
Modelling the Dynamics of
Mass Capture

by

Timothy John Lahey

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2013

©Timothy John Lahey 2013



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

This thesis presents an approach to modelling dynamic mass capture which is applied to a
number of system models. The models range from a simple 2D Euler-Bernoulli beam with
point masses for the end-effector and target to a 3D Timoshenko beam model (including
torsion) with rigid bodies for the end-effector and target. In addition, new models for torsion,
as well as software to derive the finite element equations from first principles were developed
to support the modelling. Results of the models are compared to a simple experiment as
done by Ben Rhody. Investigations of offset capture are done by simulation to show why one
would consider using a 3D model that includes torsion.

These problems have relevance to both terrestrial robots and to space based robotic
systems such as the manipulators on the International Space Station capturing payloads such
as the SpaceX Dragon capsule. One could increase production in an industrial environment
if industrial robots could pick up items without having to establish a zero relative velocity
between the end effector and the item. To have a robot acquire its payload in this way would
introduce system dynamics that could lead to the necessity of modelling a previously ‘rigid’
robot as flexible.
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CHAPTER

1
Introduction

This thesis details a project to model the dynamics of mass capture by a robotic link. Con-

tained in this thesis is an overview of previous related work and a discussion of the theory and

implementation various models of mass capture. In particular, this thesis contains models

where the end effector and target are modelled as a particle mass as well as models where

they are modelled as rigid bodies. The robot is modelled as a single flexible link driven by a

motor at its base (see Figure 1.1). The flexible link is modelled alternatively by a 2D Euler-

Bernoulli beam, a 2D Timoshenko beam, and a 3D Timoshenko beam (including torsion).

The simplified model of a particle mass target/end-effector (and a 2D Euler-Bernoulli beam)

is consistent with the model analysed by Kövecses et al. [3, 4] and the models from this thesis

are compared with their simplified model.

O
a

1

a
2

mt

me

Figure 1.1: Simplified Model of Mass Capture
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CHAPTER 1. INTRODUCTION

1.1 Previous Work

The problem of having a flexible robot linkage acquire a moving payload, shall be referred to

as “dynamic mass capture”, and can be broken down into several sub-classes as follows.

Class I: a stationary linkage with a payload attached subjected to a non-plastic impact;

Class II: a stationary linkage with an end effector that captures a moving mass particle (plastic

impact);

Class III: a moving linkage with an end effector that captures a moving mass particle (known

trajectories);

Class IV: a stationary linkage with an end effector that captures a translating rigid body

(plastic impact);

Class V: a moving linkage with an end effector that captures a translating rigid body (plastic

impact);

Class VI: a stationary linkage with an end effector that captures a translating and spinning

rigid body (plastic impact);

Class VII: a moving linkage with an end effector that captures a translating and spinning rigid

body (plastic impact);

Class VIII: the capture of a translating and spinning rigid body which has moving internal

parts (e.g., momentum wheels).

These problems have relevance to both terrestrial robots and to space based robotic

systems such as the manipulators on the International Space Station. While the space

applications are relatively high profile the terrestrial applications have significant economic

implications. If industrial robots could pick up items without having to establish a zero

relative velocity between the end effector and the item, cycle time could be reduced. To have

a robot acquire its payload in this way would introduce system dynamics that could lead to

the necessity of modelling a previously ‘rigid’ robot as flexible.

The flexibility in robotic members has long been a topic of interest and the problem

that is the focus of this thesis has received attention [5]–[6]. It has most frequently been

modelled by using Bernoulli-Euler beam theory [7], but the Timoshenko beam theory has

better modelling fidelity in vibrations problems, especially for the higher modes [8].

To model the various cases of dynamic mass capture the impact dynamics of flexible

beams must be examined. Many dynamicists have investigated the flexible beam impact

problem for simply supported beams impacted in the centre [9, 10], but the proposed

research requires that the tip impact of a chain of flexible beams, connected by flexible joints

which also have friction and inertia must be studied. There has been work on the transverse

elastic impact at the tip of a two link rigid-flexible configuration [11], on the axial impact of a

single link [12, 13, 14], on the elastic impact on general rigid multibody systems [15, 16], on

2



1.2. LAYOUT OF THIS DOCUMENT

the transverse elastic impact of single links [17, 18], and on the transverse plastic impact of

single links [19]. None of the cited references consider structural damping or anything but

ideal frictionless joints. Additional work related directly to spacecraft has also been reported

[5, 20, 6].

Chapnik et al. [21, 22] examined the impact of a sphere and a rotating flexible beam with

a tip mass, where the impact occurs at the tip mass (Class I). Of all the sphere-beam impact

research, these papers are closest to the work done in this thesis.

To date, there has been little work specifically on the dynamics of mass capture for classes

II and III. Rhody [1] has done some work on the dynamics and control of class II problems

using a modal analysis approach and modelling the capture as a instantaneous impulsive

force. A series of papers done by Kövecses, Fenton, and Cleghorn [23, 24, 25, 3, 26, 27, 4]

cover class II and class III problems. They consistently use Jourdain’s Variational Principle

[28] in the form Bahar [29] outlines for use in impulsive problems. Kövecses et al.’s initial

papers [23, 24] focus on geometric performance metrics to illustrate the effect of the impact

on a robotic manipulator. Their next paper [25] presented the basic form of the dynamic

equations before and after capture as well as presenting a set of equations to relate the two

systems. In 1998, they presented a paper [3] that illustrates some of the details of constructing

the set of equations relating the pre- and post-capture systems for a single flexible link with a

tip mass. As mentioned earlier, this is the same system that is analysed in this thesis. They

also present simulation studies for their method for this case in a later paper [26] in addition

to a two-link flexible manipulator. Their paper [27] extends their earlier work on performance

metrics using results from their later papers. In 2003, Kövecses and Cleghorn [4] published a

new paper which created a larger framework for their analysis which allowed them to get the

constraint impulses due to the capture process.

Note that while one might use a system identification approach to tackle this problem for

an existing system, that lacks the flexibility of an analytical approach which allows one to

predict the effect of different changes. This is useful in the design of the system (e.g., a motor

controller) and in testing different capture scenarios.

1.2 Layout of this document

Chapter 2 discusses the modelling of torsion in the beam, including a new model that uses

fewer assumptions than existing models. Chapter 3 presents the work, kinetic and potential

energy of the system for different models of the beam, target and end-effector. Chapter 4

presents a new mixed symbolic-numeric method to derive and solve equations of motion.

Chapter 5 develops the theory and relations that link the pre-capture and post-capture

systems. Chapter 6 discusses the method used to determine the system damping matrix.

3



CHAPTER 1. INTRODUCTION

Chapter 7 contains the discussion of the experimental apparatus, setup, and the experimental

and simulation results. Lastly, Chapter 8 presents a summary of the results, conclusions and

suggestions for future work.

4



CHAPTER

2
Beam Torsion Modelling

To completely model the dynamics of the beam, we need to take into account the fact that

the beam can twist about its axis, which we refer to as torsion. For the purposes of the thesis,

we will confine ourselves to beams of constant cross-section.

2.1 Overview

To justify the inclusion of torsion, let us look at the different possible ways torsion can

arise for the beams studied herein. We will look at torsion due to an eccentric end-effector,

eccentric target, or simply non-zero angular momentum. The first two are very similar and

the eccentricity can arise from either an offset centre of mass or a non-principal inertia

matrix.

Eccentric End-Effector

Consider a frame located with its origin at the end of the beam (x = L) on the neutral axis,

and when the beam is undeformed is aligned with the origin frame Fb . We will refer to

this as frame C , and denote it as Fc . The frame of reference located at the centre of mass

of the end-effector is frame D, and is denoted as Fd . These are shown in Figure 2.1. To

determine the effect of the end-effector on the beam, we need to transform the inertia from

about the end-effector centre of mass frame Fd to the beam-fixed frame Fc . Note that

no transformation of the momentum is needed since the velocity of end-effector in the

beam-fixed frame is simply the velocity of the end of the beam. The vector from Fc to Fd we

denote as

r
~

d =F→
T
c


rd x

rd y

rd z

 (2.1)

5



CHAPTER 2. BEAM TORSION MODELLING

bx

by

bz

Fb

cx

cy

cz

Fc dx

dy

dz

Fdrd→

Figure 2.1: End-Effector Reference Frames

where F→c is defined as,

F→c =


c
~

x

c
~

y

c
~

z

 (2.2)

The general parallel axis theorem [30] gives,

Ic = Id +me


(r 2

d y + r 2
d z) −rd xrd y −rd xrd z

−rd xrd y (r 2
d x + r 2

d z) −rd y rd z

−rd xrd z −rd y rd z (r 2
d x + r 2

d y )

 (2.3)

where me is the mass of the end-effector, Id is the inertia matrix about the centre of mass in

Fd . This assumes that Fc and Fd are not rotated with respect to each other. The case where

they are is effectively the same as the eccentric capture case dealt with below.

Now that the inertia is known, it is straightforward to calculate the angular momentum.

h
~
= Ic ω

~
e (2.4)

where h
~

is the angular momentum vector, and ω
~

e is the angular velocity of the beam at x = L

(also the angular velocity of the end-effector),

ω
~

e =F→
T
c


θ̇xL

ψ̇yL

ψ̇zL

 (2.5)

where θ̇xL is the rotation about the x-axis in the Fc frame, ψ̇yL the rotation about the y-axis

in Fc , and ψ̇zL the rotation about the z-axis in Fc . Therefore, the Fc x-coordinate angular
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bx

by

bz

Fb

cx

cy

cz

Fc dx

dy

dz

Fdrd→

ex

ey

ez

Fe

rce→

Figure 2.2: Post-Capture Target and End-Effector Reference Frames

momentum is,

hxL = (Id xx +me (r 2
d y + r 2

d z))θ̇xL − (Id x y + rd xrd y )ψ̇yL − (Id xz + rd xrd z)ψ̇zL (2.6)

The centre of mass of the end-effector will be some distance past the end of the beam, so

rd x 6= 0. If the centre of mass is not on the neutral axis at least one of rd y and rd z will be

non-zero. In that case, even if θ̇xL = 0, there will be a non-zero torsional angular momentum.

Alternatively, if the inertia of the end-effector about its centre of mass is non-principal (ı.e.,

Id x y or Id xz 6= 0) the centre of mass could be on the neutral axis and still create non-zero

torsional angular momentum.

Eccentric Capture

In addition to the frames previously mentioned now we introduce an additional frame

E , denoted as Fe , located at the centre of mass of the target. Once captured, the target

contributes its mass and inertia to the system so the same effects as the end-effector can

be caused by the target in the post-capture case. This situation is shown in Figure 2.2.

Transforming the target velocities from the target frame Fe to the beam fixed frame F→c , we

use the vector from F→c to F→e ,

r
~

ce =F→
T
c


rex

re y

rez

 (2.7)
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CHAPTER 2. BEAM TORSION MODELLING

As before, we have the general parallel axis theorem for the translation to F→b .

Ict = Ie +mt


(r 2

e y + r 2
ez) −rexre y −rexrez

−rexre y (r 2
ex + r 2

ez) −re y rez

−rexrez −re y rez (r 2
ex + r 2

e y )

 (2.8)

In general, the capture may have the two frames rotated with respect to one another. So, after

the translation we need to perform a rotational transformation on the matrix [30],

Ic = Rce Iet RT
ce (2.9)

where Rce is the rotation matrix needed to rotate F→e to F→c . This is dependent upon the

orientation at capture, so in general the target’s inertia matrix will be non-principal.

Since in the post-capture case, the target is part of the same rigid-body system as the

end-effector, we can consider that the target’s velocity at the end of the beam is the same as

the end-effector, we have the same situation as Equation (2.6), just with the inertia as given

in Equation (2.9). In this case, unless both the target and end-effector are specially designed,

the target’s centre of mass will be offset in at least one of the y or z directions. Therefore,

even without rotation of the frames, there will be some torsional angular momentum due to

the target’s capture.

2.2 Traditional Torsion Models

Pure torsion models of beams can be broken into two kinds, uniform torsion where the

beam in unrestrained,(where the same rate of twist occurs throughout the beam [31]) and

non-uniform torsion where an end is restrained.

Uniform Torsion

For uniform torsion, the two most prevalent models are those of St. Venant [31] and Timo-

shenko [32, 33]. Timoshenko’s model derives the equations of motion through differential

forces and moments acting on a section of the beam. This approach isn’t suitable for use with

variational principles. Since both the capture equations and finite element models herein

are derived using these, Timoshenko’s model isn’t useful for our purposes.

St. Venant’s model is based on assuming the form of the displacements. Consider the

cross-section shown in Figure 2.3. Let point P be located by a vector r
~

P ,

r
~

P =F→
T
a


x

y

z

 (2.10)
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2.2. TRADITIONAL TORSION MODELS

and is moved to point P ′ due to a rotation of the cross-section through an angle θ. The vector

to P ′, r
~

P ′ is therefore,

r
~

P ′ =F→
T
a


x

y + v

z +w

 (2.11)

The resulting displacement vector u
~

is,

u
~
= r
~

P ′ − r
~

P =F→
T
a


0

v

w

 (2.12)

Assuming the angle of rotation is small, we can write the displacements as

v = −θz (2.13)

w = θy (2.14)

For a beam of constant cross-section, we have θ =αx, where α is the angle of twist per unit

length of the beam and x is the distance along the beam axis. We assume the displacements

due to warping (ı.e., axial displacements) are of the form u =αφ(y, z) where φ is a function

of y and z and is called the warping function. This leads to the following formulas for the

displacements of the beam.

u = αφ(y, z) (2.15)

v = −αxz (2.16)

w = αx y (2.17)

St. Venant further assumes that all the normal stresses are zero. This combined with the dis-

placement assumptions are used to derive the equations of motion/equilibrium. Complete

details are described in Appendix A.1.

Non-Uniform Torsion

While there is an extension to Timoshenko’s model for torsion that allows for non-uniform

torsion [32], for our purposes it suffers from the same difficulty that the uniform model

does. This also excludes the various coupled bending-torsion models that are based upon

Timoshenko’s torsion model [34, 35, 36, 37, 38, 39].

Reissner proposed models for non-uniform torsion [40] which are modifications to the

uniform torsion St. Venant model (see [31]) in that he assumes the in-plane deflections are

strictly due to rotation and he modifies how the warping is handled. In the first model, he

9



CHAPTER 2. BEAM TORSION MODELLING

P (y, z)

P ′(y + v, z + w)

θ
v

w

y

z

Figure 2.3: Arbitrary Cross-Section

assumes a form for the axial deflection. In the second model, he instead assumes a form for

the axial stress. The axial stress form is mainly useful if one uses Reissner’s Variational Princi-

ple which uses a variation with respect to stresses and strains, but poses some difficulties if

one is to take variations with respect to other quantities.

Note that in both models, he assumes that the in-plane normal stresses (σy y and σzz)

on a cross-section are zero which implicitly assumes that Poisson effects are negligible. In

addition by assuming the in-plane deflections are strictly due to rotation the in-plane shear

τy z is zero.

The notation used herein is slightly different from the notation in Reissner’s paper mainly

because while Reissner oriented the z axis along the length of the beam, here we align the x

axis along the length.

While Reissner’s original models were static, the model that assumes a form for the axial

deflection was extended for dynamic problems by Barr [41] and later Ritchie and Leevers

[42, 43]. For this reason, along with the problems of the axial stress form, we will consider

the dynamic version of Reissner’s axial deflection form.

In the dynamic version of Reissner’s axial deflection form, we assume the deflection takes

the form,

u(x, y, z, t ) = φ(y, z)ψ(x, t ) (2.18)

v(x, y, z, t ) = −θ(x, t )z (2.19)

w(x, y, z, t ) = θ(x, t )y (2.20)
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2.2. TRADITIONAL TORSION MODELS

So, the main difference to St. Venant torsion is the replacement of the rate of twist with the

independent variable ψ(x, t ). If we follow Barr’s approach [41], we find that the equations of

motion are,

ρPψ̈ = EPψ,xx −G(Kψ+Lcθ,x) (2.21)

ρ Jg θ̈ = G(Jgθ,xx +Lcψ,x) (2.22)

where the constants are (see Appendix C for their calculation),

P =
∫

A
φ(y, z)2dA (2.23)

K =
∫

A

(
φ,y (y, z)2 +φ,z(y, z)2)dA (2.24)

Lc =
∫

A

(
φ,z(y, z)y −φ,y (y, z)z

)
dA (2.25)

Jg =
∫

A
(y2 + z2)dA (2.26)

where dA = dy dz, which is consistent with Ritchie and Leevers [42]. This is subject to the

boundary conditions on a constrained end,

ψ= θ = 0 (2.27)

and using Ritchie and Leevers condition on a free end (since it is a simpler but equivalent

form to Barr) in a consistent notation,

ψ,x = 0 (2.28)

T = G(Jgθ,x +Lcψ) = 0 (2.29)

where T is the transmitted torque at the free end. At this point, it’s possible to decouple the

equations, turning them into fourth order PDEs. However, both Barr and Ritchie and Leevers

oversimplify their solution for θ (and don’t solve for ψ) by assuming that the time modes are

cosine functions. Barr compounds the problem by assuming the spatial modes are cosine

functions as well; This assumption violates his boundary conditions at the constrained end.

Martinez and Ségura [44] use a static torsion model that is an extension of Reissner

torsion. In it they add an additional warping term to u so it becomes (keeping notation

consistent with the chapter),

u(x, y, z) =ψ(x)φ(y, z)+ηx(x, y, z) (2.30)

where ηx(x, y, z) is,

ηx(x, y, z) = f (x)g (y, z) (2.31)

This means we would need to solve for both warping functions φ and g .
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CHAPTER 2. BEAM TORSION MODELLING

Other Torsion Models

There are some simplified torsion models for use in coupled bending-torsion models [45,

46, 47, 48, 49, 50], but the models aren’t suitable for our particular problem because of their

modelling approach. The models [45, 47, 48, 50] start directly with a differential equation

which makes them unsuitable for use in a variational approach. Eslimy-Isfanany et al. [46]

uses a modal analysis approach which is also unsuitable for using in the variational equations.

Fischera et al. [49] also appear to use a modal analysis approach, but are vague on the specific

details of the system model. The coupled bending-torsion model by Klinkel and Govindjee

[51] is similar to traditional St. Venant/Reissner torsion models, but it assumes that the

warping doesn’t depend upon the axial coordinate. Given the boundary conditions, this

would not properly model non-uniform torsion.

2.3 Torsion Model Analysis

In the traditional analysis of a beam in torsion (e.g., [31, 40]), the deflections are assumed to

be of the form

u = u(x, y, z, t ) (2.32)

v = −θ(x, t )z (2.33)

w = θ(x, t )y (2.34)

(see Figure 2.3) where it is assumed that θ(x, t ) is small. The shear strains, given in Equations

(2.32)–(2.34), are

γy z = ∂v

∂z
+ ∂w

∂y
= 0 (2.35)

γzx = ∂u

∂z
+ ∂w

∂x
= u,z(x, y, z, t )+ yθ,x(x, t ) (2.36)

γx y = ∂u

∂y
+ ∂v

∂x
= u,y (x, y, z, t )− zθ,x(x, t ) (2.37)

The corresponding shear stresses are,

τy z = Gγy z = 0 (2.38)

τzx = Gγzx =G
(
u,z(x, y, z, t )+ yθ,x(x, t )

)
(2.39)

τx y = Gγx y =G
(
u,y (x, y, z, t )− zθ,x(x, t )

)
(2.40)
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2.3. TORSION MODEL ANALYSIS

and the normal strains are given by,

εxx = ∂u

∂x
= u,x(x, y, z, t ) (2.41)

εy y = ∂v

∂y
= 0 (2.42)

εzz = ∂w

∂z
= 0 (2.43)

Note that the axial strain is non-zero. Assuming a linear elastic material, relating the normal

strains to the normal stresses yields

εxx = 1

E

(
σxx −ν

(
σy y +σzz

))
(2.44)

εy y = 1

E

(
σy y −ν (σxx +σzz)

)
(2.45)

εzz = 1

E

(
σzz −ν

(
σxx +σy y

))
(2.46)

which, after substitution of the normal strains from Equations (2.41)–(2.43) and solving, lead

to,

σxx = E(ν−1)

(1+ν)(2ν−1)
u,x(x, y, z, t ) (2.47)

σy y = − Eν

(1+ν)(2ν−1)
u,x(x, y, z, t ) (2.48)

σzz = − Eν

(1+ν)(2ν−1)
u,x(x, y, z, t ) (2.49)

Note that the in-plane axial stresses are dependent upon the axial displacement map. The

standard assumptions made regarding the stresses are [31],

σy y = 0 (2.50)

σzz = 0 (2.51)

τy z = 0 (2.52)

We can see that the assumption of Equation (2.52) is satisfied as shown in Equation (2.38). In

the uniform torsion case, we have

u,x(x, y, z, t ) =φ(y, z)θ,xx(x, t ) (2.53)

In the static case (ı.e., θ,xx(x, t) = θ,xx(x)) all the normal stresses are zero since the angle

of twist varies linearly throughout the beam and the remaining assumptions are satisfied.

However, this is not true in the non-uniform case. For example, using the Reissner torsion

approximation given in Equation (2.18) we get,

u,x(x, y, z, t ) =φ(y, z)ψ,x(x, t ) (2.54)
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and ψ,x(x, t ) is not zero. So, the stress assumptions from Equations (2.50) and (2.51) and the

displacement assumptions as given in Equations (2.32)–(2.34) are inconsistent. For them to

be consistent, ψ(x, t ) would have to be linear in x.

It might be possible for the stress assumptions in Equations (2.50)– (2.52) to be satisfied

using Martinez and Ségura’s model, but that would impose the constraint,

ψ,x(x)φ(y, z) =− f,x(x)g (y, z) (2.55)

It would likely not be satisfied without explicit application of the constraint.

Since the first model isn’t consistent with the assumptions for non-uniform torsion

and the second requires the application of the constraint from Equation (2.55), we need to

consider other possibilities.

2.4 New Models for Torsion

Since we have two contradictory sets of assumptions in the non-uniform torsion case, we

will consider two possible models, each only using one set of assumptions.

Assumed Displacement Model

For simplicity we will restrict ourselves to beams of constant cross-section. Therefore, we

assume that each cross-section is warped in the same way and we will use Reissner’s axial

displacement map as given in (2.18). The torsional strain energy of a beam can be represented

as (assuming Equations (2.32)–(2.34)),

U = 1

2

∫
V

(
σxxεxx +τx yγx y +τzxγzx

)
dV (2.56)

and after substitution of the stresses (Equations (2.39), (2.40), and (2.47)) and strains (Equa-

tions (2.36), (2.37), and (2.41)), along with the definition of u,x as given in Equation (2.54),

U = 1

2

∫
V

E(ν−1)

(1+ν)(2ν−1)
φ(y, z)2ψ,x(x, t )2 +G

(
φ,y (y, z)ψ(x, t )− z θ,x(x, t )

)2

+G
(
φ,z(y, z)ψ(x, t )+ y θ,x(x, t )

)2 dV
(2.57)

which we can simplify by introducing the constants P,K , and L, from Barr’s analysis (Equa-

tions (2.23)–(2.24)) and the constant,

η = (ν−1)

(1+ν)(2ν−1)
(2.58)
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This results in

U = 1

2

∫ L

0
EηPψ,x(x, t )2 +G

(
Kψ(x, t )2 + 2Lcθ,x(x, t )ψ(x, t )+ Jgθ,x(x, t )2)dx (2.59)

The torsional kinetic energy is,

Txt = 1

2

∫
V
ρ

(
u̇2 + v̇2 + ẇ 2)dV (2.60)

and after substitution of the assumed displacements we get,

Txt = 1

2

∫
V
ρ

(
φ(y, z)2ψ̇(x, t )2 + (z2 + y2)θ̇(x, t )2)dV (2.61)

Then using the constants defined above this becomes

Txt = 1

2

∫ L

0
ρ

(
Pψ̇(x, t )2 + Jg θ̇(x, t )2)dx (2.62)

Hamilton’s action integral A is [52],

A =
∫ t2

t1

L dt =
∫ t2

t1

T −U dt (2.63)

where T is defined in Equation (2.62) (as Txt ) and U is defined in Equation (2.59) so the

action integral becomes,

A = 1

2

∫ t2

t1

∫ L

0

[
ρ

(
Pψ̇(x, t )2 + Jg θ̇(x, t )2)−EηPψ,x(x, t )2

− G
(
Kψ(x, t )2 +2Lcθ,x(x, t )ψ(x, t )+ Jgθ,x(x, t )2)]dxdt

(2.64)

Taking the variation of Equation (2.64) with respect to θ(x, t ) gives,

δA1 =
∫ t2

t1

∫ L

0

[
ρ Jg θ̇(x, t )δθ̇−G

(
Lcψ(x, t ) + Jgθ,x(x, t )

)
δθ,x

]
dxdt = 0 (2.65)

Subsequent integration of Equation (2.65) by parts gives,

∫ L

0
ρ Jg θ̇(x, t )δθdx

∣∣∣∣t2

t1
−

∫ t2

t1
G

(
Lcψ(x, t )+ Jgθ,x(x, t )

)
δθdt

∣∣∣∣L

0

−
∫ t2

t1

∫ L

0

[
ρ Jg θ̈(x, t )−G

(
Lcψ,x(x, t )+ Jgθ,xx(x, t )

)]
δθdxdt = 0

(2.66)

The variation of Equation (2.64) with respect to ψ(x, t ) gives

δA2 =
∫ t2

t1

∫ L

0

[
ρPψ̇(x, t )δψ̇−EηPψ,x(x, t )δψ,x − G

(
Kψ+Lcθ,x

)
δψ

]
dxdt = 0 (2.67)
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and integration of this by parts yields∫ L

0
ρPψ̇(x, t )δψdx

∣∣∣∣t2

t1
−

∫ t2

t1
EηPψ,x(x, t )δψdt

∣∣∣∣L

0

−
∫ t2

t1

∫ L

0

[
ρPψ̈(x, t )−EηPψ,xx(x, t ) +G

(
Kψ+Lcθ,x

)]
δψdxdt = 0

(2.68)

From Equation (2.66) and (2.68) the equations of motion are found to be,

ρ Jg θ̈(x, t )−G
(
Lcψ,x(x, t )+ Jgθ,xx(x, t )

) = 0 (2.69)

ρPψ̈(x, t )−EηPψ,xx(x, t )+G
(
Kψ+Lcθ,x

) = 0 (2.70)

subject to the following initial and boundary conditions,∫ L

0
ρPψ̇(x, t )δψdx

∣∣∣∣t2

t1
= 0 (2.71)∫ L

0
ρ Jg θ̇(x, t )δθdx

∣∣∣∣t2

t1
= 0 (2.72)∫ t2

t1
G

(
Lcψ(x, t )+ Jgθ,x(x, t )

)
δθdt

∣∣∣∣L

0
= 0 (2.73)∫ t2

t1
EηPψ,x(x, t )δψdt

∣∣∣∣L

0
= 0 (2.74)

Aside from the addition of η from Equation (2.58), these equations of motion (and boundary

conditions) are consistent with the Reissner model in Equations (2.21) and (2.22). If we set ν

to zero in η, the equations reduce to the dynamic Reissner equations.

Note that this model has the same problem as the Reissner model described in Appendix

A.2, in that we can’t consider that φ is independent. Therefore, we will use the St. Venant

warping function (as derived in Appendix A.1). For other cases, one could use a numerical

approximation to the St. Venant warping function [53] or use a different warping function

[54, 55, 56] that is simpler to calculate.

Assumed Stress Model

If instead of assuming the displacements, we use the stress assumptions given in Equations

(2.50) and (2.51) we can get a new model for torsion (see Appendix A.3 for details). The

governing equations for this model are,

ρü − (E −2Gν)u,xx −G(u,y y +u,zz) = 0 (2.75)

ρv̈ −G

(
v,xx + v,zz + (1− 1

ν
)v,y y

)
= 0 (2.76)

ρẅ −G

(
w,xx +w,y y + (1− 1

ν
)w,zz

)
= 0 (2.77)
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The boundary conditions arising from the variations are,∫ t2

t1

∫
A

Eu,xδu dAdt

∣∣∣∣L

0
= 0 (2.78)∫ t2

t1

∫
S

G
[(

v,x +u,y
)

ny +
(
w,x +u,z

)
nz

]
δu dSdt = 0 (2.79)∫ t2

t1

∫
S

G[(u,y + v,x)nx + (v,z +w,y )nz]δv dSdt = 0 (2.80)∫ t2

t1

∫
S

G[(u,z +w,x)nx + (v,z +w,y )ny ]δw dSdt = 0 (2.81)

and the initial conditions are, ∫
V
ρu̇δudV

∣∣∣∣t2

t1

= 0 (2.82)∫
V
ρv̇ δvdV

∣∣∣∣t2

t1

= 0 (2.83)∫
V
ρẇδwdV

∣∣∣∣t2

t1

= 0 (2.84)

with the additional constraints due to Poisson effects of,

v,y (x, y, z, t ) = −νu,x(x, y, z, t ) (2.85)

w,z(x, y, z, t ) = −νu,x(x, y, z, t ) (2.86)

The governing equations themselves aren’t difficult to solve for the general solution. However,

finding the solutions that meet both the boundary conditions and the Poisson constraints,

make an analytical solution extremely difficult. This would make working with it difficult

and as such won’t be used in the rest of the thesis.
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CHAPTER

3
System Work, Kinetic, and Potential

Energy

In this chapter we examine the kinetic and potential energy of the system for different

beam and target models. Starting with the work and kinetic energy of the motor (since it is

independent of the beam model), then the target models, followed by the beam models, and

lastly, the end-effector models.

For the target and end-effector, we consider a point mass model, a 2D rigid body model,

and a 3D rigid body model. For the beam, we consider 2D Euler-Bernoulli and Timoshenko

beam models, as well as a 3D Timoshenko beam model including torsion. The 2D models

are based upon the system shown in Figure 3.1.

a
~

x

a
~

y

b
~

x

b
~

y

θ

dm
r
~

x

O

me

mt

Figure 3.1: 2D System Model
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3.1. MOTOR WORK AND KINETIC ENERGY

3.1 Motor Work and Kinetic Energy

The kinetic energy of the motor is given by

Tm = 1

2
Jm θ̇

2 (3.1)

where Jm is the rotary inertia of the motor. The work done by the motor due to the generated

moment is,

W =
∫ b

a
M(θ)dθ (3.2)

where M(θ) is the generated moment of the motor.

3.2 Target Energy

This is the pre-capture target model. In the post capture case, the target is treated the same

as the end-effector.

Point Mass Model

The kinetic energy of a particle is,

Tp = 1

2
mv
~
· v
~

(3.3)

and the inertial velocity of the target is given by

v
~

t =F→
T
a


ẋt

ẏt

0

 (3.4)

Hence, the kinetic energy of the target is

Tt = 1

2
mt

(
ẋ2

t + ẏ2
t

)
(3.5)

where mt is the mass of the target.

2D Rigid Body Model

The translational kinetic energy is the same as the point mass model, so we only need to add

the rotational kinetic energy. The angular velocity is,

ω
~

t (t ) =F→
T
a


0

0

γ̇(t )

 (3.6)
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For both this model and the 3D rigid body model, it is assumed that the rotation is about an

axis that passes through the centre of mass. The rotational kinetic energy of a general rigid

body is,

Tr ot = 1

2
ω
~

T J ω
~

(3.7)

where J is the inertia matrix for the body. For the target in this case, we assume that J is prin-

cipal and only the (3,3) component (Jt ) contributes to the kinetic energy. After substitution

Jt and of ω
~

t (t ) for ω
~

in Equation (3.7), the rotational kinetic energy of the target is,

Ttr = 1

2
Jt γ̇(t )2 (3.8)

Therefore, the kinetic energy a 2D rigid body target is,

Tt = 1

2

(
mt

(
ẋ2

t + ẏ2
t

)+ Jt γ̇(t )2) (3.9)

3D Rigid Body Model

The translational kinetic energy has an additional component due to the additional of a

z-coordinate velocity, which results in,

Tt = 1

2
mt

(
ẋ2

t + ẏ2
t + ż2

t

)
(3.10)

The angular velocity is,

ω
~

t (t ) =F→
T
a


α̇(t )

β̇(t )

γ̇(t )

 (3.11)

The rotational kinetic energy of a rigid body is as stated in Equation (3.7). For the target in

this case, we use the general inertia matrix,

Jt =


Jt xx Jt x y Jt xz

Jt x y Jt y y Jt y z

Jt xz Jt y z Jt zz

 (3.12)

Resulting in the rotational kinetic energy of the target as,

Ttr = 1

2

(
α̇2 Jt xx + β̇2 Jt y y + γ̇2 Jt zz +2α̇β̇Jt x y +2α̇γ̇Jt xz +2β̇γ̇Jt y z

)
(3.13)

Therefore, the total kinetic energy of a 3D rigid body target is,

Tt =1

2

(
mt

(
ẋ2

t + ẏ2
t + ż2

t

)+ α̇2 Jt xx + β̇2 Jt y y + γ̇2 Jt zz

+2α̇β̇Jt x y +2α̇γ̇Jt xz +2β̇γ̇Jt y z
) (3.14)
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3.3 Beam Energy

2D Euler-Bernoulli Beam

The position of a small differential element of the beam (see Figure 3.1) with a volume of

Adx is given by

r
~

x =F→
T
b


x − y v ′

y + v

0

 (3.15)

where v = v(x, t ) is the transverse deflection of the beam neutral axis and v ′ is the slope of

that deflection. In this model, we are neglecting the axial extension of the beam. Transform-

ing to the inertial frame

r
~

x =F→
T
a Cab


x − y v ′

y + v

z

 (3.16)

where Cab is,

Cab =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (3.17)

Therefore, the position vector in the inertial frame is,

r
~

x =F→
T
a


(x − y v ′)cosθ− (y + v)sinθ

+(x − y v ′)sinθ+ (y + v)cosθ

z

 (3.18)

Differentiating equation (3.18) with respect to time, we get the velocity of a differential

element of the beam.

v
~

x =F→
T
a


−(

v̇ + θ̇(x − y v ′)
)

sinθ−
(
θ̇(y + v)+ y v̇ ′)cosθ(

v̇ + θ̇(x − y v ′)
)

cosθ−
(
θ̇(y + v)+ y v̇ ′)sinθ

0

 (3.19)

The kinetic energy of a flexible beam is given by

Tb = 1

2

∫
V
ρv
~
· v
~

dV (3.20)

where ρ is the volume mass density. This can be reduced to

Tb = 1

2

∫ L

0
ρAv
~
· v
~

dx (3.21)
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substituting the differential beam element velocity derived in equation (3.19) we get the

following expression for the kinetic energy of the beam.

Tb = 1

2

∫ L

0
ρA(x2θ̇2 +2xθ̇v̇ + v̇

2 + θ̇2v2)dx + 1

2

∫ L

0
ρIy y (v̇ ′2 +2v̇ ′θ̇+ θ̇2(1+ v ′2))dx (3.22)

Since this is an Euler-Bernoulli beam, we will drop the v ′ terms (which arise from rotary

inertia), resulting in,

Tb = 1

2

∫ L

0
ρA(x2θ̇2 +2xθ̇v̇ + v̇

2 + θ̇2v2)dx + 1

2

∫ L

0
ρIy y θ̇

2dx (3.23)

The strain energy of the beam is given by

U = 1

2

∫ L

0
E Iy y (v ′′)2dx (3.24)

where v ′′ is the second derivative of v with respect to x.

2D Timoshenko Beam

The position of a differential element of the rotating beam is given by,

r
~

x =F→
T
b


x +u − yψz

y + v

z

 (3.25)

where u = u(x, t ), ψz =ψz(x, t ), and v = v(x, t ). In this formation, the axial extension of the

neutral axis is included via u(x, t ). Transforming to the inertial frame

r
~

x =F→
T
a Cab


x +u − yψz

y + v

z

 (3.26)

where Cab is as given in Equation (3.17). The position of the differential element in the

inertial frame is therefore,

r
~

x =F→
T
a


(x +u − yψz)cosθ− (y + v)sinθ

(x +u − yψz)sinθ+ (y + v)cosθ

z

 (3.27)

where θ = θ(t). Differentiating this with respect to time, we get the inertial velocity for a

differential element of the beam,

v
~

x =F→
T
a


[u̇ − yψ̇z − θ̇(y + v)]cosθ− [v̇ + θ̇(x +u − yψz)]sinθ

[v̇ + θ̇(x +u − yψz)]cosθ+ [u̇ − θ̇(y + v)− yψ̇z]sinθ

0

 (3.28)
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substituting this into Equation (3.20) and integrating over the cross-section, we get the kinetic

energy of the beam,

Tb = 1

2

∫ L

0
ρA

(
(v̇ + θ̇(x +u))2 + (u̇ − θ̇v)2)dx + 1

2

∫ L

0
ρIy y

(
(θ̇+ ψ̇z)2 + θ̇2ψ2

z

)
dx (3.29)

The strain energy of the beam is,

U = 1

2

∫ L

0
(E Iy yψ

′2
z +κ2G A(v ′−ψz)2 +E Au′2)dx (3.30)

3D Timoshenko Beam (with Torsion)

The position of a differential beam element in the rotating frame is given by,

r
~

x =F→
T
b


x +u(x, t )− yupv (x, t )− zupw (x, t )+Φ(x, y, z, t )

y + v(x, t )+V (x, y, z, t )

z +w(x, t )+W (x, y, z, t )

 (3.31)

where u, v , and w are the deflections of the neutral axis, upv is the slope of the in-plane

bending curve, upw is the slope of the out of plane bending curve, and the functionsΦ, V ,

and W are general torsion functions. For Timoshenko beams, this becomes,

r
~

x =F→
T
b


x +u(x, t )− yψz(x, t )− zψy (x, t )+Φ(x, y, z, t )

y + v(x, t )+V (x, y, z, t )

z +w(x, t )+W (x, y, z, t )

 (3.32)

Using the assumed displacement model from the last chapter, the torsion functions become,

Φ(x, y, z, t ) = φ(y, z)ψx(x, t ) (3.33)

V (x, y, z, t ) = −zθx(, t ) (3.34)

W (x, y, z, t ) = yθx(x, t ) (3.35)

where θx is the torsion angle (about the x-axis) and ψx is used to prevent confusion with the

bending angles. This results in the differential beam element position as,

r
~

x =F→
T
b


x +u(x, t )− yψz(x, t )− zψy (x, t )+φ(y, z)ψx(x, t )

y + v(x, t )− zθx(x, t )

z +w(x, t )+ yθx(x, t )

 (3.36)

In order to get the kinetic and strain energy of the beam, we will split the deflection into two

contributions (in addition to the original position),

r
~

x =F→
T
b (r+db +dt ) (3.37)
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where r (the original position of the differential beam element) is,

r =


x

y

z

 (3.38)

and db (the deflection due to extension and bending) is,

db =


u(x, t )− yψz(x, t )− zψy (x, t )

v(x, t )

w(x, t )

 (3.39)

and dt (the deflection due to torsion) is,

dt =


φ(y, z)ψx(x, t )

−zθx(x, t )

yθx(x, t )

 (3.40)

This split is done since we want Timoshenko’s shear correction factor applied only to the

shear contributions due to extension and bending. So, the inertial position for the extension

and bending contribution is,

r
~

xb =F→
T
a Cab


x +u(x, t )− yψz(x, t )− zψy (x, t )

y + v(x, t )

z +w(x, t )

 (3.41)

and the torsion contribution is,

r
~

xt =F→
T
a Cab


φ(y, z)ψx(x, t )

−θx(x, t )z

θx(x, t )y

 (3.42)

which upon expansion the former becomes,

r
~

xb =F→
T
a


(x +u − yψz + zψy )cosθ− (y + v)sinθ

(x +u + yψz + zψy )sinθ+ (y + v)cosθ

z +w

 (3.43)

and the latter becomes,

r
~

xt =F→
T
a


φψx cosθ+ zθx sinθ

φψx sinθ− zθx cosθ

yθx

 (3.44)
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Differentiating with respect to time for the bending and extension contributions,

v
~

xb =F→
T
a


(
u̇ − θ̇(y + v)− yψ̇z − zψ̇y

)
cosθ− (

θ̇(x +u − zψy − yψz)+ v̇
)

sinθ(
θ̇(x +u − zψy − yψz)+ v̇

)
cosθ+ (

u̇ − θ̇(y + v)− yψ̇z − zψ̇y
)

sinθ

ẇ

 (3.45)

and for the torsion contribution,

v
~

xt =F→
T
a


(
φψ̇x + θ̇zθx

)
cosθ− (

θ̇φψx − zθ̇x
)

sinθ(
θ̇zθx +φψ̇x

)
sinθ+ (

θ̇φψx − zθ̇x
)

cosθ

y θ̇x

 (3.46)

which after substituting into the beam energy equation given in Equation (3.20) and integrat-

ing over the cross-section yields,

Txb = 1

2

∫ L

0
ρA

(
(v̇ + θ̇(x +u))2 + (u̇ − θ̇v)2 + ẇ

2
)

dx

+ 1

2

∫ L

0
ρ

(
Iy y

(
(ψ̇z + θ̇)2 + θ̇2ψ2

z

)+ Izz(ψ̇2
y + θ̇2ψ2

y )
)

dx

(3.47)

and the kinetic energy due to torsion is,

Txt = 1

2

∫ L

0
ρ

(
θ̇2(Pψ2

x + Izzθ
2
x)+ Jg θ̇

2
x +Pψ̇2

x

)
dx (3.48)

Note that P is the integral as given in Equation (2.23). The total kinetic energy of the beam is

the sum of these two,

Tb = Txb +Txt (3.49)

For the strain energy of the beam due to torsion, we will use Equation (2.59), but with the

additional assumption that ν≈ 0 to stay consistent with the Timoshenko beam assumptions.

This results in,

Uxt = 1

2

∫ L

0
EPψ,x(x, t )2 +G

(
Kψ(x, t )2 + 2Lcθ,x(x, t )ψ(x, t )+ Jgθ,x(x, t )2)dx (3.50)

See Appendix C for the calculation of P , K , and Lc . For the bending and extension contribu-

tion to strain energy, we have the following strains,

εxx = ∂u

∂x
= ∂u

∂x
− y

∂ψz

∂x
− z

∂ψy

∂x
(3.51)

γx y = ∂u

∂y
+ ∂v

∂x
= ∂v

∂x
− ∂ψz

∂x
(3.52)

γxz = ∂u

∂z
+ ∂w

∂x
= ∂w

∂x
− ∂ψy

∂x
(3.53)
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The corresponding stresses are,

σxx = Eεxx (3.54)

τx y = κ2Gγx y (3.55)

τxz = κ2Gγxz (3.56)

where κ2 is the shear correction factor. The strain energy is,

Uxb = 1

2

∫
V
σxxεxx +τx yγx y +τxzγxzdV (3.57)

= 1

2

∫
V

Eε2
xx +κ2Gγ2

x y +κ2GγxzdV (3.58)

Using the strain expressions, after integration over the cross-section, this becomes,

Uxb = 1

2

∫ L

0

(
E Au2

,x +E Iy yψ
2
z,x +E Izzψ

2
y,x

+κ2G A(v ,x −ψz)2 +κ2G A(w ,x −ψy )2)dx

(3.59)

3.4 End-Effector Energy

a
~

x

a
~

y

b
~

x

b
~

y c
~

xc
~

y

θ

O

me

mt

de1

Figure 3.2: 2D System Model (with end-effector offset)
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Point Mass (Euler-Bernoulli Beam)

The position of the end effector in the rotating frame (see Figure 3.2) is given by

r
~

e =F→
T
b


L

vL

0

+F→
T
c


de1

0

0

 (3.60)

where de1 is the offset of the point mass from the end of the beam. This assumes that the

centre of mass (CoM) of the end-effector is located along the neutral axis of the beam. This is

specified in a frame C fixed to the end of the beam. Note that in this particular case, we are

assuming no extension of the beam. Transforming to the inertial frame,

r
~

e =F→
T
a Cab




L

vL

0

+Cbc


de1

0

0


 (3.61)

where Cbc is the rotation matrix from frame C to frame B. Cab is as before in Equation (3.17).

Restated again,

Cab =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (3.62)

and Cbc is the matrix due to infinitesimal rotation as given in Meirovitch [57] (p. 107),

Cbc =


1 −∆θ3 ∆θ2

∆θ3 1 −∆θ1

−∆θ2 ∆θ1 1

 (3.63)

where∆θi is the rotation of the frame C about axis i . In this case, only∆θ3 is non-zero giving,

Cbc =


1 −v ′

L 0

v ′
L 1 0

0 0 1

 (3.64)

Therefore, the position vector of the end effector centre of mass in the inertial frame is

r
~

e =F→
T
a


(L+de1)cosθ− (vL + v ′

Lde1)sinθ

(L+de1)sinθ+ (vL + v ′
Lde1)cosθ

0

 (3.65)

Differentiating this result with respect to time, we get the velocity of the end effector centre

of mass,

v
~

e =F→
T
a


−θ̇(vL + v ′

Lde1)cosθ−
(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

sinθ(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

cosθ− θ̇(vL + v ′
Lde1)sinθ

0

 (3.66)
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Using this result in the equation for particle kinetic energy, Equation (3.3), we get,

Te = 1

2
me

(
(v̇L + v̇ ′

Lde1)+ (L+de1)θ̇
)2 + 1

2
me (vL + v ′

Lde1)2θ̇2 (3.67)

2D Rigid Body Model (Timoshenko Beam)

First, we define the position centre of mass of the end-effector in the beam frames as.

r
~

e =F→
T
b


L+uL

vL

0

+F→
T
c


de1

0

0

 (3.68)

Here de1 is the offset of the end-effector centre of mass from the end of the beam (as shown

in Figure 3.2). Note that this assumes that the centre of mass of the end-effector is located

along the neutral axis of the beam. If we model the end-effector as a rigid body we also need

the orientation of the body. Since this is easily defined in the inertial frame, it is stated in the

inertial frame.

θ
~

e =F→
T
a


0

0

θ+ψzL

 (3.69)

Transforming the position vector to the inertial frame

r
~

e =F→
T
a Cab




L+uL

vL

0

+Cbc


de1

0

0


 (3.70)

where Cab is as given in Equation (3.17) and Cbc is,

Cbc =


1 −ψzL 0

ψzL 1 0

0 0 1

 (3.71)

which results in,

r
~

e =F→
T
a


(L+de1 +uL)cosθ− (vL +de1ψzL)sinθ

(L+de1 +uL)sinθ+ (vL +de1ψzL)cosθ

0

 (3.72)

Differentiating the end-effector position with respect to time, we get the end-effector velocity,

v
~

e =F→
T
a


−(

v̇L + (L+de1 +uL)θ̇+ ψ̇zLde1
)

sinθ+ (
u̇L − θ̇(vL +ψzLde1)

)
cosθ(

v̇L + (L+de1 +uL)θ̇+ ψ̇zLde1
)

cosθ+ (
u̇L − θ̇(vL +ψzLde1)

)
sinθ

0

 (3.73)
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and its corresponding angular velocity is,

ω
~

e =F→
T
a


0

0

θ̇+ ψ̇zL

 (3.74)

Substituting the velocity into Equation (3.3), we get the translational kinetic energy,

Tte = 1

2
me

(
v̇L + (uL +L+de1)θ̇+de1ψ̇zL

)2 + 1

2
me

(
u̇L − (vL +de1ψzL)θ̇

)2
(3.75)

The inertia matrix for the end-effector is assumed to be of the form,

Je =


J1 0 0

0 J2 0

0 0 Je

 (3.76)

Using this and the angular velocity from Equation (3.74) in Equation (3.7),

Tr e = 1

2
Je (θ̇+ ψ̇zL)2 (3.77)

Therefore, the kinetic energy of the end-effector is of the form,

Te = 1

2
me

(
v̇L + (uL +L+de1)θ̇+de1ψ̇zL

)2 + 1

2
me

(
u̇L − (vL +de1ψzL)θ̇

)2 + 1

2
Je (θ̇+ ψ̇zL)2

(3.78)

3D Rigid Body Model (Timoshenko Beam with Torsion)

bx

by

bz

Fb

cx

cy

cz

Fc dx

dy

dz

Fdd
~

Figure 3.3: 3D end-effector offset
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The frame of reference for the end-effector is located at the neutral axis of the beam

(see Figure 3.3). So, the position of the end-effector’s frame of reference can be found from

Equation (3.36) when x = L and both y and z are zero. This leads to,

r
~

e =F→
T
b


L+uL

vL

w L

+F→
T
c


de1

de2

dd3

 (3.79)

In this case, the end-effector has an offset of the vector d
~

from the end of the beam. Note

that torsion has no direct contribution to the position since the reference frame is at the

neutral axis. However, it does affect the angular velocity of the end-effector. The position

vector in the inertial frame is,

r
~

e =F→
T
a Cab




L+uL

vL

w L

+Cbc


de1

de2

de3


 (3.80)

where Cbc is,

Cbc =


1 −ψzL ψyL

ψzL 1 −θxL

−ψyL θxL 1

 (3.81)

which results in,

r
~

e =F→
T
a


(L+uL +de1 −ψzLde2 +ψyLde3)cosθ− (vL +de2 +ψzLde1 −θxLde3)sinθ

(vL +de2 +ψzLde1 −θxLde3)cosθ+ (L+uL +de1 −ψzLde2 +ψyLde3)sinθ

w L +de3 −ψyLde1 +θxLde2

 (3.82)

Differentiating with respect to time, we get the velocity of the end-effector in the inertial

frame,

v
~

e = F→
T
a


u̇L − θ̇(vL +de2 +ψzLde1 −θxLde3)+ ψ̇yLde3 − ψ̇zLde2

−(
v̇L + ψ̇zLde1 − θ̇xLde3 + θ̇(L+uL +de1 −ψzLde2 +ψyLde3)

)
0

cosθ

+ F→
T
a


v̇L + ψ̇zLde1 − θ̇xLde3 + θ̇(L+uL +de1 −ψzLde2 +ψyLde3)

u̇L − θ̇(vL +de2 +ψzLde1 −θxLde3)+ ψ̇yLde3 − ψ̇zLde2

0

sinθ

+


0

0

ẇ L − ψ̇yLde1 + θ̇xLde2

 (3.83)
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Which alternatively can be represented as,

v
~

e =F→
T
a


Kve1 cosθ−Kve2 sinθ

Kve2 cosθ+Kve1 sinθ

Kve3

 (3.84)

where,

Kve1 = u̇L − θ̇(vL +de2 +ψzLde1 −θxLde3)+ ψ̇yLde3 − ψ̇zLde2 (3.85)

Kve2 = v̇L + ψ̇zLde1 − θ̇xLde3 + θ̇(L+uL +de1 −ψzLde2 +ψyLde3) (3.86)

Kve3 = ẇ L − ψ̇yLde1 + θ̇xLde2 (3.87)

and the angular velocity is,

ω
~

e =F→
T
a


θ̇xL

ψ̇yL

θ̇+ ψ̇zL

 (3.88)

In general, the end-effector has an inertia matrix of the form,

Je =


Jexx Jex y Jexz

Jex y Je y y Je y z

Jexz Je y z Jezz

 (3.89)

which we can transform from the body-centric reference frame to the end of the beam using

the formulas given in Chapter 2. Since the final product has the same form as given above,

we will use this form to determine the rotational kinetic energy from Equation (3.7) viz.,

Tr e = 1

2
(Jexx θ̇

2
xL + Je y yψ̇

2
yL + Jezz(ψ̇yL + θ̇)2)+ θ̇xL(Jex yψ̇yL + Jexz(θ̇+ψ̇zL))+ Je y zψ̇yL(θ̇+ψ̇zL)

(3.90)

Similarly, the translational kinetic energy is,

Tte = 1

2
me (K 2

ve1 +K 2
ve2 +K 2

ve3) (3.91)

Now that the work, kinetic and strain energy is defined for each component in the system

(and for each model) we can use these results in subsequent chapters in the variational

principles to define the motion of the system (via Hamilton’s Principle) and the capture

equations (via Jourdain’s Variational Principle).

31



CHAPTER

4
Mixed Symbolic-Numeric Finite

Element Modelling

4.1 Introduction

In this chapter we are concerned with solving systems that can be derived through variational

principles (e.g., Hamilton’s Principle) [58]. Therefore, we have equations of the following

form to solve,

δ

∫ t1

t0

L(q,q′, t )dt = 0 (4.1)

where L (the Lagrangian) is a function of the column matrix q, the variable t and possibly

partial derivatives of q. The solution to this problem is a system of Euler-Lagrange equations

which take the form (assuming L(q,q′, t )),

∂

∂t

(
∂L

∂q̇i

)
− ∂

∂x

(
∂L

∂q ′
i

)
− ∂L

∂qi
= 0 (4.2)

The difficulty with these partial differential equations (PDEs) is that they often have no

known analytical solution. The standard approach to solving these PDEs is to use the Finite

Element Method (FEM) to approximate the solution. For common PDEs there are standard

finite element software packages that will solve these equations. However, for less common

problems we must derive the system of equations that result from using the finite element

method and then solve them (possibly with a standard package).

Symbolic techniques have been used in books [59, 60] to teach the finite element method

but their use has been limited calculation of the stiffness matrix for specific elements and

problems. Other work has been done on the derivation of optimized Fortran code using

Macsyma [61, 62, 63, 64] for evaluation of the element stiffness matrix.They symbolically

derive the strain-displacement relations and assume the stiffness matrix takes the form,

K =
∫

V
BT DB dV (4.3)
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4.2. OVERVIEW

where B is the strain-displacement matrix, D is the constitutive matrix, and the integral is

over the volume V . The work by Beltzer also assumes this form of the stiffness matrix. This

approach is fine if the forms of B and D for the specific problem are known but for more

complex problems these need to be derived.

More general work by Amberg [65] relates to the development of a software package,

“femLego”, built upon Maple and Fortran. Their software begins with the specification of the

weak form of the PDE and produces optimized Fortran code to solve the problem. However,

the weak form of the PDE can be difficult to derive. Also, their formulation handles time

domain solutions through finite differences and is limited in the types of elements and basis

functions that can be used. These requirements limit the types of problems that can be

solved.

Examining the previous work leads to the following goals for a new approach to the

problem,

1. All work deriving the system of equations can be done using the software;

2. that there is no inherent limitation to the types of elements and basis functions that

can be used;

3. static and dynamic problems are handled using the same approach.

4.2 Overview

The approach we are taking to derive and solve equations of the form given in Equation

(4.1) is to divide the problem into two stages. First, we derive the equations valid for a single

element in the finite element mesh using a symbolic computational approach. This is done

using a Symbolic Finite Element Method (SFEM) package in Maple that we have developed.

The second stage assembles the set of ODEs given these element matrices and a given mesh

then solves the resulting system numerically. While a number of programming languages

could be used for this task, Matlab is used because of its supporting facilities for numerical

computation and analysis. This two stage approach uses the strengths of both symbolic and

numeric computation.

An overview of the approach used to derive and solve the system equations is shown in

Figure 4.1. The first step, defining the Lagrangian, is problem specific and can typically be

handled using the standard Maple tools. The trial functions (ı.e., the approximations) used

in the SFEM package are of the form,

f (x, t ) =
n∑

i=1
φi (x)qi (t ) (4.4)
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Figure 4.1: Element Matrix Calculation Process
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whereφi (x) are the basis functions and qi (t ) are the nodal degrees-of-freedom (or nodal vari-

ables). Once the trial functions and Lagrangian are defined we substitute the trial functions

into the Lagrangian L and calculate the Euler-Lagrange equations:

d

dt

(
∂L

∂q̇i

)
= ∂L

∂qi
+Qk (4.5)

where Qk are the generalized forces on the system. However, rather than calculating the

complete equation we instead calculate the individual terms and return them separately

since the left hand side leads to the mass matrix M while the right hand side leads to the

stiffness matrix K. Typically, after the Euler-Lagrange equation has been calculated there are

a number of simplifications that can be made.

The simplified results are combined with the definitions of the basis functions and the

materials (as they may vary spatially) to evaluate the integrals in the system. Lastly, the ele-

ment matrices are formed using the GenerateMatrix command from Maple’s LinearAlgebra

package.

Once the matrices are generated, we can use Maple’s code generation features to generate

optimized Matlab code which is output into separate functions for the mass and stiffness

element matrices to be used in the assembly process.

4.3 Assembly of Full Matrices

Application of Boundary Conditions

To apply a forced boundary condition, there are two main techniques:

1. Removal of the degrees of freedom from the system;

2. Modify the system of equations to enforce the constraint.

Since the first approach is more computationally efficient it is used. Since the system has

a pin joint at the hub, we will only consider the beam to be modelled as a cantilever beam

in a rotating frame. So our boundary conditions at x = 0 require us to remove the rows and

columns associate with the first node (for all element variables).
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Augmentation of Matrices with Rotational DOF

Note that the governing equations of the system can be written in matrix form as:

M̂q̈+ K̂q = F̂ (4.6)

where,

M̂ =
[

0 0

0 M

]
+

[
Ĵ tT

t 0

]
+Me (4.7)

K̂ =
[

0 0

0 K

]
(4.8)

F̂ =


M(θ)

0

. . .

0

 (4.9)

q =
[
θ

d

]
(4.10)

Therefore, the augmentation of the stiffness matrix can be performed by the addition of a

new row and column of all zeros. Augmentation of the mass matrix requires the calculation

of Ĵ (the effective inertia of the hub), t which is the contribution of the beam inertia to the

hub equation, and the matrix Me which is the contribution of the end-effector’s inertia to

the system. Note that the material mass and stiffness matrices M and K that are used in

these equations are the reduced DOF matrices resulting from the application of boundary

conditions.

4.4 Newmark-Beta Solver

Bathe and Wilson [66] present a version of the Newmark-Beta method that does not require

a prediction-correction step. The overview of the method as presented in Bathe and Wilson

[66] is presented below. Starting with the following equations,

U̇t+∆t = U̇t +
(
(1−γ)Üt +γÜt+∆t

)
∆t (4.11)

Ut+∆t = Ut +U̇t∆t + (
( 1

2 −β)Üt +βÜt+∆t
)
∆t (4.12)

where β and γ are parameters that are chosen for accuracy and stability. Setting β= 1
6 and

γ = 1
2 results in the linear acceleration method. Choosing β = 1

4 and γ = 1
2 results in an

unconditionally stable scheme [66, 67] which uses a constant average acceleration. Note that
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Bathe and Wilson [66] recommend these settings for good accuracy and stability. We also

consider the equilibrium equations at time t +∆t ,

MÜt+∆t +CU̇t+∆t +KUt+∆t = Ft+∆t (4.13)

In order to prevent the prediction-correction process, Bathe and Wilson [66] solve Equation

(4.11) for Üt+∆t in terms of Ut+∆t , and substitute the result into Equation (4.12). This results in

equations for Üt+∆t and U̇t+∆t in terms of Ut+∆t alone. These equations are then substituted

into Equation (4.13) to solve for Ut+∆t . Then we can use the value of Ut+∆t to calculate Üt+∆t

and U̇t+∆t .

According to Bathe and Wilson [66], to ensure unconditional stability for the damped

system, the following constraints on the parameters in Equations (4.11) and (4.12) hold:

γ≥ 1
2 (4.14)

β≥ 1
4 (γ+ 1

2 )2 (4.15)

In particular, we use the following values:

γ= 1
2 (4.16)

β= 1
4 (4.17)

This is also consistent with Heppler and Hansen [67] who state that

γ≥ 1

2
β≥ 1

2
γ (4.18)

is unconditionally stable for the damped system. Note that in the system of equations that

we are solving, none of our matrices depend upon time.

With this approach we can factorise the effective stiffness matrix once and only the

effective load vector needs to change at each timestep.

4.5 Pure Torsion Convergence Test

To test whether this system properly represents a dynamic system, we consider the case of a

fixed-free beam in pure torsion [68]. The natural frequency characteristic equation is [68],

ωn = (2n −1)πc

2L
(4.19)

c =
√

G

ρ
(4.20)

If we normalize the modes of the finite element model with respect to these equations,

we get Figures 4.2 and 4.3. The first mode is nearly converged with just one element, but we

can see that we converge to the analytical solutions to the first eight modes in less than 10

elements, so the finite element model can accurately represent this pure torsion model.
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Figure 4.2: Pure Torsion Modes 1 through 4 Convergence
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CHAPTER

5
Modelling the Capture Dynamics

This chapter presents the theory used in the analysis of the mass capture. First, the equations

relating the pre- and post-impact velocities of a two particle system are presented. This is

done to justify the modelling of a plastic impact as a set of constraints. Second, an overview

of the variational theory of impact as presented in Bahar [29] is given. Next, we present a

three step process to model the dynamics of mass capture. Finally, the variational theory of

impact is applied to the system of interest.

5.1 Plastic Impact of Two Masses

Considering the impact of two smooth particles (Figure 5.1), the normal velocities before

and after impact are related by [69]:

v
~

+
2n − v

~

+
1n =−e(v

~

−
2n − v

~

−
1n) (5.1)

where e is the coefficient of restitution. Given that these are particles, Brach [69] also states

that the tangential velocities are related by

v
~

+
1t = v

~

+
2t (5.2)

Note that this is also true for rigid bodies with no sliding between the bodies. In the event of

plastic impact, the coefficient of restitution is zero, therefore, Equation (5.1) becomes

v
~

+
2n = v

~

+
1n (5.3)

Therefore, for plastic impacts, we can model the impact as a constraint upon the velocities of

the particles. That is, after impact the velocities of the particles must be equal.
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Figure 5.1: Two Particle Impact

5.2 Variational Methods for Mass Capture

From Bahar [29] the Jourdain Variational Principle (JVP) [28] is:

n∑
i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
−Qi

]
δq̇i = 0 (5.4)

where qi is the i -coordinate of the system, T is the kinetic energy of the system, and Qi is

applied impulsive force i . Note that this formulation requires that both δqi and δt be set

equal to zero. Integrating Equation (5.4) with respect to time [29] (see also Appendix E)

yields,
n∑

i=1

[
∆pi −Q̂i

]
δq̇i = 0 (5.5)

where ∆pi is the increment in the generalised momentum:

∆pi = (pi )+− (pi )− (5.6)

between the pre-impact and post-impact states with Q̂i being the generalised impulse. The

generalised momentum pi of the state is given by [29]:

pi = ∂T

∂q̇i
(5.7)

Therefore, Equation (5.5) can be written as

n∑
i=1

[
∂T

∂q̇i

+
− ∂T

∂q̇i

−
−Q̂i

]
δq̇i = 0 (5.8)
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The above analysis holds for "true" velocities. However, Bahar [29] shows that the above also

holds when velocities are mapped to quasi-velocities1. This form is presented in Equation

(5.9) below.
k∑

j=1

[
∂T ∗

∂Q̇ j

+
− ∂T ∗

∂Q̇ j

−
− Π̂ j

]
δQ̇ j = 0 (5.9)

where Q̇ j are the quasi-velocities, ∂T ∗
∂Q̇ j

is the generalised quasi-momentum, and Π̂ j is the

generalised quasi-impulse associated with the quasi-velocity Q̇ j .

Note that any velocity constraint can be modelled as an additional quasi-velocity. A

plastic impact can be considered to be a set of velocity constraints as shown in Section 5.1.

Therefore, we can embed the constraints into the problem by converting to quasi-velocities.

This approach of constraint embedding differs from the approach done by Kövecses et al.

[3].

Since each of the quasi-velocity variations are independent, either the variation or the

term multiplying the variation must go to zero. The variations with respect to the constrained

quasi-velocities will be zero since the quasi-velocity values are fixed via the constraints after

impact and can be calculated before impact. Before, impact they will be defined by the initial

pre-impact conditions and after impact the quasi-velocities are set to satisfy the constraint.

However, the velocity variation with respect to the remaining quasi-velocities will not be

zero. Therefore, Equation (5.9) will result in a set of k −m (where m is the number of velocity

constraints) equations of the form,

∂T ∗

∂Q̇ j

+
− ∂T ∗

∂Q̇ j

−
− Π̂ j = 0, j ∈ A (5.10)

where A is the set of unconstrained quasi-velocities. These equations relate the post-impact

velocities to the pre-impact velocities. It is important to note that this analysis assumes that

the capture process occurs instantaneously.

5.3 Analysis Process for Mass Capture Problems

The analysis process for mass capture problems is as follows:

1. Solve the pre-capture system of equations until time t1, the instant of impact/capture.

2. Use the final velocities from step 1 to determine post-capture velocities. This is done

using the variational method presented above.

1A quasi-velocity is a “linear combination of the generalized velocities, but they are not necessarily deriva-
tives of any coordinates and thus cannot always be integrated to generalized coordinates.” [30] Examples of
quasi-velocities are Euler angles and nonholonmic constraints. Since the capture contraints are nonholonomic
we can model them as quasi-velocities.
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3. Solve the post-capture system of equations using the post-capture velocity results

from step 2 as initial conditions. Note that the position initial conditions are the same

as the final position of step 1, since the analysis in step 2 assumes that the impact is

instantaneous.

where the pre-capture and post-capture system of equations can be derived through tra-

ditional means (e.g., Hamilton’s Principle). This analysis process is consistent with the

approach taken by Kövecses et al. [27].

5.4 Capture Process Models

We will use the analysis process for different system models. The different models are:

1. A 2D Euler-Bernoulli beam (with no extension) and point masses for the target and the

end-effector;

2. A 2D Timoshenko beam (including extension) and 2D rigid bodies for the target and

the end-effector. It is assumed that the capture happens along the neutral axis of the

beam;

3. A 3D Timoshenko beam and 3D rigid bodies for the target and the end-effector. The

capture can happen anywhere.

Note that the 2D Euler-Bernoulli beam model included as a based of comparison with the

work done by Kövecses et al. [3, 4]. This chapter will show the complete process for the last

two cases and the results of the other first case. The details of the analysis for the first case

are shown in Appendix F.

5.5 2D Euler-Bernoulli Beam (with Point Masses) System

Considering a 2D Euler-Bernoulli beam (as in section 3.3 and point mass end-effector (section

3.4) and target (section 3.2), we get the following capture equations (complete details of the
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derivation are in Appendix F).

v̇
+
L =

me

(
v̇
−
L + (L+de1)θ̇−+de1v̇ ′−

L

)
+mt

(
ẏ−

t cosθ0 − ẋ−
t sinθ0

)− (me +mt )(L+de1)θ̇+

2(mt +me )
(5.11)

v̇ ′+
L = v̇

+
L

de1
(5.12)

v̇(x)+ = v̇(x)−−x(θ̇−− θ̇+) (5.13)

θ̇+ =
(

Jm +me (v ′
L0de1 + vL0)2 +∫ L

0 ρ
(

Av0(x)2 + Iy y
)

dx
)
θ̇−−mt (v ′

L0de1 + vL0)(ẋ−
t cosθ0 + ẏ−

t sinθ0)

Jm + (me +mt )(v ′
L0de1 + vL0)2 +∫ L

0 ρ
(

Av0(x)2 + Iy y
)

dx

(5.14)

Note that in contrast to the work of Kövecses et al. [3, 4], this 2D Euler-Bernoulli beam

model does not assume the end-effector is coincident with the end of the beam. Instead, we

allow for an offset so the point mass can be placed at the centre of mass of the end-effector.

Therefore, we have additional terms with v ′
L0de1 and v̇ ′

L. Also, our model includes beam

inertia (Iy y ) which is missing in theirs because their definition of an element of the beam is,

r
~

xK =F→
T
b


x

v

0

 (5.15)

which is missing the y term in the second component as compared to Equation (3.15). The v ′

terms in Equation (3.15) are ignored in the kinetic energy of an Euler-Bernoulli beam so they

don’t affect the capture equations along the length. The only appear in the capture equations

at the end of the beam due to the offset of the end-effector.

5.6 2D Timoshenko Beam (with Rigid Bodies) System

Now we will consider a model in between the other two models set out in section 5.4. Here,

we have a 2D Timoshenko beam (as in section 3.3) and 2D rigid body end-effector (section

3.4) and target (section 3.2).

Post-capture velocity constraint

Since the capture is assumed to happen instantaneously, the position variables won’t change.

So, replacing the position variables (but not the velocities) with their values at the instant of
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capture (time t1),

v
~

e = F→
T
a


(
u̇L − θ̇(vL0 +ψzL0de1)

)
cosθ0 −

(
v̇L + (L+de1 +uL0)θ̇+ ψ̇zLde1

)
sinθ0(

v̇L + (L+de1 +uL0)θ̇+ ψ̇zLde1
)

cosθ0 +
(
u̇L − θ̇(vL0 +ψzL0de1)

)
sinθ0

0

(5.16)

ω
~

e (t ) = F→
T
a


0

0

θ̇(t )+ ψ̇zL(t )

 (5.17)

v
~

t (t ) = F→
T
a


ẋt (t )

ẏt (t )

0

 (5.18)

ω
~

t (t ) = F→
T
a


0

0

γ̇(t )

 (5.19)

v
~

x = F→
T
a


[u̇ − yψ̇z + θ̇(y + v0)]cosθ0 − [v̇ − θ̇(x +u0 − yψz0)]sinθ0

[v̇ − θ̇(x +u0 − yψz0)]cosθ0 + [u̇ − yψ̇z + θ̇(y + v0)]sinθ0

0

 (5.20)

Modelling the capture process as a plastic collision, we get that the velocities before and

after impact must be equivalent. Since we are modelling the end-effector and target as rigid

bodies we equate both the translational and rotational velocities respectively. First, equating

the translational velocities yields,

ẋt (t ) = (
u̇L − θ̇(vL0 +ψzL0de1)

)
cosθ0 −

(
v̇L + (L+de1 +uL0)θ̇+ ψ̇zLde1

)
sinθ0 (5.21)

ẏt (t ) = (
v̇L + (L+de1 +uL0)θ̇+ ψ̇zLde1

)
cosθ0 +

(
u̇L − θ̇(vL0 +ψzL0de1)

)
sinθ0 (5.22)

and equating the rotational velocities gives,

γ̇(t ) = θ̇(t )+ ψ̇zL(t ) (5.23)

Rearraging these equations so that all terms are on the left-hand side, leads to

ẋt (t )+ (
v̇L + (L+de1 +uL0)θ̇+ ψ̇zLde1

)
sinθ0 −

(
u̇L − θ̇(vL0 +ψzL0de1)

)
cosθ0 = 0 (5.24)

ẏt (t )− (
v̇L + (L+de1 +uL0)θ̇+ ψ̇zLde1

)
cosθ0 +

(
u̇L − θ̇(vL0 +ψzL0de1)

)
sinθ0 = 0 (5.25)

γ̇(t )− θ̇(t )− ψ̇zL(t ) = 0 (5.26)
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Quasi-velocities

We now convert each of the beam and end-effector velocity variables to quasi-velocities.

Q̇1(t ) = ψ̇z(x, t ) (5.27)

Q̇2(t ) = ψ̇zL(t ) (5.28)

Q̇3(x, t ) = θ̇(t ) (5.29)

Q̇4(x, t ) = u̇(x, t ) (5.30)

Q̇5(x, t ) = u̇L(t ) (5.31)

Q̇6(t ) = v̇(x, t ) (5.32)

Q̇7(t ) = v̇L(t ) (5.33)

There are three remaining quasi-velocities necessary to completely define the system. The

three constraint equations (Equations (5.21) - (5.23)) are chosen to be the these three re-

maining quasi-velocities. So, substituting the quasi-velocity relations into the constraint

equations, yields

ẋt (t )+ (
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)
sinθ0 −

(
Q̇5 −Q̇3(vL0 +ψzL0de1)

)
cosθ0 = 0 (5.34)

ẏt (t )− (
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)
cosθ0 +

(
Q̇5 −Q̇3(vL0 +ψzL0de1)

)
sinθ0 = 0 (5.35)

γ̇(t )−Q̇3(t )−Q̇2(t ) = 0 (5.36)

Now we equate the left-hand side of each equation to a quasi-velocity variable according to,

Q̇8 = ẋt (t )+ (
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)
sinθ0 −

(
Q̇5 −Q̇3(vL0 +ψzL0de1)

)
cosθ0 (5.37)

Q̇9 = ẏt (t )− (
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)
cosθ0 +

(
Q̇5 −Q̇3(vL0 +ψzL0de1)

)
sinθ0 (5.38)

Q̇10 = γ̇−Q̇3 −Q̇2 (5.39)

Quasi-kinetic energy

To calculate the kinetic energy of the target it is necessary to rearrage the quasi-velocity

expressions in terms of the original target velocity variables (ẋt (t), ẏt (t), γ̇(t)). So, the new

translational velocity expression is,

v
~

t (t ) =F→
T
a


Q̇8 −

(
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)
sinθ0 +

(
Q̇5 −Q̇3(vL0 +ψzL0de1)

)
cosθ0

Q̇9 +
(
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)
cosθ0 −

(
Q̇5 −Q̇3(vL0 +ψzL0de1)

)
sinθ0

0


(5.40)

and the new angular velocity is,

ω
~

e (t ) =F→
T
a


0

0

Q̇10(t )+Q̇3 +Q̇2

 (5.41)
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The translational kinetic energy of a rigid body is,

Ttr ans = 1

2
mv
~
· v
~

(5.42)

For the target, this results in (for simplicity of form the variable dependence is left out),

T ∗
t t = 1

2
mt

((
Q̇8 −Kt t1 sinθ0 +Kt t2 cosθ0

)2 + (
Q̇9 +Kt t1 cosθ0 −Kt t2 sinθ0

)2
)

(5.43)

where,

Kt t1 = Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1 (5.44)

Kt t2 = Q̇5 −Q̇3(vL0 +ψzL0de1) (5.45)

Similarly, the rotational kinetic energy of a rigid body is,

Tr ot = 1

2
ω
~

J ω
~

(5.46)

where J is the inertia matrix for the body. For the target in this case, the inertia matrix can be

stated as,

J =


Jt1 0 0

0 Jt2 0

0 0 Jt

 (5.47)

Resulting in the rotational quasi-kinetic energy of the target as,

T ∗
tr =

1

2
Jt (Q̇10 +Q̇3 +Q̇2)2 (5.48)

The end-effector velocity using quasi-velocities is,

v
~

e (t ) =F→
T
a


((

Q̇5 −Q̇3(vL0 +ψzL0de1)
)

cosθ0 −Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1
)

sinθ0(
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)
cosθ0 +

(
Q̇5 −Q̇3(vL0 +ψzL0de1)

)
sinθ0

0


(5.49)

and its corresponding angular velocity is,

ω
~

e (t ) =F→
T
a


0

0

Q̇3(t )+Q̇2(t )

 (5.50)

The inertia matrix for the end effector in this case is,

J =


Je1 0 0

0 Je2 0

0 0 Je

 (5.51)
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This results in the following expressions for the translational and rotational quasi-kinetic

energies.

T ∗
et =

1

2
me

((
Q̇7 + (L+de1 +uL0)Q̇3 +Q̇2de1

)2 + (
Q̇5 −Q̇3(vL0 +ψzL0de1)

)2
)

(5.52)

T ∗
er =

1

2
Je (Q̇3 +Q̇2)2 (5.53)

The quasi-kinetic energy due to the flexibility of the beam is in general,

Tb = 1

2

∫
V
ρ(v
~

b · v
~

b)dV (5.54)

where ρ is the volume mass density. In this case, v
~

b is given by,

v
~

b(x, t ) =F→
T
a


[Q̇4 − yQ̇1 +Q̇3(y + v0)]cosθ0 − [Q̇6 −Q̇3(x +u0 − yψz0)]sinθ0

[Q̇6 −Q̇3(x +u0 − yψz0)]cosθ0 + [Q̇4 − yQ̇1 +Q̇3(y + v0)]sinθ0

0

 (5.55)

Resulting in the following expression for the kinetic energy of the beam,

T ∗
b = 1

2

∫
V
ρ

(
[Q̇4 − yQ̇1 +Q̇3(y + v0)]2 + [Q̇6 −Q̇3(x +u0 − yψz0)]

)
dV (5.56)

The kinetic energy of the motor is,

T ∗
m = 1

2
JmQ̇2

3 (5.57)

where Jm is the inertia of the motor. The total quasi-kinetic energy of the system is given by

the sum of Equations (5.43), (5.48), (5.52), (5.53), (5.56), and (5.57).
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Generalised Quasi-momenta

The quasi-momenta for the system can be found by differentiating the total quasi-kinetic

energy of the system, as per

∂T ∗

∂Q̇1
=

∫
V
ρ

(
y2(Q̇1 +Q̇3)− y(Q̇4 − v0Q̇3)

)
dV (5.58)

∂T ∗

∂Q̇2
= (me +mt )de1

(
de1(Q̇2 +Q̇3)+Q̇7 + (L+uL0)Q̇3

)
+(Jt + Je )(Q̇2 +Q̇3)+mt de1(−Q̇8 sinθ0 +Q̇9 cosθ0)+ JtQ̇10 (5.59)

∂T ∗

∂Q̇3
= ((Je + Jt )+ (me +mt )de1(L+uL0 +de1))Q̇2 + (Jm + Je + Jt )Q̇3

+(me +mt )
((

(L+uL0 +de1)2 + (vL0 +de1ψzL0)2)Q̇3 + (L+uL0 +de1)Q̇7

+(vL0 +de1ψzL0)Q̇5
)−mt

(
(vL0 +de1ψzL0)(Q̇8 cosθ0 +Q̇9 sinθ0) (5.60)

− (L+uL0 +de1)(−Q̇8 sinθ0 +Q̇9 cosθ0)
)+ JtQ̇10 +

∫
V
ρ

(−(y + v0)Q̇4

(x +u0 − yψz)Q̇6 + y(y + v0)Q̇1 +
(
(x +u0 − yψz)2 + (y + v0)2)Q̇3

)
dV

∂T ∗

∂Q̇4
=

∫
V
ρ

(−v0Q̇3 +Q̇4 − y(Q̇3 +Q̇1)
)

dV (5.61)

∂T ∗

∂Q̇5
= (me +mt )(Q̇5 −Q̇3(vL0 +de1ψzL0)+mt (Q̇8 cosθ0 +Q̇9 sinθ0) (5.62)

∂T ∗

∂Q̇6
=

∫
V
ρ

(
Q̇6 + (x +u0 − yψz0)Q̇3

)
dV (5.63)

∂T ∗

∂Q̇7
= (me +mt )(Q̇7 +Q̇3(L+uL0 +de1)+de1Q̇2)+mt (−Q̇8 sinθ0 +Q̇9 cosθ0)(5.64)

Note that we don’t need to calculate the quasi-momenta for the constraint quasi-variables

since the variation associated with these quasi-momenta is zero (as stated in section 5.2).

Velocity Relations

The results from the previous section are used in the Jourdain Variational Principle (JVP) [29],

10∑
i=1

(
∂T

∂Q̇i

+
− ∂T

∂Q̇i

−)
δQ̇i = 0 (5.65)

where the superscript + indicates the post-capture quasi-momentum, superscript − indi-

cates the pre-capture quasi-momentum, and δQ̇i is the variation with respect to quasi-

velocity i . The variation for i = 8,9,10 is zero since these quasi-velocities are constrained.

Therefore, we have velocity relations for i = 1..7 as stated in the following equations. First,

there is the velocity relation for the bending slope rate along the beam, ψ̇z(x, t ),∫
V
ρy((y + v0)θ̇+− u̇(x)++ yψ̇z(x)+)dV =

∫
V
ρy((y + v0)θ̇−− u̇(x)−+ yψ̇z(x)−)dV (5.66)

49



CHAPTER 5. MODELLING THE CAPTURE DYNAMICS

Next, the velocity relation for the bending slope of the end of the beam ψ̇zL(t ),

(me +mt )de1

(
v̇
+
L +de1ψ̇

+
zL + (L+uL0 +de1)θ̇+

)
+ (Je + Jt )(ψ̇+

zL + θ̇+) =
(me +mt )de1

(
v̇
−
L +de1ψ̇

−
zL +L+uL0 +de1)θ̇−

)+ (Jt + Je )(ψ̇−
zL + θ̇−)

+mt de1(−Q̇−
8 sinθ0 +Q̇−

9 cosθ0)+ JtQ̇
−
10

(5.67)

The velocity relation for the angular velocity of the beam θ̇(t ).

(me +mt )
((

(L+uL0 +de1)2 + (vL0 +de1ψzL0)2) θ̇+− (vL0 +de1ψzL0)u̇
+
L

+(L+uL0 +de1)(v̇
+
L +de1ψ̇

+
zL)

)
+ (Je + Jt )ψ̇+

zL + (Jm + Je + Jt )θ̇+

+
∫
ρ

((
(x +u0 − yψz)2 + (y + v0)2) θ̇+− (y + v0)u̇

++ (x +u0 − yψz)v̇
++ y(y + v0)ψ̇+

z

)
dV

= (me +mt )
(
(L+uL0 +de1)2 + (vL0 +de1ψzL0)2) θ̇−+ (Je + Jt )(ψ̇−

zL + θ̇−)+ Jm θ̇
−

− (me +mt )(vL0 +de1ψzL0)u̇
−
L + (me +mt )de1(L+uL0 +de1)ψ̇−

zL + (me +mt )(L+uL0 +de1)v̇
−
L

+
∫
ρ(((x +u0 − yψz)2 + (y + v0)2)θ̇−− (y + v0)u̇

−+ (x +u0 − yψz)v̇
−+ y(y + v0)ψ̇−

z )dV

−mt (vL0 +ψzL0de1)(Q̇−
8 cosθ0 +Q̇−

9 sinθ0)+mt (L+uL0 +de1)(Q̇−
9 cosθ0 −Q̇−

8 sinθ0)+ JtQ̇
−
10

(5.68)

The velocity relation for the extension of the beam u̇(x, t ),∫
V
ρ

(
u̇(x)+− yψ̇+− (y + v0)θ̇+

)
dV =

∫
V
ρ

(
u̇(x)−− yψ̇−− (y + v0)θ̇−

)
dV (5.69)

The velocity relation for the extension of the end of the beam u̇L(t ),

(me +mt )
(
u̇
+
L − (vL0 +ψzL0de1)θ̇+

)
=(me +mt )

(
u̇L − (vL0 +de1ψzL0)θ̇−

)+mt (Q̇−
8 cosθ0

+Q̇−
9 sinθ0)

(5.70)

The velocity relation for the transverse deflection of the beam v̇(x, t ),∫
ρ((x +u0 − yψz0)θ̇++ v̇

+
)dV =

∫
ρ((x +u0 − yψz0)θ̇−+ v̇(x)−)dV (5.71)

and finally, the velocity relation for the transverse deflection of the end of the beam v̇L(t ),

(me +mt )(v̇
+
L +de1ψ̇

+
zL + (L+uL0 +de1)θ̇+) =(me +mt )(v̇

−
L +de1ψ̇

−
zL + (L+uL0 +de1)θ̇−)

+mt (−Q̇−
8 sinθ0 +Q̇−

9 cosθ0)

(5.72)
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Now, we substitute the constraint equations in for Q̇8, Q̇9 and Q̇10 into Equations (5.66)–

(5.72). The bending slope along the beam is unchanged,∫
V
ρy((y + v0)θ̇+− u̇(x)++ yψ̇z(x)+)dV =

∫
V
ρy((y + v0)θ̇−− u̇(x)−+ yψ̇z(x)−)dV (5.73)

and the bending slope at the end of the beam becomes,

(me +mt )de1

(
v̇
+
L + (L+uL0 +de1)θ̇++de1ψ̇

+
zL

)
+ (Je + Jt )(ψ̇+

zL + θ̇+)

= me de1
(
v̇
−
L +de1ψ̇

−
zL + (L+uL0 +de1)θ̇−

)+ Je (ψ̇−
zL + θ̇−)+mt de1(ẏ−

t cosθ0 − ẋ−
t sinθ0)+ Jt γ̇

−

(5.74)

The velocity relation for the angular velocity of the beam becomes,

(me +mt )
((

(L+uL0 +de1)2 + (vL0 +de1ψzL0)2) θ̇++ (vL0 +de1ψzL0)u̇
+
L

−(L+uL0 +de1)(v̇
+
L +de1ψ̇

+
zL)

)
+ (Je + Jt )ψ̇+

zL + (Jm + Je + Jt )θ̇+

+
∫
ρ

((
(x +u0 − yψz)2 + (y + v0)2) θ̇++ (y + v0)u̇

+− (x +u0 − yψz)v̇
+− y(y + v0)ψ̇+

z

)
dV

= me
(
(L+uL0 +de1)2 + (vL0 +de1ψzL0)2) θ̇−+ Je (ψ̇−

zL + θ̇−)+ Jm θ̇
−

+me (vL0 +de1ψzL0)u̇
−
L −me (L+uL0 +de1)v̇

−
L −me de1(L+uL0 +de1)ψ̇−

zL

+
∫
ρ(((x +u0 − yψz)2 + (y + v0)2)θ̇−+ (y + v0)u̇

−− (x +u0 − yψz)v̇
−− y(y + v0)ψ̇−

z )dV

+mt (vL0 +de1ψzL0)(ẋ−
t cosθ0 − ẏ−

t sinθ0)−mt (L+uL0 +de1)(ẋ−
t sinθ0 + ẏ−

t cosθ0)+ Jt γ̇
−

(5.75)

The velocity relation for the extension of the beam is unchanged as,∫
V
ρ

(
u̇(x)+− yψ̇+− (y + v0)θ̇+

)
dV =

∫
V
ρ

(
u̇(x)−− yψ̇−− (y + v0)θ̇−

)
dV (5.76)

and the velocity relation for the extension of the end of the beam is,

(me +mt )
(
u̇
+
L − (vL0 +de1ψzL0)θ̇+

)
= me

(
u̇
−
L − (vL0 +de1ψzL0)θ̇−

)+mt (ẋ−
t cosθ0 + ẏ−

t sinθ0)

(5.77)

The transverse deflection velocity relation is unchanged,∫
ρ((x +u0 − yψz0)θ̇++ v̇

+
)dV =

∫
ρ((x +u0 − yψz0)θ̇−+ v̇(x)−)dV (5.78)

but the transverse deflection velocity relation for the end of the beam becomes,

(me +mt )(v̇
+
L +de1ψ̇

+
zL + (L+uL0 +de1)θ̇+) =me (v̇

−
L +de1ψ̇

−
zL + (L+uL0 +de1)θ̇−)

+mt (ẏ−
t cosθ0 − ẋ−

t sinθ0)
(5.79)
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Under the assumption that the x-axis corresponds to the centroidal axis of the beam we can

simplify the integrals using, ∫ ∫
dydz = A(x) (5.80)∫ ∫
ydydz = 0 (5.81)∫ ∫
y2dydz = Iy y (x) (5.82)

which means the equations (5.73)–(5.79) become, respectively,∫ L

0
ρIy y (x)

(
ψ̇+

z + θ̇+)
dx =

∫ L

0
ρIy y (x)

(
ψ̇−

z + θ̇−)
dx (5.83)

(me +mt )de1

(
v̇
+
L − (L+uL0 +de1)θ̇++de1ψ̇

+
zL

)
+ (Je + Jt )(ψ̇+

zL + θ̇+)

= me de1
(
v̇
−
L +de1ψ̇

−
zL − (L+uL0 +de1)θ̇−

)+ Je (ψ̇−
zL + θ̇−)+mt de1(ẋ−

t sinθ0 + ẏ−
t cosθ0)+ Jt γ̇

−

(5.84)

(me +mt )
((

(L+uL0 +de1)2 + (vL0 +de1ψzL0)2) θ̇++ (vL0 +de1ψzL0)u̇
+
L

+(L+uL0 +de1)(v̇
+
L +de1ψ̇

+
zL)

)
+ (Je + Jt )ψ̇+

zL + (Jm + Je + Jt )θ̇+

+
∫ L

0
ρ

(
A

(
((x +u0)2 + v2

0)θ̇+− v0u̇
++ (x +u0)v̇

+)
+ Iy y

(
(1+ψ2

z0)θ̇++ ψ̇+))
dx

= me
(
(L+uL0 +de1)2 + (vL0 +de1ψzL0)2) θ̇−+ Je (ψ̇−

zL + θ̇−)+ Jm θ̇
−

+me (vL0 +de1ψzL0)u̇
−
L −me (L+uL0 +de1)v̇

−
L +me de1(L+uL0 +de1)ψ̇−

zL

+
∫ L

0
ρ

(
A

(
((x +u0)2 + v2

0)θ̇−− v0u̇
−+ (x +u0)v̇

−)+ Iy y
(
(1+ψ2

z0)θ̇−+ ψ̇−))
dx

−mt (vL0 +de1ψzL0)(ẋ−
t cosθ0 + ẏ−

t sinθ0)+mt (L+uL0 +de1)(ẏ−
t cosθ0 − ẋ−

t sinθ0)+ Jt γ̇
−

(5.85)

∫ L

0
ρA(x)

(
u̇(x)+− v0(x)θ̇+

)
dx =

∫ L

0
ρA(x)

(
u̇(x)−− v0(x)θ̇−

)
dx (5.86)

(me +mt )
(
u̇
+
L − (vL0 +de1ψzL0)θ̇+

)
= me

(
u̇
−
L − (vL0 +de1ψzL0)θ̇−

)+mt (ẋ−
t cosθ0 − ẏ−

t sinθ0)

(5.87)

∫ L

0
ρA(x)

(
v̇(x)++ (x +u0(x))θ̇+

)
dx =

∫ L

0
ρA(x)

(
v̇(x)−+ (x +u0(x))θ̇−

)
dx (5.88)
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(me +mt )(v̇
+
L +de1ψ̇

+
zL + (L+uL0 +de1)θ̇+) =me (v̇

−
L +de1ψ̇

−
zL + (L+uL0 +de1)θ̇−)

+mt (ẏ−
t cosθ0 − ẋ−

t sinθ0)
(5.89)

Leaving aside Equation (5.85) for the moment, we will simplify the remaining equations.

Note that because the integrals are over the same domain and range, we will simply equate

the integrands where appropriate,

ψ̇(x)+ = ψ̇(x)−− θ̇++ θ̇− (5.90)

ψ̇+
zL = me de1

(
v̇
−
L +de1ψ̇

−
zL − (L+uL0 +de1)θ̇−

)+ Je (ψ̇−
zL + θ̇−)+ Jt γ̇

−

(me +mt )d 2
e1 + (Je + Jt )

+mt de1(ẋ−
t sinθ0 + ẏ−

t cosθ0)− (Je + Jt )θ̇+

(me +mt )d 2
e1 + (Je + Jt )

−
(me +mt )de1

(
v̇
+
L + (L+uL0 +de1)θ̇+

)
(me +mt )d 2

e1 + (Je + Jt )
(5.91)

u̇(x)+ = u̇(x)−− v0(x)(θ̇+− θ̇−) (5.92)

u̇
+
L = me

(
u̇
−
L − (vL0 +de1ψzL0)θ̇−

)+mt (ẋ−
t cosθ0 + ẏ−

t sinθ0)

me +mt

+(vL0 +de1ψzL0)θ̇+ (5.93)

v̇(x)+ = v̇(x)−+ (x +u0(x))(θ̇−− θ̇+) (5.94)

v̇
+
L = me (v̇

−
L +de1ψ̇

−
zL + (L+uL0 +de1)θ̇−)+mt (ẏ−

t cosθ0 − ẋ−
t sinθ0)

(me +mt )

−(de1ψ̇
+
zL + (L+uL0 +de1)θ̇+) (5.95)

After substituting these results into Equation (5.85) and simplifying, we find that

θ̇+ = θ̇− (5.96)
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which means the final set of equations (5.90)–(5.96) can be written as,

ψ̇z(x)+ = ψ̇z(x)− (5.97)

ψ̇+
zL = Jt (γ̇−− θ̇−)+ Jeψ̇

−
zL

Jt + Je
(5.98)

u̇(x)+ = u̇(x)− (5.99)

u̇
+
L = mt

(
ẋ−

t cosθ+ ẏ−
t sinθ+ (vL +de1ψzL)θ̇−

)+me u̇
−
L

mt +me
(5.100)

v̇(x)+ = v̇(x)− (5.101)

v̇
+
L = me v̇

−
L +mt

(
ẏ−

t cosθ− ẋ−
t sinθ− θ̇−(uL +L+de1)

)
mt +me

+de1 Jt (θ̇−− γ̇−)

Jt + Je
+ de1ψ̇

−
zL(me Jt −mt Je )

(mt +me )(Jt + Je )
(5.102)

θ̇+ = θ̇− (5.103)

From these we can note that only the tip velocities (Equations (5.98), (5.100), and (5.102)) are

directly affected by the capture event. Also of importance is that the angular velocity changes

are taken strictly by the rotation of the end-effector, not the beam. So in this case, we see the

tip velocities updated and then the changes will propagate down the beam.

5.7 General Beam Capture

In this case, we are considering a 3D beam model (including torsion) and general rigid

bodies for both the end-effector and target. The capture can happen at any point on the end-

effector and target. Because of the torsion model, we do assume that the beam cross-section

is constant along the beam.

Post-Capture Velocity Constraint

Modelling the capture process as a plastic collision, from Section 5.1 we get that the velocities

at impact must be equivalent. Therefore, our velocity constraint is that after capture the target

velocity and end effector velocities have to match. Since both the target and end-effector are

rigid bodies, we assume that they contact at a minimum of one point post-capture and that

the target and end-effector have the same velocity at that point.

The target velocity given in Equation (3.4) is for the centre of mass, not the point of

contact. So, assuming a vector r
~

tc from the centre of mass to the point of contact, we need to
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Figure 5.2: 3D Target Capture

add the additional velocity (see Figure 5.2),

v
~

tc (t ) = ω
~

t × r
~

tc (5.104)

= F→
T
a


rtc3β̇

−rtc3α̇

rtc2α̇− rtc1β̇

 (5.105)

Therefore, the translational velocity at the point of contact is,

v
~

c (t ) =F→
T
a


ẋt + rtc3β̇

ẏt − rtc3α̇

żt + rtc2α̇− rtc1β̇

 (5.106)

The end-effector velocity is given in Equation (3.83), but we need the velocity at the point of

contact. The velocity at the point of contact has an additional component from the offset of

the contact point from the centre of mass, given by vector r
~

et (see Figure 5.2),

v
~

et (t ) = ω
~

e × r
~

et (5.107)

= F→
T
a


−(θ̇+ ψ̇zL)

(
(ret1 −ψzLret2 +ψyLret3)sinθ+ (−ψzLret1 − ret2 +θxLret3)cosθ

)
(θ̇+ ψ̇zL)

(−ψzLret1 − ret2 +θxLret3)sinθ+ (ret1 −ψzLret2 +ψyLret3)cosθ
)

−ψ̇yL
(
(ret1 −ψzLret2 +ψyLret3)cosθ+ (ψzLret1 + ret2 −θxLret3)sinθ

)


+


−ψ̇yL

(
ψyLret1 −θxLret2 − ret3

)
θ̇xL

(
ψyLret1 −θxLret2 − ret3

)
θ̇xL

(
(ψzLret1 + ret2 −θxLret3)cosθ+ (ret1 −ψzLret2 +ψyLret3)sinθ

)
 (5.108)
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which we can write as,

v
~

et (t ) =


(θ̇+ ψ̇zL)(−Ket1 sinθ+Ket2 cosθ)−Ket3ψ̇yL

(θ̇+ ψ̇zL)(Ket2 sinθ+Ket1 cosθ)+Ket3θ̇xL

θ̇xL(−Ket2 cosθ+Ket1 sinθ)− ψ̇yL(Ket1 cosθ−Ket2 sinθ)

 (5.109)

where Ket1, Ket2, and Ket3 are defined as,

Ket1 = ret1 −ψzLret2 +ψyLret3 (5.110)

Ket2 = −ψzLret1 − ret2 +θxLret3 (5.111)

Ket3 = ψyLret1 −θxLret2 − ret3 (5.112)

Note that during capture all of these are considered to be constant. The velocity at the point

of contact is defined by,

v
~

ec = v
~

e + v
~

et (5.113)

where v
~

e is as defined in Equation (3.84). Therefore, The velocity of the end-effector at the

contact point is,

v
~

ec (t ) =F→
T
a


(
Kve1 +Ket2(θ̇+ ψ̇zL)

)
cosθ− (

Kve2 +Ket1(θ̇+ ψ̇zL)
)

sinθ−Ket3ψ̇yL(
Kve2 +Ket1(θ̇+ ψ̇zL)

)
cosθ+ (

Kve1 +Ket2(θ̇+ ψ̇zL)
)

sinθ+Ket3θ̇xL

Kve3 + θ̇xL(−Ket2 cosθ+Ket1 sinθ)− ψ̇yL(Ket1 cosθ+Ket2 sinθ)

 (5.114)

In this equation, Kve1, Kve2, and Kve3 contain velocities and as such are not constant during

capture which means we will need to redefine them in terms of quasi-velocities later. The

velocities of the target and the end-effector at the point of contact are given in the inertial

frame so we can subtract components to get the following constraints,

ẋt + rtc3β̇+Ket3ψ̇yL −
(
Kve1 +Ket2(θ̇+ ψ̇zL)

)
cosθ

+(
Kve2 +Ket1(θ̇+ ψ̇zL)

)
sinθ = 0 (5.115)

ẏt − rtc3α̇−Ket3θ̇xL −
(
Kve2 +Ket1(θ̇+ ψ̇zL)

)
cosθ

−(
Kve1 +Ket2(θ̇+ ψ̇zL)

)
sinθ = 0 (5.116)

żt + rtc2α̇+ rtc1β̇−Kve3 − θ̇xL(−Ket2 cosθ+Ket1 sinθ)

+ψ̇yL(Ket1 cosθ+Ket2 sinθ) = 0 (5.117)

Since we are considering the impact duration to be infinitesimal, all position variables

can be replaced with their value at impact (θ(t) = θ(t1), u(L, t) = u(L, t1), v(L, t) = v(L, t1),
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w(L, t ) = w(L, t1) ) which we will denote as θ0, uL0, vL0 and w L0 respectively.

ẋt + rtc3β̇+Ket3ψ̇yL −
(
Kve1 +Ket2(θ̇+ ψ̇zL)

)
cosθ0

−(
Kve2 +Ket1(θ̇+ ψ̇zL)

)
sinθ0 = 0 (5.118)

ẏt − rtc3α̇−Ket3θ̇xL −
(
Kve2 +Ket1(θ̇+ ψ̇zL)

)
cosθ0

−(
Kve1 +Ket2(θ̇+ ψ̇zL)

)
sinθ0 = 0 (5.119)

żt + rtc2α̇+ rtc1β̇−Kve3 − θ̇xL(−Ket2 cosθ0 +Ket1 sinθ0)

+ψ̇yL(Ket1 cosθ0 +Ket2 sinθ0) = 0 (5.120)

where Ket1, Ket2, Ket3, Kve1, Kve2, and Kve3 become,

Ket1 = ret1 −ψzL0ret2 +ψyL0ret3 (5.121)

Ket2 = −ψzL0ret1 − ret2 +θxL0ret3 (5.122)

Ket3 = ψyL0ret1 −θxLret2 − ret3 (5.123)

Kve1 = u̇L − θ̇(vL0 +de2 +ψzL0de1 −θxL0de3)+ ψ̇yLde3 − ψ̇zLde2 (5.124)

Kve2 = v̇L + ψ̇zLde1 − θ̇xLde3 + θ̇(L+uL0 +de1 −ψzL0de2 +ψyL0de3) (5.125)

Kve3 = ẇ L − ψ̇yLde1 + θ̇xLde2 (5.126)

Similarly, for the angular velocities,

α̇(t )− θ̇xL(t ) = 0 (5.127)

β̇(t )− ψ̇yL(t ) = 0 (5.128)

γ̇(t )− θ̇(t )− ψ̇zL(t ) = 0 (5.129)
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Quasi-Velocities

Representing each of the beam and end-effector velocity variables as quasi-velocities,

Q̇1(x, t ) = ψ̇x(x, t ) (5.130)

Q̇2(x, t ) = ψ̇y (x, t ) (5.131)

Q̇3(t ) = ψ̇yL(t ) (5.132)

Q̇4(x, t ) = ψ̇z(x, t ) (5.133)

Q̇5(t ) = ψ̇zL(t ) (5.134)

Q̇6(t ) = θ̇(t ) (5.135)

Q̇7(x, t ) = θ̇x(x, t ) (5.136)

Q̇8(x, t ) = u̇(x, t ) (5.137)

Q̇9(t ) = u̇L(t ) (5.138)

Q̇10(x, t ) = v̇(x, t ) (5.139)

Q̇11(t ) = v̇L(t ) (5.140)

Q̇12(x, t ) = ẇ(x, t ) (5.141)

Q̇13(t ) = ẇ L(t ) (5.142)

Q̇14(t ) = θ̇xL(t ) (5.143)

There are six remaining quasi-velocities to completely define the system corresponding to

the translation and rotation constraints. Starting with the translation constraints,

Q̇15 = ẋt + rtc3β̇+Ket3Q̇3 −
(
Kve1 +Ket2(Q̇6 +Q̇5)

)
cosθ0

−(
Kve2 +Ket1(Q̇6 +Q̇5)

)
sinθ0 (5.144)

Q̇16 = ẏt − rtc3α̇−Ket3Q̇14 −
(
Kve2 +Ket1(Q̇6 +Q̇5)

)
cosθ0

−(
Kve1 +Ket2(Q̇6 +Q̇5)

)
sinθ0 (5.145)

Q̇17 = żt + rtc2α̇+ rtc1β̇−Kve3 −Q̇14(−Ket2 cosθ0 +Ket1 sinθ0)

+Q̇3(Ket1 cosθ0 +Ket2 sinθ0) (5.146)

where Kve1, Kve2, and Kve3 are now as follows,

Kve1 = Q̇9 −Q̇6(vL0 +de2 +ψzL0de1 −θxL0de3)+Q̇3de3 −Q̇5de2 (5.147)

Kve2 = Q̇11 +Q̇5de1 −Q̇14de3 +Q̇6(L+uL0 +de1 −ψzL0de2 +ψyL0de3) (5.148)

Kve3 = Q̇13 −Q̇3de1 +Q̇14de2 (5.149)
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and the rotation constraints,

Q̇18(t ) = α̇(t )− θ̇xL(t ) (5.150)

Q̇19(t ) = β̇(t )− ψ̇yL(t ) (5.151)

Q̇20(t ) = γ̇(t )− θ̇(t )− ψ̇zL(t ) (5.152)

Substituting the quasi-velocities into the rotation constraints,

Q̇18(t ) = α̇(t )−Q̇14(t ) (5.153)

Q̇19(t ) = β̇(t )−Q̇3(t ) (5.154)

Q̇20(t ) = γ̇(t )−Q̇6(t )−Q̇5(t ) (5.155)

which can be re-arranged for the angular velocities gives,

α̇(t ) = Q̇18(t )+Q̇14(t ) (5.156)

β̇(t ) = Q̇19(t )+Q̇3(t ) (5.157)

γ̇(t ) = Q̇20(t )+Q̇6(t )+Q̇5(t ) (5.158)

Substituting these into Equations (5.144)–(5.146) we get the quasi-velocities for the transla-

tional constraints,

Q̇15 = ẋt + rtc3(Q̇19 +Q̇3)+Ket3Q̇3 −
(
Kve1 −Ket2(Q̇6 +Q̇5)

)
cosθ0

−(
Kve2 +Ket1(Q̇6 +Q̇5)

)
sinθ0 (5.159)

Q̇16 = ẏt − rtc3(Q̇18 +Q̇14)−Ket3Q̇14 −
(
Kve2 +Ket1(Q̇6 +Q̇5)

)
cosθ0

−(
Kve1 −Ket2(Q̇6 +Q̇5)

)
sinθ0 (5.160)

Q̇17 = żt + rtc2(Q̇18 +Q̇14)+ rtc1(Q̇19 +Q̇3)−Kve3 −Q̇14(−Ket2 cosθ0 −Ket1 sinθ0)

+Q̇3(Ket1 cosθ0 +Ket2 sinθ0) (5.161)

and re-arranging for the target velocities,

ẋt = Q̇15 − rtc3(Q̇19 +Q̇3)−Ket3Q̇3 +
(
Kve1 +Ket2(Q̇6 +Q̇5)

)
cosθ0

+(
Kve2 +Ket1(Q̇6 +Q̇5)

)
sinθ0 (5.162)

ẏt = Q̇16 + rtc3(Q̇18 +Q̇14)+Ket3Q̇14 +
(
Kve2 +Ket1(Q̇6 +Q̇5)

)
cosθ0

+(
Kve1 −Ket2(Q̇6 +Q̇5)

)
sinθ0 (5.163)

żt = Q̇17 − rtc2(Q̇18 +Q̇14)− rtc1(Q̇19 +Q̇3)+Kve3 +Q̇14(−Ket2 cosθ0 −Ket1 sinθ0)

−Q̇3(Ket1 cosθ0 +Ket2 sinθ0) (5.164)
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Quasi-Kinetic Energy

Starting with the kinetic energy of the motor, the kinetic energy in quasi-velocities (which we

refer to as quasi-kinetic energy) is,

T ∗
m = 1

2
JmQ̇2

6 (5.165)

The quasi-kinetic energy of the beam due to bending is,

T ∗
xb = 1

2

∫ L

0
ρA(Q̇2

8 +Q̇2
10 +Q̇2

12 +Q̇2
6 ((x +u0)2 + v2

0))dx

+ 1

2

∫ L

0
ρ(Iy y (Q̇2

6 (1+ψ2
z0))+Q̇2

4 −2Q̇6Q̇4)+ Izz(Q̇2
2 +Q̇2

6ψy0))dx

−
∫ L

0
ρAQ̇6((x +u0)Q̇10 +Q̇8v0)dx

(5.166)

and the quasi-kinetic energy due to torsion is,

T ∗
xt =

1

2

∫ L

0
ρ

(
Q̇2

6 (Aφ2ψ2
x0 + Izzθ

2
x0)+ Jg Q̇2

7 + Aφ2Q̇2
1

)
dx (5.167)

The rotational quasi-kinetic energy of the end-effector is,

T ∗
r e =

1

2
(JexxQ̇2

14+ Je y yQ̇2
3 + Jezz(Q̇3+Q̇6)2)+Q̇14(Jex yQ̇3+ Jexz(Q̇6+Q̇5))+ Je y zQ̇3(Q̇6+Q̇5)

(5.168)

and the translational quasi-kinetic energy of the end-effector is,

T ∗
te =

1

2
me (K 2

ve1 +K 2
ve2 +K 2

ve3) (5.169)

where Kve1, Kve2, and Kve3 are as given in Equations (5.147)–(5.149). As stated in Equation

(3.14), the kinetic energy of the target is,

T ∗
t =1

2

(
mt

(
ẋ2

t + ẏ2
t + ż2

t

)+ α̇2 Jt xx + β̇2 Jt y y + γ̇2 Jt zz

+2α̇β̇Jt x y +2α̇γ̇Jt xz +2β̇γ̇Jt y z
) (5.170)

but we use that ẋt , ẏt , and żt are as given in Equations (5.162)–(5.164) and the angular

velocities α̇, β̇, and γ̇ are as given in (5.156)–(5.158). The resulting equation is long and is

omitted for brevity.

Derivation of System of Capture Equations

Since we have 14 independent quasi-velocities, upon applying the capture equation as given

in Equation (5.9), we arrive at a set of 14 equations. However, the number of terms in a

number of the equations makes writing them down difficult and unproductive. As a result,

we derive a set of equations that we can solve numerically once the system parameters are

known. This is done as follows,
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5.7. GENERAL BEAM CAPTURE

1. Calculate the quasi-momenta terms as given in Equation (5.9) for the 14 independent

quasi-velocities.

2. Evaluate the quasi-momenta at the times pre- and post-capture and substitute the

results into Equation (5.9).

3. Evaluate the quasi-momenta for the constrained quasi-velocities associated with the

target and substitute that into the results from step 2.

4. For equations with only integral terms, since both the domain and range of the integral

is equal, one can equate the integrands and solve for q+
i in each equation. These

equations arise from beam deflection velocities along the beam (but not the tip).

5. Substitute the known q+
i into the remaining equations as needed (which is just the hub

angular velocity relation).

6. Convert the system of equations into a matrix system of the form,
q+

1

q+
2

...

q+
n

= Kv p


q+

1

q+
2

...

q+
n

+Kvm (5.171)

where Kv p is a n ×n matrix and Kvm is a n ×1 column matrix of known terms (arising mostly

from the pre-capture velocities). Converting to this form is possible since the system is linear

in q+
i . I have unfortunately not been able to solve this system symbolically, but since both

Kv p and Kvm can be computed once the system parameters are known, this can be solved

numerically.
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CHAPTER

6
Determination of System Damping

Using the exact viscous damping parameters as determined by Rhody [1] in our simulations

results in an underestimation of the damping when simulations are compared to experi-

ment. To improve the damping model, the damping parameters can be reset for the system

requiring the same damping ratio of the first two elastic modes.

One way to calculate the damping ratios is to use the proportional damping relationship

between the Rayleigh damping parameters, damping ratios, and natural frequencies as

presented in Bathe and Wilson [66],

ξi =
b1 +ω2

i b2

2ωi
(6.1)

where ωi is the frequency of the i th mode, b1 is the mass damping coefficient, b2 is the

stiffness damping coefficent, and ξi is the damping ratio of the i th mode.

Once the damping ratios (ξ1,ξ2) have been calculated we can then calculate the damping

coefficents for our discretisation by calculating the natural frequencies of our system, and

solving the linear system to calculate the new damping coefficients. However, there is a more

general approach which we will discuss in the rest of this chapter.

The natural frequencies of the first two modes for the experiment and Rhody’s simulation

are presented in Table 6.

Mode Experiment Rhody Simulation

1 11.9 12.4
2 38.3 35.6

Table 6.1: Natural Frequencies (Hz) [1]

One of the things we would like for the best model possible for a given system, is to have

an accurate representation of the damping in a given system. To that end, we would like to
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determine the damping matrix directly from experimental data. Adhikari [70, 71] describes

techniques for fitting viscous damping models as well as non-viscous damping models to

experimental data. This is effectively a generalization of Rayleigh damping. He notes that

[70], “... any damping model can be fitted to reconstruct the measured set of poles and

residues.” This means that we can use a simple viscous damping model to represent what

may be non-viscous damping.

The basic steps in this process are as follows [71]:

1. Determine Transfer Function(s) for the system. Ideally, one would determine the N

transfer functions due to impulse excitations applied in a grid pattern to the system.

2. Obtain the undamped natural frequencies ω j and modal damping factors ζ j , for

example, using the circle-fitting method [2]. See section 6.2 for details of the procedure.

3. Fit a function ζ= f̂ (ω) which represents the variation of ζ j with respect to ω j for the

range of frequency considered in the study.

4. Calculate the matrix T =
p

M−1K.

5. Obtain the damping matrix using Ĉ = 2MT f̂ (T).

If one has multiple transfer functions, we obtain a damping sub-matrix for each mode

following this approach and then assemble in the traditional finite element fashion.

From Rhody [1], we have experimental data for the rotation of the beam and the tip

deflection, so we have two transfer functions excited by the same impulse (the capture of the

target mass).

If we look at the structure of our matrices in block form we have,

M =
[

M1 M2

M3 M4

]
, K =

[
0 0

0 K4

]
(6.2)

where M1 is a scalar quantity that multiplies θ̈, M4 and K4 are the traditional beam mass

and stiffness matrices (augmented for the addition of the end-effector) and M2 is a 1×n row

matrix that couples the beam rotation to the elements. Also, we have,

M3 = MT
2 (6.3)

So, there is no stiffness matrix for the hub equation (since θ doesn’t appear in the strain

energy). This poses a problem in applying the approach advocated by Adhikari [71] given

above, since the T matrix for that case can’t be calculated (since the sub-matrix for the θ

variable has no stiffness contribution). As such we will propose an alternate approach to

determining the damping matrix.
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6.1 A Coupled System Approach to Damping Modelling

Using the block matrices as given above along with the vector q,

q =
[
θ d

]T
(6.4)

where d is of the form,

d =
[

d1 . . . dn

]
(6.5)

we have the general system of,

Mq̈+Cq̇+Kq = F (6.6)

where F is a vector of zeros for a freely rotating beam. We assume that the damping matrix

takes the form,

C =
[

C1 C2

C3 C4

]
(6.7)

where C1 is a scalar, C2 is a 1×n matrix, C3 = CT
2 and C4 is a n×n matrix. Breaking this system

into two separate (but coupled) systems,

M1θ̈+C1θ̇ =−M2d̈−C2ḋ (6.8)

M4d̈+C4ḋ+K4d =−M3θ̈−C3θ̇ (6.9)

So, we can think of the the right-hand side of each equation as the applied force to that

system. For the second system, we can solve for C4 using Adhikari’s approach and we can

estimate C3 and C1 from the viscous damping model.

6.2 Determining Transfer Functions

To this end, we first determine the transfer function for the system. Consider the input-output

relation in the time domain as,

y(t ) = H(q)u(t )+ v(t ) (6.10)

where y(t ) is the system output, H (q) the model of system plant, u(t ) is the system input, and

v(t ) is the noise in the measurement. The transfer function H (ω) can be estimated given u(t )

and y(t ) using an Empirical Transfer Function Estimate (ETFE) [72] which is implemented in

the System Identification Toolbox in MATLAB with the etfe function. In particular, we leave

the data unsmoothed and tell the function to estimate the transfer function at 50 000 points.

The default is to use only 128 data points which provides poor resolution around the natural

frequencies which is necessary for step 2 of the process.
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6.2. DETERMINING TRANSFER FUNCTIONS

If the input is due to the capture of a point mass, we can represent u(t ) as [1],

u(t ) ≈ mt ẏtδ∆(t ) (6.11)

where mt is the mass of the target, ẏt is the velocity of the target at capture, and δ∆(t ) is the

Dirac delta function. The system output y(t ) is the measured response of the system.

The Bode plot of the magnitude of the ETFE for the beam’s tip deflection during one of

the capture experiments is shown in Figure 6.1. We can note that there are prominent peaks

near 0 Hz, just past 10 Hz and just short of 40 Hz. The first is the rigid body mode while the

others are the first two elastic modes of the beam.
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Figure 6.1: Empirical Transfer Function Estimate

Finding the Natural Frequency from a Transfer Function

We will use a fitting technique in the neighbourhood of a resonance known as a “circle-fit” as

described by Ewins [2]. If the modes are weakly coupled, in the vicinity of of a resonance, we
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assume that the behaviour of the system is dominated by a single mode. This means that we

can write the magnitude of the response in the vicinity of the resonance as,

α(ω) = Ar

ω2
r −ω2 + iηrω

2
r
+Br (6.12)

where α(ω) is the magnitude of the transfer function response at frequency ω, ωr is the

natural frequency of mode r , ηr is the damping constant of mode r , Ar is what Ewins calls

the “modal constant” and Br is the contribution of the other modes to the transfer function

response. It is assumed that this is only weakly dependent or independent of frequency.

Ewins states that the effect or Ar is to scale the size of the circle and rotate it, so for the

basic formula he gives is,

α(ω) = 1

ω2
r −ω2 + iηrω

2
r

(6.13)

Examining Ewins’ modal circle (Figure 6.2), from geometry he gets,

θ
ω

ωr

ω = 0
β

Figure 6.2: Modal Circle [2]

tanβ = ηr

1−
(
ω
ωr

)2 (6.14)

tan(90◦−β) = tan
θ

2
=

1−
(
ω
ωr

)2

ηr
(6.15)

which leads to,

ω2 =ω2
r

(
1−ηr tan

θ

2

)
(6.16)

where θ is the angle between ω and ωr on the modal circle. If we differentiate this with

respect to θ,
dω2

dθ
=−ωr

2ηr
1

2

(
1+ tan

(
θ

2

)2)
(6.17)
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Using the formula for tan θ
2 from earlier,

dω2

dθ
=−ωr

2ηr
1

2

(
1+

(
1− (ω/ωr )2

ηr

)2)
(6.18)

The reciprocal quantity dθ
dω2 is a measure of the rate at which the modal circle is swept out.

This goes to a maximum at the natural frequency. We can see this by differentiating this

expression with respect to ω and noticing that it goes to zero when ω2 =ω2
r . This gives us a

means of locating the natural frequency once the modal circle is fit to the data.

Ewins [2] gives the following steps to calculate the natural frequency of the system.

1. Select the points to be used;

2. fit the circle to the data;

3. locate the natural frequency.

Once the natural frequency has been located we can estimate the damping constant ηr from,

dθ

dω2

∣∣∣∣
ω=ωr

= −2

ω2
rηr

(6.19)

Once we have ηr , we can get the standard damping ratio, ζ from,

ζ= ηr

2
(6.20)

Ewins [2] gives a few recommendations on selecting the data points. The points chosen

should not be largely influenced by other modes in the system, and should cover 270◦ of the

circle, but less than 180◦ is common. But, no less than 6 points should be used.

So, to select the data points, we first find the frequency that gives the maximum amplitude.

Next, we select all the data points within a window of ∆ω/2 around the resonant frequency

this can be done using the fselect routine of the System Identification MATLAB toolbox,

where ∆ω is a user selectable window width. Typically, this is some number much less than 1

Hz but will be dependent upon the resolution of H(ω). In our case, we choose the number

of points based upon the quality of the fit. We choose the largest number of points that still

gives a high quality fit.

The transfer function response will be in general a complex number, so we can generate a

Nyquist plot of the transfer function using the System ID toolbox routine nyquist. We would

like to generate a “best” fit circle to this data. To this end, we use the technique of Rorres and

Romano [73] by defining the error of the fit as,

E(xc , yc ,r ) =
N∑

i=1

(√
(xi −xc )2 + (yi − yc )2 − r

)2

(6.21)
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In our case, the xi points are the real values of our response and the yi points are the

imaginary values of response. Differentiating this expression with respect to r and setting it

equal to zero, we get this expression for the radius,

r = 1

N

N∑
i=1

√
(xi −xc )2 + (yi − yc )2 (6.22)

This means that the optimal radius can be found using an average of the distances to the

center. We can substitute this into the error expression to get this function of two variables,

E(xc , yc ) =
N∑

i=1

(√
(xi −xc )2 + (yi − yc )2 − 1

N

N∑
i=1

√
(xi −xc )2 + (yi − yc )2

)2

(6.23)

This can be solved numerically in MATLAB using the function fminsearch that employs a

Nelder-Mead simplex search which is how Rorres and Romano [73] minimize this equation.

The only caveat is that an initial guess is needed. An initial guess of (xc , yc ) = (0,0) appears to

be adequate. Now that the center point is known we can calculate the radius.

We would like to numerically approximate the sweep rate dθ
dω2 . Since the frequencies are

only known at the individual data points we will only work with them. First, begin by finding

the angle of the data points using a polar coordinate system with its’ origin at the center of

the fitted circle.

θi = tan−1
(

yi − yc

xi −xc

)
(6.24)

Care must be taken in evaluating the arctangent as it is quadrant dependent. The sweep rate

can now be evaluated using finite differences. Once we have calculated the differences, the

frequency at which the maximum sweep rate occurs is the natural frequency.

We can see the result of this process for the first mode is shown in Figure 6.3. The

corresponding plot for the second mode is shown in Figure 6.4 and the rigid body mode

is shown in Figure 6.5. The centre frequency shown in these figures is the centre of the

frequency window ∆ω.

Performing a Nyquist plot, we can see that for the first mode (Figure 6.3), we have an

excellent fit between the circle and the experimental response. Similarly, the second mode

(Figure 6.4) doesn’t fit quite as well over the entire frequency window, but it does still fit well

near the natural frequency.

Note that the rigid body mode (Figure 6.5) is a poor fit (likely because this method isn’t

designed for rigid body modes), but we will use the damping estimate from this procedure to

determine an initial estimate ζ= f̂ (ω) for the beam.
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Figure 6.3: Circle Fit Approximation for the first mode
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6.3 Estimating ζ= f̂ (ω)

Following the procedure outlined in section 6.2, we have three data points, whereas we need

a function f̂ (ω) that works for all ω. To that end, we fit functions to the data using non-linear

least squares (implemented in MATLAB using lsqcurvefit). It solves the problem

min
a

∥ F (a,x)−y ∥2= min
a

∑
i

(
F (a, xi )− yi

)2 (6.25)

Based upon the shape of the data, we consider a couple of candidate functions f̂i (ω). The

first is a sum of decaying exponentials (with an offset),

f̂1(ω) = a0 +
N∑

i=1
ai e−biω (6.26)

The offset is to allow for the function to decay to a non-zero value. The second is an rational

polynomial of the form,

f̂2(ω) = a0

1+∑N
i=1 aiωi

(6.27)

Considering two terms in each sum, we get the plot shown in Figure 6.6. The parameters for

the functions f̂1 and f̂2 for this plot are shown in Table 6.3.

Approximation a0 a1 a2 b1 b2

f̂1 0.0026 0.1200 0.1200 0.3444 0.3444
f̂2 0.3834 5.2381 -0.0365 N/A N/A

Table 6.2: Damping Model Parameters

We can see that both models provide good fits to the experimental damping calculated,

although the polynomial continues well past the damping approximation to the rigid body

mode as it approaches 0 Hz from above. The exponential approximation also allows for a

more gradual changes between the rigid body mode and the first elastic mode. As a result,

we will use the exponential approximation f̂1(ω) for our system.
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6.4 Determining C through parameter identification

Recalling Equations (6.8) and (6.9),

M1θ̈+C1θ̇ =−M2d̈−C2ḋ (6.28)

M4d̈+C4ḋ+K4d =−M3θ̈−C3θ̇ (6.29)

we can use a form of Ĉ in place of C4, which gives us,

M1θ̈+C1θ̇ =−M2d̈−C2ḋ (6.30)

M4d̈+E4 f̂ (T)ḋ+K4d =−M3θ̈−C3θ̇ (6.31)

where,

f̂1(ω) = a0 +
N∑

i=1
ai e−biω (6.32)

T =
√

M−1
4 K4 (6.33)

E4 = 2M4T (6.34)

which gives us an unknown scalar C1, a vector of unknowns C3 and a set of unknown pa-

rameters in f̂ . We use the estimate of f̂ (ω) we determined earlier as the initial guess and

initially assume Rayleigh viscous damping for C3 using the same damping ratios as Rhody

[1]. This is sufficient for an initial guess. We then consider scaling the resulting sub-matrices

for inclusion in the final damping matrix C.

Evaluation of T and f̂ (T)

While both M4 and K4 are symmetric matrices, the product,

T =
√

M−1
4 K4 (6.35)

in general will not be symmetric. As a result, there is no easy way to diagonalize T (which

is a first step in the simplest method for evaluating functions of a matrix). As such other

methods must be used. For calculating the square root of a matrix, we use the MATLAB

function sqrtm [74, 75] for calculation of f̂ (T). Because of our choice of f̂ we have two

different approaches to its evaluation. We can calculate the matrix function directly using the

Davies and Higham’s method [76] (implemented in MATLAB using funm) or we can calculate

the matrix exponential [77, 78] for each exponential term (using expm in MATLAB). Since

the latter allows us to easily add terms to the sum in f̂ , we will evaluate using expm. Note

that matrix square root and matrix exponential functions in MATLAB do not support sparse

matrices so the M−1
4 K4 product must be converted to a full matrix.

74



6.4. DETERMINING C THROUGH PARAMETER IDENTIFICATION

It is left for future work to determine which of using expm or funm is more accurate

and/or faster. In addition, since only the scalar in the exponential terms of f̂1 changes it may

be possible to modify the algorithms to reuse results to speed computation. This is also left

for future work.

For all models, given sufficient numbers of elements, the size of T (and therefore functions

of it) will be too large to show in a reasonable manner in this thesis.
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6.5 Summary

So, we have a modified version of Adhikari’s approach [71] presented at the beginning of this

chapter,

1. Determine Transfer Function(s) for the system using ETFE [72].

2. Obtain the undamped natural frequenciesω j and modal damping factors ζ j , using the

circle-fitting method [2].

3. Fit a function ζ= f̂ (ω) (in our case this is a sum of decaying exponentials).

4. Calculate the matrix T =
√

M−1
4 K4.

5. Obtain the damping matrix using Ĉ4 = 2M4T f̂ (T).

6. Estimate C1 and C3 based upon Rayleigh viscous damping.

7. Scale C1, C3, and Ĉ4 appropriately to match the experimental data.
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CHAPTER

7
Experiment, Results, and Discussion

7.1 Overview of Experiment

To validate the model, we compare the results to experimental results obtained by Rhody [1].

One of his experiments consisted of a capture of a steel block by a beam initially at rest. This

experimental setup is used to check our simulations.

The target mass was placed on a model railway car set on an inclined track. The car was

released from rest, and the capture was performed by an electromagnet end effector at a

specified distance down the track and the railway car continues under the beam until it hits

the foam bumper. See Figure 7.1 for an overview of the experimental setup.

The experimental parameters related to the beam (including the motor and end-effector)

are in Table 7.1 and the parameters of the target are in Table 7.1.

Parameter Value

A, Cross-sectional Area of Beam 3.175×10−4 m2

E , Young’s Modulus 6.5×1010 Pa
I , Beam Moment of Inertia 2.67×10−10 m4

Je , End-Effector Inertia 1.6×10−3 kg ·m2

Jm , Motor Inertia 1.3233×10−4 kg ·m2

L, Effective Beam Length 0.725 m
b1, Mass Damping Constant −2.85×10−3 s−1

b2, Stiffness Damping Constant 2.54×10−5 s
de1, End-effector offset 5.175×10−2 m
me , End Effector Mass 0.55 kg
m, Linear Mass Density of Beam 0.874 kg/m

Table 7.1: Beam Experimental Parameters [1]

There are a few parameters are needed that are not given in this table, but can be derived
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Figure 7.1: Experimental Setup - Side View [1]
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Figure 7.2: Experimental Setup - Beam Top View (Target Captured)
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from this data, these are shown in Table 7.1.

Parameter Calculation Value

ρ, Mass Density of Beam m/A 2.753×103 kg/m3

a, Width of Beam
p

12(I /A) 3.18×10−3 m
b, Height of Beam A/a 1.00×10−1 m
a/b, Width/Height ratio a/b 3.18×10−2 m

Table 7.2: Derived Experimental Parameters

Target Mass (kg) Dimensions, x × y × z (cm) Inertia (kg ·m2)

0.5 2.54×3.81×6.67 1.72×10−3

Table 7.3: Target Parameters [1]

7.2 Finite Element Models

For all of the models discussed in this chapter, a 20 element finite element approximation is

used. The 2D Euler-Bernoulli Beam uses C 1 cubics to approximate v whereas the 2D and 3D

Timoshenko beams use C 0 cubics for each system variable. This is done to prevent locking

[79]. The element mesh is a 1D line with equally spaced elements with a single shared node

between elements. See Figure 7.3 for an example 7 element mesh for the 2D Euler-Bernoulli

beam. The mesh for the 3D cases is similar but each element contains two interior nodes as

shown in Figure 7.5. Note that in all cases, since the beam itself is modelled as clamped at

the hub, node 1 is fixed so those degrees of freedom (DoF) are removed from the system after

the element assembly is complete.

The total number of degrees of freedom for each model is given in Table 7.2. Note that

the first node is fixed and we have an additional degree of freedom from the rotation of the

hub (θ) which is why there is an odd number of degrees of freedom.

Model Nodes/Element DoF/Node Total Degrees of Freedom

2D Euler-Bernoulli 2 2 41
2D Timoshenko 4 3 181
3D Timoshenko 4 7 421

Table 7.4: System Degrees of Freedom

The C 1 cubic elements have two nodes and two degrees of freedom per node, as shown

in Figure 7.4. The C 0 cubic elements have four nodes and three DoF per node (for the 2D
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1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

Node

Element
Figure 7.3: 2D Euler-Bernoulli Beam 7 Element Mesh
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Figure 7.4: 2D Euler-Bernoulli C 1 Cubic Beam Element

Timoshenko case) and seven DoF per node (for the 3D Timoshenko case). See Figure 7.5 for

an example of the structure of the C 0 cubic element in the 3D Timoshenko beam case.
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1 2 3 4

Figure 7.5: 3D Timoshenko C 0 Cubic Beam Element
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7.3 Comparison of Natural Frequencies

Mode 2D Euler-Bernoulli Beam 2D Timoshenko Beam 3D Timoshenko Beam

1 12.26 11.20 11.20
2 46.74 36.38 13.06
3 103.06 77.57 36.38
4 178.03 142.13 57.65
5 266.10 225.02 77.57
6 368.71 321.06 138.94
7 497.72 438.73 142.13
8 657.86 587.57 225.02
9 847.87 753.91 280.07

Table 7.5: Mode Frequency Comparison (Hz)

Examining the 2D Euler-Bernoulli beam’s elastic modes (all in-plane bending) shown in

Table 7.3 they overestimate the natural frequencies shown in Table 6. The first mode is only

slightly high, whereas the second mode is much higher than the experiment. In contrast, the

Timoshenko beam models consistently underestimate the natural frequencies, but provide a

better estimate of the second experimental mode. All of the 2D Timoshenko beam modes

are in-plane bending except the final mode which is extension. The 3D Timoshenko beam

modes not found in the experimental data are all out-of-plane modes (see Table 7.3).

Mode Frequency Hz Mode Type

1 11.20 In-Plane Bending
2 13.06 Torsion
3 36.38 In-Plane Bending
4 57.65 Out-of-Plane Bending
5 77.57 In-Plane Bending
6 138.94 Torsion
7 142.13 In-Plane Bending
8 225.02 In-Plane Bending
9 280.07 Torsion

Table 7.6: 3D Timoshenko Mode Types

If we normalize the frequencies based upon the frequencies for a 40 element beam, we

can see that the first three modes of the 2D Euler-Bernoulli beam all converge within the first

10 elements as shown in Figure 7.6. The higher modes also converge quickly, but since the

experimental data is all less than 100 Hz, only the first two modes are of interest.
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Now, normalizing the frequencies for the 2D Timoshenko beam (with respect to the 40

element beam), we get Figures 7.7 and 7.8. For this beam, convergence occurs in roughly 5

elements.

Lastly, normalizing the frequencies for the 3D Timoshenko beam (with respect to the 40

element beam), we get Figures 7.9 and 7.10 which show convergence within 10 elements.

The fourth elastic mode is not visible in Figure 7.9 because it converges very quickly and has

nearly converged to start.
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Figure 7.6: 2D Euler-Bernoulli Beam Elastic Mode Convergence
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Figure 7.7: 2D Timoshenko Beam - First Two Elastic Mode Convergence
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Figure 7.8: 2D Timoshenko Beam Elastic Modes 3 through 6 Convergence
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Figure 7.9: 3D Timoshenko Beam - First Four Elastic Modes Convergence
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Figure 7.10: 3D Timoshenko Beam Elastic Modes 5 through 7 Convergence
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7.4 2D Euler-Bernoulli Beam Results

As one can see from the tip deflection (Figures 7.11 and 7.12) the initial peak from the

simulation is smaller (0.9×10−2 m vs. 1.55×10−2 m). Examining Figure 7.12 we can see the

harmonic behaviour around 0.5 s-1.0 s is captured in the simulation.
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Figure 7.11: 2D Euler-Bernoulli Beam Tip Deflection vs. Experiment

Examining the FFTs of the simulation as compared to the experiment (Figure 7.13), we

see that the simulation has a rigid body mode at 0 Hz and the first two elastic modes given in

Table 7.3. As stated before, the first elastic mode is very close to experiment, but the second

mode is quite a bit higher than the experimental mode.

Looking at the initial hub rotation (Figure 7.14) we can see that the hub is initially still

for 0.015 s which is far longer than in the simulation. The wave speed for an Euler-Bernoulli

beam is,

c =
√

E

ρ
(7.1)
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Figure 7.12: 2D Euler-Bernoulli Beam Tip Deflection vs. Experiment (initial 5s)

which leads to a time from the beam tip to the hub of 1.492×10−4 s. This is smaller than

simulation step size and also the experimental sampling rate. So, the initial delay before the

hub begins moving in the experiment is not due to the wave speed and is therefore likely

due to static friction. The hub starts moving in the simulation immediately (in the negative

direction) but the magnitudes are small enough that this is not apparent. Note that the

simulation time step is smaller than the experiment’s sampling rate so higher frequency

behaviour can be seen in the simulation.

The hub rotation (Figure 7.15) levels off around 6 s. This is likely due to both friction

and damping. Since the system model doesn’t include friction, damping is increased to give

similar behaviour, but it cannot reproduce it exactly. Looking at the initial 2.5 s, we see that

while it drifts, we see that the simulation is reproducing the oscillatory behaviour of rotation.

If we consider minimal damping for the hub, we get behaviour as shown in Figures 7.17

and 7.18. We can see that we get relatively good correspondence for the first 3 s. This leads

one to conclude that with smaller damping and the inclusion of friction, we would be able to
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Figure 7.13: 2D Euler-Bernoulli Beam FFT Simulation vs. Experiment

improve the accuracy of the model.
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Figure 7.14: 2D Euler-Bernoulli Beam Hub Rotation vs. Experiment (initial 0.15s)
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Figure 7.15: 2D Euler-Bernoulli Beam Hub Rotation vs. Experiment
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Figure 7.16: 2D Euler-Bernoulli Beam Hub Rotation vs. Experiment (initial 2.5s)
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Figure 7.17: 2D Euler-Bernoulli Beam Hub Rotation (Minimal Damping)
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Figure 7.18: 2D Euler-Bernoulli Beam Hub Rotation (Minimal Damping - Initial 1.2s)
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7.5 2D Timoshenko Beam Model Results

As with the Euler-Bernoulli beam model, the tip deflection (Figures 7.19 and 7.20) the initial

peak from the simulation is smaller (0.85×10−2 m vs. 1.55×10−2 m). While this is smaller

than in the Euler-Bernoulli model, that may be due to the choice of damping parameters.

Examining Figure 7.20 we can see the harmonic behaviour around 0.5 s-1.0 s is in the

simulation, but with the chosen damping, it is nearly damped out. This is reflected in the

FFT of the system as given in Figure 7.21, as the second elastic mode is nearly damped out,

while the first elastic mode is close and we have a larger third elastic mode at 77 Hz.
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Figure 7.19: 2D Timoshenko Beam Tip Deflection vs. Experiment

The initial hub rotation (Figure 7.22) is very similar to the Euler-Bernoulli model. We

see higher frequency behaviour in the simulation since the time step is higher than the

experimental sampling rate.

The 2D Timoshenko beam model also can’t reproduce the levelling off as shown in the

experimental results (Figure 7.23), but it does fit the initial behaviour (once the initial still
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Figure 7.20: 2D Timoshenko Beam Tip Deflection vs. Experiment (initial 5s)

period is past). The initial 2.5 s (Figure 7.24) is reproduced fairly well aside from the drift (due

to the increased damping).

If we consider minimal damping for the hub, we get behaviour as shown in Figures

7.25 and 7.26. The behaviour is reasonably accurate for the first 4 s. This also supports the

conclusions from the 2D Euler-Bernoulli model that friction is necessary.

The axial deflection of the beam (Figure 7.27) is extremely small which lends one to

conclude that axial deflection is not important to include in the model.

The rotation of the tip of the beamψzL (Figure 7.28) is on the same order of magnitude as

the tip deflection. However, rotation of the tip is in the Euler-Bernoulli as v ′ (but it is directly

coupled to v).
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Figure 7.21: 2D Timoshenko Beam FFT Simulation vs. Experiment
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Figure 7.22: 2D Timoshenko Beam Hub Rotation vs. Experiment (initial 0.15s)
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Figure 7.23: 2D Timoshenko Beam Hub Rotation vs. Experiment
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Figure 7.24: 2D Timoshenko Beam Hub Rotation vs. Experiment (initial 2.5s)
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Figure 7.25: 2D Timoshenko Beam Hub Rotation (Minimal Damping)
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Figure 7.26: 2D Timoshenko Beam Hub Rotation (Minimal Damping - Initial 1.2s)
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Figure 7.27: 2D Timoshenko Beam Tip Axial Deflection vs. Time
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Figure 7.28: 2D Timoshenko Beam Tip Rotation vs. Time
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7.6 3D Timoshenko Beam Model Results

The tip deflection for the 3D Timoshenko beam model (Figures 7.29 and 7.30) is essentially

the same as the 2D case. The only difference is due to differences in the system damping.
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Figure 7.29: 3D Timoshenko Beam Tip Deflection vs. Experiment

Only the first elastic mode of the system (along with the rigid body mode) is significant,

since most of the elastic modes are either damped out or very small (see Figure 7.31). Only

the modes 36 Hz and 77 Hz are at all visible aside from the rigid body mode and the first

elastic mode.

The hub rotation behaviour (Figures 7.32–7.36) is consistent with the 2D Timoshenko

model, as is the tip axial deflection (Figure 7.27) and the tip in-plane rotation (Figure 7.38).

The out-of-plane deflection of the tip (Figure 7.39) is extremely small as is the out-of-

plane rotation (Figure 7.40). The angle of twist of the tip (Figure 7.41) is a couple of orders

of magnitude larger than than the out-of-plane rotation/deflection, but is still very small.

Also, Rhody [1] did not full document the design of the end-effector so it was not possible
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Figure 7.30: 3D Timoshenko Beam Tip Deflection vs. Experiment (initial 5s)

to determine the inertia terms Jexx , Je y y , or Jex y . As such, their contribution to the out-

of-plane deflection/rotation and the angle of twist is missing. That said, it is unlikely that

the addition of those would scale the results to the same order of magnitude as the other

deflection/rotations.
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Figure 7.31: 3D Timoshenko Beam FFT Simulation vs. Experiment
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Figure 7.32: 3D Timoshenko Beam Hub Rotation vs. Experiment (initial 0.15s)
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Figure 7.33: 3D Timoshenko Beam Hub Rotation vs. Experiment
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Figure 7.34: 3D Timoshenko Beam Hub Rotation vs. Experiment (initial 2.5s)
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Figure 7.35: 3D Timoshenko Beam Hub Rotation (Minimal Damping)
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Figure 7.36: 3D Timoshenko Beam Hub Rotation (Minimal Damping - Initial 1.2s)
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Figure 7.37: 3D Timoshenko Beam Tip Axial Deflection vs. Time
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Figure 7.38: 3D Timoshenko Beam Tip In-Plane Rotation vs. Time

115



CHAPTER 7. EXPERIMENT, RESULTS, AND DISCUSSION

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−14 Tip Out−of−Plane Deflection vs. Time − 3D Timoshenko Beam

Time (s)

O
ut

−
of

−
pl

an
e 

D
ef

le
ct

io
n 

(m
)

Figure 7.39: 3D Timoshenko Beam Tip Out-of-Plane Deflection vs. Time
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Figure 7.40: 3D Timoshenko Beam Tip Out-of-Plane Rotation vs. Time
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Figure 7.41: 3D Timoshenko Beam Tip Angle of Twist vs. Time
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7.7 Investigation Of An Offset Capture

Here we only consider the 3D Timoshenko beam since both the 2D models assume that the

captures are coincident. If we consider that the capture of the target mass did not occur

directly at the centre of mass of the end-effector, it could be off in the x-direction (which is

along the neutral axis) or it could be off in the z-direction (out of the plane of the neutral

axis). A capture offset in the y-direction would only occur if the location of either centre of

mass is incorrect, since an increase in y would be into the end-effector (which is rigid) and a

negative change in y would mean that the target is not touching the end-effector.

Adding a positive 1 mm x-offset makes only minor changes to the final results and as such

are not shown, but a positive 1 mm z-offset increases the angle of twist from the order 10−12

to 10−4 as shown in Figure 7.42. However, the hub rotation and the in-plane tip deflection

show only minor changes. The measurement of the tip deflection in this experiment was

with an infrared sensor on the beam tip. If the beam is twisting in addition to deflecting, this

will lead to some measurement error. For a 1 mm offset this is not significant, but it might

be for larger offsets. Also note that this is with Jexx , Je y y , or Jex y all zero since Rhody did not

provide the necessary information to compute this. These terms are all more significant in

both the capture equations and in simulation for an offset capture.

Note that an x-offset capture results in a change to v̇
+
L and gives a small value to ψ̇+

zL . A

z-offset capture gives a negative value to θ̇+xL and no change to v̇
+
L .
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Figure 7.42: 3D Timoshenko Beam Tip Angle of Twist vs. Time (1 mm z-offset)
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7.8 Discussion

The experiment that Ben Rhody designed [1] (and is used in this chapter) was designed to

examine the control of a beam during capture. His beam model was a simple 2D Euler-

Bernoulli beam and as such, he tried to minimize the other possible contributions (e.g.,

torsion). So, he designed his end-effector such that it would not undergo torsion as a result.

Also, the capture occurs such that the centre of mass of the end-effector and the target are

coincident. Since the experiment was designed with a 2D Euler-Bernoulli beam in mind, it is

not surprising that the 2D or 3D Timoshenko models do not yield better results, or that the

ignored terms (ı.e., out-of-plane effects, torsion, and extension) are small.

By having the capture occur at the centre of mass, many of the terms in the capture

equations (and mass matrix) are eliminated (in addition to eliminating torsional effects). For

this experiment, the capture equations mostly were of the form,

v̇
+
L = mt ẏ−

t

(mt +me )
(7.2)

which is just a simple transfer of linear momentum.

If friction could be properly characterized, the system damping used here could be

reduced which would properly allow one to see the effects of the higher modes in the

Timoshenko models since they are nearly all damped out of the system.
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CHAPTER

8
Discussion, Summary, Conclusions,

and Future Work

This chapter presents a comparison to previous work, summary of the work done in the

thesis, conclusions, and suggestions for directions of future work.

8.1 Discussion

The work of Chapnik et al. [21, 22] was used to verify terms in the 2D Euler-Bernoulli beam

kinetic energy derived in Chapter 3. However, Chapnik et al. neglect the centripetal and

Coriolis effects. Specifically, they define the position of a point on the beam in inertial space

as (converting to consistent notation):

r = xθ+ v(x, t ) (8.1)

which leads to a velocity of

ṡ = xθ̇+ v̇(x, t ) (8.2)

which gives a kinetic energy for the beam of

Tb = 1

2

∫ L

0
ρA(x2θ̇2 +2xθ̇v̇ + v̇

2
)dx (8.3)

comparing this to the beam kinetic energy derived in Chapter 3 (Equation (3.23)):

Tb = 1

2

∫ L

0
ρA(x2θ̇2 +2xθ̇v̇ + v̇

2 + θ̇2v2)dx + 1

2

∫ L

0
ρIy y θ̇

2dx (8.4)

we see that we have additional terms that are not present in Chapnik’s derivation. Similarly,

for the end effector (ı.e., tip mass), Chapnik presents the kinetic energy (once again in a

consistent notation) as

Te = 1

2
me (L2θ̇2 +2Lθ̇v̇L + v̇

2
L) (8.5)
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where our kinetic energy from Equation (3.67) is given as

Te = 1

2
me

(
(v̇L + v̇ ′

Lde1)+ (L+de1)θ̇
)2 + 1

2
me (vL + v ′

Lde1)2θ̇2 (8.6)

Once again, we have additional terms that are not in Chapnik’s analysis. However, the strain

energy and the kinetic energy due to the motor inertia are equivalent.

Chapnik et al. do model an additional factor that is not included in the model in this

thesis. Friction was not included in the models used in this thesis because the experiment

used [1] did not provide enough data to properly characterize the friction model.

The work of Rhody [1] covers modelling the dynamics and control of Class II problems

(See Chapter 1 for details on the classes). His approach includes a simple stick-slip friction

model of the motor friction but the approach is limited in its application as pre-determination

of the impact force is required. For the type of problems in Class II this may be appropriate

but the difficulty will increase for the remaining classes. His approach does achieve better

agreement with experiment (likely due to inclusion of a simple friction model), but the

models presented in this thesis cover Classes II through VII.

Kövecses et al. [3, 4] present specifics on the equations describing the transition between

the pre- and post-capture systems, but neglect to provide the details on the equations of

motion for those systems, whereas this thesis presents the equations of motion for the pre-

and post-capture regions, as well as the equations that describe the transition. In another

paper, Kövecses et al.[26] presents the form of all of the equations, but not the specific details.

The approach taken in Kövecses et al. [3, 4] is to take the variation of the constraint equa-

tions and substitute the resulting velocity variation equations into the Jourdain variational

equations to eliminate the variations relating to the constraints. It is not clear that this is a

mathematically rigorous method for handling the problem. The constraint equations derived

are only valid for the post-capture system, where the variations apply to the transition region

between the pre- and post-capture systems. In this particular case, the approaches may be

equivalent but it is unclear.

The constraint embedding approach used in this thesis has an additional advantage over

the velocity variation approach. Bahar [29] outlines a method to derive the impulses due to

the impact when the constraint embedding approach is used to solve impact problems. Note

that Kövecses and Fenton [4] extended their approach to calculate the constraint impulses.

Lastly, comparing the results derived in Chapter 5 relating the pre- and post-capture

velocities to the results from Kövecses et al. [3] we see that while our equation relating the

beam deflection velocities matches, the results for the tip deflection velocities and angular

velocities do not. Comparing the results, the angular velocity relation in Kövecses et al. [3]

is incorrect as a there are some problems with consistency of units on terms that are to be

added together. That is, some terms that add together have different units. However, the
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results derived herein do concur with the results from Kövecses and Cleghorn’s newer paper

[4] (if one ignores the additional effects included in our model).

All the previous work discussed here that relates to dynamic mass capture are system

models that only use 2D Euler-Bernoulli beam models whereas this thesis includes system

models that support both 2D and 3D Timoshenko beam models (including out-of-plane

effects and torsion). This allows for the capture equations to be extended to include classes

VI and VII in addition to edge cases of classes IV and V (where the capture may induce torsion

or the target is not translating in the plane of the beam).

8.2 Summary of Work

Using the classification system proposed in the Introduction, investigations into dynamic

mass capture to date have been restricted to classes I through III. This thesis includes a more

complete model for classes II and III (that includes the end-effector offset from the end of

the beam). It also includes centripedal and Coriolis effects. A 2D Timoshenko beam model

supports classes IV and V, while a 3D Timoshenko model is used for classes IV through VII

(Chapter 5 and Appendix F). Only class VIII is not covered by the models in this thesis.

To support this work, two new models for torsion have been derived (Chapter 2 and

section A.3) and new results on difficulties with some existing torsion models (section A.2).

Software has been developed to derive Finite Element models from first principles and solve

the resulting system of equations (Chapter 4 and Appendix D). The system was verified by

examining the convergence of a fixed-free beam in pure torsion (Section 4.5). Finally, a

method for determining the system damping has been presented (Chapter 6).

Models of 2D Euler-Bernoulli beam (with point mass end-effector and target), a 2D

Timoshenko beam (with rigid body end-effector and target moving in the plane of the beam),

and a complete 3D Timoshenko beam that includes torsion and rigid bodies for the end-

effector and target that support a full range of motion were done. This last model also

supports an eccentric end-effector as well as eccentric capture of the target. Comparisons of

these models was done with respect to an experiment by Rhody [1]. In addition, simulations

of eccentric capture were done by considering an offset of the capture of the payload in the x

and z directions (the y case was not done because of the nature of the capture). It was shown

that even a small offset (1 mm) in the z-direction leads to an increase by several orders of

magnitude in the angle of twist, to the point where it is close to being significant.
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8.3 Conclusions

While none of the three models accurately modelled the chosen experiment [1], as previously

stated, this is likely due to the omission of a friction model. Unfortunately, the experiment

did not provide enough information to properly characterize a friction model. The design

of the experiment is such that it is unable to show the effect of many different terms in the

capture equations and Lagrangians.

This thesis presents a variety of different models based upon the situation. For the

experiment examined, it is clear that a 2D Euler-Bernoulli model is sufficient, but for other

situations one of the Timoshenko models may be more appropriate. For 2D cases, it’s

likely that the Timoshenko model is more appropriate for the capture equations since the

momentum transferred by the capture is localized to the end-effector whereas the Euler-

Bernoulli beam model has the possibility of transferring momentum directly to the hub.

If the capture of the target and end-effector is not at the centre of mass of each of the

bodies, even a small offset can introduce a significant in the angle of twist of the beam and

in that case, the 3D Timoshenko model becomes important. So, if the point of capture is

uncertain, a shift to the 3D model should be considered even for what appears to be plane

motion (and capture).

For a general end-effector and target, the 3D Timoshenko beam model would be most

appropriate since a general end-effector and target may lead to the eccentric capture case as

shown in Chapter 2 and torsion results as shown in 7.7.

The inclusion of friction in the system would likely not affect the capture equations

since the capture happens instantaneously and as such the frictional impulse will be zero.

While there is no change in the capture equations, the inclusion of friction would affect the

simulations.

8.4 Future Work

While not modelled, one model of friction that could possibly be implemented is that of

Bliman and Sorine [80, 81, 82, 83] which provides a differential equation model of both

dynamic and static friction. This has the advantage of only a few parameters to identify.

However, if one is spending the time to properly characterize the hub/motor the LuGre

model is preferable [84, 85, 86, 87].

Since the assumed displacement torsion model discussed in Chapter 2 suffers from

the same problem as the Reissner torsion model (see section A.2) some comparison of the

assumed stress model (section A.3) to the assumed displacement model should be done.

Since the assumed stress model is more complex, the assumed displacement model is

125



CHAPTER 8. DISCUSSION, SUMMARY, CONCLUSIONS, AND FUTURE WORK

preferred if its accuracy can be shown. In addition to comparisons between the models,

experiments to compare both models can be done. This is viewed as a second step after

direct comparisons between the models is done. How does the comparison change based

upon the the cross-section of the beam? If the assumed displacement model is sufficient, are

there other approaches to modelling the warping function? Can either work be extended to

handle a varying cross-section?

Since the experiment used in this thesis only covered classes II and IV, more experiments

are necessary to cover classes III, V, VI, and VII. This requires a beam with strain gauges

along the length attached to a motor. This would allow one to move the beam prior to

capture and to find the shape of the beam. The end-effector can be simplified to use rare

earth magnets instead of an electromagnet. Some method of launching the target that could

possibly impart spin would be necessary to handle classes VI and VII. That said, if the target

is only translating, classes IV and V would be covered and would show most of the effects

from the 2D and 3D Timoshenko capture equations.

Now that the basic model exists, we can start to look at applying to to design a controller

for a flexible beam that captures a target. It could also be used in the design of a flexible beam

itself. In addition, the model can be used for prediction purposes for existing beams/targets.

If a manipulator on the International space station is going to be used to grab a particular

payload (e.g., the SpaceX Dragon capsule), what will happen to be beam? Can the motor and

controller properly compensate for various situations?
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APPENDIX

A
Torsion of Uniform Cross-section

Beams

This appendix discusses modelling of torsion of constant cross-section beams. The first

section presents the derivation of uniform torsion, the second illustrates problems with

Reissner torsion and the third derivation of a new model non-uniform torsion.

A.1 Derivation of St. Venant Warping Function

This section discusses the uniform torsion of constant cross-section beams, in particular

torsion of rectangular beams. It is divided into 5 subsections. The first subsection begins

the derivation of the general uniform torsion problem for beams of an arbitrary cross-

section. The second continues the derivation for a rectangular cross-section. These two

subsections are based upon the work of Sokolnikoff [31] but omit unnecessary details and add

additional explanations. The third subsection derives the torsional inertia of a rectangular

beam while the fourth derives the torsional kinetic energy of a rectangular beam. Lastly, the

final subsection does a convergence analysis of the torsional inertia expression to discover an

adequate approximation and compares this result to some other expressions for the torsional

inertia.

General Cross-Section Problem Definition

Restating Equations (2.15)–(2.17),

u = αφ(y, z) (A.1)

v = −αxz (A.2)

w = αx y (A.3)
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The warping function φ(y, z) has to be determined to satisfy the differential equations of

equilibrium,

∂

∂y
σx y (x, y, z)+ ∂

∂z
σzx(x, y, z)+ ∂

∂x
σxx(x, y, z) = −Fx (A.4)

∂

∂y
σy y (x, y, z)+ ∂

∂z
σy z(x, y, z)+ ∂

∂x
σx y (x, y, z) = −Fy (A.5)

∂

∂y
σy z(x, y, z)+ ∂

∂z
σzz(x, y, z)+ ∂

∂x
σzx(x, y, z) = −Fz (A.6)

and the boundary equations,

σy y (x, y, z)ny +σy z(x, y, z)nz = 0 (A.7)

σy z(x, y, z)ny +σzz(x, y, z)nz = 0 (A.8)

σx y (x, y, z)ny +σxz(x, y, z)nz = 0 (A.9)

where n
~

is the outward normal unit vector at the boundary,

n
~
=F→

T
a


0

ny

nz

 (A.10)

All normal stresses in this situation will be zero since for this case,

∂u

∂x
= 0 = 1

E

(
σxx −ν

(
σy y +σzz

))
(A.11)

∂v

∂y
= 0 = 1

E

(
σy y −ν

(
σxx +σy y

))
(A.12)

∂w

∂z
= 0 = 1

E
(σzz −ν (σxx +σzz)) (A.13)

and the only way for these equations to be satisfied is when all the normal stresses are zero.

Note that E is Young’s modulus for the material, ν is Poisson’s ratio and both are assumed to

be constant throughout the beam. The shear stresses in terms of the displacements are,

σx y = G

(
∂v

∂x
+ ∂w

∂y

)
(A.14)

σxz = G

(
∂w

∂z
+ ∂v

∂x

)
(A.15)

σy z = G

(
∂v

∂y
+ ∂u

∂z

)
(A.16)
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where G is the shear modulus of the material and is also constant in the beam. Substituting

the assumed displacements (given in Equations (A.1)-(A.3)) into these equations we get,

σx y = −Gα

(
z − ∂

∂y
φ(y, z)

)
(A.17)

σxz = Gα

(
∂

∂z
φ(y, z)+ y

)
(A.18)

σy z = 0 (A.19)

Note that there are no applied forces to the system so Fx , Fy , and Fz are all zero. Substituting

this and the stresses given in Equations (A.17)-(A.19) into Equations (A.4)-(A.6), only Equation

(A.4) remains,

Gα

(
∂2

∂y2
φ(y, z)+ ∂2

∂z2
φ(y, z)

)
= 0 (A.20)

Now that we are reduced to the single partial differential equation, simplify it by dividing out

G which cannot be zero since it is a material property and α which should not be zero at the

cross-section of interest, to obtain

∂2

∂y2
φ(y, z)+ ∂2

∂z2
φ(y, z) = 0 (A.21)

Similarly, for the boundary conditions, we have only Equation (A.9) remaining, which be-

comes

ny z −ny
∂

∂y
φ(y, z)−nz

∂

∂z
φ(y, z)−nz y = 0 (A.22)

But, we can collect the φ(y, z) terms using,

∂

∂n
φ(y, z) = ny

∂

∂y
φ(y, z)+nz

∂

∂z
φ(y, z) (A.23)

which is the derivative of the warping function in the direction of the boundary normal n
~

on

the boundary C (See Figure A.1). Substituting that result into the boundary condition (A.22)

gives a new form of the boundary condition as

∂

∂n
φ(y, z) = ny z −nz y (A.24)

Since the boundary condition for this problem is complicated, let us reformulate this

problem as a simpler one. It follows from Equation (A.21) that φ(y, z) must be a harmonic

function throughout the region bounded by the curve C (which is the boundary of our cross-

section) with the normal derivative of this function satisfying the boundary condition given

in Equation (A.24). Since the warping function is harmonic throughout the cross-section of

the beam, we can construct an analytic function φ(y, z)+ jψ(y, z) of the complex variable
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ds

n
~

dz

dy

y

z

C

R

Figure A.1: General Cross-Section Boundary Relations

y+jz [88]. For the derivative of the analytic function to be continuous,ψ(y, z) must be related

to φ(y, z) by the Cauchy-Riemann equations,

∂

∂y
φ(y, z) = ∂

∂z
ψ(y, z) (A.25)

∂

∂z
φ(y, z) = − ∂

∂y
ψ(y, z) (A.26)

Differentiating the first Cauchy-Riemann equation with respect to z,

∂2

∂y∂z
φ(y, z) = ∂2

∂z2
ψ(y, z) (A.27)

and the second with respect to y ,

∂2

∂y∂z
φ(y, z) =− ∂2

∂y2
ψ(y, z) (A.28)

and then subtracting Equation (A.27) from Equation (A.28), yields

∂2

∂y2
ψ(y, z)+ ∂2

∂z2
ψ(y, z) = 0 (A.29)

which means that ψ(y, z) must be a harmonic function as well. To find the boundary condi-

tions for this new PDE, let us first return to Equation (A.23), and redefine ny and nz in terms

of an element of boundary arclength ds (See Figure A.1) as,

ny = dz

ds
(A.30)

nz =−dy

ds
(A.31)

Substituting these results into Equation (A.23),(
dz

ds

)
∂

∂y
φ(y, z)−

(
dy

ds

)
∂

∂z
φ(y, z) = ∂

∂n
φ(y, z) (A.32)
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y

z

a

b

Figure A.2: Rectangular Cross-section

and making use of the Cauchy-Riemann equations,(
dz

ds

)
∂

∂z
ψ(y, z)+

(
dy

ds

)
∂

∂y
ψ(y, z) = ∂

∂n
φ(y, z) (A.33)

Note that the left-hand side of this equation is the definition of the derivative of ψ(y, z) with

respect to s, so this equation becomes,

d

ds
ψ(y, z) = d

dn
φ(y, z) (A.34)

Substituting this result as well as Equations (A.30) and (A.31) into the original boundary

condition Equation (A.24),
d

ds
ψ(y, z) = dz

ds
z + dy

ds
y (A.35)

and solving, we get the following relation for any arbitrary boundary C ,

ψ(y, z) = 1

2

(
z2 + y2) (A.36)

which is only true for y and z on the boundary.

Rectangular Beam of Constant Cross-section

While the work in the previous section is for an arbitrary cross-section, we are concerned with

rectangular beams. So, now consider a cross-section as shown in Figure A.2. Considering a

boundary C that is a box of dimensions a ×b where b ≥ a, we get the following relation on

the top and bottom boundaries (y,±b
2 ),

ψ(y,±b

2
) = 1

8
b2 + 1

2
y2 (A.37)
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and similarly for the left and right boundaries (±a
2 , z),

ψ(±a

2
, z) = 1

2
z2 + 1

8
a2 (A.38)

To simplify the boundary conditions, introduce a new function f (y, z) which is related to

ψ(y, z) in the following manner,

∂2

∂y2
ψ(y, z)+1 = f (y, z) (A.39)

The function f (y, z) is a harmonic function since ψ(y, z) satisfies Equation (A.29) and we can

also get the following relation for f (y, z),

f (y, z) = 1− ∂2

∂z2
ψ(y, z) (A.40)

By differentiating Equation (A.37) we can get the second derivative of the boundary condition

with respect to y for the top and bottom boundaries,

∂2

∂y2
ψ(y, z)

∣∣∣∣
(y,± b

2 )
= 1 (A.41)

We can also get the second derivative with respect to z of the boundary condition on the left

and right boundaries from Equation (A.38),

∂2

∂y2
ψ(y, z)|(± a

2 ,z) = 1 (A.42)

Therefore, the boundary condition for f (y, z) on the top and bottom boundaries is,

f (y,±b

2
) = 2 (A.43)

and for the left and right boundaries,

f (±a

2
, z) = 0 (A.44)

The function f (y, z) is harmonic so it satisfies the PDE,

∂2

∂y2
f (y, z)+ ∂2

∂z2
f (y, z) = 0 (A.45)

Note that we have non-homogeneous boundary conditions on the z boundaries. This can be

solved by separation of variables in two steps. Separate f (y, z) according to

f (y, z) = f2(y, z)+ f3(y, z) (A.46)
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where

∇2 f2(y, z) = 0 and ∇2 f3(y, z) = 0 (A.47)

with the boundary conditions

f2

(
−a

2
, z

)
= 0 f3

(
−a

2
, z

)
= 0

f2

(a

2
, z

)
= 0 f3

(a

2
, z

)
= 0

f2

(
y,−b

2

)
= 2 f3

(
y,−b

2

)
= 0

f2

(
y,

b

2

)
= 0 f3

(
y,

b

2

)
= 2

So, we have a set of two PDEs where only one boundary condition is non-zero. First, solving

the equation for f2(y, z)

∇2 f2(y, z) = 0, y ∈
[
−a

2
,

a

2

]
z ∈

[
−b

2
,

b

2

]
(A.48)

subject to the boundary conditions

f2

(
−a

2
, z

)
= 0 (A.49)

f2

(a

2
, z

)
= 0 (A.50)

f2

(
y,−b

2

)
= 2 (A.51)

f2

(
y,

b

2

)
= 0 (A.52)

This can be solved by separation of variables according to

f2(y, z) = Y2(y)Z2(z) (A.53)

Substitute (A.53) into (A.48) to find

∇2Y2(y)Z2(z) = 0 which may be written as
Y2,y y

Y2
=−Z2,zz

Z2
=−λ2

2 (A.54)

where λ2 is a constant to be determined. Equation (A.54) leads to two differential equations

Y2,zz +λ2
2Y2 = 0 (A.55)

Z2,zz −λ2
2Z2 = 0 (A.56)

Because of the homogeneous boundary conditions (A.49)-(A.50) only (A.55) is an eigenvalue

problem. The solution to (A.55) must be of the form

Y2(y) = A2 cos
(
λ2

(
y + a

2

))
+B2 sin

(
λ2

(
y + a

2

))
(A.57)
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Note that incorporating the translation transformation to y does not change the validity of

proposed solution because it still satisfies (A.55). Evaluate (A.57) on the y-boundaries to find[
1 0

cos(λ2a) sin(λ2a)

][
A2

B2

]
= 0 (A.58)

which has the characteristic equation

∆2 = sin(λ2a) = 0 (A.59)

which leads to the eigenvalues

λ2 = nπ

a
n an integer (A.60)

and the eigenfunctions

Y2n(y) = B2 sin
(
λ2

(
y + a

2

))
= B2 sin

(nπ

a

(
y + a

2

))
(A.61)

The solution to (A.56) is of the form

Z2(z) =C2 cosh

(
λ2

(
z − b

2

))
+D2 sinh

(
λ2

(
z − b

2

))
(A.62)

As with y , incorporating the translation transformation to z does not change the validity of

proposed solution because it still satisfies (A.56). Evaluate (A.62) on the z-boundary z = b
2 to

find

Z2

(
b

2

)
=C2 = 0 (A.63)

Therefore, Equation (A.62) becomes

Z2(z) = D2 sinh

(
nπ

a

(
z − b

2

))
(A.64)

and f2(y, z) is of the form

f2(y, z) =
∞∑

n=1
F2nY2n(y)Z2(z) (A.65)

=
∞∑

n=1
F2n sin

(nπ

a

(
y + a

2

))
sinh

(
nπ

a

(
z − b

2

))
(A.66)

From Equation (A.51)

f2

(
y,−b

2

)
=

∞∑
n=1

−F2n sin
(nπ

a

(
y + a

2

))
sinh

(
nπ

b

a

)
= 2 (A.67)

Noting that ∫ a
2

− a
2

sin
(nπ

a

(
y + a

2

))
sin

(mπ

a

(
y + a

2

))
d y =

0 m 6= n

a
2 m = n
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take the inner product of Equation (A.67) with respect to

sin
(nπ

a

(
y + a

2

))
to find

−F2n
a

2
sinh

(
nπ

b

a

)
= 2a

nπ

(
1+ (−1)n+1) (A.68)

Which allows us to solve for F2n as

F2n =− 4

nπ

(
1+ (−1)n+1

)
sinh

(
nπb

a

) (A.69)

F2n can also be written as,

F2n =


0 n even

− 8
nπ

1

sinh
(
nπ b

a

) n odd
(A.70)

then f2(y, z) is,

f2(y, z) =
∞∑

n=1,3,5,···
− 8

nπ
sin

(nπ

a

(
y + a

2

)) sinh
(

nπ
a

(
z − b

2

))
sinh

(
nπb

a

) (A.71)

=
∞∑

j=1
− 8

(2 j −1)π
sin

(
(2 j −1)π

a

(
y + a

2

)) sinh
(

(2 j−1)π
a

(
z − b

2

))
sinh

(
(2 j −1)πb

a

) (A.72)

Now, solving the equation for f3(y, z),

∇2 f3(y, z) = 0, y ∈
[
−a

2
,

a

2

]
z ∈

[
−b

2
,

b

2

]
(A.73)

subject to the boundary conditions

f3

(
−a

2
, z

)
= 0 (A.74)

f3

(a

2
, z

)
= 0 (A.75)

f3

(
y,−b

2

)
= 0 (A.76)

f3

(
y,

b

2

)
= 2 (A.77)

As before, this can be solved by separation of variables according to

f3(y, z) = Y3(y)Z3(z) (A.78)
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Substitute (A.78) into (A.73) to find

∇2Y3(y)Z3(z) = 0 which may be written as
Y3,y y

Y3
=−Z3,zz

Z3
=−λ2

3 (A.79)

where λ3 is a constant to be determined. Equation (A.79) leads to two differential equations

Y3,zz +λ2
3Y3 = 0 (A.80)

Z3,zz −λ2
3Z3 = 0 (A.81)

Because of the homogeneous boundary conditions (A.74)-(A.75) only (A.80) is an eigenvalue

problem. The solution to (A.80) must be of the form

Y3(y) = A3 cos
(
λ3

(
y + a

2

))
+B3 sin

(
λ3

(
y + a

2

))
(A.82)

The translation transformation to y does not change the validity of proposed solution because

it still satisfies (A.80). Evaluate (A.82) on the y-boundaries to find[
1 0

cos(λ3a) sin(λ3a)

][
A3

B3

]
= 0 (A.83)

which has the characteristic equation

∆3 = sin(λ3a) = 0 (A.84)

which leads to the eigenvalues

λ3 = nπ

a
n an integer (A.85)

and the eigenfunctions

Y3n(y) = B3 sin
(
λ3

(
y + a

2

))
= B3 sin

(nπ

a

(
y + a

2

))
(A.86)

The solution to (A.81) is of the form

Z3(z) =C3 cosh

(
λ3

(
z + b

2

))
+D3 sinh

(
λ3

(
z + b

2

))
(A.87)

The translation transformation to z does not change the validity of proposed solution because

it still satisfies (A.81). Evaluate (A.87) on the z-boundary z =−b
2 to find

Z3

(
−b

2

)
=C3 = 0 (A.88)

Therefore Equation (A.81) becomes

Z3(z) = D3 sinh

(
nπ

a

(
z + b

2

))
(A.89)
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and f3(y, z) is of the form,

f3(y, z) =
∞∑

n=1
F3nY3n(y)Z3(z) (A.90)

=
∞∑

n=1
F3n sin

(nπ

a

(
y + a

2

))
sinh

(
nπ

a

(
z + b

2

))
(A.91)

From (A.77)

f3

(
y,

b

2

)
=

∞∑
n=1

F3n sin
(nπ

a

(
y + a

2

))
sinh

(
nπ

b

a

)
= 2 (A.92)

Noting that ∫ a
2

− a
2

sin
(nπ

a

(
y + a

2

))
sin

(mπ

a

(
y + a

2

))
d y =

0 m

a
2 m = n

take the inner product of (A.92) with respect to

sin
(nπ

a

(
y + a

2

))
to find

F3n
a

2
sinh

(
nπ

b

a

)
= 2a

nπ

(
1+ (−1)n+1) (A.93)

Which allows us to solve for F3n as

F3n = 4

nπ

(
1+ (−1)n+1

)
sinh

(
nπb

a

) (A.94)

which can also be written as

F3n =


0 n even

8
nπ

1

sinh
(
nπ b

a

) n odd
(A.95)

then we get that f3(y, z) is,

f3(y, z) =
∞∑

n=1,3,5,···

8

nπ
sin

(nπ

a

(
y + a

2

)) sinh
(

nπ
a

(
z + b

2

))
sinh

(
nπb

a

) (A.96)

=
∞∑

j=1

8

(2 j −1)π
sin

(
(2 j −1)π

a

(
y + a

2

)) sinh
(

(2 j−1)π
a

(
z + b

2

))
sinh

(
(2 j −1)πb

a

) (A.97)
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Now, we combine the two solutions. Using Equations (A.72) and (A.97) to form f (y, z) we get

f (y, z) =
∞∑

j=1
− 8

(2 j −1)π
sin

(
(2 j −1)π

a

(
y + a

2

)) sinh
(

(2 j−1)π
a

(
z − b

2

))
sinh

(
(2 j −1)πb

a

)
8

(2 j −1)π
sin

(
(2 j −1)π

a

(
y + a

2

)) sinh
(

(2 j−1)π
a

(
z + b

2

))
sinh

(
(2 j −1)πb

a

) (A.98)

=
∞∑

j=1

8

(2 j −1)π
sin

(
(2 j −1)π

a

(
y + a

2

))
×

+
sinh

(
(2 j−1)π

a

(
z + b

2

))
sinh

(
(2 j −1)πb

a

) −
sinh

(
(2 j−1)π

a

(
z − b

2

))
sinh

(
(2 j −1)πb

a

)
 (A.99)

=
∞∑

j=1

8

(2 j −1)π
sin

(
(2 j −1)π

a

(
y + a

2

))
×

sinh
(

(2 j−1)π
a

(
z + b

2

))
− sinh

(
(2 j−1)π

a

(
z − b

2

))
sinh

(
(2 j −1)πb

a

)
 (A.100)

However, we can simplify this further. The first hyperbolic term in the numerator expands to,

sinh

(
(2 j −1)πz

a

)
cosh

(
(2 j −1)πb

2a

)
+cosh

(
(2 j −1)πz

a

)
sinh

(
(2 j −1)πb

2a

)
similarly, the second hyperbolic term in the numerator is,

sinh

(
(2 j −1)πz

a

)
cosh

(
(2 j −1)πb

2a

)
−cosh

(
(2 j −1)πz

a

)
sinh

(
(2 j −1)πb

2a

)
So, subtracting these two terms we get,

sinh

(
(2 j −1)π

a

(
z + b

2

))
− sinh

(
(2 j −1)π

a

(
z − b

2

))
= 2cosh

(
(2 j −1)πz

a

)
sinh

(
(2 j −1)πb

2a

)
(A.101)

The half-angle expansion of the denominator is,

sinh

(
(2 j −1)π

b

a

)
= 2sinh

(
(2 j −1)π

b

2a

)
cosh

(
(2 j −1)π

b

2a

)
(A.102)

When we combine Equations (A.101) and (A.102), the hyperbolic sine terms cancel. So, using

this in Equation (A.100),

f (y, z) =
∞∑

j=1

8

(2 j −1)π

sin
(

(2 j−1)π
a

(
y + a

2

))
cosh

(
(2 j−1)πz

a

)
cosh

(
(2 j−1)πb

2a

)
 (A.103)
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Now, letting j = n +1, we get,

f (y, z) =
∞∑

n=0

8

(2n +1)π

sin
(

(2n+1)π
a

(
y + a

2

))
cosh

(
(2n+1)πz

a

)
cosh

(
(2n +1)π b

2a

)
 (A.104)

Examining just the sine term, we expand it to get

sin

(
(2n +1)π

a

(
y + a

2

))
= sin

(
(2n +1)πy

a
+πn + π

2

)
(A.105)

= cos

(
(2n +1)πy

a
+πn

)
(A.106)

Now, expanding this,

cos

(
(2n +1)πy

a
+πn

)
= cos

(
(2n +1)πy

a

)
cos(πn)− sin

(
(2n +1)πy

a

)
sin(πn) (A.107)

However, since sin(πn) = 0 the second term is zero, leading to,

cos

(
(2n +1)πy

a
+πn

)
= cos

(
(2n +1)πy

a

)
cos(πn) (A.108)

= (−1)n cos

(
(2n +1)πy

a

)
(A.109)

since cos(πn) = (−1)n . Therefore, we have,

sin

(
(2n +1)π

a

(
y + a

2

))
= (−1)n cos

(
(2n +1)πy

a

)
(A.110)

Using this in Equation (A.104) to replace the sine term we get the formal series solution for

f (y, z),

f (y, z) =
∞∑

n=0

8(−1)n cos
(

(2n+1)πy
a

)
cosh

(
(2n+1)πz

a

)
(2n +1)πcosh

(
(2n+1)πb

2a

) (A.111)

Using this formula for f (y, z) in Equation (A.39) we get,

∂2

∂y2
ψ(y, z)+1 =

∞∑
n=0

8(−1)n cos
(

(2n+1)πy
a

)
cosh

(
(2n+1)πz

a

)
(2n +1)πcosh

(
1
2

(2n+1)πb
a

) (A.112)

and in Equation (A.40),

∂2

∂z2
ψ(y, z) = 1−

∞∑
n=0

8(−1)n cos
(

(2n+1)πy
a

)
cosh

(
(2n+1)πz

a

)
(2n +1)πcosh

(
1
2

(2n+1)πb
a

) (A.113)
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Integrating Equation (A.112) with respect to y , yields

∂

∂y
ψ(y, z) =

∞∑
n=0

8(−1)n sin
(

(2n+1)πy
a

)
cosh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) − y +k1(z) (A.114)

and integrating Equation (A.113) with respect to z, yields

∂

∂z
ψ(y, z) = z −

∞∑
n=0

8(−1)n cos
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) +k2(y) (A.115)

Making use of the Cauchy-Riemann equations, we can rewrite these equations in terms of

the warping function function φ(y, z). Using Equation (A.26) in Equation (A.114) we get,

∂

∂z
φ(y, z) =−

∞∑
n=0

8a(−1)n sin
(

(2n+1)πy
a

)
cosh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) + y −k1(z) (A.116)

and using Equation (A.25) in Equation (A.115), gives

∂

∂y
φ(y, z) = z −

∞∑
n=0

8a(−1)n cos
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) +k2(y) (A.117)

To find the integration functions k1(z) and k2(y), rewrite these equations in terms of the

shear stresses by using Equations (A.18) and (A.17) respectively. Since it will be easier to solve

for k2(y), we will start by using Equation (A.17) in Equation (A.117) to find

σx y

Gα
+ z = z −

∞∑
n=0

8a(−1)n cos
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) +k2(y) (A.118)

On either the left or the right boundary the shear stress σx y should be zero. Making these

substitutions, we get,

z = z +k2

(
±1

2
a

)
(A.119)

which means that k2(y) = 0 is a simple solution that satisfies these conditions. Using Equation

(A.17) in Equation (A.116),

σzx

Gα
− y =−

∞∑
n=0

8a(−1)n sin
(

(2n+1)πy
a

)
cosh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) + y −k1(z) (A.120)

On the top and bottom boundaries (z =±b
2 ) the shear stress σxz must be zero. This gives,

y =
∞∑

n=0

8(−1)n sin
(

(2n+1)πy
a

)
(2n +1)2π2

− y +k1(±b

2
) (A.121)
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and isolating k1(±b
2 ),

k1(±b

2
) = 2y −

∞∑
n=0

8a(−1)n sin
(

(2n+1)πy
a

)
(2n +1)2π2

(A.122)

Since k1(z) is constant with respect to y , the only way this can be satisfied is if the right hand

side is zero for all y . To prove this, let us make use of generalized Fourier series again by

finding a series expansion of 2y using sin
(

(2n+1)πy
a

)
. That is, we would like to find,

2y =
∞∑

n=0
dn sin

(
(2n +1)πy

a

)
(A.123)

Now taking the inner product of Equation (A.123) with its right-hand side sine terms leads to

∞∑
m=0

∫ a
2

−a
2

2y sin

(
(2m +1)πy

a

)
dy =

∞∑
m=0

∞∑
n=0

∫ a
2

−a
2

sin

(
(2m +1)πy

a

)
dn sin

(
(2n +1)πy

a

)
dy

(A.124)

The integral on the right hand side is only non-zero if m = n. Therefore, after carrying out

the integration and equating terms,

(−1)m a2

π2(2m +1)2
= 1

2
dm a (A.125)

and isolating dm produces

dm = 8a(−1)m

(2m +1)2π2
(A.126)

Using this in Equation (A.123), Equation (A.122) becomes

k1(±b

2
) =

∞∑
m=0

8a(−1)m

(2m +1)2π2
sin

(
(2m +1)πy

a

)
−

∞∑
n=0

8a(−1)n sin
(

(2n+1)πy
a

)
(2n +1)2π2

(A.127)

which means that k1(±b
2 ) = 0. As before, the simplest solution that satisfies this is if k1(z) =

0. However, before we make a decision on the values of k1(z) and k2(y) let us first integrate

Equations (A.116) and (A.117) to solve for φ(y, z).

φ(y, z) = y z −
∞∑

n=0

8a2(−1)n sin
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)3π3 cosh

(
1
2

(2n+1)πb
a

) −k1(z)z +k3(y) (A.128)

φ(y, z) = y z −
∞∑

n=0

8a2(−1)n sin
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)3π3 cosh

(
1
2

(2n+1)πb
a

) +k2(y)y +k4(z) (A.129)

For these to be equivalent and satisfy the earlier boundary conditions on k1(z) and k2(y), it

is necessary that both k1(z) and k2(y) be zero. But for k3(y) and k4(z) all that is necessary is
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that they are the same constant. The effect of this constant is to shift the warping function

such that the origin of the frame (i.e., the centre of the cross-section) is no longer in the

original plane. To keep the origin in the original plane, we choose to set this constant to zero.

Therefore, the warping function is,

φ(y, z) = y z −
∞∑

n=0

8a2(−1)n sin
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)3π3 cosh

(
1
2

(2n+1)πb
a

) (A.130)

Derivation of Torsional Inertia

Using the warping function we can get a new definition for the torsional inertia of the beam,

commonly denoted as J . There are two different ways we can derive the formula for J . The

first, which is the technique used by Rivello [33] and Sokolnikoff [31], is to define it in terms

of the torsional couple created by the shear stresses. The second which is mentioned by

Baruh [30] (but only done for the non-warping case) derives J based upon the potential

energy. Both methods are shown here to illustrate that either method results in the same

definition of J.

Derivation of J based upon the resultant moment

The torsional moment experienced at a cross-section is,

Mx =
∫

A

(
σzx y −σx y z

)
dA (A.131)

where σzx is as defined in Equation (A.18) and σx y is as defined in Equation (A.17). Substitut-

ing these definitions into Mx we get,

Mx =
∫

A
Gα

(
z2 − z

∂

∂y
φ(y, z)+ y2 + y

∂

∂z
φ(y, z)

)
dA (A.132)

Since G and α don’t vary over the cross-section,

Mx =Gα
∫

A

(
z2 − z

∂

∂y
φ(y, z)+ y2 + y

∂

∂z
φ(y, z)

)
dA (A.133)

Traditionally, the torsional moment is related to the twist rate through the formula,

Mx =G Jα (A.134)

Therefore, we can define J as,

J =
∫

A

(
y2 + z2)dA+

∫
A

(
y
∂

∂z
φ(y, z)− z

∂

∂y
φ(y, z)

)
dA (A.135)
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which can be written as,

J = Jg + Jw (A.136)

where Jg is the geometric torsional inertia and Jw is the warping correction factor. We have

already calculated the partial derivatives of the warping function in Equations (A.116) and

(A.117). Restating those equations,

∂

∂y
φ(y, z) = z −

∞∑
n=0

8a(−1)n cos
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) (A.137)

∂

∂z
φ(y, z) = y −

∞∑
n=0

8a(−1)n sin
(

(2n+1)πy
a

)
cosh

(
(2n+1)πz

a

)
(2n +1)2π2 cosh

(
1
2

(2n+1)πb
a

) (A.138)

To facilitate the manipulations we will write these equations as,

∂

∂z
φ(y, z) = y +S1(y, z) (A.139)

∂

∂y
φ(y, z) = z +S2(y, z) (A.140)

Substituting these into the equation for Jw , results in

J =
∫

A

(
2y2 + y S1(y, z)− z S2(y, z)

)
dA (A.141)

which when combined with Jg leads to,

J =
∫ b

2

−b
2

∫ a
2

−a
2

2y2 dy dz +
∫ b

2

−b
2

∫ a
2

−a
2

y S1(y, z)dy dz −
∫ b

2

−b
2

∫ a
2

−a
2

z S2(y, z)dy dz (A.142)

We will integrate just one term at a time. So, integrating the first term we get,

J = 1

6
a3b +

∫ b
2

−b
2

∫ a
2

−a
2

y S1(y, z)dy dz −
∫ b

2

−b
2

∫ a
2

−a
2

z S2(y, z)dy dz (A.143)

Now expanding the second term,

J = 1

6
a3b − 8a

π2

∞∑
n=0

∫ b
2

−b
2

∫ a
2

−a
2

y(−1)n cosh
(

(2n+1)πz
a

)
sin

(
(2n+1)πy

a

)
(2n +1)2 cosh

(
1
2

(2n+1)πb
a

) dy dz

−
∫ b

2

−b
2

∫ a
2

−a
2

z S2(y, z)dy dz

(A.144)

and then carrying out the integration with respect to y , produces

J = 1

6
a3b − 16a3

π4

∞∑
n=0

∫ b
2

−b
2

cosh
(

(2n+1)πz
a

)
(2n +1)4 cosh

(
1
2

(2n+1)πb
a

) dz

−
∫ b

2

−b
2

∫ a
2

−a
2

z S2(y, z)dy dz

(A.145)
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Integrating the second term with respect to z, reduces this to

J = 1

6
a3b − 32a4

π5

∞∑
n=0

sinh
(

1
2

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

) −∫ b
2

−b
2

∫ a
2

−a
2

z S2(y, z)dy dz (A.146)

which can be written as,

J = 1

6
a3b − 32a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

−
∫ b

2

−b
2

∫ a
2

−a
2

z S2(y, z)dy dz (A.147)

Considering the final term we have,

J = 1

6
a3b − 32a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

+ 8a

π2

∞∑
n=0

∫ b
2

−b
2

∫ a
2

−a
2

z(−1)n cos
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)2 cosh

(
1
2

(2n+1)πb
a

) dy dz

(A.148)

Integrating with respect to y , gives

J = 1

6
a3b − 32a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

+ 16a2

π3

∞∑
n=0

∫ b
2

−b
2

z sinh
(

(2n+1)πz
a

)
(2n +1)3 cosh

(
1
2

(2n+1)πb
a

) dz (A.149)

and then integrating with respect to z, gives

J = 1

6
a3b − 32a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

+ 16a3b

π4

∞∑
n=0

1

(2n +1)4
− 32a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

(A.150)

which can be simplified to,

J = 1

3
a3b − 64a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

(A.151)

which cannot be simplified further since the series does not have a known closed form

expression.

Derivation of J using potential energy

Start with the definition of the shear strains,

γy x = ∂v

∂x
+ ∂u

∂y
(A.152)

γzx = ∂u

∂z
+ ∂w

∂x
(A.153)

γy z = ∂w

∂y
+ ∂v

∂z
(A.154)
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Substituting the displacements from Equations (A.1)-(A.3) into the shear strains, produces

γy x = α

(
∂

∂y
φ(y, z)− z

)
(A.155)

γzx = α

(
∂

∂z
φ(y, z)+ y

)
(A.156)

γy z = 0 (A.157)

The potential energy due to shear is in general,

U =
∫

V
G

(
γ2

y x +γ2
zx +γ2

y z

)
dV (A.158)

which after substituting the shear strains in terms of the warping function φ(y, z) becomes,

U =
∫

V
G

(
z2 + y2 +

(
∂

∂y
φ(y, z)

)2

+
(
∂

∂z
φ(y, z)

)2

+2y
∂

∂z
φ(y, z)−2z

∂

∂y
φ(y, z)

)
α2 dV (A.159)

which we will write as,

U =
∫

x
G Jα2 dx (A.160)

where J is defined as,

J =
∫

A

(
z2 + y2 +

(
∂

∂y
φ(y, z)

)2

+
(
∂

∂z
φ(y, z)

)2

+2y
∂

∂z
φ(y, z)−2z

∂

∂y
φ(y, z)

)
dA (A.161)

Note that this definition is different than our definition of J in the previous subsection.

However, we will show that this definition results in the same final expression for J . As before,

we will use Equations (A.139) and (A.140) in Equation (A.161) to facilitate manipulation. After

substitution we have,

J =
∫

A

(
z2 + y2 + (S1(y, z)+ y)2 + (S2(y, z)+ z)2 +2y(S1(y, z)+ y)

−2z(S2(y, z)+ z)
)

dA
(A.162)

which after simplifying becomes,

J =
∫

A

(
4y2 +S2(y, z)2 +S1(y, z)2 +4yS1(y, z)

)
dA (A.163)

Of note that for each of the summations S1(y, z) and S2(y, z) because of the orthogonal nature

of the trigonmetric functions when we integrate the squared terms we can move the sum

outside the integral and square each term since the integral of mismatched terms will be

zero. Expanding the integral Equation (A.163) gives

J =
∫ b

2

−b
2

∫ a
2

−a
2

4y2 dy dz +
∫ b

2

−b
2

∫ a
2

−a
2

S2(y, z)2 dy dz +
∫ b

2

−b
2

∫ a
2

−a
2

S1(y, z)2 dy dz

+
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.164)
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As before, we will consider one term at a time. Integrating the first term gives,

J = 1

3
a3b +

∫ b
2

−b
2

∫ a
2

−a
2

S2(y, z)2 dy dz +
∫ b

2

−b
2

∫ a
2

−a
2

S1(y, z)2 dy dz

+
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.165)

Substituting for S2(y, z) from Equations (A.137) and (A.140) into the second term results in

J = 1

3
a3b + 64a2

π4

∞∑
n=0

∫ b
2

−b
2

∫ a
2

−a
2

cos
(

(2n+1)πy
a

)2
sinh

(
(2n+1)πz

a

)2

(2n +1)4 cosh
(

1
2

(2n+1)πb
a

)2 dy dz

+
∫ b

2

−b
2

∫ a
2

−a
2

S1(y, z)2 dy dz +
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.166)

and integrating the second term with respect to y , produces

J = 1

3
a3b + 32a3

π4

∞∑
n=0

∫ b
2

−b
2

sinh
(

(2n+1)πz
a

)2

(2n +1)4 cosh
(

1
2

(2n+1)πb
a

)2 dz

+
∫ b

2

−b
2

∫ a
2

−a
2

S1(y, z)2 dy dz +
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.167)

and after integrating with respect to z, we get

J = 1

3
a3b + 16a3

π5

∞∑
n=0

a sinh
(

(2n+1)πb
a

)
−πb(2n +1)

(2n +1)5 cosh
(

1
2

(2n+1)πb
a

)2

+
∫ b

2

−b
2

∫ a
2

−a
2

S1(y, z)2 dy dz +
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.168)

Substituting for S1(y, z) from Equations (A.138) and (A.139) in the third term we have,

J = 1

3
a3b + 16a3

π5

∞∑
n=0

a sinh
(

(2n+1)πb
a

)
−πb(2n +1)

(2n +1)5 cosh
(

1
2

(2n+1)πb
a

)2

+64a2

π4

∞∑
n=0

∫ b
2

−b
2

∫ a
2

−a
2

cosh
(

(2n+1)πz
a

)2
sin

(
(2n+1)πy

a

)2

(2n +1)4 cosh
(

1
2

(2n+1)πb
a

)2 dy dz

+
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.169)
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Integrating the third term with respect to y , yields

J = 1

3
a3b + 16a3

π5

∞∑
n=0

a sinh
(

(2n+1)πb
a

)
−πb(2n +1)

(2n +1)5 cosh
(

1
2

(2n+1)πb
a

)2

+32a3

π4

∞∑
n=0

∫ b
2

−b
2

cosh
(

(2n+1)πz
a

)2

(2n +1)4 cosh
(

1
2

(2n+1)πb
a

)2 dz

+
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.170)

and then integrating with respect to z, results in

J = 1

3
a3b + 16a3

π5

∞∑
n=0

a sinh
(

(2n+1)πb
a

)
−πb(2n +1)

(2n +1)5 cosh
(

1
2

(2n+1)πb
a

)2

+16a3

π5

∞∑
n=0

a sinh
(

(2n+1)πb
a

)
+πb(2n +1)

(2n +1)5 cosh
(

1
2

(2n+1)πb
a

)2 +
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.171)

which can be simplified to the form

J = 1

3
a3b + 32a4

π5

∞∑
n=0

sinh
(

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

)2

+
∫ b

2

−b
2

∫ a
2

−a
2

4yS1(y, z)dy dz

(A.172)

Substituting for S1(y, z) in the last term, leads to

J = 1

3
a3b + 32a4

π5

∞∑
n=0

sinh
(

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

)2

−32a

π2

∞∑
n=0

∫ b
2

−b
2

∫ a
2

−a
2

(−1)n y cosh
(

(2n+1)πz
a

)
sin

(
(2n+1)πy

a

)
(2n +1)2 cosh

(
1
2

(2n+1)πb
a

) dy dz

(A.173)

after carrying out the integration with respect to y , we have

J = 1

3
a3b + 32a4

π5

∞∑
n=0

sinh
(

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

)2

−64a3

π4

∞∑
n=0

∫ b
2

−b
2

cosh
(

(2n+1)πz
a

)
(2n +1)4 cosh

(
1
2

(2n+1)πb
a

) dz

(A.174)
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and then integrating with respect to z, produces

J = 1

3
a3b + 32a4

π5

∞∑
n=0

sinh
(

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

)2

−128a4

π5

∞∑
n=0

sinh
(

1
2

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

)
(A.175)

Combining terms in Equation (A.175) allows us to write

J = 1

3
a3b − 32a4

π5

∞∑
n=0

sinh
(

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

)2 (A.176)

which can be rewritten as,

J = 1

3
a3b − 64a4

π5

∞∑
n=0

sinh
(

1
2

(2n+1)πb
a

)
(2n +1)5 cosh

(
1
2

(2n+1)πb
a

) (A.177)

or alternatively as,

J = 1

3
a3b − 64a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

(A.178)

which is the same as what we found in the previous section.

Torsional Kinetic Energy

Revisiting the displacements, now we consider that α is now a function of time. Therefore,

v = −α(t )xz (A.179)

w = α(t )x y (A.180)

u = α(t )φ(y, z) (A.181)

The kinetic energy of the beam due to shear is in general,

T = 1

2

∫
V
ρ

(
u̇2 + v̇2 + ẇ 2) dV (A.182)

which after substitution of the displacements is,

T = 1

2

∫
V
ρx2 (

z2 + y2) α̇(t )2 dV + 1

2

∫
V
ρφ(y, z)2α̇(t )2 dV (A.183)

Which can be written as,

T = 1

2

∫
x
ρ Jg x2α̇(t )2 dx + 1

2

∫
V
ρφ(y, z)2α̇(t )2 dV (A.184)

using the definition of Jg from Equation (A.136).
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Convergence Analysis of J

The formula for J includes an infinite series with no closed form solution. So it is important

to know how many terms in the series are needed to get a “good” approximation to J . First,

let us perform a change of variables to facilitate the analysis. Let b = aβ where β is the ratio

of height to width of the cross-section. After substitution into J we get,

J = 1

3
a4β− 64a4

π5

∞∑
n=0

tanh
(1

2 (2n +1)πβ
)

(2n +1)5
(A.185)

Factoring out the a4,

J = a4

(
1

3
β− 64

π5

∞∑
n=0

tanh
(1

2 (2n +1)πβ
)

(2n +1)5

)
(A.186)

Now, add and subtract 1 inside the sum giving,

J = a4

(
1

3
β− 64

π5

∞∑
n=0

1−1+ tanh
(1

2 (2n +1)πβ
)

(2n +1)5

)
(A.187)

which can be re-written as,

J

a4
= 1

3
β− 64

π5

( ∞∑
n=0

1

(2n +1)5
−

∞∑
n=0

1− tanh
(1

2 (2n +1)πβ
)

(2n +1)5

)
(A.188)

Now, we can use the Riemann Zeta function to simplify the first sum. Using the identity [89],

∞∑
n=0

1

(2n +1)m
= (−1+2−m)(−ζ(m)) (A.189)

we get,
J

a4
= 1

3
β− 64

π5

(
31

32
ζ(5)−

∞∑
n=0

1− tanh
(1

2 (2n +1)πβ
)

(2n +1)5

)
(A.190)

Therefore, the right hand side is now only a function of two variables, N which determines the

number of terms to use and β the ratio of height to width. Since the leading term won’t affect

the convergence we will just consider the series when plotting. Note that our assumption

during the warping function derivation is that β is greater than or equal to 1. Since tanh in

the last sum rapidly approaches 1, each term quickly becomes zero. If we consider the worst

geometric case (β= 1), we see convergence of the series terms (including ζ) as in Figure A.3.

So, even in the worse case, the correction sum contributes little to the final result past the

first term.

To see the effectiveness of this approach consider an alternate approximation by letting

the original series in Equation (A.186) range up to N terms,

J ≈ a4

(
1

3
β− 64

π5

N∑
n=0

tanh
(1

2 (2n +1)πβ
)

(2n +1)5

)
(A.191)
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Figure A.3: Series Contribution to J vs. N (β= 1)

Dividing through by the a4,

J

a4
≈ 1

3
β− 64

π5

N∑
n=0

tanh
(1

2 (2n +1)πβ
)

(2n +1)5
(A.192)

Comparing the series contribution of this equation versus the zeta approximation (plus

correction series), we get Figure A.4.

Plotting the β vs. N for the standard approximation (since it converges more slowly) in a

three-dimensional plot we get Figure A.5. Note that the solution is insensitive to N since the

result does not change much due to N . Also, once β is not much greater than 1, there is also

very little change. Investigating the rapid convergence further for a cross-section where a = 1

mm and b = 30 mm. Using just a single term (N = 0) in the zeta approximation, Equation

(A.190) we get,

J0 ≈ 9.7899 mm4 (A.193)

If we ignore the correction sum term, we also get,

Jζ ≈ 9.7899 mm4 (A.194)
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Figure A.4: Comparing Approximation of the Series Contribution to J vs. N (β= 1)

Therefore, we can safely use the approximation

J ≈ 1

3
a3b − 62a4

π5
ζ(5) (A.195)

for larger values of β. Note that we had assumed that there was no warping in the cross-

section the formula for J would be,

Jφ=0 = 1

12
ab

(
a2 +b2) (A.196)

which for the numerical example above would give,

Jφ=0 = 2,252 mm4 (A.197)

and using a single term in Rivello’s series approximation to J [33],

JR = 7.9795739217 mm4 (A.198)
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Figure A.5: Series Contribution to J for β vs. N

Therefore, a single term approximation using Rivello’s formula has an error of

ER = 18.5% (A.199)

Although, it should converge to the correct solution. The error for the no-warping assumption

is,

Eφ=0 = 22,903% (A.200)

A.2 φDependence in Reissner Torsion

For simplicity’s sake, in this section we will focus on the original static model as proposed by

Reissner. Reissner’s assumptions for the deflection due to torsion are,

u(x, y, z) = ψ(x)φ(y, z) (A.201)

v(x, y, z) = −θ(x)z (A.202)

w(x, y, z) = θ(x)y (A.203)
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To ensure that there is no warping at the fixed end of the beam (x = 0),

ψ(0) = 0 (A.204)

The differential equations he derives are as follows (using consistent constants with Chapter

2),

G
(
Lcθ,x +Kψ

)−EPψ,xx = 0 (A.205)

G
(

Jgθ,x +Lcψ
) = M (A.206)

where M is the applied torque and the other constants are from Equations (2.23)–(2.26). To

understand the equations further, let us derive the equations using a different method than

that of Reissner. The potential strain energy is,

U = 1

2

∫
V

(
σxxεxx +τx yγx y +τxzγxz

)
dV (A.207)

since those are the only non-zero stress-strain combinations due to the displacement and

stress assumptions. In general, this becomes,

U = 1

2

∫
V

(
Eu2

,x +G
(
u,y + v,x

)2 +G
(
u,z +w,x

)2
)

dV (A.208)

and with our definitions for the deflections,

U = 1

2

∫
V

(
Eψ2

,xφ
2 +G

(
ψφ,y − zθ,x

)2 +G
(
ψφ,z + yθ,x

)2
)

dV (A.209)

Note that we need to be concerned with variations with respect to φ(y, z), ψ(x), and θ(x).

Carrying out the variation with respect to φ,∫
V

(
Eφψ2

,xδφ+Gψ
(
φ,yψ− zθ,x

)
δφ,y +Gψ

(
φ,zψ+ yθ,x

)
δφ,z

)
dV = 0 (A.210)

and the variation with respect to ψ,∫
V

(
Eφ2ψ,xδψ,x +G

(
φ2

,yψ− zφ,yθ,x +φ2
,zψ+ yφ,zθ,x

)
δψ

)
dV = 0 (A.211)

Finally, the variation with respect to θ,∫
V

G
((

yφ,z − zφ,y
)
ψ+ (z2 + y2)θ,x

)
δθ,xdV = 0 (A.212)

Integrating Equation (A.210), by parts using Gauss’ Theorem,∫
S

Gψ
((
φ,y ny +φ,znz

)
ψ+ (ynz − zny )θ,x

)
δφdS +

∫
V

(
Eφψ2

,x −Gψ2 (
φ,y y +φ,zz

))
δφdV = 0

(A.213)
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where ny is the y component of the surface normal and nz is the z component of the surface

normal. Integrating Equation (A.211) by parts,∫
Ac

Eφ2ψ,xδψdAc

∣∣∣∣l

0
+

∫
V

(
−Eφ2ψ,xx +G

(
φ2

,y +φ2
,z

)
ψ+G

(
yφ,z − zφ,y

)
θ,x

)
δψ dV = 0

(A.214)

Note that neither ψ or δψ vary over the cross-section. Assuming that the material properties

are constant for the cross-section and making use of Equations (2.23)-(2.26), this becomes,

EPψ,xδψ
∣∣l
0 +

∫ L

0

(−EPψ,xx +G
(
Kψ+Lθ,x

))
δψ dx = 0 (A.215)

Similarly, integrating Equation (A.212) by parts,∫
Ac

G
((

yφ,z − zφ,y
)
ψ+ (z2 + y2)θ,x

)
δθdAc

∣∣∣∣l

0
−

∫
V

G
((

yφ,z − zφ,y
)
ψ,x + (z2 + y2)θ,xx

)
δθdV = 0

(A.216)

Once again, using the same set of assumptions along with Equations (2.23) and (2.26),

G
(
Lψ+ Jgθ,x

)
δθ

∣∣l
0 −

∫ l

0
G

(
Lψ,x + Jgθ,xx

)
δθdx = 0 (A.217)

This gives us the following equations of equilibrium,

Eφψ2
,x −Gψ2 (

φ,y y +φ,zz
) = 0 (A.218)

G
(
Kψ+Lcθ,x

)−EPψ,xx = 0 (A.219)

Jgθ,xx +Lcψ,x = 0 (A.220)

and the boundary conditions,∫
S
ψ

((
φ,y ny +φ,znz

)
ψ+ (ynz − zny )θ,x

)
δφdS = 0 (A.221)

ψ,xδψ
∣∣l
0 = 0 (A.222)(−D∗ψ+ Jgθ,x

)
δθ

∣∣l
0 = 0 (A.223)

If we consider x = 0 to be fixed and x = l to be free, the boundary conditions become,∫
S
ψ

((
φ,y ny +φ,znz

)
ψ+ (ynz − zny )θ,x

)
δφdS = 0 (A.224)

ψ(0) = 0 (A.225)

ψ,x(l ) = 0 (A.226)

θ(0) = 0 (A.227)

Jgθ,x(l ) = D∗ψ(l ) (A.228)
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We can re-arrange Equation (A.218) to get,

Gψ2 (
φ,y y +φ,zz

)= Eφψ2
,x (A.229)

which can be written as,
G

E

φ,y y +φ,zz

φ
=

(
ψ,x

ψ

)2

(A.230)

We will assume that the each side is equal to a positive constant since the only way it could

be negative is if the ratio inside the square is a complex number. This gives,

G

E

(
φ,y y +φ,zz

)−λ2φ = 0 (A.231)

ψ2
,x −λ2ψ2 = 0 (A.232)

The second equation can be simplified to,

ψ,x −λψ= 0 (A.233)

which gives us four differential equations to describe 3 variables. Also, when combined

with our boundary condition that ψ(0) = 0, this would mean that there is no warping of the

cross-section.

A.3 Modelling Torsion including Shear and Poisson Effects

In this model, we are only using the stress assumptions as given in Equations (2.50) and

(2.51). This means that Equations (2.44)–(2.46) become,

σxx = E εxx (A.234)

εy y = −νεxx (A.235)

εzz = −νεxx (A.236)

From Equations (A.235) and (A.236) one can see that the normal strains in the y and z

directions are now dependent upon the axial deformation. Therefore, assume displacements

of the form

u = u(x, y, z, t ) (A.237)

v = v(x, y, z, t ) (A.238)

w = w(x, y, z, t ) (A.239)

which means that Equations (A.234)–(A.236) become,

σxx = E u,x(x, y, z, t ) (A.240)

v,y (x, y, z, t ) = −νu,x(x, y, z, t ) (A.241)

w,z(x, y, z, t ) = −νu,x(x, y, z, t ) (A.242)
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and the shear strains from Equations (2.35)–(2.37) become,

γy z = v,z(x, y, z, t )+w,y (x, y, z, t ) (A.243)

γzx = u,z(x, y, z, t )+w,x(x, y, z, t ) (A.244)

γx y = u,y (x, y, z, t )+ v,x(x, y, z, t ) (A.245)

and the resulting shear stresses are,

τy z = G
[
v,z(x, y, z, t )+w,y (x, y, z, t )

]
(A.246)

τzx = G
[
u,z(x, y, z, t )+w,x(x, y, z, t )

]
(A.247)

τx y = G
[
u,y (x, y, z, t )+ v,x(x, y, z, t )

]
(A.248)

Note that we can combine Equations (A.241) and (A.242) to get,

v,y (x, y, z, t ) = w,z(x, y, z, t ) (A.249)

The torsional strain energy has as an additional term not in Equation (2.56) which now has

the form

U = 1

2

∫
V

(
σxxεxx +τx yγx y +τzxγzx +τy zγy z

)
dV (A.250)

which, after substitution from Equation (A.240) and Equations (A.243)–(A.248), yields

U = 1

2

∫
V

[
E u,x(x, y, z, t )2 +G

(
u,y (x, y, z, t )+ v,x(x, y, z, t )

)2

+G
(
u,z(x, y, z, t )+w,x(x, y, z, t )

)2 +G
(
v,z(x, y, z, t )+w,y (x, y, z, t )

)2
]

dV
(A.251)

and the kinetic energy as given in Equation (2.60) becomes,

T = 1

2

∫
V
ρ

[
u̇(x, y, z, t )2 + v̇(x, y, z, t )2 + ẇ(x, y, z, t )2]dV (A.252)

Using Hamilton’s Principle as given in Equation (2.63) and taking the variation with respect

to u(x, y, z, t ), we get

δA1 =
∫ t2

t1

∫
V

[ρu̇δu̇ −du ·∇δu]dV dt (A.253)

where du is given as,

du =
[

Eu,x G
(
v,x +u,y

)
G

(
w,x +u,z

)]T
(A.254)

Taking the variation with respect to v(x, y, z, t ) yields

δA2 =
∫ t2

t1

∫
V

[
ρv̇δv̇ −dv ·∇δv

]
dV dt (A.255)
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where dv is given as,

dv =
[
G

(
u,y + v,x

)
0 G

(
v,z +w,y

)]T
(A.256)

and lastly, taking the variation with respect to w(x, y, z, t ) gives

δA3 =
∫ t2

t1

∫
V

[
ρẇδẇ −dw ·∇δw

]
dV dt (A.257)

where dw is given as,

dw =
[
G

(
u,z +w,x

)
G

(
v,z +w,y

)
0
]T

(A.258)

Each of these variations are independent so they must go to zero independently. We can

make use of the results in Appendix B to integrate these equations. First integrating Equation

(A.253),[∫
V
ρu̇δudV

]t2

t1

−
∫ t2

t1

∫
S

du ·nδu dSdt −
∫ t2

t1

∫
V

[
ρü − (∇·du)

]
δu dV dt = 0 (A.259)

If we consider that n has the form,

n =
[

nx ny nz

]T
(A.260)

then Equation (A.259) can be written as,[∫
V
ρu̇δudV

]t2

t1

−
∫ t2

t1

∫
S

[
Eu,xnx +G[

(
v,x +u,y

)
ny +

(
w,x +u,z

)
nz]

]
δu dSdt

−
∫ t2

t1

∫
V

[
ρü −Eu,xx −G

(
v,x y +u,y y

) −G
(
w,xz +u,zz

)]
δu dV dt = 0

(A.261)

nx is perpendicular to the cross-section so this can be written as[∫
V
ρu̇δudV

]t2

t1

−
[∫ t2

t1

∫
A
δu dAdt

]l

0

−
∫ t2

t1

∫
S

G
[(

v,x +u,y
)

ny +
(
w,x +u,z

)
nz

]
δu dSdt

−
∫ t2

t1

∫
V

[
ρü −Eu,xx −G

(
v,x y +u,y y

) − G
(
w,xz +u,zz

)]
δu dV dt = 0

(A.262)

We can make use of Equations (A.241) and (A.242) to get,[∫
V
ρu̇δudV

]t2

t1

−
[∫ t2

t1

∫
A

Eu,xδu dAdt

]l

0

−
∫ t2

t1

∫
S

G
[(

v,x +u,y
)

ny +
(
w,x +u,z

)
nz

]
δu dSdt

−
∫ t2

t1

∫
V

[
ρü − (E −2Gν)u,xx −G(u,y y +u,zz)

]
δu dV dt = 0

(A.263)
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Next, integrating Equation (A.255) leads to[∫
V
ρv̇ δvdV

]t2

t1

−
∫ t2

t1

∫
S

dv ·nδv dSdt −
∫ t2

t1

∫
V

[
ρv̈ − (∇·dv)

]
δv dV dt = 0 (A.264)

and similarly, integrating Equation (A.257) produces[∫
V
ρẇ δwdV

]t2

t1

−
∫ t2

t1

∫
S

dw ·nδw dSdt −
∫ t2

t1

∫
V

[
ρẅ − (∇·dw)

]
δw dV dt = 0 (A.265)

Substituting for dv and n in Equation (A.264) produces[∫
V
ρv̇ δvdV

]t2

t1

−
∫ t2

t1

∫
S

G[(u,y + v,x)nx + (v,z +w,y )nz]δv dSdt

−
∫ t2

t1

∫
V

[
ρv̈ −G(u,y x +v,xx + v,zz +w,y z)

]
δv dV dt = 0

(A.266)

and we can make use of Equations (A.241) and (A.249) in the above to get,[∫
V
ρv̇ δvdV

]t2

t1

−
∫ t2

t1

∫
S

G[(u,y + v,x)nx + (v,z +w,y )nz]δv dSdt

−
∫ t2

t1

∫
V

[
ρv̈ −G(v,xx + v,zz +(1− 1

ν
)v,y y )

]
δv dV dt = 0

(A.267)

and similarly, for Equation (A.265), we get,[∫
V
ρẇδwdV

]t2

t1

−
∫ t2

t1

∫
S

G[(u,z +w,x)nx + (v,z +w,y )ny ]δw dSdt

−
∫ t2

t1

∫
V

[
ρẅ −G(w,xx +w,y y +(1− 1

ν
)w,zz)

]
δw dV dt = 0

(A.268)

In summary, the governing equations are,

ρü − (E −2Gν)u,xx −G(u,y y +u,zz) = 0 (A.269)

ρv̈ −G(v,xx + v,zz + (1− 1

ν
)v,y y ) = 0 (A.270)

ρẅ −G(w,xx +w,y y + (1− 1

ν
)w,zz) = 0 (A.271)

The boundary conditions arising from the variations are,∫ t2

t1

∫
A

Eu,xδu dAdt

∣∣∣∣l

0
= 0 (A.272)∫ t2

t1

∫
S

G
[(

v,x +u,y
)

ny +
(
w,x +u,z

)
nz

]
δu dSdt = 0 (A.273)∫ t2

t1

∫
S

G[(u,y + v,x)nx + (v,z +w,y )nz]δv dSdt = 0 (A.274)∫ t2

t1

∫
S

G[(u,z +w,x)nx + (v,z +w,y )ny ]δw dSdt = 0 (A.275)
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and the initial conditions are deduced from,∫
V
ρu̇δudV

∣∣∣∣t2

t1

= 0 (A.276)∫
V
ρv̇ δvdV

∣∣∣∣t2

t1

= 0 (A.277)∫
V
ρẇδwdV

∣∣∣∣t2

t1

= 0 (A.278)
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APPENDIX

B
Volume Integration of Variational

Gradients

From Harris and Stocker [90], we have that

∇· (sa) = (∇s) ·a+ s (∇·a) (B.1)

where s is a scalar field and a is a vector field. If we consider the scalar field to be δΦwe get,

∇· (aδΦ) = (∇δΦ) ·a+ (∇·a)δΦ (B.2)

and integrating over the volume,∫
V
∇· (aδΦ) dV =

∫
V

(∇δΦ) ·adV +
∫

V
(∇·a)δΦdV (B.3)

Using the divergence theorem, we can replace the left hand side with an integration over the

surface S to get, ∫
S

a ·nδΦdS =
∫

V
(∇δΦ) ·adV +

∫
V

(∇·a)δΦdV (B.4)

where n is the normal to the surface. Re-arranging terms, we get,∫
V

(∇δΦ) ·adV =
∫

S
a ·nδΦdS −

∫
V

(∇·a)δΦdV (B.5)

or alternatively, ∫
V

a · (∇δΦ) dV =
∫

S
a ·nδΦdS −

∫
V

(∇·a)δΦdV (B.6)
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APPENDIX

C
Integration of φ over the

cross-section

Recall from chapter 2, there are a number of equations involving φ given in Equations

(2.23)–(2.25). These are,

P =
∫

A
φ(y, z)2dA (C.1)

K =
∫

A

(
φ,y (y, z)2 +φ,z(y, z)2)dA (C.2)

Lc =
∫

A

(
yφ,z(y, z)− zφ,y (y, z)

)
dA (C.3)

In this appendix, we look at the integration of these over a rectangular cross-section. For

a rectangular cross-section, if we assume a St. Venant warping function for φ, we get the

equation given in Equation (A.130), which is restated below for convenience.

φ(y, z) = y z −
∞∑

n=0

8a2(−1)n sin
(

(2n+1)πy
a

)
sinh

(
(2n+1)πz

a

)
(2n +1)3π3 cosh

(
1
2

(2n+1)πb
a

) (C.4)

Alternatively, this could be written as,

φ(y, z) = y z −
∞∑

n=0
C (n) f (n, y)g (n, z) (C.5)

where,

C (n) = 8a2(−1)n

(2n +1)3π3 cosh
(

1
2

(2n+1)πb
a

) (C.6)

f (n, y) = sin

(
(2n +1)πy

a

)
(C.7)

g (n, z) = sinh

(
(2n +1)πz

a

)
(C.8)
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Therefore, φ,y and φ,z become,

φ,y (y, z) = z −
∞∑

n=0
C (n) f,y (n, y)g (n, z) (C.9)

φ,z(y, z) = y −
∞∑

n=0
C (n) f (n, y)g ,z(n, z) (C.10)

and the derivatives of f (n, y) and g (n, z) are,

f,y (n, y) = (2n +1)π

a
cos

(
(2n +1)πy

a

)
(C.11)

g ,z(n, z) = (2n +1)π

a
cosh

(
(2n +1)πz

a

)
(C.12)

C.1 Calculation of the P integral

Looking at the P integral in Equation (C.1) after substitution of Equation (C.5),

P =
∫ b/2

−b/2

∫ a/2

−a/2
(y z −

∞∑
n=0

C (n) f (n, y)g (n, z))2dydz (C.13)

=
∫ b/2

−b/2

∫ a/2

−a/2

(
y2z2 −2y z

∞∑
n=0

C (n) f (n, y)g (n, z)

+
∞∑

n=0

∞∑
m=0

C (n)C (m) f (n, y) f (m, y)g (n, z)g (m, z)

)
dydz (C.14)

We can pull the sums and C factors out of the integral giving,

P =
∫ b/2

−b/2

∫ a/2

−a/2
y2z2dydz −2

∞∑
n=0

C (n)
∫ b/2

−b/2

∫ a/2

−a/2
y z f (n, y)g (n, z)dydz

+
∞∑

n=0

∞∑
m=0

C (n)C (m)
∫ b/2

−b/2

∫ a/2

−a/2
f (n, y) f (m, y)g (n, z)g (m, z)dydz (C.15)

which can be written as,

P =
∫ b/2

−b/2
z2

∫ a/2

−a/2
y2dydz −2

∞∑
n=0

C (n)
∫ b/2

−b/2
zg (n, z)

∫ a/2

−a/2
y f (n, y)dydz

+
∞∑

n=0

∞∑
m=0

C (n)C (m)
∫ b/2

−b/2
g (n, z)g (m, z)

∫ a/2

−a/2
f (n, y) f (m, y)dydz (C.16)

Note that, ∫ a/2

−a/2
f (n, y) f (m, y)dy = 0 ∀m 6= n (C.17)

which allows us to simplify the integral for P to,

P =
∫ b/2

−b/2
z2

∫ a/2

−a/2
y2dydz −2

∞∑
n=0

C (n)
∫ b/2

−b/2
zg (n, z)

∫ a/2

−a/2
y f (n, y)dydz

+
∞∑

n=0
C (n)2

∫ b/2

−b/2
g (n, z)2

∫ a/2

−a/2
f (n, y)2dydz (C.18)
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C.1. CALCULATION OF THE P INTEGRAL

or alternatively (since f and g are independent of z and y respectively),

P =
∫ b/2

−b/2
z2dz

∫ a/2

−a/2
y2dy −2

∞∑
n=0

C (n)
∫ b/2

−b/2
zg (n, z)dz

∫ a/2

−a/2
y f (n, y)dy

+
∞∑

n=0
C (n)2

∫ b/2

−b/2
g (n, z)2dz

∫ a/2

−a/2
f (n, y)2dy (C.19)

Since the individual integrals will reoccur in the other constants K and Lc , we will write this

as,

P = P1 −2
∞∑

n=0
C (n)Gz1(n)Fy1(n)+

∞∑
n=0

C (n)2G2(n)F2(n) (C.20)

where the individual constants/functions are,

P1 =
∫ b/2

−b/2
z2dz

∫ a/2

−a/2
y2dy (C.21)

Gz1 =
∫ b/2

−b/2
zg (n, z)dz (C.22)

Fy1 =
∫ a/2

−a/2
y f (n, y)dy (C.23)

G2 =
∫ b/2

−b/2
g (n, z)2dz (C.24)

F2 =
∫ a/2

−a/2
f (n, y)2dy (C.25)

The constant P1 is,

P1 =
∫ b/2

−b/2
z2

∫ a/2

−a/2
y2dydz = a3b3

144
(C.26)

Calculating the integral Gz1,

Gz1(n) =
∫ b/2

−b/2
zg (n, z)dz (C.27)

= a

(2n +1)2π2

(
(2n +1)πb cosh

(
1

2

(2n +1)πb

a

)
−2a sinh

(
1

2

(2n +1)πb

a

))
(C.28)

and the integral Fy1,

Fy1(n) =
∫ a/2

−a/2
y f (n, y)dy = 2(−1)n a2

π2(2n +1)2
(C.29)

The integral G2 becomes,

G2 =
∫ b/2

−b/2
g (n, z)2dz (C.30)

= 1

2(2n +1)π

(
2a cosh

(
1

2

(2n +1)πb

a

)
sinh

(
1

2

(2n +1)πb

a

)
−πb(2n +1)

)
(C.31)
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and lastly, the integral F2(n) is,

F2(n) =
∫ a/2

−a/2
f (n, y)2dy = a

2
(C.32)

F2 = a

2
(C.33)

which we note does not depend upon n. Finally, calculating C (n)2,

C (n)2 = 64a4

(2n +1)6π6 cosh2
(

1
2

(2n+1)πb
a

) (C.34)

Now that all the functions of n are known, we can start substitution of their values into the

individual terms of P . The second term of Equation (C.20) becomes,

−2
∞∑

n=0
C (n)

2(−1)n a3

π4(2n +1)4

(
(2n +1)πb cosh

(
1

2

(2n +1)πb

a

)
−2a sinh

(
1

2

(2n +1)πb

a

))
(C.35)

and after substitution of C (n) from Equation (C.6),

−2
∞∑

n=0
C (n)Gz1(n)Fy1(n) =−2

∞∑
n=0

16(−1)2n a5

π7(2n +1)7

(
(2n +1)πb −2a tanh

(
1

2

(2n +1)πb

a

))
(C.36)

and since (−1)2 = 1, this becomes,

−2
∞∑

n=0
C (n)Gz1(n)Fy1(n) =−32a5

π7

∞∑
n=0

1

(2n +1)7

(
(2n +1)πb −2a tanh

(
1

2

(2n +1)πb

a

))
(C.37)

and the last term of Equation (C.20) is,

C (n)2 a

4(2n +1)π

(
2a cosh

(
1

2

(2n +1)πb

a

)
sinh

(
1

2

(2n +1)πb

a

)
−πb(2n +1)

)
(C.38)

Substituting C (n)2 from Equation (C.34),

∞∑
n=0

C (n)2G2(n)F2(n) = 16a5

(2n +1)7π7

(
2a tanh

(
1

2

(2n +1)πb

a

)
−πb(2n +1)sech2

(
1

2

(2n +1)πb

a

))
(C.39)

Therefore, Equation (C.20) becomes,

P = a3b3

144
+ 16a5

π7

∞∑
n=0

2

(2n +1)7

(
2a tanh

(
1

2

(2n +1)πb

a

)
− (2n +1)πb

)
+ 1

(2n +1)7

(
2a tanh

(
1

2

(2n +1)πb

a

)
− (2n +1)πb sech2

(
1

2

(2n +1)πb

a

))
(C.40)
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after combining terms,

P = a3b3

144
+ 16a5

π7

∞∑
n=0

1

(2n +1)7

(
6a tanh

(
1

2

(2n +1)πb

a

)
− (2n +1)πb

(
2+ sech2

(
1

2

(2n +1)πb

a

)))
(C.41)

and expanding,

P = a3b3

144
+ 16a5

π7

 ∞∑
n=0

6a tanh
(

1
2

(2n+1)πb
a

)
(2n +1)7

−2πb

 ∞∑
n=0

1

(2n +1)6
−

∞∑
n=0

sech2
(

1
2

(2n+1)πb
a

)
(2n +1)6


(C.42)

C.2 Calculation of the K integral

After substitution of Equation (C.5) into Equation (C.2),

K =
∫

A
(y2 + z2)dA−2

∫
A

∞∑
n=0

C (n)
(
z f,y (n, y)g (n, z)+ y f (n, y)g ,z(n, z)

)
dA

+
∫

A

∞∑
n=0

∞∑
m=0

C (n)C (m)
(

f,y (n, y) f,y (m, y)g (n, z)g (m, z)+ f (n, y) f (m, y)g ,z(n, z)g ,z(m, z)
)

dA

(C.43)

After factoring,

K = Jg −2
∞∑

n=0
C (n)

(∫ b/2

−b/2
zg (n, z)

∫ a/2

−a/2
f,y (n, y)dydz +

∫ b/2

−b/2
g ,z(n, z)

∫ a/2

−a/2
y f (n, y)dydz

)
+

∞∑
n=0

∞∑
m=0

C (n)C (m)

(∫ b/2

−b/2
g (n, z)g (m, z)

∫ a/2

−a/2
f,y (n, y) f,y (m, y)dydz

+
∫ b/2

−b/2
g ,z(n, z)g ,z(m, z)

∫ a/2

−a/2
f (n, y) f (m, y)dydz

)
(C.44)

Note that we have several integrals that have already been calculated. We can simplify this

because, ∫ a/2

−a/2
f,y (n, y) f,y (m, y)dy = 0 ∀m 6= n (C.45)

Along with Equation (C.17), this allows us to reduce the integral to,

K = Jg −2
∞∑

n=0
C (n)

(∫ b/2

−b/2
zg (n, z)dz

∫ a/2

−a/2
f,y (n, y)dy +

∫ b/2

−b/2
g ,z(n, z)dz

∫ a/2

−a/2
y f (n, y)dy

)
+

∞∑
n=0

C (n)2
(∫ b/2

−b/2
g (n, z)2dz

∫ a/2

−a/2
f,y (n, y)2dy +

∫ b/2

−b/2
g ,z(n, z)2dz

∫ a/2

−a/2
f (n, y)2dy

)
(C.46)
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Using the functions from before, this becomes,

K = Jg −2
∞∑

n=0
C (n)

(
Gz1(n)Fy2(n)+Gz2(n)Fy1(n)

)+ ∞∑
n=0

C (n)2 (
G2(n)F2y (n)+G2z(n)F2

)
(C.47)

where the other functions are as follows,

Fy2(n) =
∫ a/2

−a/2
f,y (n, y)dy (C.48)

Gz2(n) =
∫ b/2

−b/2
g ,z(n, z)dz (C.49)

F2y (n) =
∫ a/2

−a/2
f,y (n, y)2dy (C.50)

G2y (n) =
∫ b/2

−b/2
g ,z(n, z)2dz (C.51)

Calculating the Fy2(n) integral we get,

Fy2(n) =
∫ a/2

−a/2
f,y (n, y)dy = 2(−1)n (C.52)

and calculating Gz2(n) gives,

Gz2(n) =
∫ b/2

−b/2
g ,z(n, z)dz = 2sinh

(
1

2

(2n +1)πb

a

)
(C.53)

The F2y (n) integral is,

F2y (n) =
∫ a/2

−a/2
f,y (n, y)2dy = π2(2n +1)2

2a
(C.54)

and the G2y (n) integral is,

G2y (n) =
∫ b/2

−b/2
g ,z(n, z)2dz (C.55)

= (2n +1)π

2a2

(
2a cosh

(
1

2

(2n +1)πb

a

)
sinh

(
1

2

(2n +1)πb

a

)
+πb(2n +1)

)
(C.56)

The first term in the first series of Equation (C.47) is,

Gz1(n)Fy2(n) = 2a(−1)n

(2n +1)2π2

(
(2n +1)bπcosh

(
1

2

(2n +1)πb

a

)
−2a sinh

(
1

2

(2n +1)πb

a

))
(C.57)

and the second term of that series is,

Gz2(n)Fy1(n) =
4a2(−1)n sinh

(
1
2

(2n+1)πb
a

)
(2n +1)2π2

(C.58)
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Therefore, the first series is,

−2
∞∑

n=0
C (n)

2ab(−1)n cosh
(

1
2

(2n+1)πb
a

)
(2n +1)π

(C.59)

and after substitution of C (n) Equation (C.59) becomes,

−32a3b

π4

∞∑
n=0

1

(2n +1)4
(C.60)

The first term in the second series of Equation (C.47) is,

G2(n)F2y (n) =
(2n +1)π

(
2a cosh

(
1
2

(2n+1)πb
a

)
sinh

(
1
2

(2n+1)πb
a

)
−πb(2n +1)

)
4a

(C.61)

and the second term in that series is,

G2z(n)F2(n) =
(2n +1)π

(
2a cosh

(
1
2

(2n+1)πb
a

)
sinh

(
1
2

(2n+1)πb
a

)
+πb(2n +1)

)
4a

(C.62)

Therefore, the second series of Equation (C.47) is,

∞∑
n=0

C (n)2(2n +1)πcosh

(
1

2

(2n +1)πb

a

)
sinh

(
1

2

(2n +1)πb

a

)
(C.63)

and after substitution for C (n)2,

64a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

(C.64)

Therefore, K is,

K = Jg − 32a3b

π4

∞∑
n=0

1

(2n +1)4
+ 64a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

(C.65)

C.3 Calculation of the Lc integral

Lastly, when we substitute Equation (C.5) into Equation (C.3) we get,

Lc =
∫

A

(
(y2 − z2)−

∞∑
n=0

C (n)
(
y f (n, y)g ,z(n, z)− z f,y (n, y)g (n, z)

))
dA (C.66)

which upon expansion gives,

Lc =
∫

A
(y2 − z2)dA−

∞∑
n=0

C (n)

(∫
A

y f (n, y)g ,z(n, z)dA−
∫

A
z f,y (n, y)g (n, z)dA

)
(C.67)
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which can be expanded to,

Lc =
∫ b/2

−b/2

∫ a/2

−a/2
(y2 − z2)dydz −

∞∑
n=0

C (n)

(∫ b/2

−b/2
g ,z(n, z)

∫ a/2

−a/2
y f (n, y)dydz

−
∫ b/2

−b/2
zg (n, z)dz

∫ a/2

−a/2
f,y (n, y)dy

)
(C.68)

=
∫ b/2

−b/2

∫ a/2

−a/2
(y2 − z2)dydz −

∞∑
n=0

C (n)

(∫ b/2

−b/2
g ,z(n, z)dz

∫ a/2

−a/2
y f (n, y)dy

−
∫ b/2

−b/2
zg (n, z)dz

∫ a/2

−a/2
f,y (n, y)dy

)
(C.69)

using the functions as defined earlier this becomes,

Lc = Lc1 −
∞∑

n=0
C (n)

(
Gz2(n)Fy1(n)−Gz1(n)Fy2(n)

)
(C.70)

where Lc1 is,

Lc1 =
∫ b/2

−b/2

∫ a/2

−a/2
(y2 − z2)dydz = ab(a2 −b2)

12
(C.71)

and all the functions inside the series have been previously calculated. Therefore, Lc is,

Lc = ab(a2 −b2)

12
− 2a

π2

∞∑
n=0

C (n)
(−1)n

(
4a sinh

(
1
2

(2n+1)πb
a

)
−πb(2n +1)cosh

(
1
2

(2n+1)πb
a

))
(2n +1)2

(C.72)

and after substitution of C (n) and simplification,

Lc = ab(a2 −b2)

12
− 16a3

π5

∞∑
n=0

4a tanh
(

1
2

(2n+1)πb
a

)
−πb(2n +1)

(2n +1)5
(C.73)

and expanding,

Lc = ab(a2 −b2)

12
+ 16a3

π5

πb
∞∑

n=0

1

(2n +1)4
−4a

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

 (C.74)
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C.4 Convergence analysis of the integrals

From Equations (C.42), (C.65), and (C.74) we have the following solutions to the integrals,

P = a3b3

144
+ 16a5

π7

 ∞∑
n=0

6a tanh
(

1
2

(2n+1)πb
a

)
(2n +1)7

−2πb

 ∞∑
n=0

1

(2n +1)6
−

∞∑
n=0

sech2
(

1
2

(2n+1)πb
a

)
(2n +1)6


(C.75)

K = Jg − 32a3b

π4

∞∑
n=0

1

(2n +1)4
+ 64a4

π5

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

(C.76)

Lc = ab(a2 −b2)

12
+ 16a3

π5

πb
∞∑

n=0

1

(2n +1)4
−4a

∞∑
n=0

tanh
(

1
2

(2n+1)πb
a

)
(2n +1)5

 (C.77)

Examining the tanh factor, we can write it as,

tanh

(
1

2

(2n +1)πb

a

)
= tanh

(
1

2
(2n +1)πβ

)
(C.78)

where β= b
a which is the ratio of the height to the width of the cross-section. When n = 0

(part of the first term in the series) this becomes,

tanh

(
πβ

2

)
(C.79)

and plotting we get Figures C.1 and C.2. Note that even for fairly low values of β this ap-

proaches 1. From the dimensions in Table 7.1 we get that β≈ 31.46 which leads to,

tanh

(
πβ

2

)
≈ 1 (C.80)

to a high degree of precision.
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Figure C.1: tanh vs. β (β from 1 to 5)
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Figure C.2: tanh vs. β (β from 2 to 4)
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Figure C.3: sech2 vs. β (β from 1 to 5)

Examining the sech2 term,

sech2
(

1

2

(2n +1)πb

a

)
= sech2

(
1

2
(2n +1)πβ

)
(C.81)

and when n = 0,

sech2
(
πβ

2

)
(C.82)

and plotting we get Figures C.3 and C.4.
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Figure C.4: sech2 vs. β (β from 5 to 10)
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We can see that it approaches 0 relatively quickly. For our given β, this becomes,

sech2
(
πβ

2

)
≈ 0 (C.83)

also to a high degree of precision. Therefore, that term can be safely eliminated from the

series. So, making use of these results for tanh and sech2, the solutions become,

P = a3b3

144
+ 16a5

π7

(
6a

∞∑
n=0

1

(2n +1)7
−2πb

∞∑
n=0

1

(2n +1)6

)
(C.84)

K = Jg − 32a3b

π4

∞∑
n=0

1

(2n +1)4
+ 64a4

π5

∞∑
n=0

1

(2n +1)5
(C.85)

Lc = ab(a2 −b2)

12
+ 16a3

π5

(
πb

∞∑
n=0

1

(2n +1)4
−4a

∞∑
n=0

1

(2n +1)5

)
(C.86)

Recall from Equation (A.189) [89],

∞∑
n=0

1

(2n +1)m
= (−1+2−m)(−ζ(m)) (C.87)

where ζ(m) is the Riemann zeta function. Or alternatively,

∞∑
n=0

1

(2n +1)m
= ζ(m)(1−2−m) (C.88)

This allows us to get analytical solutions for all the series (for cases when β is sufficiently

large). Therefore, the solutions become,

P = a3b3

144
+ 16a5

π7

(
6a ζ(7)(1−2−7)−2πb ζ(6)(1−2−6) (C.89)

K = Jg − 32a3b

π4
ζ(4)(1−2−4)+ 64a4

π5
ζ(5)(1−2−5) (C.90)

Lc = ab(a2 −b2)

12
+ 16a3

π5

(
πb ζ(4)(1−24)−4a ζ(5)(1−2−5)

)
(C.91)

For all cases where,

tanh

(
πβ

2

)
≈ 1, sech2

(
πβ

2

)
≈ 0 (C.92)

Therefore, these become,

P = a3b3

144
+ 16a5

π7

(
6a

127

128
ζ(7)−2πb

63

64
ζ(6)

)
(C.93)

K = Jg − 32a3b

π4

15

16
ζ(4)+ 64a4

π5

31

32
ζ(5) (C.94)

Lc = ab(a2 −b2)

12
+ 16a3

π5

(
πb

15

16
ζ(4)−4a

31

32
ζ(5)

)
(C.95)
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and simplifying,

P = a3b3

144
+ a5

4π7 (381a ζ(7)−126πb ζ(6)) (C.96)

K = Jg + 2a3

π5 (31a ζ(5)−15πb ζ(4)) (C.97)

Lc = ab(a2 −b2)

12
+ a3

π5 (15πb ζ(4)−62a ζ(5)) (C.98)

and for our particular values of a and b (from Table 7.1),

Jg = ab(a2 +b2)

12
≈ 2.646×10−7 m4 (C.99)

P = a3b3

144
+ a5

4π7 (381a ζ(7)−126πb ζ(6)) ≈ 2.212×10−13 m4 (C.100)

K = Jg + 2a3

π5 (31a ζ(5)−15πb ζ(4)) ≈ 2.635×10−7 m4 (C.101)

Lc = ab(a2 −b2)

12
+ a3

π5 (15πb ζ(4)−62a ζ(5)) ≈−2.635×10−7 m4 (C.102)
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APPENDIX

D
Example use of Symbolic-Numeric

Finite Element Package

D.1 A Rotating 3D Timoshenko beam with a rigid body

end-effector

Here we consider the specific case of the our system of interest which is a planar flexible

single link with an end-effector. The basic configuration of the system is shown in Figure 3.3.

The beam is modelled under the assumptions of Timoshenko beam theory, the torsion model

as described in section 2.4, small strains, small deflections, and linear elastic materials.

Symbolic Computation Steps

We begin by loading the LinearAlgebra package, the SFEM package, and some utility func-

tions.

r e s t a r t ; i n t e r f a c e ( imaginaryunit= _ j ) : with ( LinearAlgebra ) : with (SFEM) :

read ("tjlTools.mpl" ) ;

Next, we define a number of variables as shortcuts for various functions of the beam. These

are used to simplify the writing of the kinetic and strain energies.

udot := d i f f (u( x , t ) , t ) :

vdot := d i f f ( v ( x , t ) , t ) :

wdot := d i f f (w( x , t ) , t ) :

dpsiz := d i f f ( psi_z ( x , t ) , t ) :

dpsix := d i f f ( psi_x ( x , t ) , t ) :

dpsiy := d i f f ( psi_y ( x , t ) , t ) :

dthetax := d i f f ( theta_x ( x , t ) , t ) : }

Now, defining end-effector variables,
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ul := u( l , t ) :

v l := v ( l , t ) :

wl := w( l , t ) :

p s i z l := psi_z ( l , t ) :

p s i y l := psi_y ( l , t ) :

t h e t a x l := theta_x ( l , t ) :

dthetaxl := d i f f ( thetaxl , t ) :

dul := d i f f ( ul , t ) :

dvl := d i f f ( vl , t ) :

dwl := d i f f ( wl , t ) :

dpsiyl := d i f f ( psiy l , t ) :

dpsiz l := d i f f ( psiz l , t ) :

and the angular velocity of the beam,

dtheta := d i f f ( theta ( t ) , t ) :

Definition of Lagrangian

From the previous chapter, the kinetic and strain energies are known for all parts of the

system. Starting with the rotational kinetic energy of the end-effector,

Tre := 1/2*( Jexx * dthetaxl ^2 + Jeyy * dpsiyl ^2 + Jezz * ( dpsizl+dtheta )^2)

+dthetaxl * ( Jexy * dpsiyl + Jexz * ( dtheta+dpsiz l ) ) + Jeyz * dpsiyl ( dtheta+dpsiz l ) :

and the kinetic energy due to translation,

Kve1 := dul − dtheta * ( v l + de2 + p s i z l *de1 − t h e t a x l *de3 ) + dpsiyl *de3

− dpsizl *de2 :

Kve2 := dvl + dpsiz l *de1 − dthetaxl *de3 + dtheta * ( l + ul + de1 − p s i z l *de2

+ p s i y l *de3 ) :

Kve3 := dwl − dpsiyl *de1 + dthetaxl *de2 :

Tte := 1/2*(me+mt ) * ( Kve1^2+Kve2^2+Kve3 ^ 2 ) :

Next, the kinetic energy of the beam due to extension, bending, and shear,

Txb := simpli fy ( Int ( 1 / 2 * ( rhoA * ( ( vdot+dtheta * ( x+u( x , t ) ) ) ^ 2

+(udot−dtheta * v ( x , t ))^2+wdot^2)

+rhoIyy * ( ( dtheta+dpsiz )^2+ dtheta ^2* psi_z ( x , t )^2)

+rhoIzz * ( dpsiy^2+ dtheta ^2* psi_y ( x , t ) ) ) , x ) ) :

and the kinetic energy due to torsion,
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Txt := simpli fy (1/2* Int ( dtheta ^2*(rhoP* psi_x ( x , t )^2 + rhoIzz * theta ( t )^2)

+rhoJg * dthetax^2+rhoP* dpsix ^2 , x ) ) :

The kinetic energy of the motor is given by,

Tm := 1/2*Jm* d i f f ( theta ( t ) , t ) ^ 2 :

Thus, the total kinetic energy is the sum of all three,

T_total := simpli fy ( Tte + Tre + Txb + Txt + Tm) :

The strain energy of the beam due to torsion is given as,

Uxt := 1/2* Int (E*P* d i f f ( psi_x ( x , t ) , x)^2 + G* (K* psi_x ( x , t )^2

+2*Lc* d i f f ( theta_x ( x , t ) , x ) * psi_x ( x , t ) + Jg * d i f f ( theta_x ( x , t ) , x ) ^ 2 ) , x ) :

and the strain energy due to extension, bending, and shear,

Uxb := 1/2* Int (E * (A* d i f f (u( x , t ) , x)^2 + Iyy * d i f f ( psi_z ( x , t ) , x)^2

+ Izz * d i f f ( psi_y ( x , t ) , x )^2) +kGA* ( ( d i f f ( v ( x , t ) , x)−psi_z ( x , t ))^2

+ ( d i f f (w( x , t ) , x)−psi_y ( x , t ) ) ^ 2 ) , x ) :

Approximation

The functions to be approximated are as follows, u(x, t), v(x, t), w(x, t), ψx(x, t), ψy (x, t),

ψz (x, t ) and θx (x, t ). We need C0 functions for all functions. Since this is a beam, the variables

v , w and ψ are best modelled with cubic basis functions and to prevent shear locking we will

use cubic basis functions for u and θx as well.

approx_subs := map2( C0_Cubic_approx , phi ,

[u( x , t ) , v ( x , t ) ,w( x , t ) , psi_x ( x , t ) , psi_y ( x , t ) , psi_z ( x , t ) , theta_x ( x , t ) ] ) :

The system variables for the approximations are,

approx_l ist := get_node_list (map( rhs , approx_subs ) ) :

Defining the basis functions from x1 to x1+le , where le is the length of the element.

phi_bases := C0_Cubic_basis ( phi , [ x1 , x1+1/3* l_e , x1+2/3* l_e , x1+l_e ] ) :

Since both the first derivative of the basis functions will appear in the Lagrangian, we will

calculate it.

dphi_bases := map( d i f f , phi_bases , x ) :

Therefore, the complete substitution list for the basis functions is,

ful l_phi_bases := [op( dphi_bases ) , op( phi_bases ) ] :
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Euler-Lagrange Calculations

It is necessary to define the complete list of variables used in the problem. The augmented

variables are the variables related to the coupling of the end effector and rotation. Since

the theta equation is coupled directly to the spatial degrees of freedom (the elements), we

place it last so we can easily separate the resulting mass and stiffness matrices into element

matrices and a matrix of variables that only contribute once to the overall matrices.

augment_variables := [ ul , vl , wl , psiy l , psiz l , thetaxl , theta ( t ) ] :

The complete set of all system variables is,

var iables := ListTools [ FlattenOnce ] ( augment_variables , approx_l ist ] ) :

Substitute the approximations into the Lagrangian,

Lagrange_subs := subs ( approx_subs , Lagrangian ) :

The system accelerations are,

accel_var := map( d i f f , variables , t$2 ) :

now we calculate the terms in the Euler-Lagrange equation.

( M_contrib , K_contrib ) := EulerLagrange ( Lagrange_subs , var iables ) :

Simplification Procedures

Begin by using the small deflection assumption to eliminate the non-linear terms,

M_eq1 := map( update_integral_terms , M_contrib ) :

M_eq1 := map( update_integral_terms , M_eq1 ) :

M_eq2 := map( l inearize_expr , M_eq1 ) :

K_eq1 := map( update_integral_terms , K_contrib ) :

K_eq1 := map( update_integral_terms , K_eq1 ) :

K_eq2 := map( l inearize_expr , K_eq1 ) :

Note that update_integral_terms is called twice because sometimes new terms to be

linearized are only found after the expansion. This is because sometimes Maple will create

new integrals when expanding and sometimes not. Next, we eliminate all integrals with a

zero integrand (since Maple doesn’t eliminate inert integrals).

M_eq4 := map( replace_zero_integral , M_eq3 ) :

K_eq3 := map( replace_zero_integral , K_eq2 ) :
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Evaluation of Integrals

Setting the bounds on the integrals, substitute for the basis functions and calculate the

integrals. Note that material substitutions are an empty set. Since there are integrals that

don’t contain basis functions (e.g., inertia of the beam) so they span the entire domain from

0 to L where L is the length of the beam.

mat_subs := [ ] :

(M_expr , K_expr ) := calculate_MK (M_eq4, K_eq3 , full_phi_subs , mat_subs ,

[ x1 , x1+l_e ] , [ 0 , l ] ) :

Note that some integrals will be just 1, so we simplify things by replacing them with L.

M_expr2 := map2( algsubs , Int ( 1 , x )= l , M_expr ) :

K_expr2 := map2( algsubs , Int ( 1 , x )= l , K_expr ) :

Formation of Element Matrices

Lastly, we can form the final element mass and stiffness matrices.

(M, b1 ) := GenerateMatrix ( M_expr2 , accel_var , outputoptions =[ shape=symmetric ] ) :

(K, b2 ) := GenerateMatrix(−K_expr2 , variables , outputoptions =[ shape=symmetric ] ) :

The b1 and b2 vectors are all zero if the system is linear. These can be used to verify the

linearization steps.

The first rows of both M and K do not depend upon the basis functions and don’t need to

be calculated on a per-element basis because they correspond to the augmented variables of

the end-effector and the beam’s angular rotation. So, we can separate each M and K matrix

into two parts, one that only has to be calculated once and one that will be recalculated for

each element. First, we determine the number of augmented variables,

naug := nops ( augment_variables ) :

and the total number of variables,

nvars := nops ( var iables ) :

Therefore, the element mass matrix is,

M_reduced := SubMatrix (M, [ naug . . . nvars ] , [ naug . . . nvars ] ) :

M_reduced [ 1 , 1 ] := 0 :

and the contributions to the overall mass matrix due to the end-effector,

M_endconditions := SubMatrix (M, [ 1 . . naug ] , [ 1 . . naug ] ) :
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Similarly, we perform the same operations on the stiffness matrix, splitting it into element

and global contributions.

K_reduced := SubMatrix (K, [ naug . . . nvars ] , [ naug . . . nvars ] ) :

K_reduced [ 1 , 1 ] := 0 :

K_endconditions := SubMatrix (K , [ 1 . . naug ] , [ 1 . . naug ] ) :

We can now export the matrices to MATLAB, beginning with the element matrices.

matrix_to_MATLAB ( M_reduced , M_elem,"M_elem.m" ) ;

matrix_to_MATLAB ( K_reduced , K_elem ,"K_elem.m" ) ;

Next, we export the auxiliary matrices,

matrix_to_MATLAB ( M_endconditions ,M_end,"M_end.m" ) ;

matrix_to_MATLAB ( K_endconditions , K_end ,"K_end.m" ) ;

The exported functions can now be called in Matlab by a global matrix assembly routine.

Numerical Computation Steps

There are three main stages to the numerical computation. First, the element mesh is defined

and the software currently includes routines for setting up the necessary data structures

for beams. Next, the global matrices for M and K are assembled as sparse matrices. Any

boundary conditions are also applied at this stage. Lastly, the resulting ODE system is solved.

Definition of Element Mesh

We begin by setting up the basic data for the problem which means we need the number

of nodes per element (elem_nodes), the number of degrees of freedom (DOF) per node

(node_dof), the number of elements (num_elem), and the number of constrained nodes

(fixed_node).

elem_nodes = 4 ;

node_dof = 7 ;

num_elem = 20;

fixed_node = 2 ;

Since we have an additional DOF (θ) that isn’t directly associated with an individual element,

we have an an “auxiliary node”, that is associated with all elements. In our case, there is one

auxiliary node (aux_nodes) and one variable (aux_var) per node.

aux_var = 1 ;

aux_nodes = 1 ;

aux_data = [ aux_var , aux_nodes ] ;
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Now we can set up the element data structure (using beam_elem_list), and the nodal data

(using beam_node_list). The node_list is a matrix of the nodal x coordinates and the

number of DOF for that node. The dof_list is a column matrix containing the the starting

DOF for that node which will aid in the assembly process. Note that the beam_dimension
contains the starting and ending global x coordinates for the beam (0,L).

e lem_l ist = beam_elem_list (num_elem, elem_nodes , aux_nodes ) ;

beam_dimension = [ 0 , l ] ;

[ node_list , d o f _ l i s t ] = beam_node_list ( elem_list , node_dof , . . .

beam_dimension , aux_data ) ;

Matrix Assembly

The functions K_elem and M_elem are the functions to create the element stiffness and

mass matrices respectively. They are the output of the symbolic steps. However, since the

parameters vary depending upon the particular problem, these two lines are particular to

that problem. They are called by the assembly routine for each element. Any parameters

that are unique to a particular element are part of elem_param and these are then evaluated

and passed to the element matrix routines during the assembly process.

Kfunc = ’K_elem(A, E, G, Iyy, Izz, Jg, Kt, Lc, P, kGA, l_e)’ ;

Mfunc = ’M_elem(l_e, rhoA, rhoIyy, rhoIzz, rhoJg, rhoP, x1)’ ;

elem_param = {’x1 = elem(2,1);’ ’l_e = elem(end,1)-x1;’ } ;

[K,M] = fe_assembly ( elem_list , node_list , d o f _ l i s t , . . .

aux_nodes , Kfunc , Mfunc , elem_param ) ;

Next, we augment the K and M matrices with the contributions from the end-effector. In this

case, there are only contributions to the M matrix.

theta_dof = 1 ;

last_node = elem_list (end , end ) ;

psiy_dof = d o f _ l i s t ( last_node ) + 1 ;

psiz_dof = psiy_dof +1;

thetax_dof = psiz_dof +1;

u_dof = thetax_dof +1;

v_dof = u_dof +1;

w_dof = v_dof +1;

a u g _ l i s t = [ u_dof , v_dof , w_dof , psiy_dof , psiz_dof , thetax_dof , theta_dof ] ;

M_aug = M_end( Jexx , Jexy , Jexz , Jeyy , Jezz , Jm, Jtxx , Jtyy , J tzz ,

de1 , l , me, mt, rhoA , rhoIyy ) ;
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for i = 1 : length ( a u g _ l i s t )

f _ r = a u g _ l i s t ( i ) ;

for j = 1 : length ( a u g _ l i s t )

f_c = a u g _ l i s t ( j ) ;

M( f_r , f_c ) = M( f_r , f_c ) + M_aug( i , j ) ;

end

end

Lastly, we apply any constraints to the system. In this case, we have that the beam is clamped

at the motor x = 0 which fixes the first two nodes. Then, we create a new node list without

these nodes.

[K,M] = constrain_node ( fixed_node , d o f _ l i s t , node_list , K,M) ;

node_list_new = node_list ;

node_list_new ( fixed_node , : ) = [ ] ;

dof_list_new = ones ( length ( d o f _ l i s t ) −1 ,1);

dof_list_new ( 2 : end) = cumsum( node_list_new ( : , end ) ) + 1 ;

ODE System Solution

Once the K and M matrices have been determined, we then need to find the damping matrix

(and the applied force vector). Since this is a second order system of ODEs and all the

matrices are constant in time, we can solve the resulting system by using a Newmark-Beta

method. This is considerably faster than using a solver like Matlab’s ode15s.

[ t , u , v , a ] = newmark_beta (M, K, C, R, beta ,gamma, t s t a r t , tstop , . . .

u0 , v0 , accel0 , h ) ;

Full details on the determination of the damping matrix are in Chapter 6 and details on the

Newmark-Beta method are found in Chapter 4.

185



APPENDIX

E
Jourdain’s Variational Principle and

Impact

Examining Jourdain’s Variational Principle (JVP) [28] for impact problems as done in Bahar

[29] we have,
n∑

i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
−Qi

]
δq̇i = 0 (E.1)

For impact problems, we are looking at an instant in time since this is an impulsive process.

We will denote t− as the time right before impact and t+ as the time right after impact. These

are assumed to be infinitesimally close to each other. Bahar [29] states,

“The integral with respect to time of the second term of equation (1) can be

shown to vanish through the use of the mean value theorem of integral calculus.

This result is also obvious on physical grounds, as the gradient of the kinetic

energy with respect to configurational coordinates that remain constant during

the impulsive process is zero.”

where equation (1) that Bahar refers to is Equation (E.1). However, for rotating frames it is

possible to have kinetic energy terms where a velocity (ı.e., θ̇) is multiplied by a displacement

(e.g., v). For example, even in the simplest model of the end effector (2D Point Mass), we get

the kinetic energy as given in Equation (3.67),

Te = 1

2
me

(
(v̇L + v̇ ′

Lde1)+ (L+de1)θ̇
)2 + 1

2
me (vL + v ′

Lde1)2θ̇2 (E.2)

Note the last term includes 1
2 me θ̇

2v2
L which will not have a zero gradient. Therefore, the

second sentence in the above quotation is incorrect. So, let us check Bahar’s work for the

first sentence of the quotation. Given Equation (E.1) and integrate it over an impulse interval

[t−, t+] to find ∫ t+

t−

n∑
i

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
−Qi

]
δq̇i dt = 0 (E.3)
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Taking each term separately,∫ t+

t−

n∑
i

[
d

dt

(
∂T

∂q̇i

)]
δq̇i dt =

n∑
i

∫ t+

t−
d

(
∂T

∂q̇i

)
δq̇i (E.4)

=
n∑
i

(
p+−p−)

δq̇i (E.5)

which is the change in momentum over [t−, t+]. For the second term

−
∫ t+

t−

n∑
i

[
∂T

∂qi

]
δq̇i dt =−

n∑
i

∫ t+

t−

[
∂T

∂qi

]
dt δq̇i (E.6)

we note that under the assumptions of a Jourdain variation δqi = 0 or the configuration

variables are assumed to be held constant so ∂qi = 0 and because ∂T 9∞ the Mean Value

Theorem of integral calculus yields

−
n∑
i

∫ t+

t−

[
∂T

∂qi

]
dtδq̇i =−

n∑
i

(t+− t−)︸ ︷︷ ︸
→0

[
∂T

∂qi

]
t0︸ ︷︷ ︸

const ant

δq̇i (E.7)

=−
n∑
i

(0)δq̇i (E.8)

where t0 is a point in the time interval [t−, t+]. In the case of the last term it’s easiest to see if

we re-write it using an impulse function and the total impulse Q̂i =
∫ t+

t− Qi dt supplied by the

external force Qi

−
∫ t+

t−

n∑
i

[Qi ] δq̇i dt =−
n∑
i

∫ t+

t−
Qi dtδq̇i (E.9)

=−
n∑
i

∫ t+

t−
Q̂iδ(t − t0)dt δq̇i (E.10)

=−
n∑
i

Q̂i δq̇i (E.11)

So, no assumption about the qi or q̇i dependence of T is necessary for the second term to

integrate to zero. Note that it also doesn’t require that the gradient with respect to configura-

tional coordinates to be zero.
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APPENDIX

F
Capture Dynamics of a 2D

Euler-Bernoulli Beam

F.1 Post-Capture Velocity Constraint

Modelling the capture process as a plastic collision, from Section 5.1, we get that the velocities

before and after impact must be equivalent. Therefore, our velocity constraint is that after

capture the target velocity and end effector velocities have to match. The target velocity is

given in equation (3.4) as

v
~

t =F→
T
a


ẋt

ẏt

0

 (F.1)

and the end effector velocity is given in equation (3.66) as

v
~

e =F→
T
a


−θ̇(vL + v ′

Lde1)cosθ−
(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

sinθ(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

cosθ− θ̇(vL + v ′
Lde1)sinθ

0

 (F.2)

Since they are both defined in the same frame, we can equate components resulting in the

following constraints.

ẋt + θ̇(vL + v ′
Lde1)cosθ+

(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

sinθ = 0 (F.3)

ẏt −
(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

cosθ+ θ̇(vL + v ′
Lde1)sinθ = 0 (F.4)

Since we are considering the impact duration to be infinitesimal, all position variables can be

replaced with their value at impact (θ = θ(t1), vL = vL(t1), v ′
L = v ′

L(t1)) which we will denote

as θ0, vL0, and v ′
L0 respectively. Hence, equations (F.3) and (F.4) become

ẋt + θ̇(vL0 + v ′
L0de1)cosθ0 +

(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

sinθ0 = 0 (F.5)

ẏt −
(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

cosθ0 + θ̇(vL0 + v ′
L0de1)sinθ0 = 0 (F.6)
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F.2. QUASI-VELOCITIES

F.2 Quasi-Velocities

We convert the velocities (v̇L , v̇ ′
L , v̇(x, t ), ẋt , ẏt ) to quasi-velocities Q̇i . The quasi-velocities

Q̇5 and Q̇6 are defined by the left hand side of Equations (F.5) and (F.6) respectively, ı.e.,

Q̇5 = ẋt + θ̇(vL0 + v ′
L0de1)cosθ0 +

(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

sinθ0 (F.7)

Q̇6 = ẏt −
(
v̇L +de1v̇ ′

L + θ̇(L+de1)
)

cosθ0 + θ̇(vL0 + v ′
L0de1)sinθ0 (F.8)

The remaining quasi-velocities are set equal to the Lagrangian velocities as shown in Equa-

tions (F.9) through (F.12).

Q̇1 = v̇L (F.9)

Q̇2 = v̇ ′
L (F.10)

Q̇3 = v̇(x, t ) (F.11)

Q̇4 = θ̇ (F.12)

We then substitute these quasi-velocities into Equations (F.7) and (F.8) to get the constraint

quasi-velocties, Q̇5 and Q̇6 strictly in terms of ẋt , ẏt , and Q̇i=1,2,3,4.

Q̇5 = ẋt +Q̇4(vL0 + v ′
L0de1)cosθ0 +

(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
sinθ0 (F.13)

Q̇6 = ẏt −
(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
cosθ0 +Q̇4(vL0 + v ′

L0de1)sinθ0 (F.14)

F.3 Quasi-Kinetic Energy

Since we know that the velocity of the target mass is given by:

v
~

t =F→
T
a


ẋt

ẏt

0

 (F.15)

we need to rewrite Equations (F.13) and (F.14) to isolate ẋt and ẏt .

ẋt = Q̇5 −Q̇4(vL0 + v ′
L0de1)cosθ0 −

(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
sinθ0 (F.16)

ẏt = Q̇6 +
(
Q̇1 +de1Q̇2 −Q̇4(L+de1)

)
cosθ0 −Q̇4(vL0 + v ′

L0de1)sinθ0 (F.17)

The kinetic energy for the target becomes

T ∗
t = 1

2
mt

(
Q̇5 −Q̇4(vL0 + v ′

L0de1)cosθ0 −
(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
sinθ0

)2

+ 1

2
mt

(
Q̇6 +

(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
cosθ0 −Q̇4(vL0 + v ′

L0de1)sinθ0
)2

(F.18)
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The velocity of the end effector mass (in terms of quasi-velocities) is

v
~

e =F→
T
a


−Q̇4(vL0 + v ′

L0de1)cosθ0 −
(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
sinθ0(

Q̇1 +de1Q̇2 +Q̇4(L+de1)
)

cosθ0 −Q̇4(vL0 + v ′
L0de1)sinθ0

0

 (F.19)

leading to the following for the kinetic energy of the end effector mass

T ∗
e = 1

2
me

(−Q̇4(vL0 + v ′
L0de1)cosθ0 −

(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
sinθ0

)2

+ 1

2
me

((
Q̇1 +de1Q̇2 −Q̇4(L+de1)

)
cosθ0 −Q̇4(vL0 + v ′

L0de1)sinθ0
)2

(F.20)

Calculating the kinetic energy due to flexibility of the beam,

T ∗
b = 1

2

∫ L

0
ρA(v

~
x · v
~

x)dx (F.21)

where v
~

x is given by,

v
~

x =F→
T
a


−(

Q̇3 +xQ̇4
)

sinθ0 −Q̇4(y + v0)cosθ0(
Q̇3 +xQ̇4

)
cosθ0 −Q̇4(y + v0)sinθ0

0

 (F.22)

which is simplified from Equation (3.19) since the v ′ terms are ignored the kinetic energy of

an Euler-Bernoulli beam. Which, when substituted into equation (F.21), results in

T ∗
b = 1

2

∫ L

0
ρA(x2Q̇2

4 +2xQ̇4Q̇3 +Q̇2
3 +Q̇2

4 v2
0)dx + 1

2

∫ L

0
ρIy yQ̇2

4 dx (F.23)

The only remaining term in the kinetic energy of the system is due to the inertia of the motor:

T ∗
r = 1

2
JmQ̇2

4 (F.24)

Adding the kinetic energy contributions from Equations (F.18), (F.20), (F.23), and (F.24) leads

to the total kinetic energy of the system.

T ∗ = 1

2
JmQ̇2

4 +
1

2

∫ L

0
ρA(x2Q̇2

4 +2xQ̇4Q̇3 +Q̇2
3 +Q̇2

4 v2
0)dx + 1

2

∫ L

0
ρIy yQ̇2

4 dx

+1

2
mt

(
Q̇5 −Q̇4(vL0 + v ′

L0de1)cosθ0 −
(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
sinθ0

)2

+1

2
mt

(
Q̇6 +

(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
cosθ0 −Q̇4(vL0 + v ′

L0de1)sinθ0
)2

+1

2
me

(−Q̇4(vL0 + v ′
L0de1)cosθ0 −

(
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
sinθ0

)2

+1

2
me

((
Q̇1 +de1Q̇2 +Q̇4(L+de1)

)
cosθ0 −Q̇4(vL0 + v ′

L0de1)sinθ0
)2

(F.25)
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F.4. GENERALISED QUASI-MOMENTA

F.4 Generalised Quasi-Momenta

To form the variational equation, we need the derivatives of the kinetic energy with respect

to each of the quasi-velocities. The derivative of the kinetic energy with respect to Q̇1 (the

generalised quasi-momentum of Q̇1) is

∂T ∗

∂Q̇1
= (mt +me )

(
Q̇1 +Q̇4(L+de1)+Q̇2de1

)+mt (Q̇6 cosθ0 −Q̇5 sinθ0) (F.26)

The Q̇2 generalised quasi-momentum is

∂T ∗

∂Q̇2
= de1

(
(mt +me )

(
Q̇1 +Q̇4(L+de1)+Q̇2de1

)+mt
(
Q̇6 cosθ0 −Q̇5 sinθ0

))
(F.27)

and the Q̇3 quasi-momentum is

∂T ∗

∂Q̇3
=

∫ L

0
ρA

(
Q̇3 +xQ̇4

)
dx (F.28)

The Q̇4 generalised quasi-momentum is given by

∂T ∗

∂Q̇4
= (mt +me )

(
Q̇4

(
(L+de1)2 + (v ′

L0de1 + vL0)2)+Q̇1(L+de1)+Q̇2(Lde1 +d 2
e1)

)
+ JmQ̇4 +

∫ L

0
ρA

(
(x2 + v0(x)2)Q̇4 +xQ̇3

)
dx +

∫ L

0
ρIy yQ̇4dx

+ mt
(
Q̇6

(
(L+de1)cosθ0 − (v ′

L0de1 + vL0)sinθ0
)

− Q̇5
(
(v ′

L0de1 + vL0)cosθ0 + (L+de1)sinθ0
))

(F.29)

The quasi-velocities Q̇5 and Q̇6 are constrained and as such, these quasi-momenta do not

need to be calculated.

F.5 Velocity Relations

The results from Equations (F.26) through (F.29) are used in the equation

6∑
i=1

(
∂T

∂Q̇i

+
− ∂T

∂Q̇i

−)
δQ̇i = 0 (F.30)

which relates the post-impact quasi-velocities to the pre-impact quasi-velocities. Note

that no quasi-impulse is shown since the impulse due to the applied moment will be zero

(because the impact is instantaneous). As discussed in chapter 5, the variations with respect

to the constrained quasi-velocities will be zero whereas the other variations must be non-

zero. Therefore, we are left with equations for Q̇1, Q̇2, Q̇3, and Q̇4. The equation arising from

Q̇1 (tip deflection rate) is

(mt +me )
(
Q̇+

1 +Q̇+
4 (L+de1)+Q̇+

2 de1
)=(mt +me )

(
Q̇−

1 +Q̇−
4 (L+de1)+Q̇−

2 de1
)

+mt
(
Q̇−

6 cosθ0 −Q̇−
5 sinθ0

) (F.31)
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Note that Q̇−
5 and Q̇−

6 are calculated by evaluating Equations (F.13) and (F.14) at the time

instant before impact. The equation arising from Q̇2 (tip rotation rate) is

de1(mt +me )
(
Q̇+

1 +Q̇+
4 (L+de1)+Q̇+

2 de1
)=de1(mt +me )

(
Q̇−

1 +Q̇−
4 (L+de1)+Q̇−

2 de1
)

+de1mt
(
Q̇−

6 cosθ0 −Q̇−
5 sinθ0

)
(F.32)

Note that these two equations are only different by a factor of de1. Therefore, they are not

independent and we can find that,

Q̇+
2 = Q̇+

1

de1
(F.33)

The equation arising from Q̇3 (beam deflection rate) is∫ L

0
ρA

(
Q̇+

3 +xQ̇+
4

)
dx =

∫ L

0
ρA

(
Q̇−

3 +xQ̇−
4

)
dx (F.34)

and the equation arising from Q̇4 (beam rotation rate) is,

JmQ̇+
4 + (mt +me )

((
(v ′

L0de1 + vL0)2 + (L+de1)2)Q̇+
4 + (L+de1)Q̇+

1 + (d 2
e1 +Lde1)Q̇+

2

)
+

∫ L

0
ρA

(
(x2 + v0(x)2)Q̇+

4 +xQ̇+
3

)
dx +

∫ L

0
ρIy yQ̇+

4 dx

= JmQ̇−
4 + (mt +me )

((
(v ′

L0de1 + vL0)2 + (L+de1)2)Q̇−
4 + (L+de1)Q̇−

1 + (d 2
e1 +Lde1)Q̇−

2

)
+

∫ L

0
ρA

(
(x2 + v0(x)2)Q̇−

4 +xQ̇−
3

)
dx +

∫ L

0
ρIy yQ̇−

4 dx (F.35)

+mt
((

(L+de1)cosθ0 − (vL0 +de1v ′
L0)sinθ0

)
Q̇−

6 − (
(vL0 +de1v ′

L0)cosθ0 + (L+de1)sinθ0
)
Q̇−

5

)
Substituting the pre-impact constraint relations into Equations (F.31) through (F.35) leads to

the following equations (after converting to true velocities).

(mt+me )
(
v̇
+
L + (L+de1)θ̇++de1v̇ ′+

L

)
= me

(
v̇
−
L + (L+de1)θ̇−+de1v̇ ′−

L

)
+mt

(
ẏ−

t cosθ0 − ẋ−
t sinθ0

)
(F.36)

v̇ ′+
L = v̇

+
L

de1
(F.37)

∫ L

0
ρA

(
v̇
++xθ̇+

)
dx =

∫ L

0
ρA

(
v̇
−+xθ̇−

)
dx (F.38)

Jm θ̇
++ (mt +me )

((
(v ′

L0de1 + vL0)2 + (L+de1)2) θ̇++ (L+de1)v̇
+
L + (Lde1 +d 2

e1)v̇ ′+
L

)
+

∫ L

0
ρ

(
A

(
(v0(x)2 +x2)θ̇++xv̇

+)
+ Iy y θ̇

+
)

dx

= Jm θ̇
−+me

((
(v ′

L0de1 + vL0)2 + (L+de1)2) θ̇−+ (L+de1)v̇
−
L + (Lde1 +d 2

e1)v̇ ′−
L

)
(F.39)

+
∫ L

0
ρ

(
A

(
(x2 + v0(x)2)θ̇−+xv̇

−)+ Iy y θ̇
−)

dx

+mt
((

(L+de1)cosθ0 − (vL0 + v ′
L0de1)sinθ0

)
ẏ−

t − (
(vL0 + v ′

L0de1)cosθ0 + (L+de1)sinθ0
)

ẋ−
t

)
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F.5. VELOCITY RELATIONS

The integrals in Equation (F.38) are both over the same domain so we can equate the inte-

grands and isolate v̇(x)+ to get the relation between the beam deflection rate before and

after impact.

v̇(x)+ = v̇(x)−+x(θ̇+− θ̇−) (F.40)

Substituting this relation into the angular velocity relation (Equation (F.39)) results in the

elimination of a number of terms inside the integrals,

Jm θ̇
++ (mt +me )

((
(v ′

L0de1 + vL0)2 + (L+de1)2) θ̇++ (L+de1)v̇
+
L + (Lde1 +d 2

e1)v̇ ′+
L

)
+

∫ L

0
ρ

(
Av0(x)2 + Iy y

)
θ̇+dx

= Jm θ̇
−+me

((
(v ′

L0de1 + vL0)2 + (L+de1)2) θ̇−+ (L+de1)v̇
−
L + (Lde1 +d 2

e1)v̇ ′−
L

)
(F.41)

+
∫ L

0
ρ

(
Av0(x)2 + Iy y

)
θ̇−dx +mt

((
(L+de1)cosθ0 − (vL0 + v ′

L0de1)sinθ0
)

ẏ−
t

− (
(vL0 + v ′

L0de1)cosθ0 + (L+de1)sinθ0
)

ẋ−
t

)
Isolating v̇

+
L in Equation (F.36) leads to the following equation.

v̇
+
L =

me

(
v̇
−
L + (L+de1)θ̇−+de1v̇ ′−

L

)
+mt

(
ẏ−

t cosθ0 − ẋ−
t sinθ0

)− (me +mt )(L+de1)θ̇+

2(mt +me )
(F.42)

Since the angular velocity relation and the tip deflection relation are coupled, solve the linear

system of equations (F.42) and (F.41) to decouple θ̇+. This yields

θ̇+ =
(

Jm +me (v ′
L0de1 + vL0)2 +∫ L

0 ρ
(

Av0(x)2 + Iy y
)

dx
)
θ̇−−mt (v ′

L0de1 + vL0)(ẋ−
t cosθ0 + ẏ−

t sinθ0)

Jm + (me +mt )(v ′
L0de1 + vL0)2 +∫ L

0 ρ
(

Av0(x)2 + Iy y
)

dx
(F.43)

The result of this equation can then be used in Equations (F.42), (F.37), and (F.40) to solve for

the new system velocities.
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