂x̄(Tk, p).

Due to estimation errors finding an exact diagonalizing unitary matrix may not be possible,

and estimating QA is possible only in an approximate sense. Another issue is that the

information of the proper choice of the lag parameter p is not available a priori. Hence,

several values of time lags, p = 1, 2, · · · , l are chosen, and the matrices R̂x̄(Tk, p) are

diagonalized for m trimmed windows. Based on the premise that the higher lags are more

likely to contain new information for non-stationary sources [105], the covariance matrices

with higher lags in each window are weighted higher using a parameter λ (0 < λ ≤ 1.0).

This is accomplished by multiplying R̂x̄(Tk, p) with λl−p as shown below, where l is the

maximum number of lags considered.

[M]T1 =
[
λl−1R̂x̄(T1, p = 1) | .... | λl−iR̂x̄(T1, p = i) | ... | λ0R̂x̄(T1, p = l)

]
(B.4)

[M]T2 =
[
λl−1R̂x̄(T2, p = 1) | .... | λl−iR̂x̄(T2, p = i) | ... | λ0R̂x̄(T2, p = l)

]
...[M]Tk =

[
λl−1R̂x̄(Tk, p = 1) | .... | λl−iR̂x̄(Tk, p = i) | ... | λ0R̂x̄(Tk, p = l)

]
...[M]Tm =

[
λl−1R̂x̄(Tm, p = 1) | .... | λl−iR̂x̄(Tm, p = i) | ... | λ0R̂x̄(Tm, p = l)

]
(B.5)

where, [M]Tk represents a series of weighted multiple time-lagged covariance matrices

stacked column-wise for the kth window constructed by utilizing N − (k − 1)s data while

trimming the first (k − 1)s data from total data length, N (as in Fig. B.1). The set of

covariance matrices [M]T1 , [M]T2 , ......, [M]Tm are stacked column-wise and jointly diago-
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nalized as follows:

〈
R̃x̄

〉
=




. · · ·
...

. . .

. . .


[M]T1


. · · ·
...

. . .

. . .


[M]T2

. . .


. · · ·
...

. . .

. . .


[M]Tk

. . .


. · · ·
...

. . .

. . .


[M]Tm


Denoting V = QA, D = VT R̃x̄(Tk, p)V, the problem is one of finding the minimum of

the performance index J given by,

J(V) =

N
s∑

m=1

∑
p

∑
1≤i 6=j≤ns

|Dij|2 (B.6)

Then, the unitary matrix V corresponding to minimum J over fixed h iterations is said to

be an approximate joint diagonalizer [13].
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Appendix C

List of publications

1. Sadhu, A., and Narasimhan, S. (2013). “A decentralized blind source separation
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2. Tallavo, F., Cascante, G., Sadhu, A., and Pandey, M. D. (2012). “New method-

ology for dynamic soil characterization using the free-decay response in resonant
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accepted.

3. Sadhu, A., Hazra, B., and Narasimhan, S. (2013). “Ambient modal identification
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