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Abstract

In recent years network intrusions have become a severe threat to the privacy and safety of

computer users. Recent cyber attacks compromise a large number of hosts to form botnets.

Hackers not only aim at harvesting private data and identity information from compromised

nodes, but also use the compromised nodes to launch attacks such as distributed denial-

of-service (DDoS) attacks.

As a counter measure, Intrusion Detection Systems (IDS) are used to identify intrusions

by comparing observable behavior against suspicious patterns. Traditional IDSs monitor

computer activities on a single host or network traffic in a sub-network. They do not have a

global view of intrusions and are not effective in detecting fast spreading attacks, unknown,

or new threats. In turn, they can achieve better detection accuracy through collaboration.

An Intrusion Detection Network (IDN) is such a collaboration network allowing IDSs to

exchange information with each other and to benefit from the collective knowledge and

experience shared by others. IDNs enhance the overall accuracy of intrusion assessment as

well as the ability to detect new intrusion types.

Building an effective IDN is however a challenging task. For example, adversaries may

compromise some IDSs in the network and then leverage the compromised nodes to send

false information, or even attack others in the network, which can compromise the efficiency

of the IDN. It is, therefore, important for an IDN to detect and isolate malicious insiders.

Another challenge is how to make efficient intrusion detection assessment based on the

collective diagnosis from other IDSs. Appropriate selection of collaborators and incentive-

compatible resource management in support of IDSs’ interaction with others are also key

challenges in IDN design.

To achieve efficiency, robustness, and scalability, we propose an IDN architecture and es-

pecially focus on the design of four of its essential components, namely, trust management,

acquaintance management, resource management, and feedback aggregation. We evaluate

our proposals and compare them with prominent ones in the literature and show their

superiority using several metrics, including efficiency, robustness, scalability, incentive-

compatibility, and fairness. Our IDN design provides guidelines for the deployment of a

secure and scalable IDN where effective collaboration can be established between IDSs.
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Chapter 1

Introduction

1.1 Introduction

In November 2008, a new type of computer worm started to spread quickly. It used three

different types of attack on Windows hosts: exploiting vulnerabilities, guessing passwords,

and infecting removable devices [14]. In three months it took over about 9 million Microsoft

Windows systems around the world and formed a massive botnet [3]. The estimated

economic loss brought by this worm was USD 9.1 billion [24]. The worm was named

“Conficker”, and it was only one of the thousands of other worms that appear every year.

Nowadays the vast majority of computers are connected to the Internet. A number of

applications used by billions of users on a day-to-day basis including email, web-browsing,

video/audio streaming, social networking, online gaming, e-commerce, and online chatting

rely on the Internet. At the same time, network intrusions have become a severe threat

to the privacy and safety of computer users. Each year billions of malicious cyber attacks

are reported [50, 115]. Attacks are becoming more sophisticated and stealthy, driven by

an “underground economy” [51]. By definition, network intrusions are unwanted traffic or

computer activities that may be malicious or destructive, including viruses, worms, tro-

jan horses, port scanning, password guessing, code injection, and session hijacking. The

consequences of a network intrusion can be user identity theft (ID theft), unwanted adver-

tisement and commercial emails (spam), the degradation or termination of the host service

(denial of service), or using fraudulent sources to obtain sensitive information from users
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(phishing). Network intrusions are usually accomplished with the assistance of malicious

code (a.k.a. malware). In recent years, network intrusions have become more sophisti-

cated and organized. Attackers can control a large number of compromised hosts/devices

to form Botnets [3], and then launch organized attacks, such as Distributed Denial of

Service (DDoS)attacks.

As a countermeasure, Intrusion Detection Systems (IDSs) are used to identify intrusions

by comparing observable behavior against suspicious patterns [67]. Based on the technology

used for detection, IDSs can be categorized as signature-based or anomaly-based. Based

on the targets they are monitoring, they can be host-based or network-based. Examples

of IDSs include antivirus software [19, 2], Snort [17], Bro [4], Tripwire [21], OSSEC [13],

and HoneyNets [20]. Traditional IDSs monitor computer activities on a single host, or

monitor network traffic in a sub-network. They do not have a global (i.e., Internet-wide)

view of intrusions and are not effective in detecting fast-spreading attacks. In addition,

traditional IDSs acquire detection rules only from their corresponding vendors. Various

security vendors usually employ distinct intrusion detection technologies and knowledge. In

practice, no single security vendor has the entire knowledge to detect all types of intrusions.

Therefore, traditional IDSs are not effective in detecting unknown or new threats. In turn,

they can achieve better detection accuracy through collaboration. A good example for

this is anti-virus software, where it is common knowledge that a malware file that has

not been detected by one antivirus software may be detected by another. If IDSs are

allowed to communicate with each other and exchange intrusion information, each IDS

can benefit from the collective expertise of the others. Therefore, collaboration between

IDSs is envisioned to be a promising approach to improve intrusion detection.

Some early works on IDS collaboration include Indra [67] and DOMINO [120], where

IDSs shared information to prevent fast-spreading attacks, and IA-NSM [33], where in-

telligent agents (such as IDS) exchange observations to detect attacks such as doorknob

rattling [63] and IP spoofing [104]. However, their collaboration was limited to selected

nodes that followed predefined communication protocols such as DOMINO. Later, in 2008,

standardized models and communication protocols provided a method for various IDSs to

communicate with each other. The two important standards are IDMEF (Intrusion Detec-

tion Message Exchange Format) [10] and CIDSS (Common Intrusion Detection Signatures

Standard) [6]. IDMEF provides a communication standard enabling different intrusion

detection analyzers from different origins (commercial, open-source, and research systems)
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to report to a managing entity for data analysis, aggregation, correlation, etc. It is XML-

based and includes two types of messages: heartbeat messages sent periodically to state

that an IDS in the distributed system is still alive, and alert messages sent when a suspi-

cious event occurs. Those events can be augmented with additional information in the form

of XML compound classes such as the scanner type, timestamps, and classifications in the

case of an alert, or even self-defined attributes (see Appendix A). The IDMEF is specified

in RFC4765 [15] and implemented by many IDSs such as Snort and OSSEC. CIDSS defines

a common XML-based data format for storing signatures from different intrusion detection

systems and shares the signatures amongst them. In this way, it is primarily aimed at IDS

administrators to exchange, evaluate, and criticize signatures. Also, a future scenario is

considered in which independent contributors exist, enabling the provision of signatures

independent of a particular product or software.

The standardization of communication protocols between different IDSs allows each IDS

to obtain intrusion information and detection knowledge from other IDSs in the network.

An Intrusion Detection Network (IDN) is such a collaboration network, allowing IDSs to

exchange information with each other and to benefit from the collective knowledge and

experience shared by others. IDNs enhance the overall accuracy of intrusion assessment

as well as the ability to detect new intrusion types. There are two types of IDNs in

the literature: information-based and consultation-based. In an information-based IDN,

nodes share observations and detection knowledge with other nodes in the network, such

as observations related to new attacks. This type of IDN is effective in detecting fast-

spreading attacks such as worms. However, it may generate large communication overhead,

and not all exchanged information may be useful to others. In a consultation-based IDN,

when an IDS detects suspicious activities but does not have enough confidence to make a

decision, it may send consultation requests to others in the network. Feedback from the

collaborators can be used to make a final decision as to whether it is an intrusion or not.

Consultation-based IDNs have much lower communication overhead, are more effective in

terms of communication efficiency, and are the focus of this thesis.

Although communication and collaboration among IDSs is feasible, building an effective

IDN is a challenging task. For example, adversaries may compromise some IDSs in the

network and then leverage the compromised nodes to send false information and spam,

to free-ride, or even to attack other nodes in the network, which can compromise the

efficiency of the IDN. It is therefore important for an IDN to detect and isolate malicious
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insiders. Another challenge is how to make efficient intrusion detection assessments based

on the collective information and knowledge from other IDSs. Appropriate selection of IDN

participants and incentive-compatible resource management in support of IDS interactions

with peers are also key challenges in IDN design.

This thesis focuses on the design of IDNs leveraging effective and efficient collabora-

tion between participant IDSs. We emphasize “collaboration” from the perspective of an

IDS to provide a systematic approach for determining who to collaborate with and how to

make intrusion detection decisions based on collective knowledge. The thesis will answer

the following questions: why build intrusion detection networks; what are the problems

underlying the design of intrusion detection networks; and what are the solutions to those

problems? We overview existing IDN designs and discuss the underlying challenges, in-

cluding privacy, malicious insiders, scalability, free-riders, collaboration incentives, and

intrusion detection efficiency.

Privacy is important since IDN users may be discouraged to participate in IDNs if

there is potential information breaching during collaboration. In an IDN, participating

IDSs can be malicious. A trust management framework is required to identify dishonest or

malicious insiders. Our research results [56, 57, 53] show that an efficient trust management

system can effectively identify malicious/dishonest or incapable IDSs in the network, thus

improving the quality of collaboration by eliminating the impact of malicious IDSs. In

particular, we present in chapter 4 a Bayesian-learning-based trust management model

where each participanting IDS evaluates the trustworthiness of its collaborators through

past experiences with them. A Dirichlet model is described as a means to integrate past

experiences and calculate trust values as well as the confidence levels in the trust estimation.

Another important problem pertaining to IDS collaboration in an IDN is how IDSs use

others’ opinions to make a decision. The problem for IDSs in the IDN is to determine

whether to raise an intrusion alarm or not, based on the feedback from collaborators. In

our work [58], we consider two types of false decision cost: false positive cost and false

negative cost. We model the risk cost of decisions using a Bayesian hypothesis model

and choose the decision which has the lower risk cost. In our extended work [129], we

further investigate the minimum amount of feedback an IDS needs to achieve a low enough

cost. Chapter 5 first discusses how Bayesian decision models can be used to make optimal

intrusion decisions which have minimal false decision cost, and how sequential hypothesis

models can be used to decide the smallest list of collaborators to consult in order to
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achieve a decision satisfying a given confidence level. The optimal decision model is used

to compare the expected costs of raising or not raising an intrusion alarm, and then to

choose the decision which bears the lowest cost. The sequential hypothesis model is used

to find the minimal number of collaborators to consult before a confident decision is made,

which can effectively reduce the amount of communication overhead between IDSs.

Once collaboration connections are established, determining how many resources are

required for each collaborator in order to maintain a fair, incentive-compatible, and with no-

free-rider collaboration environment is another interesting research question. We adopt a

game-theoretic approach to model the resource allocation strategy of IDN participants [133,

132]. Specifically, as shown in Chapter 6, the nodes in the IDN are modeled as a set of

uncooperative game players, and all the nodes follow a predefined strategy to play the

game. The game strategy is for each node to decide how to allocate resources to their

neighbors fairly. We prove that the game has a Nash Equilibrium (NE), and under the NE

the amount of help received by each node is proportional to the amount of its contribution

to others. Free-riding is thus not practical under this resource allocation design.

In a dynamic IDS collaboration environment, participating IDSs may join, leave the

network, or become compromised. How to select and maintain collaborators effectively

is of paramount importance. We formulate the acquaintance selection as an optimization

problem [54, 55] where an optimal collaborator set should lead to minimal false decision

and maintenance costs. In Chapter 7, we describe a collaborator management model which

allows each IDS to select the best combination of collaborators to minimize its cost. Since

the optimal selection of collaborators is a NP hard problem, heuristic approaches are sought

to find near-optimal solutions.

As discussed above, this thesis not only discusses efficient IDN design, it also provides

a collection of solutions to key IDN design challenges and shows how various theoretical

tools can be used in this context. Another highlight of this thesis is the comprehensive

evaluation of IDN designs, including various evaluation metrics; e.g., efficiency of intrusion

detection, robustness against malicious insiders, fairness and incentive-compatibility for all

participants, and scalability in network size.

This thesis is organized as follows. Chapter 2 presents an overview of network intru-

sions, their potential damage, and corresponding detection methods. We then introduce

Intrusion Detection Systems and Intrusion Detection Networks. Chapter 3 discusses dis-

tributed IDN architecture design. Chapter 4 and chapter 5 are respectively dedicated
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to trust management and intrusion detection decision-making. Resource management and

collaborator management are discussed in Chapter 6 and Chapter 7 respectively. Chapter 8

summarizes and concludes the thesis.
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Chapter 2

Background

This chapter provides an overview of cyber intrusions and the methodologies they use. It

then discusses intrusion detection systems and intrusion detection networks. Finally, it

provides a brief survey of existing intrusion detection networks.

2.1 Overview of Cyber Intrusions

There are many different ways to launch cyber intrusions, including malware infection,

software/service vulnerability exploitation, denial of service, or phishing. We describe

some of the major types of cyber intrusions and their potential damage in this section.

2.1.1 Malware

A network intrusion accomplishes its goal by executing malicious software/code on the

victim machine. Malware is a term for all software or code designed to cause damage to a

device or a network. There are many different types of malware, such as computer viruses,

worms, trojans, or spyware.

A computer virus is a computer program that can insert/copy itself into one or more

files without the permission or knowledge of the user, and then performs some (possibly

null) operations [32]. Malicious viruses may cause a program to run incorrectly or corrupt

7



a computer’s memory, while non-malicious viruses may do no harm. A computer can be

infected with a virus when copying data from other computers or when using an infected

external drive such as a flash memory or removable disk. As their name suggests, viruses

can replicate themselves to infect other hosts, but typically do so after user interaction.

For instance, a virus received as an email attachment infects the user host when opened

by the user and eventually spreads to other hosts by sending the same email to contacts

in the user’s address book.

In general, most computer viruses do not actively search for victims through a network.

Malware which actively searches for victims is known as a worm. A computer worm is a

program which propagates itself through the network automatically by exploiting security

flaws in widely-used services [113]. Worms can cause the most extensive and widespread

damage of all types of computer attacks because of their automatic spreading capability. A

large number of different worms have been documented over the years. Some of the most

famous ones include Morris (1988), CodeRed (2001), SQL Slammer (2003), the Witty

worm (2004), the Conficker worm (2009), and Stuxnet (2010).

A distinguishing characteristic of computer viruses and worms is their ability to self-

replicate and spread within networks. There are some other types of harmful software/code

which do not self-replicate, such as Trojan horses (trojans). A trojan (also called a back-

door) is a program with an overt (documented or known) effect and a covert (undocumented

or unexpected) effect [32]. For many years, trojans have been the most widely used source

of malware by hackers [90]. Trojans appear to perform desirable functions, but in fact facil-

itate unauthorized access to users’ computers. A typical trojan requires interactions with

a hacker. Hackers can access the infected hosts and manipulate the hosts using commands.

Finally, spyware is a type of malware that is installed surreptitiously on a personal

computer to collect information about the user without their informed consent, such as

their browsing habits. Spyware can report user information to the attacker, such as email

addresses, credit card information, bank account information, passwords, and other sen-

sitive information. The difference between spyware and trojans is that spyware aims at

collecting information from users and a trojan allows hackers to access the infected host.
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2.1.2 Vulnerability and Service Attacks

In the past few years, a plethora of services and applications have become available online

and accessible by users worldwide. However, due to the increasing size and complexity

of these services and applications, design and implementation flaws are commonplace,

making them vulnerable to attackers. A software vulnerability is a weakness in a computer

program which can be exploited by an attacker and used to gain unauthorized access or

to degrade service performance. There are thousands of software vulnerabilities discovered

and documented each year in vulnerability databases such as the National Vulnerability

Database [12] and US-CERT [22]. An exploitable vulnerability is the combination of three

elements: a system flaw, attackers’ access to the flaw, and attackers’ capability to exploit

the flaw. To exploit a vulnerability, an attacker must have at least one applicable tool or

technique that allow to connect to a system weakness.

A vulnerability that is unknown or freshly discovered and not yet patched by system

developers is called a zero-day vulnerability. Attacks which are targeted at a zero-day

vulnerability are called zero-day attacks. Zero-day attacks occur during the vulnerable

time window that exists between the time the vulnerability is known to attackers and

when software developers start to patch and publish a countermeasure.

A typical example of vulnerability is the buffer overflow, where attackers can manipulate

an already-running program to overrun the buffer’s boundary and overwrite its adjacent

memory, and eventually cause the program to execute the attacker’s code. A buffer overflow

can be triggered by injecting malicious code through inputs when running the program.

Attackers can take advantage of the buffer overflow vulnerability of a service to crash the

service or run malware.

2.1.3 Web-based Attacks

Although malware is a very popular way to attack computers or devices on the Internet,

it usually requires victims to receive and run malicious code [40], which can be avoided by

careful Internet users. Web-based attacks are another type of attack on Internet users and

web services. Typical examples of web-based attacks include SQL-injection and cross-site-

scripting [40].
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SQL-injection is a way to exploit a type of vulnerability known as a command injection

vulnerability. Typically, SQL-injection arises when untrusted data is inserted for malicious

purposes into a query or command to a web service. SQL-injection attacks can be used

to retrieve information from compromised web services and thereby cause information

breaches. Information such as social security numbers, dates of birth, and maiden names

are collected by hackers, as part of identity theft. Another popular target of this type

of attack is unprotected credit card information. Massive credit card information loss can

cause significant damage to an organization’s most valued asset, its customers. Solutions to

mitigate the impact of SQL-injection attacks include applying data validation, encrypting

sensitive data in the database, and limiting privileges [40], among others. SQL-injection

attacks can be detected through anomaly detection methods (see Section 2.2) employed by

intrusion detection systems (IDS).

Cross-site-scripting (XSS) lies in the category of cross-domain security issues [40]. This

type of attack takes advantage of security vulnerabilities found in web applications, such as

web browsers. It allows attackers to inject client-side script into web pages and retrieve the

session data of the user. A cross-site scripting vulnerability may be used by attackers to

bypass access controls such as the same origin security policy. Cross-site scripting carried

out on websites accounted for roughly 84% of all security vulnerabilities documented by

Symantec, as of 2007 [108]. Solutions to prevent XSS attacks include input validation and

output sanitization, the usage of HTTP-only cookies, and binding session cookies to IP

addresses [40].

2.1.4 Organized Attacks and Botnets

Recent network intrusions have evolved to be more sophisticated and organized. Intruders

are able to control a group of compromised computers/devices to launch distributed at-

tacks; for example, the Distributed Denial of Service (DDoS) attack. Compromised nodes

which are infected with malware communicate with a master through a command and

control (C&C) server [111]. A group of compromised nodes and a master together form a

Botnet. The compromised nodes are called “Bot nodes”, and the master is called a “Bot

master”. Bot nodes can be used to commit profit-driven cyber crimes such as DDoS at-

tacks, spam propagation, ID theft, or phishing. A CSI report [94] indicates that in 2008,

the financial loss caused by “Bot” computers in US enterprises was the second-highest,
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following financial fraud. Another report [27] predicted that the percentage of computers

compromised into bot nodes worldwide would be 15% in 2009. Cooperative attacks are

complex forms of distributed attacks where compromised nodes are organized to play dif-

ferent roles in the entire attack scenario. In the next subsection, we give an example of a

botnet, which coordinates compromised nodes to launch phishing attacks.

2.1.5 Spam and Phishing

Spam is the activity of using electronic messaging systems to send unsolicited bulk messages

indiscriminately to users, especially for advertising products or services. While the most

well known spam is email spam, the term also applies to similar abuses in other media,

such as instant messaging spam, social network spam, and spam in blogs.

Spam is a widely used method for spreading malware, delivering advertisements, and

posting phishing links. For example, the famous “Love Letter” computer virus (2000) was

spread by sending emails with the subject line “I Love You” and the attachment “Love-

Letter-For-You.txt.vbs”. When the receivers opened the attached executable file, it then

activated the attached script and infected the host machine. The “Love Letter” worm

infected more than 50 million users in 10 days and caused at least a 2 billion USD loss

worldwide [65].

Another usage of spam emails is to post phishing weblinks. Phishing is a criminal

activity consisting of stealing users’ personal identity data and financial account credentials.

Phishing attacks typically use two mechanisms. The first mechanism, known as social

engineering, makes use of spoofed emails appearing to be from legitimate businesses and

agencies in order to lead consumers to counterfeit websites designed to trick recipients into

divulging personal data such as usernames and passwords. The second mechanism, known

as technical subterfuge, plants crimeware onto user computers to steal credentials directly

through intelligent keyloggers and/or by corrupting browser navigation in order to mislead

customers to counterfeit websites. Gartner estimated an increase in the cost of identity

theft from 2 billion USD to 3.2 billion USD in 2007 in the USA alone [66].

Like any large-scale online service, large-scale phishing web sites rely on online avail-

ability. Phishing sites, however, may be relatively easy to bring down if they use fixed IP

addresses. This is not only specific to phishing sites. In fact, any illegal online organiza-

tion which targets victims on a large scale requires high availability for the continuation
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of its operation. Recently, Fast-Flux Service Networks [25] have appeared to fulfill this

requirement ensuring a high availability yet evasiveness of illegal sites. Fast-Flux Service

Network (FFSN) is a term coined by the anti-spam community to describe a decentralized

botnet used to host online criminal activities. FFSNs employ domain name service(DNS)

techniques to establish a proxy network on the compromised machines. These compro-

mised machines are used to host illegal online services, like phishing websites, malware

delivery sites, etc., with very high availability. An FFSN generally has hundreds or even

thousands of IP addresses assigned to it. These IP addresses are swapped in and out of

flux with extremely high frequency, using a combination of round-robin IP addresses and

a very short Time-To-Live (TTL) for any given particular DNS Resource Record (RR).

Website hostnames may be mapped to a new set of IP addresses as often as every 3

minutes [25]. This makes it extremely hard to take down the actual service launcher, as the

control node (mothership) is not known. The proxy agents do the work for the control node,

and they also change rapidly. ATLAS is a system from Arbor Networks which identifies

and tracks new Fast-Flux Networks [87]. In an investigation conducted in 2008, ibank-

halifax.com was the largest detected fast flux domain, with a size of 100,379 hosts and a

DNS entry life of two months. When an FFSN is detected, the domain registrars can be

contacted to shut down the corresponding domain, hence removing the FFSN. Although

this mitigation technique sounds doable, it is often a tedious and time-consuming task

given the fact that not all registrars respond to abuse complaints [7].

2.1.6 Mobile Device security

With the rapid advances in the so-called “Internet of Things”, desktop computers are no

longer the dominant form of computing. For example, smartphone usage has been growing

exponentially and is replacing desktop usage to become the next popular tool for email,

news, chatting, and Internet access. Following the growth of smartphone use, smartphone

exploitation techniques are also growing. A key feature of modern smartphone platforms

is a centralized service for downloading third-party applications. The convenience to users

and developers of such an “app market” has led to an explosion in the number of apps

available. Apple’s App Store served nearly 3 billion application downloads after only 18

months [26]. Many of these applications combine data from remote cloud services with

information from local sources, such as a GPS receiver, camera, microphone, or accelerom-
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eter. Applications often have legitimate reasons for accessing this privacy-sensitive data,

but users may not be aware of whether their data is used properly or not. Many incidents

have occurred where developers relayed private information back to the cloud [41, 86], and

the privacy risks illustrate the danger [49].

In addition to the risk of downloading malware, mobile phone vulnerabilities are also

targets for exploitation. Hundreds of vulnerabilities were discovered in the years 2009 and

2010 [50]. While it may be difficult to exploit many of these vulnerabilities successfully,

there were two vulnerabilities affecting Apple’s iPhone iOS operating system that allowed

users to “jailbreak” their devices. The process of jailbreaking a device through exploits

is to install malicious code, which can gain the user root privileges through exploiting a

vulnerability of the iOS.

2.2 Intrusion Detection Systems

Intrusion Detection Systems (IDSs) are software/hardware systems designed to monitor

network traffic or computer activities and emit alerts/alarms to administrators when sus-

picious intrusions are detected. Intrusion Detection Systems are different from firewalls.

A firewall is a device that filters all traffic between a protected or “internal” network and

a less trustworthy or “external” network, while IDSs sniff or monitor network traffic or

computer activities but do not drop or block them. A firewall can be used along with

an IDS to block identified malicious traffic in order to protect internal computers from

being further exploited. Based on the technology used for detection, IDSs can be divided

into signature-based and anomaly-based types. Also, based on data sources, they can be

host-based or network-based.

2.2.1 Signature-based and Anomaly-based IDSs

Signature-based IDSs compare data packets with the signatures or attributes of known

intrusions to decide whether the observed traffic is malicious or not. A signature-based

IDS is efficient in detecting known intrusions with monomorphic signatures. However, it

is not efficient in detecting unknown intrusions or intrusions with polymorphic signatures.
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Figure 2.1: An example of host-based IDS and Network-based IDS

Anomaly-based IDSs observe traffic or computer activities and detect intrusions by iden-

tifying activities distinct from a user’s or system’s normal behavior. Anomaly-based IDSs

can detect unknown intrusions or new intrusions. However, they usually suffer from a high

false positive rate. Most current IDSs employ both techniques to achieve better detection

capability.

2.2.2 Host-based and Network-based IDSs

A Host-based IDS (HIDS) runs on an individual host or device in the network (Figure 2.1).

It monitors inbound/outbound traffic to/from a computer as well as internal activities such

as system calls. A HIDS views an individual device only, and may not be aware of the

overall network environment. Examples of HIDSs include OSSEC [13] and Tripwire [21].

Tripwire is a brand of software used to ensure the integrity of critical system files and
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directories by identifying all changes made to them. Tripwire configuration options include

the ability to receive alerts via email if particular files are altered, and automated integrity

checking. Using Tripwire for intrusion detection and damage assessment helps in keeping

track of system changes and can speed up the recovery from a break-in by reducing the

number of files that must be restored to repair the system. Tripwire compares files and

directories against a baseline database of file locations, dates modified, and other data. It

generates the baseline by taking a snapshot of specified files and directories in a known

secure state. After creating the baseline database, Tripwire compares the current system

to the baseline and reports any modifications, additions, or deletions.

Network-based IDSs (NIDS) monitor network traffic to/from the network. A NIDS con-

tains sensors to sniff packets, and a data analyzer to process and correlate data. Alarms are

raised whenever suspected intrusions are found. However, a NIDS does not have knowl-

edge about the internal activities of individual computers. Examples of NIDSs include

Snort [17] and Bro [4].

Snort is a free and open-source network intrusion detection system (NIDS), created in

1998 and developed by Sourcefire. Snort has the ability to perform real-time traffic analysis

and packet logging on IP networks. Snort performs protocol analysis, content searching,

and content matching. It relies on a set of predefined policies named “Snort rules” to

detect suspicious traffic. The rules specify the patterns of potential attacks, including IP

addresses, port numbers, protocols, and pattern strings. Snort rules need to be updated

frequently to keep up with new attacks. Snort can also be used to detect probes or attacks,

including but not limited to operating system fingerprinting attempts, common gateway

interfaces, buffer overflows, server message block probes, and port scans.

2.2.3 Other Types of IDSs

Early intrusion detection systems, such as [43, 42] and [77], relied on logging the system

activities to spot potential misuses that had occurred. The administrator reviews the

outputs of the IDS to find attacks, remove threats, and patch vulnerabilities of the system.

Modern IDSs analyze network traffic and/or system logs and perform correlations in real-

time before sending alerts/alarms to administrators. Besides the traditional IDSs we listed

in previous sections such as Snort, Bro, OSSEC, other applications/devices can be used
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as intrusion detection systems. In this section, we briefly describe Honeypots, Antiviruse

systems, and firewalls.

Honeypots are systems set up for the purpose of trapping attackers/hackers and col-

lecting traces for security analysis. A honeypot generally consists of a computer, data, or

a network site that appears to be part of a network but is actually isolated and monitored,

and which seems to contain information or a resource of value to attackers. Based on their

level of interaction with attackers, honeypots can be divided into low-interaction honey-

pots and high-interaction honeypots [99]. Low-interaction honeypots are usually emulated

services that are frequently requested by attackers. They have limited interaction with

attackers since they are not real services. Most emulated services are only restricted to the

first few interactions. Examples of such honeypots include Honeyd [9], Spector [18], and

KFsensor [8]. High-interaction honeypots imitate real operating systems that host a variety

of services and applications. Therefore, an attacker may be allowed to perform many types

of attacks on this type of honeypot. An example of such a honeypot is Honeynets [20].

Antivirus systems are software systems which monitor, prevent, detect, and remove

malware such as computer worms, viruses, adware, Trojan horses, rootkits, and keylog-

gers. A variety of strategies are employed by antivirus systems. There is signature-based

detection, which involves searching for known patterns of data within executable code, and

heuristic-based detection, which can identify new viruses or variants of existing viruses by

looking for known malicious code, or slight variations of such code, in files. Some antivirus

systems also use anomaly detection techniques to identify malware by running it in a sand-

box and analyzing the behavior of a file under execution in order to detect any malicious

actions. Examples of antivirus software include Symantec [19], Avira [2], and Avast [1].

A firewall is a network security system that monitors the network’s incoming/outgoing

traffic and determines whether it should be allowed through or not, based on its firewall

rules. A network’s firewall is a bridge between the internal network or computer it protects

and external (inter)network, such as the Internet. Firewalls can use blacklists to detect

and block potential intruders. Firewalls can also work together to achieve higher intrusion

detection efficiency [109, 28, 46].
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2.2.4 Strength and Limitations of IDSs

Intrusion detection systems are constantly evolving. Research on IDSs began in the 1980s,

and products appeared in the 1990s. As new vulnerabilities and attack types become

known, IDSs evolve and become more and more sophisticated. Indeed, IDSs are improving

continuously and are able to detect an ever-growing number of attacks by including more

and more attack signatures and attack models. Recall that IDSs look for known vulnerabili-

ties and weaknesses, either through patterns of known attacks (signature-based) or models

of normal behavior (anomaly-based). Whenever new attacks are discovered, the corre-

sponding detection rules/signature are created by the IDS manufacture and distributed to

users’ IDSs. Many commercial IDSs are quite effective at identifying new attacks.

However, it is difficult for IDSs to detect all potential attacks. Indeed, attackers only

need to evade the IDS once to successfully compromise the system, while IDSs need to

know all possible attacks to guarantee successful defense. In practice, an IDS vendor has

knowledge about some attacks, but no single one knows all attacks.

Another limitation of IDSs is their sensitivity control. It is typically the case that a

sensitive IDS raises too many intrusion alerts (most of them are false positive alerts), which

makes it difficult for administrators to handle. However, when an IDS is less sensitive, it

may miss critical attacks (false negatives) and hence fail to protect networks and hosts.

Determining the optimal sensitivity of IDSs is a difficult problem.

2.3 Collaborative Intrusion Detection Networks

A Collaborative Intrusion Detection Network (IDN) is an overlay network that connects

IDSs so that they can exchange information, such as intrusion alerts, blacklists, signatures,

suspicious files, and intrusion detection rules. Several IDNs have been proposed in the past

few years. In an IDN, IDSs collect data from distributed peer IDSs and use it to achieve

better intrusion detection. In this section, we categorize IDNs using three features, namely

cooperation topology, cooperation scope, and specialization. We also provide a taxonomy

of some of the most prominent IDNs.
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2.3.1 Motivation for IDS Collaboration

Isolated intrusion detection systems rely strictly on security updates from their respec-

tive vendors and are vulnerable to new or unknown attacks. Collaboration between IDSs

allows each IDS to use collective knowledge from other IDSs to achieve more accurate

intrusion detection, which is particularly useful for preventing new attacks. For example,

when one IDS detects a new attack, it can alert its collaborators, which then can block

similar attacks when they occur. Through knowledge-sharing, collaboration between IDSs

intuitively benefits each participating IDS and allows the creation of an IDN with a much

stronger intrusion detection capability. Building an effective collaborative IDN, however,

raises a number of challenges, which we will discuss next.

2.3.2 Challenges of IDS Collboration

Collaboration among intrusion detection systems has the potential to improve the effec-

tiveness of intrusion detection, since IDSs leverage the collective intrusion detection infor-

mation received from their collaborators. As such participating IDSs are less likely to be

compromised by threats unknown to them. However, IDS collaboration introduces com-

munication overhead in the network. Since collaboration is based on information exchange,

each participant receives help from others in the network but also has to spend resources

(e.g., CPU, memory, network) to help others in return. Therefore, IDSs with low resource

capacity may be constrained in collaboration.

Another challenge for IDNs is that the participating IDSs may become the target of

malicious attacks. For example, adversaries may compromise some IDSs in the network

and then leverage the compromised nodes to send false information or spam, or even to

attack other nodes in the network, which can compromise the efficiency of the collaboration

network. Therefore, it is important for an IDN to detect and isolate malicious insiders in

order to eliminate their negative impact. In addition, how to make efficient intrusion

detection assessments based on the collective information and knowledge from other peers

is another challenge. In the following paragraphs, we discuss some of the key challenges

in IDN design including privacy, malicious insiders, free-riders, scalability, incentives, and

intrusion detection efficiency. Then we present an overview of some of the most prominent

IDN designs in the literature.
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Privacy is a primary issue, since IDN users can be discouraged from participating

in the IDN if there is potential information breaching during collaboration. To address

this issue, a trust management model can be used to identify dishonest and malicious

nodes. An effective trust management model should be able to distinguish honest nodes

from dishonest ones, and high-expertise nodes from low-expertise ones. Free-riding the

IDN is another important problem, where selfish nodes (a.k.a., free-riders) exploit the

network seeking knowledge from others but do not contribute themselves. To handle this

problem, an incentive-compatible resource allocation design can reward active participants

and discourage free-riders. A scalable IDN can accommodate a large number of nodes in

the network without overburdening any single node. A scalable IDN architecture design is

necessary for a large-scale collaboration network. Although IDS collaboration can improve

overall intrusion detection accuracy, its efficiency is limited by the quality of the individual

intrusion detection systems. Collaboration cannot detect an intrusion that no single IDS

in the network can detect. Therefore, improving the intrusion detection accuracy of each

IDS is still an essential problem to solve. In our work, we will demonstrate the effectiveness

of IDS collaboration and the amount of improvement in terms of detection accuracy over

individual IDSs.

2.4 Selected Intrusion Detection Networks

2.4.1 Indra

Indra [67] was one of the first to propose a cooperative intrusion detection system. In the

proposed system, host-based IDSs in a local area network take a pro-active approach and

send warnings to other trusted nodes about the intruder through a peer-to-peer network.

For example, as shown in Figure 2.2, if an attacker compromises node B and then launches

attacks from B to hosts in the trusted network, then node C detects the attack from B and

multicasts a security warning to its trusted neighbors. Subsequently, if B tries to attack

other nodes in the network, it will be repelled right away by the forewarned nodes. Indra

is a fully distributed system which is targeted towards local area networks.
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Figure 2.2: Indra Architecture (Adapted from [67])

2.4.2 DOMINO

DOMINO [120] is an IDS collaboration system which aims at monitoring Internet out-

breaks at large-scale. In DOMINO (Figure 2.3), heterogeneous IDSs located at diverse

locations share their intrusion information with each other. There are typically three

types of nodes: axis nodes, satellite nodes, and terrestrial contributors. Satellite nodes

are organized hierarchically and are responsible for gathering intrusion data and sending

them to parent nodes in the hierarchy. Parent nodes aggregate intrusion data and further

forward data up the hierarchy till they reach axis nodes. Axis nodes analyze intrusion data,

generate digested summary data and then multicast them to other axis nodes. Network-

based IDSs and active sink nodes (such as Honeypot [37]) are integrated into axis nodes to

monitor unused IP addresses for incoming worms. Terrestrial contributors do not follow

DOMINO protocols but can also contribute to the system through DOMINO access points.

In DOMINO, heterogeneous nodes are involved in the cooperation overlay. Information

from axis nodes, satellite nodes, and terrestrial contributors is distinguished by different

trust levels. This feature enables DOMINO to handle inter-administration-zone coopera-

tion. DOMINO is a decentralized system organized in a hierarchical structure for better

scalability.
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2.4.3 DShield

DShield [109] is a community-based firewall log correlation system. The central server

receives firewall logs from worldwide volunteers and then analyzes attack trends based on

the information collected. Similar systems include myNetWatchMan [11] and CAIDA [5].

DShield is used as a data collection engine behind the SANS Internet Storm Center (ISC)

[16]. Analysis provided by DShield has been used in the early detection of several worms,

such as “Code Red” and “SQL Snake”. Due to the number of participants and the volume

of data collected, DShield is a very attractive resource, and its data is used by researchers to

analyze attack patterns. However, DShield is a centralized system and it does not provide

real-time analysis or rule generation. Also, due to privacy issues, payload information and

some headers can not be shared, which makes classification of attacks often impossible.

2.4.4 NetShield

NetShield [35] is an IDN which uses the Chord DHT [102] to reduce communication over-

head. In this system, however, within the system architecture (Figure 2.4), IDSs contribute

21



and retrieve information from the system through a P2P overlay (the Chord DHT). Each

IDS maintains a local prevalence table to record the number of occurrences of each con-

tent block signature locally as well as its corresponding source address and destination

address. An update will be triggered if the local prevalence of the content block exceeds

a local threshold (for example, site E in Figure 2.4). If the global prevalence is higher

than a given threshold, and the address dispersion exceeds a certain threshold, then an

alarm is raised regarding the corresponding content block. Netshield targets epidemic

worm outbreaks or DoS attacks. However, using content blocks as attack identification

is not effective against polymorphic worms (i.e., worms with changing signatures). Also,

NetShield assumes all IDN participants are honest, which makes it vulnerable to collusion

attacks and malicious nodes.
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2.4.5 CIDS

Another Collaborative Intrusion Detection System (CIDS) proposed in [127] also uses

Chord DHT system to organize IDSs into a peer-to-peer network. Each IDS shares its

blacklist with others through a fully distributed P2P overlay. If a suspicious IP address

is reported more than a threshold N , then all the IDSs which reported it will be notified.

CIDS is considered to be scalable and robust since it is built on a P2P overlay. However,

the limitation of this system is that it only identifies potential intruders by IP addresses.

Thus, it is not effective against worms having a spreading degree of less than N . Also, the

system can be vulnerable to colluding malicious nodes.

2.4.6 Gossip

Denver et al. [39] proposed a gossip-based collaborative worm detection system (Gossip)

for enterprise-level IDNs for host-based IDSs. A fully-distributed model is adopted to avoid

a single point of failure. In their system, host-based IDSs (local detectors) raise alerts only

if the number of newly-created connections per unit time exceeds a certain threshold. The

alert will then be propagated to neighbors for aggregation. A Bayesian network-based

alert aggregation model is used for alert aggregation at global detectors. Their proposed

system is aimed at detecting slow-propagating worms in a local area network. However,

their system only uses the new connection rate as a sign of possible worm spread. This is

not effective for worms that are spread in a connectionless manner, such as UDP worms.

2.4.7 Worminator

Worminator [76] was proposed to enable IDSs to share alert information with each other

to detect worm propagation. Alert correlation is used to gain better detection accuracy.

Different from most other systems, Worminator is concerned with the privacy of exchanging

alerts, and uses a bloom filter to encode IP addresses and port numbers in the alerts in order

to preserve the privacy of collaborators. The authors claimed that the system topology

can be either centralized or decentralized depending on the size of the network.
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2.4.8 ABDIAS

Ghosh et. al. proposed an Agent-Based Distributed Intrusion Alert System (ABDIAS)

[60]. In the architecture design (Figure 2.5), IDSs (agents) are grouped into communi-

ties (neighborhoods). Each agent collects information inside its neighborhood and uses a

Bayesian network analysis model to diagnose possible threats. Inter-neighborhood com-

munication only happens if a consensus cannot be reached within a neighborhood. This

system supports early warnings for pre-attack activities in order to gain time for adminis-

trators to respond to potential attacks. This system also supports a simple majority-based

voting system to detect compromised nodes.

A1

A2

A8

A7
A6

A3
A4

A5

Inter-communication

Intra-communication

Figure 2.5: ABDIAS Architecture (Adapted from [60])

2.4.9 CRIM

CRIM [36] is a cooperative IDS where alerts from individual IDSs are sent to a central

analyzer for clustering and correlation. A set of correlation rules are generated offline by

security administrators by analyzing attack descriptions. These correlation rules are then

used to analyze alerts collected from IDSs in order to recognize global attack scenarios.
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CRIM is a semi-automatic alert correlation system, since it relies on human interactions

to define attack descriptions. It is also a centralized system.

2.4.10 ALPACAS

ALPACAS[124] is a cooperative spam filtering system that is aimed at preserving the

privacy of emails as well as maintaining the scalability of the system. The system is built

on a peer-to-peer overlay to avoid the deficiency of a centralized system. Spam mails

and Ham mails are distributed to agents based on the range of their feature signatures.

An email is divided into feature trunks, and trunks are digested into feature fingerprints

to preserve the content privacy of emails. The fingerprints of an email are then sent to

corresponding agents to compare with stored spam emails and Ham emails by estimating

the maximum signature overlap with spam (MOS) and the maximum signature overlap

with Ham (MOH). An email is labeled as spam if the difference between MOS and MOH

exceeds a certain threshold. ALPACAS is a fully distributed system.

2.4.11 CDDHT

The Cyber Disease Distributed Hash Table (CDDHT) [74] was proposed as a distributed

data fusion center. In its architecture, each node is a local intrusion detection system which

attempts to locally detect attacks and generate corresponding alerts. Each alert is assigned

a disease key based on the related intrusions. The alert is then sent to a corresponding

sensor fusion center (SFC) using a DHT-based P2P system. SFCs are selected among nodes

based on their capacity and resources. The goal of this system is to avoid the bottleneck

problem inherent to a centralized fusion center and to use alert categorization techniques

for balancing the load among the SFCs. CDDHT is a decentralized system.

2.4.12 SmartScreen Filter

SmartScreen Filter [23] is a tool in MicrosoftTM Internet Explorer 8 that helps users avoid

socially engineered malware phishing websites and online fraud when browsing the web. A

centralized mechanism is used to maintain a list of phishing sites and malicious websites
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urls. Users browsing listed phishing sites or malicious websites will receive warnings to

prevent them from being defrauded. Users are allowed to report suspicious websites to the

central server through a secure channel. Users’ feedback is analyzed together with input

from the SmartScreen Spam filter and input from other trusted sources to generate the

urls blacklist. Other similar phishing filters are provided by EarthLink and eBay.

2.4.13 FFCIDN

Fast-flux service networks (FFSN) are one type of Botnet which uses compromised nodes to

form a robust phishing domain. To detect fast-flux networks and prevent them from causing

further damage, Zhou et al. [126], [125] proposed a collaborative IDN to detect FFSNs.

The work is based on an observation that the number of IP addresses returned after a DNS

request is larger than usual. The collaboration system collects query results from nodes

from different locations and correlates them to obtain the number of unique IP addresses

and the number of unique fast-flux domains. The relationship between the number of DNS

queries and the number of unique IP addresses and domains is traced. A corresponding

DNS query threshold is derived to speed up FFSN detection. Zhou et al.’s results showed

that detecting FFSNs using collaboration from nodes in different name domains is more

efficient than detecting them from a single node. This system is a centralized system.

2.5 Summary

IDSs are important countermeasure for cyber attacks. However, a single IDS is vulnerable

to attacks which are unknown to its security vendors of system administrators. Intru-

sion detection networks (IDNs) allow IDSs to exchange intrusion information and detec-

tion knowledge, hence improving the intrusion detection accuracy by using the collective

knowledge from others. Several IDNs have been proposed in literature. However, most

of them focused on designing efficient and scalable network overlays for the exchange of

intrusion information. Some IDNs investigated information aggregation, but only few have

addressed the problems of malicious insiders and free riders. Malicious insiders pose a sig-

nificant challenge to IDNs since adversaries have high motivation to attack and compromise

the IDSs in the network. Designing IDNs that are robust to malicious insiders is therefore
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of paramount importance. Free-riders also pose a significant challenge to collaboration in

an IDN. They are self-interested, do not share their resources, and try to take advantage

of the resources shared by others in the network. To address the free-rider problem, an

incentive mechanism design should be in place to discourage selfish behaviors. My goal, in

this thesis is to propose an IDN design which is not only scalable and efficient in intrusion

detection, but is also robust against malicious insiders and discourage free-riding.
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Chapter 3

Collaborative Intrusion Detection

Networks Architecture Design

A Intrusion Detection Network (IDN) is an overlay network which enables IDSs to exchange

intrusion information and knowledge in order to improve the overall detection accuracy. In

chapter 2, we surveyed a number of existing intrusion detection networks where IDSs share

information with others in order to detect intrusions which otherwise would not be detected

by a single IDS. However, most of the previous studies focused on the efficiency of infor-

mation exchange and the aggregation of collected information to make intrusion decisions.

Only few studies addressed the problems of malicious insiders, free-riders, and how to se-

lect and maintain IDN participants. In this work, we propose an IDN architecture design

for IDSs to communicate and enhance intrusion detection efficiency through collaboration.

We specifically focus on four IDN components design, namely, trust management, feedback

aggregation, resource management, and acquaintance management. Through simulation,

we show that our design is scalable in network size, efficient in intrusion detection, and

robust to various insider attacks.

3.1 Collaboration Framework

In our design, IDSs from different vendors or open source providers are connected in a

peer-to-peer overlay. As discussed in the introduction, we choose a consultation-based
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IDN design, where IDSs send consultation requests to collaborators to ask for a diagnosis

when suspicious activities are detected but the host IDS does not have enough confidence

to make a correct decision. For this purpose, each IDS maintains a list of “good” collab-

orators. For example, IDSs may choose to collaborate with other IDSs with which they

had good experience in the past (e.g., have been helpful in identifying intrusions). The

reason that we choose a peer-to-peer network structure instead of a cloud-based service

such as CloudAV [89] is that cloud-based services are centralized and may constitute a per-

formance bottleneck and a single point of failure. In turn, in a peer-to-peer IDN, workload

is distributed to all peers and there is no communication bottleneck. Also, IDNs are more

robust to failures and can scale indefinitely in network size. In our design, we consider

the case where the IDN participants have differing detection expertise levels and may act

dishonestly or selfishly in collaboration. For collaboration to be sustainable and efficient,

we identify the following IDN design requirements:

(1) IDN nodes should have an effective trust evaluation capability to reduce the negative

impact of dishonest and incompetent nodes.

(2) Allocation of IDN node resources for collaboration should be incentive-compatible to

discourage selfish behavior and encourage active collaboration.

(3) IDN nodes should possess an efficient feedback aggregation capability to minimize the

cost of false intrusion detections.

(4) The IDN should be robust against insider attacks.

(5) The IDN should be scalable in network size.

To satisfy the above requirements, we propose a Collaborative Intrusion Detection Net-

work (IDN) architecture design similar to a social network. The IDN topology, as shown in

Figure 3.1, consists of IDSs (nodes), which may be Network-based IDSs (NIDSs) or Host-

based IDSs (HIDSs). IDN nodes are connected if they have a collaborative relationship.

Each node maintains a list of other nodes which it currently collaborates with. We call

such nodes acquaintances. Each node in the IDN has the freedom to choose its acquain-

tances based on their trustworthiness. The communication between collaborating nodes

consists of intrusion evaluation requests and corresponding feedback. There are two types

of requests: intrusion consultations and test messages. The architecture of the IDN is
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Figure 3.1: Topology of a Collaborative Intrusion Detection Network.

shown in Figure 3.2. It is composed of seven components, namely, the intrusion detection

system, communication overlay, trust management, acquaintance management, resource

management, feedback aggregation, and mediator. In the following subsections, we will

describe the consultation and test messages and the functionality of each component in

the architecture.

3.1.1 Consultation Message

When an IDS detects a suspicious activity but is unable to make a decision as to whether

it should raise an alarm or not (e.g., anomaly detection detects suspicious activities but no

matching signature is found), it sends consultation requests to its acquaintances for diag-

nosis. Feedback from acquaintances is aggregated and a final intrusion detection decision

is made based on the aggregated results. The amount of information in the consultation

request depends on the trust level of each acquaintance. For example, a node may want

to share all alert information, including data payload, with the nodes inside its local area

network, and digest or even remove some alert information when sent to acquaintances in
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the broader Internet.

3.1.2 Test Messages

In order for the nodes in the IDN to gain experience with each other, we propose that IDSs

use test messages to evaluate the trustworthiness of others. Test messages are “bogus”

consultation requests which are sent to measure the trustworthiness of another node in the

acquaintance list. They are sent out in a way that makes them difficult to be distinguished

from a real consultation request. The testing node knows the true diagnosis result of the

test message and uses the received feedback to derive a trust value for the tested node.

This technique can discover inexperienced and/or malicious nodes within the collaborative

network. A test message can be a previous consultation message with which the ground
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truth has been verified, or a random pick taken from its knowledge base.

3.1.3 Communication Overlay

The Communication Overlay is the component which handles all the communications with

other peers in the collaborative network. The messages passing through the communication

overlay include: test messages from the host node to its acquaintances; intrusion consulta-

tions from the host node to its acquaintances; feedback from acquaintances; consultation

requests from acquaintances, and; feedback to acquaintances. The Communication Over-

lay dispatches incoming requests and messages to corresponding components in the system

and routes outgoing requests and messages to their destinations. For example, when the

Communication Overlay component receives a consultation request, it calls the local IDS

component for diagnosis and returns the received feedback (diagnosis result) back to the

sender.

3.1.4 Mediator

The mediator is the component which helps heterogeneous IDSs communicate with each

other. It translates consultation requests and consultation feedback into a common protocol

(such as IDMEF [10]) and data format understood by different IDSs.

3.1.5 Trust Management

The trust management component allows IDSs in the IDN to evaluate the trustworthiness

of others based on previous experience with them. The host node can use test messages

to gain experience quickly. Indeed, the verified consultation results can also be used as

experience. In our proposed IDN, we have adopted a Dirichlet-based trust management

model [57, 53] to evaluate the trustworthiness of IDSs. In this trust model, IDSs evaluate

the trustworthiness of others based on the quality of their feedback. The confidence of trust

estimation is modeled using Bayesian statistics, and the results show that the frequency

of test messages is proportional to the confidence level of trust estimation. The trust

management model is closely connected to the resource management and acquaintance
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management models, since the trust values of the collaborators are essential inputs for the

latter models.

3.1.6 Acquaintance Management

It is intuitive that when an IDS consults more acquaintances, it achieves higher accuracy

and confidence in intrusion detection. However, more acquaintances results in a higher

maintenance cost, since the IDS needs to allocate resources for each acquaintance because

sending and receiving test messages to those acquaintances is a necessary resource expen-

diture, and it is needed to maintain the confidence of trust evaluation and to maintain

the collaboration connection. In addition to the acquaintances list, our system also main-

tains a consultation list. The nodes on the consultation list are randomly selected from

the acquaintances which have passed the probation period. Test messages are sent to all

acquaintances, while consultation requests are only sent to the nodes in the consultation

list. The acquaintance list is updated on a regular basis to recruit new nodes or remove

unwanted ones. In our system, we use a dynamic acquaintance management system [54, 55]

to recruit higher-quality peers and remove less helpful peers based on their trustworthiness

and expertise in intrusion detection.

3.1.7 Resource Management

In an IDN, malicious or compromised peers can launch a Denial-of-Service attack by send-

ing a large number of consultation messages to overwhelm the targeted IDSs. Some peers

may also free-ride the system by only receiving help from others without contributing to

the collaboration network. To address the above problems, a resource management sys-

tem is required to decide whether the host should allocate resources to respond to a given

consultation request. An incentive-compatible resource management can assist IDSs to al-

locate resources to their acquaintances so that other IDSs are fairly treated based on their

past assistance to the host IDS. Therefore, an IDS which abusively uses the collaboration

resource will be penalized by receiving fewer responses from others. The resource alloca-

tion system also decides how often the host should send test messages to its acquaintances,

protecting the system from being overloaded. In our IDN, we use an incentive-compatible
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resource allocation system [132, 133] based on a multi-player non-cooperative game design

for IDSs in the IDN.

3.1.8 Feedback Aggregation

When the IDS of the host node cannot make a confident intrusion diagnosis for a suspi-

cious event, the host node may consult the other IDSs in the collaboration network for

opinions/diagnosis. The received feedback is then used to make a decision as to whether

the host IDS should raise an alarm to its administrator or not. The feedback aggregation

component is responsible for making a decision based on the feedback. It decides not only

on which criteria to use to measure the quality of decisions, but also on how to reach a

decision in an efficient way. This component is one of the most important, since it has

a direct impact on the accuracy of the collaborative intrusion detection. If an alarm is

raised, the suspicious intrusion flow will be suspended and the system administrator must

investigate the intrusion immediately. On one hand, false alarms may waste human re-

sources. On the other hand, undetected intrusions may cause damage. In this thesis, we

use a Bayesian approach [58, 129] to measure the rate of false alarms, i.e., false positive

(FP) rate, and the rate of missing intrusions, i.e., false negative (FN) rate, of participating

IDSs based on collected experience with them in the past. We model the cost of collabo-

rative decision-making using false positive cost and false negative cost. We then provide a

hypothesis testing model to find a decision which leads to minimum overall cost.

In the following chapters, we focus on four major components of the propose IDN archi-

tecture: trust management, acquaintance management, resource management, and feed-

back aggregation. For each component, we provide the underlying model and algorithms,

and evaluate their efficiency against several metrics, including robustness, scalability, effi-

ciency, fairness, and incentive-compatibility.
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Chapter 4

Trust Management

4.1 Introduction

Collaborative intrusion detection networks can be an effective way to improve intrusion

detection accuracy and detect new attacks. However, a malicious (or malfunctioning) IDS

can degrade the performance of others by sending false intrusion assessments. Furthermore,

if some nodes are controlled by the same adversaries, they can easily collude and send false

intrusion assessments. Moreover IDSs may have different levels of expertise in intrusion

assessment. To protect an IDN from malicious attacks as well as find expert IDSs to consult

for intrusion assessment, it is important to evaluate the trustworthiness of participating

IDSs. Since the trust model itself may also be the target of malicious attacks, robustness

is a desired feature of the trust management scheme in collaborative intrusion detection

networks.

In this chapter, we present a Bayesian trust management model that is robust, scalable,

and suitable for distributed IDS collaboration. More specifically, a Dirichlet trust model

is used for estimating the likely future behavior of an IDS based on its past history. This

theoretical model allows us to track the uncertainty in estimating the trustworthiness of

the IDS. The use of sophisticated trust model in IDN not only effectively improves the

intrusion detection efficiency of the IDN, it also improves the robustness of the system

against various insider attacks. Our proposals can be used to deploy a secure and scalable

IDN where effective collaboration can be established between IDSs.
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We evaluate our approach based on a simulated collaborative IDS network. The IDSs

are distributed and may have different expertise levels in detecting intrusions. An IDS may

also turn malicious due to runtime bugs, having been compromised, having been updated

with a faulty new configuration, or having been deliberately made malicious. We also

simulate several potential threats; e.g., betrayal attacks where malicious IDSs masquerade

as honest ones to gain trust, and then suddenly act dishonestly. Our experimental results

demonstrate that our trust management model yields a significant improvement in detect-

ing intrusions, is robust against various attacks, and improves the scalability of the system,

as compared to existing collaborative IDS systems.

The remainder of this chapter is organized as follows. The trust management model is

presented in Section 4.2. The scalability of the trust model is discussed in Section 4.3 and

its robustness against common threats in Section 4.4. Section 4.5 provides experimental

evidence of the efficiency, robustness and scalability of our approach. Section 4.6 surveys

related work. Section 4.7 summarizes our contributions and proposes future work.

4.2 Trust Management Model

In this section, we propose a robust and scalable trust model which uses a Bayesian ap-

proach to evaluate the trustworthiness between each pair of IDSs. Specifically, we use a

Dirichlet family of probability density functions to estimate the likely future behavior of an

IDS based on its past history. A weighted majority method is used to aggregate feedback

to make intrusion decisions.

4.2.1 Satisfaction Mapping

In our model, an IDS sends requests to its peers and evaluates the satisfaction level of

received feedback. Note that the request can be a test message or a real request. The true

answer of a test message is known beforehand, while that of a real request is verified by

administrators after some delay through the observed impact of the corresponding alert.

IDSs may have different metrics to rank alerts. Snort [17], for example, uses three

levels (low, medium, high), while Bro [4] allows up to 100 different levels. We assume the

existence of a function H, which maps an IDS alert ranking onto the [0,1] interval where

36



0 denotes benign traffic and 1 highly dangerous intrusions. H preserves the “more severe

than” partial order relationship. That is, if alert aj is more severe than alert ai then H

preserves that relationship by having H(aj) > H(ai).

The satisfaction level of feedback is determined by three factors: the expected answer

(r ∈ [0, 1]), the received answer (a ∈ [0, 1]) and the difficulty level of the test message

(d ∈ [0, 1]). The larger is d the more difficult it is to correctly answer the request. Note that

the difficulty of the test message can be roughly estimated by the age of the corresponding

signatures or knowledge. For example, the difficulty level is low for test messages generated

from old signatures; medium difficulty is for test messages generated from new signatures;

high difficulty for malicious traffic taken from Honeypots and no local signature is able to

detect it.

To quantitatively measure the quality of feedback, we use a function Sat(r, a, d) (∈
[0, 1]) to represent the level of satisfaction of the received answer based on its distance to

the expected answer and the difficulty of the test message, as follows:

Sat(r, a, d) =


1−

(
a−r

max(c1r,1−r)

)d/c2
a > r

1−
(

c1(r−a)
max(c1r,1−r)

)d/c2
a ≤ r

(4.1)

where c1 ∈ R+ controls the extent of penalty for wrong estimates. c1 > 1 reflects the

situation that estimates lower than the exact answer get stronger penalty than those that

are higher. Parameter c2 ∈ R+ controls satisfaction sensitivity, with larger values reflecting

more sensitivity to the distance between the correct and received answers. The equation

also ensures that low difficulty level tests are more severe in their penalty to incorrect

answers. The shape of the satisfaction function is depicted in Figure 4.1.

4.2.2 Dirichlet-based Model

Bayesian statistics provides a theoretical foundation for measuring the uncertainty in a

decision that is based on a collection of observations. We are interested in knowing the

distribution of satisfaction levels of the answers from each peer IDS and, particularly, using

this information to estimate the satisfaction level of future consultations. For the case of a
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Figure 4.1: Satisfaction level for feedback (r=0.5, c1 = 2, c2 = 1)

binary satisfaction level {satisfied,¬satisfied}, a Beta distribution can be used as appeared

in [122]. For multi-valued satisfaction levels, Dirichlet distributions are more appropriate.

A Dirichlet distribution [95] is based on initial beliefs about an unknown event repre-

sented by a prior distribution. The initial beliefs combined with collected sample data can

be represented by a posterior distribution. The posterior distribution well suits our trust

management model since the trust is updated based on the history of interactions.

Let X be the discrete random variable denoting the satisfaction level of the feedback

from a peer IDS. X takes values in the set X = {x1, x2, ..., xk} (xi ∈ [0, 1], xi+1 > xi) of the

supported levels of satisfaction. Let ~p = {p1, p2, ..., pk} (
∑k

i=1 pi = 1) be the probability

distribution vector of X, i.e. P{X = xi} = pi. Also, let ~γ = {γ1, γ2, ..., γk} denote the

vector of cumulative observations and initial beliefs of X. Then we can model ~p using a

posterior Dirichlet distribution as follows:

f(~p|ξ) = Dir(~p|~γ) =
Γ(
∑k

i=1 γi)∏k
i=1 Γ(γi)

k∏
i=1

pi
γi−1 (4.2)

where ξ denotes the background knowledge, which in here is summarized by ~γ.
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Let

γ0 =
k∑
i=1

γi (4.3)

The expected value of the probability of X to be xi given the history of observations ~γ is

given by:

E(pi|~γ) =
γi
γ0

(4.4)

In order to give more weight to recent observations over old ones, we embed a forgetting

factor λ in the Dirichlet background knowledge vector ~γ as follows:

~γ(n) =
n∑
i=1

λti × ~Si + c0λ
t0 ~S0 (4.5)

where n is the number of observations; ~S0 is the initial beliefs vector. If no additional

information is available, all outcomes have an equal probability making S0
j = 1/k for

all j ∈ {1, .., k}. Parameter c0 > 0 is a priori constant, which puts a weight on the

initial beliefs. Vector ~Si denotes the satisfaction level of the ith evidence, which is a tuple

containing k − 1 elements set to zero and only one element set to 1, corresponding to the

selected satisfaction level for that evidence. Parameter λ ∈ [0, 1] is the forgetting factor. A

small λ makes old observations quickly forgettable. Parameter ti denotes the time elapsed

(age) since the ith evidence ~Si was observed. Let ∆ti = ti − ti+1. For the purpose of

scalability, the ~γ(n) in Equation 4.5 can be rewritten in terms of ~γ(n−1), ~Sn and ∆tn as

follows:

~γ(n) =

{
c0
~S0 n = 0

λ∆tn × ~γ(n−1) + ~Sn n > 0
(4.6)

4.2.3 Evaluating the Trustworthiness of a Peer

After a peer receives the feedback for an alert evaluation, it assigns a satisfaction value

to the feedback according to Equation 4.1. This satisfaction value is assigned with one

of the satisfaction levels in the set X = {x1, x2, ..., xk} that has the closest value. Each

satisfaction level xi also has a weight wi.

Let puvi denote the probability that peer v provides answers to the requests sent by

peer u with satisfaction level xi. Let ~puv = (puvi )i=1...k |
∑k

i=1 p
uv
i = 1. We model ~puv
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using Equation 4.2. Let Y uv be the random variable denoting the weighted average of the

probability of each satisfaction level in ~puv.

Y uv =
k∑
i=1

puvi wi (4.7)

The trustworthiness of peer v as noticed by peer u is then calculated as:

T uv = E[Y uv] =
k∑
i=1

wiE[puvi ] =
1

γuv0

k∑
i=1

wiγ
uv
i (4.8)

where γuvi is the cumulated evidence that v has replied to u with satisfaction level xi. The

variance of Y uv is equal to (superscript uv is omitted for clarity):

σ2[Y ] =
k∑
i=1

k∑
j=1

wiwjcov[pi, pj] (4.9)

Knowing that the covariance of pi and pj (i 6= j) is given by:

cov(pi, pj) =
−γiγj

γ2
0(γ0 + 1)

(4.10)

We get:

σ2[Y ] =
k∑
i=1

w2
i σ

2[pi] + 2
k∑
i=1

k∑
j=i+1

wiwjcov[pi, pj]

=
k∑
i=1

w2
i

γi(γ0 − γi)
γ2

0(γ0 + 1)
+ 2

k∑
i=1

k∑
j=i+1

wiwj
−γiγj

γ2
0(γ0 + 1)

=
1

γ3
0 + γ2

0

k∑
i=1

wiγi

(
wi(γ0 − γi)− 2

k∑
j=i+1

wjγj

)
(4.11)
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Let Cuv ∈ (−1, 1] be the confidence level for the value of T uv, and we describe it as:

Cuv = 1− 4σ[Y uv] (4.12)

where 4σ[Y uv] is roughly the 95% confidence interval.

Lemma 4.2.1 The confidence level Cuv formulated by Equation 4.12 lies in bound (-1, 1].

Proof From Equation 4.12 and Equation 4.11, we have,

Cuv = 1− 4√
1 + γ0

√√√√ k∑
i=1

w2
i

γi
γ0

− (
k∑
i=1

wi
γi
γ0

)2 (4.13)

where wi ∈ [0, 1],∀i is the weight of the satisfaction level i, and γ0 =
∑k

i=1 γi > 0. To

prove the boundary of Cuv, we construct a discrete random variable Z ∈ {w1, w2, ..., wk},
where w1 ≤ w2 ≤ ... ≤ wk and P[Z = wi] = γi

γ0
,∀i. Then we have,

σ2[Z] = E(Z2)− E2(Z) =
k∑
i=1

w2
i

γi
γ0

− (
k∑
i=1

wi
γi
γ0

)2 (4.14)

We can see that the variation of Z is the major component of Cuv. It is not difficult to

see that σ2[Z] reaches its maximum when P[Z = w1] = P[Z = wk] = 0.5 and P[Z = wj] =

0,∀j(1 < j < k). Therefore, we have 0 ≤ σ2[Z] ≤ 1
4
. After replacing Equation 4.14 back

into Equation 4.13, we have −1 < Cuv ≤ 1.

4.3 Test Message Exchange Rate and Scalability of

Our System

Each IDS u in our system maintains an acquaintance list and a probation list with maxi-

mum length lumax. This length can be fixed according to the resource capacity of node u or

slightly updated with the changes in IDN size. However, it is always set to a value small
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Table 4.1: Acquaintance Categorization

Peer category Criterion Rate

Highly Trustworthy 0 <th≤ Tl Rl

Trustworthy Tl <th≤ T Rh

Untrustworthy T <th≤ Th Rm

Highly Untrustworthy Th <th≤ 1 Rl

enough to account for scalability. Equation 4.6 ensures that the process of updating the

trustworthiness of a peer after the reception of a response is performed with only three

operations, making it linear with respect to the number of answers.

There is a trade-off to be resolved in order to account for scalability in the number of

messages exchanged in the IDN. On one hand, the forgetting factor in Equation 4.6 decays

the importance given to existing highly trusted peers. This implies that their corresponding

test message rates need to be above a certain minimal value. On the other hand, sending

too many requests to other peers may compromise scalability. To solve this issue, we adapt

the rate of test messages to a given peer according to its estimated trustworthiness. The

adaptation policy is provided in Table 4.1, where acquaintances are categorized into highly

trustworthy, trustworthy, untrustworthy, and highly untrustworthy. There are three levels

of test message rates: Rl < Rm < Rh. We can see in Table 4.1 that the test message rate to

highly trustworthy or highly untrustworthy peers is low. This is because we are confident

about our decision of including or not their feedback into the aggregation. A higher test

message rate is assigned to trustworthy or untrustworthy peers because their trust values

are close to the threshold and hence need to be kept under close surveillance.

Each peer in the system needs to actively respond to others’ requests in order to keep

up its trustworthiness and be able to receive prompt help when needed. However, actively

responding to every other peer may cause bandwidth and/or CPU overloading. Therefore,

as a consultant to others, a peer would like to limit the rate of answers it provides. In this

regard, each peer in our system would respond to requests with a priority proportional to

the amount of trust it places on the source of the request [133]. It will give higher priority

to highly trusted friends. This obeys the social norm: “Be nice to others who are nice to

you”, and also provides incentives for encouraging peers to act honestly in order to receive

prompt help in times of need.
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4.4 Robustness against Common Threats

Trust management can effectively improve network collaboration and detect malicious

peers. However, the trust management system itself may become the target of attacks

and be compromised. In this section, we describe common attacks and provide defense

mechanisms against them.

Sybil attacks

Sybil attacks occur when a malicious peer in the system creates a large amount of pseudonyms

(fake identities) [44]. Such a malicious peer uses fake identities to gain larger influence in

the network and use it in false ranking of alerts. Our defense against sybil attacks rely

on the authentication mechanism in place (e.g., a certificate issuing authority) and our

acquaintance management system. Authentication makes registering fake identities diffi-

cult. The registration of new user IDs requires puzzle solving (such as CAPTCHA) which

requires human intelligence to handle. In this way, creating a large number of fake IDs is

not practical for an attacker. In addition, our trust management model requires IDSs to

first build up their trust before they can affect the decision of others, which is costly to

do with many fake identities. This way, our security and trust mechanisms protect our

collaborative network from sybil attacks.

Newcomer attacks

Newcomer attacks occur when a malicious peer can easily register as a new user [92]. Such

a malicious peer creates a new ID for the purpose of erasing its bad history with other peers

in the network and create immediate damages. Our model handles this type of attacks by

assigning low trust values to all newcomers and enforcing the probation period for each

new node. In this way, their feedback on the alerts is simply not considered by other peers

during the aggregation process. Newcomers may gain more trust over time and eventually

move to acquaintance list if they behave consistently well.
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Betrayal attacks

Betrayal attacks occur when a trusted peer suddenly turns into a malicious one and starts

sending false feedbacks. A trust management system can be degraded dramatically because

of this type of attacks. We employ a mechanism which is inspired by the social norm: “It

takes a long-time interaction and consistent good behavior to build up a high trust, while

only a few bad actions to ruin it.” When a trustworthy peer acts dishonestly, the forgetting

factor (Equation 4.6) causes its trust value to drop down quickly, hence making it difficult

for this peer to deceive others or gain back its previous trust within a short time.

Collusion attacks

Collusion attacks happen when a group of malicious peers cooperate together by providing

false alert rankings in order to compromise the network. In our system, peers will not

be adversely affected by collusion attacks. In our trust model each peer relies on its own

knowledge to detect dishonest peers. In addition, we use test messages to uncover malicious

peers. Since the test messages are sent in a random manner, it will be difficult for malicious

peers to distinguish them from actual requests.

Inconsistency attacks

Inconsistency attacks happen when a malicious peer repeatedly changes its behavior from

honest to dishonest in order to degrade the efficiency of the IDN. Inconsistency attacks

are harder to succeed in the Dirichlet-based model because of the use of the forgetting

factor and the dynamic test message rate, which makes trust values easy to lose and hard

to gain. This ensures that the trust values of peers with inconsistent behavior remain low

and hence have little impact.

4.5 Simulations and Experimental Results

In this section, we present a set of experiments used to evaluate the efficiency, scalability

and robustness of our trust management model in comparison with existing ones [56][45].
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Table 4.2: Simulation Parameters

Parameter Value Description

Rl 2/day Low test message rate

Rm 10/day Medium test message rate

Rh 20/day High test message rate

λ 0.9 Forgetting factor

th 0.8 Trust threshold for aggregation

c0 10 Priori Constant

c1 1.5 Cost rate of low estimate to high estimate

c2 1 Satisfaction sensitivity factor

s 4 Size of grid region

k 10 Number of satisfaction levels

Experiments are also carried out to demonstrate the desirable properties of our acquain-

tance management algorithm. Each experimental result presented in this section is derived

from the average of a large number of replications with an overall negligible confidence in-

terval.

4.5.1 Simulation Setting

We simulate an IDN environment with n IDS peers randomly distributed over an s×s grid

region. The proximity distance is given by the minimum number of square steps between

each two peers. The expertise level of a peer can be low (0.05), medium (0.5) or high (0.95).

In the beginning, each peer receives an initial acquaintance list containing neighbour nodes

based on proximity. The initial trust value of every peer in the acquaintance list is 0.5.

To test the trustworthiness of acquaintances, each peer sends out test messages following

a Poisson process with rates according to Table 4.1. The parameters we used are shown in

Table 4.2.
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Figure 4.2: Decision Density Function for Expertise Levels

4.5.2 Modeling the Expertise Level of a Peer

To reflect the expertise level of each peer, we use a Beta distribution to simulate the

decision model of answering requests. A Beta density function is given by:

f(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt (4.15)

where f(p|α, β) is the probability that a peer with expertise level l answers with a value

of p ∈ [0, 1] to an alert of difficulty level d ∈ [0, 1]. Higher values for d are associated to

attacks that are difficult to detect, i.e. many peers fail to identify them. Higher values of

l imply a higher probability of producing correct alert rankings.

Let r be the expected ranking of an alert. We define α and β as follows:
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α = 1 +
l(1− d)

d(1− l)

√
r

1− r

√
2

l
− 1

β = 1 +
l(1− d)

d(1− l)

√
1− r
r

√
2

l
− 1 (4.16)

For a fixed difficulty level, the above model has the property of assigning higher proba-

bilities of producing correct rankings to peers with higher levels of expertise. A peer with

expertise level l has a lower probability of producing correct rankings for alerts of higher

difficulty (d > l). l = 1 or d = 0 represent the extreme cases where the peer can always

accurately rank the alert. This is reflected in the Beta distribution by α, β → ∞. Figure

4.2 shows the feedback probability distribution for peers with different expertise levels,

where we fix the expected risk level to 0.6 and the difficulty level of test messages to 0.5.

4.5.3 Deception Models

No
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No risk Low risk Med risk High risk

F
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Figure 4.3: Feedback Curves for Different Deception Strategies

A dishonest peer may adopt one of the four deception models: complementary, exag-

gerate positive, exaggerate negative, and maximal harm. The first three deception models
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are described in [121], where an adversary may choose to send feedback about the risk level

of an alert that is respectively opposite to, higher, or lower than the true risk level. We

propose a maximal harm model where an adversary always chooses to report false feed-

back with the intention to bring the most negative impact to the request sender. Figure

4.3 shows the feedback curve for the different deception strategies. For instance, when a

deceptive peer using the maximal harm strategy receives a ranking request and detects

that the risk level of the request is “medium”, it sends feedback “no risk” because this

feedback can maximally deviate the aggregated result at the sender side.
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Figure 4.4: Convergence of Trust Values for Different Expertise Levels

4.5.4 Trust Values and Confidence Levels for Honest Peers

We first evaluate the effectiveness of the collaboration and the importance of our trust

management. In this experiment, all peers are honest. We simulate the scenario where

each peer u has a fixed size Nu of its acquaintance list. The peers are divided into three

equally-sized groups of low, medium and high expertise levels respectively. The first phase

of the simulation is a learning period (50 days), during which peers learn about each other’s

expertise levels by sending out test messages. Figure 4.4 shows the resulting average trust

values of the 30 acquaintances of peer u. The trust values converge after 30 days of
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Figure 4.5: Confidence Levels of Estimation for Different Test Message Rates

simulation and the actual expertise levels of the peers are able to be effectively identified

by our trust model.

To study the impact of different test message rates on the confidence level of trust

estimation (Equation 4.12), we conduct a second experiment to let u use a fixed test

message rate in every simulation round. The rate of sending test messages starts with one

message per day and increases by five for every simulation round. We plot the confidence

level of trust evaluation for each test message rate in Figure 4.5. We can observe that

the confidence level increases with the increase of the test message rate. This confirms our

argument that sending more test messages improves the confidence of trust estimation. We

also observe that the confidence levels increase with the expertise levels. This is because

peers with higher expertise levels tend to perform more consistently.

4.5.5 Trust Values for Dishonest Peers

The purpose of this experiment is to study the impact of dishonest peers using the four

different deception strategies described in Section 4.5.3. To study the maximum impact

of these deception strategies, we only use peers with a high expertise level as deceptive
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Figure 4.6: Trust Values of Deceptive Peers with Different Deception Strategies

adversaries since they are more likely to know the true answers and can perform the

deception strategies more accurately.

In this experiment, we let peer u have an acquaintance list of 40 dishonest peers divided

into four groups. Each group uses one of the four deception models: complimentary,

exaggerate positive, exaggerate negative, and maximal harm. We use a dynamic test

message rate and observe the convergence curve of the average trust value for each group

of deceptive peers. Results are plotted in Figure 4.6.

We notice that the trust values of all adversary peers converge to stable values after

30 days of the learning phase. It is not surprising that adversary peers using the maximal

harm strategy have the lowest trust values, while adversary peers using the complimentary

strategy have the second lowest ones. The converged trust values of adversary peers using

exaggerate positives are higher than those using exaggerate negatives. This is because we

use an asymmetric penalization mechanism for inaccurate replies (c1 > 1 in Equation 4.1).

We penalize more heavily peers that untruthfully report lower risks than those which

untruthfully report higher risks.
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Figure 4.7: Trust Values of Newcomers under Different Trust Models

4.5.6 Robustness of Our Trust Model

The goal of this experiment is to study the robustness of our trust model against various

insider attacks. For the newcomer attack, malicious peers white-wash their bad history

and re-register as new users to the system. If the trust value of a newcomer can increase

quickly based on its short term good behavior, the system is then vulnerable to newcomer

attacks. However, a newcomer attack is difficult to succeed in our model. In our model,

we use parameter c0 in Equation 4.6 to control the trust value increasing rate. When c0 is

larger, it takes longer for a newcomer to gain a trust value above the trust threshold.

We compare our Dirichlet-based model with our previous model [56] and the model

of Duma et al. [45] in Figure 4.7. We observe that in the Duma et al. model, the trust

values of new users increase very fast and reach the aggregation trust threshold (0.8) in

the first day, which reveals a high vulnerability to newcomer attacks. The reason for this

is that their model does not have an initial trust to new peers and therefore their trust

values change fast in the beginning. In the model we developed in [56], the trust values

increase in a slower manner and reach the trust threshold after three days. However, that

model is not flexible in that it does not offer control over the trust increase speed. In the

Dirichlet-based model, the trust increase speed is controlled by the priori constant c0. For
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Figure 4.8: Trust of Malicious Peers under Betrayal Attack

c0 = 10, it takes a newcomer four to five days of consistent good behavior to reach the

same trust value. Larger values of c0 make it even slower to reach high trust, hence offering

robustness against newcomer attacks.

The second possible threat is the betrayal attack, where a malicious peer first gain a

high trust value and then suddenly starts to act dishonestly. This scenario can happen,

for example, when a peer is compromised. To demonstrate the robustness of our model

against this attack type, we set up a scenario where u has seven peers in its acquaintance

list, of which six are honest with an expertise level evenly divided between low, medium,

and high. The malicious one has high expertise and behaves honestly in the first 50 days.

After that, it launches a betrayal attack by adopting a maximal harm deceptive strategy.

We observe the trust value of the betraying peer and the satisfaction levels of aggregated

feedback in each day with respect to u.

Figure 4.8 shows the trust value of the betraying peer before and after the launching of

the betrayal attack when respectively using Duma et al., our previous and our current trust

models. For the Duma et al. model, the trust value of the malicious peer slowly drops

after the betrayal attack. This is because their model does not use a forgetting factor,

hence providing the previous honest behavior of a malicious peer with a heavy impact on

the trust calculation for a considerable amount of time. The trust value of the betraying
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Figure 4.9: Impact on Accuracy of Betrayal Attack

peer drops much faster using our previous model, while the fastest rate is observed when

using our Dirichlet-based model. This is because both models use a forgetting factor to

pay more attention to the more recent behavior of peers.

We also notice that the Dirichlet-based model has a slight improvement over our pre-

vious model. The Dirichlet-based model adopts the dynamic test message rate and can

react more swiftly. The rate of sending messages to malicious peers increases as soon as

they start behaving dishonestly. Higher rates of test messages help in faster detection of

dishonest behavior. However, in our previous model, the test message rate remains the

same. This phenomenon can be further observed in Figure 4.10.

The results for the satisfaction levels of aggregated feedback with respect to u before

and after the betrayal attack are shown in Figure 4.9. We notice that the satisfaction

level of u for the aggregated feedback drops down drastically in the first day following the

learning period and recovers after that in all three models. The recovery period is however

much shorter for the Dirichlet-based and our previous models. This is again attributed to

the use of the forgetting factor. The Dirichlet-based model has a slight improvement in the

recovering speed over our previous model. This is because in the Dirichlet-based model,

the trust values of betraying peers drop under the aggregation threshold faster than our

previous model. Therefore, the impact of betraying peers is eliminated earlier than that
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in the previous model.

4.5.7 Scalability of our Trust Model

The result of test message rates under betrayal attack is shown in Figure 4.10. We notice

that in our Dirichlet-based model, the average test message rates for highly trustworthy

as well as highly untrustworthy peers are the lowest. The average test message sending

rate to peers with the medium expertise level is higher but still below the medium rate

(Rm). Compared to our previous model, the average message sending rate is much lower,

which demonstrates the improved scalability of our Dirichlet-based model. Note that the

spike from the betraying group on around day 50 is caused by the drastic increment of

the test message rate. The sudden change of a highly trusted peer behavior will cause the

trust confidence level to drop down quickly. The rate of sending messages to this peer then

switches to Rh accordingly.
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Figure 4.11: Aggregated Feedback under Inconsistency Attack

4.5.8 Efficiency of our Trust Model

To demonstrate the efficiency of our Dirichlet-based trust model, we conduct another

experiment to evaluate the intrusion detection accuracy. In this experiment, we let peer

u have 15 acquaintances, which are evenly divided into low, medium, and high expertise

groups. Among the expert peers, some are malicious and launch inconsistency attacks

synchronously to degrade the efficiency of the IDN. More specifically, in each round of

behavior changing, these malicious peers adopt the maximal harm deception strategy for

two days followed by six days of honest behavior.

In Figure 4.11, we vary the percentages of malicious peers from 0% to 80%. We inject

daily intrusions to peer u with medium difficulty (0.5) and random risk levels. We then plot

the average satisfaction level for the aggregated feedback. We observe that our Dirichlet-

based model outperforms the others. This is because the dynamic test message rate in

Dirichlet-based model causes the trust of malicious peers to drop faster and increase more

slowly, hence minimizing the impact of dishonest behavior. Among the three models, Duma

et al. has the least satisfaction level because of its slow response to sudden changes in peer

behavior and its aggregation of all feedback from even untrustworthy peers.

Figure 4.12 shows the success rate of peer u in detecting intrusions. We notice that both
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Figure 4.12: Intrusion Detection Success Rate under Inconsistency Attack

our previous model and the Duma et al. model cannot effectively detect intrusions when

the majority of peers are malicious. Our Dirichlet-based model shows excellent efficiency

in intrusion detection even in the situation of a dishonest majority.

4.6 Related Work

Most of the existing work on distributed collaborative intrusion detection relies on the

assumption that all IDSs are trustworthy and faithfully report intrusion events. The In-

dra system [67] distributes among peers information about attack attempts on different

machines so as to proactively react and increase the chance of detecting an attack. This

system also allows peer neighbors to share information about intrusion attempts in order

to enhance the overall system security. Another example is the distributed intrusion alert

fusion system called Cyber Disease Distributed Hash Table (CDDHT) [75]. The CDDHT

system provides several load balancing schemes to evenly distribute intrusion alarms among

the sensor fusion centers in order to increase the scalability, fault-tolerance and robustness

of the system. However, the systems mentioned above are all vulnerable to malicious IDS

attacks. False information about intrusion events sent by malicious IDSs may heavily
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degrade the performance of these IDNs.

To protect an IDN, it is important to evaluate the trustworthiness of participating

IDSs. ABDIAS [60] is a community based IDN where IDSs are organized into groups

and exchange intrusion information to gain better intrusion detection accuracy. A simple

majority-based voting system was proposed to detect compromised nodes. However, such

system is vulnerable to colluded voting. Duma et al. [45] propose to address possibly

malicious IDSs (peers) by introducing a trust-aware collaboration engine for correlating

intrusion alerts. Their trust management scheme uses each peer’s past experience to predict

others’ trustworthiness. However, their trust model is simplistic and does not address

security issues within the collaborative network. For instance, in their system, the peer’s

past experience has the same impact on the final trust values of others, and therefore is

vulnerable to betrayal attacks where compromised peers suddenly change their behavior.

In our model, we use a forgetting factor when calculating trust, in order to rely more on

the peer’s recent experience and be robust to the changes of other peers’ behavior. Our

previous work [56] proposed a robust trust management model that uses test messages

to gain personal experience and a forgetting factor to emphasize most recent experiences.

However, this model needs to repeatedly aggregate all past experience with a peer when

updating its trust, which makes it not scalable over time. It uses a linear model to calculate

the average satisfaction levels of past interactions, and lacks a theoretical foundation. Also

this approach does not capture trust modeling uncertainties or provide statistical confidence

information on intrusion decisions. Our new model uses Dirichlet distributions to model

peer trustworthiness. It makes use of dynamic test message rates in order to allow for

better scalability. Also, our new model further improves robustness over our previous one

through the use of flexible test message rates.

The Dirichlet family has been used in reputation modeling to handle the multi-level

rating problem [70, 69]. Researchers in multi-agent systems have also been developing trust

models to evaluate the trustworthiness of buying and selling agents in e-marketplaces [122].

One of the earliest trust models developed by Marsh [79] computes the trustworthiness of

selling agents by taking into account direct interactions between buying and selling agents.

The trust-oriented learning strategy proposed by Tran and Cohen [106] uses reinforcement

learning to determine the trustworthiness of selling agents, after the true value of delivered

goods is evaluated and compared to the buying agent’s expected value for the goods.

Selling agents can be classified as untrustworthy if their trust values fall below a certain
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threshold and buying agents try to select the trustworthy selling agent with the highest

expected value for the goods. The Beta Reputation System (BRS) of Whitby et al. [114]

and the TRAVOS model of Teacy et al. [105] estimate the trustworthiness of a selling agent

by employing a Beta probability density function representing a probability distribution

of a continuous variable. The work of Zhang and Cohen [122] focuses on coping with

inaccurate reputation information about selling agents shared by malicious buying agents in

e-marketplaces. The REGRET model of Sabater et al. [96] offers a multi-dimensional view

of trust that includes a social dimension taking into consideration the social relationships

among agents. However, it is difficult to clearly determine social relationships among IDSs

in IDNs.

Our model is different from the above trust models in several aspects. First, our model

is focused on long-term collaboration trust. Repetitive direct interactions between two

agents are common in IDN environment. Second, the cost of experience in IDN is much

lower than in e-commerce and it allows IDSs to send test messages to better establish trust

relationships with others. Third, our model uses fine-grained experience quality rather than

a binary measurement such as “good” or “bad”. Instead, it is categorized into multiple

levels. Finally, our model uses direct trust modeling rather than reputation models. It

is because the latter may suffer from collusion attacks where a group of malicious IDSs

cooperate together by providing false reputation information about some IDSs to bad-

mouth these targets for example.

Different reputation models were proposed in distributed systems [68, 103, 80]. These

reputation models allow peers to get advice when evaluating the trustworthiness of other

peers. For example, [68] uses a global reputation management to evaluate distributed

trust by aggregating votes from all peers in the network. Sun et al. [103] propose for the

communication in distributed networks an entropy-based model and a probability-based

one. The models are used to calculate indirect trust, propagation trust and multi-path

trust. They however involve a lot of overhead which limits their scalability. Another

important concern is that IDSs can be easily compromised and become deceptive when

reporting the trustworthiness of others. The reputation models for peer-to-peer networks,

such as PowerTrust [91], TrustGuard [101], Malicious detector [82, 81], and Fine-Grained

reputation [123] are capable of detecting malicious peers. However, they are purposed to

detect deceiving nodes in a P2P network and can not be directly used in IDNs to improve

the intrusion detection accuracy. A trust model in IDN should not only detect malicious
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nodes but also improve the intrusion detection accuracy overall and offer robustness and

scalability.

4.7 Conclusions and Future Work

In this chapter, we presented a trust management model for evaluating trustworthiness of

Intrusion Detection Systems in a Collaborative Intrusion Detection Network. Our trust

management uses Dirichlet density functions as its foundation, and is accordingly able to

measure the uncertainty in estimating the likely future behavior of IDSs. The measured

uncertainty allows our trust management to employ an adaptive message exchange rate, re-

sulting in good scalability. Equipped with a forgetting factor, it is also robust against some

common threats. The effectiveness, robustness and scalability of our trust management

have been further validated through experiments carried out in a simulated Collaborative

Intrusion Detection Network. IDSs in the conducted experiments have different levels of

expertise in detecting intrusions and adopt different deception strategies. The results show

that our trust management is more effective compared to existing trust models for intrusion

detection networks. This is an important step forward since effective trust management is

essential for the deployment of secure IDNs.

One possible direction for future work here is to incorporate a reputation model in

our trust management. This will require addressing the important issues of inaccurate

reputation information, scalability and collusion attacks.

59



Chapter 5

Collaborative Decision

5.1 Introduction

Efficient and trustworthy feedback aggregation is a critical component in the design of

IDNs. In this chapter, we intruduce FADEX1, an efficient and trustworthy feedback ag-

gregation mechanism for our IDN. In FADEX, each IDS in the IDN evaluates its peer

collaborators based on their false positive and false negative rates, which can be estimated

from historical data and test messages. Accordingly assessments received from an incompe-

tent or malicious insider will have less weight in the final decisions. FADEX aggregation is

based on data analysis and hypothesis testing methods. Specifically we design optimal de-

cision rules that minimize Bayesian risks of IDSs in the network. In addition, for real-time

applications, a host IDS only needs to consult a subset of its acquaintances until desired

levels of performance, such as probabilities of detection and false alarm, are achieved. In

other words, FADEX provides a data-driven efficiently-distributed sequential algorithm for

IDSs to make decisions based on feedback from a subset of their collaborators. The goal

is to reduce communication overhead and the computational resources needed to achieve

a satisfactory feedback aggregation result when the number of acquaintances of an IDS

is large. We consider four possible outcomes of a decision: false positive (FP), false neg-

ative (FN), true positive (TP), and true negative (TN). Each outcome is associated with

a cost. Our proposed sequential-hypothesis testing-based feedback aggregation provides

1FADEX stands for “Feedback Aggregation for collaborative intrusion Detection nEtworKS”
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improved cost efficiency as compared to other heuristic methods such as the simple av-

erage model [93] and the weighted average model [45, 57]. Communication overhead is

reduced since the IDS aggregates feedback until a predefined FP and TP goal is reached.

An analytical model is used to estimate the number of acquaintances needed for an IDS

to reach its predefined intrusion detection goal. Such a result is crucial to the design of an

IDS acquaintance list in our IDN.

The remainder of this chapter is organized as follows. In Section 5.2, we survey some

IDN trust models and feedback aggregation techniques. The decision aggregation problem

is formulated in Section 5.3, where we use hypothesis testing to minimize the cost of

decisions, and sequential hypothesis testing to form consultation termination policy for

predefined goals is described in Section 5.4. In Section 5.5, we use a simulations to evaluate

the effectiveness of FADEX and validate the analytical model. Section 5.6 concludes the

chapter and identifies directions for future research.

5.2 Related Work

Recent studies on IDNs [56, 57, 60] have proposed the use of trust models to identify dis-

honest peers. Intrusion assessments from nodes with different trust values are assigned with

different weights to improve intrusion detection accuracy. ABDIAS [60] is a community-

based IDN where IDSs are organized into groups and exchange intrusion information in

order to gain better intrusion detection accuracy. A simple majority-based voting system

is used to detect compromised nodes. However, this voting-based system is vulnerable to

colluded voting. Another solution to detect compromised nodes is a trust management

system where peers build trust with each other based on personal experience. Existing

trust management models for IDN include the linear model [45], [56] and the Bayesian

model [57, 53]. However, all these works used heuristic approaches to aggregate consulta-

tion results from other collaborators. In this chapter, we propose a Bayesian aggregation

model which aims at finding optimal decisions based on collected information.

Bayesian approaches have been used in distributed detection in the past. Existing

works, including [107] and [88], use Bayesian hypothesis testing methods to aggregate at

a central data fusion center feedback from sensors distributed in a local area network.

However, these methods require all participants to engage in every detection case, whereas
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in our context, IDSs may not be involved in all intrusion detections and the collected

responses may come from different groups of IDSs each time.

The trustworthiness of IDNs has been ensured at various levels of the system archi-

tecture. In [133] and [132], a communication protocol with the property of reciprocal

incentive compatibility has been used to provide IDS nodes incentives to send feedbacks

to their peers, and hence to prevent malicious free-riders, denial-of-service attacks and

dishonest insiders. However, this approach only ensures the reliability and trustworthiness

at the communication overlay of the IDN, and it does not directly deal with the content

of the feedback. In [131] and [52], a knowledge sharing mechanism has been proposed to

allow expert nodes to disseminate knowledge within the IDN to prevent zero-day attacks.

The communication protocols in [131] are implemented at the higher application layers of

the collaborative network. In our work, we aim at ensuring security and trustworthiness

at the “last mile” of the problem, i.e., feedback aggregation.

5.3 System Model

Consider a set of N nodes, N := {1, 2, · · · , N}, connected in a network, which can be

represented by a graph G = (N , E). The set E contains the undirected links between

nodes, indicating the acquaintances of IDSs in the network. An IDS node i ∈ N has a set

of ni acquaintances, denoted by Ni ⊆ N , with ni = |Ni|. When node i observes suspicious

activities and does not have enough experience to make an accurate evaluation of potential

intrusions, it can send out its observed intrusion information to its acquaintances to ask for

diagnosis. The feedback from its acquaintances can be used to make a final decision. The

input to the host IDS is the past history of each acquaintance regarding their detection

accuracy, as well as their current feedbacks. The output is a decision on whether to raise

an alarm or not.

Let Y i
j , j ∈ Ni, be a random variable denoting the decision of peer IDS j, j ∈ Ni, on its

acquaintance list Ni of node i. The random variable Y i
j takes binary values in Y := {0, 1}

for all j ∈ Ni, i ∈ N . In the intrusion detection setting, Y i
j = 0 means that IDS j decides

and reports to IDS i that there is no intrusion, while Y i
j = 1 means that IDS j raises an

alarm of possible detection of intrusion to IDS i. Each IDS makes its decision based upon

its own experience of the previous attacks and its own sophistication of detection. We let
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pij as the probability mass function defined on Y such that pij(Y
i
j = 0) and pij(Y

i
j = 1)

denote the probability of reporting no intrusion and the probability of reporting intrusion

from IDS j to IDS i, respectively.

We let Yi := [Y i
j ]j∈Ni ∈ Yni be an observation vector of IDS i that contains feed-

backs from its peers in the acquaintance list. Each IDS has two hypotheses H0 and H1.

H0 hypothesizes that no intrusion is detected whereas H1 forwards a hypothesis that in-

trusion is detected and alarm needs to be raised. Note that we intentionally drop the

superscript i on H0 and H1 because we assume that each IDS attempts to make the same

type of decisions. Denote by πi0, π
i
1 the apriori probabilities on each hypothesis such that

πi0 = P[H0], πi1 = P[H1] and πi0 +πi1 = 1, for all i ∈ N . Let pi be the probability measure on

Yni , for all i ∈ N . The conditional probabilities pi(Yi = yi|Hl), l = 0, 1, denote the prob-

abilities of a complete feedback being yi ∈ Yni given the hypothesis H0, H1, respectively.

Assuming that peers make decisions independently (this is reasonable if acquaintances are

appropriately selected), we can rewrite the conditional probability as

pi(Yi = yi|Hl) =
∏
j∈Ni

pij(Y
i
j = yij|Hl), i ∈ N , l = 0, 1. (5.1)

Our goal is to decide whether the system should raise an alarm to the system admin-

istrator based on the current received feedbacks. We need to point out that the feedback

aggregation does not exclude the local diagnosis of the host IDS itself. If an IDS is capable

of making its own diagnosis, this one is aggregated with the feedbacks from its peers in

the acquaintances. Table 5.1 summarizes the notations we use in this section.

In the following subsections, we first model the past behavior of acquaintances and then

model the decision problem using Bayesian risk function.

5.3.1 Modeling of Acquaintances

The conditional probabilities pij(Y
i
j |Hl), i ∈ N , j ∈ Ni, l ∈ {0, 1}, are often unknown

to IDS nodes and they need to be learned from previous data. In this section, we use

the beta distribution and its Gaussian approximation to find these probabilities. We let

pij,M := pij(Y
i
j = 0|H1) be the probability of miss of an IDS j’s diagnosis to node i’s request,

also known as the false negative (FN) rate; and let pij,F := pij(Y
i
j = 1|H0) be the probability
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of false alarm or false positive (FP) rate. The probability of detection, or true positive

(TP) rate, can be expressed as pij,D = 1− pij,M .

Each IDS in the network maintains a history of data containing the diagnosis data

from past consultations. The accuracy of peer diagnosis will be revealed after an intrusion

happens. As mentioned in Section 3.1, test messages can also be used to assess the effec-

tiveness of IDSs even though no intrusion history has been collected. IDS i can use these

collected data from its peers to assess the distributions over its peer IDS j’s probabilities

of detection and false alarm using beta functions, denoted by pij,D and pij,F , respectively.

The total reported diagnosis data from peer IDS j, j ∈ Ni, to IDS i is denoted by the set

Mi
j, and they are classified into two groups: one is where the result is either false positive

or true negative under no intrusion, denoted by the set Mi
j,0; and the other is where the

result is either false negative or true positive under intrusion, denoted by the set Mi
j,1.

Both sets are disjoint satisfying Mi
j,0 ∪Mi

j,1 =Mi
j and Mi

j,0 ∩Mi
j,1 = ∅.

We let the random variables pij,F and pij,D take the form of beta distributions as follows:

pij,F ∼ Beta(xij|αij,F , βij,F ) =
Γ(αij,F+βij,F )

Γ(αij,F )Γ(βij,F )
(xij)

αij,F−1(1− xij)β
i
j,F−1, (5.2)

pij,D ∼ Beta(yij|αij,D, βij,D) =
Γ(αij,D+βij,D)

Γ(αij,D)Γ(βij,D)
(yij)

αij,D−1(1− yij)β
i
j,D−1, (5.3)

where Γ(·) is the Gamma function; xij, y
i
j ∈ [0, 1]; αij,F , α

i
j,D and βij,F , β

i
j,F are beta function

parameters that are updated according to historical data as follows.

αij,F =
∑

k∈Mi
j,0

(λiF )t
i
j,krij,F,k, βij,F =

∑
k∈Mi

j,0
(λiF )t

i
j,k(1− rij,F,k); (5.4)

αij,D =
∑

k∈Mi
j,1

(λiD)t
i
j,krij,D,k, βij,D =

∑
k∈Mi

j,1
(λiD)t

i
j,k(1− rij,D,k). (5.5)

The introduction of the discount factors λiF , λ
i
D ∈ [0, 1] above allows more weights on

recent data from IDSs while less on the old ones. The discount factors on the data can

be different for false negative and false positive rates. The parameter tij,k denotes the time

when k-th diagnosis data is generated by IDS j, j ∈ Ni, to its peer IDS i. The parameter

rij,F,k, r
i
j,M,k ∈ {0, 1} are the revealed results of the k-th diagnosis data: rij,F,k = 1 suggests

that the k-th diagnosis data from peer j yields an undetected intrusion while rij,F,k = 0
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means otherwise; similarly, rij,D,k = 1 indicates the data from the peer j results in a correct

detection under intrusion, and rij,D,k = 0 means otherwise.

The parameters αij,F , β
i
j,F , α

i
j,D, β

i
j,D in the distribution above also provide an empirical

assessment of the trustworthiness of each peer of IDS i. They can be also seen as the

trust values of the collaborators. A peer who is either malicious or incompetent will result

in low values of αij,D and higher values αij,D. To make the parametric updates scalable

to data storage and memory, we can use the following recursive formulae to update these

parameters as follows:

αij,e,k = (λie)
tij,k−t

i
j,k−1αij,e,k−1 + rij,e,k, k ≥ 1, (5.6)

βij,e,k = (λie)
tij,k−t

i
j,k−1βij,e,k−1 + rij,e,k, k ≥ 1, (5.7)

where e ∈ {F,D}; αij,D,k, βij,D,k, are parameter values up to k-th data point in their corre-

sponding data set Mi
j,1; αij,F,k, β

i
j,F,k, are parameter values up to k-th data point in their

corresponding data set Mi
j,0. We can see that when λie = 0, the system becomes memo-

ryless, and when λie = 1, all past experiences are taken into account on equal basis. The

online iterative calculations also provide a method to assess the trust values with real time

data.

When parameters of the beta functions α and β in (5.2) are sufficiently large, i.e.,

enough data are collected, beta distribution can be approximated by a Gaussian distribu-

tion as follows:

Beta(α, β) ≈ G

(
α

α + β
,

√
αβ

(α + β)2(α + β + 1)

)
, (5.8)

where the arguments of G(·, ·) are the mean value and the standard deviation, respectively.

Note that we have dropped the superscripts and subscripts in (5.8) for generality as it can

be applied to all i and j in (5.2). Hence, using the Gaussian approximation and (5.4), the

expected values for pij,D and pij,M are given by

E[pij,F ] =
αij,F

αij,F + βij,F
, E[pij,D] =

αij,D
αij,D + βij,D

. (5.9)

The mean values in (5.9) under large data can be intuitively interpreted as the proportion

of results of false alarm and detection in the set Mi
j,0 and Mi

j,1, respectively. They can

thus be used in (5.1) as the assessment of the conditional probabilities.

65



5.3.2 Feedback Aggregation

The feedback aggregation problem of IDS i can be seen as a hypothesis testing problem

in which one finds a decision function δi(Yi) : Yni → {0, 1} to minimize the Bayes risk of

IDS i

Ri(δi) = Ri
0(δi|H0)πi0 +Ri

1(δi|H1)πi1, (5.10)

where Ri(δi|H0) is the cost of false alarm and Ri(δi|H1) is the cost of missed detection.

An optimal decision function partitions the observation space Yni into two disjoint sets Y i0
and Y i1, where Y i0 = {yi : δi(yi) = 0}, and Y i1 = {yi : δi(yi) = 1}.

To find an optimal decision function according to some criterion, we introduce the cost

function Ci
ll′ , l, l

′ = 0, 1, which represents IDS i’s cost of deciding that Hl is true when Hl′

holds. More specifically, Ci
01 is the cost associated with a missed intrusion or attack and

Ci
10 refers to the cost of false alarm, while Ci

00, C
i
11 are the incurred costs when the decision

meets the true situation. Let

Ri
0(δi|H0) = Ci

10p
i[δi = 1|H0] + Ci

00p
i[δi = 0|H0], (5.11)

Ri
1(δi|H0) = Ci

01p
i[δi = 0|H1] + Ci

11p
i[δi = 1|H1]. (5.12)

It can be shown that decision functions can be picked as function of the likelihood ratio

given by Li(yi) = pi(yi|H1)
pi(yi|H0)

(see [88, 107]).

A threshold Bayesian decision rule is expressed in terms of the likelihood ratio and is

given by

δiB(yi) =

{
1 if Li(yi) ≥ τ i

0 if Li(yi) < τ i
, (5.13)

where the threshold τ i is defined by

τ i =
(Ci

10 − Ci
00)πi0

(Ci
01 − Ci

11)πi1
. (5.14)

If the costs are symmetric and the two hypothesis are equal likely, then the rule in

(5.13) reduces to the maximum likelihood (ML) decision rule

δiML(y) =

{
1 if pi(yi|H1) ≥ pi(yi|H0)

0 if pi(yi|H1) < pi(yi|H0)
, (5.15)
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Assume that Ci
00, C

i
11 = 0. Using the results in Section 5.3.1, we can obtain the following

decision rule for each IDS. The application of the optimal decision rules is summarized in

Algorithm 1.

Proposition 5.3.1 Let τ̄ i :=
Ci10

Ci10+Ci01
and assume that historical data is relatively large.

The optimal decision rule of IDS i, i ∈ N , is

δi =


1 (Alarm) if P̄ i ≥ τ̄ i,

0 (No alarm) otherwise.

(5.16)

where P̄ i can be obtained by Gaussian approximation as follows:

P̄ i ≈ 1

1 +
πi0
πi1

∏ni
j=1

αij,D+βij,D
αij,F+βij,F

(
αij,F
αij,D

)y
i
j(
βij,F
βij,D

)1−yij
.

The corresponding Bayes risk for the optimal decision is

Ri(δi) =


Ci

10(1− P̄ i) if P̄ i ≥ τ̄ i,

Ci
01P̄

i otherwise.

(5.17)

Proof The result follows directly from the applications of likelihood ratio test and the

Gaussian approximations of beta distributions under the assumption of large data sets.

5.4 Sequential Hypothesis Testing

The optimal decision rule in Section 5.3 requires each IDS to send requests to all the

acquaintances. As the number of collaborators increases, it creates a lot of communication

overhead and consumes a large amount of computational power to implement Algorithm

1. Instead, it is desirable that IDSs can choose a sufficient number of acquaintances to
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Algorithm 1 Optimal Decision Rule for an IDS i

Step 1: Send out requests to all acquaintances of IDS i and collect their feedback results.

Step 2: Use (5.16) to decide whether an intrusion occurs or not, and take corresponding

actions.

Step 3: Update the data setsMi
j,0,Mi

j,1, with the diagnosis results of each peer j, j ∈ Ni
when the fact has been revealed a posteriori.

Step 4: Calculate beta function parameters αij,F , α
i
j,D and βij,F , β

i
j,F using iterative schemes

(5.6) and (5.7).

Step 5: Go to Step 1 when new decisions need to be made or the trustworthiness of new

acquaintances need to be evaluated using test messages.

guarantee a certain level of confidence in the final feedback aggregation. In this section,

we use sequential hypothesis testing to make decisions with minimum number of feedbacks

from peer IDSs, [112], [73]. An IDS asks for feedback from its acquaintances until a

sufficient number of answers is collected. Let Ωi denote all possible collections of feedback

from the acquaintance list of IDS i and ωi ∈ Ωi denotes a particular collection of feedback.

Let N i(ωi) be a random variable denoting the number of feedbacks used until a decision

is made. A sequential decision rule is formed by a pair (φ, δ), where φi = {φin, n ∈ N} is a

stopping rule and δi = {δin, n ∈ N} is the terminal decision rule. Introduce a stopping rule

with n feedback, φin : Y in :=
∏

j∈Ni,n Y → {0, 1}, where Ni,n is the set of nodes an IDS i

asks up to time n. φin = 0 indicates that IDS i needs to take more samples after n rounds

whereas φin = 1 means to stop asking for feedback and a decision can be made by the rule

δin. The minimum number of feedbacks is given by

N i(ωi) = min{n : φin = 1, n ∈ N}. (5.18)

Note that N i(ωi) is the stopping time of the decision rule. The decision rule δi is not used

until N. We assume that no cost has incurred when a correct decision is made while the

cost of a missed intrusion is denoted by Ci
01 and the cost of a false alarm is denoted by

Ci
10. In addition, we assume each feedback incurs a cost Di. We introduce an optimal

sequential rule that minimizes Bayes risk given by

Ri(φi, δi) = R(φi, δi|H0)πi0 +R(φi, δi|H1)πi1, (5.19)
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where R(φi, δi|Hl), l = 0, 1, are the Bayes risks under hypotheses H0 and H1, respectively:

Ri(φi, δi|H0) = Ci
10p

i[δN(Y i
j , j ∈ Ni,N) = 1|H0] +DiE[N |H0],

Ri(φi, δi|H1) = Ci
01p

i[δN(Y i
j , j ∈ Ni,N) = 0|H1] +DiE[N |H1].

Let V i(πi0) = minφi,δi R
i(φi, δi) be the optimal value function. It is clear that when no

feedback are obtained from the peers, the Bayes risks reduce to

Ri(φi0 = 1, δi0 = 1) = Ci
10π

i
0, (5.20)

Ri(φi0 = 1, δi0 = 0) = Ci
01π

i
1. (5.21)

Hence, H1 is chosen when Ci
10π

i
0 < Ci

01π
i
1 or πi0 <

Ci01
Ci10+Ci01

, and H0 is chosen otherwise. The

minimum Bayes risk under no feedback is thus obtained as a function of πi0 and is denoted

by

T i(πi0) =

{
Ci

10π
i
0 if π0 <

Ci01
Ci10+Ci01

,

Ci
01(1− πi0) otherwise.

(5.22)

The minimum cost function (5.22) is a piecewise linear function. For φi such that φi0 = 0,

i.e., at least one feedback is obtained, let the minimum Bayes risk be denoted by J i(πi0) =

min{(φi,δi):φi0=0}R
i(φi, δi). Hence, the optimal Bayes risk needs to satisfy

V i(πi0) = min{T i(πi0), J i(πi0)}. (5.23)

Note that J i(πi0) must be greater than the cost of one sample Di as a sample request incurs

Di and J i(πi0) is concave in πi0 as a consequence of minimizing the linear Bayes risk (5.19).

If the cost Di is high enough so that J i(πi0) > T i(πi0) for all πi0, then no feedback will be

requested. In this case, V i(πi0) = T i(πi0), and the terminal rule is described in (5.22). For

other values of Di > 0, due to the piecewise linearity of T i(πi0) and concavity of J i(πi0), we

can see that J i(πi0) and T i(πi0) have two intersection points πiL and πiH such that πiL ≤ πiH .

It can be shown that for some reasonably low cost Di and πi0 such that πiL < πi0 < πiH , an

IDS optimizes its risk by requesting another feedback; otherwise, an IDS should choose to

raise an alarm when πi0 ≤ πiL and report no intrusion when πi0 ≤ πiL.

Assuming that it takes the same cost Di for IDS i to acquire a feedback, the problem

has the same form after obtaining a feedback from a peer. IDS i can use the feedback to

update its apriori probability. After n feedback are obtained, πi0 can be updated as follows:

πi0(n) =
πi0

πi0 + (1− πi0)Lin
; (5.24)
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where Lin :=
∏

j∈Ni,n
pi(yij |H1)

p(yij |H0)
. We can thus obtain the optimum Bayesian rule captured by

Algorithm 1 below, known as the sequential probability ratio test (SPRT) for a reasonable

cost Di. The SPRT Algorithm 2 can be used to replace step 2 in Algorithm 1. In FADEX,

it is important to note that the choice between Algorithm 2 and Algorithm 1 depends on

the number of acquaintances of an IDS and its computational and memory resources. For

smaller scale IDS networks or new members of the IDN, Algorithm 2 is more desirable

because it allows IDSs to collect more data and learn the level of expertise and trustwor-

thiness of their peers. However, Algorithm 2 becomes more efficient when an IDS has a

large number of collaborators and limited resources.

Algorithm 2 SPRT Rule for an IDS i

Step 1: Start with n = 0. Use (5.25) as a stopping rule until φin = 1 for some n ≥ 0.

φin =

{
0 if πiL < πi0(n) < πiH ,

1 otherwise.
(5.25)

or in terms of the likelihood ratio Lin, we can use

φin =

{
0 if Ai < Lin < Bi

1 otherwise
,

where Ai =
πi0(1−πiH)

(1−πi0)πiH
and Bi =

πi0(1−πiL)

(1−πi0)πiL
.

Step 2: Go to Step 3 if φin = 1 or n = |Ni|; otherwise, choose a new peer from the

acquaintance list to request a diagnosis and go to Step 2 with n = n+ 1.

Step 3: Apply the terminal decision rule as follows to determine whether there is an

intrusion or not.

δin =

{
1 if πi0(n) ≤ πiL
0 if πi0(n) > πiH

or δin =

{
1 if Lin ≤ Ai

0 if Lin > Bi

5.4.1 Threshold Approximation

In the likelihood sequential ratio test of Algorithm 2, the threshold values A and B need to

be calculated by finding πiL and πiH from J i(πi0) and T i(πi0) in (5.23). The search for these
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values can be quite involved using dynamic programming. However, in this subsection, we

introduce an approximation method to find the thresholds. The approximation is based

on theoretical studies made in [112] and [73] where a random walk or martingale model

is used to yield a relation between thresholds and false positive and false negative rates.

Let P i
D, P

i
F be the probability of detection and the probability of false alarm of an IDS

i after applying the sequential hypothesis testing for feedback aggregation. We need to

point out that these probabilities are different from the probabilities piD, p
i
F discussed in

the previous subsection, which are the raw detection probabilities without feedback in the

collaborative network. Let P̄ i
D and P̄ i

F be reasonable desired performance bounds such that

P i
F ≤ P̄ i

F , P
i
D ≥ P̄ i

D. Then, the thresholds can be chosen such that Ai =
1−P̄ iD
1−P̄F

i

, Bi =
P̄ iD
P̄ iF
.

The next proposition gives a result on the bound of the users that need to be on the

acquaintance list to achieve the desired performances.

Proposition 5.4.1 Assume that each IDS makes independent diagnosis on its peers’ re-

quests and each has the same distribution pi0 = p̄0 := p̄(·|H0), pi1 = p̄1 := p̄(·|H1), p̄0(yi =

0) = θ0, p̄1(yi = 0) = θ1, for all i ∈ N .

Let DKL(p̄0||p̄1) be the Kullback-Leibler (KL) divergence defined as follows.

DKL(p̄0||p̄1) =
1∑

k=0

p̄0(k) ln
p̄0(k)

p̄1(k)
, (5.26)

= θ0 ln
θ0

θ1

+ (1− θ0) ln
1− θ0

1− θ1

(5.27)

and likewise introduce the K-L divergence DKL(p̄1||p̄0). Then on the average, an IDS needs

Ni acquaintances such that

Ni ≥ max

(⌈
− Di

M

DKL(p̄0||p̄1)

⌉
,

⌈
Di
F

DKL(p̄1||p̄0)

⌉)
, (5.28)

where Di
M = PF ln

(
P iD
P iF

)
+PD ln

(
1−P iD
1−P iF

)
and Di

F = P i
F ln

(
1−P iD
1−P iF

)
+P i

D ln
(
P iD
P iF

)
. If P i

F � 1

and P i
M � 1, we need approximately Ni acquaitances such that

Ni ≥ max

(⌈
P i
D − 1

DKL(p̄0||p̄1)

⌉
,

⌈
− P i

F

DKL(p̄1||p̄0)

⌉)
. (5.29)
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Proof The conditional expected number of feedback needed to reach a decision on the

hypothesis in SPRT can be expressed in terms of PF and PD, [112], [73].

E[N |H0] = 1
−DKL(p̄0||p̄1)

[
P i
F ln

(
P iD
P iF

)
+ P i

D ln
(

1−P iD
1−P iF

)]
,

E[N |H1] = 1
DKL(p̄1||p̄0)

[
P i
F ln

(
1−P iD
1−P iF

)
+ P i

D ln
(
P iD
P iF

)]
,

Hence, to reach a decision we need to have at least max{E[N |H0],E[N |H1]} independent

acquaintances. Under the assumption that both PF and P i
M are much less than 1, we can

further approximate

E[N |H0] ∼ − 1− P i
D

DKL(p̄0||p̄1)
,E[N |H1] ∼ − P i

F

DKL(p̄1||p̄0)
.

These lead us to inequalities (5.29) and (5.28).

5.5 Performance Evaluation

In this section, we use a simulation approach to evaluate the efficiency of the FADEX

feedback aggregation scheme and compare it with other heuristic approaches, such as the

simple average aggregation and the weighted average aggregation (to be explained in more

details in this section).

We conduct a set of experiments to evaluate the average cost of the collaborative

detection using the FADEX aggregation model in comparison with the simple average

and the weighted average models. We validate and confirm our theoretical results on the

number of acquaintances needed for consultation. Each experimental result presented in

this section is derived from the average of a large number of replications with an overall

negligible confidence interval. The parameters we use are shown in Table I.

5.5.1 Simulation Setting

The simulation environment uses an IDN of n peers. Each IDS is represented by two

parameters, expertise level l and decision threshold τp. Expertise level l represents the

ability that the IDS catches suspicious traces from a given observation, and τp represents the
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sensitivity of the IDS (to be elaborated more in Section 5.5.2). At the beginning, each peer

receives an initial acquaintance list containing all the other neighbor nodes. In the process

of the collaborative intrusion detection, a node sends out intrusion information to its

acquaintances to request for an intrusion assessment. The feedbacks collected from others

are used to make a final decision, i.e., whether to raise an alarm or not. Different feedback

aggregation schemes can be used to make such decisions. We implement three different

feedback mechanisms, namely, simple average aggregation, weighted average aggregation,

and FADEX aggregation. We compare their efficiency by the average cost of false decisions.

Simple Average Model

If the average of all feedback is larger than a threshold, then raise an alarm.

δSA =


1 (Alarm) if

∑n
k=1 yk
n

≥ τSA,

0 (No alarm) otherwise,

(5.30)

where τSA is the decision threshold for the simple average algorithm. It is set to be 0.5 if

no cost is considered for making false decisions.

Weighed Average Model

Weights are assigned to feedbacks from different acquaintances to distinguish their detec-

tion capability. For example, high expertise IDSs are signed with larger weight compared

to low expertise IDSs. In [45], [56], and [57], the weights are the trust values of IDSs:

δWA =


1 (Alarm) if

∑n
k=1 wkyk∑n
k=1 wk

≥ τWA,

0 (No alarm) otherwise,

(5.31)

where wk is the weight of the feedback from acquaintance k, which is the trust value of

acquaintance k in [45], [56], and [57]. τWA is the decision threshold for the weighted
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average algorithm. It is fixed to be 0.5 since no cost is considered for FP and FN. In this

simulation, we adopt trust values from [57] to be the weights of feedbacks.

FADEX aggregation Model

As described in section 5.3.2, FADEX aggregation models each IDS with two parameters

(FP and TP) instead of a single trust value. It also considers the costs of false positive and

false negative decisions. The FADEX decision model investigates the cost of all possible

decisions and chooses a decision which leads to a minimal expected cost.

5.5.2 Modeling of a single IDS

To reflect the intrusion detection capability of each peer, we use a Beta distribution to

simulate the decision model of an IDS. A Beta density function is given by:

f(p̄|ᾱ, β̄) =
1

B(ᾱ, β̄)
p̄ᾱ−1(1− p̄)β̄−1;

B(ᾱ, β̄) =

∫ 1

0

tᾱ−1(1− t)β̄−1dt, (5.32)

ᾱ and β̄ are defined as follows.

ᾱ = 1 +
l(1− d)

d(1− l)
r,

β̄ = 1 +
l(1− d)

d(1− l)
(1− r). (5.33)

where p̄ ∈ [0, 1] is the assessment result from the host IDS about the probability of

intrusion, and f(p̄|ᾱ, β̄) is the distribution of assessment p̄ from a peer with expertise level

l to an intrusion with difficulty level d ∈ [0, 1]. Higher values of d are associated with

attacks that are difficult to detect, i.e., many peers may fail to identify them. Higher

values of l imply a higher probability of producing correct intrusion assessment. r ∈ {0, 1}
is the expected result of detection. r = 1 indicates that there is an intrusion and r = 0

indicates that there is no intrusion.
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Figure 5.1: Expertise Level and detection rate

For a fixed difficulty level, the above model has the property of assigning higher proba-

bilities of producing correct rankings to peers with higher levels of expertise. A peer with

expertise level l has a lower probability of producing correct rankings for alerts of higher

difficulty (d > l). l = 1 or d = 0 represent the extreme cases where the peer can always

accurately rank the alert. This is reflected in the Beta distribution by α, β → ∞. Figure

5.1 shows the feedback probability distribution for peers with different expertise levels,

where we fix r = 1 and the difficulty level of test messages to 0.5.

τp is the decision threshold of p̄. If p̄ > τp, a peer sends feedback 1 (i.e., under-attack);

otherwise, feedback 0(i.e., no-attack) is generated. τp indicates the sensitivity of an IDS

detector, lower τ value implies a more sensitive detector. i.e., the IDS is more likely to

raise alert when suspicious trace is noticed. For a fixed difficulty level, the preceding model

assigns higher probabilities of producing correct intrusion diagnosis to peers with higher

level of expertise. A peer with expertise level l has a lower probability of producing correct

intrusion diagnosis for intrusions of higher detection difficulty (d > l). l = 1 or d = 0

represent extreme cases where the peer can always accurately detect the intrusion. This is

reflected in the Beta distribution by ᾱ, β̄ →∞.

Figure 5.2 shows that both the FP and FN decrease when the expertise level of an

IDS increases. We notice that the curves of FP and FN overlap. This is because the IDS

detection density distributions are symmetric under r = 0 and r = 1. Figure 5.3 shows
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Figure 5.2: FP and FN vs. Expertise Level l

that the FP decreases with the decision threshold while the FN increases with the decision

threshold. When the decision threshold is 0, all feedbacks are positive; when the decision

threshold is 1, all feedbacks are negative.

5.5.3 Detection Accuracy and Cost

One of the most important metrics to evaluate the efficiency of a feedback aggregation is

the average cost of incorrect decisions. We take into consideration the fact that the costs of

FP decisions and FN decisions are different. In the following subsections, we evaluate the

cost efficiency of the FADEX aggregation algorithm compared with other models under

homogeneous and heterogeneous network settings. Then we study the relation between

decision cost and the consulted number of acquaintances.

Cost Under Homogeneous Environment

In this experiment, we study the efficiency of the three aggregation models under a ho-

mogeneous network setting, i.e., all acquaintances have the same parameters. We fix the

expertise levels of all nodes to be 0.5 (i.e., medium expertise) and set C01 = C10 = 1 for the

fairness of comparison, since the simple average and the weighted average models do not

account for the cost difference between FP and FN. We fix the decision threshold for each
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Figure 5.3: FP and FN vs. Threshold τp

IDS (τp) to 0.1 for the first batch run and then increase it by 0.1 in each following batch

run until it reaches 1.0. We measure the average cost of the three aggregation models. As

shown in Figure 5.4, the average costs on false decisions yielded by FADEX remains the

lowest among the three under all threshold settings. The costs of the weighted average

aggregation and the simple average aggregation are close to each other. This is because

under such a homogeneous environment, the weights of all IDSs are the same. Therefore,

the difference between the weighted average and the simple average is not substantial. We

also observe that changing the threshold has a big impact on the costs of the weighted

average model and the simple average model, while the cost of the FADEX model changes

only slightly with the threshold. All costs reach a minimum when the threshold is 0.5 and

increase when it deviates from 0.5.

Cost Under Heterogeneous Environment

In this experiment, we fix the expertise level of all peers to 0.5 and assign decision thresholds

ranging from 0.1 to 0.9 to node 1 to 9 respectively with an increment of 0.1. We set false

positive cost C10 = 1 and false negative cost C01 = 5 to reflect the cost difference between

FP and FN. We observe the detection accuracy in terms of FP and FN rates and the

average costs of false decisions at node 0 when three different feedback aggregation models

are used.
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Figure 5.4: Average Cost vs. Threshold τp

Figure 5.5 shows that the average costs of the three different models converge after a

few days of learning process. The cost of FADEX model starts with a high value and drops

drastically in the first 10 days, and finally converges to a stable value on day 30. We then

plot in Figure 5.6 the steady state FP, FN, and the cost. We observe that the weighted

average model shows significant improvement in the FP and FN rates and cost compared

to the simple average model. The FADEX model has a higher FP rate and a lower FN

rate compared to the other two models. However, its cost is the lowest among the three.

This is because the FADEX model trades some FP with FN to reduce the overall cost of

false decisions.

Cost and the Number of Acquaintances

In this experiment, we study the relation between average cost due to false decisions and

the number of acquaintances that the host IDS consults. We fix the expertise level of all

IDSs in the network to 0.3, 0.5, 0.7, 0.8 respectively for different batch runs. Every IDS

decision threshold is fixed to τp = 0.5 in all cases. We observe in Figure 5.7 that, under all

cases, the average cost decreases when more acquaintances are consulted. We also notice

that for higher expertise acquaintances, fewer consultations are needed to reach the cost

goal. For instance, in our experiments, the host IDS only needs to consult 2 acquaintances

on average to reach a cost of 0.1, under the case where all acquaintances are with high
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Figure 5.5: Average Costs for Three Different Aggregation Models

expertise level 0.8. Correspondingly, the number of acquaintances needed are 4 and 15 on

average when the acquaintance expertise levels are 0.7 and 0.5 respectively. In the case

that all acquaintances are 0.3 (i.e., of low expertise), the utility goal can not be reached

after consulting a small number (i.e., < 20) of acquaintances.

In the next experiment, the expertise levels of all nodes remain 0.5 and their decision

thresholds vary from 0.1 to 0.9. We set C10 = C01 = 1 in the first batch run and increase

C01 by 1 in every subsequent batch run. We observe the costs under three different models.

Figure 5.8 shows that the costs of the simple average model and the weighted average model

increase linearly with C01 while cost of hypothesis testing model grows the slowest among

the three. This is because the hypothesis testing model has a flexible threshold to optimize

its cost. The hypothesis testing model has superiority when the cost difference between

FP and FN is large.

5.5.4 Sequential Consultation

In this experiment, we study the number of acquaintances needed for consultation to

reach a predefined goal. Suppose the TP lower-bound P̄D = 0.95 and FP upper-bound

P̄F = 0.1. We observe the change of FP rate and TP rate with the number of acquaintances

consulted (n). Figure 5.9 shows that FP rate decreases and TP rate increases with n.

Consulting higher expertise nodes leads to a higher TP rate and a lower FP rate. In the
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Figure 5.6: Comparison of Three Aggregation Models

next experiment we implement Algorithm 1 on each node and measure the average number

of acquaintances needed to reach the predefined TP lower-bound and the FP upper-bound.

Figure 5.10 compares the simulation results with the theoretical results (see Equation

(5.29)), where the former confirms the latter. In both cases, the number of consultations

decreases quickly with the expertise levels of acquaintances. For example, the IDS needs to

consult around 50 acquaintances of expertise 0.2, while only 3 acquaintances of expertise

0.7 are needed for the same purpose. This is partly because low expertise nodes are more

likely to make conflicting feedbacks and consequently increase the number of consultations.

The analytical results can be useful for IDSs to design the size of their acquaintance lists.

5.5.5 Robustness and Scalability of the System

Robustness and scalability are two important features of an IDN. FADEX is robust to

malicious insiders since it has an inherent robust trust management model from [57] where

malicious insiders can be quickly discovered and removed from the acquaintance list. To

verify this, we simulate the scenario of betrayal attack under a homogeneous environment.

We fix all 10 IDSs with l = 0.5 and τp = 0.5. We let one IDS turn malicious at day 20

and start to give opposite diagnosis. We observe the FP and TP rate of a malicious node

and its impact on the decision of other nodes. From Figure 5.11 we can see that the FP

rate and TP rate of the malicious node raise/drop quickly after day 20. Figure 5.12 shows
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Figure 5.7: Average Cost vs. Number of Acquaintances Consulted (Ug is the cost goal)

that the cost of false decision cost of other normal nodes raises quickly at day 20 and drop

back to normal after a few days. Compared with the other two aggregation models, the

FADEX model receives the least impact from the malicious node.

This IDN is scalable since the number of acquaintances needed for consultation only

depends on the expertise level of those acquaintances rather than the size of the network.

Hence the message rate from/to each IDS does not grow with the number of nodes in

the network. Furthermore, the dynamic consultation algorithm reduces the number of

consultation messages needed for collaborative intrusion detections.

5.6 Conclusion

In this chapter, we have proposed FADEX, a mechanism for trustworthy feedback aggrega-

tion. We have obtained optimal decision rules that minimize Bayes risks using hypothesis

testing methods, and provided a data-driven mechanism for real-time efficient, distributed

and sequential feedback aggregations. In FADEX, an IDS consults sequentially for peer

diagnoses until it is capable of making an aggregated decision that meets Bayes optimality.

The decision is made based on a threshold rule leveraging the likelihood ratio approximated

by beta distribution and thresholds by target rates. Our simulation results have shown

that FADEX is superior to other proposed models in the literature in terms of cost effi-
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ciency. Our simulation results have also corroborated our theoretical results on the average

number of acquaintances needed to reach the predefined false positive upper-bound and

true positive lower-bound. As future work, we want to investigate large-scale collaborative

networks and their topological impact. Another possible research direction is to integrate

FADEX with communication networks, and design defense mechanisms against different

cyber attacks such as denial of service, man-in-the-middle and insider attacks. Finally, our

results can be extended to deal with the case of correlated feedbacks.
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Table 5.1: Summary of Notations

Symbol Meaning

N Set of IDSs in the collaborative network

Ni Set of acquaintances of IDS i, i ∈ N
ni number of acquaintances of IDS i, i ∈ N
Y i
j , Reported decisions from IDS j to IDS i, i ∈ N , j ∈ Ni

Yi Vector of complete feedbacks from IDS i’s acquaintances

H0 Hypothesis that there is no intrusion

H1 Hypothesis that there is an intrusion

rij,F,k The diagnosis result at time k from acquaintance j to IDS i

given that there is no intrusion

rij,D,k The diagnosis result at time k from acquaintance j to IDS j

given that there is an intrusion

πi0, π
i
1 Prior probability of no-attack and under-attack

τ̄ i Probability threshold for final decision

Li Likelihood ratio for IDS i’s decision

Lin Likelihood ratio for IDS i’s sequential decision at stage n

Ri Bayesian risk of IDS i

δi Aggregation decision rule of IDS i

φi Stopping decision rule of IDS i

DKL(p1||p2) Kullback-Leibler divergence between distributions p1 and p2

Ci
10, C

i
01 Cost of making false positive and false negative decisions for IDS i

Ci
00, C

i
11 Cost of making correct decisions for IDS i
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Table 5.2: Simulation parameters

Parameter Value Meaning

τSA 0.5 decision threshold of the simple average model

τWA 0.5 decision threshold of the weighted average model

n 10 number of IDSs in the network

d 0.5 difficulty levels of intrusions and test messages

λ 0.9 forgetting factor

π0, π1 0.5 probability of no-attack and under-attack

C00, C11 0 cost of correct decisions
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Chapter 6

Resource Management

6.1 Introduction

As discussed in the previous chapters, collaborative intrusion detection networks can im-

prove the intrusion detection accuracy of participating IDSs. However, malicious insiders in

an IDN may compromise the system by providing false information/feedback or overload-

ing the system with spam. Also, “free riders” [71] can exploit the system by benefiting from

others without contributing themselves. This can discourage IDN participants and eventu-

ally degrade the overall performance of the collaboration system. To solve the problems of

malicious insiders and free-riders, a trust management is necessary to distinguish dishon-

est or malicious insiders, and an incentive-compatible resource allocation mechanism can

help participating IDSs contribute helping resources to collaborators in a fair manner (i.e.,

more active contributors should receive more helping resources). The resource allocation

mechanism itself should be robust against various insider attacks.

In this chapter, we propose a resource allocation mechanism, based on reciprocal incen-

tive design and trust management, where the amount of resources that each IDS allocates

to assist its neighbors is proportional to the trustworthiness and the amount of resources

allocated by its neighbors to help this IDS. The motivation for reciprocal incentive design

is to encourage participants to contribute more in collaboration so as to keep their IDS

knowledge up-to-date. This exchange of knowledge is particularly important in order for

IDSs to protect the system from new or zero-day attacks. We formulate an N−person (or
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peer) non-cooperative continuous-kernel game model to investigate incentive compatibil-

ity of the IDS collaboration system. In our design, each IDS finds an optimal resource

allocation to maximize the aggregated satisfaction levels of its neighbors. We show that

under certain controllable system conditions, there exists a unique Nash equilibrium. Our

experimental results demonstrate that an iterative algorithm which we introduce converges

geometrically to the Nash equilibrium, and that the amount of helping resource an IDS

receives is proportional to its helpfulness to others. We also demonstrate security features

of the system against free riders, dishonest insiders, and DoS attacks.

The main contributions of this work are: 1) A mechanism for optimal resource allocation

for each peer to maximize its social welfare with a convex utility function; 2) An N -person

non-cooperative game model and an iterative primal/dual algorithm to reach the Nash

equilibrium; and 3) Incentive compatibility and robustness that is derived from the resource

allocation scheme to tackle the “free riders”, dishonest insiders, and DoS attacks.

6.1.1 Related Work

Many IDS collaboration systems have been proposed in literature, such as [119],[116],

and [127]. They all assume IDSs cooperate honestly and unselfishly. The lack of trust

infrastructure leaves the systems vulnerable to malicious peers.

A few trust-based collaboration systems (e.g. [97] and [56]) and distributed trust man-

agement models (e.g. [56], [45], and [57]) have been proposed for effective IDS collabo-

ration. However, none of these proposed models studied incentives for IDS collaboration.

Our previous work proposed a trust management system where IDSs exchange test mes-

sages to build trust among themselves. The feedback from collaborators is evaluated and

a numerical trust value is assigned to reflect the level of truthfulness of collaborators. [56]

uses a simple weighted average model to predict the trust value while [57] uses a Bayesian

statistics model to estimate the trust value as well as the confidence level of the trust

estimation.

A variety of game-theoretic approaches have been applied to network resource allo-

cation in traditional routing networks and peer-to-peer (P2P) networks. In traditional

routing networks, non-cooperative game models such as in [64] and [72] have been used in

a dynamic resource allocation context; authors of these reference works have considered a
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network with a general topology where each source has a window-based end-to-end flow

control. The available information for a user is the number of packets within the network

not yet acknowledged. Each user aims to maximize his own throughput, with bounded

delay, and hence faces a constrained optimization problem. The equilibrium obtained

is decentralized since each user has only local information on his own unacknowledged

packets. The focus has been on the maximal network performance with given resource

instead of incentive mechanisms. In peer-to-peer networks, Ma et al. [78] have used a

game-theoretical approach to achieve differentiated services allocation based on the peer’s

contribution to the community. Yan et al. [118] have proposed an optimal resource allo-

cation scheme for file providers. A max-min optimization problem has been constructed

to find the optimal solution which achieves fairness in the resource allocation. Both works

rely on an independent central reputation system. Reciprocity has not been incorporated.

Also the resilience and robustness of the system has not been their focus. Grothoff [62]

has proposed a resource allocation economic model to deal with malicious nodes in peer-

to-peer networks. It depends solely on the trust values of the peer nodes, and the resource

allocation is priority-based on the trust value of the request sender. Grothoff’s model can

effectively prevent malicious nodes from overusing the network resource since their requests

will be dropped due to their low trust. It is also reciprocal altruistic. However, this model

may result in unfairness since nodes with the highest trust may take the entire resource.

Our model differs from the above ones in that we have made use of the pair-wise nature

of the network for designing scalable network algorithms, ensuring secure and resilient

properties of the solution, and provide fairness and reciprocal incentive compatibility in

resource allocation.

Recently, game-theoretical methods have been used for intrusion detection where in a

two-player context, the attacker (intruder) is one player and the intrusion detection system

(IDS) is the other player. In [131], and [128], non-cooperative game frameworks have been

used to address different aspects of intrusion detection. In [117], Liu et al. use a Bayesian

game approach for intrusion detection in ad-hoc networks; a two-person non-zero-sum

incomplete information game is formulated to provide a framework for an IDS to minimize

its loss based on its own belief. Our previous work [133] provides a game-theoretical model

for IDSs to allocate collaboration resource to achieve the goal of fairness and incentive

compatibility. This chapter extends our previous work by integrating a complete IDN

framework and a robustness evaluation.
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The rest of the chapter is organized as follows: In section 6.2, we describe our incentive-

based resource allocation scheme for resource management in the IDN. In Section 6.3, we

devise a primal/dual algorithm to compute the Nash equilibrium, and in Section 6.4 we

evaluate the convergence and incentives of the resource allocation design. Finally, Section

6.5 concludes the chapter.

6.2 Resource Management and Incentive Design

In this section, we first mathematically model resource allocation in an IDN environment as

individual optimization problems for its member peers. A game problem (GP) can then be

introduced for each peer. We employ a Lagrangian approach to find the Nash equilibrium

of the constrained game. Finally, we show that there exists a unique Nash equilibrium in

the game and characterize the equilibrium solution in closed form.

6.2.1 Modeling of Resource Allocation

We consider a collaborative intrusion detection network (IDN) with N peers or nodes where

all the nodes adopt the same resource allocation scheme. Each IDS user can distribute

information to other IDS users in form of messages (in bytes). We denote the set of nodes

by N = {1, 2, · · · , N}. The set of neighbor nodes of peer u is denoted by Nu. The

communications between IDSs become constrained when the network size is large and the

number of collaborators |Nu| grows. Note that information in the network is symmetric.

If u is a neighbor of v, then v is also a neighbor of u. We can represent the topology of

an IDN by a graph G := (N , E), where E is the set of (u, v) pairs in the network. We use

rvu to denote the units of resource that node u should allocate in order to serve v with full

satisfaction. The minimum acceptable resource from u to v is mvu. Note that rvu,mvu are

chosen by node v and informed to node u during negotiation. Let puv ∈ R+ be the resource

that u allocates to v, for every u, v ∈ N . The parameter puv is a decision variable of peer

u and is private information between peer u and peer v. To satisfy neighbor v, node u

should allocate resource to v over the interval [mvu, rvu].

In this model, we assume that each node has its own mechanism to evaluate the trust

of its neighbors, and the trust values have already been determined. The trust evaluation
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mechanism has been discussed in Chapter 4. Let T uv ∈ [0, 1] be the trust value of peer v

assessed by peer u, representing how much peer u trusts peer v. The allocated resource

puv from peer u to v is closely related to the trust value T uv perceived by u.

Each peer maximizes its effort to help its neighbor nodes under its capacity constraint

Cu, which is dependent on its own resource capacity such as bandwidth, CPU, memory,

etc. Then, resource allocation should satisfy the following capacity constraint:∑
v∈Nu

puv ≤ Cu, for all u ∈ N . (6.1)

Our system introduces a utility function for each peer to model the satisfaction level of

its neighbors. The utility function Suv is given by

Suv =
ln
(
αpuv−mvu
rvu−mvu + 1

)
ln(α + 1)

, (6.2)

where α ∈ (0,∞) is a system parameter which controls the satisfaction curve and the term

ln(α + 1) in the denominator is the normalization factor. The function Suv is a concave

function on its domain under the condition α > 1. The choice of logarithmic functions is

motivated by the proportional fairness properties as in [84, 100] and has been used in the

literature on power control, congestion control and rate control in communication networks

[100, 134, 130].

Let Uu : RL(u)
+ → R+ be the peer u’s aggregated altruistic utility, where L(u) =

card(Nu), the cardinality of the set Nu. Let the payoff function, Uu, for u be given by:

Uu =
∑
v∈Nu

wuvSuv, wuv = T uv pvu, (6.3)

where wuv is the weight on peer v’s satisfaction level Suv, which is the product of peer

v’s trust value and amount of helping resource allocated to u. A higher weight is applied

on peer v’s satisfaction level Suv if peer v is better trusted and more generous to provide

help to u. In this system, each peer u ∈ N in the IDN intends to maximize Uu within its

resource capacity. A general optimization problem (OP) can then be formulated as follows:

max{puv ,v∈Nu}
∑

v∈Nu wuvSuv (6.4)

s.t.
∑

v∈Nu puv ≤ Cu

mvu ≤ puv ≤ rvu,∀v ∈ Nu,
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where Suv and wuv are given by (6.2) and (6.3), respectively. The upper and lower bounds

on resources are imposed by the collaborators. The design of the utility function in OP is

built upon the intuition behind how people form collaborations in social networks. With

the freedom to choose and design collaborative schemes, we assume that all legitimate

agents in the network start with an intent to form collaborations with each other.

Every peer in the network is faced with an optimization problem (OP) to solve. (OP)

is a concave problem in which the objective function is a concave function in puv and the

constraint set is an L(u)-dimensional simplex, where L(u) = card(Nu), the cardinality of

the set Nu. Under the assumptions that the size of the network is large and peers can only

communicate locally within a distance d, we have N individual optimization problems in

the form of (OP) for each node. Hence, we can introduce a corresponding game (GP) by

the triplet 〈N , Au, Uu〉, where N is the set of players or peers, Au, u ∈ N , is the action

set of each peer, and Uu is the payoff function of peer u, defined in (6.3). An action of

a peer here is a decision on the resource allocated to a neighbor peer. The action set of

each peer Au is given by Au = A1
u

⋂
A2
u, where A1

u = {pu ∈ RL(u)
+ |

∑
v∈Nu puv ≤ Cu} and

A2
u = {pu ∈ RL(u)

+ | mvu ≤ puv ≤ rvu, v ∈ Nu}. It is not difficult to prove that under the

condition Cu ≥
∑

v∈Numvu, the action set is nonempty.

We note that the decision variable of each peer is a vector pu and the action sets of

players are not coupled. We thus can use Lagrangian relaxation to penalize the constraints

to solve for the Nash equilibrium. Let Lu(pu, σu, µu, λu) as follows denote the Lagrangian

of peer u’s optimization problem:

Lu =
∑
v∈Nu

T uv pvuSuv −
∑
v∈Nu

µuv(puv − rvu)

+
∑
v∈Nu

σuv(puv −mvu)− λu

(∑
v∈Nu

puv − Cu

)
, (6.5)

where µuv, σuv, λu ∈ R+ are the Lagrange multipliers. Using Lagrangian relaxation, we

can transform the game problem to its relaxed counterpart (RGP), where the abbreviation

“R” is short for “Relaxed”. The triplet of RGP is given by 〈N , Āu,Lu〉, where Āu is the

action set described by the base constraint puv ≥ 0, i.e., Āu = {pu | puv ≥ 0, v ∈ Nu}; and

the payoff function is replaced by the relaxed Lagrangian function Lu. 1.

1In the definition of the relaxed game (RGP), we have chosen to relax simultaneously the two sets of

92



By formulating the collaborative problem as a game, we use a non-cooperative ap-

proach to model altruistic behavior among peers. The non-cooperativeness is appropriate

here because there is no centralized control agent in the network, and communications

between peers are local and symmetric. The aggregated utility comes from peers’ general

intention to help other peers. We assume that peers intend to be altruistic when they

are introduced into the network. Free-riding peers are penalized via the weighting of the

aggregation function. When one peer appears to refuse to help other peers, the other peers

will correspondingly decline to assist in return, and as a result free-riding is avoided.

The framework described in this subsection can be potentially applied to a wide range

of collaborative networks where reciprocal altruism is desirable. However, many distinct

features of IDS networks have been incorporated into the design. Firstly, an attacker can

compromise nodes in the network and then start to spread malware to degrade the level

of protection provided by the collaborative network. The special structure of the utility

function together with the trust values have been used in the model to mitigate malicious

and dishonest behaviors of compromised nodes. Secondly, insider threats in IDS networks

have been considered by imposing upper and lower bounds on puv, which can be used to

prevent denial-of-service attacks from the insiders.

Remark 6.2.1 The choice of using the word collaborative networks is to distinguish this

approach from its cooperative counterpart. Cooperative networks often refer to a network

of nodes that are able to act as a team and then split the team utility among the members.

This will require global communications, coordination and bargaining. This appears to

be unrealistic for IDN systems. In collaborative networks, nodes behave strategically not

because they are selfish agents but because they are unable to coordinate or act as a team.

Our work is essentially different from non-cooperative network formation problems, where

all agents act selfishly to achieve their individual goals, which can be misaligned with each

other. In our IDN design, the players have their goals aligned in a certain way to achieve

efficient exchange of knowledge with each other. This is similar to classical strategic games

such as Battle of the Sexes and Bach and Stravinsky game [98]. However, the goals become

less aligned when agents have low trust values. This flexibility in the model essentially

attributes to the reciprocal altruism.

constraints, capacity constraint and range constraints. Instead, we could have relaxed only the capacity

constraint. In that case, the action set Āu in the relaxed game would include a range constraint, i.e.,

Āu = {pu | mvu ≤ puv ≤ rvu, v ∈ Nu} .
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6.2.2 Characterization of Nash Equilibrium

In this subsection, we solve the GP for its Nash equilibrium. Each peer u has a concave

optimization problem as in (6.4). Applying the first-order KKT condition as in [31] and

[34] to each peer’s concave problem in OP, ∂Lu
∂puv

= 0,∀v ∈ Nu, u ∈ N , we find

δuvT
u
v pvu

1 + α′uvpuv − α′uvmvu

= ξuv,∀v ∈ Nu, u ∈ N , (6.6)

where δuv = α′uv
ln(1+α)

; ξuv = −σuv + µuv + λu, and α′uv = α
rvu−mvu . In addition, from the

feasibility condition, it is required that an optimal solution satisfies the base constraints in

Āu and the complimentary slackness conditions for every u ∈ N :

λu

(∑
v∈Nu

puv − Cu

)
= 0. (6.7)

σuv(puv −mvu) = 0,∀v ∈ Nu, (6.8)

µuv (puv − rvu) = 0, ∀v ∈ Nu . (6.9)

The variable ξuv is composed of three Lagrange multipliers. If ξuv 6= 0, we can further

simplify the first-order condition into

puv −
T uv pvu

ξuv ln(1 + α)
=

(
1 +

1

α

)
mvu −

1

α
rvu. (6.10)

Definition 6.2.2 (Başar & Olsder, [29]) A Nash equilibrium p∗uv, u, v ∈ N for the game

(GP) is a point that satisfies Lu(p∗u,p∗−u) ≥ Lu(pu,p∗−u), ∀pu ∈ Au, u ∈ N , and puv =

pvu = 0, for v ∈ Nu\Nu and u ∈ N , where the vector p−u = {pi : i 6= u, i ∈ N} is

comprised of decision vectors of other peers.

Proposition 6.2.3 The game (GP) admits a Nash equilibrium in pure strategies.

Proof The action set Au is a closed and bounded simplex and Uu is continuous in puv
for all u ∈ N , v ∈ Nu and concave in pu. By Theorem 4.4 in [29], there exists a Nash

equilibrium to (GP).
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With the existence of Nash equilibrium at hand, we can further investigate the solutions

to the relaxed game by looking at a pair of nodes u and v. Node u has its decision vector

pu satisfying (6.10) and similarly, node v has its decision vector pv satisfying (6.10) by

interchanging indices u and v. Hence, we obtain a pair of equations involving puv and pvu
and they are described by[

1 −Tuv
ξuv(ln(1+α))
−T vu

ξvu(ln(1+α))
1

][
puv
pvu

]
=

[ (
1 + 1

α

)
mvu − rvu

α(
1 + 1

α

)
muv − ruv

α

]
,

or in the matrix form, Muvquv = buv, where quv = [puv, pvu]
T , and buv is the right-hand

side vector and Muv is the incident matrix.

Definition 6.2.4 (M-matrix, [30]) An N by N real matrix A = [Aij] is called an M-

matrix if it is of the form A = θI − P, where P is entrywise nonnegative and θ is larger

than the spectral radius of P, i.e., θ > ρ(P). An M-matrix A has two key features:

(F1) the sign patterns aii > 0, i = 1, ..., N , and aij ≤ 0, i 6= j,

(F2) the eigenvalues of A have all positive real parts.

Theorem 6.2.1 (Berman and Plemmons, [30]) If A is an M-matrix, then A−1 > 0, i.e.

all of its entries are positive.

Using Theorem 6.2.1, we next state a result on uniqueness of Nash equilibrium for a

sufficiently large system parameter α.

Theorem 6.2.2 Suppose that only capacity constraints are active and α > max
u,v
{e

Tuv
ξuv , rvu

mvu
}−

1. Then, the game admits a unique Nash equilibrium. For each pair of peers u and v, the

equilibrium is given by q∗uv = M−1
uv buv,∀u, v ∈ N .

Proof Under the condition that the capacity constraints are active, ξuv = kvλu > 0,

since the objective function is an increasing function. Firstly, we show that provided that

α > e
Tuv
ξuv − 1, we have the inequality 1 > Tuv

ξuv ln(1+α)
. For each pair of nodes u and v,

matrix Muv is an M−matrix in (6.10); hence, Muv are strictly diagonally dominant and

95



thus non-singular; and by Theorem 6.2.1, the entries of the inverse matrix M−1
uv is strictly

positive.

Secondly, provided that α > ruv
mvu
−1, the vector buv is positive, i.e.,

(
1 + 1

α

)
mvu >

1
α
ruv.

Thus, we arrive at a unique solution q∗uv, whose entries are all positive, residing in the base

constraint action set Āu for all u. Since (6.10) holds for any interactive pair, the game

admits a unique Nash equilibrium under conditions in Theorem 6.2.2.

Note that Theorem 6.2.2 provides a condition to choose system parameter α. Since the

system can determine the value of α, the condition can be met easily.

Remark 6.2.5 Under general conditions, to have ξuv > 0 requires multipliers µuv, λu,

σuv to satisfy µuv + λukv > σuv. Since payoff function Uu is increasing in puv, λu > 0

and only µuv and σuv can be zero. To ensure ξuv > 0, we can separate into three cases

for general discussion: (1) when σuv = 0, µuv 6= 0, we require µuv + λukv > 0; (2) when

σuv = 0, µuv = 0, we require λukv > 0; (3) when σuv 6= 0, µuv = 0, we require λukv > σuv.

With an assumption as in Theorem 6.2.2 that only capacity constraint is active, it simply

leads to ξuv > 0 itself.

6.2.3 Incentive Properties

We call a network design reciprocal incentive compatible when at the steady state, the

helping resource puv from peer u to v increases as the helping resource pvu from peer v to

u also increases. In addition, it is also desirable to have puv to be proportional to the trust

value of v, i.e., the more peer u trusts peer v, the more help u is willing to give. We can

further study these properties of the solution obtained in Theorem 6.2.2.

Proposition 6.2.6 Under the conditions of Theorem 6.2.2, the Nash equilibrium solution

of the game (GP) is reciprocal incentive compatible, i.e.,

1. The helping resource puv from u to v increases with helping resource pvu from v to u;

2. When the system parameter α increases, the marginal helping resource from u to v

decreases for all u and v;
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3. When peer u trusts v more, i.e., T uv increases, the marginal helping resource from u

to v increases.

Proof Using (6.6), we take the derivative with respect to pvu and let ∂puv/∂pvu denote

the marginal helping rate from u to v.

Since T uv > 0, ξuv > 0, under the conditions in Theorem 6.2.2, we have ∂puv/∂pvu > 0,

and thus puv is increasing with pvu at Nash equilibrium. The incentive compatibility results

follow.

In the following, we study the incentives of nodes that decide on the lower and upper

bounds on desired reply rates. We assume that the lower bound on reply rates are uniformly

determined by the system once they join the network, i.e., mvu = m̄ for all v ∈ N , u ∈ Nv.

Lemma 6.2.7 Nodes do not have incentives to overstate their upper bound on the reply

rate rvu, v ∈ N , u ∈ Nv.

Proof From (6.6), we can observe that ∂puv
∂rvu

= −1/α < 0. Hence, a higher level of request

results in a lower value of puv.

Lemma 6.2.7 admits an intuitive interpretation. When a request level is high, it becomes

harder for a node to satisfy it and the node will allocate resources to satisfy other ones

with lower request levels first. Hence, a higher level of request will result in a lower reply

rates.

In the following, we study the effect of understating the upper bound. We first introduce

the notion of ε-resilience and then derive a condition for achieving it.

Definition 6.2.8 The Nash equilibrium p∗uv under truthful r∗vu is ε-resilient if a deviation

rvu from r∗vu results in an equilibrium puv such that ‖p∗uv − puv‖ ≤ ε‖r∗vu− rvu‖ for all pairs

of (u, v) ∈ E.

Proposition 6.2.9 Suppose m̄ is sufficiently small and only capacity constraints are ac-

tive. The Nash equilibrium, if it exists, is ε-resilient if α ≥ 1
ε

max(u,v)∈E

∣∣∣ Tuv pvu∑
v∈Nu pvuT

u
v
− 1
∣∣∣ .
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Proof Let r∗vu be the true upper bound, under which the reply rates are

p̂∗uv = min{max{m̄, p∗uv}, r∗vu} ≤ r∗vu,

where

p∗uv =

(
1 +

1

α

)
m̄− 1

α
r∗vu +

T uv pvu
ξ∗uv ln(1 + α)

.

For any other rvu < r∗vu, the allocated resource is p̂uv = min{max{m̄, puv}, rvu} ≤ ruv < r∗vu,

where

puv =

(
1 +

1

α

)
m̄− 1

α
rvu +

T uv pvu
ξuv ln(1 + α)

.

Suppose that m̄ is sufficiently small. Due to the assumption that only capacity constraints

are active, we only need to study the case where puv ≤ rvu. Then, from Lemma 6.2.7,

we obtain puv > p∗uv since rvu < r∗vu, and hence p∗uv < puv ≤ rvu < r∗vu. Therefore,

‖p̂uv − p̂∗uv‖ = ‖puv − p∗uv‖ and we have

‖puv − p∗uv‖ ≤
∥∥∥∥− 1

α
(rvu − r∗vu) +

T uv pvu
ln(1 + α)

[
1

ξuv
− 1

ξ∗uv

]∥∥∥∥ .
Under the relaxed conditions, we can use the closed form expression of Lagrangian mul-

tiplier (6.16), which is derived later in Section 6.3, to obtain 1
ξuv
− 1

ξ∗uv
= 1

λu
− 1

λ∗u
=

ln(1+α)
αPT

(rvu − r∗vu). Hence combining with the result above, we arrive at

‖puv − p∗uv‖ ≤
1

α

∥∥∥∥T uv pvuPT
− 1

∥∥∥∥ ‖rvu − r∗vu‖.
Therefore, to ensure ε-resiliency, we need ‖puv−p

∗
uv‖

‖rvu−r∗vu‖
≤ 1

α

∥∥∥Tuv pvuPT
− 1
∥∥∥ ≤ ε, which leads to the

result.

6.3 Primal / Dual Iterative Algorithm

In this section, we introduce a dynamic algorithm to compute the unique Nash equilibrium.

Let puv(t) be the resource from peer u to v at step t. Consider the algorithm:{
puv(t+ 1) = suv + tuvpvu(t)

pvu(t+ 1) = svu + tvupuv(t)
, (6.11)
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where suv =
(
1 + 1

α

)
mvu − 1

α
rvu, tuv = Tuv

ξuv(ln(1+α))
, and svu, tvu are defined similarly by

interchanging indices u and v, with initial conditions puv(0) = min
{
Cu
Nu , ruv.

}
,∀u, v ∈ N .

Proposition 6.3.1 Suppose that capacity constraints are active, and rvu and muv are

chosen such that the associated constraints become inactive constraints, i.e., σuv = 0, µuv =

0 in (6.8) and (6.9). Given a Lagrange multiplier λ∗u 6= 0 and provided that α > e
Tuv
λu − 1,

algorithm (6.11) converges to the unique Nash equilibrium in Theorem 6.2.2 at dual optimal

λ∗u.

The algorithm described in (6.11) depends on the Lagrange multiplier λu. We can

exploit duality to devise an iterative algorithm for the Lagrange multiplier. Let Du(λu)

be the dual functional given by Du(λu) = maxpu Lu(pu, λu). The dual function Du(λu) is

a convex function and a dual optimal λ∗u solves the dual optimization problem (DOP)2

min
λu>0

Du(λu). (6.12)

Using the solution from Theorem 6.2.2, we can obtain Du(λu) as follows.

Du = λu

(
Cu +

KR

α
+

(
1 +

1

α

)
KM

)
+
PT − PT
ln(α + 1)

,

and its first-order derivative as follows:

D′u = Cu −
∑

v∈Nu pvuT
u
v

λu ln(1 + α)
+

1

α

∑
v∈Nu

rvu −
α + 1

α

∑
v∈Nu

mvu,

where PT =
∑

v∈Nu pvuT
u
v is the sum of the weights; KM =

∑
v∈Numvu; KR =

∑
v∈Nu rvu.

KM and KR can be interpreted as the total request weighted by marginal costs; and

PT =
∑
v∈Nu

pvuT
u
v ln

(
α

ln(α + 1)

pvuT
u
v

λu(rvu −mvu)

)
. (6.13)

2Peer u’s dual function is expressed in terms of λu and p−u, and the decision variable for peer u changes

from a multi-dimensional vector pu to a scalar variable λu. Using the dual function, we can reduce the

dimension of the game and turn a constrained game into an unconstrained one.
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The gradient of the dual function is dependent on the local capacity of node u and the

information sent by the neighbor node v of peer u such as the helping resource pvu, and

the maximum (minimum) requested resources rvu (mvu) from v. All the information is

available to peer u to calculate the gradient locally at each λu.

By taking the second-order derivative of the dual function, we obtain

D′′u(λu) =

∑
v∈Nu pvuT

u
v

λ2
u ln(1 + α)

. (6.14)

The dual function in (6.12) is not only a convex function but also a strong convex function,

whose Hessian is bounded uniformly as in L1 ≤ ∇2Du(λu), for some L1 [34]. In addition,

provided that the sum of weights wuv is bounded from above, i.e.,∑
v∈Nu

pvuT
u
v ≤M, (6.15)

for some M ∈ R++, then ∇2Du(λu) ≤ L2, for some constant L2.

Proposition 6.3.2 Suppose that the sum of weights is bounded as in (6.15). The dual

function Du is strongly convex and its Hessian is bounded from above and below uniformly.

Proof Firstly, λu is bounded from above by some constant λ̄u since the dual problem is

feasible. Thus, ε1 ≤ λu ≤ λ̄u, ε1 > 0. In addition,
∑

v∈Nu wuv 6= 0; otherwise, the primal

problem is trivial because wuv = 0, for all v. Therefore, ε2 ≤
∑

v∈Nu wuv ≤ M, ε2 > 0.

Hence, the statement is true.

Strong duality ensures a unique optimal solution. The unique dual optimal λ∗u can be

found explicitly by applying the unconstrained optimality condition, i.e., D′u(λu) = 0. As

a result, we obtain

λ∗u =
PT(

Cu −KM + 1
α

(KR −KM)
)

ln(1 + α)
. (6.16)

To find the dual optimal, we can also devise a dynamic algorithm that can be used in

conjunction with Algorithm (6.11). An iterative algorithm based on gradient methods to

find λu is given by

λu(t+ 1) = λu(t)− βuD′u(λu(t)),∀u ∈ N , (6.17)
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where βu ∈ (0, 1) is the step size. The gradient algorithm in (6.17) is distributed over the

network. Each peer needs to collect openly accessible information from its neighboring

peers to evaluate KM , KR and PT . With the property of strong convexity, we can show in

the following the fast convergence of the algorithm to (6.16).

Proposition 6.3.3 Suppose that D′u(λu) is Lipschitz with Lipschitz constant L3 and Du(λu)

is strongly convex with D′′u(λu) ≥ L1. The dual algorithm (6.17) converges geometrically to

dual optimal λ∗u in (6.16) with step size βu <
min(2,L1)

L3
.

Proof We can use the technique in [34] to prove the proposition. Using the property of

strong convexity and Lipschitz property, we obtain

‖λu(t+ 1)− λ∗u‖2

= ‖λu(t)− λ∗u‖2 − 2βuD
′
u(λu(t))(λu(t)− λ∗u)

+ β2
u‖D′u(λu(t))‖2

≤ ‖λu(t)− λ∗u‖2 − 2βu(Du(λu(t))−Du(λ
∗
u))

+ β2
uL3‖λu(t)− λ∗u‖2

≤ ‖λu(t)− λ∗u‖2 − βuL1‖λu(t)− λ∗u‖2

+ β2
uL3‖λu(t)− λ∗u‖2

= (1− βuL1 + β2
uL3)‖λu(t)− λ∗u‖2.

Hence, when βu < min(2,L1)
L3

, we have a contraction. In addition, ‖λu(t + 1) − λ∗u‖2 ≤
(1− βuL1 + β2

uL3)t+1‖λu(0)− λ∗u‖2. Hence, the convergence rate is geometric.

Note that the condition of strong convexity can be easily satisfied from (6.14) if we eliminate

trivial cases that all trust values of neighbors or pvu are zeros.

6.4 Experiments and Evaluation

In this section, we perform numerical experiments and evaluate the trust and resource

management capabilities of the resource allocation system as described in Sections 6.2

and 6.3. We follow two different approaches to evaluate the Nash equilibrium of the
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Figure 6.1: Helping Resources v.s. Time - First Approach

collaborative system. In the first experiment, we implement the dynamic algorithm in

Section 6.3 to find the Nash equilibrium. We show that the algorithm yields the Nash

equilibrium of the game at the steady state and the system is incentive compatible under the

equilibrium. In the second experiment, we use a stochastic discrete-event based simulation

to model an IDS network. In the simulation, peers estimate the resources received from

the other peers and adjust their allocations of resources to the others accordingly. We are

interested in finding the Nash equilibrium and verifying the incentives in the collaborative

system at the equilibrium.

6.4.1 Nash Equilibrium Computation

In this section, we implement the dynamic algorithm described in Section 6.3 to calculate

the Nash equilibrium centrally. We simulate a three-node network with initial trust values

0.2, 0.6, 1.0, respectively. For the ease of demonstration, we assume that the trust between

peer nodes is homogeneous. i.e., the trust value of node i is the same to all other nodes.

We set the minimum demand of resource to 1 unit and the maximum to 20 units for all

nodes. Every node has an equal capacity of 20 units and the system parameter α = 100.

We find that, if all peers have the same trust values, then the resource is fairly and evenly

distributed among all peers. When the trust values are different, peers with higher trust
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Figure 6.2: Helping Resource Received Varies with Trust Value - First Approach

values receive more resources. Fig. 6.1 shows that the resources received by three peers

with different trust values converge fast within two or three iterations. A peer with higher

trust value receives more help than a peer with lower trust value.

Fixing the resource capacity of all peers to 20 units and the trust values of two of the

nodes to 0.5, we vary the trust value of the third peer from 0.1 to 1.0. In Fig. 6.2, we

observe that the resource received by the third peer increases with its trust value under

different α values. We also see that all curves cross at trust value 0.5 and resource 20

units. This is because all peers should receive equal amount of resources when they are

identically configured, regardless of the α value we choose. By fixing the trust values of all

nodes to 1.0 and varying the resource capacity of the third peer from 3 to 30, we observe

in Fig. 6.3 that the amount of resources a peer receives is roughly linearly proportional to

the resources it provides to the others. Similarly, all curves intersect at capacity 20 and

resource 20. These results further confirm our theoretical analysis in Section 6.2. Figs.

6.2 and 6.3 also reveal that a larger α value leads to a lower marginal helping resource. A

smaller α value provides stronger incentive to the participants.
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Figure 6.3: Helping Resource Received Varies with Resource Contribution - First Approach

6.4.2 Nash Equilibrium using Distributed Computation

In this experiment, we use a stochastic discrete-event based simulation to model the IDN.

Discrete-event simulation is commonly used to aid strategic decision making since it has

the capability of emulating complex real world problems. It concerns the modeling of a

system as it evolves over time by representing the changes as separate events. It bridges

over our model and a real-life IDS network. In this simulation, each node collaborates

with others by sending out requests and waits for their responses. At the beginning of

each day, nodes send resource upper-bound/lower-bound to all their neighbors and wait

for the resource quota from them. The resource quota allocation is determined through

optimizing (6.4). The consultation requests are generated randomly following a Poisson

process with an average arrival rate equal to the resource quota they receive. Upon the

arrival of a request at its destination queue, it will be replied by the corresponding peer on

a first-come-first-serve basis. Each peer estimates the resource it receives from other peers

by calculating the average number of consultation requests answered by each peer. In this

experiment, all peers initialize with an unbiased allocation, and then apply the resource

allocation scheme.

For the purpose of comparing with the numerical experiment, we use the same exper-

iment configuration as in Section 6.4.1, i.e., we simulate a network of 3 nodes; we set the

minimum resource requirement to 1 request/day and the maximum to 20 requests/day for
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Figure 6.4: Helping Resources v.s. Time - Second Approach

all peers; each peer has a capacity of 20 requests; we set α = 100 and the trust values of

nodes to be 0.2, 0.6, and 1.0, respectively.

Fig. 6.4 illustrates the received resources for all three nodes with respect to time. We

note that the helping resource converges to the Nash equilibrium at steady state, and nodes

with higher trust values obtain more resource. This confirms that our resource allocation

scheme provides incentives in the collaborative network.

By fixing the resource capacity of all peers to 20, the trust values of two of the peers

to 0.5, and varying the trust values of the third peer from 0.1 to 1.0, we obtain in Fig. 6.5

that the received resource of the third peer increases with its trust value under different

α values. Fixing the resource capacity of the first two peers to 20 requests/day and trust

values to 1.0 for all peers, we vary the capacity of the third peer from 3 requests/day to 30

requests/day and observe that the resource received by the third node also increases with

its resource capacity under different α values, as shown in Fig. 6.6. The simulation results

are consistent with the theoretical results obtained in Section 6.2 and the ones in Section

6.4.1.
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Figure 6.5: Helping Resource Received Varies with Trust Value - Second Approach

6.4.3 Robustness Evaluation

Robustness is a required and important feature for the design of an IDN. In this subsection,

we discuss a few common insider threats against the incentive-based resource allocation

mechanism, and we show how our design is robust to these attacks. Note that all par-

ticipants in the IDN have to abide by the protocols with a given flexibility in parameters

tuning. However, due to the reciprocity of the mechanism, IDSs with selfish or dishon-

est behaviors will be penalized and eventually removed from the network. This execution

process is an integrated part of the IDN.

Free Riding

Free riders are nodes that enjoy resources from others while not contributing themselves [48,

61]. A free rider in the IDN may collaborate with a large number of IDSs, aiming at re-

ceiving a good amount of accumulated resources m̄ from the large number of collaborators.

However, our IDN design is not beneficial to free riders. First, the amount of help that

a node receives is proportional to the resources it allocates to others. Second, the larger

the number of collaborators a node has, the more demanding it is for the node to main-

tain the collaboration since each collaborator needs minimum resource m̄ to be satisfied.

Therefore, a node that does not contribute to the collaboration will end up receiving bare
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Figure 6.6: Helping Resource Received Varies with Resource Contribution - Second Ap-

proach

minimum helping resources from others. We simulate a scenario where a free rider with

initial trust value 1.0 switches to a free riding mode at day 200 (Fig. 6.8). We notice

that the amount of helping resources received by the free rider drops quickly and converges

to a low level. This is because the collaborators of the free rider can notice the drop of

contributed resources from the free rider and adjust their resource allocation according

to (6.4). The result corroborates that free riding is not practical in the IDN with such a

resource allocation design.

Denial-of-Service (DoS) Attacks

DoS attacks happen when malicious nodes send a large amount of information to overload

the victim [85]. In our IDN, the amount of information exchanged between participant

nodes is negotiated beforehand. A quota is calculated and sent to all nodes. If a node

sends more data than the given quota, then it is considered malicious, and hence will be

removed from the collaboration network.
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Figure 6.7: Resource received vs. exchanged upper-bound.

Dishonest Insiders

In the IDN, dishonest nodes can report false information to gain advantages. For example, a

dishonest node can misinform about its upper-bound and lower-bound requests for gaining

more resources from its collaborators. We imposed a maximum lower-bound m̄ for all

nodes. In addition, experimental results in Fig. 6.7 show that claiming a higher upper-

bound than the true value lowers received resource, while claiming a lower upper-bound

may lead to a bounded gain that is controllable by system parameter α. A lower upper-

bound will not lead to full satisfaction of the node when resource constraints are inactive.

6.4.4 Large-Scale Simulation

Previous experiments are based on a small-scale network. In this subsection, we design

numerical experiments to study the resource allocation in a large-scale intrusion detection

network. We set up a network of 100 nodes, which are randomly scattered in a 100× 100

square. Each node shares its resources with the other nodes in the vicinity at a distance

of 5. The trust values are generated according to a uniform distribution from 0 to 1.0.

The lower bound and the upper bound on the requests are 1 and 20, respectively, for each

node. We separate nodes into two groups: one group with a capacity of 20 units and the

other with 40. In Fig. 6.9, we can see that, in both groups, nodes with higher trust values
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Figure 6.8: Resource received after free riding attack

tend to receive more assistance. The response to trust value appears to be more prominent

for the group with capacity of 40 units. It can be explained by the fact that when the

resource capacity is low, most of the resource is used to satisfy the lower bound of all the

neighbors and little is left to allocate based on incentives. In the second experiment, we

fix trust values of all nodes to 1.0 and randomly choose the resource capacity of each node

between 0 and 30. Fig. 6.10 shows the resource received by nodes with different resource

capacities. We note that, on the average, nodes with higher resource capacities receive

more resources. This confirms the incentives under a large collaboration group.

6.5 Conclusion

In this chapter, we have proposed incentive-based resource allocation mechanism based

on trust management in the context of an IDN. By formulating an associated continuous-

kernel non-cooperative game, we have shown that a Nash equilibrium exists and is unique

under certain system conditions. We have also shown that the unique Nash equilibrium

possesses features that allow peers to communicate in a conducive environment in which

peers endeavor to contribute knowledge and resource to assist neighbor nodes. Any selfish

or free-riding behavior will receive a tit-for-tat response from the neighbors as a conse-

quence. The dynamic algorithm proposed in the chapter is used to compute the Nash
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Figure 6.9: Resource received for peers with different trust values

equilibrium. Experimental results showed that the algorithm converges to the Nash equi-

librium at a geometric rate, further corroborating the theoretical results. We have also

discussed the resistance of our IDN design to common insider attacks, such as free-riding,

dishonest insiders, and DoS attacks. As a future work, one can study other potential

attacks to the IDN system, for example, the collusion attacks.
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Chapter 7

Collaborators Selection and

Management

7.1 Introduction

As discussed in precious chapters, malicious insiders in an IDN may send false information

to mislead other IDSs into making incorrect intrusion decisions. This may render the col-

laboration system ineffective. Furthermore, IDSs in the collaboration network may have

different intrusion detection expertise levels and capabilities. An effective trust manage-

ment model should be capable of distinguishing honest participants from malicious ones,

and low-expertise IDSs from high-expertise IDSs. Chapter 4 describes a Bayesian learning

model for IDSs to evaluate the trustworthiness of their collaborators. However, a collab-

oration relationship is a mutual agreement between both participants, and it should only

occur when both parties agree to collaborate with each other. As we discussed in Chap-

ter 5, the expected cost of false decisions decreases when receiving feedback from more

collaborators. However, it takes more computing resources to maintain a collaboration

relationship; for example, sending test messages and responding to consultation requests

from other collaborators requires CPU/memory and bandwidth to proceed. The extra cost

of recruiting a new collaborator may exceed the benefit from that collaborator. How IDSs

select collaborators to achieve optimal cost efficiency is an important problem to solve for

an IDN. We define an IDN acquaintance management as the process of identifying, select-
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ing, and maintaining collaborators for each IDS. An effective acquaintance management

model is crucial to the design of an IDN.

The purpose of the work in this chapter is to seek an effective acquaintance management

mechanism with which IDSs can selectively recruit collaborators that can bring maximal

benefit, taking into account both the false decision cost and maintenance cost. We propose

a Bayesian learning technique that helps each IDS identify expert nodes and novice nodes

based on past experience with them, specifically, the false positive (FP) rate and false

negative (FN) rate of each collaborator. Dishonest collaborators are identified and removed

from the collaborator list. We define feedback aggregation in the IDN as a decision-making

method as to whether or not to raise an alarm based on the collected opinions (feedback)

from collaborator IDSs. We propose a Bayesian decision model for feedback aggregation.

Bayes theory is used to estimate the conditional probability of intrusions based on feedback

from collaborators. A cost function is modeled to include the false positive decision cost

and false negative decision cost. A decision as to whether to raise an alarm or not is made

in order to achieve the minimum cost of false decisions.

For collaborator selection, an IDS may add all honest IDSs to its collaborator list to

achieve maximized detection accuracy. However, including a large list of collaborators may

result in a high maintenance cost. We define an acquaintance selection as the process of

finding the optimal list of collaborators to minimize false decision and maintenance costs.

Existing approaches for acquaintance management often set a fixed number of collabora-

tors [121] or a fixed accuracy threshold to filter out less honest or low-expertise collabo-

rators [122, 57, 53]. These static approaches lack flexibility, and the fixed acquaintance

length or accuracy threshold may not be optimal when the context changes (e.g., some

nodes leave the network and some new nodes join the network). Our proposed acquain-

tance management algorithm can dynamically select collaborators in any context setting

to obtain high efficiency at minimum cost.

For collaborator maintenance, the IDSs in our system periodically update their collab-

orator lists to guarantee an optimal cost. A probation list is used to explore and learn the

quality of new potential collaborators. New collaborators stay in the probation list for a

certain period before their feedback is considered for intrusion decision.

We evaluate our system using a simulated collaboration network using a Java-based

discrete-event simulation framework. The results show that the proposed Bayesian deci-

sion model outperforms the threshold-based model [89], which only counts the number of
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intrusion reports, in terms of false decision cost. The results also show that our dynamic

acquaintance management algorithm outperforms the static approaches of setting a fixed

acquaintance length or accuracy threshold. Finally, our approach also achieves several

desired properties, such as efficiency, stability, robustness, and incentive-compatibility.

Major contributions of our work are summarized as follows:

1. An acquaintance selection algorithm is devised to optimally select collaborators,

which leads to minimal overall cost, including false decision cost and maintenance

cost;

2. A dynamic acquaintance management algorithm is proposed to integrate the concept

of probation period and consensus negotiation;

The rest of the chapter is organized as follows. In Section 7.2, we discuss some related

work; Section 7.3 describes the formalization of our IDS learning model and feedback aggre-

gation. Acquaintance selection and management algorithms are presented in Section 7.4.

We then present evaluation results demonstrating the effectiveness of our acquaintance

management and its desired properties in Section 7.5. We conclude this chapter in Sec-

tion 7.6.

7.2 Related Work

Various approaches have been proposed to evaluate IDSs, and all have used a single trust

value to measure whether an IDS will provide good feedback about intrusions based on

past experience with that IDS. For example, Duma et al. [45] introduced a trust-aware

collaboration engine for correlating intrusion alerts. Their trust management scheme uses

each peer’s past experience to predict others’ trustworthiness. Our previous work [57, 53]

uses Dirichlet distributions to model peer trust, but it does not investigate conditional

detection accuracy such as false positives and false negatives. In this work, we use both

false positive and true positive rates to represent the detection accuracy of an IDS, based on

a Bayesian learning approach. The methods for aggregating feedback provided by Duma et

al. [45] and our previous work [57, 53] are also simplistic. They both use a weighted average

approach to aggregate feedback. Another broadly accepted decision model in IDNs is the
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threshold-based, which is used in AVCloud [89]. In this model, when the total number

of collaborators raising alarms exceeds a fixed threshold, an alarm will be raised. In this

chapter, we apply the well established Bayes’ theorem for feedback aggregation which

achieves better performance. Our previous work [57, 53] focuses on the trust evaluation

with a simple threshold-based acquaintance selection. This work focuses on the optimal

collaboration decision and optimal acquaintance selection.

Most previous approaches set a fixed length of the acquaintance list, such as in [121].

Others use a trust threshold to filter out less honest acquaintances [122, 57]. The advantage

of the threshold based decision is its simplicity and ease of implementation. However, it

is only effective in a static environment where collaborators do not change, such as that

presented in [89]. In a dynamic environment, nodes join and leave the network and the

acquaintance list changes over time. Therefore, finding an optimal threshold is a difficult

task. Our Bayesian decision model is efficient and flexible. It can be used in both static

and dynamic collaboration environments. Equipped with this Bayesian decision model,

our acquaintance selection algorithm can find the smallest set of best acquaintances that

can maximize the accuracy of intrusion detection. Based on this acquaintance selection

algorithm, our acquaintance management method uses a probation list to explore potential

candidates for acquaintances and balances the cost of exploration and the speed of updating

the acquaintance list.

7.3 IDS Detection Accuracy Evaluation and Feedback

Aggregation

To select collaborators, an IDS should first learn the qualification of all candidate IDSs.

In this section, we first introduce a Bayesian learning model to evaluate the detection

accuracy of the candidates. A Bayesian decision model is then used to optimally aggregate

feedback from acquaintances.

7.3.1 Detection Accuracy for a Single IDS

To better capture the qualification of an IDS, we use both false positive (FP) and true

positive (TP) rates to represent the detection accuracy of an IDS. Let A denote the set of
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Table 7.1: Summary of Notations

Symbol Meaning

X ∈ {0, 1} Random variable denoting whether there is an attack or not

Y ∈ {0, 1} Random variable of positive or negative diagnose from an IDS

y A feedback instance vector from acquaintances

Y Feedback vector from acquaintances

C Set of acquaintance candidates

A Set of Acquaintances

l The acquaintance list length

δ The decision of raising alarm or not

R(.) The risk cost of false alarms and miss intrusions

M(.) The maintenance cost of acquaintances

Cfp, Cfn Unit cost of false alarm and miss intrusion

Ca Unit cost of maintaining each acquaintance

π0, π1 Priory probability of no-intrusion and with-intrusion

Ti, Fi True positive rate and false positive rate of IDS i

λ Forgetting factor of the past experience

acquaintances and random variables Fk and Tk denote the FP and TP rates of acquaintance

k ∈ A respectively. FP is the probability that the IDS gives a positive diagnosis (under-

attack) under the condition of no-attack, and TP is the probability that the IDS gives

a correct positive diagnosis under the condition of under-attack. Let random variable

X ∈ {0, 1} represent the random event on whether there is an attack or not, and let

random variable Y ∈ {0, 1} denote whether the IDS makes a positive diagnosis or not.

Then FP and TP can be written as P[Y = 1|X = 0] and P[Y = 1|X = 1], respectively.

The list of notations is summarized in Table 7.1.

Let Fk and Tk be the probability density functions of Fk and Tk whose support is [0, 1].

We use the notation Z0 : Yk = 1|X = 0 and Z1 : Yk = 1|X = 1 to represent the conditional

variables that acquaintance k gives positive decision under the conditions where there is no

attack and there is an attack respectively. They can be seen as two independent random
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variables satisfying Bernoulli distribution with successful rates Fk and Tk, respectively.

The past experience with acquaintance k can be seen as the samples from the Bernoulli

distributions. According to the Bayesian probability theory [59], the posterior distribution

of Fk and Tk given a set of observed samples can be represented using a Beta function,

written as follows:

Fk ∼ Beta(xk|α0
k, β

0
k) =

Γ(α0
k+β0

k)

Γ(α0
k)Γ(β0

i )
x
α0
k−1

k (1− xk)β
0
k−1, (7.1)

Tk ∼ Beta(yk|α1
k, β

1
k) =

Γ(α1
k+β1

k)

Γ(α1
k)Γ(β1

i )
y
α1
k−1

k (1− yk)β
1
k−1, (7.2)

where Γ(·) is the gamma function [70], and its parameters α0
k, α

1
k and β0

k , β
1
k are given by

α0
k =

u∑
j=1

λt
0
k,jr0

k,j β0
k =

u∑
j=1

λt
0
k,j(1− r0

k,j);

α1
k =

v∑
j=1

λt
1
k,jr1

k,j β1
k =

v∑
j=1

λt
1
k,j(1− r1

k,j), (7.3)

where α0
k, β

0
k , α

1
k, β

1
k are the cumulated instances of false positive, true negative, true posi-

tive, and false negative, respectively, from acquaintance k. r0
k,j ∈ {0, 1} is the jth diagnosis

result from acquaintance k under no-attack. r0
k,j = 1 means the diagnosis from k is pos-

itive while there is actually no attack happening. r0
k,j = 0 means otherwise. Similarly,

r1
k,j ∈ {0, 1} is the jth diagnosis data from acquaintance k under attack where r1

k,0 = 1

means that the diagnosis from k is positive under attack, and r1
k,0 = 0 means otherwise.

Parameters t0k,j and t1k,j denote the time elapsed since the jth feedback is received. λ ∈ [0, 1]

is the forgetting factor on the past experience. A small λ makes old observations quickly

forgettable. We use exponential moving average to accumulate past experience so that old

experience takes less weight than new experience. u is the total number of no-attack cases

among the past records and v is the total number of attack cases.

To make the parametric updates scalable to data storage and memory, we can use the

following recursive formula to update α0
k, α

1
k and β0

k , β
1
k :

αmk (tj) = λ(tmk,j−t
m
k,j−1)αmk (tmk,j−1) + rmk,j;

βmk (tj) = λ(tmk,j−t
m
k,j−1)βmk (tmk,j−1) + rmk,j, (7.4)

where l = 0, 1 and j − 1 indexes the previous data point used for updating αmk or βmk .

Through this way, only the previous state and the current state are required to be recorded,
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which is efficient in terms of storage compared to when all states are recorded in Equa-

tion 7.3.

7.3.2 Feedback Aggregation

When an IDS detects suspicious activities and is not confident about its decision, it sends

out the description of the suspicious activities or the related executable files to its collabo-

rators for consultation. The node receives diagnosis results from its collaborators, denoted

by vector y = {y1,y2, ...,y|A|}, where yi ∈ {0, 1}, for 0 < i < |A|, is the feedback from ac-

quaintance i. We use X ∈ {0, 1} to denote the scenario of “no-attack” or “under-attack”,

and Y ∈ {0, 1}|A| to denote all possible feedback from acquaintances. The conditional

probability of an IDS being “under-attack” given the diagnosis results from all acquain-

tances can be written as P[X = 1|Y = y]. Using Bayes’ Theorem [95] and assuming that

the acquaintances provide diagnoses independently and their FP rate and TP rate are

known, we have

P[X=1|Y=y]=
P[Y=y|X=1]P[X=1]

P[Y=y|X=1]P[X=1]+P[Y=y|X=0]P[X=0]

=
π1

∏|A|
k=1 T

yk
k (1− Tk)1−yk

π1

∏|A|
k=1 T

yk
k (1− Tk)1−yk + π0

∏|A|
k=1 F

yk
k (1− Fk)1−yk

,

where π0 = P[X = 0] and π1 = P[X = 1], such that π0 + π1 = 1, are the prior probabilities

of the scenarios of “no-attack” and “under-attack”, respectively. yk ∈ {0, 1} is the kth

element of vector y.

Since Tk and Fk are both random variables with distributions as in Equations (7.1) and

(7.2), we can see that the conditional probability P[X = 1|Y = y] is also a random variable.

We use a random variable P to denote P[X = 1|Y = y]. Then P takes a continuous value

over domain [0, 1]. We use fP (p) to denote the probability density function of P .

When α and β are sufficiently large, a Beta distribution can be approximated by Gaus-

sian distribution according to Beta(α, β) ≈ N
(

α
α+β

,
√

αβ
(α+β)2(α+β+1)

)
. Then the density

function of P can be also approximated using Gaussian distribution. By Gauss’s approxi-
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mation formula, we have,

E[P ] ≈ 1

1 +
π0

∏|A|
k=1 E[Fk]yk (1−E[Fk])1−yk

π1
∏|A|
k=1 E[Tk]yk (1−E[Tk])1−yk

=
1

1 + π0
π1

∏|A|
k=1

α1
k+β1

k

α0
k+β0

k
(
α0
k

α1
k
)yk(

β0
k

β1
k
)1−yk

. (7.5)
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Figure 7.1: Bayes Risk for Optimal Decisions when Cfp = 1 and Cfn = 5

Let Cfp and Cfn denote the marginal cost of a FP decision and a FN decision. We

assume there is no cost when a correct decision is made. We use marginal cost because

the cost of a FP may change in time depending on the current state. Cfn largely depends

on the potential damage level of the attack. For example, an intruder intending to track a

user’s browsing history may have lower Cfn than an intruder intending to modify a system

file. We define a decision function δ(y) ∈ {0, 1}, where δ = 1 means raising an alarm and
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δ = 0 means no alarm. Then, the Bayes risk can be written as:

R(δ) =

∫ 1

0

(Cfp(1− x)δ + Cfnx(1− δ))fP (x)dx

= δCfp

∫ 1

0

(1− p)fP (p)dp+ (1− δ)Cfn
∫ 1

0

pfP (p)dp

=

∫ 1

0

CfnxfP (x)dx+ δ

(
Cfp − (Cfp + Cfn)

∫ 1

0

xfP (x)dx

)
= CfnE[P ] + δ(Cfp − (Cfp + Cfn)E[P ]), (7.6)

where fP (p) is the density function of P . To minimize the risk R(δ), we need to minimize

δ(Cfp − (Cfp + Cfn)E[P ]). Therefore, we raise an alarm (i.e. δ = 1) if

E[P ] ≥ Cfp
Cfp + Cfn

. (7.7)

Let τ =
Cfp

Cfp+Cfn
be the threshold. If E[P ] ≥ τ , we raise an alarm, otherwise no alarm is

raised. The corresponding Bayes risk for the optimal decision is:

R(δ) =


Cfp(1− E[P ]) if E[P ] ≥ τ ,

CfnE[P ] otherwise.

(7.8)

An example of the Bayes risk for optimal decisions when Cfp = 1 and Cfn = 5 is illustrated

in Figure 7.1.

7.4 Acquaintance Management

Intuitively when an IDS consults a larger number of acquaintances, it can achieve higher

detection accuracy and lower risk of being compromised. However, having more acquain-

tances causes higher maintenance cost since the IDS needs to allocate resources for each

node in its acquaintance list. When an IDS makes a decision about how many acquain-

tances to recruit, both the intrusion risk cost and the maintenance cost should be taken

into account. When adding a node as an acquaintance does not lower the total cost, then
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the node shall not be added into the acquaintance list. However, how to select acquain-

tances and how many acquaintances to include are crucial to build an efficient IDN. In this

section, we first define the acquaintance selection problem, then a corresponding solution

is devised to find the optimal set of acquaintances. Finally, we propose an acquaintance

management algorithm for IDSs to learn, recruit, update, or remove their acquaintances

dynamically.

7.4.1 Problem Statement

LetAi denote the set of acquaintances of IDS i. LetMi(Ai) be the cost for IDS i to maintain

the acquaintance set Ai. We use Ri(Ai) to denote the risk cost of missing intrusions and/or

false alarms for IDS i, given the feedback of acquaintance set Ai. In the rest of this section,

we drop subscript i from our notations for the convenience of presentation.

Our goal is to select a set of acquaintances from a list of candidates so that the overall

cost R(A) +M(A) is minimized. We define the problem as follows:

Given a list of acquaintance candidates C, we need to find a subset of acquaintances

A ⊆ C, such that the overall cost R(A) +M(A) is minimized.

In practice, maintenance cost of acquaintances may not be negligible since acquain-

tances send test messages/consultations periodically to ask for diagnosis. It takes resources

(CPU and memory) for the IDS to receive, analyze the requests, and reply with correspond-

ing answers. The selection of Mi(.) can be user defined on each host. For example, a simple

maximum acquaintance length restriction can be mapped to M(A) = C max(|A| − L, 0),

where L ∈ N+ is the acquaintance length upper-bound and C ∈ [0,∞) is the penalty of

exceeding the bound.

The risk cost can be expressed as:

R(A) = CfnP [δ = 0|X = 1]P [X = 1]

+ CfpP [δ = 1|X = 0]P [X = 0]

where Cfn, Cfp denote the marginal cost of missing an intrusion and raising a false alarm,

respectively. P [X = 1] = π1, P [X = 0] = π0 are the prior probabilities of under-attack

and no-attack, where π0 +π1 = 1. Note that in practice π1 can be learned from the history
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and be updated whenever a new threat is found. A moving average method can be used

to update the estimated value.

The above equation can be further written as:

R(A) = Cfnπ1

∑
∀y∈{0,1}|A||δ(y)=0

P [Y = y|X = 1] (7.9)

+ Cfpπ0

∑
∀y∈{0,1}|A||δ(y)=1

P [Y = y|X = 0]

= Cfnπ1

∑
∀y∈{0,1}|A||δ(y)=0

|A|∏
i=1

(Ti)
yi(1− Ti)1−yi

+ Cfpπ0

∑
∀y∈{0,1}|A||δ(y)=1

|A|∏
i=1

(Fi)
yi(1− Fi)1−yi

= Cfnπ1

∑
∀y∈{0,1}|A||f(y)<1

|A|∏
i=1

(Ti)
yi(1− Ti)1−yi

+ Cfpπ0

∑
∀y∈{0,1}|A||f(y)≥1

|A|∏
i=1

(Fi)
yi(1− Fi)1−yi

=
∑

y∈{0,1}|A|
min{Cfnπ1

∏
i

T yi
i (1− Ti)1−yi ,

Cfpπ0

∏
i

F yi
i (1− Fi)1−yi}

where Ti, Fi are the TP rate and FP rate of acquaintance i respectively.

f(y) =
Cfnπ1

∏|A|
i=1 (Ti)

yi(1− Ti)1−yi

Cfpπ0

∏|A|
i=1 (Fi)yi(1− Fi)1−yi

.

∀y ∈ {0, 1}l|δ(y) = 1 refers to the combination of decisions which causes the system to

raise an alarm and vice versa.

7.4.2 Acquaintance Selection Algorithm

To solve such a subset optimization problem, the brute force method is to examine all

possible combinations of acquaintances and select the one which has the least overall cost.
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However, the computation complexity is O(2n). It is not hard to see that the order of

selecting acquaintances does not affect the overall cost. We propose an acquaintance se-

lection algorithm based on a heuristic approach to find an acquaintance set which achieves

satisfactory overall cost. In this algorithm, the system always selects the nodes which bring

the lowest overall cost.

For the ease of demonstration, We assume the maintenance cost can be written as

follow:

M(A) = Cal = Ca|A| (7.10)

where Ca is the unit maintenance cost of each acquaintance, which includes the cost of

communication, detection assistance, and test messages. Note that any other form of

maintenance cost can be easily included into the algorithm.

As shown in Algorithm 1, in the beginning, the acquaintance list is empty. The initial

cost is the minimum cost of the decision based only on the prior information (line 3). For

each loop, the system selects a node from the acquaintance candidate list which brings the

lowest overall cost and stores it into emax (lines 7-14), where U − R(A) −M(A) is the

amount of cost reduced by adding a node into the acquaintance list. When such a node is

found, it is then moved to the acquaintance list if the current acquaintance length is less

than Lmin or the cost is reduced by adding the new node and the acquaintance length does

not exceed Lmax. The loop stops when no node can be added into A any further.

7.4.3 Acquaintance Management Algorithm

In the previous section, we devised an algorithm to select acquaintances from a list of

candidates. However, collaboration is usually based on mutual consensus. If node A

selects B as an acquaintance but B does not select A (non-symmetric selection), then the

collaboration is not established.

We propose a distributed approach for an IDS in the IDN to select and manage acquain-

tances and a consensus protocol to allow an IDS to deal with the non-symmetric selection

problem. To improve the stability of the acquaintance list, we propose to use a probation

period on each new node for the IDS to learn about the new node before considering it

as an acquaintance. For this purpose, each IDS maintains a probation list, where all new
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Algorithm 3 Acquaintance Selection (C, Lmin, Lmax)
Require: A set of acquaintance candidates C
Ensure: A set of selected acquaintances A with minimum length Lmin and max length

Lmax which brings the minimum overall cost

1: Quit = false //quit the loop if Quit = true

2: A ⇐ ∅
3: U = min(π0Cfp, π1Cfn) //initialize the overall cost while there is no acquaintance.

min(π0Cfp, π1Cfn) is the cost when a node makes a decision without feedback from

collaborators

4: while Quit = false do

5: //select the node that reduces cost most in each iteration

6: Dmax = −MAXNUM //initialize the maximum cost reduction to the lowest possi-

ble

7: for all e ∈ C do

8: A = A ∪ e
9: if U −R(A)−M(A) > Dmax //see Equation (7.9) and Equation (7.10) for R(A)

and M(A) then

10: Dmax = U −R(A)−M(A)

11: emax = e

12: end if

13: A = A \ e //remove e from A
14: end for

15: if (Dmax > 0 and |A| < Lmax) or |A| < Lmin then

16: A = A ∪ emax
17: C = C \ emax //remove emax from C
18: U = U −Dmax

19: else

20: Quit = true

21: end if

22: end while
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Algorithm 4 Managing Acquaintance & Probation Lists

1: Initialization :

2: A ⇐ ∅ //Acquaintance list.

3: P ⇐ ∅ //Probation list.

4: lp = lini //initial Probation length

5: //Fill P with randomly selected nodes

6: while |P| < lp do

7: e⇐ select a random node

8: P ⇐ P ∪ e
9: end while

10: set new timer event(tu, “SpUpdate”)

11: Periodic Maintenance:

12: at timer event ev of type “SpUpdate” do

13: //Merge the first mature node into the acquaintance list.

14: e⇐ selectOldestNode(P)

15: C ⇐ A //C is the temporary candidate list

16: if te > tp //te is the age of node e in the probation list then

17: P ⇐ P \ e
18: if Te > Tmin and Fe < Fmax //Te and Fe are the true positive rate and false positive

rate of the node e then

19: C ⇐ C ∪ e
20: end if

21: end if

22: //Consensus protocol

23: S =Acquaintance Selection(C, lmin,max(lmin, q
q+1

lmax))

24: //Send requests for collaboration and receive responses

25: Saccp ⇐ RequestandReceiveCollaboration(S, ttimeout)

26: A ⇐ Saccp //Only nodes that accept the collaboration invitations are moved into the

acquaintance list

27: //Refill P with randomly selected nodes

28: while |P| < max(q|A|, lmin) do

29: e⇐ Select a random node not in A
30: P ⇐ P ∪ e
31: end while

32: set new timer event(tu, “SpUpdate”)

33: end timer event 125



nodes remain during their probation periods. A node also communicates with nodes in

its probation list periodically to evaluate their detection accuracy. The purpose of the

probation list is thus to explore potential collaborators and keep introducing new qualified

nodes to the acquaintance list.

Suppose that node i has two sets Ai and Pi, which are the acquaintance list and the

probation list respectively. The corresponding false positive rate and true positive rate

of both sets are FAi , T
A
i and FPi , T

P
i . To keep learning the detection accuracy of the

acquaintances, a node sends test messages to nodes in both the acquaintance list and the

probation list periodically, and keeps updating their estimated false positive rates and

true positive rates. Let lmax be the maximum number of IDSs in both the acquaintance

and the probation list. We set this upper-bound because the amount of resources used for

collaboration is proportional to the number of acquaintances it manages. lmax is determined

by the resource capacity of each IDS. Let lmin be the minimum length of a probation list

and q be the parameter that controls the length of the probation list lp compared to the

length of acquaintance list la, such that lmin ≤ lp ≤ qla. The parameters lmin and q are

used to tune the trade-off between the adaptability to the situation where nodes join or

leave the network frequently (“high churn rate”), and the overhead of resources used for

testing new nodes.

The acquaintance management procedure for each node is shown in Algorithm 2. The

acquaintance list A is initially empty and the probation list P is filled by lini random

nodes to utilize the resources in exploring new nodes. An acquaintance list updating

event is triggered every tu time units. A is updated by including new trusted nodes from

P . A node that stays at least tp time units in probation is called a mature node. Only

mature nodes are allowed to join the acquaintance list (lines 15-21). Mature nodes with bad

qualification will be abandoned right away. After that the acquaintance selection algorithm

is used to find the optimal candidate list. Collaboration requests are sent out for nodes

which are selected in the optimal list. If an acceptance is received before expiration time

then the collaboration is confirmed, otherwise the node is abandoned (lines 22-26). Then,

P is refilled with new randomly chosen nodes (lines 28-31).

Several properties are desirable for an effective acquaintance management algorithm,

including convergence, stability, robustness, and incentive-compatibility for collaboration.

When our acquaintance management is in place, we are interested to know with whom the

IDS nodes end up collaborating with and how often they change their collaborators. We
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also expect to see cooperative nodes are rewarded and dishonest nodes penalized.

In Section 7.5 we evaluate our acquaintance management algorithm, to determine

whether it achieves the above properties.

7.5 Evaluation

In this section, we describe the conducted simulation to demonstrate the desirable prop-

erties of our acquaintance management algorithm. We evaluate the cost efficiency of our

Bayesian decision model, cost and time efficiency of the acquaintance selection algorithm,

and several desired properties of the acquaintance management algorithm. Each simulation

result presented in this section is derived from the average of a large number of replications

with an overall negligible confidence interval.

Table 7.2: Simulation Parameters

Parameter Range Value Description

R [0,∞) 10/day Test message rate

λ [0, 1] 0.95 Forgetting factor

Cfp/Cfn [0,∞) 20/100 Unit cost of false positive/negative decisions

Ca [0,∞) 0.01 Maintenance cost of one acquaintance

tp [0,∞) 10 days Probation period

tu [0,∞) 1 day Acquaintance list update interval

lini N+ 10 Initial probation length

lmax N+ 20 Maximum total number of acquaintances

lmin N+ 2 Minimum probation list length

Tmin [0,1] 0.5 Minimum acceptable true positive rate

Fmax [0,1] 0.2 Maximum acceptable false positive rate

q [0,∞) 0.5 Length ratio of probation to acquaintance list

π1 [0, 1] 0.1 Prior probability of intrusions
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7.5.1 Simulation Setting
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We simulate an environment of n IDS peers collaborating together by adding each other

as acquaintances. We adopt two parameters to model the detection accuracy of each

IDS, namely, false positive rate (FP) and false negative rate (FN). Notice that in reality

most IDSs have low FP (< 0.1) and FN is normally in the range of [0.1, 0.5] [89]. This

is because false positives can severely damage the reputation of the product, so vendors

strive to control their FP rate at a low level. In our experiment, we select parameters

which reflect real world properties. To test the detection accuracy of acquaintances, each

peer sends test messages where their correct answers are known beforehand. Test messages

are sent following a Poisson process with average arrival rate R. R will be determined in

the next subsection. We use a simulation day as the time unit in our experiments. The

diagnosis results given by an IDS are simulated following a Bernoulli random process. If

a test message represents a benign activity, the IDS i raises alarm with a probability of

FPi. Similarly, if the test message represents intrusions, an alarm will be raised with a

probability of 1-FNi. All parameter settings are summarized in Table 7.2.

7.5.2 Determining the Test Message Rate

The goal of our first experiment is to study the relationship between test message rates

and FP, FN learning speed. We simulate two IDSs A and B. A sends B test messages to
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ask for diagnosis, and learns the FP and FN of B based on the quality of B’s feedback.

The learning procedure follows Equations (7.1), (7.2), and (7.3). We fix the FN of B to

0.1, 0.2, and 0.3 respectively. Under each case, we run the learning process under different

test message rates, 2/day, 10/day, and 50/day respectively. We observe the change of

estimated FN over time, plotted in Figure 7.2. We see that when R is 2/day, the estimated

FN converges after around 30 days in the case of FN=0.2. The converging time is slightly

longer and shorter in the cases of FN=0.3 and FN=0.1, respectively. When R is increased

to 10/day, the converging time decreases to around 10 days. In the case of R=50/day,

the corresponding converging time is the shortest (around 3 days) among the three cases.

Increasing the test message rate R to 50/day does not reduce much learning process time.

Based on the above observation, we choose R=10/day and the probation period tp to be

10 days as our system parameters. In this way, the test message rate is kept low and the

learned FN and FP values converge after the probation period.

The second experiment is to study the efficiency of learning results after our chosen

probation period. We fix R=10/day, tp=10/day, and randomly choose FN of node B

uniformly among [0, 1]. We repeat the experiments 100 times with different FNs. The FNs

estimated using our learning process till the end of probation period are plotted in Figure

7.3. We can see that in all different settings of FNs, the estimated FN rates are close to

the actual FN rates after the probation period.
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7.5.3 Efficiency of our Feedback Aggregation

In this experiment, we evaluate the effectiveness of our Bayesian decision based feedback

aggregation by comparing it with a threshold based aggregation. We have described our

Bayesian decision model in Section 7.3.2. In a simple threshold based feedback aggregation
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method, if the number of IDSs reporting intrusions is larger than a predefined threshold,

then the system raises an alarm. The threshold-based decision is used in N-version cloud

anti-virus systems [89].

We set up eight IDSs {IDS0, IDS1, ..., IDS7} with their FP and FN rates randomly

chosen from the range [0.1, 0.5]. IDS0 sends consultations to all other IDSs, collects and

aggregates feedback to make intrusion decisions. The costs of false positive and false

negative decisions are Cfp=20 and Cfn=100 respectively. We compare the average false

detection cost using the Bayesian decision model and the simple threshold-based approach.

Figure 7.4 shows that the cost of threshold decision largely depends on the chosen threshold

value. An appropriate threshold can significantly decrease the cost of false decisions. In

contrast, the Bayesian decision model does not depend on any threshold setting and prevails

over the threshold decision under all threshold settings. This is because the threshold

decision treats all participants equally, while the Bayesian decision method recognizes

different detection capabilities of IDSs and takes them into account in the decision process.

For example, if an IDS asserts that there is intrusion, our Bayesian model may raise an

alarm if the IDS has a low FP rate and ignores the warning if the IDS has a high FP rate.

However, the threshold based decision model will either raise an alarm or not based on the

total number of IDSs which raise warnings and compare it with a predefined threshold,

irrespective of the individual that issued the warning.
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7.5.4 Cost and the Number of Collaborators

We define risk cost to be the expected cost from false decisions such as raising false alarms

(FP) and missing the detection of an intrusion (FN). We show that introducing more

collaborators can decrease the risk cost. In this experiment, we study the impact of the
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number of collaborators on the risk cost. We set up four groups with an equal number of

IDSs. Nodes in all groups have the same FP rate of 0.03, but their FN rates vary from

0.1 to 0.4, depending on the group they are in. Inside each group every node collaborates

with every other node. We are interested in the risk cost as well as the maintenance cost.

The maintenance cost is the cost associated with the amount of resource that is used to

maintain the collaboration with other nodes, such as answering diagnosis requests from

other IDSs. Since our purpose is to capture the concept of maintenance cost but not to

study how much it is, we assume the maintenance cost to be linearly proportional to the

number of collaborators with a unit rate Ca=0.01 (see Table 7.2).

We increase the size of all groups and observe the overall cost of nodes in each group.

From Figure 7.5, we can see that in all groups, the costs drop down fast in the beginning

and slow down as the groups’ sizes increase. After an optimal point (marked by large solid

circles), the costs slowly increase. This is because when the number of collaborators is large

enough, the cost saving by adding more collaborators becomes small, and the increment of

maintenance cost becomes significant. We find that groups with higher detection accuracy

have lower optimal costs. Also they need a smaller number of collaborators to reach the

optimal costs. For example, in the case of FN = 0.4, 13 collaborators are needed to reach

the optimal cost, while the number of collaborators required is 5 in the case of FN = 0.1.

7.5.5 Efficiency of Acquaintance Selection Algorithms

We learned in the previous section that when the number of collaborators is large enough,

adding more collaborators does not decrease the overall cost because of the associated

maintenance cost. An acquaintance selection algorithm is proposed in Algorithm 3. In this

section, we compare the efficiency of acquaintance selection using the brute force algorithm

and our acquaintance selection algorithm. We create 15 IDSs as candidate acquaintances

with FP and FN rates randomly chosen from intervals [0.01, 0.1] and [0.1, 0.5], respectively.

Both algorithms are implemented in Java and run on a PC with AMD Athlon dual core

processor 2.61GHZ, and with 1.93 GB RAM. We start the candidate set size from 1 and

gradually increase the size. We observe the cost efficiency and running time efficiency of

both algorithms.

Figure 7.6 shows that the brute force algorithm performs slightly better with respect

to acquaintance list quality since the overall cost using its selected list is slightly lower.
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However, Figure 7.7 shows that the running time of the brute force method increases

significantly when the candidate set size exceeds 11, and continues to increase exponentially,

while our algorithm shows much better running time efficiency. These experiments suggest

to use the brute force method only when the size of candidates list is small (≤ 11). When

the candidates list is large, our greedy algorithm should be used to select acquaintances.

7.5.6 Evaluation of Acquaintance Management Algorithm

In this experiment, we study the effectiveness of our acquaintance management algorithm

(Algorithm 4). We set up a simulation environment of 100 nodes. For the convenience of

observation, all nodes have fixed FP rate 0.1 and their FN rates are uniformly distributed

in the range of [0.1, 0.5]. All nodes update their acquaintance list once a day (tu=1). We

observe several properties: convergence, stability, robustness, and incentive-compatibility.
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Convergence

Our first finding about our acquaintance management algorithm is that IDSs converge

to collaborating with other IDSs with similar detection accuracy levels. We observed

through experiments that IDSs collaborate with random other nodes in the network in the
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beginning (Figure 7.8). After a longer period of time (200 days), all IDSs collaborate with

others with similar detection accuracy, as shown in Figure 7.9. Our explanation is that

the collaboration between pairs with high qualification discrepancy is relatively not stable

since our collaboration algorithm is based on mutual consensus and consensus is hard to

reach between those pairs.

Figure 7.10 plots the average overall cost in the first 365 days of collaboration for three

nodes with FN values 0.1, 0.3, and 0.5 respectively. In the first 10 days, the costs for

all nodes are high. This is because all collaborators are still in probation period. After

day 10, all cost values drop down significantly. This is because collaborators pass the

probation period and start to contribute to intrusion decisions. The cost for high expertise

nodes continues to drop while the cost for low expertise nodes increases partially after

around day 20, and stabilizes after day 50. This is because the acquaintance management

algorithm selects better collaborators to replace the initial random ones. We can see that

the collaboration cost of nodes converges with time and becomes stable after the initial

phase.

Stability

Collaboration stability is an important property since the collaboration between IDSs is

expected to be long term. Frequently changing collaborators is costly because IDSs need to

spend considerable amount of time to learn about new collaborators. In this experiment,

we record the average time span of all acquaintances from the time they pass the probation

period till they are replaced by other acquaintances. The result is shown in Figure 7.11,

where the average collaboration time spans for three selected nodes are shown with different

point shapes. We can see that collaboration among nodes with similar expertise levels is

more stable than that between nodes with different expertise levels. For example, nodes

with low FN = 0.1 form stable collaboration connections with other nodes with low FN

(around 180 days in average), while the collaboration with IDSs with high FN is short

(close to 0 day in average).
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Incentive-compatibility

Collaboration among IDSs is expected to be a long term relationship. Incentive is im-

portant for the long term sustainability of collaborations since it provides motivation for

peers to contribute [47, 38]. We compare the average overall cost of all nodes with different

FN rates under three different conditions, namely, no collaboration, fixed acquaintances

collaboration (acquaintance length (acqlen)=8), and dynamic acquaintance management

collaboration. Figure 7.12 shows the distribution of the converged cost of all nodes. We

can observe that the cost of all IDSs is much higher when no collaboration is performed

in the network. On the other hand, collaborating with random fixed acquaintances can

significantly reduce the cost of false decisions, however, the cost of high expertise nodes

and low expertise nodes are very close. With our dynamic acquaintance management, high

expertise nodes achieve much lower cost than nodes with low expertise, which reflects an

incentive design of the collaboration system. Therefore, the system provides motivation

for nodes to update their knowledge base and behave truthfully in cooperation.
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Robustness

Robustness is a desired property of an IDN since malicious users may try to attack the col-

laboration mechanism to render it ineffective. In this experiment we focus on the Betrayal
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attack. To study the impact from one malicious node, we set up a collaboration scenario

where IDS0 is collaborating with a group of other IDSs with FP = 0.1 and FN = 0.2.

Among the group, one IDS turns to be dishonest after day 50 and gives false diagnoses.

We observe the FP rate and FN rate of this malicious node perceived by IDS0, and the

impact on the risk cost of IDS0 under various collaborator group sizes. Figure 7.13 shows

the perceived FP and FN rate of the malicious node during each simulation day. We can

see that the perceived FP and FN increase fast after day 50. The malicious node is then

removed from the acquaintance list of IDS0 when its perceived FP and FN are higher

than a predefined threshold. The cost of IDS0 under betrayal attack is depicted in Fig-

ure 7.14; we notice that the betrayal behavior introduces a spike of cost increment under all

group sizes, but the magnitude of increment decreases when the number of collaborators

increases. However, the system can efficiently learn the malicious behavior and recover to

normal by excluding malicious nodes from the acquaintance list.

7.6 Conclusion and Future Work

We proposed a statistical model to evaluate the tradeoff between the maintenance cost

and intrusion cost, and an effective acquaintance management method to minimize the

overall cost for each IDS in an IDN. Specifically, we adopted a Bayesian learning approach

to evaluate the accuracy of each IDS in terms of its false positive and true positive rates

in detecting intrusions. The Bayes’ theorem is applied for the aggregation of feedback

provided by the collaborating IDSs. Our acquaintance management explores a list of

candidate IDSs and selects acquaintances using an acquaintance selection algorithm. This

algorithm is based on a greedy approach to find the smallest number of best acquaintances

and minimize the cost of false intrusion decisions and maintenance. The acquaintances list

is updated periodically by introducing new candidates which pass the probation period.

Through a simulated IDN environment, we evaluated our Bayesian decision model

against threshold-based decision models, and acquaintance selection algorithm against a

brute force approach. Compared to the threshold-based model, our Bayesian decision

model performs better in terms of cost of false decisions. Compared to the brute force

approach, our algorithm achieves similar performance but requires much less computation

time. Our acquaintance management is also shown to achieve the desirable properties of
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convergence, stability, robustness, and incentive-compatibility.

As future work, we plan investigate other more sophisticated attack models on the col-

laboration mechanism and integrate corresponding defense techniques. Robustness of the

acquaintance management system is particularly critical if extended to support IDS peer

recommendations. In this case, malicious IDSs may provide untruthful recommendations

about other IDSs [110, 122, 83], or worse collude to collaboratively bring the system down.
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Chapter 8

Conclusion

Intrusion detection networks (IDNs) are collaboration networks used by intrusion detec-

tion systems (IDSs) to exchange information and knowledge, in order to collectively achieve

higher intrusion detection accuracy. However, building an IDN is a challenging task. Intru-

sion detection efficiency, robustness against malicious insiders, incentive compatibility, and

scalability are four desired features of IDNs. In this thesis, we have proposed a distributed

IDN design (Chapter 3), where IDSs are connected to their collaborators in a peer-to-peer

overlay. IDSs in the IDN send consultation messages to their collaborators when they do

not have enough information to make a confident intrusion decision, and aggregate the

feedback from collaborators to make a final intrusion decision. The proposed IDN archi-

tecture includes a number of components essential for IDS collaboration, four of which

were developed in detail throughout this thesis, namely, trust management, collaborative

intrusion decision, resource management, and acquaintance management.

As part of the trust management component (Chapter 4), we proposed a Dirichlet-

based Bayesian learning model to calculate the trust values of collaborators based on past

experiences. We showed that this model not only provides an efficient way to estimation

trust values, but also provides the confidence levels in trust estimations. In Chapter 5,

we modeled the collaborative intrusion decision problem as a Bayes optimization problem.

We obtained optimal decision rules that minimize Bayes risks using hypothesis testing

methods and provided a data-driven mechanism for real-time efficient, distributed, and se-

quential feedback aggregation. As part of the resource management component (Chapter

6), a continuous-kernel non-cooperative game model was introduced to solve the problem
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of fair and incentive-compatible resource allocation. Finally, for the acquaintance man-

agement component (Chapter 7), we proposed a statistical model to evaluate the trade-off

between the maintenance cost and intrusion cost, and an effective acquaintance manage-

ment method to minimize the overall cost for each IDS in the network by appropriately

selecting acquaintances.

We evaluated the thesis contribution primarily using a simulated IDN considering the

desired properties of effective collaborative IDNs previously mentioned. Specifically, we

identified a set of metrics to evaluate the performance of the collaboration networks,

namely, intrusion detection accuracy, robustness against malicious insiders, incentive-

compatibility in resource allocation, and scalability in network size.

The obtained results showed that the proposed IDN design and the IDN architecture

components developed in this thesis are indeed efficient, incentive-compatible, scalable and

robust. In particular and to evaluate collaborative IDN robustness, we have studied various

attack models and corresponding defence mechanisms. Finally though the collaboration

management mechanism were developed for intrusion detection networks in this thesis, we

believe they can be useful for other types of collaboration networks with untrusted node

such as social networks, mobile ad hoc networks, vehicular networks, and sensor networks.

The novelty of this work can be summarized as follows: First, we applied trust evalua-

tion, Bayesian decision, and game theoretical modelling to solve intrusion detection prob-

lems; second, we introduced the concept of test messages to evaluate the trustworthiness

and expertise levels of participating IDSs; third, we defined a resource-aware collabora-

tion model, where the communication overhead and helping resources between IDSs are

constrained and controlled.

As a future work, we plan to contribute to the design of the architecture components not

addressed in this thesis, namely the communication overlay component and the mediator.

For an extension of the trust management component, it will be interesting to tune some

of the model’s parameters such as c1, c2 (Equaltion 4.1) to evaluate their impact on the

performance. A possible extension of the feedback aggregation component is to the optimal

aggregation method for correlated feedbacks. For the resource management component,

we plan to investigate other types of attacks that malicious insiders can do to game the

system, for instance when a node does not follow the predefined resource allocation rules.

A possible extension of the acquaintance management component is to study on how

to select proper length of the probation period to achieve optimal effect. Moreover, we
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also would like to investigate more sophisticated collusion attacks and their corresponding

defence strategies. As an application of the work presented in this thesis, we are currently

working on malware detection using collaborative antiviruses. In this project, file scanning

results from different antivirus programs are aggregated to make a more accurate malware

detection within acceptable time frame. The ultimate goal of this thesis is to provide

guidelines for the deployment of a secure and scalable IDN where effective collaboration

can be established between IDSs.
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Appendix A

An Example of IDMEF format
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<?xml version="1.0" encoding="UTF-8"?>

<idmef:IDMEF-Message xmlns:idmef="http://iana.org/idmef" 

version="1.0">

  <idmef:Alert messageid="123456789abc">

    <idmef:Analyzer analyzerid="sensor01">

      <idmef:Node category="dns">

        <idmef:name>sensor.abc.com</idmef:name>

      </idmef:Node>

    </idmef:Analyzer>

    <idmef:CreateTime 

ntpstamp="0xbc89f6f9.0xef669437">2012-09-09T10:01:25.93464Z</

idmef:CreateTime>

    <idmef:Source ident="a0b2" spoofed="yes">

      <idmef:Node ident="a0b2-1">

        <idmef:Address ident="a1a2-2" category="ipv4-addr">

          <idmef:address>192.0.1.100</idmef:address>

        </idmef:Address>

      </idmef:Node>

    </idmef:Source>

    <idmef:Target ident="b5b6">

      <idmef:Node>

        <idmef:Address ident="b5b6-1" category="ipv4-addr">

          <idmef:address>192.0.1.10</idmef:address>

        </idmef:Address>

      </idmef:Node>

    </idmef:Target>

    <idmef:Target ident="c7c8">

      <idmef:Node ident="c7c8-1" category="nisplus">

        <idmef:name>hipo</idmef:name>

      </idmef:Node>

    </idmef:Target>

    <idmef:Target ident="d1d2">

      <idmef:Node ident="d1d2-1">

        <idmef:location>Waterloo B10</idmef:location>

        <idmef:name>Cisco.router.b10</idmef:name>

      </idmef:Node>

    </idmef:Target>

    <idmef:Classification text="Ping-of-death detected">

      <idmef:Reference origin="cve">

        <idmef:name>CVE-1999-128</idmef:name>

        <idmef:url>http://www.cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-1999-128</idmef:url>

      </idmef:Reference>

    </idmef:Classification>

  </idmef:Alert>

</idmef:IDMEF-Message>

Figure A.1: Example of intrusion alert in IDMEF format
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