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Abstract 

Interactions between surfactants and polymeric nanostructures have gained increasing 

attention due to their potential application in many disciplines. In this study, a well-defined 

random copolymer containing 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and 

poly(ethylene glycol) methyl ether methacrylate (PEGMA2080) (poly(MEO2MA-co-PEGMA2080)) 

was synthesized using the atom transfer radical polymerization (ATRP) process, and its thermo-

responsive behaviors in aqueous solution were investigated. In comparison to other thermo-

sensitive random copolymers based on oligo(ethylene glycol) methacrylates (OEGMA), this 

copolymer exhibited an unusual thermal induced two-stage aggregation process. The copolymer 

chains associated at the first thermal transition followed by a rearrangement process at the 

second thermal transition to produce a stable core-shell micellar structure. 

Furthermore, the binding interactions between cationic surfactants and this copolymer were 

examined below and above its cloud point. In general, the binding interactions between cationic 

surfactants and neutral polymers are weak and cationic surfactants are very selective and only 

bind to those polymers with specific hydrophobic groups. Significant hydrophobic interactions 

were observed between surfactant monomers and the polymer backbone. The binding occurred 

uncooperatively at low surfactant concentration, which was confirmed by electromotive force 

(EMF) measurements. Moreover, the binding affinity of three cationic surfactants follows the 

sequence: CTAB > TTAB > DoTAB. 

Cellulose Nanocrystals (CNC) with diameter of 10-20 nm and length of 200-400 nm, 

derived from native cellulose, is a promising new class of nanomaterials due to its high specific 

strength, high surface area, and unique optical properties. Currently, most of researches focused 

on the improvement of its steric stability, dispersability and compatibility in different solvents or 
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matrices. A thermo-responsive polymer, namely Jeffamine M600 (a 600 Da polypropylene 

glycol) was grafted on the surface of cellulose nanocrystals (CNC) via a peptide coupling 

reaction. The better dispersion of the modified CNC in water was demonstrated, and the 

interactions between surfactants and M600-grafted CNC were investigated via isothermal 

titration calorimetry (ITC). Three types of surfactants with dodecyl alkyl chain and different 

head groups, namely cationic dodecyltrimethylammonium bromine (DoTAB), anionic sodium 

dodecyl sulfate (SDS), and nonionic poly(ethylene glycol) dodecyl ether (Brij 30) were studied. 

Physical mechanisms describing the interactions of cationic, anionic and nonionic surfactants 

and M600-grafted CNC were proposed. 

Chitosan molecules are water-soluble in acidic media due to the protonation of amino 

groups. However, some applications of chitosan are restricted by its poor solubility in basic 

media. A biocompatible derivative of chitosan, N-carboxyethylchitosan (CECh) was synthesized 

by Michael addition reactions, which possessed high solubility in both acidic and basic media 

due to the modification by carboxyl groups. The aggregation behavior of CECh in aqueous 

solution under the effects of pH, polymer concentration, as well as a gemini surfactant, was 

investigated by turbidity, zeta potential, fluorescence spectroscopy, viscosity, and surface tension 

measurements.  

This research demonstrates that nanostructures comprising of thermo-responsive 

copolymers can be controlled and manipulated by temperature and surfactants, and they play an 

important role in the physical properties of surfactants-polymeric complexes. The results from 

this research provide the fundamental knowledge on the self-assembly behavior and the binding 

mechanism of various novel polymeric systems and surfactants, which can be utilized to design 

and develop systems for personal care formulations and drug delivery systems.  
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Chapter 1 Introduction 

1.1 Background 

Stimuli-responsive polymers are those that undergo conformational and chemical changes 

in response to an external stimulus arising from changes in environmental conditions. There are 

many different signals that are capable of modulating the responses of polymeric systems, and 

they can be broadly classified into either physical or chemical signals. Chemical signals, such as 

pH, ionic and chemical agents will alter the molecular interactions with polymeric chains and 

solutes at the molecular level. While physical signals, such as temperature, light, electrical 

potential, electric or magnetic fields, and mechanical stress alter the energies of chain dynamics 

and molecular interactions at critical onset points. [Gil and Hudson, 2004; Dai et al., 2009] These 

smart polymers possess the potential of providing a specific chemical function and tailored 

molecularly assembled structure, which can be applied in various applications, such as controlled 

drug delivery, gene therapy, protein separation and purification, textile engineering and 

membrane science. [Schmaljohann, 2006; Liu and Urban, 2010; Stuart et al., 2010] 

Cellulose Nanocrystals (CNC) have garnered a tremendous level of attention in materials 

science. The CNC particles are rigid rod-like crystals with diameter in the range of 10-20 nm and 

lengths of a few hundred nanometers. Indeed, CNC particles are excellent polymeric 

nanomaterials due to their promising physical and chemical properties, such as nano-scale 

dimension, unique morphology, inherent renewability and sustainability, in addition to their 

abundance and low cost. They are generated by the removal of amorphous regions of a purified 

cellulose source via acid hydrolysis, often followed by ultrasonic treatment. Cellulosic sources 

are diverse, and their degree of crystallinity strongly influences the dimensions of CNC particles. 

[Klemm et al., 2011] Surface modification is one of the key approaches of modifying the 
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physical and chemical properties of CNC. This is usually achieved by modifying the CNC 

particles through the grafting of synthetic polymers onto the CNC surface, without destroying its 

intrinsic properties. Depending on the polymer that is grafted onto the cellulose, it is possible to 

attain environmental responsive properties, such as pH, photo, and temperature. [Roy et al., 2009] 

By grafting polymers onto CNC, the stability of functionalized CNC in various solvents can be 

enhanced. An alternative to chemical surface modification is the adsorption of surfactants at the 

colloidal surface to improve nanoparticle stability in organic solvents. As a result of their 

distinctive properties, CNC particles possess many potential applications, for example as 

reinforcing fillers in nanocomposite systems. [Favier et al., 1995] Numerous nanocomposite 

materials were developed by incorporating CNC into a wide range of polymeric matrices, while 

chemical functionalization of CNC expanded its potential applications in other sectors.  

In the last several decades, extensive studies have focused on the interactions between 

surfactants and water-soluble polymers, which have a wide range of applications. In these studies, 

both cooperative and non-cooperative bindings were observed, while the binding processes were 

described by two critical concentrations, i.e. critical aggregation concentration (CAC) and 

saturation concentration (C2). A common rule describing the interactions in various polymer 

concentration regimes was proposed and verified. In the dilute regime, the polymer chains 

behave as individual entities, and polymer/surfactant interactions may induce intra-chain 

aggregation. In semi-dilute regime, the polymer/surfactant interactions may induce inter-chain 

associations. [Nyström et al., 2009] In the thermo-responsive polymers (TRPs) and surfactants 

systems, surfactants can alter the hydrophobic/hydrophilic balance of polymers, resulting in 

changes in the phase transition characteristics. Thus, surfactants can play an important role in 

improving the stability of CNC particles. In this research study, we will focus on the interaction 
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between surfactants, TRPs and TRP-modified CNC, where the interaction mechanism will be 

elucidated. Such fundamental knowledge will be necessary to guide formulator in the design and 

development of personal care products. 

The scope of this thesis can be divided into three parts: (1) synthesis of well-defined 

random copolymer based on OEGMA and investigating its thermo-responsive behavior in 

aqueous solution, as well as its binding interaction with cationic surfactants; (2) preparation of 

thermo-responsive polymer grafted CNC and studying its interactions with surfactants at CNC 

surface; (3) functionalization of chitosan and examining the interactions between its derivative 

with surfactants. In this thesis, Chapter 1 introduces the general background of the research 

topics, and the research objectives of this thesis are clearly presented. Chapter 2 reviews the 

preparation and solution properties of water-soluble thermo-responsive polymers, the 

characterisctics and modifications of CNC, as well as polymer-surfactant interactions. Chapter 3 

reports on the synthesis, characterization and thermo-responsive behavior of P(MEO2MA-co-

PEGMA2080) The interactions between this neutral copolymer and cationic surfactants are 

investigated in Chapter 4. In Chapter 5, the preparation of thermo-responsive polymer grafted 

CNC is introduced, and its interactions with three types of surfactants, i.e. anionic (SDS), 

cationic (DoTAB) and non-ionic (Brij 30), are also studied. Chapter 6 presents the preparation 

and properties of one type of chitosan derivative, and its solution behavior in the presence of 

gemini surfactant was examined. Chapter 7 summarizes the conculsions and original 

contributions of the doctoral research, and also provides several recommendations for future 

study. 
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1.2 Research objectives and methodology  

1.2.1 Synthesis of TRPs based on oligo(ethylene glycol) methacrylates 

The studies on biocompatible thermo-responsive polymers based on OEGMA have 

received significant attentions since they exhibited similar thermoresponsive behaviors as 

PNIPAM.   Due to possible concerns on the toxicity of N-isopropylacrylamide monomer, a well-

defined random copolymer based on oligo(ethylene glycol) methacrylates will be synthesized 

using the atom transfer radical polymerization (ATRP) process, and its thermo-responsive 

behaviors in aqueous solution will be investigated. The thermo-responsive behaviors will be 

monitored by temperature controlled UV-visible spectrophotometer, and laser light scattering 

(LLS) and transmission electron microscopy (TEM) are employed to explore the morphology.   

1.2.2 Binding of cationic surfactants with the copolymer 

Binding interactions between cationic surfactants and this copolymer below and above its 

cloud point will be studied by isothermal titration calorimetry (ITC), surfactant selective 

electrode (SSE) and dynamic light scattering (DLS). Three types of cationic 

alkyltrimethylammonium bromide surfactants (RTAB with R equal to C12, C14, and C16), namely 

DoTAB, TTAB, and CTAB, will be examined, and the binding affinity will be determined. The 

surfactant-selective electrode (SSE) will be used to monitor the monomeric surfactant 

concentrations during the surfactant/polymer binding process, in order to complement the ITC 

measurements, while the possible morphologies of copolymer and surfactant complexes can be 

elucidated from DLS measurements. These studies can develop fundamental knowledges on the 

binding mechanism at different temperatures, which is critical for optimizing the formulations of 

personal care products.  
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1.2.3 Grafting TRPs on CNC surface 

In order to improve the dispersibility and steric stability of CNC, a water-soluble thermo-

responsive polymer Jeffamine M600 will be grafted on CNC surface. The M600-grafted CNC 

will be prepared in a two-step reaction, i.e. TEMPO-mediated oxidation of CNC, followed by 

grafting of amine-terminated Jeffamine M600 onto oxidized CNC. Carboxylic acid 

functionalities will be introduced to CNC using the TEMPO-mediated oxidation technique, while 

the grafting of Jeffamine M600 onto CNC can be achieved via the EDC/NHS reaction. Infrared 

spectroscopy and transmission electron microscopy (TEM) will be applied to confirm the M600-

grafted CNC products. 

1.2.4 Study on the interactions between surfactants and TRP-modified CNC 

Surface coating is another way to modify CNC particles. In order to obtain a better 

understanding on the coating mechanism on CNC surface, the interactions between surfactants 

and M600-grafted CNC on its surface will be investigated by isothermal titration calorimetry 

(ITC). Three types of surfactants with dodecyl alkyl chain and different head groups, namely 

cationic dodecyltrimethylammonium bromine (DoTAB), anionic sodium dodecyl sulfate (SDS), 

and nonionic poly(ethylene glycol) dodecyl ether (Brij 30) will be studied.  

1.2.5 Aggregation behavior of N-carboxyethylchitosan in the presence of surfactant 

N-carboxyethylchitosan (CECh) will be synthesized by Michael addition reaction using 

chitosan and acrylic acid. The effects of pH, polymer concentration, as well as a gemini 

surfactant on the aggregation behavior of CECh in aqueous solution will be studied. The 

solubility of chitosan in basic media is improved by this reaction, and fundamental understanding 

on interactions between one type of biomacromolecule and gemini surfactant are developed.     
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Chapter 2 Literature Review 

2.1 Introduction 

Polymers that respond to temperature changes are often referred as thermo-responsive 

polymers (TRPs), and are probably the most widely used in environmentally responsive 

polymeric systems. This is because changes in temperature are not only relatively easy to control, 

but also easily applicable both in vitro and in vivo. [Gil and Hudson, 2004] The properties of 

polymers, such as chain conformation, configuration, and solubility, can be manipulated by 

controlling the temperature resulting in the formation of aggregates of various sizes and 

morphologies. Besides this, thermo-responsive microgels, functionalized surfaces, membranes, 

micelles and various types of robust structures are prepared based on TRPs, and can be widely 

applied to biomedical systems, separation processes, textile industry etc. [Stuart et al., 2010; 

Nagase et al., 2009; Crespy and Rossi, 2007] The combination of TRPs and a new promising 

nanomaterial, namely cellulose nanocrystals (CNC), has gained increasing attention due to their 

broad potential applications in materials science. CNC particles exhibit exceptional strength and 

physicochemical properties, and they have been functionalized with various moieties, depending 

on the desired applications. Surfactants have been used to improve the dispersability of CNC 

nanoparticles, and complexes of CNC/surfactants were recently reported as drug carriers. 

[Jackson et al., 2011] Moreover, surfactants/polymer systems have been widely used in many 

industrial product formulations, such as cosmetics, food additives, pharmaceutical formulations, 

and additives in enhanced oil recovery. [Kwak, 1998; Holmberg et al., 2002] Therefore, studies 

on the interactions between surfactant and TRPs in bulk and at interface are extremely important 

and fundamental insights are critical in guiding future product formulations and development. 
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The scope of the current review is to provide insights into the preparation and solution 

properties of water-soluble thermo-responsive polymers (TRPs) both in bulk and at CNC surface. 

Some common and popular homopolymers are reviewed in details, and various unique multi-

responsive copolymers are introduced. Their interactions with surfactants and applications are 

discussed.   

2.2 Thermo-responsive polymers (TRPs) 

2.2.1 Overview of thermo-responsive polymers 

Thermo-responsive polymers exhibit conformation changes in aqueous solutions at a 

critical onset temperature, which is commonly referred to as the critical solution temperature. 

Critical solution temperature corresponds to a temperature where one of its physical properties 

undergoes a step change. [Gil and Hudson, 2004] Two thermal transitions commonly observed in 

polymeric systems are the lower critical solution temperature (LCST) and the upper critical 

solution temperature (UCST). When the dissolved polymeric chains become insoluble with 

increasing temperature, the phase transition is often referred to as the LCST.  

 

Figure 2.1 Phase diagram for a binary polymer/solvent mixture exhibiting (a) LCST behavior 

and (b) UCST behavior. [Weber et al., 2011] 
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As shown in Figure 2.1, the LCST is defined as the minimum temperature of the phase 

separation curve on concentration-temperature phase diagram, while the corresponding 

concentration is the lower critical solution concentration (LCSC). On the contrary, in Figure 2.1b, 

the maximum point on the phase diagram is termed the upper critical solution temperature 

(UCST), below which the phase separation occurs. 

Among the polymers that display a LCST, poly(N-isopropylacrylamide) (PNIPAM) is 

probably the most common and popular thermo-responsive polymer since it exhibits a sharp 

phase transition (LCST) at around 32 oC in aqueous media, just below the physiological 

temperature (37 oC) As a result, extensive studies have been conducted and reported, and 

numerous ideas have been offered for their applications as smart materials in biological 

applications. [Schild, 1992] The fundamental behavior of PNIPAM was extensively studied to 

gain insights into the mechanism of phase separation. With this understanding, polymers can be 

designed at the molecular level with controlled LCST, where their response to thermal stimuli 

can be manipulated for specific applications, e.g. as microvalves in microfluidic devices. [Li et 

al., 2010] The phase transition of PNIPAM in aqueous media is attributed to a shift in the 

distribution of hydrophobic and H-bond interactions. Below its LCST, it is hydrated and adopts 

an extended coil conformation. Beyond the LCST, it undergoes a sharp and reversible coil-to-

globule phase transition from a hydrophilic to a more hydrophobic state. [Morris et al., 2010] 

PNIPAMs with well-defined size and a low polydispersity index (PDI) have been designed and 

developed using controlled radical polymerizations techniques (CRP), such as atom transfer 

radical polymerization (ATRP), reversible addition fragmentation chain-transfer polymerization 

(RAFT), and nitroxide mediated polymerization (NMP). ATRP and NMP control chain growth 

by a reversible termination process step, while RAFT polymerization controls chain growth 
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through reversible chain-transfer. The mechanisms of ATRP and RAFT are described in Scheme 

2.1. [Wang and Matyjaszewski, 1995; Chiefari et al., 1998; Dai et al., 2009] Controlled radical 

polymerization is an attractive alternative to anionic polymerization for the preparation of well-

defined polymers. It allows the controlled synthesis of a variety of novel well-defined polymer 

architectures having interesting structure-property-function relationships (such as block and graft 

copolymers, stars, brushes and bottle-brush structures) starting from a vast array of commercial 

functional monomers. [Aseyev et al., 2011] Ganachaud et al. [2000] reported on the RAFT 

polymerization of NIPAM in benzene and 1, 4-dioxane with 2, 2’-azobisisobutyronitrile (AIBN) 

as radical initiator, while Convertine et al. [2004; 2006] conducted RAFT polymerization of 

NIPAM in dimethyl formamide (DMF) and water, respectively.  

 

Scheme 2.1 Mechanisms describing the (a) ATRP; and (b) RAFT processes. [Wang and 

Matyjaszewski, 1995; Chiefari et al., 1998; Dai et al., 2009]  

Besides PNIPAM, many other thermo-responsive synthetic polymers with different 

structures have been prepared and investigated extensively. Xu et al. [2008] reported on the 
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polymerization of poly(N-ethylmethylacrylamide) (PEMA) using both RAFT and ATRP, and 

investigated the effects of molecular weight, polymer concentration, and end group 

hydrophilicity/hydrophobicity on the LCST of PEMA. A series of thermo-responsive polymers 

based on acrylamide monomers, namely N-n-propylacrylamide (nPAM), N, N-diethylacrylamide 

(DEA), and N-ethylmethylacrylamide (EMA), were prepared and studied by Cao and co-workers. 

[2007] The thermo-responsive behaviors of poly(dimethylaminoethyl methacrylate) 

(PDMAEMA), poly(N-vinylisobutylamide) (PNVIBA), poly(N-vinylcaprolactam) (PVCL) were 

also investigated. [Schacher et al., 2009; Suwa et al., 1998; Hurtgen et al., 2012] Linear 

polyethers are another class of thermo-responsive polymers. For example, polyethylene glycol 

(PEG) is one such water-soluble polymer that possesses a LCST greater than 90 oC, while 

polypropylene glycol (PPG) normally possesses a much lower LCST since the enhancement on 

the hydrophobicity of alkyl segments results in the reduction of LCST. Furthermore, block 

copolymers based on PEG and PPG exhibit thermo-responsive characteristics and the LCSTs are 

dependent on the ratio of the PPG and PEG segments. 

Although most of thermo-responsive polymers are synthetic polymers, the thermo-

responsive behavior of some biopolymers such as gelatin, [Gil et al., 2005] agarose, [Ramzi et al., 

1998] cellulose derivatives [Hirsch and Spontak, 2002] and elastin-like polypeptides (ELPs) 

[Mano, 2008] have been reported. Gelatin is a protein derived from the degradation of natural 

collagen by breaking its triple-helix structure into single-strand molecules. In aqueous solution, 

their chain conformation transforms from a random coil to triple-helix upon cooling, resulting in 

the promotion of physical junction and gelation. Gelatin is classified as a thermo-reversible 

hydrogel and has been used as gelling agent in many applications. Polypeptides based on the 

fibrous protein elastin were reported to exhibit a natural phase transition. The system based on 
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the elastin pentapeptide repeat units, Val-Pro-Gly-Xaa-Gly (Xaa = any natural amino acids 

except proline) was prepared and they exhibited a LCST behavior of around 40 oC. The 

transition temperatures of these materials were designed such that particles may be conjugated 

with drug molecules for temperature mediated medical applications. [Meyer et al., 2001; Dreher 

et al., 2003] 

2.2.2 TRPs with tunable thermo-sensitivity  

A novel class of random copolymers with tunable thermo-sensitivity has gained increasing 

attention since they possess the potential of replacing PNIPAM. A series of copolymers of 2-

ethyl-2-oxazoline and 2-n-propyl-2-oxazoline were synthesized by Hoogenboom et al., [2008] 

and the cloud points of these copolymers could be tuned from 25 oC to 100 oC by varying the 

molecular weight and composition. Soga and co-workers [2004] synthesized a novel class of 

thermo-sensitive and biodegradable polymers, namely, poly(N-(2-hydroxypropyl) 

methacrylamide mono/di lactate) (poly(HPMAm-mono/di lactate)). The cloud points of 

poly(HPMAm-monolactate) and poly(HPMAm-dilactate) in water were 65 and 13 °C, 

respectively. The cloud point of poly(HPMAm-monolactate-co-HPMAm-dilactate) copolymers 

can be tunable by varying the copolymer composition. Lutz et al. [2006] described the synthesis 

of oligo(ethylene glycol) methacrylates via ATRP, where these polymer systems possess tunable 

thermo-sensitive characteristics, and this system will be discussed in section 2.2.3. If a block 

copolymer possesses multiple thermo-sensitive blocks, the aqueous solution might display a 

single cloud point at an intermediate temperature, or both blocks might collapse independently 

from one another. [Weber et al., 2011] It was reported that some block copolymers exhibited 

unique temperature-induced self-assembly behaviors. [Hua et al., 2006; Weiss et al., 2011; 

Zhang et al., 2011] Hua et al. [2006] prepared block copolymer of poly(methoxytri(ethylene 
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glycol) acrylate)-b-poly(4-vinylbenzyl methoxytris-(oxyethylene) ether) (PTEGMA-b-PTEGSt) 

that exhibited multiple transitions in aqueous solution upon heating (shown in Figure 2.2). It was 

demonstrated that the two-step thermal induced aggregation process was attributed to the 

different dehydration temperature of the two blocks, i.e. the first PTEGSt block dehydrated to 

form micellar structure, followed by the dehydration of PTEGMA block to produce large and 

polydisperse aggregates, and  the solution changed from transparent to cloudy, clear, bluish, and 

then turbid.  

 

Figure 2.2 Optical transmittances of aqueous solutions of PTEGMA66-b-PTEGSt72 upon heating 

( ) and cooling ( ), PTEGSt ( ), PTEGMA ( ), and mixture ( ) of PTEGSt and PTEGMA at 

various temperatures. [Hua et al., 2006] 

A group of dual thermo-responsive block copolymers containing PPO sequences was 

prepared and investigated. [Dimitrov et al., 2004; Hasan et al., 2004; Li et al., 2005; Chen et al., 

2005] Dimitrov et al. [2004] prepared a number of ABA and BAB triblock copolymers using 

ethoxyethyl glycidyl ether (EEGE) and propylene oxide (PO) monomers, while Hasan et al. 

[2004] synthesized PNIPAM-PPO-PNIPAM triblock copolymers with different PNIPAM 
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segment lengths. These polymers exhibited a two-stage phase transition in aqueous solution, 

which offers an opportunity to tune the microstructure by changing temperature. 

2.2.3 TRPs based on oligo(ethylene glycol) methacrylates 

In 2006, Lutz and co-workers published the first report comprising of copolymers of 

P(MEO2MA-co-PEGMA475) that exhibited similar thermo-responsive behaviors as PNIPAM. 

[Lutz et al., 2006] They randomly polymerized di(ethylene glycol) methyl ether methacrylate 

(MEO2MA, Mn = 188 g/mol) and poly(ethylene glycol) methyl ether methacrylate (PEGMA, Mn 

= 475 g/mol) via atom transfer radical polymerization (ATRP), and they found that the LCSTs of 

the copolymers could be tuned between 26 and 90 oC by varying the monomer composition. For 

instance, the LCST values for the copolymers increased from 26 oC (0% of PEGMA475) to a 

relatively higher temperature as the mole fraction of PEGMA475 in the polymer chain was 

increased. A LCST of 32 oC was observed in water for a copolymer possessing 5% of 

PEGMA475 units per chain. The relatively higher LCST was due to the high proportion of longer 

PEG side chains, which can stabilize the polymeric chains in aqueous solution at a higher 

temperature. [Lutz and Hoth, 2006] The proposed mechanism (shown in Scheme 2.2) for the 

temperature-induced phase transition of these copolymers in aqueous solution was illustrated by 

Lutz and coworkers. [Lutz et al., 2007] The favored formation of H-bonds between the ether 

oxygens of poly(ethylene glycol) and water  surrounding water molecules is the driving force in 

promoting the aqueous solubilization of P(MEO2MA-co-OEGMA) at room temperature, and this 

favorable effect is counterbalanced by the hydrophobicity of the non-polar backbone. Above 

LCST, this balance is disrupted and polymer-polymer interactions are thermodynamically 

favored compared to polymer-water interactions, resulting in phase separation. In comparison to 

the traditional PNIPAM system, these polymers have inherent advantages such as: (i) an 
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excellent bio-repellency below the LCST (i.e., anti-fouling behavior), (ii) reversible phase 

transitions (i.e., no marked hysteresis), and (iii) bio-inert properties (i.e., no specific interactions 

with biological materials). [Lutz, 2011] There was some debate on whether the era of PNIPAM 

is over since this new polymer system might displace PNIPAM as a suitable thermo-responsive 

polymeric system. 

 
 
Scheme 2.2 Proposed mechanism for the thermal induced phase transition of copolymers 

P(MEO2MA-co-OEGMA) in aqueous solutions. [Lutz et al., 2007] 

In a report by Ishizone and co-workers, [2008] they polymerized oligo(ethylene glycol) 

methacrylates with very short side chains of 1 ~ 4 units using anionic polymerization, and they 

found that polymer with one side unit was insoluble in water, whereas polymers possessing di-, 

tri-, and tetra(ethylene glycol) units exhibited LCST behavior in aqueous solutions. LCSTs and 

hydrophilicity of polymers were strongly dependent on the side chain length of oligo(ethylene 

glycol) units. Armes and co-workers first described the ATRP of an oligo(ethylene glycol) 

methyl ether methacrylate (OEGMA) with 8 ethylene oxide (EO) units. [Wang et al., 1999; 

Wang and Armes, 2000] The controlled radical polymerization was performed in aqueous 

environment at room temperature that led to the formation of POEGMA with a narrow molecular 

weight distribution. Similarly, well-defined POEGMA was also prepared from ATRP in organic 

solvents. Lutz [2008] reported that the ATRP of oligo(ethylene glycol)-based monomers is rapid 

and well-controlled in pure ethanol, which is polar enough to generate fast polymerization 
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kinetics. While non-polar solvent such as anisole was also successfully applied in the ATRP 

process of either MEO2MA, tri(ethylene glycol) methyl ether methacrylate (MEO3MA), or 

longer OEGMA oligomers. Besides ATRP, other controlled radical polymerization techniques 

were also reported for the polymerization of PEG macromonomers. Becer and co-workers [2008] 

described systematic and parallel polymerizations of various OEGMA monomers using RAFT 

method. A series of well-defined homopolymers of different side-chain length were prepared and 

they found that the LCST behavior of polymer solutions strongly depended on the side-chain 

length, i.e. LCST decreased with decreasing number of ethylene glycol units. Furthermore, they 

also demonstrated that replacing the methoxy with ethoxy end group could significantly reduce 

the cloud points due to the greater hydrophobicity. The controlled radical polymerization 

methods as well as the thermo-responsive properties of oligo(ethylene glycol)-based polymers 

have been summarized in an excellent review by Lutz. [2008]  

 

Figure 2.3 Schematic representations of monomers that have been applied for copolymerization 

with oligo(ethylene glycol) methacrylates or ethoxytri(ethylene glycol) acrylate. [Weber et al., 

2011] 

A wide range of monomers (shown in Figure 2.3) has been copolymerized with OEGMA 

to provide additional interesting features to the resulting copolymers and their effect on the phase 

transition temperatures of POEGMA in aqueous solutions were investigated. Yamamoto et al. 

[2008] synthesized statistical copolymers of di(ethylene glycol)methyl ether methacrylate 
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(MEO2MA) and either methacrylic acid (MAA) or N,N-dimethylaminoethyl methacrylate 

(DMAEMA) by ATRP, and they investigated the effect of molar fraction (either MAA or 

DMAEMA) on the LCST of copolymer solution at different pHs. A similar study on the 

properties of copolymers based on MAA and two PEO macromonomers with different EO units 

(PEO8MA and PEO22MA) was conducted by Becer and co-workers. [2008] These copolymers 

were synthesized by RAFT polymerization. In addition, Jiang and co-workers [2008] developed 

a thermo- and light-sensitive copolymers containing ethoxytri(ethylene glycol) acrylate (EO3A) 

and o-nitrobenzyl acrylate (NBA), and they found that the addition of NBA could elevate the 

LCST compared to PEO3A due to the hydrophobicity of NBA.    

2.2.4 Applications of thermo-responsive polymeric systems 

Thermo-sensitivity is one of the most interesting characteristics in stimuli-responsive 

polymeric nanocarriers and it has been extensively investigated to exploit their applications. For 

instance, thermo-responsive polymers are very promising materials in biomedical and 

bioengineering, such as drug and gene delivery, protein chromatography, textile industry, and 

tissue engineering. [Stuart et al., 2010; Nagase et al., 2009; Crespy and Rossi, 2007] By far, 

PNIPAM has been the most studied and applied thermo-responsive polymer and therefore can be 

considered as the gold standard. Functionalized structures based on PNIPAM and other TRPs 

have been exploited, such as micelles, hydrogels, and functional surface. Some of the major 

applications of TRPs systems are discussed below.    

Drug Delivery Applications of thermo-responsive nanoparticle systems in controlled drug 

delivery could be the most significant application of such systems. PNIPAM copolymers have 

been widely studied as drug carriers, especially for oral delivery. Kim and co-workers 

synthesized poly(N-isopropylacrylamide-co-butylmethacrylate-co-acrylic acid) (poly(NIPAM-
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co-BMA-co-AA)), and they investigated the intestinal delivery of calcitonin and insulin. They 

found that the polymeric systems improved the delivery of drugs, and reduced the side effects. 

[Serres et al., 1996; Ramkisson-Ganorkar et al., 2000] Meyer and co-workers [2001] synthesized 

two thermo-responsive polymers, elastin-like polypeptide (ELP) and copolymer of N-

isopropylacrylamide (NIPAM) and acrylamide (AM) that possessed LCSTs slightly above 

physiological temperature. They developed a new thermal targeting method in which a thermo-

responsive drug carrier selectively accumulates in a solid tumor. The delivery of drugs to solid 

tumors can be achieved by conjugating the drug to the thermo-responsive polymers together with 

the local heating of tumors. For example, rhodamine-poly(NIPAM-co-AM) conjugates were 

selectively accumulated in a tumor tissue using targeted hyperthermia. Furthermore, 

hyperthermia can be achieved using an alternating magnetic field with the incorporating of 

magnetic nanoparticles to these thermo-responsive drug delivery systems, so that the delivery 

systems can release the active drug compound to the disease tissues. [Brazel, 2008; Du et al., 

2010] 

Gene Therapy and Delivery Thermo-responsive polymers, as an important family of gene 

carriers, have been widely studied. Hinrichs and co-workers [1999] polymerized 2-

(dimethylamino) ethyl methacrylate (DMAEMA) and N-isopropylacryl amide (NIPAM) of 

various monomer ratios and molecular weights, and they evaluated the copolymers as carrier 

systems for DNA delivery. They found that the composition and molecular weight of copolymers 

have significant impact on the stability, cytotoxicity, and transfection efficiency of the 

polyplexes. Similar polymers were prepared by Kurisawa et al., [2000] that were capable of 

condensing DNA. Since then, a family of thermo-responsive polymers comprising PNIPAM 

segment have been reported as gene carriers. [Oupický et al., 2003; Cheng et al., 2006; Mao et 
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al., 2007] Furthermore, thermo-responsive hydrogel nanoparticles were prepared and studied as 

gene delivery systems (Scheme 2.3). Choi and co-workers [2006] synthesized 

Pluronic/poly(ethylenimine) (PEI) hydrogel nanoparticles using a modified 

emulsification/solvent evaporation method. The prepared Pluronic/PEI nanocapsules exhibited 

thermal reversible swelling/deswelling behavior. The particle volumes increased drastically as 

the temperature was decreased, which could induce endosomal disruption. In vitro siRNA 

delivery studies showed that the nanoparticles complexed with siRNA-PEG conjugate enhanced 

the extent of gene silencing and the RNA activity was significantly increased by cold-shock 

treatment. [Lee et al., 2008]    

 

Scheme 2.3 Schematic description of thermo-sensitive nanogels for siRNA delivery. [Lee et al., 

2008] 
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Textile Industry The thermo-responsive polymers were also used in the textile industry to 

modify and impart new functionality to textiles. The smart textiles with novel functions possess 

additional permeation properties, which are sensitive to the external climate or the microclimate 

between the wearer’s skin and the fabric. [Crespy and Rossi, 2007] NIPAM was successfully 

grafted onto a polypropylene non-woven fabric, which was treated by plasma before the reaction. 

It was reported the modified fabric displayed improved wettability (than the un-modified ones) 

and unique porous structure after freeze-dry process. [Chen et al., 2002] In contrast with non-

woven fabric, Liu and co-workers [1999] conducted the grafting of NIPAM on a cotton cellulose 

fabric, and they obtained functionalized temperature sensitive fabric surface.   

2.3 Grafting TRPs onto cellulose nanocrystals (CNC) surface 

2.3.1 General aspect of CNC  

Cellulose nanocrystals are rigid rod-like crystals with diameter in the range of 10-20 nm 

and lengths of a few hundred nanometers (Figure 2.4); e.g. crystallites from tunicates and green 

algae have lengths in the range of a few micrometers and crystallites from wood and cotton have 

lengths of the order of a few hundred nanometers. Therefore, the relative degree of crystallinity 

and the geometrical aspect ratio i.e. the length-to-diameter (L/d) are important parameters 

controlling the properties of CNC-based materials. In this thesis, we use “cellulose nanocrystals” 

(CNC) to define this material, where have been often referred to as whiskers, microcrystals, 

nanofibers, microcrystallites. When prepared in sulfuric acid, they possess negative charges on 

their surface due to the formation of sulphate ester groups during acid treatment, which enhances 

their stability in aqueous solutions. According to its structure, CNC possesses an abundance of 

hydroxyl groups on the surface, where chemical reactions can be conducted. Among the three 

kinds of hydroxyl groups (Figure 2.5), the OH group on the 6 position acts as a primary alcohol, 
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where most of the modification predominantly occurs. [Roy et al., 2009] Various chemical 

modifications of CNC, such as esterification, cationization, carboxylation, silylation, and 

polymer grafting have been reported. [Braun and Dorgan, 2009; Hasani et al., 2008; Habibi et al., 

2006; Goussé et al., 2002; Morandi et al., 2009] There is increasing research focus on 

modification of CNC because of the increasing potential applications of modified CNC in 

various industrial sectors, such as personal care, nanocomposites, biomedical.   

 

Figure 2.4 TEM micrographs of nanocrystals obtained by sulfuric acid hydrolysis of (a) cotton 

(b) avicel (c-e) tunicate cellulose. The insets of (a) and (b) provide higher resolution images of 

some characteristic particles. [Elazzouzi-Hafraoui et al., 2008] 

Many polymers were applied to graft on CNC surface, focusing on the improvement of its 

dispersability and compatibility in different solvents or matrices that are suitable in the 

production of nanocomposites. [Habibi et al., 2010; Klemm et al., 2011] Among these polymers, 

water-soluble thermo-responsive polymers exhibit great ability to stabilize CNC particles, and 

offer an opportunity to produce CNC-based stimuli-responsive structures. As mentioned in 
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section 2.2.3, oligoPEG-based copolymers exhibit very fast and reversible thermal responsive 

transition. These copolymers have been grafted onto silicon, gold, and glass substrates and the 

products have found many potential applications in biomedical and bio-engineering fields. [Jonas 

et al., 2007; Gao et al., 2009; Ma et al., 2006; Chan et al., 2003] However, to our knowledge, the 

grafting of oligo(ethylene glycol)-based onto CNC surface has not yet been studied, and thus to 

investigate the properties of CNC with grafted copolymeric chains must be very interesting. 

 

Figure 2.5 Numbering system for carbon atoms in anhydroglucose unit of cellulose.     

2.3.2 CNC properties 

Cellulose nanocrystals derived from acid hydrolysis using various forest product sources 

can disperse in water due to their negative charged surfaces. At low concentrations, CNC 

particles are randomly oriented in aqueous suspension as an isotropic phase, and when the 

concentration reaches a critical value, they form a chiral nematic ordering, where CNC 

suspensions transform from an isotropic to an anisotropic chiral nematic liquid crystalline phase. 

[Revol et al., 1992] As the concentration increased further, aqueous CNC suspensions show a 

shear birefringence phenomenon. The critical concentration for sulfated CNC typically ranges 

between 1 and 10% (w/w), which is a function of aspect ratio of CNC, charge density, and 
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osmolarity. Theories based on different parameters have been studied to explain the phenomena. 

[Stroobants et al., 1986] 

The phase behavior of CNC is sensitive to the presence of electrolytes and their counter 

ions, as well as macromolecules. The effect of added electrolyte on the phase separation of CNC 

was studied by Dong et al., [1996] and they found that the addition of electrolytes, e.g. HCl, 

NaCl and KCl significantly reduced the volume fraction of the anisotropic phase, indicating that 

addition of electrolytes reduces the anisotropic phase. Dong and Gray [1997] also studied the 

effect of counter ions on the phase separation behavior and stability of CNC suspensions by 

adding inorganic counterions, weakly basic organic counterions and highly basic organic 

tetraalkylammonium salts. It was observed that the types of counter ions had a significant effect 

on phase separation behavior of CNC suspensions. Similar to electrolytes, the phase separation 

of CNC suspensions is strongly affected by the addition of macromolecules. Gray and co-

workers [Edgar and Gray, 2002; Beck-Candanedo et al., 2006, 2007] conducted a detailed study 

on the effect of dextran and ionic dyes on the phase equilibrium of CNC suspensions. Surfactant 

coating used to disperse CNC whiskers in non-polar solvents was first reported by Heux et al., 

[2000] where CNC whiskers from cotton and tunicate were mixed with Beycostat NA (BNA) 

surfactant. The authors demonstrated that the chiral nematic phases were formed in spite of a 

layer of surfactants around the CNC whiskers. Detailed examination of the chiral nematic 

structure (Figure 2.6) was recently reported. [Elazzouzi-Hafraoui et al., 2009]  

The assembling behaviors of CNC under external field, such as an AC electric and a 

magnetic field were investigated. [Sugiyama et al., 1992; Fleming et al., 2000; Bordel et al., 

2006] The effect of AC electric field on the alignment and orientation of CNC was investigated 

by Habibi et al., [2008], they observed that the application of an AC electric field to CNC 
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suspensions deposited between two metallic electrodes resulted in the homogeneous alignment 

of CNC molecules. Moreover, the alignment of cellulose nanocrystals generated films is greatly 

influenced by the frequency and strength of the applied electric field, while the orientation of 

cellulose nanocrystals becomes more homogeneous with increasing electric field greater than 

2000 V/cm with a frequency ranging between 104 and 106 Hz. Previous studies [Revol et al., 

1994] have shown that CNC suspensions exhibited negative diamagnetic anisotropic 

susceptibility as they dry under the influence of a magnetic field. The authors also demonstrated 

that for CNC films, the presence of magnetic field did not facilitate the formation of a chiral 

nematic phase but it only increased the chiral nematic pitch of the suspensions. A similar study 

was recently conducted by Pan et al., [2010] where they examined various factors controlling the 

chiral nematic properties of CNC films. 

 

Figure 2.6 Phase separation observed between cross polars for different concentrations of CNC 

(cotton fibers) suspensions at total concentrations of (a) 19.8 wt% and (b) 25.0 wt%. [Elazzouzi-

Hafraoui et al., 2009] 
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2.3.3 Surface modification of cellulose nanocrystals (CNC) 

According to its structure, CNC possesses an abundance of hydroxyl groups on the surface, 

where chemical reactions can be performed. Various chemical modifications of CNC, such as 

esterification, cationization, carboxylation, silylation, and polymer grafting (shown in Figure 2.7) 

have been reported to improve its dispersability and compatibility in different solvents or 

matrices. 

 

Figure 2.7 Schematic diagram illustrating the various types of chemical modifications on CNC 

surface. [Braun and Dorgan, 2009; Hasani et al., 2008; Dong and Roman, 2007; Goussé et al., 

2002; Habibi et al., 2006; Morandi et al., 2009] 

Acetylation and Esterification Sassi and Chanzy [1995] employed acetic anhydride and 

acetic acid to modify the fibrous and homogenous cellulose, while Yuan et al. [2006] used 
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straightforward freeze drying and heating of mixtures of alkenyl succinic anhydride (ASA) 

aqueous emulsions and CNC suspensions to obtain acetylated CNC, which imparted 

hydrophobicity to the CNC and rendered it soluble in solvent with low polarity. Surface 

acetylation of CNC whiskers (obtained from MCC) was undertaken by reacting it with vinyl 

acetate in the presence of potassium carbonate as catalyst. [Çetin et al., 2009] In an attempt to 

avoid complex surface functionalization routes, Braun and Dorgan [2009] recently combined the 

synthesis and functionalization of CNC in a single step. By utilizing a mixture of acetic acid, 

HCl and organic acids, CNC whiskers were synthesized and functionalized using the Fischer 

esterification process. Apart from the solution process, Berlioz et al. [2009] demonstrated a gas 

phase process that makes use of evaporation of large excess of palmitoyl chloride to achieve a 

surface to core esterification. Similar concept was applied to esterification by refluxing 

hydrolysed CNC in organic acid chloride. [Junior de Menezes et al., 2009]  

Cationization Hasani and co-workers [2008] described a one-step method to introduce 

positive charges on the surface of CNC through the grafting of epoxypropyltrimethylammonium 

chloride (EPTMAC) onto CNC surfaces. Such surface cationization procedure was conducted 

via a nucleophilic addition of alkali-activated cellulose hydroxyl groups to the epoxy moiety of 

EPTMAC. This modification process reversed the surface charge and led to stable aqueous 

suspensions of CNC with unexpected thixotropic gelling properties. 

Fluorescently Labeled CNC Dong and Roman [2007] described a method to label CNC 

with fluorescein-5’-isothiocyanate (FITC) for fluorescence bioassay and bioimaging applications. 

To covalently attach FITC moieties to the surface of CNC, they developed a simple method 

involving a three-step reaction pathway described by the reaction route shown in Scheme 2.4. 

First, the surface of CNC was decorated with epoxy functional groups via reaction with 
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epichlorohydrin, and then the epoxy ring was opened with ammonium hydroxide to introduce 

primary amino groups. Finally, the primary amino group was reacted with isothiocyanate group 

of FITC to form a thiourea. 

 

Scheme 2.4 Reaction route for surface fluorescently labeled CNC with FITC. [Dong and Roman, 

2007] 

Silylation Cellulose whiskers resulting from the acid hydrolysis of tunicate were partially 

silylated by a series of alkyldimethylchlorosilanes, with alkyl moieties ranging from isopropyl to 

n-butyl, n-octyl and n-dodecyl. [Goussé et al., 2002] The partially silylated whiskers with degree 

of substitution (DS) of between 0.6 and 1 can readily redispersed in medium polarity organic 

solvents, such as acetone and THF. At DS of less than 0.6, the morphological integrity of the 

whiskers was preserved, however it was disrupted when the DS was greater than 1. Moreover, 

the partially silylated whiskers were found to be more swollen compared to the needle-like 

images of unmodified whiskers, indicating the occurrence of slight silylation of the CNC core. In 

addition, Grunert and Winter [2002] also studied the surface trimethyl silylation of CNC from 

bacterial cellulose, and investigated their reinforcement characteristics in nanocomposites. 
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Table 2.1 Summary of various types of modifications on CNC whiskers. 

Type of Modification Modification agent/approach References 

Acetylation 
Alkenyl succinic anhydride 

(ASA) 
Yuan et al., 2006 

Surface  Acetylation 
Vinyl acetate in the presence of 

potassium carbonate as catalyst 
Çetin et al., 2009 

Fischer esterification 

process 

Mixture of acetic acid, HCl and 

organic acids 
Braun and Dorgan 2009 

Surface to core 

esterification 

Gas phase evaporation of large 

excess of palmitoyl chloride 
Berlioz et al., 2009 

Cationization 

Grafting 

epoxypropyltrimethylammonium 

chloride (EPTMAC) 

Hasani et al., 2008 

FluorescentlyLabelled CNC 
Fluorescein-5’- isothiocyanate 

(FITC) 
Dong and Roman 2007 

Silylation 
Series of 

alkyldimethylchlorosilanes 
Goussé et al., 2002 

TEMPO-Media Oxidation 

Oxidation of -OH groups to        

-COOH using 2,2,6,6-

tetramethylpiperidine-1-oxyl 

(TEMPO) 

Habibi et al., 2006 

Grafting of PEG-NH2 
Reaction of PEG-NH2 and 

TEMPO oxidized CNC 
Araki et al., 2001 

Grafting of 

polycaprolactone (PCL) 

Grafting-to approach using 

isocyanate-mediated coupling 

reaction 

Habibi and Dufresne 2008 

Grafting of styrene, 

DMAEMA or 

azobenzene polymers 

Grafting-from approach using 

surface initiated ATRP 

Yi et al., 2008; Morandi et 

al., 2009; Xu et al., 2008 
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TEMPO-Media Oxidation Conversion of hydroxymethyl groups into carboxylic groups 

can be conducted using 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) reagent. [Saito and 

Isogai, 2004; Saito et al., 2010] This is a simple oxidative route that uses TEMPO as nitroxyl 

free radial to specifically oxidize primary hydroxymethyl in an environment of NaBr and NaOCl; 

leaving the secondary hydroxyl groups intact. [Habibi et al., 2006] The morphology and crystal 

axis of the CNC are critical in determining the accessibility of the hydroxymethyl group. It is 

generally accepted that only 50% of the surface hydroxymethyl groups are accessible for the 

TEMPO reaction. Importantly, the structural integrity of CNC was retained after hydrolysis and 

TEMPO-mediated oxidation. However, excessive oxidation did affect the structural integrity of 

the original CNC; since the amorphous region of the CNC would be degraded. [Montanari et al., 

2005] The various types of modifications on CNC whiskers were summarized in Table 2.1. 

2.3.4 Polymer grafting of TRPs on CNC surface 

The methods for polymer grafting onto CNC surface are based on two approaches, i.e. 

“grafting-to” and “grafting-from”. Many techniques for surface modification of CNC whiskers 

involve the “grafting-to” approach, where a polymer chain is grafted to the CNC surface. In an 

early report by Araki and co-workers, [2001] an end-functional PEG with its reactive end-group 

–NH2 is coupled with the functional groups -COOH which are located on the CNC surface using 

peptide coupling reaction. HCl-hydrolyzed CNC was carboxylated by TEMPO-mediated 

oxidation, and then EDC/NHS carbodiimide chemistry was used to conduct a room temperature 

reaction between the -COOH groups on carboxylated CNC and -NH2 groups on PEG-NH2 

(shown in Scheme 2.5). The PEG-grafted CNC was also prepared by Kloser and Gray [2010] 

from the reaction of desulfated CNCs with epoxy-terminated PEG under alkaline conditions, 

using an alkaline epoxide ring opening strategy. Recently, Azzam et al. [2010] reported the 
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grafting of thermo-responsive polymers, namely Jeffamine series, onto CNC via a peptidic 

coupling reaction. The grafting density was confirmed to be sufficiently high that can offer a 

steric stabilization of the CNCs at high ionic strength and made the CNCs surface-active. They 

also investigated the thermo-reversible aggregation behavior of polymer grafted CNC, and 

discussed the possibility to pave the way for the design of stimuli-responsive bio-based 

nanocomposite materials. 

 

Scheme 2.5 Procedures for steric stabilization of cellulose microcrystals. [Araki et al., 2001] 

The “grafting-from” approach has been used to grow polymer chains from the CNC 

surface via the atom transfer radical polymerization (ATRP). This technique allows for very 

precise control over the grafting process that produces well-defined monodispersed particles. 

[Wang and Matyjaszewski, 1995] Surface initiated ATRP is a two-step process: the first step is 

the esterification of hydroxyl groups on CNC surface with 2-bromoisobutyryl bromide (BIBB), 
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which is followed by the polymerization of monomers. Thermo-responsive polymer, namely 

poly(N, N-dimethylaminoethyl methacrylate) was grafted onto CNC surface via surface-initiated 

ATRP by Yi et al. [2008] (Scheme 2.6). The PDMAEMA-grafted CNC was found to exhibit 

chiral nematic structure in lyotropic state, while the fingerprint texture of product suspensions 

was sensitive to temperature and the thermo-induced changes were reversible. Similar protocol 

was reported by Zoppe et al. [2010] in their study of grafting poly(N-isopropylacrylamide) on 

CNC surface with various grafting densities and molecular weights. They revealed that 

poly(NIPAM)-g-CNC in aqueous dispersions exhibited a sharp increase in dispersion viscosity 

as the temperature approached the LCST in contrast with unmodified CNC which showed no 

thermo-responsive behavior. Furthermore, the surface interaction forces of poly(NIPAM)-g-CNC 

were also investigated. 

 

Scheme 2.6 Formation of PDMAEMA grafted on rod-like CNC by surface initiated ATRP. [Yi 

et al., 2009] 

2.3.5 Applications of CNC  

As a result of their distinctive properties, cellulose nanocrystals have the potential of 

becoming an important class of renewable nanomaterials, which could find many useful 

applications. The main application of CNC is as reinforcing fillers in nanocomposite materials. 
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Chemical functionalization of CNC improves its dispersability in organic solvents and this 

greatly expands its potential applications in various sectors. The following section highlights 

some recent studies on potential applications of CNC.  

Nanocomposite Films The mechanical properties of nanocomposite films mainly depend 

on the morphology and dimensions of the two constituents, i.e. CNC and polymeric matrix, as 

well as the processing techniques. Any other factor that interferes or controls the formation of the 

percolating whiskers network will also change the mechanical performance of the 

nanocomposite. [Dufresne A., 2008] The geometrical aspect ratio, defined as the length-to-

diameter (L/d), is a major factor that controls the mechanical properties of nanocompsites and 

determines the percolation threshold value. This factor is related to the original cellulose fibers 

and production conditions, which was previously discussed. Fillers with a high aspect ratio 

produce the best reinforcing effect. It was reported that the highest modulus increase in the 

rubbery state of the poly(Styrene-co-BuA) matrix and thermal stability were obtained with 

tunicin whiskers (L/d ~ 67) in comparison with bacterial (L/d ~ 60) or Avicel whiskers (L/d ~ 10). 

[Samir et al. 2005] Sisal nanowhiskers with high aspect ratio were studied by de Rodriguez and 

co-workers [2006] as filler in the nanocomposites with polyvinyl acetate (PVAc) as the matrix. 

They found that the high aspect ratio could ensure percolation, resulting in mechanical 

improvements and thermal stability at lower fiber loads. Dubief et al. [1999] also reported on the 

mechanical behavior of composites based on amorphous PHO when reinforced with tunicin 

microcrystals. They proved that tunicin whiskers with high aspect ratio led to higher mechanical 

properties through the formation of a rigid filler network. Similar effects on the dependence of 

mechanical properties of nanocomposites on aspect ratio were also reported using carbon 

nanotubes as fillers. [Jiang et al., 2007; Wong et al., 2009] 
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Drug Delivery The materials for drug delivery seem to be one of the most interesting 

research fields. Abundant researches were conducted to investigate various drug delivery 

systems, such as liposomes, micelles, microgels. [Ha and Gardella, 2005] Considering the safety 

and efficacy, cellulose nanocrystals has attracted increasing attention in biomedical applications 

(such as a drug carrier), due to its attractive properties. The toxicity assessment of CNC in 

human brain microvascular endothelial cells was conducted and CNC was non-toxic to cells and 

could be used as carriers in the targeted delivery of therapeutics. [Roman et al. 2010]  Recently, a 

comprehensive assessment involving toxicity tests with rainbow trout hepatocytes and nine 

aquatic species were conducted by a team of Canadian researchers. [Kovacs et al., 2010] From 

the initial ecotoxicological characterization of CNC, no serious environmental concerns were 

observed. However, further testing will be necessary, such as the evaluation on the fate, potential 

CNC uptake and exposure studies, so that a detailed risk assessment of CNC can be determined.  

Protein Immobilization Marchessault and co-workers [2006] provided a description of a 

“proteins fishing” phenomenon for magnetic MCC. The first step is the ferrite synthesis that 

yields predominantly magnetite. Two different approaches have been envisaged for preparing 

magnetic MCC, where the order of magnetization and oxidation of MCC was altered, producing 

Mag-Oxy-MCC (oxidation first) and Oxy-Mag-MCC (magnetization first). The results of protein 

binding capacities of magnetic MCC are summarized in Table 2.2, which were determined using 

Bovine Serum Albumin (BSA) as a model protein ligand. A novel nanocomposite consisting of 

CNC and gold nanopaticle was recently investigated as a matrix for enzyme/protein 

immobilization. [Mahmoud et al., 2009]  Cyclodextrin glycosyl transferase (CGTase) and 

alcohol oxidase were used as test models, and they showed a phenomenally high loading rate in 
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the matrix. The novel matrix also exhibited significant biocatalytic activity, and it is anticipated 

that the approach could be extended to other enzymes.  

Table 2.2 Protein binding capacities of magnetized avicel samples. [Marchessault et al., 2006] 

 

Nanostructures via Templating with CNC Since Mobil researchers reported the first 

synthesis of mesoporous material in 1992, [Kresge et al.] this approach has attracted significant 

attention in fundamental and applied fields. Herein, CNC has already been used as a template in 

the synthesis of mesoporous materials.  Porous titania with anatase structure was prepared using 

CNC as a template and aqueous Tyzor-LA solution as a cheap and stable titania precursor. [Shin 

et al., 2007] The titania material possesses high specific surface area, and may be applied to 

many fields, such as catalysis, catalyst support and photovoltaics. A new CNC-inducing route 

was proposed for the synthesis of shape-controlled nanoparticles. [Zhou et al., 2007] The novel 

cubic-shaped TiO2 nanoparticles (Figure 2.8) with high crystallinity and uniform size were 

prepared using CNC as morphology-inducing and coordinate agent at low temperature. Thermal 

gravimetric analysis (TGA) suggests that CNC is probably embedded in the TiO2 nanoparticles 

to promote the development of regular anatase nanocubes. 

 Some metal nanoparticles have been synthesized on CNC surface via a reduction method, 

such as Ni nanoparticles [Shin et al., 2007] and Au-Ag alloy nanoparticles. [Shin et al., 2008] In 

these processes, CNC serves as a dual role, as a matrix and a stabilizing template, to produce 

stable dispersions of nanoparticles on CNC surface, and the crystallinity of CNC was maintained 

Sample % Bound Proteins (w/w) 

Mag-MCC 8.02 

Mag -Oxy-MCC 21.53 

Oxy-Mag-MCC 17.41 
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during the alloy formation. [Shin et al., 2008]   These reducing processes could be recognized as 

“green” processes ascribed to the use of CNC and applied to the preparation of transition metal 

nanoparticles, which have high oxidizing property without additional reducing agents. 

 
Figure 2.8 Transmission electron microscopy (TEM) image, (b) High-resolution transmission 

electron microscopy (HRTEM) image, (c) selected area electron diffraction (SAED) pattern of 

TiO2 nanocubes. [Zhou et al., 2007] 

A recent discovery of free-standing mesoporous silica films with tunable chiral nematic 

structures was made by the research group of MacLachlan at the University of British Columbia. 

[Shopsowitz et al., 2010] Various types of mesoporous silica films were produced by calcinating 

the CNC/silica composite systems and the transmission spectra of the mesoporous silica films 

are shown in Figure 2.9(a). Photograph of the different colours of mesoporous silica films S1 to 

S4 are shown in Figure 2.9(b), where the proportion of Si(OMe)4 : CNC increased from samples 

S1 to S4. The colours in these silica films arise only from the chiral nematic pore structure 

present in the materials. This discovery could lead to the development of novel materials for 

applications such as tunable reflective filters and sensors. In addition, CNC could be used as a 

hard template to produce other new materials with chiral nematic structures. 
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Figure 2.9 Optical characterization and properties of CNC/silica mesoporous films (a) 

Transmission spectra; (b) Photograph showing different colours of mesoporous silica films S1 to 

S4. [Shopsowitz et al., 2010] 

2.4 Interaction between polymeric nanostructures and surfactants 

2.4.1 Overview of polymer/surfactant systems  

Mixtures of water-soluble polymer and surfactant have received a great deal of attention 

and they been systemically studied in the past decades, because of their wide applications in 

many industrial product formulations, such as cosmetic products, food additives, pharmaceutical 

formulations, enhanced oil recovery. [Kwak, 1998; Holmberg et al., 2002] The behavior of 

polymer/surfactant mixtures can be quite different from individual polymer or surfactant solution 

due to their interactions that can result in significant changes in the phase behaviour, rheological 

and interfacial properties. [Tam and Wyn-Jones, 2006] Surfactant molecules can self-assemble 

into aggregates of different morphologies up to a critical concentration, i.e. critical micellization 

concentration (CMC), while in the presence of polymers, micelles can form at a lower 

concentration due to polymer/surfactant interactions, which is denoted as polymer-induced 
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micellization. In polymer/surfactant systems, two critical concentrations are used to describe the 

interactions between polymer and surfactant molecules. The critical aggregation concentration 

(CAC) indicates the onset for the formation of polymer/surfactant complex, while the saturation 

concentration (C2) implies the polymer chains become saturated with bound surfactant molecules. 

[Bao et al. 2008] In general, polymer/surfactant interactions can be divided into two broad 

categories: (1) charged polymers and oppositely charged surfactants and (2) uncharged polymers 

and all types of surfactants. For charged polymers and oppositely charged surfactants, 

electrostatic attraction dominates the binding interactions at low surfactant concentration. At 

higher surfactant concentration, hydrophobic interaction dominates the binding when all the 

charged groups on polymer chains are neutralized. These interactions will induce the 

restructuring of polymer chains and the occurrence of precipitation. [Dai and Tam, 2004] For 

uncharged polymers and ionic surfactants, their behavior is mainly controlled by the 

hydrophobic interaction. For example, the interactions between uncharged poly(ethylene glycol) 

(PEG) and anionic surfactant sodium dodecyl sulfate (SDS) have been widely studied, and strong 

cooperative binding interactions, which are controlled by the equilibrium of polymer-induced 

micellization at low SDS concentration and ion-dipole association at high SDS concentration. 

[Dai and Tam, 2001; Wang and Olofsson, 1995] While the cationic surfactant 

dodecyltrimethylammonium bromide (DoTAB) possesses the same length carbon tail as SDS but 

with different hydrophilic head groups, it only binds to very hydrophobic polymers, such as 

hydrophobically modified water-soluble polymers. [Couderc et al. 1999] Therefore, the binding 

process and resulting mechanisms are dependent on surfactant type, polymer molecular weight, 

chemical structure, hydrophobic content of polymer and other parameters. The interactions 

between uncharged polymers and surfactants are simpler in the absence of electrostatic effect. 



37 
 

The CMC of nonionic surfactants are usually orders of magnitude lower than ionic, which is 

strongly influenced by unfavorable electrostatic interactions. [Hansson and Lindman, 1996] 

Hence, nonionic surfactants tend to form micelles and possess weak interaction with uncharged 

polymers compared to charged polymers with oppositely charged surfactants and also uncharged 

polymers/ionic surfactants. However, their interactions can be significantly altered by 

temperature, solvent quality, electrolyte, and chemical structure of polymers and surfactants. 

In this section, we will focus on the behaviors of thermo-responsive polymers and 

surfactant systems in bulk solution, while both the synthetic and natural TRPs and their 

interactions with anionic, cationic and non-ionic surfactants under different conditions are 

summarized. In addition, the biodegradable CNC, chitosan and their derivatives are introduced, 

and their interactions with surfactants are also reviewed.  

2.4.2 Interactions between TRPs and surfactants 

Since PNIPAM is the most widely studied thermo-responsive polymer, its interactions with 

surfactant molecules have gained increasing attention. Especially, the surfactant effects on the 

conformational change of PNIPAM in water have been extensively studied using various 

techniques, such as laser light scattering (LLS), conductometric measurements, small angle 

neutron scattering, fluorescence spectroscopy, and nuclear magnetic resonance. [Chen et al., 

2011] The interaction of PNIPAM with an anionic (SDS) and three cationic (DTAB and CTAB, 

and dodecylammonium chloride, DAC) surfactants was reported by Loh and co-workers. [2004] 

They used isothermal titration calorimetry that allows the precise determination of parameters to 

characterize polymer-surfactant interactions. They found that the interaction of PNIPAM with 

ionic surfactants is significantly affected by temperature. A temperature increase can strengthen 

the polymer surfactant interaction, owing to a reduction in the degree of PNIPAM hydration that 
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becomes more important near the LCST. Different surfactants displayed different binding 

affinities toward PNIPAM, with the intensity following the sequence: SDS > CTAB > DAC > 

DTAB. This sequence confirms that anionic surfactants are much more effective in binding to 

nonionic polymers and also that the surfactant hydrophobicity plays an important role in this 

interaction. The amount of bound surfactant and overall energy of interaction were found to 

remain constant for all surfactants within the temperature range examined.  

The possible morphologies of PNIPAM and SDS were also studied. Chee and co-workers 

[2011] reported that SDS interacts with PNIPAM to form micellar structures along the 

macromolecular backbone upon CAC. Binding of SDS to PNIPAM induces a switch in the chain 

conformation from a flexible, solvent-saturated coil to a surfactant-swollen structure due to 

electrostatic repulsion between ionic head groups. At the LCST, addition of a small amount of 

SDS is sufficient to dissociate the collapsed PNIPAM chain into isolated globular structures. 

Further addition of SDS induces a switch in the macromolecular chain conformation from a 

globule to a swollen coil. Walter et al. [1996] thought the surfactants form a surface layer with 

the polymer globule to prevent phase separation when the temperature increases to the LCST.  

  The interactions of surfactant with homo- and co-polymers based on ethylene oxide (EO) 

and propylene oxide (PO) were important field for TRPs and surfactant systems. The 

temperature-dependent solvation of ethylene oxide (EO) and propylene oxide (PO) blocks 

especially in aqueous solutions makes block copolymers particularly useful for thermal 

reversible micellization processes. Li and co-workers [2001] studied a series of Pluronic 

polymers and their interactions with surfactants. For example, they investigated the interactions 

between a cationic surfactant (TTAB) and Pluronic triblock copolymer F127, which is a nonionic 

surfactant with structural formula EO97PO69EO97, where EO represents the ethylene oxide block 
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and PO represents the propylene oxide block. The results showed that TTAB formed a 

polymer/micellar complex with monomeric F127. Binding TTAB to F127 led to the 

transformation of aggregated F127 chains into mixed micelles, as more TTAB was added, the 

aggregates dissociate into smaller mixed F127/TTAB aggregates. They also found that small 

amounts of TTAB reduced the critical micelle temperature of F127. Similar work was conducted 

by introducing SDS, and the investigations showed a different binding and aggregation process 

between SDS and F127 that comprised of induced micellization, growth of mixed micelles, 

breakdown of mixed micelles, and binding of SDS to monomeric F127. [Li et al., 2001] 

Natural biopolymers and their derivatives have received increasing attention due to their 

biocompatible, biodegradable, non-toxic and other attractive properties. In the last several 

decades, extensive studies have been made on the interactions between surfactants and water-

soluble biopolymers. Ethyl(hydroxyethyl) cellulose (EHEC) is one type of nonionic cellulose 

derivatives containing hydrophilic (-CH2CH2OH) and hydrophobic (-CH2CH3) micro-domains 

distributed randomly along the polymer backbone. It is water-soluble and exhibits a lower 

critical solution temperature (LCST) in aqueous solution. [Nyström et al., 2009] In recent 

decades, more research has been focused on the field of uncharged polymer and surfactant 

interactions, where the poly(ethylene oxide) (PEO) based uncharged polymers and SDS systems 

were most extensively studied. Aqueous solution behaviors of nonionic EHEC biopolymer in the 

presence of a surfactant have received increasing attention and they were examined in the dilute 

and semi-dilute regime. [Bloor et al., 1996; Walderhaug et al., 1995] Various experimental 

approaches have been employed to study different physicochemical properties of EHEC in 

aqueous solution in the presence of surfactants. The picture that emerged from these 

investigations is that both anionic and cationic surfactants interact strongly with the EHEC 
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polymer, resulting in a number of changes in the macro- and micro-scale properties, such as 

cloud point, bulk viscosity, microviscosity, and micropolarity. [Singh and Nilsson, 1999] Hoff et 

al. [2001] studied the interaction between EHEC and SDS in dilute aqueous solutions at different 

temperatures using viscometry. They demonstrated that at low polymer concentrations the 

polymer-surfactant complexes are molecularly dispersed, and with small amounts of surfactant, 

the viscosity displayed a strong shear-thinning profile while the shear rate dependence of the 

viscosity was less pronounced at high surfactant concentrations. Combining with other 

measurements, a sharp collapse of the polymer/surfactant aggregates occurred at surfactant 

concentration slightly above CAC, while the EHEC/SDS complexes expanded with increasing 

SDS concentration due to the enhanced electrostatic repulsion. At high surfactant concentration, 

the complexes structure contracted due to screening of electrostatic interactions.  

It is well-established that aqueous solutions of EHEC in the presence of an ionic surfactant 

exhibit a thermo-reversible sol-gel transition in the semi-dilute regime, where the polymer chains 

overlap each other. [Walderhaug et al., 1995] These EHEC/surfactant systems can transform 

from a viscous solution to a clear and stiff gel at elevated temperatures, and the gel point 

temperature strongly depends on the polymer/surfactant composition, which is similar to the 

cloud point. This sol-gel transition of EHEC/surfactant aqueous solutions has been studied in 

details using various techniques. [Walderhaug et al., 1995; Bu et al., 2004; Ostrovskii et al., 1999; 

Kjøniksen et al., 1998; 2005] A series of samples at different SDS/EHEC ratios (r) were 

examined by rheometry over a temperature range of 10 to 45 oC. [Kjøniksen et al., 1998] The 

results indicated that semi-dilute systems formed gels upon heating at moderate ratios (r) of 

SDS/EHEC due to the strengthening of the association network of EHEC and SDS molecules. 

This thermo-induced gelling phenomenon was mainly due to the increased hydrophobicity of 
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EHEC at higher temperature, resulting in stronger inter-polymer interactions. [Lindman et al., 

1990] The surfactant molecules also played an important role in stabilizing and strengthening the 

associative junctions that connect many different polymer chains. [Kjøniksen et al., 1998] 

However, at high ratios of SDS/EHEC, the association network was disrupted and no thermo-

reversible gelling behavior was observed over similar temperature range and moderate 

SDS/EHEC ratios. 

2.4.3 Interactions between biodegradable cellulose derivatives and surfactants 

In the last several decades, extensive studies have been conducted on the interactions 

between surfactants and water-soluble cellulose derivatives, which have a wide range of 

applications. In these studies, both cooperative and noncooperative bindings were observed, 

while the binding processes were investigated in a high concentration regime.  

Carboxymethylcellulose (CMC) is one of the most important cellulose ethers derived from 

cellulose, which can be synthesized by the alkali-catalyzed reaction of cellulose with 

chloroacetic acid. It behaves as an anionic polyelectrolyte at pH > 4, and is generally used as the 

sodium salt, i.e. sodium carboxymethyl cellulose (NaCMC). [Chakraborty, Chakraborty and 

Ghosh, 2006] The interactions between NaCMC and various cationic surfactants have been 

extensively studied, and they displayed similar behaviors as synthetic anionic polyelectrolyte. 

For the oppositely charged systems, complexation start to form due to the strong electrostatic 

attraction above a surfactant concentration called the critical aggregation concentration (CAC). It 

has been reported that the polymer/surfactant association already occurs below CAC ascribing to 

the noncooperative binding, which becomes more cooperative above CAC. [Wang and Tam, 

2002] Upon increasing surfactant concentration, the binding sites on polyelectrolyte decrease and 

eventually saturate with surfactant molecules. Then the hydrophobic effects start to take over of 
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the interactions instead of electrostatic attraction, and phase separation with precipitation of a 

concentrated phase may occur. [Trabelsi, Raspaud and Langevin, 2007] In general, the 

polyelectrolyte chains start to partially collapse at low surfactant concentration, while their 

complexes are quite polydispersed, with increasing surfactant concentration, the multi-chains 

aggregates formed result in the occurrence of precipitation. In comparison with flexible synthetic 

polymers, NaCMC is semi-flexible with a more rigid backbone, which could influent the chain 

collapse resulting in different kinds of aggregate structures. [McLoughlin, Impéror-Clerc and 

Langevin, 2006] It has been realized that many factors can affect the interaction process, such as 

NaCMC molecular weight and charge density, surfactant chain length, head group size, 

counterion, as well as ionic strength, temperature. 

The interactions of NaCMC with DoTAB and CTAB were studied by Trabelsi et al. [2007] 

using light scattering, surfactant-selective electrode, viscosimetry, and zeta-potentiometry. They 

found that NaCMC and surfactants molecules formed spherical, rigid, and monodisperse 

aggregates at low polymer concentrations, while larger, polydisperse, and softer ones at high 

polymer concentrations. In addition, the surfactant tail length by four CH2 groups drastically 

changed the aggregate size, as the NaCMC/CTAB aggregates were much larger than 

NaCMC/DoTAB ones. Similar results were reported by Mata et al. [2006] by comparing the size 

of aggregates formed by NaCMC with DoTAB, tetradecyltrimethylammonium bromide (TTAB), 

and CTAB. Furthermore, they also discussed the effect of the head group size of tetradecyl 

quaternary ammonium surfactant on the mixed aggregates using TTAB, tetradecylpyridinium 

bromide (TPyB), and tetradecyltriphenylphosphonium bromide (TTPB) and found that 

increasing the head group size result in a steeper growth of the aggregates. On the other hand, the 

properties of NaCMC, such as molecular weight (Mw) and degree of substitution (DS), also 
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played an important role in the complexation studies. Naves and Petri [2005] have investigated 

the effect of Mw and DS on the interaction between NaCMC and CTAB, where they found the 

formation of NaCMC/CTAB complex in the bulk solution were significantly affected by DS of 

NaCMC rather than the molecular weight. The effects of solution environment, such as ionic 

strength, temperature on complexation of NaCMC/cationic surfactants were studied as well. 

[Wang et al., 2005; Chakraborty, Chakraborty and Ghosh, 2006] The salt effect on the complex 

formation between NaCMC and DoTAB was studied by Wang and co-workers [2005] using 

microcalorimetry, turbidimetric titration, steady-state fluorescence measurements, and 

fluorescence polarization technique. The salt-enhancing effect on the complex formation was 

observed. The reason is that the increasing of NaCMC/DoTAB interaction owing to the growth 

of micelles exceeded the screening of interaction, resulting in the enhanced complex formation.  

In dilute aqueous solution of NaCMC and cationic surfactants, some unique structures of 

the concentrated phases were formed above the precipitation threshold. Trabelsi et al. [2007] 

used by X-ray diffraction to study the structures formed by NaCMC and DoTAB, TTAB, CTAB 

and octadecyl trimethylammonium bromides (OTAB). Different cubic structures were observed 

in the presence of surfactant with a short aliphatic chain (DoTAB), while for larger surfactant 

chain lengths (TTAB and CTAB) the structure of the precipitates can be either cubic or 2D 

hexagonal depending on the initial surfactant and polymer concentrations, and for still larger 

chain length (OTAB), the structure became lamellar. In semi-dilute solution regime, the steady 

and dynamic rheological behaviors of NaCMC and DoTAB were also investigated. [Wu et al., 

2009] They observed three scaling regions of the viscosity profiles over two critical DoTAB 

concentrations, namely C1 and C2 (see Figure 2.10). The three regions may correspond to three 
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states of NaCMC/DoTAB formation with increasing surfactant concentration, i.e. no network 

formation, network extent progressive formation and perfect network formation, respectively. 

 

Figure 2.10 Dependence of reduced viscosity on DoTAB concentrations for NaCMC 

concentrations of 0.5 wt%, 0.75 wt% and 1 wt% at 25 oC. [Wu et al., 2009] 

Ethyl(hydroxyethyl) Cellulose (EHEC) is one type of nonionic cellulose derivatives with 

hydrophilic (-CH2CH2OH) and hydrophobic (-CH2CH3) microdomains distributed randomly 

along the polymer backbone. It is water-soluble and possesses a lower critical solution 

temperature (LCST) in aqueous solution. Ridell and co-workers [2002] studied the interactions 

between EHEC and anionic surfactants, and examined the effects of the counterion, which were 

dodecyl sulfates with potassium, sodium, and lithium as counterions (KDS, NaDS, LiDS). It was 

found that the counterion influenced the interaction starting concentration in the order of KDS < 

NaDS < LiDS, and the nature of the complexation. The interaction between EHEC and cationic 

surfactants were also reported by many groups. [Zana et al., 1992; Bloor, Mwakibete and Wyn-

Jones, 1996; Bu, Kjøniksen and Nyström, 2004] A series of cationic surfactants, namely 

alkyltrimethylammonium halides RTAX with R equal to C12, C14, and C16 and X either Br or C1, 
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and dodecylammonium chloride were employed in the interaction studies with EHEC in 

comparison with SDS. They found that both SDS and cationic surfactants can bind onto EHEC 

molecules, while the binding sites may be different. From both the calorimetric and viscosity 

results, it was noted that SDS interacted with EHEC through both the ethyl and the ethylene 

oxide groups while the RTAX surfactants predominately interact with the alkyl groups. [Wang 

and Olofsson, 1995]  

The hydrophobically modified EHEC, namely HM-EHEC, exhibited higher viscosity 

values than EHEC due to the intra- and intermolecular interactions of the hydrophobic moieties. 

In the presence of surfactants, hydrophobic interactions were affected and the association 

strength could be augmented or weakened by the level of surfactant addition. [Thuresson, 

Lindman and Nyström, 1997] In aqueous media, the remarkable rheological and structural 

properties of surfactant and HM-EHEC have also been investigated in comparison to unmodified 

EHEC. Evertsson and Nilsson [1999] studied the association behavior of HM-EHEC and its 

interaction with SDS in the dilute concentration regime using fluorescence probe. They 

discussed the noncooperative and cooperative binding process of SDS to HM-EHEC, and found 

the surfactant/polymer aggregates were rigid and hydrophobic in the noncooperative binding 

region at a very low degree of SDS adsorption. Thuresson and co-workers [1997] systematically 

examined the interactions between various surfactants (anionic, cationic, and nonionic) and two 

cellulose derivatives, i.e. EHEC and HM-EHEC. They found that in the presence of an ionic 

surfactant, the rheological measurements revealed strong polymer/surfactant interaction for both 

EHEC and HM-EHEC, and the interaction was more significant at low surfactant concentration 

for HM-EHEC. In contrast, the polymer/surfactant interaction was weaker in the presence of a 

nonionic surfactant. Moreover, they reported that with increasing the surfactant chain length, the 
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disruption of the association process was delayed. A schematic picture describing the surfactant-

induced strengthening and disruption of the association network is presented in Figure 2.11. 

[Nyström et al., 2009]  

 

Figure 2.11 A schematic illustration of the surfactant-induced strengthening and disruption of 

the association network. [Nyström et al., 2009] 

2.4.4 Interactions between cellulose nanocrystals and surfactants  

 Cellulose nanocrystals (CNC) possess negative charges on their surface due to the 

formation of sulphate ester groups during sulfuric acid treatment, which enhances their stability 

in aqueous solutions, but restrict its dispersability in most non-polar solvents. One possible route 

to improve this is to coat the CNC surface with a surfactant, which has been successfully 

demonstrated by Heux and co-workers. [Heux, Chauve and Bonini, 2000; Ljungberg et al., 2005; 

Ljungberg, Cavaillé and Heux, 2006; Elazzouzi-Hafraoui, Putaux and Heux, 2009] The 

surfactant used in their studies was a phosphoric ester of polyoxyethylene(9) nonylphenyl ether, 

with a commercial name Beycostat NA (BNA). To prepare a CNC suspension in non-polar 

solvents, the cellulose suspension in water was mixed with the surfactant at a weight ratio of 4:1 

of BNA to cellulose. After adjusting the pH to 8 using aqueous sodium hydroxide, the 
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suspension was freeze-dried and then redispersed in toluene. The final suspensions of the surface 

coated whiskers in non-polar solvents, such as toluene and cyclohexane, did not precipitate nor 

flocculate. [Heux, Chauve and Bonini, 2000] Three types of CNC particles, namely Col54, 

Col63, Col72, were prepared with acid treatment of cotton linters at 54, 63, and 72 oC, 

respectively, while their suspensions in cyclohexane were examined using polarized light 

microscopy. All the suspensions’ anisotropic phases displayed the same patterns consisting of 

alternating dark and illuminated zones, which were referred to chiral nematic textures. 

[Elazzouzi-Hafraoui, Putaux and Heux, 2009] Polarized optical micrographs of the chiral 

nematic texture (Figures 2.12 a-c) and fingerprints (Figures 2.12 d-f) of the anisotropic phase in 

CNC suspensions in cyclohexane were shown in Figure 2.12. 

 
Figure 2.12 Polarized optical micrographs of the chiral nematic texture (top row) and 

fingerprints (bottom row) of the anisotropic phase in Cot54 at 31.0 wt% (a and d), Cot63 at 38.7 

wt% (b and e), and Cot72 at 27.0 wt% (c and f) suspensions in cyclohexane. [Elazzouzi-Hafraoui, 

Putaux and Heux, 2009] 

CNCs have been realized as a promising renewable biomaterial and used as a reinforcing 

component in high performance nanocomposites. Many new nanocomposite materials with 
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attractive properties were obtained by the physical incorporation of CNC into a natural or 

synthetic polymeric matrix. In order to improve the dispersion of CNC in hydrophobic matrix, 

surfactant was employed by some researchers. [Bondeson and Oksman, 2007; Kim et al., 2009; 

Rojas, Montero and Habibi, 2009] Kim et al. [2009] utilized a nonionic surfactant sorbitan 

monostearate (span-60) to improve the dispersion properties of CNC in a hydrophobic 

polystyrene matrix and to prevent the formation of aggregates. Figure 2.13 shows the optical 

microscope images of PS/CN/Surfactant composite films at various CN/Surfactant ratios from 

1:0, 1:1, 1:2, and 1:4. Compared with neat PS film, adding CNC to a PS matrix resulted in the 

aggregation of nanoparticles, implying low dispersion of CNC. A better dispersion was observed 

by adding small amounts surfactant, while agglomeration appeared at CN/Surfactant ratio of 1:4 

due to the effect of self-aggregation of the surfactant. [Kim et al., 2009] Therefore, these results 

showed that the optimum addition of surfactant produced better dispersion of cellulose particles 

in the polystyrene matrix. Furthermore, they also proved that the mechanical properties of the 

resulting composite were improved due to an enhanced compatibility.         

Smooth monolayer films consisted of CNC and a cationic surfactant 

dioctadecyldimethylammonium (DODA) were prepared by Langmuir-Blodgett [Habibi et al., 

2007] vertical and Langmuir-Schaeffer [Habibi et al., 2010] horizontal deposition. The 

morphology and chemical composition of these films were characterized using atomic force 

microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). It was demonstrated that these 

layers offer an opportunity to investigate the interfacial properties relevant to the chemical and 

biological transformations of cellulose. Alternatively, these films can be used as a coating 

technology to modify the surface of other materials to achieve unique properties. [Habibi et al., 

2010] 
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Figure 2.13 Optical microscope images for neat PS film (A0 and B0) and PS/CN/Surfactant 

composite films with 3% (A1–4) and 6% (B1–4) CN weight load. CN:Surfactant ratios are 1, 

CN:Surfactant = 1:0; 2, CN:Surfactant = 1:1; 3, CN:Surfactant = 1:2; 4, CN:Surfactant = 1:4. 

[Kim et al., 2009] 

2.4.5 Interactions between biodegradable chitosan derivative and surfactants 

Chitosan is a (1→4)-linked 2-amino-2-deoxy-β-D-glucan derived from fully or partially 

deacetylated chitin, which is the most abundant natural biomacromolecule. Chitosan is an 

important polysaccharide, having unique structures, properties and wide ranging applications in 

many industrial sectors, such as tissue engineering, transplant and cell regeneration, 

encapsulation, and wastewater treatment. Recently, chitosan has been developed as drug carriers 

in the microparticulated and conjugated drug delivery systems due to its biocompatibility and 

biodegradability. Even though, one drawback in chitosan is that it is only soluble in acidic 

medium, therefore, improving its water-solubility is important for its further application as 

biomaterial. Chemical modification of chitosan is an efficient way to alter the properties of 

chitosan, such as trimethylated, N-succinylated, thiolated, azidated, sugar-modified and enzyme-

modified chitosans. [Ravi Kumar et al., 2004] Among these methods, introducing anionic and 
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cationic functional groups to chitosan structure is very important in order to improve its 

solubility in aqueous medium. For example, the sulfochitosan and carboxyalkylated chitosan are 

soluble not only in acidic medium but also basic medium, moreover, the solubility of N- 

carboxyalkylated chitosan in water offers higher biodegradability and more biocompatible than 

chitosan molecules. Park et al., [2003] demonstrated that the gluconic acid modified chitosan can 

enhance its susceptibility to lysozyme in their biodegradability study. As a consequence, it 

provided a possible way to control the aqueous solubility and biodegradability of chitosan by 

simple modification with gluconic acid. 

Chitosan has been used to prepare nanoparticles, nanospheres, hydrogels, films, fibres and 

so on. In preparing these nanostructures, surfactants can play an important role as an emulsifier, 

dispersant, or foaming agent. Therefore, the study on the interaction between surfactant and 

chitosan and its derivatives is a very interesting subject that is the focus of many researchers. 

[Pavinatto, Caseli and Oliveira, 2010; Casettaria et al., 2012] Chitosan/surfactant complexes can 

be formed in aqueous solutions due to electrostatic attraction, hydrophobic interaction or other 

forces, while the addition of surfactant has a significant effect on the structural, dynamic and 

rheological properties of chitosan solutions. For example, it is reported that surfactants can 

increase chitosan’s solubility in water or in organic solvents by forming complexation. 

[Casettaria et al., 2012] The unique vesicles containing amphiphilic chitosan derivatives and the 

conventional cationic surfactant was prepared by Fan et al., [2011] while the formation of 

vesicles was driven by hydrophobic and electrostatic interactions. Pavinatto et al. [2010] 

reviewed the use of chitosan in nanostructured films produced with the Langmuir-Blodgett (LB) 

or the electrostatic layer-by-layer (LbL) techniques, and they emphasized on the role of 

surfactants in improving the surface activity of chitosan in diluted solution. A gemini surfactant 
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consists of two conventional surfactant molecules, which are chemically bonded together by a 

spacer. Hence, the properties of gemini surfactant should be different from the conventional ones, 

which may exhibit some novel behavior in the surfactant/chitosan complex. The fundamental 

knowledge developed from such studies will provide the information necessary for the 

development of new and novel systems for applications in the biomedical and chemical fields.    

2.4.6 Applications of polymers and surfactants complexes 

As a result of their distinctive properties, the polymer/surfactant systems have been found 

in a wide range of useful applications. This section highlights the potential applications of 

polymer/surfactant systems in the following fields. 

Biomedical Applications The polymer/surfactant complexes are commonly found in many 

biomedical products, where surfactant is used as additive in a drug formulation or as molecules 

present in an in-vivo environment. [Schmaljohann, 2006] Surfactants can alter the 

hydrophilic/hydrophobic balance of polymers provided they bind to the polymer chain causing a 

shift in the transition temperature.  While the size of polymer aggregates can also be changed, for 

example, PNIPAM shows a monotonous increase in the hydrodynamic radius Rh upon the 

addition of an ionic surfactant (SDS), while the transition temperature increases with increasing 

surfactant concentration until it levels off at a defined surfactant concentration. [Makhaeva et al., 

1998] Thermo-responsive gels have been investigated for biomedical applications, such as drug 

delivery vehicles and chromatographic or separation technology, [Ramkissoon-Ganorkar et al., 

1999; Gan and Lyon, 2002] where the particle size can be controlled by altering the surfactant 

concentration in the system. [Ito et al., 1999] Isogai et al. [1996] studied the volume collapse 

behavior on binding of tetraphenylphosphonium chloride (TPPC) to an anionic polyelectrolyte 

network poly(2-(acrylamido)-2-methylpropanesulfonic acid) (PAMPS) gel. They found that the 
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amount of TPPC inducing volume collapse decreased with increasing temperature, and the 

binding process is non-cooperative and insensitive to temperature change in spite of the strong 

hydrophobic interaction of TPPC.  

Drug Delivery Drug delivery systems is highly innovative in terms of materials to assist 

delivery and release drugs, and the materials for drug delivery have become one of the most 

interesting research fields. Considering the safety and efficacy, the use of natural polymers 

matrix is one of the most popular approaches in formulating a drug delivery carrier. Among the 

natural polymers, water-soluble cellulose derivatives have been widely studied in the 

applications of drug delivery, and found good performance in combination with surfactants. 

[Scherlund, Brodin and Malmsten, 2000; Terayama et al., 2001] To enhance the dispersion of 

hydrophobic drugs in water, a combination of surfactant and cellulose derivatives systems is a 

good strategy. The aqueous dispersion behavior of a well-know enzymatic inhibitor, i.e. 5-(3- 

ethoxy-4-pentyloxyphenyl)-2, 4-thiazolidinedione (CT112) was studied in the presence of SDS 

and cellulose derivatives. It is found that the dispersion of CT112 was enhanced, and more stable 

dispersion of CT112 particles was prepared. [Terayama et al., 2001] Scherlund et al. [2000] 

studied the interaction behavior of ionic surfactants and EHEC and HM-EHEC, and investigated 

the in vitro drug release behaviors of anesthetic agents (lidocaine and prilocaine) based on these 

surfactant/polymer systems. The results showed that small amounts of active ingredients can be 

incorporated into the systems, while the stability and drug release indicated a possibility of 

formulating a local anesthetic drug delivery system using the surfactant/polymer systems. 
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Figure 2.14 Confocal micrographs of KU-7 cells incubated for 2 hours with 

CNC/CTAB/fluorescein nanocomplexes with a CNC/CTAB/fluorescein concentration of 0.25 

mg/mL. A) White light image of KU-7 cells. B) Staining of the nuclei with DAPI (4’, 6-

diamidino-2-phenylindole). C) Fluorescein in the cytoplasm. D) An overlay of images B and C. 

[Jackson et al., 2011] 

Cellulose nanocrystals (CNC) have attracted increasing attention in biomedical 

applications due to its attractive properties. As a relatively new material, the applications of 

materials based on CNC have not been widely studied. Therefore several papers have been 

published, reporting on the application of drug delivery of surfactant/CNC combinations. [Levis 

and Deasy, 2001; Podczeck, Maghetti and Newton, 2009; Jackson et al., 2011] Recently, the 

CNC and CTAB complexes were studied by Jackson and co-workers, [2011] and they found that 

the complexes could bind to KU-7 cells and evidence of cellular uptake was observed (see 

Figure 2.14). Furthermore, they found the CTAB-coated CNC was shown to bind significant 

quantities of the nonionized hydrophobic anticancer agents docetaxel (DTX), paclitaxel (PTX), 
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and etoposide (ETOP) and release these drugs in a controlled manner over several days (see 

Figure 2.15). Similar release profiles were observed for these three agents, 59% and 44% of the 

total bound DTX and PTX were released in 2 days, respectively. While a total of 75% of the 

ETOP was released over 4 days.    

 

Figure 2.15 The in vitro release of etoposide (▼), docetaxel (  ), and paclitaxel (Δ) from 

CNC/CTAB nanocomplexes with 12.9 mM CTAB in 10 mM phosphate buffered saline at 37 °C. 

[Jackson et al., 2011] 

Enhanced Oil Recovery (EOR) EOR methods have been employed to increase the 

extraction of crude oil since the efficiency of oil recovery during the primary stage is relatively 

low. EOR processes include all methods that use external sources of energy and/or materials to 

recover oil and it can be classified as thermal (steam flooding, hot water drive, in situ 

combustion), chemical (polymer, surfactant) or miscible methods (hydrocarbon gas, CO2, 

nitrogen). [Satter and Thakur, 1994] In chemical EOR processes, water-soluble polysaccharides 

were commonly employed as viscosifying agents of aqueous solutions used in oil recovery 

projects due to their environmentally-friendly properties. [Taylor and Nasr-El-Din, 1998; Mothé 
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et al., 2006] In addition, low interfacial tension with regard to the oil-phase was also necessary. 

[Hou et al., 2005] Therefore the combination of polysaccharides and surfactants could be good 

candidates for EOR operations. 

 

Figure 2.16 Schematic illustration of the effect of SDS addition to a semi-dilute HM-HEC 

solution. [Kjøniksen et al., 2008]   

Kjøniksen et al. [2008] prepared a charged hydrophobically modified 

hydroxyethylcellulose (HM-HEC) and studied its potential applications in the presence of an 

anionic surfactant (SDS) in EOR processes. A relatively high viscosity was obtained even at very 

low concentration (0.2 wt%) in (HM-HEC) aqueous solutions, which was a very important 

feature in connection to EOR. [Sabhapondit et al., 2003] The viscosity results for the HM-

HEC/SDS systems disclosed strong interactions between HM-HEC and SDS molecules at 

moderate SDS concentration, resulting in a significant viscosification of the HM-HEC/SDS 

mixture. It was also observed that the viscosity of the mixture was strongly dependent on the 

temperature, i.e. the viscosity decreased with increasing temperature. However, this phenomenon 

was not found for mixtures with high SDS concentration due to the disruption of the association 

complexes comprising HM-HEC and SDS (Figure 2.16). The investigation of HM-HEC/SDS 
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composition and temperature on the solution rheological properties allow us to develop a 

viscosifying agent for EOR applications.   

2.5 Summary 

From the literature review, we concluded that biodegradable TRPs are the most attractive 

and convenient environmentally responsive polymer systems, while CNC particles exhibited 

exceptional strength and physicochemical properties, and can be functionalized depending on 

desired applications. Therefore, the combination of TRPs and CNC can extend their potential 

applications in many disciplines, and the presence of surfactants may improve their properties. 

Moreover, as an important category of biocompatible and biodegradable natural material, the 

properties and applications of chitosan and its derivatives are introduced, and the interactions 

between N-carboxyethylchitosan (CECh) and gemini surfactants exhibit very interesting 

behaviors. Therefore, studies on the interactions of surfactant and these biodegradable polymers 

in bulk and at interface could be very useful and important.   

In this doctoral research, we conducted fundamental studies on the preparation of well-

defined thermo-responsive polymers based on oligo(ethylene glycol) methacrylates, 

functionalization of CNC and chitosan, as well as the interactions of surfactant with these novel 

systems. The goal of this fundamental study is an attempt to explore their applications as targeted 

drug delivery carriers and in personal care products. The curiosity in optimizing the formula 

motivated our work to design and prepare well-defined systems.  
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Chapter 3 Self-Assembly Behavior of Thermo-responsive Oligo 

(ethylene glycol) Methacrylates Random Copolymers 

3.1 Introduction 

Thermoresponsive polymers have attracted increasing interests due to their promising 

potential in a wide range of biomedical and nanotechnology applications, such as drug delivery, 

[He, Kim and Lee, 2008] controlled bioadhesion, [Cunliffe et al., 2003] and tissue engineering. 

[Okano et al., 1995] These polymers usually display phase transition temperatures that are 

signified by either the upper critical solution temperature (UCST) or lower critical solution 

temperature (LCST). Among the polymers that exhibit the LCST, poly (N-isopropylacrylamide) 

(PNIPAM) is the most widely studied system, where it possesses a LCST of ~32 oC in water. 

[Schild, 1992] Below the LCST, the polymeric chains hydrate and adopt an extended chain 

conformation. Beyond the critical temperature, the polymeric chains undergo a sharp and 

reversible coil-to-globule transition. [Morris et al., 2010]  

Due to possible concerns on the toxicity of N-isopropylacrylamide monomer, Lutz and 

coworkers prepared a series of biocompatible polymers that exhibited similar thermoresponsive 

behaviors as PNIPAM. [Lutz Akdemir and Hoth, 2006; Lutz, 2008, 2011] They randomly 

copolymerized di(ethylene glycol) methyl ether methacrylate (MEO2MA, Mn = 188 g/mol) and 

poly (ethylene glycol) methyl ether methacrylate (PEGMA, Mn = 475 g/mol) P(MEO2MA-co-

PEGMA475) via atom transfer radical polymerization (ATRP), and observed that the LCSTs of 

the copolymers could be tuned to between 26 and 90 oC by varying the monomer compositions. 

For instance, the LCST values for the copolymers increased from 26 oC (0% of PEGMA475) to a 

relatively higher temperature as the mole fraction of PEGMA475 in the polymer chain was 
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increased. A LCST of 32 oC was observed in water for copolymers containing 5% of PEGMA475. 

The relatively higher LCST was attributed to the longer PEG side chains due to their 

hydrophobic-hydrophilic characteristic. [Lutz and Hoth, 2006] The mechanism describing the 

temperature-induced phase transition of these copolymers in aqueous was proposed and 

illustrated by Lutz and co-workers. [Lutz et al., 2007] Kitano et al. [2004] studied the effects of 

macrocycles on the LCSTs of copolymers, where the LCSTs of 2-(2-methoxyethoxy) ethyl 

methacrylate and ω-methoxy(oligoethyleneoxy) ethyl methacrylate (MOEMA) increased 

significantly with increasing content of MOEMA. Similar studies on these copolymer systems 

were reported by Ishizone and coworker, [2003, 2008] who polymerized very short side chain 

oligo(ethylene glycol) methacrylates (1 ~ 4 units) using anionic polymerization. They 

investigated the LCST characteristics of polymers containing di-, tri-, and tetra (ethylene glycol) 

units in the aqueous solutions. The LCSTs and solubility of the copolymers were strongly 

dependent on the length of oligo(ethylene glycol) side chain units, and only one thermal induced 

aggregation process was reported. [Han, Hagiwara and Ishizone, 2003; Kitano et al., 2004; Lutz, 

Akdemir and Hoth, 2006; Lutz and Hoth, 2006; Lutz et al., 2007; Ishizone et al., 2008] Multiple 

thermal induced aggregation processes were reported for various block copolymers comprising 

two or more thermal sensitive blocks, where these systems displayed sharp and rapid 

temperature-induced self-assembly behaviors. [Hua, Jiang and Zhao, 2006; Yamamoto, Pietrasik 

and Matyjaszewski, 2007; Dimitrov et al., 2007; Skrabania et al., 2007; Xie et al., 2009; Weiss, 

Böttcher and Laschewsky, 2011; Zhang, Liu and Li, 2011; Li, Lavigueur and Zhu, 2011] 

However, to the best of our knowledge, multi-step aggregation processes have not been reported 

for random copolymer systems. 
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In this chapter, we report a unique double thermal induced aggregation behavior of a 

random copolymer containing oligo(ethylene glycol) methacrylates i.e. MEO2MA (Mn = 188 

g/mol) and PEGMA (Mn = 2080 g/mol). The brush-like random copolymer was prepared by 

ATRP, [Lutz, Akdemir and Hoth, 2006] and the synthesis route is shown in Scheme 3.1. The 

thermo-responsive behaviors of this copolymer in aqueous solution were investigated by means 

of UV-Vis spectroscopy, Laser light scattering (LLS) and Transmission electron microscopy 

(TEM), while an unusual thermal induced two-stage aggregation process was observed.   

3.2 Experimental 

3.2.1 Materials 

2-(2-Methoxyethoxy)ethyl methacrylate (Mn ~ 188, 95% ), poly(ethylene glycol) methyl 

ether methacrylate (Mn ~ 2,080, 50 wt% in water) were purchased from Sigma-Aldrich and 

purified by passing through a column filled with basic alumina before use. Methyl 2-

bromopropionate (MBP), copper (I) bromide, 2, 2’ bipyridyl (Bipy) and ethanol were purchased 

from Sigma-Aldrich and used as received. Water used in all experiments was obtained from a 

Millipore-Q water purification system, which has a resistivity of 18.2 MΩ·cm. 

3.2.2 Synthesis of P(MEO2MA-co-PEGMA2080) via ATRP 

The copolymer was synthesized in ethanol via ATRP using MBP as the initiator and 

CuBr/Bipy as the catalyst. A typical procedure was described as follows: CuBr (35.9 mg, 0.25 

mmol) and Bipy (78.1 mg, 0.5 mmol) were added to a 25 mL flask, and then the flask was sealed 

and purged with argon for 30 min. Then, a degassed mixture of 2-(2-methoxyethoxy) ethyl 

methacrylate (2.3 g, 12.4 mmol), poly(ethylene glycol) methyl ether methacrylate (2080 g/mol) 

(0.26 g, 0.0625 mmol), methyl 2-bromopropionate (20.9 mg, 0.125 mmol) and ethanol (3.32 mL) 
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was transferred using a double tipped needle into the flask charged with CuBr/Bipy equipped 

with a magnetic stirring bar under argon atmosphere. The mixture was heated at 60 °C for 3h, 

and the reaction was stopped by opening the flask after several hours. The reacted mixture was 

dialyzed against Millipore Water for 2 days, and then the final product was collected after freeze 

drying. The number averaged degree of polymerization (DPn) was designed as 100, and the 

statistical composition of MEO2MA:PEGMA2080 was 99:1.      

 

Scheme 3.1 Synthetic scheme of P(MEO2MA-co-PEGMA2080). 

3.2.3 Characterizations of P(MEO2MA-co-PEGMA2080) 

 3.2.3.1 Nuclear magnetic resonance (NMR) 

1H NMR spectra were recorded in CDCl3 on a Bruker AV300 NMR spectrometer 

operating in the Fourier transform mode. All analyses were performed at 25 °C.  

3.2.3.2 Gel permeation chromatography (GPC) 

Molecular weight and molecular weight distribution were determined by OmniSEC GPC 

system equipped with a ViscoGel Column, a RI and light scattering detectors. Tetrahydrofuran 
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(THF) was used as eluent at a flow rate of 1.0 mL/min. For calibration, linear polystyrene 

standards (PSS) were used.  

3.2.3.3 Ultraviolet-visible spectroscopy (UV-Vis) 

The thermal responsive measurements were performed on a Varian (Carey 100 Bio) UV-

visible spectrophotometer equipped with a temperature controller. Transmittance of the 

copolymer solutions with concentration of 0.3, 0.5, 1.0 wt% were monitored as a function of 

temperature. All the measurements were performed at a heating rate of 1 °C/min and at a visible 

wavelength of 500 nm.  

3.2.3.4 Laser light scattering (LLS) 

Light scattering measurements were performed on a Brookhaven BI-200SM goniometer 

and BI-9000AT digital correlator equipped with an argon-ion laser. A 0.45 μm filter was used to 

remove dust prior to all the measurements, and the experimental temperature was controlled by a 

PolyScience water-bath. For dynamic light scattering (DLS), the time correlation function of the 

scattering intensity G2(t) is defined as G2(t) = I(t) I(t + Δt), where I(t) is the intensity at time t and 

Δt is the lag time, and the inverse Laplace transform of REPES in the Gendist software package 

was used to analyze time correlation functions with the probability of reject set at 0.5. Thus, the 

apparent hydrodynamic radius Rh can be determined from the Stokes-Einstein equation: 

𝑅ℎ = 𝑘𝑇𝑞2

6𝜋𝜂𝛤
                                                 (1) 

where k is the Boltzmann constant, q is the scattering vector (q = 4πn sin(θ/2)/λ, where n is the 

refractive index of solvent, θ is the scattering angle, and λ is the wavelength of the incident laser 

light in vacuum), η is the solvent viscosity, and Γ is the decay rate.  
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Static light scattering (SLS) was used to measure the average radius of gyration (Rg) and 

weight-average molar mass (Mw) of the aggregates. In this experiment, the Mw of the micelles 

can be obtained from SLS measurements based on the Debye equation: 

𝐾𝐶
𝑅(𝑞)

= 1
𝑀𝑤

�1 + 1
3
𝑅𝑔2𝑞2� + 2𝐴2𝐶                (2) 

where K is an optical parameter (K = [4π2ntol
2(dn/dc)2]/NAλ4 where ntol is the refractive index of 

toluene (1.494), dn/dc is the refractive index increment of the polymer measured using BI-

DNDC, NA is Avogadro’s constant, and λ is the wavelength), C is the concentration of the 

polymer solution, R(q) is the Rayleigh ratio, q is the scattering vector, and A2 is the second virial 

coefficient. The absolute excess time-averaged scattered intensity, i.e., Rayleigh ratio R(q), is 

expressed by the equation: 

𝑅(𝑞) = 𝑅tol,90( 𝑛
𝑛tol

)2 𝐼−𝐼0
𝐼tol

sin𝜃                          (3) 

where Rtol,90 is the Rayleigh ratio of toluene at scattering angle 90° with a value of 40 × 10-6 cm-1, 

n is the refractive index of the solvent, I, I0, and Itol are the scattered intensities of the solution, 

solvent, and toluene, respectively, and θ is the scattering angle. In our case, the concentration of 

the polymer solution is sufficiently low (0.02 wt%), and therefore the 2A2C term in eq. 2 is 

expected to be negligible. Therefore, the intercept of the plot of KC/R(q) against q2 yields the 

inverse of the apparent weight-average molar mass (Mw
app); consequently, the aggregation 

number of the micelle can be evaluated using the equation Z = Mw
app/Mw, where Mw is the molar 

mass of the single polymer chain. [Ravi et al., 2003; Wang et al., 2007] 

3.2.3.5 Transmission electron microscopy (TEM)   

Transmission electron microscopic studies were performed using a Philips CM10 electron 

microscopy. The TEM samples were prepared by depositing one drop of 0.02 wt% particle 
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suspensions onto carbon coated TEM copper grid, which was placed on a filter paper. The excess 

liquid was absorbed by filter paper and the remaining liquid was allowed to air-dry overnight at 

room temperature. 

3.3 Results and Discussion 

3.3.1 Synthesis of P(MEO2MA-co-PEGMA2080) 

 

Figure 3.1 1H NMR spectra of P(MEO2MA-co-PEGMA2080) in CDCl3 at 25 oC. 

The 1H NMR spectra of P(MEO2MA-co-PEGMA2080) is shown in Figure 3.1, and all the 

peaks corresponding to the protons on the copolymer are assigned correctly as reported in 

literature. [Lutz et al., 2007] The GPC results, shown in Figure 3.2, indicate the number average 

molecular weight (Mn), weight average molecular weight (Mw), and polydispersity index (PDI) 

of the copolymer was 17300 g/mol, 27900 g/mol, and 1.61. The number average degree of 
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polymerization (DPn) of 84 was calculated from the GPC results based on the statistical 

composition. The PDI is somewhat larger than normally expected for an ATRP process, however 

it has been previously reported that the polymerization of OEGMA-based monomer using CuBr 

catalyst generally yielded a PDI of between 1.5-1.8. [Lutz and Hoth, 2006] However, molecular 

weight distribution was found to have no significant effect on phase transition for copolymers of 

comparable composition. [Lutz and Hoth, 2006] 

 

Figure 3.2 GPC profile of P(MEO2MA-co-PEGMA2080) at 25 oC. 

3.3.2 Thermal responsive behaviors of copolymer in aqueous media 

The thermo-responsive properties of 1 wt% copolymer aqueous solution were obtained 

from temperature-dependent UV/Vis transmittance measurements at the wavelength of 500 nm 

(Figure 3.3A). The solution was transparent at low temperature, and upon heating, it immediately 
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turned cloudy at 27 oC (T1). Then the solution became white at 29 oC corresponding to a zero 

transmittance (%T). Such behavior is attributed to the dehydration of the polymer backbone and 

the short oligo(ethylene glycol) methacrylates side chains, where the polymer chains adopted a 

more compact globular structure induced by the intra- and inter-molecular aggregation of the 

polymeric chains. However, the polymer solution became less turbid when the temperature was 

raised to 33 oC (T2), where the transmittance increased from 0 to 48%. Upon further heating, the 

polymer solution turned bluish and the transmittance decreased to a steady value of 26% when 

the temperature exceeded 40 oC. This colloidal dispersion was extremely stable and did not 

precipitate from solution. 

In this study, we performed a detailed microstructural analysis on the phase transition of 

this copolymer using light scattering and TEM techniques. We hypothesize that the 

microstructure of the aggregates at higher temperature comprised of a hydrophobic 188 Da 

oligo(ethylene glycol) methacrylates core stabilized by a small fraction of the longer PEGMA2080 

shell. Photographs of 1 wt% P(MEO2MA-co-PEGMA2080) in aqueous solution at 25, 29, and 39 

oC are shown in Figure 3.3B, and the corresponding transmittance of 0.3, 0.5, 1.0 wt% 

P(MEO2MA-co-PEGMA2080) in aqueous solution are shown in Figure 3.4. The results confirmed 

the occurrence of multiple thermal transitions, where the critical phase transition temperatures 

remained the same, implying that the phase transitions of P(MEO2MA-co-PEGMA2080) in water 

were insensitive to polymer concentration. [Lutz et al., 2007] The T% versus temperature curve 

of this copolymer is markedly different compared with previously reported results on copolymers 

of oligo(ethylene glycol) methacrylates, [Lutz and Hoth, 2006; Lutz et al., 2006; 2007] where 

only one sharp transition was reported. It is obvious that the length of the side chain can 

significantly alter the solution properties. By using poly(ethylene glycol) methyl ether 
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methacrylate with a molecular weight of 2080 g/mol instead of the 475 g/mol, unusual solution 

properties were observed. Similar results were only reported for different block copolymers in 

contrast to the random copolymer reported in this study. [Hua, Jiang and Zhao, 2006; Weiss, 

Böttcher and Laschewsky, 2011; Zhang Liu and Li, 2011; Li, Lavigueur and Zhu, 2011]  

 

Figure 3.3 (A) Transmittance versus temperature for 1 wt% P(MEO2MA-co-PEGMA2080) 

aqueous solution at the wavelength of 500 nm. (B) Optical photographs of 1 wt% P(MEO2MA-

co-PEGMA2080) aqueous solution at different temperatures.   
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Hua et al. [2006] reported that block copolymer of poly(methoxytri(ethylene glycol) acrylate)-b-

poly(4-vinylbenzyl methoxytris-(oxyethylene) ether) (PTEGMA-b-PTEGSt) exhibited multiple 

transitions in aqueous solution upon heating. It was demonstrated that the two-step thermal 

induced aggregation process was a result of the different dehydration temperature of the two 

blocks, i.e. the PTEGSt block forming micellar structure at the first transition, and the 

dehydration of PTEGMA block induced the formation of aggregates. This is signified by 

changes in the solution property ranging from being transparent, to cloudy, clear, bluish, and 

then turbid again. The microstructural transformation of P(MEO2MA-co-PEGMA2080) with 

increasing temperature was elucidated by performing detailed dynamic light scattering (DLS) 

measurements. 

 

Figure 3.4 Transmittance versus temperature of 0.3, 0.5, 1 wt% P(MEO2MA-co-PEGMA2080) 

aqueous solutions at the wavelength of 500 nm. 
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3.3.3 Microstructure analysis of the copolymer in aqueous media 

The hydrodynamic radius (Rh) as a function of temperature of 0.02 wt% P(MEO2MA-co-

PEGMA2080) in aqueous solution determined from the DLS measurements at various scattering 

angles is shown in Figure 3.5. The Rh values were small (~6 nm) below 27 oC, indicating that the 

random copolymers were molecularly dissolved in water. The Rh values then increased to 137 

nm at 29 oC, suggesting the formation of large aggregates, in good agreement with the minima in 

the transmittance plot (Figures 3.3 and 3.4). Upon further heating to 33 oC, the particle size 

began to decrease and remained relatively constant at around 55 nm.  

 

Figure 3.5 Rh, Rg/Rh and the scattering intensity (inset) of 0.02 wt% P(MEO2MA-co-PEGMA2080) 

solution at different temperatures.  

In order to investigate the conformational change as a function of temperature, the radius of 

gyration (Rg) was measured at a temperature range 29 to 40 oC, and the Rg/Rh values were used to 
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examine the morphology of microstructure. Over this temperature range, the ratios of Rg/Rh 

remained constant at between 0.6 ~ 0.8, which corresponded to a core-shell micellar structure, 

[Akcasu and Han, 1979; Schuch et al., 2000; Ravi et al., 2003; Yao and Tam, 2011] as revealed 

by the transmittance data and the bluish color of the polymer solution. At the temperature range 

of 33 to 39 oC, the T% transmittance decreased while Rh and Rg/Rh remained constant, which is 

probably attributed to the changes in the refractive index of core-shell structure. The light 

scattering count rates with temperature were recorded during the DLS. The light scattering 

intensities increased significantly beyond 27 oC (inset of Figure 3.5), even though the particle 

size began to decrease from 130 to 50 nm. This phenomenon is attributed to the phase transition 

from random coil to compact globule yielding a more condensed core-shell structure that 

possessed a higher refractive index. [Zhang, Liu and Li, 2011]  

 

Figure 3.6 (A) TEM images and (B) relaxation time distribution curves of 0.02 wt% 

P(MEO2MA-co-PEGMA2080) solution at different temperatures.  
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Figures 3.6A and 3.6B show the transmission electron microscopic (TEM) images and relaxation 

time distribution curves of a 0.02 wt% P(MEO2MA-co-PEGMA2080) solution at 25, 29, 33 and 

39 oC. The average particle size of copolymer nanostructures determined from TEM images was 

consistent with the DLS measurements, and the morphology corresponded to a core-shell 

structure. 

 
Figure 3.7 KC/R(q) versus the square of the scattering vector (q2) for 0.02 wt% P(MEO2MA-co-

PEGMA2080) solution at different temperatures.   

The apparent weighted-average molar mass (Mw
app) of the micelles can be determined by 

static light scattering measurements using Equations (2) and (3) in section 3.2.3.4 [Ravi et al., 

2003; Chen et al., 2005; Sedlák and Koňák, 2009; Zhao, Zhang and Pispas, 2009; Hao et al., 

2010], consequently, the aggregation number of the micelle can be calculated from the equation 

Z = Mw
app(micelle)/Mw(copolymer). Figure 3.7 shows the linear relationship of KC/R(q) versus 
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q2 at various temperatures ranging from 29 to 39 oC, and it is interesting that all the data at 

various temperatures intersected at the same intercept at q2=0. This again confirmed that the 

molecular weight and hence the aggregation number at the temperature range of 29 to 39 oC 

remained constant. The Mw
app determined from the intercepts was 2.5 × 105 g/mol, giving an 

average aggregation number Z of 8~9, since the weight average molar mass of the single 

polymer chain is 2.79 × 104 g/mol. The constant Z values indicated that the micellar aggregates 

formed at 29 oC were preserved and only conformation changes due to the dehydration of the 

copolymer chains occurred with increasing temperatures. The schematic describing the 

mechanism of the two-step thermal transition of the random copolymer P(MEO2MA-co-

PEGMA2080) is illustrated in Figure 3.8.  

 
 
 
Figure 3.8 Schematic illustration of two-stage thermal induced aggregation process for random 

copolymer P(MEO2MA-co-PEGMA2080) in water. 
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3.4 Conclusions 

In conclusion, a well-defined random copolymer containing 2-(2-Methoxyethoxy) ethyl 

methacrylate (MEO2MA, Mn = 188 g/mol) and poly (ethylene glycol) methyl ether methacrylate 

(PEGMA, Mn = 2080 g/mol) ((P(MEO2MA-co-PEGMA2080), Mn=17,300 g/mol) was synthesized 

by ATRP. In comparison to other temperature-sensitive random copolymers based on 

oligo(ethylene glycol) methacrylates, this copolymer exhibited a unique two-stage thermal 

induced aggregation process in aqueous solution. By increasing temperature, the copolymer 

chains phase separate, aggregate and rearrange to produce stable micelles. TEM and light 

scattering measurements confirmed the formation of large aggregates and micelle structure with 

increasing temperatures. 
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Chapter 4 Binding of Cationic Surfactants to a Thermo-sensitive 

Copolymer Below and Above its Cloud Point 

4.1 Introduction 

The interactions between surfactants and water-soluble polymers have been extensively 

studied due to their wide applications, such as in detergents, cosmetic and pharmaceutical 

products. Mixing surfactants and polymers can generate many interesting functional 

polymorphic micro or nano-structures, such as micelles, complexes, vesicles, precipitates, liquid 

crystals, as well as gels, which have a direct impact on the phase behavior, rheological and 

interfacial properties. [La Mesa, 2005; Tam and Wyn-Jones, 2006; George et al., 2009] Thus, 

knowledge on the physical properties of mixtures of surfactants and polymers will guide 

formulators in optimizing the formulation of personal care products.  Due to the absence of 

strong electrostatic forces, the binding interaction between ionic surfactants and nonionic water-

soluble polymers displays much simpler behaviour than ionic surfactant/opposite charged 

polymer systems. In these systems, hydrophobic effects play a significant role as an attractive 

force producing surfactant micelles that bind to the polymers below their critical micelle 

concentration (CMC). [Dai, Tam and Li, 2001] In general, the binding interactions between 

cationic surfactants and neutral polymers are much weaker than the corresponding interactions 

between similar polymers and anionic surfactants. [Wang and Olofsson, 1995, 1998; Ghoreishi 

et al. 1999a; Li et al., 2001; Dai and Tam, 2004] For example, an anionic surfactant such as 

sodium dodecyl sulfate (SDS) displays strong cooperative binding interaction with a diverse 

range of neutral water-soluble polymers, such as poly(ethylene oxide) (PEO), poly(propylene 

oxide) (PPO), and poly(vinylpyrrolidone) (PVP), while a cationic surfactant such as 



74 
 

tetradecyltrimethylammonium bromide (TTAB) is more selective and only binds to those 

polymers with specific hydrophobic groups, such as hydrophobically modified water-soluble 

polymers. [Ghoreishi et al. 1999a; Li et al., 2001] The binding isotherms and resulting 

mechanisms for ionic surfactant/neutral polymer systems are also dependent on polymer 

molecular weight, electrolytes, temperature, and solvent types.                

Among these neutral water-soluble polymer/surfactant systems, temperature can play an 

important role in the binding interactions, particularly for thermo-sensitive polymers that exhibit 

a lower critical solution temperature (LCST) in aqueous solutions. As we know, poly(N-

isopropylacrylamide) (PNIPAM) is a thermo-sensitive polymer that undergoes chain 

conformation transition from an extended coil to a compact globule near the cloud point (Cp). 

The impacts of ionic surfactants on the phase transition and chain conformation below and above 

the cloud point have received increasing attentions. [Loh, Teixeira and Lee, 2004; Chee et al., 

2011; Chen et al., 2011, 2012] Chee et al. [2011] investigated the interactions between SDS and 

PNIPAM in aqueous solution using time-resolved fluorescence anisotropy measurements, and 

they found that below the LCST, the PNIPAM chains transformed from an expanded chain 

conformation to a swollen surfactant-polymer complex with reduced mobility due to the 

repulsion between the ionic groups of the polymer-bound surfactants. Above the LCST, the 

addition of SDS transformed the collapsed globule into an expanded surfactant swollen polymer 

coil. Similar results were observed by Yang and co-workers using nuclear magnetic resonance 

(NMR), and the effect of surfactant concentration were also studied in detail. [Chen et al., 2011, 

2012] The interactions of PNIPAM with cationic surfactants were examined by Loh et al. [2004] 

using isothermal titration calorimetry, where the interactions were significantly affected by 

temperature due to the changes in the hydration of polymer chains near the LCST. The binding 
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interactions between ionic surfactants and thermo-sensitive Pluronic triblock copolymers such as 

PPO-PEO-PPO [Dai, Tam and Li, 2001] and PEO-PPO-PEO [Li et al., 2001; Nambam and 

Philip, 2012] were also reported. Mixed micelles of Pluronic copolymer and surfactant were 

produced in aqueous solution, and the percolation transition temperature of the mixture was 

found to decrease with volume fraction of surfactants. [Nambam and Philip, 2012]        

In this chapter, the binding interactions between cationic surfactants and a thermo-

responsive statistical copolymer based on oligo(ethylene glycol) methacrylates (OEGMA) were 

studied by several techniques, such as isothermal titration calorimetry (ITC), surfactant selective 

electrode (SSE) and dynamic light scattering (DLS). The copolymer possesses a brush-like 

structure with a relatively hydrophobic methacrylate and hydrophilic ethylene glycol segments, 

and as reported, OEGMA is touted to be an excellent alternative to PNIPAM due to its 

biocompatible properties. [Lutz, Akdemir and Hoth, 2006] Three types of cationic surfactants, 

namely, DoTAB, TTAB, and CTAB, were studied, where the effect of surfactant hydrophobicity 

on the binding interactions was elucidated. The different binding process below and above the 

cloud point were examined by analyzing the calorimetric titration and electromotive force (EMF) 

data, while the microstructure during the binding process was monitored by DLS.            

4.2 Experimental  

4.2.1 Materials 

The well-defined brush-like statistical copolymer containing 2-(2-Methoxyethoxy) ethyl 

methacrylate (MEO2MA, Mn = 188 g/mol) and poly (ethylene glycol) methyl ether methacrylate 

(PEGMA, Mn = 2080 g/mol) (poly(MEO2MA-co-PEGMA2080) was prepared via atom transfer 

radical polymerization (ATRP) to yield a copolymer with Mn =17,300 g/mol and a polydispersity 

index (PDI) of 1.61. The copolymer possessed a cloud point of 27 oC in aqueous solution. The 
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details of synthetic procedures and characterizations of the copolymer were described in chapter 

3 and reported previously. [Peng et al., 2012] Cationic surfactants, such as DoTAB, TTAB, and 

CTAB of high purity were purchased from Sigma-Aldrich, and used without further purification. 

The water used was obtained from the Millipore-Q water purification system, which has a 

resistivity of 18.2 MΩ·cm. The chemical structures of the copolymer and surfactants are shown 

as below in Scheme 4.1. 

 

Scheme 4.1 (a) Chemical structure of statistical copolymer with monomer ratio 99 to 1 (m: n). (b) 

Chemical structures of cationic surfactants: DoTAB, TTAB and CTAB.  

4.2.2 Isothermal titration calorimetry (ITC)   

The calorimetric data on the binding interactions between cationic surfactants and 

copolymer poly(MEO2MA-co-PEGMA2080) were obtained using a Microcal VP-ITC calorimeter 

(Northampton, MA). The stock solutions with different concentrations, i.e. CTAB (20 mM), 

TTAB (100 mM), and DoTAB (200 mM), were selected for each cationic surfactant by 

considering their different CMCs. The titrations of 0.05, 0.1, and 0.2 wt% copolymer solutions 

were conducted at both 25.0 and 30.0 °C, which were below and above the cloud point of the 

copolymer (27.0 °C). A detailed description on this power compensated differential calorimetric 
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instrument was previously described by Wiseman and co-workers. [1989] The microcalorimeter 

consists of a reference cell and a sample cell of approximately 1.4 mL in volume, and surfactant 

solution was injected from a 281.72 μL injection syringe into the sample cell filled with either 

water or copolymer solutions. The syringe is tailor-made such that the tip acts as a blade-type 

stirrer to ensure an efficient mixing at 307 rpm. In this study, we utilized identical injection 

protocol and same time interval between successive injections for all ITC measurements.  

4.2.3 Surfactant selective electrode (SSE) 

An ionic surfactant electrode (Metrohm 6.0507.120) was used to monitor the binding 

interactions by measuring changes in the electromotive force (EMF) attributed to changes in the 

free surfactant concentration. The EMF was measured and recorded on a Metrohm 809 Titrando 

system equipped with a surfactant selective electrode and a double junction Ag/AgCl reference 

electrode (Metrohm 6.0750.100). The EMF measurements were designed to complement the ITC 

experiments using similar copolymer and surfactant concentrations performed at both 25.0 and 

30.0 °C. For example, a 20 mM CTAB stock solution was added dropwise to a rapidly stirred 20 

mL 0.05, 0.1 and 0.2 wt% copolymer solutions at 25.0 and 30.0 °C. The EMF values were 

recorded when the equilibrium was achieved after each injection of the surfactant solution. The 

resulting experimental data was plotted with EMF (mV) versus CTAB concentration, and the 

critical points for the binding interactions were determined. 

4.2.4 Dynamic light scattering (DLS) 

Dynamic light scattering measurements were performed on a Brookhaven BI-200SM 

goniometer system equipped with a PolyScience water-bath. All the samples were filtered 

through a 0.45 μm filter to remove dust prior to the measurements. For a DLS measurement, the 

time correlation function of the scattering intensity G2(t) is defined as G2(t) = I(t) I(t + Δt), where 



78 
 

I(t) is the intensity at time t and Δt is the lag time, and the inverse Laplace transform of REPES 

in the Gendist software package was used to analyze time correlation functions. Thus, the 

translational diffusion coefficient D of the particle can be determined from the slope of Γ versus 

q2, and the apparent hydrodynamic radius Rh was then determined from the Stokes-Einstein 

equation: 

𝑅ℎ = 𝑘𝑇
6𝜋𝜂𝐷

=  𝑘𝑇𝑞
2

6𝜋𝜂𝛤
                                                 (1) 

where k is the Boltzmann constant, η is the solvent viscosity, D is the translational diffusion 

coefficient, Γ is the decay rate, and q is the scattering vector (q = 4πn sin(θ/2)/λ, where n is the 

refractive index of solvent, θ is the scattering angle, and λ is the wavelength of the incident laser 

light in vacuum).   

4.3 Results and Discussion 

4.3.1 ITC results for the binding CTAB to poly(MEO2MA-co-PEGMA2080) 

Isothermal titration calorimetry has been widely used to study the interactions of many 

polymer/surfactant systems since it is among one the most sensitive technique for monitoring 

changes in the differential enthalpy during the binding process. [Bonnaud, Weiss and 

McClements, 2010; Courtois and Berret, 2010; Fechner, Kosmella and Koetz, 2010] In this study, 

20 mM CTAB stock solution was titrated into 0.05, 0.1, and 0.2 wt% copolymer solutions, and 

the enthalpy profiles at 25.0 and 30.0 °C were plotted in Figures 4.1(a) and 4.1(b), respectively. 

In Figure 4.1(a), it is obvious that the three titration curves possessed similar trends, but they 

deviated from the CTAB/water dilution curve (open circle). This difference is attributed to the 

binding interactions between surfactant and the copolymer. At low surfactant concentration, the 

enthalpy (ΔH) with large positive values indicated an endothermic process, which corresponded 
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to the hydrophobic interaction between the alkyl chain of surfactant and hydrophobic backbone 

of the copolymer. [Li et al., 2001] ΔH then decreased rapidly with increasing CTAB 

concentration, approaching a minimum that signifies the binding of CTAB molecules to the  

 

Figure 4.1 ITC curves for titrating 20 mM CTAB into different concentrations of 

poly(MEO2MA-co-PEGMA2080) aqueous solutions at 25.0 °C (a) and 30.0 °C (b).    
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hydrophobic ethyl methacrylate domains. Beyond this, a very broad endothermic peak at higher 

CTAB concentrations was observed, which is possibly related to the hydrophobic association of 

bulk CTAB molecules with the polymer-bound CTAB molecules and formation of CTAB 

micelles on hydrophobic moieties of the polymer. Finally, at much higher CTAB concentration, 

the titration curves merged with the CTAB dilution curve, signifying the saturation of the 

polymer chains with CTAB micelles and the formation of free surfactant micelles after the 

critical saturation concentration C2. In this concentration range, the polymer chains/surfactant 

complexes displayed the properties of a cationic polyelectrolyte. As indicated in Figure 4.1(a), 

C2 was dependent on the polymer concentrations, i.e. their values increased with polymer 

concentrations. This is reasonable as more surfactants are needed to saturate the larger amounts 

of hydrophobic domains at higher polymer concentrations, which is in accordance to previous 

observations. [Wang and Olofsson, 1998; Dai and Tam, 2004] A summary of CMC and C2 for 

CTAB at different titration conditions is shown in Table 4.1. [Note: C2 for 0.2 wt% titration 

curve was not obtained for the present study, because we used a 20 mM CTAB stock solution to 

yield more data points at the low CTAB concentration region]. However, we expected the C2 

values to be larger than those obtained for 0.05 and 0.1 wt% solutions, which was later 

confirmed by EMF measurements. 

Table 4.1 A summary of CMC and C2 for CTAB at different conditions obtained from ITC and 

EMF measurements.  

 T (°C) CMC (mM) C2 (mM) 
0.05 wt% 0.1 wt% 0.2 wt% 

ITC 25 0.97 1.73 2.32 -- 
30 0.97 1.73 2.32 -- 

EMF 25 0.94 1.47 2.07 3.03 
30 0.94 1.47 2.07 3.03 
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The titration curves of CTAB to polymer solutions and its dilution curve at 30.0 °C are 

presented in Figure 4.1(b). The CMC was determined to be 0.97 mM from the first-order 

differential curve and equaled to the CMC of CTAB at 25.0 °C. The CMC values are in 

accordance to those reported in the literature, [Beyer, Leine and Blume, 2006], which indicated 

that temperature has negligible impact on the CMC in this narrow temperature range. However, 

the titration curves showed significant divergence with a large negative ΔH values at low CTAB 

concentration compared to the positive enthalpies observed at 25.0 °C, signifying that the 

binding process is exothermic. ΔH increased significantly with increasing CTAB concentration, 

and beyond 0.2-0.5 mM CTAB it exhibited a similar trend to that observed at 25.0 °C (Figure 

4.1(a)). This phenomenon is somewhat surprising, but it can be understood by considering the 

different polymer chain conformation below and above the cloud point of the polymer. Since the 

temperature exceeded the Cp (27.0 °C) of the copolymer, the polymer chains collapsed to form a 

compact globular structure induced by intermolecular association of hydrophobic functionalities. 

The addition of surfactants promoted strong binding between surfactant alkyl tails and polymer 

aggregates induced by hydrophobic interactions. As more CTAB molecules are absorbed, the 

enhanced electrostatic repulsion between surfactant ionic head groups exceeded the hydrophobic 

interactions, leading to the disruption of the aggregates to yield an expanded polymer chains. 

[Chee et al., 2011] After the dissociation of the polymer chains, the interactions proceeded in a 

fashion that were identical to that observed at 25.0 °C as signified by the identical profiles of the 

titration curves as evident in Figures 4.1(a) and 4.1(b) for CTAB concentrations greater than 0.5 

mM.  Based on the above results, we believe that the exothermic process of the titration curve at 

30.0 °C for CTAB concentration less than 0.25 mM is attributed to the heat released from the 

surfactant binding and disassociation of the insoluble chains resulting in the globule-to-coil 
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conformational transition of the polymer chains. This observation is consistent with the reverse 

process for the coil-to-globule conformational transition that was reported to be an endothermic 

process. [Yao and Tam, 2012] Furthermore, we also observed the values of C2 measured at 

30.0 °C were identical to those obtained at 25.0 °C, as at higher surfactant concentration, the 

polymer chain conformation with bound surfactant monomers was identical. 

 

Figure 4.2 ITC curves for titrating 20 mM CTAB into 0.1 wt% monomer MEO2MA and 

PEGMA2080 aqueous solutions at 25.0 °C (a) and 30.0 °C (b).  

In order to further elucidate the nature of binding sites on the polymer chains, we examined 

the energetics on the interactions between CTAB surfactant and the two respective monomers, 

i.e. MEO2MA and PEGMA2080 that were used to produce the polymer reported above. The ITC 

curves for the titration of 20 mM CTAB into 0.1 wt% MEO2MA and PEGMA2080 solutions at 

both 25.0 and 30.0 °C are shown in Figure 4.2 together with the dilution curve of CTAB in 

aqueous solution. The titration curves of CTAB to monomer solutions were identical to the 

CTAB dilution curves at 25.0 and 30.0 °C, respectively, confirming that no or negligible 

interactions were observed. While the ∆H values for CTAB/monomer systems were slightly 
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larger than CTAB/water, this small deviation can be attributed to small changes in the solvent 

environment due to presence of the monomer. Based on these results, we believe that the binding 

interactions occurred on the hydrophobic backbone of the polymer. 

4.3.2 EMF results of binding CTAB to poly(MEO2MA-co-PEGMA2080) 

The EMF study is another useful and efficient technique to quantify the surfactant-polymer 

binding by monitoring the monomer concentration of surfactant in solution. [Li, Ma and Hao, 

2012] In this study, 20 mM CTAB stock solution was titrated into 20 mL of 0.05, 0.1, and 0.2 wt% 

copolymer solutions at 25 and 30 °C and the EMFs were measured and plotted as a function of 

total CTAB concentration (shown in Figure 4.3). Figure 4.3(a) compares the dependence of EMF 

on CTAB concentrations at 25 °C in the absence and presence of copolymer. In the absence of 

copolymer, the CMC of CTAB was determined from the EMF calibration curve (open circle), 

which agreed with the value determined from ITC (shown in Table 4.1). In the presence of 

copolymer, the EMF deviated from the calibration curve with the first injection of CTAB, 

indicating the binding of CTAB onto the neutral copolymer as the corresponding free surfactants 

are lower in bulk solution. Due to the higher hydrophobicity of the polymer, CTAB molecules 

bind uncooperatively to the polymer at extremely low CTAB concentration, therefore we did not 

observe the critical aggregation concentration (CAC), and the CTAB monomers bound to the 

polymer chains as dimers, trimers and small aggregates. [Wang, Tam and Tan, 2004] 

Uncooperative binding leading to the deviation of the EMF curves at low surfactant 

concentration were reported for the binding of ionic surfactants to oppositely charged 

polyelectrolytes [Wang, Tam and Tan, 2004] and hydrophobically modified polymers. [Li et al., 

2001; Dai et al., 2004] These EMF results corroborated with the ITC results, where the larger ∆H 

values at low CTAB concentration are attributed to strong hydrophobic binding interactions. 



84 
 

With increasing CTAB concentration, the EMF curves exhibited an inflection at high CTAB 

concentration (C2), denoting the saturation of binding on polymer chains and the formation of 

free micelles in solution. The C2 values obtained from EMF measurements were in agreement 

with the trends observed from the ITC data. In addition, the effects of polymer concentration on 

the binding behavior were investigated by examining the behavior in 0.05, 0.1, and 0.2 wt% 

polymer solutions. In Figure 4.3(a), all the three EMF curves deviated from the CTAB/water 

curve before their inflection points due to the hydrophobic binding. At low CTAB concentration 

of less than 0.05 mM, the three curves merged, suggesting that concentration effects were 

negligible at these low concentrations of CTAB. At higher surfactant concentration, more 

significant deviations from the CTAB/water curve were observed for polymer solutions with 

high concentration due to the large amount of binding sites on the polymer chains. Finally, as 

expected, all the binding curves in the presence of polymer merged with the calibration curve as 

all polymer chains were fully bound by surfactants micelles, and the corresponding surfactant 

saturation concentration (C2) increased with increasing polymer concentration. As 

aforementioned, the EMF measurements for the same polymer solutions were also conducted at 

30 °C, which is above the Cp of the polymer in aqueous solution, and the results were plotted in 

Figure 4.3(b). In comparison to those binding curves at 25 °C, the results at 30 °C showed 

similar trend as all binding curves displayed a dramatic deviation from the calibration curve, and 

the deviation is more significant for polymer solutions with higher concentration. However, we 

observed that the three binding curves were separated at low CTAB concentration instead of 

overlapping at 25 °C, which could be due to the changes in the polymer chain conformation at 

high temperature. Above its Cp, the polymer structure became more hydrophobic and even much 

easier to bind with surfactant molecules due to the hydrophobic interactions. Therefore, even at 
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low CTAB concentration region, the hydrophobic binding was much more pronounced than 

those observed at 25 °C. 

 

Figure 4.3 EMF curves for titrating 20 mM CTAB into water (       ), 0.05 (       ), 0.1 (       ) and 

0.2 (      ) wt% of poly(MEO2MA-co-PEGMA2080) aqueous solutions at 25.0 °C (a) and 30.0 °C 

(b). The insets of (b) are the optical pictures of 0.1 wt% polymer aqueous solution before and 

after adding CTAB at 30.0 °C. 

By comparing the EMF data of binding curve and calibration curve, the concentration of 

polymer-bound surfactant (Cb) can be determined, i.e. the offset between the total surfactant 

concentration (Ct) and the corresponding free surfactant monomer concentration (Cf), and an 

example of Cb determination was shown in Figure 4.3(a) and 4.3(b), respectively. Hence, the 

average values of Cb per gram polymer (β = Cb/Cpolymer) can be calculated, and typical binding 

isotherms showing β versus Cf in the binding region are plotted in Figure 4.4. As expected, it is 

clearly shown that the β values increased with Cf in the binding region for all polymer 

concentrations at both 25.0 and 30.0 °C, and the trends became more dramatic at high surfactant 

concentration, which is in good agreement with the previous results involving ligands binding to 

macromolecules. [Ghoreishi et al., 1999a, 1999b; Mészáros, Varga and Gilányi, 2005; Rafati and 
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Ghasemian, 2009] Moreover, we found that the three binding isotherm curves of different 

concentrations (0.05, 0.1 and 0.2 wt%) overlapped at a certain temperature, suggesting the 

polymer concentration has no impact on the amount of polymer-bound surfactant, which depends 

on the polymer dinstinct properties and binding conditions. [Ghoreishi et al., 1999b; Mészáros, 

Varga and Gilányi, 2005] However, the binding isotherm curves are influenced by temperature, 

where the interaction at 30.0 °C was initiated at lower surfactant concentration than at 25.0 °C, 

implying stronger binding affinity at higher temperature, which is due to the changes in polymer 

conformation. At higher temperature, the polymer chain changes its conformation to a compact 

globule and forms aggregates with higher hydrophobicity, resulting in the increase of binding 

affinity. [Rafati and Ghasemian, 2009] However, as more and more surfactant molecules were 

bound on polymer chains, strong electrostatic repulsion between the bound surfactant ionic heads 

resulted in the de-compaction of polymer structure, and the polymer chains became less 

hydrophobic and the binding behaviors became similar to those at 25.0 °C. The C2 values 

obtained at these two temperatures were identical, because the amount of hydrophobic binding 

sites on the polymer chains were similar. 

Apparently, all the polymer solutions were transparent at 25.0 °C before and after the 

addition of surfactant into polymer solution, since the polymer was soluble in aqueous solution 

below the cloud point. However, at 30.0 °C, the polymer solution became clear when CTAB was 

titrated into the cloudy polymer solution. As shown in the inset on the top left of Figure 4.3(b), 

the polymer solution was cloudy when no or minute quantities of CTAB monomers were present. 

When CTAB was added to the polymer solution, the surfactant monomers bind to the polymer 

chain via hydrophobic interaction making the polymer chains cationic, which enhances the 

electrostatic repulsion between polymer-bound surfactant complexes leading to the 
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disassociation of polymer aggregates. The solution became transparent resulting in a large 

reduction in the scattering intensity as was confirmed by DLS measurements. 

 

Figure 4.4 Binding isotherms of Cb/Cpolymer as a function of free CTAB concentration (Cf) for 

poly(MEO2MA-co-PEGMA2080) aqueous solutions at 25 and 30 °C. (Polymer concentrations: 

circle 0.05 wt%; triangle 0.1 wt%; square 0.2 wt%).                      

4.3.3 DLS results on the binding CTAB monomers to the copolymer 

Dynamic light scattering is widely used to characterize the conformation of surfactant and 

polymer complexes during the binding process. In this study, the apparent hydrodynamic radii 

(Rh) of polymer/surfactant complexes were determined from the DLS measurements as a 

function of surfactant concentration at both 25.0 and 30.0 °C (Figure 4.5). All measurements 

were repeated three times. Evidently, the Rh value of 0.1 wt% poly(MEO2MA-co-PEGMA2080) 

aqueous solution was about 5.0 nm, and remained relatively constant over the entire surfactant 
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concentration range at 25.0 °C, suggesting that the polymer chains were solubilized in water 

below the cloud point. The DLS data confirmed the coil conformation of polymer chains, which 

expanded slightly when surfactant molecules complexed with the polymer chains due to the 

repulsive force between the polymer-bound surfactant charged groups. [Barbosa et al., 2006] 

However, the particle sizes of surfactant/polymer complexes at 30.0 °C displayed significant 

difference compared to the system at 25.0 °C. In the absence of surfactant, the Rh of 0.02 wt% 

poly(MEO2MA-co-PEGMA2080) aqueous solution was about 82 nm due to the aggregation of the 

polymer chains. As surfactant was added to the polymer solution, Rh value increased to a 

maximum of approximately 120 nm, and then decreased to a stable value of 5 nm at CTAB 

concentration greater than 0.05 mM. The particle size data correlated with the results from both 

the ITC and EMF measurements.  

 

Figure 4.5 The apparent hydrodynamic radius (Rh) of polymer/surfactant complexes as a 

function of CTAB concentration at 25.0 and 30.0 °C, respectively.  
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Mechanistically, the surfactant molecules bind uncooperatively to the polymer aggregates at very 

low surfactant concentration, and the electrostatic repulsion expands the polymer aggregates 

(size increase from 82 to 120 nm), and further increase in CTAB content induces the dissociation 

of the aggregates. [Hsu et al., 2006] The enhanced repulsive forces induced the disassociation of 

polymer aggregates due to the formation of charged polymer chains that mimics the property of 

as cationic polyelectrolyte. [Mya, Jamieson and Sirivat, 2000; Barbosa et al., 2006; Hsu et al., 

2006] This phenomenon is correlated by the visual observation, where the cloudy polymer 

solution at 30.0 °C became clear with the addition of cationic surfactant (shown in the inset of 

Figure 4.3(b)).  

4.3.4 Effect of surfactant hydrophobicity on the binding interaction 

In order to study the effect of surfactant hydrophobicity on the binding interactions 

between neutral polymer and cationic surfactants, two cationic surfactants with lower 

hydrophobicity compared to CTAB (C16H33(CH3)3N+Cl-), namely, tetradecyltrimethylammonium 

bromide (TTAB-C14H29(CH3)3N+Cl-) and dodecytrimethylammonium bromides (DoTAB- 

C12H25(CH3)3N+Cl-) were examined. The enthalpy profiles for titrating 100 mM TTAB and 200 

mM DoTAB stock solution into 0.05, 0.1, and 0.2 wt% copolymer solutions at 25.0 and 30.0 °C 

are shown in Figure 4.6, respectively. The CMCs of TTAB and DoTAB agreed with previous 

literature data, and were not significantly affected by temperature. [Wang and Olofsson, 1998; 

Stodghill, Smith and O’Haver, 2004] The titration curves of TTAB and DoTAB at 25.0 °C are 

shown in Figure 4.6(a) and (c), and the trends of the enthalpy profiles were identical to CTAB at 

25.0 °C, confirming that the binding interactions were identical. At low surfactant concentration, 

the large positive enthalpy (ΔH) values were attributed to the strong hydrophobic binding 

interaction. Considering the overall enthalpy of interaction with the polymer, CTAB displayed a 
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larger enthalpy change, followed by TTAB, while DoTAB exhibited much lower values (shown 

in Table 4.2). [Loh, Teixeira and Lee, 2004; Mata et al., 2006] These values confirmed that the 

strength of binding interaction followed the sequence; CTAB > TTAB > DoTAB. This sequence 

of binding affinity could also be confirmed by the saturation concentration (C2), which is 

inversely proportional to the carbon chain length of the hydrophobic alkyl group. 

Table 4.2 A comparison of maximum ΔH at 25.0 °C and minimum ΔH 30.0 °C for titrating 

CTAB, TTAB and DoTAB into polymer solutions. 

Enthalpy (ΔH) 
(kJ/mol) 

Polymer Conc. 
(wt%) CTAB TTAB DoTAB 

Max. ΔH at 25.0°C 
0.05 19.9 8.5 2.8 
0.1 24.9 10.8 3.0 
0.2 29.2 14.4 4.2 

Min. ΔH at 30.0°C 
0.05 -13.2 4.4 1.9 
0.1 -27.7 -3.7 -0.3 
0.2 -33.3 -17.7 -4.7 

   

The ITC titration measurements of TTAB and DoTAB were also conducted at 30.0 °C, and 

the enthalpy profiles are plotted in Figures 4.6(b) and (d). Similar trends to the CTAB at 30.0 °C 

were observed, which were consistent to the results observed at 25 oC. A proposed mechanism 

describing the binding interaction and the associated microstructural evolution is summarized in 

Figure 4.7. The schematic illustrates the binding interactions for cationic surfactants and thermo-

sensitive poly(MEO2MA-co-PEGMA2080) below and above the cloud point.  At 25 oC (which is 

below the LCST), the polymer chain of poly(MEO2MA-co-PEGMA2080) dissolves in water as an 

expanded water swollen structure, and its conformation changes into a surfactant swollen coil 

structure by addition of surfactants, ascribing to the hydrophobic interaction between the alkyl 

chain of cationic surfactant and hydrophobic backbone of the copolymer. As more surfactant 

molecules are bonded, surfactant micelles formed on hydrophobic moieties of the polymer chain, 
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and the polymer chain/surfactant complexes displayed the properties of a cationic polyelectrolyte. 

At temperature in excess of the LCST, the addition of surfactant firstly expands the polymer 

aggregates to form a loose coil due to electrostatic repulsion between bonded surfactant ionic 

head groups, and finally the conformation of polymer chain changes from a compact globule to 

an expanded surfactant swollen coil structure as observed at 25.0 °C. 

 

Figure 4.6 ITC curves for titrating 100 mM TTAB and 200 mM DoTAB into different 

concentrations of poly(MEO2MA-co-PEGMA2080) aqueous solutions at 25.0 °C (a, c) and 

30.0 °C (b, d), respectively.  
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Figure 4.7 Schematic illustration of binding cationic surfactant to thermo-sensitive copolymer 

below (a) and above (b) its cloud point.   

4.4 Conclusions 

In this chapter, the binding interactions between cationic surfactants and a statistical 

thermo-sensitive copolymer based on oligo(ethylene glycol) methacrylates at the temperature 

below and above its cloud point in aqueous solution were elucidated. By means of ITC, EMF and 

DLS, we observed significant hydrophobic interactions between cationic surfactants and neutral 

copolymer, where the binding of surfactant monomers on the polymer backbone is driven by 

hydrophobic interaction. Below the cloud point, surfactants bind to the individual copolymer 

chains to form a surfactant-swollen coil, while above the cloud point, surfactants bind to the 

polymer aggregates that dissociates the aggregate due to the strong electrostatic repulsion 

between the charged polymer-bound surfactant complexes. The binding between cationic 

surfactants and the copolymer occurred uncooperatively at low surfactant concentration, as 

confirmed by surfactant electrode measurements. The surfactant saturation concentration C2 

depended on the polymer concentration and is insensitive to temperature. Moreover, the binding 



93 
 

affinity of the three cationic surfactants in this study follows the sequence: CTAB > TTAB > 

DoTAB.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



94 
 

Chapter 5 Interactions between Surfactants and Polymer-grafted 

Cellulose Nanocrystals 

5.1 Introduction 

Interactions between water-soluble polymers and surfactants in aqueous media have 

attracted increasing attention in the past decades because of their wide applications in various 

industrial processes and products, such as in pharmaceutical formulations, rheological control, 

cosmetic additives and food products. In the polymer/surfactant studies, two critical 

concentrations are used to describe these interactions i.e. critical aggregation concentration 

(CAC) and saturation concentration (C2). The CAC corresponds to the critical surfactant 

concentration for surfactant-polymer complex formation, while C2 indicates the saturation of the 

polymer chains by surfactant molecules. In comparison with CAC and C2, critical micellization 

concentration (CMC) is defined as the concentration of the formation of surfactant micelles in 

the absence of polymer. These critical concentrations can be examined using various instruments, 

such as ion-selective electrode (ISE), conductometer, isothermal titration calorimeter (ITC), and 

surface tensiometer. Among these tools, ITC represents the most sensitive technique for studying 

the binding interactions by monitoring changes in the differential enthalpy. Tam and co-workers 

[Dai, Tam and Li, 2001; Dai and Tam, 2004; Wang and Tam, 2004] used the ITC to 

systematically study the interactions between sodium dodecyl sulfate (SDS) and a series of 

polymers, while McClements and co-workers [Wangsakan, Chinachoti and McClements, 2004; 

Thongngam and McClements, 2005; Bonnaud, Weiss and McClements, 2010] made important 

contributions on the elucidation of surfactant/biopolymer interactions via ITC.  
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Cellulose nanocrystals (CNC) with diameter of 10-20 nm and length of 200-400 nm, 

derived from native cellulose, is a promising new class of nanomaterials due to its high specific 

strength, high surface area, unique optical properties, etc. Its attractive physicochemical 

properties and wide application prospects have attracted significant interest from many industrial 

and academic researchers. Several reviews on this useful material have been reported. [Habibi, 

Lucia and Rojas, 2010; Klemm et al., 2011; Eichhorn, 2011; Peng et al., 2011] CNC 

nanoparticles prepared using sulfuric acid are dispersable in water due to the presence of sulfate 

groups on CNC surface. Various chemical modifications of CNC were conducted on primary OH 

groups, such as esterification, [Braun and Dorgan, 2009] cationization, [Hasani et al., 2008] 

sulfation and carboxylation, [Araki et al., 1999; Habibi, Chanzy and Vignon, 2006] silylation, 

[Goussé et al., 2002] and polymer grafting. [Morandi, Heath and Thielemans, 2009] Most of 

these focused on the improvement of its steric stability, dispersability and compatibility in 

different solvents or matrices. In this study, a commercial cationic polymer (Jeffamine M600) 

was grafted onto CNC surface via the TEMPO-mediated oxidation and peptidic coupling 

reaction. This method was first reported in 2001 by Araki et al., [2001] where they grafted 

poly(ethylene glycol) (PEG) onto cellulose microcrystal to improve its steric stability. Recently 

two research groups have successfully used this method to modify CNC. [Mangalam, Simonsen 

and Benight, 2009; Azzam et al., 2010] 

Surfactants are used to improve the dispersability of CNC nanoparticles. In 2000, Heux 

and co-workers introduced their work on the use surfactants to stabilize the cellulose particles in 

nonpolar solvents. Then Bondeson and Oksman [2007] employed an anionic surfactant to 

enhance the dispersion of CNC in poly (lactic acid), while non-ionic surfactants were used to 

disperse CNC particles in polystyrene-based composite fibers as reported by Kim et al. [2009] 
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and Rojas et al.. [2009] However, studies on the interactions between CNC and surfactants in 

aqueous media are rare. Since CNC is a low-cost, biodegradable and non-toxic nanomaterial, it 

could be used as excipient in personal care and pharmaceutical systems, where surfactants play a 

critical role. Recently, Jackson et al. [2011] reported on the use of CNC and 

cetyltrimethylammonium bromine (CTAB) for the binding and release of hydrophobic drugs, 

where the encapsulation and release of drug molecules can be controlled. However, no detailed 

studies on the interactions of CNC, its derivatives and surfactants have been reported. 

In this chapter, an amine-terminated polymer was grafted onto CNC surface. This 

hydrophilic polymer (consisting of oxypropylene and oxyethylene segments at a ratio of 8 to 1) 

can enhance the steric stability of CNC particles in aqueous media. FT-IR was used to confirm 

the amide bond formation between CNC and polymer, while TEM was used to assess the 

dispersability of CNC and modified CNC samples. The binding interactions between M600-

grafted CNC and anionic (SDS), cationic (DoTAB) and non-ionic (Brij 30) surfactants were 

investigated by ITC. 

5.2 Materials and Methods  

5.2.1 Materials 

Cellulose nanocrystals with an average charge density of 0.26 mmol/g was provided by 

FPInnovations Canada. All other chemicals were purchased from Sigma-Aldrich, and used as 

received. The chemicals used in the reaction are: Jeffamine M600, TEMPO reagent, sodium 

bromide (NaBr), sodium hypochlorite (NaClO), N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS). The water used was 

obtained from the Millipore-Q water purification system, which has a resistivity of 18.2 MΩ·cm. 

The chemical structures of SDS, DoTAB and Brij 30 are shown as below in Scheme 5.1. 
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Scheme 5.1 Chemical structures of surfactants: SDS, DoTAB and Brij 30. 

5.2.2 Preparation of Jeffamine M600-grafted CNC 

The M600-grafted CNC was prepared in two steps (shown in Scheme 5.2): (1) TEMPO-

mediated oxidation of CNC and (2) grafting of amine-terminated Jeffamine M600 to oxidized 

CNC. The oxidation experiments were performed using the reported protocol with some minor 

modifications. [Saito and Isogai, 2004] In a typical run, 200 mL of a 1.0 wt% CNC suspension 

was mixed with 150 mg TEMPO and 400 mg NaBr, and slowly stirred for 1h. Then 5 mL of 10-

15% sodium hypochlorite solution (NaClO) was added dropwise to initiate the oxidation reaction. 

The mixture was stirred overnight under room temperature with pH adjusted to 10 using 0.5M 

NaOH. The oxidized CNC particles were washed with 0.5M HCl and NaCl solution, and then 

dialyzed against Millipore-Q water. A well-dispersed colloidal suspension was recovered after 

the dialysis.  

Grafting of Jeffamine M600 onto CNC was achieved via the EDC/NHS reaction according 

to Bulpitt and Aeschlimann. [1999] A desired amount of Jeffamine M600 solution was added 

dropwise to 100 mL of 1.0 wt% carboxylated CNC suspension and stirred until dissolution. The 

pH of the mixture was adjusted to 7.5 – 8.0 using either 0.5M NaOH or 0.5M HCl, and then 2 

mL of EDC/NHS (ratio of 2: 1) was added to the mixture. The reaction proceeded overnight at 
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room temperature with the pH of the mixture kept at 7.5 – 8.0. The reacted mixture was adjusted 

to pH of 1 using HCl and dialyzed against Millipore water (Mw cut-off 12,000-14,000) to remove 

un-reacted reagents, and the pH of the final solution was neutral (about 7.5). These two reactions 

were confirmed by FT-IR analysis of freeze-dried CNC product in KBr pellets. 

 
Scheme 5.2 The reaction route of grafting Jeffamine M600 on the CNC surfaces. 

5.2.3 Fourier-transform infrared spectroscopy   

The FT-IR spectra were measured at room temperature using a Perkin-Elmer 1720 FT-IR 

spectrometer with a resolution of 4 cm-1. The freeze-dried cellulose particles, namely CNC, 

oxidized CNC, and M600-grafted CNC were mixed with KBr respectively, and then compressed 

to form pellets.  
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5.2.4 Transmission electron microscopy (TEM) 

Transmission electron microscopic studies were performed using a Philips CM10 electron 

microscopy. The TEM samples were prepared by depositing one drop of 0.005 wt% CNC 

dispersions onto a carbon coated TEM copper grid, which was placed on a filter paper. The 

excess liquid was removed by the filter paper and the remaining liquid was allowed to air-dry 

overnight at room temperature.  

5.2.5 Conductometric titrator 

The carboxylate contents of oxidized CNC and the extent of grafting were determined by 

the conductometric titration measurements, which were performed on a Metrohm titrator 

equipped with a water bath to control temperature. The 40 mL of 0.1 wt% aqueous solutions 

were adjusted to pH 2.7 with 0.1 M HCl, and then titrated with a 0.05 M NaOH solution under 

stirring.  All the tests were conducted at 25 oC.  

5.2.6 Nuclear magnetic resonance (NMR)  

The 1H NMR experiments were carried out on a Bruker AV300 NMR spectrometer 

operating in the Fourier transform mode. D2O was used as solvent for all measurements. The 1H 

NMR spectra of 0.2 wt% M600-CNC, 5mM SDS, as well as the mixtures of 0.2 wt% M600-

CNC with 5, 10, and 20 mM SDS were recorded in D2O. All analyses were performed at 25, 45 

and 60 °C. 
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5.2.7 Isothermal titration calorimetry (ITC)   

 

Figure 5.1 Calorimetric titration curves of 100 mM SDS into water (left) and 0.1 wt% M600-

grafted CNC (right) at 25 oC. (a, c) thermogram of raw heats, and (b, d) ITC enthalpy profiles 

versus real SDS concentration in the sample cell. 

The calorimetric data on the binding interactions between surfactants and M600-grafted 

CNC were obtained using a Microcal VP-ITC calorimeter (Northampton, MA). A detailed 

description on this power compensated differential calorimetric instrument was previously 

described. [Wiseman et al., 1989] The microcalorimeter consists of a reference cell and a sample 

cell of approximately 1.4 mL in volume, and surfactant solution was injected from a 281.72 μL 

injection syringe into the sample cell filled with either water or CNC suspensions. The syringe is 
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tailor-made such that the tip acts as a blade-type stirrer to ensure an efficient mixing at 307 rpm. 

The titration was carried out at 25.0 °C and the sample injections were automatically controlled 

by an interactive software. In this study, we utilized identical injection protocol, i.e. 2μL for the 

first 10 injections, 4μL for the next 30 injections, and 10μL for the last 10. The time interval 

between successive injections was set at 240s. Typical ITC profiles are shown in Figure 5.1 of 

titrating 100 mM SDS into water at 25 oC. 

5.3 Results and Discussion 

5.3.1 Characterization of M600-grafted CNC 

 

Figure 5.2 FT-IR spectra of (a) cellulose nanocrystals, (b) carboxylated CNC, and (c) M600-

grafted CNC. 

The grafting of Jeffamine M600 onto CNC surface was confirmed by FT-IR. Figure 5.2 

shows the FT-IR spectra of (a) CNC, (b) carboxylated CNC, and (c) M600-grafted CNC. The 
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spectrum of carboxylated CNC (b) displayed an obvious peak at 1730 cm-1 compared to the CNC 

sample (a). This new peak was assigned to the acidic form of carboxyl groups introduced by the 

TEMPO-mediated oxidation of primary C6 hydroxyl groups on CNC surface. [Azzam et al., 

2010]  

 

Figure 5.3 Conductometric titration curves of 0.1 wt% of CNC, carboxylated CNC and M600-

CNC against 0.05 M NaOH solution.  

For the spectrum of M600-grafted CNC, a new peak at 1550 cm-1 was observed, which is 

characteristic of an N-H vibration of the amide bond. Compared to the carboxylated sample, the 

intensity of 1730 cm-1 peak was reduced in Figure 5.2c, suggesting that some of the carboxyl 

groups have reacted with amine groups of Jeffamine M600. The above analyses from FT-IR 

spectra supported the formation of covalent amide bond between carboxylated CNC and 

Jeffamine M600. The density of carboxyl groups on oxidized CNC was calculated to be 1.1 
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mmol/g based on the conductometric titration results (shown in Figure 5.3), while the extent of 

grafting was also determined, which is about 0.33 mmol polymers per gram of CNC. 

TEM micrographs of CNC and M600-grafted CNC from aqueous dispersion are shown in 

Figure 5.4, where the CNC and M600-grafted CNC possessed identical size and shape, whose 

dimensions are in agreement with literature values, i.e. 10 to 20 nm in width and approximately 

200 nm in length. [Habibi, Lucia and Rojas, 2010] The CNC rod-like nanoparticles tend to form 

“bundle-like” aggregates similar to those reported previously, [Orts et al., 1998] while the M600-

grafted CNC possessed more individual rod-like nanoparticle with very few aggregates. The 

better dispersion of the modified CNC can be attributed to the presence of surface grafted M600 

chains that generated steric repulsion forces between the nanoparticles. [Azzam et al., 2010] 

 

Figure 5.4 TEM images of (a) cellulose nanocrystals, and (b) M600-grafted CNC. 

5.3.2 Interactions between M600-grafted CNC and SDS 

A typical ITC result for titration of 100 mM SDS into water at 25 oC is shown in Figure 5.1 

(left), which comprises the raw heats (Figure 5.1a) and enthalpy profile (Figure 5.1b) obtained 

from the integration of each individual peak in Figure 5.1a. The micellar solution of SDS in the 
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syringe was titrated into water in the sample cell. When the surfactant concentration in the 

sample cell is lower than the critical micellization concentration (CMC), the SDS micelles will 

dissociate to produce monomers, and the observed enthalpy contains the heats from surfactant 

demicellization and dilution of surfactant micelles and monomers. When the concentration of 

SDS in the sample cell exceeded its CMC, only the surfactant micelle dilution heat was 

measured. The CMC of SDS was determined from the titration curve to be 8.16 mM, which 

agreed with literature value. [Dai and Tam, 2004] In the presence of M600-grafted CNC, the 

enthalpy curve is more complex than SDS dilution process due to onset of polymer/surfactant 

interactions. At low SDS concentration, SDS molecules bind to oxypropylene segments on M600 

chains producing larger endothermic heat compared to the SDS dilution process (shown in 

Figure 5.1c). When the M600 chains were saturated by SDS micelles at high SDS concentration, 

only SDS micelle dilution heat was measured. 

The calorimetric curves for the titration of 100 mM SDS solution to 0.1 wt% CNC and 

M600-grafted CNC are plotted in Figure 5.5(a), together with the titration of SDS into water. We 

observed that the shape of SDS/CNC curve is identical to the SDS/water curve, suggesting that 

SDS monomers do not bind to CNC. However, at CSDS < CMC, the ∆H values for SDS/CNC 

system is slightly larger than SDS/water indicating that the presence of CNC slightly alters the 

solvent environment that has a small effect on the demicellization of SDS micelles. The CMC of 

SDS in the CNC solution decreased from 8.16 to 7.91 mM due to the electrolyte effect of 

negative sulfate groups and counterions (Na+) on CNC surface. The titration curve of SDS to 

M600-grafted CNC deviated significantly from the SDS/water curve. A distinct endothermic 

peak was observed at CSDS < CMC followed by a broad shoulder, similar to the results reported 

previously. [Wang and Olofsson, 1998; Dai, Tam and Li, 2001]   
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Figure 5.5 (a) Calorimetric titration curves of 100 mM SDS into water, 0.1 wt% CNC 

suspension, and 0.1 wt% M600-grafted CNC suspensions at 25 oC. (b) Calorimetric titration 

curves for titration of 100mM SDS into water and M600-grafted CNC suspensions of various 

concentrations: 0.1, 0.25, and 0.5 wt% at 25 oC.      

Considering the chain structure of grafted M600 on CNC, the endothermic peak is attributed to 

the formation of aggregation complexes between SDS and oxypropylene segments on M600 
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chains. [Dai, Tam and Li, 2001] The onset of binding of SDS monomers to oxypropylene 

segments is characterized by the critical aggregation concentration (CAC), which is lower than 

the CMC. A small endothermic “shoulder” (at ~ 8 mM) appeared at a higher SDS concentration, 

which is related to the formation of SDS micelles on the M600 chains. The titration curve then 

merged with the SDS dilution curve signifying the saturation of the oxypropylene segments by 

SDS micelles. We did not observe an exothermic peak corresponding to the re-hydration of 

polymer chains as reported previously due to the relatively low polymer molecular weight used 

in this study. [Wang and Olofsson, 1995; Dai and Tam, 2001]  

Table 5.1 The CAC, C2, and thermodynamic parameters from calorimetric titration of 100 mM 

SDS into 0.1, 0.25, and 0.5 wt% M600-grafted CNC suspensions. 

Concentration of 
M600-grafted CNC 

CAC 
(mM) 

C2 
(mM) 

ΔHagg 
(kJ/mol) 

ΔGagg 
(kJ/mol) 

TΔSagg 
(kJ/mol) 

0.1 wt% 2.44 12.8 0.39 -27.6 28.0 

0.25 wt% 1.91 14.6 1.10 -28.7 29.8 

0.5 wt% 1.36 -- 1.62 -30.3 31.9 

 

The ITC curves for the titration of 100 mM SDS into different concentrations of M600-

grafted CNC are shown in Figure 5.5(b). It is evident that the CAC is slightly dependent on 

polymer concentration, as the CACs for 0.1, 0.25 and 0.5 wt% M600-grafted CNC suspensions 

are 2.44, 1.91 and 1.36 mM, respectively. The lower CAC corresponds to the earlier onset for the 

formation of aggregation complexes due to the higher concentration of oxypropylene segments. 

Furthermore, with the thermodynamic equations derived from the phase separation model, the 

Gibbs free energy for the formation of polymer/SDS aggregates (ΔGagg) can be described by 

Equation (1): 
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   ΔGagg = (1 + K)RT ln(CAC) (1) 

where K is the effective micellar charge fraction with a value of 0.85 for SDS. Moreover, the ΔH 

at CAC comprised of enthalpies contributed by various processes, i.e.: [Meagher, Hatton and 

Bose, 1998] 

ΔH = ΔH (dilution of SDS micelles and monomers)  

      + ΔH (demicellization of SDS micelles) 

      + ΔH (binding of SDS monomers to polymer chains) (2) 

The measured enthalpy change is mainly attributed to the binding ΔH of SDS/polymer 

complexes ΔHagg, as the ΔH for the SDS dilution and demicellization is relatively small. 

Therefore, the entropy ΔSagg can be determined from Equation (3): 

ΔGagg = ΔHagg - TΔSagg (3) 

The values of CAC, ΔGagg, ΔHagg, and ΔSagg for the three M600-grafted CNC samples are 

summarized in Table 5.1. The thermodynamic parameters suggest that the aggregation process at 

CAC is an entropically driven process, because ΔHagg is positive, and the Gibbs free energy is 

dictated by the magnitude of TΔSagg. 

In order to further confirm the binding interaction between SDS and the M600 polymer 

chains on CNC surface, 1H NMR measurements were conducted on SDS, M600-CNC, and their 

mixtures. The 1H NMR spectra of 0.2 wt% M600-CNC, 5mM SDS, and their mixtures, i.e. 0.2 

wt% M600-CNC with 5, 10, and 20 mM SDS were recorded in D2O solvent, as shown in Figure 

5.6. The peak at 1.04 ppm (Figure 5.6a) was assigned to the –CH3 protons of oxypropylene 

segments, based on the previous studies, [Ma et al., 2007; Phani Kumar et al., 2011]  
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Figure 5.6 1H NMR spectra of 0.2 wt% M600-CNC (a), 5mM SDS (b), and their mixtures of 0.2 

wt% M600-CNC with 5(c), 10(d), and 20 (e) mM SDS in D2O solvent. The inset shows the 1H 

NMR spectra of 0.2 wt% M600-grafted CNC with 5 mM SDS in D2O solvent at 25, 45, and 60 

oC. 

and the chemical shift was shifted downfield, from 1.04 (without SDS) to 1.06 ppm in the 

presence of 20 mM SDS. This is because the microenvironment of polymer segments was altered 

due to the binding with surfactants, resulting in the change in the chemical shift. [Chen et al., 
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2008] On the other hand, as SDS concentration in the mixtures increased from 5 to 20 mM, the 

chemical shift of –CH2 in the α position near the sulfate group decreased from 3.95 to 3.92 ppm, 

while the chemical shift of –CH3 in δ position increased from 0.75 to 0.78 ppm. All these results 

reflect the binding interaction between SDS and M600 polymer chains. The temperature effect 

on SDS and M600-CNC interactions was studied by 1H NMR, and the insets of Figure 5.6 (top 

left and right NMR spectra) show the 1H NMR spectra of 0.2 wt% M600-grafted CNC with 5 

mM SDS in D2O solvent at 25, 45, and 60 oC. When the temperature was increased to 60 oC, the 

M600 polymer signals (1–4) undergo apparent broadening due to the reduction in the mobility of 

most of the oxypropylene segments, and the signal intensity decrease since the polymer chains 

collapsed and the functional groups were shielded compared to those at low temperatures. The 

triplets corresponding to α proton of SDS chain at low temperature merged into a singlet at high 

temperature, ascribing to the enhanced hydration effects of SDS alkyl chain upon heating. [Hsu 

et al., 2006; Chen et al., 2011] 

It is well known that PPGs are thermo-responsive polymeric systems, whose LCST depend 

on their molecular weights. The LCST for PPG 1 K, 2 K, and 3 K were reported to be 42, 23, and 

15.5 oC, respectively. [Dai and Tam, 2004] In our study, the M600-CNC system dis-plays a 

thermo-responsive behavior upon heating. The LCST for this 600 Da polymer was broad and 

determined to be around 55 oC (Figure 5.7), which corresponds to the trend in this refence of 

[Dai and Tam, 2004]. Above this temperature, the dispersion became cloudy mainly due to the 

inter-molecule interaction induced by hydrophobic interaction between the dehydrated PPG 

segments. The dispersion was less turbid at low concentration because the negative charges on 

the particles surface stabilized the CNC particle and prevented the formation of larger aggregates. 
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Figure 5.7 Transmittance versus temperature for 0.1, 0.7, and 1.0 wt% M600-CNC aqueous 

solution at the wavelength of 500 nm.  

5.3.3 Interactions between M600-grafted CNC and DoTAB 

The calorimetric curves for the titration of 200 mM DoTAB solution into 0.1 wt% CNC 

and M600-grafted CNC are shown in Figure 5.8(a), together with the dilution curve of DoTAB 

in water. The DoTAB concentration of 200 mM was chosen to be approximately 12 times the 

CMC of DoTab at 25 oC, similar to that used for the titration with SDS solution (i.e. 100 mM). 

The CMC value of 15.8 mM determined in this study is identical to that reported in the literature. 

[Guillot et al., 2003]  
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Figure 5.8 (a) Calorimetric titration curves of 200mM DoTAB into water, 0.1 wt% CNC 

suspension, and 0.1 wt% M600-grafted CNC suspensions at 25 oC. (b) Calorimetric titration 

curves for titration of 100mM DoTAB into water and M600-grafted CNC suspensions of various 

concentrations: 0.05, 0.1, 0.25, and 0.5 wt% at 25 oC. 
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The titration curves for DoTAB solution into 0.1 wt% CNC and M600-grafted CNC suspensions 

are identical, except with some deviation in Region I. In Region I, ΔH decreased rapidly and 

reached a minimum at DoTAB concentration of ~ 2 mM. Such a trend is attributed to the 

electrostatic interaction between cationic DoTAB monomers and negative charges on CNC. With 

increasing surfactant concentration, an increasing proportion of the negative charges become 

neutralized by DoTAB monomers. [Alila et al., 2005] At low surfactant concentration, the 

binding enthalpy for DoTAB/M600-grafted CNC system is larger than DoTAB/CNC due to 

more negative charges on M600-grafted CNC surface produced by the TEMPO oxidative 

process. In Region II, the two curves merged, where the adsorbed DoTAB monomers on the 

surface begin to reorganise and associate, induced by hydrophobic interaction between the alkyl 

chains of the surfactant to form surfactant clusters. [Alila et al., 2005] Region III commences at 8 

mM DoTAB till the end of titration curve. A further increase in the surfactant concentration 

leads to the formation of surfactant micelles on the particle surface, where the critical onset 

concentration is designated as C’. [Wang and Tam, 2002] The micellization of DoTAB in the 

presence of CNC occurs at a lower concentration due to the polymer induced micellization effect. 

At much higher surfactant concentration, the titration curve levels off and only the dilution heat 

of the micelles was measured. 

Figure 5.8(b) shows the ITC curves of the titration of 200 mM DoTAB into different 

concentrations of M600-grafted CNC. The titration curves for 0.05, 0.1, 0.25, and 0.5 wt% 

exhibited similar profiles with some variations in the enthalpy profiles. The electrostatic 

interaction between DoTAB and 0.5 wt% M600-grafted CNC is large, and it decreased as the 

particle concentration was reduced, since the amount of negative charges on the particle surface 

is proportional to the particle concentration. We observed that the critical concentration (C’) for 
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the formation of surfactant micelles on the particle surface decreased with increasing particle 

concentration; i.e. it decreased from 13.8 to 8.6 mM when the particle concentration was 

increased from 0.05 to 0.1 wt%. This suggests that the aggregation of surfactant monomers is 

dependent on the particle concentration.  

5.3.4 Interactions between M600-grafted CNC and a non-ionic surfactant (Brij 30) 

 

Figure 5.9 Calorimetric titration curves for titration of 20mM Brij 30 into water and M600-

grafted CNC suspensions of various concentrations: 0.25, and 0.5 wt% at 25 oC. 

The ITC curves for the titration of 20 mM Brij 30 into water, 0.25 and 0.5 wt% of M600-

grafted CNC are plotted in Figure 5.9. The CMCs for nonionic surfactant (Brij series) are quite 

low, and it was reported the CMC of Brij 30 is about 0.004 mM at 25 oC. [Hait and Moulik, 2001] 

In the dilution curve of Brij 30, the enthalpy changes became less negative at low surfactant 

concentration ranging from 0 to 0.54 mM, and approached zero at higher surfactant 
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concentration. The titration curve of Brij 30/M600-grafted CNC is identical to the Brij 30 

dilution curve. However, their enthalpy changes are considerably less exothermic at low 

surfactant concentration, especially for the 0.5 wt% M600-grafted CNC system, which could be 

due to changes in the solvent environment with the addition of modified CNC that impacts the 

disassociation process of Brij 30 micelles. In addition, Brij 30 monomers may bind to the 

hydrophobic segments of the nanoparticles at relatively high particle concentration. 

 

Figure 5.10 Schematic diagrams describing the binding interactions for SDS/M600-grafted CNC 

and DoTAB/ M600-grafted CNC systems in aqueous media.  

A schematic mechanism describing the binding interactions of SDS/M600-grafted CNC 

and DoTAB/M600-grafted CNC systems in aqueous media is shown in Figure 5.10. For the 

SDS/M600-grafted CNC, at low concentration, SDS molecules bind to oxypropylene segments 
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via hydrophobic interactions, and they form micelles above the CAC. With increasing SDS 

concentration up to C2, all the oxypropylene segments become saturated with SDS micelles and 

free SDS micelles begin to form in the bulk. Similarly, in the DoTAB/M600-grafted CNC 

system, DoTAB molecules are initially attracted to the negative charged sites, and they 

reorganize and associate with adjacent DoTAB molecules forming clusters of surfactant 

monomers when the concentration reached C’. At concentration greater than C2, free surfactant 

micelles are formed in the bulk solution. 

5.4 Conclusions 

This chapter describes that a commercial cationic polymer (Jeffamine M600) was 

successfully grafted onto CNC surface via TEMPO oxidation and peptidic coupling reactions. 

The formation of covalent amide bond between polymer and CNC was confirmed by FT-IR. The 

interactions between M600-grafted CNC and anionic (SDS), cationic (DoTAB) and non-ionic 

(Brij 30) surfactants were investigated by ITC. A large endothermic peak was found for SDS and 

M600-grafted CNC system, indicating strong hydrophobic interaction between the surfactant 

tails and oxypropylene segments. DoTAB and M600-grafted CNC exhibited strong ionic 

interaction due to the neutralization of opposite charges. Titration of Brij 30 into M600-grafted 

CNC and water showed identical curves, implying the absence of significant interaction. Possible 

applications of modified CNC in personal care products and pharmaceuticals are being explored.   
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Chapter 6 Aggregation behavior of N-carboxyethylchitosan in 

aqueous solution: effects of pH, polymer concentration, and 

presence of a gemini surfactant 

6.1 Introduction 

Chitosan is an important polysaccharide, derived from the abundant organic resource chitin. 

Because of its intrinsic biocompatibility and biodegradability, [Onishi and Machida, 1999; 

VandeVord et al., 2002] chitosan has attracted considerable attention in biological and industrial 

applications, such as tissue engineering, transplant and cell regeneration, encapsulation, and 

wastewater treatment. [Schulz et al., 1998; Ishaug-Riley et al., 1999; Niklason et al., 1999] In 

acidic media, chitosan is water soluble mainly because of the presence of amino groups at the C-

2 position (pKa ~ 6.3-7). At pH < 4, most of the amino groups are protonated, and the strong 

electrostatic interactions among the cations make the molecular chains expanded and promote 

the solubility. On the other hand, at high pH values, the amino groups become deprotonated, 

which induces an insoluble chitosan in basic media. Since some applications of chitosan are 

restricted by the solubility of the polymer in basic media, many polyampholyte derivatives of 

chitosan, which can be soluble in both acidic and basic media, are used. These modified 

chitosans are synthesized with carboxylate or sulfo groups on the reactive functional groups 

along the polymer backbone. [Sashiwa et al., 2003a, 2003b; Ravi Kumar et al., 2004] 

Among the numerous water-soluble derivatives, N-carboxyethylchitosan (CECh), 

synthesized by adding the acrylic acid (AA) onto -NH2 groups by Michael addition, is one of the 

most attractive derivatives. Due to the modification of COOH, CECh presents some significant 

properties, such as improved water solubility, higher biocompatibility, and better 
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biodegradability in comparison with chitosan. [Yancheva et al., 2007] Moreover, the 

conformation and the dimensions of the molecular chains in aqueous solution are also different 

from those of chitosan. Depending on the numbers of AA units attached to the -NH2 groups, i.e. 

the degree of substitution (DS), CECh possesses distinct zwitterionic properties with different 

isoelectric points (IEPs). The zwitterionic properties play an important role in the aggregation 

behavior of polyampholyte, which had attracted great interest of many researchers. [Neyret et al., 

1995; Lowe, Billingham and Armes, 1998; Bütün et al., 1999; Patrickios et al., 1999; Braun, 

Selb and Candau, 2001; Liu and Armes, 2003; Ciferri and Kudaibergenov, 2007; Kudaibergenov 

and Ciferri, 2007] A series of block and random polyampholytes have been synthesized and their 

self-assembly properties under different conditions have been investigated by Armes and co-

workers [1998; 1999; 2003] and Candau and co-workers, [1995; 2001] respectively. Meanwhile, 

the aggregation behaviors of proteins and nucleic acids, two typical ampholytic macromolecules 

in nature, were studied under different conditions, such as different pHs, [Linden and Venema, 

2007] ionic strengths, [Li et al., 2009] concentrations, [Boulet, Britten and Lamarche, 2000] and 

in the presence of a surfactant. [Pi et al., 2006; Wu et al., 2007] However, CECh is quite 

different from those polyampholytes, due to its unique rigid backbone, which can promote 

molecular steric stability. Mincheva and co-workers [2008] performed a systematic study on the 

formation of nanosized structures of CECh solution near the IEP, and obtained well-regulated 

structures. Zhu et al. [2005] investigated the self-aggregation behavior of O-

carboxymethylchitosan (OCMCS) in dilute aqueous solution. However, there are few papers on 

the zwitterionic properties of CECh until now, especially those on the effects of pH, polymer 

concentration, and the presence of a gemini surfactant. As we know, the interaction between 

polymer and surfactant is a very interesting subject, which is the focus of many researchers. [Lim 



118 
 

et al., 2003; Berret et al., 2004; Nizri et al., 2004, 2009] Under different ratios of polymer and 

surfactant, the rheological properties changed considerably, and many charming conformations 

that formed in the solution were detected. One characteristic of the interaction is the existence of 

a critical aggregation concentration (CAC), where surfactants start to bind onto polymer chains. 

In most reports, traditional surfactants were employed. However, if a cationic gemini surfactant 

is added to the CECh solution in basic media, the solution must exhibit some novel behavior. 

The fundamental knowledge developed from such studies will provide the information necessary 

for the development of new and novel systems for applications in the biomedical and chemical 

fields. 

In this chapter, fluorescence-probe spectroscopy, viscometry, surface tensiometry, as well 

as turbidity and zeta potential measurements, were used to investigate the influence of pH, 

polymer concentration and a gemini surfactant on the aggregation behavior of N-

carboxyethylchitosan in aqueous solution. In order to provide more details on the aggregation 

mechanism, the effect of surfactant spacer length on the interaction between gemini surfactant 

and CECh was also explored simultaneously. 

6.2 Experimental 

6.2.1 Materials 

Chitosan powder (Mw = 2.3 × 105 g/mol) with a degree of deacetylation ≥ 90% was 

supplied by Shanghai Reagent Co. Ltd, China. Acrylic acid (Shanghai LinFeng Reagent Co. Ltd) 

was distilled under reduced pressure before use. CECh was prepared by a Michael addition 

reaction as described by Sashiwa et al., [2003b] and the degree of substitution (DS) of CECh was 

0.21, based on 1H NMR analysis referred to relevant literature. [Kang et al., 2006] The CECh 

product was precipitated in anhydrous EtOH and was rinsed three times to remove the low-
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molecular-weight component. The precipitate was dissolved in water and dialyzed against 

distilled water for three days using a dialysis tube (Mw cut-off ≤ 3500), and the solution was then 

lyophilized. Cationic gemini surfactants (12-n-12) were synthesized by a reaction of α, ω-

dibromoalkanes with N, N-dodecyldimethylamine. Pyrene for the fluorescence probe studies was 

purchased from Sigma-Aldrich Chemical Co., and used as received. Fresh doubly distilled water 

was used in all experiments. 

6.2.2 Sample preparation 

A stock CECh solution of 0.2 wt% was prepared and diluted to solutions with various 

concentrations (0.01-0.1 wt%). The pH of the solution at 0.05 wt% was adjusted to 3-11 

(monitored by a Sartorius PB-10 pH meter) by either dilute aq. HCl or aq. NaOH. By mixing the 

surfactant and CECh solutions, we obtained various 12-n-12/CECh samples with a constant 

CECh concentration of 0.05 wt%, and a series of surfactant concentration (10-7-10-3 mol/L) in 

basic media. All samples were kept at 25.0 oC for 24h before each experiment to ensure complete 

dissolution. 

6.2.3 Characterizations 

6.2.3.1 Fluorescence emission spectroscopy 

Samples for fluorescence spectroscopy measurements were prepared by using a saturated 

pyrene water solution as the solvent. The fluorescence measurements were conducted on an 

F4500 fluorescence spectrophotometer (Hitachi) equipped with a thermostated water circulating 

bath, and the excitation wavelength was fixed on 335 nm, while the slit widths of excitation and 

emission were settled at 10.0 and 2.5 nm, respectively. 
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6.2.3.2 Viscosity measurements 

A Brookfield LVDV3 rheometer with a cone spindle of SC-18 was employed for the 

viscosity measurements. The viscosity value reported below was an average one of three times at 

a fixed shear rate 264 s-1. 

6.2.3.3 Surface tension measurements 

The surface tension measurements were performed with a Radian series tensiometer from 

Thermo Cahn. Surface tensions (γ) were determined by employing the Wilhelmy plate technique. 

The tensiometer was calibrated against water before measurements. 

6.2.3.4 Turbidity measurements 

The spectrophotometer used in this work was a Shimadzu 2450-UV UV/Vis 

spectrophotometer, and all measurements were made in a quartz cuvette (1 cm width) at 

wavelength of 500 nm at 25.0 oC. 

6.2.3.5 Zeta potential 

The zeta potential was conducted on a Nano-ZS (Malvern) using Doppler velocimetry and 

phase analysis light scattering. The scattering angle was 173o, while the laser wavelength was 

633 nm. Each measurement was repeated at least three times. 

6.3 Results and Discussion 

6.3.1 Influence of pH on the aggregation behavior of CECh 

The pH of solution plays an important role in inducing polyelectrolyte aggregation, i.e. at 

different pH values, the solubility of different functional groups changed, resulting in the 

formation of aggregation. Turbidity measurements can easily detect the polymer conformation 
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transformation from aggregates to particles or molecular chains by recording the transmittance 

values. [Neto et al., 2005; de Vasconcelos et al., 2006] The transmittance dependence on pH of 

0.05 wt% CECh aqueous solutions at λ = 500 nm is shown in Figure 6.1. It is evident that CECh 

possessed the typical characteristics of a polyampholyte, because at either high or low pH, the 

solutions were almost transparent with nearly 100% transmittance, while the transmittance 

decreased rapidly in the middle range of pH 6-7, which can be defined as the isoelectric point 

(IEP) range. In this case, the IEP of CECh with DS = 0.21 is ca. 6.65 (= (pHa + pHb)/2).  

 

Figure 6.1 The optical transmittance (T%) of CECh aqueous solution at λ = 500 nm under 

various pHs. 

Similar phenomena were also observed in block copolymer systems, such as poly(2-

(dimethylamino)ethyl methacrylate-block-methacrylic acid) (poly(DMA-b-MAA)) and poly(2-

(diethylamino)ethyl methacrylateblock-methacrylic acid) (poly(DEA-b-MAA)). [Creutz et al., 

1997; Dai et al., 2003] At low pH, CECh molecules possessed uncharged carboxylic groups (-

COOH) and positively protonated -NH3
+ groups, which could be considered as a positive 

polyelectrolyte that can be molecularly dissolved in aqueous solution due to the repulsion 
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between -NH3
+ groups. Although the amino groups were deprotonated and rendered hydrophobic 

at high pH, CECh molecules were solubilized in aqueous solution due to the ionization of 

carboxylic groups (-COOH). At almost neutral pH, obvious precipitation occurred because of the 

coexistence of positive and negative charges, and the electrostatic attractions between intra- and 

intermolecules resulted in a rapid decrease in the light transmittance. 

 

Figure 6.2 The zeta potential of CECh aqueous solution under various values of pH. 

The zeta potential was used to characterize the charge density of the particles and the 

electrostatic interactions among charged particles. Herein, the zeta potential experiments were 

performed under the same condition as those in the turbidity measurements on CECh solutions 

with different pHs. With increasing pH, the zeta potential (ζ) decreased from +34 mV at pH 3.00 

to -40 mV at pH 10.45 (shown in Figure 6.2), indicating the surface charge changed from net 

positive to net negative. Either at low or high pH, CECh dissolved in aqueous media, due to the 

electrostatic repulsion between the abundant charges distributed on the molecular chains. 

Experimentally, the aggregation would not occur when |ζ| > 30 mV, which is in agreement with 
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the data from the turbidity measurements. During the whole process from acidic to basic 

conditions, the zeta potential approached to zero at pH between 5.2 and 6.8, and the phase 

separation occurred due to the electrostatic attraction between positive amino groups and 

negative carboxylic moieties. 

 

Figure 6.3 Fluorescence spectroscopy of CECh aqueous solution at different values of pH by 

using pyrene as a fluorescent probe.  

The aggregation behavior of CECh was also investigated by recording the fluorescence 

intensities of the first and third vibronic peaks (I1/I3) of pyrene. The ratio of I1/I3 as a function of 

solution pH is illustrated in Figure 6.3. From this figure, it is obvious that at pH 6.3-7.0, the I1/I3 

values were smaller than those at low or high pHs, implying a more hydrophobic environment 

where pyrene is located, i.e. the CECh aggregates in aqueous solution. As expected, the driving 

force for the hydrophobic aggregation near the IEP region was attributed to the charge 

compensation between positive amino groups and negative carboxylic moieties according to the 

previous measurements. Moreover, it is also an evidence for the existence of intermolecular 
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interactions, because the I1/I3 values at both low and high pHs were slightly lower than that in 

pure water (I1/I3 = 1.726). 

6.3.2 Influence of polymer concentration on the aggregation behavior of CECh 

As mentioned above, the aggregation of CECh in aqueous solution was driven by inter- 

and intramolecular interactions. Among the intramolecular forces, the electrostatic attraction is 

the dominant force at or near the IEP, even though the aggregation behaviors were different at 

low and high pHs according to the fluorescence measurements. Potentiometric and conductivity 

titrations were further conducted by titrating 0.1 M NaOH to 0.05 wt% CECh solution at 25 oC, 

which was adjusted to pH 3 at first. Herein, the two transition points at pH 4 and 10 were 

considered as examples of full protonation of NH2 and full ionization of COOH, [Skorik et al., 

2003] respectively. 

 

Figure 6.4 Potentiometric and conductivity titration of 0.05 wt% CECh with 0.1 M NaOH at 25 

oC. Square-filled symbols represent conductivity, and circle-filled symbols represent pH. 

The titration curves are shown in Figure 6.4. In this section, the aggregation behavior at pH 4 and 

10 with a series of polymer concentrations between 0.01 and 0.1 wt% were compared to further 
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investigate the aggregation mechanism using viscosity measurements and fluorescence emission 

spectroscopy. Viscosity measurements are considered to be an effective method to explore the 

properties of polymer solution, and these have already been used to study the aggregation 

behavior of chitosan and its derivatives. [Onésippe and Lagerge, 2008; Chytil and Pekař, 2009] 

The concentration dependence of viscosity is illustrated in Figure 6.5, and it indicated the 

viscosity increased linearly with the CECh concentration at both pH 4 and 10 when 

concentration above 0.02 wt%. It is understood that the intermolecular association is enhanced at 

high polymer concentrations. At low concentrations before 0.02 wt%, the viscosities were almost 

the same, and then at higher concentrations, the viscosities at pH 4 distinctly exceeded those at 

pH 10. Considering the degree of substitution and the pH, the charge density of polymer chains 

at pH 4 is three times larger than that at pH 10. According to Manning counterion condensation 

theory, [Ray and Manning, 2000] the counterion may be condensed on the polymer chains as the 

charge density parameter increased with n > 1, consequently, the electrostatic interaction among 

the polymer chains was driven by the release of condensed counterions. Therefore, in our case, 

the counterion condensed on the polymer chains probably occurred at pH 4, and significant 

intermolecular association produced a higher viscosity than that at pH 10, which could also 

explain the difference of I1/I3 values at pH 4 and pH 10. 

To further compare the aggregation behavior at different CECh concentrations at pH 4 and 

10, fluorescence emission spectroscopy was employed to study on the same samples prepared as 

those for viscosity measurements. Figure 6.6 illustrates the change of the I1/I3 ratios as a function 

of CECh concentration. Both the two profiles at pH 4 and 10 decreased with CECh concentration, 

implying the microenvironment where pyrene was located became more hydrophobic due to 

intermolecular aggregation. At CECh concentrations lower than 0.02 wt%, the I1/I3 values were 
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both near 1.726 at pH 4 and 10, which indicated that the polymer chains were molecularly 

dissolved in aqueous solution and had little impact on each other. As expected, the I1/I3 values at 

pH 4 were still lower than those at pH 10, signifying enhanced aggregation behavior at pH 4. 

 

Figure 6.5 The solution viscosity as a function of CECh concentration at pH 4 and 10. 

 

Figure 6.6 The I1/I3 values as a function of CECh concentration at pH 4 and 10. 
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6.3.3 Influence of a gemini surfactant on the aggregation behavior of CECh 

The interaction between surfactant and polymer has evoked great interest for many years 

due to the interesting changes in rheology, morphology, and other solution properties of the 

polymer. Herein, a series of mixing samples consisting of CECh (0.05 wt%) and a gemini 

surfactant with different concentrations (Cs) from 10-7 to 10-3 mol/L were prepared in basic 

media to study the critical aggregation concentration (CAC) of gemini surfactant and CECh 

complexes and the effect of spacer length on the interactions of gemini surfactant and CECh. 

 

Figure 6.7 Surfactant concentration dependence of the micropolarity in 12-n-12/CECh solution 

(CCECh = 0.05 wt%) in basic media. 

As aforementioned, the carboxyl groups (-COOH) ionized in basic media, hence the 

addition of cationic gemini surfactant could certainly induce some unique conformations of the 

CECh/12-n-12 (n = 3, 6) system by the strong electrostatic interaction between the two kinds of 

oppositely charged species and the hydrophobic interaction among the CECh backbones. The 

profile of I1/I3 values versus logCs in the presence of 0.05 wt% CECh is shown in Figure 6.7. It 

shows that the I1/I3 values were almost constant at ~1.6 at very low Cs (<0.001 mmol/L), 
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implying that such a small amounts of surfactant had an impact on the CECh molecules. 

However, the values were lower than those of pyrene in pure water solution (I1/I3 = 1.726), 

which is probably related to the hydrophobic interaction between CECh backbones. The I1/I3 

values started to decrease at Cs = 0.001 mmol/L, and this concentration is defined as the CAC of 

CECh/surfactant systems, i.e., the onset concentration for the formation of a micelle-like 

structure near the binding site of the polyion chain. [Pi et al., 2006] In the range of Cs = 0.001-

0.05 mmol/L, a sharp decrease in I1/I3 was observed, suggesting the decrease of the 

micropolarity around pyrene due to the formation of surfactant/polymer aggregates. When Cs 

reached 0.05 mmol/L, the I1/I3 values finally level off at ~1.36 and no longer decreased with the 

addition of surfactant. It is suggested that the -COO- groups are completely bound with positive 

surfactant head groups, and the excessive surfactant begins to form micelles on their own, [Kang 

et al., 2009] in which the pyrene molecules locate in and lead to a constant value of I1/I3. The 

critical micellization concentration (CMC) of gemini surfactants 12-3-12 and 12-6-12 that we 

used in the measurements were 0.93 and 1.17 mmol/L, respectively. Obviously, the addition of 

polymer molecules resulted in the formation of free micelles at lower surfactant concentration. 

Furthermore, by comparing the two mixing systems, we found that the I1/I3 values of CECh/12-

3-12 were always slightly lower than those of CECh/12-6-12 in the investigated surfactant 

concentration range. It could be interpreted that the CECh/12-3-12 aggregates were more 

compact since 12-3-12 possessed a higher charge density. 
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Figure 6.8 The surface tension of CECh/12-n-12 aqueous solution as a function of logCs in basic 

media. 

Surface tension measurement is an efficient method to highlight the influence of surfactant 

on the polymer aggregation behavior, which has been applied in many studies. [Dėdinaitė and 

Ernstsson, 2003; Pepić, Filipović-Grčić and Jalšenjak, 2008] The surface tension of the two 

mixing systems is plotted versus log(Cs/M) in Figure 6.8. At very low Cs (< 0.0015 mmol/L), 

the surface tension values were almost constant and consistent with that of pure water (ca. 71.97 

mN/m), suggesting that the CECh molecules themselves had no surface activity as a random 

polyampholyte. [Babak et al., 1999] Moreover, it was also demonstrated that all the surfactant 

molecules bound to carboxyl groups via electrostatic attraction, and no distribution at the 

air/solution interface to decrease the surface tension. The surface tension began to decrease at Cs 

= 0.0015 mmol/L, in accordance with the results of fluorescence measurements, which implied 

that surfactant molecules started to disperse at the air/solution interface. This effect took place at 

a lower surfactant concentration, where pure surfactant alone did not affect the surface tension of 

the pure solvent. [Onésippe and Lagerge, 2008] The surface tension exhibited a significant 
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decrease in the range of Cs = 0.0015-0.045 mmol/L, due to the dispersion of surfactant 

molecules at the surface and their interaction with CECh as well. Furthermore, the ongoing 

binding process induced the aggregating of the surfactant/polymer system in this concentration 

region. When Cs was above 0.045 mmol/L, the surface tension gradually levelled off at 46 and 

43 mN/m for the CECh/12-3-12 and CECh/12-6-12 systems, respectively, which was attributed 

to the saturation of surfactant molecules at the air/solution interface in the presence of CECh and 

the formation of free micelles in bulk. It is surmised that in the range of Cs = 0.0015-0.045 

mmol/L, the surfactant molecules tended to disperse at the air/solution interface to reduce the 

interfacial energy, and simultaneously bound to CECh chains driven by the electrostatic 

attraction. The surface tension results corresponded to those from the fluorescence measurements. 

It is evident that the surface tension of CECh/12-6-12 was lower than that of CECh/12-3-12 

above Cs = 0.0015 mmol/L. This is because surfactant 12-6-12 presents a higher surface activity 

than 12-3-12, which is in accordance with studies reported in the literature. [Zana, Benrraou and 

Rueff, 1991; Huang et al., 2008] 

Figure 6.9 presents the viscosities as a function of logCs for surfactant/CECh aqueous 

solutions. As expected, the addition of a gemini surfactant could alter the rheological properties 

of the polymer solution due to the formation of surfactant/CECh aggregates. It showed that 

solution viscosities remained constant as Cs < 0.045 mmol/L, suggesting the interaction between 

CECh and surfactant had little impact on the solution viscosity, while the hydrophobic 

interaction among the CECh backbones played a dominate role. By increasing the Cs to 0.045 

mmol/L, a decrease of viscosity from 1.56 to 1.12 cP was observed, which is attributed to the 

changes in the CECh/surfactant complex conformation. As mentioned before, the free micelles 

started to form above Cs > 0.045 mmol/L, and simultaneously the CECh chains collapsed and 
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wrapped around the free micelles, which might reduce the intermolecular interactions, resulting 

in a decrease in the viscosity. Another reason could be ascribed to the lower dimensions of the 

macromolecular chains, because the surfactant molecules may shield the repulsion between ionic 

groups on CECh chains. Furthermore, there was no phase separation occurring during the whole 

experiment under a shear rate 264 s-1, which is the optimum shear rate for this polymer 

concentration. When complexes of the CECh/surfactant were formed, the co-ions, Na+ and Br- in 

our experiments, could be liberated and became more homogeneously distributed in the 

continuous phase. This process will result in a strong increase in entropy, which also plays an 

important role in the interaction between CECh and the surfactant. 

 

Figure 6.9 Surfactant concentration logCs dependence of viscosity of CECh/12-n-12 aqueous 

solution in basic media. 
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Figure 6.10 The proposed model for CECh aggregation behavior under different conditions. 

6.4 Conclusions 

Combining the measurements of turbidity, zeta potential, fluorescence spectroscopy, 

viscosity, and surface tension, we have studied the aggregation behavior of CECh under different 

pH values, and polymer concentrations, as well as in the presence of a gemini surfactant. 

Specially, as shown in Figure 6.10, the aggregation mechanism under different conditions is 

proposed. The CECh molecules are dissolved in water as molecular chains at either low or high 

pH, ascribing to the protonation of -NH2 and ionization of -COOH, and the charge neutralization 

near IEP results in the phase separation of the CECh solution. The intermolecular interaction at 

pH 4 is stronger than that at pH 10 during the whole CECh concentration region, which can be 

interpreted by the counterion condensation theory as the higher charge density at pH 4. The 

critical aggregation concentrations of CECh/12-n-12 (n = 3, 6) systems in basic media can be 

determined to be 0.001-0.0015 mmol/L, and the values estimated from fluorescence and surface 
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tension are in good agreement. The CECh/12-n-12 interactions were affected by the spacer 

length of gemini surfactant, i.e., the binding affinity between gemini surfactant and CECh is 

inversely proportional to the spacer length. 
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Chapter 7 Conclusions and Recommendations 

7.1 General Contributions 

In the thesis, a random copolymer P(MEO2MA-co-PEGMA2080) was synthesized and 

characterized, while a unique two-stage thermal induced aggregation behavior was found in 

copolymer aqueous solution (Chapter 3). The binding interactions between cationic surfactants 

and the copolymer at the temperature below and above its cloud point in aqueous solution were 

elucidated and significant hydrophobic interactions were observed (Chapter 4). The interactions 

between surfactants and two biodegradable natural materials, i.e. CNC and chitosan derivative 

were investigated (Chapter 5 & 6).  

Interactions between surfactants and three different polymeric nanostructures were 

summarized based on this study: namely cationic surfactants (CTAB, TTAB and DoTAB) and 

neutral polymer system; anionic (SDS), cationic (DoTAB) and non-ionic (Brij 30) surfactants 

with polymer-grafted CNC; and gemini surfactant and one chitosan derivative system. The key 

understandings between these nanostructures and surfactants are reported. These interactions will 

induce the restructuring of polymer chains and the occurrence of precipitation. In the presence of 

charged polymers and oppositely charged surfactants, electrostatic attraction dominates the 

binding interactions, which could induce phase separation due to charge neutralization. In the 

uncharged polymers and surfactants systems, the interactions are mainly controlled by the 

hydrophobic effect. The following conclusions can be drawn from this study. 

7.1.1 Thermo-responsive oligo (ethylene glycol) methacrylates copolymer 

A well-defined random copolymer P(MEO2MA-co-PEGMA2080) was synthesized by 

ATRP, and it exhibited a unique two-stage thermal induced aggregation process in aqueous 
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solution. The copolymer chains associated at the first thermal transition followed by a 

rearrangement process at the second thermal transition to produce a stable core-shell micellar 

structure, which was stabilized by the longer ethylene glycol segments (Mn = 2080 g/mol) shell. 

The results of concentration studies confirmed the occurrence of multiple thermal transitions, 

and the phase transitions of this copolymer in water were insensitive to polymer concentration. It 

was proven that the length of the side chain could significantly alter the solution properties. By 

using poly(ethylene glycol) methyl ether methacrylate with a molecular weight of 2080 g/mol 

instead of 475 g/mol, unusual solution properties were observed in comparison to previous 

results on copolymers of oligo(ethylene glycol) methacrylates, where only one sharp transition 

was reported. The copolymer chains phase separate, aggregate and rearrange to produce stable 

micelles by increasing temperature, while the large aggregates and micelle structure was 

confirmed by TEM and light scattering measurements. 

7.1.2 Binding interactions between cationic surfactants and neutral copolymer 

The binding interactions between cationic surfactants and poly(MEO2MA-co-PEGMA2080) 

in aqueous solution were elucidated at the temperature below and above its cloud point. Below 

the cloud point, surfactants bind to the individual copolymer chains to form a surfactant-swollen 

coil. While above the cloud point, surfactants bind to the polymer aggregates that dissociate the 

aggregate due to the strong electrostatic repulsion within the charged polymer-bound surfactant 

complexes. Significant hydrophobic interactions were observed between surfactant monomers 

and the polymer backbone, however, the binding interactions between cationic surfactants and 

neutral polymers were reported to be weak previously and cationic surfactants were very 

selective and only bind to those polymers with specific hydrophobic groups. The binding 

occurred uncooperatively at low surfactant concentration, which was confirmed by EMF 
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measurements. The surfactant saturation concentration C2 depended on the polymer 

concentration and was insensitive to temperature. Moreover, the binding affinity of the three 

cationic surfactants in this study follows the sequence: CTAB > TTAB > DoTAB. 

7.1.3 Interactions between surfactants and TRP-modified CNC 

Cellulose Nanocrystals (CNC) had been reported as a very promising new class of 

nanomaterials due to its high specific strength, high surface area, unique optical properties, etc. 

Its attractive physicochemical properties and wide application prospects had attracted significant 

interest, and most of researchers focused on the improvement of its steric stability, dispersability 

and compatibility in different solvents or matrices by conducting chemical modifications on 

CNC surface or physical interactions. In this study, a commercial cationic polymer (Jeffamine 

M600) was successfully grafted onto CNC surface via TEMPO oxidation and peptidic coupling 

reactions. The better dispersion of the modified CNC in water was demonstrated, and the 

interactions between M600-grafted CNC and anionic (SDS), cationic (DoTAB) and non-ionic 

(Brij 30) surfactants were investigated by ITC. Strong electrostatic interaction was only observed 

between M600-grafted CNC and DoTAB, due to the binding of opposite charges. Hydrophobic 

interaction was displayed for the M600-grafted CNC/SDS system, and negligible interaction 

between M600-grafted CNC and Brij 30 was observed.   

7.1.4 Interactions between gemini surfactant and N-carboxyethylchitosan 

A biocompatible derivative of chitosan, N-carboxyethylchitosan (CECh), was synthesized 

by Michael addition reaction, which possesses high solubility in both acidic and basic media due 

to the modification by carboxyl groups. The aggregation behavior of CECh under different pH 

values, polymer concentrations, as well as in the presence of a gemini surfactant was investigated 

by means of turbidity, zeta potential, fluorescence spectroscopy, viscosity, and surface tension. 
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The CECh molecules dissolved in both acidic and basic water conditions and the intermolecular 

interaction at pH 4 was stronger than that at pH 10 due to the high charge density at low pH. The 

CECh/12-n-12 interactions were affected by the spacer length of gemini surfactant, i.e. the 

binding affinity between gemini surfactant and CECh was inversely proportional to the spacer 

length. 

7.2 Recommendations for Future work 

On the basis of the results obtained thus far, the impact of factors such as polymer 

properties, salt, pH, solvents etc. on the surfactants/polymeric nanostructures should be 

investigated. The effect of small molecules (surfactants, salt, ionic liquid etc.) and monomer 

composition on LCST behaviors is anticipated, and the following recommendations for future 

studies are proposed:  

7.2.1 Effect of solvent conditions and polymer properties on surfactants/polymeric 

nanostructures 

More types of thermo-responsive polymers with different molecular weight should be 

grafted onto CNC surface, and a comparison between surfactants with these TRPs in bulk and at 

CNC surface is necessary and woud present an interesting study. In this thesis, only one 

commercial Jeffamine polymer with Mw of 600 Da was grafted onto CNC surface using the 

“grafting-to” approach, hence only limited insights on the impact of polymer Mw on the 

interactions was achieved. Future studies should focus on a series of Jeffamine polymers with 

different Mw to study the impact of molecular weights on the thermal transition and binding 

interactions. Moreover, the CNC surface can be modified by many other thermo-responsive 

polymers using the “grafting-from” approach, an example is shown in Scheme 7.1. As discussed 



138 
 

earlier, the thermo-responsive behaviors of these polymers have been widely investigated in bulk 

solution in the presence and absence of surfactant molecules. However, studies on CNC surface 

modification with TRPs and especially studies on the interaction between TRPs and surfactants 

on CNC surface are rare. Since the polymer chains are grafted onto CNC surface, they may 

display different chain conformation compared to their behaviors in bulk solution, and the 

interactions with surfactants may also be different, and a comparison study is needed. On the 

other hand, the solvent conditions, such as salts, pH, co-solvents, also have great influence on the 

surfactant//polymeric nanostructures interactions, and a detailed study considering different 

conditions is recommended. 

 

Scheme 7.1 Synthesis route for the grafting of PNIPAM from the surface of CNC. [Zoppe et al., 

2010] 

7.2.2 Rheological properties of TRPs-modified CNC in the presence of surfactant 

CNCs are rigid rod-like crystals that process very interesting rheological and phase 

behavior properties, depending on their concentrations. At low concentration, CNC particles are 
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randomly oriented (isotropic) in aqueous solution, and when the concentration reaches a critical 

value, they align to form a chiral nematic ordering with the phase changing from an isotropic to 

an anisotropic chiral nematic liquid crystalline phase. As the concentration is increased further, 

aqueous CNC suspensions display a shear birefringence phenomenon. Meanwhile, the gelling 

properties of CNC suspensions also depend on their concentrations. In comparison with spherical 

particles, the shear rheology of rod-like particles is more complex considering the anisotropy of 

the system. Hence, on the basis of the unique properties of CNC suspensions, the addition of 

surfactants may alter their phase and rheological properties in suspensions and the types of 

surfactants (anionic, cationic and non-ionic) will have an important influence due to the negative 

charges on CNC surface. Therefore, studies on effect of surfactant on the rheological properties 

of CNC suspensions and also the TRPs-modified CNC suspensions could be very interesting and 

meaningful. 

7.2.3 Effect of small molecules and composition on LCST 

The LCST of copolymers could be varied by the addition of small molecules and changing 

the composition of the monomers. Lutz and co-workers [2006] synthesized a series of 

copolymers with tunable LCSTs of between 26 and 90 oC by varying the monomer composition, 

similarly, Hoogenboom et al. [2008] prepared poly(2-oxazoline)s with tunable LCSTs from 25 

oC to 100 oC by varying molecular weights and compositions. The relatively higher LCST for the 

copolymers was attributed to the high proportion of hydrophilic monomers due to their 

hydrophobic-hydrophilic characteristics. In this thesis, we only examined the thermo-responsive 

behavior of copolymer with 1% PEGMA2080, which exhibited an unusual two-stage thermal 

induced aggregation behavior in aqueous solution. Therefore, studying the effect of polymer 
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compositions on the thermal induced aggregation behavior would be very interesting as the 

hydrophobic-hydrophilic balance of the copolymers depends on the composition.  

Another simpler approach to manipulate the LCST of thermoresponsive polymers has been 

introduced to use small molecule additives, such as salt, ionic liquid, saccharides or surfactants. 

It is known that salts have a significant impact on the LCST of aqueous solutions of 

thermoresponsive polymers, because the introduction of salt in the solution could disrupt the 

hydration structure surrounding the polymer chains, leading to decrease the quality of the solvent 

for polymer chains and favor their aggregation at a lower temperature compared with pure water. 

In the TRPs/surfactants systems, the surfactant hydrophobicity will play an important role in the 

interaction with these copolymers, since the associative behavior is driven by hydrophobic 

interactions. When surfactants bind to the polymer, the hydrophobic/hydrophilic balance of 

polymers may alter, resulting in changes in the phase transition behavior. 
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